
 123

LN
CS

 9
20

6

27th International Conference, CAV 2015
San Francisco, CA, USA, July 18–24, 2015
Proceedings, Part I

Computer Aided
Verification

Daniel Kroening
Corina S. Pasareanu (Eds.)

Lecture Notes in Computer Science 9206

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Daniel Kroening • Corina S. Păsăreanu (Eds.)

Computer Aided
Verification
27th International Conference, CAV 2015
San Francisco, CA, USA, July 18–24, 2015
Proceedings, Part I

123

Editors
Daniel Kroening
University of Oxford
Oxford
UK

Corina S. Păsăreanu
Carnegie Mellon University
Moffett Field, CA
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-21689-8 ISBN 978-3-319-21690-4 (eBook)
DOI 10.1007/978-3-319-21690-4

Library of Congress Control Number: 2015943799

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

It is our great pleasure to welcome you to CAV 2015, the 27th International Confer-
ence on Computer-Aided Verification, held in San Francisco, California, during July
18–24, 2015.

The CAV conference series is dedicated to the advancement of the theory and
practice of computer-aided formal analysis methods for hardware and software sys-
tems. The conference covers the spectrum from theoretical results to concrete appli-
cations, with an emphasis on practical verification tools and the algorithms and
techniques that are needed for their implementation. CAV considers it vital to continue
spurring advances in hardware and software verification while expanding to new
domains such as biological systems and computer security.

The CAV 2015 program included five keynotes, technical papers (58 long and 11
short papers accepted out of 252 submissions), 11 co-located events (VSTTE – Verified
Software: Theories, Tools, and Experiments; SMT – Satisfiability Modulo Theories,
EC2, IPRA – Interpolation: From Proofs to Applications; SYNT – Synthesis; VeriSure –
Verification and Assurance; HCVS – Horn Clauses for Verification and Synthe-
sis; VMW – Verification Mentoring Workshop, REORDER, SNR – Symbolic and
Numerical Methods for Reachability Analysis; VEMDP – Verification of Engineered
Molecular Devices and Programs), the Artifact Evaluation as well as briefings from the
SMT and Synthesis competitions.

The invited keynote speakers were Philippa Gardner (Imperial College London),
Leslie Lamport (Microsoft Research), Bob Kurshan (Cadence), William Hung (Syn-
opsys), and Peter O’Hearn (University College London and Facebook).

Many people worked hard to make CAV 2015 a success. We thank the authors and
the keynote speakers for providing the excellent technical material, the Program
Committee for their thorough reviews and the time spent on evaluating all the sub-
missions and discussing them during the on-line discussion period, and the Steering
Committee for their guidance throughout the planning for CAV 2015.

We also thank Temesghen Kahsai, Local Chair, for his dedication and help with
CAV 2015 planning and Hana Chockler, Sponsorship Chair, for helping to bring much
needed financial support to the conference; Dirk Beyer, Workshop Chair, and all the
organizers of the co-located events for bringing their events to the CAV week; Eliz-
abeth Polgreen for the program and proceedings; Arie Gurfinkel, Temesghen Kahsai,
Michael Tautschnig, and the Artifact Evaluation Committee for their work on evalu-
ating the artifacts submitted.

We gratefully acknowledge NSF for providing financial support for student par-
ticipants. We sincerely thank the CAV sponsors for their generous contributions:

– Google (Platinum sponsor)
– NASA, Fujitsu, SGT, Facebook, Microsoft (Gold sponsors)
– IBM, Cadence (Silver sponsors)
– Intel, Samsung (Bronze sponsors)

We also thank Carnegie Mellon University Silicon Valley and the University of
Oxford for their support.

Finally, we hope you find the proceedings of CAV 2015 intellectually stimulating
and practically valuable.

May 2015 Corina S. Păsăreanu
Daniel Kroening

VI Preface

Organization

Program Committee

Aws Albarghouthi University of Toronto, Canada
Jade Alglave University College London, UK
Domagoj Babic Google
Armin Biere Johannes Kepler University, Austria
Roderick Bloem Graz University of Technology, Austria
Ahmed Bouajjani LIAFA, University of Paris Diderot, France
Marius Bozga Verimag/CNRS, France
Aaron Bradley Mentor Graphics
David Brumley Carnegie Mellon University, USA
Tevfik Bultan University of California at Santa Barbara, USA
Krishnendu Chatterjee Institute of Science and Technology (IST)
Swarat Chaudhuri Rice University, USA
Marsha Chechik University of Toronto, Canada
Hana Chockler King’s College London, UK
Byron Cook Microsoft Research
Isil Dillig Stanford University, USA
Dino Distefano Facebook
Alastair Donaldson Imperial College London, UK
Azadeh Farzan University of Toronto, Canada
Antonio Filieri University of Stuttgart, Germany
Jasmin Fisher Microsoft Research
Indradeep Ghosh Fujitsu Labs of America
Patrice Godefroid Microsoft Research
Aarti Gupta Princeton University, USA
Arie Gurfinkel Software Engineering Institute, CMU, USA
Gerard Holzmann NASA/JPL, USA
Warren Hunt University of Texas, USA
Ranjit Jhala University of California San Diego, USA
Barbara Jobstmann EPFL, Jasper DA, and CNRS-Verimag,

Switzerland/France
Joost-Pieter Katoen RWTH Aachen University, Germany
Daniel Kroening University of Oxford, UK
Marta Kwiatkowska University of Oxford, UK
Akash Lal Microsoft Research, India
Darko Marinov University of Illinois at Urbana-Champaign, USA
Ken McMillan Microsoft Research
Kedar Namjoshi Bell Labs

David Parker University of Birmingham, UK
Corina Pasareanu CMU/NASA Ames Research Center, USA
André Platzer Carnegie Mellon University, USA
Zvonimir Rakamaric University of Utah, USA
Grigore Rosu University of Illinois at Urbana-Champaign, USA
Philipp Ruemmer Uppsala University, Sweden
Mooly Sagiv Tel Aviv University, Israel
Sriram Sankaranarayanan University of Colorado, Boulder, USA
Koushik Sen University of California, Berkeley, USA
Natarajan Shankar SRI International
Natasha Sharygina Università della Svizzera Italiana, Italy
Sharon Shoham Technion, Israel
Nishant Sinha IBM Research Labs
Fabio Somenzi University of Colorado at Boulder, USA
Manu Sridharan Samsung Research America
Ofer Strichman Technion, Israel
Zhendong Su UC Davis, USA
Cesare Tinelli The University of Iowa, USA
Emina Torlak U.C. Berkeley, USA
Tayssir Touili LIAFA, CNRS and University Paris Diderot, France
Thomas Wahl Northeastern University, USA
Georg Weissenbacher Vienna University of Technology, Austria
Eran Yahav Technion, Israel

Additional Reviewers

Abdelkader, Karam
Abdullah, Syed Md.

Jakaria
Abraham, Erika
Aiswarya, C.
Akshay, S.
Alberti, Francesco
Alt, Leonardo
André, Etienne
Arechiga, Nikos
Asarin, Eugene
Astefanoaei, Lacramioara
Athanasiou, Konstantinos
Aydin, Abdulbaki
Backeman, Peter
Balakrishnan, Gogul
Bang, Lucas
Barbot, Benoit
Barrett, Clark

Bartocci, Ezio
Basset, Nicolas
Ben Sassi,

Mohamed Amin
Ben-David, Shoham
Benes, Nikola
Berdine, Josh
Bertrand, Nathalie
Bhatt, Devesh
Blackshear, Sam
Bocic, Ivan
Bogomolov, Sergiy
Bornholt, James
Bortz, David
Brain, Martin
Brockschmidt, Marc
Brotherston, James
Bruns, Glenn
Bushnell, David

Calcagno, Cristiano
Ceska, Milan
Chakarov, Aleksandar
Chakravarthy, Venkat
Chan, May T.M.
Chapman, Martin
Chau, Cuong
Chen, Xin
Chen, Yuting
Cherini, Renato
Chiang, Wei-Fan
Chmelik, Martin
Choi, Wontae
Cimatti, Alessandro
Ciobaca, Stefan
Clancy, Kevin
Combaz, Jacques
Cox, Arlen
D’Antoni, Loris

VIII Organization

D’Silva, Vijay
Dan, Andrei Marian
Dang, Thao
Darulova, Eva
David, Cristina
De Niz, Dionisio
Degorre, Aldric
Dehnert, Christian
Dhok, Monika
Diaz, Marcio
Dimjasevic, Marko
Dor, Nurit
Doyen, Laurent
Dragoi, Cezara
Dutertre, Bruno
Dutra, Rafael
Ebtekar, Aram
Ehlers, Rüdiger
Eide, Eric
Eisner, Cindy
Enea, Constantin
Fainekos, Georgios
Falcone, Ylies
Fedyukovich, Grigory
Feret, Jerome
Ferrere, Thomas
Fisman, Dana
Forejt, Vojtech
Fraer, Ranan
Frehse, Goran
Fu, Xiang
Fu, Zhoulai
Fuhs, Carsten
Fulton, Nathan
Gao, Sicun
Garg, Pranav
Garoche, Pierre-Loic
Gascon, Adria
Gerard, Leonard
Ghorbal, Khalil
Giacobbe, Mirco
Girard, Antoine
Gligoric, Milos
Goel, Shilpi
Gong, Liang
Gordon, Colin S.

Gotsman, Alexey
Gretz, Friedrich
Griesmayer, Andreas
Grinchtein, Olga
Grumberg, Orna
Gu, Yijia
Guck, Dennis
Gupta, Ashutosh
Gvero, Tihomir
Gyori, Alex
Günther, Henning
Haase, Christoph
Hadarean, Liana
Hahn, Ernst Moritz
Hall, Ben
Hall, Benjamin
Hallé, Sylvain
Hamza, Jad
He, Shaobo
Heizmann, Matthias
Henriques, David
Henry, Julien
Heule, Marijn
Hofferek, Georg
Horn, Alexander
Hyvärinen, Antti
Ivancic, Franjo
Ivrii, Alexander
Jain, Mitesh
Jansen, Nils
Jeannin, Jean-Baptiste
Ji, Ran
Jovanovic, Aleksandra
Jovanović, Dejan
Kafle, Bishoksan
Kahsai, Temesghen
Kahveci, Tuba
Kaminski, Benjamin

Lucien
Kannan, Jayanthkumar
Kapinski, James
Karbyshev, Aleksandr
Karimi, Derrick
Keidar-Barner, Sharon
Keller, Chantal
Kennedy, Andrew

Khalimov, Ayrat
Khlaaf, Heidy
Kiefer, Stefan
Kim, Chang Hwan Peter
Kincaid, Zachary
King, Andy
King, Tim
Kini, Keshav
Koenighofer, Robert
Komuravelli, Anvesh
Konnov, Igor
Koskinen, Eric
Kretinsky, Jan
Kugler, Hillel
Kuncak, Viktor
Laarman, Alfons
Lahav, Ori
Lahiri, Shuvendu
Lampka, Kai
Lange, Martin
Lano, Kevin
Lawford, Mark
Le, Vu
Legay, Axel
Li, Goudong
Li, Guodong
Li, Peng
Li, Wenchao
Li, Yi
Liang, Tianyi
Lin, Yu
Liu, Peizun
Loos, Sarah
Luo, Qingzhou
Maler, Oded
Marescotti, Matteo
Martins, João G.
Martins, Ruben
Meel, Kuldeep
Mehne, Ben
Meller, Yael
Mereacre, Alexandru
Meshman, Yuri
Miné, Antoine
Misailovic, Sasa
Mitra, Sayan

Organization IX

Mitsch, Stefan
Moore, Brandon
Moses, Yoram
Mover, Sergio
Moy, Matthieu
Mukherjee, Rajdeep
Mukherjee, Suvam
Musuvathi, Madanlal
Müller, Andreas
Nadel, Alexander
Naiman, Lev
Natraj, Ashutosh
Navas, Jorge A.
Neider, Daniel
Nellen, Johanna
Nguyen, Huu Vu
Nickovic, Dejan
Nimal, Vincent
Nori, Aditya
Norman, Gethin
O’Hearn, Peter
Ober, Iulian
Oehlerking, Jens
Olivo, Oswaldo
Olmedo, Federico
Ong, Luke
Otop, Jan
Ouaknine, Joel
Owre, Sam
Padon, Oded
Palikareva, Hristina
Paoletti, Nicola
Papavasileiou, Vasilis
Park, Daejun
Partush, Nimrod
Pek, Edgar
Peleg, Hila
Piterman, Nir
Podelski, Andreas
Pommellet, Adrien
Pous, Damien
Prasad, Mukul
Prähofer, Herbert
Puggelli, Alberto

Qian, Xuehai
Qiu, Xiaokang
Quesel, Jan-David
Radoi, Cosmin
Ramachandran, Jaideep
Ratschan, Stefan
Ray, Sayak
Rinetzky, Noam
Rodríguez Carbonell,

Enric
Roeck, Franz
Rungta, Neha
Ryvchin, Vadim
Safránek, David
Salay, Rick
Sawaya, Geof
Schewe, Sven
Schlaipfer, Matthias
Scholl, Christoph
Schrammel, Peter
Schäf, Martin
Schäfer, Andreas
See, Abigail
Seidl, Martina
Selfridge, Ben
Serbanuta, Traian Florin
Sethi, Divjyot
Sharma, Rahul
Sheinvald, Sarai
Shi, August
Shmulevich, Ilya
Sinz, Carsten
Slivovsky, Friedrich
Sogokon, Andrew
Solovyev, Alexey
Sousa Pinto, Joao
Srivathsan, B.
Stefanescu, Andrei
Stefanescu, Gheorghe
Sticksel, Christoph
Suda, Martin
Sun, Chengnian
Sun, Yutian
Szekeres, Laszlo

Taghdiri, Mana
Tautschnig, Michael
Thakur, Aditya
Tiwari, Ashish
Tonetta, Stefano
Topcu, Ufuk
Tracol, Mathieu
Tsiskaridze, Nestan
Tzoref-Brill, Rachel
Ulbrich, Mattias
Urban, Caterina
Urban, Christian
Vafeiadis, Viktor
Veitsman, Maor
Velner, Yaron
Vizel, Yakir
Voelzer, Hagen
Von Essen, Christian
Völp, Marcus
Wachter, Björn
Wang, Zilong
Wehrman, Ian
Wei, Ou
Wetzler, Nathan
Whalen, Mike
Wickerson, John
Wiltsche, Clemens
Wintersteiger, Christoph
Wolf, Karsten
Wolf, Verena
Wu, Zhilin
Yorav, Karen
Yorsh, Greta
Yoshida, Hiroaki
Younes, Håkan L.S.
Yu, Fang
Zawadzki, Erik
Zeljić, Aleksandar
Zhang, Qirun
Zhang, Yi
Zheng, Yunhui
Zutshi, Aditya

X Organization

Abstracts of Invited Talks

A Trusted Mechanised Specification
of JavaScript: One Year On

Philippa Gardner, Gareth Smith, Conrad Watt, and Thomas Wood

Imperial College London
{pg,gds,cw2312,tw1509}@ic.ac.uk

http://jscert.org

Abstract. The JSCert project provides a Coq mechanised specification of the
core JavaScript language. A key part of the project was to develop a method-
ology for establishing trust, by designing JSCert in such a way as to provide a
strong connection with the JavaScript standard, and by developing JSRef, a
reference interpreter which was proved correct with respect to JSCert and tested
using the standard Test262 test suite. In this paper, we assess the previous state
of the project at POPL’14 and the current state of the project at CAV’15. We
evaluate the work of POPL’14, providing an analysis of the methodology as a
whole and a more detailed analysis of the tests. We also describe recent work on
extending JSRef to include Google’s V8 Array library, enabling us to cover
more of the language and to pass more tests.

http://jscert.org

CAV: An Industrial Perspective

Robert Kurshan

The theory of computer-aided verification happily, in the past decade,
has spawned a robust industrial utilization. This, after previous dec-
ades of wandering in a desert amply populated with disbelievers.

I recite some of the history of how this came about, review where
it is today, together with some of the currently most pressing theo-
retical challenges that seem amenable to resolution, including memory
systems, full systems and some significant tool enhancements left on
the table, readily providable through current technology. (Inevitably),
I speculate on where computer-aided verification may be headed.

Effective and Scalable Verification: Bridging
Research and Industry

William N.N. Hung

Synopsys Inc., Mountain View CA 94043, USA
William.Hung@synopsys.com

Five decades ago, Moores law predicted the exponential growth of the semiconductor
industry. Over the years, the increasing design complexity has called for effective and
comprehensive verification of hardware and embedded systems. Functional verification
has become a key concern in hardware and software system development. It is gen-
erally believed the majority of design effort is spent in functional verification, whose
complexity explodes as the size of the design increases. The increasing adoption of
high-level synthesis brings the consistency of C++ / System C / high-level model and
register-transfer-level model into the picture. With the emergence of embedded system,
functional verification of embedded software also becomes a key concern for the
industry.

There are many approaches for functional verification: formal verification, dynamic
verification, hardware emulation, hardware prototyping, etc. At present,
constraint-based dynamic verification is still the mainstream approach in industry,
especially for large complex designs. Dynamic verification is conducted by feeding
input patterns to the design and simulating its behavior against a specification checker.
The exponential nature of input patterns means, however, only a small subset of them
can be sampled for dynamic verification. To quantify the extensiveness of dynamic
verification, functional coverage is a criterion widely used. How to improve functional
coverage is a key challenge to the industry.

In this talk, we will survey industrial standards, tools and methodologies to tackle
the above verification problems, including the industry wide shift-left campaign, from
software to hardware, formal, semi-formal, and constraint-based verification, acceler-
ations, new ways of debugging and tackling complexity issues, ways to improve
functional coverage, as well as new initiatives in software verification.

Contents – Part I

Invited Paper

A Trusted Mechanised Specification of JavaScript: One Year On 3
Philippa Gardner, Gareth Smith, Conrad Watt, and Thomas Wood

Model Checking and Refinements

On Automation of CTL* Verification for Infinite-State Systems 13
Byron Cook, Heidy Khlaaf, and Nir Piterman

Algorithms for Model Checking HyperLTL and HyperCTL� 30
Bernd Finkbeiner, Markus N. Rabe, and César Sánchez

Fairness Modulo Theory: A New Approach to LTL Software
Model Checking . 49

Daniel Dietsch, Matthias Heizmann, Vincent Langenfeld,
and Andreas Podelski

Model Checking Parameterized Asynchronous Shared-Memory Systems 67
Antoine Durand-Gasselin, Javier Esparza, Pierre Ganty,
and Rupak Majumdar

SMT and POR Beat Counter Abstraction: Parameterized Model Checking
of Threshold-Based Distributed Algorithms . 85

Igor Konnov, Helmut Veith, and Josef Widder

Skipping Refinement . 103
Mitesh Jain and Panagiotis Manolios

Quantitative Reasoning

Percentile Queries in Multi-dimensional Markov Decision Processes 123
Mickael Randour, Jean-François Raskin, and Ocan Sankur

Faster Algorithms for Quantitative Verification in Constant
Treewidth Graphs . 140

Krishnendu Chatterjee, Rasmus Ibsen-Jensen,
and Andreas Pavlogiannis

Counterexample Explanation by Learning Small Strategies in Markov
Decision Processes . 158

Tomáš Brázdil, Krishnendu Chatterjee, Martin Chmelík,
Andreas Fellner, and Jan Křetínský

http://dx.doi.org/10.1007/978-3-319-21690-4_1
http://dx.doi.org/10.1007/978-3-319-21690-4_2
http://dx.doi.org/10.1007/978-3-319-21690-4_3
http://dx.doi.org/10.1007/978-3-319-21690-4_4
http://dx.doi.org/10.1007/978-3-319-21690-4_4
http://dx.doi.org/10.1007/978-3-319-21690-4_5
http://dx.doi.org/10.1007/978-3-319-21690-4_6
http://dx.doi.org/10.1007/978-3-319-21690-4_6
http://dx.doi.org/10.1007/978-3-319-21690-4_7
http://dx.doi.org/10.1007/978-3-319-21690-4_8
http://dx.doi.org/10.1007/978-3-319-21690-4_9
http://dx.doi.org/10.1007/978-3-319-21690-4_9
http://dx.doi.org/10.1007/978-3-319-21690-4_10
http://dx.doi.org/10.1007/978-3-319-21690-4_10

Symbolic Polytopes for Quantitative Interpolation and Verification 178
Klaus von Gleissenthall, Boris Köpf, and Andrey Rybalchenko

Adaptive Aggregation of Markov Chains: Quantitative Analysis
of Chemical Reaction Networks . 195

Alessandro Abate, Luboš Brim, Milan Češka, and Marta Kwiatkowska

PROPhESY: A PRObabilistic ParamEter SYnthesis Tool 214
Christian Dehnert, Sebastian Junges, Nils Jansen, Florian Corzilius,
Matthias Volk, Harold Bruintjes, Joost- Pieter Katoen,
and Erika Ábrahám

Software Analysis

Effective Search-Space Pruning for Solvers of String Equations,
Regular Expressions and Length Constraints. 235

Yunhui Zheng, Vijay Ganesh, Sanu Subramanian, Omer Tripp,
Julian Dolby, and Xiangyu Zhang

Automata-Based Model Counting for String Constraints. 255
Abdulbaki Aydin, Lucas Bang, and Tevfik Bultan

OpenJDK’s Java.utils.Collection.sort() Is Broken: The Good, the Bad
and the Worst Case . 273

Stijn de Gouw, Jurriaan Rot, Frank S. de Boer, Richard Bubel,
and Reiner Hähnle

Tree Buffers . 290
Radu Grigore and Stefan Kiefer

Learning Commutativity Specifications . 307
Timon Gehr, Dimitar Dimitrov, and Martin Vechev

Angelic Verification: Precise Verification Modulo Unknowns 324
Ankush Das, Shuvendu K. Lahiri, Akash Lal, and Yi Li

The SeaHorn Verification Framework . 343
Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli,
and Jorge A. Navas

Automatic Rootcausing for Program Equivalence Failures in Binaries 362
Shuvendu K. Lahiri, Rohit Sinha, and Chris Hawblitzel

Fine-Grained Caching of Verification Results . 380
K. Rustan M. Leino and Valentin Wüstholz

Predicting a Correct Program in Programming by Example 398
Rishabh Singh and Sumit Gulwani

XVIII Contents – Part I

http://dx.doi.org/10.1007/978-3-319-21690-4_11
http://dx.doi.org/10.1007/978-3-319-21690-4_12
http://dx.doi.org/10.1007/978-3-319-21690-4_12
http://dx.doi.org/10.1007/978-3-319-21690-4_13
http://dx.doi.org/10.1007/978-3-319-21690-4_14
http://dx.doi.org/10.1007/978-3-319-21690-4_14
http://dx.doi.org/10.1007/978-3-319-21690-4_15
http://dx.doi.org/10.1007/978-3-319-21690-4_16
http://dx.doi.org/10.1007/978-3-319-21690-4_16
http://dx.doi.org/10.1007/978-3-319-21690-4_17
http://dx.doi.org/10.1007/978-3-319-21690-4_18
http://dx.doi.org/10.1007/978-3-319-21690-4_19
http://dx.doi.org/10.1007/978-3-319-21690-4_20
http://dx.doi.org/10.1007/978-3-319-21690-4_21
http://dx.doi.org/10.1007/978-3-319-21690-4_22
http://dx.doi.org/10.1007/978-3-319-21690-4_23

Abstract Interpretation with Higher-Dimensional Ellipsoids
and Conic Extrapolation. 415

Mendes Oulamara and Arnaud J. Venet

Lightning Talks

ADAM: Causality-Based Synthesis of Distributed Systems 433
Bernd Finkbeiner, Manuel Gieseking, and Ernst-Rüdiger Olderog

Alchemist: Learning Guarded Affine Functions. 440
Shambwaditya Saha, Pranav Garg, and P. Madhusudan

OptiMathSAT: A Tool for Optimization Modulo Theories 447
Roberto Sebastiani and Patrick Trentin

Systematic Asynchrony Bug Exploration for Android Apps 455
Burcu Kulahcioglu Ozkan, Michael Emmi, and Serdar Tasiran

Norn: An SMT Solver for String Constraints . 462
Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen,
Lukáš Holík, Ahmed Rezine, Philipp Rümmer, and Jari Stenman

PVSio-web 2.0: Joining PVS to HCI . 470
Paolo Masci, Patrick Oladimeji, Yi Zhang, Paul Jones, Paul Curzon,
and Harold Thimbleby

The Hanoi Omega-Automata Format . 479
Tomáš Babiak, František Blahoudek, Alexandre Duret-Lutz,
Joachim Klein, Jan Křetínský, David Müller, David Parker,
and Jan Strejček

The Open-Source LearnLib: A Framework for Active Automata Learning . . . 487
Malte Isberner, Falk Howar, and Bernhard Steffen

BBS: A Phase-Bounded Model Checker for Asynchronous Programs 496
Rupak Majumdar and Zilong Wang

Time-Aware Abstractions in HybridSal . 504
Ashish Tiwari

A Type-Directed Approach to Program Repair . 511
Alex Reinking and Ruzica Piskac

Formal Design and Safety Analysis of AIR6110 Wheel Brake System. 518
M. Bozzano, A. Cimatti, A. Fernandes Pires, D. Jones, G. Kimberly,
T. Petri, R. Robinson, and S. Tonetta

Contents – Part I XIX

http://dx.doi.org/10.1007/978-3-319-21690-4_24
http://dx.doi.org/10.1007/978-3-319-21690-4_24
http://dx.doi.org/10.1007/978-3-319-21690-4_25
http://dx.doi.org/10.1007/978-3-319-21690-4_26
http://dx.doi.org/10.1007/978-3-319-21690-4_27
http://dx.doi.org/10.1007/978-3-319-21690-4_28
http://dx.doi.org/10.1007/978-3-319-21690-4_29
http://dx.doi.org/10.1007/978-3-319-21690-4_30
http://dx.doi.org/10.1007/978-3-319-21690-4_31
http://dx.doi.org/10.1007/978-3-319-21690-4_32
http://dx.doi.org/10.1007/978-3-319-21690-4_33
http://dx.doi.org/10.1007/978-3-319-21690-4_34
http://dx.doi.org/10.1007/978-3-319-21690-4_35
http://dx.doi.org/10.1007/978-3-319-21690-4_36

Meeting a Powertrain Verification Challenge . 536
Parasara Sridhar Duggirala, Chuchu Fan, Sayan Mitra,
and Mahesh Viswanathan

Synthesising Executable Gene Regulatory Networks from Single-Cell
Gene Expression Data . 544

Jasmin Fisher, Ali Sinan Köksal, Nir Piterman, and Steven Woodhouse

Empirical Software Metrics for Benchmarking of Verification Tools 561
Yulia Demyanova, Thomas Pani, Helmut Veith, and Florian Zuleger

Interpolation, IC3/PDR, and Invariants

Property-Directed Inference of Universal Invariants or Proving Their
Absence. 583

A. Karbyshev, N. Bjørner, S. Itzhaky, N. Rinetzky, and S. Shoham

Efficient Anytime Techniques for Model-Based Safety Analysis 603
Marco Bozzano, Alessandro Cimatti, Alberto Griggio,
and Cristian Mattarei

Boosting k-Induction with Continuously-Refined Invariants 622
Dirk Beyer, Matthias Dangl, and Philipp Wendler

Fast Interpolating BMC . 641
Yakir Vizel, Arie Gurfinkel, and Sharad Malik

Counterexample-Guided Polynomial Loop Invariant Generation
by Lagrange Interpolation . 658

Yu-Fang Chen, Chih-Duo Hong, Bow-Yaw Wang, and Lijun Zhang

Author Index . 675

XX Contents – Part I

http://dx.doi.org/10.1007/978-3-319-21690-4_37
http://dx.doi.org/10.1007/978-3-319-21690-4_38
http://dx.doi.org/10.1007/978-3-319-21690-4_38
http://dx.doi.org/10.1007/978-3-319-21690-4_39
http://dx.doi.org/10.1007/978-3-319-21690-4_40
http://dx.doi.org/10.1007/978-3-319-21690-4_40
http://dx.doi.org/10.1007/978-3-319-21690-4_41
http://dx.doi.org/10.1007/978-3-319-21690-4_42
http://dx.doi.org/10.1007/978-3-319-21690-4_43
http://dx.doi.org/10.1007/978-3-319-21690-4_44
http://dx.doi.org/10.1007/978-3-319-21690-4_44

Contents – Part II

SMT Techniques and Applications

POLING: SMT Aided Linearizability Proofs . 3
He Zhu, Gustavo Petri, and Suresh Jagannathan

Finding Bounded Path in Graph Using SMT for Automatic Clock Routing . . . 20
Amit Erez and Alexander Nadel

Cutting the Mix . 37
Jürgen Christ and Jochen Hoenicke

The Inez Mathematical Programming Modulo Theories Framework 53
Panagiotis Manolios, Jorge Pais, and Vasilis Papavasileiou

Using Minimal Correction Sets to More Efficiently Compute Minimal
Unsatisfiable Sets . 70

Fahiem Bacchus and George Katsirelos

Deciding Local Theory Extensions via E-matching 87
Kshitij Bansal, Andrew Reynolds, Tim King, Clark Barrett,
and Thomas Wies

HW Verification

Modular Deductive Verification of Multiprocessor Hardware Designs 109
Muralidaran Vijayaraghavan, Adam Chlipala, Arvind, and Nirav Dave

Word-Level Symbolic Trajectory Evaluation. 128
Supratik Chakraborty, Zurab Khasidashvili, Carl-Johan H. Seger,
Rajkumar Gajavelly, Tanmay Haldankar, Dinesh Chhatani,
and Rakesh Mistry

Verifying Linearizability of Intel® Software Guard Extensions 144
Rebekah Leslie-Hurd, Dror Caspi, and Matthew Fernandez

Synthesis

Synthesis Through Unification . 163
Rajeev Alur, Pavol Černý, and Arjun Radhakrishna

http://dx.doi.org/10.1007/978-3-319-21668-3_1
http://dx.doi.org/10.1007/978-3-319-21668-3_2
http://dx.doi.org/10.1007/978-3-319-21668-3_3
http://dx.doi.org/10.1007/978-3-319-21668-3_4
http://dx.doi.org/10.1007/978-3-319-21668-3_5
http://dx.doi.org/10.1007/978-3-319-21668-3_5
http://dx.doi.org/10.1007/978-3-319-21668-3_6
http://dx.doi.org/10.1007/978-3-319-21668-3_7
http://dx.doi.org/10.1007/978-3-319-21668-3_8
http://dx.doi.org/10.1007/978-3-319-21668-3_9
http://dx.doi.org/10.1007/978-3-319-21668-3_9
http://dx.doi.org/10.1007/978-3-319-21668-3_10

From Non-preemptive to Preemptive Scheduling
Using Synchronization Synthesis. 180

Pavol Černý, Edmund M. Clarke, Thomas A. Henzinger,
Arjun Radhakrishna, Leonid Ryzhyk, Roopsha Samanta,
and Thorsten Tarrach

Counterexample-Guided Quantifier Instantiation for Synthesis in SMT. 198
Andrew Reynolds, Morgan Deters, Viktor Kuncak, Cesare Tinelli,
and Clark Barrett

Deductive Program Repair . 217
Etienne Kneuss, Manos Koukoutos, and Viktor Kuncak

Quantifying Conformance Using the Skorokhod Metric 234
Jyotirmoy V. Deshmukh, Rupak Majumdar, and Vinayak S. Prabhu

Pareto Curves of Multidimensional Mean-Payoff Games 251
Romain Brenguier and Jean-François Raskin

Termination

Conflict-Driven Conditional Termination . 271
Vijay D’Silva and Caterina Urban

Predicate Abstraction and CEGAR for Disproving Termination
of Higher-Order Functional Programs . 287

Takuya Kuwahara, Ryosuke Sato, Hiroshi Unno, and Naoki Kobayashi

Complexity of Bradley-Manna-Sipma Lexicographic Ranking Functions 304
Amir M. Ben-Amram and Samir Genaim

Measuring with Timed Patterns. 322
Thomas Ferrère, Oded Maler, Dejan Ničković, and Dogan Ulus

Automatic Verification of Stability and Safety for Delay Differential
Equations . 338

Liang Zou, Martin Fränzle, Naijun Zhan, and Peter Nazier Mosaad

Time Robustness in MTL and Expressivity in Hybrid System Falsification. . . 356
Takumi Akazaki and Ichiro Hasuo

Concurrency

Adaptive Concretization for Parallel Program Synthesis 377
Jinseong Jeon, Xiaokang Qiu, Armando Solar-Lezama,
and Jeffrey S. Foster

XXII Contents – Part II

http://dx.doi.org/10.1007/978-3-319-21668-3_11
http://dx.doi.org/10.1007/978-3-319-21668-3_11
http://dx.doi.org/10.1007/978-3-319-21668-3_12
http://dx.doi.org/10.1007/978-3-319-21668-3_13
http://dx.doi.org/10.1007/978-3-319-21668-3_14
http://dx.doi.org/10.1007/978-3-319-21668-3_15
http://dx.doi.org/10.1007/978-3-319-21668-3_16
http://dx.doi.org/10.1007/978-3-319-21668-3_17
http://dx.doi.org/10.1007/978-3-319-21668-3_17
http://dx.doi.org/10.1007/978-3-319-21668-3_18
http://dx.doi.org/10.1007/978-3-319-21668-3_19
http://dx.doi.org/10.1007/978-3-319-21668-3_20
http://dx.doi.org/10.1007/978-3-319-21668-3_20
http://dx.doi.org/10.1007/978-3-319-21668-3_21
http://dx.doi.org/10.1007/978-3-319-21668-3_22

Automatic Completion of Distributed Protocols with Symmetry 395
Rajeev Alur, Mukund Raghothaman, Christos Stergiou, Stavros Tripakis,
and Abhishek Udupa

An Axiomatic Specification for Sequential Memory Models 413
William Mansky, Dmitri Garbuzov, and Steve Zdancewic

Approximate Synchrony: An Abstraction for Distributed
Almost-Synchronous Systems . 429

Ankush Desai, Sanjit A. Seshia, Shaz Qadeer, David Broman,
and John C. Eidson

Automated and Modular Refinement Reasoning for Concurrent Programs . . . 449
Chris Hawblitzel, Erez Petrank, Shaz Qadeer, and Serdar Tasiran

Author Index . 467

Contents – Part II XXIII

http://dx.doi.org/10.1007/978-3-319-21668-3_23
http://dx.doi.org/10.1007/978-3-319-21668-3_24
http://dx.doi.org/10.1007/978-3-319-21668-3_25
http://dx.doi.org/10.1007/978-3-319-21668-3_25
http://dx.doi.org/10.1007/978-3-319-21668-3_26

Invited Paper

A Trusted Mechanised Specification
of JavaScript: One Year On

Philippa Gardner, Gareth Smith, Conrad Watt, and Thomas Wood(B)

Imperial College London, London, UK
{pg,gds,cw2312,tw1509}@ic.ac.uk

http://jscert.org

Abstract. The JSCert project provides a Coq mechanised specification
of the core JavaScript language. A key part of the project was to develop
a methodology for establishing trust, by designing JSCert in such a way
as to provide a strong connection with the JavaScript standard, and
by developing JSRef, a reference interpreter which was proved correct
with respect to JSCert and tested using the standard Test262 test suite.
In this paper, we assess the previous state of the project at POPL’14
and the current state of the project at CAV’15. We evaluate the work
of POPL’14, providing an analysis of the methodology as a whole and
a more detailed analysis of the tests. We also describe recent work on
extending JSRef to include Google’s V8 Array library, enabling us to
cover more of the language and to pass more tests.

1 Introduction

JavaScript is the most widely used web language for client-side applications.
However, JavaScript is complex and the associated ECMAScript standard (edi-
tion 5.1 in this paper, abbreviated ES5) is, by necessity, large and full of corner
cases. In POPL’14, Gardner, Smith and others developed a Coq mechanised spec-
ification of the core JavaScript language, called JSCert ([1] and see acknowledge-
ments). This work provides a foundation for future research projects based on,
for example, program logics, type systems, sub-language analyses and abstract
interpretation. It demonstrates that modern techniques of mechanised specifica-
tion can handle the complexity of JavaScript.

An important part of the JSCert project was to develop a methodology for
establishing trust: JSCert was designed so that each line of the core language
of ES5 corresponds to one or two rules in JSCert; an executable reference inter-
preter, JSRef, was developed in parallel and proved to be correct with respect to
JSCert; and JSRef was tested using Test262, the test suite that accompanies the
ES5 standard. The methodology ensured that JSCert is a comparatively accurate
formulation of the English standard, which will only improve with time.

In this paper, we describe the state of JSCert at POPL’14 and the current
state of JSCert at CAV’15. With JSCert at POPL’14, we evaluate the method-
ology as a whole, report on the test results presented at the time, and assess our
interpretation of the tests. We have found no errors in the Coq proof showing
c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 3–10, 2015.
DOI: 10.1007/978-3-319-21690-4 1

4 P. Gardner et al.

that JSRef is correct with respect to JSCert. We have identified a small num-
ber of cases where we have misinterpreted ES5, with these misinterpretations
occurring consistently in both JSCert and JSRef. These misinterpretations have
now been fixed; the close connection between ES5 and JSCert means that local
misinterpretations of ES5 results in local fixes to JSCert and JSRef. We have
found errors in the analysis of the tests, in particular by misattributing some test
failures to the external parser instead of our parser interface code. Since POPL,
we have greatly improved the test analysis and report on our results here.

For CAV’15, we give a snapshot of the current state of the JSCert project.
The primary criticism of the POPL’14 work was that it only dealt with the
core language, not with the associated libraries. In principle, we do not envis-
age difficulty in extending JSCert to the libraries1, although covering all such
libraries would be a mammoth task. Instead, we explore a different approach,
to integrate an existing industrial-strength library implementation with JSRef.
We focus on the Array library for illustration. We implement the Array library’s
low-level functionality using Coq and its high-level functionality using Google’s
V8 Array library implementation in core JavaScript. The V8 Array library is a
good choice for us, as it provides a clear separation between the low-level and
high-level functionality.

We can now run more code and pass more tests. We obtain trust in our
extended JSRef in as far as we can trust the Google V8 Array library, trust our
Coq implementation of the low-level functions, and trust the tests to identify
errors in the industry code and our Coq code. However, this does not compete
with the strong trust of the original JSCert project; for that, we need to extend
JSCert to also specify the Array library.

2 JSCert at POPL’14

JSCert is an inductively-defined Coq semantics of the core part of ES5, suit-
able for carrying out formal proofs of, for example, safety properties of ES5
and security properties of sub-languages. It identifies the core language of ES5,
comprising chapters 8–14 of ES5 and a small amount of Chap. 15. Chapters 1–7
are not directly relevant to JSCert2. Chapters 8–14 describe the bulk of the core
language. The for-in command has not been specified, since it is notoriously
difficult to understand and requires a global complication of the specification3.

1 Maksimović and Schmitt have begun to specify the core Array specification in JSCert
and JSRef.

2 Chapters 1–7 provide hints on how to read the later chapters, information about how
the standard relates to the rest of the world and information that is only useful for
parsing.

3 During discussion on the es-discuss mailing list, even members of the ECMAScript
committee had differing opinions of what the standard meant. The committee came
to a consensus and we know how to specify the for-in command in JSCert. However,
this specification would involve a global change, with the enumerable fields having
to be explicitly recorded throughout the specification. The choice was to omit this

A Trusted Mechanised Specification of JavaScript: One Year On 5

Fig. 1. The JSCert project at POPL’14.

The Array literal syntax has also not been specified, since the project did not
specify the Array library.

Chapter 15 specifies objects and functions that should be present in the heap
when the JavaScript interpreter is started. These functions provide both ‘core’
language functionality which must be directly implemented in the interpreter
(such as special object constructors; eval; or control of property descriptors) and
library or helper functionality which (such as URI decoding or array sorting).
Unfortunately the split is not always clear, as all of these functions are defined
in the ES5 specification in terms of the language’s internal behaviour so it is
not trivial to determine whether a function only makes use of state accessible to
regular JavaScript programs. JSCert has specifications of the ‘core’ functions of
Chap. 15, excluding the Array library.

JSCert is written using the pretty-big-step semantics of Charguéraud [2].
The original operational semantics of JavaScript, created by Maffeis, Mitchell
and Taly [3] for ECMAScript 3, was written using a small-step semantics. By
contrast, the prose of the standard has a big-step flavour. The aim was to design
JSCert to be as close to the standard as possible. However, a traditional big-step
operational semantics would lead to many duplicate rules since the JavaScript
control flow is quite complex. The pretty-big-step semantics enables JSCert to
be closer to the English prose. It was originally developed for a small ML-like
language. The JSCert specification demonstrates that it scales to ES5, a real-
world language which was not designed with formal methods in mind.

The main challenge was (and still is) to convince people (including our-
selves) that JSCert can be trusted as an accurate formulation of the ES5 English
standard. The design of the project is illustrated in Fig. 1. JSCert is ‘eyeball
close’ to ES5, in the sense that we can place the English prose and the formal
rules side-by-side and compare the two. This closeness is possible due to the

change, rather than complicate the specification, especially as the for-in command
has essentially been replaced by the better behaved for-of command in the next
standard.

6 P. Gardner et al.

pretty-big-step semantics. In most cases, each line of English corresponds to one
or two Coq rules. The reason for the two rules is that, for simplicity, ES5 leaves
much behaviour (such as state change and exception handling) implicit, whereas
JSCert gives the behaviour explicitly to aid comparison and help with proofs. In
some cases, the connection is not quite line by line. A typical example involves
the while specification, where two lines of ES5 English specification correspond
to two Coq rules: in ES5, the Boolean expression is evaluated to a reference then
converted to a Boolean value; in Coq, this is done in one step.

JSCert is accompanied by the JSRef reference interpreter which comprises
several parts. It comprises an interpreter written in Coq which is automatically
extracted to an interpreter written in OCaml. This interpreter is then linked
to a front-end which provides interfaces to the end-user and to a third-party
JavaScript parser (for POPL’14, the Google Closure parser). The interpreter
in Coq has been proved correct with respect to JSCert for Chaps. 8–14. More
precisely, if the execution of a JavaScript program in JSRef returns a result,
then there exists a reduction derivation in JSCert relating this program to this
result. The creation of the interpreter in OCaml uses automatic Coq extraction
techniques which are standard and well-used. Our trust that the extracted inter-
preter is an accurate reference interpreter for JSCert is based on the correctness
proof for the interpreter in Coq, our trust in the Coq extraction process, the
minimal amounts of unverified front-end code, and the testing using the ES5
conformance test suite, Test262.

The test results focused on Chaps. 8–14. Those reported in the POPL paper
and talk are given in Table 14. The paper stated that ‘JSRef successfully exe-
cutes all the tests we expect to pass given our coverage of ES5’. The original
analysis reported that the failed and aborted tests were due to: for-in not imple-
mented; Chap. 15 library functionality not implemented; and failures due to a
non-conforming parser. This analysis was improved by the time of the POPL
talk, hence the two rows in the table: the for command and associated tests (28
tests) had been omitted due to confusion with the for-in command; and some
further tests (27 tests)5 had been omitted.

Evaluation. An original aim of the project was to assess how much of ES5 it was
possible to specify in Coq. JSCert covers the core language of ES5 (Chaps. 8–
14 plus the some of Chap. 15), except for the for-in command and the Array
literal syntax, as discussed. The fact that the specification was able to cope
with all the corner cases was a surprise and a considerable achievement. The
‘eyeball closeness’ of JSCert with ES5 has been a success. In our experience, it
is possible for a Coq expert reading JSCert and a JavaScript expert reading the
ES5 standard to have a detailed discussion about the different formulations.

4 We have separated the fails and the aborts. Most aborts are due to tests calling
functions ‘Not Yet Implemented’, although a few aborts are real parser failures.
Some fails are also due to tests calling functions ‘Not Yet Implemented’. The other
fails are more significant.

5 Those associated with the Argument object and those calling the hasOwnProperty

method.

A Trusted Mechanised Specification of JavaScript: One Year On 7

Recall that JSRef comprises an interpreter in Coq which is extracted to an
interpreter in OCaml. The correctness proof between JSCert and the interpreter
in Coq has also stood the test of time. The proof was given for Chaps. 8–14.
This gave a precise, clear description of what had been proved. In future, we
would like extend the proof to the core language specified by JSCert. We have
not found any mistakes in this proof. We have found some misinterpretations of
the ES5 standard: for example, strict mode delete was not throwing an exception
for unresolvable references. These misinterpretations are present in both JSCert
and JSRef. JSCert and JSRef were developed separately, by different teams, but
there was much interaction between the teams. When the ES5 standard was
unclear, they reached consensus, both between themselves and with the help of
es-discuss. So far, we have discovered that just a small amount of the ES5 core
language was misinterpreted and this has been fixed.

The test analysis needs improvement. Many failed and aborted tests were
due to for-in and Chap. 15 library functionality not being implemented, and this
was correct. However, the failures of many strict-mode tests (at most 237 tests)
were attributed solely to the parser, and this was incorrect: some failures were,
indeed, due to the parser; other failures were due to the misinterpretation of ES5:
for example, strict mode delete previously discussed; and most failures were due
to mistakes in our parser interface code. These mistakes were not picked up by
the tests because the test filtering at the time was ad-hoc and over-zealous for
the strict-mode tests. The test filtering is now much better, the test failures and
aborts are properly attributed, and the mistakes in our parser interface code are
fixed.

Table 1. JSRef test results as at POPL’14 and CAV’15. The Array results for POPL’14
were not previously reported and are shown for comparison. Two rows of results are
shown for CAV’15, the first without the Google V8 Array library loaded and the second
with it loaded.

Chs. 8–14 Ch. 15.4 – Array

Pass Fail Abort Pass Fail Abort

POPL’14 paper results 1796 404 582 (139) (873) (1307)

POPL’14 1851 392 539 (149) (864) (1306)

CAV’15 2437 129 216 180 1204 935

CAV’15 (+V8 Array) 2440 126 216 1309 59 951

3 JSCert at CAV’15

We report on the current state of the JSCert project at CAV’15. JSCert remains
largely the same. We have fixed the known inconsistencies with the ES5 stan-
dard as noted in the previous section. The JSRef interpreter has changed. From

8 P. Gardner et al.

POPL’14, many of the failed and aborted tests seemed to be due to library
functions not yet implemented. In particular, there were many tests for the core
language that called the Array library. We therefore extend the JSCert project
with this library. One approach is to extend JSCert with a Coq specification of
the Array library; Maksimović and Schmitt are beginning to do this. Another
approach is to extend JSRef with an existing industrial-strength library imple-
mentation; we study this approach here.

Most of the Array functions (and, indeed, most of the Chap. 15 functions in
general) do not directly access the language’s internal state. They can, therefore,
be implemented in the core JavaScript language and then loaded, parsed and
interpreted to yield an initial heap state which declares these functions. The
major JavaScript interpreters are using or moving towards this approach, which
we explore here for the JSCert project. Rather than implementing this library
ourselves, we use portions of Google’s V8 Array library implementation as it has
a clear separation of core functionality, which requires access to the language’s
internal state, and the higher-level functionality, which is implemented in the
core JavaScript language.

The new structure of the JSCert project is given in Fig. 2. JSCert remains
largely the same. The parser has been changed from Google’s Closure to jQuery’s
Esprima for improved correctness, execution speed and web compliance. This
change involved adding support for translation from the de facto SpiderMonkey
AST to our internal AST representation, enabling us to use a wide range of
third-party parsers for the front-end of JSRef. The JSRef interpreter has been
extended to include the V8 Array library. To support the execution of this library,
we extended the interpreter written in Coq with a number of low-level functions:
some of these functions are defined in other sections of Chap. 15, such as those
associated with Object or Function; and some provide access to a small amount
of usually restricted internal state used, for example, to modify the prototype of
an object or set the normally immutable length field of a function. In addition,
V8 has some minor helper functions implemented in C++ to improve perfor-
mance. We implement these helper functions in core JavaScript to minimise the
size of the native/interpreted interface.

The test results are given in Table 1. We provide a more careful analysis of the
tests for Chaps. 8–14. We also execute and analyse the tests for the Chap. 15.4.
For the Chap. 8–14 tests, we believe that all the failed and aborted tests are doing
so for valid reasons. These are mostly due to parts of the language that are not
yet implemented: namely, the for-in statement (93 tests failing); array literal
syntax (26 tests); 78 tests failing for missing Chap. 15 functionality; and 135
tests failing for other non-implemented features. In addition: 7 tests are failing
because they use strictly invalid, but commonly used, syntax; 1 test is failing
due to a parser bug (reported to the vendor); and 2 tests are failing due to the
method of executing multiple programs in sequence by the unverified interpreter
front-end.

We have run the tests for the Chap. 15.4, but currently have only a partial
analysis of the tests. Since we use Google’s V8 Array library, we can probably
trust the implementation of the high-level functions and do not expect many

A Trusted Mechanised Specification of JavaScript: One Year On 9

Fig. 2. The JSCert Project at CAV’15.

test failures associated with them. We do expect test failures in our Coq and
JavaScript code which replaces the V8 C++ code, partially because it is code
we have written and partially because the interface between the JavaScript and
C++ code is not documented. The only way to establish trust in our code is
through testing.

At the moment, 904 tests fail or abort due to Array literal syntax from
Chaps. 8–14 not being implemented. This is potentially masking many bugs.
For POPL’14, the Array literal syntax was not implemented because we were
not calling the library. Now, the library is being called and the Array literal
syntax needs to be specified in JSCert, interpreted in JSRef and the correctness
proof extended. This is currently being done by Maksimović and Schmitt as
part of their specification of the Array library. Many of the other tests fail due
to parts of the language that are not yet implemented: namely, 30 tests because
of the missing for-in statement; 53 because of missing Chap. 15 functionality;
19 tests because of other non-implemented features; and 1 test because of the
use of invalid syntax. Additionally, 3 tests are failing due to an error in the
ES5 specification6. This error was introduced as a typographic error between
versions 3 and 5 of the ECMAScript specification. Test262 captures the intended
semantics as per ES3, JSCert captured the incorrect semantics of ES5. The
resulting discrepancy revealed itself as a set of test failures discovered during
this test evaluation.

Evaluation. This paper assesses the current state of the JSCert project, reports
on the improved analysis of the tests for chapters 8–14, and describes the exten-
sion of JSRef with Google’s V8 Array library implementation.

JSCert provides a mechanised specification of the core JavaScript language,
as described by the ES5 standard. It comprises Chaps. 8–14 and parts of Chap. 15,
omitting the for-in command and the Array literal syntax. Following our work
in POPL’14, the ES5 standard has also been specified in the K framework [4].

6 https://bugs.ecmascript.org/show bug.cgi?id=162.

https://bugs.ecmascript.org/show_bug.cgi?id=162

10 P. Gardner et al.

In this work, the definition of the core language is that required to pass the
core tests. In fact, it is not completely clear what the core language should be,
since it is not precisely described by the ES5 standard. We should at some point
compare the choices in the JSCert and the K specifications.

The proof that JSRef is correct with respect to JSCert has only been done
for Chaps. 8–14, not the core language. The choice to focus on Chaps. 8–14 was
made to present a clear boundary of what had been proved. However, in future,
we would like to extend the proof to the core language. For now, the analy-
sis of the tests focused on Chaps. 8–14 and the Chap. 15.4 Array library. The
infrastructure for analysing the tests has been vastly improved: the test run
takes considerably less time; the filtering is more accurate; and the test analysis
can be more trusted. We believe the tests for Chaps. 8–14 are well done. The
tests for Chap. 15.4 Array library are on-going. Many tests involve the Array lit-
eral syntax from chapters 8–14 which has not being implemented. These might
be hiding many bugs, and we will investigate this once Maksimović and Schmitt
have extended JSCert, JSRef and the proof to include the Array literal syntax.
Otherwise, the other failed tests are understood.

We believe our experiment to extend JSRef with Google’s V8 Array library
has been a success. A next step is to extend this approach to the String, Boolean
and Number libraries. Our overall aim is to pass as many tests as we can.

Acknowledgements. Two of the authors of this paper, Gardner and Smith, were
part of the original team working on JSCert. We would like to thank the other co-
authors for continuing invaluable discussions about this project: Martin Bodin, Arthur
Charguéraud and Alan Schmitt from Inria; and Daniel Filaretti, Sergio Maffeis and
Daiva Naudžiūnienė from Imperial. We also would like to thank Petar Maksimović and
Alan Schmitt for interesting discussions and interaction about the Array library. They
are beginning to specify the core Array library in Coq.

Gardner and Smith are supported by EPSRC Grant EP/K032089/1. Watt was
supported by a GCHQ Undergraduate Internship Project award. Wood is supported
by an EPSRC DTA award.

References

1. Bodin, M., Charguéraud, A., Filiaretti, D., Gardner, P., Maffeis, S., Naudžiūnienė,
D., Schmitt, A., Smith, G.: A trusted mechanised javascript specification. In: Pro-
ceedings of the 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL 2014, ACM (2014)

2. Charguéraud, A.: Pretty-big-step semantics. In: Felleisen, M., Gardner, P. (eds.)
ESOP 2013. LNCS, vol. 7792, pp. 41–60. Springer, Heidelberg (2013)

3. Maffeis, S., Mitchell, J.C., Taly, A.: An operational semantics for javascript. In:
Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 307–325. Springer,
Heidelberg (2008)

4. Park, D., Ştefănescu, A., Roşu, G.: KJS: A complete formal semantics of javascript.
In: Proceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation. PLDI 2015, pp. 428–438. ACM (2015)

Model Checking and Refinements

On Automation of CTL* Verification
for Infinite-State Systems

Byron Cook1, Heidy Khlaaf1(B), and Nir Piterman2

1 University College London, London, UK
h.khlaaf@ucl.ac.uk

2 University of Leicester, Leicester, UK

Abstract. In this paper we introduce the first known fully automated
tool for symbolically proving CTL∗ properties of (infinite-state) integer
programs. The method uses an internal encoding which facilitates rea-
soning about the subtle interplay between the nesting of path and state
temporal operators that occurs within CTL∗ proofs. A precondition syn-
thesis strategy is then used over a program transformation which trades
nondeterminism in the transition relation for nondeterminism explicit
in variables predicting future outcomes when necessary. We show the
viability of our approach in practice using examples drawn from device
drivers and various industrial examples.

1 Introduction

In recent years, a number of systems have been proposed to automate the verifi-
cation of either branching-time properties (e.g. expressed in CTL) or linear-time
properties (e.g. LTL) of general integer manipulating programs [3,8,10–12].
Branching-time property verification requires reasoning about sets of stateswithin
a transition system that satisfy a particular temporal formula. Contrarily, linear-
time property verification requires reasoning about sets of paths that satisfy a
formula. However, these logics have significantly reduced expressiveness as they
restrict or disallow the interplay between linear-time and branching-time opera-
tors. For example, a property involving the assertion “along some future an event
occurs infinitely often” cannot be expressed in either LTL or CTL, yet is crucial
when expressing the existence of fair paths spawning from every reachable state
in an infinite-state system. Contrarily, CTL∗ is capable of expressing CTL, LTL,
and properties necessitating their interplay, as demonstrated by examples further
below.

Unfortunately, no fully automatic CTL∗ proving methods for infinite-state
systems are known. Despite the existence of automated verification tools for
branching-time and linear-time temporal logic, these tools do not allow for the
verification of CTL∗. A key problem is that CTL∗ formulae cannot merely be par-
titioned into isolated CTL and LTL sub-formulae, as such a partition fails to treat
the intricate dependence between state-based and path-based reasoning. In this
paper we introduce the first known automatic method capable of proving CTL∗

c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 13–29, 2015.
DOI: 10.1007/978-3-319-21690-4 2

14 B. Cook et al.

properties of infinite-state programs. Our contribution is a method that allows
for the arbitrary nesting of state-based reasoning within path-based reasoning,
and vice versa. Towards this purpose we recursively deconstruct a CTL∗ formula
in a way that allows us to determine where the subtle interplay between the arbi-
trary nesting of path and state formulae occurs. To reason about the path sub-
formulae, we find a sufficient set of branching nondeterministic decisions within
a program’s transition relation. We then devise a method of temporarily sub-
stituting said nondeterministic decisions with a partially symbolic determinized
form. That is, nondeterministic decisions regarding which paths are taken are
determined by variables that summarize the future of the program execution.
When interchanging between path and state formulae, these determinized rela-
tions must then be collapsed to incorporate path quantifiers. Preconditions for
the given CTL∗ property can then be acquired via existing CTL model checkers.

Based on our approach, we have developed a tool capable of automatically
proving properties of programs that no tool could previously fully automate.
The paper closes with a description of our experimental results using the devel-
oped tool on various programs drawn from industrial examples. Our tool is avail-
able under the MIT open-source license at https://github.com/hkhlaaf/T2/tree/
T2Star.

Expressiveness of CTL∗.CTL∗ allows us to express properties involving exis-
tential system stabilization, stating that an event can eventually become true and
stay true from every reachable state. Additionally, it can express “possibility”
properties, such as the viability of a system, stating that every reachable state
can spawn a fair computation. Below are properties that can only be afforded by
the extra expressive power of CTL∗. These liveness properties are often imper-
ative to verifying systems such as Windows kernel APIs that acquire resources
and APIs that release resources, as later shown by our experiments.

For example, the property EFG(¬x ∧ (EGF x)) conveys the divergence of
paths. That is, there is a path in which a system stabilizes to ¬x, but every
point on said path has a diverging path in which x holds infinitely often. This
property is not expressible in CTL or in LTL, yet is crucial when expressing the
existence of fair paths spawning from every reachable state in a system. In CTL,
one can only examine sets of states, disallowing us to convey properties regarding
paths. In LTL, one cannot approximate a solution by trying to disprove either
FG ¬x or GF x, as one cannot characterize these proofs within a path quantifier.

Another CTL∗ property AG
[
(EG ¬x) ∨ (EFG y)

]
dictates that from every

state of a program, there exists either a computation in which x never holds
or a computation in which y eventually always holds. The linear time property
G(Fx → FG y) is significantly stricter as it requires that on every computa-
tion either the first disjunct or the second disjunct hold. Finally, the property
EFG

[
(x∨ (AF ¬y))

]
asserts that there exists a computation in which whenever x

does not hold, all possible futures of a system lead to the falsification of y. This
assertion is impossible to express in LTL.

Related Work. Proof systems for the verification of CTL∗, first introduced
by [14,21], have been well-studied. It is known that CTL∗ model checking for

https://github.com/hkhlaaf/T2/tree/T2Star
https://github.com/hkhlaaf/T2/tree/T2Star

On Automation of CTL* Verification for Infinite-State Systems 15

infinite-state systems generalizes termination and co-termination and is unde-
cidable. A decision procedure exploring the structure of finite-state ω-automata
was first introduced to determine the satisfaction of a CTL∗ formula over binary
relations in [17], and later extended in [15]. A complete and sound axiomatiza-
tion of propositional CTL∗ then followed in [26], which inspired the first sound
and relatively complete deductive proof system for the verification of CTL∗ prop-
erties over possibly infinite-state reactive systems [20]. Proof rules for verifying
CTL∗ properties of infinite-state systems were implemented in STeP [4]. However,
the STeP system is only semi-automated, as it still requires users to construct
auxiliary assertions and participate in the search for a proof.

Model checking CTL∗ [16] for finite-state programs and other decidable set-
tings has been implemented in [18]. Their approach reduces a CTL∗ formula to
μ-calculus using a system of fixed-point equations on relations with first-order
quantifiers and equalities. They then invoke a μ-calculus model checker. Con-
trarily, we seek to verify the undecidable general class of infinite-state programs
supporting both control-sensitive and integer properties. Given that μ-calculus
model checking is polynomial-time equivalent to the solution of parity games [15],
one can conceive that the approach in [2] could potentially solve CTL∗ model
checking if the latter were reduced to solving parity games by combining [18]
and [15]. However, we note that the resulting infinite-state game would integrate
the (first-order μ-calculus) property within the program making it difficult to
extract invariants pertaining to the program. For this reason, it is often the
case that such a series of reductions inhibits tool performance. Furthermore, [2]
requires a manual instantiation of the structure of assertions, characterizing sub-
sets of the infinite-state game, that are to be found by their tool.

Existing automated tools for verification of infinite-state programs support
either branching-time only or linear-time only reasoning, e.g., [3,5,8,10–12,27].
The important distinction however is that these tools do not allow for the inter-
action between linear-time and branching-time formulae.

Finally, we have adopted and repurposed a similar symbolic determinization
technique introduced in [12] for the verification of LTL formulae in the infinite-
state setting. Their symbolic determinization is based on the counterexample-
guided refinement of generated tree counterexamples, or counterexamples with
branching paths. That is, [8] produce a semantics-preserving transformation that
encodes the structure of the nested CTL formulae within the state space, allowing
for the generation of tree counterexamples. This causes precondition generation
for syntactically partitioned formulae to be no longer possible, limiting the inter-
play between linear-time operators and path quantifiers allowed by our strategy.

Limitations. Our tool does not support programs with heap, nor do we sup-
port recursion or concurrency. The heap-based programs we consider during our
experimental evaluation have been abstracted using an over-approximation tech-
nique introduced by [22]. Effective techniques for proving temporal properties
of programs with heap remains an open research question. Our technique relies
on the availability of CTL model checking and non-termination procedures. It
is, in principle, applicable to every class of infinite-state systems for which such

16 B. Cook et al.

procedures are available (provided that integer variables are allowed). Addition-
ally, our procedure is not complete as we use a series of techniques for safety [24],
termination [9,25], nontermination [19], and CTL [3,11] that are not complete.
Furthermore, our determinization procedure is not complete. We will further
address this issue in later sections.

2 Preliminaries

Programs. As is standard [23], we treat programs as control-flow graphs, where
edges are annotated by the updates they perform to variables. A program is a
triple P = (L, E,Vars), where L is a set of locations, E is a set of edges/transitions,
and Vars is a set of variables. Each edge τ = (�, ρ, �′) in E, where �, �′ ∈ L and ρ
is a condition, specifies possible transitions in the program. The condition ρ is an
assertion in terms of Vars and Vars′, a primed copy of Vars, where constants range
over Vals. That is, Vars refers to the values of variables before an update and Vars′

refers to the values of variables after an update.
The set of locations includes the first location �

I
, which has no incoming

transitions from other program locations. That is, for every τ = (�, ρ, �′) ∈ E
we have �′ �= �

I
. Transitions exiting �

I
have their conditions expressed in terms

of Vars′. Locations with incoming transitions from �
I

are initial locations. This
allows us to encode more complex initial conditions. In figures, we omit �

I
and

merely display the edges to locations with incoming transitions from �
I
.

A program gives rise to a transition system T = (S,R), where S is the set
of program states of the form S = (L − {�

I
}) × (Vars → Vals) and R ⊆ S × S.

That is, a program state is a pair (�, f) where � �= �
I

and f is a valuation,
i.e., a function from program variables to values. A program can transition from
(�, f1) to (�′, f2) if there exists a transition (�, ρ, �′) ∈ E such that (f1, f2) |= ρ.
The valuation (f1, f2) is a function from Vars ∪ Vars′ to Vals such that for every
v ∈ Vars, (f1, f2)(v) = f1(v) and (f1, f2)(v′) = f2(v). A state (�, f) is considered
initial if there is a transition (�

I
, ρ, �) such that (f−1, f) |= ρ, where f−1 is some

arbitrary valuation. Notice that ρ is expressed in terms of Vars′ and hence the
valuation f−1 does not affect the satisfaction of ρ.

Given V ⊆ Vars, the valuation obtained from f by restricting the valuation
to variables in V is denoted by f⇓V . The restriction of states of the form (�, f)
and paths in the program is defined similarly, e.g., π⇓V .

Paths. A path or a trace π in P is an infinite sequence of states (�0, f0), (�1, f1),
. . ., where for every i ≥ 0, there exists some (�i, ρi, �i+1) ∈ E where (fi, fi+1) |=
ρi. We say that π is an (�, f)-path if �0 = � and f0 = f . Given a program
P , a location �, and a valuation f , we denote the set of (�, f)-paths in P by
Path(P, �, f). We say that π is a computation in P if (�, f) is initial. Note that we
restrict our attention to infinite paths and computations. In practice, we modify
programs, transition systems, and temporal logic formulae to ensure that all
paths are infinite, as is done, e.g., in [6].

CTL∗. We are interested in verifying full computation tree logic (CTL∗) [14,21].
The syntax of CTL∗ (written in negation normal form) includes state formulae ϕ,

On Automation of CTL* Verification for Infinite-State Systems 17

that are interpreted over states, and path formulae ψ, that are interpreted over
paths. We assume that atomic propositions (ranged over by α) are expressed in
some underlying theory over variables and constants (e.g. x < y). State formulas
(ϕ) and path formulas (ψ) are co-defined:

ϕ ::= α | ¬α | ϕ ∧ ϕ | ϕ ∨ ϕ | Aψ | Eψ

ψ ::= ϕ | ψ ∧ ψ | ψ ∨ ψ | Gψ | Fψ | [ψWψ] | [ψUψ]

For a program P and a CTL∗ state formula ϕ, we say that ϕ holds at a state
s in P , denoted by P, s |= ϕ if:

– If ϕ = α, then P, s |= α iff s |= α
– If ϕ = ¬α, then P, s |= ¬α iff s �|= α
– If ϕ = ϕ1 ∨ ϕ2, then P, s |= ϕ1 ∨ ϕ2 iff s |= ϕ1 or s |= ϕ2

– If ϕ = ϕ1 ∧ ϕ2, then P, s |= ϕ1 ∧ ϕ2 iff s |= ϕ1 and s |= ϕ2

– If ϕ = Aψ, then P, s |= Aψ iff ∀π = (s, ...). P, π |= ψ
– If ϕ = Eψ, then P, s |= Eψ iff ∃π = (s, ...). P, π |= ψ

Path formulae are interpreted over paths. For a program P and a CTL∗ path
formula ψ, we say that ψ holds on a path π = (s0, s1, . . .) in P for location i,
denoted by P, π, i |= ψ if:

– If ψ = ϕ is a state formula, then P, π, i |= ϕ iff P, si |= ϕ.
– If ψ = ψ1 ∨ ψ2, then P, π, i |= ψ1 ∨ ψ2 iff P, π, i |= ψ1 or P, π, i |= ψ2

– If ψ = ψ1 ∧ ψ2, then P, π, i |= ψ1 ∧ ψ2 iff P, π, i |= ψ1 and P, π, i |= ψ2

– If ψ = Fψ1, then P, π, i |= Fψ1 iff ∃j ≥ i. P, π, j |= ψ1

– If ψ = Gψ1, then P, π, i |= Gψ1 iff ∀j ≥ i. P, π, j |= ψ1

– If ψ = ψ1Wψ2, then P, π, i |= ψ1Wψ2 iff either ∃k ≥ i. P, π, k |= ψ2 and
∀i ≤ j < k. P, π, j |= ψ1 or ∀j ≥ i. P, π, j |= ψ1

– If ψ = ψ1Uψ2, then P, π, i |= ψ1Uψ2 iff ∃k ≥ i. P, π, k |= ψ2 and ∀i ≤ j <
k. P, π, j |= ψ1

A path formula ψ holds in a path π, denoted by P, π |= ψ, if P, π, 0 |= ψ.
For a state formula ϕ, ϕ holds on P , denoted by P |= ϕ, if for every initial state
s we have P, s |= ϕ. When the program P is is clear from the context, we may
write s |= ϕ for a state formula ϕ or π, i |= ψ for a path formula ψ.

The branching-time logic CTL is a restricted subset of CTL∗ in which tempo-
ral operators cannot be nested. That is, the only path formulas allowed are Gϕ1,
Fϕ1, ϕ1Uϕ2, and ϕ1Wϕ2 for state formulas ϕ1 and ϕ2. The linear-time logic
LTL is a fragment of CTL∗ that only allows formulae of the form Aψ, where A is
the only occurrence of a path quantifier within ψ. When taking LTL as subset of
CTL∗, LTL formulae are implicitly prefixed with the universal path quantifier A.

Strongly Connected Subgraphs. We provide some notation regarding
strongly-connected subgraphs followed by the definition of relation pairs below.
For a program P , we denote an ordered sequence of locations �0, ..., �n as a cycle c
if �n = �0 and for every i ≥ 0 there exists some (�i, ρi, �i+1) ∈ E. Let C be the set of

18 B. Cook et al.

program locations such that � ∈ L appears in a cycle c. That is, C = {� | ∃c. � ∈ c}.
For a program P and the set of locations C, we identify SCS(P,C) as some max-
imal set of non-trivial strongly-connected subgraphs (SCSs) of P such that every
two subgraphs G1, G2 ∈ SCS(P,C) are either disjoint or one is contained in the
other and for every � ∈ C, there exists at least one G ∈ SCS(P,C) such that
� ∈ G. The details regarding the identification of C and SCS(P,C) are standard
and thus omitted here (see, e.g., [13]). We denote the minimal SCS in SCS(P,C)
that contains a location � ∈ L by MinSCS(P,C, �).

Identifying a program’s strongly-connected subgraphs allows us to sufficiently
find the set of relation pairs that characterize instances of branching nondeter-
ministic decisions within a program’s transition relation. A relation pair is thus
(ρ1, ρ2) such that for some location � we have (�, ρ1, �1) and (�, ρ2, �2) are tran-
sitions of P and �1 ∈ MinSCS(P,C, �) and �2 /∈ MinSCS(P,C, �). That is, ρ1
is the condition for remaining in the (minimal) SCS of � and ρ2 is the condition
for leaving the (minimal) SCS of �.

3 Overview

In this section, we present a quick overview of our CTL∗ verification procedure
ProveCTL∗, presented in Fig. 3 with an in-depth explanation provided later
in Sect. 4. The procedure is designed to recurse over the structure of a given
CTL∗ formula, and for each sub-formula θ we produce a precondition a that
ensures its satisfaction. That is, a is an assertion over program variables and
locations characterizing the states of the program that satisfy θ. We start by
finding the precondition of the innermost sub-formula, followed by searching for
the preconditions of the outer sub-formulae dependent on it.

A given CTL∗ formula is deconstructed to differentiate between state and
path sub-formulae, as the crux of verifying CTL∗ formulae lies within identifying
the interplay between the arbitrary nesting of path and state formulae. Precon-
ditions for branching-time logic state formulae can be acquired via existing CTL
model checking techniques which return an assertion characterizing the states in
which a sub-formula holds. The essence of our algorithm is thus within how we
acquire sufficient preconditions for path formulae that admit a sound interaction
with state formulae. The algorithm is based on the procedures below, which are
defined in later sections of the paper:

Approximate is a procedure that performs a syntactic conversion from a path
formula to its corresponding over-approximated universal CTL formula (ACTL)1.
The over-approximated formula can then be checked by an existing CTL model
checker over a partially symbolic determinized form of the program to reduce
path formula verification to state formula verification.

Determinize allows us to reason about path characterization through state
characterization, as the satisfaction of an ACTL over-approximated formula
1 ACTL is the universal subset of CTL where one can only address all possible paths

with the universal quantifier A (e.g. AG or AF), but not the existence of some paths
with E (e.g. EG or EF).

On Automation of CTL* Verification for Infinite-State Systems 19

�1 �2

ρ1 : x′ = 1

ρ2 : x′ = x

ρ3 : x′ = 0

ρ4 : x′ = x

�1 �2

ρ1 : x′ = 1

ρ2 : n�1 �= 0
n′

�1 = n�1 − 1
x′ = x

ρ3 : n�1 = 0
x′ = 0

ρ4 : x′ = x

(a) (b)

Fig. 1. (a) The control-flow graph of a program for which we wish to prove the CTL∗

property EFG x = 1. (b) The control-flow graph after calling Determinize, it includes
the prophecy variable n�1 corresponding to the nondeterministic relation pair (ρ2, ρ3).

implies the satisfaction of the path formula. However, the inverse does not hold.
The procedure thus constructs a form of a partially determinized program over
the symbolic representations of all characterized instances of branching nonde-
terminism (i.e. relation pairs), stemming from the same program location �. That
is, nondeterministic decisions regarding which paths are taken would be deter-
mined by prophecy variables, which determine future outcomes of the program
execution, and their values [1]. Recall that relation pairs are distinguished if they
are not part of the same strongly connected subgraph.

QuantElim acquires the proper set of states that satisfy a formula which has
been verified over a determinized program. This allows for the path quantification
present within a CTL∗ formula, that is, whether all paths (or some paths) starting
from a state satisfy a path formula. When a CTL∗ formula of the form θ ::=Aψ |
Eψ is reached after acquiring a set of states satisfying ψ, θ is verified on the
same determinized program used for ψ. We then must use quantifier elimination
to acquire the proper set of states that satisfy θ, thus quantifying the assertions
over the values of the prophecy variables. If the formula is of the form Aψ,
we universally quantify the prophecy variables appearing in the set of states
that satisfy Aψ. If the formula is of the form Eψ, we existentially quantify the
prophecy variables.

Example. Consider the program in Fig. 1(a) and the property EFG x = 1 stating
that there exists a possible future where x = 1 will eventually become true and
stay true. This is a system stabilization property which can only be expressed
in CTL∗. We begin by identifying that G x = 1 is a path formula, and thus use
Approximate to return the over-approximated state formula AG x = 1. We
then initiate a CTL model checking task where we seek a set of states aG such
that EFaG holds, and for every state s such that s |= aG we have s |= AG x = 1.

Our formula would now only be valid if we can find a set of states that are
eventually reached in a possible future from the program’s initial states such that
AG x = 1 holds. However, no such set of states exists as the nondeterministic
choice from �1 to ρ2 and ρ3 does not allow us to determine if we will eventually
leave the loop or not. That is, there exists no set of states which can exemplify the

20 B. Cook et al.

infinite branching possibilities of leaving ρ2 to possibly reaching ρ3 or remaining
in ρ2 forever. In order to reason about the original sub-formula G x = 1, we
must be observing sets of paths, not states. Given that we over-approximated our
formula in a way that allows us to only reason about states, we thus symbolically
determinize the program to simultaneously simulate all possible related paths
through the control flow graph and try to separate them to originate from distinct
states in the program.

Our procedure Determinize would then return a new partially symbolically
determinized system in which a newly introduced prophecy variable, named n�1

in Fig. 1(b), is associated with the relation pair (ρ2, ρ3), and is used to make
predictions about the occurrences of relations ρ2 and ρ3. Recall that relation
pairs correspond to pairs of nondeterministic transitions, one remaining in a
SCS and the other leaving the same SCS. In this case, ρ3 is indeed disjoint from
the strongly connected subgraph of �1.

Given that we initialize n�1 to a nondeterministic value, for every path in the
program, a positive concrete number chosen at the nondeterministic assignment
predicts the number of instances that transition ρ2 is visited before transitioning
to ρ3. That is, we remain in ρ2 until n�1 = 0, with n�1 being decremented at each
passage through the loop. Once we terminate the loop, the prophecy variable
is nondeterministically reset (for the case that we return to the same loop again).
A negative assignment to n�1 denotes remaining in ρ2 forever, or non-termination.

We can now utilize an existing CTL model-checker to return an assertion
characterizing the states in which G x = 1 holds by verifying the determinized
program, denoted by PD, using the over-approximated CTL formula AG x = 1.
The assertion aG = (�1 ∧ n�1 < 0) is returned, and we proceed by replacing the
sub-formula with its assertion in the original CTL∗ formula, resulting in EFaG. To
verify the outermost CTL∗ formula, EF, note that syntactically this is a readily
acceptable CTL formula. However, we cannot simply use a CTL model checker
as the path quantifier E exists within a larger relation context reasoning about
paths given the inner formula FG. We thus must use the CTL model-checker to
verify EFaG over the same determinized program previously generated.

Our procedure returns with the same precondition (�1 ∧ n�1 < 0). We then
use quantifier elimination to existentially quantify out all introduced prophecy
variables. The existential quantification corresponds to searching for some path
(or paths) that satisfy the path formula. Thus, if there is a state s in the original
program, and some value of the prophecy variables v such that all paths from
the combined state (s, n�1 = v) in PD satisfy the path formula then clearly, these
paths give us a sufficient proof to conclude that EFG x = 1 holds from s in P .

4 Checking CTL∗ Formulae

In this section, we describe the details of our CTL∗ model checking procedure
ProveCTL∗. We first define the procedures utilized by ProveCTL∗, namely
Determinize and Approximate, followed by our model checking procedure
and its utilization of QuantElim.

On Automation of CTL* Verification for Infinite-State Systems 21

1 Let Determinize(P) : program =

2 PD = P

3 Synth = []

4 (LD, ED,VarsD) = PD

5 C = CyclePoints(P)

6 foreach (�, ρ, �′) ∈ ED do

7 G = MinSCS(P, C, �) ∈ SCS(P, C)

8 if G �= ∅ ∧ MinSCS(P, C, �′) �= G then

9 Synth = � :: Synth

10 done

11 foreach (�, ρ, �′) ∈ ED do

12 if � ∈ Synth then

13 VarsD = VarsD ∪ n� ∈ Z

14 if �′ ∈ MinSCS(P, C, �) then

15 ρ = ρ ∧ (n� �= 0) ∧ (n′
� = n� − 1)

16 else

17 ρ = ρ ∧ (n� = 0)

18 done

19 return PD

1 Let Approximate(ψ, aθ′
1
, aθ′

2
) :

ϕ =2 match (ψ) with

3 | Fθ′
1 → AFaθ′

1
4 | Gθ′

1 → AGaθ′
1

5 | Xθ′
1 → AXaθ′

1
6 | θ′

1Wθ′
2 → Aaθ′

1
Waθ′

2
7 | θ′

1Uθ′
2 → Aaθ′

1
Uaθ′

2
8 | θ′

1 ∧ θ′
2 → aθ′

1
∧ aθ′

2
9 | θ′

1 ∨ θ′
2 → aθ′

1
∨ aθ′

2

)b()a(

1 Let Verify(θ, P) : bool =

2 (L, E,Vars) = P

3 PD = Determinize(P)

4 (a,) = ProveCTL∗(θ, P, PD)

5 return ∀(�0, ρ, �) ∈ E ∀s . (s, s) |= ρ ⇒ a

1 Let QuantElim(a, ϕ) : AP =

2 a
EG

= CTL(PD, EG True)

3 match (ϕ) with

4 | Aψ → ¬QE(∃n�∈L.a
EG

∧ ¬a)

5 | Eψ → QE(∃n�∈L.a
EG

∧ a)

(c) (d)

Fig. 2. (a) Determinize identifies relation pairs and constructs a symbolically deter-
minized program over them. (b) Approximate produces a syntactic conversion from
a path formula to its corresponding over-approximation in ACTL. (c) Verify wraps
ProveCTL∗ and then checks all initial states. (d) QuantElim applies quantifier elim-
ination in order to convert path characterization to state characterization restricting
attention to states from which an infinite path exists.

Determinize. The procedure Determinize constructs a form of partially sym-
bolically determinized program over relation pairs that characterize instances of
branching nondeterminism. We present our procedure in Fig. 2(a), where a pro-
gram P is given and a partially determinized program PD, contingent upon non-
deterministic relation pairs, is returned. Ultimately, Determinize is designed
to allow proof tools for branching-time logic state formulae to be used to reason
about path formulae.

We begin by finding a sufficient set of relation pairs to symbolically deter-
minize the program to one which has the same set of paths as the original.
These relations are distinguished if there exist two nondeterministic relations
stemming from the same location and yet are not part of the same strongly-
connected subgraph. Our procedure thus begins by iterating over the set of a
program’s edges, (�, ρ, �′) ∈ E on line 6. We identify whether or not � ∈ C given
that G = MinSCS(P,C, �) and G �= ∅ on lines 7 and 8. If from some location �,
where G = MinSCS(P,C, �), there is an edge to �′ such that MinSCS(P,C, �′)

22 B. Cook et al.

1 Let rec ProveCTL∗(θ, P, PD) : (formula, bool) =

2 (L, E,Vars) = P

3 match (θ) with

4 | ϕ : stateformula →
5 match (ϕ) with

6 | α → aθ = α; Path = False

7 | θ′
1 ∧ θ′

2 | θ′
1 ∨ θ′

2 | Eθ′
1Uθ′

2 | Aθ′
1Wθ′

2

8 | Eθ′
1 ∧ θ′

2 | Eθ′
1 ∨ θ′

2 | Aθ′
1 ∧ θ′

2 | Aθ′
1 ∨ θ′

2 →
9 (aθ′

1
,Path1) = ProveCTL∗(θ′

1, P, PD)

10 (aθ′
2
,Path2) = ProveCTL∗(θ′

2, P, PD)

11 | AFθ′ | AGθ′ | AXθ′ | EFθ′ | EGθ′ | EXθ′ →
12 (aθ′

1
,Path1) = ProveCTL∗(θ′, P, PD)

13 Path2 = False

14 if ϕ �= α then

15 ϕ′ = Replace(ψ, aθ′
1
, aθ′

2
)

16 if Path1 ∨ Path2 then

17 aθ = QuantElim(CTL(PD, ϕ′), ϕ)

18 Path = false

19 else

20 aθ = CTL(P, ϕ′)
21 Path = False

22 | ψ : pathformula →
23 match (ψ) with

24 | θ′
1 ∧ θ′

2 | θ′
1 ∨ θ′

2 | θ′
1Uθ′

2 | θ′
1Wθ′

2 →
25 (aθ′

1
,) = ProveCTL∗(θ′

1, P, PD)

26 (aθ′
2
,) = ProveCTL∗(θ′

2, P, PD)

27 | Fθ′ | Gθ′ | Xθ′ →
28 (aθ′

1
,) = ProveCTL∗(θ′, P, PD)

29 ψ′ = Approximate(ψ, aθ′
1
, aθ′

2
)

30 aθ = CTL(PD, ψ′)
31 Path = true

32 (aθ,Path)

Fig. 3. Our recursive CTL∗ verification procedure employs an existing CTL model
checker and uses our procedures Approximate and QuantElim. It expects a CTL∗

property θ, a program P , and its determinized version PD as parameters. An asser-
tion characterizing the states in which θ holds is returned along with a boolean value
indicating whether the formula checked was a path formula (and hence approximated).

is not equivalent to G, we can conclude that the transition from � to �′ leaves
the SCS of �. We only desire that � and �′ be elements of the most minimal SCS
as such an edge eludes to the nondeterministic decision point where a transition
diverted from remaining within an SCS. This nondeterministic point is key to the
identification of where determinization must occur to facilitate the application
of state-based reasoning to path-based reasoning for given a program P.

If the strongly connected subgraphs of � and �′ do differ, we add � to Synth, a
list which tracks locations with nondeterministic points. For every such location,
we identify a relation pair corresponding to the decision of either remaining in
the same SCS, or leaving it. After finding all possible elements of Synth, on line
11 we iterate over the program edges, and for each relation pair encountered we
introduce a new prophecy variable to predict the future outcome of the decision.
Indeed, our motivation is to identify nondeterministic points so we can sym-
bolically simulate all possible branching paths through a program, yet decisions
regarding which paths are taken are determined by prophecy variables and their
values. Information regarding different paths is now stored in the state of the
modified program. This allows for a correspondence such that the verification
path formulae can be reduced to the verification of ACTL formulae.

When an edge (�, ρ, �′) ∈ E is reached containing � ∈ Synth, a prophecy
variable n� ∈ Z is added to the set of program variables Vars at line 13. If �′ is
contained within MinSCS(P,C, �), we constrain ρ by requiring that n� �= 0, and
then decrement n�. If �′ is not contained within MinSCS(P,C, �), we constrain ρ
by n� = 0, and n′

� remains unconstrained, entailing a reset to a nondeterministic
integer. The nondeterministic decision of the number of times a cycle is passed
through is thus now determined by the prophecy variable n�. In the case that

On Automation of CTL* Verification for Infinite-State Systems 23

n� < 0, this rule corresponds to behaviors where every visit to � is followed by
a successor in the same SCS (i.e., the computation always remains in the SCS
of �). The nondeterminism within a transition relation is thus either determined
at initialization by the initial choice of values for n� or else later in a path by
choosing new nondeterministic values for n�.

We show that the determinization maintains the set of paths in the original
program and the prophecy variables introduced merely trade nondeterminism in
the transition relation for a larger, nondeterministic state space.

Theorem 1. For every path π in P there is a path π′ in PD such that π′⇓Vars =
π. Furthermore, for every path π′ in PD it holds that π′⇓Vars is a path in P .

Proof. See TR [7], Appendix A.

Approximate. In Fig. 2(b), we present a syntactic conversion from pure linear-
time formulae in CTL∗, that is LTL, to a corresponding over-approximation in
ACTL. Our procedure is given a path formula ψ and two atomic preconditions,
aθ′

1
and aθ′

2
, corresponding to satisfaction of the nested CTL∗ formulae which

appear within ψ. The precondition aθ′
2

is a conditional parameter utilized only
when LTL formulae requiring two properties (e.g. W, U, ∧, ∨) are given. Due
to the recursive nature of ProveCTL∗, presented in the next section, these
preconditions would have already been priorly generated.

On lines 3–7, we instrument a universal path quantifier A preceding the
appropriate temporal operators. Not only so, but the sub-formulae θ′

1 and θ′
2 are

replaced with their corresponding preconditions aθ′
1

and aθ′
2
, respectively. This

aligns with how ProveCTL∗ will recursively iterate over each inner sub-formula
followed by search for the preconditions of the outer sub-formulae dependent on
it. Replacing a path formula by its CTL approximation indeed is sound in the
sense that if the modified formula holds then the original holds as well.

Theorem 2. For every program P , a state (�, f), and a path formula ψ, if
P, (�, f) |= Approximate(ψ) then P, (�, f) |= Aψ.

Proof. See TR [7], Appendix A.

Theorem 2 does not consider existential path quantification. Recall that in order
to conclude that the CTL∗ formula P, s |= Eψ for some path formula ψ, we require
that there is some value v of the prophecy variables such that PD, (s, v) |= Aψ.
This means that when restricting attention to a certain set of paths that start
in a state s (those that match the valuation v for prophecy variables), all paths
in the set satisfy the formula ψ. Clearly, this satisfies the requirement that there
is some path that satisfies the formula.

4.1 ProveCTL*

In this section, we present our main CTL∗ verification procedure. Fig. 2(c) depicts
Verify, which wraps the main procedure ProveCTL∗, shown in Fig. 3. We

24 B. Cook et al.

then generate a determinized copy of the program, PD, using the aforementioned
procedure Determinize. This program is then passed into ProveCTL∗ along
with the original program P and a CTL∗ property θ. ProveCTL∗ then returns
an assertion a, characterizing the states in which θ holds. The second argument
returned is disregarded, indicated by “ ”, as it is only used within the recursive
calls of ProveCTL∗. When ProveCTL∗ returns to Verify, it is only necessary
to check if the precondition a is satisfied by the initial states of the program.

In order to synthesize a precondition for a CTL∗ property θ, we first recur-
sively accumulate the preconditions generated when considering the sub-formulae
of θ at lines 9, 10, 12, 25, 26, and 28. That is, for each sub-formula θ, we produce
a precondition aθ that ensures its satisfaction. We note that the precondition
of an atomic proposition α is the proposition itself. A given CTL∗ formula is
then deconstructed to differentiate between state and path sub-formulae, as the
crux of verifying CTL∗ formulae lies within identifying the interplay between the
arbitrary nesting of path and state formulae. On line 3, if θ can be identified as
a state formula ϕ, we carry out the set of actions on lines 4 – 21. If θ is identified
as a path formula ψ, we then we carry set of actions on lines 22 – 31.

Verifying Path Formulae. When a path formula ψ is reached, we begin by
over-approximating the path formula by syntactically converting it to the univer-
sal subset of branching-time logic (ACTL) using the procedure Approximate.
Recall that the preconditions generated when considering the sub-formula(e) of
ψ at lines 25, 26, and 28 will be utilized by Approximate to replace θ′

1 and
θ′
2 with their corresponding preconditions aθ′

1
and aθ′

2
, respectively. On line 29,

Approximate would then return a corresponding state formula ψ′ where a uni-
versal path quantifier precedes every temporal operator within ψ.

A precondition for the newly attained ACTL formula ψ′ can now be acquired
via existing CTL model checkers which return an assertion characterizing the
states in which ψ′ holds. Existing tools which support this functionality include [3]
and [11]. In our tool prototype, we build upon the latter. Recall that a precon-
dition for a path formula requires more than a precondition for the correspond-
ing state formula, as ψ′ is merely an over-approximation. We thus must utilize
the provided determinized program PD when employing a CTL model checker
rather than the original program P, as shown on line 30. The assertion aθ is then
returned characterizing the sets of states in which θ holds.

Recall that PD leads to better correspondence between ψ and ψ′. That is, we
find a sufficient set of relation pairs which determinize the program to one which
has the same set of paths as the original, yet decisions regarding which paths
are taken are determined by introduced prophecy variables and their values,
allowing us to reduce path-based reasoning to state-based reasoning.

Finally, on line 31, we set the boolean flag Path to true. This flag is the
second argument to be returned by ProveCTL∗. It indicates to the caller that
the result aθ returned by the recursive call is approximated. The value of Path
is used for deciding whether to use aθ as is or modify it (in the case that the
verified sub-formula is a state or a path formula, respectively), admitting a sound
interaction between state and path formulae.

On Automation of CTL* Verification for Infinite-State Systems 25

Verifying State Formulae. In the case that a state formula ϕ is reached, we
partition the state sub-formulae by the syntax of CTL as shown on lines 6 – 8 and
11. This allows us to not only utilize existing CTL model checkers, but to also
eliminate the redundant verification of a temporal operator, when it is already
be preceded by a path quantifier. As a side effect of partitioning ϕ in such a way,
a path formula ψ will always be in the form of a pure linear-time path formula,
that is, LTL. This particular deconstruction of a CTL∗ formula is what allows us
to identify the intricate interplay between path and state formulae.

We begin by recursively generating preconditions when considering the sub-
formula(e) of ϕ at lines 9, 10, and 12. These preconditions will then be utilized
by the procedure Replace on line 15. Replace substitutes θ′

1 and θ′
2 with

their corresponding preconditions aθ′
1

and aθ′
2
, respectively, and returns a new

state formula ϕ′. Preconditions for branching-time logic state formulae can be
acquired via existing CTL model checkers. However, in order to allow for the path
quantification present within a CTL∗ formula to range over path formulae, we
must consider whether all or some paths starting from a particular state satisfy a
path formula. This is required in the case that the immediate inner sub-formula
is a pure linear-time path formula, which is identified by the aforementioned
boolean flag Path given the partitioning of θ. The role of Path is to track if a
sub-formula of the current formula is a path formula. That is, Path indicates
that the path quantifier exists within the context of verifying a path formula,
and not a branching-time state formula. Thus, it must be verified using PD,
yet the set of states of PD that characterize it actually represents a set of paths.
This set of paths must be collapsed later to a characterization of the set of states
of P where the (state) formula holds. This is the key to allowing the interplay
between state and path formulae.

The procedure QuantElim, presented in Fig. 2(d), which converts path char-
acterization to state characterization, is thus executed at line 17. QuantElim
takes in the assertion a returned from calling a CTL model checker on the deter-
minized program PD and the partitioned CTL formula ϕ′, as well as the original
formula ϕ. We then quantify the assertions over the values of the prophecy vari-
ables. If ϕ is a universal CTL formula, we universally quantify the prophecy
variables appearing in the set of states that satisfy ϕ on line 4 in Fig. 2(d). If ϕ
is an existential CTL formula, we existentially quantify the prophecy variables on
line 5. Predictions of the prophecy variables may lead to finite paths to appear
in the program, thus quantification must be restricted to states for which there
does exist a prophecy value leading to infinite paths. Hence, on line 2 we acquire
the precondition aEG satisfying the CTL formula entailing nontermination, that
is EGTrue for PD. The precondition aEG is then conjuncted with a to ensure
that the quantification of prophecy variables does not include finite paths gener-
ated due to invalid predictions of the prophecy variables. This is done according
to the polarity of the quantification (universal or existential). The assertion aθ is
then returned by QuantElim characterizing the set of states in which θ holds.

In the case that Path is false, the most immediate inner sub-formula would
then be a state formula. This indicates that we can indeed use a CTL model

26 B. Cook et al.

checker using ϕ′ and the original program P , as demonstrated on line 20. Upon
the return of ProveCTL∗ to its caller Verify, aθ will contain the precondition
for the most outer temporal property of the original CTL∗ formula θ. Now it is
only necessary to check if the precondition aθ is satisfied by the initial states of
the program to complete the verification of our CTL∗ formula. Finally, Path is
set to false, in order to carry out the above procedure again when necessary.

Theorem 3. If Verify(θ, P) returns true then P |= θ.

Proof. See TR [7], Appendix A.

We note that the implication in Theorem 3 is only in one direction. That is, failing
to prove that a property holds does not implicate that its negation holds (though
this might be proved by negating the formula, converting it to negation normal
form, and running our procedure on it). This incompleteness stems from the over-
approximation of path formulae by a corresponding ACTL formulae, as although
this over-approximation is checked over PD, PD does not determinize all paths.
It is impossible to completely determinize a program as this requires uncountable
branching (in the choice of prophecy variables). Countable nondeterminism is not
a sufficient technique in the context of nondeterministic nested determinization
of programs. For example, suppose that the prophecy variable value entails that
an external loop does not terminate. Now consider all possible options for number
of repetitions of the internal loop. In order to have a completely deterministic
program, we must prophesize an infinite sequence of finite natural numbers. The
number of such possible infinite sequences is uncountable.

5 Evaluation

In this section we discuss the results of our experiments with an implementation
of the procedure from Fig. 2(c). Our implementation2 is built as an extension to
the open source project T2, which uses a safety prover similar to Impact [24]
alongside previously published techniques for discovering ranking functions, etc. [9,
25] to prove both liveness and safety properties. The tool was executed on an
Intel x64-based 2.8 GHz single-core processor. The format in which we interpret
and parse a program’s commands can be found in [11].

We have drawn out a set of CTL∗ problems from industrial code bases. Exam-
ples were taken from the I/O subsystems of the Windows OS kernel, the back-end
infrastructure of the PostgreSQL database server, and the Apache web server.
CTL∗ allows us to express “possibility” properties, such as the viability of a
system, stating that any reachable state can spawn a fair computation. Addi-
tionally, we demonstrate that we can now verify properties involving existential
system stabilization, stating that an event can eventually become true and stay
true from any reachable state. For example, “OS frag. 1”, “OS frag. 3”, “PgSQL
2 The source-code of our implementation and our benchmarks are available under the

MIT open-source license at https://github.com/hkhlaaf/T2/tree/T2Star.

https://github.com/hkhlaaf/T2/tree/T2Star

On Automation of CTL* Verification for Infinite-State Systems 27

Program LoC Property Time(s) Res.

OS frag. 1 393 AG((EG(phi io compl ≤ 0)) ∨ (EFG(phi nSUC ret > 0)))) 32.0 ×
OS frag. 1 393 EF((AF(phi io compl > 0)) ∧ (AGF(phi nSUC ret ≤ 0)))) 13.2 �
OS frag. 2 380 EFG((keA ≤ 0 ∧ (AG keR = 0))) 28.3 �
OS frag. 2 380 EFG((keA ≤ 0 ∨ (EF keR = 1))) 16.5 �
OS frag. 3 50 EF(PPBlockInits > 0 ∧ (((EFG IoCreateDevice = 0) 10.4 �

∨ (AGF status = 1)) ∧ (EG PPBunlockInits ≤ 0)))

PgSQL arch 1 106 EFG(tt > 0 ∨ (AF wakend = 0)) 1.5 ×
PgSQL arch 1 106 AGF(tt ≤ 0 ∧ (EG wakend �= 0)) 3.8 �
PgSQL arch 1 106 EFG(wakend = 1 ∧ (EGF wakend = 0)) 18.3 �
PgSQL arch 1 106 EGF(AG wakend = 1) 10.3 �
PgSQL arch 1 106 AFG(EF wakend = 0) 1.5 ×
PgSQL arch 2 100 AGF wakend = 1 1.4 �
PgSQL arch 2 100 EFG wakend = 0 0.5 ×
Bench 1 12 EFG(x = 1 ∧ (EG y = 0)) 1.0 �
Bench 2 12 EGF x > 0 0.1 �
Bench 3 12 AFG x = 1 0.1 �
Bench 4 10 AG((EFG y = 1) ∧ (EF x ≥ t)) 0.5 ×
Bench 5 10 AG(x = 0 U b = 0) T/O –

Bench 6 8 AG((EFG x = 0) ∧ (EF x = 20)) 0.1 �
Bench 7 6 (EFGx = 0) ∧ (EFGy = 1) 0.5 ×
Bench 8 6 AG((AFG x = 0) ∨ (AFGx = 1)) 0.5 �

Fig. 4. Experimental evaluations of infinite-state programs drawn from the Windows
OS, PgSQL, and 8 toy examples. There are no competing tools available for comparison.

arch 1”, and “Bench 2” are verified using said properties, described in detail
in Sect. 1. We also include a few toy examples to further demonstrate further
expressiveness of CTL∗ and its usefulness in verifying programs.

Given that our benchmarks tackle infinite-state programs, the only existing
automated tool for verifying CTL∗ in the finite-state setting [18] is not applicable.
In Fig. 4 we display the results of our benchmarks. For each program and its
corresponding CTL∗ property to be verified, we display the number of lines of
code (LoC), and report the time it took to verify a CTL∗ property (Time column)
in seconds. We provide a “Res.” column which indicates the results of our tool.
A � indicates that the tool was able to verify the property. Likewise, an ×
indicates that the tool failed to prove the property. The symbol “–” in the result
column indicates that a result was not determined due to a timeout. A timeout
or memory exception is indicated by T/O. A timeout is triggered if verification
of an experiment exceeds 3000 seconds. Note that in various cases, we verify the
same program using a CTL∗ property and its negation. Our tool thus allows us
to prove each of the properties as well as disprove each of their negations.

Our experiments demonstrate the practical viability of our approach. Our
runtimes show that our tool runs well within the range of performance previ-
ously exhibited by specialized tools such as as [3,8,10–12], which can only verify
significantly less expressive properties over infinite-state programs. Our tool has
successfully both verified and invalidated CTL∗ properties corresponding to their

28 B. Cook et al.

expected results for all but one of the benchmarks. This is due to the afore-
mentioned limitation, that is, our countable nondeterministic determinization
technique is not complete.

6 Concluding Remarks

We have introduced the first-known fully automatic method capable of proving
CTL∗ of infinite-state (integer) programs. This allows us, for the first time ever,
to automatically verify properties of programs that mix branching-time and
linear-time temporal operators. We have developed an implementation capable
of automatically proving properties of programs that no tool could previously
prove. The method underlying our tool is one that uses a symbolic representation
capable of facilitating reasoning about the interaction between sets of states and
sets of paths.

References

1. Abadi, M., Lamport, L.: The existence of refinement mappings. Theoret. Comput.
Sci. 82, 253–284 (1991)

2. Beyene, T., Chaudhuri, S., Popeea, C., Rybalchenko, A.: A constraint-based app-
roach to solving games on infinite graphs. In: POPL 2014, pp. 221–233. ACM
(2014)

3. Beyene, T.A., Popeea, C., Rybalchenko, A.: Solving existentially quantified horn
clauses. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 869–
882. Springer, Heidelberg (2013)

4. Bjørner, N.S., Browne, A., Colón, M.A., Finkbeiner, B., Manna, Z., Sipma, H.B.,
Uribe, T.E.: Verifying temporal properties of reactive systems: a STeP tutorial.
Form. Methods Syst. Des. 16(3), 227–270 (2000)

5. Bodden, E.: A lightweight LTL runtime verification tool for Java. In: OOPSLA
2004, pp. 306–307. ACM (2004)

6. Cook, B., Khlaaf, H., Piterman, N.: Fairness for infinite-state systems. In: Baier, C.,
Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 384–398. Springer, Heidelberg
(2015)

7. Cook, B., Khlaaf, H., Piterman, N.: On automation of CTL* verification for
infinite-state systems. Technical report. University College London (2015). http://
heidyk.com/publications/CAV15.pdf

8. Cook, B., Koskinen, E.: Reasoning about nondeterminism in programs. In: PLDI
2013, pp. 219–230. ACM (2013)

9. Cook, B., See, A., Zuleger, F.: Ramsey vs. lexicographic termination proving. In:
Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795,
pp. 47–61. Springer, Heidelberg (2013)

10. Cook, B., Gotsman, A., Podelski, A., Rybalchenko, A., Vardi, M.Y.: Proving that
programs eventually do something good. In: POPL 2007, pp. 265–276. ACM (2007)

11. Cook, B., Khlaaf, H., Piterman, N.: Faster temporal reasoning for infinite-state
programs. In: FMCAD 2014, pp. 16:75–16:82. FMCAD Inc. (2014)

12. Cook, B., Koskinen, E.: Making prophecies with decision predicates. In: POPL
2011, pp. 399–410. ACM (2011)

http://heidyk.com/publications/CAV15.pdf
http://heidyk.com/publications/CAV15.pdf

On Automation of CTL* Verification for Infinite-State Systems 29

13. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms,
2nd edn. McGraw-Hill Higher Education, Boston (2001)

14. Emerson, E.A., Halpern, J.Y.: “Sometimes” and “Not Never”; revisited: on branch-
ing versus linear time temporal logic. J. ACM 33(1), 151–178 (1986)

15. Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of pro-
grams. SIAM J. Comput. 29(1), 132–158 (1999)

16. Emerson, E.A., Lei, C.-L.: Modalities for model checking: branching time logic
strikes back. Sci. Comput. Program. 8(3), 275–306 (1987)

17. Emerson, E.A., Sistla, A.P.: Deciding branching time logic. In: STOC 1984, pp.
14–24. ACM (1984)

18. Griffault, A., Vincent, A.: The Mec 5 model-checker. In: Alur, R., Peled, D.A.
(eds.) CAV 2004. LNCS, vol. 3114, pp. 488–491. Springer, Heidelberg (2004)

19. Gupta, A., Henzinger, T.A., Majumdar, R., Rybalchenko, A., Xu, R.-G.: Proving
non-termination. SIGPLAN Not. 43, 147–158 (2008)

20. Kesten, Y., Pnueli, A.: A compositional approach to CTL* verification. Theor.
Comput. Sci. 331(2–3), 397–428 (2005)

21. Lamport, L.: “Sometime” is sometimes “Not Never”: on the temporal logic of
programs. In: POPL 1980, pp. 174–185. ACM (1980)

22. Magill, S., Berdine, J., Clarke, E., Cook, B.: Arithmetic strengthening for shape
analysis. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 419–
436. Springer, Heidelberg (2007)

23. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety, vol. 2.
Springer, Heidelberg (1995)

24. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)

25. Podelski, A., Rybalchenko, A.: Transition invariants. In: LICS, pp. 32–41. IEEE,
Turku, Finland (2004)

26. Reynolds, M.: An axiomatization of full computation tree logic. J. Symbolic Logic
66(3), 1011–1057 (2001)

27. Song, F., Touili, T.: Pushdown model checking for malware detection. In: Flana-
gan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 110–125. Springer,
Heidelberg (2012)

Algorithms for Model Checking
HyperLTL and HyperCTL∗

Bernd Finkbeiner1, Markus N. Rabe1(B), and César Sánchez2

1 Saarland University, Saarbrücken, Germany
{finkbeiner,rabe}@cs.uni-saarland.de

2 IMDEA Software Institute, Madrid, Spain
cesar.sanchez@imdea.org

Abstract. We present an automata-based algorithm for checking finite
state systems for hyperproperties specified in HyperLTL and HyperCTL∗.
For the alternation-free fragments of HyperLTL and HyperCTL∗ the
automaton construction allows us to leverage existing model checking
technology. Along several case studies, we demonstrate that the approach
enables the verification of real hardware designs for properties that could
not be checked before. We study information flow properties of an I2C
bus master, the symmetric access to a shared resource in a mutual exclu-
sion protocol, and the functional correctness of encoders and decoders for
error resistant codes.

1 Introduction

HyperLTL and HyperCTL∗ are recent extensions to LTL and CTL∗ with the
ability to express a wide range of hyperproperties [14]. Hyperproperties general-
ize trace properties and include properties from information-flow security such as
noninterference [15]. Even though the complexity of model checking HyperLTL
and HyperCTL∗ has been determined, no efficient algorithms are known so far.
In this paper, we thus study the automatic verification of finite state systems
for hyperproperties specified in HyperLTL and HyperCTL∗.

HyperLTL and HyperCTL∗ allow us to specify relations over executions of
the same system [14]. They introduce path quantifiers so computation paths can
be referred to in the atomic propositions. For example, the following HyperLTL
formula expresses noninterference [22] between input h and output o by requiring
that all computation paths π and π′ that only differ in h, have the same output
o at all times:

∀π.∀π′. �
(∧

i∈I\h

iπ = iπ′
) ⇒ � (oπ = oπ′)

This work was partially supported by the Spanish Ministry of Economy under project
“TIN2012-39391-C04-01 STRONGSOFT,” the Madrid Regional Government under
the project “S2013/ICE-2731 N-Greens Software-CM,” the German Research Foun-
dation (DFG) under the project SpAGAT in the Priority Program 1496 “Reliably
Secure Software Systems - RS3,” and the Graduate School of Computer Science at
Saarland University.

c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 30–48, 2015.
DOI: 10.1007/978-3-319-21690-4 3

Algorithms for Model Checking HyperLTL and HyperCTL 31

Quantifiers in CTL∗, in contrast, are of the form Aϕ and Eϕ where the
subformula ϕ can only (implicitly) refer to a single path—the path introduced
by A and E respectively. Hence, CTL∗ cannot express noninterference [1,20].

Noninterference between i and o implies that o contains no information
about i, and is therefore an important building block for properties in secu-
rity [22]. By embedding noninterference in a temporal context, HyperLTL and
HyperCTL∗ allow us to express a wide range of properties from information-
flow security, including variants of declassification and quantitative information
flow [3,5,16,41]. The use cases of HyperLTL and HyperCTL∗, however, extend
far beyond security, as we demonstrate in this paper.

The main result of this paper is an automata-theoretic algorithm for the
model checking problem of HyperLTL and HyperCTL∗. The automata app-
roach to model checking LTL properties [46] reduces the verification problem to
automata operations and decision problems, like automata product and check
for emptiness. Typically, the LTL specification is translated into a Büchi word
automaton that captures all violations of the specification. The product of the
system with this automaton reveals the system’s traces that violate the specifica-
tion. We extend the approach based on Büchi word automata with the ability to
quantify over new executions along the run, and thereby obtain an algorithm for
HyperCTL∗ (Sect. 3). The construction for a quantifier ∃π. ϕ corresponds to a
product of the system and the automaton for the subformula ϕ. As in the classical
approach, a final check of emptiness of the language of the automaton provides
the answer to the model checking problem. The construction of the automaton
involves the expensive nondeterminization of alternating automata [36] to handle
quantifier alternations. For the rich class of alternation-free formulas, however,
the algorithm is shown to be in NLOGSPACE in the size of the system. In
Sect. 4 we use the alternating automaton construction to derive an approach to
leverage existing model checking technology for model checking circuits for the
alternation-free fragment of HyperCTL∗.

We demonstrate the flexibility and the effectiveness of the proposed approach
for the alternation-free fragment of HyperCTL∗ along three case studies (Sect. 5).
The first case study concerns the information flow analysis of an I2C bus master.
The second case study concerns the analysis of the symmetries in a mutual exclu-
sion protocol. The typical fair-access properties against which mutual exclusion
protocols are usually analyzed, such as accessibility and bounded overtaking [30],
can be seen as abstractions of what is really expected from mutual exclusion pro-
tocols: symmetric access to the shared resource. HyperLTL enables a fine grained
analysis of the symmetry between the processes, for example by expressing the
property that switching the actions and roles between two components in a
trace results in another legal trace, in which the access to the shared resource is
switched accordingly. The third case study concerns the functional correctness
of encoders and decoders of error resistant codes. The error resistance of a code
is a property of its space of code words: all pairs of code words must have a
certain minimum Hamming distance. We show that Hamming distance can be

32 B. Finkbeiner et al.

expressed in HyperLTL and demonstrate that this leads to an effective approach
to the verification of encoders and decoders.

To summarize, our contributions are as follows:

– We develop the first direct automaton construction for model checking Hyper-
LTL and HyperCTL∗ based on alternating automata.

– We present the first practical approach for model checking hardware systems
for alternation-free HyperCTL∗ formulas.

Our evaluation shows that the approach enables the verification of industrial
size hardware modules for hyperproperties. That is, we extend the state of the
art in model checking hyperproperties from systems using only few (binary)
variables [14,34] to systems with over 20.000 variables.

Related Work. In this paper, we present an automata-theoretic model checking
algorithm for HyperLTL and HyperCTL∗, together with a practical approach
to the verification of hardware circuits against alternation-free formulas. Previ-
ous automata constructions for the problem [14] are based on nondeterministic
Büchi automata, whereas we present an algorithm based on alternating Büchi
automata, which allows us to leverage modern hardware verification techniques
like IC3 [10]/PDR [18], interpolation [32], and SAT [8]. Our model checker can
therefore be applied to significantly more complex systems than the proof-of-
concept model checker for the one-alternation fragment of HyperLTL [14], which
is limited to small explicitly given models.

HyperLTL and HyperCTL∗ are related to other logics for hyperproperties,
such as variations of the μ-calculus, like the polyadic μ-calculus by Andersen [2],
the higher-dimensional μ-calculus [38], and holistic hyperproperties [35]. The
model checking problem for these logics can be reduced to the model checking
problem of the modal μ-calculus [2,27] (or directly to parity games [34]) and
involves, similar to our construction, an analysis of the product of several copies
of the system. We are not aware, however, of any practical approaches that
would allow the verification of complex hardware designs against specifications
given in these logics. Another related class of logics are the epistemic temporal
logics [19], which reason about the knowledge of agents and how it changes
over time. While it has been shown that epistemic temporal logic can express
certain information flow policies [4], most practical work with epistemic logics has
focussed on applications from the area of multi-agent systems [21,28,29,33,39].

Lastly, in the area of information flow security, there are several verification
techniques that focus on specific information flow properties—rather than on a
general logic like HyperLTL and HyperCTL∗—but use techniques that relate to
our model checking algorithm. A construction based on the product of copies of a
system, self-composition [6,7], has been tailored for various trace-based security
definitions [17,23,44].

Algorithms for Model Checking HyperLTL and HyperCTL 33

2 Temporal Logics for Hyperproperties

We now introduce the temporal logics for hyperproperties, their semantics, and
their model checking problem.

A Kripke structure is a tuple K = (S, s0, δ,AP, L) consisting of a set of states
S, an initial state s0, a transition function δ : S → 2S , a set of atomic propositions
AP, and a labeling function L : S → 2AP decorating each state with a set of
atomic propositions. We require that each state has a successor, that is δ(s) �= ∅,
to ensure that every execution of a Kripke structure can always be extended
to an infinite execution. A path of a Kripke structure is an infinite sequence of
states s0s1 . . . ∈ Sω such that s0 is the initial state of K and si+1 ∈ δ(si) for
all i ∈ N. We denote by Paths(K, s) the set of all paths of K starting in state
s ∈ S and by Paths∗(K, s) the set of their suffixes. Given a path p and a number
i ≥ 0, p[i,∞] denotes the suffix path where the first i elements are removed.

HyperLTL and HyperCTL∗ extend the standard temporal logics LTL and
CTL∗ by quantification over path variables. Their formulas are generated by the
following grammar, where a ∈ AP and π ranges over path variables:

ϕ ::= true | aπ | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ

| ϕ | ϕ U ϕ | ϕ R ϕ | ∃π. ϕ | ∀π. ϕ

Additionally, we define the derived operators ϕ = true U ϕ, ϕ = ¬ ¬ϕ,

and ϕ1 W ϕ2 = ϕ1 U ϕ2 ∨ �ϕ1.
For HyperLTL and HyperCTL∗ we require that temporal operators only

occur inside the scope of path quantifiers. HyperLTL is the sublogic of formulas
in prenex normal form. A formula is in prenex normal form, if it starts with
a sequence of quantifiers, and is quantifier-free in the rest of the formula. The
conceptual difference between HyperLTL and HyperCTL∗, is that HyperLTL,
like LTL, is a linear-time logic and that HyperCTL∗, like CTL and CTL∗, is a
branching-time logic [20]. A formula ϕ is in negation normal form if the only
occurrences of ¬ occur in front of propositions aπ.

Semantics. In the following we define the semantics for the operators aπ, ¬ϕ,
ϕ1 ∨ ϕ2, , ϕ1 U ϕ2, and ∃π. ϕ. The other operators are defined via the
following equalities: ∀π. ϕ = ¬∃π. ¬ϕ, ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2), and ϕ1Rϕ2 =
¬(¬ϕ1U¬ϕ1). These derived operators are kept in the syntax to guarantee the
existence of equivalent formulas in negation normal form.

Let K be a Kripke structure and let s0 be its initial state. The seman-
tics of HyperLTL and HyperCTL∗ is given in terms of assignments Π : N →
Paths∗(K, s0) of a set of path variables N to suffixes of paths. We use Π[i,∞] for
the map that assigns to each path variable π the suffix Π(π)[i,∞]. We use the
reserved path variable ε to denote the most recently quantified path and define
the validity of a formula as follows:

34 B. Finkbeiner et al.

Π |=K aπ whenever a ∈ L Π(π)(0)
)

Π |=K ¬ϕ whenever Π �|=K ϕ
Π |=K ϕ1 ∨ ϕ2 whenever Π |=K ϕ1 or Π |= ϕ2

Π |=K ϕ whenever Π[1,∞] |=K ϕ
Π |=K ϕ1 U ϕ2 whenever for some i ≥ 0 : Π[i,∞] |=K ϕ2 and

for all 0 ≤ j < i : Π[j,∞] |=K ϕ1

Π |=K ∃π. ϕ whenever for some p ∈ Paths(K, Π(ε)(0)) :
Π[π �→ p, ε �→ p] |=K ϕ

For the empty assignment Π = {}, we define Π(ε)(0) to yield the initial
state. Validity on states of a Kripke structure K, written s |=K ϕ, is defined as
{} |=K ϕ. A Kripke structure K = (S, s0, δ,AP, L) satisfies formula ϕ, denoted
with K |= ϕ whenever s0 |=K ϕ.

3 Automata-Theoretic Model Checking of HyperCTL∗

In this section, we present an automata-theoretic construction for the verification
of HyperCTL∗ formulas. In Sect. 4 we will then use this construction to build a
practical algorithm for the verification of circuits. We start with a brief review
of alternating automata. Given a finite set Q, B(Q) denotes the set of Boolean
formulas over Q and B

+(Q) the set of positive Boolean formulas, that is, formulas
that do not contain negation. The satisfaction of a formula θ ∈ B(Q) by a set
Q′ ⊆ Q is denoted by Q′ |= θ.

Definition 1 (Alternating Büchi Automata). An alternating Büchi auto
maton (on words) is a tuple A = (Q, q0, Σ, ρ, F), where Q is a finite set of
states, q0 ∈ Q is the initial state, Σ is a finite alphabet, ρ : Q × Σ → B

+(Q)
is a transition function that maps a state and a letter to a positive Boolean
combination of states, and F ⊆ Q are the accepting states.

A run of an alternating automaton is a Q-labeled tree. A tree T is a subset
of N∗

>0 such that for every node τ ∈ N
∗
>0 and every positive integer n ∈ N>0, (i)

if τ · n ∈ T then τ ∈ T (i.e., T is prefix-closed), and (ii) for every 0 < m < n,
τ ·m ∈ T . The root of T is the empty sequence ε and for a node τ ∈ T , |τ | is the
length of the sequence τ , in other words, its distance from the root. A run of A
on an infinite word π ∈ Σω is a Q-labeled tree (T, r) such that r(ε) = q0 and
for every node τ in T with children τ1, . . . , τk the following holds: 1 ≤ k ≤ |Q|
and {r(τ1), . . . , r(τk)} |= ρ(q, π[i]), where q = r(τ) and i = |τ |. A run r of A
on π ∈ Σω is accepting whenever for every infinite path τ0τ1 . . . in T , there are
infinitely many i with r(τi) ∈ F . We say that π is accepted by A whenever there
is an accepting run of A on π, and denote with Lω(A) the set of infinite words
accepted by A.

If the transition function of an alternating automaton does not contain any
conjunctions, we call the automaton nondeterministic. The transition function
ρ of a nondeterministic automaton thus identifies a disjunction over a set of

Algorithms for Model Checking HyperLTL and HyperCTL 35

successor states. Such a transition function can also be stated as a function
ρ : Q × Σ → 2Q identifying the successors. Our model checking algorithm relies
on the standard translation for alternation removal due to Miyano and Hayashi:

Theorem 1 ([36]). Let A be an alternating Büchi automaton with n states.
There is a nondeterministic Büchi automaton MH(A) with 2O(n) states that
accepts the same language.

3.1 The Alternation-Free Fragment

We present a model checking algorithm for the alternation-free fragment of
HyperCTL∗. This fragment is expressive enough to capture a broad range
of other information-flow properties, like declassification mechanisms, quan-
titative noninterference, and information-flow requirements that change over
time [14,16]. The case studies in Sect. 5 illustrate that this fragment also captures
properties in application domains beyond information-flow security.

Definition 2 (Alternation-Free HyperCTL∗). A HyperCTL∗ formula ϕ
in negation normal form is alternation-free, if ϕ contains only quantifiers of
one type. Additionally, we require that no existential quantifier occurs in the left
subformula of an until operator or in the right subformula of a release operator,
and, symmetrically, that no universal quantifier occurs in the right subformula
of an until operator or in the left subformula of a release operator.

Similar to the automata-theoretic approach to LTL properties [37,45], we
construct an alternating automaton bottom up from the formula, but handling
multiple path quantifiers. For alternation-free HyperCTL∗, the quantifiers may
occur inside temporal operators (with the restrictions in Definition 2) as long as
there is no quantifier alternation.

Let K be a Kripke structure K = (S, s0, δ,AP, L). To check the satisfaction
of a HyperCTL∗ formula ϕ by K, we translate ϕ into a K-equivalent alter-
nating automaton Aϕ. The construction of Aϕ proceeds inductively following
the structure of ϕ, as follows. Assume that ϕ is in negation normal form and
starts with an existential quantifier, and consider a subformula ψ of ϕ. Let n
be the number of path quantifiers occurring on the path from the root of the
syntax tree of ϕ to ψ, and let these path quantifiers bind the variables π1, . . . , πn.
The alphabet Σ of Aψ is Sn, the set of n-tuples of states of K. We say that
a language L ⊆ (Sn)ω is K-equivalent to ψ, if all sequences of state tuples
(s00, . . . , s

0
n)(s10, . . . , s

1
n) . . . in L correspond to a path assignment Π satisfying ψ.

That is, for all (s00, . . . , s
0
n)(s10, . . . , s

1
n) . . . ∈ L it holds Π |=K ψ for the path

assignment Π(πi) = s0i s
1
i . . . (for all i ≤ n). An automaton is K-equivalent to ψ

if its language is K-equivalent to ψ.
For atomic propositions, Boolean connectives, and temporal operators, our

construction follows the standard translation from LTL to alternating automata
[37,45]. Let Aψ1 = (Q1, q0,1, Σ1, ρ1, F1) and Aψ2 = (Q2, q0,2, Σ2, ρ2, F2) be the
alternating automata for the subformulas ψ1 and ψ2:

36 B. Finkbeiner et al.

ψ = aπk
Aψ = ({q0}, q0, Σ, ρ, ∅), where ρ(q0, s) = (a ∈ L(s |k))

ψ = ¬aπk
Aψ = ({q0}, q0, Σ, ρ, ∅), where ρ(q0, s) = (a �∈ L(s |k))

ψ = ψ1∨ψ2 Aψ = (Q1 ·∪Q2 ·∪{q0}, q0, Σ, ρ, F1 ·∪F2)
where ρ(q0, s) = ρ1(q0,1, s) ∨ ρ2(q0,2, s)
and ρ(q, s) = ρi(q, s) for q ∈ Qi, i ∈ {1, 2}

ψ = ψ1 ∧ ψ2 Aψ = (Q1 ·∪Q2 ·∪{q0}, q0, Σ, ρ, F1 ·

·

∪F2)
where ρ(q0, s) = ρ1(q0,1, s) ∧ ρ2(q0,2, s)
and ρ(q, s) = ρi(q, s) for q ∈ Qi, i ∈ {1, 2}

ψ = ψ1 Aψ = (Q1 ·∪{q0}, q0, Σ, ρ, F1)

·, Σ, ρ, F1∪F2)

, Σ, ρ, F1∪F2

where ρ(q0, s) = q0,1

and ρ(q, s) = ρ1(q, s) for q ∈ Q1

ψ = ψ1 U ψ2 Aψ = (Q1 ·∪Q2 ·∪{q0}, q0
where ρ(q0, s) = ρ2(q0,2, s) ∨ (ρ1(q0,1, s) ∧ q0)
and ρ(q, s) = ρi(q, s) for q ∈ Qi, i ∈ {1, 2}

ψ = ψ1 R ψ2 Aψ = (Q1 ·∪Q2 ·∪{q0}, q0 ·∪{q0})
where ρ(q0, s) = ρ2(q0,2, s) ∧ (ρ1(q0,1, s) ∨ q0)
and ρ(q, s) = ρi(q, s) for q ∈ Qi, i ∈ {1, 2}

For a quantified subformula ψ = ∃π.ψ1, we have to reduce the alphabet
Σψ1 = Sn+1 to Σ = Sn. The language for formula ψ contains exactly those
sequences σ of state tuples, such that there is a path p through the Kripke
structure K for which σ extended by p is in L(Aψ1). Let N ′

ψ1
= (Q′, q′

0, Σ, ρ′, F ′)
be the nondeterministic automaton N ′

ψ1
= MH(Aψ1) constructed from Aψ1 by

the construction in Theorem 1, and let Aψ = (Q′′, q′′
0 , Σψ, ρ′′, F ′′) be constructed

from N ′
ψ1

and the Kripke structure K = (S, s0, δ,AP, L) as follows:

ψ = ∃π.ψ1 Aψ = (Q′ × S ·∪ {q′′
0 }, q′′

0 , Σψ, ρ′′, F ′ × S)

where ρ′′(q′′
0 , s) = {(q′, s′) | q′ ∈ ρ′(q′

0, s + s |n), s′ ∈ δ(s |n)}
and ρ′′((q, s), s) = {(q′, s′) | q′ ∈ ρ′(q, s + s), s′ ∈ δ(s)}

For the case that n = 0 we define that s |n is the initial state s0 of K.
Since we consider the alternation-free fragment, there are no negated quan-

tified subformulas and the construction is finished.
The correctness of the construction can be shown by structural induction.

Proposition 1. Let ϕ be a HyperCTL∗ formula and Aϕ the alternating automa-
ton obtained by the previous construction. Then, ϕ and Aϕ are K-equivalent.

So far, we only considered alternation-free formulas that start with existential
quantifiers. To decide K |= ϕ for an arbitrary ϕ, we first transform ϕ in a Boolean
combination over a set X of quantified subformulas. Each element ψ′ of X is
now in the form ∃π.ϕ for which we apply the construction above. Since ψ′ is of
the form ∃π.ψ1, Aψ′ is a nondeterministic Büchi automaton, for which we apply
a standard nonemptiness test [47].

Algorithms for Model Checking HyperLTL and HyperCTL 37

Theorem 2. The model checking problem for the alternation-free fragment of
HyperCTL∗ is PSPACE-complete in the size of the formula and NLOGSPACE-
complete in the size of the Kripke structure.

Proof. The alternating automaton Aψ1 is a tree with self-loops, when we consider
automata created for quantified subformulas as leafs of the tree. By structural
induction, we show that the size of Aψ′ for an alternation-free formula ψ′ is
polynomial in |ψ′| and in |K| and that sub-automata for quantified subformulas
are not reachable via actions that are self-loops with conjunctions.

Base Case: for atomic propositions and negated atomic propositions, the induc-
tion hypothesis is fulfilled.

Induction Step: Let ψ = ∃π. ψ1. Only Until operators and Release operators in
the formula lead to nodes that have two transitions, one with a self-loop and
one without self-loops. By the restrictions in the definition of the alternation-
free fragment, we guarantee that automata of quantified subformulas are not
reachable via transitions with self-loops that contain conjunctions.

Conjunctive transitions that are not part of loops or self-loops only lead to
a polynomial increase in size during nondeterminization. Emptiness of nonde-
terministic Büchi automata is in NLOGSPACE [47], so the upper bound of the
theorem follows.

Since HyperCTL∗ subsumes LTL, the lower bound for LTL model check-
ing [42] implies the lower bound for HyperCTL∗. ��

3.2 The Full Logic

The construction from the previous subsection can be extended to full HyperCTL∗

by adding a construction for negated quantified subformulas. We compute an
automaton for the complement language, based on the following theorem:

Theorem 3 ([25]). For every alternating Büchi automaton A = (Q, q0, Σ, ρ, F),
there is an alternating Büchi automaton A with O(|Q|)2 states that accepts the
complemented language: Lω(A) = Lω(A).

We extend the previous construction with the following case:

ϕ = ¬∃π.ψ1 N ′
ψ1

, where N ′
ψ1

= MH(Aψ1) via Theorem 1

We capture the complexity of the resulting model checking algorithm in
terms of the alternation depth of the HyperCTL∗ formula. The formulas with
alternation depth 0 are exactly the alternation-free formulas.

Definition 3 (Alternation Depth). A HyperCTL∗ formula ϕ in negation
normal form has alternation depth 0 plus the highest number of alternations
from existential to universal and universal to existential quantifiers along any of

38 B. Finkbeiner et al.

the paths of the formula’s syntax tree. Existential quantifiers in the left subfor-
mula of an until operator or in the right subformula of a release operator, and,
symmetrically, universal quantifiers in the right subformula of an until operator
or in the left subformula of a release operator count as additional alternation.

For example, let ψ be a formula without additional quantifiers, then ∃π. ψ has
alternation depth 0, ∀π1.∃π. ψ has alternation depth 1, has alter-
nation depth 0, ∃π. �∃π′. ψ has alternation depth 1, and (∀π. ψ) ∧ (∃π. ψ) has
alternation depth 0.

Let gc(k, n) be a tower of exponentiations of height k, defined simply
as gc(0, n) = n and gc(k, n) = cgc(k−1,n). We define NSPACE(g(k, n)) to
be the languages that are accepted by a nondeterministic Turing machine
that runs in SPACE O(gc(k, n)) for some c > 1. For convenience, we define
NSPACE(g(−1, n)) to be NLOGSPACE.

Proposition 2. Let K be a Kripke structure and ϕ a HyperCTL∗ formula with
alternation depth k. The alternating automaton Aϕ resulting from the previous
construction has O(g(k + 1, |ϕ|)) and O(g(k, |K|)) states and can be constructed
in NSPACE(g(k, |ϕ|)) and NSPACE(g(k − 1, |K|)).
Theorem 4. Given a Kripke structure K and a HyperCTL∗ formula ϕ with
alternation depth k, we can decide whether K |= ϕ in NSPACE(g(k, |ϕ|)) and
NSPACE(g(k − 1, |K|)).

The proof of Proposition 2 is an induction over the alternation depth. The
proof of Theorem 4 uses that the nonemptiness problem for nondeterministic
Büchi automata is in NLOGSPACE [47]. Theorem 4 subsumes the result for the
alternation-free fragment:

Corollary 1. For alternation depth 0, the model-checking problem K |= ϕ is in
PSPACE in |ϕ| and in NLOGSPACE in |K|.

4 Symbolic Model Checking of Circuits

In this section we translate the automaton-based construction from Sect. 3 for
alternation-free formulas into a practical verification approach for circuits. Given
a circuit C and an alternation-free formula ϕ the algorithm produces a new
circuit Cϕ that is linear in the size of C and also linear in the size of ϕ. The
compactness of the encoding builds on the ability of circuits to describe systems
of exponential size with a linear number of binary variables. The circuit Cϕ

is then checked for fair reachability to determine the validity of C |= ϕ. This
check can be done with of-the-shelf model checkers leveraging modern hardware
verification technology [8,11,12].

Algorithms for Model Checking HyperLTL and HyperCTL 39

A circuit1 C = (X, init , I, O, T) consists of a set X of binary variables
(latches with unit delay), a condition init ∈ B(X) characterizing a non-empty
set of initial states of X, a set of input variables I, a set of output variables O,
and a transition relation T ∈ B(X × I × O × X). We require that T is input-
enabled and input-deterministic, that is, for all x ⊆ X, i ⊆ I, there is exactly
one o ⊆ O and one x′ ⊆ X such that T (x, i, o, x′) holds. We denote a subset of
X as a state of circuit C, indicating exactly those latches that are set to 1. The
size of a circuit C, denoted |C|, is defined as the number of latches |X|.

A circuit C can be interpreted as a finite Kripke structure KC of potentially
exponential size. The state space of KC is S = s0 ∪ 2X × 2I × 2O × 2X , where
s0 is a fresh initial state. The transition relation distinguishes the initial step
of the computation: s′ ∈ δ(s0) iff there is a circuit state x ⊆ X with init(x)
and x = s′|X such that T (x, s′|I , s′|O, s′|X), where s′|I , s′|O, s′|X , and s′|X′ are
the projections to variables I, O, the first copy of X, and the second copy of X
respectively. For subsequent steps of computation we define s′ ∈ δ(s) whenever
T (s|X , s′|I , s′|O, s′|X′) and s|X′ = s′|X . That is, the first copy X denotes the
previous state, whereas X ′ denotes the current state. The labelling function of
KC maps each state s to the set s|I ·∪ s|O ·∪ s|X . That is, the alphabet APKC

is I ·∪ O ·∪ X. The semantics of HyperCTL∗ on a circuit C is defined using the
associated Kripke structure KC . We write C |= ϕ whenever KC |= ϕ′, where
ϕ′ is obtained by replacing all atomic propositions . This leads to a
natural semantics on circuits: the atomic propositions always refer to the current
value of the latches, the next input, and the next output.

Given a circuit C and an alternation-free HyperCTL∗ formula ϕ, we reduce
the model checking problem C |= ϕ to finding a computation path in a circuit
Cϕ that does not visit a bad state and satisfies a conjunction of strong fairness
(or compassion) constraints F = {f1, . . . , fk}. A strong fairness constraint f of
a circuit consists of a tuple (a1, a2) of atomic propositions and a path p satisfies
f , if a1 holds only finitely often or a2 holds infinitely often on p. We build
Cϕ bottom up following the formula structure. Without loss of generality, we
assume that ϕ contains only existential quantifiers and is in negation normal
form. Let ψ be a subformula of ϕ that occurs under n quantifiers. Let Cψ1 =
(Xψ1 , initψ1 , Iψ1 , Oψ1 , Tψ1), Cψ2 = (Xψ2 , initψ2 , Iψ2 , Oψ2 , Tψ2) be the circuits,
and let Fψ1 and Fψ2 be the fairness constraints for the subformulas ψ1 and ψ2.
For LTL operators, the construction resembles the standard translation from
LTL to circuits [13,24]. We construct Cψ and Fψ as follows:

1 Our definition of circuits can be considered as a model of and-inverter graphs in the
Aiger standard [9], where the gate list is abstracted to a transition relation.

40 B. Finkbeiner et al.

ψ = aπk
Cψ = (∅, true, Iψ, {oψ}, oψ ↔ aπk

), Fψ = ∅
ψ = ¬aπk

Cψ = (∅, true, Iψ, {oψ}, oψ xor aπk
), Fψ = ∅

ψ = ψ1∨ψ2 Cψ = (Xψ1
·∪Xψ2 , initψ1 ∧ initψ2 ,

Iψ1 ∪ Iψ2
·∪{iψ}, Oψ1

·∪Oψ2
·∪{oψ},

(oψ ↔ (iψ ⇒ oψ1) ∧ (¬iψ ⇒ oψ2)) ∧ Tψ1 ∧ Tψ2),
Fψ = Fψ1 ∪ Fψ2

ψ = ψ1 Cψ = (Xψ1
·∪{xψ}, initψ1 , Iψ1

·∪{iψ}, Oψ1
·∪{oψ, bψ},

Tψ1 ∧ (oψ ↔ iψ) ∧ (x′
ψ ↔ iψ) ∧ (¬bψ ↔ (oψ1 ↔ xψ))),

Fψ = Fψ1

ψ = ψ1 U ψ2 Cψ = (Xψ1
·∪Xψ2

·∪{xψ}, initψ1 ∧ initψ2 ,
Iψ1

·∪Iψ2
·∪{iψ, i′ψ}, Oψ1

·∪Oψ2
·∪{oψ, bψ},

Tψ1 ∧ Tψ2 ∧ (oψ ↔ xψ) ∧ (x′
ψ ↔ iψ) ∧

(¬bψ ↔ (((i′ψ ⇒ oψ2) ∧ (¬i′ψ ⇒ oψ1 ∧ x′
ψ)) ↔ xψ))),

Fψ = Fψ1 ∪ Fψ2 ∪ {(xψ, oψ2)}
ψ = ∃π. ψ1 Cψ = (Xψ1

·∪Xn, initψ1 ∧ (n = 1 ⇒ init(Xn)),
Iψ1 \ Xn, (Oψ1 \ On) ·∪{oψ},
Tψ1 ∧ T (Xn) ∧ (¬bψ ↔ (oψ ↔ oψ1 ∧ (Xn = Xn−1)))),

Fψ = Fψ1

Here Iψ =
⋃

i≤n Ii ·∪Oi ·∪Xi; init(Xn) is the initial condition applied to copy Xn

of the latches; and likewise T (Xn) is the transition relation of C applied to the
copy Xn. We use Xn = Xn−1 to denote the expression that all latches in Xn

are equal to their counterparts in Xn−1. We omitted the construction for the
conjunction and the Release operator due to the space limits. It is easy to verify
that the transition relation is input-enabled and input-deterministic.

Proposition 3. Given a circuit C and an alternation-free formula ϕ with k
quantifiers, the size of the circuit Cϕ is at most |C| · k + |ϕ|.

For each subformula ψ of ϕ, the output oψ in the circuit Cϕ indicates that
ψ must hold for the current computation path, and the latch xψ represent the
requirements on the future of the computation that arise from the output oψ.
The output bψ indicates that the requirements for subformula ψ are violated and
a bad state is entered.

Proposition 4. Let C be a circuit and let ϕ be an alternation-free HyperCTL∗

formula. C |= ϕ holds iff the circuit Cϕ admits a computation that shows output
oϕ in the first step, that never outputs bψ for any of the subformulas ψ of ϕ, and
that satisfies the fairness constraints.

The proof of correctness proceeds again by structural induction on the struc-
ture of the formula. The search for paths of the form above can be performed
by standard hardware model checkers.

Algorithms for Model Checking HyperLTL and HyperCTL 41

5 Case Studies and Experimental Results

We have implemented the symbolic model checking approach from Sect. 4 as
a transformation on Aiger circuits.2 We rely on standard hardware synthesis
tools to compile VHDL and Verilog files into a circuit to which we apply our
tool to obtain a new circuit. As the backend engine, we use the ABC model
checker [11], which provides many of the modern verification algorithms, includ-
ing IC3 [10]/PDR [18], interpolation (INT) [32], and SAT-based bounded model
checking (BMC) [8]. All experiments ran on an Intel Core i5 processor (4278U)
with 2.6 GHz. Table 1 shows the verification times for the circuits and properties
considered in our case studies. We used the default settings of ABC in all runs,
except the entry marked with ∗. The symbol � indicates that an invariant was
found, and × that a (counter)example was found.

The experiments show that our approach enables the verification of hyper-
properties for hardware modules with hundreds or even thousands of latches.
For finding counterexamples, bounded model checking was most effective, and
for cases where an invariant was needed, the relative performance of IC3/PDR vs.
interpolation was inconclusive. In addition to benchmarking, our goal for these
case studies has been to explore the versatility of alternation-free HyperCTL∗

model-checking and the potential of our prototype tool. In the following subsec-
tions, we report on the setup and results of the case studies, as well as on the
verification workflow from a user perspective. Our case studies come from three
different areas: information flow, symmetry, and error resistant codes.

5.1 Case Study 1: Information Flow Properties of I2C

Our first case study investigates the information flow properties of an I2C bus
master. I2C is a widely used bus protocol that connects multiple components
in a master-slave topology. Even though the I2C bus has no security features,
it has been used in security-critical applications, such as the smart cards of the
German public health insurance, which led to exploits [43]. We analyzed a I2C
bus master implementation from the open source repository http://opencores.
org. A typical setup consists of one master, one controller, and several slaves. The
master communicates to the slaves via two physical wires, the clock line (SCL)
and the data line (SDA). The interface of the master towards the controller
consists of 8 bit wide words for input and output of data, a 3-bit wide address
to encode slave numbers, a system clock input, and several reset and control
signals. We checked the I2C bus master implementation against the information
flow properties shown in Table 2.

From the Controller to the Bus. Property (NI1) states that there is no infor-
mation flow with respect to the address to which the I2C master intends to
send data, and (NI2) with respect to the data words themselves. Both informa-
tion flows are intended, and our tool reports the violation. We tried to bound
2 The tool and the experiments are available online [40].

http://opencores.org
http://opencores.org

42 B. Finkbeiner et al.

Table 1. Experimental results for the case studies.

the information flow between the first valuation of the 3 bit wide address input
and the bus data by encoding [14] the quantitative information-flow property.
While the information flow of 3 bit could be determined (QNI1), checking the
upper bound of log 9 ≈ 3.17 bit (QNI2) led to a timeout. Property (NI3) states
that when the write enable bit is not set, no information should flow from the
controller inputs to the bus. This property is satisfied by the implementation.

From the Bus to the Controller. Property (NI4) claims the absence of informa-
tion flow from the slaves to the controller, which is again legitimately violated

Algorithms for Model Checking HyperLTL and HyperCTL 43

Table 2. Information flow properties for the verification of the I2C bus master. In
this list of properties, Pπ = Pπ′ is defined as

∧
a∈P aπ = aπ′ . Pπ = Pπ′ is defined as

(I \ P)π = (I \ P)π′ where P ⊆ AP and I ⊆ AP are the inputs of the circuit.

(NI1) ∀π.∀π′. (ADDR Iπ =ADDR Iπ′) ⇒ (SDA Oπ =SDA Oπ′)

(NI2) ∀π.∀π′. DAT Iπ = DAT Iπ′ ⇒ (SDA Oπ =SDA Oπ′)

(NI3) ∀π.∀π′. (¬WEn ∧ DAT Iπ =DAT Iπ′) ⇒ (SDA Oπ =SDA Oπ′)

(NI4) ∀π.∀π′. ({SDA I,SCL I}π ={SDA I,SCL I}π′) ⇒ (DAT Oπ =DAT Oπ′)

(NI5) ∀π. (SDA Enable ⇒ H{SDA I,SCL I},{DAT O}false)

(NI6) ∀π.∀π′. (SDA Iπ = SDA Iπ′) ⇒ (SDA Oπ =SDA Oπ′)

(NI7) ∀π.∀π′. (DAT Iπ = DAT Iπ′) ⇒ ((Iπ =Iπ′) ⇒ (SDA Oπ =SDA Oπ′))

(NI8) ∀π.∀π′. ({SDA I,SCL I}π ={SDA I,SCL I}π′) ⇒ ((Iπ =Iπ′) ⇒
(DAT Oπ =DAT Oπ′))

by the implementation. Property (NI5) refines (NI4) to determine whether the
flow can still happen when we only consider information received on SDA while
the master sends data too. The branching time operator H in (NI5), called the
Hide operator HI,Oϕ, is borrowed from the logic SecLTL [16] and expresses that
information from the inputs I do not interfere with the outputs O. The Hide
operator is easily expressible in HyperCTL∗ [14]. Property (NI5) is violated by
the implementation, because the concurrent transmission of data on the bus by
multiple masters can bring I2C into arbitration mode and changes the interpre-
tation of information sent over the bus later.

Long-term Information Flow: Properties (NI7) and (NI8) claim that the infor-
mation flows from (NI1) and (NI4) cannot happen for an arbitrary delay. These
properties are violated, which indicates that information may not be eventually
forgotten by the I2C master.

All properties on the I2C Master were easily analyzed by the model checker.
In order to determine if our approach scales to even larger designs, we checked
an adapted version of property (NI2) on an Ethernet IP core with 21093 latches.
The counterexample was still found within seconds.

5.2 Case Study 2: Symmetry in Mutual Exclusion Protocols

In our second case study, we investigate symmetry properties of mutual exclusion
protocols. Mutual exclusion is a classical problem in distributed systems, for
which several solutions have been proposed and analyzed. Violation of symmetry
indicates that some clients have an unfair advantage over the other clients.

Our case study is based on a Verilog implementation of the Bakery proto-
col [26] from the VIS verification benchmark. The Bakery protocol works as
follows. When a process wants to access the critical section it draws a “ticket”,
i.e., it obtains a number that is incremented every time a ticket is drawn. If there
is more than one process who wishes to enter the critical section, the process with

44 B. Finkbeiner et al.

the smallest ticket number goes first. When two processes draw tickets concur-
rently, they may receive tickets with the same number, so ties among processes
with the same ticket must be resolved by a different mechanism, for example
by comparing process IDs. The Verilog implementation has an input select to
indicate the process ID that runs in the next step, and an input pause to indi-
cate whether the step is stuttering. Each process n has a program counter pc(n).
When process n is selected, the statement corresponding the program counter
pc(n) is executed. We are interested in the following HyperLTL property:

(S1) ∀π.∀π′. �(sym(selectπ, selectπ′) ∧ pauseπ =pauseπ′) ⇒
�(pc(0)π =pc(1)π′ ∧ pc(1)π =pc(0)π′)

where sym(selectπ, selectπ′) means that process 0 is selected on path π when
process 1 is selected on path π′ and vice versa. Property (S1) states that, for every
execution, there is another execution in which the select inputs corresponding to
processes 0 and 1 are swapped and the outcome (i.e., the sequence of program
counters of the processes) is also swapped. It is well known that it is impossible to
accomplish mutual exclusion in an entirely symmetric fashion [31]. It is therefore
not surprising that the implementation indeed violates Property (S1).

Inspecting the counterexample revealed, however, that the symmetry is bro-
ken even before the critical section is reached: if a non-existing process ID is
selected by the variable select, process 0 proceeds instead. Property (S2) excludes
paths on which a non-existing process ID is selected. The model-checker pro-
duced a counterexample in which processes 0 and 1 tried to access the critical
section, but were treated differently.

(S2) ∀π.∀π′. �(sym(selectπ, selectπ′) ∧ pauseπ =pauseπ′ ∧
selectπ < 3 ∧ selectπ′ < 3) ⇒

�(pc(0)π =pc(1)π′ ∧ pc(1)π =pc(0)π′)

Next, we parameterized the necessary symmetry breaking in the system. We
introduced additional inputs indicating which process may move, in case of a tie
of the tickets and extended the property by the assumption that the symmetry
is broken symmetrically.

(S3) ∀π.∀π′. �(sym(selectπ, selectπ′) ∧ pauseπ =pauseπ′ ∧
selectπ < 3 ∧ selectπ′ < 3 ∧ sym(sym breakπ, sym breakπ′)) ⇒

�(pc(0)π =pc(1)π′ ∧ pc(1)π =pc(0)π′)

Property (S3) is still violated by the implementation: the order in which the
processes were checked depends on the process IDs and causes delays in how the
program counters evolve. After contracting the comparison of process IDs into
a single step, property (S3) became satisfied.

In further experiments, we changed the structure of property from the form
(S3) ∀π.∀π′. �ϕ ⇒ �ψ to (S7) ∀π.∀π′. ψ W ¬ϕ, which removes the liveness part
of the property, while maintaining the semantics (for input-deterministic and
input-enabled systems). This change significantly reduced the verification times
and enabled the verification of the protocol for up to 7 participants.

Algorithms for Model Checking HyperLTL and HyperCTL 45

5.3 Case Study 3: Error Resistant Codes

Error resistant codes enable the transmission of data over noisy channels. While
the correct operation of encoder and decoders is crucial for communication sys-
tems, the formal verification of their functional correctness has received little
attention. A typical model of errors bounds the number of flipped bits that may
happen for a given code word length. Then, error correction coding schemes must
guarantee that all code words have a minimal Hamming distance. Alternation-
free HyperCTL∗ can specify that all code words produced by an encoder have a
minimal Hamming distance of d:

(HDd) ∀π.∀π′. (
∨

a∈I aπ �=aπ′) ⇒ ¬HamO(d − 1, π, π′)

where I are the inputs denoting the data, O denote the code words, and the
predicate HamO(d, π, π′) is defined as HamO(−1, π, π′) = false and:

HamO(d, π, π′) =
∧

a∈O aπ =aπ′
) W ∨

a∈O aπ �=aπ′ ∧ HamO(d−1, π, π′)
)
.

We started with two simple encoders that are not intended to provide error
resistance: a Huffman encoder from the VIS benchmarks, and an 8bit-10bit
encoder from http://opencores.org that guarantees that the difference between
the number of 1 s and the number of 0 s in the codeword is bounded by 2.
As expected, encoders provide a Hamming distance of 1 (Huff1and 8b10b 2),
but not more (Huff2and 8b10b 3). The experiments on these simple encoders
were useful to determine the configuration of the command signals that enable
the transmission of data. For example, checking the plain property as speci-
fied above for the 8bit-10bit encoder reveals that the reset signal must be set
to false before sending data (8b10b 1). Similarly, for the 8bit-10bit decoder, we
checked whether all codewords of Hamming distance 1 produce different outputs
(8b10b 4).

Next, we considered an encoder for the 7-4-Hamming code, which encodes
blocks of 4 bits into codewords of length 7, and guarantees a Hamming distance
of 3. We started with finding out in which configuration the encoder actually
sends encoded data (Hamm1to Hamm4). With Hamm3we discovered that the
implementation deviates from the specification because the reset signal for the
circuit is active high, instead of active low as specified. In Hamm3, we fixed
the usage of the reset bit. We then scaled the specification to Hamming distances
2 and 3 (Hamm5to Hamm7).

6 Conclusions

We presented a novel automata-based automatic technique to model-check
HyperLTL and HyperCTL∗ specifications, and an implementation integrated

http://opencores.org

46 B. Finkbeiner et al.

with a state-of-the-art hardware model checker. Our case studies show that
the implementation scales to realistic hardware designs; in one case we suc-
cessfully checked a design with more than 20.000 latches. The logics HyperLTL
and HyperCTL∗ proved to be versatile tools for the analysis of various kinds of
properties.

Acknowledgements. We thank Hans-Jörg Peter for valuable discussions and for syn-
thesizing models for the case studies, Heinrich Ody for joint work on an early prototype
of the tool, and Heidy Khlaaf for insightful comments on the paper.

References

1. Alur, R., Černý, P., Zdancewic, S.: Preserving secrecy under refinement. In:
Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS,
vol. 4052, pp. 107–118. Springer, Heidelberg (2006)

2. Andersen, H.R.: A polyadic modal µ-calculus. Technical report (1994)
3. Askarov, A., Myers, A.: A semantic framework for declassification and endorse-

ment. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 64–84. Springer,
Heidelberg (2010)

4. Balliu, M., Dam, M., Le Guernic, G.: Epistemic temporal logic for information flow
security. In: Proceedings of PLAS, ACM (2011)

5. Banerjee, A., Naumann, D.A., Rosenberg, S.: Expressive declassification policies
and modular static enforcement. In: Proceedings of S & P, pp. 339–353, IEEE CS
Press (2008)

6. Barthe, G., Crespo, J.M., Kunz, C.: Beyond 2-safety: asymmetric product pro-
grams for relational program verification. In: Artemov, S., Nerode, A. (eds.) LFCS
2013. LNCS, vol. 7734, pp. 29–43. Springer, Heidelberg (2013)

7. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
In: Proceedings CSFW, pp. 100–114, June 2004

8. Biere, A., Clarke, E., Raimi, R., Zhu, Y.: Verifying safety properties of a
PowerPCTM microprocessor using symbolic model checking without BDDs. In:
Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 60–71. Springer,
Heidelberg (1999)

9. Biere, A., Heljanko, K., Wieringa, S.: AIGER 1.9 and beyond. http://fmv.jku.at/
hwmcc11/beyond1.pdf (2011). Accessed Feb 6 2015. Via website: http://fmv.jku.
at/aiger/

10. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidel-
berg (2011)

11. Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
24–40. Springer, Heidelberg (2010)

12. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L.: Sequential circuit verification
using symbolic model checking. In: Proceedings of DAC 1990, pp. 46–51, IEEE CS
Press (1990)

13. Claessen, K., Eén, N., Sterin, B.: A circuit approach to LTL model checking. In:
Proceedings of FMCAD, pp. 53–60 (2013)

http://fmv.jku.at/hwmcc11/beyond1.pdf
http://fmv.jku.at/hwmcc11/beyond1.pdf
http://fmv.jku.at/aiger/
http://fmv.jku.at/aiger/

Algorithms for Model Checking HyperLTL and HyperCTL 47

14. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST
2014 (ETAPS 2014). LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014)

15. Clarkson, M.R., Schneider, F.B.: Hyperproperties.In: Proceedings IEEE Sympo-
sium on Computer Security Foundations, pp. 51–65, June 2008

16. Dimitrova, R., Finkbeiner, B., Kovács, M., Rabe, M.N., Seidl, H.: Model check-
ing information flow in reactive systems. In: Kuncak, V., Rybalchenko, A. (eds.)
VMCAI 2012. LNCS, vol. 7148, pp. 169–185. Springer, Heidelberg (2012)

17. D’Souza, D., Holla, R., Raghavendra, K.R., Sprick, B.: Model-checking trace-based
information flow properties. J. Comput. Secur. 19(1), 101–138 (2011)

18. Eén, N., Mishchenko, A., Brayton, R.K.: Efficient implementation of property
directed reachability. In: Proceedings of FMCAD, pp. 125–134 (2011)

19. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press, Cambridge (1995)

20. Finkbeiner, B., Rabe, M.N.: The linear-hyper-branching spectrum of temporal log-
ics. IT Inf. Technol. 56, 273–279 (2014)

21. Gammie, P., van der Meyden, R.: MCK: model checking the logic of knowledge.
In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 479–483. Springer,
Heidelberg (2004)

22. Goguen, J.A., Meseguer, J.: Security policies and security models. In: Proceedings
IEEE Symposium on Security and Privacy, pp. 11–20, IEEE CS Press (1982)

23. Huisman, M., Worah, P., Sunesen, K.: A temporal logic characterisation of obser-
vational determinism. In: Proceedings of CSFW, IEEE CS Press (2006)

24. Kesten, Y., Pnueli, A., Raviv, L.: Algorithmic verification of linear temporal logic
specifications. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS,
vol. 1443, pp. 1–16. Springer, Heidelberg (1998)

25. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM
TOCL 2(3), 408–429 (2001)

26. Lamport, L.: A new solution of Dijkstra’s concurrent programming problem. Com-
mun. ACM 17(8), 453–455 (1974)

27. Lange, M., Lozes, É.: Model-checking the higher-dimensional modal mu-calculus.
In: Proceedings of FICS, EPTCS, vol. 77, pp. 39–46 (2012)

28. Lomuscio, A., Pecheur, C., Raimondi, F.: Automatic verification of knowledge and
time with NuSMV. In: Proceedings of IJCAI, pp. 1384–1389 (2007)

29. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: a model checker for the verification
of multi-agent systems. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol.
5643, pp. 682–688. Springer, Heidelberg (2009)

30. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems.
Springer, New York (1992)

31. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer,
New York (1995)

32. McMillan, K.L.: Craig interpolation and reachability analysis. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694, p. 336. Springer, Heidelberg (2003)

33. Meski, A., Penczek, W., Szreter, M., Wozna-Szczesniak, B., Zbrzezny, A.: Bounded
model checking for knowledge and linear time. In: Proceedings of AAMAS, pp.
1447–1448, IFAAMAS (2012)

34. Milushev, D.: Reasoning about hyperproperties. Ph.D thesis, Faculty of Engineer-
ing, Katholieke Universiteit Leuven, Celestijnenlaan 200A, box 2402, B3001 Hev-
erlee, Belgium, 6 (2013)

48 B. Finkbeiner et al.

35. Milushev, D., Clarke, D.: Towards incrementalization of holistic hyperproperties.
In: Degano, P., Guttman, J.D. (eds.) Principles of Security and Trust. LNCS, vol.
7215, pp. 329–348. Springer, Heidelberg (2012)

36. Miyano, S., Hayashi, T.: Alternating finite automata on omega-words. Theor. Com-
put. Sci. 32, 321–330 (1984)

37. Muller, D.E., Saoudi, A., Schupp, P.E.: Weak alternating automata give a simple
explanation of why most temporal and dynamic logics are decidable in exponential
time. In: Proceedings of LICS, pp. 422–427, IEEE CS Press (1988)

38. Otto, M.: Bisimulation-invariant PTIME and higher-dimensional µ-calculus.
Theor. Comput. Sci. 224, 237–265 (1998)

39. Pencze, W., Lomuscio, A.: Verifying epistemic properties of multi-agent systems
via bounded model checking. In: Proceedings of AAMAS, pp. 209–216, IFAAMAS
(2003)

40. Rabe, M.N.: MCHyper: a model checker for hyperproperties. http://www.react.
uni-saarland.de/tools/mchyper/ (2015). Accessed Feb 6 2015

41. Sabelfeld, A., Myers, A.C.: A model for delimited information release. In: Futatsugi,
K., Mizoguchi, F., Yonezaki, N. (eds.) ISSS 2003. LNCS, vol. 3233, pp. 174–191.
Springer, Heidelberg (2004)

42. Sistla, P.A., Clarke, E.M.: The complexity of propositional linear temporal logics.
J. ACM 32(3), 733–749 (1985)

43. Thielke, W.: Code geknackt. Link to article in media archive: http://www.focus.de/
finanzen/news/krankenkassen-code-geknackt aid 148829.html (1994). Accessed
Feb 6 2015

44. van der Meyden, R., Zhang, C.: Algorithmic verification of noninterference prop-
erties. Electr. Notes Theor. Comput. Sci. 168, 61–75 (2007)

45. Vardi, M.Y.: Alternating automata and program verification. In: van Leeuwen, J.
(ed.) Computer Science Today. LNCS, vol. 1000, pp. 471–485. Springer, Heidelberg
(1995)

46. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: Proceedings of LICS 1986, pp. 332–344, IEEE CS Press (1986)

47. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inf. Comput.
115(1), 1–37 (1994)

http://www.react.uni-saarland.de/tools/mchyper/
http://www.react.uni-saarland.de/tools/mchyper/
http://www.focus.de/finanzen/news/krankenkassen-code-geknackt_aid_148829.html
http://www.focus.de/finanzen/news/krankenkassen-code-geknackt_aid_148829.html

Fairness Modulo Theory: A New Approach
to LTL Software Model Checking

Daniel Dietsch(B), Matthias Heizmann,
Vincent Langenfeld, and Andreas Podelski

University of Freiburg, Freiburg im Breisgau, Germany
dietsch@informatik.uni-freiburg.de

Abstract. The construction of a proof for unsatisfiability is less costly
than the construction of a ranking function. We present a new approach
to LTL software model checking (i.e., to statically analyze a program and
verify a temporal property from the full class of LTL including general
liveness properties) which aims at exploiting this fact. The idea is to
select finite prefixes of a path and check these for infeasibility before
considering the full infinite path. We have implemented a tool which
demonstrates the practical potential of the approach. In particular, the
tool can verify several benchmark programs for a liveness property just
with finite prefixes (and thus without the construction of a single ranking
function).

1 Introduction

The long line of research on software model checking, i.e., on tools that stati-
cally analyze a given program in order to automatically verify a given temporal
property, was initially restricted to safety properties [2,3,11,20,37,45,51]. It was
later extended to termination [9,21,26,27,36,40,49,50,52]. The relative matu-
rity of this research is reflected by the fact that software model checking tools
successfully participate in the software verification competition SV-Comp [10],
for safety [29,33,41,47] as well as for termination [33,55,56].

In a more recent trend, approaches to software model checking are emerging
for the general class of LTL properties, and in particular general liveness prop-
erties [5,22–24]. In this paper, we introduce an approach to LTL software model
checking which is based on fairness modulo theory, an extension of reachability
modulo theory as introduced by Lal and Qadeer [42].

In the setting of [42], the existence of a program execution that violates a
given safety property is proven via the reachability of an error location of the
program along a feasible path. A path is feasible if the sequence of statements
along the path is executable. This condition is checked by checking whether the
corresponding logical formula is satisfiable modulo theory (i.e., satisfiable in the
logical theory of integers, arrays, etc.). Today, quite efficient SMT solvers exist
which can not only prove unsatisfiability but also compute interpolants [13,14,
17,19,46]. Interpolants can be used to generalize the proof of unsatisfiability in
c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 49–66, 2015.
DOI: 10.1007/978-3-319-21690-4 4

50 D. Dietsch et al.

order to show the infeasibility of more and more paths and eventually prove the
unreachability of an error location (which is the underlying idea in the approach
to program verification of [35,36]).

We extend the setting of [42] to LTL by defining the construction of a new
kind of program (a Büchi program) from the input program and the LTL prop-
erty. The control flow graph of a Büchi program comes with a distinguished set
of nodes which is used to define (infinite) fair paths (a path is fair if it visits the
distinguished set of nodes infinitely often). Now, in our extension of the setting
in [42], the existence of a program execution that violates a given LTL property
is proven via the existence of a feasible fair path.

In general, to show that the infinite sequence of statements along a path is
not executable, one needs to construct a ranking function. For example, for each
of the two infinite sequences of statements below, one may construct the ranking
function r defined by r(x, y) = x − y.

τ1 : x-- x>y x-- x>y x-- x>y . . .
τ2 : x:=y x>y x-- x>y x-- x>y . . .

Every finite prefix of τ1 is executable. In contrast, τ2 has the prefix
x:=y x>y which already is not executable.

In the case where an infinite sequence of statements has a finite prefix such
that already the prefix is not executable, it is not necessary to construct a
ranking function. Instead, it is sufficient to consider the prefix and prove the
unsatisfiability of the logical formula corresponding to the finite sequence of
statements in the prefix.

Tools exist that, given an infinite sequence of statements like (x>y x--)ω

or x:=y x>y (x>y x--)ω, can construct a ranking function like r above
automatically [7,12,48]. Recent efforts go into improving the scope and the scal-
ability of such tools [8,25,34,43]. In comparison with proving unsatisfiability,
the task of constructing a ranking function will always be more costly. Hence,
substituting the construction of a ranking function by the construction of a proof
of unsatisfiability carries an interesting potential for optimization. The goal of
the work in this paper is to investigate whether this potential can be exploited
practically. We develop a practical method and tool for LTL software model
checking that shows that this is indeed the case.

In the remainder of the paper, after discussing an example, we introduce
Büchi programs (as described above, we reduce the validity of an LTL property
for a given program to the absence of a feasible fair path in a Büchi program). We
present an algorithm that constructs such a Büchi program and checks whether
it has a feasible fair path. The algorithm selects certain finite prefixes of a path
for the check of feasibility before the full infinite path is considered. We then
present the evaluation of a tool which implements the algorithm. Our evaluation
shows the practical potential of our approach. In particular, the tool can verify
several benchmark programs—for a liveness property—just with finite prefixes
(and thus without the construction of a single ranking function).

Fairness Modulo Theory: A New Approach to LTL Software Model Checking 51

2 Example

In this section we demonstrate how we apply our approach to the program P
depicted in Fig. 1a and the LTL property ϕ = �(x > 0 → ♦(y = 0)).

We represent the program P by the graph depicted in Fig. 1b. The edges of
this graph are labeled with program statements. We use the Büchi automaton
A¬ϕ depicted in Fig. 1c as representation of the negation of the LTL property ϕ.

1 int x , y ;
2 while (1) {
3 x := ∗ ;
4 y := 1 ;
5 while (x>0){
6 x−−;
7 i f (x<=1)
8 y :=0;
9 }

10 }
(a)

l0

l1

l2

l3

x:=*;y:=1

x>0

x--

x<=1;y:=0 !(x<=1)

!(x>0)

(b)

q0

q1

true

!(y==0)&&(x>0)

!(y==0)

(c)

Fig. 1. Program P is shown in (a) as pseudocode and in (b) as control flow graph. The
Büchi automaton A¬ϕ that represents the negation of the LTL property ϕ = �(x >
0 → ♦(y = 0)) is shown in (c).

As a first step we construct the Büchi program B depicted in Fig. 2. After-
wards we will show that this Büchi program B has no path that is fair and
feasible, thus proving that P satisfies the LTL property ϕ.

A Büchi program is a program together with a fairness constraint: an execu-
tion is fair if a fair location is visited infinitely often. The fair locations of B are
highlighted by double circles. The locations of the Büchi program B are pairs
whose first element is a location of the program P and whose second element
is a state of the Büchi automaton A¬ϕ. The edges of the Büchi program B are
labeled with sequential compositions of two statements where the first element
is a statement of the program. The second element of the sequential composition
is an assume statement that represents a letter of the Büchi automaton A¬ϕ.

A key concept in our analysis is the notion of a trace. A trace is an infinite
sequence of statements. We call a trace fair if it is the labeling of a path that
visits some fair location infinitely often. A trace is feasible if it corresponds to
some program execution. An example for a fair trace is τ1τ

ω
2 where τ1 and τ2

are as follows.

τ1 : x:=*;y:=1 !(y==0)&&(x>0) !(x>0) !(y==0)

τ2 : x:=*;y:=1 !(y==0) !(x>0) !(y==0)

52 D. Dietsch et al.

l0q0

l1q0 l1q1

l2q0 l2q1

l0q1

l3q0 l3q1

x:=*;y:= 1

true

x:=*;y:= 1

!(y==0) && (x>0)

x > 0

true

x > 0

!(y==0) && (x>0)

!(x > 0)

true
!(x > 0)

!(y==0) && (x>0)

x > 0

!(y==0)

!(x > 0)

!(y==0)

x--

true

x--

!(y==0) && (x>0)

x--

!(y==0)

x:=*;y:= 1

!(y==0)

x<=1;y:=0

true

!(x<=1)

true

!(x<=1)

!(y==0) && (x>0)

x<=1;y:=0

!(y==0)

!(x<=1)

!(y==0)

Fig. 2. The Büchi program B constructed from the program P (Fig. 1b) and the Büchi

automaton representing ¬ϕ (Fig. 1c). Each edge is labeled with the statements s1

s2 where s1 comes from P and s2 comes from ¬ϕ. The fair locations are
l0q1,l1q1, l2q1 and l3q1, i.e., all locations that contain the Büchi automaton’s accepting
state q1.

This trace is not feasible because the second statement !(y==0)&&(x>0)

and the third statement !(x>0) are contradicting each other.
Our algorithm constructs Büchi programs such that each fair and feasible

trace of the Büchi program corresponds to a feasible trace of the original program
that violates the LTL property.

In order to show that P satisfies ϕ we show that no fair trace of the Büchi
program B is feasible. Thus, our algorithm tries to find arguments for infeasibility
of fair traces in B:

Local Infeasibility. In the Büchi program B every trace that is the labeling of a
path that contains the edge

is infeasible, because the statements y:=0 and !(y==0) contradict each
other. Another example for local infeasibiliy is the edge from l1q0 to l0q1 which
is labeled with the two statements !(x>0) and (x>0) that contradict each
other, too.

Infeasibility of a Finite Prefix. Every trace that is the labeling of a path that
has the following finite prefix

Fairness Modulo Theory: A New Approach to LTL Software Model Checking 53

l0q0 x:=*;y:=1 true l1q1
l1q1 x>0 !(y==0)&&(x>0) l2q1
l2q1 x-- !(y==0) l3q1
l1q1 !(x<=1) !(y==0) l1q1
l1q1 !(x>0) !(y==0) l0q1

is infeasible because !(x<=1) contradicts !(x>0) . Another example for infea-
sibiliy of a finite prefix is the trace τ1τ

ω
2 that was discussed before.

ω-Infeasibility. Every trace that is the labeling of an infinite path that eventually
loops along the following edges

l1q1 x>0 !(y==0 l2q1
l2q1 x-- !(y==0) l3q1
l3q1 !(x<=1) !(y==0) l1q1

is infeasible because x-- infinitely often decreases x. Thus, the value of x

will eventually contradict !(x<=1) . The formal termination argument is the
ranking function f(x) = x.

Each fair trace of B is infeasible for one of the reasons mentioned above.
Hence, we can conclude that program P indeed satisfies the LTL property ϕ.

All reasons for infeasibility that fall into the classes Local infeasibility or
infeasibility of a finite prefix are comparatively cheap to detect. In this example
we only needed to synthesize one ranking function, which is in general more
expensive.

3 Preliminaries

Programs and Traces. In our formal exposition we consider a simple pro-
gramming language whose statements are assignment, assume, and sequential
composition. We use the syntax that is defined by the following grammar

s := assume bexpr | x := expr | s; s

where Var is a finite set of program variables, x ∈ Var , expr is an expression
over Var and bexpr is a Boolean expression over Var . For brevity we use bexpr
to denote the assume statement assume bexpr.

We represent a program over a given set of statements Stmt as a labeled
graph P = (Loc, δ, l0) with a finite set of nodes Loc called locations, a set of
edges labeled with statements, i.e., δ ⊆ Loc × Stmt × Loc, and a distinguished
node l0 which we call the initial location.

In the following we consider only programs where each location has at least
one outgoing edge, i.e. ∀l ∈ Loc, ∃s ∈ Stmt , ∃l′ ∈ Loc • (l, s, l′) ∈ δ. We note
that each program can be transformed into this form by adding to each location
without outgoing edges a selfloop that is labeled with assume true.

We call an infinite sequence of statements τ = s0s1s2 . . . a trace of the pro-
gram P if τ is the edge labeling of an infinite path that starts at the initial
location l0. We define the set of all program traces formally as follows.

T (P) = {s0s1 . . . ∈ Stmtω | ∃l1, l2, . . . • (li, si, li+1) ∈ δ, for i = 0, 1, . . .}

54 D. Dietsch et al.

Let D be the set of values of the program’s variables. We denote a program
state σ as a function σ : Var → D that maps program variables to values. We
use S to denote the set of all program states. Each statement s ∈ Stmt defines
a binary relation ρs over program states which we call the successor relation.
Let Expr be set of all expressions over the program variables Var . We assume a
given interpretation function I : Expr × (Var → D) → D and define the relation
ρs ⊆ S × S inductively as follows.

ρs =

⎧
⎪⎨

⎪⎩

{(σ, σ′) | I(bexpr)(σ) = true and σ = σ′} if s ≡ assume bexpr

{(σ, σ′) | σ′ = σ[x �→ I(expr)(σ)]} if s ≡ x:=expr

{(σ, σ′) | ∃σ′′ • (σ, σ′′) ∈ ρs1 and (σ′′, σ′) ∈ ρs2} if s ≡ s1;s2

Given a trace τ = s0s1s2 . . ., a sequence of program states π = σ0σ1σ2 . . .
is called a program execution of the trace τ if each successive pair of program
states is contained in the successor relation of the corresponding statement of
the trace, i.e., (σi, σi+1) ∈ ρsi

for i ∈ {0, 1, . . .}. We call a trace τ infeasible if it
does not have any program execution, otherwise we call τ feasible. We use Π(τ)
to denote the set of all program executions of τ . The set of all feasible trace of
program P is denoted by Tfeas(P), and the set of all program executions of P is
defined as follows.

Π(P) =
⋃

τ∈Tfeas(P)

Π(τ)

Büchi Automata and LTL Properties. We will not formally introduce linear
temporal logic (LTL). Every LTL property can be expressed as a Büchi automa-
ton [1]. In our formal presentation we use Büchi automata to represent LTL
properties.

A Büchi automaton A = (Σ, Q, q0,−→, F) is a five tuple consisting of a finite
alphabet Σ, a finite set of states Q, an initial state q0 ∈ Q, a transition relation
−→: Q × Σ × Q, and a set of accepting states F ⊆ Q. A word over the alphabet
Σ is an infinite sequence w = a0a1a2 . . . such that ai ∈ Σ for all i ≥ 0. A run r of
a Büchi automaton A on w is an infinite sequence of states q0q1 . . ., starting in
the initial state such that for all ai ∈ w there is a transition (qi, ai, qi+1) ∈−→.
A run r is called accepting if r contains infinitely many accepting states. A word
w is accepted by A if there is an accepting run of A on w. The language L(A)
of a Büchi automaton A is the set of all words that are accepted by A.

An atomic proposition is a set of program states. An LTL property over a
set of atomic propositions AP defines a set of words over the alphabet Σ = 2AP .
LTL properties are usually denoted by formulas, but several translations from
formulas to equivalent Büchi automata are available [31,32,54]. We assume that
we have given a Büchi automaton Aϕ for each LTL property ϕ.

A program state σ satisfies a symbol a of the alphabet 2AP if σ is an element
of all atomic propositions in a. A sequence of program states σ0σ1 . . . satisfies
a word a0a1a2 . . . ∈ (2AP)ω, if σi+1 satisfies ai for each i ≥ 0. A sequence of

Fairness Modulo Theory: A New Approach to LTL Software Model Checking 55

program states π satisfies the LTL property ϕ if π satisfies some word w ∈ Aϕ.
A trace τ = s0s1 . . . satisfies ϕ if it has at least one program execution and
all program executions of the trace satisfy ϕ. A program P satisfies ϕ if all
program executions of P satisfy ϕ. We will use the |= symbol to denote each of
these “satisfies relations”, e.g., we will write P |= ϕ if the program P satisfies
the LTL property ϕ.

We note that these definitions do not put any restrictions on the initial state
σ0 of a sequence of program states. This accounts for the fact that our pro-
grams do not have to start in a given initial program state and allows programs
that satisfy the LTL property �(x = 0). For example, the program whose first
statement sets the variable x to 0 and whose other statements do not modify x.

4 Büchi Program and Büchi Program Product

In this section we introduce the notion of a Büchi program, which is a program
which is extended by a fairness constraint. We show that the problem whether
a program satisfies an LTL property can be reduced to the problem whether a
Büchi program has a fair program execution.

Definition 1 (Büchi Program). A Büchi program B = (Stmt , Loc, δ, l0,
Locfair) is a program P = (Loc, δ, l0) whose set of statements is Stmt, with
a distinguished subset of locations Locfair ⊆ Loc. We call the locations Locfair
the fair locations of B.

An example for a Büchi program is the program depicted in Fig. 2 which was
discussed in Sect. 2.

Definition 2 (Fair Trace). A trace s0s1s2 . . . of a Büchi program B is a fair
trace if

– there exists a sequence of locations l0, l1, . . . such that l0
s0−→ l1

s1−→ l2
s2−→ . . .

is a path in B, i.e., (li, si, li+1) ∈ δ for i = 0, 1, . . ., and
– the sequence l0, l1, . . . contains infinitely many fair locations.

We use Tfair (B) to denote the set of fair traces of B.

If we consider the Büchi program B = (Stmt , Loc, δ, l0, Locfair) as a Büchi
automaton where the alphabet is the set of program statements Stmt , the set of
states is the set of program locations Loc, the transition relation is the labeled
edge relation δ the initial state is the initial location l0 and the set of accept-
ing states is the set of fair locations Locfair , then the language of this Büchi
automaton is exactly the set of fair traces of the Büchi program.

Definition 3 (Fair Program Execution). A program execution π of a Büchi
program B is a fair program execution of B if π is the program execution of some
fair trace of B. We use Πfair(B) to denote the set of all fair program execution
of B.

56 D. Dietsch et al.

We note that traces that are fair and feasible have at least one fair program
execution.

Boolean expressions over the set of program variables V ar, and atomic propo-
sitions both define sets of program states. For a letter a ∈ 2AP , we will use assume
a to denote the assume statement whose expression evaluates to true for each
state σ that satisfies a. Hence assume a has the following successor relation.

{(σ, σ′) | σ |= p for each p ∈ a}
Definition 4 (Büchi Program Product). Let P = (Loc, l0, δP) be a program
over the set of statements Stmt, AP a set of atomic propositions over the pro-
gram’s variables V ar, and let A = (Σ, Q, q0,→, F) be a Büchi automaton whose
alphabet is Σ = 2AP . The Büchi program product P ⊗ A is a Büchi program
B = (StmtB, LocB, l0B , δB, LocFB) such that the set of statements consists of all
sequential compositions of two statements where the first element is a statement
of P and the second element is a statement that assumes that a subset of atomic
propositions is satisfied, i.e.,

StmtB = {s; assume a | s ∈ Stmt , a ∈ 2AP },

the set of locations is the Cartesian product of program locations and Büchi
automaton states, i.e.,

LocB = {(l, q) | l ∈ Loc and q ∈ Q},

the initial location is the pair consisting of the program’s initial location and the
Büchi automaton’s initial state, i.e.,

l0B = (l0, q0),

the labeled edge relation is a product of the program’s edge relation and the tran-
sition relation of the Büchi automaton such that an edge is labeled by the state-
ment that is a sequential composition of the program’s edge label and an assume
statement obtained from the transition’s letter, formally defined as follows

δB = {((l, q), {s; assume a, (l′, q′)) | (l, s, l′) ∈ δP and (q, a, q′) ∈→},

the set of fair locations contains all pairs where the second component is an
accepting state of the Büchi automaton, i.e.,

LocFB = {(l, q) | l ∈ Loc and q ∈ F}.

The following theorem shows how we can use the Büchi program product to
check if a program satisfies an LTL property.

Theorem 1. The program P satisfies the LTL property ϕ if and only if the
Büchi program product B = P ⊗ A¬ϕ does not have a trace that is fair and
feasible, i.e.,

P |= ϕ iff Tfair (B) ∩ Tfeas(B) = ∅

Fairness Modulo Theory: A New Approach to LTL Software Model Checking 57

Proof. For brevity, we give only a sketch of the proof. A more detailed proof is
available in an extended version of this paper [30]. First, we use the definition of
the Büchi program product to show the following connection between traces of
B, traces of P and words over 2AP . s0; assume a0 s1; assume a1 . . . ∈ Tfair (B)
if and only if s0s1s2 . . . ∈ T (P) and a0a1a2 . . . ∈ L(A¬ϕ). Next, we use this
equivalence to show that for a sequence of program states the following holds.
π ∈ Πfair (B) if and only if π ∈ Π(P) and π |= A¬ϕ. A Büchi program has a fair
program execution if and only if it has a fair and feasible trace. We conclude
that the intersection Tfair (B) ∩ Tfeas(B) is empty if and only if each program
execution of P satisfies the LTL property ϕ. �

5 LTL Software Model Checking

In this section we describe our LTL software model checking algorithm. The
algorithm is based on counter example guided abstraction refinement (CEGAR)
in the fashion of [35] extended by a check for termination of fair traces and a
corresponding abstraction refinement.

Input

program P
LTL property ϕ

L(B) ⊆ L(AD) ?

τ1τ2 feasible ?

τ terminating ?

P |= ϕ

P �|= ϕ
τ is CEX

B := P ⊗ A¬ϕ

AD := ∅

yes

no
τ = τ1τ

ω
2

τ1τ
ω
2 ∈ L(B) \ L(AD)

AD := AD ∪ refineF (τ)
no

yesAD := AD ∪ refineω(τ)
yes

no

Fig. 3. The model checking algorithm. We use an automata-based approach that col-
lects generalizations of infeasible traces in a Büchi automaton AD. The three inner
boxes represent the three checks, which lead either to a refinement of AD, a result, or
to a timeout (not shown).

58 D. Dietsch et al.

Figure 3 shows an overview of the algorithm. The general idea is to create
and continuously enlarge a Büchi automaton AD whose language contains all
fair traces of B that are already known to be infeasible. The algorithm starts
by constructing a Büchi program B with the product construction from Sect. 4.
Initially, AD is a Büchi automaton that recognizes the empty language.

We use the similarities between Büchi programs and Büchi automata, i.e.,
that L(B) = Tfeas(B), throughout the whole algorithm. For example, in the first
step of our CEGAR loop we check whether the set of fair traces represented by
AD is a superset of the fair traces of B (the first box in Fig. 3). This check for
trace inclusion can be done with only Büchi automata operations.

If the set of fair traces of AD is indeed a superset of the set of fair traces
of B, we know that there is no fair and feasible trace in B and our algorithm
returns safe.

As the trace inclusion check is performed by computing L(B) \ L(AD), we
will receive a fair trace τ of B that witnesses that the set of fair traces of AD

is no superset of the set of fair traces of B. In this case, τ is always of the form
τ1τ

ω
2 .
Next, our algorithm tries to decide whether τ is feasible or not. This is done

by first checking various finite prefixes for feasibility. More precisely, the stem
τ1, the loop τ2 and then the concatenation τ1τ2 are checked for feasibility in that
order. If none of those finite prefixes is infeasible, our algorithm tries to prove
that the full infinite trace terminates. The termination analysis (inner lower box)
tries to find a ranking function to prove that the loop will terminate eventually.
When non-termination can be proven, we conclude that τ is feasible. Therefore,
τ is a fair and feasible trace in B and thus a counterexample for the property
ϕ. If instead termination can be shown, we know that τ is infeasible and the
algorithm continues to the next step.

Note that the checks for feasibility of τ1 and τ2 as well as the termination
analysis are based on – in general – undecidable methods. It is possible that they
do not terminate. In such cases, our algorithm runs into a timeout and returns
unknown as answer.

In the last step of the CEGAR loop we want to refine AD by adding more
fair and infeasible traces. We do this by replacing AD with a Büchi automaton
that is the union of the old Büchi automaton AD and a new Büchi automaton
which we create from trace τ . This new Büchi automaton recognizes all fair
traces of B that are infeasible for the same reason for which trace τ is infeasible.
Depending on the reason for infeasibility of trace τ , we use different methods
for the construction of this new Büchi automaton: if τ was infeasible because we
found an infeasible finite prefix, we use the method refineF , if τ was infeasible
because we found a ranking function, we use refineω.

The methods refineF and refineω generalize a single trace to a set of traces.
The input of these methods is the trace τ together with an infeasibility proof
(resp. termination proof). The output is a Büchi automaton that accepts a set of
traces whose infeasibility (resp. termination) can be shown by this infeasibility
proof (resp. termination proof). refineF and refineω guarantee that at least the

Fairness Modulo Theory: A New Approach to LTL Software Model Checking 59

single trace is contained in the language, but usually recognize a much larger set
of traces. As the generalization performed by these methods is quite involved, it
is not in the scope of this paper. We refer the interested reader to [35,36] for a
detailed description.

6 Implementation and Evaluation

We implemented the algorithm from Sect. 5 as Ultimate LTLAutomizer in
the program analysis framework Ultimate [16]. This allowed us to use different,
already available components for our implementation:

– a parser for ANSI C extended with specifications written in ACSL [6],
– various source-to-source transformations that optimize and simplify the input

program,
– an implementation of the Trace Abstraction algorithm [35] to determine fea-

sibility of finite trace prefixes,
– an implementation of a ranking function synthesis algorithm based on [34] to

prove termination of fair traces in the Büchi program, and
– various automata operations like union, complementation and intersection of

Büchi automata.

For the LTL property we use a custom annotation compatible to the ACSL
format. After parsing, we transform the LTL property with LTL2BA [32] to a
Büchi automaton, which is then together with an initial program the input for
the product algorithm.

Our implementation of the product construction already contains some opti-
mizations. For one, we already described that we remove locally infeasible traces
by removing infeasible edges during the construction. We also convert the expres-
sion e of assume e statements to disjunctive normal form. If this results in edges
labeled with more than one disjuncts, i.e. with assume e1||e2||. . .||en, we convert
them to n edges labeled with assume ei. This improves the performance of the
ranking function synthesis algorithm considerably.

Table 1 shows a comparison of our implementation against the benchmarks
and the data provided by [23], in which the authors compare their novel LTL-
checking approach based on decision predicates (DP) against a Terminator-like
procedure with an extension for fairness [21] (Term.). The set of benchmarks
contains examples from “[. . .] the I/O subsystem of the windows kernel, the
back-end infrastructure of the PostgreSQL database server, and the Apache web
server”, as well as “some toy examples”. As the tools that were used in [23]
are not publicly available, we could not re-run their implementations on our
machine. Therefore, the results in the columns “Term.” and “DP” are verbatim
from the original publication.

We could solve most of the benchmarks in under five seconds. Notable excep-
tions are “Windows OS 5”, where the other tools run into a timeout, and “Win-
dows OS 8” where we performed much slower than DP. We are still unclear
about the OOM result in “Apache accept()”, but we suspect a bug in our
tool.

60 D. Dietsch et al.

Table 1. The results of the comparison with the benchmarks from [23]. “Program”,
“Lines”, and “ϕ” contain the name of the benchmark, the lines of code of the program,
and the checked property (atomic propositions have been abbreviated). “Result” states
whether the tool proved the property (✔), produced a valid counterexample (✗), ran
out of time (T.O.) or out of memory (OOM). N.R. shows the instance where we could
not use the benchmark because the property was not specified explicitly and could not
be guessed from the comments in the file. “Time” contains the runtime of the respective
tool in seconds. For Ultimate LTLAutomizer, there are additional statistics columns:
“|rF |” states how many traces were refined using refineF , and analogous “|rω|” for
refineω. “Inc.” shows how much the product increased in size compared to the original
CFG of the program. The timeout for “Term.” and “DP” was four hours, our timeout
was 20 min. Our memory limit was 8GB.

In many instances with liveness properties we did not need to provide a rank-
ing function, because the generalization from traces that are infeasible because
of infeasible finite prefixes already excluded all fair traces of the Büchi pro-
gram. For the remainder, the termination arguments were no challenge, except
for “Windows OS 8”: we had difficulties to generalize from many terminating
traces, which also resulted in the slowdown compared to DP.

The expected increase in size of the Büchi program compared to the initial
program’s CFG (Inc.) was also manageable. Interestingly, in both instances of

Fairness Modulo Theory: A New Approach to LTL Software Model Checking 61

“Toy linear arith.” the product was even smaller than the original CFG, because
we could remove many infeasible edges.

On four benchmarks Ultimate LTLAutomizer results are different from
the data in [23]: we contacted the authors and confirmed that our result for
“Toy linear arith. 1” is indeed correct. We also could not run the benchmark
“Windows OS 4”, because the LTL property contained variables that were not
defined in the source file. We did not yet receive a response regarding this issue
as well as regarding the correctness of our results in the other three instances.

Table 2. Results of Ultimate LTLAutomizer on other benchmark sets. “RERS” are
the online problems from “The RERS Grey-Box Challenge 2012” [39] and “coolant”
consists of toy examples modelled after real-world embedded systems with specifica-
tions based on the LTL patterns described in [53]. Each program set contains pairs of
a file and a property. “Avg. Lines” states the average lines of code in the sample set,
and |Set| the number of file-property pairs. In the next five columns we use the same
symbols as in Table 1 except for �, which represents abnormal termination of Ulti-
mate LTLAutomizer. The last four columns show the average runtime, the average
number of refinements with refineF and refineω, and how much the size of the opti-
mized product increased on average compared to the original CFG. We used the same
timeout and memory limits as in Table 1.

We also considered two other benchmark sets (see Table 2). First, we ran the
on-site problems from the RERS Grey-Box Challenge 2012 [39] (RERS). RERS
is about comparing program verification techniques on a domain of problems
comparable to the ones seen in embedded systems engineering. For this, they
generate control-flow-intensive programs that contain a so-called ECA-engine
(event-condition-action): one non-terminating while loop which first reads an
input symbol, then calls a function that based on the current state and the
input calculates an output symbol, and finally writes this output symbol. We
took all 6 problem classes from the on-site part of the challenge and tried to
solve them with our tool. The classification (P14 to P19) encodes the size and
assumed difficulty of the problem class: P14 and P15 are small, P16 and P17 are

62 D. Dietsch et al.

medium, and P18 and P19 are large problems. Inside a size bracket, the larger
number means a higher difficulty.

We were able to verify roughly 43 % of the RERS benchmarks without any
modifications. The RERS set also helped us finding a bug that one of our opti-
mizations on the Büchi program product introduced and which is responsible
for all but four of the � results. For the remaining four examples, � occurred
because Ultimate LTLAutomizer was unable to synthesize a ranking func-
tion. Interestingly, the RERS benchmarks did seldomly require generalizations
with refineω. In most cases, the refineF already excluded all fair traces from
the Büchi program. This trend can also be observed in the number of refineω

applications on the benchmarks that timed out (not shown in Table 2).
Second, we used a small toy example modeled after an embedded system,

a coolant facility controller that encompasses two potentially non-terminating
loops in succession. The first polls the user for the input of a sane temperature
limit (except one example all versions of the coolant controller can loop infinitely
in this step if the input is not suitable). The second loop polls the temperature,
does some calculations, increments a counter and sets the “spoiled goods” flag if
the temperature limit is exceeded. The LTL properties specify that the spoiled
variable cannot be reset by the program (safety), that setup stages occur in
the correct order (safety and liveness), and that the temperature controlling
loop always progresses (safety and liveness). We then introduced various bugs
in the original version of the program and checked against the property and its
negation. Although the coolant examples are quite small, they contain complex
inter-dependencies between traces which lead to timeouts in two cases.

An unexpected result of the evaluation was, that the initial size of the pro-
gram does not seem to define the performance of the verification, both in time
and success rate, as the larger programs from P17 and P18 had more results
and were faster than their counterparts from P15 and P16. Also, the effective
blow-up due to the product construction is no more than four times, which is
still quite manageable.

The benchmark sets together with Ultimate LTLAutomizer are available
from [30].

7 Related Work

An earlier approach to LTL software model checking was done in [21]. There, the
authors reduced the problem to fair termination checking. Our work can be seen
as improvement upon this approach, as we also use fair termination checking, but
only when it is necessary. We avoid a large number of (more costly) termination
checks due to our previous check for infeasible finite prefixes and the resulting
generalizing refinement.

In [23], the authors reduce the LTL model checking problem to the prob-
lem of checking ∀CTL by first approximating the LTL formula with a suitable
CTL formula, and then refining counterexamples that represent multiple paths

Fairness Modulo Theory: A New Approach to LTL Software Model Checking 63

by introducing non-deterministic prophecy variables in their program represen-
tation. This non-determinism is then removed through a determinization pro-
cedure. By using this technique, they try to reduce their dependence on termi-
nation proofs, which they identified as the main reason for poor performance of
automata-theoretic approaches. Our approach can be seen as another strategy
to reduce the reliance on many termination proofs. By iteratively refining the
Büchi program with different proof techniques, we often remove complex con-
trol structures from loops and thus reduce the strain on the termination proof
engine.

There exist various publicly available finite-state model checking tools that
support both LTL properties and programs, but are in contrast to Ultimate
LTLAutomizer limited to finite-state systems: SPIN [38] and Divine [4] are
both based on the Vardi-Wolper product [57] for LTL model checking. Divine
supports C/C++ via LLVM bytecode, SPIN can be used with different front-
ends that translate programs to finite-state models, e.g. with Bandera [28] for
Java. NuSMV [18] and Cadence SMV [44] reduce LTL model checking to CTL
model checking. NuSMV can use different techniques like BDD symbolic model
checking using symbolic fixed point, computation with BDDs, or bounded model
checking using MiniSat. Cadence SMV uses Mu-calculus with additional fairness
constraints [15].

8 Conclusion and Future Work

The encoding of the LTL program verification problem through the infeasibility
of fair paths in a Büchi program has allowed us to define a sequence of semi-
tests which can be scheduled before the full test of infeasibility of an infinite
path. The occurrence of a successful semi-test (the proof of infeasibility for a
finite prefix, by the construction of a proof of unsatisfiability) makes the full test
redundant and avoids the relatively costly construction of a ranking function.
Our experiments indicate that the corresponding approach leads to a practical
tool for LTL software model checking.

We see several ways to improve performance. We may try to use alternatives
to LTL2BA such as SPOT [31]; see [54]. The technique of large block encod-
ing [11] adapted to Büchi programs, may help to reduce memory consumption.

References

1. Baier, C., Katoen, J.-P., et al.: Principles of Model Checking, vol. 26202649. MIT
Press, Cambridge (2008)

2. Ball, T., Majumdar, R., Millstein, T.D., Rajamani, S.K.: Automatic predicate
abstraction of C programs. In: PLDI, pp. 203–213 (2001)

3. Ball, T., Podelski, A., Rajamani, S.K.: Boolean and cartesian abstraction for model
checking C programs. STTT 5(1), 49–58 (2003)

4. Barnat, J., Brim, L., Havel, V., Havĺıček, J., Kriho, J., Lenčo, M., Ročkai, P., Štill,
V., Weiser, J.: DiVinE 3.0 – an explicit-state model checker for multithreaded C
& C++ programs. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044,
pp. 863–868. Springer, Heidelberg (2013)

64 D. Dietsch et al.

5. Bauch, P., Havel, V., Barnat, J.: LTL model checking of LLVM bitcode with sym-
bolic data. In: Hliněný, P., Dvořák, Z., Jaroš, J., Kofroň, J., Kořenek, J., Matula,
P., Pala, K. (eds.) MEMICS 2014. LNCS, vol. 8934, pp. 47–59. Springer, Heidelberg
(2014)

6. Baudin, P., Filliâtre, J.-C., Marché, C., Monate, B., Moy, Y., Prevosto, V.,
et al.: ACSL: ANSI/ISO C specification language, Feb 2015. http://frama-c.com/
download.html

7. Ben-Amram, A.M.: Size-change termination, monotonicity constraints and ranking
functions. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 109–
123. Springer, Heidelberg (2009)

8. Ben-Amram, A.M., Genaim, S.: On the linear ranking problem for integer linear-
constraint loops. In: POPL, pp. 51–62 (2013)

9. Berdine, J., Cook, B., Distefano, D., O’Hearn, P.W.: Automatic termination proofs
for programs with shape-shifting heaps. In: Ball, T., Jones, R.B. (eds.) CAV 2006.
LNCS, vol. 4144, pp. 386–400. Springer, Heidelberg (2006)

10. Beyer, D.: Software verification and verifiable witnesses. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 401–416. Springer, Heidelberg (2015)

11. Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.: Software
model checking via large-block encoding. In: FMCAD, pp. 25–32, IEEE (2009)

12. Bradley, A.R., Manna, Z., Sipma, H.B.: Linear ranking with reachability. In:
Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 491–504.
Springer, Heidelberg (2005)

13. Brillout, A., Kroening, D., Rümmer, P., Wahl, T.: An interpolating sequent cal-
culus for quantifier-free presburger arithmetic. J. Autom. Reason. 47(4), 341–367
(2011)

14. Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The openSMT solver. In:
Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 150–153.
Springer, Heidelberg (2010)

15. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.-J.: Symbolic
model checking: 1020 states and beyond. In: LICS, pp. 428–439, IEEE (1990)

16. Christ, J., Dietsch, D., Ermis, E., Heizmann, M., Hoenicke, J., Langenfeld, V.,
Leike, J., Musa, B., Nutz, A., Schilling, C.: The program analysis framework ulti-
mate, Feb 2015. http://ultimate.informatik.uni-freiburg.de

17. Christ, J., Hoenicke, J., Nutz, A.: SMTInterpol: an interpolating SMT solver.
In: Donaldson, A., Parker, D. (eds.) SPIN 2012. LNCS, vol. 7385, pp. 248–254.
Springer, Heidelberg (2012)

18. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: an opensource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002)

19. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS,
vol. 7795, pp. 93–107. Springer, Heidelberg (2013)

20. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

21. Cook, B., Gotsman, A., Podelski, A., Rybalchenko, A., Vardi, M.Y.: Proving that
programs eventually do something good. ACM SIGPLAN Not. 42, 265–276 (2007).
ACM

http://frama-c.com/download.html
http://frama-c.com/download.html
http://ultimate.informatik.uni-freiburg.de

Fairness Modulo Theory: A New Approach to LTL Software Model Checking 65

22. Cook, B., Khlaaf, H., Piterman, N.: Fairness for infinite-state systems. In: Baier, C.,
Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 384–398. Springer, Heidelberg
(2015)

23. Cook, B., Koskinen, E.: Making prophecies with decision predicates. ACM SIG-
PLAN Not. 46, 399–410 (2011). ACM

24. Cook, B., Koskinen, E., Vardi, M.Y.: Temporal property verification as a program
analysis task - extended version. FMSD 41(1), 66–82 (2012)

25. Cook, B., Kroening, D., Rümmer, P., Wintersteiger, C.M.: Ranking function syn-
thesis for bit-vector relations. FMSD 43(1), 93–120 (2013)

26. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In:
PLDI, pp. 415–426, ACM (2006)

27. Cook, B., Podelski, A., Rybalchenko, A.: Proving thread termination. In: PLDI,
pp. 320–330 (2007)

28. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach, S., Pasareanu, C.S., Zheng, H.,
et al.: Bandera: extracting finite-state models from Java source code. In: ICSE, pp.
439–448, IEEE (2000)

29. Dangl, M., Löwe, S., Wendler, P.: Cpachecker with support for recursive programs
and floating-point arithmetic - (competition contribution). In: Baier, C., Tinelli,
C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 423–425. Springer, Heidelberg (2015)

30. Dietsch, D., Heizmann, M., Langenfeld, V.: Ultimate LTLAutomizer website, Feb
2015. http://ultimate.informatik.uni-freiburg.de/ltlautomizer

31. Duret-Lutz, A., Poitrenaud, D.: SPOT: an extensible model checking library using
transition-based generalized Büchi automata. In: MASCOTS, pp. 76–83, IEEE
(2004)

32. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer,
Heidelberg (2001)

33. Heizmann, M., Dietsch, D., Leike, J., Musa, B., Podelski, A.: Ultimate automizer
with array interpolation - (competition contribution). In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 455–457. Springer, Heidelberg (2015)

34. Heizmann, M., Hoenicke, J., Leike, J., Podelski, A.: Linear ranking for linear lasso
programs. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp.
365–380. Springer, Heidelberg (2013)

35. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who
love automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
36–52. Springer, Heidelberg (2013)

36. Heizmann, M., Hoenicke, J., Podelski, A.: Termination analysis by learning termi-
nating programs. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp.
797–813. Springer, Heidelberg (2014)

37. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL,
pp. 58–70, ACM (2002)

38. Holzmann, G.J.: The SPIN Model Checker Primer and Reference Manual, vol.
1003. Addison-Wesley, Reading (2004)

39. Howar, F., Isberner, M., Merten, M., Steffen, B., Beyer, D.: The RERS grey-
box challenge 2012: analysis of event-condition-action systems. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609, pp. 608–614. Springer,
Heidelberg (2012)

40. Kroening, D., Sharygina, N., Tsitovich, A., Wintersteiger, C.M.: Termination
analysis with compositional transition invariants. In: Touili, T., Cook, B., Jackson,
P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 89–103. Springer, Heidelberg (2010)

http://ultimate.informatik.uni-freiburg.de/ltlautomizer

66 D. Dietsch et al.

41. Kroening, D., Tautschnig, M.: CBMC – C bounded model checker. In: Ábrahám,
E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 389–391.
Springer, Heidelberg (2014)

42. Lal, A., Qadeer, S.: Reachability modulo theories. RP 2013, 23–44 (2013)
43. Leike, J., Heizmann, M.: Ranking templates for linear loops. In: Ábrahám, E.,

Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 172–186.
Springer, Heidelberg (2014)

44. McMillan, K.: Cadence SMV. Cadence Berkeley Labs, CA (2000). http://www.
kenmcmil.com/smv.html

45. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)

46. McMillan, K.L.: Interpolants from Z3 proofs. In: FMCAD, pp. 19–27 (2011)
47. Ermis, E., Nutz, A., Dietsch, D., Hoenicke, J., Podelski, A.: Ultimate kojak. In:

Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp.
421–423. Springer, Heidelberg (2014)

48. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear rank-
ing functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
239–251. Springer, Heidelberg (2004)

49. Podelski, A., Rybalchenko, A.: Transition invariants. In: LICS, pp. 32–41, IEEE
Computer Society (2004)

50. Podelski, A., Rybalchenko, A.: Transition predicate abstraction and fair termina-
tion. In: POPL, pp. 132–144, ACM (2005)

51. Podelski, A., Rybalchenko, A.: ARMC: the logical choice for software model check-
ing with abstraction refinement. In: Hanus, M. (ed.) PADL 2007. LNCS, vol. 4354,
pp. 245–259. Springer, Heidelberg (2007)

52. Podelski, A., Rybalchenko, A., Wies, T.: Heap assumptions on demand. In: Gupta,
A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 314–327. Springer, Heidelberg
(2008)

53. Post, A.C.: Effective Correctness Criteria for Real-time Requirements. Shaker,
Aachen (2012)

54. Rozier, K.Y., Vardi, M.Y.: LTL satisfiability checking. In: Bošnački, D., Edelkamp,
S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 149–167. Springer, Heidelberg (2007)

55. Ströder, T., Aschermann, C., Frohn, F., Hensel, J., Giesl, J.: Aprove: termination
and memory safety of C programs - (competition contribution). In: Baier, C.,
Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 417–419. Springer, Heidelberg
(2015)

56. Urban, C.: FuncTion: an abstract domain functor for termination. In: Baier, C.,
Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 464–466. Springer, Heidelberg
(2015)

57. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: LICS, pp. 322–331, IEEE Computer Society (1986)

http://www.kenmcmil.com/smv.html
http://www.kenmcmil.com/smv.html

Model Checking Parameterized Asynchronous
Shared-Memory Systems

Antoine Durand-Gasselin1, Javier Esparza1,
Pierre Ganty2(B), and Rupak Majumdar3

1 TU Munich, Munich, Germany
2 IMDEA Software Institute, Madrid, Spain

pierre.ganty@imdea.org
3 MPI-SWS, Kaiserslautern, Germany

Abstract. We characterize the complexity of liveness verification for
parameterized systems consisting of a leader process and arbitrarily
many anonymous and identical contributor processes. Processes commu-
nicate through a shared, bounded-value register. While each operation
on the register is atomic, there is no synchronization primitive to execute
a sequence of operations atomically.

We analyze the case in which processes are modeled by finite-state
machines or pushdown machines and the property is given by a Büchi
automaton over the alphabet of read and write actions of the leader. We
show that the problem is decidable, and has a surprisingly low complex-
ity: it is NP-complete when all processes are finite-state machines, and is
PSPACE-hard and in NEXPTIME when they are pushdown machines.
This complexity is lower than for the non-parameterized case: liveness
verification of finitely many finite-state machines is PSPACE-complete,
and undecidable for two pushdown machines.

For finite-state machines, our proofs characterize infinite behaviors
using existential abstraction and semilinear constraints. For pushdown
machines, we show how contributor computations of high stack height
can be simulated by computations of many contributors, each with low
stack height. Together, our results characterize the complexity of veri-
fication for parameterized systems under the assumptions of anonymity
and asynchrony.

1 Introduction

We study the verification problem for parameterized asynchronous shared-
memory systems [9,12]. These systems consist of a leader process and arbi-
trarily many identical contributors, processes with no identity, running at
arbitrary relative speeds. The shared-memory consists of a read/write regis-
ter that all processes can access to perform either a read operation or a write
operation. The register is bounded: the set of values that can be stored is finite.
Read/write operations execute atomically but sequences of operations do not:
no process can conduct an atomic sequence of reads and writes while exclud-
ing all other processes. In a previous paper [9], we have studied the complexity
c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 67–84, 2015.
DOI: 10.1007/978-3-319-21690-4 5

68 A. Durand-Gasselin et al.

of safety verification, which asks to check if a safety property holds no matter
how many contributors are present. In a nutshell, we showed that the problem
is coNP-complete when both leader and contributors are finite-state automata
and PSPACE-complete when they are pushdown automata.

In this paper we complete the study of this model by addressing the verifica-
tion of liveness properties specified as ω-regular languages (which in particular
encompasses LTL model-checking). Given a property like “every request is even-
tually granted” and a system with a fixed number of processes, one is often
able to guess an upper bound on the maximal number of steps until the request
is granted, and replace the property by the safety property “every request is
granted after at most K steps.” In parameterized systems this bound can depend
on the (unbounded) number of processes, and so reducing liveness to safety, or
to finitary reasoning, is not obvious. Indeed, for many parameterized models,
liveness verification is undecidable even if safety is decidable [8,13].

Our results show that there is no large complexity gap between liveness and
safety verification: liveness verification (existence of an infinite computation vio-
lating a property) is NP-complete in the finite-state case, and PSPACE-hard and
in NEXPTIME in the pushdown case. In contrast, remember that liveness check-
ing is already PSPACE-complete for a finite number of finite-state machines, and
undecidable for a fixed number of pushdown systems. Thus, not only is liveness
verification decidable in the parameterized setting but the complexity of the
parameterized problem is lower than in the non-parameterized case, where all
processes are part of the input. We interpret this as follows: in asynchronous
shared-memory systems, the existence of arbitrarily many processes leads to a
“noisy” environment, in which contributors may hinder progress by replying to
past messages from the leader, long after the computation has moved forward
to a new phase. It is known that imperfect communication can reduce the power
of computation and the complexity of verification problems: the best known
example are lossy channel systems, for which many verification problems are
decidable, while they are undecidable for perfect channels (see e.g. [1,3]). Our
results reveal another instance of the same phenomenon.

Technically, our proof methods are very different from those used for safety
verification. Our previous results [9] relied on a fundamental Simulation Lemma,
inspired by Hague’s work [12], stating that the finite behaviors of an arbitrary
number of contributors can be simulated by a finite number of simulators, one
for each possible value of the register. Unfortunately, the Simulation Lemma
does not extend to infinite behaviors, and so we have to develop new ideas. In
the case in which both leader and contributors are finite-state machines, the
NP-completeness result is obtained by means of a combination of an abstraction
that overapproximates the set of possible infinite behaviors, and a semilinear
constraint that allows us to regain precision. The case in which both leader and
contributors are pushdown machines is very involved. In a nutshell, we show
that pushdown runs in which a parameter called the effective stack height grows
too much can be “distributed” into a number of runs with smaller effective
stack height. We then prove that the behaviors of a pushdown machine with

Model Checking Parameterized Asynchronous Shared-Memory Systems 69

a bounded effective stack height can be simulated by an exponentially larger
finite-state machine.

Related Work. Parameterized verification has been studied extensively, both
theoretically and practically. While very simple variants of the problem are
already undecidable [6], many non-trivial parameterized models retain decid-
ability. There is no clear “rule of thumb” that allows one to predict what model
checking problems are decidable, nor their complexities, other than “liveness
is generally harder than safety.” For example, coverability for Petri nets—in
which finite-state, identityless processes communicate via rendezvous or global
shared state— is EXPSPACE-complete, higher than the PSPACE-completeness
of the non-parameterized version, and verification of liveness properties can
be equivalent to Petri net reachability, for which we only know non-primitive
recursive upper bounds, or even undecidable. Safety verification for extensions
to Petri nets with reset or transfer, or broadcast protocols, where arbitrarily
many finite-state processes communicate through broadcast messages, are non-
primitive recursive; liveness verification is undecidable in all cases [2,8,13]. Thus,
our results, which show simultaneously lower complexity than non-parameterized
problems, as well as similar complexity for liveness and safety, are quite
unexpected.

German and Sistla [10] and Aminof et al. [4] have studied a parameterized
model with rendezvous as communication primitive, where processes are finite-
state machines. Model checking the fully symmetrical case—only contributors,
no leaders—runs in polynomial time (other topologies have also been considered
[4]), while the asymmetric case with a leader is EXPSPACE-complete. In this
paper we study the same problems, but for a shared memory communication
primitive.

Population protocols [5] are another well-studied model of identityless asynchro-
nous finite-state systems communicating via rendezvous. The semantics of pop-
ulation protocols is given over fair runs, in which every potential interaction that
is infinitely often enabled is infinitely often taken. With this semantics, popu-
lation protocols compute exactly the semilinear predicates [5]. In this paper we
do not study what our model can compute (in particular, we are agnostic with
respect to which fairness assumptions are reasonable), but what we can compute
or decide about the model.

2 Formal Model: Non-atomic Networks

In this paper, we identify systems with languages. System actions are modeled as
symbols in an alphabet, executions are modeled as infinite words, and the system
itself is modeled as the language of its executions. Composition operations that
combine systems into larger ones are modeled as operations on languages.

2.1 Systems as Languages

An alphabet Σ is a finite, non-empty set of symbols. A word over Σ is a finite
sequence over Σ including the empty sequence denoted ε, and a language is a

70 A. Durand-Gasselin et al.

set of words. An ω-word over Σ is an infinite sequence of symbols of Σ, and an
ω-language is a set of ω-words. We use Σ∗ (resp. Σω) to denote the language of
all words (resp. ω-words) over Σ. When there is no ambiguity, we use “words”
to refer to words or ω-words. We do similarly for languages. Let w be a sequence
over some alphabet, define dom(w) = {1, . . . , n} if w = a1a2 . . . an is a word; else
(w is an ω-word) dom(w) denote the set N \ {0}. Elements of dom(w) are called
positions. The length of a sequence w is defined to be sup dom(w) and is denoted
|w|. We denote by (w)i the symbol of w at position i if i ∈ dom(w), ε otherwise.
Moreover, let (w)i..j with i, j ∈ N and i < j denote (w)i(w)i+1 . . . (w)j . Also
(w)i..∞ denotes (w)i(w)i+1 . . . For words u, v ∈ (Σω ∪ Σ∗), we say u is a prefix
of v if either u = v or u ∈ Σ∗ and there is a w ∈ (Σω ∪ Σ∗) such that v = uw.

Combining Systems: Shuffle. Intuitively, the shuffle of systems L1 and L2 is the
system interleaving the executions of L1 with those of L2. Given two ω-languages
L1 ⊆ Σω

1 and L2 ⊆ Σω
2 , their shuffle, denoted by L1 � L2, is the ω-language over

(Σ1 ∪ Σ2) defined as follows. Given two ω-words x ∈ Σω
1 , y ∈ Σω

2 , we say that
z ∈ (Σ1 ∪Σ2)ω is an interleaving of x and y if there exist (possibly empty) words
x1, x2, . . . , xi, . . . ∈ Σ∗

1 and y1, y2, . . . , yi, . . . ∈ Σ∗
2 such that each x1x2 · · · xi is a

prefix of x, and each y1y2 · · · yi is a prefix of y, and z = x1y1x2y2 · · · xiyi · · · ∈ Σω

is an ω-word. Then L1 � L2 =
⋃

x∈L1,y∈L2
x � y, where x � y denotes the set

of all interleavings of x and y. For example, if L1 = abω and L2 = abω, we get
L1 � L2 = (a + ab∗a)bω. Shuffle is associative and commutative, and so we can
write L1 � · · · � Ln or �n

i=1 Li.

Combining Systems: Asynchronous product. The asynchronous product of L1 ⊆
Σω

1 and L2 ⊆ Σω
2 also interleaves the executions but, this time, the actions in the

common alphabet must now be executed jointly. The ω-language of the resulting
system, called the asynchronous product of L1 and L2, is denoted by L1 ‖ L2,
and defined as follows. Let ProjΣ(w) be the word obtained by erasing from w
all occurrences of symbols not in Σ. L1 ‖ L2 is the ω-language over the alphabet
Σ = Σ1 ∪Σ2 such that w ∈ L1 ‖ L2 iff ProjΣ1

(w) and ProjΣ2
(w) are prefixes of

words in L1 and L2, respectively. We abuse notation and write w1 ‖ L2 instead
of {w1} ‖ L2 when L1 = {w1}. For example, let Σ1 = {a, c} and Σ2 = {b, c}.
For L1 = (ac)ω and L2 = (bc)ω we get L1 ‖ L2 = ((ab + ba)c)ω. Observe that
the language L1 ‖ L2 depends on L1, L2 and also on Σ1 and Σ2. For example, if
Σ1 = {a} and Σ2 = {b}, then {aω} ‖ {bω} = (a + b)ω, but if Σ1 = {a, b} = Σ2,
then {aω} ‖ {bω} = ∅. So we should more properly write L1 ‖Σ1,Σ2 L2. However,
since the alphabets Σ1 and Σ2 will be clear from the context, we will omit them.
Like shuffle, asynchronous product is also associative and commutative, and so
we write L1 ‖ · · · ‖ Ln. Notice finally that shuffle and asynchronous product
coincide if Σ1 ∩ Σ2 = ∅, but usually differ otherwise. For instance, if L1 = abω

and L2 = abω, we get L1 ‖ L2 = abω.
We describe systems as combinations of shuffles and asynchronous products,

for instance we write L1 ‖ (L2 � L3). In these expressions we assume that �
binds tighter than ‖, and so L1 � L2 ‖ L3 is the language (L1 � L2) ‖ L3, and
not L1 � (L2 ‖ L3).

Model Checking Parameterized Asynchronous Shared-Memory Systems 71

2.2 Non-atomic Networks

A non-atomic network is an infinite family of systems parameterized by a number
k. The kth element of the family has k + 1 components communicating through
a global store by means of read and write actions. The store is modeled as an
atomic register whose set of possible values is finite. One of the k+1 components
is the leader, while the other k are the contributors. All contributors have exactly
the same possible behaviors (they are copies of the same ω-language), while
the leader may behave differently. The network is called non-atomic because
components cannot atomically execute sequences of actions, only one single read
or write.

Formally, we fix a finite set G of global values. A read-write alphabet is any
set of the form A × G, where A is a set of read and write (actions). We denote
a symbol (a, g) ∈ A × G by a(g) and define G(a1, . . . , an) = {ai(g) | 1 ≤ i ≤
n, g ∈ G}.

We fix two languages D ⊆ Σω
D and C ⊆ Σω

C , called the leader and the con-
tributor, with alphabets ΣD = G(rd, wd) and ΣC = G(rc, wc), respectively, where
rd, rc are called reads and wc, wd are called writes. We write w� (respectively,
r�) to stand for either wc or wd (respectively, rc or rd). We further assume that
Proj {r�(g),w�(g)}(D ∪ C) 	= ∅ holds for every g ∈ G, else the value g is never used
and can be removed from G.

Additionally, we fix an ω-language S, called the store, over ΣD ∪ ΣC . It
models the sequences of read and write operations supported by an atomic
register: a write w�(g) writes g to the register, while a read r�(g) succeeds
when the register’s current value is g. Initially the store is only willing to
execute a write. Formally S is defined as

(∑
g∈G

(
w�(g) (r�(g))∗))ω

+
(∑

g∈G
(

w�(g) (r�(g))∗)∗ ∑
g∈G

(
w�(g) (r�(g))ω

))
and any finite prefix

thereof. Observe that S is completely determined by ΣD and ΣC . Figure 1 depicts
a store with {1, 2, 3} as possible values as the language of a transition system.

Fig. 1. Transition systems describing languages D, S, and C. We write rw�(g) = r�(g)∪
w�(g) = {rc(g), rd(g)} ∪ {wc(g), wd(g)}. The transition system for S is in state i ∈
{1, 2, 3} when the current value of the store is i.

72 A. Durand-Gasselin et al.

Definition 1. Let D ⊆ Σω
D and C ⊆ Σω

C be a leader and a contributor, and let
k ≥ 1. The k-instance of the (D, C)-network is the ω-language N (k) = (D ‖ S ‖
�k C) where �kC stands for �k

i=1 C. The (D, C)-network N is the ω-language
N =

⋃∞
k=1 N (k). We omit the prefix (D, C) when it is clear from the context.

It follows easily from the properties of shuffle and asynchronous product that
N = (D ‖ S ‖ �∞C), where �∞C is an abbreviation of

⋃∞
k=1 �kC.

Next we introduce a notion of compatibility between a word of the leader and
a multiset of words of the contributor (a multiset because several contributors
may execute the same sequence of actions). Intuitively, compatibility means that
all the words can be interleaved into a legal infinite sequence of reads and writes
supported by an atomic register—that is, an infinite sequence belonging to S.
Formally:

Definition 2. Let u ∈ Σω
D, and let M = {v1, . . . , vk} be a multiset of words over

Σω
C (possibly containing multiple copies of a word). We say that u is compatible

with M iff the ω-language (u ‖ S ‖ �k
i=1 vi) is non-empty. When u and M are

compatible, there exists a word s ∈ S such that (u ‖ s ‖ �k
i=1 vi) 	= ∅. We call s

a witness of compatibility.

Example 1. Consider the network with G = {1, 2, 3} where the leader, store, and
contributor languages are given by the infinite paths of the transition systems
from Fig. 1. The only ω-word of D is (rd(1)rd(2)rd(3))ω and the ω-language of
C is (wc(1)rc(3)rc(1) + wc(2)rc(1)rc(2) + wc(3)rc(2)rc(3))ω. For instance, D =
(rd(1)rd(2)rd(3))ω is compatible with the multiset M of 6 ω-words obtained by
taking two copies of (w(1)r(3)r(1))ω, (w(2)r(1)r(2))ω and (w(3)r(2)r(3))ω. The
reader may be interested in finding another multiset compatible with D and
containing only 4 ω-words.

Stuttering Property. Intuitively, the stuttering property states that if we take an
ω-word of a network N and “stutter” reads and writes of the contributors, going
e.g. from wd(1)rc(1)wc(2)rd(2) . . . to wd(1)rc(1)rc(1)wc(2)wc(2)wc(2)rd(2) . . .,
the result is again an ω-word of the network.

Let s ∈ S be a witness of compatibility of u ∈ Σω
D and M = {v1, . . . , vk}. Pick

a set I of positions (viz. I ⊆ dom(s)) such that (s)i ∈ ΣC for each i ∈ I, and pick
a number �i ≥ 0 for every i ∈ I. Let s′ be the result of simultaneously replacing
each (s)i by (s)�i+1

i in s. We have that s′ ∈ S. Now let vs = (s)�i1
i1

· (s)�i2
i2

· · ·,
where i1 = min(I), i2 = min(I \ {i1}), . . . It is easy to see that (u ‖ s′ ‖ vs �
�k

i=1 vi) 	= ∅, and so u is compatible with M ⊕ {vs}, the multiset consisting of
M and vs, and s′ is a witness of compatibility.

An easy consequence of the stuttering property is the copycat lemma [9].

Lemma 1. (Copycat Lemma). Let u ∈ Σω
D and let M be a multiset of words

of Σω
C . If u is compatible with M , then u is also compatible with M ⊕ {v} for

every v ∈ M .

Model Checking Parameterized Asynchronous Shared-Memory Systems 73

2.3 The Model-Checking Problem for Linear-Time Properties

We consider the model checking problem for linear-time properties, that asks,
given a network N and an ω-regular language L, decide whether N ‖ L is non-
empty. We assume L is given as a Büchi automaton A over ΣD. Intuitively,
A is a tester that observes the actions of the leader; we call this the leader model
checking problem.

We study the complexity of leader model checking for networks in which
the read-write ω-languages D and C of leader and contributor are generated by
an abstract machine, like a finite-state machine (FSM) or a pushdown machine
(PDM). (We give formal definitions later.) More precisely, given two classes of
machines D, C, we study the model checking problem MC(D, C) defined as follows:

–Given: machines D ∈ D and C ∈ C, and a Büchi automaton A
–Decide: Is NA = (L(A) ‖ L(D) ‖ S ‖ �∞L(C)) non-empty?

In the next sections we prove that MC(FSM,FSM) and MC(PDM,FSM) are NP-
complete, while MC(PDM,PDM) is in NEXPTIME and PSPACE-hard.

Example 2. Consider the instance of the model checking problem where D and
C are as in Fig. 1, and A is a Büchi automaton recognizing all words over ΣD
containing infinitely many occurrences of rd(1). Since D is compatible with a
multiset of words of the contributors, NA is non-empty. In particular, N (4)

A 	= ∅.

Since ΣA = ΣD, we can replace A and D by a machine A × D with a Büchi
acceptance condition. The construction of A × D given A and D is standard. In
what follows, we assume that D comes with a Büchi acceptance condition and
forget about A.

There are two natural variants of the model checking problem, where ΣA =
ΣC , i.e., the alphabet of A contains the actions of all contributors, or ΣA =
ΣD ∪ ΣC . In both these variants, the automaton A can be used to simulate
atomic networks. Indeed, if the language of A consists of all sequences of the form
(wd()rc()wc()rd())ω, and we design the contributors so that they alternate reads
and writes, then the accepting executions are those in which the contributors
read a value from the store and write a new value in an atomic step. So the
complexity of the model-checking problem coincides with the complexity for
atomic networks (undecidable for PDMs and EXPSPACE-complete for FSMs),
and we do not study it further.

3 MC(FSM,FSM) is NP-Complete

We fix some notations. A finite-state machine (FSM) (Q, δ, q0) over Σ consists
of a finite set of states Q containing an initial state q0 and a transition relation
δ ⊆ Q×Σ ×Q. A word v ∈ Σω is accepted by an FSM if there exists a sequence
q1q2 · · · of states such that (qi, (v)i+1, qi+1) ∈ δ for all i ≥ 0. We denote by

q0
(v)1−−→ q1

(v)2−−→ · · · the run accepting v. A Büchi automaton (Q, δ, q0, F) is

74 A. Durand-Gasselin et al.

an FSM (Q, δ, q0) together with a set F ⊆ Q of accepting states. An ω-word

v ∈ Σω is accepted by a Büchi automaton if there is a run q0
(v)1−−→ q1

(v)2−−→ · · ·
such that qj ∈ F for infinitely many positions j. The ω-language of a FSM or
Büchi automaton A, denoted by L(A), is the set of ω-words accepted by A.

In the rest of the section we show that MC(FSM,FSM) is NP-complete.
Section 3.1 defines the infinite transition system associated to a (FSM,FSM)-
network. Section 3.2 introduces an associated finite abstract transition system.
Section 3.3 states and proves a lemma (Lemma 3) characterizing the cycles of the
abstract transition system that, loosely speaking, can be concretized into infinite
executions of the concrete transition system. Membership in NP is then proved
using the lemma. NP-hardness follows from NP-hardness of reachability [9].

3.1 (FSM,FSM)-Networks: Populations and Transition System

We fix a Büchi automaton D = (QD, δD, q0D, F) over ΣD and an FSM C =
(QC , δC , q0C) over ΣC . A configuration is a tuple (qD, g,p), where qD ∈ QD,
g ∈ G ∪ {#}, and p : QC → N assigns to each state of C a natural number.
Intuitively, qD is the current state of D; g is a value or the special value #,
modelling that the store has not been initialized yet, and no process read before
some process writes; finally, p(q) is the number of contributors currently at state
q ∈ QC . We call p a population of QC , and write |p| =

∑
q∈QC

p(q) for the size of
p. Linear combinations of populations are defined componentwise: for every state
q ∈ QC , we have (k1p1 + k2p2)(q) := k1p1(q) + k2p2(q). Further, given q ∈ QC ,
we denote by q the population q(q′) = 1 if q = q′ and q(q′) = 0 otherwise, i.e.,
the population with one contributor in state q and no contributors elsewhere.
A configuration is accepting if the state of D is accepting, that is whenever qD ∈
F . Given a set of populations P , we define (qD, g,P) := {(qD, g,p) | p ∈ P }.

The labelled transition system TS = (X,T,X0) associated to NA is defined
as follows:

– X is the set of all configurations, and X0 ⊆ X is the set of initial configura-
tions, given by (q0D,#,P0), where P0 = {kq0C | k ≥ 1};

– T = TD ∪ TC , where
• TD is the set of triples

(
(qD, g,p) , t , (q′

D, g′,p)
)

such that t is a transition
of D, viz. t ∈ δD, and one of the following conditions holds: (i) t =
(qD, wd(g′), q′

D); or (ii)t = (qD, rd(g), q′
D), g = g′.

• TC is the set of triples
(
(qD, g,p) , t , (qD, g′,p′)

)
such that t ∈ δC , and

one of the following conditions holds: (iii) t = (qC , wc(g′), q′
C), p ≥ qC ,

and p′ = p − qC + q′
C ; or (iv) t = (qC , rc(g), q′

C), p ≥ qC , g = g′, and
p′ = p − qC + q′

C .
Observe that |p| = |p′|, because the total number of contributors of a pop-
ulation remains constant. Given configurations c and c′, we write c

t→c′ if
(c, t, c′) ∈ T .

We introduce a notation important for Lemma 3 below. We define Δ(t) := p′−p.
Observe that Δ(t) = 0 in cases (i) and (ii) above, and Δ(t) = −qC + qC

′ in
cases (iii) and (iv). So Δ(t) depends only on the transition t, but not on p.

Model Checking Parameterized Asynchronous Shared-Memory Systems 75

3.2 The Abstract Transition System

We introduce an abstraction function α that assigns to a set P of populations the
set of states of QC populated by P . We also introduce a concretization function
γ that assigns to a set Q ⊆ QC the set of all populations p that only populate
states of Q. Formally:

α(P) = {q ∈ QC | p(q) ≥ 1 for some p ∈ P }
γ(Q) = {p | p(q) = 0 for every q ∈ QC \ Q} .

It is easy to see that α and γ satisfy γ(α(P)) ⊇ P and α(γ(Q)) = Q, and
so α and γ form a Galois connection (actually, a Galois insertion). An abstract
configuration is a tuple (qD, g,Q), where qD ∈ QD, g ∈ G ∪ {#}, and Q ⊆ QC .
We extend α and γ to (abstract) configurations in the obvious way. An abstract
configuration is accepting when the state of D is accepting, that is whenever
qD ∈ F .

Given TS = (X,T,X0), we define its abstraction αTS = (αX,αT, αX0) as
follows:

– αX = QD × (G ∪ {#}) × 2QC is the set of all abstract configurations.
– αX0 = (q0D,#, α(P0)) = (q0D,#, {q0C}) is the initial configuration.
– ((qD, g,Q), t, (q′

D, g′, Q′)) ∈ αT iff there is p ∈ γ(Q) and p′ such that
(qD, g,p) t−→ (q′

D, g′,p′) and Q′ = α({p′ | ∃p ∈ γ(Q) : (qD, g,p) t−→
(q′

D, g′,p′)}).

Observe that the number of abstract configurations is bounded by K = |QD| ·
|G|+1 ·2|QC |. Let us point out that our abstract transition system resembles but
is different from that of Pnueli et al. [14]. We write a

t−→α a′ if (a, t, a′) ∈ αT .
The abstraction satisfies the following properties:

(A) For each ω-path c0
t1−→ c1

t2−→ c2 · · · of TS , there exists an ω-path a0
t1−→α

a1
t2−→α a2 · · · in αTS such that ci ∈ γ(ai) for all i ≥ 0.

(B) If (qD, g,Q) t−→α (q′
D, g′, Q′), then Q ⊆ Q′.

To prove this claim, consider two cases:
• t ∈ δD. Then (qD, g,p) t−→ (q′

D, g′,p) for every population p (because
only the leader moves). So (qD, g,Q) t−→α (q′

D, g′, Q).
• t ∈ δC . Consider the population p = 2

∑
q∈Q q ∈ γ(Q). Then (qD, g,p) t−→

(qD, g′,p′), where p′ = p − qC + qC
′. But then p′ ≥

∑
q∈Q q, and so

α({p′}) ⊇ Q, which implies (qD, g,Q) t−→α (qD, g′, Q′) for some Q′ ⊇ Q.

So in every ω-path a0
t1−→α a1

t2−→α a2 · · · of αTS , where ai = (qDi, gi, Qi), there
is an index i at which the Qi stabilize, that is, Qi = Qi+k holds for every k ≥ 0.
However, the converse of (A) does not hold: given a path a0

t1−→α a1
t2−→α a2 · · ·

of αTS , there may be no path c0
t1−→ c1

t2−→ c2 · · · in TS such that ci ∈ γ(ai)
for every i ≥ 0. Consider a contributor machine C with two states q0, q1 and

76 A. Durand-Gasselin et al.

one single transition t = (q0, wc(1), q1). Then αTS contains the infinite path
(omitting the state of the leader, which plays no role):

(#, {q0}) t−→α (1, {q0, q1}) t−→α (1, {q0, q1}) t−→α (1, {q0, q1}) · · ·

However, the transitions of TS are of the form (1, k0q0+k1q1) t−→ (1, (k0−1)q0+
(k1+1)q1), and so TS has no infinite paths.

3.3 Realizable Cycles of the Abstract Transition System

We show that the existence of an infinite accepting path in TS reduces to the
existence of a certain lasso path in αTS . A lasso path consists of a stem and
a cycle. Lemma 2 shows how every abstract finite path (like the stem) has a
counterpart in TS . Lemma 3 characterizes precisely those cycles in αTS which
have an infinite path counterpart in TS .

Lemma 2. Let (qD, g,Q) be an abstract configuration of αTS reachable from
(q0D,#, α(P0)) (= αX0). For every p ∈ γ(Q), there exists p̂ such that (qD, g, p̂)
is reachable from (q0D,#,P0) and p̂ ≥ p.

Lemma 2 does not hold for atomic networks. Indeed, consider a contributor with

transitions q0
wc(1)−−−→ q1

rc(1):wc(2)−−−−−−−→ q2
rc(2):wc(3)−−−−−−−→ q3, where rc(i) : wc(j) denotes

that the read and the write happen in one single atomic step. Then we have
(omitting the state of the leader, which does not play any rôle here):

(#, {q0}) wc(1)−−−−→α (1, {q0, q1}) rc(1):wc(2)−−−−−−−−→α (2, {q0, q1, q2}) rc(2):wc(3)−−−−−−−−→α (3, {q0, . . . , q3}) .

Let p be the population putting one contributor in each of q0, . . . , q3. This pop-
ulation belongs to γ({q0, . . . , q3}) but no configuration (3, p̂) with p̂ > p is
reachable from any population that only puts contributors in q0, no matter how
many. Indeed, after the first contributor moves to q2, no further contributor can
follow, and so we cannot have contributors simultaneously in both q2 and q3. On
the contrary, in non-atomic networks the Copycat Lemma states that what the
move by one contributor can always be replicated by arbitrarily many.

We proceed to characterized the cycles of the abstract transition system that
can be “concretized”. A cycle of αTS is a path a0

t1−→α a1
t2−→α a2 · · · tn−1−−−→α an

such that an = a0. A cycle is realizable if there is an infinite path c0
t′
1−→ c1

t′
2−→

c2 · · · of TS such that ck ∈ γ(a(k mod n)) and t′k+1 = t(k+1 mod n) for every
k ≥ 0.

Lemma 3. A cycle a0
t1−→α a1

t2−→α a2 · · · tn−→α an of αTS is realizable iff∑n
i=1 Δ(ti) = 0.

Theorem 1. MC(FSM,FSM) is NP-complete.

Proof. NP-hardness follows from the NP-hardness of reachability [9]. We show
membership in NP with the following high-level nondeterministic algorithm
whose correctness relies on Lemmas 2 and 3:

Model Checking Parameterized Asynchronous Shared-Memory Systems 77

1. Guess a sequence Q1, . . . , Q� of subsets of QC such that Qi � Qi+1 for all i,
0 < i < �. Note that � ≤ |QC |.

2. Compute the set Q = QD × (G ∪ {#}) × {{q0C}, Q1, . . . , Q�} of abstract
configurations and the set T of abstract transitions between configurations
of Q.

3. Guess an accepting abstract configuration a ∈ Q, that is, an a = (qD, g,Q)
such that qD is accepting in D.

4. Check that a is reachable from the initial abstract configuration
(q0D,#, {q0C}) by means of abstract transitions of T .

5. Check that the transition system with Q and T as states and transitions
contains a cycle a0

t1−→α a1 · · · an−1
tn−→α an such that n ≥ 1, a0 = an = a

and
∑n

i=1 Δ(ti) = 0.

We show that the algorithm runs in polynomial time. First, because the sequence
guessed is no longer than |QC |, the guess can be done in polynomial time. Next,
we give a polynomial algorithm for step (5):

– Compute an FSA1 A�
a over the alphabet δD ∪ δC with Q as set of states, T

as set of transitions, a as initial state, and {a} as set of final states.
– Use the polynomial construction of Seidl et al. [15] to compute an (existential)

Presburger formula Ω for the Parikh image of L(A�
a). The free variables of Ω

are in one-to-one correspondence with the transitions of δD ∪ δC . Denote by
xt the variable corresponding to transition t ∈ δD ∪ δC .

– Compute the formula

Ω′ = Ω ∧
∧

qc∈Qc

(∑
tgt(t)=qc

xt =
∑

src(t)=qc
xt

)
∧

∑
t∈δD∪δC

xt > 0

where tgt and src returns the target and source states of the transition passed
in argument. Ω′ adds to Ω the realizability condition of Lemma 3.

– Check satisfiability of Ω′. This step requires nondterministic polynomial time
because satisfiability of an existential Presburger formula is in NP [11]. ��

4 MC(PDM,FSM) is NP-Complete

A pushdown system (PDM) P = (Q,Γ, δ, q0) over Σ consists of a finite set Q
of states including the initial state q0, a stack alphabet Γ including the bottom
stack symbol ⊥, and a set of rules δ ⊆ Q×Σ ×Γ ×Q× (Γ\{⊥}∪{pop}) which
either push or pop as explained below. A PDM-configuration qw consists of a
state q ∈ Q and a word w ∈ Γ ∗ (denoting the stack content). For q, q′ ∈ Q,
a ∈ Σ, γ, γ′ ∈ Γ , w,w′ ∈ Γ ∗, we say a PDM-configuration q′w (resp. q′γ′γw) a-
follows qγw if (q, a, γ, q′, pop) ∈ δ, (resp. (q, a, γ, q′, γ′) ∈ δ); we write qw

a−→ q′w′

if q′w′ a-follows qw, and call it a transition. A run c0
(v)1−−→ c1

(v)2−−→ . . . on a
word v ∈ Σω is a sequence of PDM-configurations such that c0 = q0⊥ and
1 A finite-state automaton (FSA) is an FSM which decides languages of finite words.

Therefore an FSA is an FSM with a set F of accepting states.

78 A. Durand-Gasselin et al.

ci
(v)i+1−−−−→ ci+1 for all i ≥ 0. We write c

∗−→ c′ if there is a run from c to c′. The
language L(P) of P is the set of all words v ∈ Σω such that P has a run on v.

A Büchi PDM is a PDM with a set F ⊆ Q of accepting states. A word is
accepted by a Büchi PDM if there is a run on the word for which some state
in F occurs infinitely often along the PDM-configurations. The following lemma
characterizes accepting runs.

Lemma 4. [7] Let c be a configuration. There is an accepting run starting from
c if there are states q ∈ Q, qf ∈ F , a stack symbol γ ∈ Γ such that c

∗−→ qγw for
some w ∈ Γ ∗ and qγ

∗−→ qfu
∗−→ qγw′ for some u,w′ ∈ Γ ∗.

We now show MC(PDM, FSM) is decidable, generalizing the proof from Sect. 3.
Fix a Büchi PDM P = (QD, ΓD, δD, q0D, F), and a FSM C = (QC , δC , q0C).
A configuration is a tuple (qD, w, g,p), where qD ∈ QD, w ∈ Γ ∗

D is the stack
content, g ∈ G ∪ {#}, and p is a population. Intuitively, qDw is the PDM-
configuration of the leader. We extend the definitions from Sect. 3 like accepting
configuration in the obvious way.

We define a labeled transition system TS = (X,T,X0), where X is the set
of configurations including the set X0 = (q0D,⊥,#,P0) of initial configurations,
and the transition relation T = TD ∪TC , where TC is as before and TD is the set
of triples

(
(qD, w, g,p), t, (q′

D, w′, g′,p)
)

such that t is a transition (not a rule)

of D, and one of the following conditions holds: (i) t = (qDw
wd(g′)−−−−→ q′

Dw′); or

(ii) t = (qDw
rd(g)−−−→ q′

Dw′) and g = g′. We define the abstraction αTS of TS as
the obvious generalization of the abstraction in Sect. 3. An accepting path of the
(abstract) transition system is an infinite path with infinitely many accepting
(abstract) configurations. As for MC(FSM, FSM), not every accepting path of the
abstract admits a concretization, but we find a realizability condition in terms
of linear constraints. Here we use again the polynomial construction of Seidl et
al. [15] mentioned in the proof of Theorem 1, this time to compute an (existential)
Presburger formula for the Parikh image of a pushdown automaton.

Theorem 2. MC(PDM,FSM) is NP-complete.

5 MC(PDM,PDM) is in NEXPTIME

We show how to reduce MC(PDM,PDM) to MC(PDM,FSM). We first introduce the
notion of effective stack height of a PDM-configuration in a run of a PDM, and
define, given a PDM C, an FSM Ck that simulates all the runs of C of effective
stack height k. Then we show that, for k ∈ O(n3), where n is the size of C, the
language (L(D) ‖ S ‖ �∞L(C)) is empty iff (L(D) ‖ S ‖ �∞L(Ck)) is empty.

5.1 A FSM for Runs of Bounded Effective Stack Height

Consider a run of a PDM that repeatedly pushes symbol on the stack. The stack
height of the configurations2 is unbounded, but, intuitively, the PDM only uses
2 For readability, we write “configuration” for “PDM-configuration.”.

Model Checking Parameterized Asynchronous Shared-Memory Systems 79

the topmost stack symbol during the run. To account for this we define the
notion of effective stack height.

Definition 3. Let ρ = c0
(v)1−−→ c1

(v)2−−→ · · · be an infinite run of a PDM on
ω-word v, where ci = qiwi. The dark suffix of ci in ρ, denoted by ds(wi), is the
longest suffix of wi that is also a proper suffix of wi+k for every k ≥ 0. The active
prefix ap(wi) of wi is the prefix satisfying wi = ap(wi)·ds(wi). The effective stack
height of ci in ρ is |ap(wi)|. We say that ρ is effectively k-bounded (or simply
k-bounded for the sake of readability) if every configuration of ρ has an effective
stack height of at most k. Further, we say that ρ is bounded if it is k-bounded for
some k ∈ N. Finally, an ω-word of the PDM is k-bounded, respectively bounded,
if it is the word generated by some k-bounded, respectively bounded, run (other
runs for the same word may not be bounded).

Intuitively, the effective stack height measures the actual memory required
by the PDM to perform its run. For example, repeatedly pushing symbols on the
stack produces a run with effective stack height 1. Given a position in the run, the
elements of the stack that are never popped are those in the longest common
suffix of all subsequent stacks. The first element of that suffix may be read,
therefore only the longest proper suffix is effectively useless, so no configuration
along an infinite run has effective stack height 0.

Proposition 1. Every infinite run of a PDM contains infinitely many positions
at which the effective stack height is 1.

Proof. Let p0w0 −→ p1w1 −→ p2w2 −→ · · · be any infinite run. Notice that |wi| ≥ 1
for every i ≥ 0, because otherwise the run would not be infinite. Let X be the set
of positions of the run defined as: i ∈ X iff |wi| ≤ |wj | for every j > i. Observe
that X is infinite, because the first configuration of minimal stack height, say
pkwk belongs to it, and so does the first configuration of minimal stack height
of the suffix pk+1wk+1 −→ · · · , etc. By construction, the configuration at every
position in X has effective stack height 1. ��

In a k-bounded run, whenever the stack height exceeds k, the k + 1-th stack
symbol will never become the top symbol again, and so it becomes useless.
So, we can construct a finite-state machine Pk recognizing the words of L(P)
accepted by k-bounded runs.

Definition 4. Given a PDM P = (Q,Γ, δ, q0), the FSM Pk = (Qk, δk, q0k),
called the k-restriction of Ps, is defined as follows: (a) Qk = Q ×

⋃k
i=1 Γ i

(a state of Pk consists of a state of P and a stack content no longer than k);
(b) q0k = (q0,⊥); (c) δk contains a transition (q, (w)1..k) a−→ (q′, (w′)1..k) iff
qw

a−→ q′w′ is a transition (not a rule) of P .

Theorem 3. Given a PDM P , w admits a k-bounded run in P iff w ∈ L(Pk).

80 A. Durand-Gasselin et al.

5.2 The Reduction Theorem

We fix a Büchi PDM D and a PDM C. By Theorem 3, in order to reduce
MC(PDM,PDM) to MC(PDM,FSM) it suffices to prove the following Reduction Theorem:

Theorem 4. (Reduction Theorem). Let N = 2|QC |2|ΓC | + 1, where QC

and ΓC are the states and stack alphabet of C, respectively. Let CN be the N -
restriction of C. We have:

(
L(D) ‖ S ‖ �∞L(C)

)
	= ∅ iff

(
L(D) ‖ S ‖ �∞L(CN)

)
	= ∅ . (†)

There are PDMs D, C for which (†) holds only for N ∈ Ω(|QC |2|ΓC |).

Theorems 4 and 2 provide an upper bound for MC(PDM,PDM). PSPACE-
hardness of the reachability problem [9] gives a lower bound.

Theorem 5. MC(PDM,PDM) is in NEXPTIME and PSPACE-hard. If the contrib-
utor is a one counter machine (with zero-test), it is NP-complete.

The proof of Theorem 4 is very involved. Given a run of D compatible with
a finite multiset of runs of C, we construct another run of D compatible with a
finite multiset of N -bounded runs of CN . (Here we extend compatibility to runs:
runs are compatible if the words they accept are compatible.)

The proof starts with the Distributing lemma, which, loosely speaking, shows
how to replace a run of C by a multiset of “smaller” runs of C without the
leader “noticing”. After this preliminary result, the first key proof element is
the Boundedness Lemma. Let σ be an infinite run of D compatible with a finite
multiset R of runs of C. The Boundedness Lemma states that, for any number
Z, the first Z steps of σ are compatible with a (possibly larger) multiset RZ of
runs of CN . Since the size of RZ may grow with Z, this lemma does not yet
prove Theorem 4: it only shows that σ is compatible with an infinite multiset
of runs of CN . This obstacle is overcome in the final step of the proof. We show
that, for a sufficiently large Z, there are indices i < j such that, not σ itself,
but the run (σ)1..i

(
(σ)i+1..j

)ω for adequate i and j is compatible with a finite
multiset of runs of CN . Loosely speaking, this requires to prove not only that the
leader can repeat (σ)i+1..j infinitely often, but also that the runs executed by
the instances of CN while the leader executes (σ)i+1..j can be repeated infinitely
often.

The Distributing Lemma. Let ρ = c0
a1−→ c1

a2−→ c2
a3−→ · · · be a (finite or infinite)

run of C. Let ri be the PDM-rule of C generating the transition ci−1
ai−→ ci. Then

ρ is completely determined by c0 and the sequence r1r2r3 . . . Since c0 is also fixed
(for fixed C), in the rest of the paper we also sometimes write ρ = r1r2r3 . . .
This notation allows us to speak of dom(ρ), (ρ)k, (ρ)i..j and (ρ)i..∞.

We say that ρ distributes to a multiset R of runs of C if there exists an
embedding function ψ that assigns to each run ρ′ ∈ R and to each position
i ∈ dom(ρ′) a position ψ(ρ′, i) ∈ dom(ρ), and satisfies the following properties:

Model Checking Parameterized Asynchronous Shared-Memory Systems 81

– (ρ′)i = (ρ)ψ(ρ′,i). (A rule occurrence in ρ′ is matched to another occurrence
of the same rule in ρ.)

– ψ is surjective. (For every position k ∈ dom(ρ) there is at least one ρ′ ∈ R
and a position i ∈ dom(ρ′) such that ψ(ρ′, i) = k, or, informally, R “covers”
ρ.)

– If i < j, then ψ(ρ′, i) < ψ(ρ′, j). (So ψ(ρ′, 1)ψ(ρ′, 2) · · · is a scattered subword
of ρ.)

Example 3. Let ρ be a run of a PDM P . Below are two distributions R and S
of ρ = rarbrbrcrcrc. On the left we have R = {ρ′

1, ρ
′
2, ρ

′
3}, and its embedding

function ψ; on the right S = {σ′
1, σ

′
2, σ

′
3}, and its function ψ′.

ψ 1 2 3
ρ′
1 1 6

ρ′
2 1 2 5

ρ′
3 1 3 4

1 2 3 4 5 6
ρ = ra rb rb rc rc rc

ρ′
1 = ra rc

ρ′
2 = ra rb rc

ρ′
3 = ra rb rc

ψ′ 1 2 3 4
σ′

1 1 4
σ′

2 1 2 4 5
σ′

3 1 3 5 6

1 2 3 4 5 6
ρ = ra rb rb rc rc rc

σ′
1 = ra rc

σ′
2 = ra rb rc rc

σ′
3 = ra rb rc rc

Lemma 5. (Distributing Lemma). Let u ∈ L(D), and let M be a multiset
of words of L(C) compatible with u. Let v ∈ M and let ρ an accepting run of v
in C that distributes to a multiset R of runs of C, and let MR the corresponding
multiset of words. Then M � {v} ⊕ MR is also compatible with u.

The Boundedness Lemma. We are interested in distributing a multiset of runs of
C into another multiset with, loosely speaking, “better” effective stack height.

Fix a run ρ of C and a distribution R of ρ with embedding function ψ. In
Example 3, (ρ)1..4 is distributed into (ρ′

1)1..1, (ρ′
2)1..2 and (ρ′

3)1..3. Assume ρ
is executed by one contributor. We can replace it by 3 contributors executing
ρ′
1, ρ

′
2, ρ

′
3, without the rest of the network noticing any difference. Indeed, the

three processes can execute ra immediately after each other, which for the rest
of the network is equivalent to the old contributor executing one ra. Then we
replace the execution of (ρ)2..4 by (ρ′

2)2(ρ
′
3)2..3.

We introduce some definitions allowing us to formally describe such facts.
Given k ∈ dom(ρ), we denote by c(ρ, k) the configuration reached by ρ after k
steps. We naturally extend this notation to define c(ρ, 0) as the initial config-
uration. We denote by lastψ(ρ′, i) the largest position k ∈ dom(ρ′) such that
ψ(ρ′, k) ≤ i (similarly if none exists, we fix lastψ(ρ′, i) = 0). Further, we denote
by cψ(ρ′, k) the configuration reached by ρ′ after k steps of ρ, that is, the con-
figuration reached by ρ′ after the execution of lastψ(ρ′, k) transitions; formally,
cψ(ρ′, k) = c(ρ′, lastψ(ρ′, k)).

Example 4. Let ρ, R, and ψ as in Example 3. Assuming that the PDM P has
one single state p, stack symbols {⊥, α} such that the three rules ra, rb and rc

are given by ra : p⊥ → pα⊥, rb : pα → pαα, and rc : pα → p, then we have
c(ρ, 5) = pα⊥. Further, lastψ(ρ′

1, 5) = 1, lastψ(ρ′
2, 5) = 3, and lastψ(ρ′

3, 5) = 3.
Finally, cψ(ρ′

1, 5) = pα⊥, cψ(ρ′
2, 5) = pα⊥, and cψ(ρ′

3, 5) = pα⊥.

Given Z ∈ dom(ρ) and K ∈ N, we say that a distribution R of ρ is (Z,K)-
bounded if for every ρ′ ∈ R and for every i ≤ Z, the effective stack height of

82 A. Durand-Gasselin et al.

cψ(ρ′, i) is bounded by K. Further, we say that R is synchronized if for every
configuration c(ρ, i) with effective stack height 1 and for every ρ′ ∈ R, cψ(ρ′, i) =
c(ρ, i) (same control state and same stack content), and also has effective stack
height 1.3 The Boundedness Lemma states that there is a constant N , depending
only on C, such that for every run ρ of C and for every Z ∈ dom(ρ) there is a
(Z,N)-bounded and synchronized distribution RZ of ρ. The key of the proof is
the following lemma.

Lemma 6. Let N = 2|QC |2|ΓC | + 1. Let ρ be a run of C and Z ∈ dom(ρ)
be the first position of ρ such that c(ρ, Z) is not N -bounded. Then there is a
(Z,N)-bounded and synchronized distribution of ρ.

Proof sketch. We construct a (Z,N)-bounded and synchronized distribution
{ρa, ρb} of ρ. Let αN+1αN · · · α1w0 be the stack content of c(ρ, Z). Define
{−→p 1,

←−p 1,
−→p 2,

←−p 2, . . . ,
−→p N ,←−p N} ⊆ dom(ρ) such that for each i, 1 ≤ i ≤ N

we have c(ρ,−→p i) and c(ρ,←−p i) are the configurations immediately after the sym-
bol αi in c(ρ, Z) is pushed, respectively popped and such that the stack con-
tent of each configuration between −→p i (included) and ←−p i (excluded) equals
wpαiαi−1 · · · α1w0 for some wp ∈ Γ ∗

C . We get c(ρ,−→p i) = qiαiαi−1 . . . α0w0 and
c(ρ,←−p i) = q′

iαi−1 . . . α0w0 for some qi, q
′
i ∈ QC . Observe that the following holds:

−→p 1 < · · · < −→p N−1 < −→p N < Z < ←−p N < ←−p N−1 < · · · < ←−p 1.
Since N = 2|QC |2|ΓC | + 1, by the pigeonhole principle we find q, α, q′ and

three indices 1 ≤ j1 < j2 < j3 ≤ N such that by letting w1 = αj1−1 · · · α1,
w2 = αj2−1 · · · αj1 and w3 = αj3−1 · · · αj2 , we have:

ρ =(ρ)1..−→p j1
[qαw1] (ρ)−→p j1+1..−→p j2

[qαw2w1] (ρ)−→p j2+1..−→p j3
[qαw3w2w1]

(ρ)−→p j3+1..←−p j3
[q

′
w3w2w1] (ρ)←−p j3+1..←−p j2

[q
′
w2w1] (ρ)←−p j2+1..←−p j1

[q
′
w1] (ρ)←−p j1+1..∞ .

Here, the notation indicates that we reach configuration [qαw1] after (ρ)1..−→p j1
,

the configuration [qαw2w1] after (ρ1..−→p j2
, etc.

Now define ρa from ρ by simultaneously deleting (ρ)−→p j1+1..−→p j2
and

(ρ)←−p j2+1..←−p j1
. We similarly define ρb by deleting (ρ)−→p j2+1..−→p j3

and (ρ)←−p j3+1..←−p j2
.

The following shows that ρa defines a legal run since it is given by

(ρ)1..−→p j1
[qαw1] (ρ)−→p j2+1..−→p j3

[qαw3w1](ρ)−→p j3+1..←−p j3
[q′w3w1] (ρ)←−p j3+1..←−p j2

[q′w1]

(ρ)←−p j1+1..∞ .

A similar reasoning holds for ρb. Finally, one can show that {ρa, ρb} is a (Z,N)-
bounded and synchronized distribution of ρ.

Lemma 7. (Boundedness Lemma). Let N = 2|QC |2|ΓC | + 1, and let ρ be
a run of C. For every Z ∈ dom(ρ) there is an (Z,N)-bounded and synchronized
distribution RZ of ρ.
3 Notice that the effective stack height of a configuration depends on the run it belongs

to, and so c(ρ, i) = cψ(ρ′, i) does not necessarily imply that they have the same
effective stack height.

Model Checking Parameterized Asynchronous Shared-Memory Systems 83

The proof is by induction on Z. The distribution ψZ+1, RZ+1 is obtained
from ψZ , RZ by distributing each run ρ′ of RZ to a (ψZ(ρ′, Z) + 1, N)-bounded
run (applying Lemma 6).

Proof Sketch of Theorem 4. Given a run σ of D compatible with a finite multiset
M of runs of C, we construct another run τ of D, and a multiset R of N -
bounded runs of CN such that τ and R are compatible as well. We consider only
the special case in which M has one single element ρ (and one single copy of
it). Since σ is compatible with ρ, we fix a witness π ∈ S such that π ∈ σ � ρ.
We construct a “lasso run” out of π of the form λ1[λ2]ω. It suffices to find two
positions in π where the content of the store is the same, the corresponding
configurations of the leader are the same, and similarly for each contributor; the
fragment between these two positions can be repeated (is “pumpable”).

Given a position i of π, let iρ and iσ denote the corresponding positions in
ρ and σ.4 Further, for every Z let RZ be a (Z,N)-bounded and synchronized
distribution of ρ with embedding function ψ (which exists by the Boundedness
Lemma). Let RZ(iρ) = {cψ(η, iρ) | η ∈ RZ} denote the multiset of configurations
reached by the runs of RZ after i steps of π. Using Proposition 1 and that (i)the
store has a finite number of values, (ii) RZ is (Z,N)-bounded, and (iii)there
are only finitely many active prefixes of length at most N , we can apply the
pigeonhole principle to find a sufficiently large number Z and three positions
i < j < k ≤ Z in π satisfying the following properties:

(1) The contents of the store at positions i and k of π coincide.
(2) The configurations c(σ, iσ) and c(σ, kσ) of the leader have effective stack

height 1, same topmost stack symbol and same control state. Further, σ
enters and leaves some accepting state between iσ and kσ.

(3) The configuration c(ρ, jρ) has effective stack height 1.
(4) For every configuration of RZ(iρ) there is a configuration of RZ(kρ) with the

same control state and active prefix, and vice versa.

Condition (4) means that, after removing the dark suffixes, RZ(iρ) and RZ(kρ)
contain the same pruned configurations, although possibly a different number of
times (same set, different multisets). If we obtain the same multiset, then the
fragment of π between positions i and k is pumpable by (1) and (2), and we are
done. Otherwise, we use (3) and the fact that RZ is synchronized (which had not
been used so far) to obtain a new distribution in which the multisets coincide.
This is achieved by adding new runs to RZ .

References

1. Abdulla, P.A., Bertrand, N., Rabinovich, A., Schnoebelen, P.: Verification of prob-
abilistic systems with faulty communication. Inf. Comput. 202(2), 105–228 (2005)

2. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.K.: General decidability theorems
for infinite-state systems. In: LICS’1996. pp. 313–321. IEEE Computer Society
(1996)

4 Position p in π defines position pσ in σ such that (σ)1..pσ = ProjΣD ((π)1..p),
similarly pρ is defined as satisfying (ρ)1..pρ = ProjΣC ((π)1..p).

84 A. Durand-Gasselin et al.

3. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Inf. Com-
put. 127(2), 91–101 (1996)

4. Aminof, B., Kotek, T., Rubin, S., Spegni, F., Veith, H.: Parameterized model
checking of rendezvous systems. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014.
LNCS, vol. 8704, pp. 109–124. Springer, Heidelberg (2014)

5. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of
population protocols. Distrib. Comput. 20(4), 279–304 (2007)

6. Apt, K.R., Kozen, D.C.: Limits for automatic verification of finite-state concurrent
systems. Inf. Process. Lett. 22(6), 307–309 (1986)

7. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
application to model-checking. In: CONCUR’1997: Proceedings of 8th Interna-
tional Conference on Concurrency Theory. LNCS, vol. 1243, pp. 135–150. Springer
(1997)

8. Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In:
LICS’1999. pp. 352–359. IEEE Computer Society (1999)

9. Esparza, J., Ganty, P., Majumdar, R.: Parameterized verification of asynchronous
shared-memory systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol.
8044, pp. 124–140. Springer, Heidelberg (2013)

10. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J. ACM
39(3), 675–735 (1992)

11. Grädel, E.: Subclasses of presburger arithmetic and the polynomial-time hierarchy.
Theor. Comput. Sci. 56, 289–301 (1988)

12. Hague, M.: Parameterised pushdown systems with non-atomic writes. In: Proceed-
ings of FSTTCS’2011. LIPIcs, vol. 13, pp. 457–468. Schloss Dagstuhl (2011)

13. Meyer, R.: On boundedness in depth in the pi-calculus. In: Procedings of IFIP
TCS 2008. IFIP, vol. 273, pp. 477–489. Springer (2008)

14. Pnueli, A., Xu, J., Zuck, L.D.: Liveness with (0, 1, ∞)-counter abstraction. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 107–122.
Springer, Heidelberg (2002)

15. Verma, K.N., Seidl, H., Schwentick, T.: On the complexity of equational horn
clauses. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 337–
352. Springer, Heidelberg (2005)

SMT and POR Beat Counter Abstraction:
Parameterized Model Checking

of Threshold-Based Distributed Algorithms

Igor Konnov(B), Helmut Veith, and Josef Widder

TU Wien (Vienna University of Technology), Vienna, Austria
konnov@forsyte.tuwien.ac.at

Abstract. Automatic verification of threshold-based fault-tolerant dis-
tributed algorithms (FTDA) is challenging: they have multiple parame-
ters that are restricted by arithmetic conditions, the number of processes
and faults is parameterized, and the algorithm code is parameterized due
to conditions counting the number of received messages. Recently, we
introduced a technique that first applies data and counter abstraction
and then runs bounded model checking (BMC). Given an FTDA, our
technique computes an upper bound on the diameter of the system. This
makes BMC complete: it always finds a counterexample, if there is an
actual error. To verify state-of-the-art FTDAs, further improvement is
needed. In this paper, we encode bounded executions over integer coun-
ters in SMT. We introduce a new form of offline partial order reduction
that exploits acceleration and the structure of the FTDAs. This aggres-
sively prunes the execution space to be explored by the solver. In this
way, we verified safety of seven FTDAs that were out of reach before.

1 Introduction

In recent work [28] we applied bounded model checking to verify reachabil-
ity properties of threshold-based fault-tolerant distributed algorithms (FTDA),
which are parameterized in the number of processes n and the fraction of faults t,
e.g., n > 3t. Moreover, we showed how to make bounded model checking com-
plete in the parameterized case. In particular, we considered counter systems
where we record for each local state, how many processes are in this state.
We have one counter per local state �, denoted by κ[�]. A process step from
local state � to local state �′ is modeled by decrementing κ[�] and incrementing
κ[�′]. When δ processes perform the same step one after the other, we allow the
processes to do the accelerated step that instantaneously changes two counters
by δ. The number δ is called acceleration factor, it can vary within a single run.

As we focus on FTDAs, we consider specific counter systems, namely those
defined by threshold automata. Here, transitions are guarded by threshold guards
that compare a shared integer variable to a linear combination of parameters,
e.g., x ≥ n− t or x < t, where x is a shared variable and n and t are parameters.

Supported by the Austrian National Research Network S11403 and S11405 (RiSE),
and project P27722 (PRAVDA) of the Austrian Science Fund (FWF).

c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 85–102, 2015.
DOI: 10.1007/978-3-319-21690-4 6

86 I. Konnov et al.

Completeness of the method [28] with respect to reachability is shown by
proving a bound on the diameter of the accelerated system. Inspired by Lam-
port’s view of distributed computation as partial order on events [30], our method
is in essence an offline partial order reduction. Instead of pruning executions that
are “similar” to ones explored before [22,38,43], we use the partial order to show
(offline) that every run has a similar run of bounded length. Interestingly, the
bound is independent of the parameters. In combination with the data abstrac-
tion of [25], we obtained the following automated method [28]:

1. Apply a parametric data abstraction to the process code to get a finite state
process description, and construct the threshold automaton (TA) [25,27].

2. Compute the diameter bound, based on the control flow of the TA.
3. Construct a system with abstract counters, i.e., a counter abstraction [25,39].
4. Perform SAT-based bounded model checking [7,16] up to the diameter bound,

to check whether bad states are reached in the counter abstraction.
5. If a counterexample is found, check its feasibility and refine, if needed [13,25].

While this allowed us to automatically verify several FTDAs not verified
before, there remained two bottlenecks for scalability to larger and more complex
protocols: First, due to abstraction there were spurious counterexamples. Second,
counter abstraction works well in practice only for processes with a few dozens
of local states, but it does not scale to hundreds of local states; partly because
many different interleavings result in a large search space.

To address these bottlenecks, we make two crucial contributions in this paper:
First, to eliminate one of the two sources of spurious counterexamples, namely,
the non-determinism added by abstract counters, we do bounded model checking
using SMT solvers with linear integer arithmetic on the accelerated system,
instead of SAT-based bounded model checking on the counter abstraction.

Second, we reduce the search space dramatically: We introduce the notion
of an execution schema that is defined as a sequence of local rules of the TA.
By assigning to each rule of a schema an acceleration factor (possibly 0), one
obtains a run of the counter system. Hence, each schema represents infinitely
many runs. We show how to construct a set of schemas whose set of reachable
states coincides with the set of reachable states of the accelerated counter system.

Our construction can be seen as an aggressive partial order reduction, where
each run has a similar run generated by a schema from the set. To show this,
we capture the guards that are locked and unlocked in a locking context. Our
key insight is that a bounded number of transitions changes the context in each
run. For example, of all transitions increasing a variable x, at most one makes
x ≥ n − t true, and at most one makes x < t false (the parameters n and t are
fixed in a run). We fix those transitions that change the context, and apply the
ideas of partial order reduction to the subexecutions between these transitions.

Our experiments show that SMT solvers and schemas outperform SAT solvers
and counter abstraction in parameterized verification of threshold-based FTDAs.
Indeed, we verified safety of complicated FTDAs [10,18,23,37,40,41] that have
not been automatically verified before. In addition we achieved dramatic speedup
and reduced memory footprint on previously verified FTDAs [9,12,42] (cf. [28]).

SMT and POR Beat Counter Abstraction 87

�1

�2

�3 �4 �5

r3 : ϕ1 �→ x++

r2 : ϕ2 �→ x++

r1 : true �→ x++

r4 : ϕ1 �→ y++

r5 : ϕ2 �→ y++

r6 : ϕ3

Fig. 1. An example threshold automaton.

2 A Motivating Example

Figure 1 is an example of a threshold automaton TA over two shared variables
x and y and parameters n, t, and f . It is inspired by the distributed asynchro-
nous broadcast protocol from [9], where n − f correct processes concurrently
execute TA, and f processes are Byzantine. As is typical for FTDAs, the para-
meters must satisfy a resilience condition, e.g., n > 3t ∧ t ≥ f ≥ 0 stating
that less than a third of the processes is faulty. The circles depict the local
states �1, . . . , �5, two of them are the initial states �1, �2. The edges depict the
rules r1, . . . , r6 labeled with guarded commands ϕ �→ act, where ϕ is one of
the threshold guards “ϕ1 : x ≥ �(n + t)/2� − f”, “ϕ2 : y ≥ (t + 1) − f”, and
“ϕ3 : y ≥ (2t + 1) − f”, and an action act increases the shared variables x or y
by one, or zero (as in rule r6).

Every local state �i has a non-negative counter κ[�i] that represents the
number of processes in �i. Together with the values of x, y, n, t, and f , the
values of the counters constitute a configuration of the system. In the initial
configuration there are n−f processes in initial states, i.e., κ[�1]+κ[�2] = n−f ,
and the other counters and the shared variables x and y are zero.

The rules define the transitions of the counter system. For instance, according
to the rule r2, if in the current configuration the guard y ≥ t + 1 − f holds true
and κ[�1] ≥ 5, then five processes can instantaneously move out of the local
state �1 to the local state �3, and increment x as prescribed by the action of r2.
This results in increase of x and the counter κ[�3] by five, and counter κ[�1] is
decreased by five. When, as in this example, rule r2 is conceptually executed
by 5 processes, we denote this transition by r5

2.
We now consider the runs more closely. As initially x and y are zero, threshold

guards ϕ1, ϕ2, and ϕ3 evaluate to false. As rules may only increase variables,
these guards may eventually become true. (In this example we do not consider
guards like x < t that are initially true and become false, although we treat
them later.) In fact, initially only r1 is unlocked. Because r1 increases x, it may
unlock ϕ1. Thus r4 becomes unlocked. Rule r4 increases y and thus repeated
execution of r4 (by different processes) first unlocks ϕ2 and then ϕ3. We call
the set of conditions which evaluate to true in a configuration the context. For
our example we observe that each run goes through the following sequence of
contexts {}, {ϕ1}, {ϕ1, ϕ2}, and {ϕ1, ϕ2, ϕ3}. In fact, the sequence of contexts
in an execution of a TA is always monotonic.

88 I. Konnov et al.

The conjunction of the guards in the context {ϕ1, ϕ2} implies the guards of
the rules r1, r2, r3, r4, r5; we say they are unlocked in the context. A technical
challenge addressed in this paper is to show that a fixed sequence of these rules
can “capture” all schedules allowed in this context. To this end we analyze the
control flow of the TA. Our example is acyclic up to self-loops, and thus the
control flow establishes a partial order on the rules. We show in this paper
that we can use any linear extension of this partial order as the required fixed
sequence, e.g., r1 < r2 < r3 < r4 < r5. (In this example we do not deal with
loops, although we handle them in Sect. 4.1.) It remains to deal with transitions
that actually change the context. In our example, only r4 or r5 can change the
context from {ϕ1, ϕ2} to {ϕ1, ϕ2, ϕ3}. Therefore we append r4, r5 —that change
the context —to the fixed sequence for the context. Thus, we obtain the following
schema, where inside the curly brackets we give the contexts, and between two
contexts the fixed sequences of rules. (We discuss the underlined rules below.)

S = {} r1, r1 {ϕ1} r1, r3, r4, r4 {ϕ1, ϕ2}
r1, r2, r3, r4, r5, r4, r5 {ϕ1, ϕ2, ϕ3} r1, r2, r3, r4, r5, r6 {ϕ1, ϕ2, ϕ3}

We now show how each schedule is captured by schema S. Consider, e.g., a
schedule from the initial state σ0 with n = 5, t = f = 1, κ[�1] = 1, and κ[�2] = 3.
We are interested in whether there is a schedule that reaches a configuration,
where all processes are in state �5. Consider the following schedule:

τ = r1
1,

τ1

r1
1︸︷︷︸

t1

, r1
3, r

1
1

τ2

, r1
4︸︷︷︸

t2

,

τ3

r1
5︸︷︷︸

t3

, r1
6, r

1
5, r

1
5, r

1
6, r

1
6, r

1
6

τ4

Observe that after r1
1, r

1
1, variable x = 2 and ϕ1 is true. Hence transition t1

changes the context from {} to {ϕ1}. Similarly t2 and t3 change the context.
Context changing transitions are marked with curly brackets. Between them we
have the subschedules τ1, . . . , τ4 (τ3 is empty) marked with square brackets.

To show that this schedule is captured by the schema, we apply partial order
arguments regarding distributed computations: As the guards ϕ2 and ϕ3 evaluate
to true in τ4, and r5 precedes r6 in the control flow of the TA, all transitions
r1
5 can be moved to the left in τ4. Similarly, r1

1 can be moved to the left in τ2.
The resulting schedule is applicable and leads to the same configuration as the
original one. Further, we can accelerate the adjacent transitions with the same
rule, e.g., the sequence r1

5, r
1
5 can be transformed into r2

5. Thus, we transform
subschedules τi into τ ′

i , and arrive at the following schedule τ ′ that we call the
representative schedule of τ . Importantly for reachability checking, if τ and τ ′

are applied to the same configuration, they end in the same configuration.

τ ′ = r1
1,

τ ′
1

r1
1︸︷︷︸

t1

, r1
1, r

1
3

τ ′
2

, r1
4︸︷︷︸

t2

,

τ ′
3

r1
5︸︷︷︸

t3

, r2
5, r

4
6

τ ′
4

Reconsidering schema S, we observe that the sequence of underlined rules in S
matches the schedule τ ′. In this paper we show that every schedule can be trans-
formed into a representative schedule that matches one schema from a small set of

SMT and POR Beat Counter Abstraction 89

schemas. Each schema in this set corresponds to one of the monotonic sequences
of contexts, and is constructed following the ideas from above. Completeness
regarding reachability follows from the fact that each schedule goes through a
monotonic sequence of contexts. For each schema, reachability can be expressed
by an SMT formula involving both state variables and parameters.

3 Parameterized Counter Systems

We extend the framework of [28]. A threshold automaton describes a process in
a concurrent system, and is a tuple TA = (L, I, Γ,Π,R,RC) defined below.

States. The finite set L contains the local states, and I ⊆ L is the set of initial
states. The finite set Γ contains the shared variables that range over N0. The
finite set Π is a set of parameter variables that range over N0, and the resilience
condition RC is a formula over parameter variables in linear integer arithmetic,
e.g., n > 3t. The set of admissible parameters is PRC = {p ∈ N

|Π|
0 : p |= RC}.

Rules. A rule defines a conditional transition between local states that may
update the shared variables. Formally, a rule is a tuple (from, to, ϕ≤, ϕ>,u):
The local states from and to are from L, and capture from which local state
to which a process moves. A rule is only executed if the conditions ϕ≤ and ϕ>

evaluate to true. Each condition is a conjunction of guards. Each guard is defined
using some shared variable x ∈ Γ , coefficients a0, . . . , a|Π| ∈ Z, and parameter
variables p1, . . . , p|Π| ∈ Π so that a0+

∑|Π|
i=1 ai ·pi ≤ x and a0+

∑|Π|
i=1 ai ·pi > x

are a lower guard and upper guard, respectively. Let ΦU and ΦL be the sets of
lower and upper guards. The set guard(ϕ≤) ⊆ ΦU is the set of guards used in ϕ≤,
while the set guard(ϕ>) ⊆ ΦL is the set of guards used in ϕ>.

Rules may increase shared variables using an update vector u ∈ N
|Γ |
0 that is

added to the vector of shared variables. Finally, R is the finite set of rules.

Definition 1. Given a threshold automaton (L, I, Γ,Π,R,RC), we define the
precedence relation ≺P : for a pair of rules r1, r2 ∈ R, it holds that r1 ≺P r2

if and only if r1.to = r2.from. We denote by ≺+
P the transitive closure of ≺P .

Further, we say that r1 ∼P r2, if r1 ≺+
P r2 ∧ r2 ≺+

P r1, or r1 = r2.

As in [28], we limit ourselves to threshold automata relevant for FTDAs, namely
those where r.u = 0 for all rules r ∈ R that satisfy r ≺+

P r.

Looplets. The relation ∼P defines equivalence classes of rules. An equivalence
class corresponds to a loop or a single rule that is not part of a loop. Hence, we
use the term looplet for one such equivalence class. For a given set of rules R
let R/∼ be the set of equivalence classes defined by ∼P . We denote by [r] the
equivalence class of rule r. For two classes c1 and c2 from R/∼ we write c1 ≺C c2

iff there are two rules r1 and r2 in R satisfying [r1] = c1 and [r2] = c2 and
r1 ≺+

P r2 and r1 ∼P r2. As the relation ≺C is a strict partial order, there are
linear extensions of ≺C . Below, we fix an arbitrary of these linear extensions to
sort transitions in a schedule: We denote by ≺lin

C a linear extension of ≺C .

90 I. Konnov et al.

3.1 Counter Systems

Given a threshold automaton TA, a function N : PRC → N0 that determines the
number of processes to be modeled (typically, N(n, t, f) = n−f) and admissible
parameter values p ∈ PRC , we define a counter system as a transition system
(Σ, I,R), that consists of the set of configurations Σ, which contain the counters
and variables, the set of initial configurations I, and the transition relation R:

Configurations Σ and I. A configuration σ = (κ,g,p) consists of a vec-
tor of counter values σ.κ ∈ N

|L|
0 (for simplicity we use the convention that

L = {1, . . . , |L|}) a vector of shared variable values σ.g ∈ N
|Γ |
0 , and a vector

of parameter values σ.p = p. The set Σ is the set of all configurations. The
set of initial configurations I contains the configurations that satisfy σ.g = 0,∑

i∈I σ.κ[i] = N(p), and
∑

i�∈I σ.κ[i] = 0.

Transition Relation R. A transition is a pair t = (rule, factor) of a rule of
the TA and a non-negative integer called the acceleration factor, or just factor
for short. For a transition t = (rule, factor) we refer by t.u to rule.u, by t.ϕ>

to rule.ϕ>, etc. We say a transition t is unlocked in configuration σ if ∀k ∈
{0, . . . , t.factor − 1}. (σ.κ, σ.g + k · t.u, σ.p) |= t.ϕ≤ ∧ t.ϕ>.

A transition t is applicable (or enabled) in configuration σ, if it is unlocked,
and σ.κ[t.from] ≥ t.factor , or t.factor = 0. We say that σ′ is the result of
applying the enabled transition t to σ, and use the notation σ′ = t(σ), if

– σ′.g = σ.g + t.factor · t.u and σ′.p = σ.p
– if t.from = t.to then σ′.κ[t.from] = σ.κ[t.from] − t.factor and σ′.κ[t.to] =

σ.κ[t.to] + t.factor and ∀� ∈ L \ {t.from, t.to}. σ′.κ[�] = σ.κ[�]
– if t.from = t.to then σ′.κ = σ.κ

The transition relation R ⊆ Σ×Σ of the counter system is defined as follows:
(σ, σ′) ∈ R iff there is a r ∈ R and a k ∈ N0 such that σ′ = t(σ) for t = (r, k).
As updates to shared variables do not decrease their values, we obtain:

Proposition 1 ([28]). For all configurations σ, all rules r, and all transitions t
applicable to σ, the following holds:

1 . Ifσ |= r.ϕ≤thent(σ) |= r.ϕ≤ 3 . Ifσ |= r.ϕ>thent(σ) |= r.ϕ>

2 . Ift(σ) |= r.ϕ≤thenσ |= r.ϕ≤ 4 . Ift(σ) |= r.ϕ>thenσ |= r.ϕ>

Schedules and Paths. A schedule is a sequence of transitions. For a schedule τ
and an index i : 1 ≤ i ≤ |τ |, by t[i] we denote the ith transition of τ , and by τ i

we denote the prefix t[1], . . . , t[i] of τ . A schedule τ = t1, . . . , tm is applicable to
configuration σ0, if there is a sequence of configurations σ1, . . . , σm with σi =
ti(σi−1) for 1 ≤ i ≤ m. If there is a ti.factor > 1, then a schedule is accelerated.

By τ · τ ′ we denote the concatenation of two schedules τ and τ ′. A sequence
σ0, t1, σ1, . . . , σk−1, tk, σk of alternating configurations and transitions is called a
(finite) path, if transition ti is enabled in σi and σi = ti(σi−1), for 1 ≤ i ≤ k. For
a configuration σ0 and a schedule τ applicable to σ, by path(σ0, τ) we denote
the path σ0, t1, . . . , t|τ |, σ|τ | with ti = τ [i] and σi = ti(σi−1), for 1 ≤ i ≤ |τ |.

SMT and POR Beat Counter Abstraction 91

3.2 Contexts and Slices

The evaluation of the guards in the sets ΦU and ΦL solely defines whether certain
rules are unlocked. Due to Proposition 1, we infer that when the transitions of
a schedule are applied, more and more guards from ΦU become unlocked and
more and more guards from ΦL become locked. To capture this, we define:

Definition 2. A context is a pair (ΩU ,ΩL) of subsets ΩU ⊆ ΦU and ΩL ⊆ ΦL.
We denote by Ω the pair (ΩU ,ΩL), and by |Ω| = |ΩU | + |ΩL|.
For two contexts (ΩU

1 ,ΩL
1) and (ΩU

2 ,ΩL
2), we define that (ΩU

1 , ΩL
1) � (ΩU

2 , ΩL
2)

if and only if ΩU
1 ∪ ΩL

1 ⊂ ΩU
2 ∪ ΩL

2 . Then, a sequence of contexts Ω1, . . . , Ωm is
monotonically increasing, if Ωi � Ωi+1 for 1 ≤ i < m. Further, a monotonically
increasing sequence of contexts Ω1, . . . , Ωm is maximal, if Ω1 = (∅, ∅) and Ωm =
(ΦU , ΦL) and |Ωi+1| = |Ωi| + 1, for 1 ≤ i < m. We obtain:

Proposition 2. Every maximal monotonically increasing sequence of contexts
is of length |ΦU | + |ΦL| + 1. There are at most (|ΦU | + |ΦL|)! such sequences.

Definition 3. Given a threshold automaton, we define its configuration context
as a function ω : Σ → 2ΦU × 2ΦL

that for each configuration σ ∈ Σ gives a
context (ΩU ,ΩL) with ΩU = {ϕ ∈ ΦU : σ |= ϕ} and ΩL = {ϕ ∈ ΦL : σ |= ϕ}.
Proposition 3. If a transition t is enabled in a configuration σ, then either
ω(σ) � ω(t(σ)), or ω(σ) = ω(t(σ)).

We say that a schedule τ is steady for a configuration σ, if for every prefix τ ′ of
τ , the context does not change, i.e., ω(τ ′(σ)) = ω(σ).

Proposition 4. A schedule τ is steady for a configuration σ if and only if
ω(σ) = ω(τ(σ)).

Given a configuration σ and a schedule τ applicable to σ, we say that path(σ, τ) is
consistent with a sequence of contexts Ω1, . . . , Ωm, if the set of indices {0, . . . , |τ |}
can be partitioned into m (possibly empty) disjoint sets I1, . . . , Im such that
ω(τ i(σ)) = Ωk, for 1 ≤ k ≤ m and i ∈ Ik.

A context defines which rules of the TA are unlocked. As we consider steady
schedules, we need to understand, which rules are unlocked in that schedule:

Definition 4. Given a threshold automaton TA = (L, I, Γ,Π,R,RC) and a
context Ω, we define the slice of TA with context Ω as a threshold automaton
TA|Ω = (L, I, Γ,Π,R|Ω ,RC), where a rule r ∈ R belongs to R|Ω if and only if(∧

ϕ∈ΩU ϕ
)

→ r.ϕ≤ and
(∧

ψ∈ΦL\ΩL ψ
)

→ r.ϕ>.

3.3 Parameterized Reachability

Given a threshold automaton TA, a state property B is a boolean combination of
formulas that have the form

∧
i∈Y κ[i] = 0, for some Y ⊆ L. The parameterized

reachability problem is to decide whether there are parameter values p ∈ PRC ,
an initial configuration σ0 ∈ I, with σ0.p = p, and a schedule τ satisfying that τ
is applicable to σ0, and property B holds in the final state: τ(σ0) |= B.

92 I. Konnov et al.

4 Main Result: A Complete Set of Schemas

We introduce the notion of a schema that is an alternating sequence of contexts
and sequences of rules. A schema serves as a pattern for an infinite set of paths,
and can be used to efficiently encode parameterized reachability in SMT. We
show how to construct a set of schemas S with the following property: for each
schedule τ and each configuration σ, there is a representative schedule, i.e., a
schedule that if applied to σ, ends in τ(σ), and is generated by a schema from S.

Definition 5. A schema is a sequence Ω0, ρ1, Ω1, . . . , ρm, Ωm of alternating
contexts and rule sequences. Often we write {Ω0}ρ1{Ω1} . . . {Ωm−1}ρm{Ωm}
for a schema. A schema with two contexts is called simple.

Given two schemas S1 = Ω0, ρ1, . . . , ρk, Ωk and S2 = Ω′
0, ρ

′
1, . . . , ρ

′
m, Ω′

m with
Ωk = Ω′

0, we define their composition S1 ◦ S2 to be the schema that is obtained
by concatenation of the two sequences: Ω0, ρ1, . . . , ρk, Ω′

0, ρ
′
1, . . . , ρ

′
m, Ω′

m.

Definition 6. Given a configuration σ and a schedule τ applicable to σ, we say
that path(σ, τ) is generated by a simple schema {Ω} ρ {Ω′}, if the following hold:

– For ρ = r1, . . . , rk there is a monotonically increasing sequence of indices
i(1), . . . , i(m), i.e., 1 ≤ i(1) < · · · < i(m) ≤ k, and there are factors
f1, . . . , fm > 0, so that schedule (ri(1), f1), . . . , (ri(m), fm) = τ .

– The first and the last states match the contexts: ω(σ) = Ω and ω(τ(σ)) = Ω′.

In general, we say that path(σ, τ) is generated by a schema S, if S = S1 ◦· · ·◦
Sk for simple schemas S1, . . . , Sk and τ = τ1 · · · τk such that each path(πi(σ), τi)
is generated by the simple schema Si, for πi = τ1 · · · τi−1 and 1 ≤ i ≤ k.

The language of a schema S — denoted with L(S) — is the set of all paths
generated by S. For a set of configurations C ⊆ Σ and a set of schemas S, we
define the set Reach(C,S) to contain all configurations reachable from C via
the paths generated by the schemas from S, i.e., Reach(C,S) = {τ(σ) | σ ∈
C, ∃S ∈ S. path(σ, τ) ∈ L(S)}. We say that a set S of schemas is complete, if:
∀C ⊆ Σ. {τ(σ) | σ ∈ C, τ is applicable to σ} = Reach(C,S).

In [28, Thm. 1], we introduced a quantity C that depends on the number of
conditions in a TA, and have shown that for every configuration σ and every
schedule τ applicable to σ, there is a schedule τ ′ of length at most d = |R| · (C +
1)+C that is also applicable to σ and results in τ(σ). Hence, by enumerating all
sequences of rules of length up to d, one can construct a complete set of schemas:

Corollary 1. For a threshold automaton, there is a complete schema set Sd of
cardinality |R||R|·(C+1)+C.

Although the set Sd is finite, enumerating all its elements is impractical. We
show that there is a complete set of schemas whose cardinality solely depends
on the number of guards that syntactically occur in the TA. These numbers |ΦU |
and |ΦL| are in practice much smaller than the number of rules |R|:

SMT and POR Beat Counter Abstraction 93

Theorem 1. For a threshold automaton, there is a complete schema set of car-
dinality at most (|ΦU | + |ΦL|)!, where the length of each schema does not exceed
(3 · (|ΦU | + |ΦL|) + 2) · |R|.

Proof Idea. Construct the set Z of all maximal monotonically increasing
sequences of contexts. From Proposition 2, there are at most (|ΦU | + |ΦL|)!
maximal monotonically increasing sequences of contexts. Therefore, |Z| ≤
(|ΦU | + |ΦL|)!. Then, for each sequence z ∈ Z, we do the following:

1. Show that for each configuration σ and each schedule τ applicable to σ and
consistent with the sequence z, there is a schedule s(τ) that has a specific
structure, and is also applicable to σ. We call s(τ) the representative of τ .

2. Construct a schema and show that it generates all paths of all schedules s(τ)
found in (1). The length of the schema is at most (3 · (|ΦU | + |ΦL|) + 2) · |R|.

To prove Theorem 1, it remains to show existence of a representative schedule
and of a schema as formulated in (1)–(2). We do this below in Proposition 9 and
Theorem 2 respectively. Before that we consider special cases: when all rules of
a schedule belong to the same looplet, and when a schedule is steady.

4.1 Special Case I: One Context and One Looplet

We show that for each schedule that uses only the rules from a fixed looplet and
does not change its context, there exists a representative schedule of bounded
length that reaches the same final state.

Proposition 5. Fix a threshold automaton, a context Ω, and a looplet c ∈
(R|Ω)

/
∼ in the slice TA|Ω. Let σ be a configuration and τ = t1, . . . , tm a steady

schedule applicable to σ, with [ti.rule] = c for 1 ≤ i ≤ |τ |. There exists a
representative schedule crepΩ

c [σ, τ] with the following properties:

(a) schedule crepΩ
c [σ, τ] is applicable to σ, and crepΩ

c [σ, τ](σ) = τ(σ),
(b) the rule of each transition t in crepΩ

c [σ, τ] belongs to c, that is, [t.rule] = c,
(c) schedule crepΩ

c [σ, τ] is not longer than 2 · |c|.

Proof Idea for Proposition 5. If |c| = 1, then we use a single accelerated transition
or the empty schedule as representative. If |c| > 1, the rules of the slice TA|Ω form
a strongly connected component. Then, we can choose a node h, and construct
two spanning trees: an out-tree, whose edges are pointing away from h, and an in-
tree, whose edges are pointing to h. Using the trees, we construct two sequences
of rules sorted in the topological order of the trees: the sequence rin(1), . . . , rin(k)
moves processes to h, and the sequence rout(1), . . . , rout(m) distributes the
processes from h to the locations. As a result, for each location � in the graph,
the processes are transferred from � to the other locations, if σ[�] > τ(σ)[�], and
additional processes arrive at �, if σ[�] < τ(σ)[�].

94 I. Konnov et al.

Proposition 6. Fix a threshold automaton, a context Ω, and a looplet c ∈
(R|Ω)

/
∼ in the slice TA|Ω. There exists a schema cschemaΩ

c with the follow-
ing properties: For each configuration σ and each steady schedule τ = t1, . . . , tm
applicable to σ, if [ti.rule] = c for 1 ≤ i ≤ |τ |, then path(σ, τ ′) of the representa-
tive schedule τ ′ = crepΩ

c [σ, τ] from Proposition 5 is generated by cschemaΩ
c .

Proof idea. We construct the schema using the same sequence of rules as in
Proposition 5, i.e., cschemaΩ

c = {Ω} rin(1), . . . , rin(k), rout(1), . . . , rout(m) {Ω}.
It follows that cschemaΩ

c generates all paths of the representative schedules.

4.2 Special Case II: One Context and Multiple Looplets

In this section, we show that for each steady schedule, there exists a represen-
tative steady schedule of bounded length that reaches the same final state.

Proposition 7. Fix a threshold automaton and a context Ω. For every configu-
ration σ with ω(σ) = Ω and every steady schedule τ applicable to σ, there exists
a steady schedule srepΩ [σ, τ] with the following properties:

(a) srepΩ [σ, τ] is applicable to σ, and srepΩ [σ, τ](σ) = τ(σ),
(b) |srepΩ [σ, τ]| ≤ 2 · |(R|Ω)

/
∼|

To construct a representative schedule, we fix a context Ω of at TA, a con-
figuration σ with ω(σ) = Ω, and a steady schedule τ applicable to σ. The key
notion in our construction is a projection of a schedule on a set of looplets:

Definition 7. Let τ = t1, . . . , tk be a schedule and C be a set of looplets. Given
an increasing sequence of indices i(1), . . . , i(m) ∈ {1, . . . , k}, i.e., i(j) < i(j +1),
for 1 ≤ j < m, a schedule ti(1) . . . ti(m) is a projection of τ on C, if each index
j ∈ {1, . . . , k} belongs to {i(1), . . . , i(m)} if and only if [tj .rule] ∈ C.

In fact, each schedule τ has a unique projection on a set C. In the following, we
write τ |c1,...,cm to denote the projection of τ on a set {c1, . . . , cm}.

Provided that c1, . . . , cm are all looplets of the slice (R|Ω)
/
∼ ordered with

respect to ≺lin
C , we construct the following sequences of projections on each

looplet (note that π0 is the empty schedule): πi = τ |c1 · · · · · τ |ci for 0 ≤ i ≤ m.
Having defined {πi}0≤i≤m, we construct the representative srepΩ [σ, τ] simply

as a concatenation of the representatives of each looplet:

srepΩ [σ, τ] = crepΩ
c1 [π0(σ), τ |c1] · crepΩ

c2 [π1(σ), τ |c2] · · · crepΩ
cm [πm−1(σ), τ |cm]

Lemma 1 (Looplet Sorting). Given a threshold automaton, a context Ω, a
configuration σ, a steady schedule τ applicable to σ, and a sequence c1, . . . , cm of
all looplets in the slice (R|Ω)

/
∼ with the property ci ≺lin

C cj for 1 ≤ i < j ≤ m,
the following holds:

1. Schedule τ |c1 is applicable to the configuration σ.
2. Schedule τ |c2,...,cm is applicable to the configuration τ |c1(σ).
3. Schedule τ |c1 · τ |c2,...,cm , when applied to σ, results in configuration τ(σ).

SMT and POR Beat Counter Abstraction 95

Proof (of Proposition 7). By iteratively applying Lemma 1, we prove by induc-
tion that schedule τ |c1 · · · · · τ |cm is applicable to σ and results in τ(σ). From
Proposition 5, we conclude that each schedule τ |ci can be replaced by its repre-
sentative crepΩ

ci [πi−1(σ), τ |ci]. Thus, srepΩ [σ, τ] is applicable to σ and results in
τ(σ). By Proposition 4, schedule srepΩ [σ, τ] is steady, since ω(σ) = ω(τ(σ)). ��

Finally, we show that for a given context, there is a schema that generates all
paths of such representative schedules.

Proposition 8. Fix a threshold automaton and a context Ω. Let c1, . . . , cm be
the sorted sequence of all looplets of the slice (R|Ω)

/
∼, i.e., it holds that c1 ≺lin

C

. . . ≺lin
C cm. Schema sschemaΩ = cschemaΩ

c1 ◦cschemaΩ
c2 ◦· · ·◦cschemaΩ

cm satisfies:
For each configuration σ with ω(σ) = Ω and each steady schedule τ applicable
to σ, path(σ, τ ′) of the representative τ ′ = srepΩ [σ, τ] is generated by sschemaΩ.

Proof. As for an arbitrary configuration σ with ω(σ) = Ω and a steady sched-
ule τ applicable to σ, we constructed srepΩ [σ, τ] as a sorted sequence of repre-
sentatives of the looplets, all paths of srepΩ [σ, τ] are generated by sschemaΩ . ��

4.3 The General Case

Using the results from Sects. 4.1 and 4.2, for each configuration and each schedule
(without restrictions) we construct a representative schedule.

Proposition 9. Given a threshold automaton, a configuration σ, and schedule τ
applicable to σ, there exists a schedule rep[σ, τ] with the following properties:

(a) rep[σ, τ] is applicable to σ, and rep[σ, τ](σ) = τ(σ),
(b) |rep[σ, τ]| ≤ 2 · |R| · (|ΦU | + |ΦL| + 1) + |ΦU | + |ΦL|.

Proof Idea. Consider the maximal monotonically increasing sequence Ω0, . . . , Ωm

such that path(σ, τ) is consistent with the sequence. Thus, τ contains at most m
transitions that change their context, and schedules between these transitions
are steady. By applying Proposition 7, we replace the steady schedules with their
representatives and obtain rep[σ, τ], which is applicable to σ and results in τ(σ).
By Proposition 7, the representative of a steady schedule is not longer than
2 · |R|, which together with m transitions gives us the bound 2 · |R| · (m+1)+m.
By Proposition 2, the number m is |ΦU | + |ΦL|. This gives us the needed bound.

Further, given a maximal monotonically increasing sequence z of contexts,
we construct a schema that generates all paths of the schedules consistent with z:

Theorem 2. For a threshold automaton and a monotonically increasing
sequence z of contexts, there exists a schema schema(z) that generates all
paths of the representative schedules that are consistent with z, and the length
of schema(z) does not exceed (3 · |R| + 1) · (|ΦU | + |ΦL|) + 2 · |R|.

96 I. Konnov et al.

Proof. Given a threshold automaton, let ρall be the sequence r1, . . . , r|R| of all
rules from R, and z = Ω0, . . . , Ωm a monotonically increasing sequence of con-
texts. By the construction in Proposition 9, each representative schedule rep[σ, τ]
consists of the representatives of steady schedules terminated with transitions
that change the context. Then, for each context Ωi, for 0 ≤ i < m, we compose
sschemaΩ with {Ωi} ρall {Ωi+1}. This composition generates the representative
of a steady schedule and the transition changing the context from Ωi to Ωi+1.
Consequently, we construct the schema(z) as follows:

(sschemaΩ0 ◦ {Ω0} ρall {Ω1}) ◦ · · · ◦ (sschemaΩm−1 ◦ {Ωm−1} ρall {Ωm}) ◦ sschemaΩm

By inductively applying Proposition 8, we prove that schema(z) generates
all paths of schedules rep[σ, τ] that are consistent with the sequence z. We get
the needed bound on the length of schema(z) by using an argument similar to
Proposition 9 and by noting that we add |R| extra rules per context. ��

Computing the Complete Set of Schemas. Our proofs show that the set of
schemas is easily computed from the TA: The threshold guards are syntactic
parts of the TA, and enable us to directly construct increasing sequences of
contexts. To find a slice of the TA for a given context, we filter the rules with
unlocked guards, i.e., check if the context contains the guard. To produce the
simple schema of a looplet, we compute a spanning tree over the slice. To con-
struct simple schemas, we do a topological sort over the looplets. For example,
it takes just 30 s to compute the schemas in our longest experiment that runs
for 4 h.

4.4 Optimization: Smaller Complete Sets of Schemas

Entailment Optimization. We say that a guard ϕ1 ∈ ΦU entails a guard ϕ2 ∈ ΦU ,
if for all combinations of parameters p ∈ PRC and shared variables g ∈ N

|Γ |
0 , it

holds that (g,p) |= ϕ1 → ϕ2. For instance, in our example, ϕ3 : y ≥ (2t + 1) − f
entails ϕ2 : y ≥ (t + 1) − f . If ϕ1 entails ϕ2, then we can omit all monotonically
increasing sequences that contain a context (ΩU ,ΩL) with ϕ1 ∈ ΩU and ϕ2 ∈ ΩU .
If the number of schemas before applying this optimization is m! and there are k
entailments, then the number of schemas reduces from m! to (m−k)!. A similar
optimization is introduced for the guards from ΦL.
Control Flow Optimization. Based on the proof of Lemma 1, we introduce the
following optimization for TAs that are DAGs (possibly with self loops).

We say that a rule r ∈ R may unlock a lower guard ϕ ∈ ΦU , if there is a
p ∈ PRC and g ∈ N

|Γ |
0 satisfying: (g,p) |= r.ϕ≤ ∧ r.ϕ> (the rule is unlocked);

(g,p) |= ϕ (the guard is locked); (g + r.u,p) |= ϕ (the guard is now unlocked).
In our example, the rule r1 may unlock the guard ϕ1.
Let ϕ ∈ ΦU be a guard, r′

1, . . . , r
′
m be the rules that use ϕ, and r1, . . . , rk be

the rules that may unlock ϕ. If ri ≺lin
C r′

j , for 1 ≤ i ≤ k and 1 ≤ j ≤ m, then we
exclude some sequences of contexts as follows (we call ϕ forward-unlockable). Let
ψ1, . . . , ψn ∈ ΦU be the guards of r1, . . . , rk. Guard ϕ cannot be unlocked before

SMT and POR Beat Counter Abstraction 97

ψ1, . . . , ψn, and thus we can omit all sequences of contexts, where ϕ appears
in the contexts before ψ1, . . . , ψn. Moreover, as ψ1, . . . , ψn are the only guards
of the rules unlocking ϕ, we omit the sequences with different combinations of
contexts involving ϕ and the guards from ΦU \ {ϕ,ψ1, . . . , ψn}. Finally, as the
rules r′

1, . . . , r
′
m appear after the rules r1, . . . , rk in the order ≺lin

C , the rules
r′
1, . . . , r

′
m appear after the rules r1, . . . , rk in a rule sequence of every schema.

Thus, we omit the combinations of the contexts involving ϕ and ψ1, . . . , ψn.
Hence, we add all forward-unlockable guards to the initial context (we still

check the guards of the rules in the SMT encoding in Sect. 5). If the number
of schemas before applying this optimization is m! and there are k forward-
unlocking guards, then the number of schemas reduces from m! to (m − k)!.
A similar optimization is introduced for the guards from ΦL.

5 Checking a Schema with SMT

The encoding for a schema is obtained by decomposing the schema into a
sequence of simple schemas and encoding the simple schemas. Given a simple
schema S = {Ω1} r1, . . . , rm {Ω2}, we construct an SMT formula such that every
model of the formula represents a path from L(S), and for every path in L(S)
there is a corresponding model of the formula. Thus, we need to model a path of
m + 1 configurations and m transitions (whose acceleration factors may be 0).

To represent a configuration σi, for 0 ≤ i ≤ m, we introduce two vectors of
SMT variables: a vector ki = (ki

1, . . . , k
i
|L|) to represent the process counters,

a vector xi = (xi
1, . . . , x

i
|Γ |) to represent the shared variables. We call the pair

(ki,xi) the layer i, for 1 ≤ i ≤ m.
A straightforward way to represent a bounded computation of length m is to

encode the choice of a rule from R and to encode all the rules from R for each
layer. In any case, we do not encode bounded computation but rather schemas,
for which the sequence of rules r1, . . . , rm is fixed. We exploit this in two ways:
First, instead of encoding the choice of a rule and encoding all rules, we encode
for each layer i the constraints of rule ri. Second, as this constraint may update
only two counters — ri.from and ri.to —we do not need |L| counter variables per
layer, but only encode the two counters per layer that have actually changed.
As is a common technique in bounded model checking, the counters that are
not changed are “reused” from previous layers in our encoding. By doing so,
we encode the schema rules with |L| + |Γ | + m · (2 + |Γ |) integer variables, 2m
equations, and at most m·(|ΦU |+|ΦL|) inequalities over linear integer arithmetic.

6 Experiments

Implementation. We have implemented the technique in our tool ByMC (Byzan-
tine Model Checker [2]), which integrates with an SMT solver via the interface
provided by SMTLIB2. In our experiments, we used Z3 [17] as back-end solver.

98 I. Konnov et al.

Table 1. Summary of our experiments on AMD Opteron R©6272, 32 cores, 192 GB.
The symbols are: “ ” for timeout of 24 h.; “ ” for memory overrun of 32 GB;
“ ” for BDD nodes overrun; “ ” for timeout in the refinement loop (24 h.);
“ ” for spurious counterexamples due to counter abstraction. � In these cases, we
used the control flow optimization from Sect. 4.4.

Benchmarks. We revisited several asynchronous FTDAs that we evaluated in
previous work [25,28]. In addition to these classic FTDAs, we considered asyn-
chronous (Byzantine) consensus algorithms — namely, BOSCO [41], C1CS [10],
and CF1S [18] — that are designed to work despite partial failure of the distrib-
uted system. All our benchmarks, their source code in our parametric extension
of Promela, and the code of the threshold automata are freely available [1].

The challenge in the verification of FTDAs is the immense non-determinism
caused by interleavings, asynchronous message passing, and faults. In our mod-
eling, all these are reflected in non-deterministic choices in the Promela code.
To obtain threshold automata, as required for our technique, our tool constructs
a parametric interval data abstraction [25] that adds to non-determinism.
Evaluation. Table 1 summarizes our experiments conducted with nuXmv, FAST,
and our new implementation. We evaluated four different tool configurations:
our new implementation (SMT); our previous implementation that checks the
counter abstraction with nuXmv [11], either using binary decision diagrams

SMT and POR Beat Counter Abstraction 99

(BDD), or SAT-based bounded model checking (BMC); and the acceleration-
based tool FAST [4]. We compare our results with FAST, as TAs can be encoded
with counter automata [3], which FAST receives at its input. For FAST, we give
only the figures using the Mona plugin, which produced the best results in our
experiments. For BMC, our tool first generates a SAT formula with nuXmv and
then calls the solver Lingeling [6] to check satisfiability in non-incremental mode.
This works better than the incremental mode with MiniSAT, built into nuXmv.

On large problems, our new technique works significantly better than BDD-
and SAT-based model checking. BDDs work extremely well on smaller problems.
Importantly, our new technique does not use abstraction refinement.

NBAC and NBACC are challenging as the model checker produces many
spurious counterexamples, which are an artifact of counter abstraction losing or
adding processes. When using SAT-based model checking, the individual calls
to nuXmv are fast, but the abstraction-refinement loop times out, due to a
large number of refinements (about 500). BDD-based model checking times out
when looking for a counterexample. Our new technique, preserves the number
of proceses, and thus, there are no spurious counterexamples of this kind.

In comparison to the general-purpose acceleration tool FAST, our tool uses
less memory and is faster on the benchmarks where FAST is successful.

As predicted by the distributed algorithms literature, our tool finds coun-
terexamples, when we relax the resilience condition. In contrast to counter
abstraction, our new technique gives concrete values of the parameters and shows
how many processes move at each step.

Our new method uses integer counters and thus does not introduce spurious
behavior caused by counter abstraction, but still has spurious counterexam-
ples from parameterized data abstraction for complex FTDAs such as BOSCO,
C1CS, NBAC, and NBACC. In these cases, we manually refine the interval
domain by adding new symbolic interval borders, see [25]. We believe that these
interval borders can be derived directly from the TA, so that no refinement is
necessary in the first place, and leave this question to future work.

7 Discussions

We introduced a method to efficiently check reachability properties of FTDAs
in a parameterized way. If n > 7t as for BOSCO, even the simplest interesting
case with t = 2 leads to a system size that is out of range of explicit state model
checking. Hence, FTDAs force us to develop parameterized verification methods.

The problem we consider is concerned with parameterized model checking,
for which many interesting results exist [14,15,19–21,26]. However, the FTDAs
considered by us run under the different assumptions. In [28], we discuss the rela-
tion between partial orders in accelerated counter systems of threshold automata
and the following work: compact programs [35], counter abstraction [5,39], com-
pleteness thresholds [7,16,29], partial order reduction [8,22,38,43], and Lipton’s
movers [34]. We also discussed their relation to counter automata. Indeed, our
result entails flattability [33] of every counter system of threshold automata: a

100 I. Konnov et al.

complete set of schemas immediately gives us a flat counter automaton. Hence,
the acceleration semi-algorithms [3,33] should terminate on the systems of TAs,
though it rarely happens in our experiments. Further, our execution schemas are
inspired by a general notion of semi-linear path schemas SLPS [32,33]. We con-
struct a small complete set of schemas and thus a provably small SLPS. Besides,
in our work we distinguish counter systems and counter abstraction: the former
counts processes as integers, while the latter uses counters over a finite abstract
domain, e.g., {0, 1,many} [39].

Many distributed algorithms can be specified with I/O Automata [36] or
TLA+ [31]. In these frameworks, correctness is typically shown with a proof
assistant, while model checking is used as a debugger on small instances. Para-
meterized model checking is not a concern there, except one notable result [24].

Finally, to verify all properties of FTDAs, we have to check that they are not
only safe, but also progress. Liveness properties is a subject to ongoing work.

References

1. https://github.com/konnov/fault-tolerant-benchmarks/tree/master/2015
2. ByMC: Byzantine model checker. http://forsyte.tuwien.ac.at/software/bymc/

(2013). Accessed Feb 2015
3. Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: Fast: acceleration from theory to

practice. STTT 10(5), 401–424 (2008)
4. Bardin, S., Leroux, J., Point, G.: FAST extended release. In: Ball, T., Jones, R.B.

(eds.) CAV 2006. LNCS, vol. 4144, pp. 63–66. Springer, Heidelberg (2006)
5. Basler, G., Mazzucchi, M., Wahl, T., Kroening, D.: Symbolic counter abstraction

for concurrent software. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 64–78. Springer, Heidelberg (2009)

6. Biere, A.: Lingeling, plingeling and treengeling entering the SAT competition 2013.
In: Proceedings of SAT Competition 2013, Solver and p. 51 (2013)

7. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

8. Bokor, P., Kinder, J., Serafini, M., Suri, N.: Efficient model checking of fault-
tolerant distributed protocols. In: DSN, pp. 73–84 (2011)

9. Bracha, G., Toueg, S.: Asynchronous consensus and broadcast protocols. J. ACM
32(4), 824–840 (1985)

10. Brasileiro, F., Greve, F.G.P., Mostéfaoui, A., Raynal, M.: Consensus in one com-
munication step. In: Malyshkin, V.E. (ed.) PaCT 2001. LNCS, vol. 2127, pp. 42–50.
Springer, Heidelberg (2001)

11. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,
Mover, S., Roveri, M., Tonetta, S.: The nuXmv symbolic model checker. In: Biere,
A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Heidelberg
(2014)

12. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. JACM 43(2), 225–267 (1996)

13. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

https://github.com/konnov/fault-tolerant-benchmarks/tree/master/2015
http://forsyte.tuwien.ac.at/software/bymc/

SMT and POR Beat Counter Abstraction 101

14. Clarke, E., Talupur, M., Veith, H.: Proving ptolemy right: the environment abstrac-
tion framework for model checking concurrent systems. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 33–47. Springer, Heidelberg
(2008)

15. Clarke, E., Talupur, M., Touili, T., Veith, H.: Verification by network decompo-
sition. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp.
276–291. Springer, Heidelberg (2004)

16. Clarke, E., Kroning, D., Ouaknine, J., Strichman, O.: Completeness and complexity
of bounded model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS,
vol. 2937, pp. 85–96. Springer, Heidelberg (2004)

17. De Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

18. Dobre, D., Suri, N.: One-step consensus with zero-degradation. In: DSN,
pp. 137–146 (2006)

19. Emerson, E.A., Kahlon, V.: Model checking guarded protocols. In: LICS,
pp. 361–370, IEEE (2003)

20. Emerson, E., Namjoshi, K.: Reasoning about rings. In: POPL, pp. 85–94 (1995)
21. Esparza, J., Ganty, P., Majumdar, R.: Parameterized verification of asynchronous

shared-memory systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS,
vol. 8044, pp. 124–140. Springer, Heidelberg (2013)

22. Godefroid, P.: Using partial orders to improve automatic verifcation methods. In:
Clarke, E.M., Kurshan, R.P. (eds.) CAV. LNCS, vol. 531, pp. 176–185. Springer,
Heidelberg (1990)

23. Guerraoui, R.: Non-blocking atomic commit in asynchronous distributed systems
with failure detectors. Distrib. Comput. 15(1), 17–25 (2002)

24. Jensen, H.E., Lynch, N.A.: A proof of burns n-process mutual exclusion algorithm
using abstraction. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, p. 409.
Springer, Heidelberg (1998)

25. John, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Parameterized model
checking of fault-tolerant distributed algorithms by abstraction. In: FMCAD, pp.
201–209 (2013)

26. Kaiser, A., Kroening, D., Wahl, T.: Efficient coverability analysis by proof mini-
mization. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454,
pp. 500–515. Springer, Heidelberg (2012)

27. Kesten, Y., Pnueli, A.: Control and data abstraction: the cornerstones of practical
formal verification. STTT 2, 328–342 (2000)

28. Konnov, I., Veith, H., Widder, J.: On the completeness of bounded model checking
for threshold-based distributed algorithms: reachability. In: Baldan, P., Gorla, D.
(eds.) CONCUR 2014. LNCS, vol. 8704, pp. 125–140. Springer, Heidelberg (2014)

29. Kroning, D., Strichman, O.: Efficient computation of recurrence diameters. In:
Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS,
vol. 2575, pp. 298–309. Springer, Heidelberg (2002)

30. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

31. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley Longman Publishing Co., Inc., Boston
(2002)

32. Leroux, J., Sutre, G.: On flatness for 2-dimensional vector addition systems with
states. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170,
pp. 402–416. Springer, Heidelberg (2004)

102 I. Konnov et al.

33. Leroux, J., Sutre, G.: Flat counter automata almost everywhere!. In: Peled, D.A.,
Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 489–503. Springer, Heidelberg
(2005)

34. Lipton, R.J.: Reduction: a method of proving properties of parallel programs. Com-
mun. ACM 18(12), 717–721 (1975)

35. Lubachevsky, B.D.: An approach to automating the verification of compact parallel
coordination programs. I. Acta Informatica 21(2), 125–169 (1984)

36. Lynch, N.: Distributed Algorithms. Morgan Kaufman, San Francisco (1996)
37. Mostéfaoui, A., Mourgaya, E., Parvédy, P.R., Raynal, M.: Evaluating the condition-

based approach to solve consensus. In: DSN, pp. 541–550 (2003)
38. Peled, D.: All from one, one for all: on model checking using representatives. CAV.

LNCS 697, 409–423 (1993)
39. Pnueli, A., Xu, J., Zuck, L.D.: Liveness with (0, 1, ∞)-counter abstraction. In:

Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 93–111.
Springer, Heidelberg (2002)

40. Raynal, M.: A case study of agreement problems in distributed systems: non-
blocking atomic commitment. In: HASE, pp. 209–214 (1997)

41. Song, Y.J., Van Renesse, R.: Bosco: one-step byzantine asynchronous consensus.
In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 438–450. Springer,
Heidelberg (2008)

42. Srikanth, T., Toueg, S.: Simulating authenticated broadcasts to derive simple fault-
tolerant algorithms. Dist. Comp. 2, 80–94 (1987)

43. Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg,
G. (ed.) Advances in Petri Nets 1990. LNCS, vol. 483, pp. 491–515. Springer,
Heidelberg (1991)

Skipping Refinement

Mitesh Jain(B) and Panagiotis Manolios

Northeastern University, Boston, USA
{jmitesh,pete}@ccs.neu.edu

Abstract. We introduce skipping refinement, a new notion of correct-
ness for reasoning about optimized reactive systems. Reasoning about
reactive systems using refinement involves defining an abstract, high-
level specification system and a concrete, low-level implementation sys-
tem. One then shows that every behavior allowed by the implementation
is also allowed by the specification. Due to the difference in abstraction
levels, it is often the case that the implementation requires many steps to
match one step of the specification, hence, it is quite useful for refinement
to directly account for stuttering. Some optimized implementations, how-
ever, can actually take multiple specification steps at once. For example,
a memory controller can buffer the commands to the memory and at
a later time simultaneously update multiple memory locations, thereby
skipping several observable states of the abstract specification, which
only updates one memory location at a time. We introduce skipping
simulation refinement and provide a sound and complete characteriza-
tion consisting of “local” proof rules that are amenable to mechaniza-
tion and automated verification. We present case studies that highlight
the applicability of skipping refinement: a JVM-inspired stack machine,
a simple memory controller and a scalar to vector compiler transforma-
tion. Our experimental results demonstrate that current model-checking
and automated theorem proving tools have difficulty automatically ana-
lyzing these systems using existing notions of correctness, but they can
analyze the systems if we use skipping refinement.

1 Introduction

Refinement is a powerful method for reasoning about reactive systems. The
idea is to prove that every execution of the concrete system being verified is
allowed by the abstract system. The concrete system is defined at a lower level
of abstraction, so it is usually the case that it requires several steps to match
one high-level step of the abstract system. Thus, notions of refinement usually
directly account for stuttering [5,10,13].

Engineering ingenuity and the drive to build ever more efficient systems has
led to highly-optimized concrete systems capable of taking single steps that

This research was supported in part by DARPA under AFRL Cooperative Agree-
ment No. FA8750-10-2-0233, by NSF grants CCF-1117184 and CCF-1319580, and
by OSD under contract FA8750-14-C-0024.

c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 103–119, 2015.
DOI: 10.1007/978-3-319-21690-4 7

104 M. Jain and P. Manolios

perform the work of multiple abstract steps. For example, in order to reduce
memory latency and effectively utilize memory bandwidth, memory controllers
often buffer requests to memory. The pending requests in the buffer are analyzed
for address locality and then at some time in the future, multiple locations in the
memory are read and updated simultaneously. Similarly, to improve instruction
throughput, superscalar processors fetch multiple instructions in a single cycle.
These instructions are analyzed for instruction-level parallelism (e.g., the absence
of data dependencies) and, where possible, are executed in parallel, leading to
multiple instructions being retired in a single cycle. In both these examples,
in addition to stuttering, a single step in the implementation may perform the
work of multiple abstract steps, e.g., by updating multiple locations in memory
and retiring multiple instructions in a single cycle. Thus, notions of refinement
that only account for stuttering are not appropriate for reasoning about such
optimized systems. In Sect. 3, we introduce skipping refinement, a new notion
of correctness for reasoning about reactive systems that “execute faster” and
therefore can skip some steps of the specification. Skipping can be thought of
as the dual of stuttering: stuttering allows us to “stretch” executions of the
specification system and skipping allows us to “squeeze” them.

An appropriate notion of correctness is only part of the story. We also want to
leverage the notion of correctness in order to mechanically verify systems. To this
end, in Sect. 4, we introduce Well-Founded Skipping, a sound and complete char-
acterization of skipping simulation that allows us to prove refinement theorems
about the kind of systems we consider using only local reasoning. This charac-
terization establishes that refinement maps always exist for skipping refinement.
In Sect. 5, we illustrate the applicability of skipping refinement by mechanizing
the proof of correctness of three systems: a stack machine with an instruction
buffer, a simple memory controller, and a simple scalar-to-vector compiler trans-
formation. We show experimentally that by using skipping refinement current
model-checkers are able to verify systems that otherwise are beyond their capa-
bility to verify. We end with related work and conclusions in Sects. 6 and 7.

Our contributions include (1) the introduction of skipping refinement, which
is the first notion of refinement to directly support reasoning about optimized
systems that execute faster than their specifications (as far as we know) (2) a
sound and complete characterization of skipping refinement that requires only
local reasoning, thereby enabling automated verification and showing that refine-
ment maps always exist (3) experimental evidence showing that the use of
skipping refinement allows us to extend the complexity of systems that can
be automatically verified using state-of-the-art model checking and interactive
theorem proving technology.

2 Motivating Examples

To illustrate the notion of skipping simulation, we consider a running example
of a discrete-time event simulation (DES) system. A state of the abstract, high-
level specification system is a three-tuple 〈t, E,A〉 where t is a natural number

Skipping Refinement 105

corresponding to the current time, E is a set of pairs (e, te) where e is an event
scheduled to be executed at time te (we require that te ≥ t), and A is an
assignment of values to a set of (global) state variables. The transition relation
for the abstract DES system is defined as follows. If there is no event of the form
(e, t) ∈ E, then there is nothing to do at time t and so t is incremented by 1.
Otherwise, we (nondeterministically) choose and execute an event of the form
(e, t) ∈ E. The execution of an event can modify the state variables and can also
generate a finite number of new events, with the restriction that the time of any
generated event is > t. Finally, execution involves removing (e, t) from E.

Now, consider an optimized, concrete implementation of the abstract DES
system. As before, a state is a three-tuple 〈t, E,A〉. However, unlike the abstract
system which just increments time by 1 when no events are scheduled for the
current time, the optimized system uses a priority queue to find the next event
to execute. The transition relation is defined as follows. An event (e, te) with the
minimum time is selected, t is updated to te and the event e is executed, as above.

Notice that the optimized implementation of the discrete-time event simu-
lation system can run faster than the abstract specification system by skipping
over abstract states when no events are scheduled for execution at the current
time. This is neither a stuttering step nor corresponds to a single step of the spec-
ification. Therefore, it is not possible to prove that the implementation refines
the specification using notions of refinement that only allow stuttering [13,17],
because that just is not true. But, intuitively, there is a sense in which the opti-
mized DES system does refine the abstract DES system. Skipping refinement
is our attempt at formally developing the theory required to rigorously reason
about these kinds of systems.

Due to its simplicity, we will use the discrete-time event simulation example in
later sections to illustrate various concepts. After the basic theory is developed,
we provide an experimental evaluation based on three other motivating exam-
ples. The first is a JVM-inspired stack machine that can store instructions in a
queue and then process these instructions in bulk at some later point in time.
The second example is an optimized memory controller that buffers requests
to memory to reduce memory latency and maximize memory bandwidth uti-
lization. The pending requests in the buffer are analyzed for address locality
and redundant writes and then at some time in the future, multiple locations
in the memory are read and updated in a single step. The final example is a
compiler transformation that analyzes programs for superword-level parallelism
and, where possible, replaces multiple scalar instructions with a compact SIMD
instruction that concurrently operates on multiple words of data. All of these
examples require skipping refinement, because the optimized concrete systems
can do more than inject stuttering steps in the executions specified by their
specification systems; they can also collapse executions.

3 Skipping Simulation and Refinement

In this section, we introduce the notions of skipping simulation and refinement.
We do this in the general setting of labeled transition systems where we allow
state space sizes and branching factors of arbitrary infinite cardinalities.

106 M. Jain and P. Manolios

We start with some notational conventions. Function application is some-
times denoted by an infix dot “.” and is left-associative. For a binary relation
R, we often write xRy instead of (x, y) ∈ R. The composition of relation R with
itself i times (for 0 < i ≤ ω) is denoted Ri (ω = N and is the first infinite ordinal).
Given a relation R and 1 < k ≤ ω, R<k denotes

⋃
1≤i<k Ri and R≥k denotes

⋃
ω>i≥k Ri . Instead of R<ω we often write the more common R+. � denotes the

disjoint union operator. Quantified expressions are written as 〈Qx : r : p〉, where
Q is the quantifier (e.g., ∃,∀), x is the bound variable, r is an expression that
denotes the range of x (true if omitted), and p is the body of the quantifier.

Definition 1. A labeled transition system (TS) is a structure 〈S,→, L〉, where
S is a non-empty (possibly infinite) set of states, → ⊆ S × S is a left-total
transition relation (every state has a successor), and L is a labeling function: its
domain is S and it tells us what is observable at a state.

A path is a sequence of states such that for adjacent states s and u, s → u.
A path, σ, is a fullpath if it is infinite. fp.σ.s denotes that σ is a fullpath starting
at s and for i ∈ ω, σ(i) denotes the ith element of path σ.

Our definition of skipping simulation is based on the notion of matching, which
we define below. Informally, we say a fullpath σ matches a fullpath δ under
relation B if the fullpaths can be partitioned into non-empty, finite segments
such that all elements in a particular segment of σ are related to the first element
in the corresponding segment of δ.

Definition 2 (Match). Let INC be the set of strictly increasing sequences of
natural numbers starting at 0. Given a fullpath σ, the ith segment of σ with
respect to π ∈ INC, written πσi, is given by the sequence 〈σ(π.i),, σ(π.(i +
1) − 1)〉. For π, ξ ∈ INC and relation B, we define
corr(B , σ, π, δ, ξ) ≡ 〈∀i ∈ ω: : 〈∀s ∈ πσi: : sBδ(ξ.i)〉〉 and
match(B , σ, δ) ≡ 〈∃π, ξ ∈ INC: : corr(B , σ, π, δ, ξ)〉.

In Fig. 1, we illustrate our notion of matching using our running example of a
discrete-time event simulation system. Let the set of state variables be {v1, v2}
and let the set of events contain {(e1, 0), (e2, 2)}, where event ei increments
variable vi by 1. In the figure, σ is a fullpath of the concrete system and δ
is a fullpath of the abstract system. (We only show a prefix of the fullpaths.)
The other parameter for match is B, which, for our example, is just the identity
relation. In order to show that match(B , σ, δ) holds, we have to find π, ξ satisfying
the definition. In the figure, we separate the partitions induced by our choice for
π, ξ using −− and connect elements related by B with . Since all elements
of a σ partition are related to the first element of the corresponding δ partition,
corr(B , σ, π, δ, ξ) holds, therefore, match(B , σ, δ) holds.

Given a labeled transition system M = 〈S,−→, L〉, a relation B ⊆ S × S is a
skipping simulation, if for any s, w ∈ S such that sBw, s and w are identically
labeled and any fullpath starting at s can be matched by some fullpath starting
at w.

Skipping Refinement 107

〈0, {(e1, 0), (e2, 2), . . .}, {v1 = 1, v2 = 1}〉 〈0, {(e1, 0), (e2, 2), . . .}, {v1 = 1, v2 = 1}〉

(s1)〈0, {(e2, 2), . . .}, {v1 = 2, v2 = 1}〉 〈0, {(e2, 2), . . .}, {v1 = 2, v2 = 1}〉

〈1, {(e2, 2), . . .}, {v1 = 2, v2 = 1}〉〉

〈2, {(e2, 2), . . .}, {v1 = 2, v2 = 1}〉〉

〈2, {. . .}, {v1 = 2, v2 = 2}〉〉 〈2, {. . .}, {v1 = 2, v2 = 2}〉〉

Concrete(σ) Abstract(δ)

− − −−

− − −−

− − −−

− − −−

Fig. 1. Discrete-time Event simulation system

Definition 3 (Skipping Simulation). B ⊆ S × S is a skipping simulation
(SKS) on TS M = 〈S,−→, L〉 iff for all s, w such that sBw, the following hold.
(SKS1) L.s = L.w

(SKS2) 〈∀σ : fp.σ.s : 〈∃δ : fp.δ.w : match(B , σ, δ)〉〉

It may seem counter-intuitive to define skipping refinement with respect to a
single transition system, since our ultimate goal is to relate transition systems
at different levels of abstraction. Our current approach has certain technical
advantages and we will see how to deal with two transition systems shortly.

In our running example of a discrete-time event simulation system, neither
the optimized concrete system nor the abstract system stutter, i.e., they do not
require multiple steps to complete the execution of an event. However, suppose
that the abstract and concrete system are modified so that execution of an
event takes multiple steps. For example, suppose that the execution of e1 in the
concrete system (the first partition of σ in Fig. 1) takes 5 steps and the execution
of e1 in the abstract system (the first partition of δ in Fig. 1) takes 3 steps. Now,
our abstract system is capable of stuttering and the concrete system is capable
of both stuttering and skipping. Skipping simulation allows this, i.e., we can
define π, ξ such that corrBσπδξ still holds.

Note that skipping simulation differs from weak simulation [10]; the latter
allows infinite stuttering. Since we want to distinguish deadlock from stuttering, it
is important we distinguish between finite and infinite stuttering. Skipping simula-
tion also differs from stuttering simulation, as the former allows an concrete system
to skip steps of the abstract system and therefore run “faster” than the abstract
system. In fact, skipping simulation is strictly weaker than stuttering simulation.

3.1 Skipping Refinement

We now show how the notion of skipping simulation, which is defined in terms of a
single transition system, can be used to define the notion of skipping refinement,

108 M. Jain and P. Manolios

a notion that relates two transition systems: an abstract transition system and a
concrete transition system. In order to define skipping refinement, we make use
of refinement maps, functions that map states of the concrete system to states
of the abstract system. Refinement maps are used to define what is observable
at concrete states. If the concrete system is a skipping refinement of the abstract
system, then its observable behaviors are also behaviors of the abstract system,
modulo skipping (which includes stuttering). For example, in our running exam-
ple, if the refinement map is the identity function then any behavior of the opti-
mized system is a behavior of the abstract system modulo skipping.

Definition 4 (Skipping Refinement). Let MA = 〈SA,
A→, LA〉 and MC =

〈SC ,
C→, LC〉 be transition systems and let r : SC → SA be a refinement map. We

say MC is a skipping refinement of MA with respect to r, written MC �r MA,
if there exists a relation B ⊆ SC × SA such that all of the following hold.

1. 〈∀s ∈ SC : : sBr.s〉 and
2. B is an SKS on 〈SC � SA,

C→ � A→,L where L.s = LA(s) for s ∈ SA, and
L.s = LA(r.s) for s ∈ SC .

Notice that we place no restrictions on refinement maps. When refinement is used
in specific contexts it is often useful to place restrictions on what a refinement
map can do, e.g., we may require for every s ∈ SC that LA(r.s) is a projection of
LC(s). Also, the choice of refinement map can have a big impact on verification
times [18]. Our purpose is to define a general theory of skipping, hence, we prefer
to be as permissive as possible.

4 Automated Reasoning

To prove that transition system MC is a skipping refinement of transition system
MA, we use Definitions 3 and 4, which require us to show that for any fullpath
from MC we can find a “matching” fullpath from MA. However, reasoning
about the existence of infinite sequences can be problematic using automated
tools. In order to avoid such reasoning, we introduce the notion of well-founded
skipping simulation. This notion allows us to reason about skipping refinement
by checking mostly local properties, i.e., properties involving states and their
successors. The intuition is, for any pair of states s, w, which are related and a
state u such that s −→ u, there are four cases to consider (Fig. 2): (a) either we
can match the move from s to u right away, i.e., there is a v such that w −→ v and
u is related to v, or (b) there is stuttering on the left, or (c) there is stuttering
on the right, or (d) there is skipping on the left.

Definition 5 (Well-founded Skipping). B ⊆ S × S is a well-founded skip-
ping relation on TS M = 〈S,−→, L〉 iff :

(WFSK1) 〈∀s, w ∈ S : sBw : L.s = L.w〉

Skipping Refinement 109

s w

u v

(a)

s w

u

(b)

s w

u v

(c)

s w

u v ≥ 2

(d)

Fig. 2. Well-founded skipping simulation

(WFSK2) There exist functions, rankt : S ×S → W , rankl : S ×S ×S → ω, such
that 〈W,≺〉 is well-founded and
〈∀s,u, w ∈ S : s −→ u ∧ sBw :

(a) 〈∃v : w −→ v : uBv〉 ∨
(b) (uBw ∧ rankt(u,w) ≺ rankt(s, w)) ∨
(c) 〈∃v : w −→ v : sBv ∧ rankl(v, s, u) < rankl(w, s, u)〉 ∨
(d) 〈∃v : w →≥2 v : uBv〉〉

In the above definition, notice that condition (2d) requires us to check that there
exists a v such that v is reachable from w and uBv holds. Reasoning about reach-
ability is not local in general. However, for the kinds of optimized systems we
are interested in, we can reason about reachability using local methods because
the number of abstract steps that a concrete step corresponds to is bounded by
a constant. As an example, the maximum number of high-level steps that a con-
crete step of an optimized memory controller can correspond to is the size of the
request buffer; this is a constant that is determined early in the design. Another
option is to replace condition (2d) with a condition that requires only local rea-
soning. While this is possible, in light of the above comments, the increased
complexity is not justified.

Next, we show that the notion of well-founded skipping simulation is equiv-
alent to SKS and can be used as a sound and complete proof rule to check if a
given relation is an SKS. This allows us to match infinite sequences by checking
local properties and bounded reachability. To show this we first introduce an
alternative definition for well-founded skipping simulation. The motivation for
doing this is that the alternate definition is useful for proving the soundness and
completeness theorems. It also allows us to highlight the idea behind the condi-
tions in the definition of well-founded skipping simulation. The simplification is
based on two observations. First, it turns out that (d) and (a) together subsume
(c), so in the definition below, we do not include case (c). Second, if instead of
→≥2 we use →+ in (d), then we subsume case (a) as well.

Definition 6. B ⊆ S × S is a reduced well-founded skipping relation on TS
M = 〈S,−→, L〉 iff :

(RWFSK1) 〈∀s, w ∈ S : sBw : L.s = L.w〉

110 M. Jain and P. Manolios

(RWFSK2) There exists a function, rankt : S × S → W , such that 〈W,≺〉 is
well-founded and
〈∀s,u, w ∈ S : s −→ u ∧ sBw :

(a) (uBw ∧ rankt(u,w) ≺ rankt(s, w)) ∨
(b) 〈∃v : w →+ v : uBv〉〉

In the sequel, “WFSK” is an abbreviation for “well-founded skipping relation”
and, similarly, “RWFSK” is an abbreviation for “reduced well-founded skipping
relation.”

We now show that WFSK and RWFSK are equivalent.

Theorem 1. B is a WFSK on M = 〈S,−→, L〉 iff B is an RWFSK on M.

Proof. (⇐ direction): This direction is easy.
(⇒ direction): The key insight is that WFSK2c is redundant. Let s, u, w ∈ S, s →
u, and sBw. If WFSK2a or WFSK2d holds then RWFSK2b holds. If WFSK2b
holds, then RWFSK2a holds. So, what remains is to assume that WFSK2c holds
and neither of WFSK2a, WFSK2b, or WFSK2d hold. From this we will derive
a contradiction.

Let δ be a path starting at w, such that only WFSK2c holds between s, u, δ.i.
There are non-empty paths that satisfy this condition, e.g., let δ = 〈w〉. In
addition, any such path must be finite. If not, then for any adjacent pair of
states in δ, say δ.k and δ(k + 1), rankl(δ(k + 1), s, u) < rankl(δ.k, s, u), which
contradicts the well-foundedness of rankl . We also have that for every k > 0,
u B/ δ.k; otherwise WFSK2a or WFSK2d holds. Now, let δ be a maximal path
satisfying the above condition, i.e., every extension of δ violates the condition.
Let x be the last state in δ. We know that sBx and only WFSK2c holds between
s, u, x, so let y be a witness for WFSK2c, which means that sBy and one of
WFSK2a,b, or d holds between s, u, y. WSFK2b can’t hold because then we
would have uBy (which would mean WFSK2a holds between s, u, x). So, one of
WFSK2a,d has to hold, but that gives us a path from x to some state v such
that uBv. The contradiction is that v is also reachable from w, so WFSK2a or
WFSK2d held between s, u, w. ��
Let’s now discuss why we included condition WFSK2c. The systems we are
interested in verifying have a bound—determined early early in the design—on
the number of skipping steps possible. The problem is that RWSFK2b forces us
to deal with stuttering and skipping steps in the same way, while with WFSK
any amount of stuttering is dealt with locally. Hence, WFSK should be used for
automated proofs and RWFSK can be used for meta reasoning.

One more observation is that the proof of Theorem 1, by showing that
WFSK2c is redundant, highlights why skipping refinement subsumes stutter-
ing refinement. Therefore, skipping refinement is a weaker, but more generally
applicable notion of refinement than stuttering refinement.

Skipping Refinement 111

In what follows, we show that the notion of RWFSK (and by Theorem 1
WFSK) is equivalent to SKS and can be used as a sound and complete proof rule
to check if a given relation is an SKS. This allows us to match infinite sequences
by checking local properties and bounded reachability. We first prove soundness,
i.e., any RWFSK is an SKS. The proof proceeds by showing that given a RWFSK
relation B, sBw, and any fullpath starting at s, we can recursively construct a
fullpath δ starting at w, and increasing sequences π, ξ such that fullpath at s
matches δ.

Theorem 2 (Soundness). If B is an RWFSK on M then B is a SKS on M.

Proof. To show that B is an SKS on M = 〈S,−→, L〉, we show that given B is a
RWFSK on M = 〈S,−→, L〉 and x, y ∈ S such that xBy, SKS1 and SKS2 hold.
SKS1 follows directly from condition 1 of RWSFK.

Next we show that SKS2 holds. We start by recursively defining δ. In the
process, we also define partitions π and ξ. For the base case, we let π.0 = 0,
ξ.0 = 0 and δ.0 = y. By assumption σ(π.0)Bδ(ξ.0). For the recursive case,
assume that we have defined π.0, . . . , π.i as well as ξ.0, . . . , ξ.i and δ.0, . . . , δ(ξ.i).
We also assume that σ(π.i)Bδ(ξ.i). Let s be σ(π.i); let u be σ(π.i + 1); let w be
δ(ξ.i). We consider two cases.

First, say that RWFSK2b holds. Then, there is a v such that w →+ v and
uBv. Let

→
v = [v0 = w, . . . , vm = v] be a finite path from w to v where m ≥ 1.

We define π(i + 1) = π.i + 1, ξ(i + 1) = ξ.i + m, ξδi = [v0, . . . , vm−1] and
δ(ξ(i + 1)) = v.

If the first case does not hold, i.e., RWFSK2b does not hold, and RWFSK2a
does hold. We define J to be the subset of the positive integers such that for
every j ∈ J , the following holds.

〈∀v : w →+ v : ¬(σ(π.i + j)Bv)〉 ∧ (1)
σ(π.i + j)Bw ∧ rankt(σ(π.i + j), w) ≺ rankt(σ(π.i + j − 1), w)

The first thing to observe is that 1 ∈ J because σ(π.i + 1) = u, RWFSK2b
does not hold (so the first conjunct is true) and RWFSK2a does (so the second
conjunct is true). The next thing to observe is that there exists a positive integer
n > 1 such that n �∈ J . Suppose not, then for all n ≥ 1, n ∈ J . Now, consider the
(infinite) suffix of σ starting at π.i. For every adjacent pair of states in this suffix,
say σ(π.i + k) and σ(π.i + k + 1) where k ≥ 0, we have that σ(π.i + k)Bw and
that only RWFSK2a applies (i.e., RWFSK2b does not apply). This gives us a
contradiction because rankt is well-founded. We can now define n to be min({l :
l �∈ J}). Notice that only RWFSK2a holds between σ(π.i+n−1)), σ(π.i+n) and
w, hence σ(π.i+n)Bw and rankt(σ(π.i+n), w) ≺ rankt(σ(π.i+n−1), w). Since
Formula 1 does not hold for n, there is a v such that w →+ v ∧ σ(π.i + n)Bv.
Let

→
v = [v0 = w, . . . , vm = v] be a finite path from w to v where m ≥ 1. We

are now ready to extend our recursive definition as follows: π(i + 1) = π.i + n,
ξ(i + 1) = ξ.i + m, and ξδi = [v0, . . . , vm−1].

112 M. Jain and P. Manolios

Now that we defined δ we can show that SKS2 holds. We start by unwinding
definitions. The first step is to show that fp.δ.y holds, which is true by construc-
tion. Next, we show that match(B , σ, δ) by unwinding the definition of match.
That involves showing that there exist π and ξ such that corr(B , σ, π, δ, ξ) holds.
The π and ξ we used to define δ can be used here. Finally, we unwind the def-
inition of corr , which gives us a universally quantified formula over the natural
numbers. This is handled by induction on the segment index; the proof is based
on the recursive definitions given above. ��
We next state completeness, i.e., given a SKS relation B we provide as witness a
well-founded structure 〈W,≺〉, and a rank function rankt such that the conditions
in Definition 6 hold.

Theorem 3 (Completeness). If B is an SKS on M, then B is an RWFSK
on M.

The proof requires us to introduce a few definitions and lemmas.

Definition 7. Given TS M = 〈S,−→, L〉, the computation tree rooted at a state
s ∈ S, denoted ctree(M, s), is obtained by “unfolding” M from s. Nodes of
ctree(M, s) are finite sequences over S and ctree(M, s) is the smallest tree sat-
isfying the following.

1. The root is 〈s〉.
2. If 〈s, . . . , w〉 is a node and w −→ v, then 〈s, . . . , w, v〉 is a node whose parent

is 〈s, . . . , w〉.
Our next definition is used to construct the ranking function appearing in the
definition of RWFSK.

Definition 8 (ranktCt). Given an SKS B, if ¬(sBw), then ranktCt(M, s, w) is
the empty tree, otherwise ranktCt(M, s, w) is the largest subtree of ctree(M, s)
such that for any non-root node 〈s, . . . , x〉 of ranktCt(M, s, w), we have that
xBw and 〈∀v : w →+ v : ¬(xBv)〉.
A basic property of our construction is the finiteness of paths.

Lemma 4. Every path of ranktCt(M, s, w) is finite.

Given Lemma 4, we define a function, size, that given a tree, t, all of whose paths
are finite, assigns an ordinal to t and to all nodes in t. The ordinal assigned to
node x in t is defined as follows: size(t, x) =

⋃
c∈children.x size(t, c) + 1. We

are using set theory, e.g., an ordinal number is defined to be the set of ordinal
numbers below it, which explains why it makes sense to take the union of ordinal
numbers. The size of a tree is the size of its root, i.e., size(ranktCt(M, s, w)) =
size(ranktCt(M, s, w), 〈s〉). We use � to compare ordinal and cardinal numbers.

Lemma 5. If |S| � κ, where ω � κ then for all s, w ∈ S, size(ranktCt(M, s, w))
is an ordinal of cardinality � κ.

Skipping Refinement 113

Lemma 5 shows that we can use as the domain of our well-founded function in
RWFSK2 the cardinal max (|S|+, ω): either ω if the state space is finite, or |S|+,
the cardinal successor of the size of the state space otherwise.

Lemma 6. If sBw, s −→ u, u ∈ ranktCt(M, s, w) then size(ranktCt(M, u, w)) ≺
size(ranktCt(M, s, w)).

We are now ready to prove completeness.

Proof. (Completeness) We assume that B is an SKS on M and we show that
this implies that B is also an RWFSK on M. RWFSK1 follows directly. To
show that RWFSK2 holds, let W be the successor cardinal of max (|S|, ω) and
let rankt(a, b) be size(ranktCt(M, a, b)). Given s, u, w ∈ S such that s → u and
sBw, we show that either RWFSK2(a) or RWFSK2(b) holds.

There are two cases. First, suppose that 〈∃v : w →+ v : uBv〉 holds, then
RWFSK2(b) holds. If not, then 〈∀v : w →+ v : ¬(uBv)〉, but B is an SKS so
let σ be a fullpath starting at s, u. Then there is a fullpath δ such that fp.δ.w and
match(B , σ, δ). Hence, there exists π, ξ ∈ INC such that corr(B , σ, π, δ, ξ). By
the definition of corr , we have that uBδ(ξ.i) for some i, but i cannot be greater
than 0 because then uBx for some x reachable from w, violating the assumptions
of the case we are considering. So, i = 0, i.e., uBw. By lemma 6, rankt(u,w) =
size(ranktCt(M, u, w)) ≺ size(ranktCt(M, s, w)) = rankt(s, w). ��
Following Abadi and Lamport [13], one of the basic questions asked about new
notions of refinement is: if a concrete system is an “implementation” of an
abstract system, under what conditions do refinement maps (a local reason-
ing) exist that can be use to prove it? Abadi and Lamport required several
rather complex conditions, but our completeness proof shows that for skipping
refinement, refinement maps always exist. See Sect. 6 for more information.

Well-founded skipping gives us a simple proof rule to determine if a concrete
transition system MC is a skipping refinement of an abstract transition system
MA with respect to a refinement map r. Given a refinement map r : SC → SA

and relation B ⊆ SC × SA, we check the following two conditions: (a) for all
s ∈ SC , sBr.s and (b) if B is a WFSK on disjoint union of MC and MA. If (a)
and (b) hold, from Theorem 2, MC �r MA.

5 Experimental Evaluation

In this section, we experimentally evaluate the theory of skipping refinement
using three case studies: a JVM-inspired stack machine, an optimized memory
controller, and a vectorization compiler transformation. Our goals are to evalu-
ate the specification costs and benefits of using skipping refinement as a notion
of correctness and to determine the impact that the use of skipping refinement
has on state-of-the-art verification tools in terms of capacity and verification
times. We do that by comparing the cost of proving correctness using skipping
refinement with the cost of using input-output equivalence: if the specification
and the implementation systems start in equivalent initial states and get the

114 M. Jain and P. Manolios

same inputs, then if both systems terminate, the final states of the systems are
also equivalent. We chose I/O equivalence since that is the most straightforward
way of using existing tools to reason about our case studies. We cannot use exist-
ing notions of refinement because they do not allow skipping and, therefore, are
not applicable. Since skipping simulation is a stronger notion of correctness than
I/O equivalence, skipping proofs provide more information, e.g., I/O equivalence
holds even if the concrete system diverges, but skipping simulation does not hold
and would therefore catch such divergence errors.

The first two case studies were developed and compiled to sequential AIGs
using the BAT tool [20], and then analyzed using the TIP, IIMC, BLIMC, and
SUPER PROVE model-checkers [1]. SUPER PROVE and IIMC are the top
performing model-checkers in the single safety property track of the Hardware
Model Checking Competition [1]. We chose TIP and BLIMC to cover tools based
on temporal decomposition and bounded model-checking. The last case study
involves systems whose state space is infinite. Since model checkers cannot be
used to verify such systems, we used the ACL2s interactive theorem prover [8].
BAT files, corresponding AIGs, ACL2s models, and ACL2s proof scripts are
publicly available [2], hence we only briefly describe the case studies.

Our results show that with I/O equivalence, model-checkers quickly start
timing out as the complexity of the systems increases. In contrast, with skipping
refinement much larger systems can be automatically verified. For the infinite
state case study, interactive theorem proving was used and the manual effort
required to prove skipping refinement theorems was significantly less than the
effort required to prove I/O equivalence.

JVM-inspired Stack Machine. For this case study we defined BSTK, a simple
hardware implementation of part of Java Virtual Machine (JVM) [11]. BSTK
models an instruction memory, an instruction buffer and a stack. It supports
a small subset of JVM instructions, including push, pop, top,nop. STK is the
high-level specification with respect to which we verify the correctness of BSTK.
The state of STK consists of an instruction memory (imem), a program counter
(pc), and a stack (stk). STK fetches an instruction from the imem, executes it,
increases the pc and possibly modifies the stk . The state of BSTK is similar
to STK, except that it also includes an instruction buffer, whose capacity is
a parameter. BSTK fetches an instruction from the imem and as long as the
fetched instruction is not top and the instruction buffer (ibuf) is not full, it
enqueues it to the end of the ibuf and increments the pc. If the fetched instruction
is top or ibuf is full, the machine executes all buffered instructions in the order
they were enqueued, thereby draining the ibuf and obtaining a new stk .

Memory Controller. We defined a memory controller, OptMEMC, which fetches a
memory request from location pt in a queue of CPU requests, reqs. It enqueues the
fetched request in the request buffer, rbuf and increments pt to point to the next
CPU request in reqs. If the fetched request is a read or the request buffer is full
(the capacity of rbuf is parameter), then before enqueuing the request into rbuf ,
OptMEMC first analyzes the request buffer for consecutive write requests to the
same address in the memory (mem). If such a pair of writes exists in the buffer, it

Skipping Refinement 115

1

10

100

900
TO

1 10 10
0

90
0

T
O

Sk
ip

pi
ng

R
efi

ne
m

en
t

(s
ec

)

Input-output Equivalence (sec)

tip iimc blimc sp

Fig. 3. Performance of model-checkers on case studies

marks the older write requests in the request buffer as redundant. Then it executes
all the requests in the request buffer except the marked (redundant) ones. Requests
in the buffer are executed in the order they were enqueued. We also defined MEMC,
a specification system that processes each memory request atomically.

Results. To evaluate the computational benefits of skipping refinement, we cre-
ated a benchmark suite including versions of the BSTK and STK machines—
parameterized by the size of imem, ibuf , and stk—and OptMEMC and MEMC
machines—parameterized by the size of req , rbuf and mem. These models had
anywhere from 24 K gates and 500 latches to 2M gates and 23 K latches. We used
a machine with an Intel Xeon X5677 with 16 cores running at 3.4GHz and 96GB
main memory. The timeout limit for model-checker runs is set to 900 seconds. In
Fig. 3, we plot the running times for the four model-checkers used. The x-axis rep-
resents the running time using I/O equivalence and y-axis represents the running
time using skipping refinement. A point with x = TO indicates that the model-
checker timed out for I/O equivalence while y = TO indicates that the model-
checker timed out for skipping refinement. Our results show that model-checkers
timeout for most of the configurations when using I/O equivalence while all model-
checkers except TIP can solve all the configurations using skipping refinement.
Furthermore, there is an improvement of several orders of magnitude in the run-
ning time when using skipping refinement. The performance benefits are partly
due to the structure provided by the skipping refinement proof obligation. For
example, we have a bound on the number of steps that the optimized systems can
skip before a match occurs and we have rank functions for stuttering. This allows
the model checkers to locally check correctness instead of having to prove corre-
spondence at the input/output boundaries, as is the case for I/O equivalence.

Superword-level Parallelism with SIMD instructions. For this case study we ver-
ify the correctness of a compiler transformation from a source language con-
taining only scalar instructions to a target language containing both scalar and
vector instructions. We model the transformation as a function that given a pro-
gram in the source language and generates a program in the target language.
We use the translation validation approach to compiler correctness and prove
that the target program implements the source program [4].

116 M. Jain and P. Manolios

For presentation purposes, we make some simplifying assumptions: the
state of the source and target programs (modeled as transition systems) is a
tuple consisting of a sequence of instructions, a program counter and a store.
We also assume that a SIMD instruction operates on two sets of data operands
simultaneously and that the transformation identifies parallelism at the basic
block level. Therefore, we do not consider control flow.

For this case study, we used deductive verification methodology to prove cor-
rectness. The scalar and vector machines are defined using the data-definition
framework in ACL2s [6–8]. We formalized the operational semantics of the scalar
and vector machines using standard methods. The sizes of the program and store
are unbounded and thus the state space of the machines is infinite. Once the
definitions were in place, proving skipping refinement with ACL2s was straight-
forward. Proving I/O equivalence requires significantly more theorem proving
expertise and insight to come up with the right invariants, something we avoided
with the skipping proof. The proof scripts are publicly available [2].

6 Related Work and Discussion

Notions of correctness. Notions of correctness for reasoning about reactive sys-
tems have been widely studied and we refer the reader to excellent surveys on
this topic [10,15,22]. Lamport [12] argues that abstract and the concrete sys-
tems often only differ by stuttering steps; hence a notion of correctness should
directly account stuttering. Weak simulation [10] and stuttering simulation [17]
are examples of such notions. These notions are too strong to reason about opti-
mized reactive systems, hence the need for skipping refinement, which allows
both stuttering and skipping.

Refinement Maps. A basic question in a theory of refinement is whether
refinement maps exist: if a concrete system implements an abstract system,
does there exists a refinement map that can be use to prove it? Abadi and
Lamport [13] showed that in the linear-time framework, a refinement map
exists provided the systems satisfy a number of complex conditions. In [16],
it was shown that for STS, a branching-time notion, the existence of refinement
maps does not depend on any of the conditions found in the work of Abadi and
Lamport and that this result can be extended to the linear-time case [17]. We
show that like in the case of stuttering refinement, existence of refinement maps
in skipping refinement does not depend on any conditions on the systems.

Hardware Verification. Several approaches to verification of superscalar proces-
sors appear in the literature and as new features are modeled new variants of
correctness notions are proposed [3]. These variants can be broadly classified
on the basis of whether (1) they support nondeterministic abstract systems or
not (2) they support nondeterministic concrete systems or not (3) the kinds of
refinement maps allowed. In contrast, the theory of skipping refinement pro-
vides a general framework that support nondeterministic abstract and concrete
systems and arbitrary refinement maps. We believe that a uniform notion of
correctness can significantly the verification effort.

Skipping Refinement 117

Software Verification. Program refinement is widely used to verify the correctness
of programs and program transformations. Several back-end compiler transfor-
mations are proven correct in CompCert [14] by showing that the source and
the target language of a transformation are related by the notion of forward
simulation. In [21], several compiler transformations, e.g., dead-code elimina-
tion and control-flow graph compression, are analyzed stuttering refinement.
Like CompCert, the semantics of the source and target languages are assumed
to be deterministic and the only source of nondeterminism comes from initial
states. In [9], choice refinement is introduced to account for compiler transfor-
mations that resolve internal nondeterministic choices in the semantics of the
source language (e.g., the left-to-right evaluation strategy). However, it is not
possible to prove correctness of superword parallelism transformation(5) using
these notions. Furthermore, skipping refinement does not place any restrictions
on the kind of transition systems (deterministic or nondeterministic) and there-
fore provides a more general framework to analyze compiler transformations.
In [19], it is shown how to prove the correctness of assembly programs running
on a 7-stage pipelined processor. The proof proceeds by first proving the cor-
rectness of assembly code when running on a simple non-pipelined processor
and, then proving that the pipelined processor is a stuttering refinement of the
non-pipelined processor. Skipping refinement can similarly be used to combine
hardware and software verification for optimized systems.

7 Conclusion and Future Work

In this paper, we introduced skipping refinement, a new notion of correctness for
reasoning about optimized reactive systems where the concrete implementation
can execute faster than its specification. This is the first notion of refinement
that we know of that can directly deal with such optimized systems. We pre-
sented a sound and complete characterization of skipping that is local, i.e., for
the kinds of systems we consider, we can prove skipping refinement theorems
by reasoning only about paths whose length is bounded by a constant. This
characterization provides a convenient proof method and also enables mecha-
nization and automated verification. We experimentally validated applicability
of skipping refinement and our local characterization by performing three case
studies. Our experimental results show that, for relatively simple configurations,
proving correctness directly, without using skipping, is beyond the capabilities
of current model-checking technology, but when using skipping refinement, cur-
rent model-checkers are able to prove correctness. For future work, we plan to
characterize the class of temporal properties preserved by skipping refinement,
to develop and exploit compositional reasoning for skipping refinement, and to
use skipping refinement for testing-based verification and validation.

118 M. Jain and P. Manolios

References

1. Results of hardware model checking competition (2013). http://fmv.jku.at/
hwmcc13/hwmcc13.pdf

2. Skipping simulation model. http://www.ccs.neu.edu/home/jmitesh/sks
3. Aagaard, M.D., Cook, B., Day, N.A., Jones, R.B.: A framework for microprocessor

correctness statements. In: Margaria, T., Melham, T.F. (eds.) CHARME 2001.
LNCS, vol. 2144, p. 433. Springer, Heidelberg (2001)

4. Barrett, C.W., Fang, Y., Goldberg, B., Hu, Y., Pnueli, A., Zuck, L.D.: TVOC:
a translation validator for optimizing compilers. In: Etessami, K., Rajamani, S.K.
(eds.) CAV 2005. LNCS, vol. 3576, pp. 291–295. Springer, Heidelberg (2005)

5. Browne, M.C., Clarke, E.M., Grümberg, O.: Characterizing finite kripke structures
in propositional temporal logic. Theor. Comput. Sci. 59, 115–131 (1988)

6. Chamarthi, H., Manolios, P.: ACL2s homepage (2015). http://acl2s.ccs.neu.edu/
acl2s

7. Chamarthi, H.R., Dillinger, P.C., Manolios, P.: Data definitions in the ACL2 sedan.
In: ACL2. ETPCS (2014)

8. Chamarthi, H.R., Dillinger, P., Manolios, P., Vroon, D.: The ACL2 sedan theorem
proving system. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol.
6605, pp. 291–295. Springer, Heidelberg (2011)

9. Dockins, R.W.: Operational refinement for compiler correctness. Ph.D. thesis,
Princeton University (2012)

10. van Glabbeek, R.J.: The linear time - branching time spectrum. In: Baeten,
J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 278–297. Springer,
Heidelberg (1990)

11. Hardin, D.S.: Real-time objects on the bare metal: an efficient hardware realization
of the java tm virtual machine. In: ISORC (2001)

12. Lamport, L.: What good is temporal logic. In: Mason, R.E.A. (ed.) Information
Processing. IFIP, North-Holland (1983)

13. Lamport, L., Abadi, M.: The existence of refinement mappings. Theor. Comput.
Sci. 82, 253–284 (1991)

14. Leroy, X.: A formally verified compiler back-end. J. Autom. Reason. 43, 363–446
(2009)

15. Lynch, N., Vaandrager, F.: Forward and backward simulations:II. timing-based
systems. Inf. Comput. 128, 1–25 (1996)

16. Manolios, P.: Mechanical verification of reactive systems. Ph.D. thesis, University
of Texas (2001)

17. Manolios, P.: A Compositional theory of refinement for branching time. In:
Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860, pp. 304–318.
Springer, Heidelberg (2003)

18. Manolios, P., Srinivasan, S.K.: A computationally efficient method based on com-
mitment refinement maps for verifying pipelined machines. In: MEMOCODE
(2005)

19. Manolios, P., Srinivasan, S.K.: A framework for verifying bit-level pipelined
machines based on automated deduction and decision procedures. J. Autom.
Reason. 37, 93–116 (2006)

20. Manolios, P., Srinivasan, S.K., Vroon, D.: BAT: the bit-level analysis tool. In:
Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 303–306.
Springer, Heidelberg (2007)

http://fmv.jku.at/hwmcc13/hwmcc13.pdf
http://fmv.jku.at/hwmcc13/hwmcc13.pdf
http://www.ccs.neu.edu/home/jmitesh/sks
http://acl2s.ccs.neu.edu/acl2s
http://acl2s.ccs.neu.edu/acl2s

Skipping Refinement 119

21. Namjoshi, K.S., Zuck, L.D.: Witnessing program transformations. In: Logozzo,
F., Fähndrich, M. (eds.) Static Analysis. LNCS, vol. 7935, pp. 304–323. Springer,
Heidelberg (2013)

22. Pnueli, A.: Linear and branching structures in the semantics and logics of reactive
systems. In: Brauer, W. (ed.) Automata Languages and Programming. LNCS, vol.
194, pp. 15–32. Springer, Heidelberg (1985)

Quantitative Reasoning

Percentile Queries in Multi-dimensional
Markov Decision Processes

Mickael Randour1(B), Jean-François Raskin2, and Ocan Sankur2

1 LSV, CNRS and ENS Cachan, Cachan, France
mickael.randour@gmail.com

2 Département d’Informatique, Université Libre de Bruxelles (U.L.B.),
Brussels, Belgium

Abstract. Markov decision processes (MDPs) with multi-dimensional
weights are useful to analyze systems with multiple objectives that may
be conflicting and require the analysis of trade-offs. In this paper, we
study the complexity of percentile queries in such MDPs and give algo-
rithms to synthesize strategies that enforce such constraints. Given a
multi-dimensional weighted MDP and a quantitative payoff function f ,
thresholds vi (one per dimension), and probability thresholds αi, we show
how to compute a single strategy to enforce that for all dimensions i, the
probability of outcomes ρ satisfying fi(ρ) ≥ vi is at least αi. We consider
classical quantitative payoffs from the literature (sup, inf, lim sup, lim
inf, mean-payoff, truncated sum, discounted sum). Our work extends to
the quantitative case the multi-objective model checking problem studied
by Etessami et al. [16] in unweighted MDPs.

1 Introduction

Markov decision processes (MDPs) are central mathematical models for reason-
ing about (optimal) strategies in uncertain environments. For example, if rewards
(given as numerical values) are assigned to actions in an MDP, we can search for
a strategy (policy) that resolves the nondeterminism in a way that the expected
mean reward of the actions taken by the strategy along time is maximized. See
for example [23] for a solution to this problem. If we are risk-averse, we may
want to search instead for strategies that ensure that the mean reward along
time is larger than a given value with a high probability, i.e., a probability that
exceeds a given threshold. See for example [17] for a solution.

Recent works are exploring several natural extensions of those problems.
First, there is a series of works that investigate MDPs with multi-dimensional
weights [6,12] rather than single-dimensional as it is traditionally the case. Multi-
dimensional MDPs are useful to analyze systems with multiple objectives that
are potentially conflicting and make necessary the analysis of trade-offs. For
instance, we may want to build a control strategy that both ensures some good

Work partially supported by ERC starting grant inVEST (FP7-279499) and Euro-
pean project CASSTING (FP7-ICT-601148).

c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 123–139, 2015.
DOI: 10.1007/978-3-319-21690-4 8

124 M. Randour et al.

quality of service and minimizes the energy consumption. Second, there are works
that aim at synthesizing strategies enforcing richer properties. For example, we
may want to construct a strategy that both ensures some minimal threshold
with certainty (or probability one) and a good expectation [7]. An illustrative
survey of such extensions can be found in [25].

Our paper participates in this general effort by providing algorithms and
complexity results on the synthesis of strategies that enforce multiple percentile
constraints. A multi-percentile query and the associated synthesis problem is
as follows: given a multi-dimensionally weighted MDP M and an initial state
sinit, synthesize a unique strategy σ such that it satisfies the conjunction of q
constraints Q :=

∧q
i=1 P

σ
M,sinit

[
fli ≥ vi

] ≥ αi, where each li refers to a dimension
of the weight vectors, vi is a value threshold, and αi a probability threshold,
and f a payoff function. Each constraint i expresses that the strategy ensures
probability at least αi to obtain payoff at least vi in dimension li.

In this paper, we consider seven payoff functions: sup, inf, limsup, liminf,
mean-payoff, truncated sum and discounted sum. This wide range covers most
classical functions: our exhaustive study provides a complete picture for the
new multi-percentile framework and we focus on establishing meta-theorems and
connections whenever possible. Some of our results are obtained by reduction to
the previous work of [16], but for mean-payoff, truncated sum and discounted
sum, that are non-regular payoffs, we need to develop original techniques.

Consider some examples. In a stochastic shortest path problem, we may want
a strategy ensuring that the probability to reach the target within d time units
exceeds 50 percent: this is a single-constraint percentile query. With a multi-
constraint percentile query, we can impose richer properties, for instance, enforc-
ing that the duration is less than d1 in 50 percent of the cases, and less than d2
in 95 percent of the cases, with d1 < d2. We may also consider multi-dimensional
systems. If in the model, we add information about fuel consumption, we may
also enforce that we arrive within d time units in 95 percent of the cases, and
that in half of the cases the fuel consumption is below some threshold c.

Contributions. We study percentile problems for a range of payoffs: we estab-
lish algorithms and prove complexity and memory bounds. Our algorithms solve
multi-constraint multi-dimensional queries, but we also study interesting sub-
classes such as the single-dimensional case. We present an overview of our results
in Table 1. For all payoff functions but the discounted sum, they only require
polynomial time in the size of the model when the query size is fixed. In most
applications, the query size is typically small while the model can be very large.
So our algorithms have clear potential to be useful in practice.

(A) We show the PSPACE-hardness of the multiple reachability problem
with exponential dependency on the query size (Theorem 2), and the PSPACE-
completeness of the almost-sure case, refining the results of [16]. We also give a
polynomial-time algorithm for nested target sets (Theorem 3).

(B) For inf, sup, lim inf and lim sup, we establish a polynomial-time algorithm
for single-dimension (Theorem 5), and an algorithm that is only exponential in

Percentile Queries in Multi-dimensional Markov Decision Processes 125

Table 1. Some results for percentile queries. Here F = {inf, sup, lim inf, lim sup}, MP
(resp. MP) stands for sup. (resp. inf.) mean-payoff, SP for shortest path, and DS for
discounted sum. Parameters M and Q resp. represent model size and query size; P(x),
E(x) and Pps(x) resp. denote polynomial, exponential and pseudo-polynomial time in
parameter x. All results without reference are new.

Single-constraint Single-dim. Multi-dim.

Multi-constraint Multi-constraint

Reachability P [23] P(M)·E(Q) [16], PSPACE-h. —

f ∈ F P [10] P P(M)· E(Q)

PSPACE-h.

MP P [23] P P

MP P [23] P(M)·E(Q) P(M)·E(Q)

SP P(M)·Pps(Q) [21] P(M)·Pps(Q) (one target) P(M)·E(Q)

PSPACE-h. [21] PSPACE-h. [21] PSPACE-h. [21]

ε-gap DS Pps(M, Q, ε) Pps(M, ε)·E(Q) Pps(M, ε)·E(Q)

NP-h. NP-h. PSPACE-h.

the query size for the general case (Theorem 6). We prove PSPACE-hardness for
sup (Theorem 7), and give a polynomial time algorithm for lim sup (Theorem 8).

(C) In the mean-payoff case, we distinguish MP defined by the limsup of the
average weights, and MP by their liminf. For the former, we give a polynomial-
time algorithm for the general case (Theorem 10). For the latter, our algorithm
is polynomial in the model size and exponential in the query size (Theorem 11).

(D) The truncated sum function computes the sum of weights until a target
is reached. It models shortest path problems. We prove the multi-dimensional
percentile problem to be undecidable when both negative and positive weights
are allowed (Theorem 12). Therefore, we concentrate on the case of non-negative
weights, and establish an algorithm that is polynomial in the model size and
exponential in the query size (Theorem 13). We derive from recent results that
even the single-constraint percentile problem is PSPACE-hard [21].

(E) Discounted sum turns out to be linked to a long-standing open problem,
not known to be decidable (Lemma 8). Nevertheless, we give an algorithm for
an approximation called ε-gap percentile problem. It guarantees correct answers
up to an arbitrarily small zone of uncertainty (Theorem 14). We prove this
problem is PSPACE-hard in general, and NP-hard for single-constraint queries.
According to a very recent preprint by Haase and Kiefer [20], our reduction even
proves PP-hardness of single-contraint queries, which suggests that the problem
does not belong to NP at all otherwise the polynomial hierarchy would collapse.

We systematically study the memory requirement of strategies. We build our
algorithms using different techniques. Here are a few of them. For inf and sup
payoff functions, we reduce percentile queries to multiple reachability queries,
and rely on the algorithm of [16]: those are the easiest cases. For lim inf, lim sup

126 M. Randour et al.

and MP, we additionally need to resort to maximal end-component decomposi-
tion of MDPs. For the following cases, there is no simple reduction to existing
problems and we need non-trivial techniques to establish algorithms. For MP, we
use linear programming techniques to characterize winning strategies, borrowing
ideas from [6,16]. For shortest path and discounted sum, we consider unfoldings
of the MDP, with particular care to bound their sizes, and for the latter, to
analyze the cumulative error due to necessary roundings.

Related Work. There are works that study multi-dimensional MDPs: for dis-
counted sum, see [12], and for mean-payoff, see [6,17]. In the latter papers, the
following threshold problem is studied: given a threshold vector v and a proba-
bility threshold ν, does there exist a strategy σ such that Pσ

s [r ≥ v] ≥ ν, where r
denotes the mean-payoff vector. The work [17] solves it for the single dimensional
case, and the multi-dimensional for the non-degenerate case (w.r.t. solutions of
a linear program). A general algorithm was given in [6]. This problem asks for a
bound on the joint probability of the thresholds, i.e., the probability of satisfying
all constraints simultaneously. In contrast, we bound the marginal probabilities
separately, which may allow for more modeling flexibility. Maximizing the expec-
tation vector was considered in [6]. An approach unifying the probability and
expectation views for mean-payoff was recently presented in [11].

Multiple reachability objectives in MDPs were considered in [16]: given an
MDP and multiple targets Ti, thresholds αi, decide if there exists a strategy that
forces each Ti with a probability larger than αi. This work is the closest to our
work and we show here that their problem is inter-reducible with our problem
for the sup measure. In [16] the complexity results are given only for model size
and not for query size: we refine those results and answer questions left open.

Several works consider percentile queries but only for one dimension and
one constraint (while we consider multiple constraints and dimensions) and par-
ticular payoff functions. Single-constraint queries for lim sup and lim inf were
studied in [10]. The threshold probability problem for truncated sum was stud-
ied for either all non-negative or all non-positive weights in [22,26]. Quantile
queries in the single-constraint case were studied for the shortest path with
non-negative weights in [29], and for energy-utility objectives in [1]. It has been
recently extended to cost problems [21], in a direction orthogonal to ours. For
fixed horizon, [32] studies maximization of the expected discounted sum subject
to a single percentile constraint. Still for the discounted case, there are works
studying threshold problems [30,31] and value-at-risk problems [5]. All can be
related to single-constraint percentiles queries.

A long version of this paper with full details is available online [24].

2 Preliminaries

A finite Markov decision process (MDP) is a tuple M = (S,A, δ) where S is
the finite set of states, A is the finite set of actions and δ : S × A → D(S) is a
partial function called the probabilistic transition function, where D(S) denotes

Percentile Queries in Multi-dimensional Markov Decision Processes 127

the set of rational probability distributions over S. The set of actions that are
available in a state ,∈ S is denoted by A(s). We use δ(s, a, s′) as a shorthand
for δ(s, a)(s′). An absorbing state s is such that for all a ∈ A(s), δ(s, a, s) = 1.
We assume w.l.o.g. that MDPs are deadlock-free: for all s ∈ S, A(s) �= ∅ (if not
the case, we simply replace the deadlock by an absorbing state with a unique
action). An MDP where for all s ∈ S, |A(s)| = 1 is a fully-stochastic process
called a Markov chain.

A weighted MDP is a tuple M = (S,A, δ, w), where w is a d-dimension weight
function w : A → Z

d. For any l ∈ {1, . . . , d}, we denote wl : A → Z the projection
of w to the l-th dimension, i.e., the function mapping each action a to the l-th
element of vector w(a). A run of M is an infinite sequence s1a1 . . . an−1sn . . .
of states and actions such that δ(si, ai, si+1) > 0 for all i ≥ 1. Finite prefixes of
runs are called histories.

Fix an MDP M = (S,A, δ). An end-component (EC) of M is an MDP C =
(S′, A′, δ′) with S′ ⊆ S, ∅ �= A′(s) ⊆ A(s) for all s ∈ S′, and Supp(δ(s, a)) ⊆ S′

for all s ∈ S′, a ∈ A′(s) (here Supp(·) denotes the support), δ′ = δ|S′×A′ and
such that C is strongly connected, i.e., there is a run between any pair of states
in S′. The union of two ECs with non-empty intersection is an EC; one can thus
define maximal ECs. We let MEC(M) denote the set of maximal ECs of M ,
computable in polynomial time [14].

A strategy σ is a function (SA)∗S → D(A) such that for all h ∈ (SA)∗S
ending in s, we have Supp(σ(h)) ⊆ A(s). The set of all strategies is Σ. We
consider finite- and infinite-memory strategies as strategies that can be encoded
by Moore machines with finite or infinite states respectively. An MDP M , initial
state s, and a strategy σ determines a Markov chain Mσ

s on which a unique
probability measure is defined. Here, Mσ

s is defined on the state space that
is product of M and that of the Moore machine encoding σ. Given an event
E ⊆ (SA)ω, we denote by P

σ
M,s[E] the probability of runs of Mσ

s whose projection
to M is in E. That is the probability of achieving event E when the MDP M is
executed with initial state s and strategy σ.

Let Inf(ρ) denote the random variable representing the disjoint union of states
and actions that occur infinitely often in the run ρ. By an abuse of notation, we
see Inf(ρ) as a sub-MDP M ′ if it contains exactly the states and actions of M ′. It
was shown that for any MDP M , state s, strategy σ, Pσ

M,s[Inf is an EC] = 1 [14].

Multiple Reachability. Given a subset T of states, let ♦T be the reachability
objective w.r.t. T , defined as the set of runs visiting a state of T at least once.

The multiple reachability problem consists, given MDP M , state sinit, target
sets T1, . . . , Tq, and probabilities α1, . . . , αq ∈ [0, 1] ∩ Q, in deciding whether
there exists a strategy σ ∈ Σ such that

∧q
i=1 P

σ
M,sinit

[♦Ti] ≥ αi. The almost-sure
multiple reachability problem restricts to α1 = . . . = αq = 1.

Percentile Problems. We consider payoff functions among inf, sup, lim inf,
lim sup, mean-payoff, truncated sum (shortest path) and discounted sum. For
any run ρ = s1a1s2a2 . . ., dimension l ∈ {1, . . . , d}, and weight function w,

– inf l(ρ) = infj≥1 wl(aj), supl(ρ) = supj≥1 wl(aj),

128 M. Randour et al.

– lim inf l(ρ) = lim infj→∞ wl(aj), lim supl(ρ) = lim supj→∞ wl(aj),
– MPl(ρ) = lim infn→∞ 1

n

∑n
j=1 wl(aj), MPl(ρ) = lim supn→∞

1
n

∑n
j=1 wl(aj),

– DSλl

l (ρ) =
∑∞

j=1 λj
l · wl(aj), with λl ∈]0, 1[∩ Q a rational discount factor,

– TST
l (ρ) =

∑n−1
j=1 wl(aj) with sn the first visit of a state in T ⊆ S. If T is never

reached, then we assign TST
l (ρ) = ∞.

For any payoff function f , fl ≥ v defines the runs ρ that satisfy fl(ρ) ≥ v.
A percentile constraint is of the form P

σ
M,sinit

[fl ≥ v] ≥ α, where σ is to be synthe-
sized given threshold value v and probability α. We study multi-constraint per-
centile queries requiring to simultaneously satisfy q constraints each referring to a
possibly different dimension. Formally, given a d-dimensional weighted MDP M ,
initial state sinit ∈ S, payoff function f , dimensions l1, . . . , lq ∈ {1, . . . , d}, value
thresholds v1, . . . , vq ∈ Q and probability thresholds α1, . . . , αq ∈ [0, 1] ∩ Q the
multi-constraint percentile problem asks if there exists a strategy σ ∈ Σ such
that query Q :=

∧q
i=1 P

σ
M,sinit

[
fli ≥ vi

] ≥ αi holds. We can actually solve queries
∃? σ,

∨m
i=1

∧ni

j=1 P
σ
M,sinit

[
fli,j ≥ vi,j

] ≥ αi,j . We present our results for conjunc-
tions of constraints only since the latter is equivalent to verifying the disjuncts
independently: in other terms, to

∨m
i=1 ∃σ

∧ni

j=1 P
σ
M,sinit

[
fli,j ≥ vi,j

] ≥ αi,j .
We distinguish single-dimensional percentile problems (d = 1) from multi-

dimensional ones (d > 1). We assume w.l.o.g. that q ≥ d otherwise one can sim-
ply neglect unused dimensions. sFor some cases, we will consider the ε-relaxation
of the problem, which consists in ensuring each value vi − ε with probability αi.

We assume binary encoding of constants, and define the model size |M | as
the size of the representation of M , and the query size |Q| that of the query.
Problem size refers to the sum of the two. We study memory needs for strategies
w.r.t. different classes of queries; but randomization is always necessary as shown
in the next lemma.

Lemma 1. Randomized strategies are necessary for multi-dimensional per-
centile queries for any payoff function.

3 Multiple Reachability and Contraction of MECs

Multiple reachability. An algorithm to solve this problem was given in [16]
based on a linear program (LP) of size polynomial in the model and exponential
in the query; whereas restricting the target sets to absorbing states yields a
polynomial-size LP. We will use this LP later in Fig. 1 in Sect. 5.

Theorem 1 [16]. Memoryless strategies suffice for multiple reachability with
absorbing target states, and can be computed in polynomial time. With arbi-
trary targets, exponential-memory strategies (in query size) can be computed in
time polynomial in the model and exponential in the query.

In this section, we improve over this result by showing that the case of almost-
sure multiple reachability is PSPACE-complete, with a recursive algorithm and a

Percentile Queries in Multi-dimensional Markov Decision Processes 129

reduction from QBF satisfiability. This also shows the PSPACE-hardness of the
general problem. Moreover, we show that exponential memory is required for
strategies, following a construction of [13].

Theorem 2. The almost-sure multiple reachability problem is PSPACE-
complete, and strategies need exponential memory in the query size.

Despite the above lower bounds, it turns out that the polynomial time algorithm
for the case of absorbing targets can be extended; we identify a subclass of the
multiple reachability problem that admits a polynomial-time solution. In the
nested multiple reachability problem, the target sets are nested, i.e. T1 ⊆ T2 ⊆
. . . ⊆ Tq. The memory requirement for strategies is reduced as well to linear
memory. Intuitively, we use q +1 copies of the original MDP, one for each target
set, plus one last copy. The idea is then to travel between those copies in a way
that reflects the nesting of target sets whenever a target state is visited. The
crux to obtain a polynomial-time algorithm is then to reduce the problem to a
multiple reachability problem with absorbing states over the MDP composed of
the q + 1 copies, and to benefit from the reduced complexity of this case.

Theorem 3. The nested multiple reachability problem can be solved in polyno-
mial time. Strategies have memory linear in the query size, which is optimal.

Contraction of MECs. In order to solve percentile queries, we sometimes
reduce our problems to multiple reachability by first contracting MECs of given
MDPs, which is a known technique [14]. We define a transformation of MDP M
to represent the events Inf(ρ) ⊆ C for C ∈ MEC(M) as fresh states. Intuitively,
all states of a MEC will now lead to an absorbing state that will abstract the
behavior of the MEC.

Consider M with MEC(M) = {C1, . . . , Cm}. We define MDP M ′ from M
as follows. For each Ci, we add state sCi

and action a∗ from each state s ∈ Ci

to sCi
. All states sCi

are absorbing, and A(sCi
) = {a∗}. The probabilities of

events Inf(ρ) ⊆ Ci in M are captured by the reachability of states sCi
in M ′, as

follows. We use the classical temporal logic symbols ♦ and � to represent the
eventually and always operators respectively.

Lemma 2. Let M be an MDP and MEC(M) = {C1, . . . , Cm}. For any strat-
egy σ for M , there exists a strategy τ for M ′ such that for all i ∈ {1, . . . , m},
P

σ
M,sinit

[♦�Ci] = P
τ
M ′,sinit

[♦sCi
]. Conversely, for any strategy τ for M ′ such that∑m

i=1 P
τ
M ′,sinit

[♦sCi
] = 1, there exists σ such that for all i, P

σ
M,sinit

[♦�Ci] =
P

τ
M ′,s[♦sCi

].

Under some hypotheses, solving multi-constraint percentile problems on ECs
yield the result for all MDPs, by the transformation of Lemma 2. We prove a
general theorem and then derive particular results as corollaries. Informally, for
prefix-independent payoff functions, if for any EC, there is a strategy that is
optimal in each dimension, and if optimal values are computable in polynomial
time, then the percentile problem can be solved in polynomial time.

130 M. Randour et al.

Theorem 4. Consider all prefix-independent payoff functions f such that for all
strongly connected MDPs M , and all (li, vi)1≤i≤q ∈ {1, . . . , d} × Q, there exists
a strategy σ such that ∀i ∈ {1, . . . , d},Pσ

M,sinit
[fli ≥ vi] ≥ supτ P

τ
M,sinit

[fli ≥ vi]. If
the value supτ is computable in polynomial time for strongly connected MDPs,
then the multi-constraint percentile problem for f is decidable in polynomial
time. Moreover, if strategies achieving supτ for strongly connected MDPs use
O(g(M, q)) memory, then the overall strategy use O(g(M, q)) memory.

The hypotheses are crucial. Essentially, we require payoff functions that are
prefix-independent and for which strategies can be combined easily inside MECs
(in the sense that if two constraints can be satisfied independently, they can
be satisfied simultaneously). Prefix-independence also implies that we can for-
get about what happens before a MEC is reached. Hence, by using the MEC
contraction, we can reduce the percentile problem to multiple reachability for
absorbing target states.

4 Inf, Sup, LimInf, LimSup Payoff Functions

We give polynomial-time algorithms for the single-dimensional multi-constraint
percentile problems. For inf, sup we reduce the problem to nested multiple reach-
ability, while lim inf and lim sup are solved by applying Theorem 4.

Theorem 5. The single-dimensional multi-constraint percentile problems can
be solved in polynomial time in the problem size for inf, sup, lim inf, and lim sup
functions. Computed strategies use memory linear in the query size for inf and
sup, and constant memory for lim inf and lim sup.

We are now interested in the multi-dimensional case. We show that all multi-
dimensional cases can be solved in time polynomial in the model size and expo-
nential in the query size by a reduction to multiple LTL objectives studied in [16].
Our algorithm actually solves a more general class of queries, where the payoff
function can be different for each query.

Given an MDP M , for all i ∈ {1 . . . q} and value vi, we denote A≥vi

li
the set of

actions of M whose rewards are at least vi. We fix an MDP M . For any constraint
φi ≡ f(wli) ≥ vi, we define an LTL formula denoted Φi as follows. For fli = inf,
Φi = �A≥vi

li
, for fli = sup, Φi = ♦A≥vi

li
, for fli = lim inf, Φi = ♦�A≥vi

li
, and for

fli = lim sup, Φi = �♦A≥vi

li
. The percentile problem is then reduced to queries

of the form ∧q
i=1P

σ
M,sinit

[Φi] ≥ αi, for which an algorithm was given in [16] that
takes time polynomial in |M | and doubly exponential in q. We improve this
complexity since our formulae have bounded sizes.

Theorem 6. The multi-dimensional percentile problems for sup, inf, lim sup
and lim inf can be solved in time polynomial in the model size and exponential
in the query size, yielding strategies with memory exponential in the query.

The problem is PSPACE-hard for sup as shown in the following theorem.

Percentile Queries in Multi-dimensional Markov Decision Processes 131

Theorem 7. The multi-dimensional percentile problem is PSPACE-hard for sup.

Nevertheless, the complexity can be improved for lim sup functions, for which
we give a polynomial-time algorithm by an application of Theorem 4.

Theorem 8. The multi-dimensional percentile problem for lim sup is solvable
in polynomial time. Computed strategies use constant-memory.

The exact query complexity of the lim inf and inf cases are left open.

5 Mean-Payoff

We consider the multi-constraint percentile problem both for MP and MP. We
will see that strategies require infinite memory in both cases, in which case it
is known that the two payoff functions differ. The single-constraint percentile
problem was first solved in [17]. The case of multiple dimensions was mentioned
as a challenging problem but left open. We solve this problem thus generalizing
the previous work.

The Single-Dimensional Case. We start with a polynomial-time algorithm
for the single-dimensional case obtained by an application of Theorem 4.

Theorem 9. The single dimensional multi-constraint percentile problems for
payoffs MP and MP are equivalent and solvable in polynomial time. Computed
strategies use constant memory.

Percentiles on Multi-dimensional MP. Let E
σ
M,sinit

[MPi] be the expectation
of MPi under strategy σ, and Val∗M,sinit

(MPi) = supσ E
σ
M,sinit

[MPi], computable in
polynomial time [23]. We solve the problem inside ECs, then apply Theorem 4. It
is known that for strongly connected MDPs, for each i, some strategy σ satisfies
P

σ
M,sinit

[MPi = Val∗M,sinit
(MPi)] = 1, and that for all strategies τ , Pτ

M,sinit
[MPi >

v] = 0 for all v > Val∗M,sinit
(MPi). By switching between these optimal strategies

for each dimension, with growing intervals, we prove that for strongly connected
MDPs, a single strategy can simultaneously optimize MPi on all dimensions.

Lemma 3. For any strongly connected MDP M , there is an infinite-memory
strategy σ such that ∀i ∈ {1, . . . , d}, Pσ

M,sinit
[MPi ≥ Val∗M,sinit

(MPi)] = 1.

Thanks to the above lemma, we fulfill the hypotheses of Theorem 4, and we
obtain the following theorem.

Theorem 10. The multi-dimensional percentile problem for MP is solvable in
polynomial time. Strategies use infinite-memory, which is necessary.

Percentiles on Multi-dimensional MP. In contrast with the MP case, our
algorithm for MP is more involved, and requires new techniques. In fact, the
case of end-components is already non-trivial for MP, since there is no single
strategy that satisfies all percentile constraints in general, and one cannot hope

132 M. Randour et al.

to apply Theorem 4 as we did in previous sections. We rather need to consider
the set of strategies σI satisfying maximal subsets of percentile constraints; these
are called maximal strategies. We then prove that any strategy satisfying all
percentile queries can be written as a linear combination of maximal strategies,
that is, there exists a strategy which chooses and executes each σI following a
probability distribution.

For general MDPs, we first consider each MEC separately and write down
the linear combination with unknown coefficients. We know that any strategy in
a MDP eventually stays forever in a MEC. Thus, we adapt the linear program
of [16] that encodes the reachability probabilities with multiple targets, which are
the MECs here. We combine these reachability probabilities with the unknown
linear combination coefficients, and obtain a linear program (Fig. 1), which we
prove to be equivalent to our problem.

Single EC. Fix a strongly connected d-dimensional MDP M and pairs of thresh-
olds (vi, αi)1≤i≤q. We denote each event by Ai ≡ MPi ≥ vi. In [6], the problem
of maximizing the joint probability of the events Ai was solved in polynomial
time. In particular, we have the following for strongly connected MDPs.

Lemma 4 [6]. If M is strongly connected, then there exists σ such that
P

σ
M,s[∧1≤i≤qAi] > 0 if, and only if there exists σ′ such that Pσ′

M,s[∧1≤i≤qAi] = 1.
Moreover, this can be decided in polynomial time, and for positive instances, for
any ε > 0, a memoryless strategy τ can be computed in polynonomial time in
M , log(vi) and log(1ε), such that Pτ

M,s[∧1≤i≤qMPi ≥ vi − ε] = 1.

We give an overview of our algorithm. Using Lemma 4, we define strategy σI

achieving P
σI

M,s[∧i∈IAi] = 1 for any maximal subset I ⊆ {1, . . . , q} for which such
a strategy exists. Then, to build a strategy for the multi-constraint problem, we
look for a linear combination of these σI : given σI1 , . . . , σIm , we choose each i0 ∈
{1, . . . , m} following a probability distribution to be computed, and we run σIi0

.
We now formalize this idea. Let I be the set of maximal I (for set inclusion)

such that some σI satisfies PσI

M,s[∧i∈IAi] = 1. Note that for all I ∈ I, and j �∈ I,
P

σI

M,s[∧i∈IAi ∧ Aj] = 0. Assuming otherwise would contradict the maximality
of I, by Lemma 4. We consider the events AI = ∧i∈IAi ∧i
∈I ¬Ai for maximal I.

We are looking for a non-negative family (λI)I∈I whose sum equals 1 with
∀i ∈ {1, . . . , q},

∑
I∈I s.t. i∈I λI ≥ αi. This will ensure that if each σI is chosen

with probability λI (among the set {σI}I∈I); with probability at least αi, some
strategy satisfying Ai with probability 1 is chosen. So each Ai is satisfied with
probability at least αi. This can be written in the matrix notation as

Mλ ≥ α, 0 ≤ λ,1 · λ = 1, (1)

where M is a q × |I| matrix with Mi,I = 1 if i ∈ I, and 0 otherwise.

Lemma 5. For any strongly connected MDP M , and an instance (vi, αi)1≤i≤q

of the multi-constraint percentile problem for MP, (1) has a solution if, and only
if there exists a strategy σ satisfying the multi-constraint percentile problem.

Percentile Queries in Multi-dimensional Markov Decision Processes 133

1sinit(s) +
∑

s′∈S,a∈A(s′)

ys′,aδ(s′, a, s) =
∑

a∈A′(s)

ys,a, ∀s ∈ S, (2)

∑

s∈SMEC

ys,a∗ = 1, (3)

∑

s∈C

ys,a∗ =
∑

I∈IC

λC
I , ∀C ∈ MEC(M), (4)

λC
I ≥ 0, ∀C ∈ MEC(M), ∀I ∈ IC , (5)

∑

C∈MEC(M)

∑

I∈IC :i∈I

λC
I ≥ αi, ∀i = 1 . . . d. (6)

Fig. 1. Linear program (L) for the multi-constraint percentiles for MP.

Now (1) has size O(q · 2q), and each subset I can be checked in time polynomial
in the model size. The computation of I, the set of maximal subsets, can be
carried out in a top-down fashion; one might thus avoid enumerating all subsets
in practice. We get the following result.

Lemma 6. For strongly connected MDPs, the multi-dimensional percentile
problem for MP can be solved in time polynomial in M and exponential in q.
Strategies require infinite-memory in general. On positive instances, 2q-memory
randomized strategies can be computed for the ε-relaxation of the problem in time
polynomial in |M |, 2q,maxi

(
log(vi), log(αi)

)
, log(1ε).

General MDPs. Given MDP M , let us consider M ′ given by Lemma 2. We
start by analyzing each maximal EC C of M as above, and compute the sets IC

of maximal subsets. We define a variable λC
I for each I ∈ IC , and also ys,a for

each state s and action a ∈ A′(s). Recall that A′(s) = A(s) ∪ {a∗} for states s
that are inside a MEC, and A′(s) = A(s) otherwise. Let SMEC be the set of states
of M that belong to a MEC. We consider the linear program (L) of Fig. 1.

The linear program follows the ideas of [6,16]. Note that the first two lines
of (L) corresponds to the multiple reachability LP of [16] for absorbing target
states. The equations encode strategies that work in two phases. Variables ys,a

correspond to the expected number of visits of state-action s, a in the first phase.
Variable ys,a∗ describes the probability of switching to the second phase at
state s. The second phase consists in surely staying in the current MEC, so
we require

∑
s∈SMEC

ys,a∗ = 1 (and we will have ys,a∗ = 0 if s does not belong
to a MEC). In the second phase, we immediately switch to some strategy σC

I

where C denotes the current MEC. Thus, variable λC
I corresponds to the prob-

ability with which we enter the second phase in C and switch to strategy σC
I

(see (4)). Intuitively, given a solution (λI)I computed for one EC by (1), we have
the correspondence λC

I =
∑

s∈C ys,a∗ · λI . The interpretation of (6) is that each
event Ai is satisfied with probability at least αi.

134 M. Randour et al.

Lemma 7. The LP (L) has a solution if, and only if the multi-constraint per-
centiles problem for MP has a solution. Moreover, the equation has size poly-
nomial in M and exponential in q. From any solution of (L) randomized finite
memory strategies can be computed for the ε-relaxation problem.

Theorem 11. The multi-dimensional percentile problem for MP can be solved
in time polynomial in the model, and exponential in the query. Infinite-memory
strategies are necessary, but exponential-memory (in the query) suffices for the
ε-relaxation and can be computed with the same complexity.

6 Shortest Path

We study shortest path problems in MDPs, which generalize the classical graph
problem. In MDPs, the problem consists in finding a strategy ensuring that a
target set is reached with bounded truncated sum with high probability. This
problem has been studied in the context of games and MDPs (e.g., [2,7,15]). We
consider percentile queries of the form Q :=

∧q
i=1 P

σ
M,sinit

[
TSTi

li
≤ vi

] ≥ αi (inner
inequality ≤ is more natural but ≥ could be used by negating all weights). Each
constraint i may relate to a different target set Ti ⊆ S.

Arbitrary Weights. We prove that without further restriction, the multi-
dimensional percentile problem is undecidable, even for a fixed number of
dimensions. Our proof is inspired by the approach of Chatterjee et al. for the
undecidability of two-player multi-dimensional total-payoff games [8] but
requires additional techniques to adapt to the stochastic case.

Theorem 12. The multi-dimensional percentile problem is undecidable for the
truncated sum payoff function, for MDPs with both negative and positive weights
and four dimensions, even with a unique target set.

Non-negative Weights. In the light of this result, we will restrict our setting to
non-negative weights (we could equivalently consider non-positive weights with
inequality ≥ inside percentile constraints). We first discuss recent related work.

Quantiles and Cost Problems. In [29], Ummels and Baier study quantile
queries over non-negatively weighted MDPs. They are equivalent to minimizing
v ∈ N in a single-constraint percentile query P

σ
M,sinit

[
TST ≤ v

] ≥ α such that
there still exists a satisfying strategy, for some fixed α. Very recently, Haase and
Kiefer extended quantile queries by introducing cost problems [21]. They can be
seen as single-constraint percentile queries where inequality TST ≤ v is replaced
by an arbitrary Boolean combination of inequalities ϕ. Hence, it can be written
as P

σ
M,sinit

[
TST |= ϕ

] ≥ α. Cost problems are studied on single-dimensional
MDPs and all the inequalities relate to the same target T , in contrast to our
setting which allows both for multiple dimensions and multiple target sets. The
single probability threshold bounds the probability of the whole event ϕ.

Both settings are incomparable. Still, our queries share common subclasses
with cost problems: atomic formulae ϕ exactly correspond to our single-
constraint queries. Moreover, cost problems for such formulae are inter-reducible

Percentile Queries in Multi-dimensional Markov Decision Processes 135

with quantile queries [21, Proposition 2]. Cost problems with atomic formulae
are PSPACE-hard, so this also holds for single-constraint percentile queries. The
best known algorithm in this case is in EXPTIME. In the following, we estab-
lish an algorithm that still only requires exponential time while allowing for
multi-constraint multi-dimensional multi-target percentile queries.

Main Results. Our main contributions for the shortest path are as follows.

Theorem 13. The percentile problem for the shortest path with non-negative
weights can be solved in time polynomial in the model size and exponential in
the query size (exponential in the number of constraints and pseudo-polynomial
in the largest threshold). The problem is PSPACE-hard even for single-constraint
queries. Exponential-memory strategies are sufficient and in general necessary.

Sketch of Algorithm. Consider a d-dimensional MDP M and a q-query per-
centile problem, with potentially different targets for each query. Let vmax be the
maximum of the thresholds vi. Because weights are non-negative, extending a
finite history never decreases the sum of its weights. Thus, any history ending
with a sum exceeding vmax in all dimensions is surely losing under any strategy.

Based on this, we build an MDP M ′ by unfolding M and integrating the sum
for each dimension in states of M ′. We ensure its finiteness thanks to the above
observation and we reduce its overall size to a single-exponential by defining
a suitable equivalence relation between states of M ′: we only care about the
current sum in each dimension, and we can forget about the actual path that
led to it. Precisely, the states of M ′ are in S × {0, . . . , vmax + 1}d. Now, for each
constraint, we compute a set of target states in M ′ that exactly captures all
runs satisfying the inequality of the constraint. Thus, we are left with a multiple
reachability problem on M ′: we look for a strategy σ′ that ensures that each
of these sets Ri is reached with probability αi. This query can be answered in
time polynomial in |M ′| but exponential in the number of sets Ri, i.e., in q
(Theorem 1).

Remark 1. Percentile problems with unique target are solvable in time polynomial
in the number of constraints but still exponential in the number of dimensions.

For single-dimensional queries with a unique target set (but still potentially
multi-constraint), our algorithm remains pseudo-polynomial as it requires poly-
nomial time in the thresholds values (i.e., exponential in their encoding).

Corollary 1. The single-dimensional percentile problem with a unique target
set can be solved in pseudo-polynomial time.

Lower Bound. By equivalence with cost problems for atomic cost formulae, it
follows from [21, Theorem 7] that no truly-polynomial-time algorithm exists for
the single-constraint percentile problem unless P = PSPACE.
Memory. The upper bound is by reduction to multiple reachability over an
exponential unfolding. The lower bound is via reduction from multiple reacha-
bility.

136 M. Randour et al.

7 Discounted Sum

The discounted sum models that short-term rewards or costs are more important
than long-term ones. It is well-studied in automata [3] and MDPs [9,12,23]. We
consider queries of the form Q :=

∧q
i=1 P

σ
M,sinit

[
DSλi

li
≥ vi

] ≥ αi, for discount fac-
tors λi ∈]0, 1[∩Q and the usual thresholds. That is, we study multi-dimensional
MDPs and possibly distinct discount factors for each constraint.

Our setting encompasses a simpler question which is still not known to be
decidable. Consider the precise discounted sum problem: given a rational t, and
a rational discount factor λ ∈]0, 1[, does there exist an infinite binary sequence
τ = τ1τ2τ3 . . . ∈ {0, 1}ω such that

∑∞
j=1 λj ·τj = t? In [4], this problem is related

to several long-standing open questions, such as decidability of the universality
problem for discounted-sum automata [3]. A slight generalization to paths in
graphs is also mentioned by Chatterjee et al. as a key open problem in [9].

Lemma 8. The precise discounted sum problem can be reduced to an almost-
sure percentile problem over a two-dimensional MDP with only one state.

This suggests that answering percentile problems would require an important
breakthrough. In the following, we establish a conservative algorithm that, in
some sense, can approximate the answer.

The ε-gap Problem. Our algorithm takes as input a percentile query and an
arbitrarily small precision factor ε > 0 and has three possible outputs: Yes,
No and Unknown. If it answers Yes, then a satisfying strategy exists and can be
synthesized. If it answers No, then no such strategy exists. Finally, the algorithm
may output Unknown for a specified “zone” close to the threshold values involved
in the problem and of width which depends on ε. It is possible to incrementally
reduce the uncertainty zone, but it cannot be eliminated as the case ε = 0 would
answer the precise discounted sum problem, which is not known to be decidable.

We actually solve an ε-gap problem, a particular case of promise problems [19],
where the set of inputs is partitioned in three subsets: yes-inputs, no-inputs and
the rest of them. The promise problem then asks to answer Yes for all yes-inputs
and No for all no-inputs, while the answer may be arbitrary for the remaining
inputs. In our setting, the set of inputs for which no guarantee is given can be
taken arbitrarily small, parametrized by value ε > 0: this is an ε-gap problem.
This notion is formalized in Theorem 15.

Related Work: Single-Constraint Case. There are papers considering mod-
els related to single-constraint percentile queries. Consider a single-dimensional
MDP and a single-constraint query, with thresholds v and α. The threshold
problem fixes v and maximizes α [30,31]. The value-at-risk problem fixes α and
maximizes v [5]. This is similar to quantiles in the shortest path setting [29].
Paper [5] is the first to provide an exponential-time algorithm to approximate
the optimal value v∗ under a fixed α in the general setting. The authors also
rely on approximation. While we do not consider optimization, we do extend the
setting to multi-constraint, multi-dimensional, multi-discount problems, and we
are able to remain in the same complexity class, namely EXPTIME.

Percentile Queries in Multi-dimensional Markov Decision Processes 137

Main Results. Our main contributions for the discounted sum are as follows.

Theorem 14. The ε-gap percentile problem for the discounted sum can be solved
in time pseudo-polynomial in the model size and the precision factor, and expo-
nential in the query size: polynomial in the number of states, the weights, the
discount factors and the precision factor, and exponential in the number of con-
straints. It is PSPACE-hard for two-dimensional MDPs and already NP-hard for
single-constraint queries. Exponential-memory strategies are both sufficient and
in general necessary to satisfy ε-gap percentile queries.

Cornerstones of the Algorithm. Our approach is similar to the shortest path:
we want to build an unfolding capturing the needed information w.r.t. the dis-
counted sums, and then reduce the percentile problem to a multiple reachability
problem over this unfolding. However, several challenges have to be overcome.

First, we need a finite unfolding. This was easy in the shortest path due to
non-decreasing sums and corresponding upper bounds. Here, it is not the case
as we put no restriction on weights. Nonetheless, thanks to the discount factor,
weights contribute less and less to the sum along a run. In particular, cutting all
runs after a pseudo-polynomial length changes the overall sum by at most ε/2.

Second, we reduce the overall size of the unfolding. For the shortest path we
took advantage of integer labels to define equivalence. Here, the space of values
taken by the discounted sums is too large for a straightforward equivalence. To
reduce it, we introduce a rounding scheme of the numbers involved. This idea is
inspired by [5]. We bound the error due to cumulated roundings by ε/2.

So, we control the amount of information lost to guarantee exact answers
except inside an arbitrarily small ε-zone. Given a q-constraint query Q for thresh-
olds vi, αi, dimensions li and discounts λi, we define the x-shifted query Qx, for
x ∈ Q, as the exact same problem for thresholds vi + x, αi, dimensions li and
discounts λi. Our algorithm satisfies the following theorem, which formalizes the
ε-gap percentile problem mentioned in Theorem 14.

Theorem 15. There is an algorithm that, given an MDP, a percentile query Q
for the discounted sum and a precision factor ε > 0, solves the following ε-gap
problem in exponential time. It answers

– Yes if there is a strategy satisfying the (2 · ε)-shifted percentile query Q2·ε;
– No if there is no strategy satisfying the (−2 · ε)-shifted percentile query Q−2·ε;
– and arbitrarily otherwise.

Lower Bounds. The ε-gap percentile problem is PSPACE-hard by reduction
from subset-sum games [28]. Two tricks are important. First, counterbalancing
the discount effect via adequate weights. Second, simulating an equality con-
straint. This cannot be achieved directly because it requires to handle ε = 0.
Still, by choosing weights carefully we restrict possible discounted sums to inte-
ger values only. Then we choose the thresholds and ε > 0 such that no run
can take a value within the uncertainty zone. This circumvents the limitation
due to uncertainty. For single-constraint ε-gap problems, we prove NP-hardness,
even for Markov chains. Our proof is by reduction from the K-th largest subset

138 M. Randour et al.

problem [18], inspired by [7, Theorem 11]. A recent, not yet published, paper
by Haase and Kiefer [20] claims that this K-th largest subset problem is actu-
ally PP-complete. If this claim holds, then it suggests that the single-constraint
problem does not belong to NP at all, otherwise the polynomial hierarchy would
collapse to PNP by Toda’s theorem [27].
Memory. For the precise discounted sum and generalizations, infinite memory
is needed [9]. For ε-gap problems, the exponential upper bound follows from the
algorithm while the lower bound is shown via a family of problems that emulate
the ones used for multiple reachability (Theorem 2).

References

1. Baier, C., Daum, M., Dubslaff, C., Klein, J., Klüppelholz, S.: Energy-utility quan-
tiles. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 285–
299. Springer, Heidelberg (2014)

2. Bertsekas, D.P., Tsitsiklis, J.N.: An analysis of stochastic shortest path problems.
Math. Oper. Res. 16, 580–595 (1991)

3. Boker, U., Henzinger, T.A.: Exact and approximate determinization of discounted-
sum automata. LMCS 10(1), 1–33 (2014)

4. Boker, U., Henzinger, T.A., Otop, J.: The target discounted-sum problem. In:
Proceedings of LICS. IEEE Computer Society (2015)

5. Brázdil, T., Chen, T., Forejt, V., Novotný, P., Simaitis, A.: Solvency Markov deci-
sion processes with interest. In: Proceedings of FSTTCS, LIPIcs, vol. 24, pp. 487–
499. Schloss Dagstuhl - LZI (2013)

6. Brázdil, T., Brozek, V., Chatterjee, K., Forejt, V., Kucera, A.: Markov decision
processes with multiple long-run average objectives. LMCS 10(13), 1–29 (2014)

7. Bruyère, V., Filiot, E., Randour, M., Raskin, J.-F.: Meet your expectations with
guarantees: beyond worst-case synthesis in quantitative games. In: Proceedings of
STACS, LIPIcs, vol. 25, pp. 199–213. Schloss Dagstuhl - LZI (2014)

8. Chatterjee, K., Doyen, L., Randour, M., Raskin, J.-F.: Looking at mean-payoff and
total-payoff through windows. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013.
LNCS, vol. 8172, pp. 118–132. Springer, Heidelberg (2013)

9. Chatterjee, K., Forejt, V., Wojtczak, D.: Multi-objective discounted reward verifi-
cation in graphs and MDPs. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.)
LPAR-19 2013. LNCS, vol. 8312, pp. 228–242. Springer, Heidelberg (2013)

10. Chatterjee, K., Henzinger, T.A.: Probabilistic systems with limsup and liminf
objectives. In: Archibald, M., Brattka, V., Goranko, V., Löwe, B. (eds.) ILC 2007.
LNCS, vol. 5489, pp. 32–45. Springer, Heidelberg (2009)

11. Chatterjee, K., Komárková, Z., Kret́ınský, J.: Unifying two views on multiple mean-
payoff objectives in Markov decision processes. In: Proceedings of LICS. IEEE
Computer Society (2015)

12. Chatterjee, K., Majumdar, R., Henzinger, T.A.: Markov decision processes with
multiple objectives. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol.
3884, pp. 325–336. Springer, Heidelberg (2006)

13. Chatterjee, K., Randour, M., Raskin, J.-F.: Strategy synthesis for multi-
dimensional quantitative objectives. Acta Inform. 51(3–4), 129–163 (2014)

14. de Alfaro, L.: Formal verification of probabilistic systems. Ph.D. thesis, Stanford
University (1997)

Percentile Queries in Multi-dimensional Markov Decision Processes 139

15. de Alfaro, L.: Computing minimum and maximum reachability times in probabilis-
tic systems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664,
pp. 66–81. Springer, Heidelberg (1999)

16. Etessami, K., Kwiatkowska, M.Z., Vardi, M.Y., Yannakakis, M.: Multi-objective
model checking of Markov decision processes. LMCS 4(4), 1–21 (2008)

17. Filar, J.A., Krass, D., Ross, K.W.: Percentile performance criteria for limiting
average Markov decision processes. IEEE Trans. Aut. Control 40(1), 2–10 (1995)

18. Garey, Michael R., Johnson, David S.: Computers and Intractability: A Guide to
the Theory of NP-Completeness. Freeman, New York (1979)

19. Goldreich, O.: On promise problems: a survey. In: Goldreich, O., Rosenberg, A.L.,
Selman, A.L. (eds.) Theoretical Computer Science. LNCS, vol. 3895, pp. 254–290.
Springer, Heidelberg (2006)

20. Haase, C., Kiefer, S.: The complexity of the Kth largest subset problem and related
problems. CoRR, abs/1501.06729 (2015)

21. Haase, C., Kiefer, S.: The odds of staying on budget. In: Halldórsson, M.M., Iwama,
K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 234–
246. Springer, Heidelberg (2015)

22. Ohtsubo, Y.: Optimal threshold probability in undiscounted Markov decision
processes with a target set. Appl. Math. Comput. 149(2), 519–532 (2004)

23. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming, 1st edn. Wiley, New York (1994)

24. Randour, M., Raskin, J.-F., Sankur, O.: Percentile queries in multi-dimensional
Markov decision processes. CoRR, abs/1410.4801 (2014)

25. Randour, M., Raskin, J.-F., Sankur, O.: Variations on the stochastic shortest path
problem. In: D’Souza, D., Lal, A., Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol.
8931, pp. 1–18. Springer, Heidelberg (2015)

26. Sakaguchi, M., Ohtsubo, Y.: Markov decision processes associated with two thresh-
old probability criteria. J. Control Theor. Appl. 11(4), 548–557 (2013)

27. Toda, S.: PP is as hard as the polynomial-time hierarchy. SIAM J. Comput. 20(5),
865–877 (1991)

28. Travers, S.D.: The complexity of membership problems for circuits over sets of
integers. Theor. Comput. Sci. 369(1–3), 211–229 (2006)

29. Ummels, M., Baier, C.: Computing quantiles in Markov reward models. In: Pfen-
ning, F. (ed.) FOSSACS 2013 (ETAPS 2013). LNCS, vol. 7794, pp. 353–368.
Springer, Heidelberg (2013)

30. White, D.J.: Minimizing a threshold probability in discounted Markov decision
processes. J. Math. Anal. Appl. 173(2), 634–646 (1993)

31. Wu, C., Lin, Y.: Minimizing risk models in Markov decision processes with policies
depending on target values. J. Math. Anal. Appl. 231(1), 47–67 (1999)

32. Xu, H., Mannor, S.: Probabilistic goal Markov decision processes. In: IJCAI, pp.
2046–2052 (2011)

Faster Algorithms for Quantitative Verification
in Constant Treewidth Graphs

Krishnendu Chatterjee, Rasmus Ibsen-Jensen, and Andreas Pavlogiannis(B)

IST Austria, Klostenneuburg, Austria
{kchatterjee,pavlogiannis}@ist.ac.at

Abstract. We consider the core algorithmic problems related to verifi-
cation of systems with respect to three classical quantitative properties,
namely, the mean-payoff property, the ratio property, and the minimum
initial credit for energy property. The algorithmic problem given a graph
and a quantitative property asks to compute the optimal value (the infi-
mum value over all traces) from every node of the graph. We consider
graphs with constant treewidth, and it is well-known that the control-flow
graphs of most programs have constant treewidth. Let n denote the num-
ber of nodes of a graph, m the number of edges (for constant treewidth
graphs m = O(n)) and W the largest absolute value of the weights.
Our main theoretical results are as follows. First, for constant treewidth
graphs we present an algorithm that approximates the mean-payoff value
within a multiplicative factor of ε in time O(n·log(n/ε)) and linear space,
as compared to the classical algorithms that require quadratic time. Sec-
ond, for the ratio property we present an algorithm that for constant
treewidth graphs works in time O(n · log(|a · b|)) = O(n · log(n · W)),
when the output is a

b
, as compared to the previously best known algo-

rithm with running time O(n2 ·log(n·W)). Third, for the minimum initial
credit problem we show that (i) for general graphs the problem can be
solved in O(n2·m) time and the associated decision problem can be solved
in O(n ·m) time, improving the previous known O(n3 ·m · log(n ·W)) and
O(n2 · m) bounds, respectively; and (ii) for constant treewidth graphs
we present an algorithm that requires O(n · log n) time, improving the
previous known O(n4 · log(n · W)) bound. We have implemented some
of our algorithms and show that they present a significant speedup on
standard benchmarks.

1 Introduction

Boolean vs. Quantitative Verification. The traditional view of verification
has been qualitative (Boolean) that classifies traces of a system as “correct” vs
“incorrect”. In the recent years, motivated by applications to analyze resource-
constrained systems (such as embedded systems), there has been a huge interest

The research was partly supported by Austrian Science Fund (FWF) Grant No
P23499- N23, FWF NFN Grant No S11407-N23 (RiSE/SHiNE), ERC Start grant
(279307: Graph Games), and Microsoft faculty fellows award.

c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 140–157, 2015.
DOI: 10.1007/978-3-319-21690-4 9

Faster Algorithms for Quantitative Verification 141

to study quantitative properties of systems. A quantitative property assigns to
each trace of a system a real-number that quantifies how good or bad the trace is,
instead of classifying it as correct vs incorrect. For example, a Boolean property
may require that every request is eventually granted, whereas a quantitative
property for each trace can measure the average waiting time between requests
and corresponding grants.

Variety of Results. Given the importance of quantitative verification, the tra-
ditional qualitative view of verification has been extended in several ways, such
as, quantitative languages and quantitative automata for specification languages
[15–17,21,27,28,44]; quantitative logics for specification languages [2,9,11];
quantitative synthesis for robust reactive systems [4,5,20]; a framework for quan-
titative abstraction refinement [13]; quantitative analysis of infinite-state sys-
tems [18,23]; and model measuring (that extends model checking) [33], to name a
few. The core algorithmic question for many of the above studies is a graph algo-
rithmic problem that requires to analyze a graph wrt a quantitative property.

Important Quantitative Properties. The three quantitative properties that
have been studied for their relevance in analysis of reactive systems are as follows.
First, the mean-payoff property consists of a weight function that assigns to
every transition an integer-valued weight and assigns to each trace the long-
run average of the weights of the transitions of the trace. Second, the ratio
property consists of two weight functions (one of which is a positive weight
function) and assigns to each trace the ratio of the two mean-payoff properties
(the denominator is wrt the positive function). The minimum initial credit for
energy property consists of a weight function (like in the mean-payoff property)
and assigns to each trace the minimum number to be added such that the partial
sum of the weights for every prefix of the trace is non-negative. For example,
the mean-payoff property is used for average waiting time, worst-case execution
time analysis [13,17,18]; the ratio property is used in robustness analysis of
systems [5]; and the minimum initial credit for energy for measuring resource
consumptions [10].

Algorithmic Problems. Given a graph and a quantitative property, the value
of a node is the infimum value of all traces that start at the respective node. The
algorithmic problem (namely, the value problem) for analysis of quantitative prop-
erties consists of a graph and a quantitative property, and asks to compute either
the exact value or an approximation of the value for every node in the graph. The
algorithmic problems are at the heart of many applications, such as automata
emptiness, model measuring, quantitative abstraction refinement, etc.

Treewidth of Graphs. A very well-known concept in graph theory is the
notion of treewidth of a graph, which is a measure of how similar a graph is
to a tree (a graph has treewidth 1 precisely if it is a tree) [40]. The treewidth of
a graph is defined based on a tree decomposition of the graph [31], see Sect. 2 for
a formal definition. Beyond the mathematical elegance of the treewidth prop-
erty for graphs, there are many classes of graphs which arise in practice and
have constant treewidth. The most important example is that the control flow

142 K. Chatterjee et al.

graphs of goto-free programs for many programming languages are of constant
treewidth [42], and it was also shown in [30] that typically all Java programs
have constant treewidth. For many other applications see the surveys [6,7]. The
constant treewidth property of graphs has also played an important role in logic
and verification; for example, MSO (Monadic Second Order logic) queries can
be solved in polynomial time [24] (also in log-space [29]) for constant-treewidth
graphs; parity games on graphs with constant treewidth can be solved in poly-
nomial time [37]; and there exist faster algorithms for probabilistic models (like
Markov decision processes) [14]. Moreover, recently it has been shown that the
constant treewidth property is also useful for interprocedural analysis [18].

Previous Results and Our Contributions. In this work we consider general
graphs and graphs with constant treewidth, and the algorithmic problems to
compute the exact value or an approximation of the value for every node wrt
to quantitative properties given as the mean-payoff, the ratio, or the minimum
initial credit for energy. We first present the relevant previous results, and then
our contributions.

Previous Results. We consider graphs with n nodes, m edges, and let W denote
the largest absolute value of the weights. The running time of the algorithms is
characterized by the number of arithmetic operations (i.e., each operation takes
constant time); and the space is characterized by the maximum number of inte-
gers the algorithm stores. The classical algorithm for graphs with mean-payoff
properties is the minimum mean-cycle problem of Karp [34], and the algorithm
requires O(n · m) running time and O(n2) space. A different algorithm was
proposed in [36] that requires O(n · m) running time and O(n) space. Orlin and
Ahuja [38] gave an algorithm running in time O(

√
n·m·log(n·W)). For some spe-

cial cases there exist faster approximation algorithms [19]. There is a straightfor-
ward reduction of the ratio problem to the mean-payoff problem. For computing
the exact minimum ratio, the fastest known strongly polynomial time algorithm
is Burns’ algorithm [12] running in time O(n2 · m). Also, there is an algorithm
by Lawler [35] that uses O(n ·m · log(n ·W)) time. Many pseudopolynomial algo-
rithms are known for the problem, with polynomial dependency on the numbers
appearing in the weight function, see [26]. For the minimum initial credit for
energy problem, the decision problem (i.e., is the energy required for node v at
most c?) can be solved in O(n2 ·m) time, leading to an O(n3 ·m · log(n ·W)) time
algorithm for the minimum initial credit for energy problem [10]. All the above
algorithms are for general graphs (without the constant-treewidth restriction).

Our Contributions. Our main contributions are as follows.

1. Finding the Mean-Payoff and Ratio Values in Constant-Treewidth Graphs.
We present two results for constant treewidth graphs. First, for the exact
computation we present an algorithm that requires O(n · log(|a · b|)) time
and O(n) space, where a

b �= 0 is the (irreducible) ratio/mean-payoff of the
output. If a

b = 0, the algorithm uses O(n) time. Note that log(|a · b|) ≤
2 log(n · W). We also present a space-efficient version of the algorithm that
requires only O(log n) space. Second, we present an algorithm for finding an

Faster Algorithms for Quantitative Verification 143

ε-factor approximation of the mean-payoff value that requires O(n · log(n/ε))
time, as compared to the O(n1.5 · log(n · W)) time solution of Orlin & Ahuja,
and the O(n2) time solution of Karp (see Table 1).

2. Finding the Minimum Initial Credit in Graphs. We present two results. First,
we consider the exact computation for general graphs, and present (i) an
O(n · m) time algorithm for the decision problem (improving the previously
known O(n2 · m) bound), and (ii) an O(n2 · m) time algorithm to compute
value of all nodes (improving the previously known O(n3 · m · log(n · W))
bound). Finally, we consider the computation of the exact value for graphs
with constant treewidth and present an algorithm that requires O(n · log n)
time (improving the previous known O(n4 · log(n · W)) bound) (see Table 2).

3. Experimental Results. We have implemented our algorithms for the minimum
mean cycle and minimum initial credit problems and ran them on standard
benchmarks (DaCapo suit [3] for the minimum mean cycle problem, and
DIMACS challenges [1] for the minimum initial credit problem). For the min-
imum mean cycle problem, our results show that our algorithm has lower
running time than all the classical polynomial-time algorithms. For the mini-
mum initial credit problem, our algorithm provides a significant speedup over
the existing method. Both improvements are demonstrated even on graphs of
small/medium size. Note that our theoretical improvements (better asymp-
totic bounds) imply improvements for large graphs, and our improvements on
medium sized graphs indicate that our algorithms have practical applicability
with small constants.

Table 1. Time complexity of existing and our solutions for the minimum mean-cycle
value and ratio-cycle value problem in constant treewidth weighted graphs with n nodes
and largest absolute weight W , when the output is the (irreducible) fraction a

b
�= 0.

Minimum mean-cycle value Minimum ratio-cycle value

Orlin & Ahuja [38] Karp [34] Our result [Thm 4] Burns [12] Lawler [35] Our result [Cor 2]

(ε-approximate)

O(n1.5 · log(n · W)) O(n2) O(n · log(n/ε)) O(n3) O(n2 · log(n · W)) O(n · log(|a · b|))

Table 2. Complexity of the existing and our solution for the minimum initial credit
problem on weighted graphs of n nodes, m edges, and largest absolute weight W .

Bouyer et al. [10] Our result [Thm 5, Cor 3] Our result [Thm 7]

(constant treewidth)

Time (decision) O(n2 · m) O(n · m) O(n · logn)

Time O(n3 · m · log(n · W)) O(n2 · m) O(n · logn)

Space O(n) O(n) O(n)

Technical Contributions. The key technical contributions of our work are as
follows:

1. Mean-Payoff and Ratio Values in Constant-Treewidth Graphs. Given a graph
with constant treewidth, let c∗ be the smallest weight of a simple cycle. First,

144 K. Chatterjee et al.

we present a linear-time algorithm that computes c∗ exactly (if c∗ ≥ 0) or
approximates c∗ within a polynomial factor (if c∗ < 0). Then, we show that
if the minimum ratio value ν∗ is the irreducible fraction a

b , then ν∗ can be
computed by evaluating O(log(|a · b|)) inequalities of the form ν∗ ≥ ν. Each
such inequality is evaluated by computing the smallest weight of a simple
cycle in a modified graph. Finally, for ε-approximating the value ν∗, we show
that O(log(n/ε)) such inequalities suffice.

2. Minimum Initial Credit Problem. We show that for general graphs, the deci-
sion problem can be solved with two applications of Bellman-Ford-type algo-
rithms, and the value problem reduces to finding non-positive cycles in the
graph, followed by one instance of the single-source shortest path problem.
We then show how the invariants of the algorithm for the value problem
on general graphs can be maintained by a particular graph traversal of the
tree-decomposition for constant-treewidth graphs.

2 Definitions

Weighted Graphs. We consider finite weighted directed graphs G =
(V,E,wt,wt′) where V is the set of n nodes, E ⊆ V × V is the edge relation of
m edges, wt : E → Z is a weight function that assigns an integer weight wt(e)
to each edge e ∈ E, and wt′ : E → N

+ is a weight function that assigns strictly
positive integer weights. For technical simplicity, we assume that there exists at
least one outgoing edge from every node. In certain cases where the function wt′

is irrelevant, we will consider weighted graphs G = (V,E,wt), i.e., without the
function wt′.

Finite and Infinite Paths. A finite path P = (u1, . . . , uj), is a sequence of
nodes ui ∈ V such that for all 1 ≤ i < j we have (ui, ui+1) ∈ E. The length of P
is |P | = j−1. A single-node path has length 0. The path P is simple if there is no
node repeated in P , and it is a cycle if j > 1 and u1 = uj . The path P is a simple
cycle if P is a cycle and the sequence (u2, . . . uj) is a simple path. The functions
wt and wt′ naturally extend to paths, so that the weight of a path P with
|P | > 0 wrt the weight functions wt and wt′ is wt(P) =

∑
1≤i<j wt(ui, ui+1) and

wt′(P) =
∑

1≤i<j wt
′(ui, ui+1). The value of P is defined to be wt(P) = wt(P)

wt′(P) .
For the case where |P | = 0, we define wt(P) = 0, and wt(P) is undefined. An
infinite path P = (u1, u2, . . .) of G is an infinite sequence of nodes such that
every finite prefix P of P is a finite path of G. The functions wt and wt′ assign
to P a value in Z∪{−∞,∞}: we have wt(P) =

∑
i wt(ui, ui+1) and wt′(P) = ∞.

For a (possibly infinite) path P , we use the notation u ∈ P to denote that a
node u appears in P , and e ∈ P to denote that an edge e appears in P . Given a
set B ⊆ V , we denote by P ∩ B the set of nodes of B that appear in P . Given
a finite path P1 and a possibly infinite path P2, we denote by P1 ◦ P2 the path
resulting from the concatenation of P1 and P2.

Distances and Witness Paths. For nodes u, v ∈ V , we denote by d(u, v) =
infP :u�v wt(P) the distance from u to v. A finite path P : u � v is a witness

Faster Algorithms for Quantitative Verification 145

of the distance d(u, v) if wt(P) = d(u, v). An infinite path P is a witness of the
distance d(u, v) if the following conditions hold:

1. d(u, v) = wt(P) = −∞, and
2. P starts from u, and v is reachable from every node of P.

Note that d(u, v) = ∞ is not witnessed by any path.

Tree Decompositions. A tree-decomposition Tree(G) = (VT , ET) of G is a tree
such that the following conditions hold:

1. VT = {B0, . . . , Bn′−1 : ∀i Bi ⊆ V } and
⋃

Bi∈VT
Bi = V (every node is

covered).
2. For all (u, v) ∈ E there exists Bi ∈ VT such that u, v ∈ Bi (every edge is

covered).
3. For all i, j, k such that there is a bag Bk that appears in the simple path Bi �

Bj in Tree(G), we have Bi ∩ Bj ⊆ Bk (every node appears in a contiguous
subtree of Tree(G)).

The sets Bi which are nodes in VT are called bags. Conventionally, we call B0 the
root of Tree(G), and denote by Lv(Bi) the level of Bi in Tree(G), with Lv(B0) =
0. We say that Tree(G) is balanced if the maximum level is maxBi

Lv(Bi) =
O(log n′), and it is binary if every bag has at most two children bags. A bag B is
called the root bag of a node u if B is the smallest-level bag that contains u, and
we often use Bu to refer to the root bag of u. The width of a tree-decomposition
Tree(G) is the size of the largest bag minus 1. The treewidth of G is the smallest
width among the widths of all possible tree decompositions of G.

Theorem 1. For every graph G with n nodes and constant treewidth, a balanced
binary tree-decomposition Tree(G) of constant width and O(n) bags can be con-
structed in (1) O(n) time and space [8], (2) deterministic logspace (and hence
polynomial time) [29].

In the sequel we consider only balanced and binary tree-decompositions of con-
stant width and n′ = O(n) bags (and hence of height O(log n)). Additionally,
we assume that every bag is the root bag of at most one node. Obtaining this
last property is straightforward, simply by replacing each bag B which is the
root of k > 1 nodes x1, . . . xk with a chain of bags B1, . . . , Bk = B, where each
Bi is the parent of Bi+1, and Bi+1 = Bi ∪ {xi+1}. Note that this keeps the tree
binary and increases its height by at most a constant factor, hence the resulting
tree is also balanced.

Throughout the paper, we follow the convention that the maximum and
minimum of the empty set is −∞ and ∞ respectively, i.e., max(∅) = −∞ and
min(∅) = ∞. Time complexity is measured in number of arithmetic and logi-
cal operations, and space complexity is measured in number of machine words.
Given a graph G, we denote by T (G) and S(G) the time and space required for
constructing a balanced, binary tree-decomposition Tree(G). We are interested
in the following problems.

146 K. Chatterjee et al.

The Minimum Mean Cycle Problem [34]. Given a weighted directed graph
G = (V,E,wt), the minimum mean cycle problem asks to determine for each
node u the mean value μ∗(u) = minC∈Cu

wt(C)
|C| , where Cu is the set of simple

cycles reachable from u in G. A cycle C with wt(C)
|C| = μ∗(u) is called a minimum

mean cycle of u. For 0 < ε < 1, we say that a value μ is an ε-approximation of
the mean value μ∗(u) if |μ − μ∗(u)| ≤ ε · |μ∗(u)|.
The Minimum Ratio Cycle Problem [32]. Given a weighted directed graph
G = (V,E,wt,wt′), the minimum ratio cycle problem asks to determine for each
node u the ratio value ν∗(u) = minC∈Cu

wt(C), where wt(C) = wt(C)
wt′(C) and Cu is

the set of simple cycles reachable from u in G. A cycle C with wt(C) = ν∗
u is called

a minimum ratio cycle of u. The minimum mean cycle problem follows as a special
case of the minimum ratio cycle problem for wt′(e) = 1 for each edge e ∈ E.

The Minimum Initial Credit Problem [10]. Given a weighted directed graph
G = (V,E,wt), the minimum initial credit value problem asks to determine
for each node u the smallest energy value E(u) ∈ N ∪ {∞} with the following
property: there exists an infinite path P = (u1, u2 . . .) with u = u1, such that
for every finite prefix P of P we have E(u) + wt(P) ≥ 0. Conventionally, we let
E(u) = ∞ if no finite value exists. The associated decision problem asks given a
node u and an initial credit c ∈ N whether E(u) ≤ c.

3 Minimum Cycle

In this section we deal with a related graph problem, namely the detection of a
minimum-weight simple cycle of a graph. In Sect. 4 we use our solution to this
problem to obtain solutions for the minimum ratio and minimum mean cycle
problems.

The Minimum Cycle Problem. Given a weighted graph G = (V,E,wt), the
minimum cycle problem asks to determine the weight c∗ of a minimum-weight sim-
ple cycle in G, i.e., c∗ = minC∈C wt(C), where C is the set of simple cycles in G.

We describe the algorithm MinCycle that operates on a tree-decomposition
Tree(G) of an input graph G, and has the following properties.

1. If G has no negative cycles, then MinCycle returns the weight c∗ of a minimum-
weight cycle in G.

2. If G has negative cycles, then MinCycle returns a value that is at most a
polynomial (in n) factor smaller than c∗.

U-Shaped Paths. Following the recent work of [18], we define the important
notion of U-shaped paths in a tree-decomposition Tree(G). Given a bag B and
nodes u, v ∈ B, we say that a path P : u � v is U-shaped in B, if one of the
following conditions hold:

1. Either |P | > 1 and B is an ancestor of Bw for all intermediate nodes w ∈ P ,
2. or |P | ≤ 1 and B is Bu or Bv (i.e., B is the root bag of either u or v).

Faster Algorithms for Quantitative Verification 147

u

x

v

P1
P2

LDB(u, x) LDB(x, v)

Fig. 1. Path shortening in MinCycle. When Bx is examined, LDBx(u, v) is updated
with the weight of the U-shaped path P = P1 ◦ P2. The paths P1 and P2 are U-shaped
paths in the children bags B1 and B2 of Bx, and we have LDBi(u, x) = wt(Pi).

Informally, given a bag B, a U-shaped path in B is a path that traverses interme-
diate nodes that exist only in the subtree of Tree(G) rooted in B. The following
remark follows from the definition of tree-decompositions, and states that every
simple cycle C can be seen as a U-shaped path P from the smallest-level node
of C to itself. Consequently, we can determine the value c∗ by only considering
U-shaped paths in Tree(G).

Remark 1. Let C = (u1, . . . , uk) be a simple cycle in G, and uj =
arg minui∈C Lv(ui). Then P = (uj , uj+1, . . . uk, u1, . . . , uj) is a U-shaped path
in Buj

, and wt(P) = wt(C).

Informal Description of MinCycle. Based on U-shaped paths, the work
of [18] presented a method for computing algebraic path properties on tree-
decompositions with constant width, where the weights of the edges come from
a general semiring. Note that integer-valued weights are a special case of the
tropical semiring. Our algorithm MinCycle is similar to the algorithm Preprocess
from [18]. It consists of a depth-first traversal of Tree(G), and for each exam-
ined bag B computes a local distance map LDB : B × B → Z ∪ {∞} such that
for each u, v ∈ B, we have (i) LDB(u, v) = wt(P) for some path P : u � v,
and (ii) LDB ≤ minP wt(P), where P are taken to be simple u � v paths (or
simple cycles) that are U-shaped in B. This is achieved by traversing Tree(G)
in post-order, and for each root bag Bx of a node x, we update LDBx

(u, v) with
LDBx

(u, x) + LDBx
(x, v) (i.e., we do path-shortening from node u to node v, by

considering paths that go through x). See Fig. 1 for an illustration. At the end,
MinCycle returns the smallest LDBx

(x, x) it has found.
The following lemma follows easily from [18, Lemma 2], and states that

LDB(u, v) is upper bounded by the smallest weight of a U-shaped simple u � v
path in B.

Lemma 1 ([18, Lemma 2]). For every examined bag B and nodes u, v ∈ B, we
have (1) LDB(u, v) = wt(P) for some path P : u � v (and LDB(u, v) = ∞ if
no such P exists), and (2) LDB(u, v) ≤ minP :u�v wt(P) where P ranges over
U-shaped simple paths and simple cycles in B.

Based on Lemma 1, we show that MinCycle returns minx LDBx
(x, x), i.e., the

weight of the smallest-weight U-shaped (not necessarily simple) cycle C : x � x

148 K. Chatterjee et al.

it has discovered. The cycle C has polynomial (in n) length, thus |wt(C)| =
|c∗| · nO(1), and C is necessarily simple if there are no negative cycles in G,
in which case wt(C) = c∗. We refer to the full version for a detailed analysis [22].
This leads to the following theorem.

Theorem 2. Let G = (V,E,wt) be a weighted graph of n nodes with constant
treewidth, and a balanced, binary tree-decomposition Tree(G) of G be given. Let
c∗, be the smallest weight of a simple cycle in G. Algorithm MinCycle uses O(n)
time and O(log n) additional space, and returns a value c such that:

1. If G has no negative cycles, then c = c∗.
2. If G has a negative cycle, then c ≤ c∗, and |c| = |c∗| · nO(1).

4 The Minimum Ratio and Mean Cycle Problems

In the current section we present algorithms for solving the minimum ratio
and mean cycle problems for weighted graphs G = (V,E,wt,wt′) of constant
treewidth.

Remark 2. If G is not strongly connected, we can compute its maximal strongly
connected components (SCCs) in linear time [41], and use the algorithms of
this section to compute the minimum cycle ratio ν∗

i in every component Gi.
Afterwards, we assign the ratio values ν∗(u) for all nodes u as follows. First,
mark every SCC Gi with M(Gi) = ν∗

i . Then, for every bottom SCC Gi, (i) for
every u in Gi assign ν∗(u) = M(Gi), (ii) for every neighbor SCC Gj of Gi, mark
Gj with M(Gj) = min(M(Gj),M(Gi)), (iii) remove Gi and repeat. Since these
operations require linear time in total, they do not impact the time complexity.
Therefore, we consider graphs G that are strongly connected, and we will speak
about the minimum ratio ν∗ and mean μ∗ values of G.

Claim 1. Let ν∗ be the ratio value of G. Then ν∗ ≥ ν iff for every cycle C of
G we have wtν(C) ≥ 0, where wtν(e) = wt(e) − wt′(e) · ν for each edge e ∈ E.

Hence, given a tree-decomposition Tree(G), and a guess ν of the ratio value
ν∗, we can evaluate whether ν∗ ≥ ν by executing algorithm MinCycle on input
Gν = (V,E,wtν). By Item 2a of Theorem 2 and Claim 1 we have that the
returned value c of MinCycle is c ≥ 0 iff wtν(C) ≥ 0 for all cycles C, iff ν∗ ≥ ν
(and in fact c = 0 iff ν∗ = ν).

4.1 Exact Solution

We now describe the method for determining the value ν∗ of G exactly. This
is done by making various guesses ν such that ν∗ ≥ ν and testing for negative
cycles in the graph Gν = (V,E,wtν). We first determine whether ν∗ = 0, using
Claim 1. In the remaining of this section we assume that ν∗ �= 0.

Solution Overview. Consider that ν∗ > 0. First, we either find that ν∗ ∈ (0, 1)
(hence �ν∗� = 0), or perform an exponential search of O(log ν∗) iterations to

Faster Algorithms for Quantitative Verification 149

determine j ∈ N
+ such that ν∗ ∈ [2j−1, 2j]. In the latter case we perform

a binary search of O(log ν∗) iterations in the interval [2j−1, 2j] to determine
�ν∗�. Then we can write ν∗ = �ν∗� + x, where x < 1 is an irreducible fraction
a
b . It has been shown [39] that such x can be determined by evaluating O(log b)
inequalities of the form x ≥ ν. The case for ν∗ < 0 is handled similarly. We refer
to the full version of the paper for a detailed description [22]. We thus obtain
the following theorem, and by Theorem 1 the corollaries follow.

Theorem 3. Let G = (V,E,wt,wt′) be a weighted graph of n nodes with con-
stant treewidth, and λ = maxu |au · bu| such that ν∗(u) is the irreducible fraction
au

bu
. Let T (G) and S(G) denote the required time and space for constructing a

balanced binary tree-decomposition Tree(G) of G with constant width. The min-
imum ratio cycle problem for G can be computed in (1) O(T (G)+n · log λ) time
and O(S(G) + n) space; and (2) O(S(G) + log n) space.

Corollary 1. Let G = (V,E,wt,wt′) be a weighted graph of n nodes with con-
stant treewidth, and λ = maxu |au · bu| such that ν∗(u) is the irreducible fraction
au

bu
. The minimum ratio value problem for G can be computed in (1) O(n · log λ)

time and O(n) space; and (2) O(log n) space.

Corollary 2. Let G = (V,E,wt) be a weighted graph of n nodes with constant
treewidth, and λ = maxu |μ∗(u)|. The minimum mean value problem for G can
be computed in (1) O(n · log λ) time and O(n) space; and (2) O(log n) space.

4.2 Approximating the Minimum Mean Cycle

We now focus on the minimum mean cycle problem, and present a method for
ε-approximating the mean value μ∗ of G for any 0 < ε < 1 in O(n · log(n/ε)) time.

Approximate Solution in the Absence of Negative Cycles. We first con-
sider graphs G that do not have negative cycles. Let C be a minimum weight sim-
ple cycle in G, and note that μ∗ ∈ [0,wt(C)]. Additionally, we have wt(C) ≤ n·μ∗.
Consider a binary search in the interval [0,wt(C)], which in step i approximates
μ∗ by the right endpoint μi of its current interval. The error is bounded by the
length of the interval, hence μi −μ∗ ≤ wt(C) · 2−i ≤ n ·μ∗ · 2−i. To approximate
within a factor ε it suffices to iterate for i steps, where i ≥ log(n/ε).

Approximate Solution in the Presence of Negative Cycles. We now
turn our attention to ε-approximating μ∗ in the presence of negative cycles in
G. Let c be the value returned by MinCycle on input G. Item 2a of Theorem 2
guarantees that for the weight function wt−|c|(e) = wt(e)+|c|, the graph G−|c| =
(V,E,wt−|c|) has no negative cycles (although it might still have negative edges).
We show that μ∗ can be ε-approximated by ε′-approximating the value μ′∗ of
G−|c|, for some ε′ polynomially (in n) smaller than ε (i.e., ε′ = ε/nO(1)). We refer
to the full version for a detailed description [22].

Theorem 4. Let G = (V,E,wt) be a weighted graph of n nodes with constant
treewidth. For any 0 < ε < 1, the minimum mean value problem can be ε-
approximated in O(n · log(n/ε)) time and O(n) space.

150 K. Chatterjee et al.

5 The Minimum Initial Credit Problem

In the current section we present algorithms for solving the minimum initial
credit problem on weighted graphs G = (V,E,wt). We first deal with arbitrary
graphs, and provide an O(n · m) algorithm for the decision problem, and an
O(n2 · m) algorithm for the value problem, improving the previously best upper
bounds. Afterwards we adapt our approach to graphs of constant treewidth to
obtain an O(n · log n) algorithm.

Non-positive Minimum Initial Credit. For technical convenience we focus
on a variant of the minimum initial credit problem, where energies are non-
positive, and the goal is to keep partial sums of path prefixes non-positive. For-
mally, given a weighted graph G = (V,E,wt), the non-positive minimum initial
credit value problem asks to determine for each node u the largest energy value
E(u) ∈ Z≤0 ∪ {−∞} with the following property: there exists an infinite path
P = (u1, u2 . . .) with u = u1, such that for every finite prefix P of P we have
E(u) + wt(P) ≤ 0. We let E(u) = −∞ if no finite such value exists. Hence, min-
imality is wrt the absolute value of the energy. The associated decision problem
asks given a node u and an initial credit c ∈ Z≤0 whether E(u) ≥ c.

We start with some definitions and claims that will give the intuition for the
algorithms to follow. First, we define the minimum initial credit of a pair of nodes
u, v, which is the energy to reach v from u (i.e., the energy is wrt a finite path).

Finite Minimum Initial Credit. For nodes u, v ∈ V , we denote by Ev(u) ∈
Z≤0 ∪ {−∞} the largest value with the following property: there exists a path
P : u � v such that for every prefix P ′ of P we have Ev(u) + wt(P ′) ≤ 0. We
let Ev(u) = −∞ if there is no path u � v. Note that for every pair of nodes
u, v ∈ V , we have E(u) ≥ Ev(u) + E(v).

Highest-Energy Nodes. Given a (possibly infinite) path P with wt(P) < ∞,
we say that a node x ∈ P is a highest-energy node of P if there exists a highest-
energy prefix P1 of P ending in x such that for any prefix P2 of P we have
wt(P1) ≥ wt(P2). Note that since the weights are integers, for every pair of paths
P ′

1, P ′
2, it is either |wt(P ′

1)−wt(P ′
2)| = 0 or |wt(P ′

1)−wt(P ′
2)| ≥ 1. Therefore the

set {wt(Pi)}i of weights of prefixes of P has a maximum, and thus a highest-
energy node always exists when wt(P) < ∞. The following properties are easy
to verify:

1. If x is a highest-energy node in a path P : u � v, then Ev(x) = 0.
2. If x is a highest-energy node in an infinite path P, then E(x) = 0.

Using the above properties we establish Claim 2, which is central to our
algorithms.

Claim 2. For every u ∈ V , we have E(u) = maxv:E(v)=0 Ev(u).

5.1 The Decision Problem for General Graphs

Recall the decision problem: given a node u and an initial credit c ∈ Z≤0, decide
whether E(u) ≥ c. Our algorithm is based on Claim 3. The key idea is that

Faster Algorithms for Quantitative Verification 151

E(u) ≥ c iff there exists a witness path that reaches a non-positive cycle in less
than n steps.

Claim 3. For every u ∈ V and c ∈ Z≤0, we have that E(u) ≥ c iff there exists
a simple cycle C such that (i) wt(C) ≤ 0 and (ii) for every v ∈ C we have that
Ev(u) ≥ c, which is witnessed by a path Pv : u � v with |Pv| < n.

Algorithm DecisionEnergy. Claim 3 suggests a way to decide whether E(u) ≥ c.
First, we start with energy c from u, and perform n−1 relaxation steps, similar to
the Bellman-Ford algorithm, to discover the set V c

u of nodes that can be reached
from u with initial credit c by a path of length at most n − 1. Afterwards, we
perform a Bellman-Ford computation on the subgraph G � V c

u induced by the
set V c

u . By Claim 3, we have that E(u) ≥ c iff G � V c
u contains a non-positive

cycle. We refer to the full version for a detailed description [22]. We thus obtain
the following theorem.

Theorem 5. Let G = (V,E,wt) be a weighted graph of n nodes and m edges.
Let u ∈ V be an initial node, and c ∈ Z≤0 be an initial credit. The decision
problem of whether E(u) ≥ c can be solved in O(n · m) time and O(n) space.

5.2 The Value Problem for General Graphs

We now turn our attention to the value problem, where the task is to determine
E(u) for every node u. The following claim reduces the finite minimum initial
credit problem to reach a node v to the shortest-path problem, when all energies
to reach v are negative.

Claim 4. If for all w ∈ V \ {v} we have Ev(w) < 0, then for each u ∈ V \ {v}
we have Ev(u) = −d(u, v).

The rest of the section provides a O(k ·n ·m) time solution, where k = |X|+1 is
the number of 0-energy nodes (plus one). This solution is faster in graphs where
k = o(n). This is achieved by algorithm ZeroEnergyNodes for obtaining the set
X fast.

Determining the 0-Energy Nodes. To determine the set of 0-energy nodes,
we construct the graph G2 = (V2, E2,wt2) with a fresh node z �∈ V as follows:

1. The node set is V2 = V ∪ {z},
2. The edge set is E2 = E ∪ ({z} × V),

3. The weight function wt2 : E2 → Z is wt2(u, v) =
{

0 if u = z
wt(u, v) otherwise

Note that for every u ∈ V , the energy E(u) is the same in G and G2.

Algorithm ZeroEnergyNodes. Algorithm ZeroEnergyNodes is used for obtaining
the set X of all 0-energy nodes in G2. Informally, the algorithm performs a
sequence of modifications on a graph G , initially identical to G2. In each step,
the algorithm executes a Bellman-Ford computation on the current graph G with
z as the source node, as long as a non-positive cycle C is discovered. For every

152 K. Chatterjee et al.

Fig. 2. Solving the value problem using operations on the graph G . Initially we examine
G0, and a non-positive cycle is found (boldface edges) with highest-energy node x. Thus
E(x) = 0, and we proceed with G1, to discover E(u) = 0. In G2 all cycles are positive,
and the energy of each remaining node is minus its distance to z.

such C, it determines a highest-energy node w of C, and modifies G by replacing
every incoming edge (x,w) with an edge (x, z) of the same weight, and then
removing w. See Fig. 2 for an illustration.

Determining the Negative-Energy Nodes. Given the set X of 0-energy
nodes, it remains to determine the energy of every other node u ∈ V \ X. Let
G |X| be the modified graph G of algorithm ZeroEnergyNodes after the set X has
been computed. To compute the energy E(u) of each node u ∈ V \ X, it suffices
to compute its distance to z in G |X|. This reduces to a single-source shortest
path instance from z on G |X| with all edges reversed. Figure 2 illustrates the
algorithms on an example. We refer to the full version of the paper for a detailed
description [22]. We obtain the following theorem.

Theorem 6. Let G = (V,E,wt) be a weighted graph of n nodes and m edges,
and k = |{v ∈ V : E(v) = 0}| + 1. The minimum initial credit value problem for
G can be solved in O(k · n · m) time and O(n) space.

Corollary 3. Let G = (V,E,wt) be a weighted graph of n nodes and m edges.
The minimum initial credit value problem for G can be solved in O(n2 · m) time
and O(n) space.

5.3 The Value Problem for Constant-Treewidth Graphs

We now turn our attention to the minimum initial credit value problem for
constant-treewidth graphs G = (V,E,wt). Note that in such graphs m = O(n),
thus Theorem 6 gives an O(n3) time solution as compared to the existing O(n4 ·
log(n ·W)) time solution. This section shows that we can do significantly better,
namely reduce the time complexity to O(n · log n). This is mainly achieved by
algorithm ZeroEnergyNodesTW for computing the set X of 0-energy nodes fast
in constant-treewidth graphs.

Faster Algorithms for Quantitative Verification 153

Extended + andmin Operators. Recall the graph G2 = (V2, E2,wt2) from the
last section. Given Tree(G), a balanced and binary tree-decomposition Tree(G2)
of G2 with width increased by 1 can be easily constructed by (i) inserting z to
every bag of Tree(G), and (ii) adding a new root bag that contains only z. Let
I = Z × V × Z. For a map f : V2 × V2 → Z, define the map gf : V2 × V2 → I as

gf (u, v) =
{

(f(u, v), u, 0) if f(u, v) < 0 or v = z
(f(u, v), v, f(u, v)) otherwise

For triplets of elements α1 = (a1, b1, c1), α2 = (a2, b2, c2) ∈ I, define the opera-
tions

1. min(α1, α2) = αi with i = arg minj∈{1,2} aj

2. α1 + α2 = (a1 + a2, b, c), where c = max(c1, a1 + c2) and b = b1 if c = c1 else
b = b2.

In words, if f is a weight function, then gf (u, v) selects the weight of the edge
(u, v), its highest-energy node (i.e., u if f(u, v) < 0, and v otherwise, except
when v = z), and the weight to reach that node from u. Recall that algorithm
MinCycle from Sect. 3 traverses a tree-decomposition bottom-up, and for each
encountered bag B stores a map LDB such that LDB(u, v) is upper bounded
by the weight of the shortest U-shaped simple path u � v (or simple cycle, if
u = v). Our algorithm ZeroEnergyNodesTW for determining all 0-energy nodes is
similar, but now LDB stores triplets (a, b, c) where a is the weight of a U-shaped
path P , b is a highest-energy node of P , and c the weight of a highest-energy
prefix of P . For triplets α1 = (a1, b1, c1), α2 = (a2, b2, c2) ∈ I corresponding to
U-shaped paths P1, P2, min(α1, α2) selects the path with the smallest weight,
and α1 + α2 determines the weight, a highest-energy node, and the weight of a
highest-energy prefix of the path P1 ◦ P2 (see Fig. 3).

Algorithm ZeroEnergyNodesTW. The algorithm ZeroEnergyNodesTW for com-
puting the set of 0-energy nodes in constant-treewidth graphs follows the same
principle as ZeroEnergyNodes for general graphs. It stores a map of edge weights

b1

c1

a1

P i
1

w
t(
P

i 1
)

b2

c2

a2

P i
2

w
t(
P

i 2
)

b

c

a

P i

w
t(
P

i)

Fig. 3. Illustration of the α1 +α2 operation, corresponding to concatenating paths P1

and P2. The path P i
j denotes the i-th prefix of Pj . We have P = P1 ◦ P2, and the

corresponding tripplet α = (a, b, c) denotes the weight a of P , its highest-energy node
b, and the weight c of a highest-energy prefix.

154 K. Chatterjee et al.

wt : E2 → Z ∪ {∞}, and initially wt(u, v) = wt2(u, v) for each (u, v) ∈ E2.
The algorithm performs a bottom-up pass, and computes in each bag the local
distance map LDB : B × B → I that captures U-shaped u � v paths, together
with their highest-energy nodes (similar to algorithm MinCycle from Sect. 3).
When a non-positive cycle C is found, the algorithm modifies the edges of a
highest-energy node w of C and its incoming neighbors (similar to algorithm
ZeroEnergyNodes). These updates affect the distances between the remaining
nodes, hence some local distance maps LDB need to be corrected. We prove
that each such edge modification only affects the local distance map of bags
that appear in a path from a bag B′ to some ancestor B′′ of B′. Instead of
restarting the computation as in ZeroEnergyNodes, the algorithm only updates
those maps along the path B′ � B′′. We refer to the full version for a detailed
description [22].

Theorem 7. Let G = (V,E,wt) be a weighted graph of n nodes with constant
treewidth. The minimum initial credit value problem for G can be solved in O(n ·
log n) time and O(n) space.

6 Experimental Results

Here we report on preliminary experimental evaluation of our algorithms, and
compare them to existing methods. Our algorithm for the minimum mean cycle
problem provides improvement for constant-treewidth graphs, and has thus been
evaluated on constant-treewidth graphs obtained from the control-flow graphs
of programs. For the minimum initial credit problem, we have implemented our
algorithm for arbitrary graphs, thus the benchmarks in this case are general
graphs (i.e., not constant-treewidth graphs).

Minimum Mean Cycle. We have implemented our approximation algorithm
for the minimum mean cycle problem, and we let the algorithm run for as many
iterations until a minimum mean cycle was discovered, instead of terminating
after O(log(n/ε)) iterations required by Theorem 4. We have tested its perfor-
mance in running time and space against six other minimum mean cycle algo-
rithms from Table 3 in control-flow graphs of programs. The algorithms of Burns
and Lawler solve the more general ratio cycle problem, and have been adapted
to the mean cycle problem as in [26].

The algorithms were executed on control-flow graphs of methods of programs
from the DaCapo benchmark suit [3], obtained using the Soot framework [43].
For each benchmark we focused on graphs of at least 500 nodes. This supplied
a set of medium sized graphs (between 500 and 1300 nodes), in which inte-
ger weights were assigned uniformly at random in the range {−103, . . . , 103}.

Table 3. Asymptotic complexity of compared minimum mean cycle algorithms.

Madani [36] Burns [12] Lawler [35] Dasdan-Gupta [25] Hartmann- Karp [34]

Orlin [32]

Time O(n2) O(n3) O(n2 · log(n · W)) O(n2) O(n2) O(n2)

Faster Algorithms for Quantitative Verification 155

Fig. 4. Average performance of minimum mean cycle algorithms.

Fig. 5. Comparison of running times for the minimum initial credit value problem.

Figure 4 shows the average time performance of the examined algorithms (bars
that exceeded the maximum value in the y-axis have been truncated). Our algo-
rithm has much smaller running time than each other algorithm, in almost all
cases.

Minimum Initial Credit. We have implemented our algorithm for the min-
imum initial credit problem on general graphs and evaluated its performance
on a subset of benchmark weighted graphs from the DIMACS implementation
challenges [1]. Our algorithm was tested against the existing method of [10], and
an optimized version of that method. For each input graph we subtracted its
minimum mean value μ∗ from the weight of each edge to ensure that at least
one non-positive cycle exists (thus the energies are finite). Figure 5 depicts the
running time of the algorithm of [10] (with and without optimizations) vs our
algorithm. A timeout was forced at 1010μs. Our algorithm is orders of magnitude
faster, and scales better than the existing method.

References

1. DIMACS implementation challenges. http://dimacs.rutgers.edu/Challenges/
2. Almagor, S., Boker, U., Kupferman, O.: Formalizing and reasoning about quality.

In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013,
Part II. LNCS, vol. 7966, pp. 15–27. Springer, Heidelberg (2013)

http://dimacs.rutgers.edu/Challenges/

156 K. Chatterjee et al.

3. Blackburn, S.M., Garner, R., Hoffmann, C., Khang, A.M., McKinley, K.S.,
Bentzur, R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M.,
Hosking, A., Jump, M., Lee, H., Moss, J.E.B., Phansalkar, A., Stefanović, D.,
VanDrunen, T., von Dincklage, D., Wiedermann, B.: The DaCapo benchmarks:
Java benchmarking development and analysis. In: OOPSLA. ACM (2006)

4. Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better quality in syn-
thesis through quantitative objectives. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 140–156. Springer, Heidelberg (2009)

5. Bloem, R., Greimel, K., Henzinger, T.A., Jobstmann, B.: Synthesizing robust sys-
tems. In: FMCAD (2009)

6. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybern. 11, 1–22 (1993)
7. Bodlaender, H.L.: Discovering treewidth. In: Vojtáš, P., Bieliková, M., Charron-

Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 1–16. Springer,
Heidelberg (2005)

8. Bodlaender, H., Hagerup, T.: Parallel algorithms with optimal speedup for
bounded treewidth. In: Fülöp, Z. (ed.) ICALP 1995. LNCS, vol. 944. Springer,
Heidelberg (1995)

9. Boker, U., Chatterjee, K., Henzinger, T.A., Kupferman, O.: Temporal specifica-
tions with accumulative values. In: LICS (2011)

10. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite runs in
weighted timed automata with energy constraints. In: Cassez, F., Jard, C. (eds.)
FORMATS 2008. LNCS, vol. 5215, pp. 33–47. Springer, Heidelberg (2008)

11. Bouyer, P., Markey, N., Matteplackel, R.M.: Averaging in LTL. In: Baldan, P.,
Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 266–280. Springer, Heidel-
berg (2014)

12. Burns, S.M.: Performance analysis and optimization of asynchronous circuits. Tech-
nical report (1991)

13. Cerny, P., Henzinger, T.A., Radhakrishna, A.: Quantitative abstraction refinement.
In: POPL. ACM (2013)

14. Chatterjee, K., �L ↪acki, J.: Faster algorithms for markov decision processes with low
treewidth. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
543–558. Springer, Heidelberg (2013)

15. Chatterjee, K., Doyen, L., Edelsbrunner, H., Henzinger, T.A., Rannou, P.: Mean-
payoff automaton expressions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010.
LNCS, vol. 6269, pp. 269–283. Springer, Heidelberg (2010)

16. Chatterjee, K., Doyen, L., Henzinger, T.A.: Expressiveness and closure properties
for quantitative languages. LMCS (2010)

17. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. Trans. Com-
put. Log. 11, 1–38 (2010)

18. Chatterjee, K., Goyal, P., Ibsen-Jensen, R., Pavlogiannis, A.: Faster algorithms for
algebraic path properties in recursive state machines with constant treewidth. In:
POPL (2015)

19. Chatterjee, K., Henzinger, M., Krinninger, S., Loitzenbauer, V., Raskin, M.A.:
Approximating the minimum cycle mean. Theor. Comput. Sci 547, 104–116 (2014)

20. Chatterjee, K., Henzinger, T.A., Jobstmann, B., Singh, R.: Measuring and synthe-
sizing systems in probabilistic environments. JACM 62, 1–34 (2014)

21. Chatterjee, K., Henzinger, T.A., Otop, J.: Nested weighted automata. Technical
report, IST Austria (2014)

22. Chatterjee, K., Ibsen-Jensen, R., Pavlogiannis, A.: Faster algorithms for
quantitative verification in constant treewidth graphs. Technical report.
http://arxiv.org/abs/1504.07384

http://arxiv.org/abs/http://arxiv.org/abs/1504.07384

Faster Algorithms for Quantitative Verification 157

23. Chatterjee, K., Velner, Y.: Mean-payoff pushdown games. In: LICS. IEEE Com-
puter Society (2012)

24. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Inf. Comput. 85, 12–75 (1990)

25. Dasdan, A., Gupta, R.: Faster maximum and minimum mean cycle algorithms for
system-performance analysis. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst.
17, 889–899 (1998)

26. Dasdan, A., Irani, S.S., Gupta, R.K.: An experimental study of minimum mean
cycle algorithms. Technical report (1998)

27. Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata. Springer,
Heidelberg (2009)

28. Droste, M., Meinecke, I.: Weighted automata and weighted MSO logics for average
and long-time behaviors. Inf. Comput. 220, 45–59 (2012)

29. Elberfeld, M., Jakoby, A., Tantau, T.: Logspace versions of the theorems of Bod-
laender and Courcelle. In: FOCS. IEEE Computer Society (2010)

30. Gustedt, J., Mæhle, O.A., Telle, J.A.: The treewidth of java programs. In: Mount,
D.M., Stein, C. (eds.) ALENEX 2002. LNCS, vol. 2409, pp. 86–97. Springer, Hei-
delberg (2002)

31. Halin, R.: S-functions for graphs. J. Geom. 8, 171–186 (1976)
32. Hartmann, M., Orlin, J.B.: Finding minimum cost to time ratio cycles with small

integral transit times. Networks 23, 567–574 (1993)
33. Henzinger, T.A., Otop, J.: From model checking to model measuring. In:

D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013 – Concurrency Theory.
LNCS, vol. 8052, pp. 273–287. Springer, Heidelberg (2013)

34. Karp, R.M.: A characterization of the minimum cycle mean in a digraph. Discrete
Math. 23, 309–311 (1978)

35. Lawler, E.: Combinatorial Optimization: Networks and Matroids. Saunders College
Publishing, Fort Worth (1976)

36. Madani, O.: Polynomial value iteration algorithms for deterministic MDPs. In:
UAI. Morgan Kaufmann Publishers (2002)

37. Obdržálek, J.: Fast Mu-calculus model checking when tree-width is bounded. In:
Hunt Jr, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 80–92. Springer,
Heidelberg (2003)

38. Orlin, J.B., Ahuja, R.K.: New scaling algorithms for the assignment and minimum
mean cycle problems. Math. Program. 54, 41–56 (1992)

39. Papadimitriou, C.H.: Efficient search for rationals. IPL 8, 1–4 (1979)
40. Robertson, N., Seymour, P.: Graph minors. III. Planar tree-width. J. Comb. Theor.

Ser. B 39, 49–64 (1984)
41. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1,

146–160 (1972)
42. Thorup, M.: All structured programs have small tree width and good register

allocation. Inf. Comput. 142, 159–181 (1998)
43. Vallée-Rai, R. Co, P., Gagnon, E., Hendren, L., Lam, P., Sundaresan, V.: Soot - a

java bytecode optimization framework. In: CASCON 1999. IBM Press (1999)
44. Velner, Y.: The complexity of mean-payoff automaton expression. In: Czumaj, A.,

Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol.
7392, pp. 390–402. Springer, Heidelberg (2012)

Counterexample Explanation by Learning Small
Strategies in Markov Decision Processes

Tomáš Brázdil1, Krishnendu Chatterjee2, Martin Chmeĺık2,
Andreas Fellner2, and Jan Křet́ınský2(B)

1 Masaryk University, Brno, Czech Republic
2 IST, Klosterneuburg, Austria

jan.kretinsky@ist.ac.at

Abstract. For deterministic systems, a counterexample to a property
can simply be an error trace, whereas counterexamples in probabilis-
tic systems are necessarily more complex. For instance, a set of erro-
neous traces with a sufficient cumulative probability mass can be used.
Since these are too large objects to understand and manipulate, compact
representations such as subchains have been considered. In the case of
probabilistic systems with non-determinism, the situation is even more
complex. While a subchain for a given strategy (or scheduler, resolving
non-determinism) is a straightforward choice, we take a different app-
roach. Instead, we focus on the strategy itself, and extract the most
important decisions it makes, and present its succinct representation.

The key tools we employ to achieve this are (1) introducing a concept
of importance of a state w.r.t. the strategy, and (2) learning using deci-
sion trees. There are three main consequent advantages of our approach.
Firstly, it exploits the quantitative information on states, stressing the
more important decisions. Secondly, it leads to a greater variability and
degree of freedom in representing the strategies. Thirdly, the represen-
tation uses a self-explanatory data structure. In summary, our approach
produces more succinct and more explainable strategies, as opposed to
e.g. binary decision diagrams. Finally, our experimental results show that
we can extract several rules describing the strategy even for very large
systems that do not fit in memory, and based on the rules explain the
erroneous behaviour.

1 Introduction

The standard models for dynamic stochastic systems with both probabilistic and
nondeterministic behaviour are Markov decision processes (MDPs) [1–3]. They
are widely used in verification of probabilistic systems [4,5] in several ways.
Firstly, in concurrent probabilistic systems, such as communication protocols,
the nondeterminism arises from scheduling [6,7]. Secondly, in probabilistic sys-
tems operating in open environments, such as various stochastic reactive systems,
nondeterminism arises from environmental inputs [8,9]. Thirdly, for underspec-
ified probabilistic systems, a controller is synthesized, resolving the nondeter-
minism in a way that optimizes some objective, such as energy consumption or
time constraints in embedded systems [4,5].

c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 158–177, 2015.
DOI: 10.1007/978-3-319-21690-4 10

Counterexample Explanation by Learning Small Strategies 159

In analysis of MDPs, the behaviour under all possible strategies (schedulers,
controllers, policies) is examined. For example, in the first two cases, the result
of the verification process is either a guarantee that a given property holds under
all strategies, or a counterexample strategy. In the third case, either a witness
strategy guaranteeing a given property is synthesized, or its non-existence is
stated. In all settings, it is desirable that the output strategies should be “small
and understandable” apart from correct. Intuitively, it is a strategy with a rep-
resentation small enough for the human debugger to read and understand where
the bug is (in the verification setting), or for the programmer to implement in the
device (in the synthesis setting). In this paper, we focus on the verification set-
ting and illustrate our approach mainly on probabilistic protocols. Nonetheless,
our results immediately carry over to the synthesis setting.

Obtaining a small and simple strategy may be impossible if the strategy
is required to be optimal, i.e., in our setting reaching the error state with the
highest possible probability. Therefore, there is a trade-off between simplicity
and optimality of the strategies. However, in order to debug a system, a simple
counterexample or a series thereof is more valuable than the most comprehensive,
but incomprehensible counterexample. In practice, a simple strategy reaching the
error with probability smaller by a factor of ε, e.g. one per cent, is a more valuable
source of information than a huge description of an optimal strategy. Similarly,
controllers in embedded devices should strive for optimality, but only as long
as they are small enough to fit in the device. In summary, we are interested in
finding small and simple close-to-optimal (ε-optimal) strategies.

How can one obtain a small and simple strategy? This seems to require some
understanding of the particular system and the bug. How can we do something
like that automatically? The approaches have so far been limited to BDD repre-
sentations of the strategy, or generating subchains representing a subset of paths
induced by the strategy. While BDDs provide a succinct representation, they are
not well readable and understandable. Further, subchains do not focus on the
decisions the strategy makes at all. In contrast, a huge effort has been spent
on methods to obtain “understanding” from large sets of data, using machine
learning methods. In this paper, we propose to extend their use in verification,
namely of reachability properties in MDPs, in several ways. Our first aim of using
these methods is to efficiently exploit the structure that is present in the models,
written in e.g. PRISM language with variables and commands. This structure
gets lost in the traditional numerical analysis of the MDPs generated from the
PRISM language description. The second aim is to distil more information from
the generated MDPs, namely the importance of each decision. Both lead to an
improved understanding of the strategy’s decisions.

Our Approach. We propose three steps to obtain the desired strategies. Each
of them has a positive effect on the resulting size.

(1) Obtaining a (Possibly Partially Defined and Liberal) ε-optimal Strategy. The
ε-optimal strategies produced by standard methods, such as value iteration of
PRISM [10], may be too large to compute and overly specific. Firstly, as argued
in [11], typically only a small fraction of the system needs to be explored in order
to find an ε-optimal strategy, whereas most states are reached with only a very

160 T. Brázdil et al.

s

p u1 · · · un

q v1 · · · vn

t

a
1

b

0.01

0.99

e 1
1

d

0.5

0.5
c 1

1

1

Fig. 1. An MDP M with reachability objective t

small probability. Without much loss, the strategy may not be defined there.
For example, in the MDP M depicted in Fig. 1, the decision in q (and vi’s) is
almost irrelevant for the overall probability of reaching t from s. Such a partially
defined strategy can be obtained using learning methods [11].

Secondly, while the usual strategies prescribe which action to play, liberal
strategies leave more choices open. There are several advantages of liberal strate-
gies, and similar notions of strategies called permissive strategies have been
studied in [12–14]. A liberal strategy, instead of choosing an action in each state,
chooses a set of actions to be played uniformly at every state. First, each lib-
eral strategy represents a set of strategies, and thus covers more behaviour.
Second, in counter-example guided abstraction-refinement (CEGAR) analysis,
since liberal strategies can represent sets of counter-examples, they accelerate
the abstraction-refinement loop by ruling out several counter-examples at once.
Finally, they also allow for more robust learning of smaller strategies in Step 3.
We show that such strategies can be obtained from standard value iteration as
well as [11]. Further processing of the strategies in Step 2 and 3 allows liberal
strategies as input and preserves liberality in the small representation of the
strategy.

(2) Identifying Important Parts of the Strategy. We define a concept of impor-
tance of a state w.r.t. a strategy, corresponding to the probability of visiting
the state by the strategy. Observe that only a fraction of states can be reached
while following the strategy, and thus have positive importance. On the unreach-
able states, with zero importance, the definition of the strategy is useless. For
instance, in M , both states p and q must have been explored when constructing
the strategy in order to find out whether it is better to take action a or b. How-
ever, if the resulting strategy is to use b and d, the information what to do in
ui’s is useless. In addition, we consider vi’s to be of zero importance, too, since
they are never reached on the way to target.

Furthermore, apart from ignoring states with zero importance, we want to
partially ignore decisions that are unlikely to be made (in less important states
such as q), and in contrast, stress more the decisions in important states likely
to be visited (such as s). Note that this is difficult to achieve in data structures
that remember all the stored data exactly, such as BDDs. Of course, we can
store decisions in states with importance above a certain threshold. However, we
obtain much smaller representations if we allow more variability and reflect the
whole quantitative information, as shown in Step 3.

Counterexample Explanation by Learning Small Strategies 161

(3) Data Structures for Compact Representation of Strategies. The explicit rep-
resentation of a strategy by a table of pairs (state, action to play) results in a
huge amount of data since the systems often have millions of states. Therefore,
a symbolic representation by binary decision diagrams (BDD) looks as a reason-
able option. However, there are several drawbacks of using BDDs. Firstly, due
to the bit-level representation of the state-action pairs, the resulting BDD is not
very readable. Secondly, it is often still too large to be understood by human, for
instance due to a bad ordering of the variables. Thirdly, it cannot quantitatively
reflect the differences in the importance of states.

Therefore, we propose to use decision trees instead, e.g. [15], a structure
similar to BDDs, but with nodes labelled by various predicates over the system’s
variables. They have several advantages. Firstly, they yield an explanation of the
decision, as opposed to e.g. neural networks, and thus provide an explanation how
the strategy works. Secondly, sophisticated algorithms for their construction,
based on entropy, result in smaller representation than BDD, where a good
ordering of variables is known to be notoriously difficult to find [4]. Thirdly, as
suggested in Step 2, they allow for less probable remembering of less stressed
data if this sufficiently simplifies the tree and decreases its size. Finally, the
major drawback of decision trees in machine learning—frequent overfitting of
the training data—is not an issue in our setting since the tree is not used for
classification of test data, but only of the training data.

Summary of Our Contribution. In summary our contributions are as follows:

– We provide a method for obtaining succinct representation of ε-optimal strate-
gies as decision trees. The method is based on a new concept of importance
measure and on well-established machine learning techniques.

– Experimental data show that even for some systems larger than the available
memory, our method yields trees with only several dozens of nodes.

– We illustrate the understandability of the representation on several examples
from PRISM benchmarks [16], reading off respective bug explanations.

Related Work. In artificial intelligence, compact (factored) representations of
MDP structure have been developed using dynamic Bayesian networks [17,18],
probabilistic STRIPS [19], algebraic decision diagrams [20], and also decision
trees [17]. Formalisms used to represent MDPs can, in principle, be used to rep-
resent values and policies as well. In particular, variants of decision trees are
probably the most used [17,21,22]. For a detailed survey of compact representa-
tions see [23]. In the context of verification, MDPs are often represented using
variants of (MT)BDDs [24–26], and strategies by BDDs [27].

Decision trees have been used in connection with real-time dynamic pro-
gramming and reinforcement learning [28,29]. Learning a compact decision tree
representation of a policy has been investigated in [30] for the case of body sen-
sor networks, but the paper aims at a completely different application field (a
simple model of sensor networks as opposed to generic PRISM models), uses
different objectives (discounted rewards), and does not consider the importance
of a state that, as we show, may substantially decrease sizes of resulting policies.

162 T. Brázdil et al.

Our results are related to the problem of computing minimal/small coun-
terexamples in probabilistic verification. Most papers concentrate on solving this
problem for Markov chains and linear-time properties [31–34], branching-time
properties [35–37], and in the context of simulation [38]. A couple of tools have
been developed for probabilistic counterexample generation, namely DiPro [39]
and COMICS [40]. For a detailed survey see [41]. While previous approaches
focus on presenting diagnostic paths forming the counterexample, our approach
focuses on decisions made by the respective strategy.

Concerning MDPs, [33] uses mixed integer linear programming to compute
minimal critical sub-systems, i.e. whole sub-MDPs as opposed to a compact rep-
resentation of “right” decisions computed by our methods. [42] uses a directed
on-the-fly search to compute sets of most probable diagnostic paths (which some-
how resembles our notion of importance), but the paths are encoded explicitly by
AND/OR trees as opposed to our use of decision trees. Neither of these papers
takes advantage of an internal structure of states and their methods substan-
tially differ from ours. The notion of paths encoded as AND/OR trees has also
been studied in [43] to represent probabilistic counter-examples visually as fault
trees, and then derive causal (the cause and effect) relationship between events.
[44] develops abstraction-based framework for model-checking MDPs based on
games, which allows to trade compactness for precision, but does not give a pro-
cedure for constructing (a compact representation of) counterexample strategies.
[45,46] computes a smallest set of guarded commands (of a PRISM-like language)
that induce a critical subsystem, but, unlike our methods, does not provide a
compact representation of actual decisions needed to reach an erroneous state;
moreover, there is not always a command based counterexample.

Counter-examples play a crucial role in CEGAR analysis of MDPs, and
have been widely studied, such as, game-based abstraction refinement [47]; non-
compositional CEGAR approach for reachability [48] and safe-pCTL [49]; com-
positional CEGAR approach for safe-pCTL and qualitative logics [38,50]; and
abstraction-refinement for quantitative properties [51,52]. All of these works
only consider a single strategy represented explicitly, whereas our approach con-
siders a succinct representation of a set of strategies, and can accelerate the
abstraction-refinement loop.

2 Preliminaries

We use N, Q, and R to denote the sets of positive integers, rational and real
numbers, respectively. The set of all rational probability distributions over a
finite set X is denoted by Dist(X). Further, d ∈ Dist(X) is Dirac if d(x) = 1
for some x ∈ X. Given a function f : X → R, we write arg maxx∈X f(x) = {x ∈
X | f(x) = maxx′∈X f(x′)}.

Markov Chains. A Markov chain is a tuple M = (L,P, μ) where L is a finite
set of locations, P : L → Dist(L) is a probabilistic transition function, and
μ ∈ Dist(L) is the initial probability distribution. We denote the respective
unique probability measure for M by P.

Counterexample Explanation by Learning Small Strategies 163

Markov Decision Processes. A Markov decision process (MDP) is a tuple
G = (S,A,Act , δ, ŝ) where S is a finite set of states, A is a finite set of actions,
Act : S → 2A \ {∅} assigns to each state s the set Act(s) of actions enabled
in s, δ : S × A → Dist(S) is a probabilistic transition function that, given a
state and an action, gives a probability distribution over the successor states,
and ŝ is the initial state. A run in G is an infinite alternating sequence of states
and actions ω = s1a1s2a2 · · · such that for all i ≥ 1, we have ai ∈ Act(si) and
δ(si, ai)(si+1) > 0. A path of length k in G is a finite prefix w = s1a1 · · · ak−1sk

of a run in G.

Strategies and Plays. Intuitively, a strategy (or a policy) in an MDP G is a
“recipe” to choose actions. Formally, a strategy is a function σ : S → Dist(A)
that given the current state of a play gives a probability distribution over the
enabled actions.1 In general, a strategy may randomize, i.e. return non-Dirac
distributions. A strategy is deterministic if it gives a Dirac distribution for every
argument.

A play of G determined by a strategy σ and a state s̄ ∈ S is a Markov
chain Gσ

s̄ where the set of locations is S, the initial distribution μ is Dirac with
μ(s̄) = 1 and

P (s)(s′) =
∑

a∈A

σ(s)(a) · δ(s, a)(s′) .

The induced probability measure is denoted by P
σ
s̄ and “almost surely” or

“almost all runs” refers to happening with probability 1 according to this mea-
sure. We usually write P

σ instead of Pσ
ŝ (here ŝ is the initial state of G).

Liberal Strategies. A liberal strategy is a function ς : S → 2A such that for
every s ∈ S we have that ∅ �= ς(s) ⊆ Act(s). Given a liberal strategy ς and a
state s, an action a ∈ Act(s) is good (in s w.r.t. ς) if a ∈ ς(s), and bad otherwise.
Abusing notation, we denote by ς the strategy that to every state s assigns the
uniform distribution on ς(s) (which, in particular, allows us to use Gς

s, P
ς
s and

apply the notion of ε-optimality to ς).

Reachability Objectives. Given a set F ⊆ S of target states, we denote by
♦F the set of all runs that visit a state of F . For a state s ∈ S, the maximal
reachability probability (or simply value) in s, is Val(s) := maxσ P

σ
s [♦F]. Given

ε ≥ 0, we say that a strategy σ is ε-optimal if Pσ[♦F] ≥ Val(ŝ) − ε, and we call
a 0-optimal strategy optimal.2 To avoid overly technical notation, we assume
that states of F , subject to the reachability objective, are absorbing, i.e. for all
s ∈ F, a ∈ Act(s) we have δ(s, a)(s) = 1.

End Components. A non-empty set S′ ⊆ S is an end component (EC) of G if
there is Act ′ : S′ → 2A\{∅} such that (1) for all s ∈ S′ we have Act ′(s) ⊆ Act(s),

1 In general, a strategy may be history dependent. However, for objectives consid-
ered in this paper, memoryless strategies (depending on the last state visited) are
sufficient. Therefore, we only consider memoryless strategies in this paper.

2 For every MDP, there is a memoryless deterministic optimal strategy, see e.g. [2].

164 T. Brázdil et al.

(2) for all s ∈ S′, we have a ∈ Act ′(s) iff δ(s, a) ∈ Dist(S′), and (3) for all
s, t ∈ S′ there is a path ω = s1a1 · · · ak−1sk such that s1 = s, sk = t, and
si ∈ S′, ai ∈ Act ′(si) for every i. An end component is a maximal end component
(MEC) if it is maximal with respect to the subset ordering. Given an MDP,
the set of MECs is denoted by MEC. Given a MEC, actions of Act ′(s) and
Act(s) \ Act ′(s) are called internal and external (in state s), respectively.

3 Computing ε-Optimal Strategies

There are many algorithms for solving quantitative reachability in MDPs, such as
the value iteration, the strategy improvement, linear programming based meth-
ods etc., see [2]. The main method implemented in PRISM is the value iteration,
which successively (under)approximates the value Val(s, a) =

∑
s′∈A δ(s, a)(s′) ·

Val(s′) of every state-action pair (s, a) by a value V (s, a), and stops when
the approximation is good enough. Denoting by V (s) := maxa∈Act(s) V (s, a),
every step of the value iteration improves the approximation V (s, a) by assign-
ing V (s, a) :=

∑
s′∈S δ(s, a)(s′) · V (s′) (we start with V such that V (s) = 1 if

s ∈ F , and V (s) = 0 otherwise).
The disadvantage of the standard value iteration (and also most of the above

mentioned traditional methods) is that it works with the whole state space of
the MDP (or at least with its reachable part). For instance, consider states
ui, vi of Fig. 1. The paper [11] adapts methods of bounded real-time dynamic
programming (BRTDP, see e.g. [53]) to speed up the computation of the value
iteration by improving V (s, a)3 only on “important” state-action pairs identified
by simulations.

Even though RTDP methods may substantially reduce the size of an ε-
optimal strategy, its explicit representation is usually large and difficult to under-
stand. Thus we develop succinct representations of strategies, based on decision
trees, that will reduce the size even further and also provide a human readable
representation. Even though the above methods are capable of yielding deter-
ministic ε-optimal strategies, that can be immediately fed into machine learning
algorithms, we found it advantageous to give the learning algorithm more free-
dom in the sense that if there are more ε-optimal strategies, we let the algorithm
choose (uniformly). This is especially useful within MECs where many actions
have the same value. Therefore, we extract liberal ε-optimal strategies from the
value approximation V , output either by the value iteration or BRTDP.

Computing Liberal ε-Optimal Strategies. Let us show how to obtain a
liberal strategy ς from the value iteration, or BRTDP. For simplicity, we start
with MDP without MECs.

MDP without End Components. We say that V : S × A → [0, 1] is a valid
ε-underapproximation if the following conditions hold:

1. V (s, a) ≤ Val(s, a) for all s ∈ S and a ∈ A
2. Val(ŝ) − V (ŝ) ≤ ε
3. V (s, a) ≤

∑
s′∈S δ(s, a)(s′) · V (s′) for all s ∈ S and a ∈ Acts

3 Here we use V for the lower approximation denoted by VL in [11].

Counterexample Explanation by Learning Small Strategies 165

The outputs V of both the value iteration, and BRTDP are valid ε-underapproxi-
mations. We define a liberal strategy ςV by ςV (s) = arg maxa∈Act(s) V (s, a) for
all s ∈ S.4

Lemma 1. For every ε > 0 and a valid ε-underapproximation V , ςV is
ε-optimal.5

General MDP. For MDPs with end components we have to extend the definition
of the valid ε-underapproximation. Given a MEC S′ ⊆ S, we say that (s, a) ∈
S × A is maximal-external in S′ if s ∈ S′, a ∈ Act(s) is external and V (s, a) ≥
V (s′, a′) for all s′ ∈ S′ and a′ ∈ Act(s′). A state s′ ∈ S′ is an exit (of S′) if (s, a)
is maximal-external in S′ for some a ∈ Act(s). We add the following condition
to the valid ε-underapproximation:

4. Each MEC S′ ⊆ S has at least one exit.

Now the definition of ςV is also more complicated:

– For every s ∈ S which is not in any MEC, we put ςV (s) = arg maxa∈Act(s)

V (s, a).
– For every s ∈ S which is in a MEC S′,

• if s is an exit, then ςV (s) = {a ∈ Act(s) | (s, a) is maximal-external in S′}
• otherwise, ςV (s) = {a ∈ Act(s) | a is internal}

Using these extended definitions, Lemma 1 remains valid. Further, note that
ςV (s) is defined even for states with trivial underapproximation V (s) = 0, for
instance a state s that was never subject to any value iteration improvement.
Then the values ς(s) may not be stored explicitly, but follow implicitly from not
storing any V (s), thus assuming V (s, ·) = 0.

4 Importance of Decisions

Note that once we have computed an ε-optimal liberal strategy ς, we may, in
principle, compute a compact representation of ς (using e.g. BDDs), and obtain
a strategy with possibly smaller representation than above.

However, we go one step further as follows. Given a liberal strategy ς and a
state s ∈ S, we define the importance of s by

Impς(s) := P
ς [♦s | ♦F]

the probability of visiting s conditioned on reaching F (afterwards). Intuitively,
the importance is high for states where a good decision can help to reach the
target.6

4 Furthermore, one could consider liberal strategies playing also ε-optimal actions.
However, our experiments did not prove better performance.

5 Intuitively this means that randomizing among good actions of ε-optimal strategies
preserves ε-optimality in the reachability setting (in contrast to other settings, e.g.
with parity objectives).

6 Instead of the conditional probability of reaching s, we could consider the conditional
expected number of visits of s. We discuss the differences and compare the efficiency
together with the case of no conditioning on reaching the target in Sect. 6.

166 T. Brázdil et al.

Example 1. For the MDP of Fig. 1 with the objective ♦{t} and a strategy ς
choosing b, we have Impς(s) = 1 and Impς(q) = 5/995. Trivially, Impς(t) = 1.
For all other states, the importance is zero.

Obviously, decisions made in states of zero importance do not affect P
ς [♦F]

since these states never occur on paths from ŝ to F . However, note that many
states of S may be reachable in Gς with positive but negligibly small probability.
Clearly, the value of Pς [♦F] depends only marginally on choices made in these
states. Formally, let ςΔ be a strategy obtained from ς by changing each ς(s) with
Impς(s) ≤ Δ to an arbitrary subset of Act(s). We obtain the following obvious
property:

Lemma 2. For every liberal strategy ς, we have lim
Δ→0

P
ςΔ [♦F] = P

ς [♦F].

In fact, every Δ < min({Impς(s) | s ∈ S} \ {0}) satisfies PςΔ [♦F] = P
ς [♦F]. But

often even larger Δ may give P
ςΔ [♦F] sufficiently close to P

ς [♦F]. Such Δ may
be found using e.g. trial and error approach.7

Most importantly, we can use the importance of a state to affect the proba-
bility that decisions in this state are indeed remembered in the data structure.
Data structures with such a feature are used in various learning algorithms. In
the next section, we discuss decision trees. Due to this extra variability, which
decisions to learn, the resulting decision trees are smaller than BDDs for strictly
defined ςΔ.

5 Efficient Representations

Let G = (S,A,Act , δ, ŝ) be an MDP. In order to symbolically represent strategies
in G, we need to assume that states and actions have some internal structure.
Inspired by PRISM language [5], we consider a set V = {v1, . . . , vn} of integer
variables, each vi gets its values from a finite domain Dom(vi). We suppose
that S =

∏n
i=1 Dom(vi) ⊆ Z

n, i.e. each state is a vector of integers. Further,
we assume that the MDP arises as a product of m modules, each of which
can separately perform non-synchronizing actions as well as synchronously with
other modules perform a synchronizing action. Therefore, we suppose A ⊆ Ā ×
{0, . . . , m}, where Ā ⊆ N is a finite set and the second component determines
the module performing the action (0 stands for synchronizing actions).8

Since a liberal strategy is a function of the form ς : S → 2A, assigning to each
state its good actions, it can be explicitly represented as a list of state-action
pairs, i.e., as a subset of

S × A =
n∏

i=1

Dom(vi) × Ā × {0, 1, . . . ,m} (1)

7 One may give a theoretical bound on convergence of P
ςΔ [♦F] to P

ς [♦F] as Δ →
0, using e.g. Lemma 5.1 of [54]. However, for large MDPs the bound would be
impractical.

8 On the one hand, PRISM does not allow different modules to have local variables
with the same name, hence we do not distinguish which module does a variable
belong to. On the other hand, while PRISM declares no names for non-synchronizing
actions, we want to exploit the connection between the corresponding actions of
different copies of the same module.

Counterexample Explanation by Learning Small Strategies 167

In addition, standard optimization algorithms implemented in PRISM use an
explicit “don’t-care” value −2 for action in each unreachable state, meaning the
strategy is not defined. However, one could simply not list these pairs at all.
Thus a smaller list is obtained, with only the states where ς is defined. Recall
that one may also omit states s satisfying Impς(s) = 0, thus ignoring reachable
states with zero probability to reach the target. Further optimization may be
achieved by omitting states s satisfying Impς(s) < Δ for a suitable Δ > 0.

5.1 BDD Representation

The explicit set representation can be encoded as a binary decision diagram
(BDD). This has been used in e.g. [27,55]. The principle of the BDD represen-
tation of a set is that (1) each element is encoded as a string of bits and (2)
an automaton, in the form of a binary directed acyclic graph, is created so that
(3) the accepted language is exactly the set of the given bit strings. Although
BDDs are quite efficient, see Sect. 6, each of these three steps can be significantly
improved:

1. Instead of a string of bits describing all variables, a string of integers (one
per variable) can be used. Branching is then done not on the value of each
bit, but according to an inequality comparing the variable to a constant. This
significantly improves the readability.

2. Instead of building the automaton according to a chosen order of bits, we let
a heuristic choose the order of the inequalities and the actual constants in
the inequalities.

3. Instead of representing the language precisely, we allow the heuristic to choose
which data to represent and which not. The likelihood that each datum is
represented corresponds to its importance, which we provide as another input.

The latter two steps lead to significantly smaller graphs than BDDs. All this can
be done in an efficient way using decision trees learning.

5.2 Representation Using Decision Trees

Decision Trees. A decision tree for a domain
∏d

i=1 Xi ⊆ Z
d is a tuple T =

(T, ρ, θ) where T is a finite rooted binary (ordered) tree with a set of inner nodes
N and a set of leaves L, ρ assigns to every inner node a predicate of the form
[xi ∼ const] where i ∈ {1, . . . , d}, xi ∈ Xi, const ∈ Z, ∼ ∈ {≤, <,≥, >,=}, and
θ assigns to every leaf a value good , or bad .9

Similarly to BDDs, the language L(T) ⊆ N
n of the tree is defined as follows.

For a vector x̄ = (x̄1, . . . , x̄n) ∈ N
n, we find a path p from the root to a leaf

such that for each inner node n on the path, the predicate ρ(n) is satisfied by
substitution xi = x̄i iff the first child of n is on p. Denote the leaf on this
particular path by �. Then x̄ is in the language L(T) of T iff θ(�) = good .

9 There exist many variants of decision trees in the literature allowing arbitrary
branching, arbitrary values in the leaves, etc., e.g. [15]. For simplicity, we define
only a special suitable subclass.

168 T. Brázdil et al.

Example 2. Consider dimension d = 1, domain X1 = {1, . . . , 7}. A tree repre-
senting a set {1, 2, 3, 7} is depicted in Fig. 2. To depict the ordered tree clearly,
we use unbroken lines for the first child, corresponding to the satisfied predicate,
and dashed line for the second one, corresponding to the unsatisfied predicate.

x1 ≤ 3

x1 < 7

goodbad

good

Fig. 2. A decision tree for
{1, 2, 3, 7} ⊆ {1, . . . , 7}

In our setting, we use the domain S × A defined
by Equation (1) which is of the form

∏n+2
i=1 Xi where

for each 1 ≤ i ≤ n we have Xi = Dom(vi),
Xn+1 = Ā and Xn+2 = {0, 1, . . . ,m}. Here the
coordinates Dom(vi) are considered “unbounded”
and, consequently, the respective predicates use
inequalities. In contrast, we know the possible val-
ues of Ā × {0, 1, . . . ,m} in advance and they are
not too many. Therefore, these coordinates are con-
sidered “discrete” and the respective predicates use
equality. Examples of such trees are given in Sect. 6 in Figs. 4 and 5. Now a deci-
sion tree T for this domain determines a liberal strategy ς : S → 2A by a ∈ ς(s)
iff (s, a) ∈ L(T).

Learning. We describe the process of learning a training set, which can also
be understood as storing the input data. Given a training sequence (repetitions
allowed!) x1, . . . ,xk, with each xi = (xi

1, . . . , x
i
n) ∈ N

d, partitioned into the posi-
tive and negative subsequence, the process of learning according to the algorithm
ID3 [15,56] proceeds as follows:

1. Start with a single node (root), and assign to it the whole training sequence.
2. Given a node n with a sequence τ ,

– if all training examples in τ are positive, set θ(n) = good and stop;
– if all training examples in τ are negative, set θ(n) = bad and stop;
– otherwise,

• choose a predicate with the “highest gain” (with lowest entropy, see
e.g. [15, Sects. 3.4.1, 3.7.2]),

• split τ into sequences satisfying and not satisfying the predicate, assign
them to the first and the second child, respectively,

• go to step 2 for each child.

Intuitively, the predicate with the highest gain splits the sequence so that it
maximizes the portion of positive data in the satisfying subsequence and the
portion of negative data in the non-satisfying subsequence.

In addition, the final tree can be pruned. This means that some leaves are
merged, resulting in a smaller tree at the cost of some imprecision of storing
(the language of the tree changes). The pruning phase is quite sophisticated,
hence for the sake of simplicity and brevity, we omit the details here. We use the
standard C4.5 algorithm and refer to [15,57]. In Sect. 6, we comment on effects
of parameters used in pruning.

Counterexample Explanation by Learning Small Strategies 169

Learning a Strategy. Assume that we already have a liberal strategy ς : S →
2A. We show how we learn good and bad state-action pairs so that the language
of the resulting tree is close to the set of good pairs. The training sequence will
be composed of state-action pairs where good pairs are positive examples, and
bad pairs are negative ones. Since our aim is to ensure that important states are
learnt and not pruned away, we repeat pairs with more important states in the
training sequence more frequently.

Formally, for every s ∈ S and a ∈ Act(s), we put the pair (s, a) to the
training sequence repeat(s)-times, where

repeat(s) = c · Impς(s)

for some constant c ∈ N (note that Impς(s) ≤ 1). Since we want to avoid exact
computation of Impς(s), we estimate it using simulations. In practice, we thus
run c simulation runs that reach the target and set repeat(s) to be the number
of runs where s was also reached.

6 Experiments

In this section, we present the experimental evaluation of the presented meth-
ods, which we have implemented within the probabilistic model checker PRISM
[5]. All the results presented in this section were obtained on a single Intel(R)
Xeon(R) CPU (3.50 GHz) with memory limited to 10 GB.

First, we discuss several alternative options to construct the training data
and to learn them in a decision tree. Further, we compare decision trees to other
data structures, namely sets and BDDs, with respect to the sizes necessary for
storing a strategy. Finally, we illustrate how the decision trees can be used to
gain insight into our benchmarks.

6.1 Decision Tree Learning

Generating Training Data. The strategies we work with come from two dif-
ferent sources. Firstly, we consider strategies constructed by PRISM, which can
be generated using the explicit or sparse model checking engine. Secondly, we
consider strategies constructed by the BRTDP algorithm [11], which are defined
on a part of the state space only.

Recall that given a strategy, the training data for the decision trees is con-
structed from c simulation runs according to the strategy. In our experiments,
we found that c = 10000 produces good results in all the examples we consider.
Note that we stop each simulation as soon as the target or a state with no path
to the target state is reached.
Decision Tree Learning in Weka. The decision trees are constructed using
the Weka machine learning package [58]. The Weka suite offers various decision
tree classifiers. We use the J48 classifier, which is an implementation of the C4.5
algorithm [57]. The J48 classifier offers two parameters to control the pruning
that affect the size of the decision tree:

170 T. Brázdil et al.

– The leaf size parameter M ∈ N determines that each leaf node with less
than M instances in the training data is merged with its siblings. Therefore,
only values smaller than the number of instances per classification class are
reasonable, since higher numbers always result in the trivial tree of size 1.

– The confidence factor C ∈ (0, 0.5) is used internally for determining the
amount of pruning during decision tree construction. Smaller values incur
more pruning and therefore smaller trees.

Detailed information and an empirical study of the parameters for J48 is available
in [59].

Effects of the Parameters. We illustrate the effects of the parameters C and M
on the resulting size of the decision tree on the mer benchmark. However, sim-
ilar behaviour appears in all the examples. Figure 3a and b show the resulting
size of the decision tree for several (random) executions. Each line in the plots
corresponds to one decision tree, learned with 15 different values of the parame-
ter. The C parameter scales linearly between 0.0001 and 0.5. The M parameter
scales logarithmically between 1 and the minimum number of instances per class
in the respective training set. The plots in Fig. 3 show that M is an effective
parameter in calibrating the resulting tree size, whereas C plays less of a role.
Hence, we use C = 10−4. Furthermore, since the tree size is monotone in M , the
parameter M can be used to retrieve a desired level of detail.

(a) fixed M = 2 (b) fixed C = 10−4 (c) Tree Size vs Error

Fig. 3. Decision tree parameters

Figure 3c depicts the relation of the tree size to the relative error of the
induced strategy. It shows that there is a threshold size under which the tree is
not able to capture the strategy correctly anymore and the error rises quickly.
Above the threshold size, the error is around 1%, considered reasonable in order
to extract reliable information. This threshold behaviour is observed in all our
examples. Therefore, it is sensible to perform a binary search for the highest M
ensuring the error at most 1%.

Counterexample Explanation by Learning Small Strategies 171

Table 1. Comparison of representation sizes for strategies obtained from PRISM and
from BRTDP computation. Sizes are presented as the number of states for explicit
lists of values, the number of nodes for BDDs, and the number of nodes for decision
trees (DT). For DT, we display the tree size obtained from the binary search described
above. DT Error reports the relative error of the strategy determined by the decision
tree (on the induced Markov chain) compared to the optimal value, obtained by model
checking with PRISM.

PRISM BRTDP

Example |S| Value Explicit BDD DT DT Error Explicit BDD DT DT Error

Firewire 481,136 1.000 479,834 4,233 1 0.000% 766 4,7631 1 0.000%

Investor 35,893 0.958 28,151 783 27 0.886% 21,931 2,780 35 0.836%

Mer 17M 1,773,664 0.200 Memory out 1,887 619 17 0.000%

Mer big2 Approx. 1013 0.200 Memory out 1,894 646 19 0.692%

Zeroconf 89,586 0.009 60,463 409 7 0.106% 1,630 905 7 0.235%
1Note that BDDs represent states in binary form. Therefore, one entry in the explicit state list

corresponds to several nodes in the BDD.
2We did not measure the state size as the MDP does not fit in memory, but extrapolated it from the

linear dependence of model size and one of its parameters, which we could increase to 231 − 1. The

value is obtained from the BRTDP computation.

6.2 Results

First, we briefly introduce the four examples from the PRISM benchmark suite
[16], which we tested our method on. Note that the majority of the states in the
used benchamrks are non-deterministic, so the strategies are non-trivial in most
states.

Table 2. Effects of various learning variants
on the tree size. Smallest trees computed from
PRISM or BRTDP and the average time to
compute one number are presented.

firewire models the Tree Iden-
tify Protocol of the IEEE 1394
High Performance Serial Bus, which
is used to transport video and
audio signals within a network of
multimedia devices. The reachabil-
ity objective is that one node gets
the root and the other one the child
role.

investor models a market
investor and shares, which change
their value probabilistically over
time. The reachability objective is that the investor finishes a trade at a time,
when his shares are more valuable than some threshold value.

mer is a mutual exclusion protocol, that regulates the access of two users
to two different resources. The protocol should prohibit that both resources are
accessed simultaneously.

zeroconf is a network protocol which allows users to choose their IP
addresses autonomously. The protocol should detected and prohibit IP address
conflict.

For every example, Table 1 shows the size of the state space, the value of
the optimal strategy, and the sizes of strategies obtained from explicit model
checking by PRISM and by BRTDP, for each discussed data structure.

172 T. Brázdil et al.

Learning Variants. In order to justify our choice of the importance function
Imp, we compare it to several alternatives.

1. When constructing the training data, we can use the importance measure
Imp, and add states as often as is indicated by its importance (I), or neglect
it and simply add every visited state exactly once (O).

2. Further, states on the simulation are learned conditioned on the fact that the
target state is reached (♦). Another option is to consider all simulations (∀).

3. Finally, instead of the probability to visit the state (P), one can consider the
expected number of visits (E).

In Table 2, we report the sizes of the decision trees obtained for the all learning
variants. We conclude that our choice (I♦P) is the most useful one.

6.3 Understanding Decision Trees

We show how the constructed decision trees can help us to gain insight into the
essential features of the systems.
zeroconf example. In Fig. 4 we present a decision tree that is a strategy for
zeroconf and shows how an unresolved IP address conflict can occur in the
protocol. First we present how to read the strategy represented in Fig. 4. Next
we show how the strategy can explain the conflict in the protocol. Assume that
we are classifying a state-action pair (s, a), where action a is enabled in state s.

1. No matter what the current state s is, the action rec is always classified
as bad according to the root of the tree. Therefore, the action rec should
be played with positive probability only if all other available actions in the
current state are also classified as bad .

2. If action a is different from rec, the right son of the root node is reached. If
action a is different from action l>0&b=1&ip mess=1 -> b’=0&z’=0&n1’=min
(n1+1,8)&ip mess’=0 (the whole PRISM command is a single action), then
a is classified as good in state s. Otherwise, the left son is reached.

3. In node z ≤ 0 the classification of action a (that is the action that labels
the parent node) depends on the variable valuation of the current state. If
the value of var. z is greater than 0, then a is classified as good in state s,
otherwise it is classified as bad .

Action rec stands for a network host receiving a reply to a broadcast message,
resulting in resolution of an IP address conflict if one is present, which clearly
does not help in constructing an unresolved conflict. The action labelling the
right son of the root represents the detection of an IP address conflict by an
arbitrary network host. This action is only good, if variable z, which is a clock
variable, in the current state is greater than 0. The combined meaning of the
two nodes is that an unresolved IP address conflict can occur if the conflict is
detected too late.
firewire example. For firewire, we obtain a trivial tree with a single node,
labelled good . Therefore, playing all available actions in each state guarantees
reaching the target almost surely. In contrast to other representations, we have

Counterexample Explanation by Learning Small Strategies 173

Fig. 4. A decision tree for zeroconf

automatically obtained the information that the network always reaches the
target configuration, regardless of the individual behaviour of its components
and their interleaving.
mer example. In the case of mer, there exists a strategy that violates the
required property that the two resources are not accessed simultaneously. The
decision tree for the mer strategy is depicted in Fig. 5. In order to understand
how a state is reached, where both resources are accessed at the same time, it
is necessary to determine which user accesses which resource in that state.

1. The two tree nodes labelled by 1 explain what resource user 1 should access.
The root node labelled by action s1=0&r1=0 -> r1’=2 specifies that the
request to access resource 2 (variable r1 is set to 2) is classified as bad .
The only remaining action for user 1 is to request access to resource 1. This
action is classified as good by the right son of the root node.

2. Analogously, the tree nodes labelled by 2 specify that user 2 actions should
request access to resource 2 (follows from s2=0&r2=0 -> r2’=2). Once
resource 2 is requested it should change its internal state s2 to 1 (follows
from s2=0&r2=2 -> s2’=1). It follows, that in the state violating the prop-
erty, user 1 has access to resource 1 and user 2 to resource 2.

The model is supposed to correctly handle such overlapping requests, but
fails to do so in a specific case. In order to further debug the model, one has
to find the action of the scheduler that causes this undesired behaviour. The
lower part of the tree specifies that u1 request comm is a candidate for such an
action. Inspecting a snippet of the code of u1 request comm from the PRISM
source code (shown below) reveals that in the given situation, the scheduler
reacts inappropriately with some probability p.

[u1_request_comm] s=0 & commUser=0 & driveUser!=0 & k<n ->
(1-p):(s’=1) & (r’=driveUser) & (k’=k+1) +

p:(s’=-1) & (gc’=true) & (k’=k+1)

The remaining nodes of the tree that were not discussed are necessary to reset
the situation if the non-faulty part (with probability 1−p) of the u1 request comm
command was executed. It should be noted that executing the faulty u1 request
comm action does not lead to the undesired state right away. The action only grants
user 1 access rights in a situation, where he should not get these rights. Only a
successive action leads to user 1 accessing the resource and the undesired state

174 T. Brázdil et al.

Fig. 5. A decision tree for mer

being reached. This is a common type of bug, where the command that triggered
an error is not the cause of it.

7 Conclusion

In this work we presented a new approach to represent strategies in MDPs in
a succinct and comprehensible way. We exploited machine learning methods
to achieve our goals. Interesting directions of future works are to investigate
whether other machine learning methods can be integrated with our approach,
and to extend our approach from reachability objectives to other objectives (such
as long-run average and discounted-sum).

Acknowledgements. This research was funded in part by Austrian Science Fund
(FWF) Grant No P 23499-N23, FWF NFN Grant No S11407-N23 (RiSE) and Z211-N23
(Wittgenstein Award), European Research Council (ERC) Grant No 279307 (Graph
Games), ERC Grant No 267989 (QUAREM), the Czech Science Foundation Grant No
P202/12/G061, and People Programme (Marie Curie Actions) of the European Union’s
Seventh Framework Programme (FP7/2007–2013) REA Grant No 291734.

References

1. Howard, R.A.: Dynamic Programming and Markov Processes. The MIT press,
New York, London, Cambridge (1960)

2. Puterman, M.L.: Markov Decision Processes. Wiley, New York (1994)
3. Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer, New York

(1997)
4. Baier, C., Katoen, J.-P.: Principles of Model Checking (Representation and Mind

Series). The MIT Press, Cambridge (2008)
5. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic

real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011)

Counterexample Explanation by Learning Small Strategies 175

6. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J.
ACM 42(4), 857–907 (1995)

7. Vardi, M.: Automatic verification of probabilistic concurrent finite state programs.
In: FOCS, pp. 327–338 (1985)

8. Segala, R.: Modeling and verification of randomized distributed real-time systems.
Ph.D thesis, MIT Press (1995). Technical report MIT/LCS/TR-676

9. De Alfaro, L.: Formal verification of probabilistic systems. Ph.D thesis, Stanford
University (1997)

10. Kwiatkowska, M., Parker, D.: Automated verification and strategy synthesis for
probabilistic systems. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol.
8172, pp. 5–22. Springer, Heidelberg (2013)

11. Brázdil, T., Chatterjee, K., Chmeĺık, M., Forejt, V., Křet́ınský, J., Kwiatkowska,
M., Parker, D., Ujma, M.: Verification of markov decision processes using learning
algorithms. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp.
98–114. Springer, Heidelberg (2014)

12. Bernet, J., Janin, D., Walukiewicz, I.: Permissive strategies: from parity games to
safety games. ITA 36(3), 261–275 (2002)

13. Bouyer, P., Markey, N., Olschewski, J., Ummels, M.: Measuring permissiveness in
parity games: mean-payoff parity games revisited. In: Bultan and Hsiung [60] pp.
135–149

14. Dräger, K., Forejt, V., Kwiatkowska, M., Parker, D., Ujma, M.: Permissive con-
troller synthesis for probabilistic systems. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 531–546. Springer, Heidelberg (2014)

15. Mitchell, T.M.: Machine Learning, 1st edn. McGraw-Hill Inc., New York (1997)
16. Kwiatkowska, M., Norman, G., Parker, D.: The PRISM benchmark suite. In:

QEST, pp. 203–204 (2012)
17. Boutilier, C., Dearden, R., Goldszmidt, M.: Exploiting structure in policy con-

struction. In: IJCAI-95, pp. 1104–1111 (1995)
18. Kearns, M., Koller, D.: Efficient reinforcement learning in factored MDPs. In:

IJCAI, pp. 740–747. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
(1999)

19. Kushmerick, N., Hanks, S., Weld, D.: An algorithm for probabilistic least-
commitment planning. In: Proceedings of AAAI-94, pp. 1073–1078 (1994)

20. Hoey, J., St-aubin, R., Hu, A., Boutilier, C.: Spudd: stochastic planning using
decision diagrams. In: Proceedings of the Fifteenth Conference on Uncertainty in
Artificial Intelligence, pp. 279–288. Morgan Kaufmann (1999)

21. Chapman, D., Kaelbling, L.P.: Input generalization in delayed reinforcement learn-
ing: an algorithm and performance comparisons. pp. 726–731. Morgan Kaufmann
(1991)

22. Koller, D., Parr, R.: Computing factored value functions for policies in structured
MDPs. In: Proceedings of the Sixteenth International Joint Conference on Artificial
Intelligence, pp. 1332–1339. Morgan Kaufmann (1999)

23. Boutilier, C., Dean, T., Hanks, S.: Decision-theoretic planning: structural assump-
tions and computational leverage. JAIR 11, 1–94 (1999)

24. De Alfaro, L., Kwiatkowska, M., Norman, G., Parker, D., Segala, R.: Symbolic
model checking of probabilistic processes using MTBDDS and the kronecker rep-
resentation. In: Graf, S. (ed.) TACAS 2000. LNCS, vol. 1785, pp. 395–410. Springer,
Heidelberg (2000)

25. Hermanns, H., Kwiatkowska, M., Norman, G., Parker, D., Siegle, M.: On the use
of MTBDDs for performability analysis and verification of stochastic systems. J.
Log. Algebraic Program. Spec. Issue Probab. Tech. Des. Anal. Syst. 56(1–2), 23–67
(2003)

176 T. Brázdil et al.

26. Miner, A.S., Parker, D.: Symbolic representations and analysis of large probabilistic
systems. In: Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M.
(eds.) Validation of Stochastic Systems. LNCS, vol. 2925, pp. 296–338. Springer,
Heidelberg (2004)

27. Wimmer, R., Braitling, B., Becker, B., Hahn, E.M., Crouzen, P., Hermanns, H.,
Dhama, A., Theel, O.: Symblicit calculation of long-run averages for concurrent
probabilistic systems. In: QEST, pp. 27–36, IEEE Computer Society, Washington,
DC, USA (2010)

28. Boutilier, C., Dearden, R.: Approximating value trees in structured dynamic pro-
gramming. In: Proceedings of the Thirteenth International Conference on Machine
Learning, pp. 54–62 (1996)

29. Pyeatt, L.D.: Reinforcement learning with decision trees. In: The 21st IASTED
International Multi-Conference on Applied Informatics (AI 2003), Innsbruck,
Austria, pp. 26–31, 10–13 Feb 2003

30. Raghavendra, C.S., Liu, S., Panangadan, A., Talukder, A.: Compact representa-
tion of coordinated sampling policies for body sensor networks. In: Proceedings
of Workshop on Advances in Communication and Networks (Smart Homes for
Tele-Health), pp. 6–10, IEEE (2010)

31. Han, T., Katoen, J.-P., Damman, B.: Counterexample generation in probabilistic
model checking. IEEE Trans. Softw. Eng. 35(2), 241–257 (2009)

32. Andrés, M.E., D’Argenio, P., Van Rossum, P.: Significant diagnostic counterexam-
ples in probabilistic model checking. In: Chockler, H., Hu, A.J. (eds.) HVC 2008.
LNCS, vol. 5394, pp. 129–148. Springer, Heidelberg (2009)

33. Wimmer, R., Jansen, N., Ábrahám, E., Katoen, J.-P., Becker, B.: Minimal coun-
terexamples for linear-time probabilistic verification. TCS 549, 61–100 (2014)

34. Jansen, N., Ábrahám, E., Katelaan, J., Wimmer, R., Katoen, J.-P., Becker, B.:
Hierarchical counterexamples for discrete-time markov chains. In: Bultan and
Hsiung [60] pp. 443–452

35. Damman, B., Han, T., Katoen, J.-P.: Regular expressions for PCTL counterexam-
ples. In: QEST, pp. 179–188, IEEE Computer Society (2008)

36. Fecher, H., Huth, M., Piterman, N., Wagner, D.: PCTL model checking of markov
chains: truth and falsity as winning strategies in games. Perform. Eval. 67(9),
858–872 (2010)

37. Aljazzar, H., Leue, S.: Directed explicit state-space search in the generation of
counterexamples for stochastic model checking. IEEE Trans. Softw. Eng. 36(1),
37–60 (2010)

38. Komuravelli, A., Păsăreanu, C.S., Clarke, E.M.: Assume-guarantee abstraction
refinement for probabilistic systems. In: Madhusudan, P., Seshia, S.A. (eds.) CAV
2012. LNCS, vol. 7358, pp. 310–326. Springer, Heidelberg (2012)

39. Aljazzar, H., Leitner-Fischer, F., Leue, S., Simeonov, D.: DiPro - a tool for prob-
abilistic counterexample generation. In: Groce, A., Musuvathi, M. (eds.) SPIN
Workshops 2011. LNCS, vol. 6823, pp. 183–187. Springer, Heidelberg (2011)

40. Jansen, N., Ábráham, E., Volk, M., Wimmer, R., Katoen, J.-P., Becker, B.: The
COMICS tool - computing minimal counterexamples for DTMCs. In: Chakraborty,
S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 349–353. Springer,
Heidelberg (2012)

41. Ábrahám, E., Becker, B., Dehnert, C., Jansen, N., Katoen, J.-P., Wimmer, R.:
Counterexample generation for discrete-time markov models: an introductory sur-
vey. In: Bernardo, M., Damiani, F., Hähnle, R., Johnsen, E.B., Schaefer, I. (eds.)
SFM 2014. LNCS, vol. 8483, pp. 65–121. Springer, Heidelberg (2014)

42. Aljazzar, H., Leue, S.: Generation of counterexamples for model checking of markov
decision processes. In: QEST, pp. 197–206, IEEE Computer Society (2009)

Counterexample Explanation by Learning Small Strategies 177

43. Leitner-Fischer, F., Leue, S.: Probabilistic fault tree synthesis using causality com-
putation. IJCCBS 4(2), 119–143 (2013)

44. Kattenbelt, M., Huth, M.: Verification and refutation of probabilistic specifications
via games. In: IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science, FSTTCS 2009, IIT Kanpur, India, pp. 251–262,
15–17 Dec 2009

45. Wimmer, R., Jansen, N., Vorpahl, A., Ábrahám, E., Katoen, J.-P., Becker, B.:
High-level counterexamples for probabilistic automata. In: Joshi, K., Siegle, M.,
Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 39–54.
Springer, Heidelberg (2013)

46. Dehnert, C., Jansen, N., Wimmer, R., Ábrahám, E., Katoen, J.-P.: Fast debugging
of PRISM models. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837,
pp. 146–162. Springer, Heidelberg (2014)

47. Kwiatkowska, M.Z., Norman, G., Parker, D.: Game-based abstraction for Markov
decision processes. In: QEST, pp. 157–166 (2006)

48. Hermanns, H., Wachter, B., Zhang, L.: Probabilistic CEGAR. In: Gupta, A., Malik,
S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 162–175. Springer, Heidelberg (2008)

49. Chadha, R., Viswanathan, M.: A counterexample-guided abstraction-refinement
framework for Markov decision processes. ACM Trans. Comput. Log. 12(1), 1
(2010)

50. Chatterjee, K., Chmeĺık, M., Daca, P.: CEGAR for qualitative analysis of proba-
bilistic systems. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp.
473–490. Springer, Heidelberg (2014)

51. D’Argenio, P.R., Jeannet, B., Jensen, H.E., Larsen, K.G.: Reachability analysis of
probabilistic systems by successive refinements. In: De Luca, L., Gilmore, S. (eds.)
PROBMIV 2001, PAPM-PROBMIV 2001, and PAPM 2001. LNCS, vol. 2165, pp.
39–56. Springer, Heidelberg (2001)

52. D’Argenio, P.R.: Reduction and refinement strategies for probabilistic analysis. In:
Hermanns, H., Segala, R. (eds.) PROBMIV 2002, PAPM-PROBMIV 2002, and
PAPM 2002. LNCS, vol. 2399, pp. 57–76. Springer, Heidelberg (2002)

53. McMahan, H.B., Likhachev, M., Gordon, G.J.: Bounded real-time dynamic pro-
gramming: RTDP with monotone upper bounds and performance guarantees. In:
ICML (2005)

54. Brázdil, T., Kiefer, S., Kučera, A.: Efficient analysis of probabilistic programs with
an unbounded counter. J. ACM 61(6), 41:1–41:35 (2014)

55. Von Essen, C., Jobstmann, B., Parker, D., Varshneya, R.: Semi-symbolic computa-
tion of efficient controllers in probabilistic environments. Technical report, Verimag
(2012)

56. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)
57. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San

Francisco (1993)
58. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The

weka data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10–18
(2009)

59. Drazin, S., Montag, M.: Decision tree analysis using weka. Machine Learning-
Project II, University of Miami, pp. 1–3 (2012)

60. Bultan, T., Hsiung, P.-A. (eds.): Automated Technology for Verification and Analy-
sis, ATVA 2011. 9th International Symposium, Taipei, Taiwan, October 11-14,
2011. Proceedings, vol. 6996, LNCS. Springer, Heidelberg (2011)

Symbolic Polytopes for Quantitative
Interpolation and Verification

Klaus von Gleissenthall1(B), Boris Köpf2, and Andrey Rybalchenko3

1 Technische Universität München, Munich, Germany
gleissen@in.tum.de

2 IMDEA Software Institute, Madrid, Spain
3 Microsoft Research, Cambridge, UK

Abstract. Proving quantitative properties of programs, such as bounds
on resource usage or information leakage, often leads to verification con-
ditions that involve cardinalities of sets. Existing approaches for dealing
with such verification conditions operate by checking cardinality bounds
for given formulas. However, they cannot synthesize formulas that satisfy
given cardinality constraints, which limits their applicability for inferring
cardinality-based inductive arguments.

In this paper we present an algorithm for synthesizing formulas for
given cardinality constraints, which relies on the theory of counting inte-
ger points in symbolic polytopes. We cast our algorithm in terms of a
cardinality-constrained interpolation procedure, which we put to work
in a solver for recursive Horn clauses with cardinality constraints based
on abstraction refinement. We implement our technique and describe its
evaluation on a number of representative examples.

1 Introduction

Proving quantitative properties of programs often leads to verification conditions
that involve cardinalities of sets and relations over program states. For example,
determining the memory requirements for memoization reduces to bounding the
cardinality of the set of argument values passed to a function, and bounding
information leaks of a program reduces to bounding the cardinality of the set of
observations an attacker can make.

A number of recent advances for discharging verification conditions with
cardinalities consider extensions of logical theories with cardinality constraints,
such as set algebra and its generalizations [25,31,32], linear arithmetic [15,40],
constraints over strings [27], as well as general SMT based settings [17]. At
their core, these approaches operate by checking whether a cardinality bound
holds for a given formula that describes a set of values. However, they cannot
synthesize formulas that satisfy given cardinality constraints. As a consequence,
the problem of automatically inferring cardinality-based inductive arguments
that imply a specified assertion remains an open challenge.

In this paper, we present an approach for synthesizing linear arithmetic for-
mulas that satisfy given cardinality constraints. Our approach relies on the the-
ory of counting integer points in polytopes, however, instead of computing the
c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 178–194, 2015.
DOI: 10.1007/978-3-319-21690-4 11

Symbolic Polytopes for Quantitative Interpolation and Verification 179

cardinality of a given polytope (the typical use case of this theory) our approach
synthesizes a polytope for a given cardinality constraint. Our synthesizer inter-
nally organizes the search space in terms of symbolic polytopes. Such polytopes
are represented using symbolic vertices and hyperplanes, together with certain
well-formedness constraints. We derive an expression for the number of points
in the polytope in terms of this symbolic representation, which leads to a set
of constraints that at the same time represent the shape and the cardinality of
the polytope. For this, we restrict our attention to the class of unimodular poly-
topes. Unimodularity can be concisely described using constraints and provides
an effective means for reducing the search space while being sufficiently expres-
sive. We then resort to efficient SMT solvers specifically tuned to deal with the
resulting kind of non-linear constraints, e.g., Z3 [16]. We cast our approach in
terms of an algorithm #ItpLIA for cardinality constrained interpolation, that
is, #ItpLIA generates formulas that satisfy cardinality constraints along with
implication constraints.

We put cardinality-constrained interpolation to work within an automatic
verification method #Horn for inferring cardinality-based inductive program
properties, based on abstraction and its counterexample-guided refinement.
Specifically, #Horn is a solver for recursive Horn clauses with cardinality con-
straints. We rely on Horn clauses as basis because they serve as a language
for describing verification conditions for a wide range of programs, including
those with procedures and multiple threads [8,19,34]. Adding recursion enables
representing verification conditions that rely on inductive reasoning, such as
loop invariants or procedure summaries. By offering support for cardinalities
directly in the language in which we express verification conditions, our solver
can effectively leverage the interplay between the qualitative and quantitative
(cardinality) aspects of the constraints to be solved.

We implemented #ItpLIA and #Horn and applied them to analyze a col-
lection of examples that show

– how a variety of cardinality-based properties (namely, bounds on informa-
tion leaks, memory usage, and execution time) and different program classes
(namely, while programs and programs with procedures) can be expressed and
analyzed in a uniform manner.

– that our approach can establish resource bounds on examples from the recent
literature at competitive performance and precision, and that it can handle
examples whose precise analysis is out of scope of existing approaches.

– that our approach can be used for synthesizing a padding-based countermea-
sure against timing side channels, for a given bound on tolerable leakage.

In summary, our paper contributes and puts to work a synthesis method for
polytopes that satisfy cardinality constraints, based on symbolic integer point
counting algorithms.

180 K. von Gleissenthall et al.

2 Example

We consider a procedure mcm for Matrix chain multiplication [14] that recursively
computes the cost of multiplying matrices M0, . . . , Mn with optimal bracketing.
mcm(i, j) returns the number of operations required for multiplying the sub-
sequence Mi, . . . , Mj , and c(k) returns the number of operations required for
multiplying matrices Mk and Mk+1.

int mcm(int i, int j) {

if (i == j) return 0;

int minCost = infty;

for (int k=i; k <= j-1; k++) {

int v = mcm(i, k)+mcm(k+1, j)+c(k);

if (v < minCost) minCost = v;

}

return minCost;

}

int main(n){

mcm(0, n);

}

Even though the number of recur-
sive function calls is exponential in n,
mcm can be turned into an efficient
algorithm by applying memoization.
The amount of memory required to
store results of recursive calls is
bounded by (n+1)·(n+2)

2 , as mcm is
only called with ordered pairs of
arguments.

Proving such a bound requires
reasoning about recursive procedure
calls as well as tracking dependencies
between variables i and j, i.e., estimating the range of each variable in isolation
and combining the estimates is not precise enough.

When using #Horn, we first set up recursive Horn constraints on an asser-
tion args(i, j, n) that contains all triples (i, j, n) such that calling main(n) leads
to a recursive call mcm(i, j), following [19]. Then, #Horn solves these constraints
using a procedure based on counterexample-guided abstraction refinement. As
an intermediate step, #Horn deals with an interpolation query that requires
finding a polytope ϕargs over i, j and n such that

n ≥ 2 ∧ (i = 0 ∧ j = n ∨ i = 1 ∧ j = 1) → ϕargs (1)
n ≥ 0 → |{(i, j) | ϕargs}| ≤ (n+1)·(n+2)

2 . (2)

Constraint (1) requires that ϕargs contains triples obtained by symbolically exe-
cuting mcm, a typical interpolation query, while (2) ensures that ϕargs satisfies
the bound by referring to the cardinality of ϕargs through an application of
cardinality operator | · |.

Given (1) and (2), #ItpLIA computes the solution ϕargs = (0 ≤ i ≤ 1 ∧ i ≤
j ≤ n ∧ n ≥ 2). The cardinality of {(i, j) | ϕargs} is 2n + 1, hence ϕargs satisfies
the above bound. #Horn uses this solution to refine the abstraction function.
In particular, it starts using the predicate i ≤ j, which is crucial for tracking
that mcm is only called on ordered pairs.

3 Counting Integer Points in Polytopes

In this section, we first revisit the theory of counting integer points in polytopes.
We then discuss the derivation of expressions for the number of integer points
in unimodular polytopes with symbolic vertices and hyperplanes.

Symbolic Polytopes for Quantitative Interpolation and Verification 181

Preliminaries. Let g1, . . . , gd ∈ R
d be vectors in d-dimensional space. A cone

with generators g1, . . . , gd is the set of all positive linear combinations of its
generators. A cone is unimodular if the absolute value of the determinant of the
matrix (g1 . . . gd) is equal to one. The vertex cone of a polytope P at vertex v
is the smallest cone that originates from v and that includes P ; we denote its
generators by gv1, . . . , gvd. Finally, a polytope P is unimodular if all its vertex
cones are unimodular.1

Generating functions. The integer points contained in a set S ⊆ R
d in can be

represented in terms of a generating function f (S, x) which is a sum of monomi-
als, one per integer point in S, defined as follows

f (S, x) =
∑

m∈S∩Zd

xm, (1)

where for m = (m1, . . . , md) we define xm = xm1
1 · . . . · xmd

d . This generating
function is a Laurent series, i.e. its terms may have negative degree. Note that,
for finite S, the value of f (S, x) at x = (1, . . . , 1), corresponds to the number of
integer points in S.

Rational function representation. Generating functions are a powerful tool for
counting integer points in polytopes. This is due to two key results: First, Brion’s
theorem [9] allows to decompose the generating function of a polytope into the
sum of the generating functions of its vertex cones. Second, the generating func-
tion of unimodular vertex cones can be represented through an equivalent yet
short rational function. This rational function representation relies on a general-
ization of the equivalence 1

1−x = (1+x+x2 +x3 + . . .), which provides a concise
representation of the set {0, 1, 2, 3, . . . }.

This yields the following rational function representation for a unimodular
polytope P with vertices V:

r(P, x) =
∑

v∈V

xv

(1 − xgv1) · · · (1 − xgvd)
(2)

Here, each summand represents the generating function of the vertex cone
at v with generators gv1, . . . , gvd. Rational function representations for arbitrary
polytopes can be obtained through Barvinok’s algorithm [3] that decomposes
arbitrary vertex cones into unimodular cones.

Generating function evaluation. Since x = (1, . . . , 1) is a singularity of r(P, x),
computing the number of points in the polytope by direct evaluation leads to a
division by zero. This can be avoided by performing a Laurent series expansion
of r(P, x) around x = (1, . . . , 1), however, the expansion requires a reduction of

1 We provide additional examples and alternative definitions in the extended version
of this article [37]. See e.g. [3,4,15] for more details.

182 K. von Gleissenthall et al.

r(P, x) from a multivariate polynomial over (x1, . . . , xd) to a univariate polyno-
mial over y, see [15]. The reduction is done by finding a vector μ = (μ1, . . . , μd)
with

μ · g 	= 0, (3)

for all generators g of the polytope, and by replacing xi with yμi , for each
i ∈ 1 . . . d. Equation (3) ensures that no factor in the denominator of Eq. (2)
becomes 0, and hence avoids introduction of singularities. Let sub(r(P, x), y)
denote the result of the above substitution. Then, the constant term of the
Laurent expansion of sub(r(P, x), y) around y = 1 yields the desired count.
Computing Laurent series expansions is a standard procedure and implemented,
e.g., in Wolfram Alpha [41].

Example 1. Consider the unimodular polytope P = (x1 ≥ 0 ∧ x2 ≥ 0 ∧ x1 +
x2 ≤ 2) of dimension d = 2. P has vertices v1 = (0 0), v2 = (0 2), and v3 = (2 0)
and contains 6 integer points, as shown by the circles below.

x1

x2

v2

v3v1

The generators of the vertex cones are given by

gv11 = (0 1) gv12 = (1 0)
gv21 = (0 − 1) gv22 = (1 − 1)
gv31 = (−1 0) gv32 = (−1 1).

Equation (2) yields the following rational generating function r(P, x).

x0
1x

0
2

(1−x0
1x

1
2)(1−x1

1x
0
2)

+
x0

1x
2
2

(1−x0
1x

−1
2)(1−x1

1x
−1
2)

+
x2

1x
0
2

(1−x−1
1 x0

2)(1−x−1
1 x1

2)

Applying the substitution with μ = (−1 1) yields the expression sub(r(P, x), y).

1
(1 − y)(1 − y−1)

+
y2

(1 − y−1)(1 − y−2)
+

y−2

(1 − y)(1 − y2)

Computing the series expansion using the Wolfram Alpha command
series sub(r(P, x), y) at y = 1 produces · · · 5(y − 1)3 + 5(y − 1)2 + 6, with
the constant coefficient 6 yielding the expected count. �

Symbolic cardinality expression. The rational function representation of the gen-
erating function of a unimodular polytope shown in Eq. 2 refers to the polytope’s
vertices and to the generators of its vertex cones. However, these generators and
vertices do not have to be instantiated to concrete values in order for the eval-
uation of the generating function to be possible [40]. That is, the evaluation of
the generating function can be carried out symbolically yielding a formula that

Symbolic Polytopes for Quantitative Interpolation and Verification 183

expresses the cardinality of a polytope as a function of its generators, vertices,
and a vector μ.

In our algorithm, we will use SymConeCard(v,G, μ) to refer to the result
of the symbolic evaluation of the generating function for the cone of a symbolic
vertex v with generators G. By summing up SymConeCard(v,G, μ) for all
vertex cones we obtain a symbolic expression of the number of integer points in
a symbolic polytope.2

Example 2. The cardinality of a two-dimensional polytope with symbolic
vertices v1, v2, v3 and generators gvi1 and gvi2, with i ∈ 1..3, is given
by

∑3
i=1 SymConeCard(vi, {gvi1, gvi2}, μ), where

SymConeCard(vi, {gvi1, gvi2}, μ)
= (μ2

1 + 3μ1(μ2 − 2μv − 1) + μ2
2 − 3μ2(2μv + 1) + 6μ2

v + 6μv + 1)(12μ1μ2)−1

with μ1 = μ · gvi1, μ2 = μ · gvi2 and μv = μ · vi. �

Note that in order for SymConeCard(v,G, μ) to yield a valid count, the vertices
and generators must satisfy a number of conditions, e.g., the symbolic cones
need to be unimodular and the employed vector μ needs to satisfy Eq. (3). We
next present our interpolation procedure #ItpLIA that creates constraints for
ensuring these conditions.

4 Interpolation with Cardinality Constraints

In this section, we first define interpolation with cardinality constraints. Then
we present the interpolation procedure #ItpLIA that generates constraints on
the cardinality of an interpolant and solves them using an SMT solver.

Cardinality Interpolation. Let k be a variable and let w be a tuple of vari-
ables. Let ϕ and ψ be constraints in a given first-order theory. Then, a cardinality
constraint is an expression of the form

|{w | ϕ}| = k ∧ ψ

where | · | denotes the set cardinality operator. We call the free variables of ϕ
that do not occur in w parameters. A cardinality constraint is parametric if it
has at least one parameter and non-parametric otherwise. The expression ψ is
used to constrain the cardinality.

Example 3. Consider the theory of linear integer arithmetic. The cardinality
constraint |{x | 0 ≤ x ≤ 10}| = k ∧ k ≤ 20 is non-parametric, whereas the
constraint |{x | 0 ≤ x ≤ n}| = k ∧ k ≤ n+1 is parametric in n. Both constraints
are valid, since |{x | 0 ≤ x ≤ 10}| = 11 and |{x | 0 ≤ x ≤ n}| = n + 1. �
2 This step relies on the fact that evaluating the generating function for each vertex

cone separately and summing the results is equivalent to evaluating the sum of
generating functions.

184 K. von Gleissenthall et al.

function #ItpLIA(w, ϕ−, ϕ+, ψ,Tmpl)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Cons := true

SymCard := 0

d := length of w

μ := vector of d fresh variables

HV := {Tmpl(v) | v ∈ V}
for each v ∈ V do

H := Tmpl(v)

G := ∅
for each H ∈ H do

gvH := vector of d fresh variables

G := {gvH} ∪ G

Cons := Cons ∧ Vert(v, H, HV) ∧ Genr(v, H, G, μ) ∧ Unim(v, G)

SymCard := SymCard + SymConeCard(v, G, μ)

Cons := Cons ∧ Impl(ϕ−, HV) ∧ Impl(HV , ϕ+)

return SMTSolve(Cons ∧ Impl(SymCard = k, ψ(k)))

Fig. 1. Function #ItpLIA computes cardinality constrained interpolants for template
Tmpl.

Assume constraints ϕ− and ϕ+ such that ϕ− implies ϕ+. A cardinality-
constrained interpolant for ϕ−, ϕ+, and cardinality constraint |{w | ϕ}| = k ∧ ψ
is a constraint ϕ such that 1) ϕ− implies ϕ, 2) ϕ implies ϕ+, and 3) |{w |
ϕ}| = k ∧ ψ is valid. For a parametric cardinality constraint, we say that the
interpolation problem is parametric, and call it non-parametric otherwise.

Example 4. Let ϕ− = (x = 0 ∧ n ≥ 0) and ϕ+ = true. Then ϕ = (0 ≤ x ≤ n) is
an interpolant that satisfies the cardinality constraint |{x | ϕ}| = k ∧ k ≤ n + 1.
For ϕ− = false, ϕ+ = x ≥ 0 and cardinality constraint |{x | ϕ}| = k ∧ 1 ≤ k ≤
10 the constraint ϕ = (0 ≤ x ≤ 5) is a cardinality-constrained interpolant. �

Note that our definition of interpolation differs from the standard, cardinality-
free definition given e.g. in [29] in that we do not require the free variables in ϕ to
be common to both ϕ− and ϕ+. We exclude this requirement because it appears
to be overly restrictive for the setting with cardinalities, as the cardinality con-
straint imposes a lower/upper bound in addition to ϕ− and ϕ+. In particular,
the common variables condition rules out both interpolants in Example 4, as the
set of common variables is empty in both cases.

In this paper, we focus on cardinality constraints with ϕ in linear arithmetic
and ψ in (non-linear) arithmetic, which is an important combination for appli-
cations in software verification.

Interpolation Algorithm. We present an algorithm #ItpLIA for interpolation
with cardinality constraints. For simplicity of exposition, we first consider the
non-parametric case and discuss the parametric case in Sect. 5.

Symbolic Polytopes for Quantitative Interpolation and Verification 185

#ItpLIA finds an interpolant ϕ in a space of polytope candidates that is
defined through a template. This template is given by a function Tmpl that maps
a symbolic vertex v ∈ V to a set of symbolic hyperplanes that are determined to
intersect in v, where each hyperplane H ∈ Tmpl(v) is of the form cH · w = γH .

The algorithm #ItpLIA is described in Fig. 1. It collects a constraint Cons
over the symbolic vertices and symbolic hyperplanes of ϕ, which ensures that
any solution yields a unimodular polytope that satisfies conditions (1) – (3) of
the definition of cardinality interpolation. In particular, #ItpLIA ensures that
the cardinality of ϕ satisfies ψ by constructing a symbolic expression SymCard
on the cardinality of ϕ in line 13, and requiring that this expression satisfies
the cardinality constraint ψ in line 15. Line 12 produces well-formedness con-
straints Vert(v,H,HV) and Genr(v,H, G) that ensure a geometrically well-
formed instantiation of the template Tmpl. The final conjunct in line 12 poses
constraints on the generators of the vertex cones in ϕ that ensure their unimod-
ularity, as explained in Sect. 3. Finally, line 14 produces constraints that ensure
the validity of the implications ϕ− → ϕ and ϕ → ϕ+. The resulting constraint
Cons is passed to an SMT solver that either returns a valuation of symbolic
vertices and hyperplanes and hence determines ϕ, or fails.

Constraint generation. We will now describe the constraint generation of
#ItpLIA in more detail. For each symbolic vertex v we make sure that it lies
on the hyperplanes determined by Tmpl(v) and in the appropriate half-space
with respect to the remaning hyperplanes. This is achieved by the following
constraint.

Vert(v,H,HV) =
∧

H∈H
cH · v = γH ∧

∧

H∈HV\H
cH · v < γH

By making the inequalities strict, we ensure that the polytope does not collapse
into a single point, since in this case Brion’s theorem does not hold.

SymConeCard and Unim refer to the generators of vertex cones determined
by Tmpl. Hence we produce a constraint that defines these generators in terms
of symbolic hyperplanes. Let gvH denote the generator of the cone at vertex v
that lies in the half-space described by hyperplane H. Then we constrain the
generators of the cone at v as follows.

Genr(v,H, G, μ) =
∧

H∈H(cH · gvH ≤ 0 ∧ μ · gvH 	= 0

∧
∧

H′∈H\{H}cH′ · gvH = 0)

Here we require each generator gvH to lie on the facet formed by the intersection
of all hyperplanes H ′ ∈ H \ {H}, and to point in the appropriate half-space
wrt. H. Additionally the generator is constrained according to Eq. 3. With the
generators defined, we can ensure the unimodularity of vertex cones of the poly-
tope by Unim(v,G) = (abs(det(gvH1 , . . . , gvHd

)) = 1),

186 K. von Gleissenthall et al.

where G = {gvH1 , . . . , gvHd
}. We then use SymConeCard(v,G, μ) to denote

the counting expression of the symbolic cone of vertex v for our generators. We
construct the counting expressions for the entire symbolic polytope ϕ by taking
the sum over counting expressions for its vertex cones.

Finally, we generate constraints Impl for the implication conditions ϕ− → ϕ
and ϕ → ϕ+ by applying Farkas’ lemma [35], which is a standard tool for such
tasks [13,33]. This lemma states that every linear consequence of a satisfiable
set of linear inequalities can be obtained as a non-negative linear combination
of these inequalities. Formally, if Aw ≤ b is satisfiable and Aw ≤ b implies
cw ≤ γ then there exists λ ≥ 0 such that λA = c and λb ≤ γ. When dealing
with integers, Farkas’ lemma is sound but not complete, see the discussion on
completeness at the end of this section. Our implementation of Impl handles
non-conjunctive implication constraints by a standard method based on DNF
conversion and Farkas’ lemma.

Example 5. Consider ϕ− = (1 ≤ x ∧ x −
y ≤ 1 ∧ x − y ≥ −1 ∧ y ≤ z ∧ z ≤
10), ϕ+ = true, w = (x, y), and ψ =
(k ≤ 120). The solution ϕ is a polytope
formed by three vertices V = {v1, v2, v3}. It
is bounded by the supporting hyperplanes
HV = {H1,H2,H3} with normal vectors
cH1 , cH2 and cH3 , respectively. In our exam-
ple, we use Tmpl such that v1
→ {H1,
H3}, v2
→ {H1,H2}, and v3
→ {H2,H3},
restricting ϕ to a triangular shape.

v2 v3

v1

gv2H1

gv2H2 gv3H2

gv3H3

gv1H3 gv1H1

cH3

cH2

cH1

ϕ−

ϕ

H1

H2

H3

We obtain the following constraints:

Vert(v1, {H1,H3},HV) = (cH1 · v1 = γH1 ∧ cH3 · v1 = γH3 ∧ cH2 · v1 < γH2)
Vert(v2, {H1,H2},HV) = (cH1 · v2 = γH1 ∧ cH2 · v2 = γH2 ∧ cH3 · v2 < γH3)
Vert(v3, {H2,H3},HV) = (cH2 · v3 = γH2 ∧ cH3 · v3 = γH3 ∧ cH1 · v3 < γH1)

We get the following constraints on generators:

Genr(v1, {H1,H3}, {gv1H1 , gv1H3}, μ) =
(cH1 · gv1H1 ≤ 0 ∧ cH3 · gv1H1 = 0 ∧ cH3 · gv1H3 ≤ 0 ∧ cH1 · gv1H3 = 0)

Genr(v2, {H1,H2}, {gv2H1 , gv2H2}, μ) =
(cH1 · gv2H1 ≤ 0 ∧ cH2 · gv2H1 = 0 ∧ cH2 · gv2H2 ≤ 0 ∧ cH1 · gv2H2 = 0)

Genr(v3, {H2,H3}, {gv3H2 , gv3H3}, μ) =
(cH2 · gv3H2 ≤ 0 ∧ cH3 · gv3H2 = 0 ∧ cH3 · gv3H3 ≤ 0 ∧ cH2 · gv3H3 = 0)

and unimodularity restrictions:

abs(det(gv1H1 , gv1H3)) = abs(det(gv2H1 , gv2H2)) = abs(det(gv3H2 , gv3H3)) = 1

The implication constraints in matrix notation are

Symbolic Polytopes for Quantitative Interpolation and Verification 187

A
︷ ︸︸ ︷⎛

⎜
⎜
⎝

−1 0
1 −1

−1 1
0 1

⎞

⎟
⎟
⎠

(
x
y

)

≤

b
︷ ︸︸ ︷⎛

⎜
⎜
⎝

−1
1
1
10

⎞

⎟
⎟
⎠ →

C
︷ ︸︸ ︷⎛

⎝
c11 c12

c21 c22

c31 c32

⎞

⎠
(

x
y

)

≤

γ
︷ ︸︸ ︷⎛

⎝
γ1

γ2

γ3

⎞

⎠

where, for each i ∈ {1, 2, 3}, we obtain the following constraints for Hi by an
application of Farkas’ lemma: ∃λi : λi ≥ 0 ∧ λiA = Ci ∧ λib ≤ γ1. We pass
the constraints to an SMT solver and obtain the solution ϕ = (1 ≤ x ∧ y ≤
10 ∧ y ≥ x − 3) with |{(x, y) | ϕ}| = 91. �

Theorem 1 (Soundness). If #ItpLIA(w,ϕ−, ϕ+, ψ,Tmpl) returns a solu-
tion ϕ, then ϕ is a cardinality-constrained interpolant for ϕ− and ϕ+ and car-
dinality constraint |{w | ϕ}| = k ∧ ψ.

Proof. We show that ϕ satisfies conditions (1) to (3). Conditions (1) and (2) fol-
low from the use of Farkas’ lemma. Since the conditions posed by Vert(v,H,HV)
ensure that each vertex is active (part of the polytope) and that vertices are dis-
tinct, Brion’s theorem is applicable and hence the generating function of ϕ can
be expressed as the sum of the generating functions of its vertex cones. Each
of ϕ’s vertex cones is unimodular by constraints Unim(v,G) and its generating
function is hence given by the expression in Eq. 2. Summing over the evaluated
rational generating functions of the vertex cones is equivalent to evaluating the
sum of the rational generating functions by the fact that Laurent expansion
distribute over sums. As a consequence, the expression SymCard corresponds
to the cardinality of ϕ and, by the constraint in Line 15 in Fig. 1, satisfies the
cardinality constraint ψ. �

Completeness. For a given template, our method returns a solution whenever
a solution expressed by the template exists, yet subject to the following two
sources of incompleteness. First, solving non-linear integer arithmetic constraints
is an undecidable problem and hence the call to SMTSolve may (soundly) fail.
Second, Farkas’ lemma is incomplete over the integers. Note that these sources
of incompleteness did not strike on benchmarks from the literature, see Sect. 7.

5 Interpolation with Parametric Cardinalities

We now briefly discuss the parametric interpolation problem by contrasting it
with the non-parametric case. Computing the number of integer points in a
polytope in terms of a parameter uses the techniques described in Sect. 3. The
key challenge we face when extending cardinality-constrained interpolation to
the parametric case is a quantifier alternation. While in the non-parametric case
the constraints Cons are quantified as ∃HV ∃V : Cons, introducing parameters
changes the quantifier structure to ∃HV ∀p ∃V : Cons, where p is a tuple of
parameters in the cardinality constraint. The alternation stems from the fact that
the parameter valuation detemines the intesection points, that is, the vertices, for

188 K. von Gleissenthall et al.

parametric polytopes. This alternation has two implication on the computation
of interpolants: First, for different values of p the number of vertices of a polytope
can vary due to changes in the relative position of the bounding hyperplanes.
As a consequence, templates with fixed number of vertices are only valid for
a specific parameter range, which is called a chamber [40]. We deal with this
aspect by considering a predicate cmb that restricts the parameter range to
the appropriate chamber and that satisfies the implication constraints. We then
conjoin cmb to the inferred polytope.3

Second, solving the cardinality constraint requires quantifier elimination for
non-linear arithmetic. For this task we devise a constraint-based method ensuring
positivity of a polynomial on a given range by referring to its roots.

6 Verification of Programs with Cardinality Constraints

In this section, we sketch our algorithm #Horn for solving sets of Horn clauses
with cardinality constraints. We choose Horn clauses as a basis for representing
our verification conditions as they provide a uniform way to encode a variety
of verification tasks [5–7,19]. The interpolation procedure #ItpLIA presented in
Sect. 4 is a key ingredient for, but not restricted to, #Horn.

Horn Clauses with Cardinality Constraints. A Horn clause is a formula
of the form ϕ0 ∧ q1 ∧ · · · ∧ qk → H where ϕ0 is a linear arithmetic constraint,
and q1, . . . , qk are uninterpreted predicates that we refer to as queries. We call
the left-hand side of the implication body and the right-hand side head of the
clause. H can either be a constraint ϕ, a query q, or a cardinality constraint
of the form |{w | q}| ≤ η, where η is a polynomial. By restricting cardinality
constraints over queries to this shape, we ensure monotonicity, which is key for
the soundness of over-approximation. For a clause ϕ0 ∧ q1 ∧ · · · ∧ qk → q, we
say that q depends on queries q1, . . . , qk. We call a set of clauses recursive if
the dependency relation contains a cycle, and non-recursive otherwise. For the
semantics, we consider a solution function Σ that maps each query symbol q
occurring in a given set of clauses into a constraint. The satisfaction relation
Σ |= cl holds for a clause cl = (ϕ0 ∧ q1 ∧ · · · ∧ qk → H) iff the body of cl
entails the head, after replacing each q by Σ(q). The lifting from clauses to sets
of clauses is canonical.

Algorithm Description. #Horn takes as input a set C of recursive Horn
clauses with cardinality constraints and produces as output either a solution
to the clauses or a counterexample. Due the undecidability caused by recur-
sion, #Horn may not terminate. The solver executes the following main steps:
abstract inference, property checking, and refinement.
3 Note that generators do not depend on the constant terms of thehyperplanes, which

is why their constraints are not affected by variations in the parameters.

Symbolic Polytopes for Quantitative Interpolation and Verification 189

Abstract inference. We iteratively build a solution for the set of inference clauses
I = {cl ∈ C | cl = (. . . → q)} by performing logical inference until a fixpoint
is reached. This step uses abstraction to ensure that the inference terminates,
where the abstraction is determined by a set of predicates Preds. This step is
standard [19], as clauses I do not contain cardinality constraints.

Property checking. We check whether the constructed solution satisfies all prop-
erty clauses in P = C \ I. The novelty in #Horn is the check for satisfaction of
cardinality constraints |{w | ϕ}| ≤ η, where ϕ is a linear arithmetic constraint.
Here we rely on a parametric extension of Barvinok’s algorithm [40], which on
input ϕ returns a set of tuples B(ϕ,w) = {(cmb1, c1), . . . } such that whenever
the constraint cmbi holds, the cardinality of |{w | ϕ}| is given by the expres-
sion ci, which may either be a polynomial ci, or ω for the unbounded case. We
hence reduce checking satisfaction of the cardinality constraint |{w | ϕ}| ≤ η to
checking the following constraint.

∧
(cmb,c)∈B(ϕ,w) (cmb → c ≤ η)

If the check succeeds, the algorithm returns the solution. Otherwise, the algo-
rithm proceeds to a refinement phase to analyze the derivation that led to the
violation of the property clause.

Refinement. We construct a counterexample, i.e., a set CEX of recursion-free
Horn clauses with cardinality constraints that represents the derivation that
led to the violation of the property clause. This counterexample may either be
genuine or spurious due to abstraction. To determine which it is, we rely on a
solver for non-recursive clauses with cardinality constraints that either produces
a solution for the clauses or reports that no such solution exists. If no solution
exists, the algorithm returns the counterexample that represents a genuine error
derivation. Otherwise it uses #ItpLIA to eliminate the cardinality constraint
from the clauses thus producing a set of cardinality-free Horn clauses. We solve
these clauses using existing methods [22] and obtain a set of predicates that we
use to refine the abstraction.

7 Experiments

We implemented our method in SICStus Prolog, and use its built-in constraint
solver for the simplification and projection of linear constraints, HSF [19]
for solving recursion- and cardinality-free Horn clauses, and Z3 [16] for non-
linear/boolean constraint solving. We use barvinok [38] for checking whether a
solution candidate satisfies a cardinality constraint. We use a 1.3 Ghz Intel Core
i5 computer with 4 GB of RAM.

Benchmarks from the literature. We use #Horn to analyze a set of examples
taken from the recent literature on resource bound computation (in particular:

190 K. von Gleissenthall et al.

Table 1. Application of #Horn on three classes of examples.

Program Bound Time

Dis1 [21] max(n − x0, 0) + max(m − y0, 0) 0.19s
Dis2 [21] n − x0 + m − z0 0.17s
SimpleSingle [21] n 0.11s
SequentialSingle [21] n 0.11s
NestedSingle [21] n + 1 0.15s
SimpleSingle2 [21] max(n, m) 0.13s
SimpleMultiple [21] n + m 0.16s
NestedMultiple [21] max(n − x0, 0) + max(m − y0, 0) 0.08s
SimpleMultipleDep [21] n · (m + 1) 0.15s
NestedMultipleDep [21] n · (m + 1) 0.09s
IsortList [23] n2 · m 0.19s
LCS [23] n · x 0.15s
Example 1 [42] n 0.15s

Sum [24] 2n + 6 0.15s
Flatten [24] 8l + 8 0.13s

(a) Examples of resource bound verification [21,23,24,42], with non-linear and disjunc-
tive bounds on running time (the upper part of the tabe) and heap space usage (the
lower part of the table), as well as imperative and functional programs. #Horn exe-
cution times are slightly faster than the literature. All bounds are precise.

Program Bound Time

mcm (n+1)·(n+2)
2

0.6s

band matrix 3n + 1 0.8s

(b) Examples tracking relational
dependencies between variables.

Leakage bound, bits Initialization Time

log(1) j = i 1s
log(n

2
) j = i + n

2
0.7s

log(n
3
) j = 2·i+n

3
0.7s

(c) Synthesis of countermeasures.

time and heap space), with results given in Table 1a. We find that #Horn is
able to prove all bounds in the literature while being slightly faster on average.

The time consumption of loops is bounded by synthesising a polytope con-
taining all tuples of loop counter valuations. For example, for two loops with
counters i and j bounded by parameters n and m, we synthesize a polytope of
the form: a ≤ i ≤ n + b ∧ c ≤ j ≤ m + d, where a, b, c, d are inferred by our
method. For heap consumption, we use the cost model of [24]. We encode max
using disjunctions.

Dealing with relational dependencies. We use #Horn to analyze programs mcm
for matrix chain multiplication of Sect. 2 and an array manipulating program
band matrix for which code is provided in [37], with results in Table 1b. These
examples require the tracking of relational dependencies between variables. The
example mcm is particularly challenging as it requires reasoning about recursive
function calls. We are not aware of any other method that can handle programs
with both features. We use a template specifying that the sought polytope con-
sists of three and four symbolic vertices, respectively. Choosing a template that
is not expressive enough might only allow to prove coarser bounds, however, one

Symbolic Polytopes for Quantitative Interpolation and Verification 191

can automate the problem of finding an appropriate template by iterating over
templates with an increasing number of symbolic vertices.

int index(a, e) {

int r=-1; t=0;

for(i=0; r<0 && i<n; i++){

if (a[i]==e) r=i;

t++;

}

/* Padding */

for(j=?; j<n, j++) t++;

return r;

}

/* assert: bound cardinality of

set of final values of t. */

Synthesis of countermeasures. By relying
on recursive Horn clauses as input language,
#Horn is readily applicable to a number of
verification questions that go beyond reach-
ability. We illustrate this using the exam-
ple of procedure index(a, e), which returns
the first position of an element e in an
array a. Note that the execution time of
index (modeled by the variable t) reveals
the position of e. We apply #Horn for syn-
thesizing a padding countermeasure against
this timing side channel. Namely, we seek to
instantiate the initialization of the variable
j such that it provides enough padding for a given bound on leakage. This is
achieved by bounding the cardinality of the set of possible final values of t. We
add an additional clause that constrains the cardinality of values for t upon ter-
mination, as the logarithm of this number corresponds to the amount of leaked
information in bits, see e.g. [36]. Table 1c provides the timings and synthesized
initialization of j for different bounds on leakage.

8 Related Work

Counting integer points in polytopes. The theory of counting integer points in
polytopes has found wide-spread applications in program analysis. All applica-
tions we are aware of (including [2,17,28,40]) compute cardinalities for given
polytopes, whereas our interpolation method computes polytopes for given car-
dinality constraints.

Verdoolaege et al. [40] also derive symbolic expressions for the number of
integer points in parametric polytopes. In their approach, the parameter gov-
erns only the offset of the bounding hyperplanes (and hence the position of the
vertices of the polytope) but not their tilt (and hence not the generators of
the vertex cones). The advantage of fixing the vertex cones is that Barvinok’s
decomposition can be applied to handle arbitrary polytope shapes. In contrast,
our interpolation procedure #ItpLIA (see Sect. 4) leaves the vertices and the
generators of the vertex cones symbolic, up to constraints that ensure their uni-
modularity. The benefit of this approach is the additional degree of freedom for
the synthesis procedure. #Horn leverages both approaches: the one from [40]
for checking cardinality constraints, and #ItpLIA for refining the abstraction.

Recently, [17] presented a logic and decision procedure for satisfiability in the
presence of cardinality constraints for the case of linear arithmetic. In contrast,
we focus on synthesizing formulas that satisfy cardinality constraints, rather
than checking their satisfiability.

192 K. von Gleissenthall et al.

Resource bounds. In [26] a static analysis estimates the worst case execution time
of non-parametric loops using the box domain. To ensure precision, the widening
operator intersects the current abstraction with polytopes derived from condi-
tional statements. In contrast, our approach generates abstraction consisting of
parametric unimodular polytopes (which include boxes as a special case). In [21],
the authors compute parametric resource and time bounds by instrumenting the
program with (multiple-) counters, using static analysis to compute a bound
for the counters, and combining the results to yield a bound for the entire pro-
gram. In contrast, we fit polytopes over each iteration domain of the program,
thus avoiding the need to infer counter placement and enabling higher precision
by tracking dependencies between variables. In [39] a pattern-matching based
method extracts polytopes representing the iteration domain of for-loops from
C source. In contrast our method operates on unstructured programs repre-
sented as Horn clauses. In [23,24], a type system for the amortized analysis for
higher-order, polymorphic programs is developed. Their focus lies on recursive
data-types while we mostly deal with recursion/loops over the integers. In [10],
this line of work is extended to the verification of C programs. In [1,30] closed-
form bounds on resource usage are established by solving recurrence relations.

Quantitative verification. Existing verification methods for other theories rely
on cardinality extensions of SAT [18], or Boolean algebra of (uninterpreted)
sets [25], multisets [31], and fractional collections [32]. These approaches focus on
either computing the model size or checking satisfiability of a formula containing
cardinality constraints. Cardinalities of uninterpreted sets are also used in [20] for
establishing termination and memory usage bounds based on fixed abstractions.
Finally, CEGAR approaches for weighted transition systems have been studied
in [11,12]. These approaches considers abstractions for mean-payoff objectives
such as limit-average or discounted sum.

9 Conclusion

We applied the theory of counting integer points in polytopes to devise an algo-
rithm for a cardinality-constrained extension of Craig interpolation. This algo-
rithm proceeds by posing constraints on a symbolic polytope that specify both
its shape and cardinality and then solves the constraints via an SMT solver. We
embedded our interpolation procedure into a solver for recursive Horn clauses
with cardinality constraints and experimentally demonstrated its potential.

Acknowledgments. We thank Sven Verdoolaege for valuable feedback. Boris Köpf
was partially funded by Spanish Project TIN2012-39391-C04-01 StrongSoft and Madrid
Regional Project S2013/ICE-2731 N-GREENS. Klaus v. Gleissenthall was supported
by a Microsoft Research scholarship.

Symbolic Polytopes for Quantitative Interpolation and Verification 193

References

1. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost analysis of
java bytecode. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 157–172.
Springer, Heidelberg (2007)

2. Backes, M., Köpf, B., Rybalchenko, A.: Automatic discovery and quantification of
information leaks. In: IEEE S and P (2009)

3. Barvinok A.: A polynomial time algorithm for counting integral points in polyhedra
when the dimension is fixed. In: FOCS (1993)

4. Barvinok, A.: A Course in Convexity. American Mathematical Society (2002)
5. Beyene, T.A., Chaudhuri, S., Popeea, C., Rybalchenko, A.: A constraint-based

approach to solving games on infinite graphs. In POPL (2014)
6. Beyene, T.A., Popeea, C., Rybalchenko, A.: Solving existentially quantified Horn

clauses. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 869–
882. Springer, Heidelberg (2013)

7. Bjørner, N., McMillan, K., Rybalchenko, A.: On solving universally quantified Horn
clauses. In: Logozzo, F., Fähndrich, M. (eds.) Static Analysis. LNCS, vol. 7935,
pp. 105–125. Springer, Heidelberg (2013)

8. Bjørner, N., McMillan, K.L., Rybalchenko, A.: Program verification as satisfiability
modulo theories. In: SMT@IJCAR (2012)

9. Brion, M.: Points entiers dans les polyedres convexes. Ann. Sci. Ecole Norm. Sup.
21(4), 653–663 (1988)

10. Carbonneaux, Q., Hoffmann, J., Shao, Z.: Compositional certified resource bounds.
In: PLDI (2015)

11. Cerny, P., Henzinger, T.A., Radhakrishna, A.: Quantitative abstraction refinement.
In: POPL, ACM (2013)

12. Chatterjee, K., Pavlogiannis, A., Velner, Y.: Quantitative interprocedural analysis.
In: POPL (2015)

13. Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear invariant generation using
non-linear constraint solving. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003.
LNCS, vol. 2725, pp. 420–432. Springer, Heidelberg (2003)

14. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms,
2nd edn. McGraw-Hill Higher Education, Boston (2001)

15. De Loera, J.A., Hemmecke, R., Tauzer, J., Yoshida, R.: Effective lattice point
counting in rational convex polytopes. J. Symb. Comp. 38(4), 1273–1302 (2004)

16. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

17. Fredrikson, M., Jha, S.: Satisfiability modulo counting: A new approach for ana-
lyzing privacy properties. In: LICS, IEEE (2014)

18. Gomes, C.P., Sabharwal, A., Selman, B.: Model counting. In: Biere, A., Heule, M.,
Maaren, H.V., Walsh, T. (eds.) Handbook of Satisfiability. IOS Press, Amsterdam
(2009)

19. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing soft-
ware verifiers from proof rules. In: PLDI (2012)

20. Gulwani, S., Lev-Ami, T., Sagiv, M.: A combination framework for tracking par-
tition sizes. In: POPL. ACM (2009)

21. Gulwani, S., Mehra, K.K., Chilimbi, T.: Speed: precise and efficient static estima-
tion of program computational complexity. In: POPL (2009)

194 K. von Gleissenthall et al.

22. Gupta, A., Popeea, C., Rybalchenko, A.: Predicate abstraction and refinement for
verifying multi-threaded programs. In: POPL (2011)

23. Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate amortized resource analysis.
In: POPL (2011)

24. Jost, S., Hammond, K., Loidl, H.-W., Hofmann, M.: Static determination of quan-
titative resource usage for higher-order programs. In: POPL (2010)

25. Kuncak, V., Nguyen, H.H., Rinard, M.: An algorithm for deciding BAPA: boolean
algebra with presburger arithmetic. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS
(LNAI), vol. 3632, pp. 260–277. Springer, Heidelberg (2005)

26. Lokuciejewski, P., Cordes, D., Falk, H., Marwedel, P.: A fast and precise static loop
analysis based on abstract interpretation, program slicing and polytope models. In:
CGO (2009)

27. Luu, L., Shinde, S., Saxena, P., Demsky, B.: A model counter for constraints over
unbounded strings. In: PLDI. ACM (2014)

28. Mardziel, P., Magill, S., Hicks, M., Srivatsa, M.: Dynamic enforcement of
knowledge-based security policies. In: CSF. IEEE (2011)

29. McMillan, K.L.: An interpolating theorem prover. TCS 345(1), 101–121 (2005)
30. Navas, J.A., Méndez-Lojo, M., Hermenegildo, M.V.: User-definable resource usage

bounds analysis for java bytecode. Electr. Notes Theor. Comput. Sci. 253(5), 65–82
(2009)

31. Piskac, R., Kuncak, V.: Decision procedures for multisets with cardinality con-
straints. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol.
4905, pp. 218–232. Springer, Heidelberg (2008)

32. Piskac, R., Kuncak, V.: Fractional Collections with Cardinality Bounds, and Mixed
Linear Arithmetic with Stars. In: Kaminski, M., Martini, S. (eds.) CSL 2008.
LNCS, vol. 5213, pp. 124–138. Springer, Heidelberg (2008)

33. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear rank-
ing functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
239–251. Springer, Heidelberg (2004)

34. Rümmer, P., Hojjat, H., Kuncak, V.: Disjunctive interpolants for Horn-clause ver-
ification. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 347–
363. Springer, Heidelberg (2013)

35. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1999)
36. Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L.

(ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009)
37. von Gleissenthall, K., Köpf, B., Rybalchenko, A.: Symbolic polytopes for quanti-

tative interpolation and verification - extended version (2015). https://www7.in.
tum.de/∼gleissen/papers/symb-polytopes.pdf

38. Verdoolaege, S.: Barvinok. http://freecode.com/projects/barvinok
39. Verdoolaege, S., Grosser, T.: Polyhedral extraction tool. In: IPACT (2012)
40. Verdoolaege, S., Seghir, R., Beyls, K., Loechner, V., Bruynooghe, M.: Counting

integer points in parametric polytopes using Barvinok’s rational functions. Algo-
rithmica 48(1), 37–66 (2007)

41. Wolfram, S.: Wolfram alpha, series expansion. http://www.wolframalpha.com/
examples/SeriesExpansions.html

42. Zuleger, F., Gulwani, S., Sinn, M., Veith, H.: Bound analysis of imperative pro-
grams with the size-change abstraction. In: Yahav, E. (ed.) Static Analysis. LNCS,
vol. 6887, pp. 280–297. Springer, Heidelberg (2011)

https://www7.in.tum.de/~gleissen/papers/symb-polytopes.pdf
https://www7.in.tum.de/~gleissen/papers/symb-polytopes.pdf
http://freecode.com/projects/barvinok
http://www.wolframalpha.com/examples/SeriesExpansions.html
http://www.wolframalpha.com/examples/SeriesExpansions.html

Adaptive Aggregation of Markov Chains:
Quantitative Analysis of Chemical

Reaction Networks

Alessandro Abate1, Luboš Brim2, Milan Češka1,2(B), and Marta Kwiatkowska1

1 Department of Computer Science, University of Oxford, Oxford, UK
milan.ceska@cs.ox.ac.uk

2 Faculty of Informatics, Masaryk University, Brno, Czech Republic

Abstract. Quantitative analysis of Markov models typically proceeds
through numerical methods or simulation-based evaluation. Since the
state space of the models can often be large, exact or approximate state
aggregation methods (such as lumping or bisimulation reduction) have
been proposed to improve the scalability of the numerical schemes. How-
ever, none of the existing numerical techniques provides general, explicit
bounds on the approximation error, a problem particularly relevant when
the level of accuracy affects the soundness of verification results. We pro-
pose a novel numerical approach that combines the strengths of aggre-
gation techniques (state-space reduction) with those of simulation-based
approaches (automatic updates that adapt to the process dynamics).
The key advantage of our scheme is that it provides rigorous precision
guarantees under different measures. The new approach, which can be
used in conjunction with time uniformisation techniques, is evaluated on
two models of chemical reaction networks, a signalling pathway and a
prokaryotic gene expression network: it demonstrates marked improve-
ment in accuracy without performance degradation, particularly when
compared to known state-space truncation techniques.

1 Introduction

Markov models are widely used in many areas of science and engineering in order
to evaluate the probability of certain events of interest. Quantitative analysis of
time-bounded properties of Markov models typically proceeds through numer-
ical analysis, via solution of equations yielding the probability of the system
residing in a given state at a given time, or via simulation-based exploration of
its execution paths. For continuous-time Markov chains (CTMCs), a commonly
employed method is uniformisation (also known as Jensen’s method), which is

This work has been partially supported by the ERC Advanced Grant
VERIWARE, the Czech Ministry of Education, Youth, and Sport project
No. CZ.1.07/2.3.00/30.0009 (M. Češka), the Czech Grant Agency grant No. GA15-
11089S (L. Brim), the John Fell Oxford University Press (OUP) Research Fund, and
by the European Commission IAPP project AMBI 324432.

c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 195–213, 2015.
DOI: 10.1007/978-3-319-21690-4 12

196 A. Abate et al.

based on the discretisation of the original CTMC and on the numerical com-
putation of transient probabilities (that is, probability distributions over time).
This can be combined with graph-theoretic techniques for probabilistic model
checking against temporal logic properties [4].

There are many situations where highly accurate probability estimates are
necessary, for example for reliability analysis in safety-critical systems or for pre-
dictive modelling in scientific experiments, but this is difficult to achieve in prac-
tice because of the state-space explosion problem. Imprecise values are known
to lead to lack of robustness, in the sense that the satisfaction of temporal logic
formulae can be affected by small changes to the formula bound or the probabil-
ity distribution of the model. Simulation-based analysis does not suffer from this
problem and additionally allows dynamic adaptation of the sampling procedure,
as e.g. in importance sampling, to the current values of the transient probabil-
ity distribution. However, this analysis provides only weak precision guarantees
in the form of confidence intervals. In order to enable the handling of larger
state spaces, two types of techniques have been introduced: state aggregation
and state-space truncation. State aggregation techniques build a reduced state
space using lumping [6] or bisimulation quotient [21], and have been proposed
both in exact [21] and approximate form [10], with the latter deemed more robust
than than the exact ones [11]. State-space truncation methods, e.g. fast adaptive
uniformisation (FAU) [9,23], on the other hand, only consider the states whose
probability mass is not negligible, while clustering states where the probability
is less than a given threshold and computing the total probability lost. Unfor-
tunately, though these methods allow the user to specify a desired precision,
none provide explicit and general error bounds that can be used to quantify the
accuracy of the numerical computation: more precisely, these truncation meth-
ods provide a lower bound on the probability distributions in time, and the total
probability lost can be used to derive a (rather conservative) upper bound on
the (point-wise) approximation error as the sum of the lower bound and of the
total probability lost.

Key Contributions. We propose a novel adaptive aggregation method for
Markov chains that allows us to control its approximation error based on
explicitly derived error bounds. The method can be combined with numerical
techniques such as uniformisation [9,23], typically employed in quantitative ver-
ification of Markov chains. The method works over a finite time interval by clus-
tering the state space of a Markov chain sequentially in time, where the quality
of the current aggregation is quantified by a number of metrics. These metrics, in
conjunction with user-specified precision requirements, drive the process by auto-
matically and adaptively reclustering its state space depending on the explicit
error bounds. In contrast to related simulation-based approaches in the litera-
ture [13,31] that employ the current probability distribution of the aggregated
model to selectively cluster the regions of the state space containing negligible
probability mass, our novel use of the derived error bounds allows far greater
accuracy and flexibility as it accounts also for the past history of the probability
mass within specific clusters.

Adaptive Aggregation of Markov Chains: Quantitative Analysis 197

To the best of our knowledge, despite recent attempts [10,11] the development
and use of explicit bounds on the error associated with a clustering procedure
is new for the simulation and analysis of Markov chains. The versatility of the
method is further enhanced by employing a variety of different metrics to assess
the approximation quality. More specifically, we use the following to control the
error: (1) the probability distributions in time (namely, the point-wise difference
between concrete and abstract distributions), (2) the time-wise likelihood of
events (L1 norm and total variation distance), as well as (3) the probability of
satisfying a temporal logic specification.

We implement our method in conjunction with uniformisation for the compu-
tation of probability distributions of the process in time, as well as time-bounded
probabilities (a key procedure for probabilistic model checking against temporal
logic specifications), and evaluate it on two case studies of chemical reaction net-
works. Compared to fast adaptive uniformisation as implemented in PRISM [9],
currently the best performing technique in this setting, we demonstrate that our
method yields a marked improvement in numerical precision without degrading
its performance.

Related Work. (Bio-)chemical reaction networks can be naturally analysed
using discrete stochastic models. Since the discrete state space of these mod-
els can be large or even infinite, a number of numerical approaches have been
proposed to alleviate the associated state-space explosion problem. For bio-
chemical models with large populations of chemical components, fluid (mean-
field) approximation techniques can be applied [5] and extended to approximate
higher-order moments [12]: these deterministic approximations lead to a set of
ordinary differential equations. In [16], a hybrid method is proposed that cap-
tures the dynamics using a discrete stochastic description in the case of small
populations and a moment-based deterministic description for large populations.
An alternative approach assumes that the transient probabilities can be com-
pactly approximated based on quasi product forms [3]. All the mentioned meth-
ods do not provide explicit accuracy bounds of approximation.

A widely studied model reduction method for Markov models is state aggre-
gation based on lumping [6] or (bi-)simulation equivalence [4], with the latter
notion in its exact [21] or approximate [10] form. In particular, approximate
notions of equivalence have led to new abstraction/refinement techniques for the
numerical verification of Markov models over finite [11] as well as uncountably-
infinite state spaces [1,2,26]. Related to these techniques, [27] presents an algo-
rithm to approximate probability distributions of a Markov process forward in
time, which serves as an inspiration for our adaptive scheme. From the perspec-
tive of simulations, adaptive aggregations are discussed in [13] but no precision
error is given: our work differs by developing an adaptive aggregation scheme,
where a formal error analysis steers the adaptation.

An alternative method to deal with large/infinite state spaces is trunca-
tion, where a lower bound on the transient probability distribution of the con-
crete model is computed, and the total probability mass that is lost due to this

198 A. Abate et al.

truncation is quantified. Such methods include finite state projections [24],
sliding window abstractions [18], or fast adaptive uniformisation (FAU) [9,23].
Apart from truncating the state space by neglecting states with insignificant
probability mass, FAU dynamically adapts the uniformisation rate, thus signif-
icantly reducing the number of uniformisation steps [30]. The efficiency of the
truncation techniques depends on the distribution of the significant part of the
probability mass over the states, and may result in poor accuracy if this mass
is spread out over a large number of states, or whenever the selected window of
states does not align with a property of interest.

Summarising, whilst a number of methods have been devised to study or to
simulate complex biochemical models, in most cases a rigorous error analysis
is missing [13,22,31], or the error analysis cannot be effectively used to obtain
accurate bounds on the probability distribution or on the likelihood of events of
interest [17].

Structure of this Article. Section 2 introduces the sequential aggregation
approach to approximate the transient probability distribution (that is, the dis-
tribution over time) of discrete-time Markov chains, and quantifies bounds on
the introduced error according to three different metrics. Section 3 applies the
aggregation method for temporal logic verification of Markov chains. In Sect. 4,
we implement adaptive aggregation for continuous-time Markov chain models
of chemical reaction networks, in conjunction with known techniques such as
uniformisation and threshold truncation. Finally, Sect. 5 discusses experimental
results.

2 Computation of the Transient Probability Distribution

We first work with discrete-time labelled Markov chains (LMC), and in Sect. 4
we show how to apply the obtained results to (labelled) continuous-time Markov
chains. Formally, an LMC is defined as a triple (S, P, L), where

– S = {s1, . . . , sn} is the finite state space of size n;
– P : S × S → [0, 1] is the transition probability matrix, which is such that

∀j ∈ S :
∑n

i=1 Pji =
∑n

i=1 P (j, i) = 1;

– L : S → 2Σ is a labelling function, where Σ is a finite alphabet built from a
set of atomic propositions.

Whenever clear from the context, we refer to the model simply as (S, P). The
model is initialised via distribution π0 : S → [0, 1],

∑
s∈S π0(s) = 1, and its

transient probability distribution at time step k ≥ 0 is

πk+1(s) =
∑

s′∈S

πk(s′)P (s′, s), (1)

or more concisely as πk+1 = πkP (where the πk’s are row vectors). We are
interested in providing a compact representation and an efficient computation
of the vectors πk.

Adaptive Aggregation of Markov Chains: Quantitative Analysis 199

Sequential Aggregations of the Markov Chain. Consider the finite time
interval of interest [0, 1, . . . , N]. Divide this interval into a given number (q)
of sub-intervals, namely select N1, N2, . . . , Nq :

∑q
i=1 Ni = N , and consider the

evolution of the model within the corresponding l-th interval [
∑l−1

i=0 Ni,
∑l

i=0 Ni],
for l = 1, . . . q, and where we have set N0 = 0.

We assume that a specific state-space aggregation is given, for each of the q
sub-intervals of time. Later, in Sect. 4, we show how such aggregations can be
obtained adaptively, based on a number of measures (such as the current value
of the aggregated transient probability distribution, or the accrued aggregation
error in time). In particular, at the l-th step (where l = 1, . . . , q), the state space
is partitioned (clustered) as S = ∪ml

i=1S
l
i (consider that the cardinality index

ml has been reasonably selected so that ml << n), and denote the abstract
(aggregated) state space simply as Sl and its elements (the abstract states) with
φi, i = 1, . . . , ml. Introduce abstraction and refinement maps as αl : S → Sl and
Al : Sl → 2S , respectively – the first takes concrete points into abstract ones,
whereas the latter relates abstract states to concrete partitioning sets. For any
pair of indices i, j = 1, . . . , ml, define the abstract transition matrix as

P l(φj , φi)
.=

1
| Al(φi) |

∑

s∈Al(φi)

∑

s′∈Al(φj)

P (s′, s).

The intuition behind the aggregated matrix P l is that it encompasses the average
incoming probability from clusters Sj to Si. The shape of this matrix is justified
by the structure of the update equation in (1). Given the aggregated Markov
chain, we shall work, for all s ∈ Sl, with the following recursions:

πl
k+1(s) =

∑

s′∈S1

πl
k(s′)P l(s′, s).

The smaller, aggregated model (Sl, P l) serves as basis for an approximate com-
putation of the transient probability in time: we now calculate an explicit upper
bound on the approximation error. In order to quantify this error, we define a
function εl : [1, . . . , ml]2 → [0, 1], as follows:

εl(j, i) .= max
s∈Sl

i

∣
∣
∣
∣
∣

| Sl
i |

| Sl
j |P (Sj , s) − P l(φj , φi)

∣
∣
∣
∣
∣
. (2)

Intuitively, this quantity accounts for the difference between the average incom-
ing probability between a pair (j, i) of partitioning sets, and the worst-case
(rescaled) point-wise incoming probability between those two sets. Introduce
the terms εl(j) :=

∑ml

i=1 εl(j, i).
Finally, define, for all s ∈ S, π̃l

k(s) = πl
k(αl(s))/ | Al(αl(s)) | as a (nor-

malised) piecewise constant approximation of the abstract functions πl
k. Func-

tions π̃l
k, being defined over the concrete state space S, will be employed for

comparison with the original distribution functions πk. Specifically, for the ini-
tial interval [N0, N1] (with l = 1), approximate the initial distribution π0 by π1

0

200 A. Abate et al.

as: ∀s ∈ S1, π1
0(s) =

∑
s′∈A1(s) π0(s′). Similarly, we have that ∀s ∈ S, π̃1

0(s) =
π1

0(α1(s))/ | A1(α1(s)) |.

Remark 1. Exact and approximate probabilistic bisimulations [10,21] build a
quotient or a cover of the state space of the original model based on matching
or approximating the “outgoing probability” from concrete states – for example,
exact probabilistic bisimulation compares, for state pairs (s1, s2) within a parti-
tion, the “outgoing” probabilities P (s1, B) and P (s2, B) over partitions B. On
the other hand, in (2) we approximate the “incoming probability”, as motivated
by the approximation of the recursions in (1). �

Explicit Error Bounds for the Quality of the Sequential Aggrega-
tions. Let us consider the aggregated model (S1, P 1) (for l = 1) and, given the
aggregated vector π1

0 , the time-wise updates π1
k+1 = π1

kP 1, k = N0, . . . , N1 − 1.
Introduce the interpolated vectors π̃1

k+1(s), s ∈ S, defined as
π̃1

k+1(s) = π1
k+1(α

1(s))/ | A1(α1(s)) |. We are interested in a bound on the point-
wise error defined over the concrete state space, namely ∀s ∈ S, k = N0, . . . , N1,∣
∣πk(s) − π̃1

k(s)
∣
∣, or equivalently a bound for

∣
∣
∣πk(s) − π1

k(α1(s))
|A1(α1(s))|

∣
∣
∣. Such a point-

wise bound directly allows for expressing a global error for the infinity norm of
the difference between the two distribution vectors, namely

∥
∥πk − π̃1

k

∥
∥

∞ = max
s∈S

∣
∣πk(s) − π̃1

k(s)
∣
∣ .

Beyond the first aggregation (l = 1), the next statement explicitly characterises
such a bound over the entire sequence of q re-aggregations and the time interval
[0, 1, . . . , N].

Proposition 1. Consider a sequential q-step aggregation strategy, characterised
by times Nl :

∑q
l=1 Nl = N , partitions S = ∪ml

i=1S
l
i, and matrices P l. We obtain

∣
∣πN (s) − π̃q

N (s)
∣
∣ ≤ c(s)N

∣
∣π0(s) − π̃1

0(s)
∣
∣

+

q
∑

l=1

c(s)N−∑l
i=0 Ni

⎧

⎨

⎩

1

| Al(αl(s)) |
ml∑

j=1

εl(j, αl(s))

Nl−1
∑

k=0

πl
∑l−1

i=0 Ni+k
(j) + γl

l−1(s)

⎫

⎬

⎭
,

where we have set c(s) = P (S, s), and γl
l−1(s) =

∣
∣
∣π̃l−1
∑l−1

i=0 Ni
(s) − π̃l∑l−1

i=0 Ni
(s)

∣
∣
∣ for

l = 1, . . . , q, with γ1
0(s) = 0, ∀s ∈ S.

Remark 2. A few comments on the structure of the error bounds are in order.
The overall error is composed of two main contributions, one depending on the
error accrued within single aggregation steps, and the other (γl

l−1(s)) depending
on the q re-aggregations (that is, an update from the current partition to the
next).

Adaptive Aggregation of Markov Chains: Quantitative Analysis 201

The first term of the first contribution further depends on the point-
wise error in the distributions initialised at each aggregation, namely,∣
∣
∣π∑l

i=0 Ni
(s)− π̃l∑l

i=0 Ni
(s)

∣
∣
∣: this quantity, discounted by the Nl-th power of the

factor c(s) (accounting for contractive or expansive dynamics), builds up recur-
sively to yield the global (over the q aggregation steps) quantity
c(s)N

∣
∣π0(s) − π̃1

0(s)
∣
∣. The second term of the first contribution, on the other

hand, accounts for the error due to the approximation of the transition proba-
bility matrix (terms εl), averaged over the accrued running distribution functions
(factors πl).

The intuition on factor c(s) is the following: if the model is “contractive” (in
a certain probabilistic sense) towards a point s, the factor c(s) is likely to be
greater than one; on the other hand, if the distribution in time is “dispersed,”
then it is likely that c(s) < 1 over a large subset of the state space. The quantity
c(s) = P (S, s) might be decreased if we work on a subset of S: this might happen
with a discrete-time chain obtained from a corresponding continuous-time model
via FAU [9,23], or through the interaction of the factor c(s), s ∈ S, with atomic
propositions defined specifically over subsets of the state space S. �

Corollary 1. Consider the same setup as in Proposition 1. A bound for the
quantity ‖πN − π̃q

N‖∞ can be obtained from that in Proposition 1 by straightfor-
ward adaptation and setting c = maxs∈S c(s), and γl

l−1 = maxs∈S γl
l−1(s), l =

1, . . . , q.

In addition to point-wise errors, we seek a bound for the following global
error,

∥
∥πk − π̃1

k

∥
∥

1
=

∑

s∈S

∣
∣πk(s) − π̃1

k(s)
∣
∣ , ∀k = 0, . . . , N1,

and its further extension to successive aggregations and time steps
k = N1 + 1, . . . , N . This L1-norm measure is related to the “total variation
distance” over events in the σ-algebra 2S at each time step k. This measure is
commonly used in related literature [8,29], and refers to differences in probability
of events defined over sets in S at a specific point in time k. The corresponding
error bound is explicitly quantified as follows.

Proposition 2. Consider a q-step sequential aggregation strategy characterised
by the times Nl :

∑q
l=1 Nl = N , partitions S = ∪ml

i=1S
l
i, and matrices P l. We

obtain

‖πN − π̃q
N‖1 ≤

∥
∥π0 − π̃1

0

∥
∥

1
+

q∑

l=1

⎧
⎨

⎩

ml∑

j=1

εl(j)
Nl−1∑

k=0

πl∑l−1
i=0 Ni+k

(j) + Γ l
l−1

⎫
⎬

⎭
,

where for l = 1, . . . , q, Γ l
l−1 =

∥
∥
∥π̃l−1
∑l−1

i=0 Ni
− π̃l∑l−1

i=0 Ni

∥
∥
∥

1
, and where we have set

Γ 1
0 = 0.

202 A. Abate et al.

3 Aggregations for Model Checking of Time-Bounded
Specifications

In Sect. 2, we have introduced a sequential aggregation procedure to approximate
the computation of the transient probability distribution of a Markov chain. The
derived bounds allow for a comparison of aggregated and concrete models either
point-wise, or according to a global measure of the differences in the probability
of events over the state space, at a specific point in time. We now show how to
employ the aggregation method for quantitative verification against probabilistic
temporal logics such as PCTL. We focus on a bounded variant of the probabilistic
safety (invariance) property, which corresponds to time-bounded invariance for
continuous-time Markov chains.

Consider the LMP (S, P, L). We focus on properties expressed over the atomic
propositions AP , namely the set of finite strings over the labels 2AP , and on how
to approximately compute the likelihood associated to such strings. In particular,
consider a step-bounded safety formula [4], namely P=?

(
G≤NΦ

)
, where N ∈ N,

and Φ ∈ 2Σ , Sat(Φ) ⊆ S1. This specification expresses the likelihood that a
trajectory, initialised according to a distribution (say, π0) over the state space
S, resides within set Φ over the time interval [0, 1, . . . , N]. The specification of
interest can be characterised as follows: for any s ∈ S, k = 0, 1, . . . , N − 1,

V0(s) = 1Φ(s)π0(s), Vk+1(s) = 1Φ(s)
∑

s′∈S

Vk(s′)P (s′, s),

so that P=?

(
G≤NΦ

)
=

∑
s∈S VN (s). It is well known that the computed quantity

depends on the choice of the initial distribution π0 (which can in particular
be a point mass for a distinguished initial state). As should be clear from the
recursion above (use of indicator functions 1Φ), it is sufficient to restrict the
recursive updates to within the set of points labelled by Φ.

As before, consider the global finite interval [0, 1, . . . , N], and divide it via
intervals of duration N1, N2, . . . , Nq :

∑q
i=1 Ni = N . Specifically, for the

initial interval [N0, N1] (corresponding to index q = 1), partition set Φ as
Φ = ∪m1

i=1Φ
1
i – notice that the partition does not cross the boundaries of the

set Φ. Thus S1 = Φ1 ∪ {a1} = {1, . . . , m1, a1}, where a1 is associated with
the complement set S\Φ. Introduce abstraction and refinement maps as α1 :
S → S1 and A1 : S1 → 2S , the abstract transition matrix P 1, and function
ε1 : [1, . . . , m1]2 → [0, 1] as

ε1(j, i) .= max
s∈Φ1

i

∣
∣
∣
∣
∣

| Φ1
i |

| Φ1
j |P (Φ1

j , s) − P 1(φj , φi)

∣
∣
∣
∣
∣
.

Further, approximate π0 as: ∀s ∈ S1, π1
0(s) =

∑
s′∈A1(s) π0(s′). Introduce, ∀s ∈

S1, cost functions Vi via the following recursions:

V 1
0 (s) = 1Φ1(s)π1

0(s), V 1
k+1(s) = 1Φ1(s)

∑

s′∈S1

V 1
k (s′)P 1(s′, s),

1 For the sake of simplicity, we shall often loosely identify the set Sat(Φ) with label Φ.

Adaptive Aggregation of Markov Chains: Quantitative Analysis 203

and, ∀s ∈ S, Ṽ 1
k (s) = V 1

k (α1(s))/|A1(α1(s))|, as a (normalised) piecewise con-
stant approximation of the abstract functions V 1

k , and in particular initialised
as π̃1

0(s) = π1
0(α1(s))/|A1(α1(s))|. We shall derive explicit bounds on the com-

putation of the error:
∣
∣
∣
∣
∣

∑

s∈Φ

VN1(s) −
∑

s∈Φ

Ṽ 1
N1

(s)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

m1∑

i=1

∑

s∈Φi

(
VN1(s) − Ṽ 1

N1
(s)

)
∣
∣
∣
∣
∣
,

and extend them over successive aggregation and time steps k = N1 + 1, . . . , N .
Notice that, in this instance, we are comparing two scalars, comprising the like-
lihoods associated with the specification of interest computed over the concrete
and abstract models, respectively. More precisely, in general we have:
∣
∣
∣
∣
∣
∣

∑

s∈Φi

VN1(s) −
∑

s∈Φi

Ṽ 1
N1(s)

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

∑

s∈Φi

VN1(s) −
∑

s∈Φi

V 1
N1(α

1(s))

|A1(α1(s))|

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

∑

s∈Φi

VN1(s) − V 1
N1(i)

∣
∣
∣
∣
∣
∣

.

Proposition 3. Consider a q-step sequential aggregation strategy characterised
by corresponding times Nl :

∑q
l=1 Nl = N , partitions Φ = ∪ml

i=1Φ
l
i, and matrices

P l. We obtain:
∣
∣
∣
∣
∣

∑

s∈Φ

VN (s) −
∑

s∈Φ

Ṽ q
N (s)

∣
∣
∣
∣
∣
≤

q∑

l=1

ml∑

i=1

εl(i)
Nl−1∑

k=0

V l∑l−1
i=0 Ni+k

(i).

Remark 3. We give some intuition regarding the structure of the bounds. The
quantity depends on a summation over q aggregation steps. It expresses the
accrual of the error incurred over the outgoing probability from the i-th partition
(term εl(i)), averaged over the history of the cost function over that partition.
Note the symmetry between the shape of the bound and the recursive definition
of the quantities of interest. �

4 Quantitative Analysis of Chemical Reaction Networks

A chemical reaction network describes a biochemical system containing M chem-
ical species participating in a number of chemical reactions. The state of a model
of the system at time t ∈ R

+ is the vector X(t) = (X1(t),X2(t), . . . , XM (t)),
where Xi denotes the number of molecules of the i-th species [15]. Whenever a
single reaction occurs the state changes based on the stoichiometry of the cor-
responding reaction. We use S to denote the set of (discrete) states. Further,
for s ∈ S, πt(s) denotes the probability P(X(t) = s). Assuming finite volume
and temperature, the model can be interpreted as a continuous-time Markov
chain (CTMC) C = (S,R), where the rate matrix R(s, s′) gives the rate of a
transition from states s to s′, and π0 specifies the initial distribution over S.
The time evolution of the model is governed by the Chemical Master Equation
(CME) [15], namely d

dtπt = πt ·Q, where Q is the infinitesimal generator matrix,

204 A. Abate et al.

defined as Q(s, s′) = R(s, s′) if s
= s′, and as 1−
∑

s′′ �=s R(s, s′′) otherwise. The
exact solution of the CME is in general intractable, which has led to a num-
ber of possible numerical approximations [25]. We employ uniformisation [30],
which in many cases outperforms other methods and also provides an arbitrary,
user-defined approximation precision.

Uniformisation is based on a time-discretisation of the CTMC. The distri-
bution πt is obtained as a sum (over index i) of terms giving the probability
that i discrete reaction steps occur up to time t: this is a Poisson random vari-
able γi,λ·t = e−λ·t · (λ·t)i

i! , where the time delay is exponentially distributed with
rate λ. More formally, πt =

∑∞
i=0 γi,λ·t · π0 · Q̃i ≈

∑N
i=0 γi,λ·t · π0 · Q̃i, where Q̃

is the uniformised infinitesimal generator matrix defined using terms R(s,s′)
λ ,

and where the uniformisation constant λ is equal to the maximal exit rate∑
s′′ �=s R(s, s′′). Although the sum is in general infinite, for a given precision

an upper bound N can be estimated using techniques in [14], which also allow
for efficient computation of the Poisson probabilities γi,λ·t.

For complex models with very large or possibly infinite state spaces, the
above numerical approximations are computationally infeasible, and are typi-
cally combined with (dynamical) state-space truncation methods, such as finite
state projection [24], sliding window abstraction [18], or fast adaptive uniformi-
sation [9,23] (FAU). The key idea of these truncation methods is to restrict
the analysis of the model to a subset of states containing significant probability
mass. One can easily compute the probability lost at each uniformisation step
and thus obtain the total probability lost by truncation. As such, these trun-
cation methods provide a lower bound on the quantities πt, and the quantified
probability lost can be used to derive a (rather conservative) upper bound on the
approximation error: the sum of the lower bound and the probability lost gives
an upper bound for the point-wise error. Moreover, a (pessimistic) bound on the
L1-norm over a general subset of the state space is obtained by multiplying the
probability lost by the number of states in the concrete subset.

Adaptive Aggregation for CTMC Models of Chemical Reaction Net-
works. The aggregation methods in the previous sections can be directly applied
to uniformised CTMCs, such as those arising from chemical reaction networks.
We now discuss how the aggregation unfolds sequentially in time and how the
derived error bounds can be used for the aggregation method in this setting.

Recall from Eq. (2) that the derivation of the error bounds for the aggregation
procedure requires a finite state space: for infinite-state CTMCs, the aggregation
method can be combined with state-space truncation (alongside time uniformi-
sation), in order to accelerate computations in cases where the set of significant
states is still too large. On the other hand, for finite-state CTMC models, adap-
tive aggregations can be regarded as an orthogonal strategy to truncation, and
can be directly applied in conjunction with time uniformisation. In order to
compare the precision and reduction capability of our method to that of FAU,

Adaptive Aggregation of Markov Chains: Quantitative Analysis 205

Algorithm 1. Adaptive aggregation for computation of transient probability
Require: Finite CTMC C = (S, R), initial distribution π0, time t, and bound θ on L1-norm error
Ensure: globalError ≤ θ
1: (P, N) ← uniformise (C, t) ; l ← 1

2:
(
Sl, P l, πl

0, εl
)← initAggregation (S, P, π0)

3: for (k ← 0; k ≤ N, k ← k + 1) do
 perform N uniformisation steps

4: (globalError, AccumErrors) ← computeErrors
(
πl
k, εl, k

)

5: πl
k+1(s) =

∑
s′∈S1 π1

k(s′)P l(s′, s)
 update the probability distribution

6: if checkAggregation
(
εl, πl

k+1, AccumErrors, θ
)

= false then

7: (Sl+1, P l+1, πl+1
k+1, εl+1) ← Recluster

(
Sl, P l, πl

k+1, εl, AccumErrors
)

8: AccumErrors ← 0; l ← l + 1

we thus assume that the population of each species is bounded, which ensures
fairness of experimental evaluation.

The key ingredient of the proposed aggregation method is a partitioning
strategy that controls and adapts the clustering of the state space over the given
finite time interval. Algorithm 1 summarises the scheme for transient probabil-
ity calculation (the adaptive aggregation for an invariant property as in Sect. 3
unfolds similarly). The procedure starts with a given partition S1 of the state
space S (obtained by the procedure initAggregation on line 2). It dynamically
(and automatically) updates the current partition when needed, thus provid-
ing new abstract state spaces Sl over the l-th time interval [

∑l−1
i=0 Ni,

∑l
i=0 Ni],

where l = 2, . . . , q and q << N . The update of the current l-th clustering is
performed after Nl steps, that is, whenever the error accrual exceeds a thresh-
old ensuring the user-defined precision θ (function checkAggregation on line 6).
At the same time, the aggregation strategy aims to minimise the average size
of the abstract state space, defined as avg =

∑q
l=0 Nl · |Sl|/N . We consider

two adaptive strategies, one time-local and the other history-dependent, both of
which are driven by the shape of the derived error bounds – in particular, the
history-dependent strategy exactly employs the calculated error bounds. Both
strategies are parametrised by thresholds, which ensure the required overall pre-
cision θ and account for the size of the concrete state space as well as the number
of uniformisation steps N .

The history-dependent strategy is based on the available history contributing
to the shape of the derived errors: for the l-th aggregation step and the given i-th
cluster of the current partition, it tracks the sum of the errors accumulated in
the interval [

∑l−1
i=0 Ni,

∑l−1
i=0 Ni + k] for k = 1, . . . , Nl, according to the explicit

bounds derived in Sect. 2 (line 4 of Algorithm 1). At each step k, the obtained
value (averaged over k steps) reflects the (averaged) error accrual for each cluster
(array AccumErrors) and is used to drive the partitioning procedure.

The function checkAggregation determines (using AccumErrors) if the cur-
rent clustering meets the desired threshold, or if a refinement is desirable: dur-
ing re-clustering, a locally coarser abstraction may as well be suggested by
merging clusters. The function Recluster provides the new clustering based on
the error bounds, which are functions of AccumErrors, of the local contribu-
tions εl, and of the (history of the) distribution πl

k (or of the cost V l
k in the case

206 A. Abate et al.

of safety verification). In contrast to the adaptive method presented in [13] and
based exclusively on local heuristics, our strategy closely reflects the shape of
the derived, history-dependent error bounds. Note that the aggregation strategy
applied to chemical reaction networks aligns well with the known structure of the
underlying CTMCs. In particular, the state-space clustering employs the spatial
locality of the distribution of transitions in the M -dimensional space [13,31] (M
is the number of chemical species), usually leading to relatively uniform proba-
bility mass over adjacent states and thus to strategies that cluster neighbouring
states.

A simpler re-clustering strategy (denoted in the experiments as local) employs
at each uniformisation step k only the product of the local error εl with the
probability distribution πl

k (or with the cost function V l
k). In other words, a local

re-clustering is performed if the local error depending on εlπl
k (respectively, on

εlV l
k) is above a given threshold. This intuitive scheme is similar to the local

heuristic employed in [13].
We will show that the history-based strategy is more flexible with respect to

the required precision and aggregation size. Our experiments confirm that, while
based on error bounds that over-estimate the actual empirical error incurred in
the aggregation, the history-based strategy tends to outperform the more intu-
itive and easier local strategy, with respect to key performance metrics affecting
the practical use of the adaptive aggregation. This shows that the computed
errors not only serve as a means to certify the accuracy of approximation, but
can also be used to effectively drive the aggregation procedure. In particular,
the metrics we are interested in are: (1) the value of avg representing the state-
space reduction; (2) the accuracy of the empirical results of the abstract model;
(3) the total number of re-clusterings; and (4) the actual value of the error
bounds (compared to the empirical errors).

The number of re-clusterings (denoted by q) is crucial for the performance
of the overall scheme, since each re-clustering requires O(|S| + |P |) steps, which
is similar to performing a few uniformisation steps for the concrete model. As
such, the number of re-clusterings should be significantly smaller than the total
number of uniformisation steps. Therefore, in our experiments we use thresholds
that favour fewer re-clusterings over coarser abstractions. Finally, note that the
adaptive aggregation scheme can be combined with the adaptive uniformisation
step as well as with dynamic state-space truncation [9,23,30], which updates
the uniformisation constant λ for different time intervals, thus decreasing the
number of overall uniformisation steps N .

Illustrative Example. We resort to a two-dimensional discrete Lotka-Volterra
“predator-prey” model [15] to illustrate the history-dependent aggregation strat-
egy. The maximal population of each species is bounded by 2000, thus the con-
crete model has 4M states. The initial population is set to 200 predators and
400 preys.

Adaptive Aggregation of Markov Chains: Quantitative Analysis 207

Figure 1 displays the outcome of the adaptive procedure (top row) at three
distinct time steps and (bottom row) the current probability distribution of
the concrete model. For ease of visualisation, the top plots display for each
point of the concrete model the size of its corresponding cluster, where we have
limited the maximal size to 100 states. Note the close correspondence between
the error bounds and the computed empirical errors, and the limited number of
re-clusterings needed (one in about 200 uniformisation steps). Observe that the
single-state clusters (red colour in the plots) tend to collect where the current
probability distribution peaks. The figure also illustrates a memory effect due to
the history-dependent error bounds employed by the aggregation.

Fig. 1. Transient analysis of the Lotka-Volterra model using history-based adaptive
aggregation.

5 Experimental Evaluation on Two Case Studies

We have developed a prototype implementation of the adaptive aggregation for
the quantitative analysis of chemical reaction networks modelled in PRISM [20].
We have evaluated the scheme on two case studies in comparison with FAU [9] as
implemented in the explicit engine of PRISM. In order to ensure comparability
between the two schemes, which employ different data structures, rather than
measuring execution time we have focused on assessing performance based on
measures that are independent of implementation, and specifically focused on
the metrics (1)–(4) introduced in Sect. 4 (model reduction, empirical accuracy,
number of re-clusterings, and formal error bounds). For the same reason, we have
not incorporated heuristics such as varying the maximal cluster size, optimally
selecting error thresholds, or use of advanced clustering methods, which can be
employed to further optimise the adaptive scheme.

We run all experiments on a MackBook Air
TM

with 1.8GHz Intel Core i5
and 4 GB 1600 MHz RAM. As expected, for comparable state space reductions

208 A. Abate et al.

(value avg), FAU can be faster but in the same order of magnitude as our
prototype, due to the overhead of clustering and adaptive uniformisation not
being fully integrated in our implementation.

Recall that FAU eliminates states with incoming probability lower than a
defined threshold, and as such leads to an under-approximation of the concrete
probability distribution with no tailored error bounds: all we can say is that,
point-wise, the concrete transient probability distribution resides between this
under-approximation and a value obtained by adding the total probability lost,
and similarly for the invariance likelihood.

Two-Component Signalling Pathway. [7] has analysed the robustness of the
output signal of an input-output signal response mechanisms introduced in [28].
It is a two-component signalling pathway including the histidine kinase H, the
response regulator R, and their phosphorylated forms (Hp and Rp). In order
to ensure a feasible analysis, [7] has limited the state space by bounding the
total populations over the intervals 25 ≤ H + Hp ≤ 35 and 25 ≤ R + Rp ≤ 35
(dimensionless quantities). Since this truncation has a significant impact on the
distribution of variable Rp (representing the output signal), in this work we
consider less conservative (but computationally more expensive) bounds and
employ the adaptive aggregation scheme, which allows for a reduction in the
size of the model while quantifying the precision of approximation by means of
the derived error bounds.

We first evaluate the adaptive aggregation scheme over the verification of
an invariant property with associated small likelihood: in this scenario dynamic
truncation techniques such as FAU provide insufficient approximation precision.
We compute the probability that the population of Rp stays below the level
15 for t = 5 s (a relevant time window due to the fast-scale phosphorylation).
The results for the new, less restrictive population bounds [5, 55] are reported
in Fig. 2. We present empirical satisfaction probabilities (“Empirical”) and their
formal bounds (“Bound”) computed using Proposition 3 for the adaptive aggre-
gation scheme, and lower bounds and probability lost for the FAU algorithm. For
both schemes we report the obtained state-space size avg. We can observe a clear

Adaptive aggregation
Strategy avg Empirical Bound Re-clust.
Local 1 62K 9.55E-12 2.34E-8 65
Local 2 93K 6.32E-13 4.43E-10 81
Local 3 115K 4.54E-14 2.39E-11 97
History 1 54K 5.08E-16 4.68E-11 37
History 2 66K 4.71E-16 4.60E-12 19
History 3 90K 2.20E-16 4.26E-14 20

Fast adaptive uniformisation
Threshold avg Lower Prob. lost
1E-10 15K 0.0 2.68E-5
1E-12 25K 0.0 1.98E-6
1E-15 44K 0.0 1.20E-6
1E-20 91K 0.0 1.00E-6
1E-25 160K 2.12E-17 1.80E-6
1E-30 242K 2.15E-17 1.94E-6

Fig. 2. Statistics for the invariant property. Population bounds [5,55]: 1.2M states
(less than those in Fig. 3 due to the property of interest), 16489 steps. The satisfaction
probability of the property for the concrete model is equal to 2.15E-17.

Adaptive Aggregation of Markov Chains: Quantitative Analysis 209

relationship between the state-space reduction and the precision of the analysis.
For adaptive aggregations, the parametrisation of each strategy is denoted by
an index (1, 2, 3) representing the thresholds affecting the precision. Note that
the parameterization for the history-based aggregation, in contrast to the local
strategy, allows us to obtain the user-defined precision (e.g. in this experiment
for the history-dependent strategy index 1 denotes a restriction of the bounds
to 5E-11, whereas 2 to 5E-12, and 3 to 5E-14), since the aggregation employs
exactly the errors. The results also demonstrate that the history-based strategy
significantly outperforms the local strategy in all four key performance metrics.

Since the invariant property is associated with a small probability, we require
accurate error bounds. The data in Fig. 2 shows that, for upper bounds of the
adaptive scheme that are at least 5 orders of magnitude better compared to those
from FAU, the adaptive aggregation method provides more than a twenty-fold
reduction with respect to the size of the concrete model, and about a three-fold
improvement with respect to the compression obtained via FAU. The results also
demonstrate that different parameterisations of the aggregation strategy allow us
to control the bounds, and via the bounds also to improve the empirical results
(which confirms the usefulness of the derived bounds). However, decreasing the
truncation threshold of FAU only improves the lower bounds (from 0.0 to 2.15E-
17), but the probability lost is not considerably improved (it is even slightly
worse for the very small thresholds, probably due to rounding errors). Notice
that, whilst the global errors are still much more conservative, FAU provides
better state-space reduction when a lower bound around 2.15E-17 (which is very
close to the true probability) is required for the adaptive scheme.

Population

[25, 35]

[5, 55]

Adaptive aggregation
Strategy avg Empirical Bound Re-clust.
History 1 70K 1.83E-4 2.56E-2 16
History 2 88K 2.69E-6 2.95E-4 17

History 1 453K 2.54E-4 4.73E-2 16
History 2 515K 4.16E-6 5.31E-4 24

Fast adaptive uniformisation
Threshold avg Prob. lost
1E-10 72K 1.26E-3
1E-14 105K 1.98E-6

1E-10 132K 1.65E-3
1E-18 493K 1.96E-6

Fig. 3. Statistics for the L1 norm of the error. Population bounds [25,35]: 116K states,
6924 uniformisation steps. Population bounds [5,55]: 2.5M states, 16489 uniformisation
steps.

Next, we employ this example to compare the computation of the L1 norm of
the probability distribution at time t = 5 s. The table in Fig. 3 depicts the results
for the L1 norm over the whole state space, whereas the table in Fig. 4 depicts
the results for the L1 norm over a certain subset of interest. The formal bounds
for the adaptive scheme (column “Empirical” in Fig. 3) have been computed
using Proposition 2, whilst the corresponding bounds for Fig. 4 (middle part)
have been obtained as the sum of the point-wise errors, defined in Proposition 1,
over the subset of interest. The upper part of the tables corresponds to the

210 A. Abate et al.

Pop.

[25, 35]

[5, 55]

Adaptive aggregation
Strategy avg Empirical Bound Re-clust.
Hist. 1 71K 2.92E-8 4.89E-4 18
Hist. 2 86K 5.80E-10 3.83E-6 8

Hist. 1 354K 2.79E-6 1.75E-3 13
Hist. 2 430K 1.10E-8 1.67E-5 19

Fast adaptive uniformisation
Threshold avg Empirical Bound
1E-12 93K 1.77E-9 2.18E-1
1E-14 105K 2.04E-11 2.77E-2

1E-16 388K 7.12E-13 6.02E-1
1E-20 597K 2.68E-14 5.71E-1

Fig. 4. Statistics for the L1 norm of the error computed over a set, characterised by
the population of at least one species that is equal to 0. Population bounds [25,35]:
116K states, 6924 uniformisation steps - the set has 14 K states and the probability
distribution within the set at time t = 5 is equal to 1.31E-8. Population bounds [5,55]:
2.5M states, 16489 uniformisation steps - the set has 307 K states and the probability
distribution within the set at time t = 5 is equal to 1.36E-8.

population bounds [25, 35] (as in [7]), whereas the lower part to the less restrictive
bounds [5, 55]. Compared to the local strategy, the history-based aggregation
again provides better performance, namely it requires significantly (up to ten-
times) smaller numbers of re-clusterings (“Re-clust.”): we thus present the results
only for the history-dependent strategy. We ensure the comparability of the two
outcomes by empirically selecting the threshold for FAU to obtain a truncated
model of size (avg) similar to that resulting from our technique. Note that, in
the case of the L1 norm over the state space, the probability lost reported by
FAU provides the safe bound on the L1 norm and is equal to the empirical error
between the concrete and truncated probability distributions. However, in the
case of the L1 norm over a general subset of the state space the probability
lost has to be multiplied by the cardinality of the subset to obtain the correct
formal bounds. Such bounds are reported in Fig. 4 (right part) as “Bound,”
whereas the empirical error between the distribution over the subset is depicted
as “Empirical”.

Summarising Figs. 3 and 4, when requiring a tight bound for the smaller state
space (population [25, 35]), either approach does not lead to more than a two-fold
reduction in the size of the space. This suggests a limit on the possible state-space
reduction resulting from the model dynamics. However, for the larger model
(population [5, 55]), up to a seven-fold reduction can be obtained using adaptive
aggregation. We can see that FAU outperforms the adaptive aggregation scheme
in the case of the L1 norm error over the whole state space (where it leads to a
nineteen-fold reduction) but, in contrast to our approach, is not able to provide
useful bounds for a general L1 norm (especially for the larger model).

Prokaryotic Gene Expression. The second case study deals with a more
complex model for prokaryotic gene expression. The chemical reaction model
has been introduced in [19] and includes 12 species and 11 reactions. We bound
the maximal population of particular species (left column in Fig. 5) to obtain
a finite and tractable state space. We focus our experiments exclusively on the
history-dependent aggregation scheme.

Adaptive Aggregation of Markov Chains: Quantitative Analysis 211

Max
pop.

10

20

Adaptive aggregation
Strategy avg Empirical Bound Re-clust.
Hist. 1 127K 6.36E-7 1.77E-4 35
Hist. 2 207K 2.94E-9 3.77E-7 37

Hist. 1 287K 7.38E-6 2.83E-4 56
Hist. 2 428K 2.56E-8 4.26E-7 59

Fast adaptive uniformisation
Threshold avg Empirical Bound
1E-12 141K 2.55E-7 1.00E+0
1E-20 386K 7.24E-9 8.05E-1

1E-12 176K 1.49E-6 1.00E+0
1E-20 628K 3.35E-8 1.00E+0

Fig. 5. Statistics for the L1 norm of the error restricted to a set of interest, a strict
subset of the state space. Maximal population 10: 1.2M states, 33162 uniformisation
steps - the set has 516 K states and the probability distribution within the set at time
t = 1000 is equal to 5.84E-3. Maximal population 20: 4.4M states, 53988 uniformisation
steps - the set has 1.8M states and the probability distribution within the set at time
t = 1000 is equal to 2.21E-2.

In contrast with the previous case study that focused on events with very
small likelihood, we now discuss results for events with non-negligible likelihood.
Figure 5 reports basic statistics on the computation of the L1 norm over a certain
subset of the state space at time t = 1000 s. Providing useful error bounds on the
L1 norm (computed from the point-wise errors in Proposition 1), the adaptive
aggregation leads to almost a ten-fold state space reduction for the smaller model
(1.2M vs 127K) and a fifteen-fold reduction for the larger model (4.4M vs 287K).
Due to the large cardinality of the subset of interest, FAU fails to provide any
informative formal bounds. Note that in this case study the adaptive aggregation
scheme also provides better empirical bounds than FAU.

Finally, we have evaluated both approaches on an invariant property (the
population of a species stays below the level 10, for 1000 s) with a significant
satisfaction probability (more than 15% and 20% on the small and large model,
respectively). We observe that this choice is favourable to FAU, since for invariant
properties with high likelihood the state space truncated via FAU is aligned with
the property of interest, and thus the lost probability mass is slightly smaller
than the error introduced by the state-space aggregations. In this scenario FAU
yields better reductions than the adaptive aggregation scheme (especially for the
larger model), while providing similar error bounds, since it is able to successfully
identify the relevant part of the state space. This scenario advantageous to FAU
is in contrast to that discussed in Fig. 2, as well as to the general case where for
an arbitrary model it is not known how the probability mass is distributed in
relation to the states satisfying the property of interest.

6 Conclusions

We have proposed a novel adaptive aggregation algorithm for approximating
the probability of an event in a Markov chain with rigorous precision guaran-
tees. Our approach provides error bounds that are in general orders of magnitude
more accurate compared to those from fast adaptive uniformisation, and signif-
icantly decreases the size of models without performance degradation. This has

212 A. Abate et al.

allowed us to efficiently analyse larger and more complex models. Future work
will include effective combinations of the adaptive aggregation with robustness
analysis and parameter synthesis. We also plan to apply our approach to the ver-
ification and performance analysis of complex safety-critical computer systems,
where precision guarantees play a key role.

References

1. Abate, A., Katoen, J.-P., Lygeros, J., Prandini, M.: Approximate model checking
of stochastic hybrid systems. Eur. J. Control 16, 624–641 (2010)

2. Abate, A., Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic model checking
of labelled Markov processes via finite approximate bisimulations. In: van Breugel,
F., Kashefi, E., Palamidessi, C., Rutten, J. (eds.) Horizons of the Mind. LNCS,
vol. 8464, pp. 40–58. Springer, Heidelberg (2014)

3. Angius, A., Horváth, A., Wolf, V.: Quasi Product form approximation for markov
models of reaction networks. In: Priami, C., Petre, I., de Vink, E. (eds.) Trans-
actions on Computational Systems Biology XIV. LNCS, vol. 7625, pp. 26–52.
Springer, Heidelberg (2012)

4. Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

5. Bortolussi, L., Hillston, J.: Fluid model checking. In: Koutny, M., Ulidowski, I.
(eds.) CONCUR 2012. LNCS, vol. 7454, pp. 333–347. Springer, Heidelberg (2012)

6. Buchholz, P.: Exact performance equivalence: an equivalence relation for stochastic
automata. Theor. Comput. Sci. 215(1–2), 263–287 (1999)

7. Česka, M., Šafránek, D., Dražan, S., Brim, L.: Robustness analysis of stochastic
biochemical systems. PloS One 9(4), e94553 (2014)

8. Chen, T., Kiefer, S.: On the total variation distance of labelled Markov chains. In:
Computer Science Logic (CSL) and Logic in Computer Science (LICS) (2014)

9. Dannenberg, F., Hahn, E.M., Kwiatkowska, M.: Computing cumulative rewards
using fast adaptive uniformisation. ACM Trans. Model. Comput. Simul. Spec. Issue
Comput. Methods Syst. Biol. (CMSB) 25, 9 (2015)

10. Desharnais, J., Laviolette, F., Tracol, M.: Approximate analysis of probabilistic
processes: logic, simulation and games. In: Quantitative Evaluation of SysTems
(QEST), pp. 264–273 (2008)

11. D’Innocenzo, A., Abate, A., Katoen, J.-P.: Robust PCTL model checking. In:
Hybrid Systems: Computation and Control (HSCC), pp. 275–285. ACM (2012)

12. Engblom, S.: Computing the moments of high dimensional solutions of the master
equation. Appl. Math. Comput. 180(2), 498–515 (2006)

13. Ferm, L., Lötstedt, P.: Adaptive solution of the master equation in low dimensions.
Appl. Numer. Math. 59(1), 187–204 (2009)

14. Fox, B.L., Glynn, P.W.: Computing poisson probabilities. Commun. ACM 31(4),
440–445 (1988)

15. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem. 81(25), 2340–2381 (1977)

16. Hasenauer, J., Wolf, V., Kazeroonian, A., Theis, F.: Method of conditional
moments (MCM) for the chemical master equation. J. Math. Biol. 69(3), 687–
735 (2014)

17. Hegland, M., Burden, C., Santoso, L., MacNamara, S., Booth, H.: A solver for the
stochastic master equation applied to gene regulatory networks. J. Comput. Appl.
Math. 205(2), 708–724 (2007)

Adaptive Aggregation of Markov Chains: Quantitative Analysis 213

18. Henzinger, T.A., Mateescu, M., Wolf, V.: Sliding window abstraction for infinite
Markov chains. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643,
pp. 337–352. Springer, Heidelberg (2009)

19. Kierzek, A.M., Zaim, J., Zielenkiewicz, P.: The effect of transcription and transla-
tion initiation frequencies on the stochastic fluctuations in prokaryotic gene expres-
sion. J. Biol. Chem. 276(11), 8165–8172 (2001)

20. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011)

21. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput.
94(1), 1–28 (1991)

22. Madsen, C., Myers, C., Roehner, N., Winstead, C., Zhang, Z.: Utilizing stochas-
tic model checking to analyze genetic circuits. In: Computational Intelligence in
Bioinformatics and Computational Biology (CIBCB), pp. 379–386. IEEE Com-
puter Society (2012)

23. Mateescu, M., Wolf, V., Didier, F., Henzinger, T.A.: Fast adaptive uniformization
of the chemical master equation. IET Syst. Biol. 4(6), 441–452 (2010)

24. Munsky, B., Khammash, M.: The finite state projection algorithm for the solution
of the chemical master equation. J. Chem. Phys. 124, 044104 (2006)

25. Sidje, R., Stewart, W.: A numerical study of large sparse matrix exponentials
arising in Markov chains. Comput. Stat. Data Anal. 29(3), 345–368 (1999)

26. Soudjani, S.E.Z., Abate, A.: Adaptive and sequential gridding procedures for the
abstraction and verification of stochastic processes. SIAM J. Appl. Dyn. Syst.
12(2), 921–956 (2013)

27. Esmaeil Zadeh Soudjani, S., Abate, A.: Precise approximations of the probability
distribution of a markov process in time: an application to probabilistic invariance.
In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413,
pp. 547–561. Springer, Heidelberg (2014)

28. Steuer, R., Waldherr, S., Sourjik, V., Kollmann, M.: Robust signal processing in
living cells. PLoS Comput. Biol. 7(11), e1002218 (2011)

29. Tkachev, I., Abate, A.: On approximation metrics for linear temporal model-
checking of stochastic systems. In: Hybrid Systems: Computation and Control
(HSCC), pp. 193–202. ACM (2014)

30. van Moorsel, A.P., Sanders, W.H.: Adaptive uniformization. Stoch. Models 10(3),
619–647 (1994)

31. Zhang, J., Watson, L.T., Cao, Y.: Adaptive aggregation method for the chemical
master equation. Int. J. Comput. Biol. Drug Des. 2(2), 134–148 (2009)

PROPhESY: A PRObabilistic ParamEter
SYnthesis Tool

Christian Dehnert(B), Sebastian Junges, Nils Jansen, Florian Corzilius,
Matthias Volk, Harold Bruintjes, Joost-Pieter Katoen, and Erika Ábrahám

RWTH Aachen University, Aachen, Germany
dehnert@cs.rwth-aachen.de

Abstract. We present PROPhESY, a tool for analyzing parametric
Markov chains (MCs). It can compute a rational function (i.e., a frac-
tion of two polynomials in the model parameters) for reachability and
expected reward objectives. Our tool outperforms state-of-the-art tools
and supports the novel feature of conditional probabilities. PROPhESY
supports incremental automatic parameter synthesis (using SMT tech-
niques) to determine “safe” and “unsafe” regions of the parameter space.
All values in these regions give rise to instantiated MCs satisfying or
violating the (conditional) probability or expected reward objective.
PROPhESY features a web front-end supporting visualization and user-
guided parameter synthesis. Experimental results show that PROPhESY
scales to MCs with millions of states and several parameters.

1 Introduction

The mainstream model-checking methods so far focus on safety (is a “bad” state
reachable?) and liveness (is some progress made?) properties. For applications in
which randomization and uncertainty play an important role, probabilistic prop-
erties are of prime importance. These applications include randomized distrib-
uted algorithms (where randomization breaks the symmetry between processes),
security (e.g., key generation at encryption), systems biology (where species
randomly react depending on their concentration), embedded systems (inter-
acting with unknown and varying environments), and so forth. For instance,
the crowds protocol [1] employs random routing to ensure anonymity. Nodes
randomly choose to deliver a packet or to route it to another randomly picked
node. In the presence of “bad” nodes that eavesdrop, we could be interested in
analyzing probabilistic safety properties such as “the probability of a bad node
identifying the sender’s identity is less than 5%”.

This has led to the development of different automata- and tableau-based
probabilistic model-checking techniques to prove model properties specified by,
e.g., probabilistic ω-regular languages or probabilistic branching-time logics
such as pCTL and pCTL∗. Probabilistic model checking is applicable to a

This work was supported by the Excellence Initiative of the German federal and
state government and the EU FP7 projects SENSATION and CARP.

c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 214–231, 2015.
DOI: 10.1007/978-3-319-21690-4 13

PROPhESY: A PRObabilistic ParamEter SYnthesis Tool 215

plethora of probabilistic models, ranging from discrete-time Markov chains to
continuous-time Markov decision processes and probabilistic timed automata,
possibly extended with notions of resource consumption (such as memory foot-
print and energy usage) using rewards (or prices). PRISM [2], MRMC [3], CADP [4]
and iscasMc [5] are mature probabilistic model checkers and have been applied
successfully to a wide range of benchmarks. Recently, Alur et al. [6] identified
probabilistic model checking as a promising new direction as it establishes cor-
rectness and evaluates performance aspects; see also [7].

Model Checking

Rational Function

Sampling
GUI

- Plot of Regions
- User-defined Regions

Automatic Regions SMT Solver

pMC M (Parametric)
PRISM Model

Property

List of Safe/Un-
safe Regions

Fig. 1. The verification process of PROPhESY.

A major practical obstacle is that probabilistic model-checking techniques
and tools work under the assumption that all probabilities in models are a priori
known. However, at early development stages, certain system quantities such as
faultiness, reliability, reaction rates, packet loss ratios, etc. are often not—or at
the best partially—known. In such cases, parametric probabilistic models can be
used for specification, where transition probabilities are specified as arithmetic
expressions using real-valued parameters. In addition to checking instantiated
models for fixed parameter values, the important problem of parameter synthe-
sis arises, posing the question which parameter values lead to the satisfaction of
certain properties of interest. For the crowds protocol it is of interest to establish
for which routing probabilities the sender’s identity can be revealed in at most
5 % of all protocol runs. Similar questions arise in systems biology when deter-
mining the concentration of species such that, e.g., catalytic reactions diminish
other species within a given time frame with high likelihood. Parametric mod-
els are also quite natural in adaptive software where “continuous” verification
frequently amends system models during deployment [8] as well as in model
repair [9], where probabilities are tuned so as to satisfy a desired property. There

216 C. Dehnert et al.

is little work done on model checking of parametric probabilistic models, with
the notable exception of the PARAM tool [10] and recently also PRISM [2].

This paper presents the tool PROPhESY for the analysis of parametric
(discrete-time) Markov chains (pMCs). Inputs are a pMC (specified in the input
language of PRISM) together with a requirement imposing an upper bound on
the measure-of-interest, see Fig. 1 depicting the workflow of the tool. Transitions
in pMCs are labelled with rational functions, i.e., fractions of polynomials over
a set of parameters. These measures are (conditional) reachability probabilities
or expected costs to reach target states. Once the state space of a pMC is gener-
ated, the focus is on determining parameter valuations meeting the requirement,
e.g., values for which (a) bad states can be reached in at most 1 % of all runs,
(b) the expected resource consumption to reach a successful state is within a
given budget, or (c) the conditional probability to reach a good state given that
eventually a terminating state is reached is above 99 %. To do so, PROPhESY
supports a palette of advanced techniques relying on computing and efficient
manipulation of rational functions and incremental synthesis techniques (á la
CEGAR).

In the next section, we will elaborate on PROPhESY’s features and summarize
the contributions. Section 3 lays the formal background needed for the algorithms
and techniques presented in Sect. 4. In Sect. 5 we explain details on implemen-
tation issues and give a thorough experimental evaluation. Finally, in Sects. 6
and 7 we discuss the related work and conclude.

2 Features and Contributions

In this overview on PROPhESY’s workflow and contributions we emphasize all
steps as depicted in Fig. 1.

The Core Engine. The core model-checking engine of the tool determines and
returns a rational function in terms of the parameters of the (conditional) reach-
ability probability or expected cost. Daws [11] showed that these rational func-
tions can be obtained using state elimination in the pMC, a technique similar to
reducing finite-state automata to regular expressions. This was implemented in
PARAM [10] and PRISM [2]. Note that finding the minimal-sized regular expression
for an automaton is NP-complete; the efficiency of the construction strongly
depends on the order in which states are eliminated [12]. We employ several
dedicated heuristics in our algorithms. New techniques exploit SCC decomposi-
tion for state elimination together with advanced gcd-computations on rational
functions [13].

Apart from the these techniques, the PROPhESY tool supports new algorithms
dedicated to determine conditional probabilities, which are introduced in this
paper. Conditional probabilities are central in—amongst others—the field of
Bayesian programming.

Parameter Synthesis. In general, to determine whether the given requirement
is met, one has to consider all possible parameter valuations. For a feasible and

PROPhESY: A PRObabilistic ParamEter SYnthesis Tool 217

usable approach, we aim for an (approximate) partitioning of the parameter
space into safe and unsafe regions. Each parameter instantiation within a safe
region satisfies the requirement under consideration. These parameter synthesis
problems are challenging and substantially more complex than verifying standard
MCs—just checking whether a pMC is realizable (having a parameter evaluation
inducing a well-defined MC) is exponential in the number of parameters [14].

Incremental Parameter Synthesis. Our approach to parameter synthesis can be
summarized as follows. After the model checking engine has computed a ratio-
nal function for the property at hand, the first step is to sample the rational
function up to a user-adjustable degree. This amounts to instantiating parame-
ter values (determined by dedicated heuristics) over the entire parameter space.
This yields a coarse approximation of parts of the solution space that are safe or
unsafe and can be viewed as an abstraction of the true partitioning into safe or
unsafe parts. The goal is now to divide the parameter space into regions which
are certified to be safe or unsafe. This is done in an iterative CEGAR-like fash-
ion [15]. First, a region candidate assumed to be safe or unsafe is automatically
generated. An SMT solver is then used to verify the assumption. In case it was
wrong, a counterexample in the form of a contradicting sample point is provided
along which the abstraction/sampling is refined, giving a finer abstraction of the
solution space. Using this, new region candidates are generated.

Sensitivity Analysis. In addition to determining whether a property is satisfied,
the robustness of selected parameters which are subject to perturbation is of
utter importance, see [16]. That is, for a region of the parameter space, one
wants to certify that changing parameter values within certain “robust” bounds
has limited impact on the investigated property. A sensitivity analysis for para-
meters leads to obtaining such bounds. As an initial approach, we benefit from
computing the rational function for the measure-of-interest where we simply
compute the derivative of this function.

Visualization. The PROPhESY tool includes a web front-end as part of a service-
oriented architecture for visualization as well as steering and guiding the ver-
ification process. Concretely, the sampling result and the final or intermediate
regions can be visualized in the GUI. The user has the possibility to change the
properties dynamically such that the sample points are updated. This offers a
direct help to find good parameter evaluations, akin to fitting [17]. Regions in
the form of convex polygons can be manually specified and again be verified by
an SMT solver. At all times, intermediate results can be used by the automatic
CEGAR-like synthesis procedure.

Contributions. The main contribution of this paper is a tool offering a palette
of analysis techniques for parametric Markov chains. It significantly extends the
efficiency, functionality, and analysis techniques of the currently available tools
that can handle parameters, PRISM [2] and PARAM [10]:

218 C. Dehnert et al.

– An efficient core engine based on a dedicated library for the costly arithmetic
operations yielding a substantial speed up and improved scalability;

– The first algorithmic approach for computing conditional probabilities over
parametric MCs. Its instantiation to ordinary (i.e., non-parametric) MCs is
orders of magnitudes faster than reported in [18];

– Incremental parameter synthesis (á la CEGAR) exploiting advanced SMT
techniques. For many benchmarks, over 90% of the solution space can be
split into safe and unsafe regions within a minute.

– Initial support for sensitivity and perturbation analysis;
– A user-friendly GUI based on an integrated web-server for guiding the syn-

thesis process.

3 Formal Foundations

In order for this paper to be self-contained, we briefly introduce the formal mod-
els and properties we consider. Let in the following V be a finite set of variables
over the domain R. A valuation for V is a function u : V → R. Following [19], we
use rational functions f = g1/g2 over V to describe parameterized probabilities,
where g1 and g2 are (multivariate) polynomials over V with rational coefficients.
Let QV be the set of all rational functions over V . The evaluation g(u) of a
polynomial g under u replaces each x ∈ V by u(x). For f = g1/g2 ∈ QV and
evaluation u with g2(u) �= 0 we define f(u) = g1(u)

g2(u) ∈ R.

Definition 1 (pMC). A parametric discrete-time Markov chain (pMC) is a
tuple M = (S, V , sI , P) with a finite set of states S, a finite set of parameters
V = {x1, . . . , xn} with domain R, an initial state sI ∈ S, and a parametric
transition probability matrix P : S×S → QV . M is called a discrete-time Markov
chain (MC) if P : S ×S → R. Together with a (state) reward function rew: S →
R≥0, a pMC is called a parametric Markov reward model.

For a pMC M = (S, V , sI , P), the underlying graph of M is GM = (S, E) with
E =

{
(s, s′) ∈ S ×S | P (s, s′) �≡ 0

}
. Successor or predecessor states of s ∈ S are

succ(s) = {s′ ∈ S | (s, s′) ∈ E} and pred(s) = {s′ ∈ S | (s′, s) ∈ E}. We define
P (s, S′) =

∑
s′∈S′ P (s, s′) and S′ = S \S′. State s is absorbing iff succ(s) = {s}.

A path of M is a non-empty sequence π = s0s1 . . . of states si ∈ S such that
P (si, si+1) > 0 for i > 0. A state s′ ∈ S is reachable from s ∈ S, written s � s′,
iff there is a path leading from s to s′. The property ♦T is overloaded to describe
the set of paths finally reaching a set of target states T ⊆ S starting from sI .

For a pMC M = (S, V , sI , P) and a valuation u : V → R of V , the instan-
tiated pMC under u is given by the tuple Mu = (S, sI , Pu) with Pu(s, s′) =
P (s, s′)(u) for all s, s′ ∈ S. A valuation u is well-defined for the pMC M iff
Pu(s, s′) ∈ [0, 1] with

∑
s′′∈S Pu(s, s′′) = 1 for all s, s′ ∈ S and GM = GMu

. M is
called realizable iff there is a well-defined valuation for M. We assume all pMCs
to be realizable. The instantiated pMC Mu induced by a well-defined valuation
u is an MC, enabling to use all definitions and concepts for mere MCs also for
pMCs.

PROPhESY: A PRObabilistic ParamEter SYnthesis Tool 219

Example 1. Consider the pMC M with parameters V = {p, q} depicted in
Fig. 2a on Page 8. The valuation u(p) = u(q) = 0.25 is well-defined, while
u(p) = u(q) = 0.5 would induce probabilities larger than 1.

A unique probability measure PrM on sets of paths is defined via the usual cylin-
der set construction, see [20]. For instance, PrM(♦T) describes the probability
of reaching T ⊆ S states from sI in M. For a set of stochastically independent
paths, the individual probabilities of these paths can be summed.

The conditional probability for two reachability objectives is given by

PrM(♦T | ♦C) =
PrM(♦T ∩ ♦C)

PrM(♦C)

for PrM(♦C) > 0. Considering a (parametric) Markov reward model, the reward
rew(s) is earned upon leaving s. The expected reward ExpRewM(♦T) is the
expected amount of reward that has been accumulated until a set of target
states T ⊆ S is reached when starting in the initial state sI . We often omit the
superscript M if it is clear from the context. For more details on probability
measures and the considered properties we refer to [20].

Finally, we give a formal definition the model checking problems for pMCs.

Definition 2 (Parametric Probabilistic Model Checking). For a pMC
M = (S, V , sI , P) the parametric probabilistic model checking problem is to
find either

– fr ∈ QV for PrM(♦T) with T ⊆ S,
– fc ∈ QV for PrM(♦T | ♦C) with T, C ⊆ S,
– or fe ∈ QV for ExpRewM(♦T) with T ⊆ S

such that for all well-defined valuations u, the instantiated rational function fr,
fc, or fe, and the instantiated pMC Mu it holds that:

fr
u = PrMu(♦T), fc

u = PrMu(♦T | ♦C), fe
u = ExpRewMu(♦T).

4 Supported Techniques

In this section we briefly recall incorporated methods introduced in former works
and explain new methods and concepts in detail.

4.1 Model Checking

We start by briefly explaining how model checking for a pMC M = (S, V , sI , P)
and the different properties as in Definition 2 is performed.

220 C. Dehnert et al.

Reachability Probabilities and Expected Rewards. Let T ⊆ S be a set of target
states and assume w. l. o. g. that all states in T are absorbing and that sI �∈ T .
Let us briefly recall the concept of the state elimination [11,19] used to compute a
rational function describing reachability probabilities (eliminate state in Algo-
rithm 1). The basic idea is to “bypass” a state s by removing it from the model
and increasing the probabilities P (s1, s2) of the transitions from each predeces-
sors s1 to each successors s2 by the probability of moving from s1 to s2 via s, pos-
sibly including a self-loop on s. Note that it is well possible to eliminate a single
transition (s1, s2) by only calling the function eliminate transition(P, s1, s2).

The state elimination approach can also be adapted to compute expected
rewards [19] for Markov reward models. When eliminating a state s, in addition
to adjusting the probabilities of the transitions from all predecessors s1 of s to
all successors s2 of s, it is also necessary to “summarize” the reward that would
have been gained from s1 to s2 via s.

Algorithm 1. State elimination for pMCs

eliminate state(P, s ∈ S not absorbing)
for each s1 ∈ pred (s), s1 �= s do

eliminate transition(P, s1, s)

eliminate transition(P, s1 ∈ pred (s), s ∈ S not absorbing)
if s1 �= s then

for each s2 ∈ succ(s), s �= s2 do

P (s1, s2) := P (s1, s2) + P (s1,s)·P (s,s2)
1−P (s,s)

P (s1, s) := 0
else

for each s2 ∈ succ(s), s �= s2 do

P (s, s2) := P (s,s2)
1−P (s,s)

P (s, s) := 0

Example 2. Consider again the pMC from Example 1. Assume, state s3 is
to be eliminated. The states that are relevant for this procedure are the
only predecessor s0 and the successors s0 and s5. Applying the function
eliminate state(P, s3) of Algorithm 1 yields the model in Fig. 2(b).

Conditional Probabilities. The probability PrM(♦T | ♦C) measures the reach-
ability of T ⊆ S given that C is reached. We assume sI �∈ T ∪ C, because
otherwise the result is the constant one function or coincides with the proba-
bility of reaching T , respectively. We assume w. l. o. g. all states in T ∩ C to be
absorbing.

We will now show how to compute this function using the elimination frame-
work. Let Srest = (T ∩C)\{sI }. Consider the path fragment in M as illustrated

PROPhESY: A PRObabilistic ParamEter SYnthesis Tool 221

Fig. 2. pMC model checking.

the upper part of Fig. 2(c). It finally reaches T (s4) after visiting C (s2) and
intermediately visits only Srest. By eliminating the transitions to and from the
intermediate states in Srest, we essentially summarize the probability of mov-
ing from sI to T ∩ C and from there on to T ; see the second path fragment in
Fig. 2(c). Therefore, the conditional probability from sI remains the same.

We use this key insight to convert the shape of M to the one depicted in
Fig. 2(d). First, we bypass all non-absorbing intermediate states via state elimi-
nation and keep only the states that are relevant for the conditional probability
and the absorbing states in Srest. Then, we eliminate backward transitions from
all states s targeting the initial state sI by applying eliminate transition from
Algorithm 1. It remains to eliminate transitions between states in T ∩ C as well
as transitions between states in T ∩ C. After this final step, the shape of the
resulting system is the one depicted in Fig. 2(d). Note that the abstract states
and transitions in this pMC correspond to sets of states and sets of transitions,
respectively. We are interested in computing the fraction

PrM(♦T ∩ ♦C)

PrM(♦C)
=: f1

f2
f1, f2 ∈ QV

For the sake of clarity, we label an (abstract) transition s → s′ with � if s′ ∈ T ,
and with � if s′ ∈ C. To this end, we notice that it suffices to consider path
fragments of length two, since we have either seen both � and � along such a
fragment (and it therefore contributes to f1 and f2), or we are in Srest. In the
latter case, we saw only � (contributing to f2), only �, or none of them and
there is no way of reaching any one of them in the future.

222 C. Dehnert et al.

The functions are computed as follows. f2 corresponds to the probability
mass of all paths along which � is seen. That is, we either (i) start with a �
and then see a �, (ii) directly see both a � and a �, or (iii) encounter only a
� along the first step. f1 corresponds to the probability mass of all paths along
which both � and � are seen. Such paths either (i) start with �, and require
a subsequent � (corresponding to the path from Fig. 2(c)), (ii) start with both� and �, or (iii) start with �, and require a subsequent �. This directly leads
to the following equation, where the three cases for f1 and f2 correspond to the
three summands in the numerator and denominator in the order from left to
right.

PrM(♦T ∩ ♦C)

PrM(♦C)
=

∑

t∈T∩C

P (sI , t) · P (t, C) +
∑

t∈T∩C

P (sI , t) +
∑

t∈T∩C

P (sI , t) · P (t, T)

∑

t∈T∩C

P (sI , t) · P (t, C) +
∑

t∈T∩C

P (sI , t) +
∑

t∈T∩C

P (sI , t)

The pseudo code of the elimination algorithm is given in Algorithm 2.

Algorithm 2. Computing conditional probabilities for pMCs

conditional(pMC M = (S, V , sI , P), T ⊆ S, C ⊆ S)
while ∃s ∈ (T ∩ C) \ {sI }, s not absorbing do

eliminate state(P, s)
for each s1 with P (s1, sI) > 0 do

eliminate transition(P, s1, sI)
while ∃s1, s2 ∈ (T ∩ C) or ∃s1, s2 ∈ (T ∩ C) with P (s1, s2) > 0 do

eliminate transition(P, s1, s2)
g1 :=

∑

t∈T∩C P (sI , t) · P (t, C) g2 :=
∑

t∈T∩C P (sI , t)
g3 :=

∑

t∈T∩C P (sI , t) · P (t, T) g4 :=
∑

t∈T∩C

P (sI , t)

return g1+g2+g3
g1+g2+g4

Theorem 1 (Correctness). For a given pMC M = (S, V , sI , P) and sets of
states T ⊆ S and C ⊆ S, the procedure conditional(M, T, C) computes the
rational function describing the conditional probability PrM(♦T | ♦C).

The proof relies on the fact that state elimination preserves reachability proba-
bilities [19]. As we obtain a structure as in Fig. 2, the summation over all path
fragments of length (at most) two that contribute to the conditioned probability
yields the same result as in the original system.

4.2 Parameter Synthesis

Instantiating the rational functions yields model checking probabilities for the
corresponding instantiated MCs. However, this only gives a very rough impres-
sion of the behavior of the pMC for different parameter values, which is unsat-
isfactory if one aims to certify expected behavior over a non-singular parameter

PROPhESY: A PRObabilistic ParamEter SYnthesis Tool 223

space. Instead we determine which parts of the parameter space give rise to a safe
system. As explained in Sect. 2, we do this in a CEGAR-like manner; consider
again Fig. 1. The underlying concepts are presented in the following.

We assume upper bounds1 λ ∈ [0, 1] for (conditional) reachability probabil-
ities and κ ∈ R≥0 for expected rewards. For all parameter valuations inside a
region the bound shall either be violated or met in the corresponding instantiated
MC. Typically, the parameter space consists of both safe and unsafe regions.

Formally, let a half-space for parameters V = {p1, . . . , pn} be given by the
linear inequality a1p1 + . . . + anpn ≤ b with a1, . . . , an, b ∈ Q. A region is a
convex polytope defined by m half-spaces, i. e., a system of linear inequalities
Ap ≤ b with A ∈ Q

m×n, p = (p1 . . . pn)T ∈ V n×1 and b ∈ Q
m×1. Assume a

rational function fr ∈ QV , fc ∈ QV , or fe ∈ QV according to Definition 2 to be
computed for a pMC M as explained in the previous section.

Definition 3 (Safe/Unsafe Region). A region is safe iff there is no valuation
u such that Au ≤ b with fr

u > λ, fc
u > λ, or fe

u > κ with λ ∈ [0, 1] and κ ∈ R≥0

where u = (u(p1) . . . u(pn))T . A region is unsafe iff there is no valuation such
that fr

u ≤ λ, fc
u ≤ λ, or fe

u ≤ κ. Otherwise, the region is called undetermined.

By safe, unsafe, or undetermined we also refer to the type of a region. Given a
region and a rational function together with a threshold, certifying the assumed
type boils down to checking satisfiability of a conjunction of

– linear inequalities encoding the candidate region,
– nonlinear inequalities ensuring well-definedness of valuations, and
– a nonlinear inequality stating that the bound is violated or satisfied,

using an SMT solver such as Z3 [21]. The solver can then determine whether there
exists a valuation inside the candidate region whose corresponding instantiated
MC exceeds the threshold on the probability or the expected reward. If so, we
obtain such a valuation from the solver and can conclude that the region is not
safe. The obtained valuation serves as a counterexample to this region candidate.

Fig. 3. Sampling and region analysis.

1 Note that all methods are equally well applicable to lower bounds.

224 C. Dehnert et al.

Sampling. As a guide for determining candidates for safe or unsafe regions, we
apply sampling w.r.t. the property. An initially coarse sampling is iteratively
refined by adding points based on the linear interpolation between samples from
a safe and an unsafe region. Sampling can either be performed by instantiating
a rational function describing these reachability probabilities or by instantiating
the pMC and performing (non-parametric) probabilistic model checking, e. g.,
via PRISM. The latter is faster for a moderate number of sample points because of
the costly computation of the rational function. However, the rational function
is needed for verifying the safety of a region as described above.

Figure 3(left) shows an example sampling of the Bounded Retransmission
Protocol (BRP) benchmark [22]. Red crosses indicate that λ is exceeded (i.e. the
instantiated pMC is unsafe) while green dots indicate a safe instantiation.

Finding Region Candidates. For the construction of region candidates based on
sample points, three methods are available. It is possible to generate half-spaces
separating safe from unsafe points, successively enlarge rectangles containing
only safe or only unsafe points, a technique that is commonly referred to as
growing rectangles, or recursively separate the search space in quadrants that
only contain either safe or unsafe points. In each iteration, the intermediate
regions are checked for either safety or unsafety, based on the information from
the sampling. The middle and right images in Fig. 3 show an example of region
generation in the BRP benchmark, based on the initial sampling in the first
figure. After 5 iterations, a large part of the solution space is already deter-
mined to be (un)safe. After 80 iterations, over 97% of the area was covered by
certified safe and unsafe regions, respectively. The remaining white space indi-
cates that not the whole parameter space could yet be categorized into safe or
unsafe points, but the approximation can be further refined in subsequent iter-
ations. Currently, only pMCs with at most two parameters are supported, but
all existing benchmark models satisfy this criterion. We plan to alleviate this
restriction by supporting multi-dimensional convex regions, which is a straight-
forward extension for the rectangle and quadrant approaches, but challenging
for the hyperplane approach.

Sensitivity Analysis. Besides analyzing in which regions the system behaves
correctly w. r. t. the specification, it is often desirable to perform a sensitivity
analysis [16], i. e., to determine in which regions of the parameter space a small
perturbation of the system leads to a relatively large change in the considered
measure. In our setting, such an analysis can be conducted with little additional
effort. Given a rational function for a measure of interest, its derivations w. r. t. all
parameters can be easily computed. Passing the derivations with user-specified
thresholds to the SMT solver then allows for finding parameter regions in which
the system behaves robustly. Adding the safety constraints described earlier, the
SMT solver can find regions that are both safe and robust.

PROPhESY: A PRObabilistic ParamEter SYnthesis Tool 225

5 Implementation and Experiments

The complete tool chain is available online2. We implemented the model check-
ing algorithms as described in Sect. 4 in the framework of a probabilistic model
checker that is a redevelopment of MRMC [3] in C++. As for PARAM and PRISM,
models are specified in a parametric version of PRISM’s input language. From
the model description, we construct the explicit transition matrix, which can
then be reduced w. r. t. both strong [23] and weak bisimulation [24] in order to
speed up the computation. As the state elimination process frequently deletes
old transitions and creates new ones, we chose not to represent the transition
matrix in the compressed row storage format [25], but rather implemented a
hybrid between a sparse and a dense representation that only stores non-zero
entries but does not store all rows consecutively in memory. Furthermore, for
the representation of rational functions, we employ the newly developed modular
arithmetic library CArL [26]. Since the simplification involves the costly compu-
tation of the greatest common divisor of polynomials, CArL tries to speed this up
by caching and refining a partial factorization of rational functions, optimizing
the ideas of [13].

The tool chain—integrating the model checking backend with the sampling
algorithms, region generation and the web service—is implemented in Python
using the SciPy packages [27] and the Shapely package. Currently supported
SMT-solvers are Z3 [21] and SMT-RAT [28]. They are interfaced via the standard
SMT-LIB format [29], in principle enabling to use all SMT solvers supporting non-
linear real arithmetic. Due to numerical instabilities when sampling the rational
function, we use exact arithmetics. As the performance of SciPy proved to be
insufficient in this regard, we use CArL as sampling backend.

Experimental Evaluation. We evaluated the performance of our model checking
backend on well-known benchmark models available on PRISM’s [30] and param’s
[31] website, respectively. We compared the running times of our tool with those
of PRISM and PARAM on reachability properties and expected reward properties.
We ran the experiments on an HP BL685C G7 machine with 48 cores clocked
with 2.0GHz each and possessing 192GB of RAM. However, we restricted the
available RAM to 12GB for all experiments. We briefly explain the benchmark
models, but refer to our website [32] for further details and a full list of bench-
mark results.

The first case study is the probabilistic Bounded Retransmission Protocol [22]
that tries to send a file via an unreliable network. This model has two parameters:
the reliability of each lossy channel. The Crowds Protocol [1] aims at anonymi-
zing the sender of a message by routing it probabilistically through a larger crowd
of communication parties. The parameters govern the probability that a message
is once more forwarded in the crowd as well as the probability that a member of
the crowd is not trustworthy. The Zeroconf Protocol [33] governs how hosts join-
ing a network are being assigned a network address by probabilistically choosing
2 http://moves.rwth-aachen.de/prophesy/.

http://moves.rwth-aachen.de/prophesy/

226 C. Dehnert et al.

one and then checking for possible collisions. This model is parametric in the
probability that a collision happens and the probability that this is successfully
detected. Probabilistic Contract Signing [34] tries to establish the commitment
of two parties to a contract where no one trusts each other. It does so by reveal-
ing secrets bit by bit with a certain probability that is the single parameter of
this model. Finally, NAND Multiplexing [35] describes fault-tolerant hardware
using unreliable hardware by having copies of a NAND unit all doing the same
job. Parameters are the probabilities of faultiness of the units and of erroneous
inputs.

Table 1 shows the runtimes (in seconds) of PRISM, PARAM and PROPhESY on the
selected benchmarks for different objectives where we chose the best-performing
settings for each tool and benchmark instance. These concrete settings are given
on our webpage to enable the reproducibility of our results. Note that to the
best of our knowledge, no symbolic representation of pMCs is available.

Table 1. Runtimes of model checking on different benchmark models.

PRISM PARAM PROPhESY

instance #states #trans verif. total verif. total verif. total

re
a
ch

a
b
il
it
y brp

(128, 5) 10376 13827 215 218 5 7 2 3
(256, 5) 20744 27651 1237 1242 32 33 8 10

crowds
(15, 5) 592060 1754860 TO TO 18∗ 48∗ 1 46
(20, 5) 2061951 7374951 TO TO 75∗ 194∗ 4 165

nand
(20, 2) 154942 239832 886 901 44 48 16 22
(20, 5) 384772 594792 TO TO 319 328 89 104

ex
p
.
re

w
a
rd

egl
(5, 4) 74750 75773 5 11 – – < 1 5
(8, 4) 7536638 7602173 543 910 – – 7 607

nand
(20, 2) 154942 239832 TO TO 264 2033 5 12
(20, 5) 384772 594792 TO TO TO TO 47 64

zconf
(10000) 10004 20005 TO TO TO∗ TO∗ 4 4
(100000) 100004 200005 TO TO TO∗ TO∗ 255 263

co
n
d
it

io
n
a
l

brp
(256, 2) 10757 13827 – – – – < 1 1
(256, 5) 20744 27651 – – – – 1 3

crowds
(15, 5) 592060 1754860 – – – – 5 50
(20, 5) 2061951 7374951 – – – – 14 174

PRISM Baier et al.[18] PROPhESY

instance #states #trans verif. total verif. total verif. total

co
n
d
it

io
n
a
l

brp
(256, 2) 10757 13827 6 10 13 16 < 1 < 1
(256, 5) 20744 27651 10 14 65 69 < 1 < 1
(256, 10) 37389 50691 16 20 325 328 < 1 1

crowds
(10, 5) 111294 261444 95 99 11 16 < 1 1
(15, 5) 592060 1754860 699 702 69 84 < 1 6
(20, 5) 2061951 7374951 TO TO 184 242 1 19

Besides the total time taken by the respective tool (columns “total”), we
list the verification time (columns “verif.”), i. e. the time needed to reduce the
model and compute the rational function. The total time also includes the time
needed to build the model. Each row of the table corresponds to one benchmark
instance. As we observed that PARAM produced wrong results on some case studies
when using specific settings, we list the times of the best setup that returned

PROPhESY: A PRObabilistic ParamEter SYnthesis Tool 227

the correct result and marked the entries with a little star. All experiments
marked with “TO” exceeded the time limit of one hour and the best total time
is boldfaced.

When computing the rational function representing the reachability proba-
bility, PROPhESY is faster than PARAM, whereas PRISM is significantly slower than
both its competitors. E. g. both PARAM and PROPhESY solve the larger crowds
instances within less than four minutes, while PRISM is unable to compute a
result within the time limit. Note that for the crowds case study, the raw veri-
fication times of PROPhESY are always strictly better than those of PARAM, even
though the total time is not (always), because PARAM employs an efficient model
building procedure that PROPhESY does not implement. Even without this tech-
nical advantage, PROPhESY beats PARAM on almost all instances. For the expected
reward benchmarks, we did not list the times for PARAM for the egl case study,
because the tool produced an incorrect rational function for the smaller instance
for all settings and was unable to build the model for the larger instance. Overall,
we observe that PROPhESY outperforms the other tools on all benchmark models.

The runtimes of PROPhESY on the case studies of the first “conditional”
section of the table illustrate that our elimination-based algorithm to compute
parametric conditional probabilities on pMCs is able to solve instances with mil-
lions of states and transitions. For instance, it takes only a few seconds longer
to compute the conditional probability rather than the reachability probability
on the largest crowds instance despite the more complicated objective.

Thanks to the authors of [18], we could compare the performance of our algo-
rithm for computing conditional probabilities on non-parametric models with
both (i) the “naive” quotient method available in PRISM and (ii) the prototyp-
ical implementation used in [18]. The second section “conditional” of Table 1
shows that we are able to compute the result at least one order of magnitude
faster than both PRISM and the prototypical tool of [18] for all benchmarks.

Fig. 4. The summarized results.

Figure 4 shows a scatter plot of all mere
verification times except for parametric con-
ditional probability. The data shows how
PROPhESY performs in comparison to the best
competitor on any given instance. All points
above the main diagonal indicate that our
tool could solve the instance faster than
the competitor, which is the case for all
larger benchmarks; above the dashed diago-
nal, PROPhESY is more than ten times faster.

Finally, recall Fig. 3 showing how growing
rectangles cover the parameter space start-
ing from a sampling. For a practical evalua-
tion, see Fig. 5 illustrating that large parts of
the solution space are covered quickly by the
growing rectangles or using quadrants, but covering more area is increasingly

228 C. Dehnert et al.

Fig. 5. Area of solution space covered.

costly. Moreover, it depends strongly on the benchmark which of the technique
performs best.

6 Related Work

Parameter synthesis for probabilistic models is a relatively new and challenging
field. Daws [11] proposed to represent reachability probabilities by means of ratio-
nal functions, which are obtained by state elimination (as for obtaining a regular
expression from automata). This technique has been improved by Hahn et al. [19]
bydirectly computing and simplifying intermediate functions, as amajor drawback
of these techniques is the rapid growth of functions. The simplification involves the
addition of functionswhere the costly operation of computing the greatest common
divisor (gcd) needs to be performed. Jansen et al. [13] further improved the state
elimination technique by combining it with SCC decomposition, and a dedicated
gcd-computation operating on partial factorizations of polynomials. State elimi-
nation is the core of the tool PARAM [10] and has recently been adopted in PRISM [2].
These are—to the best of our knowledge—the only available tools for computing
reachability probabilities and expected rewards of pMCs. Note that all these tools
just output the rational function—sometimes accompanied by constraints ensur-
ing well-definedness—while none of them directly addresses the synthesis problem.

Other works include parameter synthesis of timed reachability in parametric
CTMCs [36–38], synthesis for interval MCs and ω-regular properties [39].

Seshia et al. [40] investigate probabilities which are modeled as convex func-
tions over independent parameters. In model repair [9,41], models refuting a
given property are amended so as to satisfy this property. In this setting, para-
metric MCs are used as underlying model. The verification of MCs against
parametric LTL formulas has been considered in [42]. Improved methods for
single-parameter pMCs and nested reachability properties were presented in [43].
Finally, [16] presents several complexity results for perturbation analysis of
pMCs.

Computing conditional probabilities for MCs has been considered in [18,44].
Usually, conditional probabilities are computed by the so-called quotient method
involving verifying ω-regular properties. Baier et al. [18] presented an elegant

PROPhESY: A PRObabilistic ParamEter SYnthesis Tool 229

algorithm reducing the problem to compute reachability probabilities in the MC
and a copy of it and experimentally showed the superiority of this approach.

7 Conclusion and Future Work

We presented the new tool PROPhESY dedicated to parameter synthesis for pMCs.
Beyond the superior model checking times over existing tools, it offers automated
and user-guided methods for partitioning the parameter space into safe and
unsafe parts. The service oriented architecture and modularity allow for a high
usability. Future work will consider the extension to parametric Markov decision
processes as well as continuous-time MCs. A further important extension will be
parameter synthesis for a higher number of parameters.

Acknowledgements. We want to thank Ernst Moritz Hahn for valuable discussions
on computing conditional probabilities for parametric MCs.

References

1. Reiter, M.K., Rubin, A.D.: Crowds: anonymity for web transactions. ACM Trans.
Inf. Syst. Secur. 1(1), 66–92 (1998)

2. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011)

3. Katoen, J.P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins
and outs of the probabilistic model checker MRMC. Perform. Eval. 68(2), 90–104
(2011)

4. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. Softw. Tools Technol. Transf.
15(2), 89–107 (2013)

5. Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: iscasMc: a web-based prob-
abilistic model checker. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014.
LNCS, vol. 8442, pp. 312–317. Springer, Heidelberg (2014)

6. Alur, R., Henzinger, T.A., Vardi, M.: Theory in practice for system design and
verification. ACM SIGLOG News 2(1), 46–51 (2015)

7. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.P.: Performance evaluation
and model checking join forces. Commun. ACM 53(9), 76–85 (2010)

8. Calinescu, R., Ghezzi, C., Kwiatkowska, M.Z., Mirandola, R.: Self-adaptive soft-
ware needs quantitative verification at runtime. Commun. ACM 55(9), 69–77
(2012)

9. Bartocci, E., Grosu, R., Katsaros, P., Ramakrishnan, C.R., Smolka, S.A.: Model
repair for probabilistic systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS
2011. LNCS, vol. 6605, pp. 326–340. Springer, Heidelberg (2011)

10. Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: PARAM: a model checker for
parametric markov models. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 660–664. Springer, Heidelberg (2010)

11. Daws, C.: Symbolic and parametric model checking of discrete-time markov chains.
In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 280–294. Springer,
Heidelberg (2005)

230 C. Dehnert et al.

12. Gruber, H., Johannsen, J.: Optimal lower bounds on regular expression size using
communication complexity. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol.
4962, pp. 273–286. Springer, Heidelberg (2008)

13. Jansen, N., Corzilius, F., Volk, M., Wimmer, R., Ábrahám, E., Katoen, J.-P.,
Becker, B.: Accelerating parametric probabilistic verification. In: Norman, G.,
Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 404–420. Springer, Heidelberg
(2014)

14. Lanotte, R., Maggiolo-Schettini, A., Troina, A.: Parametric probabilistic transition
systems for system design and analysis. Form. Asp. Comput. 19(1), 93–109 (2007)

15. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

16. Chen, T., Feng, Y., Rosenblum, D.S., Su, G.: Perturbation analysis in verification
of discrete-time markov chains. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014.
LNCS, vol. 8704, pp. 218–233. Springer, Heidelberg (2014)

17. Su, G., Rosenblum, D.S.: Asymptotic bounds for quantitative verification of per-
turbed probabilistic systems. In: Groves, L., Sun, J. (eds.) ICFEM 2013. LNCS,
vol. 8144, pp. 297–312. Springer, Heidelberg (2013)

18. Baier, C., Klein, J., Klüppelholz, S., Märcker, S.: Computing conditional probabil-
ities in markovian models efficiently. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014 (ETAPS). LNCS, vol. 8413, pp. 515–530. Springer, Heidelberg (2014)

19. Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric
Markov models. Softw. Tools Technol. Transf. 13(1), 3–19 (2010)

20. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

21. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 339–354. Springer, Hei-
delberg (2012)

22. Helmink, L., Sellink, M., Vaandrager, F.: Proof-checking a data link protocol. In:
Barendregt, H., Nipkow, T. (eds.) TYPES 1993. LNCS, vol. 806, pp. 127–165.
Springer, Heidelberg (1994)

23. Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes.
In: Proceedings of LICS, pp. 266–277, IEEE CS (1991)

24. Baier, C., Hermanns, H.: Weak bisimulation for fully probabilistic processes. In:
Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 119–130. Springer, Heidelberg
(1997)

25. Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout,
V., Pozo, R., Romine, C., Der Vorst, H.V.: Templates for the Solution of Lin-
ear Systems: Building Blocks for Iterative Methods, 2nd edn. SIAM, Philadelphia
(1994)

26. CArL Website (2015). http://goo.gl/8QsVxv
27. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: open source scientific tools for

python (2001)
28. Corzilius, F., Loup, U., Junges, S., Ábrahám, E.: SMT-RAT: an SMT-compliant

nonlinear real arithmetic toolbox. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012.
LNCS, vol. 7317, pp. 442–448. Springer, Heidelberg (2012)

29. Barrett, C., Stump, A., Tinelli, C.: The satisfiability modulo theories library (SMT-
LIB) (2010). www.SMT-LIB.org

30. PRISM website (2015). http://prismmodelchecker.org
31. PARAM website (2015). http://depend.cs.uni-sb.de/tools/param/

http://goo.gl/8QsVxv
www.SMT-LIB.org
http://prismmodelchecker.org
http://depend.cs.uni-sb.de/tools/param/

PROPhESY: A PRObabilistic ParamEter SYnthesis Tool 231

32. Prophesy website (2015). http://moves.rwth-aachen.de/prophesy/
33. Bohnenkamp, H., Stok, P.V.D., Hermanns, H., Vaandrager, F.: Cost-optimization

of the IPv4 zeroconf protocol. In: Proceedings of DSN, pp. 531–540, IEEE CS
(2003)

34. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Commun. ACM 28(6), 637–647 (1985)

35. Han, J., Jonker, P.: A system architecture solution for unreliable nanoelectronic
devices. IEEE Trans. Nanotechnol. 1, 201–208 (2002)

36. Han, T., Katoen, J.P., Mereacre, A.: Approximate parameter synthesis for prob-
abilistic time-bounded reachability. In: Proceedings of RTSS, pp. 173–182, IEEE
CS (2008)

37. Brim, L., Češka, M., Dražan, S., Šafránek, D.: Exploring parameter space of sto-
chastic biochemical systems using quantitative model checking. In: Sharygina, N.,
Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 107–123. Springer, Heidelberg
(2013)

38. Češka, M., Dannenberg, F., Kwiatkowska, M., Paoletti, N.: Precise parameter syn-
thesis for stochastic biochemical systems. In: Mendes, P., Dada, J.O., Smallbone,
K. (eds.) CMSB 2014. LNCS, vol. 8859, pp. 86–98. Springer, Heidelberg (2014)

39. Benedikt, M., Lenhardt, R., Worrell, J.: LTL model checking of interval markov
chains. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS,
vol. 7795, pp. 32–46. Springer, Heidelberg (2013)

40. Puggelli, A., Li, W., Sangiovanni-Vincentelli, A.L., Seshia, S.A.: Polynomial-time
verification of PCTL properties of MDPs with convex uncertainties. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 527–542. Springer, Heidelberg
(2013)

41. Chen, T., Hahn, E.M., Han, T., Kwiatkowska, M., Qu, H., Zhang, L.: Model repair
for Markov decision processes. In: Proceedings of TASE, pp. 85–92, IEEE CS (2013)

42. Chakraborty, S., Katoen, J.-P.: Parametric LTL on markov chains. In: Diaz, J.,
Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS, vol. 8705, pp. 207–221. Springer,
Heidelberg (2014)

43. Su, G., Rosenblum, D.S.: Nested reachability approximation for discrete-time
markov chains with univariate parameters. In: Cassez, F., Raskin, J.-F. (eds.)
ATVA 2014. LNCS, vol. 8837, pp. 364–379. Springer, Heidelberg (2014)

44. Andrés, M.E., van Rossum, P.: Conditional probabilities over probabilistic and
nondeterministic systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008.
LNCS, vol. 4963, pp. 157–172. Springer, Heidelberg (2008)

http://moves.rwth-aachen.de/prophesy/

Software Analysis

Effective Search-Space Pruning for Solvers
of String Equations, Regular Expressions

and Length Constraints

Yunhui Zheng1(B), Vijay Ganesh2, Sanu Subramanian2,
Omer Tripp1, Julian Dolby1, and Xiangyu Zhang3

1 IBM T.J. Watson Research Center, Yorktown Heights, USA
zhengyu@us.ibm.com

2 University of Waterloo, Waterloo, Canada
3 Purdue University, West Lafayette, USA

Abstract. In recent years, string solvers have become an essential com-
ponent in many formal-verification, security-analysis and bug-finding
tools. Such solvers typically support a theory of string equations, the
length function as well as the regular-expression membership predicate.
These enable considerable expressive power, which comes at the cost of
slow solving time, and in some cases even nontermination. We present
two techniques, designed for word-based SMT string solvers, to mitigate
these problems: (i) sound and complete detection of overlapping vari-
ables, which is essential to avoiding common cases of nontermination;
and (ii) pruning of the search space via bi-directional integration between
the string and integer theories, enabling new cross-domain heuristics. We
have implemented both techniques atop the Z3-str solver, resulting in
a significantly more robust and efficient solver, dubbed Z3str2, for the
quantifier-free theory of string equations, the regular-expression member-
ship predicate and linear arithmetic over the length function. We report
on a series of experiments over four sets of challenging real-world bench-
marks, where we compared Z3str2 with five different string solvers: S3,
CVC4, Kaluza, PISA and Stranger. Each of these tools utilizes a differ-
ent solving strategy and/or string representation (based e.g. on words,
bit vectors or automata). The results point to the efficacy of our pro-
posed techniques, which yield dramatic performance improvement. We
argue that the techniques presented here are of broad applicability, and
can be integrated into other SMT-backed string solvers to improve their
performance.

1 Introduction

Reasoning over strings is gaining increasing importance due to the security
threats imposed by improper handling of untrusted string values [7,19,27]. In
response, different powerful string solvers have been developed, including, e.g.,
HAMPI [19], Kaluza [28], PISA [30], Stranger [32], CVC4 [22], S3 [31], Norn [6]
and Z3-str [35]. These tools primarily solve the satisfiability problem over string
c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 235–254, 2015.
DOI: 10.1007/978-3-319-21690-4 14

236 Y. Zheng et al.

(aka word) equations, with some of them also providing support for regular-
expression (RE) membership predicates and linear arithmetic over the length
function. While these tools have improved dramatically in recent years, the
demand for even more efficient solvers continues to grow unabated.

Motivated by this need for efficient string solvers, we present two new tech-
niques to solve combined string, regular-expression and integer constraints.
These techniques are applicable primarily to SMT solvers that treat strings with-
out abstractions or representation conversions, which we refer to collectively as
word-based string solvers. Examples of such solvers include the Z3-str, CVC4
and S3 string solvers.

For the sake of completeness, we compare and contrast our techniques against
solvers that use automata (e.g., PISA and Stranger) and bit-vector (e.g., Kaluza)
string representations. Word-based string solvers have several important advan-
tages: First, unlike bit-vector-based solvers, they can precisely model unbounded
strings and string equalities without over-approximation, a feature that is crucial
to string analysis of web applications. Second, by modeling strings and length
in native domains, word-based string solvers can leverage the state of the art
in integer constraint solving, and further enable hybrid techniques via power-
ful SMT engines. Finally, such solvers can take advantage of well-developed
application-specific rewrite rules.

At the same time, a fundamental problem of word-based string solvers (unlike
those based on bit vectors, which impose a finite domain) is that it is unclear,
at present, whether the satisfiability problem for the quantifier-free theory of
word equations, regular-expression membership predicate and length function is
decidable [24]. All current practical string solvers suffer from incompleteness and
nontermination. Addressing these problems is of primary importance, calling for
new techniques to effectively explore the solution space. In light of this motiva-
tion, we have developed two techniques that address the respective problems of
nontermination and search-space explosion.

First, a well-known reason for nontermination is overlapping variables
[6,11,35], as we illustrate with the equation a ·X = X ·b, where a, b are constant
strings and X is a string variable. Stated intuitively, the solution for X has to be
in the form of a ·X1 · b, where X1 is a string variable. The reduction step results
in a · X1 = X1 · b, which is in the same form as the original equation, and thus
leads to nontermination. However, this equation is obviously unsatisfiable. We
revisit this example in Sect. 3, which highlights the need for a robust procedure
to detect overlapping variables.

The second technique, given the tight interplay between string and integer val-
ues (in index-sensitive string operations), is bi-directional solver-level integration
between the string and integer theories. This can be leveraged to drastically reduce
the search space for typical constraints obtained from practical applications.

We have implemented both of these techniques atop the Z3-str solver as
the Z3str2 solver for the satisfiability problem over a quantifier-free theory of
word equations, regular-expression membership predicate as well as the length
function. We report on a comprehensive set of experiments that validate the

Effective Search-Space Pruning 237

efficacy of our proposed techniques by comparing Z3str2 with Kaluza, PISA,
Stranger, S3 and CVC4 over four sets of benchmarks derived from the real
world.1 We emphasize that our techniques are applicable also to other word-
based string solvers such as S3 and CVC4.

Contributions. To summarize, this paper makes the following principal
contributions:

1. Guided Search: We present two techniques designed for string solvers that
treat strings as primitive types. The first is a sound and complete method to
detect overlapping variables, which optimizes performance and avoids explo-
ration of certain paths that may lead to nontermination. The second technique
is a two-way integration between the string and integer theories, which enables
effective pruning based on cross-domain heuristics.

2. Z3-str Integration: We have integrated both of the aforementioned tech-
niques into the core solving algorithm of Z3-str. We describe the architecture of
the resulting tool, Z3str2, and prove its soundness.

3. Experimental Study: To validate the efficacy of our techniques, we have
conducted a comprehensive set of experiments where we compare Z3str2 against
five solvers — namely, S3, CVC4, Kaluza, PISA and Stranger — on four bench-
mark suites. The results show that Z3str2 is significantly faster than competing
solvers (often by orders of magnitude) in all but few cases.

1.1 Related Work

The theory considered in this paper – namely the quantifier-free (QF) theory
Twlr over word equations, membership predicate over REs, and length function –
is a multi-sorted theory with string (str) and numeric (num) sorts. Makanin was
the first to show, in 1977, that the QF theory of word equations is decidable [23].
Since, many have improved upon this seminal result [15,16,25,26,29]. In partic-
ular, Plandowski proved that this problem is in PSPACE [26]. Despite decades of
effort, the satisfiability problem for Twlr remains open [11,15,23,26]. Still, many
practical solvers have been proposed.

Automata-Based Solvers. Regular languages (or automata), as well as
context-free grammars (CFGs), can be used to represent strings and handling
regex-related operations. JSA [8] computes CFGs for string variables in Java
programs. Hooimeijer et al. [13] suggest an optimization whereby automata are
built lazily. A primary challenge faced by automata-based approaches, which
we do not suffer from, is to capture the connections between strings and other
domains, e.g., integers. To overcome this limitation, refinements have been pro-
posed. JST [12] extends JSA. It asserts length constraints in each automaton,
and handles numeric constraints after conversion. PISA [30] encodes Java pro-
grams into M2L formulas that it discharges to the MONA solver to obtain
1 The Z3str2 code, as well as the data pertaining to our experiments, are all available

at [1].

238 Y. Zheng et al.

path- and index-sensitive string approximations. PASS [20,21] combines
automata and parametrized arrays for efficient treatment of unsat cases. Stranger
is a powerful extension of string automata with arithmetic automata [32,33].

Bit-Vector Based Solvers. Another group of solvers converts string con-
straints to constraints into other domains such as integers or bit-vectors.
HAMPI [19] is an efficient solver that represents strings as bit-vectors, though
it requires the user to provide an upper bound on string lengths. Early versions
of Kaluza [28] extended both STP [10] and HAMPI to support mixed string
and numeric constraints represented as bit-vector. A similar approach powers
Pex [7], though strings are reduced to integer abstractions.

Word-Based String Solvers. CVC4 [22] handles constraints over the the-
ory of unbounded strings with length and RE membership. Solving is based
on multi-theory reasoning backed by the DPLL(T) architecture combined with
existing SMT theories. The Kleene star operator in RE formulas is dealt with
via unrolling as in Z3str2. S3 [31] is another word-based solver, and it can be
viewed as an extension of an early version of Z3-str. Roughly speaking, CVC4,
S3 and Z3str2 embody similar approaches, and hence CVC4 and S3 can also
benefit from the techniques proposed in this paper.

1.2 Formal Preliminaries

Syntax of Word Equations, RE Membership, and Length. We fix a dis-
joint two-sorted set of variables var = varstr ∪ varint; varstr consists of string
variables, denoted X,Y, S, . . . and varint consists of integer variables, denoted
m,n, We also fix a two-sorted set of constants Con = Constr ∪ Conint.
Moreover, Constr ⊂ Σ∗ for some finite alphabet, Σ, whose elements are denoted
f, g, Elements of Constr will be referred to as string constants or strings. Ele-
ments of Conint are nonnegative integers. The empty string is represented by ε,
and length 0. Terms may be string terms or integer terms. A string term is either
an element of varstr, an element of Constr, or a concatenation of string terms
(denoted by the function concat or interchangeably by ·). An integer term is an
element of varint, an element of Conint, the length function applied to a string
term, a constant integer multiple of a integer term, or a sum of integer terms. The
theory contains three types of atomic formulas, namely, word equations, length
constraints, and RE membership predicates. REs are defined inductively, where
constants and the empty string form the base case, and the operations of con-
catenation, alternation, and Kleene star are used to build up more complicated
expressions (see details in [14]). REs may not contain variables. Z3str2 supports
a list of common string-related operators such as charAt, containts, startswith,
endswith, indexof, lastindexof, substring and etc. They are desugared to word
equations with length functions. Formulas are defined inductively over atomic
formulas and are quantifier-free.

Semantics of Word Equations, RE Membership, and Length. For a
word, w, len(w) denotes the length of w. The universe of discourse for the str

Effective Search-Space Pruning 239

sort is the set of strings Σ∗, and for the int sort is the set of natural numbers.
For a word equation t1 = t2, we refer to t1 as the left hand side (LHS), and t2
as the right hand side (RHS). We fix a string alphabet, Σ. Given a formula θ,
an assignment for θ (with respect to Σ) is a map from the set of variables in θ
to Σ∗ ∪ N (where string variables are mapped to strings and integer variables
are mapped to numbers). Given such an assignment, θ can be interpreted as an
assertion about Σ∗ and N. If this assertion is true, then θ is satisfiable or SAT.
A formula with no satisfying assignment is unsatisfiable or UNSAT. Two
formulas θ, φ are equisatisfiable if θ is SAT iff φ is SAT. The satisfiability problem
for a set S of formulas is to decide whether any given formula in S is SAT or
not. The satisfiability problem for a set of formulas is decidable if there exists an
algorithm (or satisfiability procedure) that solves its satisfiability problem. Sat-
isfiability procedures must have three properties: soundness, completeness, and
termination. Soundness and completeness guarantee that the procedure returns
SAT if and only if the input formula is indeed SAT. More precisely, the proce-
dure is sound if the procedure says UNSAT then the input is indeed unsatisfiable.
Completeness is the converse of soundness.

2 Overview of the Design Z3str2 String Solver

The Z3str2 solver is essentially a string plug-in built into the Z3 SMT Solver [9],
with an efficient integration between the string plug-in and Z3’s integer solver.
As can be seen from the architectural schematic of the Z3str2 string solver given
in Fig. 1 (and an algorithmic description is given in Algorithm 1), the first step
is to purify the input into two, namely, string constraints (word equations and
RE membership) on the one hand, and integer linear arithmetic constraints over
the length function on the other. Next, the word equations and RE constraints
are input to the string plug-in. The plug-in may consult the Z3 core to detect
equivalent terms. The word equations are solved using an algorithm described
in detail in the Sect. 3 below. The RE constraints are solved by unrolling as
described also in Sect. 3. The length constraints are converted into a system of
pure integer linear arithmetic inequations and solved using Z3’s integer solver.
During the solving process, the string plug-in may generate length constraints
that are incrementally added on demand to Z3’s integer solver, that are regularly
checked for consistency with both the input length constraints and previously
added ones.

On any well-formed input as described in Sect. 1.2, Z3str2 may return SAT,
UNSAT or UNKNOWN. Note that while Z3str2 can handle a boolean combi-
nation of atomic formulas, we refer only to conjunction of literals in the rest of
paper without loss of generality. If either Z3’s integer solver or our string plug-
in determines that their respective purified inputs are UNSAT, Z3str2 reports
UNSAT. If the string plug-in detects that the input equations have complicated
overlaps that its heuristics cannot handle, it reports UNKNOWN. This is a
source of incompleteness in name’s implementation. Note that Z3str2, like other
competing solvers such as CVC4, is sound but not complete.

240 Y. Zheng et al.

Fig. 1. Architecture of Z3str2.

The third and only remaining possibility is that both Z3’s integer solver
and the string plug-in determine that their respective purified inputs are SAT.
However, this does not necessarily mean that the input is SAT. It could be
that the solution produced by the integer solver is inconsistent with the solution
produced by the string solver, or vice-versa. For example, the integer solver
may say that a particular string variable, say X, has length equal to 1, while
the string plug-in might produce a specific assignment for X that is of length
equal to 2. One way to overcome this problem is to iterate through all possible
solutions until a consistent one is found, assuming one exists. However, given
that the domain of strings and natural numbers is infinite, it is possible that
such an iterative procedure may loop forever in the event there are no consistent
solutions to be found. In other words, if the input is indeed SAT, the procedure
discussed here will correctly establish consistency and determine that the input
is SAT. Unfortunately, it is possible that, when the input is in fact UNSAT, both
the integer solver and string plug-in may determine that their respective purified
inputs are SAT and may then loop forever searching for a combined consistent
solution. They are obviously not going to find a combined consistent solution
in such cases given that the input is in fact UNSAT, and hence the iterative
procedure may not terminate.

The above-described problem of non-termination due to the interaction
between the integer and string parts of the theory is not specific to Z3str2.
In fact, the problem of deciding the satisfiability problem for the quantifier-free
theory of word equations and length function remains open after decades of
research and is a major open problem in mathematical logic [24]. In conclusion,
if Z3str2 reports that the input is UNSAT, then indeed the input is UNSAT
(soundness). However, the converse is not necessarily true, i.e., just like all other
competing practical solvers, Z3str2 is not complete.

3 Word Equation Sub-solver in Z3str2

In this section, we focus on the word equation solving component of Z3str2. Start-
ing with the work of Makanin [23], many decision procedures [15,26,29] have
been proposed. While most procedures are not accompanied by practical imple-
mentations, they are a rich source of ideas for all the solvers that have recently
been implemented. For example, the Z3str2 solver follows ideas, namely, bound-
ary labels, generalized word equations and arrangements (discussed in greater

Effective Search-Space Pruning 241

Algorithm 1. A high-level description of Z3str2’s Algorithm
Input: Word equations Qw, and the corresponding integer linear arithmetic constraints Ql over
the length function
Output: SAT / UNSAT / UNKNOWN

1: procedure solveStringConstraint(Qw, Ql)
2: if equations in Qw are all in solved form and Qw is UNSAT or Ql is UNSAT then
3: return UNSAT
4: if equations in Qw are all in solved form and Qw and Ql can be consistently determined as

SAT together then
5: return SAT
6: Convert Qw equisatisfiably in disjunctive normal form (DNF) formula Qa

7: for each disjunct D in Qa do
8: Convert each equation in D to an arrangement consistent with the length constraints from

the integer theory
9: for each string variable x do

10: Merge per-equation arrangements to a set of possible global arrangements, denoted as G(x)
11: Detect arrangements with overlaps in G(x)
12: if there is any overlap then
13: Prune the global arrangements with the overlap from G(x)

14: for each global arrangement combination selected from G(x), G(y)..., for all variables x,
y,... do

15: Split each variable to sub-variables according to the selected global arrangement
16: Convert Qw equisatisfiably to a system Q′

w of simpler equation based on the new variables
17: Q′

l is the corresponding new set of length constraints
18: r = solveStringConstraint(Q′

w,Q′
l)

19: if r ≡ SAT then
20: return SAT
21: if overlapping variables have ever been detected then
22: return UNKNOWN
23: else
24: return UNSAT

detail in Subsect. 4.1), that have their roots in the very first decision procedure
for word equations by Makanin.

The key technique used by Z3str2 to solve a word equation W is to recursively
convert W equisatisfiably into disjunction of conjunctions of simpler equations
we call arrangements. These arrangements are computed by aligning the concate-
nation function on the LHS and RHS of a given equation such that an occurrence
of concatenation function in the LHS (resp. RHS) may “split” or “cut” variables
on the RHS (resp. LHS).

As an illustration, consider the following formula composed of three equa-
tions: Z = X · Y ∧ Z = W · c ∧ c · Y = c · b · c, where X, Y , Z and W are
string variables, and b and c are characters. A simple rewriting is the following:

Z = X · Y =⇒ Z1 = X ∧ Z2 = Y [1.1]

Z = W · c =⇒ Z1 = W ∧ Z2 = c [1.2]

c · Y = c · b · c =⇒ Y = b · c [1.3]

Observe that Z is split into Z1 and Z2, which are constrained differently.
However, this rewriting is not satisfiable because Y = c from equations [1.1] and
[1.2], and Y = b·c from equation [1.3]. Now observe that the alignment described
above is not the only one we can consider. Below is a different alignment that
leads to a new splitting and in fact yields a satisfying assignment:

242 Y. Zheng et al.

Z = W · c =⇒ Z1 = W
[1.4]

1 ∧ Z2 = W2 · c [1.5]

The difference now is that W is also split (into W1 and W2), and hence this
splitting yields a satisfying assignment. In particular, from [1.1], [1.3] and [1.5],
we have W2 = b. Also note that X, Z1 and W1 become free variables as they are
all equivalent but not constrained by any other variable.

What the above example highlights is that there are many different align-
ments of variable boundaries in the LHS (resp. RHS) that can split variables
in the RHS (resp. LHS). We call every such alignment an arrangement. Here
is the crucial fact about word equations: every equation can be equisatisfiably
rewritten into a finite set of arrangements, where each arrangement is a finite set
of word equations obtained from the splitting procedure described above. The
Z3str2 solver exploits this fact, and solves word equations by converting them
into finite sets of arrangements and inspecting each one individually to see if
they are satisfiable. The input word equation is SAT if and only if at least one
arrangement is SAT. This in a nutshell is how the word equations are solved
by the Z3str2 solver, i.e., by recursively converting equations into a disjunction
of arrangements (where each arrangement is a simpler set of equations) until a
set of arrangements is derived where the satisfiability can determined purely via
inspection.

Supporting Regular Expression Membership Predicates: A RE member-
ship predicate X ∈ R is reduced to word equations by a transformation function
ρ(X, R), where X is a string variable and R is a regular expression. The function
is defined as follows:

ρ(X, s) ::= X = s, where s is a constant string
ρ(X, R1|R2) ::= ρ(X, R1) ∨ ρ(X, R2)
ρ(X, R1 · R2) ::= X = T1 · T2 ∧ ρ(T1,R1) ∧ ρ(T2,R2)
ρ(X, R∗) ::= X = unroll(R, n) ∧ n ≥ 0

where n is a fresh integer variable for each Kleene star operation; T1 and T2

are fresh string variables; unroll(R, n) represents the expression obtained by
unrolling R n times. After the RE membership predicates are replaced by word
equations, the string solver proceeds as usual. When the solver explores various
arrangements, the unroll() functions are further simplified by the following rules.

X = unroll(R, n1) ::= if (n1 = 0) then {X = ε} else {X = T3 · unroll(R, n1 − 1) ∧ ρ(T3, R)}
X · Y = unroll(R, n1) ::= if (n1 = 0) then {X = ε ∧ Y = ε} else {X = unroll(R, n2) · T3

∧ Y = T4 · unroll(R, n3) ∧ n1 = n2 + n3 + 1 ∧ ρ(T3 · T4, R)}

Note that R is essentially unrolled once in the else branch of both rules. Just
like in other existing solvers that support RE, the unrolling process may not
terminate, especially when there are no length constraints associated with the
involved variables. We hence rely on a timeout mechanism.

While simple, elegant and efficient for typical equations obtained from program
analysis, the word equation solver described here may fall into infinite loops under
certain circumstances. This problem and our approach are described at length
below. In fact, the problem of “overlapping” variables described below is recog-
nized by logicians as the crucial source of complexity in solving word equations.

Effective Search-Space Pruning 243

X

X

a

X1

b

Fig. 2. Graphical representation of an arrangement of a · X = X · b, where the two
occurrences of X overlap represented by X1.

A Word Equation that Highlights the Crucial Overlap Detection
Problem: To illustrate the problem, consider the example: a · X = X · b, where
X is a string variable. X appears both as the LHS suffix and as the RHS pre-
fix. This equation is not satisfiable. However, if we solve it analogously, then
the solving procedure will not terminate. In particular, the equation has three
arrangements: The first arrangement is where X = ε, resulting in the equation
a = b which is unsatisfiable. The second arrangement is where the concatenation
function in the LHS and RHS align exactly such that we get X = a∧X = b. The
third arrangement is where the LHS occurrence of X cuts the RHS occurrence
in the RHS illustrated in Fig. 2.

Note that the suffix of X in the RHS (bottom part of Fig. 2) of the equation
overlaps with the prefix of X in the LHS (top part of Fig. 2). We represent this
overlapping part with a new variable X1. By applying some simple rewrites we
derive the following:

a · X = X · b =⇒ X = a · X
[2.1]

1 ∧ X = X1 · b [2.2]

From [2.1] and [2.2], we can infer a · X1 = X1 · b. Note this derived equation
has the same form as the input formula. As a result, the above-mentioned deci-
sion procedure will not terminate, unless some steps are taken to detect such
“overlaps” and determine their satisfiability without computing arrangements
ad infinitum.

One could imagine heuristics to detect and handle relatively simple overlaps
described above. However, in general, when many equations are involved with
variables overlapping indirectly, the problem is not easy to detect or decide.
In fact, overlapping variables get to the crux of the difficulty of solving word
equations, for otherwise simple rewrites can solve such equations. Hence, any
solution to detecting overlaps is of universal value, and can be used as subroutine
by many different types of string solvers.

4 New Techniques for Improving Efficiency
of String Solvers

In this section, we present two search space pruning techniques to improve per-
formance of word-based string solvers.

4.1 Subroutine for Detecting Overlapping Variables
in Word Equations

Here we provide details about detecting overlapping variables in word equations.

244 Y. Zheng et al.

Definition 1 (Boundary Labels, Generalized Word Equations, Label
Sets). We define boundary labels (aka labels) using special symbols ��

n (left)
and ��

n (right), where 	 is either a character c or a variable X, and n denotes
its n-th occurrence in the equation. A left/right pair of labels on either side of a
variable or character uniquely identifies the boundaries of that occurrence of that
character or variable. A set of labels is simply called a label set. A word equation
E annotated with label sets, where these sets replace every (implicit) occurrence
of the concatenation function in the words of E, is called a generalized word
equation.

Below is an example of the word equation a · X = X · b annotated with
boundary labels. Note that the right label of the character “a” and the left label
of the variable X are grouped into the set {�a

1 , �X
1 }:

{�a
1}a{�a

1 ,�X
1 }X{�X

1 } = {�X
2 }X{�X

2 ,�b
1}b{�b

1}

Definition 2 (Label Arrangements and Merging of Label Sets). Given
a word equation E, a label arrangement or simply arrangement A of E is an
ordered sequence of label sets, where each label set in A is obtained by taking the
union (aka “merging”) of sequences of label sets from the LHS and RHS of E.
We define the merge of two sequences S1 ≡ {l1, · · · , lk} and S2 ≡ {r1, · · · , rk}
as some sequence S3 whose elements are either simply elements of S1 or S2 or
the union of some elements of S1 and S2.

The intuition behind the construction of an arrangement A of given equation
l = r is very straightforward, namely, that we align the natural boundaries of
the LHS l and RHS r by appropriately merging the label sets of the LHS and
the RHS of E to obtain arrangements. The reason we construct arrangement is
that it allows us to recursively derive simpler equations from a given equation
E, until they are so simple that their satisfiability can be trivially determined.

By construction, a word equation can be equisatisfiably reduced to a finite
disjunction of arrangements (The satisfiability of an arrangement is defined in
terms of the word equations it implies). To better understand how arrangements
are derived from an equation (or more precisely a generalized word equation)
consider the following:

{�a
1}a{�a

1 ,�Y
1 }Y {�Y

1 } = {�X
1 }X{�X

1 ,�b
1}b{�b

1}

A possible arrangement of its two words is the following:

{�a
1 , �X

1 } · {�a
1 , �X

1 , �Y
1 , �b

1} · {�Y
1 , �b

1}

From this arrangement, we can easily derive two smaller equations, X = a and
Y = b, which directly yield a solution. In our tech report (TR) [34] we describe, in
much greater detail, several operations for label set manipulation and of “merg-
ing” label sets to obtain arrangements, and merging arrangements from multiple
word equations. These operations are key for detecting complex overlapping vari-
ables that occur over multiple equations, and are not immediately obvious as is
the case in a · X = X · b.

Effective Search-Space Pruning 245

Detecting Overlapping Variables by Merging Arrangements: Just as we
can construct arrangements by merging the ordered sequence of labels over words
from a single equation, we can merge the arrangements obtained from multiple
word equations, when these equations contain occurrences of the same variable.
Intuitively, the arrangements from multiple equations may imply a variable being
cut/split differently (e.g., X is cut by the boundary of Y in one equation and by
the boundary of Z in another). Our algorithm explores all the possible orders of
the cuts from different arrangements, denoted as label sets, for the same variable.
Each order yields a global arrangement for the variable. As such, each variable is
divided into a set of sub-variables guided by the global arrangement; the previous
system of equations is hence reduced to a new system of equations with shorter
and simpler words. More details can be found in our TR.

Detection of overlapping variable can be done by checking the following con-
dition in any global arrangement: in the ordered sequence of label sets of a
global arrangement, there exists a left label of an occurrence of a variable X
that occurs in a label set in between two label sets where the first contains the
left label and the second contains the right label of another occurrence of X. We
say that X is an overlapping variable in the given system of word equations. As
an example, consider the arrangement in Fig. 2 that has overlapping variables.
This arrangement written per the formal definition as a sequence of label sets
we have:

{�a
1 , �X

2 } · {�a
1 , �X

1 } · {�X
2 , �b

1} · {�X
1 , �b

1}

Theorem 1. The subroutine for detecting overlapping variables is sound, com-
plete and terminating, i.e., it correctly detects all overlapping variables and
terminates.

4.2 String and Integer Theory Integration

Basic Length Rules. For strings X and Y , we assert the following: (1) |X| ≥ 0
(2) |X| = 0 ↔ X = ε (3) X = Y → |X| = |Y | (4) |X · ... · Y | = |X| + ... + |Y |.
String and Integer Theory Integration: As discussed in Sect. 2, finding a
consistent solution for both strings and numbers can be expensive due to the
infinite search space. The goal of string and integer theory integration is to
achieve synergy from the two such that the procedure can converge faster. In
particular, one theory will generate new assertions in the domain of the other
theory, and vice versa. Inside the string theory, the set of arrangements that is
explored is constrained by the assertions on string lengths, which are provided
by the integer theory. On the other hand, the string theory will derive new
length assertions when it makes progress in exploring new arrangements. These
assertions are provided to the integer theory so that the search space is pruned.

Consider X ·Y = M ·N , where X,Y,M and N are nonempty string variables.
It has three possible arrangements: [a1] X = M · T1 ∧ N = T1 · Y ; [a2] X =
M ∧N = Y ; [a3] M = X ·T2 ∧Y = T2 ·N . Assume the integer theory infers that
|X| > |M | or |Y | < |N |. Thus, only [a1] is consistent with the length conditions.

246 Y. Zheng et al.

The string solver only needs to explore one arrangement instead of three. On the
other hand, assume the string solver is exploring arrangement [a1]. It generates
a new assertion [a1] → |X| = |M · T1| ∧ |N | = |T1 · Y | ∧ |X| > |M | ∧ |N | > |Y |,
which in turn triggers the Z3 core to add an integer assertion.

Note that different string solvers implement string and integer integrations in
vastly different ways [7,22,31,33]. [7] focuses on integration in a staged manner.
[33] focuses on integration via automata manipulations. [22,31] and Z3str2 are
integrations within the DPLL(T) architecture, where the algorithm only solves
parts of the formula on demand and learns new constraints as it solves such
that these implied constraints often cut the search dramatically. Compared to
[22,31], our integration is tighter, powered by the bi-directional heuristics.

5 Soundness of the Z3str2 Algorithm

In this section we sketch the soundness proof of name’s algorithm given in Algo-
rithm 1. For a detailed formal analysis we refer the reader to the associated
tech-report. The soundness property of any decision procedure in an SMT solving
context can be stated as “If the procedure returns UNSAT, then input formula
is indeed UNSAT”.

Theorem 2. Algorithm 1 is sound, i.e., when Algorithm 1 reports UNSAT, the
input constraint is indeed UNSAT.

Proof. To see that Z3str2 is sound, we show that the UNSAT returned at line
3 and line 24 are both sound. First observe that line 3 returns an UNSAT if
either string or integer constraints are determined to be UNSAT. For string
constraints, we use the algorithms described in [11] to decide the satisfiability
of word (dis)equations in the solved form. The soundness of line 3 relies on the
soundness of the procedure [11] and the integer solver (here Z3).

For the UNSAT returned at line 24, we show transformations impacting it
are all satisfiability-preserving. If a transformation is satisfiability-preserving, it
means its output formula is satisfiable if and only if its input formula is satisfi-
able. In particular, transformations at (i) line 6 (ii) line 8 (iii) line 10 and (iv)
lines 15–16 are satisfiability-preserving: (i) The disjunctive normal form conver-
sion at line 6 is obviously satisfiability-preserving. (ii) The conversion in line 8
is probably the most involved in terms of establishing soundness. This step is a
variant of the idea of sound transformation of word equations to arrangements
mentioned in Makanin’s paper [23]. We can show that arrangement generation
is satisfiability-preserving because each arrangement is a finite set of equations
implied by the input system of equations. In addition, we extract length con-
straints from arrangements and they may conflict with the existing integer con-
straints. If so, we drop inconsistent arrangements based on the UNSAT results
determined by the integer theory. Similarly, since we assume the integer theory
is sound, this step is also satisfiability-preserving. (iii) At line 10, we system-
atically enumerate all feasible orders among boundary labels according to the
Definition 2. This step is satisfiability-preserving. (iv) In lines 15 and 16, this

Effective Search-Space Pruning 247

step derives simpler equations by a satisfiability-preserving rewriting. Please see
the technical report for proof details. Note the REs are reduced to word equa-
tions so that they can be handled by this same procedure. In addition, although
we prune arrangements at line 13, the answer can only be SAT or UNKNOWN
once this happens. The algorithm is still sound. Therefore, we return UNSAT
exactly when we can prove this to be the case.

6 Experimental Results

In this section, we describe the implementation of Z3str2, as well as experi-
ments to validate the efficacy of the new techniques proposed in this paper,
namely, overlapping-variable detection and deeper string/integer theory inte-
gration. Both techniques improve solver efficiency in isolation, as well as when
switched on simultaneously. However, in the interest of space we only report
their combined contributions.

1. Detection of Overlapping Variables. During solving, Z3str2 prunes away
arrangements with overlapping variables, leading to a smaller search space. Thus,
if the technique is effective, we would be able to observe that other solvers time
out on the cases reported as UNKNOWN by Z3str2. In Z3str2, an UNKNOWN
result is returned when no SAT can be established in all arrangements with
non-overlapping variables.

2. Evaluating String and Integer Theory Integration. The contribution
of the string and integer integration will be illustrated by the improvement on
the performance in resolving both the SAT and UNSAT cases, in comparison
with other solvers.

We compare Z3str2 against five state-of-the-art string solvers, namely, CVC4
[22], S3 [31], Kaluza [28], PISA [30], and Stranger [32] across four different suites
of benchmarks obtained from Kudzu/Kaluza [28], PISA [30], AppScan Source [2]

Fig. 3. Cactus plots for the Kaluza benchmark suite (incorrect results excluded)

248 Y. Zheng et al.

and Kausler’s [18] projects. Given the rich and diversified landscape of string
problems, we chose to validate our approach using benchmarks from real-world
applications with different characteristics. Additionally, the total number of tests
on which we compared Z3str2 with other solvers is approximately 69,000.

Kaluza Benchmark Suite. The Kaluza constraints were generated by a
JavaScript symbolic execution engine [28], where length, concatenation and
(finite) RE membership queries occur frequently. Both CVC4 and S3 were origi-
nally evaluated only on this suite, which consists of approximately 50 K problems
in the Kaluza format. The CVC4 team selected 47, 284 of them, and translated
them into the CVC4 format. The S3 team did the translation to S3 format. We
wrote translators from CVC4 to Z3str2, and from Z3str2 to CVC4. The time-
out threshold for comparison over this suite was set at 20 seconds per problem,
which was the threshold used in CVC4 [22].

PISA Benchmark Suite. While the Kaluza suite is large and diverse, and
includes string problems of varying sizes, it only contains a small subset of
string operations. To make the comparison more comprehensive, we included
constraints from real-world Java sanitizer methods that were used in the evalua-
tion of the PISA system [30]. Sanitizers cleanse user input to remove the threat
of an injection attack. They are usually complex and utilize various primitive
string operations. We generated two groups of constraints: First, as in the PISA
paper, we encode the semantics of the sanitizers and check the return value(s)
against predefined attack patterns (such as cross-site scripting (XSS)). In the
second group, we also encode input constraints per the application defining the
sanitizer. For the PISA suite, we set a timeout value of 200 seconds due to its
higher complexity.

AppScan Benchmark Suite. The third suite of benchmarks is derived from
security warnings output by IBM Security AppScan Source Edition [2], an appli-
cation sold commercially by IBM. These reflect potentially vulnerable infor-
mation flows, represented as traces of program statements, which yield more
representative real-world constraints than focusing on sanitizers only. We ran
AppScan on popular websites to obtain traces. Similar to the PISA benchmarks,
the AppScan constraints also utilize a rich set of string operators. As with PISA,
timeout here too was set at 200 seconds per benchmark.

Kausler Benchmark Suite. The final suite is extracted from 8 Java programs
by Scott Kausler [18]. They represent path conditions obtained from dynamic
symbolic execution, and are pure string constraints [17]. Unlike other bench-
marks, Kausler’s suite does not dump string constraints to file but instead calls
the solvers via an API. The suite contains 174 path condition encoding files,
and the resulting constraints are input to the solvers in-memory via their APIs.
The comparison [18] was originally done using a driver interface [3]. However,
we observed bugs ranging from JNI issues for Stranger to generating invalid con-
straints for Z3str2. We made our best attempt to compare Z3str2 with Stranger
using modified interfaces [1] patched by both the Stranger team and us.

Effective Search-Space Pruning 249

Table 1. Results on Kaluza suite [28].

6.1 Performance Results

The results we obtained are summarized in Tables 1–3 and Fig. 3 with appropri-
ate references to the various benchmark suites2.

Kaluza Suite. In Table 1, “tool reports error” counts the number of inputs on
which the solver reports an error. “crash”, instead, refers to runtime errors such
as segfaults. For “sat” and “unsat”, × denotes the number of provably incorrect
results (either an “unsat” response where the problem has a verified solution or
a “sat” response with an infeasible solution, as defined in [22]), and

√
the rest.

The comparison involves Z3str2 without bi-directional integration, CVC4 and
S3, but not PISA, as PISA cannot model string lengths or symbolic arithmetic
operations that are intensive in the suite.

According to Table 1, neither Z3str2 nor CVC4 report any provably incorrect
result, though Z3str2 is more effective and can solve more cases (46658 compared
to 44815) without timeouts. Though Z3str2 additionally has 626 unknown cases,
CVC4 times out on all these cases. Z3str2 without bi-directional integration
solves 2593 fewer cases and timeouts more often. S3 has errors in both directions,
as well as an overall of 989 timeouts, while Kaluza suffers less from timeouts
(340) but has many sat-as-unsat errors (10909). Kaluza therefore is unsound.
Since Kaluza only provides assignments for variables matching the query, sat
answers are not verifiable. Both S3 and Kaluza also have tool errors (2 and 2285,
respectively). In addition, S3 crashes on 1539 cases. To compare performance on
the sat and unsat Kaluza cases across the different solvers, we created the cactus
plots in Figs. 3a (sat) and 3b (unsat). Incorrect results are excluded. In both
categories, Z3str2 and CVC4 have comparable performance, while Z3str2 solves
more cases and is faster on complex cases. S3 and Z3str2 without string-integer
integration are slower. Kaluza has the worst performance.

2 All experiments were performed on a workstation running Ubuntu 12.04 with an i7-
3770 CPU and 8GB of RAM memory. For reproducibility, we have made the Z3str2
source code publicly available [1]. We used V1.5-prerelease of CVC4; the version of
S3 from the original paper [31]; the Kaluza version from the CVC4 paper with “var”
as the query string; and Stranger from [4].

250 Y. Zheng et al.

PISA Suite. Table 2 presents the results on the PISA benchmarks. The “string
operators stats” column lists the involved operations and their number of occur-
rences. In addition, we also count the number of variables and predicates for
each format. In this comparison, we included CVC4 and PISA, but not S3 and
Kaluza, as we were not able to model popular string operations such as indexof
using their language. Besides, for PISA, while one group of constraints is equiva-
lent to the MONA program generated by PISA, enabling proper comparison, the
other group requires changes to the PISA translation algorithm (to fix the input
constraints as well as the negative output constraints), and thus the respective
comparisons were not possible. From Table 2, we have the following observa-
tions. First, Z3str2 reports 8 sat cases compared to 6 by CVC4 and 2 timeouts.
For the 6 sats in common, Z3str2 solves them in 1.069s while CVC4 requires
51.394s. Second, MONA and Z3str2 are in agreement. MONA runs faster on
the sat cases, though it cannot generate satisfying string assignments, and has
comparable performance to Z3str2 on the unsat cases.

AppScan Suite. The results of the third comparison over the AppScan suite
appear in Table 3. Z3str2 reports sat on 8 cases while CVC4 agrees on 4 and
times out on the rest. The performance gap between the solvers on sat cases in
agreement is significant: Z3str2 completes in 0.707s, whereas the CVC4 solving
time is 154.852s.

Kausler Suite. We were able to run the Stranger tool on 5 sets in this suite —
namely, beasties, jerichoHTMLParser, mathParser, mathQuizGame and natural-
CLI — without crashing or hanging. Across these 5 sets, we found that the aver-
age solving time per constraint instance for Z3str2 are 6.4ms, 10.7ms, 39.9ms,
7.1ms and 23.4ms respectively, and for Stranger are 51.8ms, 5.9ms, 1.4ms,
9.4ms and 3.0ms. Z3str2 is faster than Stranger on two of these sets, Stranger
is faster than Z3str2 on the remaining three.

However, these findings should be qualified. First, Stranger crashes or hangs
on 98 files. Z3str2 neither crashes nor hangs nor times out on any of the gen-

Table 2. Results on constraints generated from sanitizers detected by PISA [30].

input
string operators stats

(omitting eq and dis-eq)
Z3str2 CVC4 PISA-MONA

var pred result time (s) var pred result time (s) var pred result time (s)
pisa-000.smt2 contains (3), indexof (1), substring (1) 4 12 sat (

√
) 0.164 4 12 sat (

√
) 0.264 9 301 sat (?+) 0.029

pisa-001.smt2 contains (1), indexof (1), substring (1) 4 9 sat (
√
) 0.114 4 9 sat (

√
) 0.032 —+ — + — + — +

pisa-002.smt2 contains (4) 2 10 sat (
√
) 0.114 2 10 sat (

√
) 50.871 — — — —

pisa-003.smt2 contains (3), concat (1) 3 11 unsat (
√
) 0.064 3 11 timeout 200.00 — — — —

pisa-004.smt2 contains (2), indexof (1), length (1), 7 22 unsat (
√
) 0.038 10 32 timeout 200.00 9 331 unsat 0.041

lastIndexof† (1), substring (2) (
√
)

pisa-005.smt2 indexof (1), lastIndexof† (1), length (1), 7 23 sat (
√
) 0.115 10 33 sat (

√
) 0.165 — — — —

substring (2),
pisa-006.smt2 indexof (1), lastIndexof† (1), length (1), 7 24 unsat (

√
) 0.039 11 36 timeout 200.00 9 331 unsat 0.038

substring (2), contains (1) (
√
)

pisa-007.smt2 indexof (2), lastIndexof† (1), length (1), 8 26 unsat (
√
) 0.042 11 36 timeout 200.00 9 324 unsat 0.039

substring (2), contains (1) (
√
)

pisa-008.smt2 replace∗ (5), contains (2) 6 13 sat (
√
) 0.214 6 13 timeout 200.00 9 283 sat (?+) 0.031

pisa-009.smt2 replace (2), concat (1), contains (2) 3 8 sat (
√
) 0.447 3 8 sat (

√
) 0.046 9 292 sat (?+) 0.054

pisa-010.smt2 replace (2), concat (1) 3 6 sat (
√
) 0.165 3 6 timeout 200.00 — — — —

pisa-011.smt2 replace (1), concat (2) 3 6 sat (
√
) 0.115 3 6 sat (

√
) 0.016 — — — —

+We could not generate constraints without changing PISA. No string solutions are generated so it’s not verifiable.
† CVC4 doesn’t provide operator ‘lastIndexof’. We encode it with operators “concat”, “length” and “contains”.
∗ replace applies to the first occurrence of the argument string for both Z3str2 and CVC4.

Effective Search-Space Pruning 251

Table 3. Results on constraints derived from AppScan traces [2].

input string operators stats (omitting eq and dis-eq)
Z3str2 CVC4

var pred result time (s) var pred result time (s)
t01.smt2 indexof (4), substring (3) 7 37 sat (

√
) 0.265 7 37 timeout 200.00

t02.smt2 concat (3), membership (1), regexConcat (2), 5 47 sat (
√
) 0.215 5 33 sat (

√
) 0.026

regexUnion (14), str2Regex (17), length (1)
t03.smt2 concat (3), membership (1), regexConcat (2), 5 46 sat (

√
) 2.519 5 32 timeout 200.00

regexUnion(14), str2Regex (17), length(1)
t04.smt2 concat (5), membership (1), regexConcat (2), 6 50 sat (

√
) 4.574 6 35 timeout 200.00

regexUnion (14), str2Regex (17), length(1)
t05.smt2 concat (3), membership (1), regexConcat (2), indexof (1) 8 56 sat (

√
) 2.770 8 42 timeout 200.00

regexUnion (14), str2Regex (17), length (2), substring (1)
t06.smt2 concat (1), indexof (3), endsWith (5) 5 33 sat (

√
) 0.214 5 33 sat (

√
) 3.021

t07.smt2 concat (6), regexStar (2), str2Regex (4), endsWith (2) 8 32 sat (
√
) 0.114 8 29 sat (

√
) 0.115

regexUnion (2), membership (2), startsWith (2)
t08.smt2 concat (2), regexStar (2), str2Regex (4), endsWith (2) 5 23 sat (

√
) 0.164 5 22 sat (

√
) 151.663

regexUnion (2), membership (2), startsWith (2)

erated instances. We have omitted these 98 files from our comparison. Addi-
tionally, Stranger over-approximates disequalities (= operator) among variables
that can represent multiple strings [5]. We observe that such cases commonly
exist in all sets (the percentages of instances with = operators in each set are
83.4%, 61.7%, 79.0%, 96.0% and 95.0% respectively, and many fall into this
category of disequalities among variables that represent multiple strings). This
implies that Stranger produces unsound results. We believe that some of these
constraints are easy for Stranger thanks to this over-approximation. By contrast
Z3str2 correctly implements all operators and predicates in its input language.
Finally, Stranger requires that integers occurring as indices and length bounds
be constant, whereas Z3str2 and most other competing solvers support integers
symbolically thus providing expressive power that is essential in practice.

6.2 Interpretation of Results

The general trend, across all benchmark suites, is that CVC4 has comparable
performance to Z3str2 although CVC4 times out far more often than Z3str2,
whereas S3 is significantly slower. These results establish the efficacy of both
techniques presented in this paper.

Detection of Overlapping Variables. Z3str2 can decide either sat or unsat
on 98.7%, 100% and 100% of the instances in the Kaluza, PISA and AppScan
suites, respectively. CVC4, in comparison, achieves 94.8%, 50% and 50%. For
unknowns reported by Z3str2 on the Kaluza instances, which occur in merely
1.3% of the cases, CVC4 times out on all of them. This lends support to our
design choice of purposely pruning away parts of the solution space (those with
overlapping arrangements) to avoid nontermination.

String and Integer Theory Integration. As the comparisons between Z3str2
versions with and without the integration clearly demonstrate, there is significant
gain thanks to tightening the integer and string theory integration, which enables

252 Y. Zheng et al.

generation of implied constraints in both domains for more aggressive elimination
of assignments unsatisfying for combined string-integer constraints.

7 Conclusion

We have described two techniques that dramatically improve the efficiency of
word-based string solvers: (i) a sound and complete procedure to detect overlap-
ping variables, thereby automatically identifying and avoiding sources of nonter-
mination; and (ii) tight bi-directional integer/string theory integration, thereby
pruning a vast array of inconsistent search candidates. We have implemented
both of these techniques on top of Z3-str as Z3str2. We show the efficacy of
these techniques through an extensive set of experiments, comparing Z3str2 with
the CVC4, S3, Kaluza, PISA and Stranger solvers over four benchmark suites
derived from real-world applications.

References

1. Z3str2 String constraint solver. https://sites.google.com/site/z3strsolver/
2. IBM security AppScan source. http://www-03.ibm.com/software/products/en/

appscan-source
3. Kausler suite. https://github.com/BoiseState/string-constraint-solvers
4. LibStranger. https://github.com/vlab-cs-ucsb/LibStranger
5. Personal communications with the stranger team (2015)
6. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Hoĺık, L., Rezine, A., Rümmer, P.,

Stenman, J.: String constraints for verification. In: Biere, A., Bloem, R. (eds.)
CAV 2014. LNCS, vol. 8559, pp. 150–166. Springer, Heidelberg (2014)

7. Bjørner, N., Tillmann, N., Voronkov, A.: Path feasibility analysis for string-
manipulating programs. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009.
LNCS, vol. 5505, pp. 307–321. Springer, Heidelberg (2009)

8. Christensen, A.S., Møller, A., Schwartzbach, M.I.: Precise analysis of string expres-
sions. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 1–18. Springer,
Heidelberg (2003)

9. De Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

10. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In:
Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519–531. Springer,
Heidelberg (2007)

11. Ganesh, V., Minnes, M., Solar-Lezama, A., Rinard, M.: Word equations with length
constraints: what’s decidable? In: Biere, A., Nahir, A., Vos, T. (eds.) HVC. LNCS,
vol. 7857, pp. 209–226. Springer, Heidelberg (2013)

12. Ghosh, I., Shafiei, N., Li, G., Chiang, W.-F.: JST: an automatic test generation
tool for industrial java applications with strings. In: Proceedings of the 2013 Inter-
national Conference on Software Engineering, ICSE 2013, pp. 992–1001 (2013)

13. Hooimeijer, P., Weimer, W.: Solving string constraints lazily. In: Proceedings of the
IEEE/ACM International Conference on Automated Software Engineering, ASE
2010, pp. 377–386 (2010)

https://sites.google.com/site/z3strsolver/
http://www-03.ibm.com/software/products/en/appscan-source
http://www-03.ibm.com/software/products/en/appscan-source
https://github.com/BoiseState/string-constraint-solvers
https://github.com/vlab-cs-ucsb/LibStranger

Effective Search-Space Pruning 253

14. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages, and Computation. Pearson/Addison Wesley, Upper Saddle River (2007)

15. Jeż, A.: Recompression: word equations and beyond. In: Béal, M.-P., Carton, O.
(eds.) DLT 2013. LNCS, vol. 7907, pp. 12–26. Springer, Heidelberg (2013)

16. Karhumäki, J., Mignosi, F., Plandowski, W.: The expressibility of languages and
relations by word equations. J. ACM 47(3), 483–505 (2000)

17. Kausler, S.: Evaluation of string constraint solvers using dynamic symbolic execu-
tion. Master’s thesis, Boise State University (2014)

18. Kausler, S., Sherman, E.: Evaluation of string constraint solvers in the con-
text of symbolic execution. In: Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering, ASE 2014, pp. 259–270. ACM,
New York, NY, USA (2014)

19. Kiezun, A., Ganesh, V., Guo, P.J., Hooimeijer, P., Ernst, M.D.: Hampi: a solver
for string constraints. In: Proceedings of the Eighteenth International Symposium
on Software Testing and Analysis, ISSTA 2009, pp. 105–116 (2009)

20. Li, G., Andreasen, E., Ghosh, I.: SymJS: automatic symbolic testing of javascript
web applications. In: Proceedings of the 22nd ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, FSE 2014, pp. 449–459 (2014)

21. Li, G., Ghosh, I.: PASS: string solving with parameterized array and inter-
val automaton. In: Bertacco, V., Legay, A. (eds.) HVC 2013. LNCS, vol. 8244,
pp. 15–31. Springer, Heidelberg (2013)

22. Liang, T., Reynolds, A., Tinelli, C., Barrett, C., Deters, M.: A DPLL(T) theory
solver for a theory of strings and regular expressions. In: Biere, A., Bloem, R. (eds.)
CAV 2014. LNCS, vol. 8559, pp. 646–662. Springer, Heidelberg (2014)

23. Makanin, G.S.: The problem of solvability of equations in a free semigroup. Math.
Sbornik 103, 147–236 (1977). English transl. in Math USSR Sbornik 32 (1977)

24. Matiyasevich, Y.: Word equations, fibonacci numbers, and hilbert’s tenth problem.
In: Workshop on Fibonacci Words (2007)

25. Plandowski, W.: Satisfiability of word equations with constants is in pspace. J.
ACM 51(3), 483–496 (2004)

26. Plandowski, W.: An efficient algorithm for solving word equations. In: Proceed-
ings of the 38th Annual ACM Symposium on Theory of Computing, STOC 2006,
pp. 467–476 (2006)

27. Redelinghuys, G., Visser, W., Geldenhuys, J.: Symbolic execution of programs with
strings. In: Proceedings of the South African Institute for Computer Scientists and
Information Technologists Conference, SAICSIT 2012, pp. 139–148 (2012)

28. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic
execution framework for javascript. In: Proceedings of the 2010 IEEE Symposium
on Security and Privacy, SP 2010, pp. 513–528 (2010)

29. Schulz, K.: Makanin’s algorithm for word equations-two improvements and a
generalization. In: Schulz, K. (ed.) Word Equations and Related Topics. LNCS,
vol. 572, pp. 85–150. Springer, Heidelberg (1992)

30. Tateishi, T., Pistoia, M., Tripp, O.: Path- and index-sensitive string analysis based
on monadic second-order logic. ACM Trans. Softw. Eng. Methodol. 22(4), 33:1–
33:33 (2013)

31. Trinh, M.-T., Chu, D.-H., Jaffar, J.: S3: A symbolic string solver for vulnerability
detection in web applications. In: Proceedings of the 2014 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS 2014, pp. 1232–1243 (2014)

32. Yu, F., Alkhalaf, M., Bultan, T.: Stranger: an automata-based string analysis
tool for PHP. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015,
pp. 154–157. Springer, Heidelberg (2010)

254 Y. Zheng et al.

33. Yu, F., Bultan, T., Ibarra, O.H.: Symbolic string verification: combining string
analysis and size analysis. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009.
LNCS, vol. 5505, pp. 322–336. Springer, Heidelberg (2009)

34. Zheng, Y., Ganesh, V., Subramanian, S., Tripp, O., Dolby, J., Zhang, X.: Effec-
tive search-space pruning for solvers of string equations, regular expressions
and length constraints. Technical report (2015). https://sites.google.com/site/
z3strsolver/publications

35. Zheng, Y., Zhang, X., Ganesh, V.: Z3-str: a z3-based string solver for web appli-
cation analysis. In: Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2013, pp. 114–124 (2013)

https://sites.google.com/site/z3strsolver/publications
https://sites.google.com/site/z3strsolver/publications

Automata-Based Model Counting
for String Constraints

Abdulbaki Aydin(B), Lucas Bang, and Tevfik Bultan

University of California, Santa Barbara, USA
{baki,bang,bultan}@cs.ucsb.edu

Abstract. Most common vulnerabilities in Web applications are due
to string manipulation errors in input validation and sanitization code.
String constraint solvers are essential components of program analy-
sis techniques for detecting and repairing vulnerabilities that are due
to string manipulation errors. For quantitative and probabilistic pro-
gram analyses, checking the satisfiability of a constraint is not sufficient,
and it is necessary to count the number of solutions. In this paper, we
present a constraint solver that, given a string constraint, (1) constructs
an automaton that accepts all solutions that satisfy the constraint, (2)
generates a function that, given a length bound, gives the total number
of solutions within that bound. Our approach relies on the observation
that, using an automata-based constraint representation, model count-
ing reduces to path counting, which can be solved precisely. We demon-
strate the effectiveness of our approach on a large set of string constraints
extracted from real-world web applications.

1 Introduction

Since many computer security vulnerabilities are due to errors in string manip-
ulating code, string analysis has become an active research area in the last
decade [3,9,12,17,31,36,38,39]. Symbolic execution is a well-known automated
bug detection technique which has been applied to vulnerability detection [28].
In order to apply symbolic execution to analysis of string manipulating pro-
grams, it is necessary to check satisfiability of string constraints [6]. Several
string constraint solvers have been proposed in recent years to address this prob-
lem [1,18,19,21,23,24,32,40].

This material is based on research sponsored by NSF under grant CCF-1423623 and
by DARPA under agreement number FA8750-15-2-0087. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied, of DARPA or the
U.S. Government. Part of this research was conducted while Tevfik Bultan was vis-
iting Koç University in İstanbul, Turkey, supported by a research fellowship from
TÜBİTAK under the BİDEB 2221 program.

c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 255–272, 2015.
DOI: 10.1007/978-3-319-21690-4 15

256 A. Aydin et al.

There are two recent research directions that aim to extend symbolic exe-
cution beyond assertion checking. One of them is quantitative information flow,
where the goal is to determine how much secret information is leaked from a
given program [10,26,27,29], and another one is probabilistic symbolic execu-
tion where the goal is to compute probability of the success and failure paths in
order to establish reliability of the given program [7,13]. Interestingly, both of
these approaches require the same basic extension to constraint solving: They
require a model-counting constraint solver that not only determines if a con-
straint is satisfiable, but it also computes the number of satisfying instances.

In this paper, we present an automata-based model-counting technique for
string constraints that consists of two main steps: (1) Given a string constraint
and a variable, we construct an automaton that accepts all the string values for
that variable for which the string constraint is satisfiable. (2) Given an automa-
ton we generate a function that takes a length bound as input and returns the
total number of strings that are accepted by the automaton that have a length
that is less than or equal to the given bound.

Our constraint language can handle regular language membership queries,
word equations that involve concatenation and replacement, and arithmetic con-
straints on string lengths. For a class of constraints that we call pseudo-relational,
our approach gives the precise model-count. For constraints that are not in this
class our approach computes an upper bound. We implemented a tool called
Automata-Based model Counter for string constraints (ABC) using the app-
roach we present in this paper. Our experiments demonstrate that ABC is effec-
tive and efficient when applied to thousands of string constraints extracted from
real-world web applications.

Related Work: Our inspiration for this work was the recently proposed model-
counting string constraint solver SMC [25]. Similar to SMC, we also utilize gener-
ating functions in model-counting. However, due to some significant differences in
how we utilize generating functions, our approach is strictly more precise than
the approach used in SMC. For example, SMC cannot determine the precise
model count for a regular expression constraint such as x ∈ (a|b)∗|ab, whereas
our approach is precise for all regular expressions. More importantly, SMC can-
not propagate string values across logical connectives which reduces its precision.
For example, for a simple constraint such as (x ∈ a|b) ∨ (x ∈ a|b|c|d) SMC will
generate a model-count range which consists of an upper bound of 6 and a lower
bound of 2, whereas our approach will generate the exact count which is 4. More-
over, SMC always generates a lower bound of 0 for conjunctions that involve the
same variable. So, the range generated for (x ∈ a|b) ∧ (x ∈ a|b|c|d) would be
0 to 2, whereas our approach generates the exact count which is 2. The set of
constraints we handle is also larger than the constraints that SMC can handle. In
particular, we can handle constraints with replace operations which is common
in server-side input sanitization code.

There has been significant amount of work on string constraint solving in
recent years [1,15,18,19,21,23,24,28,32,40]. Some of these constraints solvers
bound the string length [21,23,28] whereas our approach handles strings of

Automata-Based Model Counting for String Constraints 257

arbitrary length. None of these string constraint solvers provide model-counting
functionality. Our modal-counting constraint solver, ABC, builds on the
automata-based string analysis tool Stranger [36,38,39], which was determined
to be the best in terms of precision and efficiency in a recent empirical study for
evaluating string constraint solvers for symbolic execution of Java programs [20].
In addition to checking satisfiability, ABC also generates an automaton that
accepts all possible solutions and provides model-counting capability. To the
best of our knowledge, ABC is the only tool that supports all of these. In addi-
tion to enabling quantitative and probabilistic analysis by model counting, our
constraint solver also enables automated program repair synthesis by generating
a characterization of all solutions [2,37].

2 Automata Construction for String Constraints

In this section, we discuss how to construct automata for string constraints.
Given a constraint and a variable, our goal is to construct an automaton that
accepts all strings, which, when assigned as the value of the variable in the given
constraint, results in a satisfiable constraint.

2.1 String Constraint Language

We define the set of string constraints using the following abstract grammar:

F → C | ¬F | F ∧ F | F ∨ F (1)
C → S ∈ R (2)

| S = S (3)
| S = S . S (4)
| len(S) O n (5)
| len(S) O len(S) (6)
| contains(S, s) (7)
| begins(S, s) (8)
| ends(S, s) (9)
| n = indexof(S, s) (10)
| S = replace(S, s, s) (11)

S → v | s (12)
R → s | ε | R R | R | R | R∗ (13)
O → < | = | > (14)

where C denotes the basic constraints, n denotes integer values, s ∈ Σ∗ denotes
string values, ε is the empty string, v denotes string variables, . is the string
concatenation operator, len(v) denotes the length of the string value that is
assigned to variable v, and the string functions are defined as follows:

258 A. Aydin et al.

– contains(v, s) ⇔ ∃s1, s2 ∈ Σ∗ : v = s1ss2
– begins(v, s) ⇔ ∃s1 ∈ Σ∗ : v = ss1
– ends(v, s) ⇔ ∃s1 ∈ Σ∗ : v = s1s
– n = indexof(v, s) ⇔ (contains(v, s) ∧ (∃s1, s2 ∈ Σ∗ : len(s1) = n ∧ v = s1ss2) ∧

(∀i < n : ¬(∃s1, s2 ∈ Σ∗ : len(s1) = i ∧ v = s1ss2))) ∨ (¬contains(v, s) ∧ n = −1)
– v = replace(v′, s1, s2) ⇔ (∃s3, s4, s5 ∈ Σ∗ : v′ = s3s1s4 ∧ v = s3s2s5 ∧ s5 =

replace(s4, s1, s2) ∧ (∀s6, s7 ∈ Σ∗ : v′ = s6s1s7 ⇒ len(s6) ≥ len(s3))) ∨
(¬contains(v′, s1) ∧ v = v′)

and the definitions of these functions when the string variable v is replaced with
a string constant are similar.

Given a constraint F , let VF denote the set of variables that appear in F . Let
F [s/v] denote the constraint that is obtained from F by replacing all appearances
of v ∈ VF with the string constant s. We define the truth set of the formula F
for variable v as �F, v� = {s | F [s/v] is satisfiable}.

We identify three classes of constraints: (1) Single-variable constraints are
constructed using at most one string variable (i.e., VF = {v} or VF = ∅), they
do not contain constraints of type (4), (6), and (11), and have a single variable
on the left hand side of constraints of type (3). (2) Pseudo-relational constraints:
are a set of constraints that we define in the next section, for which the truth
sets are regular (i.e., each �F, v� is a regular set). (3) Relational constraints are
the constraints that are not pseudo-relational constraints (truth sets of relational
constraints can be non-regular).

2.2 Mapping Constraints to Automata

A Deterministic Finite Automaton (DFA) A is a 5-tuple (Q,Σ, δ, q0, F), where
Q = {1, 2, . . . , n} is the set of n states, Σ is the input alphabet, δ ⊆ Q × Q × Σ
is the state transition relation set, q0 ∈ Q is the initial state, and F ⊆ Q is the
set of final, or accepting, states.

Given an automaton A, let L(A) denote the set of strings accepted by A.
Given a constraint F and a variable v, our goal is to construct an automaton A,
such that L(A) = �F, v�.

Automata Construction for Single-Variable Constraints: Let us define an auto-
mata constructor function A such that, given a formula F and a variable v,
A(F, v) is an automaton where L(A(F, v)) = �F, v�. In this section we discuss
how to implement the automata constructor function A.

Consider the following string constraint F ≡ ¬(x ∈ (01)∗) ∧ len(x) ≥ 1 over
the alphabet Σ = {0, 1}. Let us name the sub-constraints of F as C1 ≡ x ∈ (01)∗,
C2 ≡ len(x) ≥ 1, F1 ≡ ¬C1, where F ≡ F1 ∧ C2. The automata construction
algorithm starts from the basic constraints at the leaves of the syntax tree (C1

and C2), and constructs the automata for them. Then it traverses the syntax tree
towards the root by constructing an automaton for each node using the automata
constructed for its children (where the automaton for F1 is constructed using the
automaton for C1 and the automaton for F is constructed using the automata

Automata-Based Model Counting for String Constraints 259

Fig. 1. (a) The syntax tree for the string constraint ¬(x ∈ (01)∗) ∧ len(x) ≥ 1 and
(b) the automata construction that traverses the syntax tree from the leaves towards
the root.

for F1 and C2). Figure 1 demonstrates the automata construction algorithm on
our running example.

Let A(Σ∗),A(Σn),A(s), and A(∅) denote automata that accept the lan-
guages Σ∗, Σn, {s}, and ∅, respectively. We construct the automaton A(F, v)
recursively on the structure of the single-variable constraint F as follows:

– case VF = ∅ (i.e., there are no variables in F): Evaluate the constraint F . If F ≡ true
then A(F, v) = A(Σ∗), otherwise A(F, v) = A(∅).

– case F ≡ ¬F1: A(F, v) is constructed using A(F1, v) and it is an automaton that
accepts the complement language Σ∗ − L(A(F1, v)).

– case F ≡ F1 ∧ F2 or F ≡ F1 ∨ F2: A(F, v) is constructed using A(F1, v) and
A(F2, v) using automata product, and it accepts the language A(F1, v) ∩ A(F2, v)
or A(F1, v) ∪ A(F2, v), respectively.

– case F ≡ v ∈ R: A(F, v) is constructed using regular expression to automata con-
version algorithm and accepts all strings that match the regular expression R.

– case F ≡ v = s: A(F, v) = A(s).
– case F ≡ len(v) = n: A(F, v) = A(Σn).
– case F ≡ len(v) < n: A(F, v) is an automaton that accepts the language {ε}∪Σ1 ∪

Σ2 ∪ . . . ∪ Σn−1.
– case F ≡ len(v) > n: A(F, v) is constructed using A(Σn+1) and A(Σ∗) and then

constructing an automaton that accepts the concatenation of those languages, i.e.,
Σn+1Σ∗.

– case F ≡ contains(v, s): A(F, v) is an automaton that is constructed using A(Σ∗)
and A(s) and it accepts the language Σ∗sΣ∗.

– case F ≡ begins(v, s): A(F, v) is constructed using A(Σ∗) and A(s), and it accepts
the language sΣ∗.

– case F ≡ ends(v, s): A(F, v) is constructed using A(Σ∗) and A(s), and it accepts
the language Σ∗s.

– case F ≡ n = indexof(v, s): Let Li denote the language ΣisΣ∗. Automata that
accept the languages Li can be constructed using A(Σi), A(s), and A(Σ∗).

260 A. Aydin et al.

Then A(F, v) is the automaton that accepts the language ΣnsΣ∗ − ({ε} ∪ L1 ∪
L2 ∪ . . . ∪ Ln−1) which can be constructed using A(Σn), A(s), A(Σ∗), and the
automata that accept Li.

Pseudo-Relational Constraints: Pseudo-relational constraints are multi-variable
constraints. Note that, using multiple variables, one can specify constraints with
non-regular truth sets. For example, given the constraint F ≡ x = y . y, �F, x�
is not a regular set, so we cannot construct an automaton precisely recognizing
its truth set. Below, we define a class of constraints called pseudo-relational
constraints for which �F, v� is regular.

We assume that constraint F is converted to DNF form where F ≡ ∨n
i=1 Fi,

Fi ≡ ∧m
j=1 Cij , and each Cij is either a basic constraint or negation of a basic

constraint. The constraint F is pseudo-relational if each Fi is pseudo-relational.
Given F ≡ C1 ∧ C2 ∧ . . . ∧ Cn, where each Ci is either a basic constraint

or negation of a basic constraint, for each Ci, let VCi
denote the set of variables

that appear in Ci. We call F pseudo-relational if the following conditions hold:

1. Each variable v ∈ VF appears in each Ci at most once.
2. There is only one variable, v ∈ VF , that appears in more than one constraint Ci

where v ∈ VCi ∧ |VCi | > 1, and in each Ci that v appears in, v is on the left hand
side of the constraint. We call v the projection variable.

3. For all variables v′ ∈ VF other than the projection variable, there is a single con-
straint Ci where v′ ∈ VCi ∧ |VCi | > 1 and the projection variable v appears in Ci,
i.e., v ∈ VCi .

4. For all constraints Ci where |VCi | > 1, Ci is not negated in the formula F .

Many string constraints extracted from programs via symbolic execution
are pseudo-relational constraints, or can be converted to pseudo-relational con-
straints. The projection variable represents either the variable that holds the
value of the user’s input to the program (for example, user input to a web appli-
cation that needs to be validated), or the value of the string expression at a
program sink. A program sink is a program point (such as a security sensitive
function) for which it is necessary to compute the set of values that reach to
that program point in order to check for vulnerabilities.

For example, following constraint is a pseudo-relational constraint extracted
from a web application (regular expressions are simplified):

(x = y . z) ∧ (len(y) = 0) ∧ ¬(z ∈ (0|1)) ∧ (x = t) ∧ ¬(t ∈ 0∗)

Automata Construction for Pseudo-Relational Constraints: Given a pseudo-
relational constraint F and the projection variable v, we now discuss how to
construct the automaton A(F, v) that accepts �F, v�. As above, we assume that
F is converted to DNF form where F ≡ ∨n

i=1 Fi, Fi ≡ ∧m
j=1 Cij , and each Cij is

either a basic constraint or negation of a basic constraint.
In order to construct the automaton A(F, v) we first construct the automata

A(Fi, v) for each Fi where A(Fi, v) accepts the language �Fi, v�. Then we com-
bine the A(Fi, v) automata using automata product such that A(F, v) accepts
the language �F1, v� ∪ �F2, v� ∪ . . . ∪ �Fm, v�.

Automata-Based Model Counting for String Constraints 261

Since we discussed how to handle disjunction, from now on we focus on
constraints of the form F ≡ C1 ∧ C2 ∧ . . . ∧ Cn where each Ci is either a
basic constraint or negation of a basic constraint. For each Ci, let VCi

denote
the set of variables that appear in Ci. If VCi

is a singleton set, then we refer to
the variable in it as vCi

.
First, for each single-variable constraint Ci that is not negated, we construct

an automaton that accepts the truth set of the constraint Ci, �Ci, vCi
�, using the

techniques we discussed above for single-variable constraints. If Ci is negated,
then we construct the automaton that accepts the complement language Σ∗ −
�Ci, vCi

� (note that, only single-variable constraints can be negated in pseudo-
relational constraints). Let us call these automata A(Ci, vCi

) (some of which
may correspond to negated constraints).

Then, for any variable v′ ∈ VF that is not the projection variable, we con-
struct an automaton A(F, v′) which accepts the intersection of the languages
A(Ci, v

′) for all single-variable constraints that v′ appears in, i.e., L(A(F, v′)) =⋂
VCi

={v′} L(A(Ci, v
′)).

Next, for each multi-variable constraint Ci we construct an automaton that
accepts the language �Ci, v� where v is the projection variable as follows:

– case Ci ≡ v = v′: A(Ci, v) = A(F, v′).
– case Ci ≡ v = v1 . v2: A(Ci, v) is constructed using the automata A(F, v1) and

A(F, v2) and it accepts the concatenation of the languagesL(A(F, v1)) andL(A(F, v2)).
– case Ci ≡ len(v) = len(v′): Given the automaton A(F, v′), we construct an automa-

ton Alen(F,v′) such that s ∈ L(Alen(F,v′)) ⇔ ∃s′ : len(s) = len(s′) ∧ s′ ∈
L(A(F, v′)). Then, A(Ci, v) = Alen(F,v′).

– case Ci ≡ len(v) < len(v′): Given the automaton A(F, v′) we find the length of the
maximum word accepted by A(F, v′), which is infinite if A(F, v′) has a loop that
can reach an accepting state. If it is infinite then A(Ci, v) = A(Σ∗). If not, then
given the maximum length m, A(Ci, v) is the automaton that accepts the language
{ε} ∪ Σ1 ∪ Σ2 ∪ . . . ∪ Σm−1. Note that if m = 0 then A(Ci, v) = A(∅).

– case Ci ≡ len(v) > len(v′): Given the automaton A(F, v′) we find the length of the
minimum word accepted by A(F, v′). Given the minimum length m, A(Ci, v) is the
automaton that accepts the concatenation of the languages accepted by A(Σm+1)
and A(Σ∗), i.e., Σm+1Σ∗.

– case Ci ≡ v = replace(v′, s, s): Given the automaton A(F, v′) we use the construc-
tion presented in [38,39] for language based replacement to construct the automaton
A(Ci, v).

The final step of the construction is to construct A(F, v) using the automata
A(Ci, v) where L(A(F, v)) =

⋂
v∈VCi

L(A(Ci, v)).
For pseudo-relational constraints, the automaton A(F, v)) constructed based

on the above construction accepts the truth set of the formula F for the pro-
jected variable, i.e., L(A(F, v)) = �F, v�. However, the replace function has dif-
ferent variations in different programming languages (such as first-match versus
longest-match replace) and the match pattern can be given as a regular expres-
sion. The language-based replace automata construction we use [38,39] over-
approximates the replace operation in some cases, which would then result in
over-approximation of the truth set: L(A(F, v)) ⊇ �F, v�.

262 A. Aydin et al.

Automata Construction for Relational Constraints: For constraints that are not
pseudo-relational, we extend the above algorithm to compute an over approxima-
tion of �F, v�. In relational constraints, more than one variable can be involved
in multi-variable constraints which creates a cycle in constraint evaluation.

Given a relational constraint in the form F ≡ C1 ∧ C2 ∧ . . . ∧ Cn, we
start with initializing each A(F, v) to A(Σ∗), i.e., initially variables are uncon-
strained. Then, we process each constraint as we described above to compute new
automata for the variables in that constraint using the automata that are already
available for each variable. We can stop this process at any time, and, for each
variable v, we would get an over-approximation of the truth-set A(F, v) ⊇ �F, v�.
We can state this algorithm as follows:

Algorithm 1. Automata For Constraint(F ≡ C1 ∧ C2 ∧ . . . ∧ Cn)

1: for v ∈ VF do
2: A(F, v) = A(Σ∗);
3: end for
4: count = 0; done = false;
5: while count < bound ∧ ¬done do
6: for each C ∈ F and v ∈ VC do
7: construct A′ where L(A′) = L(A(F, v)) ∩ L(A(C, v));
8: L(A(F, v)) = A′;
9: end for

10: if none of the L(A(F, v)) changed during the current iteration of the while loop
then

11: done = true;
12: end if
13: count = count + 1;
14: end while

In order to improve the efficiency of the above algorithm, we first build a con-
straint dependency graph where, 1) a multi-variable constraint Ci depends on a
single variable constraint Cj if VCj

⊆ VCi
, and 2) a multi-variable constraint Ci

depends on a multi-variable constraint Cj if VCj
∩VCi

= ∅. We traverse the con-
straints based on their ordering in the dependency graph and iteratively refine
the automata in case of cyclic dependencies. Note that, in the constructions we
described above we only constructed automaton for the variable on the left-hand-
side of a relational constraint using the automata for the variables on the right-
hand-side of the constraint. In the general case we need to construct automata
for variables on the right-hand-side of the relational constraints too. We do this
using techniques similar to the ones we described above. Constructing automata
for the right-hand-side variables is equivalent to the pre-image computations
used during backward symbolic analysis as discussed in [35] and we use the con-
structions given there. Finally, unlike pseudo-relational constraints, a relational
constraint can contain negation of a basic constraint Ci where |VCi

| > 1. In such
cases, in constructing the truth set of ¬Ci we can use the complement language
Σ∗ − �Ci, v� only if �Ci, v� is a singleton set. Otherwise, we construct an over
approximation of the truth set of ¬Ci.

Automata-Based Model Counting for String Constraints 263

3 Automata-Based Model Counting

Once we have translated a set of constraints into an automaton we employ alge-
braic graph theory [5] and analytic combinatorics [14] to perform model counting.
In our method, model counting corresponds exactly to counting the accepting
paths of the constraint DFA up to a given length bound k. This problem can be
solved using dynamic programming techniques in O(k · |δ|) time where δ is the
DFA transition relation [11,16]. However, for each different bound, the dynamic
programming technique requires another traversal of the DFA graph.

A preferable solution is to derive a symbolic function that given a length
bound k outputs the number of solutions within bound k. To achieve this, we use
the transfer matrix method [14,30] to produce an ordinary generating function
which in turn yields a linear recurrence relation that is used to count constraint
solutions. We will briefly review the necessary background and then describe the
model counting algorithm.

Given a DFA A, consider its corresponding language L. Let Li = {w ∈ L :
|w| = i}, the language of strings in L with length i. Then L =

⋃
i≥0 Li. Define

|Li| to be the cardinality of Li. The cardinality of L can be computed by the sum
of a series a0, a1, . . . , ai, . . . where each ai is the cardinality of the corresponding
language Li, i.e., ai = |Li|.

For example, recall the automaton in Fig. 1. Let Lx be the language over Σ =
{0, 1} that satisfies the formula (x ∈ (01)∗ ∧ LEN(x) ≥ 1). Then Lx is described
by the expression Σ∗−(01)∗. In the language Lx, we have zero strings of length 0
(ε ∈ Lx), two strings of length 1 ({0, 1}), three strings of length 3 ({00, 10, 11}),
and so on. The sequence is then a0 = 0, a1 = 2, a2 = 3, a3 = 8, a4 = 15, etc. For
any length i, |Lx

i |, is given by a 3rd order linear recurrence relation:

a0 = 0, a1 = 2, a2 = 3
ai = 2ai−1 + ai−2 − 2ai−3 for i ≥ 3

(15)

In fact, using standard techniques for solving linear homogeneous recurrences,
we can derive a closed form solution to determine that

|Lx
i | = (1/2)(2i+1 + (−1)i+1 − 1). (16)

In the following discussion we give a general method based on generating func-
tions for deriving a recurrence relation and closed form solution that we can use
for model counting.

Generating Functions: Given the representation of the size of a language L as
a sequence {ai} we can encode each |Li| as the coefficients of a polynomial,
an ordinary generating function (GF). The ordinary generating function of the
sequence a0, a1, . . . , ai, . . . is the infinite polynomial [14,30]

g(z) =
∑

i≥0

aiz
i (17)

Although g(z) is an infinite polynomial, g(z) can be interpreted as the Taylor
series of a finite rational expression. I.e., we can also write g(z) = p(z)/q(z),

264 A. Aydin et al.

where p(z) and q(z) are finite degree polynomials. If g(z) is given as a finite
rational expression, each ai can be computed from the Taylor expansion of g(z):

ai =
g(i)(0)

i!
(18)

where g(i)(z) is the ith derivative of g(z). We write [zi]g(z) for the ith Taylor
series coefficient of g(z). Returning to our example, we can write the generating
function for |Lx

i | both as a rational function and as an infinite Taylor series
polynomial. The reader can verify the following equivalence by computing the
right hand side coefficients via Eq. (18).

g(z) =
2z − z2

1 − 2z − z2 + 2z3
= 0z0 + 2z1 + 3z2 + 8z3 + 15z4 + . . . (19)

Generating Function for a DFA: Given a DFA A and length k we can compute
the generating function gA(z) such that the kth Taylor series coefficient of gA(z)
is equal to |Lk(A)| using the transfer-matrix method [14,30].

We first apply a transformation and add an extra state, sn+1. The resulting
automaton is a DFA A′ with λ-transitions from each of the accepting states of A
to sn+1 where λ is a new padding symbol that is not in the alphabet of A. Thus,
L(A′) = L(A) · λ and furthermore |Li(A)| = |Li+1(A′)|. That is, the augmented
DFA A′ preserves both the language and count information of A. Recalling the
automaton from Fig. 1, the corresponding augmented DFA is shown in Fig. 2(b).
(Ignore the dashed λ transition for the time being.)

Fig. 2. (a) The original DFA A, and (b) the augmented DFA A′ used for model counting
(sink state omitted).

From A′ we construct the (n + 1) × (n + 1) transfer matrix T . A′ has n + 1
states s1, s2, . . . sn+1. The matrix entry Ti,j is the number of transitions from
state si to state sj . Then the generating function for A is

gA(z) = (−1)n
det(I − zT : n + 1, 1)

z det(I − zT)
, (20)

where (M : i, j) denotes the matrix obtained by removing the ith row and jth

column from M , I is the identity matrix, detM is the matrix determinant, and

Automata-Based Model Counting for String Constraints 265

n is the number of states in the original DFA A. The number of accepting paths
of A with length exactly k, i.e. |Lk(A)|, is then given by [zk]gA(z) which can be
computed through symbolic differentiation via Eq. 18.

For our running example, we show the transition matrix T and the terms
(I − zT) and (I − zT : n, 1). Here, T1,2 is 1 because there is a single transition
from state 1 to state 2, T3,3 is 2 because there are two transitions from state 3
to itself, T2,4 is 1 because there is a single (λ) transition from state 2 to state 4,
and so on for the remaining entries.

T =

⎡

⎢
⎢
⎣

0 1 1 0
1 0 1 1
0 0 2 1
0 0 0 1

⎤

⎥
⎥
⎦

, I − zT =

⎡

⎢
⎢
⎣

1 −z −z 0
−z 1 −z −z
0 0 1 − 2z −z
0 0 0 1

⎤

⎥
⎥
⎦

, (I − zT : n, 1) =

⎡

⎣

−z −z 0
1 −z −z
0 1 − 2z −z

⎤

⎦

Applying Eq. (20) results in the same GF that counts Li(A) given in (19).

gA′(z) = −det(I − zT : n, 1)

z det(I − zT)
=

2z − z2

1 − 2z − z2 + 2z3
. (21)

Suppose we now want to know the number of solutions of length six. We compute
the sixth Taylor series coefficient to find that |Lx

6(A)| = [z6]g(z) = 63.

Deriving a Recurrence Relation: We would like a way to compute [zi]g(z) that is
more direct than symbolic differentiation. We describe how a linear recurrence for
[zi]g(z) can be extracted from the GF. Before we describe how to accomplish this
in general, we demonstrate the procedure for our example. Combining Eqs. (17)
and (21) and multiplying by the denominator, we have

2z − z2 = (1 − 2z − z2 + 2z3)
∑

i≥0

aiz
i.

Expanding the sum for 0 ≤ i < 3 and collecting terms,

2z − z2 = a0 + (a1 − 2a0)z + (a2 − 2a1 − a0)z
2 +
∑

i≥3

(ai − 2ai−1 − ai−2 + 2ai−3)z
i.

Comparing each coefficient of zi on the left side to the coefficient of zi on the
right side, we have the set of equations

a0 = 0
a1 − 2a0 = 2
a2 − 2a1 − a0 = −1
ai − 2ai−1 − ai−2 + 2ai−3 = 0, for i ≥ 3

One can see that this results in the same solution given in Eq. (15).
This idea is easily generalized. Recall that g(z) = p(z)/q(z) for finite degree

polynomials p and q. Suppose that the maximum degree of p and q is m. Then

g(z) =
bmzm + . . . + b1z + b0
cmzm + . . . + c1z + c0

=
∑

i≥0

aiz
i.

266 A. Aydin et al.

Multiplying by the denominator, expanding the sum up to m terms, and com-
paring coefficients we have the resulting system of equations which can be solved
for {ai : 0 ≤ i ≤ m} using standard linear algebra:

i∑

j=0

cjai−j =

{
bi, for 0 ≤ i ≤ m
0, for i > m

For any DFA A, since each coefficient ai is associated with |Lk(A)|, the recur-
rence gives us an O(kn) method to compute |Lk(A)| for any string length bound
k. In addition, standard techniques for solving linear homogeneous recurrence
relations can be used to derive a closed form solution for |Li(A)| [22].

Counting All Solutions within a Given Bound: The above described method gives
a generating function that encodes each |Li(A)| separately. Instead, we seek a
generating function that encodes the number of all solutions within a bound. To
this end we define the automata model counting function

MCA(k) =

k∑

i≥0

|Li(A)|. (22)

In order to compute MCA(k) we make a simple adjustment. All that is needed
is to add a single λ-cycle (the dashed transition in Fig. 2(b)) to the accepting
state of the augmenting DFA A′. Then Lk+1(A

′) =
⋃k

i=0 Li(A) · λk−i and the
accepting paths of strings in Lk+1(A

′) are in one-to-one correspondence with the
accepting paths of strings in

⋃k
i=0 Li(A). Consequently, |Lk+1(A

′)| =
∑k

i=0 |Li(A)|
and so MCA(k) = |Lk+1(A

′)|. Hence, we can compute MCA using the recurrence
for |Li(A

′)| with the additional λ-cycle.

4 Implementation

We implemented Automata-Based model Counter for string constraints (ABC)
using the symbolic string analysis library provided by the Stranger tool [36,38,
39]. We used the symbolic DFA representation of the MONA DFA library [8] to
implement the constructions described in Sect. 2. In MONA’s DFA library, the
transition relation of the DFA is represented as a Multi-terminal Binary Decision
Diagram (MBDD) which results in a compact representation of the transition rela-
tion. ABC supports more operations (such as trim, substring) than the ones
listed in Sect. 2 using constructions similar to the ones given in that section.

ABC supports the SMT-LIB 2 language syntax. We specifically added sup-
port for CVC4 string operations [24]. In string constraint benchmarks provided
by CVC4, boolean variables are used to assert the results of subformulas. In
our automata-based constraint solver, we check the satisfiability of a formula by
checking if its truth set is empty or not. We eliminated the boolean variables
that are only used to check the results of string operations (such as string equiva-
lence, string membership) and instead substituted the corresponding expressions
directly. We converted if-then-else structures into disjunctions. We also searched
for several patterns between length equations and word equations to infer the

Automata-Based Model Counting for String Constraints 267

values of the string variables whenever possible (for example when we see the
constraint len(x) = 0 we can infer that the string variable x must be equal to
the empty string). These transformations allow us to convert some constraints
to pseudo-relational constraints that we can precisely solve. If these transforma-
tions do not resolve all the cyclic dependencies in a constraint then the resulting
DFA may recognize an over-approximation of all possible solutions.

We implemented the automata-based model counting algorithm of Sect. 3
by passing the automaton transfer matrix to Mathematica for computing the
generating function, corresponding recurrence relation, and the model count for
a specific bound. Because the DFAs we encountered in our experiments typi-
cally have sparse transition graphs, we make use of Mathematica’s powerful and
efficient implementations of symbolic sparse matrix determinant functions [33].

5 Experiments

To evaluate ABC we experimented with a set of Java application benchmarks,
SMT-LIB 2 translation of Kaluza JavaScript benchmarks, and several examples
from the SMC distribution. In our experiments we compared ABC to SMC [25]
and CVC4 [24]. We ran all the experiments on an Intel I5 machine with 2.5GHz
X 4 processors and 32 GB of memory running Ubuntu 14.041.

Table 1. Constraint characteristics

Table 1 shows the frequency of string operations from our string constraint
grammar that are contained in the ASE, Kaluza Small, and Kaluza Big bench-
mark sets. ASE benchmarks are from Java programs and represent server-side
code [20]. The Kaluza benchmarks are taken from JavaScript programs and
represent client-side code [28]. All three benchmarks have regular expression
membership (∈), concatenation (.), string equality (=), and length constraints.
However, the ASE benchmark contains additional string operations that are
typically used for input sanitization, like replace and substring.

Java Benchmarks. String constraints in these benchmarks are extracted from
7 real-world Java applications: Jericho HTML Parser, jxml2xql (an xml-to-sql
converter), MathParser, MathQuizGame, Natural CLI (a natural language com-
mand line tool), Beasties (a command line game), HtmlCleaner, and iText (a
PDF library) [20]. These benchmarks represent server-side code and employ
many input-sanitizing string operators such as replace and substring as seen
1

Results of our experiments are available at http://www.cs.ucsb.edu/∼vlab/ABC/.

http://www.cs.ucsb.edu/~vlab/ABC/

268 A. Aydin et al.

in Table 1. These string constraints were generated by extracting program path
constraints through dynamic symbolic execution [20].

In [20], an empirical evaluation of several string constraint solvers is pre-
sented. As a part of this empirical evaluation, the authors use the symbolic string
analysis library of Stranger [36,38,39] to construct automata for path constraints
on strings. In order to evaluate the model counting component of ABC, we ran
their tool on the 7 benchmark sets and output the resulting automata whenever
the constraint is satisfiable. Out of 116,164 string path constraints, 66,236 were
found to be satisfiable and we performed model counting on those cases. The
constraints in Java benchmarks are all single-variable or pseudo-relational con-
straints. The resulting automata do not have any over-approximation caused by
relational constraints. As a measure of the size of the resulting automata, we
give the number of BDD nodes used in the symbolic transition relation repre-
sentation of MONA. The average number of BDD nodes for the satisfiable path
constraints is 69.51 and the size of the each BDD node is 16 bytes. For these
benchmarks our model-counter is efficient; the average running time of model
counting per path constraint is 0.0015 seconds and the resulting model-counting
recurrence is precise, i.e., gives the exact count for any given bound.

SMC and CVC4 are not able to handle the constraints in this data set since
they do not support sanitization operations such as replace.

SMC Examples. For a comparative evaluation of our tool with SMC, we used
the examples that are listed on SMC’s web page. We translated the 6 example
constraints listed in Table 2 into SMT-LIB2 language format that we support.
We inspected the examples to confirm that they are pseudo-relational, i.e., our
analysis generates a precise model-counting function for these constraints. We
compare our results with the results reported in SMC’s web page. The first
column of the Table 2 shows the file names of these example constraints. The
second column shows the bounds used for obtaining the model counts. The next
two columns show the log-scale SMC lower and upper bound values for the model
counts. The last column shows the log-scale model count produced by ABC. We
omit the decimal places of the numbers to fit them on the page. For all the cases
ABC generates a precise count given the bound. ABC’s count is exactly equal
to SMC’s upper bound for four of the examples and is exactly equal to SMC’s
lower bound for one example. For the last example ABC reports a count that is
between the lower and upper bound produced by SMC. Note that these are log
scaled values and actual differences between a lower and an upper-bound values
are huge. Although SMC is unable to produce an exact answer for any of these
examples, ABC produces an exact count for each of them.

JavaScript Benchmarks. We also experimented with Kaluza benchmarks
which were extracted from JavaScript code via dynamic symbolic execution [28].
These benchmarks are divided to a small and large set based on the sizes of the
constraints. These benchmarks have been used by both SMC and CVC4 tools.
ABC handles 19,731 benchmark constraints in the satisfiable small set with an
average of 0.32 seconds per constraint for model counting, whereas SMC handles
17,559 constraints with an average of 0.26 seconds per constraint. ABC handles

Automata-Based Model Counting for String Constraints 269

Table 2. Log scaled comparison between SMC and ABC

bound SMC lower bound SMC upper bound ABC count

nullhttpd 500 3752 3760 3760

ghttpd 620 4880 4896 4896

csplit 629 4852 4921 4921

grep 629 4676 4763 4763

wc 629 4281 4284 4281

obscure 6 0 3 2

1,587 benchmark constraints in satisfiable big set with an average of 0.34 seconds
per constraint for model counting, whereas SMC handles 1,342 constraints with
an average of 5.29 seconds per constraint. We were not able to do a one-to-one
timing and precision comparison between ABC and SMC for each constraint due
to an error in the SMC data file (the mapping between file names and results is
incorrect).

Table 3. Constraint-solver comparison

ABC CVC4 ABC CVC4 ABC CVC4 ABC CVC4 ABC CVC4

sat - sat unsat-unsat sat-unsat unsat-sat sat-timeout

sat/small 19728 3 0 0 0

sat/big 1587 0 0 0 0

unsat/small 8139 3013 74 0 0

unsat/big 3419 5904 2385 0 2359

Satisfiability Checking Evaluation. We ran ABC on SMT-LIB 2 transla-
tion of the full set of JavaScript benchmarks. We put a 20-second CPU timeout
limit on ABC for each benchmark constraint. Table 3 shows the comparison
between ABC and the CVC4 [24] constraint solver based on the CVC4 results
that are available online. The first column shows the initial satisfiability clas-
sification of the data set by the creators of the benchmarks [28]. The next two
columns show the number of results that ABC and CVC4 agree. The last three
columns show the cases where ABC and CVC4 differ. Note that, since ABC
over-approximates the solution set, if the given constraint is not single-valued
or pseudo-relational, it is possible for ABC to classify a constraint as satisfi-
able even if it is unsatisfiable. However, it is not possible for ABC to classify a
constraint unsatisfiable if it is satisfiable. Out of 47,284 benchmark constraints
ABC and CVC4 agree on 41,793 of them. As expected ABC never classifies a
constraint as unsatisfiable if CVC4 classifies it as satisfiable. However, due to
over-approximation of relational constraints, ABC classifies 2,459 constraints as

270 A. Aydin et al.

satisfiable although CVC4 classifies them as unsatisfiable. A practical approach
would be to use ABC together with a satisfiability solver like CVC4, and, given
a constraint, first use the satisfiability solver to determine the satisfiability of
the formula, and then use ABC to generate its truth set and the model counting
function.

The average automata construction time for big benchmark constraints is
0.44 seconds and for small benchmark constraints it is 0.01 seconds. CVC4 aver-
age running times are 0.18 seconds and 0.015 seconds respectively (excluding
timeouts). CVC4 times out for 2359 constraints, whereas ABC never times out.
For those 2359 constraints, ABC reports satisfiable. ABC is unable to handle
672 constraints; the automata package we use (MONA) is unable to handle the
resulting automata and we believe that these cases can be solved by modifying
MONA. For these 672 constraints; CVC4 times out for 29 of them, reports unsat
for 246 of them, and reports sat for 397 of them. There are also a few thousand
constraints from the Kaluza benchmarks that CVC4 is unable to handle.

6 Conclusions and Future Work

We presented a model-counting string constraint solver that, given a constraint,
generates: (1) An automaton that accepts all solutions to the given string con-
straint; (2) A model-counting function that, given a length bound, returns the
number of solutions within that bound. Our experiments on thousands of con-
straints extracted from real-world web applications demonstrates the effective-
ness and efficiency of the proposed approach. Our string constraint solver can
be used in quantitative information flow, probabilistic analysis and automated
repair synthesis. We plan to extend our automata-based model-counting app-
roach to Presburger arithmetic constraints using an automata-based representa-
tion for Presburger arithmetic constraints [4,34].

References

1. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Hoĺık, L., Rezine, A., Rümmer, P., Sten-
man, J.: String constraints for verification. In: Biere, A., Bloem, R. (eds.) CAV
2014. LNCS, vol. 8559, pp. 150–166. Springer, Heidelberg (2014)

2. Alkhalaf, M., Aydin, A., Bultan, T.: Semantic differential repair for input valida-
tion and sanitization. In: Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA), pp. 225–236 (2014)

3. Alkhalaf, M., Bultan, T., Gallegos, J.L.: Verifying client-side input validation func-
tions using string analysis. In: Proceedings of the 34th International Conference
on Software Engineering (ICSE), pp. 947–957 (2012)

4. Bartzis, C., Bultan, T.: Efficient symbolic representations for arithmetic constraints
in verification. Int. J. Found. Comput. Sci. 14(4), 605–624 (2003)

5. Biggs, N.: Algebraic Graph Theory. Cambridge University Press, Cambridge Math-
ematical Library, Cambridge (1993)

6. Bjørner, N., Tillmann, N., Voronkov, A.: Path feasibility analysis for string-
manipulating programs. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009.
LNCS, vol. 5505, pp. 307–321. Springer, Heidelberg (2009)

Automata-Based Model Counting for String Constraints 271

7. Borges, M., Filieri, A., d’Amorim, M., Pasareanu, C.S., Visser, W.: Compositional
solution space quantification for probabilistic software analysis. In: Proceedigns
of the ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI) (2014)

8. BRICS. The MONA project. http://www.brics.dk/mona/
9. Christensen, A.S., Møller, A., Schwartzbach, M.I.: Precise analysis of string expres-

sions. In: Proceedings of the 10th International Static Analysis Symposium (SAS),
pp. 1–18 (2003)

10. Clark, D., Hunt, S., Malacaria, P.: A static analysis for quantifying information
flow in a simple imperative language. J. Comput. Secur. 15(3), 321–371 (2007)

11. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms,
2nd edn. McGraw-Hill Higher Education, Boston (2001)

12. D’Antoni, L., Veanes, M.: Static analysis of string encoders and decoders. In: Gia-
cobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp.
209–228. Springer, Heidelberg (2013)

13. Filieri, A., Pasareanu, C.S., Visser, W.: Reliability analysis in symbolic pathfinder.
In: Proceedings of the 35th International Conference on Software Engineering
(ICSE), pp. 622–631 (2013)

14. Flajolet, P., Sedgewick, R.: Analytic Combinatorics, 1st edn. Cambridge University
Press, New York (2009)

15. Ganesh, V., Minnes, M., Solar-Lezama, A., Rinard, M.: Word equations with length
constraints: what’s decidable? In: Biere, A., Nahir, A., Vos, T. (eds.) HVC. LNCS,
vol. 7857, pp. 209–226. Springer, Heidelberg (2013)

16. Gross, J.L., Yellen, J., Zhang, P.: Handbook of Graph Theory, 2nd edn. Chapman
and Hall/CRC, Boca Raton (2013)

17. Hooimeijer, P., Livshits, B., Molnar, D., Saxena, P., Veanes, M.: Fast and precise
sanitizer analysis with bek. In: Proceedings of the 20th USENIX Conference on
Security (2011)

18. Hooimeijer, P., Weimer, W.: A decision procedure for subset constraints over regu-
lar languages. In: Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pp. 188–198 (2009)

19. Hooimeijer, P., Weimer, W.: Solving string constraints lazily. In: Proceedings of the
25th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pp. 377–386 (2010)

20. Kausler, S., Sherman, E.: Evaluation of string constraint solvers in the context of
symbolic execution. In: Proceedings of the 29th ACM/IEEE International Confer-
ence on Automated Software Engineering (ASE), pp. 259–270 (2014)

21. Kiezun, A., Ganesh, V., Guo, P.J., Hooimeijer, P., Ernst, M.D.: Hampi: a solver
for string constraints. In: Proceedings of the 18th International Symposium on
Software Testing and Analysis (ISSTA), pp. 105–116 (2009)

22. Knuth, D.E.: The Art of Computer Programming, Volume 1: Fundamental Algo-
rithms. Addison-Wesley, Reading (1968)

23. Li, G., Ghosh, I.: PASS: string solving with parameterized array and interval
automaton. In: Bertacco, V., Legay, A. (eds.) HVC 2013. LNCS, vol. 8244, pp.
15–31. Springer, Heidelberg (2013)

24. Liang, T., Reynolds, A., Tinelli, C., Barrett, C., Deters, M.: A DPLL(T) Theory
solver for a theory of strings and regular expressions. In: Biere, A., Bloem, R. (eds.)
CAV 2014. LNCS, vol. 8559, pp. 646–662. Springer, Heidelberg (2014)

25. Luu, L., Shinde, S., Saxena, P., Demsky, B.: A model counter for constraints over
unbounded strings. In: Proceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI), p. 57 (2014)

http://www.brics.dk/mona/

272 A. Aydin et al.

26. McCamant, S., Ernst, M.D.: Quantitative information flow as network flow capac-
ity. In: Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pp. 193–205 (2008)

27. Phan, Q.-S., Malacaria, P., Tkachuk, O., Păsăreanu, C.S.: Symbolic quantitative
information flow. SIGSOFT Softw. Eng. Notes 37(6), 1–5 (2012)

28. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic
execution framework for javascript. In: Proceedings of the 31st IEEE Symposium
on Security and Privacy (2010)

29. Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L.
(ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009)

30. Stanley, R.P.: Enumerative Combinatorics: vol. 1, 2nd edn. Cambridge University
Press, New York (2011)

31. Tateishi, T., Pistoia, M., Tripp, O.: Path- and index-sensitive string analysis based
on monadic second-order logic. In: Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA), pp. 166–176 (2011)

32. Trinh, M.-T., Chu, D.-H., Jaffar, J.: S3: a symbolic string solver for vulnerability
detection in web applications. In: Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security (CCS), pp. 1232–1243 (2014)

33. Wolfram Research Inc., Mathematica (2014). http://www.wolfram.com/
mathematica/

34. Wolper, P., Boigelot, B.: On the construction of automata from linear arithmetic
constraints. In: Graf, S. (ed.) TACAS 2000. LNCS, vol. 1785, pp. 1–19. Springer,
Heidelberg (2000)

35. Yu, F.: Automatic verification of string manipulating programs. Ph.D. thesis. Uni-
versity of California, Santa Barbara (2010)

36. Yu, F., Alkhalaf, M., Bultan, T.: Stranger: an automata-based string analysis
tool for PHP. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015,
pp. 154–157. Springer, Heidelberg (2010)

37. Yu, F., Alkhalaf, M., Bultan, T.: Patching vulnerabilities with sanitization synthe-
sis. In: Proceedings of the 33rd International Conference on Software Engineering
(ICSE), pp. 131–134 (2011)

38. Fang, Y., Alkhalaf, M., Bultan, T., Ibarra, O.H.: Automata-based symbolic string
analysis for vulnerability detection. Formal Methods Syst. Des. 44(1), 44–70 (2014)

39. Yu, F., Bultan, T., Cova, M., Ibarra, O.H.: Symbolic string verification: an
automata-based approach. In: Havelund, K., Majumdar, R. (eds.) SPIN 2008.
LNCS, vol. 5156, pp. 306–324. Springer, Heidelberg (2008)

40. Zheng, Y., Zhang, X., Ganesh, V.: Z3-str: a z3-based string solver for web applica-
tion analysis. In: Proceedings of the 9th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE), pp. 114–124 (2013)

http://www.wolfram.com/mathematica/
http://www.wolfram.com/mathematica/

OpenJDK’s Java.utils.Collection.sort()
Is Broken: The Good, the Bad

and the Worst Case

Stijn de Gouw1,2(B), Jurriaan Rot1,3, Frank S. de Boer1,3,
Richard Bubel4, and Reiner Hähnle4

1 CWI, Amsterdam, The Netherlands
cdegouw@gmail.com

2 SDL, Amsterdam, The Netherlands
3 Leiden University, Leiden, The Netherlands

4 Technische Universität Darmstadt, Darmstadt, Germany

Abstract. We investigate the correctness of TimSort, which is the main
sorting algorithm provided by the Java standard library. The goal is
functional verification with mechanical proofs. During our verification
attempt we discovered a bug which causes the implementation to crash.
We characterize the conditions under which the bug occurs, and from
this we derive a bug-free version that does not compromise the perfor-
mance. We formally specify the new version and mechanically verify the
absence of this bug with KeY, a state-of-the-art verification tool for Java.

1 Introduction

Some of the arguments often invoked against the usage of formal software veri-
fication include the following: it is expensive, it is not worthwhile (compared to
its cost), it is less effective than bug finding (e.g., by testing, static analysis, or
model checking), it does not work for “real” software. In this article we evaluate
these arguments in terms of a case study in formal verification.

The goal of this paper is functional verification of sorting algorithms written
in Java with mechanical proofs. Because of the complexity of the code under
verification, it is essential to break down the problem into subtasks of manage-
able size. This is achieved with contract-based deductive verification [3], where
the functionality and the side effects of each method are precisely specified with
expressive first-order contracts. In addition, each class is equipped with an invari-
ant that has to be re-established by each method upon termination. These formal
specifications are expressed in the Java Modeling Language (JML) [11].

We use the state-of-art Java verification tool KeY [4], a semi-automatic, inter-
active theorem prover, which covers nearly full sequential Java. KeY typically
finds more than 99 % of the proof steps automatically (see Sect. 6), while the

Partly funded by the EU project FP7-610582 Envisage and the NWO project
612.063.920 CoRE.

c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 273–289, 2015.
DOI: 10.1007/978-3-319-21690-4 16

274 S. de Gouw et al.

remaining ones are interactively done by a human expert. This is facilitated by
the use in KeY of symbolic execution plus invariant reasoning as its proof para-
digm. That results in a close correspondence between proof nodes and symbolic
program states which brings the experience of program verification somewhat
close to that of debugging.

The work presented here was motivated by our recent success to verify
executable Java versions of counting sort and radix sort in KeY with man-
ageable effort [6]. As a further challenge we planned to verify a complicated
sorting algorithm taken from the widely used OpenJDK core library. It turns
out that the default implementation of Java’s java.util.Arrays.sort() and
java.util.Collection.sort() method is an ideal candidate: it is based on a
complex combination of merge sort and insertion sort [12,15]. It had a bug his-
tory1, but was reported as fixed as of Java version 8. We decided to verify the
implementation, stripped of generics, but otherwise completely unchanged and
fully executable. The implementation is described in Sect. 2.

During our verification attempt we discovered that the fix to the bug men-
tioned above is in fact not working. We succeeded to characterize the conditions
under which the bug occurs and results in a crash (Sect. 4) and from this we could
derive a bug-free version (Sect. 5) that does not compromise the performance.

We provide a detailed experience report (Sect. 6) on the formal specification
and mechanical verification of correctness and termination of the fixed version
with KeY (Sects. 5, 6). Summarizing, our real-life case study shows that formal
specification and verification, at least of library code, pays off, but also shows
the limitations of current verification technology. In Sect. 7 we draw conclusions.

Related Work. Several industrial case studies have already been carried out in
KeY [1,13,14]. The implementation considered here and its proof is the most
complex and one of the largest so far. The first correctness proof of a sort-
ing algorithm is due to Foley and Hoare, who formally verified Quicksort by
hand [9]. Since then, the development and application of (semi)-automated the-
orem provers has become standard in verification. The major sorting algorithms
Insertion sort, Heapsort and Quicksort were proven correct by Filliâtre and Mag-
aud [8] using Coq, and Sternagel [16] formalized a proof of Mergesort within the
interactive theorem prover Isabelle/HOL.

2 Implementation of TimSort

The default implementation of java.util.Arrays.sort for non-primitive types
is TimSort, a hybrid sorting algorithm based on mergesort and insertion sort.
The algorithm reorders a specified segment of the input array incrementally from
left to right by finding consecutive (disjoint) sorted segments. If these segments
are not large enough, they are extended using insertion sort. The starting posi-
tions and the lengths of the generated segments are stored on a stack. During
execution some of these segments are merged according to a condition on the
1 http://bugs.java.com/view bug.do?bug id=8011944.

http://bugs.java.com/view_bug.do?bug_id=8011944

OpenJDK’s Java.utils.Collection.sort() Is Broken 275

top elements of the stack, ensuring that the lengths of the generated segments
are decreasing and the length of each generated segment is greater than the sum
of the next two. In the end, all segments are merged, yielding a sorted array.

We explain the algorithm in detail based on the important parts of the Java
implementation. The stack of runs (a sorted segment is called here a “run”) is
encapsulated by the object variable ts. The stack of starting positions and run
lengths is represented by the arrays of integers runBase and runLen, respectively.
The length of this stack is denoted by the instance variable stackSize. The main
loop is as follows (with original comments):

Listing 1. Main loop of TimSort

1 do {
2 // Identify next run
3 int runLen = countRunAndMakeAscending(a, lo, hi, c);
4 // If run is short, extend to min(minRun, nRemaining)
5 if (runLen < minRun) {
6 int force = nRemaining <= minRun ? nRemaining : minRun;
7 binarySort(a, lo, lo + force, lo + runLen, c);
8 runLen = force;
9 }

10 // Push run onto pending−run stack, and maybe merge
11 ts.pushRun(lo, runLen);
12 ts.mergeCollapse();
13 // Advance to find next run
14 lo += runLen;
15 nRemaining −= runLen;
16 } while (nRemaining != 0);
17 // Merge all remaining runs to complete sort
18 assert lo == hi;
19 ts.mergeForceCollapse();
20 assert ts.stackSize == 1;

In each iteration of the above loop, the next run is constructed. First, a maximal
ordered segment from the current position lo is constructed (the parameter hi
denotes the upper bound of the entire segment of the array a to be sorted).
This construction consists in constructing a maximal descending or ascending
segment and reversing the order in case of a descending one. If the constructed
run is too short (that is, less than minRun) then it is extended to a run of length
minRun using binary insertion sort (nRemaining is the number of elements yet
to be processed). Next, the starting position and the length of the run is pushed
onto the stack of the object variable ts by the method pushRun below.

Listing 2. pushRun

1 private void pushRun(int runBase, int runLen) {
2 this.runBase[stackSize] = runBase;
3 this.runLen[stackSize] = runLen;
4 stackSize++; }

The method mergeCollapse subsequently checks whether the invariant (lines
4—5 of Listing 3) on the stack of runs still holds, and merges runs until the
invariant is restored (explained in detail below). When the main loop terminates,
the method mergeForceCollapse completes sorting by merging all stacked runs.

276 S. de Gouw et al.

Listing 3. mergeCollapse

1 /∗∗
2 ∗ Examines the stack of runs waiting to be merged and merges
3 ∗ adjacent runs until the stack invariants are reestablished:
4 ∗ 1. runLen[i − 3] > runLen[i − 2] + runLen[i − 1]
5 ∗ 2. runLen[i − 2] > runLen[i − 1]
6 ∗ This method is called each time a new run is pushed onto the stack,
7 ∗ so the invariants are guaranteed to hold for i < stackSize upon
8 ∗ entry to the method.
9 ∗/

10 private void mergeCollapse() {
11 while (stackSize > 1) {
12 int n = stackSize − 2;
13 if (n > 0 && runLen[n−1] <= runLen[n] + runLen[n+1]) {
14 if (runLen[n − 1] < runLen[n + 1])
15 n−−;
16 mergeAt(n);
17 } else if (runLen[n] <= runLen[n + 1]) {
18 mergeAt(n);
19 } else {
20 break; // Invariant is established
21 }
22 }
23 }

The method mergeCollapse ensures that the top three elements of the stack sat-
isfy the invariant given in the comments above. In more detail, let runLen[n-1] =
C, runlen[n] = D, and runLen[n+1] = E be the top three elements. Opera-
tionally, the loop is based on the following cases: 1. If C ≤ D+E and C < E then
the runs at n-1 and n are merged. 2. If C ≤ D + E and C ≥ E then the runs at n
and n+1 are merged. 3. If C > D + E and D ≤ E then the runs at n and n+1 are
merged. 4. If C > D + E and D > E then the loop exits.

3 Breaking the Invariant

We next show that the method mergeCollapse does not preserve the invariant
in the entire run stack, contrary to what is suggested in the comments. To see
this, consider as an example the situation where runLen consists of 120, 80, 25,
20, 30 on entry of mergeCollapse, directly after 30 has been added by pushRun.
In the first iteration of the mergeCollapse loop there will be a merge at 25, since
25 ≤ 20 + 30 and 25 < 30, resulting in (Listing 3, lines 15 and 16): 120×, 80,
45, 30. In the second iteration, it is checked that the invariant is satisfied at 80
and 45 (lines 13 and 17), which is the case since 80 > 45 + 30 and 45 > 30, and
mergeCollapse terminates. But notice that the invariant does not hold at 120,
since 120 ≤ 80 + 45. Thus, mergeCollapse has not fully restored the invariant.

More generally, an error (violation of the invariant) can only be introduced
by merging the second-to-last element and requires precisely four elements after
the position of the error, i.e., at runLen[stackSize-5]. Indeed, suppose runLen
consists of four elements A,B,C,D satisfying the invariant (so A > B + C,
B > C + D and C > D). We add a fifth element E to runLen using pushRun,
after which mergeCollapse is called. The only possible situation in which an
error can be introduced, is when C ≤ D +E and C < E. In this case, C and D
will be merged, yielding the stack A,B,C + D,E. Then mergeCollapse checks

OpenJDK’s Java.utils.Collection.sort() Is Broken 277

whether the invariant is satisfied by the new three top elements. But A is not
among those, so it is not checked whether A > B + C + D. As shown by the
above example, this latter inequality does not hold in general.

3.1 The Length of runLen

The invariant affects the maximal size of the stack of run lengths during exection;
recall that this stack is implemented by runLen and stackSize. The length of
runLen is declared in the constructor of TimSort, based on the length of the input
array a and, as shown below, on the assumption that the invariant holds. For
performance reasons it is crucial to choose runLen.length as small as possible
(but so that stackSize does not exceed it). The original Java implementation
is as follows2 (in a recent update the number 19 was changed to 24, see Sect. 4):

Listing 4. Bound of runLen based on length of the input array

1 int len = a.length;
2 int stackLen = (len < 120 ? 5 :
3 len < 1542 ? 10 :
4 len < 119151 ? 19 : 40);

We next explain these numbers, assuming the invariant to hold. Consider the
sequence (bi)i≥0, defined inductively by b0 = 0, b1 = 16 and bi+2 = bi+1 + bi +1.
The number 16 is a general lower bound on the run lengths. Now b0, . . . , bn are
lower bounds on the run lengths in an array runLen of length n that satisfy the
invariant; more precisely, bi−1 ≤ runLen[n-i] for all i with 0 < i ≤ n.

Let runLen be a run length array arising during execution, assume it satisfies
the invariant, and let n = stackSize. We claim that for any number B such
that 1 +

∑B
i=0 bi > a.length we have n ≤ B throughout execution. This means

that B is a safe bound, since the number of stack entries never exceeds B.
The crucial property of the sequence (bi) is that throughout execution we

have
∑n−1

i=0 bi <
∑n−1

i=0 runLen[i] using that b0 = 0 < runLen[n-1] and bi−1 ≤
runLen[n-i]. Moreover, we have

∑n−1
i=0 runLen[i] ≤ a.length since the runs

in runLen are disjoint segments of a. Now for any B chosen as above, we have∑n−1
i=0 bi <

∑n−1
i=0 runLen[i] ≤ a.length < 1 +

∑B
i=0 bi and thus n ≤ B.

Hence, we can safely take runLen.length to be the least B such that 1 +
∑B

i=0 bi > a.length. If a.length < 120 we thus have 4 as the minimal choice
of the bound, for a.length < 1542 it is 9, etc. This shows that the bounds used
in OpenJDK (Listing 4) are slightly suboptimal (off by 1). The default value 40
(39 is safe) is based on the maximum 231 − 1 of integers in Java.

4 Worst Case Stack Size

In Sect. 3 we showed that the declared length of runLen is based on the invariant,
but that the invariant is not fully preserved. However, this does not necessarily
2 TimSort can also be used to sort only a segment of the input array; in this case, len

should be based on the length of this segment. In the current implementation this
is not the case, which negatively affects performance.

278 S. de Gouw et al.

result in an actual error at runtime. The goal is to find a bad case, i.e., an input
array for TimSort of a given length k, so that stackSize becomes larger than
runLen.length, causing an ArrayIndexOutOfBoundsException in pushRun. In
this section we show how to achieve the worst case: the maximal size of a stack
of run lengths which does not satisfy the invariant. For certain choices of k this
does result in an exception during execution of TimSort, as we show in Sect. 4.1.
Not only does this expose the bug, our analysis also provides a safe choice for
runLen.length that avoids the out-of-bounds exception.

The general idea is to construct a list of run lengths that leads to the worst
case. This list is then turned into a concrete input array for TimSort by gener-
ating actual runs with those lengths. For instance, a list (2,3,4) of run lengths is
turned into the input array (0,1,0,0,1,0,0,0,1) of length k = 9.

The sum of all runs should eventually sum to k. Hence, to maximize the stack
size, the runs in the worst case are short. A run that breaks the invariant is too
short, so the worst case occurs with a maximal number of runs that break the
invariant. However, the invariant holds for at least half of the entries:

Lemma 1. Throughout execution of TimSort, the invariant cannot be violated
at two consecutive runs in runLen.

Proof. Suppose, to the contrary, that two consecutive entries A and B of the
run length stack violate the invariant. Consider the moment that the error at
B is introduced, so A is already incorrect. The analysis of Sect. 3 reveals that
there must be exactly four more entries after B on the stack (labelled C . . . F)
satisfying D ≤ E + F and D < F to trigger the merge below:

A× B C D E F
A× B× C D + E F

Merging stops here (otherwise B× would be corrected), and we have 1. D < F
and 2. C > D+E +F . Next, consider the moment that C was generated. Since
A× is incorrect, C must be the result of merging some C1 and C2:

A B C1 C2 D′

This gives: 3. C1 + C2 = C, 4. C1 > C2, 5. C1 < D′, 6. D′ ≤ D. Finally, all
run lengths must be positive, thus: 7. E > 0. It is easy to check that constraints
1.–7. yield a contradiction. ��

The above lemma implies that in the worst case, runLen has the form:

Yn,X
×
n , Yn−1,X

×
n−1, . . . , Y1,X1 (1)

where each Xi invalidates the invariant, i.e., Xi ≤ Yi−1 + Xi−1, and each Yi

satisfies it, i.e., Yi > Xi + Yi−1 (except when i ≤ 2, since at least 5 elements are
required to break the invariant). In the remainder of this section we show how
to compute an input (in terms of run lengths) on which execution of TimSort
results in a run length stack of the form (1).

OpenJDK’s Java.utils.Collection.sort() Is Broken 279

Observe that the above sequence (1) can not be reached by simply choosing
an input with these run lengths: each Xi would be merged away when Xi−1 is
pushed. Instead, we choose the input run lengths in such a way that each Xi

arises as a sum of elements xi
1, . . . , x

i
ni

and each Yi occurs literally in the input.
In order to calculate the Xi’s, suppose the top three elements of the stack are

Xi, Yi−1, x
i−1
1 . Since Xi must not be merged away, we have Xi > Yi−1 + xi−1

1 .
Thus, the minimal choice of Xi’s and Yi’s is:

Xi = Yi−1 + xi−1
1 + 1 Yi = Xi + Yi−1 + 1 (2)

The base cases are X1 = m (with x1
1 = m) and Y1 = m + 4, where m = 16

is the minimal run length. From (2) we then derive that X2 = 20 + 16 + 1 = 37.
The next step is to show how the elements xi

j are computed from Xi, i ≥ 2. To
minimize the Xi’s and Yi’s, each xi

1 should be as small as possible. Moreover,
the merging pattern that arises while adding xi

j ’s needs to preserve the previous
Xi+1 and Yi+1, thus the top three elements of the stack before pushing xj should
be (omitting the index i from the x’s for readability):

Xi+1, Yi, x1 + . . . + xj−2, xj−1

Pushing xj should then result in the merge:

Xi+1, Yi, x1 + . . . + xj−2 + xj−1, xj .

and merging should stop, so x1 + . . .+ xj−1 > xj . The above merge only occurs
when x1 + . . . + xj−2 < xj . Thus, we obtain the desired merging behaviour by
choosing the sequences x1, . . . , xni

such that Xi = x1 + . . . + xni
and

for all j ≤ ni : xj ≥ m and x1 + . . . + xj−2 < xj < x1 + . . . + xj−1 (3)

Further, x1 should be chosen as small as possible to minimize Xi+1 (2).
To compute such a sequence x1, . . . , xn from a number X, we distinguish

between the case that X lies within certain intervals for which we have a fixed
choice (with optimal x1), and other ranges, for which we apply a default compu-
tation. The default computation starts with xn = X − (�X

2 � + 1) and proceeds
to compute x1, . . . , xn−1 from �X

2 � + 1. By repeatedly applying this computa-
tion, we always end up in one of the intervals for which we have a fixed choice.
Because of space limitations, we treat only the fixed choices for the intervals
[m, 2m], [2m+1, 3m+2] and [3m+3, 4m+1]. In the first case the only possible
choice is x1 = X. In the second case we take x1 = �X

2 � + 1 and x2 = X − x1.
Finally, in the last case we take x1 = m + 1, x2 = m and x3 = X − (x2 + x1).

Proposition 1. For any X, the above strategy yields a sequence that satis-
fies (3) with a minimal value of x1.

Proof. We have fixed choices for any X in [0, 2m], [2m+1, 3m+2], [3m+3, 4m+1],
[5m+5, 6m+5], [8m+9, 10m+9], [13m+15, 16m+17]. An X in the first interval
results in a sequence of length 1, in the second a sequence of length 2, etc. Except

280 S. de Gouw et al.

for the first two intervals x1 = m + 1 is always chosen. The requirements (3)
imply x1 > x2 ≥ m, thus for any X > m, x1 = m + 1 is the best we can hope
for. Next, observe that if x1 = m+ 1 is produced for X ∈ [l, r] then x1 = m+ 1,
for any X ∈ [2l − 1, 2r − 1] as well (since then (�X

2 � + 1) ∈ [l, r]). Applying this
to the interval [3m + 3, 4m + 1] gives [6m + 5, 8m + 1], which combined with
[5m+5, 6m+5] gives [5m+5, 8m+1]. We thus also get [10m+9, 16m+1], and
combining this with [8m + 9, 10m + 9] yields [8m + 9, 16m + 1]. Combining the
latter with [13m+15, 16m+17] we obtain [8m+9, 16m+17]. Since this interval
gives the optimal x1 = m+ 1, so do [16m+ 17, 32m+ 33], [32m+ 33, 64m+ 65],
etc. Hence, we have the minimal x1 = m + 1, for any X ≥ 8m + 9.

For X ≤ 8m + 9 a (tedious) case analysis shows minimality of x1. ��

All in all, we have shown how to construct an input that generates the worst case
which is of the form (1) and where each of the sequences of xi

j ’s is constructed
using the above strategy, yielding a minimal xi

1 by Proposition 1.

Theorem 1. An input corresponding to the sequence of run lengths as con-
structed above produces the largest possible stack of run lengths for a given input
length, which does not satisfy the invariant.

4.1 Breaking TimSort

We implemented the above construction of the worst case [7]. Executing TimSort
on the generated input yields the following stack sizes (given array sizes):

array size 64 128 160 65536 131072 67108864 1073741824

required stack size 3 4 5 21 23 41 49

runLen.length 5 10 10 19 (24) 40 40 40

The table above lists the required stack size for the worst case of a given
length. The third row shows the declared bounds in the TimSort implementation
(see Listing 4). The number 19 was recently updated to 24 after a bug report1.

This means that, for instance, the worst case of length 160 requires a stack
size of 5, and thus the declared runLen.length = 10 suffices. Further observe
that 19 does not suffice for arrays of length at least 65536, whereas 24 does. For
the worst case of length 67108864, the declared bound 40 does not suffice, and
running TimSort yields an unpleasant result:

Listing 5. Exception during exection of TimSort
Exception in thread”main” java.lang.ArrayIndexOutOfBoundsException: 40

at java.util.TimSort.pushRun(TimSort.java:386)
at java.util.TimSort.sort(TimSort.java:213)
at java.util.Arrays.sort(Arrays.java:659)
at TestTimSort.main(TestTimSort.java:18)

OpenJDK’s Java.utils.Collection.sort() Is Broken 281

5 Verification of a Fixed Version

In Sect. 3 we showed that mergeCollapse does not fully re-establish the invari-
ant, which led to an ArrayIndexOutOfBoundsException in pushRun. The pre-
vious section provides a possible workaround: adjust runLen.length using a
worst-case analysis. That section also made clear that this analysis is based on
an intricate argument that seems infeasible for a mechanized correctness proof.

Therefore, we provide a more principled solution. We fix mergeCollapse so
that the class invariant is re-established, formally specify the new implemen-
tation in JML and provide a formal correctness proof, focussing on the most
important specifications and proof obligations. This formal proof has been fully
mechanized in the theorem prover KeY [4] (see Sect. 6 for an experience report).

Listing 6. Fixed version of mergeCollapse

1 private void mergeCollapse() {
2 while (stackSize > 1) {
3 int n = stackSize − 2;
4 if (n >= 1 && runLen[n−1] <= runLen[n] + runLen[n+1]
5 || n >= 2 && runLen[n−2] <= runLen[n] + runLen[n−1]) {
6 if (runLen[n−1] < runLen[n+1])
7 n−−;
8 } else if (runLen[n] > runLen[n+1]) {
9 break; // Invariant is established

10 }
11 mergeAt(n);
12 }
13 }

Listing 6 shows the new version of mergeCollapse. The basic idea is to
check validity of the invariant on the top 4 elements of runLen (lines 4, 5 and 8),
instead of only the top 3, as in the original implementation. Merging continues
until the top 4 elements satisfy the invariant, at which point we break out of the
merging loop (line 9). We prove below that this ensures that all runs obey the
invariant.

To obtain a human readable specification and a feasible (mechanized) proof,
we introduce suitable abstractions using the following auxiliary predicates:

Name Definition

elemBiggerThanNext2(arr, idx) (0 ≤ idx ∧ idx + 2 < arr.length) →
arr[idx] > arr[idx + 1] + arr[idx + 2]

elemBiggerThanNext(arr, idx) 0 ≤ idx ∧ idx + 1 < arr.length →
arr[idx] > arr[idx + 1]

elemLargerThanBound(arr, idx, v) 0 ≤ idx < arr.length → arr[idx] ≥ v

elemInv(arr, idx, v) elemBiggerThanNext2(arr, idx)∧
elemBiggerThanNext(arr, idx)∧
elemLargerThanBound(arr, idx, v)

Intuitively, the formula elemInv(runLen, i, 16) is that runLen[i] satisfies the
invariant as given in lines 4—5 of Listing 3, and has length at least 16 (recall that

282 S. de Gouw et al.

this is a lower bound on the minimal run length). Aided by these predicates we
are ready to express the formal specification, beginning with the class invariant.

Class Invariant. A class invariant is a property that all instances of a class
should satisfy. In a design by contract setting, each method is proven in isolation
(assuming the contracts of methods that it calls), and the class invariant can
be assumed in the precondition and must be established in the postcondition,
as well as at all call-sites to other methods. The latter ensures that it is safe
to assume the class invariant in a method precondition. A precondition in JML
is given by a requires clause, and a postcondition is given by ensures. To
avoid manually adding the class invariant at all these points, JML offers an
invariant keyword which implicitly conjoins the class invariant to all pre- and
postconditions. A seemingly natural candidate for the class invariant states that
all runs on the stack satisfy the invariant and have a length of at least 16.
However, pushRun does not preserve this invariant. Further, inside the loop of
mergeCollapse (Listing 6) the mergeAt method is called, so the class invariant
must hold. But at that point the invariant can be temporarily broken by the last
4 runs in runLen due to ongoing merging. Finally, the last run pushed on the
stack in the main sorting loop (Listing 1) can be shorter than 16 if fewer items
remain. The class invariant given below addresses all this:

Listing 7. Class invariant of TimSort

1 /∗@ invariant
2 @ runBase.length == runLen.length
3 @ && (a.length < 120 ==> runLen.length==4)
4 @ && (a.length >= 120 && a.length < 1542 ==> runLen.length==9)
5 @ && (a.length>=1542 && a.length<119151 ==> runLen.length==18)
6 @ && (a.length >= 119151 ==> runLen.length==39)
7 @ && (runBase[0] + (\sum int i; 0<=i && i<stackSize; (\bigint)runLen[i]) <= a.length)
8 @ && (0 <= stackSize && stackSize <= runLen.length)
9 @ && (\forall int i; 0<=i && i<stackSize−4; elemInv(runLen, i, 16))

10 @ && elemBiggerThanNext(runLen, stackSize−4)
11 @ && elemLargerThanBound(runLen, stackSize−3, 16)
12 @ && elemLargerThanBound(runLen, stackSize−2, 16)
13 @ && elemLargerThanBound(runLen, stackSize−1, 1)
14 @ && elemLargerThanBound(runBase, 0, 0)
15 @ && (\forall int i; 0<=i && i<stackSize−1;
16 @ (\bigint)runBase[i] + runLen[i] == runBase[i+1]);
17 @∗/

Lines 3–6 specify the length of runLen in terms of the length of the input
array a. Line 7–8 formalizes the property that the length of all runs together
(i.e., the sum of all run lengths) does not exceed a.length. Line 9 contains
bounds for stackSize. Line 10 expresses that all but the last 4 elements satisfy
the invariant. The properties satisfied by the last 4 elements are specified on
lines 11–14. Lines 15–17 formalize that run i starts at runBase[i] and extends
for runLen[i] elements. As JML by default uses Java integer types, which can
overflow, we need to make sure this does not happen by casting those expressions
that potentially can overflow to \bigint.

OpenJDK’s Java.utils.Collection.sort() Is Broken 283

The pushRun method. This method adds a new run of length runLen to the stack,
starting at index runBase3. Lines 4–5 of Listing 8 express that the starting index
of the new run (runBase) directly follows after the end index of the last run (at
index stackSize-1 in this.runLen and this.runBase). The assignable clause
indicates which locations can be modified; intuitively the assignable clause below
says that previous runs on the stack are unchanged.

Listing 8. Contract of pushRun

1 /∗@ normal behavior
2 @ requires
3 @ runLen > 0 && runLen <= a.length && runBase >= 0
4 @ && (stackSize > 0 ==> runBase ==
5 @ (\bigint)this.runBase[stackSize−1]+this.runLen[stackSize−1])
6 @ && ((\bigint)runLen + runBase <= a.length)
7 @ && (\forall int i; 0<=i && i<ts.stackSize−2; elemInv(ts.runLen,i,16))
8 @ && elemBiggerThanNext(ts.runLen, ts.stackSize−2)
9 @ && elemLargerThanBound(ts.runLen, ts.stackSize−1, 16)

10 @ ensures
11 @ this.runBase[\old(stackSize)] == runBase
12 @ && this.runLen[\old(stackSize)] == runLen
13 @ && stackSize == \old(stackSize)+1;
14 @ assignable
15 @ this.runBase[stackSize], this.runLen[stackSize], this.stackSize;
16 @∗/
17 private void pushRun(int runBase, int runLen)

The mergeCollapse method. The new implementation of mergeCollapse restores
the invariant at all elements in runLen; this is stated in lines 6–7 of Listing 9.
As mergeCollapse just merges existing runs, the sum of all run lengths should
be preserved (lines 8–9). Line 10 expresses that the length of the last run on
the stack after merging never decreases (merging increases it). This is needed to
ensure that all runs, except possibly the very last one, have length ≥ 16.

Listing 9. Contract of mergeCollapse

1 /∗@ normal behavior
2 @ requires
3 @ stackSize > 0 && elemInv(runLen, stackSize−4, 16)
4 @ && elemBiggerThanNext(runLen, stackSize−3);
5 @ ensures
6 @ (\forall int i; 0<=i && i<stackSize−2; elemInv(runLen, i, 16))
7 @ && elemBiggerThanNext(runLen, stackSize−2)
8 @ && ((\sum int i; 0<=i && i<stackSize; (\bigint)runLen[i])
9 @ == \old((\sum int i; 0<=i && i<stackSize; (\bigint)runLen[i])))

10 @ && (runLen[stackSize−1] >= \old(runLen[stackSize−1]))
11 @ && (0 < stackSize && stackSize <= \old(stackSize));
12 @∗/
13 private void mergeCollapse()

The loop invariant of mergeCollapse is given in Listing 10. As discussed above,
merging preserves the sum of all run lengths (lines 2–3). Line 4 expresses that all
but the last four runs satisfy the invariant: a merge at index stackSize-3 (before
merging) can break the invariant of the run at index stackSize-4 after merging
(beware: stackSizewas decreased). Lines 5–8 state the conditions satisfied by the

3 These parameters shadow the instance variables with the same name; to refer to the
instance variables in specifications one prefixes this, just like in Java.

284 S. de Gouw et al.

last 4 runs. Lines 9–10 specify consistency between runLen and runBase. The last
line states that stackSize can only decrease through merging.

Listing 10. Loop Invariant of mergeCollapse

1 /∗@ loop invariant
2 @ ((\sum int i; 0<=i && i<stackSize; runLen[i])
3 @ == \old((\sum int i; 0<=i && i<stackSize; runLen[i])))
4 @ && (\forall int i; 0<=i && i<stackSize−4; elemInv(runLen, i, 16))
5 @ && elemBiggerThanNext(runLen, stackSize−4)
6 @ && elemLargerThanBound(runLen, stackSize−3, 16)
7 @ && elemLargerThanBound(runLen, stackSize−2, 16)
8 @ && elemLargerThanBound(runLen, stackSize−1, 1)
9 @ && (\forall int i; 0<=i && i<stackSize−1;

10 @ (\bigint)runBase[i] + runLen[i] == runBase[i+1])
11 @ && (runLen[stackSize−1] >= \old(runLen[stackSize−1]))
12 @ && (0 < stackSize && stackSize <= \old(stackSize));
13 @∗/

To prove the contracts, several verification conditions must be established. We
discuss the two most important ones. The first states that on entry of pushRun,
the stackSize must be smaller than the stack length. The ArrayIndexOutOf-
BoundsException of Listing 5 was caused by the violation of that property:

requires(pushRun) && cl. invariant ==> stackSize < this.runLen.length

Proof. Line 9 of the class invariant implies stackSize ≤ this.runLen.length.
We derive a contradiction from stackSize = this.runLen.length by consid-
ering four cases: a.length < 120, or a.length ≥ 120 && a.length < 1542, or
a.length ≥ 1542 && a.length < 119151, or a.length ≥ 119151. We detail the
case a.length < 120, the other cases are analogous. Since a.length < 120, line 3
of the class invariant implies stackSize = this.runLen.length = 4.

Let SUM = this.runLen[0] + . . . + this.runLen[3]. Suitable instances of
lines 16–17 of the class invariant imply this.runBase[3] + this.runLen[3] =
this.runBase[0] + SUM. Together with line 15 of the class invariant and lines
4–6 of the pushRun contract we get runLen + SUM < 120. But the \requires
clause of pushRun implies runLen > 0, so SUM < 119. The \requires clause also
implies runLen[3] ≥ 16 (line 9), runLen[2] ≥ 17 (line 8), runLen[1] ≥ 34 and
runLen[0] ≥ 52 (line 7). So SUM ≥ 16 + 17 + 34 + 52 = 119, a contradiction. ��

The second verification condition arises from the break statement in the
mergeCollapse loop (Listing 6, line 9). At that point the guards on line 4 and
5 are false, the one on line 8 is true, and the \ensures clause of mergeCollapse
(which implies that the invariant holds for all runs in runLen) must be proven:

⎛

⎜
⎝

loop invariant of mergeCollapse && n = stackSize-2
&& n > 0 ==> runLen[n-1] > runLen[n] + runLen[n+1]
&& n > 1 ==> runLen[n-2] > runLen[n-1] + runLen[n]
&& n >= 0 ==> runLen[n] > runLen[n+1]

⎞

⎟
⎠

==> \ensures (mergeCollapse)

Proof. Preservation of sums (lines 8–9 of \ensures) follows directly from lines
2–3 of the loop invariant. Lines 10–11 of \ensures are implied by lines 11–12 of

OpenJDK’s Java.utils.Collection.sort() Is Broken 285

the loop invariant. The property elemBiggerThanNext(runLen,stackSize-2)
follows directly from n >= 0 ==> runLen[n] > runLen[n+1]. We show by cases
that \forall int i; 0<=i && i<stackSize-2; elemInv(runLen, i, 16).

– i < stackSize − 4: from line 4 of the loop invariant.
– i = stackSize − 4: from line 3 of the premise. The original mergeCollapse

implementation (Listing 3) did not cover this case, which was the root cause
that the invariant elemInv(runLen, i, 16) could be false for some i.

– i = stackSize − 3: from the second line of the premise. ��

Of course, these proof obligations (plus all others) were formally shown in KeY.

5.1 Experimental Evaluation

The new version of mergeCollapse passes all relevant OpenJDK unit tests4.
However, it introduces a potential extra check in the loop, which might affect
performance. We compared the new version with the OpenJDK implementation
using the benchmark created by the original author of the Java port of TimSort.
This benchmark is part of OpenJDK5. It generates input of several different
types, of varying sizes and repetitions. We executed the benchmark on three
different setups: (Sys. 1): MacBookPro, Intel Core i7 @ 2.6 GHz, 8 GB, 4 core;
(Sys. 2): Intel Core i7 @ 2.8 GHz, 6 GB, 2 core; (Sys. 3): Intel(R) Core(TM)
i7 @ 3.4 GHz, 16 GB, 4 core. The table below summarizes the average speedup
over 25 runs on each setup (see [7] for full results). The speedup is computed by
dividing the benchmark result of the new version by the result of the original
version. Thus, a value larger than 1 means that the new version wins.

Sys. 1 Sys. 2 Sys. 3 Average

ALL EQUAL INT 0.9796 1.0094 1.0058 0.9983

ASCENDING 10 RND AT END INT 0.9982 0.9997 0.9942 0.9974

ASCENDING 3 RND EXCH INT 1.0084 1.0130 1.0021 1.0079

ASCENDING INT 0.9810 1.0082 1.0039 0.9977

DESCENDING INT 0.9740 0.9897 0.9868 0.9835

DUPS GALORE INT 0.9910 0.9980 0.9981 0.9957

PSEUDO ASCENDING STRING 0.9652 0.9926 0.9929 0.9836

RANDOM BIGINT 1.0064 1.0057 1.0047 1.0056

RANDOM INT 0.9912 0.9989 0.9993 0.9965

RANDOM WITH DUPS INT 0.9956 0.9971 0.9999 0.9975

WORST CASE 1.0062 1.0075 1.0127 1.0088

All together (average) 0.9906 1.0018 1.0000 0.9975

4
http://hg.openjdk.java.net/jdk7u/jdk7u/jdk/file/70e3553d9d6e/test/java/util/Arrays/Sorting.
java.

5
http://hg.openjdk.java.net/jdk7u/jdk7u/jdk/file/70e3553d9d6e/test/java/util/TimSort.

http://hg.openjdk.java.net/jdk7u/jdk7u/jdk/file/70e3553d9d6e/test/java/util/Arrays/Sorting.java
http://hg.openjdk.java.net/jdk7u/jdk7u/jdk/file/70e3553d9d6e/test/java/util/Arrays/Sorting.java
http://hg.openjdk.java.net/jdk7u/jdk7u/jdk/file/70e3553d9d6e/test/java/util/TimSort

286 S. de Gouw et al.

The first column contains the type of input. We added WORST CASE, which
generates the worst case as presented in Sect. 4. This case is important because
it discriminates the two versions as much as possible. The other types of input
are defined in ArrayBuilder.java which is part of the OpenJDK benchmark.
We conclude that the new version does not negatively affect the performance.

6 Experience with KeY

We constructed a mechanized proof in KeY, showing correctness of the class
invariant, the absence of exceptions and termination for all methods that affect
the bug. Due to the complexity of Timsort, this requires interactivity as well as
powerful automated search strategies.

However, two methods (mergeLo and mergeHi) we did not manage despite
a considerable effort. Each has over 100 lines of code and exhibits a complex
control flow with many nested loops, six breaks, and several if-statements. This
leads to a memory overflow while proving due to an explosion in the number of
symbolic execution paths. These methods obviously do not invalidate the class
invariant as they do not access runLen and runBase. All other 15 methods were
fully verified, which required specifications of all methods. In total, there are
460 lines of specifications, compared to 928 lines of code (including whitespace).

Our analysis resulted in one of the largest case studies carried out so far
in KeY with over 2 million proof steps in total. The KeY proof targets the
actual implementation in the OpenJDK standard library, rather than an ideal-
ized model of it. That implementation uses low-level bitwise operations, abrupt
termination of loops and arithmetic overflows. This motivated several improve-
ments to KeY, such as new support for reasoning about operations on bit-vectors.

Rule Apps Interact Call Loop Q-inst Spec LoC

binarySort 536.774 470 3 2 16 27 35

sort(a,lo,hi,c) 235.632 695 14 1 54 38 52

mergeCollapse 415.133 1529 7 1 225 48 13

mergeAt 279.155 690 4 0 1064 32 39

pushRun 26.248 94 0 0 69 18 5

mergeForceColl 53.814 294 1 1 113 39 10

Other (sum) 664.507 1257 135 20 195 132 179

Total 2.211.263 5029 164 25 1736 334 333

One reason for the large number of proof steps is their fine granularity. How-
ever, notice that only a relatively small number was applied manually (“Inter-
act”). Most of the manual interactions are applications of elementary weakening
rules (hiding large irrelevant formulas) for guiding the automated proof search.
Approximately 5–10 % required ingenuity, such as introducing crucial lemmas

OpenJDK’s Java.utils.Collection.sort() Is Broken 287

and finding suitable quantifier instantiations (“Q-inst”). The columns (“Call”)
and (“Loop”) show the number of rule applications concerning calls and loops
encountered in symbolic execution paths. Since multiple paths can lead to the
same call, this is higher than the number of calls in the source code. The last two
columns show the number of lines of specification and code (without comments).

The specification was constructed incrementally, by repeated attempts to
complete the proof and, when failing, enhancing the (partial) specifications based
on the feedback given by KeY. In particular, KeY can provide a symbolic counter
example. For instance, KeY produces the following uncloseable goal when veri-
fying the original mergeCollapse implementation:

runLen[stackSize−3] > runLen[stackSize−2] + runLen[stackSize−1],
\forall int i; 0<=i && i<stackSize−4; runLen[i] > runLen[i+1]+runLen[i+2]
==> runLen[stackSize−4] > runLen[stackSize−3] + runLen[stackSize−2]

The quantified formula says: the invariant holds except for the last five runs.
The first formula establishes it for the last three runs. Nevertheless, it is broken
by the fourth-last run, as the right hand side states. This information shows
precisely where the invariant breaks (Sect. 3) and suggests how to fix the algo-
rithm (Sect. 5): add a test for index stackSize-4 “somewhere”. Due to symbolic
execution, KeY produces proof trees that correspond closely to the structure of
the program. This allows identifying where to add the extra check in the code.

While specifications were written incrementally, small changes to the class
invariant required reproving instance methods almost from scratch. Indeed, a
major challenge for properly supporting this incremental process is: how to
avoid proof duplication? This could be partially addressed by introducing user-
defined predicates to abstract from certain concrete parts of the specification.
KeY already supports ad hoc introduction of user-defined predicates (Sect. 5).
A systematic treatment is given in [5,10]; its integration in KeY is ongoing work.

To reduce the number of symbolic paths, we heavily used block contracts
around if-statements as a form of state merging. Current work focusses on more
general techniques for merging different symbolic execution branches.

7 Conclusion and Future Work

Beyond the correctness result obtained in this paper, our case study allows to
draw a number of more general conclusions:

1. State-of-art formal verification systems allow to prove functional correctness
of actual implementations of complex algorithms that satisfy a minimum
degree of structure and modularity.

2. Even core library methods of mainstream programming languages contain
subtle bugs that can go undetected for years. Extensive testing was not able
to exhibit the bug. Sections 3 and 4 explain why: the smallest counterexam-
ple is an array of 67+ million elements (with non-primitive type) and a very

288 S. de Gouw et al.

complex structure. It is interesting to note that the affected sorting imple-
mentation was ported to Java from the Python library.6 It turns out that
the bug is present in Python as well, ever since the method was introduced.7

It can be fixed in the same manner as described above. Though the bug is
unlikely to occur by accident, it can be used in denial-of-service attacks8.

3. Software verification is often considered too expensive. However, precise for-
mal specification allowed us to discover that the invariant is not preserved, in
an afternoon. Section 6 shows that this fact also inevitably arises during veri-
fication with KeY. The combination of interactivity with powerful automated
strategies was essential to formally verify the fixed version.

4. Static analysis and model checking are not precise, expressive and modular
enough to fully capture the functionality of the involved methods. Expressive
contracts are crucial to break down the problem into feasible chunks.

We conclude that functional deductive verification of core libraries of main-
stream programming languages with expressive, semi-automated verification
tools is feasible. To reach beyond the current limits, improvements based on
program transformations, refinement, and proof reuse are mandatory. Further,
it is clearly worthwhile: the OpenJDK implementation of sort() is used daily
in billions of program runs, often in safety- or security-critical scenarios. The
infamous Intel Pentium bug cost a lot of revenue and reputation, even though
the actual occurrence of a defect was not more likely than in the case of TimSort.
Since then, formal verification of microprocessors is standard (e.g., [2]). Isn’t it
time that we begin to apply the same care to core software components?

Acknowledgment. We thank Peter Wong for suggesting to verify TimSort.

References

1. Ahrendt, W., Mostowski, W., Paganelli, G.: Real-time Java API specifications for
high coverage test generation. In: Proceedings of the 10th International Workshop
on Java Technologies for Real-time and Embedded Systems, JTRES 2012, pp.
145–154. ACM, New York (2012)

2. Akbarpour, B., Abdel-Hamid, A.T., Tahar, S., Harrison, J.: Verifying a synthe-
sized implementation of IEEE-754 floating-point exponential function using HOL.
Comput. J. 53(4), 465–488 (2010)

3. Beckert, B., Hähnle, R.: Reasoning and verification. IEEE Intell. Syst. 29(1), 20–29
(2014)

4. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware: The KeY Approach. LNCS, vol. 4334. Springer, Heidelberg (2007)

5. Pelevina, M., Bubel, R., Hähnle, R.: Fully abstract operation contracts. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2014, Part II. LNCS, vol. 8803, pp. 120–134.
Springer, Heidelberg (2014)

6 http://svn.python.org/projects/python/trunk/Objects/listsort.txt.
7 As the Python version works with 64bit integer types and uses larger bounds for
runLen, it is even more unlikely to occur, however.

8 http://bugs.java.com/view bug.do?bug id=6804124.

http://svn.python.org/projects/python/trunk/Objects/listsort.txt
http://bugs.java.com/view_bug.do?bug_id=6804124

OpenJDK’s Java.utils.Collection.sort() Is Broken 289

6. de Gouw, S., de Boer, F.S., Rot, J.: Proof pearl: the key to correct and stable
sorting. J. Autom. Reasoning 53(2), 129–139 (2014)

7. de Gouw, S., et al: Web appendix of this paper. http://envisage-project.eu/?page
id=1412 (2015)

8. Filliâtre, J.-C., Magaud, N.: Certification of sorting algorithms in the system Coq.
In: Theorem Proving in Higher Order Logics: Emerging Trends. Nice (1999)

9. Foley, M., Hoare, C.A.R.: Proof of a recursive program: quicksort. Comput. J.
14(4), 391–395 (1971)

10. Hähnle, R., Schaefer, I., Bubel, R.: Reuse in software verification by abstract
method calls. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 300–
314. Springer, Heidelberg (2013)

11. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P.,
Kiniry, J., Chalin, P., Zimmerman, D.M., Dietl, W.:. JML Reference Manual, Draft
revision 2344 (2013)

12. McIlroy, P.M.: Optimistic sorting and information theoretic complexity. In:
Ramachandran, V. (ed.) Proceedings of the Fourth Annual ACM/SIGACT-SIAM
Symposium on Discrete Algorithms, pp. 467–474. ACM/SIAM, Austin (1993)

13. Mostowski, W.: Formalisation and verification of Java Card security properties in
dynamic logic. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 357–371.
Springer, Heidelberg (2005)

14. Mostowski, W.: Fully verified Java card API reference implementation. In: Beckert,
B. (ed.) Proceedings of the 4th International Verification Workshop in Connection
with CADE-21, CEUR Workshop Proceedings, Vol. 259, CEUR-WS.org, Bremen
(2007)

15. Peters, T.: Timsort description. http://svn.python.org/projects/python/trunk/
Objects/listsort.txt. Accessed Feb 2015

16. Sternagel, C.: Proof pearl - a mechanized proof of ghc’s mergesort. J. Autom.
Reasoning 51(4), 357–370 (2013)

http://envisage-project.eu/?page_id=1412
http://envisage-project.eu/?page_id=1412
http://svn.python.org/projects/python/trunk/Objects/listsort.txt
http://svn.python.org/projects/python/trunk/Objects/listsort.txt

Tree Buffers

Radu Grigore(B) and Stefan Kiefer

University of Oxford, Oxford, UK
radugrigore@gmail.com

Abstract. In runtime verification, the central problem is to decide if
a given program execution violates a given property. In online runtime
verification, a monitor observes a program’s execution as it happens.
If the program being observed has hard real-time constraints, then the
monitor inherits them. In the presence of hard real-time constraints it
becomes a challenge to maintain enough information to produce error
traces, should a property violation be observed. In this paper we intro-
duce a data structure, called tree buffer, that solves this problem in the
context of automata-based monitors: If the monitor itself respects hard
real-time constraints, then enriching it by tree buffers makes it possi-
ble to provide error traces, which are essential for diagnosing defects.
We show that tree buffers are also useful in other application domains.
For example, they can be used to implement functionality of capturing
groups in regular expressions. We prove optimal asymptotic bounds for
our data structure, and validate them using empirical data from two
sources: regular expression searching through Wikipedia, and runtime
verification of execution traces obtained from the DaCapo test suite.

1 Introduction

In runtime verification, a program is instrumented to emit events at certain
times, such as method calls and returns. A monitor runs in parallel, observes
the stream of events, and identifies bad patterns. Often, the monitor is specified
by an automaton (for example, see [1,2,8,13,23]). When the accepting state
of the automaton is reached, the last event of the program corresponds to a
bug. At this point, developers want to know how was the bug reached. For
example, the bug could be that an invalid iterator is used to access its underlying
collection. An iterator becomes invalid when its underlying collection is modified,
for instance by calling the remove method of another iterator for the same
collection. In order to diagnose the root cause of the bug, developers will want
to determine how exactly the iterator became invalid. Of particular interest will
be an error trace: the last few relevant events that led to a bug. In the context
of static verification, error traces have proved to be invaluable in diagnosing the
root cause of bugs [19]. However, runtime verification tools (such as [5,14,21])
shy away from providing error traces, perhaps because adding this functionality
would impact efficiency. The goal of this paper is to provide the algorithmic
foundations of efficient monitors that can provide error traces for a very general
class of specifications.
c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 290–306, 2015.
DOI: 10.1007/978-3-319-21690-4 17

Tree Buffers 291

1 2

3

4

∗

iteriteriter

other

hasNexthasNexthasNext nextnextnext

other , hasNext

nextnextnext

∗

1 2 3

a

b

b

a

b, c a, c a, b, c

(a) (b)

Fig. 1. Two automata with relevant transitions in boldface.

Nondeterministic automata provide a convenient specification formalism for
monitors. They define both bugs and relevant events. Figure 1a shows an example
automaton that specifies incorrect usage of an iterator: it is a bug if an iterator
is created (event iter), and afterwards its next() method is called without a
preceding call to hasNext(). Throughout the paper we assume that the user
specifies which transitions are relevant. In most applications, there is a natural
way to choose the relevant transitions. For example, in Fig. 1a and in many other
runtime verification properties, the natural choice are the non-loop transitions.
Since the choice is natural, it can be automated; since the choice is dependent
on application details, we do not focus on it.

We have to consider nondeterministic automata in general. Nondeterministic
finite automata allow exponentially more succinct specifications than determin-
istic finite automata. In addition, in the runtime verification context we must
use an automaton model that handles possibly infinite alphabets. For most mod-
els of automata over infinite alphabets, the nondeterministic variant is strictly
more expressive than the deterministic variant [3,16,26]. Thus, we must consider
nondeterminism not only to allow concise specifications, but also because some
specifications cannot be defined otherwise.

Let us consider a concrete example: the automaton in Fig. 1b, consum-
ing the stream of letters cabbcab. (We say stream when we wish to empha-
size that the elements of the sequence must be processed one by one, in an
online fashion.) One of the automaton computations labeled by cabbcab is

, where relevant transitions are bold. We
say that the subsequence formed by the relevant transitions is an error trace;
here,

The main contribution of this paper is the design of a data structure that
allows the monitor to do the following while reading a stream:

1. The monitor keeps track of the states that the nondeterministic automaton
could currently be in. Whenever the automaton could be in an accepting state,
the monitor reports (i) the occurrence of a bug, and (ii) the last h relevant
transitions of a run that drove the automaton into an accepting state. Here, h
is a positive integer constant that the user fixes upon initializing the monitor.

292 R. Grigore and S. Kiefer

(1, 1)

(1, 1)

(1, 1
a

1) (2, 1
a

2)

(1, 1
a

1) (3, 2
b

3)

c

a a

b b

1 initialize(1)

2 add child(1, 1
a

1)

3 add child(1, 1
a

2)

4 deactivate(1)

5 add child(1
a

2, 2
b

3)

6 history(2
b

3)

7 deactivate(1
a

2)

1

1
a

1 1
a

2

2
b

3

)c()b()a(

Fig. 2. Illustration of a monitor run of the automaton from Fig. 1b on the stream cab.
Part (a) shows the monitor’s traversal of the automaton with some instrumentation.
Part (b) shows the sequence of tree buffer operations that the monitor invokes. Part (c)
shows the tree-buffer data structure that the monitor builds.

Due to the nondeterminism, a bug may have multiple such error traces, but
the monitor needs to report only one of them.

2. The monitor processes each event in a constant amount of time, thus paving
the way for implementing real-time runtime verifiers that track error traces.
(There is a need for real-time verifiers [22].) Not only the time is constant,
but also not much space is wasted. Wasted space occurs if the monitor keeps
transitions that are not among the h most recent relevant transitions.

Due to the nondeterminism of the automaton, those constraints force the mon-
itor to keep track of a tree of computation histories. For properties that can
be monitored with slicing [23] the tree of computation histories has a very par-
ticular shape. That shape allows for a relatively straightforward technique for
providing error traces, using linear buffers. However, it has been shown that some
interesting program properties, including taint properties, cannot be expressed
by slicing [1,9].

In this paper we provide a monitor for general nondeterministic automata, at
the same time satisfying the properties 1 and 2 mentioned above. The single most
crucial step is the design of an efficient data structure, which we call tree buffer.
A tree buffer operates on general trees and may be of independent interest.

Tree Buffers for Monitoring. A tree buffer is a data structure that stores
parts of a tree. Its two main operations are add child(x, y), which adds to
the tree a new node y as a child of node x, and history(x), which requests
the h ancestors of x, where h is a constant positive integer. For memory
efficiency the tree buffer distinguishes between active and inactive nodes.
When add child(x, y) or history(x) is called, node x must be active. In
the case of add child(x, y), the new node y becomes active. There is also a

Tree Buffers 293

deactivate(x) operation with the obvious semantics. One of the main contri-
butions of this paper is the design of efficient algorithms that provide the func-
tionality of tree buffers with asymptotically optimal time and space complexity.
More precisely, the add child and deactivate operations take constant time,
and the space wasted by nodes that are no longer accessible via history calls
is bounded by a constant times the space occupied by nodes that are accessible
via history calls.

In the following, we give an example of how an efficient monitor operates,
assuming that an efficient tree buffer is available. Consider the automaton from
Fig. 1b and the stream cab. The monitor keeps pairs of (1) a current automaton
state q, and of (2) a tree buffer node with the most recent relevant transition of
a run that led to q. Initially, this pair is , as 1 is the initial state of the
automaton (see Fig. 2).

Upon reading c, the automaton takes the transition , and the moni-
tor simulates the automaton by evolving from to a new pair :
the first component remains unchanged because is a loop; the second
component remains unchanged because is irrelevant.

Next, a is read. The automaton takes transitions and , both rel-
evant. Corresponding to the automaton transition , the monitor evolves

into a new pair : the first component remains unchanged
because is a loop; the second component changes because is
relevant. Corresponding to the automaton transition , the monitor also
evolves into a new pair . Now that two relevant transitions
were taken, they are added to the tree buffer: both and are chil-
dren of . Moreover, because is not anymore in any pair kept by the
monitor, it is deactivated in the tree buffer.

Next, b is read. The automaton takes transitions , , and .
Out of the two transitions with the same target the monitor will pick only one to
simulate, using an application specific heuristic. In Fig. 2, the monitor chose to
ignore . Moreover, because used to be in the monitor’s pairs before
b was read but is not anymore, its corresponding tree buffer node is deactivated.
Finally, since state 3 is accepting, the monitor will ask the tree buffer for an

error trace, by calling .
In Fig. 7 we provide pseudocode formalizing the sketched algorithm.
The full version of the paper [10] includes missing proofs and further details.

2 Tree Buffers

Consider a procedure that handles a stream of events. At any point in time
the procedure should be able to output the previous h events in the stream,
where h is a fixed constant. Such linear buffers are ubiquitous in computer
science, with applications, for example, in instruction pipelines [25], voice-over-
network protocols [12], and distributed operating systems [15]. Linear buffers can
be easily implemented using circular buffers, using Θ(h) memory and constant
update time, which is clearly optimal.

294 R. Grigore and S. Kiefer

initialize(x)

1 parent(x) := nil
2 children(x) := 0
3 Nodes := {x}
4 Active := {x}
5 mem := 1
6 memOld := 1

add child(x, y)

1 assert that x ∈ Active and y �∈ Nodes
2 parent(y) := x
3 children(x) := children(x) + 1
4 Nodes := Nodes ∪ {y}
5 Active := Active ∪ {y}

deactivate(x)

1 Active := Active − {x}
history(x)

1 assert that x ∈ Active
2 xs := []
3 repeat h times, or until x = nil
4 xs := x · xs
5 x := parent(x)
6 return xs

expand(x, {y1, . . . , yn})

1 for i ∈ {1, . . . , n}
2 add child(x, yi)
3 deactivate(x)

Fig. 3. The naive algorithm.

While this buffering approach is simple and efficient, it is less appropriate if
the streamed data is organized hierarchically. Consider a stream of events, each
of which contains a link to one of the previous events. We already saw an example
of how such streams arise in runtime verification (Fig. 2). But, there are many
other situations where such streams could arise; for example, when trees such
as XML data are transmitted over a network, or when recording the spawned
processes of a parallel computation, or when recording Internet browsing history.

A natural requirement for a buffer is to store the most recent data. For a
tree this could mean, for example, the leaves of the tree, or the h ancestors of
each leaf, where h is a constant. Observe that a linear buffer does not satisfy
such requirements, because an old leaf or the parent of a new leaf may have been
streamed much earlier, so that they have been removed from the buffer already.

A tree buffer is a tree-like data structure that satisfies such requirements. It
supports the following operations:

– initialize(x) initializes the tree with the single node x and makes x active
– add child(x, y) adds node y as a child of the active node x and makes y

active
– deactivate(x) makes x inactive
– expand(x, {y1, . . . , yn}) adds nodes y1, . . . , yn as children of the active node x,

makes x inactive, and makes y1, . . . , yn active
– history(x) requests the h ancestors of the active node x, where h is a constant

positive integer

A simple use case of a tree buffer consists of an initialize operation, followed by
expand operations with n > 0. In this case the active nodes are always exactly
the leaves.

The functionality of tree buffers is defined by the naive algorithm shown in
Fig. 3. The notation f(x) stands for the field f of the node x, while the notation

Tree Buffers 295

f(x) stands for a call to function f with argument x. The field children and the
variables mem and memOld do not affect the behavior of the naive algorithm:
they are used later. The assertions at the beginning of add child and history
detect sequences of operations that are invalid. For example, any sequence that
does not start with a call to initialize is invalid. For such invalid sequences,
tree buffer implementations are not required to behave like the naive algorithm.
For valid sequences we require implementations to be functionally equivalent,
albeit performance is allowed to be different.

The naive algorithm is time optimal: initialize, add child, and
deactivate all take constant time; and history takes O(h) time. However,
it is not space efficient, as it does not take advantage of deactivate operations:
it does not delete nodes that are out of reach of history. The challenge in
designing tree buffers lies in preserving both time and space efficiency. On the
one hand, it is not space efficient to store the whole tree. On the other hand, it
is not time efficient to exactly identify the nodes that must be stored.

3 Space Efficient Algorithms

The naive algorithm is time efficient but not space efficient. This section presents
several other algorithms. First, if each deactivate is followed by garbage col-
lection, then the implementation becomes space efficient but not time efficient.
Second, if deactivate is followed by garbage collection only at certain times,
then the implementation becomes both space and time efficient, but only in an
amortized sense. Third, we present an algorithm that is both space and time
efficient in a strict sense. The last algorithm is somewhat sophisticated, and its
correctness requires a non-obvious proof. The implementation of all four algo-
rithms, which fully specifies all the details, is available online [11].

3.1 The Garbage Collecting Algorithm

A space optimal implementation uses no more memory than needed to answer
history queries. To make this precise, let us define the height of a node x to
be the shortest distance from x to an active node in the subtree of x, were we
to use the naive algorithm. Active nodes have height 0. A node with no active
node in its subtree has height ∞. Let Hi be the set of nodes with height i, and
let H<i be the set of nodes with height less than i.

The memory needed to answer history queries is Ω(|H<h|), and the
gc algorithm of Fig. 4 achieves this bound. On line 5 of gc, the list Level
represents Hi−1, and Seen represents H<i. Thus, on line 13, the list Level
represents Hh−1, and Seen represents H<h. The procedure delete parent
implements a reference counting scheme.

Let us consider a sequence of add child and deactivate operations, com-
ing after initialize. We call add child and deactivate modifying operations.
Let H

(k)
i be the Hi corresponding to the tree obtained after k modifying oper-

ations, and let s
(k)
gc be the space used by the gc algorithm after k modifying

operations.

296 R. Grigore and S. Kiefer

gc()

1 Seen := copy of(Active)
2 Level := convert to list(Active)
3 i := 1
4 while i < h and Level is nonempty
5 NextLevel := []
6 for y ∈ Level
7 x := parent(y)
8 if x /∈ Seen
9 Seen := {x} ∪ Seen

10 NextLevel := x · NextLevel
11 Level := NextLevel
12 i := i + 1
13 for y ∈ Level
14 delete parent(y)

deactivate(x)

1 Active := Active − {x}
2 gc()

delete parent(y)

1 x := parent(y)
2 if x �= nil
3 children(x) := children(x) − 1
4 if children(x) = 0
5 delete parent(x)
6 delete x
7 mem := mem − 1
8 parent(y) := nil

add child(x, y)

1 assert that x ∈ Active
2 parent(y) := x
3 children(x) := children(x) + 1
4 Active := Active ∪ {y}
5 mem := mem + 1

Fig. 4. The gc algorithm. The tree buffer operations initialize, expand, and history
are those defined in Fig. 3.

Proposition 1. Consider the gc algorithm from Fig. 4. The memory used after
k modifying operations is optimal: s

(k)
gc ∈ Θ(|H(k)

<h |). The runtime used to process
k modifying operations is Θ(k2).

The space bound is obvious. For the time bound, the following
sequence exhibits the quadratic behavior: initialize(0), add child(0, 1),
add child(0, 2), deactivate(2), add child(0, 3), add child(0, 4),
deactivate(4), . . .

3.2 The Amortized Algorithm
add child(x, y)

1 assert that x ∈ Active
2 parent(y) := x
3 children(x) := children(x) + 1
4 Active := Active ∪ {y}
5 mem := mem + 1
6 if mem = 2 · memOld
7 gc()
8 memOld := mem

Fig. 5. The amortized algorithm. The tree
buffer operations initialize, deactivate,
expand, history are those defined in
Fig. 3. The subroutine gc is that defined
in Fig. 4.

Our aim is to mitigate or even solve
the time problem of the gc algo-
rithm, but to retain space optimal-
ity up to a constant. One idea is to
invoke the garbage collector rarely, so
that the time spent in garbage col-
lection is amortized. To this end, we
call gc when the number of nodes
in memory has doubled since the end
of the last garbage collection. We
obtain the amortized algorithm from
Fig. 5. It is here that the counters
mem and memOld are finally used.

Tree Buffers 297

The following theorem states that the amortized algorithm is space efficient,
by comparing it with the gc algorithm, which is space optimal. As before, let us
consider a sequence of modifying operations. We write s

(k)
amo for the space used

by the amortized implementation after the first k operations. Call a sequence
of operations extensive if every deactivate(x) is immediately preceded by an
add child(x, y) for some y. For example, a sequence is extensive if it consists
of an initialize operation followed by expand operations with n > 0.

Theorem 2. Consider the amortized algorithm in Fig. 5. A sequence of � modi-
fying operations takes O(�) time. We have s

(k)
amo ∈ O

(
maxj≤k s

(j)
gc

)
for all k ≤ �.

If the sequence is extensive then s
(k)
amo ∈ O

(
s
(k)
gc

)
for all k ≤ �.

Loosely speaking, the theorem says that the space wasted in-between two
garbage collections is bounded by the space that would be needed by the space
optimal implementation at some earlier time, up to a constant. It also says that
the time used is optimal for a sequence of operations.

3.3 The Real-Time Algorithm

In general, interactive applications should not have amortized implementations.
Interactive applications include graphical user interfaces, but also real-time
systems and runtime verification monitors for real-time systems. More gener-
ally speaking, the environment, be it human or machine, does not accumulate
patience as the time goes by. Thus, time bounds that apply to each operation are
preferable to bounds that apply to the sequence of operations performed so far.

The difficulty of designing a real-time algorithm stems from the fact that
whether a node is needed depends on its height, but the heights cannot be
maintained efficiently. This is because one deactivate operation may change
the heights of many nodes, possibly far away.

The key idea is to under-approximate the set of unneeded nodes; that is, to
find a property that is easily computable, and only unneeded nodes have it. To do
so, we maintain three other quantities instead of heights. The depth of a node is
its distance to the root via parent pointers, were we to use the naive algorithm.
The representative of a node is its closest ancestor whose depth is a multiple
of h. The active count of a node is the number of active nodes that have it as
a representative. Unlike height, these three quantities — depth, representative,
active count — are easy to maintain explicitly in the data structure. The depth
only needs to be computed when the node is added to the tree. The representative
of a node is either itself or the same as the representative of its parent, depending
on whether the depth is a multiple of h. Finally, when a node is deactivated
(added to the tree, respectively), only one active count changes: the active count
of the node’s representative is decreased (increased, respectively) by one.

The active count of a representative becomes 0 only if its height is at least h,
which means it is unneeded to answer subsequent history queries. Thus, the
set of nodes that are representatives and have an active count of 0 constitutes

298 R. Grigore and S. Kiefer

initialize(x)

1 Active := {x}
2 parent(x) := nil
3 children(x) := 0
4 depth(x) := 0
5 rep(x) := x
6 cnt(x) := 1

process queue()

1 if queue is nonempty
2 x := deque()
3 cut parent(x)
4 delete x

deactivate(x)

1 Active := Active − {x}
2 cnt(rep(x)) := cnt(rep(x)) − 1
3 if children(x) = 0
4 enque(x)
5 if cnt(rep(x)) = 0
6 cut parent(rep(x))
7 process queue()

add child(x, y)

1 assert that x ∈ Active
2 assert that cnt(y) = children(y) = 0
3 Active := Active ∪ {y}
4 parent(y) := x
5 children(x) := children(x) + 1
6 depth(y) := depth(x) + 1
7 if depth(y) ≡ 0 (mod h)
8 rep(y) := y
9 else

10 rep(y) := rep(x)
11 cnt(rep(y)) := cnt(rep(y)) + 1
12 process queue()

cut parent(y)

1 x := parent(y)
2 if x �= nil
3 children(x) := children(x) − 1
4 if children(x) = 0 and x �∈ Active
5 enque(x)
6 parent(y) := nil

Fig. 6. The real-time algorithm. The tree buffer operations expand and history are
those defined in Fig. 3. The enque and deque operations are the standard operations
of a queue data structure.

an under-approximation of the set of unneeded nodes. The resulting real-time
algorithm appears in Fig. 6.

As delete parent did in the gc algorithm, the function deactivate imple-
ments a reference counting scheme, using children as the counter. Unlike the
gc algorithm, the node is not deleted immediately, but scheduled for deletion,
by being placed in a queue. This queue is processed whenever the user calls
add child or deactivate. When the queue is processed, by process queue,
one node is deleted from memory, and perhaps its parent is scheduled for deletion.

The proof of the following theorem [10] is subtle. Similarly as before, we write
s
(k)
rt for the space that the real-time algorithm has allocated and not deleted after

k operations.

Theorem 3. Consider the real-time algorithm from Fig. 6, and a sequence of
� modifying operations. Every operation takes O(1) time. We have s

(k)
rt ∈

O
(
maxj≤k s

(j)
gc

)
for all k ≤ �. If the sequence is extensive then s

(k)
rt ∈ O

(
s
(k)
gc

)

for all k ≤ �.

4 Monitoring

Consider a nondeterministic automaton A = (Q,E, q0, F, δi, δr), where Q is a set
of states, E is the alphabet of events, q0 ∈ Q is the initial state, F ⊆ Q contains

Tree Buffers 299

the accepting states, and δi, δr ⊆ Q × E × Q are, respectively, the irrelevant
and the relevant transitions. We aim to construct a monitor that reads a stream
of events and reports an error trace when an accepting state has been reached.
Since A is in general nondeterministic and there are both irrelevant and relevant
transitions, building an efficient monitor for A is not straightforward. We have
sketched in the introduction how to use a tree buffer for such a monitor. The
algorithm in Fig. 7 makes this precise.

The main invariants (line 4) are the following:

– If the pair (q,node) is in the list now , then history(node) would return the
last ≤ h relevant transitions of some computation q0

w→∗ q of A, where w is
the stream read so far.

– If there is a computation q0
w→∗ q of A, then, after reading w, a pair (q,node)

is in the list now , for some node.

A node x is created and added to the tree buffer when a relevant transition is
taken (lines 10–11). The node x is deactivated (line 19) when and only when it
is about to be removed from the list now (line 20), since neither add child(x, ·)
nor history(x) can be invoked later.

In the following subsections we give two applications for this monitor. The
location, which accompanies events (lines 5 and 10), is application dependent.
For regular expression searching, the location is an index in a string; for runtime
verification, the location is a position in the program text.

4.1 Regular-Expression Searching

We show that regular-expression searching with capturing groups can be imple-
mented by constructing an automaton with irrelevant and relevant transitions,
and then running the monitor from Fig. 7. Suppose we want to search Wikipedia
for famous people with reduplicated names, like ‘Ford Madox Ford’. One app-
roach is to use the following (Python) regular expression:

Ford([A − Z][a − z]∗){m,n} Ford (1)

This expression matches names starting and ending with ‘Ford’, and with at least
m and at most n middle names in-between. The parentheses indicate so-called
capturing groups: The regular-expression engine is asked to remember (and pos-
sibly later output) the position in the text where the group was matched. We
can implement this as follows. First, we compile the regular expression with cap-
turing groups into an automaton with relevant and irrelevant transitions. Which
transitions are relevant could be determined automatically using the capturing
groups, or the user could specify it using a special-purpose extension of the
syntax of regular expressions. Whenever the automaton takes a relevant transi-
tion, the position in the text should be remembered. Then we run the monitor
from Fig. 7 on this automaton. In this way we can output the last h matches of
capturing groups. In contrast, standard regular-expression engines would report
only the last occurrence of each match. In the example expression (1), they

300 R. Grigore and S. Kiefer

monitor()

1 root node := make node(q0, nil)
2 initialize(root node)
3 now ,nxt := [(q0, root node)], []
4 forever
5 a, location := get next event and location()
6 for each (q, parent) in the list now
7 for each a-labeled transition t = (q

a→ q′) ∈ δi � δr
8 if ¬in nxt(q′)
9 if t ∈ δr

10 child := make node(t, location)
11 add child(parent , child)
12 if t ∈ δi
13 child := parent
14 append (q′, child) to nxt
15 in nxt(q′), in nxt(child) := true, true
16 if q′ ∈ F
17 report error(history(child))
18 for each (q,node) in the list now
19 if ¬in nxt(node) then deactivate(node)
20 now ,nxt := nxt , []
21 for each (q,node) in the list now
22 in nxt(q), in nxt(node) := false, false

Fig. 7. A monitor for the automaton A = (Q, E, q0, F, δi, δr). The monitor reports
error traces by using a tree buffer.

would report only the last of Ford’s middle names. One would have to unroll the
expression n times in order to make a standard engine report them all.

For the regular expression (1), we remark that any equivalent deterministic
automaton has Ω(2m) states, so nondeterminism is essential for feasibility1.

4.2 Runtime Verification

For runtime verification we use the monitor from Fig. 7 as well, in the way we
sketched in the introduction. Clearly, for real-time runtime verification the real-
time tree buffer algorithm needs to be used.

We have not yet emphasized one feature of our monitor, which is essential for
runtime verification: The automaton A = (Q,E, q0, F, δi, δr) may have an infinite
set Q of states, and it may deal with infinite event alphabets E. Note that we did
1 We use a large value for m when we want to find people with reduplicated names

that are long. By searching Wikipedia with large values for m we found, for exam-
ple, ‘José Maŕıa del Carmen Francisco Manuel Joaqúın Pedro Juan Andrés Avelino
Cayetano Venancio Francisco de Paula Gonzaga Javier Ramón Blas Tadeo Vicente
Sebastián Rafael Melchior Gaspar Baltasar Luis Pedro de Alcántara Buenaventura
Diego Andrés Apostol Isidro’ (a Spanish don).

Tree Buffers 301

A A

I(1) N(1)

H
(1

) N
(1

)

X(1)

Y (1)

I(2) N(2)

H
(2

) N
(2

)

X(2)

Y (2)

I(3) N(3)

H
(3

) N
(3

)

X(3)

Y (3)

...
...

I(k) = {(iter , k)}
H(k) = {(hasNext , k)}
N(k) = {(next , k)}
O(k) = {(other , k)}
A =

⋃
k∈Value I(k)∪H(k)∪N(k)∪O(k)

)

X(k) = A − H(k) − N(k)
Y (k) = A − N(k)

Fig. 8. The configuration graph of Fig. 1a. The arcs are labeled by sets of events,
meaning that there is one transition for each event in the set. The picture shows only
three values from Value = {1, 2, 3, . . . }

not require any finiteness of the automaton for our monitor. We can implement
the monitor from Fig. 7, as long as we have a finite description of A, which allows
us to loop over transitions (line 7) and to store individual states and events. One
can view this as constructing the (infinite) automaton on the fly. For instance, the
event alphabet could be E = Σ × Value, where Σ = {iter , hasNext ,next , other}
and Value is the set of all program values, which includes integers, booleans,
object references, and so on. There are various works on automata over infi-
nite alphabets and with infinitely many states. In those works, infinite (-state
or -alphabet) automata are usually called configuration graphs, whereas the word
automaton refers to a finite description of a configuration graph. In contrast to
the rest of the paper, we use that terminology in the rest of this paragraph. Often
there exists an explicitly defined translation of an automaton to a configuration
graph (for example, for register automata [16], class memory automata [3], and
history register automata [26]). Even when the semantics are not given in terms
of a configuration graph, it is often easy to devise a natural translation. For
example, the configuration graph in Fig. 8 is obtained from the automaton of
Fig. 1a using an obvious translation that would also apply in the case of data
automata [6] and in the case of slicing [23].

5 Experiments

This section complements the asymptotic results of Sect. 3 with experimental
results from three data sets.

5.1 Datasets

1. The first dataset is a sequence of n = 107 operations that simulate a sequence
of linear buffer operations. That is, we called the tree buffer as follows:
initialize(0); expand(0, {1}); . . . ; expand(n − 1, {n}).

2. We produced (manually) the automaton in Fig. 9 from the regular expres-
sion ‘.*a(*[^]){8} *a’, and ran the monitor from Sect. 4 on the text of
Wikipedia. This dataset contains 7 · 108 tree buffer operations.

302 R. Grigore and S. Kiefer

1 2 3 4 5 6 7 8 90
a a[ˆ] [ˆ] [ˆ] [ˆ] [ˆ] [ˆ] [ˆ] [ˆ]

*

Fig. 9. A nondeterministic automaton without a small, deterministic equivalent: It
finds substrings that contain 10 non-space characters, the first and last of which are ‘a’.
The structure of the automaton is similar to the one corresponding to the regular
expression from Sect. 4.1.

3. We ran the monitor from Sect. 4 on infinite automata alongside the DaCapo
test suite. The property we monitored was specified using a TOPL automa-
ton [9], and it was essentially the one in Fig. 1a: it is an error if there is a
next without a preceding hasNext that returned true. We used the projects
avrora (simulator of a grid of microcontrollers), eclipse (development environ-
ment), fop (XSL to PDF converter), h2 (in memory database), luindex (text
indexer), lusearch (text search engine), pmd (simple code analyzer), sunflow
(ray tracer), tomcat (servlet server), and xalan (XML to HTML converter)
from version 9.12 of the DaCapo test suite [4]. This dataset contains 8 · 107

tree buffer operations.

5.2 Empirical Results

We measure space and time in a way that is machine independent. For space,
there is a natural measure: the number of nodes in memory. For time, it is
less clear what the best measure is: We follow Knuth [18], and count memory
references.

Runtime Versus History. Figure 10 gives the average number of memory refer-
ences per operation. We observe that this number does not depend on h, except
for very small values of h, thus validating the asymptotic results about time from
Sect. 3.

Runtime Variability. Figure 11 shows that for the amortized and gc algorithms
there exist operations that take a long time. In contrast, the plots for the naive
and the real-time algorithms are almost invisible because they are completely
concentrated on the left side of Fig. 11.

Memory Versus History. In Fig. 12, we notice that the memory usage of the
amortized and the real-time algorithms is within a factor of 2 of the memory
usage of the gc algorithm, thus validating the asymptotic results about space
from Sect. 3. The naive algorithm is excluded from Fig. 12 because its memory
usage is much bigger than that of the other algorithms.

Tree Buffers 303

(a) as linear buffers (b) regular expression searching (c) runtime verification

Fig. 10. The average number of memory references per tree buffer operation.

(a) as linear buffers (b) regular expression searching (c) runtime verification

Fig. 11. Histogram for the number of memory references per operation, for h = 100.

(a) as linear buffers (b) regular expression searching (c) runtime verification

Fig. 12. How much space is necessary.

6 Conclusions, Related Work, and Future Work

We have designed tree buffers, a data structure that generalizes linear buffers.
A tree buffer consumes a stream of events each of which declares its parent to
be one of the preceding events. Tree buffers can answer queries that ask for
the h ancestors of a given event. Implementing tree buffers with good perfor-
mance is not easy. We have explored the design space by developing four possible

304 R. Grigore and S. Kiefer

algorithms (naive, gc, amortized, real-time). Two of those are straightforward:
naive is time optimal, and gc is space optimal. The other two algorithms are
time and space optimal at the same time: amortized is simpler but not suitable
for real-time use, and real-time is more involved but suitable for real-time use.
Proving the amortized and the real-time algorithms correct requires some care. We
have validated our algorithms on data sets from three different application areas.

Algorithms that process their input in a gradual manner have been stud-
ied under the names of online algorithms, dynamic data structures, and, more
recently, streaming algorithms. These algorithms address different problems than
tree buffers. For example, streaming algorithms [7,20] fall into two classes: those
that process numeric streams, and those that process graph streams. Graph
streaming algorithms are concerned with problems such as: ‘Are vertices u and v
connected in the graph described so far?’ One of the basic tools used for answer-
ing such questions are link-cut trees [24]. Yet, like all the existing graph streaming
algorithms, link-cut trees do not give more weight to the recent parts of the tree,
in the way tree buffers do. Such a preference for recent data has been studied
only in the context of numeric streams. For example, the following problem has
been studied: ‘Which movie is most popular currently?’ [20, Sect. 4.7]

The closest relatives of tree buffers remain the simple and ubiquitous linear
buffers. Since tree buffers extend linear buffers naturally, it is easy to imagine a
wide array of applications. We have discussed an engine for regular expression
searching as one example. The main motivation of our research is to enhance
runtime verification monitors with the ability to provide error traces, fulfilling
real-time constraints if needed, and covering general nondeterministic automata
specifications. We have described this application in detail.

Several automata models that are used in runtime verification, including the
TOPL automata used in our implementation, are nondeterministic [9,13,23],
which led us to a tree data structure that can track such automata. Some
automata models are even more general, such as quantified event automata [1]
and alternating automata [8]. The construction of error-trace providing mon-
itors for such automata is an intriguing challenge that seems to raise further
fundamental algorithmic questions.

Acknowledgements. Grigore is supported by EPSRC Programme Grant Resource
Reasoning (EP/H008373/2). Kiefer is supported by a Royal Society University
Research Fellowship. We thank the reviewers for their comments. We thank Rasmus
Lerchedahl Petersen for his contribution to the implementation of an early version of
the amortized algorithm in the runtime verifier TOPL.

References

1. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.: Quan-
tified event automata: towards expressive and efficient runtime monitors. In:
Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 68–84.
Springer, Heidelberg (2012)

Tree Buffers 305

2. Bauer, A., Küster, J.-C., Vegliach, G.: From propositional to first-order monitoring.
In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 59–75. Springer,
Heidelberg (2013)

3. Björklund, H., Schwentick, T.: On notions of regularity for data languages. Theor.
Comput. Sci. 411(4–5), 702–715 (2010)

4. Blackburn, S.M., Garner, R., Hoffmann, C., Khan, A.M., McKinley, K.S., Bentzur,
R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosking, A.L.,
Jump, M., Lee, H.B., Moss, J.E.B., Phansalkar, A., Stefanovic, D., VanDrunen, T.,
von Dincklage, D., Wiedermann, B.: The DaCapo benchmarks: Java benchmarking
development and analysis. In: Tarr, P.L., Cook, W.R. (eds.) Proceedings of the 21th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2006, 22–26 Oct 2006, Portland, Oregon,
USA, pp. 169–190. ACM (2006)

5. Bodden, E.: MOPBox: A library approach to runtime verification – (tool demon-
stration). In: Khurshid and Sen [17], pp. 365–369

6. Bojanczyk, M., Muscholl, A., Schwentick, T., Segoufin, L., David, C.: Two-variable
logic on words with data. In: Proceedings of the 21th IEEE Symposium on Logic
in Computer Science (LICS 2006), 12–15 Aug 2006, Seattle, WA, USA, pp. 7–16.
IEEE Computer Society (2006)

7. Amit, C.: CS49: Data Stream Algorithms. Lecture Notes. Dartmouth College, New
Hampshire (2014)

8. Finkbeiner, B., Sipma, H.: Checking finite traces using alternating automata. Form.
Methods Syst. Des. 24(2), 101–127 (2004)

9. Grigore, R., Distefano, D., Petersen, R.L., Tzevelekos, N.: Runtime verification
based on register automata. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013
(ETAPS 2013). LNCS, vol. 7795, pp. 260–276. Springer, Heidelberg (2013)

10. Grigore, R., Kiefer, S.: Tree buffers. http://arxiv.org/abs/1504.04757. Full version,
with proofs

11. Grigore, R., Kiefer, S.: Tree buffers. http://github.com/rgrig/treebuffers/. Imple-
mentation

12. Gündüzhan, E., Momtahan, K.: Linear prediction based packet loss concealment
algorithm for PCM coded speech. IEEE Trans. Speech Audio Process. 9(8), 778–
785 (2001)

13. Havelund, K.: Monitoring with data automata. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2014, Part II. LNCS, vol. 8803, pp. 254–273. Springer, Heidelberg (2014)

14. Jin, D., Meredith, P.O., Lee, C., Rosu, G.: JavaMOP: Efficient parametric runtime
monitoring framework. In: Glinz, M., Murphy, G.C., Pezzè, M. (eds.) 34th Inter-
national Conference on Software Engineering, ICSE 2012, 2–9 June 2012, Zurich,
Switzerland, pp. 1427–1430. IEEE (2012)

15. Kaashoek, M.F., Tanenbaum, A.S.: Group communication in the Amoeba distrib-
uted operating system. In: Distributed, Computing Systems, pp. 222–230 (1991)

16. Kaminski, M., Francez, N.: Finite-memory automata (extended abstract). In:
FOCS, pp. 683–688. IEEE Computer Society (1990)

17. Stoller, S.D., Bartocci, E., Seyster, J., Grosu, R., Havelund, K., Smolka, S.A.,
Zadok, E.: Runtime verification with state estimation. In: Khurshid, S., Sen, K.
(eds.) RV 2011. LNCS, vol. 7186, pp. 193–207. Springer, Heidelberg (2012)

18. Knuth, D.E.: The stanford graphBase – a platform for combinatorial computing.
ACM (1993)

19. Rustan, K., Leino, M., Millstein, T.D.: Generating error traces from verification-
condition counterexamples. Sci. Comput. Program. 55(1–3), 209–226 (2005)

http://arxiv.org/abs/http://arxiv.org/abs/1504.04757.
http://github.com/rgrig/treebuffers/

306 R. Grigore and S. Kiefer

20. Leskovec, J., Rajaraman, A., Ullman, J.D.: Mining Massive Datasets. http://
mmds.org/ (2014)

21. Luo, Q., Zhang, Y., Lee, C., Jin, D., Meredith, P.O.N., Şerbănuţă, T.F., Roşu, G.:
RV-Monitor: efficient parametric runtime verification with simultaneous properties.
In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 285–300.
Springer, Heidelberg (2014)

22. Pike, L., Niller, S., Wegmann, N.: Runtime verification for ultra-critical systems.
In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 310–324. Springer,
Heidelberg (2012)

23. Rosu, G., Chen, F.: Semantics and algorithms for parametric monitoring. Log.
Methods Comput. Sci. 8(1), 1–47 (2012)

24. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. In: Proceedings
of the 13th Annual ACM Symposium on Theory of Computing, 11–13 May 1981,
Milwaukee, Wisconsin, USA, pp. 114–122. ACM (1981)

25. Smith, J.E., Pleszkun, A.R.: Implementing precise interrupts in pipelined proces-
sors. IEEE Trans. Comput. 37(5), 562–573 (1988)

26. Tzevelekos, N., Grigore, R.: History-register automata. In: Pfenning, F. (ed.) FOS-
SACS 2013 (ETAPS 2013). LNCS, vol. 7794, pp. 17–33. Springer, Heidelberg (2013)

http://mmds.org/
http://mmds.org/

Learning Commutativity Specifications

Timon Gehr, Dimitar Dimitrov(B), and Martin Vechev

Department of Computer Science, ETH Zürich,
Zürich, Switzerland

dimitar.dimitrov@inf.ethz.ch

Abstract. In this work we present a new sampling-based “black box”
inference approach for learning the behaviors of a library component. As
an application, we focus on the problem of automatically learning com-
mutativity specifications of data structures. This is a very challenging
problem, yet important, as commutativity specifications are fundamen-
tal to program analysis, concurrency control and even lower bounds.

Our approach is enabled by three core insights: (i) type-aware sam-
pling which drastically improves the quality of obtained examples, (ii)
relevant predicate discovery critical for reducing the formula search space,
and (iii) an efficient search based on weighted-set cover for finding for-
mulas ranging over the predicates and capturing the examples.

More generally, our work learns formulas belonging to fragments
consisting of quantifier-free formulas over a finite number of relation
symbols. Such fragments are expressive enough to capture useful specifi-
cations (e.g., commutativity) yet are amenable to automated inference.

We implemented a tool based on our approach and have shown that it
can quickly learn non-trivial and important commutativity specifications
of fundamental data types such as hash maps, sets, array lists, union find
and others. We also showed experimentally that learning these specifica-
tions is beyond the capabilities of existing techniques.

1 Introduction

In this work we present a new and scalable “black box” technique for learning
complex library specifications. Our technique is based on sampling of library
behaviors, is fully automatic, and quickly learns succinct and precise specifica-
tions of complex interactions beyond the reach of current techniques. Concretely,
our approach learns specifications in fragments of the quantifier-free formulas
over a finite number of relation symbols. Such fragments are expressive enough
to capture useful specifications yet are amenable to automated inference. Note
that even though the fragment is quantifier-free, the relations in the fragment
can be defined using quantifiers and hence the learned formulas may include
quantifiers.

We have instantiated our approach to learning commutativity specifications of
data structures, a hard yet practically important problem as these specifications
are fundamental to concurrency (e.g., program analysis [4], concurrency control
[9,13,14,23], and lower bounds [1]). This is the first automatic approach that

c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 307–323, 2015.
DOI: 10.1007/978-3-319-21690-4 18

308 T. Gehr et al.

Fig. 1. Our approach to specification inference.

can precisely and quickly infer commutativity specifications for useful data types
such as hash map, union find, array list and others1.

The flow and ingredients of our approach are shown in Fig. 1. Given a library
component (e.g., a data structure), instead of blindly sampling its behaviors
and obtaining redundant examples, a key insight is to introduce the notion of
type-aware sampling which allows us to obtain a diverse set of quality examples
(informally, two examples have the same type if they are indistinguishable by
a formula in the logical fragment). However, even with advanced sampling, the
sheer number of examples can overwhelm the search. That is why we reduce the
size of this set by filtering out examples indistinguishable by the logical fragment.
Once the final set of examples is obtained, a critical step is to reduce the search
space of candidate formulas by discovering relevant predicates (a fundamental
step in many static analysis approaches [15]). The key insight of this step is
to filter out a predicate if it cannot be distinguished from its negation by any
positive-negative example pair. Finally, we search for formulas over the relevant
predicates that cover our set of examples. We show that a greedy algorithm
based on weighted set-cover is quite effective in finding non-trivial and optimal
specifications quickly – it infers complex commutativity conditions in seconds.

Main contributions. The main contributions of this work are:

– A new sampling-based “black box” approach for learning specifications in
fragments consisting of quantifier-free formulas over a finite number of relation
symbols. The key insights of our technique are: type-aware sampling, sample
reduction, relevant predicate discovery and efficient formula search.

– An instantiation of the approach for learning commutativity specifications
including a specialized sampling procedure.

– An experimental evaluation illustrating that our approach quickly learns prac-
tical commutativity specifications of fundamental data types such as hash
map, set, array list, union find and others. We further show that learning
these specifications is beyond the reach of current approaches.

2 Overview

We next illustrate our approach on an example: inferring the conditions for when
two insertions in a Map data type commute. The aim of this section is to provide
an intuitive understanding of the general framework presented later.
1 Specifications and source code available at http://www.srl.inf.ethz.ch/core.

http://www.srl.inf.ethz.ch/core

Learning Commutativity Specifications 309

Commutativity. Consider a standard Map data type, supporting the methods
get(k)/r and put(k, v)/r, where put returns the old value r under the key k.
We seek to infer the commutativity specification for the method pair put/put.
Two method invocations commute if they can always be reordered without any
observable effect. In our case, put(k1, v1)/r1 and put(k2, v2)/r2 commute if and
only if they access different keys or both leave the map unmodified, captured as:

ϕ(k1, v1, r1, k2, v2, r2) := k1 �= k2 ∨ v1 = r1 ∧ v2 = r2. (1)

When inferring logical specifications, we assume a fixed logical fragment that
defines our search space. Let us set this fragment to consist of arbitrary boolean
combinations of constraints over the numeric relations < and =.

k1 v1 r1 k2 v2 r2 +/-

1. 3 2 2 4 2 1 +
2. 1 0 0 2 0 -1 +
3. 2 0 0 1 0 -1 +
4. 2 0 -2 1 0 -1 +
5. 1 2 2 1 1 2 -
6. 1 -1 -1 1 1 -1 -

Fig. 2. Commutativity and
non-commutativity exam-
ples of put/put.

Type-Aware Sampling. We treat the data type as a
black box, sampling it at random in order to obtain
examples of commuting/non-commuting behaviors.
We first prepare a random data type state, then
choose random arguments for the methods, and
finally invoke them in both orders. This way we
obtain tuples of arguments and return values which
are classified as positive (commuting) or negative
(non-commuting). Figure 2 shows a sample of sev-
eral examples for put/put. As a pure random sam-
ple may contain many redundant examples, we use a
sampling method that tries to rule out a large num-
ber of candidate specifications.

We say that examples have the same logical type if they cannot be distin-
guished by any formula in the fragment. For instance, examples 1 and 2 in Fig. 2
have the same logical type, as all basic predicates of the form x = y and x < y
have the same truth value on both 1 and 2 (where x, y ∈ {ki, vi, ri}). To rule out
as many candidates as possible, we need to diversify the logical types observed
in a sample. Thus, we first choose a formula representing the logical type of the
method arguments (e.g., v1 = v2 < k1 < k2 for examples 1 and 2), and then
select concrete values that satisfy that formula. We finally test for commutativity
with these arguments.

Sample Size Reduction. We would ideally like to diversify the logical type of the
complete example, and not only the arguments. However, we cannot control what
the return values are, as we obtain these after executing the commutativity test.
This can lead to redundancy in the sample as some examples will have the same
logical type. We filter out such uninformative examples and obtain a significantly
smaller sample which covers exactly the same variety of logical types. Inference
over this reduced sample is much faster than over the larger one.

Discovery of Relevant Predicates. Logical specifications in our fragment consist
of disjunctions and conjunctions of literals. For example, when inferring a spec-
ification for put/put we search for a formula built from all possible literals over

310 T. Gehr et al.

the relations <, =, and the variables ki, vi, ri, namely, k1 = k2, k1 �= k2, k1 < k2,
k1 ≥ k2, v1 = r1, v2 = r2, etc. As we can see, literals such as k1 < k2 and k1 ≥ k2
do not occur in the target specification (1), and are therefore irrelevant for the
search. Thus, to reduce the formula search space, we introduce a procedure that
identifies irrelevant literals from the information provided by the sample. Infor-
mally, the idea is to look at a contradicting pair of literals such as k1 < k2 and
k1 ≥ k2. We then consider those pairs of commutativity examples that can be
distinguished only by the two contradicting literals. Examples 2 and 3 in Fig. 2
form such a pair and can be distinguished only by k1 < k2 and k1 ≥ k2. If the
two examples are either both positive or both negative, then the pair of liter-
als is irrelevant for distinguishing these examples. We rule out the pair if it is
irrelevant for all pairs of examples (later we describe a more elaborate technique
that is able to rule out more literals). In our example, we obtain a reduced set
of literals: k1 �= k2, v1 = r1, v2 = r2,

Formula Search. Finally, given a data sample (as in Fig. 2) and a set of literals, we
search for a formula which is consistent with the sample. We aim to infer sound
specifications. In the case of commutativity, this means that the specification
should always imply that two invocations do commute. Therefore, we search for
a formula which does not evaluate to true on negative examples yet evaluates to
true in as many positive examples as possible. To prevent overfitting, we search
for the smallest such formula. This is the reason why our approach requires
both positive and negative examples, for otherwise the formulas true and false
would be trivial solutions. To infer a formula meeting or objective, we developed
a procedure that interleaves exhaustive and greedy search.

Determining Sample Size. For the inference to be self-contained, we need an
automatic way to determine the sample size. We employ an intuitive approach:
new examples are drawn until the result of the formula search stabilizes. To
confirm the stabilization, we draw examples in blocks, each block being twice as
large as the previous one. For every new block we run the formula search, and if
it produces the same outcome twice in a row, we declare the formula as stable.
The exponential increase of the block size ensures that we restart the search at
most a logarithmic number of times, and that we draw at most linearly more
examples than required.

In what follows, we first describe a general framework for learning specifica-
tions belonging to fragments consisting of quantifier-free formulas over a finite
number of relation symbols. Then, we show how to instantiate our approach
for learning practical commutativity specifications (belonging to a restriction of
the general fragment), and finally we discuss an experimental evaluation on a
number of real world data structures.

3 Background

In this section we introduce several key notions from logic that are essential for
addressing the problem of specification inference. In particular, the two concepts

Learning Commutativity Specifications 311

that we will rely upon later sections are definable relations and logical types.
The family of definable relations forms the hypothesis class that an inference
algorithm considers to explain the observed data, and the complexity of that
class governs the difficulty of inference. A logical type abstracts all data points
carrying the same information with respect to the hypothesis class. Among other
uses, types are crucial when estimating the quality of a data sample.

Definition 1. A structure X consists of a carrier set, a set of relations and
functions over the carrier, and relation and function symbols naming them.

We think of a structure X as providing the context for interpreting logical for-
mulas. The first-order language of X consists of all first-order formulas built
using equality and the symbols mentioned by the structure. For a formula ϕ(u)
from the language and a tuple u of elements from the carrier, we shall use the
standard notation X |= ϕ(u/x) to state that ϕ(x) holds true for u .

In general, not all relations over the carrier can be expressed by formulas over
a structure’s language. In the present work, we consider relations expressible in
a boolean closed fragment L of the full language of X:

Definition 2. A relation h over X is L-definable if there exists a formula ϕ(x) ∈
L such that for any tuple u ∈ h we have that u ∈ h ⇐⇒ X |= ϕ(u/x).

Looking for a specification in the fragment L implies that we need to approximate
an unknown relation c with an L-definable relation h, given a finite sample of c.
Thus, the family H of all L-definable relations forms our hypothesis class.

We will make heavy use of a natural abstraction that a logic induces over
tuples of elements. Two tuples u and v have the same logical type2,3 if they
satisfy the same L-formulas:

Definition 3. The L-type tpL(u) of a any tuple u over the carrier of X is the
set of formulas Φ(x) = {ϕ(x) ∈ L | X |= ϕ(u/x)} that it satisfies.

In other words, tuples having the same L-type are indistinguishable by formulas
in the fragment L. In turn, this determines the structure of the L-definable
relations. Let us call the set {u ∈ Xn | tpL(u) = Φ(x)} the preimage of Φ(x).
The collection of all such preimages partitions the set of tuples, and moreover.

Observation 1. Every L-definable relation is an unique disjoint union of
preimages of L-types.
Therefore, a relation is L-definable if and only if it does not separate any type
preimage into two parts. Later, we will make extensive use of this fact.

In our work, we often need a tangible way to manipulate logical types: we
would like to replace a type (a potentially infinite collection of formulas) with a
finite description (i.e., just a single formula).

Definition 4. A type Φ(x) is called isolated when some formula ϕ(x) ∈ Φ(x)
generates it, that is for all ψ(x) ∈ Φ(x) we have that X |= ∀x. ϕ(x) → ψ(x).
2 Logical types should not be confused with the concept of types in type theory.
3 To find more about logical types the reader can consult [2,17], or the classic [3,10].

312 T. Gehr et al.

However, we would like an even stronger property to hold true, namely that the
preimage of the type Φ(x) be L-definable. This is important for obtaining data
samples with a chosen type. Fortunately, the boolean closedness of the fragment
ensures that a preimage is L-definable if and only if the type is isolated:

tpL(u) = Φ(x) ⇐⇒ X |= Φ(u/x) ⇐⇒ X |= ϕ(u/x) (2)

In order to guarantee that we work with isolated types we will impose certain
restrictions on the family of definable relations. Let L(x) denote the subfragment
of L consisting of all the formulas ϕ(x) ∈ L having free variables among x , where
as usual x is a finite list of distinct variables.

Observation 2. If the family of L(x)-definable relations is finite, then there are
finitely many L(x)-types, and all of them are isolated.

We shall focus on the setting where: (i) the structure X is relational, i.e., it
mentions no function symbols (including constants); (ii) the relation symbols
are finitely many; and (iii) L(x) is the quantifier-free fragment of X. Combined,
these conditions guarantee that there are finitely many L(x)-definable relations
in the structure X, and therefore we can leverage Observation 2. We will further
assume that formulas are in negation normal form, i.e., that all negations are
pushed in front of atomic subformulas.

4 Learning Formulas

We next describe our approach to learning logical formulas from examples over
a structure X. We first state our learning objective, i.e., which formula to select
given a sample. Then, we discuss how we search for such a formula. Finally, we
present a way to reduce the formula search space by discarding irrelevant literals.

4.1 Learning Objective

Given a sample (s+, s−) of positive and negative examples from an unknown
relation c over the carrier of X, we would like to infer a definition of c in the
logical fragment L(x). It is important to note that such a definition need not exist
in general. That is why, our goal will be to find a formula that defines a relation
h ∈ H that best approximates c in our hypothesis class H of L(x)-definable
relations. Two natural approximation criteria are: best under-approximation,
i.e., the maximal h ⊆ c, and best over-approximation, i.e., the minimal h ⊇ c.
We shall work with under-approximations but all the machinery can be used
directly for over-approximations directly as the two notions are dual. Recalling
Observation 1 and 2 we establish the existence of best approximations:

Theorem 1. The best under-approximation h ∈ H to any relation c over X
equals the disjoint union

⋃{t ⊆ c | t is a preimage of some type}.

Learning Commutativity Specifications 313

However, we can search for this h only indirectly, for we merely have an access
to the finite sample (s+, s−) instead of the complete relation c. Our learning
objective will be to find a hypothesis h that includes a maximum number of
positive examples, while excluding all negative ones. In other words, we have
the following optimization problem over the hypothesis class H:

maximize |h ∩ s+|, subject to h ∩ s− = ∅ (3)

In general, an optimal solution to this objective is not unique. Moreover, for a
learning procedure we need an effective criterion telling us when a candidate
hypothesis satisfies (3).

Definition 5 (Observed Status). Call the observed status of a type Φ(x) with
a preimage t: positive if s+ ∩ t �= ∅ and s− ∩ t = ∅; negative if s+ ∩ t = ∅ and
s− ∩ t �= ∅; ambiguous if s+ ∩ t �= ∅ and s− ∩ t �= ∅. Otherwise, call it missing.

Theorem 2. A hypothesis h ∈ H is optimal with respect to (3) for a given
sample (s+, s−) if and only if for every tuple u from X with non-missing type

u ∈ h ⇐⇒ tpL(x)(u) is positive
u �∈ h ⇐⇒ tpL(x)(u) is negative or ambiguous

The theorem follows from Observation 1. Note that even if a tuple belongs
to s+, its type might still be ambiguous as another tuple of the same type
might belong to s−. Optimal hypotheses cannot be further distinguished by the
sample (s+, s−), and so we need an additional principle to select one of them
such that we avoid overfitting. We shall rely on the minimum description length
principle [18,19,22], which suggests to search for a solution of (3) defined by a
formula of minimal size. This is also important for human-readability.

4.2 Formula Search

To find a solution to (3) we combine an exhaustive search interleaved with a
greedy algorithm. In accordance with Observation 2 we consider the subset s′

+ ⊆
s+ of positive examples having a type with a positive observed status. We search
until we find a formula that evaluates to true on all of s′

+, and evaluates to false
on all of s−. By Theorem 2, the discovered formula satisfies (3). By Theorem 1, at
least one optimal hypothesis exists, and therefore the search always terminates.
During the search, we try to minimize the size measure given by:

‖true‖ = ‖false‖ = 0; ‖literal‖ = 1; ‖ϕ∧ψ‖ = ‖ϕ∨ψ‖ = 1+‖ϕ‖+‖ψ‖ (4)

We enumerate the formulas of L(x) in increasing size, via a simple dynamic
programming approach that alone guarantees finding a formula of minimum
size. We employ the standard heuristic to consider two formulas equivalent if
they produce the same results on the sample s+ ∪ s−. Exhaustive enumeration,
however, is feasible for inferring small formulas only. This is why we interleave

314 T. Gehr et al.

it with a greedy algorithm, which does not guarantee minimality, but is much
faster in practice. For each formula size i, we consider the set G of conjunctions
which have size smaller than i, and also evaluate to false on all of s−. From those,
we try to build a disjunction

∨
F which covers all of s′

+, where F ⊆ G. To find
a disjunction of small size, we phrase the problem as an instance of weighted set
cover, and use a greedy approximation. We weight each conjunction ϕ ∈ G with
‖ϕ‖ and seek a cover F ⊆ G of s′

+ with small total weight. We run a standard
greedy algorithm to produce a cover F . If the cover has less than 2i formulas,
we terminate the search; else, we move on to size i + 1.

4.3 Predicate Discovery

We now describe how to reduce the formula search space L(x) by restricting the
set of literals considered during formula enumeration. We prune formulas that
contain literals irrelevant for explaining the sample (s+, s−). The approach has
to be instantiated for the specific structure X under consideration, and we first
illustrate it for the two-valued boolean algebra {0, 1}, or equivalently for the
case of learning propositional formulas.

Two-Valued Case. Here, free variables range over 0–1, and our fragment L(x)
has a relation T interpreted as T (x) ⇐⇒ x = 1. The logical type of every tuple
u is characterized by a single conjunction

∧
Qi, where Qi = T (xi) ⇐⇒ ui = 1

and Qi = ¬T (xi) ⇐⇒ ui = 0. Therefore, in the two-valued case no distinct
tuples can have the same logical type, and we can identify the type of a tuple
with the tuple itself, i.e., a 0–1 valued vector.

Definition 6. A sample (s+, s−) of n-tuples is monotone in the i-th coordinate,
if for all tuples u and v with |u| = i−1, |u|+|v| = n−1 we have that (u, 0, v) ∈ s+
implies (u, 1, v) �∈ s−. Similarly, the sample is antitone in the i-th coordinate if
we instead require that (u, 1, v) ∈ s+ implies (u, 0, v) �∈ s−.

If a sample (s+, s−) is monotone in i, then we can extend it to an optimal hypoth-
esis h with the similar property of (u , 0, v) ∈ h implying (u , 1, v) ∈ h. A folk
theorem states that any formula defining a relation with this property can be
converted to an equivalent formula not containing the literal ¬T (xi). Therefore,
in our search for an optimal hypothesis we can prune formulas containing this
literal. Analogously, we can prune T (xi) when (s+, s−) is antitone in i.

Generalization. To handle more general logical fragments, we shall abstract the
notion of monotonicity from the two-valued case. There, the concept of a tuple
and its type essentially coincided; we had a condition over pairs tuples (u , 0, v),
(u , 1, v) that increase (or decrease) in their i-th coordinate. In the more general
case, we shall use a condition over logical types and not tuples. As a type assigns
a truth value to every literal and (in our fragment) formulas are combinations
of literals, the role of coordinates will be played by the literals themselves. For
each literal λ we assume a neighbor relation Nλ that relates pairs of types for
which the truth value of λ increases from false to true, i.e., (Φ, Ψ) ∈ Nλ must
imply ¬λ ∈ Φ and λ ∈ Ψ (the converse need not hold).

Learning Commutativity Specifications 315

Definition 7. Given a literal λ and a neighbor relation Nλ, we say that a sample
(s+, s−) is Nλ-unate when for all pairs of types (Φ, Ψ) ∈ Nλ, if Φ has a positive
observed status, then Ψ has a positive or a missing observed status.

In the two-valued case, we implicitly used the relation: (Φ, Ψ) ∈ Nλ if and only
if the Ψ is obtained from Φ by switching the truth value of λ, but of no other
literals. This is too restrictive in general, as switching the truth value of one
literal may require a switch in another. For example, consider logical types in
the order structure (Z, <) of the integers. There, switching x �= y from false to
true also requires switching either x < y or y < x from false to true.

We now define when a neighbor relation Nλ is admissible. In general such
relations have to be derived for the specific structure under consideration. To
gain more flexibility, we shall allow Nλ to depend on the sample (s+, s−) for
which we are doing predicate discovery, i.e., Nλ = Nλ(s+, s−).

Definition 8. A family of neighbor relations Nλ(s+, s−) is admissible if for
every sample (s+, s−) with no missing types the best hypothesis is definable with-
out any literals ¬λ for which (s+, s−) is Nλ(s+, s−)-unate.

Neighbors for linear orders. We now give a suitable neighbor relation Nλ for
the order structure (Z, <) of the integers (used in Sect. 6.1). Here, every logical
type is equivalent to an ordered partition of the variables x : equal variables
form a class, and classes are ordered linearly. For example, the type generated
by the formula x1 < x2 = x3 < x4 is equivalent to the ordered partition {x1} <
{x2, x3} < {x4}. We shall manipulate types via two operations on adjacent
classes: we can swap their position, or we can merge them into a single class.
Given a sample (s+, s−), we say that two types conflict if one is positive, while
the other is either negative or ambiguous. We are now ready to define Nλ ([x]
denotes the class of x):

1. (Φ, Ψ) ∈ Nx<y ⇐⇒ y < x ∈ Φ, x < y ∈ Ψ ; swapping [x] and [y] in Ψ gives
Φ; merging [x] and [y] in Ψ gives a type in conflict with Ψ .

2. (Φ, Ψ) ∈ Nx�=y ⇐⇒ x = y ∈ Φ, x �= y ∈ Ψ ; merging [x] and [y] in Ψ gives Φ;
swapping [x] and [y] in Ψ gives a type not in conflict with Ψ .

3. (Φ, Ψ) ∈ Nx≤y ⇐⇒ (Ψ,Φ) ∈ Ny<x and (Φ, Ψ) ∈ Nx=y ⇐⇒ (Ψ,Φ) ∈ Ny �=x.

From an admissible family Nλ we obtain the resulting predicates by pruning
literals ¬λ for which the sample (s+, s−) is Nλ-unate. We then search for a
formula as described in Sect. 4.2. Because of missing types, the above method
may prune literals which are required for finding the optimal hypothesis. Thus,
our pruning approach is a heuristic that relies on good samples.

5 Sampling

When inferring specifications from data, it is important to ensure the data is
of sufficient quality. In this section we present a sampling strategy based on
a heuristic measure of the informativeness of a sample. Then, we give a sim-
ple algorithm for removing redundant observations from a sample. Finally, we
describe a method to adaptively determine the sample size.

316 T. Gehr et al.

5.1 Type-Aware Sampling

Recall that our learning objective is to identify a hypothesis h that best approx-
imates an unknown relation c. We have access to c only as a black-box: we can
basically choose a tuple u and test whether it belongs to c or not, thus obtaining
a sample of positive s+ and negative s− examples. We want to draw tuples such
that the obtained sample (s+, s−) gives us most information about c. We shall
consider one sample more informative than another if it rules out more candidate
hypotheses from our class H of L(x)-definable relations.

Measure. We can roughly quantify this notion of informativeness via logical
types. Observation 2 tells us that if the observed status of a type is not missing,
we know how to classify all other tuples having that type. This suggests that
we should increase the number of types observed in the sample. However, we
also need to account for the case where c is not definable in our fragment. It
might be that the observed status of some type is positive, but there exists some
example that when added to our sample will switch this status to ambiguous,
forcing us to reclassify all tuples having this type as negative. Let us call the true
status of a type Φ(x) its status with respect to the “sample” c+ = {u | u ∈ c},
c− = {u | u �∈ s−}, i.e., when we add all possible tuples. Then our goal is to
maximize the measure given by the number of types that have their true status
(i.e., w.r.t. (c+, c−)) equal to their observed status (i.e., w.r.t. (s+, s−)).

Strategy. Of course, we cannot calculate this measure directly, as all we know is
the observed status of a type. Thus, in the process of sampling we need to balance
two conflicting factors: diversity and confidence. On one hand, we would like the
sample to be as diverse as possible and to contain examples from many types.
On the other hand, we would like to have high confidence that the observed
status of every type matches its true status. To control this trade-off we assume
two parameters: the total number m of examples to draw (discussed further in
Sect. 5.3) controls the diversity, and the number k of examples to draw from a
single type controls the confidence. Note that once the observed status of a type
becomes ambiguous, we can stop drawing more examples from that type, as it
will remain ambiguous. The strategy is summarized in Fig. 3.

Sample Size Reduction. Once we have a sample we can optimize its size without
reducing its informativeness by removing examples as long as we preserve the
observed status of every type. We need to keep a single example of any type
with a positive or a negative observed status, and two examples, one positive
and one negative, from any type with an ambiguous observed status. This size
reduction plays a role when we decide how many examples to draw (Sect. 5.3).

Guarantees. If we obtain a sample of maximal informativeness, i.e., in which
every type has its observed status equal to its true status, then we are guaranteed
to infer (the best) sound approximation. Such a sample always exists (as there are
finitely many logical types) but obtaining it is often infeasible in practice. Thus,
we can combine our black-box approach with white-box verification, e.g., [12].

Learning Commutativity Specifications 317

Sample(, L, c, m, k)

s+, s− ← ,
while |s+| + |s−| < m

choose an unambiguous L-type Φ(x) at random
while Φ(x) is unambiguous and #{u ∈ s+ ∪ s− | |= Φ(u/x)} < k

choose u : |= Φ(u/x) at random
s+ ← s+ ∪ {u} if u ∈ c
s− ← s− ∪ {u} if u �∈ c

return (s+, s−)

Fig. 3. Type-aware sampling from a relation c. The algorithm draws m examples
in total, with at most k of them having the same logical type.

5.2 Black-Box Interface

In our sampling algorithm we assumed that we sample the unknown relation c
by generating tuples u and feeding them to a black-box which classifies them
as positive or negative. However, this is not always the case in general (e.g., for
commutativity, Sect. 6.2). We might be able to feed the black-box only a part v
of u , and only then obtain the rest w (i.e., u = (v ,w)). In this case, we cannot
control the type of the whole u but only of v . This requires only a local change
to the type-aware sampling algorithm: we choose a random type Φ(y),y ⊆ x to
generate v , and then feed v to the black-box to obtain the complete example u .
From there on, we continue as before, considering the type of u and not v .

5.3 Hypothesis Stabilization

We now discuss how to reliably determine the sample size m. Instead of fixing the
number m a priori, we draw new examples until the result of the formula search
stabilizes. We realize this strategy by interleaving a sampling step with a formula
search step. If the search gives the same result two consecutive times, then we
return the discovered formula. The sampling begins with an initial number of m0

examples and, at each subsequent step i + 1 draws twice as many new examples
as the previous step, i.e., mi+1 = 2mi. After each sampling step, we run the
search from scratch on all examples collected so far. As the search might take
too long due to insufficient data, we run each search no longer than the time ti
taken for sampling at the same step. The total running time is not much longer
compared to a single run over m examples: we restart the search Θ(log m) times.
The following theorem guarantees that we terminate:

Theorem 3. If sample size reduction is applied, the required search time t′i
grows sublinearly with the time limit ti, i.e., t′i = o(ti).

The theorem holds because t′i grows with the reduced sample size which in turn
is bounded by the number of types in the logical fragment. On the other hand,
without sample size reduction we are unlikely to terminate, as then the number
of examples for which we perform a search is proportional to mi, and therefore
we have that t′i = Ω(ti) (provided the sampling time ti is linear in mi).

318 T. Gehr et al.

6 Inferring Commutativity Specifications

In this section, we apply the approach discussed so far to the problem of learning
commutativity specifications. Given a data structure (described via an abstract
specification or a concrete implementation), our goal is to infer a commutativity
specification for every pair of its methods.

6.1 Commutativity Specifications

A commutativity specification states when two method invocations commute.
Consider two executions that start in the same initial state σ:

m1(u1)/v1 ; m2(u2)/v2 m2(u2)/w2 ; m2(u1)/w1 (5)

If both executions end in the same state, v1 = w1, and v2 = w2, we say that
the two invocations m1(u1)/v2 and m2(u1)/v2 commute in σ. A commuta-
tivity specification for m1, m2 is a formula ϕ(σ,x ,y), which given a concrete
initial state σ, arguments x = u1u2, and return values y = v1v2 describes
if m1(u1)/v2 and m2(u1)/v2 commute. Sound specifications always imply that
invocations commute (cf. the objective from Sect. 4.1). State independent ones do
not mention the state σ, i.e., they have the form ϕ(x ,y). Our work is able to learn
optimal state independent approximations of state dependent specifications.

The logical fragment we will use consists of quantifier-free formulas built from
integer and boolean variables, the predicates = and <, and the standard boolean
operations. Formulas in this fragment have an arbitrary boolean structure and
are expressive enough to capture a large number of commutativity specifications.

6.2 Sampling for Commutativity

We now describe an instantiation of the sampling approach from Sect. 5.1. Here,
an example u1u2v1v2 consists of the combined arguments and return values
of a pair of commuting or non-commuting method invocations. To produce an
example, we generate random arguments u1u2 and an initial state σ, and then
execute the methods in both orders. The outcome is two states σ1 and σ2, and
two pairs of return values v1v2 and w1w2. If the states and the return values
match, we have a positive example of commutativity. Otherwise, we have two
negative examples. To compare states we assume that an abstract equality check,
Equal(σ1, σ2), is provided (naturally, we reason at the abstract level as opposed
to the bit for bit concrete level).

7 Evaluation

We implemented our approach, and experimented with inferring commutativity
specifications for method pairs of 21 data types. Some of these (e.g., accumulator,
set, map, array list, 1-d tree, union-find) are well-known in the context of com-
mutativity [1,4,9,12–14,23] while others are variants of multiset, partial map, bit

Learning Commutativity Specifications 319

list, 6 variations of union-find, etc. We also selected classic data structures such
as stack, queue and heap. For all data structures, we aimed to discover a state
independent specification in the fragment of Sect. 6. We used the strategy from
Sect. 5.3, obviating the need for setting the sample size in advance. We have set
the initial sample size to 5000 by experimenting with Set and Map. We have used
this value for all other structures. Our tool inferred the best approximation in all
cases. For example, we inferred the following specification for the method pair
unite(a1, b1)/r1, unite(a2, b2)/r2 of UnionFind 6, where unite(a, b)/r unites
the classes of a and b under the representative of the class of a, and also returns
whether a modification was actually performed:
[
(a1 = a2 ∨ a1 = b2 ∨ a2 = b1) ∧ r1 ∧ r2

] ∨ a1 = b1 ∨ a2 = b2 ∨ (¬r1 ∧ ¬r2) (6)

Data structure Pairs Size Disj. #Samples #Types Sampl. Search P.d.

Set

Map

MaxRegister

1DTree

IntProximityQuery

RangeUpdate

Accumulator

Queue

Stack

MinHeap

MultiSet

PartialMap

UnionFind 1

UnionFind 2

UnionFind 3

UnionFind 4

UnionFind 5

UnionFind 6

BitTextEditor

ArrayList

BitList

10 5 3 15 001 11/12 120 0.4 16.0x
3 5 3 15 000 2492/4683 1.4s 600 33.3x
3 3 3 15 000 20/75 80 3.2 10.9x
6 9 3 15 000 31/75 240 2.6 11.9x
10 5 3 15 000 19/75 130 1.4 18.6x
3 11 1 15 000 208/300 330 54 3.7x
3 1 1 15 000 3/3 35 0.06 3.3x
10 7 3 15 001 6/6 96 0.6 4.7x
10 7 3 15 001 6/6 83 0.3 3.3x
10 7 3 15 001 6/6 85 0.8 4.0x
10 9 3 15 000 51/75 170 3.3 2.3x
15 5 3 22 500 1987/4683 1.4s 440 43.2x
6 3 3 17 500 75/75 140 9.7 8.0x
6 5 3 32 500 75/75 290 31 2.7x
6 5 1 45 000 75/75 380 59 2.5x
6 3 3 30 001 247/300 520 110 2.5x
6 11 3 105 001 247/300 2.3s 470 1.6x
6 17 9 75 000 247/300 1.6s 550 36.4x
36 7 3 15 001 4/4 42 0.3 4.3x
28 7 3 145 001 1403/4683 2.4s 710 23.9x
120 19 9 75 000 150/150 920 210 19.5x

Fig. 4. Experimental results averaged over 8 runs. Times are in ms (unless indicated).

Figure 4 summarizes our experimental results over 8 runs. For every data
structure we show the averaged maximum over all method pairs. These numbers
are: inferred formula size (Size), largest disjunct size (Disj.), number of drawn
examples (#Sample), number of observed logical types vs. their upper bound
(#Types), sampling time (Sampl.), formula search time (Search), and the
search speedup achieved via predicate discovery (P.d.). The reduced sample
size is proportional to the number of observed types.

320 T. Gehr et al.

20 000 40 000 60 000 #Samples

1000

2000

3000

#Types

put put

put put*

get put

get put*

get get

get get*

Fig. 5. Type-aware vs. random sampling (*) for 6 method pairs of Map. The method
pairs produce tuples with 6 (put/put), 5 (get/put), and 4 (get/get) components.

Our results indicate that the approach is effective for learning non-trivial
specifications. Further, stabilizing the inferred formula is a reliable way to deter-
mine a good sample size. By filtering examples of the same logical type, we
significantly reduced the input sample size for the later formula search, and
combining exhaustive and greedy search was fully sufficient for inferring all of
the specifications. The results also show that predicate discovery dramatically
reduces search time for more complex specifications. Finally, type-aware sam-
pling successfully provided all observations necessary for inference.

We also compared type-aware with pure random sampling. Figure 5 shows
the number of examples vs. observed types of typical inference runs for Map. The
curve of each run ends when formula stabilization was confirmed. We observe
that: (i) type-aware sampling explored new types more quickly than pure ran-
dom sampling, but only when sampling larger tuples (about 6 components in
this particular case); and (ii) type-aware sampling stabilized the inferred for-
mula much earlier (15 000 vs. 75 000 examples). In fact, in our experiments, we
observed large variance in stabilization time when sampling purely at random.

8 Related Work

There has been substantial interest in learning program invariants from concrete
executions [5–8,16,20,21]. We evaluated several of these approaches, including
[5,16,20,21]. Unfortunately, none of them could infer the necessary specifications
and match our results.

Daikon [5] infers conjunctions of predefined templates that stay invariant
during program execution. DIG [16] infers polynomial invariants over various
algebras, e.g., min-plus and max-plus. Even though both tools support some
form of disjunctive invariants, in our case they could only infer rather crude
approximations to the target specification. A reason for this is that disjunc-
tions abound in the context of commutativity [12]. That is why, in contrast to

Learning Commutativity Specifications 321

Daikon and DIG, our approach aims at learning free-form boolean expressions.
That said, our approach is not strictly better. Daikon scales well when the num-
ber of relations in the fragment increases, and DIG specializes in polynomial
invariants.

Similarly to us, the approaches outlined in [6,20,21] also focus on fragments
with rich support for disjunctions. However, their goal is to support program ver-
ification, and so they learn invariant properties that separate all positive from all
negative examples in a given sample. This is not suitable for learning specifica-
tions, due to the fact that: (i) learning fails if a sample cannot be separated by a
classifier, even though a good approximation exists (cf. (3) in Sect. 4.1); (ii) even
if the sample can be separated, the inferred classifier can be too approximative
to be useful, compared to the best approximation.

These points are especially true for the method in [21] which is tied to an
expressive fragment (arbitrary boolean combinations of half-planes) and prone
to overfitting, as we observed in our experiments with it. In [20] formula search
is performed stochastically. This has the flexibility of supporting a variety of
fragments, but can be highly sensitive to randomness, and can also have issues
with convergence. We could not observe the approach terminating when inferring
commutativity specifications over five or more variables.

Program synthesis methods are also applicable to our problem, i.e., we can
simply ask for a program encoding the target specification. The technique in [11]
synthesizes a program by querying a black-box input-output oracle. However, it
also relies on a verification oracle, and in our setting this requirement can be too
strong: the oracle needs to reason about the data type implementation, which in
turn can be quite complex. The approach in [7] replaces the verification oracle
with “universal examples” which distinguish every possible candidate specifica-
tion. However, in the case of commutativity, we cannot directly query whether
such an example is positive or negative, as a part of the example (the method
return values) is actually generated by the query itself. Interestingly, our type-
aware sampling can be seen as generalization of the “universal examples”.

9 Conclusion

We presented a new “black-box” approach for learning specifications in the frag-
ment of quantifier-free formulas over a finite number of relation symbols. The
key insight is to treat uniformly the examples of the same logical type, i.e., exam-
ples that are indistinguishable by the logical fragment. Our approach introduces
new techniques for obtaining small and informative samples, discovering relevant
predicates, fast search procedure, and a way to adaptively determine sample size.

For our evaluation, we focused on automatically learning commutativity spec-
ifications. These are fundamental to various areas of computer science, yet are
tricky to write manually. Our results indicate that the approach is practically
effective – our tool quickly inferred non-trivial, useful commutativity specifica-
tions, beyond the reach of any existing work.

322 T. Gehr et al.

References

1. Attiya, H., Guerraoui, R., Hendler, D., Kuznetsov, P., Michael, M.M., Vechev, M.T.:
Laws of order: expensive synchronization in concurrent algorithms cannot be elim-
inated. In: Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2011, Austin, TX, USA, 26–28 Jan 2011
(2011)

2. Cameron, P.J.: Oligomorphic Permutation Groups. Cambridge University Press,
Cambridge (1990)

3. Chang, C.C., Keisler, H.J.: Model Theory. Studies in Logic and the Foundations
of Mathematics. Elsevier Science, North-Holland (1990)

4. Dimitrov, D., Raychev, V., Vechev, M.T., Koskinen, E.: Commutativity race detec-
tion. In: ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI2014, Edinburgh, UK - 09–11 June 2014 (2014)

5. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The Daikon system for dynamic detection of likely invariants. Sci. Com-
put. Program. 69(1–3), 35–45 (2007)

6. Garg, P., Löding, C., Madhusudan, P., Neider, D.: ICE: A robust framework for
learning invariants. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 69–87. Springer, Heidelberg (2014)

7. Godefroid, P., Taly, A.: Automated synthesis of symbolic instruction encodings
from i/o samples. In: PLDI2012, pp. 441–452, New York, ACM (2012)

8. Gupta, A., Majumdar, R., Rybalchenko, A.: From tests to proofs. In:
Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 262–276.
Springer, Heidelberg (2009)

9. Herlihy, M., Koskinen, E.: Transactional boosting: a methodology for highly-
concurrent transactional objects. In: Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPOPP 2008,
Salt Lake City, UT, USA, 20–23 Feb 2008 (2008)

10. Hodges, W.: Model Theory: Encyclopedia of Mathematics and its Applications.
Cambridge University Press, Cambridge (2008)

11. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based pro-
gram synthesis. In: Proceedings of the 32Nd ACM/IEEE International Conference
on Software Engineering - Volume 1, ICSE’2010, pp. 215–224, New York, NY, USA,
ACM (2010)

12. Kim, D., Rinard, M.C.: Verification of semantic commutativity conditions and
inverse operations on linked data structures. In: PLDI’2011, pp. 528–541, New
York, NY, USA, ACM (2011)

13. Kulkarni, M., Nguyen, D., Prountzos, D., Sui, X., Pingali, K.: Exploiting the com-
mutativity lattice. SIGPLAN Not. 46(6), 542–555 (2011)

14. Kulkarni, M., Pingali, K., Walter, B., Ramanarayanan, G., Bala, K., Chew, L.P.:
Optimistic parallelism requires abstractions. In: Proceedings of the ACM SIG-
PLAN 2007 Conference on Programming Language Design and Implementation,
San Diego, California, USA, 10–13 June 2007 (2007)

15. McMillan, K.L.: Relevance heuristics for program analysis. In: Proceedings of the
35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2008, San Francisco, California, USA, 7–12 Jan 2008 (2008)

16. Nguyen, T., Kapur, D., Weimer, W., Forrest, S.: Using dynamic analysis to gen-
erate disjunctive invariants. In: ICSE 2014, pp. 608–619. ACM (2014)

Learning Commutativity Specifications 323

17. Poizat, B.: A Course in Model Theory: An Introduction to Contemporary Mathe-
matical Logic Universitext. Springer, New York (2000)

18. Rissanen, J.: Modeling by shortest data description. Automatica 14(5), 465–471
(1978)

19. Rissanen, J.: Information and Complexity in Statistical Modeling. Springer,
New York (2010)

20. Sharma, R., Aiken, A.: From invariant checking to invariant inference using ran-
domized search. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 88–105. Springer, Heidelberg (2014)

21. Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Nori, A.V.: Verification as learn-
ing geometric concepts. In: Logozzo, F., Fähndrich, M. (eds.) Static Analysis.
LNCS, vol. 7935, pp. 388–411. Springer, Heidelberg (2013)

22. Vapnik, V.N.: Statistical Learning Theory. Adaptive and Learning Systems for
Signal Processing, Communications, and Control. Wiley, New York (1998)

23. Weihl, W.E.: Commutativity-based concurrency control for abstract data types.
IEEE Trans. Comput. 37(12), 1488–1505 (1988)

Angelic Verification: Precise
Verification Modulo Unknowns

Ankush Das1, Shuvendu K. Lahiri1(B), Akash Lal1, and Yi Li2

1 Microsoft Research, Bangalore, India
{t-ankdas,shuvendu,akashl}@microsoft.com

2 University of Toronto, Toronto, Canada
liyi@cs.toronto.edu

Abstract. Verification of open programs can be challenging in the pres-
ence of an unconstrained environment. Verifying properties that depend
on the environment yields a large class of uninteresting false alarms.
Using a verifier on a program thus requires extensive initial investment
in modeling the environment of the program. We propose a technique
called angelic verification for verification of open programs, where we
constrain a verifier to report warnings only when no acceptable envi-
ronment specification exists to prove the assertion. Our framework is
parametric in a vocabulary and a set of angelic assertions that allows a
user to configure the tool. We describe a few instantiations of the frame-
work and an evaluation on a set of real-world benchmarks to show that
our technique is competitive with industrial-strength tools even without
models of the environment.

1 Introduction

Scalable software verifiers offer the potential to find defects early in the devel-
opment cycle. The user of such a tool can specify a property (e.g. correct usage
of kernel/security APIs) using some specification language and the tool vali-
dates that the property holds on all feasible executions of the program. There
has been a significant progress in the area of software verification, leveraging
ideas from model checking [13], theorem proving [34] and invariant inference
algorithms [16,22,33]. Tools based on these principles (e.g. SDV [3], F-Soft [24])
have found numerous bugs in production software.

However, a fundamental problem still limits the adoption of powerful software
verifiers in the hands of end users. Most (interprocedural) program verifiers aim
to verify that a program does not fail assertions under all possible feasible execu-
tions of the program. This is a good match when the input program is “closed”,
i.e., its execution starts from a well-defined initial state, and external library
methods are included or accurately modeled. Scalability concerns preclude per-
forming monolithic verification that includes all transitive callers and library
source code. In practice, a significant portion of verification tool development
requires closing a program by (i) either providing a harness (a client program) or
a module invariant [30] to constrain the inputs and (ii) stubs for external library
c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 324–342, 2015.
DOI: 10.1007/978-3-319-21690-4 19

Angelic Verification: Precise Verification Modulo Unknowns 325

1 // inconsistency
2 procedure Bar(x: int) {
3 if (x ! = NULL) { gs := 1; }
4 else { gs := 2; }
5 // possible BUG or dead code
6 assert x ! = NULL;
7 m[x] := 5;
8 }
9 // internal bug

10 procedure Baz(y:int) {
11 assert y ! = NULL; //DEFINITE BUG
12 m[y] := 4;
13 }
14 // entry point
15 procedure Foo(z: int) {
16 call Bar(z); // block + relax
17 call Baz(NULL); // internal bug
18 call FooBar(); // external calls
19 }

20 // globals
21 var gs: int , m:[int] int ;
22

23 // external call
24 procedure FooBar() {
25 var x, w, z: int ;
26 call z := Lib1 ();
27 assert z ! = NULL;
28 m[z] := NULL;
29 call x := Lib2 ();
30 assert x ! = NULL;
31 w := m[x];
32 assert w ! = NULL;
33 m[w] := 4;
34 }
35 // library
36 procedure Lib1() returns (r : int);
37 procedure Lib2() returns (r : int);

Fig. 1. Running example.

procedures [3]. The effect of modeling is to constrain the set of unknowns in the
program to rule out infeasible executions. Absence of such modeling results in
numerous uninteresting alarms and deters a user from further interacting with
the tool. “A stupid false positive implies the tool is stupid” [6]. The significant
initial modeling overhead often undermines the value provided by verifiers. Even
“bounded” versions of verifiers (such as CBMC [14]) suffer from this problem
because these unknowns are present even in bounded executions.

Example 1. Consider the example program (written in the Boogie language [4])
in Fig. 1. The program has four procedures Foo,Bar,Baz,FooBar and two exter-
nal library procedures Lib1, Lib2. The variables in the programs can be scalars (of
type int) or arrays (e.g. m) that map int to int. The Boogie program is an encod-
ing of a C program [15]: pointers and values are uniformly modeled as integers
(e.g. parameter x of Bar, or the return value of Lib1), and memory dereference
is modeled as array lookup (e.g. m[x]). The procedures have assertions marked
using assert statements. The entry procedure for this program is Foo.

There are several sources of unknowns or unconstrained values in the pro-
gram: the parameter z to Foo, the global variable m representing the heap, and
the return values of library procedures Lib1 and Lib2. Even a precise verifier is
bound to return assertion failures for each of the assertions in the program. This
is due to the fact that all the assertions, except the one in Baz (the only definite
bug in the program) are assertions over unknowns in the program and (sound)
verifiers tend to be conservative (over-approximate) in the face of unknowns.
Such demonic nature of verifiers will result in several false alarms.

Overview. Our goal is to push back on the demonic nature of the verifier by
prioritizing alarms with higher evidence. In addition to the warning in Baz, the
assertion in Bar is suspicious as the only way to avoid the bug is to make the
“else” branch unreachable in Bar. For the remaining assertions, relatively simple

326 A. Das et al.

constraints on the unknown values suffice to explain the correctness of these
assertions. For example, it is reasonable to assume that calls to library methods
do not return NULL, their dereferences (m[x]) store non-null values and calls to
two different library methods do not return aliased pointers. We tone down the
demonic nature of verifiers by posing a more angelic decision problem for the
verifier (also termed as abductive inference [10,20]):

For a given assertion, does there exists an acceptable specification over
the unknowns such that the assertion holds?

This forces the verifier to work harder to exhaust the space of acceptable speci-
fications before showing a warning for a given assertion. Of course, this makes
the verification problem less defined as it is parameterized by what constitutes
“acceptable” to the end user of the tool. At the same time, it allows a user to
be able to configure the demonic nature of the tool by specifying a vocabulary
of acceptable specifications.

In this paper, we provide a user a few dimensions to specify a vocabulary
Vocab that constitutes a specification (details can be found in Sect. 4). The
vocabulary can indicate a template for the atomic formulas, or the Boolean and
quantifier structure. Given a vocabulary Vocab, we characterize an acceptable
specification by how (a) concise and (b) permissive the specification is. Con-
ciseness is important for the resulting specifications to be understandable by
the user. Permissiveness ensures that the specification is not overly strong, thus
masking out true bugs. The failure in Bar is an example, where a specification
x �= NULL is not permissive as it gives rise to dead code in the “else” branch
before the assertion. To specify desired permissiveness, we allow the users to aug-
ment the program with a set of angelic assertions Â. The assertions in Â should
not be provable in the presence of any inferred specification over the unknowns.
An angelic assertion assert e ∈ Â at a program location l indicates that the user
expects at least one state to reach l and satisfy ¬e. For Bar one can add two
assertions assert false inside each of the branches. The precondition x �= NULL
would be able to prove that assert false in the “else” branch is unreachable (and
thus provable), which prevents it from being permissive. We describe a few such
useful instances of angelic assertions in Sect. 3.1.

We have implemented the angelic verification framework in a tool called
AngelicVerifier for Boogie programs. Given a Boogie program with a set S of
entrypoints, AngelicVerifier invokes each of the procedures in S with unknown
input states. In the absence of any user-provided information, we assume that S
is the set of all procedures in the program. Further, the library procedures are
assigned a body that assigns a non-deterministic value to the return variables and
adds an assume statement with a predicate unknown i (Fig. 2). This predicate
will be used to constrain the return values of a procedure for all possible call
sites (Sect. 4) within an entrypoint.

AngelicVerifier invokes a given (demonic) verifier on this program with all
entrypoints in S. If the verifier returns a trace that ends in an assertion failure,
AngelicVerifier tries to infer an acceptable specification over the unknowns. If
it succeeds, it installs the specification as a precondition of the entry point and

Angelic Verification: Precise Verification Modulo Unknowns 327

function unknown 0(a: int): bool;
function unknown 1(a: int): bool;

procedure Lib1() returns (r : int) {
assume unknown 0(r);
return;

}

procedure Lib2() returns (r : int) {
assume unknown 1(r);
return;

}

Fig. 2. Modeling of external proce-
dures by AngelicVerifier. All variables
are non-deterministically initialized.

// Trace: Bar → assert on line 6
SPEC :: x �= NULL, Spec not permissive
ANGELIC WARNING: Assertion x != NULL fails in proc Bar
// Trace: Baz → assert on line 11
SPEC :: y �= NULL
// Trace: FooBar → assert on line 27
SPEC :: (∀ x 1: unknown 0(x 1) ⇒ x 1 �= NULL)
// Trace: FooBar → assert on line 30
SPEC :: (∀ x 2: unknown 1(x 2) ⇒ x 2 �= NULL)
// Trace: FooBar → assert on line 32
SPEC :: (∀ x 2, x 1: unknown 1(x 2) ∧

unknown 0(x 1)⇒ (x 2 �= x 1 ∧ m[x 2] �= NULL))
// Trace: Foo → Baz → assert on line 11
ANGELIC WARNING: Assertion y != NULL fails in proc Baz

Fig. 3. Output of AngelicVerifier on the
program shown in Fig. 1. A line with
“SPEC” denotes an inferred specification to
suppress a trace.

iterates. If it is unable to infer an acceptable specification, the trace is reported
as a defect to the user.

Figure 3 shows the output of AngelicVerifier applied to our example:

– For a trace that starts at Bar and fails the assert on line 6, we conjecture a
specification x �= NULL but discover that it is not permissive. The line with
“ANGELIC WARNING” is a warning shown to the user.

– For the trace that starts at Baz and fails the assert on line 11, we block the
assertion failure by installing the constraint y �= NULL. The code of Bar does
not have any indication that it expects to see NULL as input.

– For the three traces that start at FooBar and fail an assertion inside it, we block
them using constraints on the return values of library calls. Notice that the
return values are not in scope at the entry to FooBar; they get constrained
indirectly using the unknown i predicates. The most interesting block is for
the final assertion which involves assuming that (a) the returns from the two
library calls are never aliased, and (b) the value of the array m at the value
returned by Lib2 is non-null. (See Sect. 4)

– The trace starting at Foo that calls Baz and fails on line 11 cannot be blocked
(other than by using the non-permissive specification false), and is reported
to the user.

Contributions. In summary, the paper makes the following contributions: (a) We
provide a framework for performing angelic verification with the goal of highlight-
ing highest confidence bugs. (b) We provide a parametric framework based on
Vocab and Â to control the level of angelism in the tool that a user can configure.
(c) We describe a scalable algorithm for searching specifications using Explain-
Error (Sect. 4). We show an effective way to deal with internal non-determinism
resulting from calls to library procedures. (d) We have implemented the ideas
in a prototype tool AngelicVerifier and evaluated it on real-world benchmarks.
We show that AngelicVerifier is competitive with industrial-strength tools even
without access to the environment models.

328 A. Das et al.

2 Programming Language

Syntax. We formalize the ideas in the paper in the context of a simple subset
of the Boogie programming language [4]. A program consists of a set of basic
blocks Block ; each block consists of a label BlockId , a body s ∈ Stmt and a
(possibly empty) set of successor blocks. A program has a designated first block
Start ∈ Block . Most statements are standard; the havoc x statement assigns a
non-deterministic value to the variable x. An expression (Expr) can be a variable
identifier or an application of function f ∈ Functions. A formula (Formula)
includes Boolean constants, application of a predicate p ∈ Predicates , and closed
under Boolean connectives and quantifiers. The constructs are expressive enough
to model features of most programming languages such as C [15] or Java [1].
Conditional statements are modeled using assume and goto statements; heap is
modeled using interpreted array functions {read ,write} ⊆ Functions [35] (Fig. 4).

P ∈ Program ::= Block+

BL ∈ Block ::= BlockId : s; goto BlockId∗

s, t ∈ Stmt ::= skip | assert φ | assume φ | x := e | havoc x | s; s
x, y ∈ Vars
e ∈ Expr ::= x | f (e, . . . , e)
φ, ψ ∈ Formula ::= true | false | p(e, . . . , e) | φ ∧ φ | ∀x : φ | ¬φ

Fig. 4. A simple programming language.

Semantics. A program state , is a type-consistent valuation of variables in
scope in the program. The set of all states is denoted by Σ ∪ {Err}, where Err
is a special state to indicate an assertion failure. For a given state ∈ Σ and an
expression (or formula) e, e denotes the evaluation of e in the state. For a formula
φ ∈ Formula, |= φ holds if φ evaluates to true. The semantics of a program is
a set of execution traces, where a trace corresponds to a sequence of program
states. We refer the readers to earlier works for details of the semantics [4].
Intuitively, an execution trace for a block BL corresponds to the sequence of
states obtained by executing the body, and extending the terminating sequences
with the traces of the successor blocks (if any). A sequence of states for a block
does not terminate if it either executes an assume φ or an assert φ statement in
a state ∈ Σ such that �|= φ. In the latter case, the successor state is Err . The
traces of a program is the set of traces for the start block Start . Let T (P) be
the set of all traces of a program P. A program P is correct (denoted as |= P)
if T (P) does not contain a trace that ends in the state Err . For a program P
that is not correct, we define a failure trace as a trace τ that starts at Start and
ends in the state Err .

Angelic Verification: Precise Verification Modulo Unknowns 329

3 Angelic Verification

In this section, we make the problem of angelic verification more concrete. We are
given a program P that cannot be proved correct in the presence of unknowns
from the environment (e.g. parameters, globals and outputs of library proce-
dures). If one takes a conservative approach, we can only conclude that the
program P has a possible assertion failure. In this setting, verification failures
offer no information to a user of the tool. Instead, one can take a more pragmatic
approach. If the user can characterize a class of acceptable missing specifications
Φ that precludes verification (based on experience), one can instead ask a weaker
verification question: does there exist a specification φ ∈ Φ such φ |= P?. One can
characterize the acceptability of a specification φ along two axes: (i) Concise-
ness — the specification should have a concise representation in some vocabulary
that the user expects and can inspect. This usually precludes specifications with
several levels of Boolean connectives, quantifiers, or complex atomic expressions.
(ii) Permissive — the specification φ should not be too strong to preclude feasi-
ble states of P that are known to exist. We allow two mechanisms for an expert
user to control the set of acceptable specifications:

– The user can provide a vocabulary Vocab of acceptable specifications, along
with a checker that can test membership of a formula φ in Vocab. We show
instances of Vocab in Sect. 4.

– The user can augment P with a set of angelic assertions Â at specific locations,
with the expectation that any specification should not prove an assertion
assert e ∈ Â.

We term the resulting verification problem angelic as the verifier co-operates
with the user (as opposed to playing an adversary) to find specifications that
can prove the program. This can be seen as a particular mechanism to allow
an expert user to customize the abductive inference problem tailored to their
needs [20]. If no such specification can found, it indicates that the verification
failure of P cannot be categorized into previously known buckets of false alarms.

We make these ideas more precise in the next few sections. In Sect. 3, we
describe the notion of angelic correctness given P, Vocab and Â. In Sect. 3.2,
we describe an algorithm to prove angelic correctness using existing program
verifiers.

3.1 Problem Formulation

Let φ ∈ Formula be a well-scoped formula at the block Start of a program P. We
say that a program P is correct under φ (denoted as φ |= P), if the augmented
program Start0 : assume φ ; goto Start with “Start” block as Start0 is correct.
In other words, the program P is correct with a precondition φ.

Let A be the set of assertions in program P. Additionally, let the user specify
an additional set Â of angelic assertions at various blocks in P. We denote the
program PA1,A2 as the instrumented version of P that has two sets of assertions
enabled:

330 A. Das et al.

– Normal assertions A1 ⊆ A that constitute a (possibly empty) subset of the
original assertions present in P, and

– Angelic assertions A2 ⊆ Â that constitute a (possibly empty) subset of set of
additional user supplied assertions.

Definition 1 (Permissive Precondition). For a program PA,Â and for-
mula φ, Permissive(PA,Â, φ) holds if for every assertion s ∈ Â, if φ |=
P∅,{s}, then true |= P∅,{s}.

In other words, a specification φ is not allowed to prove any assertion s ∈ Â that
was not provable under the unconstrained specification true.

Definition 2 (Angelic Correctness). Given (i) a program P with a set of
normal assertions A, (ii) an angelic set of assertions Â, and (iii) a vocabulary
Vocab constraining a set of formulas at Start, P is angelically correct under
(Vocab, Â) if there exists a formula φ ∈ Vocab such that: (i) φ |= PA,∅, and
(ii) Permissive(P∅,Â, φ) holds.

If no such specification φ exists, then we say that P has an angelic bug with
respect to (Vocab, Â). In this case, we try to ensure the angelic correctness of
P with respect to a subset of the assertions in P; the rest of the assertions are
flagged as angelic warnings.

Examples of Angelic Assertions Â. If one provides assert false at Start
to be part of Â, it disallows preconditions that are inconsistent with other
preconditions of the program [20]. If we add assert false at the end of every
basic block, it prevents us from creating preconditions that create dead
code in the program. This has the effect of detecting semantic inconsis-
tency or doomed bugs [19,21,23,36]. Further, we can allow checking such
assertions interprocedurally and at only a subset of locations (e.g. exclude
defensive checks in callees). Finally, one can encode other domain knowledge
using such assertions. For example, consider checking the correct lock usage for
if(∗){L1 : assert ¬locked(l1); lock(l1); } else {L2 : assert locked(l2); unlock(l2); }.
If the user expects an execution where l1 = l2 at L2, the angelic assertion
assert l1 �= l2 ∈ Â precludes the precondition ¬locked(l1) ∧ locked(l2), and
reveals a warning for at least one of the two locations. As another example, if
the user has observed a runtime value v for variable x at a program location
l, she can add an assertion assert x �= v ∈ Â at l to ensure that a specification
does not preclude a known feasible behavior; further, the idea can be extended
from feasible values to feasible intraprocedural path conditions.

3.2 Finding Angelic Bugs

Algorithm 1 describes a (semi) algorithm for proving angelic correctness of a pro-
gram. In addition to the program, it takes as inputs the set of angelic assertions
Â, and a vocabulary Vocab. On termination, the procedure returns a specifi-
cation E and a subset A1 ⊆ A for which the resultant program is angelically

Angelic Verification: Precise Verification Modulo Unknowns 331

correct under E. Lines 1 and 2 initialize the variables E and A1, respectively.
The loop from line 3 — 16 performs the main act of blocking failure traces in P.
First, we verify the assertions A1 over P. The routine tries to establish E |= P
using a sound and complete program verifier; the program verifier itself may
never terminate. We return in line 6 if verification succeeds and P contains no
failure traces (NO TRACE). In the event a failure trace τ is present, we query a
procedure ExplainError (see Sect. 4) to find a specification φ that can prove that
none of the executions along τ fail an assertion. Line 10 checks if the addition of
the new constraint φ still ensures that the resulting specification E1 is permis-
sive. If not, then it suppresses the assertion a that failed in τ (by removing it
from A1) and outputs the trace τ to the user. Otherwise, it adds φ to the set of
constraints collected so far. The loop repeats forever until verification succeeds
in Line 4. The procedure may fail to terminate if either the call to Verify does
not terminate, or the loop in Line 3 does not terminate due to an unbounded
number of failure traces.

Theorem 1. On termination, Algorithm 1 returns a pair of precondition E and
a subset A1 ⊆ A such that (i) E |= P when only assertions in A1 are enabled,
and (ii) Permissive(PA,Â,E).

The proof follows directly from the check in line 4 that establishes (i), and
line 10 that ensures permissiveness.

332 A. Das et al.

4 ExplainError

Problem. Given a program P that is not correct, let τ be a failure trace of P.
Since a trace can be represented as a valid program (Program) in our language
(with a single block containing the sequence of statements ending in an assert
statement), we will treat τ as a program with a single control flow path.

Informally, the goal of ExplainError is to return a precondition φ from a
given vocabulary Vocab such that φ |= τ, or false if no such precondition exists.
ExplainError takes as input the following: (a) a program P, (b) a failure trace τ
in P represented as a program and (c) a vocabulary Vocab that specifies syntactic
restrictions on formulas to search over. It returns a formula φ such that φ |= τ
and φ ∈ Vocab ∪{false}. It returns false either when (a) the vocabulary does not
contain any formula φ for which φ |= τ, or (b) the search does not terminate
(say due to a timeout).

Note that the weakest liberal precondition (wlp) of the trace [18] is guaran-
teed to be the weakest possible blocking constraint; however, it is usually very
specific to the trace and may require enumerating all the concrete failing traces
inside Algorithm 1. Moreover, the resulting formula for long traces are often not
suitable for human consumption. When ExplainError returns a formula other
than false, one may expect φ to be the weakest (most permissive) constraint in
Vocab that blocks the failure path. However, this is not possible for several rea-
sons (a) efficiency concerns preclude searching for the weakest, (b) Vocab may
not be closed under disjunction and therefore the weakest constraint may not
be defined. Thus the primary goals of ExplainError are to be (a) scalable (so
that it can be invoked in the main loop in Algorithm 1), and (b) the resulting
constraints are concise even if not the weakest over Vocab.

Algorithm. Algorithm 2 provides the high-level flow of ExplainError. Cur-
rently, the algorithm is parameterized by Vocab that consists of two components:

– Vocab.Atoms: a template for the set of atomic formulas that can appear in
a blocking constraint. This can range over equalities (e1 = e2), difference
constraints (e1 ≤ e2 + c), or some other syntactic pattern.

– Vocab.Bool : the complexity of Boolean structure of the blocking constraint.
One may choose to have a clausal formula (

∨
i ei), cube formulas (

∧
i ei), or an

arbitrary conjunctive normal form (CNF) (
∨

j(
∧

i ei)) over atomic formulas ei.

Initially, we assume that we do not have internal non-determinism in the
form of havoc or calls to external libraries in the trace τ – we will describe this
extension later in this section.

Let wlp(s, φ) be the weakest liberal precondition transformer for a s ∈ Stmt
and φ ∈ Formula [18]. wlp(s, φ) is the weakest formula representing states from
which executing s does not lead to assertion failure and on termination satis-
fies φ. It is defined as follows on the structure of statements: wlp(skip, φ) = φ,
wlp(x := e, φ) = φ[e/x] (where φ[e/x] denotes substituting e for all free occur-
rences of x), wlp(assume ψ, φ) = ψ ⇒ φ, wlp(assert ψ, φ) = ψ ∧ φ, and

Angelic Verification: Precise Verification Modulo Unknowns 333

wlp(s; t, φ) = wlp(s,wlp(t, φ)). Thus wlp(τ, true) will ensure that no assertion
fails along τ. Our current algorithm (Algorithm 2) provides various options
to create predicate (under) covers of wlp(τ, true) [22], formulas that imply
wlp(τ, true). Such formulas are guaranteed to block the trace τ from failing.

The first step ControlSlice performs an optimization to prune conditionals
from τ that do not control dominate the failing assertion, by performing a vari-
ant of the path slicing approach [25]. Line 2 performs the wlp computation on
the resulting trace τ1. At this point, φ1 is a Boolean combination of literals
from arithmetic, equalities and array theories in satisfiability modulo theories
(SMT) [34]. EliminateMapUpdates (in line 3) eliminates any occurrence of write
from the formula using rewrite rules such as read(write(e1 , e2 , e3), e4) → e2 =
e4 ? e3 : read(e1 , e4). This rule introduces new equality (aliasing) constraints in
the resulting formula that are not present directly in τ. Line 4 chooses a set of
atomic formulas from φ2 that match the vocabulary. Finally, the conditional in
Line 5 determines the Boolean structure in the resulting expression.

The MONOMIAL option specifies that the block expression is a disjunction
of atoms from atoms1 . Line 7 collects the set of atoms in atoms1 that imply
φ2, which in turn implies wlp(τ, true). We return the clause representing the
disjunction of such atoms, which in turn implies wlp(τ, true). The more expensive
ProjectAtoms(φ2, atoms1) returns a formula φ3 that is a CNF expression over
atoms1 , such that φ3 ⇒ φ2, by performing Boolean quantifier elimination of the
atoms not present in atoms1 . We first transform the formula φ2 into a conjunctive
normal form (CNF) by repeatedly applying rewrite rules such as φ1∨(φ2∧φ3) →
(φ1 ∨ φ2) ∧ (φ1 ∨ φ3). We employ a theorem prover at each step to try simplify
intermediate expressions to true or false. Finally, for each clause c in the CNF
form, we remove any literal in c that is not present in the set of atoms atoms1 .

Example. Consider the example FooBar in Fig. 1, and the trace τ that cor-
responds to violation of assert w �= NULL. The trace is a sequential composi-
tion of the following statements: z := x 1, m[z] := NULL, x := x 2, w := m[x],
assert w �= NULL, where we have replaced calls to Lib1 and Lib2 with x 1
and x 2 respectively. wlp(τ, true) is read(write(m, x 1,NULL), x 2) �= NULL,
which after applying EliminateMapUpdates would result in the expression
(x 1 �= x 2 ∧ m[x 2] �= NULL). Notice that this is nearly identical to the block-
ing clause (except the quantifiers and triggers) returned while analyzing FooBar
in Fig. 3. Let us allow any disequality e1 �= e2 atoms in Vocab. If we only allow
MONOMIAL Boolean structure, there does not exist any clause over these atoms
(weaker than false) that suppresses the trace.

Internal Non-determinism. In the presence of only input non-determinism
(parameters and globals), the wlp(τ, true) is a well-scoped expression at entry in
terms of parameters and globals. In the presence of internal non-determinism
(due to havoc statements either present explicitly or implicitly for non-
deterministic initialization of local variables), the target of a havoc is universally
quantified away (wlp(havoc x, φ) = ∀u : φ[u/x]). However, this is unsatisfactory

334 A. Das et al.

for several reasons: (a) one has to introduce a fresh quantified variable for dif-
ferent call sites of a function (say Lib1 in Fig. 1). (b) Moreover, the quantified
formula does not have good trigger [17] to instantiate the universally quantified
variables u. For a quantified formula, a trigger is a set of sub-expressions con-
taining all the bound variables. To address both these issues, we introduce a
distinct predicate unknown i after the i-th syntactic call to havoc and introduce
an assume statement after the havoc (Fig. 2): assume unknown i(x), The wlp rules
for assume and havoc ensure that the quantifiers are more well-behaved as the
resultant formulas have unknown i(x) as a trigger (see Fig. 3).

5 Evaluation

We have implemented the ideas described in this paper (Algorithms 1 and 2)
in a tool called AngelicVerifier, available with sources.1 AngelicVerifier uses
the Corral verifier [31] as a black box to implement the check Verify used in
Algorithm 1. Corral performs interprocedural analysis of programs written in
the Boogie language; the Boogie program can be generated from either C [15],
.NET [5] or Java programs [1]. As an optimization, while running ExplainError,
AngelicVerifier first tries the MONOMIAL option and falls back to ProjectAtoms
when the former returns false.

We empirically evaluate AngelicVerifier against two industrial tools: the Sta-
tic Driver Verifier (SDV) [3] and PREfix [9]. Each of these tools come packaged
with models of the environment (both harness and stubs) of the programs they
target. These models have been designed over several years of testing and tun-
ing by a product team. We ran AngelicVerifier with none of these models and
compared the number of code defects found as well as the benefit of treating the
missing environment as angelic over treating it as demonic.

5.1 Comparison with SDV

Benchmarks Procedures KLOC CPU(Ks)
Correct (5) 71-235 2.0-19.1 1.1
Buggy (13) 23-139 1.5-6.7 1.7

Fig. 5. SDV Benchmarks

SDV is a tool offered by Microsoft to third-
party driver developers. It checks for type-
state properties (e.g., locks are acquired and
released in strict alternation) on Windows
device drivers. SDV checks these properties by
introducing monitors in the program in the

form of global variables, and instrumenting the property as assertions in the
program. We chose a subset of benchmarks and properties from SDV’s verifi-
cation suite that correspond to drivers distributed in the Windows Driver Kit
(WDK); their characteristics are mentioned in Fig. 5. We picked a total of 18
driver-property pairs, in which SDV reports a defect on 13 of them. Figure 5
shows the range for the number of procedures, lines of code (contained in C
files) and the total time taken by SDV (in 1000s of seconds) on all of the buggy
or correct instances.
1 At http://corral.codeplex.com, project AddOns\AngelicVerifierNull.

http://corral.codeplex.com

Angelic Verification: Precise Verification Modulo Unknowns 335

We ran various instantiations of AngelicVerifier on the SDV benchmarks:

– default: The vocabulary includes aliasing constraints (e1 �= e2) as well as
arbitrary expressions over monitor variables.

– noTS: The vocabulary only includes aliasing constraints.
– noAlias: The vocabulary only includes expressions over the monitor vari-

ables.
– noEE: The vocabulary is empty. In this case, all traces returned by Corral

are treated as bugs without running ExplainError. This option simulates a
demonic environment.

– default+harness: This is the same as default, but the input program
includes a stripped version of the harness used by SDV. This harness initializes
the monitor variables and calls specific procedures in the driver. (The actual
harness used by SDV is several times bigger and includes initializations of
various data structures and flags as well.)

Example: Fig. 6 contains code snippets inspired from real code in our bench-
marks. We use it to highlight the differences between the various configurations
of AngelicVerifier described above.

– The assertion in Fig. 6(a) will be reported as a bug by noTS but not default
because LockDepth > 1 is not a valid atom for noTS.

– The assertion in Fig. 6(c) will be reported as a bug by noAlias but not
default because it requires a specification that constrains aliasing in the
environment. For instance, default constrains the environment by impos-
ing (x �= irp ∧ y �= irp) ∨ (z �= irp ∧ y �= irp), where x is devobj →
DeviceExtension → FlushIrp, y is devobj → DeviceExtension → LockIrp and z is
devobj → DeviceExtension → BlockIrp.

– The procedures called Harness in Fig. 6 are only available under the set-
ting default+harness. The assertion in Fig. 6(a) will not be reported by
default as it is always possible (irrespective of the number of calls to
KeAcquireSpinLock and KeReleaseSpinLock) to construct an initial value of
LockDepth that suppresses the assertion. When the (stripped) harness is
present, this assertion will be reported. Note that the assertion failure in
Fig. 6(b) will be caught by both default and default+harness.

The results on SDV benchmarks are summarized in Table 1. For each
AngelicVerifier configuration, we report the cumulative running time in thou-
sands of seconds (CPU), the numbers of bugs reported (B), and the num-
ber of false positives (FP) and false negatives (FN). The experiments were
run (sequentially, single-threaded) on a server class machine with two Intel(R)
Xeon(R) processors (16 logical cores) executing at 2.4 GHz with 32 GB RAM.

noEE reports a large number of false positives, confirming that a demonic
environment leads to spurious warnings. The default configuration, on the
other hand, reports no false positives! It is overly-optimistic in some cases result-
ing in missed defects. It is clear that the out-of-the-box experience, i.e., before
environment models have been written, of AngelicVerifier (low false positives,

336 A. Das et al.

// monitor variable
int LockDepth;

// This procedure is only
// available under the option
// default +harness
void Harness() {
LockDepth = 0;
IoCancelSpinLock();

}

void IoCancelSpinLock() {
KeReleaseSpinLock();
...
KeReleaseSpinLock();
...
KeAcquireSpinLock();
...
KeCheckSpinLock();

}

void KeAcquireSpinLock()
{ LockDepth ++; }

void KeReleaseSpinLock()
{ LockDepth −−; }

void KeCheckSpinLock()
{ assert LockDepth> 0; }

const int PASSIVE = 0;
const int DISPATCH = 2;
// monitor variable
int irqlVal ;

// This procedure is only
// available under the option
// default +harness
void Harness() {

irqlVal = PASSIVE;
KeRaiseIrql ();

}

void KeRaiseIrql () {
...
irqlVal = DISPATCH;
...
KeReleaseIrql ();

}

void KeReleaseIrql () {
assert irqlVal == PASSIVE;
irqlVal = DISPATCH;

}

int completed;
IRP ∗ global irp ;

void DispatchRoutine(DO ∗devobj,
IRP ∗irp) {

completed = 0;
global irp = irp ;
DE ∗de = devobj→DeviceExtension;
...
IoCompleteRequest(de→FlushIrp);
...
IoCompleteRequest(de→BlockIrp);
...
IoCompleteRequest(de→LockIrp);

}

void IoCompleteRequest(IRP ∗p) {
if (p == global irp) {
assert completed ! = 1;
completed = 1;

}
}

(a) (b) (c)

Fig. 6. Code snippets, in C, illustrating the various settings of AngelicVerifier

Table 1. Results on SDV benchmarks

default default+harness noEE noTS noAlias

Bench CPU B FP FN CPU B FP FN CPU B FP FN CPU B FP FN CPU B FP FN

(Ks) (Ks) (Ks) (Ks) (Ks)

Correct 9.97 0 0 0 16.8 0 0 0 0.28 12 12 0 4.20 2 2 0 15.1 0 0 0

Buggy 3.19 9 0 4 3.52 13 0 0 0.47 21 13 5 2.58 14 3 2 1.42 10 3 6

few false negatives) is far superior to a demonic verifier (very high false positives,
few false negatives).

The default+harness configuration shows that once the tool could use
the (stripped) harness, it found all bugs reported by SDV. The configurations
noTS and noAlias show that the individual components of the vocabulary
were necessary for inferring the right environment specification in the default
configuration. We also note that the running time of our tool is several times
higher than that of SDV; instead of the tedious manual environment modeling
effort, the cost shifts to higher running time of the automated verifier.

5.2 Comparison Against PREfix

PREfix is a production tool used internally within Microsoft. It checks for several
kinds of programming errors, including checking for null-pointer dereferences,

Angelic Verification: Precise Verification Modulo Unknowns 337

Table 2. Comparison against PREfix on checking for null-pointer dereferences

stats PREfix default default-AA

Bench Procs KLOC B CPU(Ks) B PM FP FN PRE-FP PRE-FN CPU(Ks) B

Mod 1 453 37.2 14 2.7 26 14 4 0 0 1 1.8 26

Mod 2 64 6.5 3 0.2 0 0 0 3 0 0 0.2 0

Mod 3 479 56.6 5 5.8 11 3 4 2 0 1 1.7 6

Mod 4 382 37.8 4 1.8 3 0 0 0 4 3 1.1 2

Mod 5 284 30.9 6 0.8 12 6 1 0 0 0 0.4 11

Mod 6 37 8.4 7 0.1 10 7 0 0 0 0 0.1 10

Mod 7 184 20.9 10 0.6 11 10 0 0 0 1 0.4 11

Mod 8 400 43.8 5 2.9 15 5 1 0 0 1 1.0 15

Mod 9 40 3.2 7 0.1 8 7 0 0 0 0 0.1 8

Mod 10 998 76.5 7 24.9 8 3 1 4 0 4 16.0 4

total – 321 68 39.9 104 54 11 9 4 11 22.8 93

on the Windows code base. We targeted AngelicVerifier to find null-pointer
exceptions and compared against PREfix on 10 modules selected randomly, such
that PREfix reported at least one defect in the module. Table 2 reports the sizes
of these modules. (The names are hidden for proprietary reasons.)

We used two AngelicVerifier configurations: default-AA uses a vocabu-
lary of only aliasing constraints. default uses the same vocabulary along with
angelic assertions: an assert false is injected after any statement of the form
assume e == null. This enforces that if the programmer anticipated an expres-
sion being null at some point in the program, then AngelicVerifier should not
impose an environment specification that makes this check redundant.

Scalability. This set of benchmarks were several times harder than the SDV
benchmarks for our tool chain. This is because of the larger codebase, but also
because checking null -ness requires tracking of pointers in the heap, whereas
SDV’s type-state properties are mostly control-flow based and require minimal
tracking of pointers. To address the scale, we use two standard tricks. First, we
use a cheap alias analysis to prove many of the dereferences safe and only focus
AngelicVerifier on the rest. Second, AngelicVerifier explores different entrypoints
of the program in parallel. We used the same machine as for the previous exper-
iment, and limited parallelism to 16 threads (one per available core). Further,
we optimized ExplainError to avoid looking at assume statements along the
trace, i.e., it can only block the failing assertion. This can result in ExplainError
returning a stronger-than-necessary condition but improves the convergence time
of AngelicVerifier. This is a limitation that we are planning to address in future
work.

Table 2 shows the comparison between PREfix and AngelicVerifier. In each
case, the number of bug reports is indicated as B and the running time as CPU
(in thousands of seconds). We found AngelicVerifier to be more verbose than
PREfix, producing a higher number of reports (104 to 68). However, this was
mostly because AngelicVerifier reported multiple failures with the same cause.
For instance, x = null; if(...){∗x = ...}else{∗x = ...} would be flagged as two buggy

338 A. Das et al.

traces by AngelicVerifier but only one by PREfix. Thus, there is potential for
post-processing AngelicVerifier’s output, but this is orthogonal to the goals of
this paper.

We report the number of PREfix traces matched by some trace of AngelicVer-
ifier as PM. To save effort, we consider all such traces as true positives. We
manually examined the rest of the traces. We classified traces reported by
AngelicVerifier but not by PREfix as either false positives of AngelicVerifier
(FP) or as false negatives of PREfix (PRE-FN). The columns FN and PRE-
FP are the duals, for traces reported by PREfix but not by AngelicVerifier.

PREfix is not a desktop application; one can only invoke it as a background
service that runs on a dedicated cluster. Consequently, we do not have the run-
ning times of PREfix. AngelicVerifier takes 11 hours to consume all benchmarks,
totaling 321 KLOC, which is very reasonable (for, say, overnight testing on a
single machine).

Most importantly, AngelicVerifier is able to find most (80 %) of the bugs
caught by PREfix, without any environment modeling! We verified that under a
demonic environment, the Corral verifier reports 396 traces, most of which are
false positives.

AngelicVerifier has 11 false positives; 5 of these are due to missing stubs (e.g.,
a call to the KeBugCheck routine does not return, but AngelicVerifier, in the
absence of its implementation, does not consider this to be a valid specification).
All of these 5 were suppressed when we added a model of the missing stubs.
The other 6 reports turn out to be a bug in our compiler front-end, where it
produced the wrong IR for certain features of C. (Thus, they are not issues with
AngelicVerifier.) AngelicVerifier has 9 false negatives. Out of these, 1 is due to a
missing stub (where it was valid for it to return a null pointer), 4 due to Corral
timing out, and 5 due to our front-end issues.

Interestingly, PREfix misses 11 valid defects that AngelicVerifier reports.
Out of these, 6 are reported by AngelicVerifier because it finds an inconsistency
with an angelic assertion; we believe PREfix does not look for inconsistencies.
We are unsure of the reason why PREfix misses the other 5. We have reported
these new defects to the product teams and are awaiting a reply. We also found
4 false positives in PREfix’s results (due to infeasible path conditions).

A comparison between default and default-AA reveals that 11 traces were
found because of an inconsistency with an angelic assertion. We have already
mentioned that 6 of these are valid defects. The other 5 are again due to front-end
issues.

In summary, AngelicVerifier matched 80 % of PREfix’s reports, found new
defects, and reported very few false positives.

6 Related Work

Our work is closely related to previous work on abductive reasoning [7,10,11,20]
in program verification. Dillig et al. [20] perform abductive reasoning based

Angelic Verification: Precise Verification Modulo Unknowns 339

on quantifier elimination of variables in wlp that do not appear in the mini-
mum satisfying assignment of ¬wlp. The method requires quantifier elimination
that is difficult in the presence of richer theories such as quantifiers and unin-
terpreted functions. Our method ProjectAtoms can be seen as a (lightweight)
method for performing Boolean quantifier elimination (without interpreting the
theory predicates) that we have found to be effective in practice. It can be shown
that the specifications obtained by the two methods can be incomparable, even
for arithmetic programs. Calcagno et al. use bi-abductive reasoning to perform
bottom-up shape analysis [10] of programs, but performed only in the context of
intraprocedural reasoning. In comparison of this work, we provide configurabil-
ity by being able to control parts of vocabulary and the check for permissiveness
using Â. The work on almost-correct specifications [7] provides a method for
minimally weakening the wlp over a set of predicates to construct specifications
that disallow dead code. However, the method is expensive and can be only
applied intraprocedurally.

Several program verification techniques have been proposed to detect seman-
tic inconsistency bugs [21] in recent years [19,23,36]. Our work can be instanti-
ated to detect this class of bugs (even interprocedurally); however, it may not
be the most scalable approach to perform the checks. The work on angelic non-
determinism [8] allows for checking if the non-deterministic operations can be
replaced with deterministic code to succeed the assertions. Although similar in
principle, our end goal is bug finding with high confidence, as opposed to pro-
gram synthesis. The work on angelic debugging [12] and BugAssist [26] similarly
look for relevant expressions to relax to fix a failing test case. The difference is
that the focus is more on debugging failing test cases and repairing a program.

The work on ranking static analysis warnings using statistical measures is
orthogonal and perhaps complementary to our technique [28]. Since these tech-
niques do not exploit program semantics, such techniques can only be used as a
post-processing step (thus offering little control to users of a tool). Finally, work
on differential static analysis [2] can be leveraged to suppress a class of warn-
ings with respect to another program that can serve as a specification [29,32].
Our work does not require any additional program as a specification and there-
fore can be more readily applied to standard verification tasks. The work on
CBUGS [27] leverages sequential interleavings as a specification while checking
concurrent programs.

7 Conclusions

We presented the angelic verification framework that constrains a verifier to
search for warnings that cannot be precluded with acceptable specifications over
unknowns from the environment. Our framework is parameterized to allow a user
to choose different instantiations to fit the precision-recall tradeoff. Preliminary
experiments indicate that such a tool can indeed be competitive with industrial
tools, even without any modeling effort. With subsequent modeling (e.g. adding
a harness), the same tool can find more interesting warnings.

340 A. Das et al.

References

1. Arlt, S., Schäf, M.: Joogie: infeasible code detection for java. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 767–773. Springer, Heidelberg
(2012)

2. Lahiri, S.K., Vaswani, K., Hoare, C.A.R.: Differential static analysis: opportunities,
applications, and challenges. In: Proceedings of the Workshop on Future of Software
Engineering Research, FoSER 2010, at the 18th ACM SIGSOFT, International
Symposium on Foundations of Software Engineering, November 7-11, 2010, pp.
201–2014, Santa Fe, NM, USA (2010)

3. Ball, T., Levin, V., Rajamani, S.K.: A decade of software model checking with
SLAM. Commun. ACM 54(7), 68–76 (2011)

4. Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured programs. In:
Program Analysis For Software Tools and Engineering (PASTE 2005), pp. 82–87
(2005)

5. Barnett, M., Qadeer, S.: BCT: a translator from MSIL to Boogie. In: Seventh Work-
shop on Bytecode Semantics, Verification, Analysis and Transformation (2012)

6. Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem, S., Henri-Gros, C.,
Kamsky, A., McPeak, S., Engler, D.: A few billion lines of code later: using static
analysis to find bugs in the real world. Commun. ACM 53(2), 66–75 (2010)

7. Blackshear, S., Lahiri, S.K.: Almost-correct specifications: a modular semantic
framework for assigning confidence to warnings. In: ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2013, pp. 209–218,
Seattle, WA, USA, 16–19 Jun 2013

8. Bod́ık, R., Chandra, S., Galenson, J., Kimelman, D., Tung, N., Barman, S.,
Rodarmor, C.: Programming with angelic nondeterminism. In: Principles of Pro-
gramming Languages (POPL 2010), pp. 339–352 (2010)

9. Bush, W.R., Pincus, J.D., Sielaff, D.J.: A static analyzer for finding dynamic pro-
gramming errors. Softw. Pract. Exper. 30(7), 775–802 (2000)

10. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape analy-
sis by means of bi-abduction. In: Proceedings of the 36th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2009, pp. 289–300,
Savannah, GA, USA, 21–23 Jan 2009

11. Chandra, S., Fink, S.J., Sridharan, M.: Snugglebug: a powerful approach to weak-
est preconditions. In: Programming Language Design and Implementation (PLDI
2009), pp. 363–374 (2009)

12. Chandra, S., Torlak, E., Barman, S., Bodik, R.: Angelic debugging. In: Proceedings
of the 33rd International Conference on Software Engineering, ICSE 2011, pp. 121–
130. ACM, New York, NY, USA (2011)

13. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(2000)

14. Clarke, E.M., Kroening, D., Yorav, K.: Behavioral consistency of C and verilog pro-
grams using bounded model checking. In: Proceedings of the 40th Design Automa-
tion Conference, DAC 2003, pp. 368–371, Anaheim, CA, USA, 2–6 Jun 2003

15. Condit, J., Hackett, B., Lahiri, S.K., Qadeer, S.: Unifying type checking and prop-
erty checking for low-level code. In: Principles of Programming Languages (POPL
2009), pp. 302–314 (2009)

16. Cousot, P., Cousot, R.: Abstract interpretation : a unified lattice model for the
static analysis of programs by construction or approximation of fixpoints. In: Sym-
posium on Principles of Programming Languages (POPL 1977), ACM Press (1977)

Angelic Verification: Precise Verification Modulo Unknowns 341

17. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program check-
ing. J. ACM 52(3), 365–473 (2005)

18. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18(8), 453–457 (1975)

19. Dillig, I., Dillig, T., Aiken, A.: Static error detection using semantic inconsistency
inference. In: Programming Language Design and Implementation (PLDI 2007),
pp. 435–445 (2007)

20. Dillig, I., Dillig, T., Aiken, A.: Automated error diagnosis using abductive infer-
ence. In: Proceedings of the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2012, pp. 181–192. ACM, New York,
NY, USA, (2012)

21. Engler, D.R., Chen, D.Y., Chou, A.: Bugs as inconsistent behavior: a general app-
roach to inferring errors in systems code. In: Symposium on Operating Systems
Principles (SOSP 2001), pp. 57–72 (2001)

22. Graf, S., Säıdi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

23. Hoenicke, J., Leino, K.R.M., Podelski, A., Schäf, M., Wies, T.: Doomed program
points. Form. Meth. Syst. Des. 37(2–3), 171–199 (2010)

24. Ivančić, F., Yang, Z., Ganai, M.K., Gupta, A., Shlyakhter, I., Ashar, P.: F-Soft:
software verification platform. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005.
LNCS, vol. 3576, pp. 301–306. Springer, Heidelberg (2005)

25. Jhala, R., Majumdar, R.: Path slicing. In: Proceedings of the ACM SIGPLAN
2005 Conference on Programming Language Design and Implementation, pp. 38–
47, Chicago, IL, USA, 12–15 Jun 2005

26. Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum
satisfiability. In: Proceedings of the 32nd ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2011, pp. 437–446, San
Jose, CA, USA, 4–8 Jun 2011

27. Joshi, S., Lahiri, S.K., Lal, A.: Underspecified harnesses and interleaved bugs. In:
Principles of Programming Languages (POPL 2012), pp. 19–30, ACM (2012)

28. Kremenek, T., Engler, D.R.: Z-ranking: using statistical analysis to counter the
impact of static analysis approximations. In: Cousot, R. (ed.) SAS 2003. LNCS,
vol. 2694, pp. 295–315. Springer, Heidelberg (2003)

29. Lahiri, S.K., McMillan, K.L., Sharma, R., Hawblitzel, C.: Differential assertion
checking. In: Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software Engineer-
ing, ESEC/FSE 2013, pp. 345–355, Saint Petersburg, Russian Federation, 18–26
Aug 2013

30. Lahiri, S.K., Qadeer, S., Galeotti, J.P., Voung, J.W., Wies, T.: Intra-module infer-
ence. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 493–508.
Springer, Heidelberg (2009)

31. Lal, A., Qadeer, S., Lahiri, S.K.: A solver for reachability modulo theories. In:
Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 427–443.
Springer, Heidelberg (2012)

32. Logozzo, F., Lahiri, S.K., Fähndrich, M., Blackshear, S.: Verification modulo ver-
sions: towards usable verification. In: ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2014, p. 32, Edinburgh, United King-
dom, 09–11 Jun 2014

33. McMillan, K.L.: An interpolating theorem prover. In: Jensen, K., Podelski, A.
(eds.) TACAS 2004. LNCS, vol. 2988, pp. 16–30. Springer, Heidelberg (2004)

342 A. Das et al.

34. Satisfiability modulo theories library (SMT-LIB). http://goedel.cs.uiowa.edu/
smtlib/

35. Stump, A., Barrett, C.W., Dill, D.L., Levitt, J.R.: A decision procedure for an
extensional theory of arrays. In: IEEE Symposium of Logic in Computer Science
(LICS 2001) (2001)

36. Tomb, A., Flanagan, C.: Detecting inconsistencies via universal reachability analy-
sis. In: International Symposium on Software Testing and Analysis (ISSTA 2012)
(2012)

http://goedel.cs.uiowa.edu/smtlib/
http://goedel.cs.uiowa.edu/smtlib/

The SeaHorn Verification Framework

Arie Gurfinkel1(B), Temesghen Kahsai2, Anvesh Komuravelli3,
and Jorge A. Navas4

1 Software Engineering Institute, Carnegie Mellon University, Pittsburgh, USA
arie@sei.emu.edu

2 NASA Ames, Carnegie Mellon University, Pittsburgh, USA
temesghen.kahsaiazene@nasa.gov

3 Computer Science Department, Carnegie Mellon University, Pittsburgh, USA
anvesh@cs.cmu.edu

4 NASA Ames, SGT, Pittsburgh, USA
jorge.a.navaslaserna@nasa.gov

Abstract. In this paper, we present SeaHorn, a software verification
framework. The key distinguishing feature of SeaHorn is its modu-
lar design that separates the concerns of the syntax of the program-
ming language, its operational semantics, and the verification semantics.
SeaHorn encompasses several novelties: it (a) encodes verification con-
ditions using an efficient yet precise inter-procedural technique, (b) pro-
vides flexibility in the verification semantics to allow different levels of
precision, (c) leverages the state-of-the-art in software model checking
and abstract interpretation for verification, and (d) uses Horn-clauses as
an intermediate language to represent verification conditions which sim-
plifies interfacing with multiple verification tools based on Horn-clauses.
SeaHorn provides users with a powerful verification tool and researchers
with an extensible and customizable framework for experimenting with
new software verification techniques. The effectiveness and scalability
of SeaHorn are demonstrated by an extensive experimental evaluation
using benchmarks from SV-COMP 2015 and real avionics code.

1 Introduction

In this paper, we present SeaHorn, an LLVM-based [38] framework for verifica-
tion of safety properties of programs. SeaHorn is a fully automated verifier that
verifies user-supplied assertions as well as a number of built-in safety properties.
For example, SeaHorn provides built-in checks for buffer and signed integer

This material is based upon work funded and supported by NASA Contract No.
NNX14AI09G, NSF Award No. 1422705 and by the Department of Defense under
Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation
of the Software Engineering Institute, a federally funded research and development
center. Any opinions, findings and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views of
the United States Department of Defense, NASA or NSF. This material has been
approved for public release and unlimited distribution. DM-0002153.

c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 343–361, 2015.
DOI: 10.1007/978-3-319-21690-4 20

344 A. Gurfinkel et al.

overflows. More generally, SeaHorn is a framework that simplifies development
and integration of new verification techniques. Its main features are:

1. It decouples a programming language syntax and semantics from the underly-
ing verification technique. Different programming languages include a diverse
assortments of features, many of which are purely syntactic. Handling them
fully is a major effort for new tool developers. We tackle this problem in
SeaHorn by separating the language syntax, its operational semantics, and
the underlying verification semantics – the semantics used by the verification
engine. Specifically, we use the LLVM front-end(s) to deal with the idiosyn-
crasies of the syntax. We use LLVM intermediate representation (IR), called
the bitcode, to deal with the operational semantics, and apply a variety of
transformations to simplify it further. In principle, since the bitcode has been
formalized [54], this provides us with a well-defined formal semantics. Finally,
we use Constrained Horn Clauses (CHC) to logically represent the verification
condition (VC).

2. It provides an efficient and precise analysis of programs with procedure using
new inter-procedural verification techniques. SeaHorn summarizes the input-
output behavior of procedures efficiently without inlining. The expressiveness
of the summaries is not limited to linear arithmetic (as in our earlier tools) but
extends to richer logics, including, for instance, arrays. Moreover, it includes
a program transformation that lifts deep assertions closer to the main pro-
cedure. This increases context-sensitivity of intra-procedural analyses (used
both in verification and compiler optimization), and has a significant impact
on our inter-procedural verification algorithms.

3. It allows developers to customize the verification semantics and offers users
with verification semantics of various degrees of precision. SeaHorn is fully
parametric in the (small-step operational) semantics used for the generation of
VCs. The level of abstraction in the built-in semantics varies from considering
only LLVM numeric registers to considering the whole heap (modeled as a
collection of non-overlapping arrays). In addition to generating VCs based on
small-step semantics [48], it can also automatically lift small-step semantics
to large-step [7,28] (a.k.a. Large Block Encoding, or LBE).

4. It uses Constrained Horn Clauses (CHC) as its intermediate verification lan-
guage. CHC provide a convenient and elegant way to formally represent many
encoding styles of verification conditions. The recent popularity of CHC as an
intermediate language for verification engines makes it possible to interface
SeaHorn with a variety of new and emerging tools.

5. It builds on the state-of-the-art in Software Model Checking (SMC) and
Abstract Interpretation (AI). SMC and AI have independently led over the
years to the production of analysis tools that have a substantial impact on
the development of real world software. Interestingly, the two exhibit com-
plementary strengths and weaknesses (see e.g., [1,10,24,27]). While SMC so
far has been proved stronger on software that is mostly control driven, AI is
quite effective on data-dependent programs. SeaHorn combines SMT-based
model checking techniques with program invariants supplied by an abstract
interpretation-based tool.

The SeaHorn Verification Framework 345

6. Finally, it is implemented on top of the open-source LLVM compiler infrastruc-
ture. The latter is a well-maintained, well-documented, and continuously
improving framework. It allows SeaHorn users to easily integrate program
analyses, transformations, and other tools that targets LLVM. Moreover, since
SeaHorn analyses LLVM IR, this allows to exploit a rapidly-growing fron-
tier of LLVM front-ends, encompassing a diverse set of languages. SeaHorn
itself is released as open-source as well (source code can be downloaded from
http://seahorn.github.io).

Fig. 1. Overview of SeaHorn architecture.

The design of SeaHorn provides users, developers, and researchers with
an extensible and customizable environment for experimenting with and imple-
menting new software verification techniques. SeaHorn is implemented in C++
in the LLVM compiler infrastructure [38]. The overall approach is illustrated in
Fig. 1. SeaHorn has been developed in a modular fashion; its architecture is
layered in three parts:

Front-End: Takes an LLVM based program (e.g., C) input program and gener-
ates LLVM IR bitcode. Specifically, it performs the pre-processing and opti-
mization of the bitcode for verification purposes. More details are reported
in Sect. 2.

Middle-End: Takes as input the optimized LLVM bitcode and emits verifi-
cation condition as Constrained Horn Clauses (CHC). The middle-end is in
charge of selecting the encoding of the VCs and the degree of precision. More
details are reported in Sect. 3.

Back-End: Takes CHC as input and outputs the result of the analysis. In
principle, any verification engine that digests CHC clauses could be used to
discharge the VCs. Currently, SeaHorn employs several SMT-based model
checking engines based on PDR/IC3 [13], including Spacer [35,36] and
GPDR [33]. Complementary, SeaHorn uses the abstract interpretation-
based analyzer IKOS (Inference Kernel for Open Static Analyzers) [14] for
providing numerical invariants1. More details are reported in Sect. 4.

1 While conceptually, IKOS should run on CHC, currently it uses its own custom IR.

http://seahorn.github.io

346 A. Gurfinkel et al.

The effectiveness and scalability of SeaHorn are demonstrated by our exten-
sive experimental evaluation in Sect. 5 and the results of SV-COMP 2015.

Related Work. Automated analysis of software is an active area of research.
There is a large number of tools with different capabilities and trade-offs
[6,8,9,15–18,20,42]. Our approach on separating the program semantics from
the verification engine has been previously proposed in numerous tools. From
those, the tool SMACK [49] is the closest to SeaHorn. Like SeaHorn, SMACK
targets programs at the LLVM-IR level. However, SMACK targets Boogie inter-
mediate verification language [22] and Boogie-based verifiers to construct and
discharge the proof obligations. SeaHorn differs from SMACK in several ways:
(i) SeaHorn uses CHC as its intermediate verification language, which allows
to target different solvers and verification techniques (ii) it tightly integrates and
combines both state-of-the-art software model checking techniques and abstract
interpretation and (iii) it provides an automatic inter-procedural analysis to rea-
son modularly about programs with procedures.

Inter-procedural and modular analysis is critical for scaling verification tools
and has been addressed by many researchers (e.g., [2,33,35,37,40,51]). Our app-
roach of using mixed-semantics [30] as a source-to-source transformation has
been also explored in [37]. While in [37], the mixed-semantics is done at the ver-
ification semantics (Boogie in this case), in SeaHorn it is done in the front-end
level allowing mixed-semantics to interact with compiler optimizations.

Constrained Horn clauses have been recently proposed [11] as an intermediate
(or exchange) format for representing verification conditions. However, they have
long been used in the context of static analysis of imperative and object-oriented
languages (e.g., [41,48]) and more recently adopted by an increasing number of
solvers (e.g., [12,23,33,36,40]) as well as other verifiers such as UFO [4], HSF [26],
VeriMAP [21], Eldarica [50], and TRACER [34].

2 Pre-Processing for Verification

In our experience, performance of even the most advanced verification algo-
rithms is significantly impacted by the front-end transformations. In SeaHorn,
the front-end plays a very significant role in the overall architecture. SeaHorn
provides two front-ends: a legacy front-end and an inter-procedural front-end.

The Legacy Front-End. This front-end has been used by SeaHorn for the SV-
COMP 2015 competition [29] (for C programs). It was originally developed for
UFO [3]. First, the input C program is pre-processed with CIL [46] to insert line
markings for printing user-friendly counterexamples, define missing functions
that are implicitly defined (e.g., malloc-like functions), and initialize all local
variables. Moreover, it creates stubs for functions whose addresses can be taken
and replaces function pointers to those functions with function pointers to the
stubs. Second, the result is translated into LLVM-IR bitcode, using llvm-gcc.
After that, it performs compiler optimizations and preprocessing to simplify the

The SeaHorn Verification Framework 347

verification task. As a preprocessing step, we further initialize any uninitial-
ized registers using non-deterministic functions. This is used to bridge the gap
between the verification semantics (which assumes a non-deterministic assign-
ment) and the compiler semantics, which tries to take advantage of the undefined
behavior of uninitialized variables to perform code optimizations. We perform
a number of program transformations such as function inlining, conversion to
static single assignment (SSA) form, dead code elimination, peephole optimiza-
tions, CFG simplifications, etc. We also internalize all functions to enable global
optimizations such as replacement of global aggregates with scalars.

The legacy front-end has been very effective for solving SV-COMP (2013,
2014, and 2015) problems. However, it has its own limitations: its design is not
modular and it relies on multiple unsupported legacy tools (such as llvm-gcc
and LLVM versions 2.6 and 2.9). Thus, it is difficult to maintain and extend.

The Inter-Procedural Front-End. In this new front-end, SeaHorn can take any
input program that can be translated into LLVM bitcode. For example, Sea-
Horn uses clang and gcc via DragonEgg 2. Our goal is to make SeaHorn not
to be limited to C programs, but applicable (with various degrees of success) to
a broader set of languages based on LLVM (e.g., C++, Objective C, and Swift).

Once we have obtained LLVM bitcode, the front-end is split into two main
sub-components. The first one is a pre-processor that performs optimizations
and transformations similar to the ones performed by the legacy front-end. Such
pre-processing is optional as its only mission is to optimize the LLVM bitcode
to make the verification task ‘easier’. The second part is focused on a reduced
set of transformations mostly required to produce correct results even if the pre-
processor is disabled. It also performs SSA transformation and internalizes func-
tions, but in addition, lowers switch instructions into if-then-elses, ensures
only one exit block per function, inlines global initializers into the main proce-
dure, and identifies assert-like functions.

Although this front-end can optionally inline functions similarly to the legacy
front-end, its major feature is a transformation that can significantly help the
verification engine to produce procedure summaries.

One typical problem in proving safety of large programs is that assertions
can be nested very deep inside the call graph. As a result, counterexamples are
longer and it is harder to decide for the verification engine what is relevant
for the property of interest. To mitigate this problem, the front-end provides a
transformation based on the concept of mixed semantics3 [30,37]. It relies on
the simple observation that any call to a procedure P either fails inside the call
and therefore P does not return, or returns successfully from the call. Based on
this, any call to P can be instrumented as follows:
2 DragonEgg (http://dragonegg.llvm.org/) is a GCC plugin that replaces GCC’s opti-

mizers and code generators with those from LLVM. As result, the output can be
LLVM bitcode.

3 The term mixed semantics refers to a combination of small- with big-step operational
semantics.

http://dragonegg.llvm.org/

348 A. Gurfinkel et al.

– if P may fail, then make a copy of P ’s body (in main) and jump to the copy.
– if P may succeed, then make the call to P as usual. Since P is known not to

fail each assertion in P can be safely replaced with an assume.

Upon completion, only the main function has assertions and each procedure is
inlined at most once. The explanation for the latter is that a function call is
inlined only if it fails and hence, its call stack can be ignored. A key property of
this transformation is that it preserves reachability and non-termination proper-
ties (see [30] for details). Since this transformation is not very common in other
verifiers, we illustrate its working on an example.

Fig. 2. A program before and after mixed-semantics transformation.

Example 1 (Mixed-semantics transformation). On the left in Fig. 2 we show a
small program consisting of a main procedure calling two other procedures p1
and p2 with three assertions c1, c2, and c3. On the right, we show the new
program after the mixed-semantics transformation. First, when main calls p1
it is transformed into a non-deterministic choice between (a) jumping into the
entry block of p1 or (b) calling p1. The case (a) represents the situation when
p1 fails and it is done by inlining the body of p1 (labeled by p1entry) into main
and adding a goto statement to p1entry. The case (b) considers the case when
p1 succeeds and hence it simply duplicates the function p1 but replacing all the
assertions with assumptions since no failure is possible. Note that while p1 is
called twice, it is inlined only once. Furthermore, each inlined function ends up
with an “assume (false)” indicating that execution dies. Hence, any complete exe-
cution of a transformed program corresponds to a bad execution of the original
one. Finally, an interesting side-effect of mixed-semantics is that it can provide
some context-sensitivity to context-insensitive intra-procedural analyses.

3 Flexible Semantics for Developers

SeaHorn provides out-of-the-box verification semantics with different degrees
of precision. Furthermore, to accommodate a variety of applications, SeaHorn
is designed to be easily extended with a custom semantics as well. In this section,
we illustrate the various dimensions of semantic flexibility present in SeaHorn.

The SeaHorn Verification Framework 349

int x = 1;
int y = 0;
while(∗) {

x = x + y;
y = y + 1;

}
assert(x ≥ y);

l0 :
x = 1
y = 0

l1 : b1 =nondet()

l2 :
x = x + y
y = y + 1

l3 :
b2 = x ≥ y

l4 : lerr :

T

F

T F

〈1〉 p0.
〈2〉 p1(x,y) ←

p0, x= 1, y= 0.
〈3〉 p2(x, y) ← p1(x, y) .
〈4〉 p3(x, y) ← p1(x, y) .
〈5〉 p1(x′, y′) ←

p2(x, y),
x′ = x + y,
y′ = y + 1.

〈6〉 p4 ← (x ≥ y),p3(x, y).
〈7〉 perr ← (x < y),p3(x, y).
〈8〉 p4 ← p4.

)c()b()a(

Fig. 3. (a) Program, (b) Control-Flow Graph, and (c) Verification Conditions.

Encoding Verification Conditions. SeaHorn is parametric in the semantics used
for VC encoding. It provides two different semantics encodings: (a) a small-step
encoding (exemplified below in Fig. 3) and (b) a large-block encoding (LBE) [7].
A user can choose the encoding depending on the particular application. In
practice, LBE is often more efficient but small-step might be more useful if a
fine-grained proof or counterexample is needed. For example, SeaHorn used
the LBE encoding in SV-COMP [29].

Regardless of the encoding, SeaHorn uses CHC to encode the VCs. Given
the sets F of function symbols, P of predicate symbols, and V of variables, a
Constrained Horn Clause (CHC) is a formula

∀V · (φ ∧ p1[X1] ∧ · · · ∧ pk[Xk] → h[X]), for k ≥ 0

where: φ is a constraint over F and V with respect to some background theory;
Xi,X ⊆ V are (possibly empty) vectors of variables; pi[Xi] is an application
p(t1, . . . , tn) of an n-ary predicate symbol p ∈ P for first-order terms ti con-
structed from F and Xi; and h[X] is either defined analogously to pi or is P-free
(i.e., no P symbols occur in h). Here, h is called the head of the clause and
φ∧p1[X1]∧ . . .∧pk[Xk] is called the body. A clause is called a query if its head is
P-free, and otherwise, it is called a rule. A rule with body true is called a fact. We
say a clause is linear if its body contains at most one predicate symbol, otherwise,
it is called non-linear. In this paper, we follow the Constraint Logic Programming
(CLP) convention of representing Horn clauses as h[X] ← φ, p1[X1], . . . , pk[Xk].

A set of CHCs is satisfiable if there exists an interpretation I of the predicate
symbols P such that each constraint φ is true under I. Without loss of generality,
to check if a program A satisfies a safety property αsafe amounts to establishing
the (un)satifiability of CHCs encoding the VCs of A, as described next.

350 A. Gurfinkel et al.

Example 2 (Small-step encoding of VCs using Horn clauses). Fig. 3(a) shows a
program which increments two variables x and y within a non-deterministic loop.
After the loop is executed we would like to prove that x cannot be less than y.
Ignoring wraparound situations, it is easy to see that the program is safe since x
and y are initially non-negative numbers and x is greater than y. Since the loop
increases x by a greater amount than y, at its exit x cannot be smaller than y.
Figure 3(b) depicts, its corresponding Control Flow Graph (CFG) and Fig. 3(c)
shows its VCs encoded as a set of CHCs.

The set of CHCs in Fig. 3(c) essentially represents the small-step operational
semantics of the CFG. Each basic block is encoded as a Horn clause. A basic
block label li in the CFG is translated into pi(X1, . . . , Xn) such that pi ∈ P
and {X1, . . . , Xn} ⊆ V is the set of live variables at the entry of block li. A
Horn clause can model both the control flow and data of each block in a very
succinct way. For instance, the fact 〈1〉 represents that the entry block l0 is
reachable. Clause 〈2〉 describes that if l0 is reachable then l1 should be reachable
too. Moreover, its body contains the constraints x = 1 ∧ y = 0 representing
the initial state of the program. Clause 〈5〉 models the loop body by stating
that the control flow moves to l2 from l1 after transforming the state of the
program variables through the constraints x′ = x + y and y′ = y + 1, where
the primed versions represent the values of the variables after the execution of
the arithmetic operations. Based on this encoding, the program in Fig. 3(a) is
safe if and only if the set of recursive clauses in Fig. 3(c) augmented with the
query perr is unsatisfiable. Note that since we are only concerned about proving
unsatisfiability any safe final state can be represented by an infinite loop (e.g.,
clause (8)).

SeaHorn middle-end offers a very simple interface for developers to imple-
ment an encoding of the verification semantics that fits their needs. At the core
of the SeaHorn middle-end lies the concept of a symbolic store. A symbolic
store simply maps program variables to symbolic values. The other fundamental
concept is how different parts of a program are symbolically executed. The small-
step verification semantics is provided by implementing a symbolic execution
interface that symbolically executes LLVM instructions relative to the symbolic
store. This interface is automatically lifted to large-step semantics as necessary.

Modeling Statements with Different Degrees of Abstraction. The SeaHorn
middle-end includes verification semantics with different levels of abstraction.
Those are, from the coarsest to the finest:

Registers only: only models LLVM numeric registers. In this case, the con-
straints part of CHC is over the theory of Linear Integer Arithmetic (LIA).

Registers + Pointers (without memory content): models numeric and
pointer registers. This is sufficient to capture pointer arithmetic and deter-
mine whether a pointer is NULL. Memory addresses are also encoded as inte-
gers. Hence, the constraints remain over LIA.

The SeaHorn Verification Framework 351

Registers + Pointers + Memory: models numeric and pointer registers and
the heap. The heap is modeled by a collection of non-overlapping arrays. The
constraints are over the combined theories of arrays and LIA.

To model heap, SeaHorn uses a heap analysis called Data Structure Analy-
sis (DSA) [39]. In general, DSA is a context-sensitive, field-sensitive heap analy-
sis that builds an explicit model of the heap. However, in SeaHorn, we use a
simpler context-insensitive variant that is similar to Steensgaard’s pointer analy-
sis [52].

In DSA, the memory is partitioned into a heap, a stack, and global objects.
The analysis builds for each function a DS graph where each node represents
a potentially infinite set of memory objects and distinct DSA nodes express
disjoint sets of objects. Edges in the graph represents points-to relationships
between DS nodes. Each node is typed and determines the number of fields and
outgoing edges in a node. A node can have one outgoing edge per field but each
field can have at most one outgoing edge. This restriction is key for scalability
and it is preserved by merging nodes whenever it is violated. A DS graph contains
also call nodes representing the effect of function calls.

Given a DS graph we can map each DS node to an array. Then each memory
load (read) and store (write) in the LLVM bitcode can be associated with a
particular DS node (i.e., array). For memory writes, SeaHorn creates a new
array variable representing the new state of the array after the write operation.

Inter-Procedural Proofs. For most real programs verifying a function separately
from each possible caller (i.e., context-sensitivity) is necessary for scalability. The
version of SeaHorn for SV-COMP 2015 [29] achieved full context-sensitivity by
inlining all program functions. Although in-lining is often an effective solution for
small and medium-size programs it is well known that suffers from an exponential
blow up in the size of the original program. Even more importantly inlining
cannot produce inter-procedural proofs nor counterexamples which are often
highly desired.

We tackle this problem in SeaHorn, by providing an encoding that allows
inter-procedural proofs. We illustrate this procedure via the example in Fig. 4.
The upper box shows a program with three procedures: main, foo, and bar .
The program swaps two numbers x and y. The procedure foo adds two numbers
and bar subtracts them. At the exit of main we want to prove that the program
indeed swaps the two inputs. To show all relevant aspects of the inter-procedural
encoding we add a trivial assertion in bar that checks that whenever x and y are
non-negative the input x is greater or equal than the return value.

The lower box of Fig. 4 illustrates the corresponding verification conditions
encoded as CHCs. The new encoding follows a small-step style as the intra-
procedural encoding shown in Fig. 3 but with two major distinctions. First,
notice that the CHCs are not linear anymore (e.g., the rule denoted by massrt).
Each function call has been replaced with a summary rule (f and b) representing
the effect of calling to the functions foo and bar, respectively. The second dif-
ference is how assertions are encoded. In the intra-procedural case, a program is

352 A. Gurfinkel et al.

Fig. 4. A program with procedures (upper) and its verification condition (lower).

unsafe if the query perr is satisfiable, where perr is the head of a CHC associated
with a special basic block to which all can-fail blocks are redirected. However,
with the presence of procedures assertions can be located deeply in the call graph
of the program, and therefore, we need to modify the CHCs to propagate error
to the main procedure.

In our example, since a call to bar can fail we add two arguments ein and
eout to the predicate b where ein indicates if there is an error before the function
is called and eout indicates whether the execution of bar produces an error. By
doing this, we are able to propagate the error in clause massrt across the two calls
to bar. We indicate that no error is possible at main before any function is called
by unifying false with ein in the first occurrence of b. Within a can-fail procedure
we skip the body and set eout to true as soon as an assertion can be violated.
Furthermore, if a function is called and ein is already true we can skip its body
(e.g., first clause of b). Functions that cannot fail (e.g., foo) are unchanged. The
above program is safe if and only if the query merr(true) is unsatisfiable.

Finally, it is worth mentioning that this propagation of error can be, in
theory, avoided if the mixed-semantics transformation described in Sect. 2 is
applied. However, this transformation assumes that all functions can be inlined
in order to raise all assertions to the main procedure. However, recursive func-
tions and functions that contain LLVM indirect branches (i.e., branches that
can jump to a label within the current function specified by an address) are not

The SeaHorn Verification Framework 353

currently inlined in SeaHorn. For these reasons, our inter-procedural encoding
must always consider the propagation of error across Horn clauses.

4 Verification Engines

In principle, SeaHorn can be used with any Horn clause-based verification tool.
In the following, we describe two such tools developed recently by ourselves.
Notably, the tools discussed below are based on the contrasting techniques of
SMT-based model checking and Abstract Interpretation, showcasing the wide
applicability of SeaHorn.

4.1 SMT-Based Model Checking with Spacer

Spacer is based on an efficient SMT-based algorithm for model checking pro-
cedural programs [35]. Compared to existing SMT-based algorithms (e.g., [2,26,
31,40]), the key distinguishing characteristic of Spacer is its compositionality.
That is, to check safety of an input program, the algorithm iteratively creates and
checks local reachability queries for individual procedures (or the unknown pred-
icates of the Horn-clauses). This is crucial to avoid the exponential growth in the
size of SMT formulas present in approaches based on monolithic Bounded Model
Checking (BMC). To avoid redundancy and enable reuse, we maintain two kinds
of summaries for each procedure: may and must. A may (must) summary of a
procedure is a formula over its input-output parameters that over-approximates
(under-approximates) the set of all feasible pairs of pre- and post-states.

However, the creation of new reachability queries and summaries involves
existentially quantifying auxiliary variables (e.g., local variables of a procedure).
To avoid dependencies on such auxiliary variables, we use a technique called
Model Based Projection (MBP) for lazily and efficiently eliminating existential
quantifiers for the theories of Linear Real Arithmetic and Linear Integer Arith-
metic. At a high level, given an existentially quantified formula ∃x · ϕ(x, y),
where ϕ is quantifier-free, it is expensive to obtain an equivalent quantifier-free
formula ψ(y). Instead, MBP obtains a quantifier-free under-approximation η(y)
of ∃x · ϕ(x, y). To ensure that η is a useful under-approximation, MBP uses a
model-based approach such that given a model M |= ϕ(x, y), it ensures that
M |= η(y).

As mentioned in Sect. 3, SeaHorn models memory operations using the
extensional theory of arrays (ARR). To handle the resulting Horn clauses, we
have recently developed an MBP procedure for ARR. First of all, given a quan-
tified formula ∃a · ϕ(a, y) where a is an array variable with index sort I and
value sort V and ϕ is quantifier-free, one can obtain an equivalent formula
∃i, v · ϕ(i, v, y) where i and v are fresh variables of sort I and V , respectively.
This can be achieved by a simple modification of the decision procedure for ARR
by Stump et al. [53] and we skip the details in the interest of space.4 We illus-
trate our MBP procedure below using an example, which is based on the above
approach for eliminating existentially quantified array variables.
4 The authors thank Nikolaj Bjørner and Kenneth L. McMillan for helpful discussions.

354 A. Gurfinkel et al.

Let ϕ denote (b = a[i1 ← v1])∨ (a[i2 ← v2][i3] > 5∧a[i4] > 0), where a and b
are array variables whose index and value sorts are both Int, the sort of integers,
and all other variables have sort Int. Here, for an array a, we use a[i ← v] to
denote a store of v into a at index i and use a[i] to denote the value of a at
index i. Suppose that we want to existentially quantify the array variable a. Let
M |= ϕ. We will consider two possibilities for M :

1. Let M |= b = a[i1 ← v1], i.e., M satisfies the array equality containing a. In
this case, our MBP procedure substitutes the term b[i1 ← x] for a in ϕ, where
x is a fresh variable of sort Int. That is, the result of MBP is ∃x·ϕ[b[i1 ← x]/a].

2. Let M |= b �= a[i1 ← v1]. We use the second disjunct of ϕ for MBP. Further-
more, let M |= i2 �= i3. We then reduce the term a[i2 ← v2][i3] to a[i3] to
obtain a[i3] > 5∧a[i4] > 0, using the relevant disjunct of the select-after-store
axiom of ARR. We then introduce fresh variables x3 and x4 to denote the two
select terms on a, obtaining x3 > 5∧x4 > 0. Finally, we add i3 = i4 ∧x3 = x4

if M |= i3 = i4 and add i3 �= i4 otherwise, choosing the relevant case of
Ackermann reduction, and existentially quantify x3 and x4.

The MBP procedure outlined above for ARR is implemented in Spacer. Addi-
tionally, the version of Spacer used in SeaHorn contains numerous enhance-
ments compared to [35].

4.2 Abstract Interpretation with Ikos

Ikos [14] is an open-source library of abstract domains with a state-of-the-
art fixed-point algorithm [5]. Available abstract domains include: intervals [19],
reduced product of intervals with congruences [25], DBMs [43], and octagons [44].

SeaHorn users can choose Ikos as the only back-end engine to discharge
proof obligations. However, even if the abstract domain can express precisely
the program semantics, due to the join and widening operations, we might lose
some precision during the verification. As a consequence, Ikos alone might not
be sufficient as a back-end engine. Instead, a more suitable job for Ikos is to
supply program invariants to the other engines (e.g. Spacer).

To exemplify this, let us come back to the example of Fig. 3. Spacer alone can
discover x ≥ y but it misses the vital invariant y ≥ 0. Thus, it does not terminate.
On the contrary, Ikos alone with the abstract domain of DBMs can prove safety
immediately. Interestingly, Spacer populated with invariants supplied by Ikos
using intervals proves safety even faster.

Although we envision Ikos to be part of the back-end it is currently part
of the middle-end translating bitcode to its own custom IR. Note that there is
no technical impediment to move Ikos to the back-end. Abstract interpretation
tools over Horn clauses have been previously explored successfully, e.g., [32].

5 Experimental Evaluation

In this section, we describe the results of our evaluation on various C pro-
gram benchmarks. First, we give an overview of SeaHorn performance at SV-
COMP 2015 that used the legacy non-inter-procedural front-end. Second, we

The SeaHorn Verification Framework 355

showcase the new inter-procedural verification flow on the hardest (for Sea-
Horn) instances from the competition. Finally, we illustrate a case study of the
use of SeaHorn built-in buffer overflow checks on autopilot control software.

Results of SV-COMP 2015. For the competition, we used the legacy front-
end described in Sect. 2. The middle-end was configured with the large step
semantics and the most precise level of small-step verification semantics (i.e.,
registers, pointers, and heap). Note, however, that for most benchmarks the heap
is almost completely eliminated by the front-end. Ikos with interval abstract
domain and Z3-PDR were used on the back-end. Detailed results can be found
at http://tinyurl.com/svcomp15.

Overall, SeaHorn won one gold medal in the Simple category – benchmarks
that depend mostly on control-flow structure and integer variables – two silver
medals in the categories Device Drivers and Control Flow. The former is a set
of benchmarks derived from the Linux device drivers and includes a variety of C
features including pointers. The latter is a set of benchmarks dependent mostly
on the control-flow structure and integer variables. In the device drivers cate-
gory, SeaHorn was beaten only by BLAST [8] – a tool tuned to analyzing Linux
device drivers. Specifically, BLAST got 88 % of the maximum score while Sea-
Horn got 85 %. The Control Flow category, was won by CPAChecker [9] getting
74 % of the maximum score, while SeaHorn got 69 %. However, SeaHorn is
significantly more efficient than most other tools solving most benchmarks much
faster.

Results on Hard Benchmarks. SeaHorn participated in SV-COMP 2015
with the legacy front-end and using Z3-PDR as the verification back-end. To
test the efficiency of the new verification framework in SeaHorn, we ran several
experiments on the 215 benchmarks that we either could not verify or took more
than a minute to verify in SV-COMP. All experiments have been carried out on
an Ubuntu machine with a 2.2 GHz AMD Opteron(TM) Processor 6174 and
516GB RAM with resource limits of 30 min and 15GB for each verification task.
In the scatter plots that follow, a diamond indicates a time-out, a star indicates
a mem-out, and a box indicates an anomaly in the back-end tool.

For our first experiment, we used inlining in the front-end and Fig. 5a shows
a scatter plot comparing Z3-PDR and Spacer in the back-end. The plot clearly
shows the advantages of the various techniques we developed in Spacer, and
in particular, of Model Based Projection for efficiently and lazily eliminating
existential quantifiers for integers and arrays.

Figure 5b compares the two back-end tools when SeaHorn is using inter-
procedural encoding. As the plot shows, Z3-PDR runs out of time on most of
the benchmarks whereas Spacer is able to verify many of them.

As mentioned in Sect. 2, inter-procedural encoding is advantageous from a
usability point of view. It turns out that it also makes verification easier over-all.
To see the advantage of inter-procedural encoding, we used the same tool Spacer
in the back-end and compared the running times with and without inlining in

http://tinyurl.com/svcomp15

356 A. Gurfinkel et al.

0 200 400 600 800 1000 1200 1400 1600 1800

Z3-PDR with inlining (secs)

0

200

400

600

800

1000

1200

1400

1600

1800

S
pa

c
e
r

w
it

h
in

lin
in

g
(s

ec
s)

(a)

0 200 400 600 800 1000 1200 1400 1600 1800

Z3-PDR (secs)

0

200

400

600

800

1000

1200

1400

1600

1800

S
pa

c
e
r

(s
ec

s)

(b)

Fig. 5. Spacer vs. Z3-PDR on hard benchmarks (a) with and (b) without inlining

0 200 400 600 800 1000 1200 1400 1600 1800

Spacer with inlining (secs)

0

200

400

600

800

1000

1200

1400

1600

1800

S
pa

c
e
r

w
it

ho
ut

in
lin

in
g

(s
ec

s)

Fig. 6. Advantage of inter-procedural encoding using Spacer.

the front-end. Figure 6 shows a scatter plot of the running times and we see that
Spacer takes less time on many benchmarks when inlining is disabled.

Spacer also has a compositional BMC mode (see Sect. 4.1 for details), where
no additional computation is performed towards invariant generation after check-
ing safety for a given value of the bound. This helps Spacer show the failure of
safety in two additional hard benchmarks, as shown in Table 1. The figure also
shows the number of benchmarks verified by Z3-PDR, the back-end tool used in
SV-COMP, for comparison.

Table 1. Number of hard benchmarks that are verified as safe/unsafe by Spacer in
its normal and BMC mode, and Z3-PDR, with inlining disabled.

Spacer Spacer BMC Z3-PDR Total verified

Safe 21 – 3 21
Unsafe 74 76 7 81

Case Study: Checking Buffer Overflow in Avionics Software. We have
evaluated the SeaHorn built-in buffer overflow checks on two autopilot control

The SeaHorn Verification Framework 357

Table 2. A comparison between SeaHorn and analyzer on autopilot software.

Program #C analyzer SeaHorn

%W T TF TM TSpacer TFMS TSpacer + TIkos TFMSI

mnav.inlined 607 4.7% 36 2 18 744 764 116 + 52 187

mnav.mixed 815 8.2% 10 1 8 278 287 139 + 5 153

paparazzi.inlined 343 0% 85 2 1 – 3 – 3

paparazzi.mixed 684 43% 15 1 2 3 6 2 + 1 6

software. To prove absence of buffer overflows, we only need to add in the front-
end a new LLVM transformation pass that inserts the corresponding checks in
the bitcode. The middle-end and back-end are unchanged. If SeaHorn proves
the program is safe then it guarantees that the program is free of buffer overflows.

Table 2 shows the results of our evaluation comparing SeaHorn with an
abstract interpretation-based static analyzer using Ikos (labelled analyzer)
developed at NASA Ames [14]. We have used two open-source autopilot control
software mnav [45] (160K LOC) and paparazzi [47] (20K LOC). Both are versatile
autopilot control software for a fixed-wing aircrafts and multi-copters. For each
benchmark, we created two versions: one inlining all functions (inlined) and the
other applying the mixed-semantics transformation (mixed). SeaHorn front-
end instruments the programs with the buffer overflow and underflow checks. In
the middle-end, we use large-step encoding and the inter-procedural encoding
(for mixed). For mnav, we had to model the heap, while for paparazzi, modeling
registers and pointers only was sufficient. For analyzer, we neither inline nor
add the checks explicitly as these are handled internally. Both SeaHorn and
analyzer used intervals as the abstract domain.

In Table 2, #C denotes the number of overflow and underflow checks. For
analyzer, we show the warning rate %W and the total time of the analysis T .
For SeaHorn, we show the time spent by the front-end (TF) and the middle-
end (TM). All times are in seconds. For the back-end, we record the time spent
when Spacer alone is used (TSpacer), and the time spent when both Spacer
and Ikos are used (TSpacer + TIkos). The column TFMS and TFMSI denote the
total time, from front-end to the back-end, when Spacer alone and Spacer
together with Ikos are used, respectively. SeaHorn proves absence of buffer
overflows for both benchmarks, while analyzer can only do it for paparazzi;
although, for mnav the number of warnings was low (4%). To the best of our
knowledge, this is the first time that absence of buffer overflows has been proven
for mnav. For the inlined paparazzi benchmark, SeaHorn was able to discharge
the proof obligations using front-end only (probably because all global array
accesses were lowered to scalars and all loops are bound). The performance of
SeaHorn on mnav reveals that the inter-procedural encoding significantly better
than the inlined version. Furthermore, Ikos has a significant impact on the
results. Specially, SeaHorn with Ikos dramatically helps when the benchmark
is inlined. The best configuration is the inter-procedural encoding with Ikos.

358 A. Gurfinkel et al.

6 Conclusion

We have presented SeaHorn, a new software verification framework with a
modular design that separates the concerns of the syntax of the language, its
operational semantics, and the verification semantics. Building a verifier from
scratch is a very tedious and time-consuming task. We believe that SeaHorn
is a versatile and highly customizable framework that can help significantly the
process of building new tools by allowing researchers experimenting only on their
particular techniques of interest. To demonstrate the practicality of this frame-
work, we shown that SeaHorn is a very competitive verifier for proving safety
properties both for academic benchmarks (SV-COMP) and large industrial soft-
ware (autopilot code).

References

1. Albarghouthi, A., Gurfinkel, A., Chechik, M.: Craig interpretation. In: Miné, A.,
Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 300–316. Springer, Heidelberg
(2012)

2. Albarghouthi, A., Gurfinkel, A., Chechik, M.: Whale: an interpolation-based algo-
rithm for inter-procedural verification. In: Kuncak, V., Rybalchenko, A. (eds.)
VMCAI 2012. LNCS, vol. 7148, pp. 39–55. Springer, Heidelberg (2012)

3. Albarghouthi, A., Gurfinkel, A., Li, Y., Chaki, S., Chechik, M.: UFO: verification
with interpolants and abstract interpretation. In: Piterman, N., Smolka, S.A. (eds.)
TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 637–640. Springer, Heidelberg
(2013)

4. Albarghouthi, A., Li, Y., Gurfinkel, A., Chechik, M.: Ufo: a framework for
abstraction- and interpolation-based software verification. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 672–678. Springer, Heidelberg
(2012)

5. Amato, G., Scozzari, F.: Localizing widening and narrowing. In: Logozzo, F.,
Fähndrich, M. (eds.) Static Analysis. LNCS, vol. 7935, pp. 25–42. Springer, Hei-
delberg (2013)

6. Arlt, S., Rubio-González, C., Rümmer, P., Schäf, M., Shankar, N.: The gradual
verifier. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp.
313–327. Springer, Heidelberg (2014)

7. Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.: Software
model checking via large-block encoding. In: FMCAD, pp. 25–32 (2009)

8. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
blast. STTT 9(5–6), 505–525 (2007)

9. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011)

10. Bjørner, N., Gurfinkel, A.: Property directed polyhedral abstraction. In: D’Souza,
D., Lal, A., Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 263–281.
Springer, Heidelberg (2015)

11. Bjørner, N., McMillan, K.L., Rybalchenko, A.: Program verification as satisfiability
modulo theories. In: SMT, pp. 3–11 (2012)

The SeaHorn Verification Framework 359

12. Bjørner, N., McMillan, K., Rybalchenko, A.: On solving universally quantified horn
clauses. In: Logozzo, F., Fähndrich, M. (eds.) Static Analysis. LNCS, vol. 7935,
pp. 105–125. Springer, Heidelberg (2013)

13. Bradley, A.R.: IC3 and beyond: incremental, inductive verification. In: Madhusu-
dan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 4–4. Springer, Heidel-
berg (2012)

14. Brat, G., Navas, J.A., Shi, N., Venet, A.: IKOS: a framework for static analysis
based on abstract interpretation. In: Giannakopoulou, D., Salaün, G. (eds.) SEFM
2014. LNCS, vol. 8702, pp. 271–277. Springer, Heidelberg (2014)

15. Chatterjee, S., Lahiri, S.K., Qadeer, S., Rakamarić, Z.: A reachability predicate
for analyzing low-level software. In: Grumberg, O., Huth, M. (eds.) TACAS 2007.
LNCS, vol. 4424, pp. 19–33. Springer, Heidelberg (2007)

16. Clarke, E., Kroning, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

17. Cohen, E., Dahlweid, M., Hillebrand, M.A., Leinenbach, D., Moskal, M., Santen,
T., Schulte, W., Tobies, S.: Vcc: A practical system for verifying concurrent c. In:
TPHOL. pp. 23–42 (2009)

18. Cordeiro, L., Fischer, B., Marques-Silva, J.: Smt-based bounded model checking
for embedded ANSI-C software. IEEE Trans. Softw. Eng. 38(4), 957–974 (2012)

19. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs.
In: Proceedings of the second international symposium on Programming, Paris,
France. pp. 106–130 (1976)

20. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski,
B.: Frama-C. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012.
LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg (2012)

21. De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: VeriMAP: a tool for
verifying programs through transformations. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 568–574. Springer, Heidelberg (2014)

22. DeLine, R., Leino, K.R.M.: BoogiePL: A typed procedural language for checking
object-oriented programs. Technical report MSR-TR-2005-70, Microsoft Research
(2005)

23. Gange, G., Navas, J.A., Schachte, P., Søndergaard, H., Stuckey, P.J.: Failure tabled
constraint logic programming by interpolation. TPLP 13(4—-5), 593–607 (2013)

24. Garoche, P.-L., Kahsai, T., Tinelli, C.: Incremental invariant generation using logic-
based automatic abstract transformers. In: Brat, G., Rungta, N., Venet, A. (eds.)
NFM 2013. LNCS, vol. 7871, pp. 139–154. Springer, Heidelberg (2013)

25. Granger, P.: Static analysis of arithmetical congruences. Int. J. Comput. Math.
30, 165–190 (1989)

26. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing soft-
ware verifiers from proof rules. In: PLDI, pp. 405–416 (2012)

27. Gurfinkel, A., Chaki, S.: Combining predicate and numeric abstraction for software
model checking. STTT 12(6), 409–427 (2010)

28. Gurfinkel, A., Chaki, S., Sapra, S.: Efficient predicate abstraction of program sum-
maries. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011.
LNCS, vol. 6617, pp. 131–145. Springer, Heidelberg (2011)

29. Gurfinkel, A., Kahsai, T., Navas, J.A.: SeaHorn: a framework for verifying C pro-
grams (Competition Contribution). In: Baier, C., Tinelli, C. (eds.) TACAS 2015.
LNCS, vol. 9035, pp. 447–450. Springer, Heidelberg (2015)

360 A. Gurfinkel et al.

30. Gurfinkel, A., Wei, O., Chechik, M.: Model checking recursive programs with exact
predicate abstraction. In: Cha, S.S., Choi, J.-Y., Kim, M., Lee, I., Viswanathan,
M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 95–110. Springer, Heidelberg (2008)

31. Heizmann, M., Christ, J., Dietsch, D., Ermis, E., Hoenicke, J., Lindenmann, M.,
Nutz, A., Schilling, C., Podelski, A.: Ultimate automizer with SMTInterpol. In:
Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795,
pp. 641–643. Springer, Heidelberg (2013)

32. Hermenegildo, M.V., Puebla, G., Bueno, F., López-Garćıa, P.: Program develop-
ment using abstract interpretation (and the ciao system preprocessor). In: SAS,
pp. 127–152 (2003)

33. Hoder, K., Bjørner, N.: Generalized property directed reachability. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 157–171. Springer, Heidelberg
(2012)

34. Jaffar, J., Murali, V., Navas, J.A., Santosa, A.E.: TRACER: a symbolic execution
tool for verification. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol.
7358, pp. 758–766. Springer, Heidelberg (2012)

35. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive
programs. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 17–34.
Springer, Heidelberg (2014)

36. Komuravelli, A., Gurfinkel, A., Chaki, S., Clarke, E.M.: Automatic abstraction
in SMT-based unbounded software model checking. In: Sharygina, N., Veith, H.
(eds.) CAV 2013. LNCS, vol. 8044, pp. 846–862. Springer, Heidelberg (2013)

37. Lal, A., Qadeer, S.: A program transformation for faster goal-directed search. In:
FMCAD, pp. 147–154 (2014)

38. Lattner, C., Adve, V.S.: LLVM: a compilation framework for lifelong program
analysis & transformation. In: CGO, pp. 75–88 (2004)

39. Lattner, C., Adve, V.S.: Automatic pool allocation: improving performance by
controlling data structure layout in the heap. In: PLDI, pp. 129–142 (2005)

40. McMillan, K., Rybalchenko, A.: Solving constrained horn clauses using interpola-
tion. Technical report MSR-TR-2013-6 (2013)

41. Méndez-Lojo, M., Navas, J., Hermenegildo, M.V.: A flexible, (C)LP-based app-
roach to the analysis of object-oriented programs. In: King, A. (ed.) LOPSTR
2007. LNCS, vol. 4915, pp. 154–168. Springer, Heidelberg (2008)

42. Merz, F., Falke, S., Sinz, C.: LLBMC: bounded model checking of C and
C++programs using a compiler IR. In: VSTTE. pp. 146–161 (2012)

43. Miné, A.: A few graph-based relational numerical abstract domains. In:
Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 117–132.
Springer, Heidelberg (2002)

44. Miné, A.: The octagon abstract domain. High. Order Symb. Comput. 19(1), 31–100
(2006)

45. Micro NAV autopilot software. Available http://sourceforge.net/projects/
micronav/

46. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: intermediate language
and tools for analysis and transformation of C programs. In: CC, pp. 213–228
(2002)

47. Paparazzi autopilot software. Available http://wiki.paparazziuav.org/wiki/Main
Page

48. Peralta, J.C., Gallagher, J.P., Saglam, H.: Analysis of imperative programs through
analysis of constraint logic programs. In: Levi, G. (ed.) SAS 1998. LNCS, vol. 1503,
pp. 246–261. Springer, Heidelberg (1998)

http://sourceforge.net/projects/micronav/
http://sourceforge.net/projects/micronav/
http://wiki.paparazziuav.org/wiki/Main_Page
http://wiki.paparazziuav.org/wiki/Main_Page

The SeaHorn Verification Framework 361

49. Rakamarić, Z., Emmi, M.: SMACK: decoupling source language details from veri-
fier implementations. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 106–113. Springer, Heidelberg (2014)

50. Rümmer, P., Hojjat, H., Kuncak, V.: Disjunctive interpolants for horn-clause verifi-
cation. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 347–363.
Springer, Heidelberg (2013)

51. Sinha, N., Singhania, N., Chandra, S., Sridharan, M.: Alternate and learn: finding
witnesses without looking all over. In: Madhusudan, P., Seshia, S.A. (eds.) CAV
2012. LNCS, vol. 7358, pp. 599–615. Springer, Heidelberg (2012)

52. Steensgaard, B.: Points-to analysis in almost linear time. In: POPL, pp. 32–41
(1996)

53. Stump, A., Barrett, C.W., Dill, D.L., Levitt, J.R.: A decision procedure for an
extensional theory of arrays. In: LICS, pp. 29–37 (2001)

54. Zhao, J., Nagarakatte, S., Martin, M.M.K., Zdancewic, S.: Formalizing the LLVM
intermediate representation for verified program transformations. In: POPL, pp.
427–440 (2012)

Automatic Rootcausing for Program
Equivalence Failures in Binaries

Shuvendu K. Lahiri1(B), Rohit Sinha2, and Chris Hawblitzel1

1 Microsoft Research, Redmond, WA, USA
{shuvendu,chrishaw}@microsoft.com

2 University of California, Berkeley, CA, USA
rsinha@berkeley.edu

Abstract. Equivalence checking of imperative programs has several
applications including compiler validation and cross-version verification.
Debugging equivalence failures can be tedious for large examples, espe-
cially for low-level binary programs. In this paper, we formalize a simple
yet precise notion of verifiable rootcause for equivalence failures that
leverages semantic similarity between two programs. Unlike existing
works on program repair, our definition of rootcause avoids the need
for a template of fixes or the need for a complete repair to ensure equiva-
lence. We show progressively weaker checks for detecting rootcauses that
can be applicable even when multiple fixes are required to make the two
programs equivalent. We provide optimizations based on Maximum Sat-
isfiability (MAXSAT) and binary search to prune the search space of
such rootcauses. We have implemented the techniques in SymDiff and
provide an evaluation on a set of real-world compiler validation binary
benchmarks.

1 Introduction

Equivalence checking between two imperative programs has several applications
in software validation. It has been used widely in the translation validation of
compilers [10,14,19], regression verification [6], cross-version verification [7,11]
and checking independent implementations [17,21]. Applications such as com-
piler validation [7], or automatic comparison of student attempts to reference
implementations [21], can result in thousands of equivalence checking failures.
Automated debugging and identification of the rootcause of a verification failure
is crucial for the usability of these verification tools.

The problem of rootcausing is more involved while analyzing assembly or
binary programs. Such problems come up naturally in various compiler valida-
tion tasks, such as comparing (a) intermediate representations with binaries,
(b) binaries with different optimizations, (c) binaries generated for two differ-
ent platforms (e.g. x86 vs. ARM), or even (iv) binaries from different versions
of a compiler [7]. Comparing binaries (instead of source code or intermediate
representations) allows discovering low-level bugs that are introduced during
compilation and linking. However, debugging verification failures is tedious due
c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 362–379, 2015.
DOI: 10.1007/978-3-319-21690-4 21

Automatic Rootcausing for Program Equivalence Failures in Binaries 363

to the lack of (type-based) non-aliasing; most instructions read or modify the
registers, flags or the heap.

In a prior work on such binary comparisons, the number of failures even with
a modest 2 % failure rate, ran into thousands [7]. Equivalence failures resulted
from diverse sources such as modeling imprecision, missing environmental spec-
ifications, and presence of true defects. Moreover, for many such applications
the syntax of the two programs (e.g. x86 vs. ARM) differ too much to benefit
from syntactic difference based tools. To cope with such large-scale applications
of equivalence checking for binaries, there is a growing need for automated tech-
niques for understanding and bucketing failures.

In this paper, we provide a simple yet precise notion of a verifiable rootcause
for equivalence failures of two similar programs. Our work is inspired by work on
program repair [9,15,18], however our technique attempts to leverage semantic
similarity of the two programs. In a nutshell, we attempt to “fix” an equiva-
lence failure by changing an assignment r in one program with a value com-
puted by an assignment l in the other program. The pair of assignments (l, r)
from the two programs constitute a rootcause (whenever it exists) by pointing
to the two assignments where the two programs diverge. The simple formu-
lation has several advantages when applicable: (a) it provides correspondence
points in two programs that is useful in the setting of comparing two programs,
(b) it is completely automatic as it does not require any template of fix that is
customary in program repair (e.g., [9,15]), and (c) the rootcause can be found
without the need to repair the program, which we find too stringent in the
presence of multiple repairs.

On the other hand, the notion of such a singleton fix as a rootcause may
appear overly restrictive and less applicable in practice. Therefore, we pro-
pose several mechanisms that exploit similarity between programs to improve
the applicability of this approach. First, we formulate two progressively weaker
checks (with progressively weaker guarantees) that work by looking for singleton
fixes for weaker equivalence problems. Second, we show examples of additional
domain-specific weakening through preprocessing to increase the applicability of
such rootcauses.

Although it is easy to symbolically encode the search for such a rootcause
in existing program synthesis tools [9,15,22], our initial attempt did not scale
for the binary benchmarks studied in this paper. We therefore provide a more
enumerative solution to search for a rootcause. We provide optimizations based
on Maximum Satisfiability (MAXSAT) and binary search to prune the space of
candidate fixes. We have implemented the techniques [23] and provide prelimi-
nary evaluation on a set of real-world compiler validation benchmarks [7]; our
technique finds verified rootcauses for 74 % and 80 % respectively of the cases on
two sets of benchmarks.

1.1 Overview

We illustrate the concepts informally with the aid of two simplified models of
assembly programs generated from a common C# procedure using different

364 S.K. Lahiri et al.

Fig. 1. Optimizing loads. The rootcause pair is highlighted and underlined lines are
part of program instrumentation.

compiler versions [7]. For most of these examples, the heap is modeled as an
array variable M and the effect of a procedure call is modeled by applying unin-
terpreted functions such as f (line 7 in Fig. 1) to the arguments. We refer the
reader to earlier works for further details of translating assembly instructions
into the language (§ 2) used in this paper [7].

Single Fix. Figure 1 describes two procedures p1 and p2 that differ in an extra
load from memory M in p2. The underlined lines are additional instrumentation
inserted by our tool, and not part of the original programs. Procedure p2 has
two loads (lines 5 and 7) from x; the two loads can yield different results if the
procedure call f can modify M at the location x. The compiler for p1 optimizes
the second load in p1 based on the knowledge that the call to f does not modify
M at the location x. Such internal assumptions from the compiler are often
not readily available to the equivalence checker, thereby resulting in equivalence
failure.

For this example, our tool first inserts the underlined lines in the two pro-
cedures. The assume in line 6 in p1 uses a symbolic constant r5@5 to capture
the symbolic value computed in r5 after the load in line 5. The assignment in
line 8 in p2 overwrites the assignment in line 7 with the value in r5@5, thereby
making the two procedures equivalent. We highlight the rootcause as the pair
of original instructions (5, 7) that participate in the fix. Note that we do not
actually “repair” the program p2, since it contains values (e.g. r5@5) that are
only computed by p1.

Weaker Fixes. Figure 2 illustrates a case where our technique can identify a fix
even though multiple fixes are required to make the two procedures equivalent.
The source of difference between the two procedures is that fields of a class are
laid out at different offsets by the two compilers. The field accesses are reflected
in the accesses to the heap M using different offsets from a base location x (e.g.
lines 7, 11, 14 in p1). Note that the fields in p2 have an additional offset of 4
compared to fields in p1. This example is challenging since at least 3 fixes are
required to make the two procedures equivalent. Searching for multiple fixes is
significantly more expensive and a complete repair may be elusive when two
programs have several differences. However, for the purpose of rootcausing, we
have observed that it suffices to highlight the earliest instruction pair where the
two programs diverge. By exploiting the semantic similarity, we can often pose

Automatic Rootcausing for Program Equivalence Failures in Binaries 365

Fig. 2. Partial fix. The rootcause pair is highlighted and underlined lines are part of
program instrumentation.

weaker equivalence checks (with weaker guarantees) that may still be verified
with a single fix.

Let us assume that the equivalence failure provides a counterexample cex
that takes the “then” branch of the conditional in p1 and the “else” branch
in p2. (Notice that the branches are rearranged to mimic common compiler
transformations.) We present two separate ideas to create a weaker equivalence
problem. (i) First, we constrain p1 to take only that path that was taken by
the counterexample; this is achieved by instrumenting assumptions denoting
branch conditions satisfied in the counterexample (e.g. line 5 in p1). (ii) Second,
we exploit the fact that semantically similar programs often have intermediate
program points where the two programs are expected to synchronize — i.e.
certain part of the states are expected to be equal. In the presence of such
synchronization points, we can look for fixing the violations of such intermediate
equalities in addition to the final equivalence. For compiler validation, it is often
assumed that the two procedures synchronize on procedure calls — the sequence
of procedure calls and the values returned from them are equal on both sides on
a common input [7,10,11,14]. One reason for this assumption is that the heap
is passed as a map in and out of procedure calls in these settings (we discuss
exceptions in Fig. 4). Let us assume that the counterexample cex assigns different
outputs for M1 and M2 at lines 8 and 12 respectively. We add the underlined
assume after the update in line 12 in p2 to make the two maps disequal, assuming
procedures synchronize on calls to f. Intuitively, the assumption weakens the
final equivalence assertion with an equality over intermediate state of the two
programs. The singleton fix (7, 10) does not satisfy this assumption and therefore
blocks execution of the instrumented program after line 13 in p2, which leads to
the equivalence check to succeed.

Contributions. The contributions of the paper include (a) the first precise for-
mulation of rootcause for the problem of equivalence failure that does not require

366 S.K. Lahiri et al.

a template of fixes or the need to repair a program, (b) mechanisms to improve
the applicability of the rootcause by postulating weaker checks by leveraging
similarity of the two programs, and (c) an implementation and evaluation on a
set of challenging real-world binary equivalence failures.

Organization. We describe a simple programming language used to model binary
programs in Sect. 2. We formalize our notion of rootcause for equivalence failures
in Sect. 3 along with the weaker checks. We describe an algorithm to search for
rootcauses in Sect. 4 along with various optimizations. We present our evaluation
in Sect. 5, and discuss related work in Sect. 6.

2 Background

Programs. Figure 3 describes the syntax of programs. Vars denotes the set
of variables and includes parameters and locals; we assume that the programs
contain no globals for simplicity. We distinguish scalar variables (denoted by x)
from array or map variables (denoted by X). Consts denotes a set of symbolic
constants. Rels and Funcs denote the set of relations and functions, and can
either be uninterpreted or be interpreted by an underlying theory (e.g. {≤,≥}
∈ Rels and {+,−, ∗} ∈ Funcs). Map operations x := X[y] and X[y] := x are
modeled as x := sel(X, y) and X := upd(X, y, x) respectively, where sel and upd
are functions in Funcs interpreted by the theory of arrays [20]. Maps can also
be updated at an unbounded number of locations by functions returning map
values (e.g. X := f(X, . . .)).

x,X ∈ Vars
θ ∈ Consts
q ∈ Rels
f, g ∈ Funcs
e ∈ Expr ::= x | X | θ | f(e, . . . , e)
φ ∈ Formula ::= true | false | e = e |

q(e, . . . , e) | φ ∧ φ | ¬φ
s ∈ Stmt ::= x := e | s; s | if (φ) {s} else {s}

assert φ | assume φ
p ∈ Proc ::= g(xg, . . .) : (rg, . . .) { sg }

Fig. 3. Syntax of programs.

Statements in Stmt
include assignments, condi-
tionals, assertions, assump-
tions, and sequential compo-
sition (s; s). Parallel assign-
ments (e.g. line 7 in Fig. 1)
are desugared as assign-
ments using additional tem-
porary variables.

A procedure p consists
of a list of parameters and
return variables, and a body
(sg ∈ Stmt). Procedures are
side-effect free, and all the
modifications are reflected
explicitly by the return vari-

ables. As is standard in most prior works on compiler equivalence check-
ing [6,10,11,14], a procedure call is either inlined or is modeled by assigning
the return variables an uninterpreted function over the parameters (e.g. line 7
in Fig. 1). The treatment in this paper ignores loops; we assume they are either
unrolled to a bounded depth or modeled as tail-recursive procedures [12].

Automatic Rootcausing for Program Equivalence Failures in Binaries 367

Semantics. A state σ of a program at a given program location is a valuation
of the variables in scope. Let Σ be the set of all program states. We omit the
definition of an execution as it is quite standard for the statements [1]. We recall
that the semantics of assume φ is to block execution when executed in a state
σ that does not satisfy φ. For a procedure p, an input state is a valuation of the
parameters at entry and an output state is a valuation of the returns at exit. The
semantics of a procedure p is given by a relation R(p) ⊆ Σ × Σ over pairs of
input and output states, where (σ, σ′) ∈ R(p) if and only if there is an execution
of p starting at σ and ending in σ′.

Equivalence Checking. Given two procedures p1 and p2 and a one-one map-
ping of the parameters −→x and returns −→r , we define p1 and p2 to be partially
equivalent if for every (σ, σ′) ∈ R(p1) and (σ, σ′′) ∈ R(p2), σ′ = σ′′. In other
words, if both p1 and p2 terminate on an input σ, then the outputs are equiva-
lent. We drop the term partial henceforth when referring to partial equivalence.
We check equivalence of two such procedures p1 and p2 by creating the composed
procedure p12 (where p1 and p2 are inlined) and checking the final assertion:

p12(−→x){−→r1 := p1(−→x);−→r2 := p2(−→x); assert −→r1 = −→r2 ; }

Since we assume p1 and p2 are loop-free, p12 is a bounded program. Several
well-known techniques [1] exist to transform a loop-free and call-free procedure
with assertions into a compact logical formula in the Satisfiability Modulo The-
ories (SMT) format by a process called verification-condition (VC) generation.
For our purpose, we define VC (p) to be a logical formula that is valid if and only
if p does not fail any assertion. If VC (p12) is valid then p1 and p2 are equivalent;
otherwise we obtain a counterexample cex along paths in p1 and p2 for which
at least one of the return variables differ.

3 Problem Formulation

When p1 and p2 are not equivalent, the counterexample cex allows the user to
debug the equivalence failure. However, such counterexamples can often be hun-
dreds of lines long and finding the relevant instructions that lead to the failure
can be cumbersome. Understanding counterexamples of equivalence failures is
often laborious due to several factors: (a) most statements in a program are
relevant to an equivalence assertion, and (b) one has to proceed simultaneously
along both p1 and p2. In our prior experience of debugging equivalence fail-
ures from compiler validation, summarizing the “core reason” (or rootcause) for
equivalence failure was the main ask for the adoption of equivalence checking
tools in a production setting [7].

In this section, we formulate a natural notion of rootcause for equivalence
failure that exploits the structure of both programs. We pose the rootcause
problem as the problem of finding a pair of scalar assignments l : x1 := e1 (from
p1) and r : x2 := e2 (from p2) at labels l and r respectively, such that replacing e2

in p2 with the value of e1 computed in p1 makes the two procedures equivalent.

368 S.K. Lahiri et al.

Observe that the proposal is different from replacing the expression e2 with e1

in p2; such a change may not even yield a well-typed program as the expression
e1 may contain local variables not in scope in p2. Thus, the rootcause does not
really repair the program p2, but rather yields (when the pair exists) a pair of
program points where the two procedures should have been equivalent. We term
such a pair (l, r) as a fix.

A reader may be concerned about trivial fixes in the form of setting the
outputs of p2 to the outputs of p1. In our experience this seldom happens due
to the following reasons: (a) Binary programs contain arrays to model the heap.
Most equivalence failures result in the output maps being different at a large
(even unbounded) number of locations. Since we do not consider updates to
entire maps for potential fixes, a trivial fix does not work in such cases. (b) A
similar argument holds when a procedure has multiple outputs that differ. In
addition, for cases when multiple such fixes exist, we always pick the fix that
appears earliest in the lexicographic ordering of the pair of labels.

Another concern would be the adequacy of the space of our fixes. This concern
is indeed justified due to either (i) several paths may require a fix, or (ii) a
long counterexample requires several fixes to align the outputs. We leverage the
semantic similarity between the two programs to formulate two progressively
weaker checks (with progressively weaker guarantees) that work by looking for
singleton fixes for weaker equivalence problems. Let us refer to the first (original)
check that checks to fix p12 with the pair (l, r) as AllFix check. The second
check (LeftPathFix) attempts to only fix the subset of inputs along a single
counterexample path, thereby avoiding the need to make the program equivalent
on all inputs. The third check (LeftPathEarliestFix) leverages the presence of
intermediate synchronization points such as procedure calls to look for fixing
the earliest synchronization point where the two programs diverge.

In the next few sections, we formalize the different notions of rootcauses with
the aid of a program instrumentation.

3.1 Instrumentation

For a pair of procedures p1 and p2, let L and R be the sequence of labels in
the left (respectively p1) and right (respectively p2) procedures. Each label l
corresponds to a scalar assignment xl := el. We sometimes treat L and R as sets
instead of a sequence. We define an instrumentation that transforms a statement
to another statement:

– For each scalar assignment instruction l : x := e with a label l ∈ L, we
transform it to:

l : x := e; assume(θ@l = x)

where θ@l is a fresh constant for storing the value of x after the assignment
at label l.

– For each assignment instruction r : x := e with a label r ∈ R, we transform it
to:

r : x := e; x := γr? θ@r : x; assume
∧

l∈L

(βl
r ⇒ x = θ@l)

Automatic Rootcausing for Program Equivalence Failures in Binaries 369

Here θ@r and γr are fresh constants for label r. Setting γr to true replaces
the current assignment at r with a completely unconstrained value θ@r in p2.
For each l ∈ L, we also create a Boolean constant βl

r to denote a candidate fix
(l, r). The constant βl

r constrains x to be equal to the value assigned at label
l ∈ L. It is easy to see that setting γr to true and exactly one of βl

r to true
(and other candidates βl′

r to false) is equivalent to an assignment x := θ@l,
which is the intended fix.

For all further discussions, we refer p12 to mean the instrumented version of p12.
We next describe the meaning of two operations ConstrainFix and AssignFix ,
that weaken the formula being checked by the SMT solver:

– ConstrainFix (p12, L
′, R′) takes two sets of labels L′ ⊆ L and R′ ⊆ R and

constrains all the candidates in L′ × R′ to true. It generates the following
logical formula:

(
∧

r∈R

¬γr ∧
∧

(l,r)∈L′×R′
βl
r ∧

∧

(l,r)∈(L×R)\(L′×R′)

¬βl
r) ⇒ VC (p12)

– AssignFix (p12, (l′, r′)) takes a fix (l′, r′) and overwrites the assignment at r′

with value computed at l′. It generates the following logical formula:

(γr′ ∧ βl′
r′ ∧

∧

r∈R\{r′}
¬γr ∧

∧

(l,r)∈L×R\{(l′,r′)}
¬βl

r) ⇒ VC (p12)

The encodings give rise to a few simple facts.

Lemma 1. For L1 ⊆ L2 ⊆ L and R1 ⊆ R2 ⊆ R, if ConstrainFix (p12, L1, R1)
is valid, then ConstrainFix (p12, L2, R2) is valid.

Lemma 1 follows from the fact that setting more βl
r constants to true adds more

assumes to p12, thus making the specification weaker.

Lemma 2. For l ∈ L and r ∈ R, if the formula AssignFix (p12, (l, r)) is valid,
then the formula ConstrainFix (p12, {l}, {r}) is valid.

Lemma 2 follows from the observation that replacing an unconstrained constant
θ@r with a more constrained expression e in the assignment r : x := e can never
change a valid formula into an invalid formula.

Theorem 1. For L1 ⊆ L and R1 ⊆ R, if ConstrainFix (p12, L1, R1) is not valid,
then AssignFix (p12, (l, r)) is not valid for any (l, r) ∈ L1 × R1.

The theorem follows immediately from the two lemmas. The utility of the the-
orem is in providing a sufficient condition to prune a subset of candidate fixes,
without explicitly trying each of them. We use this for optimizations in Sect. 4.

370 S.K. Lahiri et al.

3.2 Different Checks

We now formalize the different checks starting with the strongest check.

Definition 1 (AllFix). AllFix (p1, p2) is true if there exists a fix (l, r) ∈ L × R
such that AssignFix (p12, (l, r)) is valid.

For the example in Fig. 1, both (5, 7) and (8, 7) constitute a fix according to the
AllFix check. We highlight the pair (5, 7) since it is lexicographically smaller
than (8, 7).

If AllFix does not hold, then we can try a weaker check. Given a counterex-
ample path cex , we define HoldLeftPath(p12, cex) as constraining p1 to only take
the path taken in cex . Figure 2 shows an example (line 5 in p1) where the branch
condition of the taken branch is assumed before the conditional statement.

Definition 2 (LeftPathFix). LeftPathFix (p1, p2, cex) is true if there exists a fix
(l, r) ∈ L × R such that AssignFix (HoldLeftPath(p12, cex), (l, r)) is valid.

Observe that the check LeftPathFix does not yield a fix for the example in Fig. 2.
This is because even this single path requires at least two fixes to constants in
lines 10 and 15. Note that we do not constrain both the left and the right paths
together while looking for a fix, because (a) the fix may require changing the
control flow in p2 and (b) a vacuous fix may be found that avoids this combined
path.

We can further weaken the final assertion by exploiting statically defined
intermediate synchronization points for the two procedures, where certain vari-
ables are expected to match up on the two sides. For example, for compiler
translation validation, it is common to assume that the sequence of procedure
calls and the values returned from them are equal on both programs on a com-
mon input. In the presence of such synchronization points, we can look for fixing
the violations of such intermediate equalities in cex in addition to the final
equivalence.

For a counterexample cex , let l1, . . . , lm and r1, . . . , rn be the sequence of
assignment labels from p1 and p2 respectively. Further, let a subset of instruction
pairs (l1, r1), . . . , (lj , rj) (ordered by cex) are expected to be the synchronization
points. We find the earliest pair where the synchronization is violated in the
traces. Let (lk, rk) be the earliest violation of synchronization (it may not always
exist) and let x be the variable assigned in rk. We insert the following assume
statement after the assignment at rk:

rk : x := e; assume(x
= θ@lk)

Intuitively, the assume weakens the final equivalence check by pruning behaviors
that satisfy the synchronization at (lk, rk). In turn, this expects less from a fix:
a fix does not need to check the final equivalence if it can synchronize (lk, rk). For
compiler validation, it is often assumed that p1 and p2 synchronize on procedure
calls, for which x would represent the heap that is passed out of the procedure
calls. We define the instrumentation AddEarlyDiseqAssumes(p12, cex) to insert

Automatic Rootcausing for Program Equivalence Failures in Binaries 371

such assumes into p12. Figure 2 shows an instance of such assume in line 13 in
p2 for map variable M.

These assumptions are most useful when the counterexample path is
constrained to cex . Otherwise, the verifier can find an alternate path and
avoid the inserted assume statement. Hence we use this in conjunction with
HoldLeftPath(p12, cex).

Definition 3 (LeftPathEarliestFix). LeftPathEarliestFix (p1, p2, cex) is true if
there exists a fix (l, r) ∈ L × R such that the logical formula represented by
AssignFix (HoldLeftPath(AddEarlyDiseqAssumes(p12, cex), cex), (l, r)) is valid.

The example in Fig. 2 satisfies this weaker check and yields the rootcause pair
highlighted in the figure.

It is worth pointing the difference with an alternate option of inserting an
assertion assert(x = θ@lk) at rk and removing the final assertion. Such a check
can be verified with spurious fixes that avoid the path leading to the assertion,
and we have found it to be true in practice. Finally, the following theorem
formalizes the relationship between the three checks:

Theorem 2. Given procedures p1 and p2, and a counterexample cex to
VC (p12), AllFix (p1, p2, cex) ⇒ LeftPathFix (p1, p2, cex) ⇒
LeftPathEarliestFix (p1, p2, cex).

In summary, there are several advantages to our natural formulation of rootcause:
(a) We can exploit the semantic similarity of the two closely related programs
by moving “values” computed in p1 into p2 for the fix. Our notion of rootcause
is verifiable, but does not require a complete repair to the program. (b) The
formulation does not require separate templates for repairing a program [15,21].
This is useful when the repair templates may not be obvious (e.g. the repair
of p2 in Fig. 1 requires strengthening the environment assumptions of callees).
(c) When such a fix exists, it points to correspondence points in the two programs
that differ under cex but are necessary for equivalence. We have found this to
be much more informative than fixing one statement in p2, as would be done
by existing rootcause methods [21]. (d) The semantic similarity between the two
programs (as opposed to a specification versus a program) can be exploited to
formulate weaker checks that can yield a rootcause with weaker guarantees.

4 Searching for a Fix

Our first attempt was to leverage counterexample-guided inductive synthesis
(CEGIS) to symbolically encode the search for a fix [15,22]. The algorithm
searches for an assignment to boolean constants β ∪ γ (at most one fix for
each r ∈ R) such that p1 and p2 are equivalent. Promisingly, CEGIS can find
multiple fixes; in the case of Fig. 2, it finds all 3 fixes needed to make p1 and p2

equivalent. However, we did not succeed in scaling the CEGIS-based algorithm
to the compiler validation benchmarks due to timeouts in the theorem prover.
There are several reasons why CEGIS does not scale for our benchmarks:

372 S.K. Lahiri et al.

Algorithm 1. FindRootCause(p12 , cex)
Input: Combined procedure p12, a counterexample cex to equivalence failure of p12
Output: {NOROOTCAUSE ,ROOTCAUSE(l, r)}
1: (L, R) ← Sequences of scalar assignment labels as they appear in cex
2: PruneCandidatesStatic(cex ,L,R)
3: if CheckSAT (ConstrainFix(p12, L, R)) �= UNSAT then
4: return NOROOTCAUSE /* No fix exists */
5: end if
6: /* Binary search based pruning */
7: (low, up) ← (0, |R|)
8: while (up − low > 1) do
9: curr ← low + (up − low)/2

10: if CheckSAT (ConstrainFix(p12, L, [1, curr])) �= UNSAT then
11: low ← curr
12: else
13: up ← curr
14: end if
15: end while
16: /* MAXSAT based pruning */
17: for r ∈ [low + 1, |R|] do
18: L′ ← L \ CheckMAXSAT (ConstrainFix(p12, L, {r}), {βl

r | l ∈ L})
19: for l ∈ L′ in program order do
20: if CheckSAT (AssignFix (p12, (l, r))) = UNSAT then
21: return ROOTCAUSE(l, r)
22: end if
23: end for
24: end for
25: return NOROOTCAUSE

(a) the benchmarks contain several hundred lines along with heavy use of quanti-
fiers to model semantics of binary programs, and (b) the size of the instrumented
program fed to CEGIS is quadratic in the size of the two input programs. The
combination of these two factors make the problem of generating a model or
satisfiable input more difficult for SMT solvers.

We now present an alternate algorithm for searching for a fix in Algorithm 1.
We assume that p12 has already been instrumented with one of the three
checks {AllFix , LeftPathFix , LeftPathEarliestFix}. It returns NOROOTCAUSE
to denote that no singleton rootcause exists, and returns ROOTCAUSE (l, r) for
a pair (l, r) that fixes p12. A näıve solution will enumerate every pair of assign-
ments (l, r) over p1 and p2 and check for AssignFix (p12, (l, r)). This can lead to
a best case quadratic (in the size of p12) number of theorem prover checks when
no such fix exists. In section, we describe a few techniques to prune the space of
candidate fixes where a fix cannot be found.

The search for a singleton fix enables a few simple optimizations. Given
a counterexample cex , the first step is to collect into (L,R) only the scalar
assignments that appear along cex (line 1). The method PruneCandidatesStatic
prunes pairs (l, r) such that cex (l) = cex (r), i.e. the assignments that produce
equal value in cex . For any such pair (l, r), applying that fix will not prevent the

Automatic Rootcausing for Program Equivalence Failures in Binaries 373

counter-example cex . Therefore, PruneCandidatesStatic fixes the βl
r constants

to false permanently.
For the remaining pairs, we perform pruning based on calls to an automated

theorem prover. The operation CheckSAT (φ) checks if ¬φ is satisfiable (SAT)
or unsatisfiable (UNSAT); these cases correspond to φ being invalid and valid
respectively. Line 3 checks if constraining p12 with all the remaining assumes
guarded by βl

r (except those disabled in line 2 earlier) can verify p12. If the
result is SAT , there can be no fix with (L,R) (Theorem 1). The check for a
fix is done in line 20; if the formula is valid, then we return the rootcause pair
(l, r). Lines 6–15 use binary search to prune a subset of candidates. Lines 16–
24 use Maximum Satisfiability (MAXSAT) to prune a subset of candidates. We
describe these optimizations below.

Binary Search Based Pruning. We are interested in pruning the sub-
range of R where no fix can lie. We observe that for any fix (l, r) (such that
AssignFix (p12, (l, r)) is valid), the following condition follows from Theorem 1:
r > r′ for any r′ ∈ R for which ConstrainFix (p12, L, [1, r′]) is not valid. We use
binary search over [1, |R|] to find the largest r (returned in the variable low)
such that ConstrainFix (p12, L, [1, r]) is invalid. We use two markers low and up
with the following loop invariants: (i) ConstrainFix (p12, L, [1, low]) is invalid,
and (ii) ConstrainFix (p12, L, [1, up]) is valid, and (iii) low ≤ up. The binary
search converges in at most log(|R|) steps since the distance between low and
up is halved at each step.

MAXSAT Based Pruning. For a fixed r ∈ R, we are also interested in pruning
a subset of L where no fixes can lie. We use Maximum Satisfiability (MAXSAT)
to perform this. For a given r ∈ R if ConstrainFix (p12, L, {r}) is valid, then we
find the largest subset L′′ ⊆ L such that ConstrainFix (p12, L

′′, {r}) is invalid.
From Theorem 1 we know that a fix (l, r) cannot be found for any l ∈ L′′.
Computing the largest (invalid) subset L′′ can be performed by the call to
CheckMAXSAT (ConstrainFix (p12, L, {r}), {βl

r | l ∈ L}), where the first argu-
ment is a formula φ and the second argument is a set S of Boolean constants
that are “soft”. CheckMAXSAT (φ, S) returns the largest subset S′ ⊆ S such that
¬φ ∧

∧
s∈S′ s is satisfiable. For our purpose, the set of soft constants consists of

the set of all candidate fixes from L for a given r ∈ R.
As an example, consider this optimization in the context of Fig. 1. Consider

the MAXSAT query when considering the statement r2 := M2[x]. The potential
set of candidates from p1 are (ignoring updates to maps):

L
.= {5 : r5 := M1[x], 7 : r1 := f(M1, r5), 8 : r1 := r5, 9 : r1 := g(M1, r1)}

The instrumentation of 7 : r2 := M2[x] is as follows:

7 : r2 := M2[x]; r2 := γ7? θ@7 : r2; assume
∧

l∈[5,7,8,9]

(βl
7 ⇒ r2 = θ@l)

For this program, both (5, 7) and (8, 7) are valid (singleton) fixes and make the
two program equivalent.

374 S.K. Lahiri et al.

Consider the case when γ7 is false and the subset {β7
7 , β9

7} are true. The
two programs are not equivalent under this constraint. In other words, the ver-
ification condition VC (p12) is SAT even with these constraints. The call to
CheckMAXSAT with {βl

7 | l ∈ {5, 7, 8, 9}} as the soft clauses will return the
largest set {β7

7 , β9
7} that is satisfiable, thereby pruning the set of candidates that

have to be explicitly tested by 2.

5 Evaluation

In this section, we describe an implementation of the techniques and an evalua-
tion on a set of binary benchmarks from compiler validation. Our implementation
is part of SymDiff sources [23], and takes as input a Boogie program p12 gen-
erated by the equivalence checker tool SymDiff [11]. The inputs to SymDiff
are Boogie programs p1 and p2 and a mapping between the two procedures.
These Boogie programs can be generated from various languages such as C [4],
or from various compiler back-end formats [7,25]. For this section, we only focus
on Boogie programs generated from compiler validation benchmarks [7].

The main goal of our experiment is to determine how often our notion of root-
cause can be found in real benchmarks. The evaluation consists of two parts. In
Sect. 5.1, we evaluate the implementation on 15 smallest benchmarks of equiv-
alence failures resulting from comparing the output of the .NET CLR compiler
across two different optimization levels. In Sect. 5.2, we evaluate the implemen-
tation on 46 benchmarks comparing the output of the .NET CLR compiler in
Just In Time (JIT) mode to the compiler in mostly-ahead-of-time mode (based
on the MDIL [16] machine-dependent intermediate language). We restrict to the
smallest 15 for the former category to be able to manually establish the ground
truth (the true reason for failure) of these failures, which can be quite tedious.
For the latter benchmarks, previous syntactic heuristics provided good start-
ing points for establishing the ground truth. Thus we report more quantitative
evaluation for the latter category.

5.1 Different Optimization Levels

We successfully find a total of 12 rootcauses (80 % of the cases) out of the
15 benchmarks in this category. These benchmarks have 68 lines of assembly
code on average, and the generated Boogie programs have 510 Boogie state-
ments on average. In most cases, we found a fix with either the LeftPathFix
and LeftPathEarliestFix checks. However, some of the examples do not satisfy
the assumption that the two programs have equal set of callees. We illustrate
the problem and an additional preprocessing step that alleviates the problem
without any changes to the algorithm.

Figure 4 illustrates a case where our technique fails to identify a fix when
a procedure call in p1 is replaced by access to the object’s field in p2. This
is an instance of a common compiler optimization of inlining simple methods
(such as side-effect free “getter” methods) with their implementations. Our tool

Automatic Rootcausing for Program Equivalence Failures in Binaries 375

Fig. 4. Example for side-effect free preprocessing heuristic.

fails to find a rootcause because (i) procedure call to getLength can modify the
heap M1 arbitrarily and cause it to differ from M2, and (ii) return value r1 of
getLength is allowed to differ from the field access M2[r1 + 8]. To account for
(i), we exploit the fact if a procedure call only appears in one program, then
it is likely to not modify the heap M. In a preprocessing step, we modify p1

to insert an assume in line 5 and restore M1 in line 7. Then, our rootcause
analysis identifies the singleton fix (6, 5). Similarly, we find examples that make
several calls to the same procedure in p1 that are optimized to only one call
in p2 because the compiler is able to prove idempotence. We perform a similar
instrumentation as Fig. 4 to handle such cases. Conceptually, these preprocessing
provide a weaker guarantee on the rootcause by constraining the summaries of
callees (e.g. side-effect free, idempotent); this is analogous to how LeftPathFix
provides a rootcause by constraining the entry state of the procedures.

5.2 JIT Versus Compiled Binaries

Benchmarks. These benchmarks have 165 lines of assembly code on average, with
the largest benchmark having 574 lines. The generated Boogie programs have
1242 Boogie statements on average, with the largest benchmark having 4323
statements. The considerable sizes make it difficult to apply program synthesis
to find the rootcauses. In fact, we needed a few domain-specific heuristics to
prune the search space to be able to find the rootcauses within 800 seconds.
Note that the heuristics only sacrifice the completeness of our technique — we
may fail to find a rootcause even though it may exist.

Heuristics for pruning candidates. We define the following three domain-specific
syntactic heuristics for finding rootcauses of binary programs. The callee heuris-
tic only considers assignments to the callee register before an indirect call. The
heuristic load only considers loads from a memory address, and the heuristic
imm only considers assignments with arithmetic constants or operations. In
addition, we also use a heuristic that exploits the synchronization of p1 and p2

across procedure calls. Let f1, . . . , fm and g1, . . . , gn be the sequence of proce-
dure calls along cex in p1 and p2 respectively. We define a pair of calls (fi, gi) as
the earliest mismatched calls if the calls (f1, g1), . . . , (fi−1, gi−1) return match-
ing outputs and (fi, gi) mismatch. We define a heuristic callWindk that only

376 S.K. Lahiri et al.

Heuristic

callee
load
imm
callWind1
callWind2

AllFix LeftPathFix LeftPathEarliestFix
Candidate s R/NR time(sec) R/NR time(sec) R/NR time(sec)

125 12/27 85.4 14/25 77.8 24/15 85.0
128 2/37 113.1 3/36 98.6 6/32 129.1
128 7/5 193.8 7/4 191.0 16/0 181.0
107 13/9 142.1 14/9 154.7 23/0 212.7
272 6/8 264.7 7/8 251.7 14/0 289.8

Tota l 140 15/24 134.1 18/22 128.4 34/5 154.4

Fig. 5. Summary on benchmarks returning either ROOTCAUSE or NOROOTCAUSE .

considers fixes in the region between fi−k, . . . , fi and gi−k, . . . , gi in p1 and p2

respectively.

Experimental setup. Each benchmark consists of two procedures p1 and p2 being
compared, and a syntactic filter ∈ {callee, load, imm, callWind1, callWind2}.
With each of the 5 syntactic filters, we experiment with 46 pairs of procedures,
giving us 230 benchmarks in total. Each benchmark is run with all optimizations
from Sect. 4 enabled. We instantiate LeftPathEarliestFix by synchronizing at
procedure call boundaries. A run can fail with UNKNOWN due to timeouts or
out-of-memory exceptions in Boogie/Z3.

Results. Figure 5 presents the results. The table presents the following metrics
(for non UNKNOWN cases): (1) average number of candidates generated for
each benchmark, (2) benchmarks for which a rootcause is found (R) or not
found (NR), and (3) average runtime (in seconds). These results indicate that
progressively weakening the check to LeftPathFix and LeftPathEarliestFix iden-
tifies rootcause in more benchmarks. The “Total” row describes the total number
of distinct rootcauses found across the different heuristics. We find a total of 34
out of 46 rootcauses (74 % of the cases), which we find quite encouraging. For the
remaining examples, the most common reasons for NOROOTCAUSE include:
(i) the need for multiple fixes even for the weakest check LeftPathEarliestFix ,
(ii) insufficient semantic similarity between p1 and p2, whereby p1 is devoid of
a value that fixes p2, and (iii) several missing assumptions about the read and
write sets of callees and aliasing assumptions.

We also measured the impact of an optimization ∈ {Binary Search,
MAXSAT} with respect to (a) the number of candidates pruned, and (b) the
reduction in runtime. For each optimization, we study the effect of the opti-
mization by disabling it. Both optimizations perform a substantial reduction in
candidates, more pronounced for larger instances, with MAXSAT (resp., Binary
Search) giving us a significant 49 % (resp., 12 %) reduction in runtime and 691 %
(resp., 34 %) reduction in candidates1. The average runtime improvement is lower
than the average improvement in candidates; there are few cases in Binary Search
and MAXSAT where the optimization results in a slowdown due to the overhead
of the prover.
1 Detailed plots in Appendix of extended technical report [13].

Automatic Rootcausing for Program Equivalence Failures in Binaries 377

6 Related Work

Automated debugging and repair are certainly not new problems. Our work is
inspired in part by program repair techniques [2,15,21,24], and in part by error
localization techniques [3,8]. The novelty of our work is in providing a sweet
spot — formal guarantees for the rootcause (unlike localization approaches)
without requiring a complete repair the program. Unlike our work, none of these
approaches deal with the complexities of analyzing binary programs.

Error Localization. BugAssist by Jose et al. [8] analyzes a specific failing input to
compute a minimal set of program statements that can be potentially changed
to prevent the failing execution. Ermis et al. [5] propose a concept of error invari-
ants to slice error traces using interpolants. In our context, we observe that most
instructions in the program are relevant for equivalence failure. Consequently,
both techniques end up retaining most of the instructions along the counterex-
ample path. However, there is no guarantee that these rootcauses (program
expressions) can be changed to repair the program.

Repair. On the other hand, there is active research in using synthesis for repairing
programs. Nguyen et al. [15] assume a single-fix assumption to synthesize a repair
such that the program passes all its test cases. Recent repair approaches per-
form template-based repair using a counterexample guided inductive synthesis
(CEGIS) loop [9]. Singh et al. [21] use constraint-based synthesis to automati-
cally provide feedback to students in an introductory programming course. They
use the instructor’s solution only as a specification for synthesizing a set of fixes
to the student’s solution i.e. their approach extends to the multiple-fix model.
The sizes of examples from compiler validation are at least an order bigger than
the benchmark sizes for student attempts; Furthermore, the space of all repairs
is quite large in our setting (all x86 instructions with all possible operands). Our
work differs from all three of [15,21], and [9] by (i) exploiting similarity in the
two programs and therefore not requiring repair templates, and (ii) alleviating
scalability issues by not insisting on a complete fix. However, our approach may
fail to identify a rootcause when the program requires multiple fixes, or when
p1 does not possess a value that can fix p2. In other related work, Samanta
et al. [18] repair boolean programs with the single-fix assumption using QBF
solving. In our setting, we do not abstract assembly language programs as
boolean programs.

7 Conclusion

We have proposed a new formulation of rootcause for equivalence failures of
similar programs. We have implemented our technique and evaluated it on sev-
eral real-world binary equivalence failures and report the potential to be useful.
We believe the idea is general and can be applied to other equivalence checking
domains (e.g. grading assignments). We are currently extending the formulation
to handle multiple fixes and combining with synthesis methods.

378 S.K. Lahiri et al.

References

1. Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured programs. In:
PASTE’2005, pp. 82–87 (2005)

2. Chandra, S., Torlak, E., Barman, S., Bodik, R.: Angelic debugging. In: Proceedings
of the 33rd International Conference on Software Engineering, ICSE’2011, pp. 121–
130, New York, NY, USA. ACM (2011)

3. Cleve, H., Zeller, A.: Locating causes of program failures. In: Proceedings of the
27th International Conference on Software Engineering, ICSE’2005, pp. 342–351,
New York, NY, USA. ACM (2005)

4. Condit, J., Hackett, B., Lahiri, S.K., Qadeer, S.: Unifying type checking and prop-
erty checking for low-level code. In: POPL, pp. 302–314 (2009)

5. Ermis, E., Schäf, M., Wies, T.: Error invariants. In: Giannakopoulou, D., Méry, D.
(eds.) FM 2012. LNCS, vol. 7436, pp. 187–201. Springer, Heidelberg (2012)

6. Godlin, B., Strichman, O.: Regression verification. In: DAC, pp. 466–471 (2009)
7. Hawblitzel, C., Lahiri, S.K., Pawar, K., Hashmi, H., Gokbulut, S., Fernando, L.,

Detlefs, D., Wadsworth, S.: Will you still compile me tomorrow? static cross-version
compiler validation. In: Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2013, pp. 191–201, New York, NY, USA.
ACM (2013)

8. Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum
satisfiability. In: Proceedings of the 32Nd ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI’2011, pp. 437–446, New
York, NY, USA. ACM (2011)

9. Konighofer, R., Bloem, R.: Automated error localization and correction for imper-
ative programs. Formal Methods Comput. Aided Des. 2011, 91–100 (2011)

10. Kundu, S., Tatlock, Z., Lerner, S.: Proving optimizations correct using parameter-
ized program equivalence. In: Programming Language Design and Implementation
(PLDI’2009), pp. 327–337. ACM (2009)

11. Lahiri, S.K., Hawblitzel, C., Kawaguchi, M., Rebêlo, H.: SYMDIFF: a language-
agnostic semantic diff tool for imperative programs. In: Madhusudan, P., Seshia,
S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 712–717. Springer, Heidelberg (2012)

12. Lahiri, S.K., McMillan, K.L., Sharma, R., Hawblitzel, C.: Differential assertion
checking. In: Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2013, pp. 345–355, New York, NY, USA. ACM (2013)

13. Lahiri, S.K., Sinha, R., Hawblitzel, C.: Automatic rootcausing for program equiv-
alence failures in binaries. Technical Report MSR-TR-2014-11, Microsoft Research
(2014)

14. Necula, G.C.: Translation validation for an optimizing compiler. In: ACM
SIGPLAN Conference on Programming Language Design and Implementation
(PLDI’2000), pp. 83–94 (2000)

15. Nguyen, H.D.T., Qi, D., Roychoudhury, A., Chandra, S.: Semfix: Program repair
via semantic analysis. In: Proceedings of the 2013 International Conference on
Software Engineering, ICSE’2013, pp. 772–781, Piscataway, NJ, USA, IEEE Press
(2013)

16. Ramaswamy, S.: Deep dive into the kernel of .NET on Windows Phone 8. In: Build
Conference (2012)

17. Ramos, D.A., Engler, D.R.: Practical, low-effort equivalence verification of real
code. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
669–685. Springer, Heidelberg (2011)

Automatic Rootcausing for Program Equivalence Failures in Binaries 379

18. Samanta, R., Deshmukh, J.V., Emerson, E.A.: Automatic generation of local
repairs for boolean programs. In: Proceedings of the 2008 International Conference
on Formal Methods in Computer-Aided Design, FMCAD’2008, pp. 27:1–27:10,
Piscataway, NJ, USA. IEEE Press (2008)

19. Samet, H.: Compiler testing via symbolic interpretation. In: In Proceedings of the
ACM 29th Annual Conference, pp. 492–497 (1976)

20. Satisfiability Modulo Theories Library (SMT-LIB). Available http://goedel.cs.
uiowa.edu/smtlib/

21. Singh, R., Gulwani, S., Solar-Lezama, A.: Automated feedback generation for intro-
ductory programming assignments. In: Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI’2013,
pp. 15–26, New York, NY, USA. ACM (2013)

22. Solar-Lezama, A., Arnold, G., Tancau, L., Bodik, R., Saraswat, V., Seshia, S.:
Sketching stencils. SIGPLAN Not. 42(6), 167–178 (2007)

23. SymDiff source code. Available http://symdiff.codeplex.com
24. Weimer, W.: Patches as better bug reports. In: Generative Programming and Com-

ponent Engineering, 5th International Conference, GPCE 2006, pp. 181–190. ACM
(2006)

25. Yang, J., Hawblitzel, C.: Safe to the last instruction: automated verification of a
type-safe operating system. In: Proceedings of the 2010 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI), pp. 99–110
(2010)

http://goedel.cs.uiowa.edu/smtlib/
http://goedel.cs.uiowa.edu/smtlib/
http://symdiff.codeplex.com

Fine-Grained Caching of Verification Results

K. Rustan M. Leino1(B) and Valentin Wüstholz2(B)

1 Microsoft Research, Redmond, WA, USA
leino@microsoft.com

2 Department of Computer Science, ETH Zurich, Zurich, Switzerland
valentin.wuestholz@inf.ethz.ch

Abstract. Developing provably correct programs is an incremental
process that often involves a series of interactions with a program veri-
fier. To increase the responsiveness of the program verifier during such
interactions, we designed a system for fine-grained caching of verification
results. The caching system uses the program’s call graph and control-
flow graph to focus the verification effort on just the parts of the pro-
gram that were affected by the user’s most recent modifications. The
novelty lies in how the original program is instrumented with cached
information to avoid unnecessary work for the verifier. The system has
been implemented in the Boogie verification engine, which allows it to
be used by different verification front ends that target the intermediate
verification language Boogie; we present one such application in the inte-
grated development environment for the Dafny programming language.
The paper describes the architecture and algorithms of the caching sys-
tem and reports on how much it improves the performance of the verifier
in practice.

1 Introduction

Making formal program verification useful in practice requires not only auto-
mated logical theories and formal programming-language semantics, but also—
inescapably—a human understanding of why the program under verification
might actually be correct. This understanding is often gained by trial and error,
debugging verification attempts to discover and correct errors in programs and
specifications and to figure out crucial inductive invariants. To support this
important trial and error process, it is essential that the integrated development
environment (IDE) provides rapid feedback to the user.

In this paper, we enhance the IDE for the specification-aware programming
language Dafny [20] by adding fine-grained caching of results from earlier runs
of the verifier. The effect of this caching is to reduce the time from user key-
strokes in the editor to the reporting of verification errors that are gathered in
the background. In some cases, this lag time can now be around a second for
examples where it previously may have taken tens of seconds for the verifier to
repeat the checking of proof obligations that were not affected by the change.

c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 380–397, 2015.
DOI: 10.1007/978-3-319-21690-4 22

Fine-Grained Caching of Verification Results 381

These improvements rely on a basic caching technique that tracks dependencies
using the program’s call graph to avoid re-verification of methods that were not
affected by the most recent change to the program. Our fine-grained caching
takes this a step futher. It is motivated by the fact that when a proof obligation
is not automatically verified, a user tends to spend human focus and editing
in one small area of the program. Often, this area can be in one branch of a
method, so if the tool can rapidly re-verify just what has changed, the user can
make progress more quickly. Our fine-grained caching thus makes use of the
program’s control-flow graph.

Like other verifiers, the Dafny verifier generates proof obligations by translat-
ing Dafny to an intermediate verification language (IVL), namely Boogie [2,21].
We designed our fine-grained caching to operate at the level of the IVL, which
makes it possible for other Boogie front ends to make use of the new functionality.
Our novel caching approach compares the current snapshot of a Boogie program
with a previously verified snapshot. It then instruments the current snapshot
to adjust the proof obligations accordingly. Finally, it passes the instrumented
Boogie program to the underlying satisfiability-modulo-theories (SMT) solver in
the usual way. Our implementation is available as part of the Boogie and Dafny
open source projects.

In Sect. 2, we explain a motivating example in more detail. Sect. 3 gives back-
ground on the architecture of the Dafny verifier and describes the basic, coarse-
grained caching based on the program’s call graph. We describe our fine-grained
caching in Sect. 4 and evaluate how both techniques improve the performance
of the verifier in Sect. 5.

2 Motivating Example

Let us consider some typical steps in the interactive process of developing a
verifiably correct program, indicating where our caching improvements play a
role. Figure 1 shows an incomplete attempt at specifying and implementing the
Dutch Flag algorithm, which sorts an array of colors.

The program gives rise to several proof obligations, following the rules of
Hoare logic. The loop invariants are checked when control flow first reaches the
loop. The loop body with its three branches is checked to decrease a termination
metric (here provided by the tool: the absolute difference between w and b) and
to maintain the loop invariants. The postcondition of the method is checked to
follow from the loop invariants and the negation of the guard (without further
inspection of the loop body). For every call to method Sort in the rest of the
program, the method’s precondition is checked and its postcondition is assumed.

In addition, all statements and expressions, including those in specifications,
are verified to be well-formed. For example, for the assignment that swaps two
array elements in the loop body (line 18), the well-formedness checks ensure that
the array is not null , that the indices are within bounds of the array, that the
method is allowed to modify the heap at these locations, and that the parallel
assignment does not attempt to assign different values to the same heap location.

382 K.R.M. Leino and V. Wüstholz

Fig. 1. Incomplete attempt at implementing the Dutch Flag algorithm. As written, the
program contains a specification omission, a specification error, and two coding errors.
As the program is edited, our fine-grained caching of verification results enables a more
responsive user experience by avoiding re-verification of unaffected proof obligations.

To provide design-time feedback to the user, the Dafny IDE automatically
runs the verifier in the background as the program is being edited. This allows
the verifier to assist the user in ways that more closely resemble those of a
background spell checker. Given the program in Fig. 1, the Dafny verifier will
report three errors.

The first error message points out that the method body may not establish
the postcondition. Selecting this error in the Dafny IDE brings up the verification
debugger [18], which readily points out the possibility that the array contains
two White values. To fix the error, we add a disjunct c = d to the definition of
predicate Ordered . Instead of expecting the user to re-run the verifier manu-
ally, the Dafny IDE will do so automatically. To speed up this process, the basic
caching technique will already avoid some unnecessary work by using the call
graph: only methods that depend on the predicate Ordered will be re-verified,
which includes the body of Sort and, since the postcondition of Sort men-
tions the predicate, all callers of Sort . Caller dependencies get lower scheduling
priority, since they are likely to be further away from the user’s current focus of

Fine-Grained Caching of Verification Results 383

attention. However, we can hope for something even better: the maintenance of
the loop invariant in Sort need not be re-verified, but only the fact that the
loop invariant and the negation of the guard establish the postcondition. Our
fine-grained caching technique makes this possible.

The second error message points out that the loop may fail to terminate.
Selecting the error shows a trace through the Red branch of the match state-
ment, and we realize that this branch also needs to increment w. As we make that
change, the tool re-verifies only the loop body, whereas it would have re-verified
the entire method with just the basic caching technique.

The third error message points out that the last loop invariant is not main-
tained by the Blue branch. It is fixed by swapping a[w] and a[b] after the
update to b. After doing so, the re-verification proceeds as for the second error.

Finally, it may become necessary to strengthen Sort ’s postcondition while
verifying some caller—it omits the fact that the final array’s elements are a
permutation of the initial array’s. If only the basic caching was used, the addition
of such a postcondition would cause both Sort and all of its callers to be re-
verified. By using the fine-grained caching, the body of Sort is re-verified to
check only the new postcondition (which in this case will require adding the
postcondition also as a loop invariant). For callers, the situation is even better:
since the change of Sort ’s specification only strengthens the postcondition,
proof obligations in callers that succeeded before the change are not re-verified.

The performance improvements that we just gave a taste of have the effect
of focusing the verifier’s attention on those parts of the program that the user is
currently, perhaps by trial and error, editing. The result is a user experience with
significantly improved response times. In our simple example program, the time
to re-verify the entire program is about 0.25 seconds, so caching is not crucial.
However, when programs have more methods, contain more control paths, and
involve more complicated predicates, verification times can easily reach tens of
seconds. In such cases, our fine-grained caching can let the user gain insight
from the verification tool instead of just becoming increasingly frustrated and
eventually giving up all hopes of ever applying formal verification techniques.

3 Verification Architecture and Basic Caching

In this section, we describe the role of the intermediate verification language
Boogie and the basic caching technique that the fine-grained caching builds on.
We have presented an informal overview of the basic caching technique in a
workshop paper describing different novel features of the Dafny IDE [22].

3.1 Architecture

Like many other verifiers, such as Spec# [3] and VCC [8], Dafny uses the Boogie [2]
intermediate verification language to express proof obligations to be discharged by
the Boogie verification engine using an SMT solver, such as Z3 [10]. The language
constructs of the source language are translated into more primitive constructs of

384 K.R.M. Leino and V. Wüstholz

Boogie, including variables, axioms, and procedures. For example, a Dafnymethod
is translated to several Boogie constructs: (1) a procedure (declaration) that cap-
tures the specification of the method, (2) a procedure implementation that captures
the method body and checks that it adheres to the method specification, and (3) a
secondprocedure implementation that captures thewell-formedness conditions for
the method specification [19]. As another example, a Dafny function is translated
to a corresponding Boogie function and a procedure implementation that captures
the function’s well-formedness conditions. Boogie functions are given meaning by
axioms, but to simplify our presentation, we omit some details of the translation
of Dafny functions.

Boogie supports a modular verification approach by verifying procedure imple-
mentations individually. More precisely, calls in procedure implementations are
reasoned about only in terms of their specification (i.e., the corresponding
procedure declaration). Consequently, a change to a program often does not inval-
idate verification results obtained for independent program entities. In particu-
lar, a change in a given procedure implementation does not invalidate verification
results of other procedure implementations, and a change in a procedure’s specifi-
cation may invalidate verification results only of its callees and of the correspond-
ing procedure implementation.

3.2 Basic Caching

While the Boogie pipeline accepts a single program, obtains verification results,
and then reports them, the basic caching mechanism turns Boogie into more of
a verification service: it accepts a stream of programs, each of which we refer to
as a snapshot.

The basic caching approach exploits the modular structure of Boogie pro-
grams by determining which program entities have been changed directly in the
latest program snapshot and which other program entities are indirectly affected
by those changes. To determine direct changes, Boogie relies on the client front
end (Dafny in our case) to provide an entity checksum for each function, proce-
dure, and procedure implementation. For example, the Boogie program in Fig. 2
shows entity checksums provided by a front end to Boogie via the : checksum
custom attribute. In our implementation, Dafny computes them as a hash of
those parts of the Dafny abstract syntax tree that are used to generate the cor-
responding Boogie program entities. This makes checksums insensitive to certain
textual changes, such as ones that concern comments or whitespace.

To determine indirect changes, Boogie computes dependency checksums for
all functions, procedures, and procedure implementations based on their own
entity checksum and the dependency checksums of entities they depend on
directly (e.g., callees). These checksums allow the basic caching to reuse ver-
ification results for an entity if its dependency checksum is unchanged in the
latest snapshot.

For example, when computing dependency checksums from entity checksums
in Fig. 2, Boogie takes into account that both implementations depend on the

Fine-Grained Caching of Verification Results 385

Fig. 2. Boogie program that shows how a front end uses custom attributes on decla-
rations to assign entity checksums, which can be computed in front-end specific ways.

procedure declaration of abs (implementation abs needs to adhere to its pro-
cedure declaration and main contains a call to abs). Consequently, a change
that only affects the entity checksum of procedure abs (e.g., to strengthen the
postcondition) will prevent Boogie from returning cached verification results for
both implementations. However, a change that only affects the entity check-
sum of implementation abs (e.g., to return the actual absolute value) will allow
Boogie to return cached verification results for implementation main.

Figure 3 gives an architectural overview of the caching system. In terms of it,
the basic caching works as follows. First, Boogie computes dependency check-
sums for all entities in a given program snapshot. Then, for each procedure
implementation P , the cache is consulted. If the cache contains the dependency
checksum for P , branch (0) is taken and the cached verification results are
reported immediately. Otherwise, branch (1) is taken and the procedure imple-
mentation is verified as usual by the Boogie pipeline. Our fine-grained caching
may also choose branch (2), as we explain in Sect. 4.

3.3 Prioritizing Procedure Implementations Using Checksums

Besides using them for determining which procedure implementations do not
need to be re-verified, we use the checksums for determining the order in which
the others should be verified. Ideally, procedure implementations that are more
directly related to the user’s latest changes are given higher priority, since these
most likely correspond to the ones the user cares about most and wants feedback
on most quickly. The checksums provide a metric for achieving this by defining
four priority levels for procedure implementations:

– low (unlike the entity checksum, the dependency checksum in the cache is differ-
ent from the current one): Only dependencies of the implementation changed.

– medium (entity checksum in the cache is different from the current one): The
implementation itself changed.

– high (no cache entry was found): The implementation was added recently.
– highest (both the entity and the dependency checksum is the same as the one

in the cache): The implementation was not affected by the change and a cache
lookup is sufficient for reporting verification results to the user immediately,
instead of waiting for other implementations to be verified.

386 K.R.M. Leino and V. Wüstholz

Fig. 3. Overview of the verification process for procedure implementations. Boxes cor-
respond to components and arrows illustrate data flow. The caching component pro-
duces three possible outputs: 0) cached errors in case the entity and dependency check-
sums are unchanged, 1) the implementation P in case it is not contained in the cache,
or 2) the implementation P and the cached snapshot in case either the entity or the
dependency checksum have changed. Cached snapshots are used to inject verification
results into the implementation and to identify errors that can be recycled.

4 Fine-Grained Caching

Basic caching can determine which procedure implementations in a new snapshot
do not need to be re-verified at all, but it does not track enough information
to allow us to reuse verification results for parts of an implementation. In this
section, we present an extension of the basic caching that reuses verification
results in fine-grained ways. In particular, our extension avoids re-verification of
checks that were not affected by the most recent change and it recycles errors
that are still present in the current snapshot.

Before giving our full algorithm, we sketch how it works in two common sce-
narios we want to address: when an isolated part of a procedure implementation
(e.g., one of two branches or a loop body) has been changed, and when the
specification of a procedure has been changed. We proceed by example, start-
ing from the program in Fig. 4. Running Boogie on this program results in two
errors: a failure to establish the postcondition on line 2 and an assertion viola-
tion on line 7. To fix the postcondition error in the program in Fig. 4, the user
might add an explicit else branch on line 10 and insert statement r := x. This
is an instance of the common change-in-isolated-part scenario. In particular,

Fine-Grained Caching of Verification Results 387

Fig. 4. Incomplete attempt at implementing a Boogie procedure for computing the
greatest common denominator. Boogie reports a postcondition violation for the imple-
mentation and an assertion violation on line 7.

the change has no effect on the assertion on line 7, and thus we would hope to
be able to cache and recycle the error.

4.1 Fine-Grained Dependency Tracking Using
Statement Checksums

To cache and reuse verification results at this fine granularity, we need to know
what each statement depends on. To determine this, we compute a statement
checksum for every statement from a hash of its pretty-printed representation
and—to keep the overhead small—the statement checksums of all statements
that precede it in the control flow (as opposed to ones that actually affect it).
If a statement contains a function call in some subexpression, then the state-
ment depends on the callee’s definition and we include the callee’s dependency
checksum when computing the statement checksum.

The computation of statement checksums occurs after the Boogie program
has undergone some simplifying transformations. For example, loops have been
transformed using loop invariants and back-edges of loops have been cut [4];
thus, the computation of statement checksums does not involve any fixpoint
computation. As another example, the checks for postconditions have been made
explicit as assert statements at the end of the implementation body and the
preconditions of procedure implementations have been transformed into assume
statements at the beginning of the implementation body; thus, these statements
are taken into account for computing the statement checksums. In contrast to
an assert statement, which instructs the verifier to check if a condition holds at
the given program point, an assume statement instructs the verifier to blindly
assume a condition to hold at the given program point.

After the simplifications from above, there are only two kinds of statements
that lead to checks: assertions and calls (precondition of callee). We will refer
to them as checked statements. We introduce a cache that associates statement

388 K.R.M. Leino and V. Wüstholz

checksums of such statements in a given implementation with verification results.
Before verifying a new snapshot, we compute statement checksums for the new
snapshot and then instrument the snapshot by consulting this cache.

Let us describe this in more detail using our example. We will refer to the
program in Fig. 4 as Snapshot 0 and the program resulting from adding the else
branch and assignment on line 10 as Snapshot 1. After verifying Snapshot 0,
the cache will have entries for the statement checksums of the following checked
statements: the failing assertion on line 7, the succeeding precondition checks
for the calls on lines 6 and 9, the succeeding assertion on line 11, and the failing
check of the postcondition from line 2. The statement checksums for the first
three checked statements (on lines 6, 7, and 9) in Snapshot 1 are the same
as in Snapshot 0. Since the cache tells us the verification results for these, we
report the cached error immediately and we add assume statements for the
checked condition before these checked statements in Snapshot 1. The statement
checksums of the fourth and fifth checked statement are different in Snapshot 1,
since they are affected by the modification of line 10. Since the new checksums
are not found in the cache, the statements are not rewritten. As a result, Boogie
needs to only verify those checks. Indeed, Boogie is now able to prove both and
it updates the cache accordingly. With reference to Fig. 3, what we have just
described takes place along branch (2) after the basic cache has been consulted.

4.2 Injecting Explicit Assumptions and Partially Verified Checks

To fix the failing assertion on line 7 in Fig. 4, the user might now decide to
strengthen the postcondition of the procedure by changing it to 1 ≤ r. This is
an instance of the common change-in-specification scenario. In particular, since
the change involves a strengthened postcondition, we would hope to avoid re-
verifying any previously succeeding checks downstream of call sites.

We will refer to the program resulting from the user’s change as Snapshot 2.
After Boogie computes the statement checksums, only the statement checksum
for the assertion of the postcondition will be different from the ones in the cached
snapshot. However, since the dependency checksums of the callee changed for
both calls, we introduce an explicit assumption [7] after each call to capture the
condition assumed at this point in the cached snapshot. We do so by introducing
an assumption variable for each such call that is initialized to true and is only
assigned to once (here, after the corresponding call) using a statement of the form
a := a ∧ P , where a is the assumption variable and P is a boolean condition.
The variable allows us to later refer to an assumption that was made at a specific
program point; e.g., to mark a check that was not failing in the corresponding
cached snapshot as partially verified under a conjunction of assumption variables.

To illustrate, consider the rewrite of Snapshot 2 in Fig. 5. At this stage, the
precondition is assumed explicitly on line 2 and the postcondition is asserted
explicitly on line 15 as described earlier. On line 0, we introduce one assumption
variable for each call to a procedure with a different dependency checksum, and
these are initialized to true on line 1. The call on line 5 gets to assume the
new postcondition of gcd. If that call happens to return in a state that was

Fine-Grained Caching of Verification Results 389

allowed by the previous postcondition (0 ≤ r), then assumption variable a0
will remain true after the update on line 6. But if the call returns in a state
that does not satisfy the previously assumed postcondition, then a0 will be set
to false. In our example, since the postcondition of the callee is strengthened,
the explicit assumption 0 ≤ r will always evaluate to true. Indeed, this works
particularly well when postconditions are not weakened, but, depending on the
calling context, it may also simplify the verification otherwise. For instance, it
would work for a call where the state is constrained such that for this particular
call site the previous postcondition holds after the call, even though the new
postcondition is indeed weaker.

Next, we inject assumptions into the program about checked statements that
are found to be non-failing in the cached snapshot based on their statement
checksum. More precisely, for each statement with checked condition P whose
statement checksum is in the cache and that was non-failing in the cached snap-
shot, we inject an assumption A =⇒ P , where A is the conjunction of all assump-
tion variables. Intuitively, this tells the verifier to skip this check if all assumption
variables are true. Otherwise, the verifier will perform the check since a state
was reached for which it has not already been verified in the cached snapshot.
We say that the check has been marked as partially verified. As an optimiza-
tion, we include in A only those assumption variables whose update statement
definition can reach this use; we refer to these as relevant assumption variables.
Figure 5 shows the assumptions being introduced on lines 4, 9, and 13, preceding
the precondition checks and the assert statement, thus marking these checks as
partially verified. Note that the assertion on line 7 is not marked as partially ver-
ified, since it is a failing assertion in Snapshot 1. Since the assumption variables
remain true, the partially verified checks in effect become fully verified in this
example. Note that the verifier may discover that only some partially verified
checks are in effect fully verified depending on the state at those checks. For
instance, this may happen if the state after some call was not always allowed
by the callee’s previous postcondition, but some partially verified checks after
that call are in a conditional branch where the branching condition constrains
the state such that all states are allowed by the previous postcondition there.

4.3 Algorithm for Injecting Cached Verification Results

In this subsection, we present our algorithm for injecting cached verification
results in procedure implementations of medium or low priority, for which no
limit on the number of reported errors was hit when verifying the cached imple-
mentation. At this point, most existing Boogie transformations have been applied
to the implementation as described earlier (e.g., eliminating loops using loop
invariants and adding explicit assertions for procedure postconditions).

As a first step, we compute statement checksums for all statements in an
implementation as defined earlier. As a second step, we insert explicit assump-
tions for calls if the dependency checksum of the callee has changed in the current
snapshot. More precisely, for each call, we distinguish between three different
cases, in order:

390 K.R.M. Leino and V. Wüstholz

Fig. 5. Body of the procedure implementation for Snapshot 2 after injecting cached ver-
ification results (underlined). The instrumented program contains two explicit assump-
tions [7] on lines 6 and 11 derived from the postcondition of the cached callee procedure.
Also, all checks that did not result in errors in the cached snapshot have been marked
as partially verified by introducing assume statements on lines 7, 9, and 13.

1. Dependency checksum of callee is the same as in the cached snapshot: We
do not need to do anything since the asserted precondition and the assumed
postcondition are the same as in the cached snapshot.

2. All functions that the callee transitively depended on in the cached snapshot
are still defined and unchanged in the current snapshot: Before the call, we
add the statement assume ? =⇒ P, where ? is a placeholder that will be
filled in during the final step of the algorithm and P is the precondition of
the callee in the cached snapshot. This may allow us to reuse the fact that the
precondition of a call has been verified in the cached snapshot. To simplify
the presentation, we will only later determine if the precondition has indeed
been verified and under which condition. Since the dependency checksum of
the callee is different from the one in the cached snapshot, we additionally
introduce an explicit assumption to capture the condition that was assumed
after the call in the cached snapshot. This condition depends on the callee’s
modifies clause (which lists the global variables that the callee is allowed
to modify) and its postcondition. To capture the former, let V be the set
of global variables that were added to the callee’s modifies clause since the
cached snapshot. We now add ov := v for each global variable v in this set V
before the call, where ov is a fresh, local variable. This allows us to express the
explicit assumption by adding the statement a := a ∧ (Q ∧ M) after the
call, where a is a fresh assumption variable, Q is the postcondition of the callee
in the cached snapshot and M contains a conjunct ov == v for each global
variable v in the set V . Note that M does not depend on global variables that

Fine-Grained Caching of Verification Results 391

were removed from the callee’s modifies clause since the cached snapshot; the
statements after the call have already been verified for all possible values of
such variables.

3. Otherwise: Since we cannot easily express the pre- and postcondition of the
callee in the cached snapshot, we need to be conservative. We therefore do
not add any assumption about the precondition and we add the statement
a := a ∧ false after the call, where a is a fresh assumption variable.

As a third step, we transform each checked statements with the checked
condition P to express cached verification results. We distinguish four cases, in
order:

1. Some relevant assumption variable is definitely false when performing con-
stant propagation: We do not do anything, since we cannot determine under
which condition the check may have been verified.

2. There was an error for this check in the cached implementation and there are
no relevant assumption variables: Since it has previously resulted in an error
under identical conditions, we add the statement assume P before and report
the error immediately to avoid unnecessary work.

3. There was no error for this check in the cached implementation: Since it
has been verified previously, we add the statement assume A =⇒ P before,
where A is the conjunction of all relevant assumption variables. If there are
any such assumption variables, we say that the check has been marked as
partially verified; otherwise, we say that it has been marked as fully verified.

4. Otherwise: We do not do anything. For instance, this may happen if we cannot
determine that we have seen the same check in the cached snapshot.

As a last step, we replace the placeholder ? in each statement
assume ? =⇒ P with the conjunction of all relevant assumption variables,
if none of the relevant assumption variables are definitely false and there was
no error for the corresponding call in the cached implementation. Otherwise, we
drop the statement.

Optimization for Explicit Assumptions Within Loops. By default, loop
bodies are verified modularly in Boogie. That is, on entry to a loop body, all
variables that are modified within the body are “havocked” by assigning a non-
deterministic value and the invariant is assumed. After the loop body, only the
invariant remains to be checked. For this reason, an assumption (e.g., as a result
of a procedure call) that was made in the loop body when verifying the cached
snapshot was neither used for verifying statements after the loop (provided there
is no break statement in the loop) nor for verifying statements within the loop
that precede the assignment to the corresponding assumption variable. To repro-
duce this behavior for the current snapshot, it is safe not to havoc assumption
variables that would usually be havocked in this case. By doing so, such assump-
tion variables usually remain true at that point unless the corresponding loop
has previously been unrolled a number of times.

392 K.R.M. Leino and V. Wüstholz

5 Evaluation

To evaluate the effectiveness of our caching techniques in practice, we recorded
eight verification sessions during expert use of the Dafny IDE for regular develop-
ment tasks. Those sessions were not scripted and therefore cover real workloads
that such a tool faces when it is being used by a user to develop provably cor-
rect software. The sessions span a wide range of activities (including extension,
maintenance, and refactoring) that are encountered when developing programs of
several hundred lines. Sessions consist of up to 255 individual program snapshots
(see Fig. 6) since the Dafny IDE automatically verifies the program as the user
is editing it. To make this a pleasant experience for the user, the responsiveness
of the tool is of paramount importance.

Figure 6 clearly shows that this user experience could not be achieved with-
out caching. The basic caching alone decreases the running times of the verifier
tremendously (more than an order of magnitude for many sessions) and comple-
menting it with fine-grained caching decreases them even more. This confirms
the positive feedback that we received from users of the Dafny IDE, including
members of the Ironclad project at Microsoft Research, whose codebase includes
more than 30’000 lines of Dafny code [15]. Interestingly, caching turned out to
have a more significant effect on the responsiveness of the tool than paralleliza-
tion of verification tasks in Boogie using multiple SMT solver instances.

Figure 7 sheds more light on why the basic caching is so effective by showing
the priorities of the procedure implementations that are sent to the verifier for
each snapshot in session 5: most of the procedure implementations do not need
to be re-verified at all and only two implementations (originating from a single
Dafny method) need to be verified for most snapshots. This data looks very
similar for the other sessions and demonstrates that the basic caching benefits
significantly from the modular verification approach in Dafny. Besides this, we
can see that there are occasional spikes with procedure implementations of low
priority. For example, snapshot 2 consists of a change to a function that may
affect all callers. In fact, due to the way that functions are handled, all transitive
callers are affected, which is not the case for procedures. While in this case
the basic caching needs to re-verify 11 procedure implementations from scratch,
the fine-grained caching is able to mark 400 out of 971 checked statements in
Boogie as fully verified. This reduces the running time from 28 s to 14 s and at
the same time avoids a timeout (by default, 10 s per procedure implementation)
for one of those procedure implementations.

Overall, Fig. 6 shows that the fine-grained caching performs even better than
the basic caching for all sessions (42 % faster for session 3 and on average 17 %
faster compared to the basic caching). For session 7, there is no significant
speedup even though the fine-grained caching is able to mark a large number of
checks as verified. It seems that, in this case, most of the time is spent on verify-
ing a single check (e.g., the postcondition of the edited method) that could not
be marked as verified. Such cases can come up occasionally since the times that
are needed for verifying different checks are usually not distributed uniformly.

Fine-Grained Caching of Verification Results 393

Fig. 6. Comparison of three configurations for verifying eight recorded IDE sessions:
no caching (NC), basic caching (BC) and fine-grained caching (FGC). The second
column shows the number of program snapshots per session. The next three columns
show the running times for each configuration and the rightmost three columns show
the number of timed-out procedure implementations for each configuration.

Besides increasing responsiveness, caching helps in reducing the number of
procedure implementations that fail to verify due to timeouts (see Fig. 6). Again,
the basic caching avoids the majority of timeouts and the fine-grained caching
avoids even more of them (between 17 % and 100 % less), which is not obvious
given our program transformations. This additional reduction over the basic
caching is due to the fact that Boogie is able to focus on fewer unverified or
partially verified checks.

To provide a better indication of how much the fine-grained caching is able
to reduce the verification effort, Fig. 8 shows the number of checked statements
for each snapshot in session 5 that were transformed when injecting cached
verification results. This demonstrates that for many snapshots, more than half
of the checks can be marked as fully verified or errors from the cached snapshot
can be recycled (two errors each for snapshots 5 and 6 and one error each for
snapshots 7 and 8). At an early development stage, fewer checks were marked
as verified since statement checksums changed more often. It turned out that
small changes in a Dafny program could result in significant changes to the

Fig. 7. Priorities of procedure implementations for session 5. The bars show the num-
ber of procedure implementations of a given priority for each snapshot version. Most
implementations are assigned the highest priority and do not need to be re-verified.

394 K.R.M. Leino and V. Wüstholz

Fig. 8. Transformed checked statements in session 5. The bars show the number of
checked statements for each snapshot version that are marked as fully verified, partially
verified, or not transformed at all. Additionally, a number of errors are recycled: two
errors each for snapshots 5 and 6 and one error each for snapshots 7 and 8.

corresponding Boogie program due to the way in which names (e.g., of auxiliary
variables) were generated. After taking this into account during the translation
of Dafny into Boogie, performance improved significantly.

6 Related Work

Caching is a widely used technique for reusing information that was computed
in the past. More specifically, there are several existing approaches for reusing
results from previous runs of static analyzers, model checkers, program veri-
fiers, and automatic test-case generation tools. Clousot [12], a static analyzer
for .Net, uses caching to retrieve the results of previous runs of its cloud-based
analysis service [1]. Unlike our fine-grained caching, it only reuses such results if
a method itself did not change and if the specifications of all its callees did not
change. Clousot also supports “verification modulo versions” [23], which uses
conditions inferred for a previous version of a program to only report new errors
for the current version. The Why3 verification platform uses checksums to main-
tain program proofs in the form of proof sessions as the platform evolves (e.g., by
generating different proof obligations). In particular, it matches goals from the
existing proof with new goals using both checksums and goal shapes, a heuristic
similarity measure. Maintenance of proofs is particularly important for interac-
tive proof assistants since proofs are largely constructed by users and, ideally, do
not need to be changed once they are completed. Such work has been done for
the KIV [24] and KeY [17] tools. Grigore and Moskal [14] have worked on such
techniques for proofs that were generated by SMT solvers to verify programs
using ESC/Java2.

There are several approaches for reusing information that was computed
when running a non-modular tool on an earlier revision of a program. In the
area of model checking, such information can consist of summaries computed
using Craig interpolation [25], derivation graphs that record analysis progress [9],
or parts of the reachable, abstract state space [16]; even the precision of the

Fine-Grained Caching of Verification Results 395

analysis that was sufficient for analyzing an earlier program revision may be
used later [5]. Work on incremental compositional dynamic test generation [13]
presents techniques for determining if function summaries that were obtained for
an earlier version of a program can be safely reused when performing symbolic
execution on the current version of the program.

Regression verification [26] is another area that developed techniques for
reusing information that was collected during runs of a tool on earlier versions
of a program. Unlike in our approach, the goal is to check if the behavior of the
latest version of a program is equivalent to the one of an earlier version, much
like in regression testing.

In spirit, our caching scheme is an instance of a truth maintenance sys-
tem [11]. However, the mechanisms used are quite different. For example, a truth
maintenance system records justifications for each fact, whereas our caching
scheme tracks snapshots of the programs that give rise to proof obligations, not
the proofs of the proof obligations themselves.

7 Conclusions and Future Work

We have presented two effective techniques for using cached verification results to
improve the responsiveness and performance of the Dafny IDE. Both techniques
are crucial for providing design-time feedback at every keystroke to users of the
IDE, much like background spell checkers. The key novelties of our technique are
its use of checksums for determining which parts of a program are affected by a
change and how a program is instrumented with cached information to focus the
verification effort. In particular, we use explicit assumptions to express the con-
ditions under which we can reuse cached verification results. We have designed
our technique to work on the level of an intermediate verification language. This
makes it immediately usable for other verifiers that use the Boogie verification
engine (e.g., VCC [8] or AutoProof [27]) and should make possible to adopt by
other intermediate verification languages, such as Why3 [6].

As future work, we would like to make the existing caching more fine-grained
in cases where assumptions in the program (e.g., resulting from user-provided
assume statements, preconditions, and user-provided or inferred loop invariants)
are affected by a change. We believe that—much like for procedure calls—we can
use explicit assumptions to capture assumptions that were made in the cached
snapshot, and thereby mark more checks as partially verified. We would also like
to look into techniques, such as slicing, for determining if certain partially verified
checks could be marked as fully verified by identifying the explicit assumptions
they depend on more precisely.

Acknowledgments. We are grateful to the users of the Dafny IDE—notably, Nada
Amin, Maria Christakis, Arjun Narayan, and Bryan Parno—for providing feedback on
its caching system. We thank Maria for comments on a draft of this paper and the
reviewers for their constructive comments.

396 K.R.M. Leino and V. Wüstholz

References

1. Barnett, M., Bouaziz, M., Fähndrich, M., Logozzo, F.:. A case for static analyzers
in the cloud. In: Workshop on Bytecode Semantics, Verification, Analysis, and
Transformation (Bytecode 2013) (2013)

2. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie:
a modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006)

3. Barnett, M., Fähndrich, M., Leino, K.R.M., Müller, P., Schulte, W., Venter, H.:
Specification and verification: the Spec# experience. Commun. ACM 54(6), 81–91
(2011)

4. Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured programs. In:
Workshop on Program Analysis for Software Tools and Engineering (PASTE), pp.
82–87. ACM (2005)

5. Beyer, D., Löwe, S., Novikov, E., Stahlbauer, A., Wendler, P.: Precision reuse for
efficient regression verification. In: ESEC/FSE, pp. 389–399. ACM (2013)

6. Bobot, F., Filliâtre, J.-C., Marché, C., Paskevich, A.: Why3: shepherd your herd of
provers. In: Boogie 2011: First International Workshop on Intermediate Verification
Languages, pp. 53–64 (2011)

7. Christakis, M., Müller, P., Wüstholz, V.: Collaborative verification and testing with
explicit assumptions. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol.
7436, pp. 132–146. Springer, Heidelberg (2012)

8. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: a practical system for verifying concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 23–42. Springer, Heidelberg (2009)

9. Conway, C.L., Namjoshi, K.S., Dams, D.R., Edwards, S.A.: Incremental algorithms
for inter-procedural analysis of safety properties. In: Etessami, K., Rajamani, S.K.
(eds.) CAV 2005. LNCS, vol. 3576, pp. 449–461. Springer, Heidelberg (2005)

10. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

11. Doyle, J.: A truth maintenance system. Artif. Intell. 12(3), 231–272 (1979)
12. Fähndrich, M., Logozzo, F.: Static contract checking with abstract interpretation.

In: Beckert, B., Marché, C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 10–30.
Springer, Heidelberg (2011)

13. Godefroid, P., Lahiri, S.K., Rubio-González, C.: Statically validating must sum-
maries for incremental compositional dynamic test generation. In: Yahav, E. (ed.)
SAS 2011. LNCS, vol. 6887, pp. 112–128. Springer, Heidelberg (2011)

14. Grigore, R., Moskal, M.: Edit and verify. In: Workshop on First-Order Theorem
Proving (FTP) (2007)

15. Hawblitzel, C., Howell, J., Lorch, J.R., Narayan, A., Parno, B., Zhang, D., Zill,
B.: Ironclad apps: End-to-end security via automated full-system verification. In:
OSDI, USENIX Association, pp. 165–181 (2014)

16. Henzinger, T.A., Jhala, R., Majumdar, R., Sanvido, M.A.A.: Extreme model check-
ing. In: Dershowitz, N. (ed.) Verification: Theory and Practice. LNCS, vol. 2772,
pp. 332–358. Springer, Heidelberg (2004)

17. Klebanov, V.: Extending the reach and power of deductive program verifica-
tion. Ph.D. thesis. Department of Computer Science, Universität Koblenz-Landau
(2009)

Fine-Grained Caching of Verification Results 397

18. Le Goues, C., Leino, K.R.M., Moskal, M.: The Boogie verification debugger (tool
paper). In: Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS, vol.
7041, pp. 407–414. Springer, Heidelberg (2011)

19. Leino, K.R.M.: Specification and verification of object-oriented software. In: Engi-
neering Methods and Tools for Software Safety and Security, Volume 22 of NATO
Science for Peace and Security Series D: Information and Communication Security,
Summer School Marktoberdorf 2008 Lecture Notes, pp. 231–266. IOS Press (2009)

20. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness. In:
Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 348–370.
Springer, Heidelberg (2010)

21. Leino, K.R.M., Rümmer, P.: A polymorphic intermediate verification language:
design and logical encoding. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010.
LNCS, vol. 6015, pp. 312–327. Springer, Heidelberg (2010)

22. Leino, K.R.M., Wüstholz, V.: The Dafny integrated development environment. In:
Workshop on Formal Integrated Development Environment (F-IDE), Electronic
Notes in Theoretical Computer Science, vol. 149, pp. 3–15 (2014)

23. Logozzo, F., Lahiri, S.K., Fähndrich, M., Blackshear, S.: Verification modulo ver-
sions: towards usable verification. In: PLDI, pp. 294–304. ACM (2014)

24. Reif, W., Stenzel, K.: Reuse of proofs in software verification. In: Shyamasundar,
R.K. (ed.) FSTTCS 1993. LNCS, vol. 761, pp. 284–293. Springer, Heidelberg (1993)

25. Sery, O., Fedyukovich, G., Sharygina, N.: Incremental upgrade checking by means
of interpolation-based function summaries. In: FMCAD, pp. 114–121. IEEE (2012)

26. Strichman, O., Godlin, B.: Regression verification - a practical way to verify pro-
grams. In: Meyer, B., Woodcock, J. (eds.) VSTTE 2005. LNCS, vol. 4171, pp.
496–501. Springer, Heidelberg (2008)

27. Tschannen, J., Furia, C.A., Nordio, M., Polikarpova, N.: AutoProof: auto-active
functional verification of object-oriented programs. In: Baier, C., Tinelli, C. (eds.)
TACAS 2015. LNCS, vol. 9035, pp. 566–580. Springer, Heidelberg (2015)

Predicting a Correct Program in Programming
by Example

Rishabh Singh(B) and Sumit Gulwani

Microsoft Research, Redmond, USA
risin@microsoft.om

We study the problem of efficiently predicting a correct program from a large
set of programs induced from few input-output examples in Programming-by-
Example (PBE) systems. This is an important problem for making PBE systems
usable so that users do not need to provide too many examples to learn the
desired program. We first formalize the two classes of sharing that occurs in
version-space algebra (VSA) based PBE systems, namely set-based sharing and
path-based sharing. We then present a supervised machine learning approach for
learning a hierarchical ranking function to efficiently predict a correct program.
The key observation of our learning approach is that ranking any correct program
higher than all incorrect programs is sufficient for generating the correct output
on new inputs, which leads to a novel loss function in the gradient descent based
learning algorithm. We evaluate our ranking technique for the FlashFill PBE
system on over 175 benchmarks obtained from the Excel product team and help
forums. Our ranking technique works in real-time, reduces the average number
of examples required for learning the desired transformation from 4.17 to 1.48,
and learns the transformation from just one input-output example for 74 % of
the benchmarks. The ranking scheme played a pivotal role in making FlashFill
usable for millions of Excel users.

1 Introduction

Millions of computer end users need to perform repetitive tasks, but unfor-
tunately lack the programming expertise required to do such tasks automati-
cally. Example-based program synthesis techniques have the potential to enhance
the productivity of such end users by enabling them to create small scripts
using examples [8,9]. These techniques have been developed for a wide variety
of domains including repetitive text-editing [14], syntactic string transforma-
tions [7], semantic string transformations [23], table transformations [11], and
number transformations [24]. FlashFill [1,7] is a recent system in Excel 2013
that learns syntactic string transformation programs from examples.

Many recent Programming-By-Example (PBE) techniques use version-space
algebra (VSA) [14] based methodology of computing the set of all programs in
an underlying domain-specific language (DSL) that are consistent with a given
set of input-output examples. The number of such programs is huge; but they
are all succinctly represented using appropriate data-structures that share com-
mon program fragments. Given a representative set of input-output examples

c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 398–414, 2015.
DOI: 10.1007/978-3-319-21690-4 23

Predicting a Correct Program in Programming by Example 399

for a task, all synthesized programs would be correct, i.e. the programs would
correspond to the intended task. However, if only a few input-output examples
are given (i.e. the task is under-specified), the set of synthesized programs will
include both correct and incorrect programs. The user would then need to refine
the specification by providing additional input-output examples to avoid learn-
ing an incorrect program. The number of representative input-output examples
required to learn a desired task is a function of the underlying DSL and has also
been referred to as the learning dimension [6] of the DSL. A more expressive
DSL makes the synthesizer more useful (since it can assist users with a larger
variety of tasks), but it also makes the synthesizer less usable (since users now
need to provide more examples).

We study the problem of predicting a correct program from a huge set of
programs in an expressive DSL that have been induced by a small number of
examples. We propose a machine learning based ranking technique to rank the
induced programs by assigning them a likelihood score based on their features.
While machine learning has been used in the past to improve the efficiency
of heuristic-based enumerative search in program synthesis [17], we leverage
machine learning in a different manner: the VSA based programming-by-example
techniques set up the space of programs (that are consistent with the user-
provided examples) over which machine-learning based ranking is performed
to predict a correct program. There are two key challenges that our technique
addresses, namely that of automatically learning the ranking function, and that
of efficiently identifying the highest ranked program from a large set of induced
programs in a VSA representation.

We formalize the problem of learning a ranking function as a machine learn-
ing problem and present a novel solution to it. Traditional learning-to-rank
approaches [2–4,12] either aim to rank all relevant documents over all non-
relevant documents or rank the most relevant document at the top. We, instead,
study the problem of ranking some correct program over all incorrect programs
as any correct program would be sufficient to generate the desired outputs on
new inputs. Our solution involves two key ideas: (a) we present a gradient descent
based approach to learn the coefficients (weights) of a linear ranking function
with the goal of ranking some correct program over all incorrect programs.
(b) we also provide an automated method to obtain the labeled training data
for our learning algorithm from training benchmark tasks.

A key challenge in using any ranking methodology for VSA based PBE
systems is that of efficiency. The näıve approach of explicitly computing the
rank for each induced program does not scale because the number of induced
programs is often huge (more than 1020 [23]). These programs are represented
using succinct data structures that allow sharing of expressions across different
levels. We formalize two general classes of sharing that occurs in these data-
structures [7,11,23,24], namely set-based sharing and path-based sharing. We
learn a separate ranking function for each level of sharing—this enables us to
apply the ranking methodology efficiently in practice.

We instantiate our ranking technique for the FlashFill synthesis algorithm [7].
The VSA based data-structure in FlashFill involves two levels of sharing.

400 R. Singh and S. Gulwani

We learn a separate ranking function for each level over corresponding efficient
features (Sect. 5). We present the evaluation of our ranking technique on over 175
string manipulation tasks obtained from Excel product team and help-forums.
The ranking scheme works in real-time and reduces the average number of exam-
ples required per benchmark to 1.48 as compared to 4.17 examples needed by
a manually defined ranking scheme based on Occam’s razor [7]. Our machine-
learning based ranking scheme played a pivotal role in making FlashFill success-
ful and usable for millions of Excel users.

This paper makes the following contributions.

• We formalize the two different classes of sharing used in VSA based represen-
tations, namely set-based sharing and path-based sharing(Sect. 3).

• We describe a machine-learning based technique to rank some correct program
over all incorrect programs for most benchmarks in the training set (Sect. 4.3).

• We demonstrate the efficacy of our ranking technique for FlashFill on over
175 real-world benchmarks (Sect. 5.2).

2 Motivating Examples

In this section, we present a few motivating examples from FlashFill that show
three observations: (i) there are multiple correct programs in the set of programs
induced from an input-output example, (ii) simple features such as size are not
sufficient for preferring a correct program over incorrect programs, and (iii) there
are huge number of programs induced from a given input-output example.

Example 1. An Excel user had a series of names in a
column and wanted to add the title Mr. before each
name. She gave the input-output example as shown
in the table to express her intent. The intended pro-
gram concatenates the constant string "Mr." with
the input string in column v1.

Input v1 Output
1 Roger Mr. Roger
2 Simon
3 Benjamin
4 John

The challenge for FlashFill to learn the desired transformation in this case is
to decide which substrings in the output string “Mr. Roger” are constant strings
and which are substrings of the input string “Roger”. We use the notation s[i..j]
to refer to a substring of s of length j − i + 1 starting at index i and ending
at index j. FlashFill infers that the substring out1[0..0] ≡ “M” has to be a
constant string since “M” is not present in the input string. On the other hand,
the substring out1[1..1] ≡ “r” can come from two different substrings in the
input string (in1[0..0] ≡ “R” and in1[4..4] ≡ “r”). FlashFill learns more than
103 regular expressions to compute the substring “r” in the output string from
the input string, some of which include: 1st capital letter, 1st character, 5th

character from end, 1st character followed by a lower case string etc. Similarly,
FlashFill learns more than 104 expressions to extract the substring “Roger”
from the input string, thereby learning more than 107 programs from just one
input-output example. All programs in the set of learnt programs that include

Predicting a Correct Program in Programming by Example 401

an expression for extracting “r” from the input string are incorrect, whereas
programs that treat “r” as a constant string are correct. Some hints than can
help FlashFill rank constant expressions for “r” higher are:

• Length of substring: Since the length of substring “r” is 1, it is less likely to
be an input substring.

• Relative length of substring: The relative length of substring “r” as compared
to the output string is small 1

9 .
• Constant neighboring characters: The neighboring characters “M” and “.” of

“r” are both constant expressions.

Example 2. An Excel user had a list of names
consisting of first and last names, and wanted
to format the names such that the first name is
abbreviated to its first initial and is followed by
the last name as shown in the table.

Input v1 Output
1 Mark Sipser M.Sipser
2 Louis Johnson
3 Edward Davis
4 Robert Mills

This example requires the output substring out1[0..0] ≡ “M” to come from
the input string instead of it being the constant string “M”. The desired behavior
in this example of preferring the substring “M” to be a non-constant string is in
conflict with the desired behavior of preferring smaller substrings as constant
strings in Example 1. Some hints that can help FlashFill prefer the substring
expression for “M” over the constant string expression are:

• Output Token: The substring “M” of the output string is a Capital token.
• String case change: The case of the substring does not change from input.
• Regular expression Frequency: The regular expression to extract 1st capital

letter occurs frequently in practice.

Example 3. An Excel
user had a series of
addresses in a column
and wanted to extract
the city names from
them. The user gave the
input-output example
shown in the table.

Input v1 Output
1 243 Flyer Dr,Cambridge, MA 02145 Cambridge
2 512 Wir Ave,Los Angeles, CA 78911
3 64 128th St,Seattle, WA 98102
4 560 Heal St,San Mateo, CA 94129

FlashFill learns more than 106 different substring expressions to extract the
substring “Cambridge” from the input string “243 Flyer Drive,Cambridge,
MA 02145”, some of which are listed below.

• p1: Extract the 3rd alphabet token string.
• p2: Extract the 4th alphanumeric token string.
• p3: Extract substring between 1st and 2nd comma tokens.
• p4: Extract substring between 3rd capital and the 1st comma.
• p5: Extract substring between 1st and last comma tokens.

402 R. Singh and S. Gulwani

The problem with learning the substring expression p1 is that on the input
string “512 Wright Ave, Los Angeles, CA 78911”, it produces the output
string “Los” that is not the desired output. On the other hand, the expression p3
(or p5) generates the desired output string “Los Angeles”. Some features that
can help FlashFill rank the expression p3 higher are:

• Same left and right position logics: The regular expression tokens for left and
right position logics for p3 are similar (comma).

• Match Id: The match count of substring between two comma tokens is 1 as
compared to 3 for the alphabet token of p1.

3 Domain-Specific Languages (DSLs) for PBE in VSA

There have been many recent proposals for DSLs for PBE systems in the domains
of string [1,7], table [23], numbers [24], and layout manipulations [11]. The key
idea in designing these DSLs is to make them expressive enough to capture
majority of the desired tasks, but concise enough for amenable learning from
examples. Since the specification mechanism of input-output examples is inher-
ently incomplete and ambiguous, there are typically a huge number of expressions
in these expressive languages that conform to the provided examples. These large
number of consistent expressions are represented succinctly using VSA based
data structures that allow for sharing expressions. In this section, we describe
an abstract language La that captures two major kinds of expressions that allow
for such sharing, namely fixed arity expressions and associative expressions. We
then present the syntax and semantics of the VSA based data structure and the
algorithm to efficiently compute the highest ranked expression.

Fig. 1. (a) Syntax for a general abstract language La for a VSA based PBE system,
and (b) a data structure for succinctly representing a set of La expressions.

3.1 An Abstract Language La for PBE Systems

An abstract language La that captures the major kinds of expression sharing
in DSLs of several VSA based PBE systems is shown in Fig. 1(a). The top-level
expression e in La can either be a constant string c, a variable v, a fixed arity
expression ef , or an associative expression eh.

Predicting a Correct Program in Programming by Example 403

Definition 1 (Fixed Arity Expression). Let f be any constructor for n inde-
pendent expressions (n ≥ 1). We use the notation f(e1, . . . , en) to denote a fixed
arity expression with n arguments.

Example 4. The position pair expression in the FlashFill language
SubStr(vi, p1, p2) is a fixed arity expression that represents the left and right
position logic expressions p1 and p2 independently. The Boolean expression pred-
icate (C1 = et ∧ · · · ∧ Ck = et) for a candidate key of size k in the lookup
transformation language [23], and the decimal and exponential number format-
ting expressions Dec(u, η1, f) and Exp(u, η1, f, η2) in the number transforma-
tion language [24] are also examples of fixed arity expressions with independent
arguments.

Definition 2 (Associative Expression). Let h be a binary associative con-
structor for independent expressions. We use the simplified notation h(e1, . . . , ek)
to denote the associative expression h(e1, h(e2, h(e3, . . . , h(ek−1, ek) . . .))) for any
k ≥ 1 (where h(e) simply denotes e).

Example 5. The Concatenate(f1, .., fn) expression in FlashFill is an an asso-
ciative expression with Concatenate as the associative constructor. The top-
level select expression et := Select(C, T,Ci = et) in the lookup transformation
language [23] and the associative program Assoc(F, s0, s1) in the table layout
transformation language [11] are also examples of associative expressions.

Associative expressions involve applying an associative operator with input
and output type T to an unbounded sequence of expressions of type T . They
differ from the fixed arity expressions in two ways: (i) they have unbounded
arity, and (ii) their input and output types are restricted to be the same.

Fig. 2. (a) Semantics of the VSA based data structure for La expressions, and
(b) Ranking functions for efficiently identifying the top-ranked expressions.

3.2 Data Structure for Representing a Set of La Expressions

The data structure to succinctly represent a huge number of La expressions is
shown in Fig. 1(b). The Union Expression ẽ represents a set of top-level expres-
sions as an explicit set without any sharing. The Join Expression ẽf represents a

404 R. Singh and S. Gulwani

set of fixed arity expressions by maintaining independent sets for its arguments
e1, · · · , en. The DAG expression ẽh represents a set of associative expressions
using a DAG D, where the edges correspond to a set of expressions ẽ and each
path from the start node ηs to the end node ηt represents an associative expres-
sion. The semantics of the data structure is shown in Fig. 2(a).

Join Expressions (Set-based Sharing): There can often be a huge number
of fixed-arity expressions that are consistent with a given example(s). Consider
the input-output example pair (u, v). Suppose v1, v2, v3 are values such that
v = f(v1, v2, v3). Suppose E1, E2, and E3 are sets of expressions that are respec-
tively consistent with the input-output pairs (u, v1), (u, v2), and (u, v3). Then,
f(e1, e2, e3) is consistent with (u, v) for any e1 ∈ E1, e2 ∈ E2, and e3 ∈ E3.
The number of such expressions is |E1|× |E2|× |E3|. However, these can be suc-
cinctly represented using the data-structure f(E1, E2, E3), which denotes the
set of expressions {f(e1, e2, e3) | e1 ∈ E1, e2 ∈ E2, e3 ∈ E3}, using space that is
proportional to |E1| + |E2| + |E3|.
Example 6. The position pair expressions SubStr(vi, {p̃j}j , {p̃k}k) in FlashFill
represents the set of left and right position logic expressions {p̃j}j and {p̃j}j inde-
pendently. The generalized Boolean conditions in the select expression
Select(C,T,B) of the lookup transformation language [23] also exhibit set-
based sharing. The data structure for representing a set of decimal and expo-
nential number formatting expressions in the number transformation language
Dec(u, η̃1, f̃) and Exp(u, η̃1, f̃ , η̃2) represents integer formats (η̃1), fractional for-
mats (f̃), and exponent formats (η̃2) as independent sets.

Fig. 3. The DAG data structure for representing the induced programs in Example 1.

DAG Expressions (Path-based Sharing): There can often be a huge num-
ber of associative expressions that can be consistent with a given example(s).
Consider the input-output example pair (u, v). Suppose v1, . . . , vn are n values
such that v = h(v1, . . . , vn) and let ei,j be an expression that evaluates to the
value vi,j ≡ h(vi, . . . , vj) on input u (1 ≤ i < j ≤ n). Let σ = [σ0, . . . , σm] be a
subsequence of [0, . . . , n] such that σ0 = 0 and σm = n and eσ be the expression

Predicting a Correct Program in Programming by Example 405

h(e′
1, . . . , e

′
m), where e′

i = eσi−1,σi
. Note that the number of such subsequences σ

is exponential in n, and for any such subsequence σ, eσ evaluates to v1,n. Such
an exponential sized set of associative expressions can be represented succinctly
as a DAG whose nodes correspond to 0, . . . , n and an edge between two nodes i
and j corresponds to the value vi,j and is labeled with ei,j . A path in the DAG
from source node 0 to sink node n is some subsequence [σ1, . . . , σm] of [0, . . . , n]
where σ1 = 0 and σm = n, and it represents the expression F (e′

1, . . . , e
′
m) = v,

where e′
i = eσi−1,σi

. An example DAG data structure representing all programs
consistent with the input-output example in Example 1 is shown in Fig. 3. The
graph data structure for generalized expression nodes for representing select
expressions [23] also uses such path-based sharing for succinctly representing
exponential number of expressions.

3.3 Ranking the Set of La Expressions

Given an input-output example, the PBE system learns a huge number of con-
forming expressions and represents them succinctly using the data structure
shown in Fig. 1(b). Some of these learnt expressions are correct (desired) and
others are incorrect (undesired). A user typically needs to provide more input-
output examples to refine their intent until the set of expressions learnt by the
system consists of only correct expressions. Our goal is to learn the desired
expression from minimal number of examples (preferably 1). We formulate this
problem as learning a ranking function that can rank the correct expression as
the highest ranked expression.

We need to define the ranking function such that it can identify the top-
ranked expression without explicitly enumerating the constituent sets. The rank-
ing function R (shown in Fig. 2(b)) takes a set of La expressions and the set of
input-output examples , as input, and returns the highest ranked expression.
For maintaining the version-space algebra based sharing, the ranking function
is defined hierarchically in terms of individual ranking functions at different lev-
els, namely ru, rf , and rh. The ranking function ru computes the highest ranked
expression from a Union Expression. It first recursively computes the top-ranked
expression ei for each of its constituent expression ẽi, and then computes the
highest ranked expression amongst them.

The ranking function rf computes the highest-ranked expression from a
Join expression f(E1, .., En). Since we assume the ranking function to be a lin-
ear weighted function of features, if all features depended on only one column
(say Ei), we can easily enumerate the expressions individually for each column
(e ∈ Ei) and compute the highest ranked expression f(e1, .., en) by selecting
the highest ranked expression ei for each individual column Ei. But often times
the features depend on multiple columns, which leads to challenges in efficiently
identifying the highest ranked expression. A key observation we use for com-
puting such features is that these features typically do not depend on all con-
crete values of other columns, but only on a few abstract values (defined as the
abstract dimension of the feature). For a given set of features, the columns can

406 R. Singh and S. Gulwani

be extended to a set whose size is bounded by the product of abstract dimensions
of features such that a feature now depends on only one column.

The ranking function rh efficiently computes the highest ranked expression
from a DAG Expression by exploiting the notion of associative features. A fea-
ture g over associative expressions is said to be associative if there exists an
associative monotonically increasing binary operator ◦ and a numerical feature
h over expressions ei such that g(F (e1, . . . , en)) = g(F (e1, . . . , en−1)) ◦ h(en).
The ranking function uses a dynamic programming algorithm similar to the
Dijkstra’s shortest path algorithm for computing the highest-ranked expression,
where each DAG node maintains the highest-ranked path from the start node
to itself, together with the corresponding edge feature values.

The key challenge now is to learn these ranking functions automatically at
different levels. We present a supervised learning-to-rank approach for learning
the ranking functions.

4 Learning the Ranking Function

Most previous approaches for learning to rank [2–4,12] aim at ranking all rele-
vant documents above all non-relevant documents or ranking the most relevant
document as highest. However, in our case, we want to learn a ranking function
that ranks any correct program higher than all incorrect programs. We use a
supervised learning approach to learn such a function, but it requires us to solve
two main challenges. First, we need some labeled training data for the supervised
learning. We present a technique to automatically generate labeled training data
from a set of input-output examples and the corresponding set of induced pro-
grams. Second, we need to learn a ranking function based on this training data.
We use a gradient descent based method to optimize a novel loss function that
aims to rank any correct program higher than all incorrect programs.

4.1 Preliminaries

The training phase consists of a set of tasks T = {t1, · · · , tn}. Each task ti
consists of a set of input-output examples Ei = {ei

1, · · · , ei
n(ti)

}, where example
ei

j = (ini
j , out

i
j) denotes a pair of input (ini) and output (outi). We assume that

for each training task ti, sufficiently large number of input-output examples Ei

are provided such that only correct programs are consistent with the examples.
The task labels i on examples ei

j are used only for assigning the training labels,
and we will drop the labels to refer the examples simply as ej for notational
convenience. The complete set of input-output examples for all tasks is obtained
by taking the union of the set of examples for each task E = {e1, · · · , en(e)} =
∪tE

t. Let pi denote the set of synthesized programs that are consistent with
example ei such that pi = {p1i , · · · , p

n(i)
i }, where n(i) denotes the number of

programs in the set pi. We define positive and negative programs induced from
an input-output example as follows.

Predicting a Correct Program in Programming by Example 407

Definition 3 (Positive and Negative Programs). A program p ∈ pj is said
to be a positive (or correct) program if it belongs to the set intersection of the set
of programs for all examples of task ti, i.e. p ∈ p1 ∩ p2 ∩ · · · ∩ pn(ti). Otherwise,
the program p ∈ pj is said to be a negative (or incorrect) program i.e. p
∈
p1 ∩ p2 ∩ · · · ∩ pn(ti).

4.2 Automated Training Data Generation

We now present a technique to automatically generate labeled training data from
the training tasks specified using input-output examples. Consider a training
task ti consisting of the input-output examples Ei = {(e1, · · · , en(ti)} and let pj

be the set of programs synthesized by the synthesis algorithm that are consistent
with the input-output example ej . For a task ti, we construct the set of all
positive programs by computing the set p1 ∩p2 ∩· · ·∩pn(ti). We compute the set
of all negative programs by computing the set {pk \ (p1 ∩ p2 ∩ · · · ∩ pn(ti)) | 1 ≤
k ≤ n(ti)}. The version-space algebra based representation allows us to construct
these sets efficiently by performing intersection and difference operations over
corresponding shared expressions.

We associate a set of programs pi = {p1i , · · · , p
n(i)
i } for an example ei with

a corresponding set of labels yi = {y1
i , · · · , y

n(i)
i }, where label yj

i denotes the
label for program pj

i . The labels yj
i take binary values such that the value yj

i = 1
denotes that the program pj

i is a positive program for the task, whereas the label
value 0 denotes that program pj

i is a negative program for the task.

4.3 Gradient Descent Based Learning Algorithm

From the training data generation phase, we obtain a set of programs pi asso-
ciated with labels yi for each input-output example ei of a task. Our goal now
is to learn a ranking function that can rank a positive program higher than all
negative programs for each example of the task. We present a brief overview of
our gradient descent based method to learn the ranking function for predicting
a correct program by optimizing a novel loss function.

We compute a feature vector xj
i = φ(ei, p

j
i) for each example-program pair

(ei, p
j
i), ei ∈ E, pj

i ∈ pi. For each example ei, a training instance (xi, yi) is
added to the training set, where xi = {x1

i , · · · , x
n(i)
i } denotes the list of fea-

ture vectors and yi = {y1
i , · · · , y

n(i)
i } denotes their corresponding labels. The

goal now is to learn a ranking function f that computes the ranking score
zi = (f(x1

i), · · · , f(xn(i)
i)) for each example such that a positive program is

ranked as highest.
This problem formulation is similar to the problem formulation of listwise

approaches for learning-to-rank [2,25]. The main difference comes from the fact
that while previous listwise approaches aim to rank most documents in accor-
dance with their training scores or rank the most relevant document as highest,
our approach aims to rank any one positive program higher than all negative

408 R. Singh and S. Gulwani

L(E) =
n(e)∑

i=1

L(yi, zi) =
n(e)∑

i=1

sign(Max({f(xj
i) | yj

i = 0}) − Max({f(xk
i) | yk

i = 1}))

(1)

L(yi, zi) = tanh(c1 × (
1
c2

× log(
∑

yj
i=0

ec2×f(xj
i)) − 1

c2
× log(

∑

yk
i =1

ec2×f(xk
i))))

(2)

programs. Therefore, our loss function counts the number of examples where a
negative program is ranked higher than all positive programs, as shown in Eq. 1.
For each example, the loss function compares the maximum rank of a negative
program (Max({f(xj

i) | yj
i = 0})) with the maximum rank of a positive program

(Max({f(xk
i) | yk

i = 1})), and adds 1 to the loss function if a negative program
is ranked highest (and subtracts 1 otherwise).

The presence of sign and Max functions in the loss function in Eq. 1 makes
the function non-continuous. The non-continuity of the loss function makes it
u nsuitable for gradient descent based optimization as the gradient of the func-
tion can not be computed. We, therefore, perform smooth approximations of the
sign and Max functions using the hyperbolic tanh function and softmax func-
tion respectively (with scaling constants c1 and c2) to obtain a continuous and
differentiable loss function in Eq. 2.

We assume the desired ranking function f(xj
i) = w ·xj

i to be a linear function
over the features. Let there be m features in the feature vector xj

i = {g1, · · · , gm}
such that f(xj

i) = w0+w1g1+· · ·+wmgm. We use the gradient descent algorithm
to the learn the weights wi of the ranking function that minimizes the loss
function from Eq. 2. Although our loss function is differentiable, it is not convex,
and therefore the algorithm only achieves a local minima. We need to restart the
gradient descent algorithm from multiple random initializations to avoid getting
stuck in non-desirable local minimas.

5 Case Study: FlashFill

We instantiate our ranking method for the FlashFill synthesis algorithm [7].
We chose FlashFill because of the availability of several real-world benchmarks.
FlashFill uses a version-space algebra based data-structure shown to succinctly
represent a huge set of programs. The expressions in FlashFill are shared at
three different levels: (i) set-based sharing of position pair expressions at the
lowest level, (ii) union expressions for atomic expressions on the DAG edges,

Predicting a Correct Program in Programming by Example 409

and (iii) path-based sharing of concatenate expressions at the top level. We
describe efficient features for expressions at each of the levels.

5.1 Efficient Expression Features

Position Pair Expression Features: The binary position pair expressions
take two position logic expressions as arguments. The features used for rank-
ing the position pair expressions are shown in Fig. 4(a) together with their low
abstract-dimensions. These features include frequency-based features denoting
frequencies of: token sequences of left and right position logic expression argu-
ments (g1, g2, g7, g8), occurrence Id and the position logics (g3,g4, g9, g10),and
length of token sequences of position logics (g5, g6, g11, g12). In addition to
frequency-based features, there are also Boolean features that include whether
the right token sequence of left position logic is equal to the left token sequence
of the right position logic (g13), the right token sequence (resp. left) of left posi-
tion logic and left token sequence (resp. right) of right position logic are empty
(g14, g15).

Fig. 4. (a) The set of features for ranking position pair expression
SubStr(vi, {p̃j}j , {p̃k}k), where p̃j = Pos(rl1, r

l
2, c

l), p̃k = Pos(rr1 , r
r
2, c

r). (b) The
set of associative features for ranking a set of Concatenate(f1, .., fn) expressions.

Atomic Expression Features: An atomic expression corresponds to a sub-
string of the output string, which can come from several positions in the input
string in addition to being a constant string. This leads to multiple atomic expres-
sion edges between any two nodes of the DAG, which are represented explicitly
using a Union expression. The features for ranking these expressions are: whether
the left and right positions of output (input resp.) substring matches a token
(g1, g2, g3, g4), expression is a constant string or a position pair (g5, g6), there is
a case change (g7), absolute and relative lengths of the substring as compared to
input and output strings (g8, g9, g10),the left and right expressions of the output

410 R. Singh and S. Gulwani

substring are constant expressions or not (g11, g12), and the rank of position pair
expression obtained from the previous level (g13).

Concatenate Expression Features: At the top-level of DAG, we use asso-
ciative features to compute the ranking of paths. The set of associative fea-
tures together with their corresponding binary operator and numerical feature
are shown in Fig. 4(b). These features include number of arguments in the
Concatenate expression (g1), the sum of weights of edges on the path (g2),
the product of weights of edges on the path (g3), and the maximum (g4) and
minimum (g5) weights of an edge on the path.

5.2 Experimental Evaluation

We now present the evaluation of our ranking scheme for FlashFill on a set of
175 benchmark tasks obtained from Excel product team and help forums. We
evaluate our algorithm on three different train-test partition strategies, namely
20–80, 30–70 and 40–60. For each partition strategy, we randomly assign the
corresponding number of benchmarks to the training and test set. For each
benchmark problem, we provide 5 input-output examples. The experiments were
performed on an Intel Core i7 3.20 GHz CPU with 32 GB RAM.

Training Phase: We run the gradient descent algorithm 1000 times with dif-
ferent random values for initialization of weights, while also varying the value
of the learning rate α from 10−5 to 105 (in increments of multiples of 10). We
learn the weights for the ranking functions for the initialization and α values for
which best ranking performance is achieved on the training set.

Fig. 5. Comparison of LearnRank with the Baseline scheme for a random 30–70 par-
tition on (a) number of examples required for learning and (b) running time.

Test Phase: We compare the following two ranking schemes on the basis of
number of input-output examples required to learn the desired task.

• Baseline: The manual ranking algorithm that chooses smallest and simplest
program [7]. The algorithm prefers lesser number of arguments for the con-
catenate expressions, prefers simpler token expressions (such as Alphabets
over AlphaNumeric), and ranks regular expression based position expression
higher than constant position expressions.

Predicting a Correct Program in Programming by Example 411

• LearnRank: Our ranking scheme that uses the gradient descent algorithm to
learn the ranking functions for position pair, atomic, and concatenate expres-
sions in DAG.

Train-Test Average Examples
Partition Baseline LearnRank
20–80 4.19 1.52 ± 0.07
30–70 4.17 1.49 ± 0.06
40–60 4.18 1.44 ± 0.07

Comparison with Baseline: The aver-
age number of input-output examples
required to learn a test task for 10 runs
of different train-test partitions is shown
in the table. The LearnRank scheme per-
forms much better than Baseline in terms
of average number of examples required to
learn the desired task (1.49 vs 4.17). For
a random 30–70 partition run, the number of input-output examples required
to learn the 123 test benchmark tasks under the two ranking schemes is shown
in Fig. 5(a). The LearnRank scheme learns the desired task from just 1 example
for 91 tasks (74%) as compared to 0 for Baseline, and from at most 2 examples
for 110 tasks (89%), as compared to only 18 tasks (14%) for Baseline. More-
over, Baseline is not able to learn any program for 72 benchmarks (needing all
5 examples) as compared to 4 such benchmarks for LearnRank.

Efficiency of LearnRank: For evaluating the overhead of LearnRank scheme,
we compare the running times of FlashFill with the Baseline ranking and Flash-
Fill augmented with the LearnRank scheme over the same number of input-
output examples for each test task. The running times of the two FlashFill
versions is shown in Fig. 5(b). We observe that the overhead of LearnRank is
small. The average overhead of LearnRank over Baseline is about 20 millisec-
onds (ms) per benchmark task whereas the median overhead is about 8 ms. This
translates to an average overhead of about 29% and a median overhead of 25%
in running times as compared to Baseline.

6 Related Work

In this section, we describe several work related to our technique which can be
broadly divided into two areas: ranking techniques for program synthesis and
machine learning for program synthesis.

Ranking in Program Synthesis: There have been several related work on
using a manual ranking function for ranking of synthesized programs (or expres-
sions). Gvero et al. [10] use weights to rank the expressions for efficient syn-
thesis of likely program expressions of a given type at a given program point.
These weights depend on the lexical nesting structure of declarations and also
on the statistical information about the usage of declarations in a code corpus.
PROSPECTOR [16] synthesizes jungloid code fragments (chain of objects and
method calls from type τin to type τout) by ranking jungloids using the primary
criterion of length, and secondary criteria of number of crossed package bound-
aries and generality of output type. Perelman et al. [20] synthesize hole values in

412 R. Singh and S. Gulwani

partial expressions for code completion by ranking potential completed expres-
sions based on features such as class hierarchy of method parameters, depth of
sub-expressions, in-scope static methods, and similar names. PRIME [18] uses
relaxed inclusion matching to search for API-usage from a large collection of
code corpuses, and ranks the results using the frequency of similar snippets.
The SemFix tool [19] uses a manual characterization of components in different
complexity levels for synthesizing simpler expression repairs. Our ranking scheme
also uses some of these features, but we learn the ranking function automatically
using machine learning unlike these techniques which need manual definition and
parameter tuning for the ranking function.

SLANG [22] uses the regularities found in sequences of method invocations
from large code repositories to synthesize likely method invocation sequences for
code completion. It uses alias and history analysis to extract precise sequences of
method invocations during the training phase, and then trains a statistical lan-
guage model on the extracted data. CodeHint [5] is an interactive and dynamic
code synthesis system that also employs a probabilistic model learnt over ten
million lines of code to guide and prune the search space. The main difference
in our technique is that it is based on a VSA based representation where it is
possible to compute all conforming programs.

Machine Learning for Programming by Example: A recent work by
Menon et al. [17] uses machine learning to bias the search for finding a composi-
tion of a given set of typed operators based on clues obtained from the examples.
Raychev et al. [21] use A∗ search based on a heuristic function of length of current
refactoring sequence and estimated distance from target tree for efficient learning
of software refactorings from few user edits. On the other hand, we use machine
learning to identify an intended program from a given set of programs that are
consistent with a given set of examples. Our technique is applicable to domains
where it is possible to compute the set of all programs that are consistent with a
given set of examples [8,9]. SMARTedit [14] is a PBD (Programming By Demon-
stration) text-editing system where a user presents demonstration(s) of the text-
editing task and the system tries to generalize the demonstration(s) to a macro
by extending the notion of version-spaces to model plausible macro hypothe-
ses. The macro language of SMARTedit is not as expressive as FlashFill’s, and
furthermore the task demonstrations in SMARTedit reduce a lot of ambiguity
in the hypothesis space. Liang et al. [15] introduce hierarchical Bayesian prior
in a multi-task setting that allows sharing of statistical strength across tasks.
Our underlying language and representation of string manipulation programs is
different from the combinatory logic based representation used by Liang et al.,
which requires us to use a different learning approach.

7 Conclusion

Learning programs from few examples is an important problem to make PBE
systems usable. In this paper, we presented a general approach for efficiently
predicting a correct program from a large number of programs induced by few

Predicting a Correct Program in Programming by Example 413

examples. Our solution of using gradient descent based algorithm for learning
the ranking function for VSA representations is at the intersection of machine
learning and formal methods. We show the efficacy of our ranking technique for
the FlashFill system. This machine-learning based ranking technique played a
pivotal role in making FlashFill successful and usable for millions of Excel users.

References

1. Flash Fill (Microsoft Excel 2013 feature). http://research.microsoft.com/users/
sumitg/flashfill.html

2. Cao, Z., Qin, T., Liu, T.-Y., Tsai, M.-F., Li, H.: Learning to rank: from pairwise
approach to listwise approach. In: ICML (2007)

3. Cossock, D., Zhang, T.: Subset ranking using regression. In: Lugosi, G., Simon,
H.U. (eds.) COLT 2006. LNCS (LNAI), vol. 4005, pp. 605–619. Springer,
Heidelberg (2006)

4. Freund, Y., Iyer, R., Schapire, R.E., Singer, Y.: An efficient boosting algorithm for
combining preferences. J. Mach. Learn. Res. 4, 933–969 (2003)

5. Galenson, J., Reames, P., Bod́ık, R., Hartmann, B., Sen, K.: Codehint: dynamic
and interactive synthesis of code snippets. In: ICSE, pp. 653–663 (2014)

6. Goldman, S.A., Kearns, M.J.: On the complexity of teaching. J. Comput. Syst.
Sci. 50, 303–314 (1992)

7. Gulwani, S.: Automating string processing in spreadsheets using input-output
examples. In: POPL (2011)

8. Gulwani, S.: Synthesis from examples: interaction models and algorithms. In: 14th
International Symposium on Symbolic and Numeric Algorithms for Scientific Com-
puting (2012)

9. Gulwani, S., Harris, W., Singh, R.: Spreadsheet data manipulation using examples.
Commun. ACM 55(8), 97–105 (2012)

10. Gvero, T., Kuncak, V., Kuraj, I., Piskac, R.: Complete completion using types and
weights. In: PLDI, pp. 27–38 (2013)

11. Harris, W.R., Gulwani, S.: Spreadsheet table transformations from examples. In:
PLDI (2011)

12. Herbrich, R., Graepel, T., Obermayer, K.: Large margin rank boundaries for ordi-
nal regression. In: Smola, A. J., Bartlett, P. L., Scholkopf, B., Schuur-mans, D.
(eds.) Advances in Neural Information Processing Systems, pp. 115–132 (1999)

13. Jha, S., Gulwani, S., Seshia, S., Tiwari, A.: Oracle-guided component-based pro-
gram synthesis. In: ICSE (2010)

14. Lau, T., Wolfman, S., Domingos, P., Weld, D.: Programming by demonstration
using version space algebra. Mach. Learn. 53(1–2), 111–156 (2003)

15. Liang, P., Jordan, M.I., Klein, D.: Learning programs: a hierarchical bayesian app-
roach. In: ICML (2010)

16. Mandelin, D., Xu, L., Bod́ık, R., Kimelman, D.: Jungloid mining: helping to nav-
igate the api jungle. In: PLDI, pp. 48–61 (2005)

17. Menon, A., Tamuz, O., Gulwani, S., Lampson, B., Kalai, A.: A machine learning
framework for programming by example. In: ICML (2013)

18. Mishne, A., Shoham, S., Yahav, E.: Typestate-based semantic code search over
partial programs. In: OOPSLA, pp. 997–1016 (2012)

19. Nguyen, H.D.T., Qi, D., Roychoudhury, A., Chandra, S.: Semfix: program repair
via semantic analysis. In: ICSE (2013)

http://research.microsoft.com/users/sumitg/flashfill.html
http://research.microsoft.com/users/sumitg/flashfill.html

414 R. Singh and S. Gulwani

20. Perelman, D., Gulwani, S., Ball, T., Grossman, D.: Type-directed completion of
partial expressions. In: PLDI, pp. 275–286 (2012)

21. Raychev, V., Schäfer, M., Sridharan, M., Vechev, M.T.: Refactoring with synthesis.
In: OOPSLA, pp. 339–354 (2013)

22. Raychev, V., Vechev, M.T., Yahav, E.: Code completion with statistical language
models. In: PLDI (2014)

23. Singh, R., Gulwani, S.: Learning semantic string transformations from examples.
PVLDB 5(8), 740–751 (2012)

24. Singh, R., Gulwani, S.: Synthesizing number transformations from input-output
examples. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp.
634–651. Springer, Heidelberg (2012)

25. Xia, F., Liu, T.-Y., Wang, J., Zhang, W., Li, H.: Listwise approach to learning to
rank: theory and algorithm. In: ICML (2008)

Abstract Interpretation
with Higher-Dimensional Ellipsoids

and Conic Extrapolation

Mendes Oulamara1(B) and Arnaud J. Venet2

1 École Normale Supérieure, 45 Rue D’Ulm, 75005 Paris, France
mendes.oulamara@ens.fr

2 NASA Ames Research Center, Carnegie Mellon University, Moffett Field,
Mountain View, CA 94035, USA
arnaud.venet@west.cmu.edu

Abstract. The inference and the verification of numerical relationships
among variables of a program is one of the main goals of static analy-
sis. In this paper, we propose an Abstract Interpretation framework
based on higher-dimensional ellipsoids to automatically discover sym-
bolic quadratic invariants within loops, using loop counters as implicit
parameters. In order to obtain non-trivial invariants, the diameter of the
set of values taken by the numerical variables of the program has to
evolve (sub-)linearly during loop iterations. These invariants are called
ellipsoidal cones and can be seen as an extension of constructs used in
the static analysis of digital filters. Semidefinite programming is used
to both compute the numerical results of the domain operations and
provide proofs (witnesses) of their correctness.

Keywords: Static analysis · Semidefinite programming · Ellipsoids ·
Conic extrapolation

1 Introduction

Ellipsoids have been widely used to overapproximate convex sets. For instance,
in Control Theory they naturally arise as sublevel sets of quadratic Lyapunov
functions. They are chosen to minimize some criterion, such as the volume. In
Abstract Interpretation [8], they have been used to compute bounds on the
output of linear digital filters [3,4]. Roux et al. [5,6] further extended that app-
roach by borrowing techniques from Semidefinite Programming (SDP). How-
ever, all those works try to recover an ellipsoid that is known to exist as the
Lyapunov invariant of some control system from the numerical algorithm imple-
menting that system. The analysis algorithms are tailored for the particular type
of numerical code considered. Ellipsoids are interesting in and of themselves

M. Oulamara—This material is based upon work supported by the National Science
Foundation under Grant No. 1136008.

c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 415–430, 2015.
DOI: 10.1007/978-3-319-21690-4 24

416 M. Oulamara and A.J. Venet

because they provide a space-efficient yet expressive representation of convex
sets in higher dimensions (quadratic compared to exponential for polyhedra).
In this paper, we devise an Abstract Interpretation framework [9] to automati-
cally compute an overapproximation of the values of the numerical variables in
a program by an ellipsoid.

We focus our attention on the case when the program variables grow lin-
early with respect to the enclosing loop counters. We call this approximation
an ‘ellipsoidal cone’. Our work also relates to the gauge domain [7], which dis-
covers simple linear relations between loop counters and the numerical variables
of a program. Even though the definitions of the abstract operations are gen-
eral, this model arises more naturally when the analyzed system naturally tends
to exhibit quadratic invariants, for instance in the analysis of switched linear
systems. Section 2 defines the basic ellipsoidal operations and their verification,
and Sect. 4 extends this to the conic extrapolation. The soundness of our analysis
relies on the verification of Linear Matrix Inequalities (LMI), which we describe
in Sect. 3 before delving into the description of ellipsoidal cones. Finally Sect. 5
presents experiments and discusses applications to switched linear systems.

2 Ellipsoidal Operations

Ellipsoids are the building blocks of our conic extrapolation. We define how to
compute the result of basic operations (union, affine transformation. . .). Since
there is generally no minimal ellipsoid in the sense of inclusion, we choose the
heuristic of minimizing the volume. Other choices, such as minimizing the so
called ‘condition number’ or preserving the shape, are compared in [5].

We mainly rely on SDP optimization methods [2,10,11] both to find a cov-
ering ellipsoid and test the soundness of our result. However, we do not rely
on the correctness of the SDP solver. For each operation whose arguments and
results are expressed in function of matrices (Ai)1≤i≤r, we define a linear matrix

inequality (LMI) of the form
r∑

i=0

αiAi � 0, where A � 0 means “A is semidefinite

positive”, such that proving the soundness of the result is equivalent to showing
that the LMI is satisfied for some reals (αi). We find (αi) candidates using an
SDP solver and then verify the inequality with a sound procedure described in
Sect. 3.

Definition 1 (Ellipsoid). Ell(Q, c) = {x ∈ R
n|(x − c)T Q(x − c) ≤ 1} is the

definition of an ellipsoid where c ∈ R
n and Q is a definite positive n×n matrix.

For practical use, we also define the function F : (Q, c) �→
(

Q −Qc
−cT Q cT Qc − 1

)

.

2.1 A Test of Inclusion

Let Ell(Q, c) and Ell(Q∗, c∗) be two ellipsoids, using the function F of Defini-
tion 1 we have the following duality result (proven in [1]):

Abstract Interpretation with Higher-Dimensional Ellipsoids 417

Theorem 1

max
x∈Ell(Q,c)

(
(x − c∗)T Q∗(x − c∗) − 1

)
=

min
λ,β∈R

{β s.t. λ ≥ 0 and βEn+1 + λF (Q, c) � F (Q∗, c∗)}

Where En+1 is an (n+1)×(n+1) matrix, with (En+1)i,j = 1 if i = j = n+1,
else (En+1)i,j = 0. Hence Ell(Q, c) ⊂ Ell(Q∗, c∗) if and only if the minimizing
value β∗ is nonpositive.

For given Ell(Q, c), Ell(Q∗, c∗) and candidates λ and β computed by the SDP
solver, the right hand term provides the LMI to check.

2.2 Computation of the Union

Let (Ell(Qi, ci))1≤i≤p be p ellipsoids, we want to find an ellipsoid Ell(Q∗, c∗)
which is of nearly minimal volume containing them. To do so, we can solve the
following SDP problem. It is decomposed into a first part ensuring the inclusion,
proven in [1], and a second part describing the volume minimization criterion,
proven in [2, example 18d].

The unknowns of the SDP problem are X an n×n symmetric matrix, z ∈ R
n a

vector, Δ a lower triangular matrix and real numbers t, (τi)1≤i≤p (ui)1≤i≤2l+1−2

where n ≤ 2l < 2n:

maximize; t such that

Inclusion conditions, see [1]:

∀i, 1 ≤ i ≤ p, ∃τi ≥ 0 s.t.

τi

⎛

⎝
Qi − Qici 0

−cT
i Qi cT

i Qici − 1 0
0 0 0

⎞

⎠ �

⎛

⎝
X −z 0

−zT −1 zT

0 z −X

⎞

⎠

Volume minimization, see [3, example 18d]:
(

X Δ
ΔT D(Δ)

)

� 0

where D(Δ) is the diagonal matrix with the diagonal of Δ.
(

u1 t
t u2

)

� 0 and ∀i, 1 ≤ i ≤ 2l − 2,

(
u2i+1 ui

ui u2i+2

)

� 0

∀i, 2l − 1 ≤ i < 2l − 1 + n, ui = δi−2l+2

where (δ1, . . . , δn) are the diagonal coefficients of Δ.

∀i, 2l − 1 + n ≤ i ≤ 2l+1 − 2, ui = 1 (1)

We then define Q∗ = X and c∗ = Q∗−1z (in floating-point numbers, then we
possibly increase the ratio of Q to ensure the inclusion condition). We can check
that the resulting ellipsoid really contains the others with Theorem 1.

418 M. Oulamara and A.J. Venet

2.3 Affine Assignments

In this section, we are interested in computing the sound counterpart of an
assignment x ← Ax + b, where x is the vector of variables, A is a matrix and b
a vector.

Computation. We want to find a minimal volume ellipsoid such that the inclu-
sion Ell(Q∗, c∗) ⊃ {Ax + b|(x − c)T Q(x − c) ≤ 1} is verified.

By a symmetry argument, we can set c∗ = Ac+b. By expanding the inclusion
equation, we find {Ax + b|x ∈ Ell(Q, c)} ⊂ Ell(Q∗, Ac + b) ⇐⇒ Q � AT Q∗A.

Hence Q∗ is a solution of the following SDP problem with unknowns X an
n × n symmetric matrix, z ∈ R

n a vector, Δ a lower triangular matrix and real
numbers t, (τi)1≤i≤p (ui)1≤i≤2l+1−2 where n ≤ 2l < 2n:

Volume Minimization:

The same constraints and objective as in (1).
Inclusion Conditions:

Q � AT XA and
1
ε

Id � X where Id is the n × n identity matrix and ε > 0

(2)
We then set Q∗ = X and c∗ = Ac + b.
The second inclusion condition is here to ensure the numerical convergence

of the SDP solving algorithm: if A is singular, the image by A of an ellipsoid is
a flat ellipsoid. With this condition, we ensure that Ell(Q∗, c∗) contains a ball of
radius ε.

To add an input defined by the convex hull of a finite set of vectors (for
instance a hypercube), we can just compute the sum for every one of these
vectors and compute the union [5].

Verification. The previous procedure gives us inequalities whose correctness
ensures that the ellipsoid Ell(Q∗, Ac + b) contains the image of Ell(Q, c) by
x �→ Ax + b. However, c∗ = Ac + b is computed in floating-point arithmetic,
hence the soundness does not extend to our actual result Ell(Q∗, c∗). Therefore,
we have to devise a test of inclusion for an arbitrary c∗. Let us compute the
resulting center in two steps: we first assume that b = 0. We have from [1]:

(∀x, x ∈ Ell(Q, c) ⇒ Ax ∈ Ell(Q∗, c∗))

⇐⇒ max
x∈Ell(Q,c)

(xT AT Q∗Ax − 2xT AT Q∗c∗ + c∗T Q∗c∗) ≤ 1

⇐⇒ min
λ,β∈R

{β|λ ≥ 0 and λF (Q, c) + βEn+1 � G} ≤ 0

where G =
(

AT Q∗A −AT Q∗c∗

(−AT Q∗c∗)T c∗T Q∗c∗ − 1

)

(3)

Abstract Interpretation with Higher-Dimensional Ellipsoids 419

We can hence verify the inclusion by finding suitable parameters and verifying
the resulting LMI.

We finally have to perform the sound computation of the center translation
(c + b). Again, this is computed in floating-point arithmetic and we may have
to increase the ratio of Q to ensure the verification of the inclusion condition
in interval arithmetics: in the test of Theorem 1, we first compute (c + b) and
F (Q, c+b) in floating-point arithmetic (and possibly increase the ratio), and with
the LMI we check that it “contains” F (Q, c + b) directly computed in interval
arithmetic.

2.4 Variable Packing

It can be useful to analyze groups of variables independently, and merge the
results. Given a set of variables {x1, . . . , xp, xp+1, . . . , xp+q} and an ellipsoidal
constraint over these variables (Q, c), we can find an ellipsoidal constraint linking

x1, . . . , xp by computing the assignment defined by the matrix
(

Ip 0
0 0

)

.

Given two sets of variables {x1, . . . , xp} and {xp+1, . . . , xp+q} linked respec-
tively by (Q1, c1) and (Q2, c2), their product is tightly overapproximated by:

Ell
((

Q1
2 0
0 Q2

2

)

,

(
c1

c2

))

.

3 Verifying Linear Matrix Inequalities

We now describe how we check the LMI’s that determine the soundness of our
analysis. We use interval arithmetic: the coefficients are intervals of floating-
point numbers. Each atomic operation (addition, multiplication. . .) is overap-
proximated in the interval domain.

3.1 Cholesky Decomposition

Recall that the SDP solver gives us an inequality of the form
r∑

i=0

αiAi � 0, and

candidate coefficients (αi).
We translate each matrix and coefficient into the interval domain, and sum

them up in interval arithmetic so that the soundness of the result does not
depend on the floating-point computation of the linear expression.

Then, we compute the Cholesky decomposition of the resulting matrix in
interval arithmetic. That is, we decompose [15] the matrix A into A = LDLT

where D is an interval diagonal matrix and L a (non interval) lower triangular
matrix with ones on the diagonal. Checking that D has only positive coefficients
implies that A is definite positive.

420 M. Oulamara and A.J. Venet

3.2 Practical Aspects of the Ellipsoidal Operations

The Precision Issue. The limitation in the precision of the computations
makes us unable to actually test whether a matrix is semidefinite positive: we can
only decide when a matrix is definite positive “enough”. For instance, standard
libraries1 fail at deciding that the null matrix 0 is semidefinite positive.

It means that for all the operations and verifications, we have to perform
additional overapproximations in addition to those made by the SDP solver,
such as multiplying the ratio of the ellipsoid by a number (1 + ε). Moreover,
in the verification of LMI’s, it can prove useful to explore the neighborhood
αi ± ε > 0 of the parameters (αi). As Roux and Garoche write in [6]: “Finding a
good way to pad equations to get correct results, while still preserving the best
accuracy, however remains some kind of black magic.”

Complexity Results. From the complexity results of Porkolab and Khachiyan,
the resolution of an LMI with m terms in dimension n has a complexity of
O(mn4) + nO(min(m,n2)) [12]. Hence the complexity of the abstract operations is
polynomial as a function of the dimension n (i.e., the number of variables), with
a degree almost always smaller than 4 (for most operations, m ≤ 4). The com-
plexity of the Cholesky decomposition can be directly computed and is O(n3).

4 Conic Extrapolation

Now that the ellipsoidal operations are well defined, we can describe the con-
struction of the conic extrapolation. The goal is to analyze variable transforma-
tions when the ellipsoidal radius evolves (sub-)linearly in the value of the loop
counters.

Let us have numerical variables x = (x1, . . . , xn) and loop counters y =
(y1, . . . , yk), we want to control the evolution of x depending on the counters y,
which are expected to be monotonically increasing.

Inspired by the ellipsoidal constraints, we can use intersections of linear
inequalities and a quadratic constraint of the form:

Definition 2 (Conic extrapolation). Let q be a definite positive quadratic
form (that is, there is a matrix Q � 0 such that ∀x ∈ R

n, q(x) = xT Qx),
c ∈ R

n, and for i ∈ �1, k�, βi > 0, δi ∈ R
n, λi ∈ R, and bi a boolean value. We

define the ellipsoidal cone:

Con((q, c),(βi, δi, λi, bi)1≤i≤k) =

{(x, y) ∈ R
n × R

k|∀i ∈ �1, k�, yi ≥ λi ∧
∀i ∈ �1, k�, (bi ∨ (yi = λi)) ∧

q(x − c −
k∑

i=1

(yi − λi)δi) ≤ (
k∑

i=1

βi(yi − λi) + 1)2}

1 E.g mpmath [15].

Abstract Interpretation with Higher-Dimensional Ellipsoids 421

Let Q be the matrix associated with q, Ell(Q, c) is the ellipsoidal base of the
cone. The λi ∈ R are the base levels of the cone, that is the minimum values of
the loop counters (usually zero). The δi ∈ R

n are the directions toward which
the cone is “leaning” (for instance, with a single loop iterating x ← x + 1, we
would want δ to be equal to 1). The βi ∈ R determine the slope of the cone in
each dimension. The bi are boolean values stating, for each dimension, whether
an extrapolation has been made in this dimension. That is, do we consider only
the (x, y) with yi = λi (case bi = False) or all those with yi ≥ λi and verifying
the other conditions (case bi = True).

4.1 Conditions of Inclusion

We need to be able to test the inclusion of two cones. The following theorem
shows that this inclusion can be reframed as conditions that can be verified with
an SDP solver.

Theorem 2. If we consider two cones C = Con((q, c), (βi, δi, λi, bi)1≤i≤k) and
C ′ = Con((q′, c′), (β′

i, δ
′
i, λ

′
i, b

′
i)1≤i≤k), then C ⊂ C ′ if and only if

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) ∀i ∈ �1, k�, λ′
i ≤ λi and λi > λ′

i ⇒ b′
i

(ii) Ell(q, c) ⊂ Ell

⎛

⎜
⎜
⎜
⎝

q′

(1 +
k∑

i=1

β′
i(λi − λ′

i))2
, c′ +

k∑

i=1

(λi − λ′
i)δ

′
i

⎞

⎟
⎟
⎟
⎠

(iii) ∀i ∈ �1, k�, bi ⇒
(

b′
i and β′

i
2 ≥ max

u∈Rn,q(u)≤1
q′(βiu + δi − δ′

i)
)

To prove this theorem, we first consider the case when the two cones have
the same base levels. That is, we reduce it to the case when all the λi’s are equal
to 0.

Lemma 1. If we consider two cones C = Con((q, c), (βi, δi, 0, bi)1≤i≤k) and
C ′ = Con((q′, c′), (β′

i, δ
′
i, 0, b′

i)1≤i≤k), then C ⊂ C ′ if and only if
⎧
⎪⎨

⎪⎩

(i) Ell(q, c) ⊂ Ell(q′, c′)

(ii) ∀i ∈ �1, k�, bi ⇒
(

b′
i and β′

i
2 ≥ max

u∈Rn,q(u)≤1
q′(βiu + δi − δ′

i)
)

The proof of these two results is postponed to the end of the section.

4.2 Test of Inclusion

Theorem 2 enables us to build a sound test of inclusion between two cones C
and C ′. Condition (i) can be directly tested. We can use the procedure of the
previous section to test the ellipsoidal inclusion of condition (ii).

422 M. Oulamara and A.J. Venet

Note that in practice, the test of inclusion will be used (during widening
iterations) on cones with the same ellipsoidal base. In these cases, we do not want
the overapproximations of the SDP solver to reject the inclusion. Therefore we
should directly test whether the bases (Q, c) and the λi’s are equal (as numerical
values) and answer True for the test of base inclusion in this case.

To perform a sound test on the subcondition of (iii):

β′
i
2 ≥ max

u∈Rn,q(u)≤1
q′(βiu + δi − δ′

i)

we can compute an overapproximation of M = maxu∈Rn,q(u)≤1 q′(βiu + δi − δ′
i)

From Theorem 1, we know that

M = 1 + min
s,t∈R

{

t | s ≥ 0 and sF (
Q

β2
i

, 0) + tEn+1 � F (Q′, δ′
i − δi)

}

So for any feasible solution (s, t) of this SDP problem, 1 + t is a sound overap-
proximation of M .

4.3 Affine Operations on Cones

Counter Increment. The abstract counterpart of a statement yi ← yi + v for
some value v, is the operation λi ← λi + v: after the statement, the constraint is
verified for yi − v, and making this change in Definition 2 leads to the new value
of λi. To have a sound result, we can compute the sum in interval arithmetic,
and take the lower bound. Note that, in general, the loop counters are integer
valued. In that case, the value can be computed exactly.

Affine Transformations. We want to have a sound counterpart for the affine
assignment x ← Ax+ b where A is a matrix and b a vector. Let us fix the values

of (yi)1≤i≤k and note R = (1 +
k∑

i=1

βi(yi − λi)) and ĉ = c +
k∑

i=1

(yi − λi)δi. Let Q

be the matrix of q. We first want to find (Q′, c′) such that we have the inclusion
{Ax+b|x ∈ Ell(Q

R2 , ĉ)} ⊂ Ell(Q′

R2 , c′). By symmetry, we can set c′ = Aĉ+b. Thus,
by doing the same calculations as in Sect. 2.3, we have

{Ax + b|x ∈ Ell(
Q

R2
, ĉ)} ⊂ Ell(

Q′

R2
, c′) ⇐⇒ Q � AT Q′A

The last condition does not depend on the yi’s, so for any quadratic form q′

whose matrix Q′ verifies Q � AT Q′A (which is an SDP equation, we can add
the conditions of volume minimization of (1), and Q′ � 1

ε In with ε small enough,
to ensure numerical convergence), we have

{(Ax, y)|(x, y) ∈Con((q, c), (βi, δi, λi, bi)1≤i≤k)} ⊂
Con((q′, Ac), (βi, Aδi, λi, bi)1≤i≤k)

Abstract Interpretation with Higher-Dimensional Ellipsoids 423

As in the case of ellipsoidal assignments, Ac + b and Aδi are computed in
floating-point arithmetic. Hence once they are computed, we have to ensure that
the resulting numerical cone contains the formally defined cone, i.e. we need to
verify the inclusion of ellipsoidal bases with (3) and the procedure described
in Sect. 2.3. We also need to verify the conic inclusion, i.e. the fact that β′

i ≥
βi +

√
q′(Aδi − δ′

i), where β′
i and δ′

i are the parameters of the resulting cone. So
we may have to update the parameters and verify the inequalities in a sound
manner.

4.4 Addition and Removal of Counters

When the analyzer enters a new loop, it needs to take into account the previous
constraint and add a dependency on the current loop counter yi. Moreover, when
it exits a loop, it needs to build a new constraint overapproximating the previous
one that does not involve the counter yi.

Ellipsoidal constraints can be seen as conic constraints with k = 0. Hence
we study the problem of adding and removing counters to a conic constraint
Con((q, c), (βi, δi, λi, bi)1≤i≤k).

Adding a Counter. Let yk+1 be the counter we want to add. Let λk+1 be the
minimal value of the counter inferred at this point. We set βk+1 = 0, δk+1 = 0
and bk+1 = True if the value of yk+1 at this point of the analysis is not known
precisely, else if we know that yk+1 = λk+1, then bk+1 = False.

That gives us the constraint Con((q, c), (βi, δi, λi, bi)1≤i≤k+1).

Proof. It is immediate from Definition 2 and the distinction made on what we
know about yi, that this constraint overapproximates the set of reachable (x, y)
at this point. ��

Removing a Counter. We now want to remove the counter yk from the conic
constraint, provided that we know that yk ∈ [λk,M] with M < +∞ (note that
if it happens that bk = False, then M = λk).

Theorem 3. Let C = Con((q, c), (βi, δi, λi, bi)1≤i≤k+1). Then C is convex and
we have

C|yk∈[a,b] = C ∩ {(x, y)|yk ∈ [a, b]} = Conv(C ∩ {(x, y)|yk = a ∨ yk = b}).

where we suppose a ≥ λk and where Conv(X) is the convex hull of X.

Proof. Up to translation, we can assume that ∀i ∈ �1, k�, λi = 0. If a = b, it is
immediate. We suppose a < b. Then, if Q is the matrix of q, let S be the inverse

424 M. Oulamara and A.J. Venet

of its square root (S−2 = Q). We have

(x, y) ∈ C ⇐⇒ q(x − c −
k∑

i=1

yiδi) ≤ (1 +
k∑

i=1

βiyi)2

⇐⇒ ∃u ∈ R
p, ||u||2 ≤ 1, x − c −

k∑

i=1

yiδi = (1 +
k∑

i=1

βiyi)Su

⇐⇒ ∃u ∈ R
p, ||u||2 ≤ 1, x =

yk − a

b − a
xb + (1 − yk − a

b − a
)xa

where xb = (c +
k−1∑

i=1

yiδi + (1 +
k−1∑

i=1

βiyi)Su + b(δk + βkSu))

xa = (c +
k−1∑

i=1

yiδi + (1 +
k−1∑

i=1

βiyi)Su + a(δk + βkSu))

From the previous equivalences, we have za = (xa, y1, . . . , yk−1, a) ∈ C and
zb = (xb, y1, . . . , yk−1, b) ∈ C. Moreover (x, y) = yk−a

b−a zb + (1 − yk−a
b−a)za. ��

Let πyk
be the projection along yk. Since convexity and barycenters are preserved

up to projections, πyk
(C|yk∈[a,b]) = Conv(πyk

(C|yk=a) ∪ πyk
(C|yk=b)). So, by a

direct calculation

πyk
(C|yk=a) = Con((

q

(1 + βk(a − λk))2
, c + (a − λk)δk),

(
βi

1 + (a − λk)βk
, δi, λi, bi)1≤i≤k−1)

We have a similar equality for πyk
(C|yk=b), hence we just have to compute the

join (πyk
(C|yk=a)

⊔
Con πyk

(C|yk=b)), which is an overapproximation of the con-
vex hull of the union.

However, we have to implement this operation such that it is sound when
computed in floating-point arithmetic. Via affine transformation, we can soundly
compute an ellipsoidal base Ell(q∗, c∗) such that

{
q(x − (c + (a − λk)δk)) ≤ (1 + βk(a − λk))2

q(x − (c + (b − λk)δk)) ≤ (1 + βk(b − λk))2
⇒ q∗(x − c∗) ≤ 1

Then, for any i ∈ �1, k − 1� such that bi = True, if we note β∗
i and δ∗

i the
parameters of the resulting cone, in order to have an inclusion of C|yk=a and
C|yk=b in C∗, we need to establish by Theorem 2 that:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

β∗2
i ≥ max

q(u)
(1+βk(a−λk))2

≤1

q∗(
βi

1 + (a − λk)βk
u + δi − δ∗

i)

β∗2
i ≥ max

q(u)
(1+βk(b−λk))2

≤1

q∗(
βi

1 + (b − λk)βk
u + δi − δ∗

i)

Abstract Interpretation with Higher-Dimensional Ellipsoids 425

And since from our hypothesis on Ell(q∗, c∗) we know that q � q∗, we can just
set δ∗

i = δi and the condition becomes β∗
i ≥ βi. So we can just define β∗

i = βi,
hence the resulting cone after the removing of the kth counter is

Con((q∗, c∗), (βi, δi, λi, bi)1≤i≤k−1)

4.5 A Widening Operator

Let C= Con((q, c), (βi, δi, λi, bi)1≤i≤k) and C ′=Con((q′, c′), (β′
i, δ

′
i, λ

′
i, b

′
i)1≤i≤k).

We suppose that ∀i ∈ �1, k�, λi ≤ λ′
i and ∃i ∈ �1, k�, λi < λ′

i.
We want to define a widening operator

�
over cones. The intuitive idea is that

if C “starts strictly below” C ′ (cf. the conditions on the λi’s), then C∗ = C
�

C ′

has the same ellipsoidal base as C, but its opening has been “widened” to contain
C ′. The decision of only changing the opening and the orientation of the cone
(i.e., to change only the βi’s and δi’s) relies on the hypothesis that the relative
shift of C ′ from C has good chances to be reproduced again. Hence the name of
“conic extrapolation”.

Definition of
�

p. More formally, we first study the special case in which we
know that Ell(q′, c′) ⊂ C and we define a partial widening operator

�
p.

Let C∗ = C
�

p C ′ = Con((q, c), (β∗
i , δ∗

i , λi, b
∗
i)1≤i≤k). We note (i), (ii), (iii)

(resp. (i′), (ii′), (iii′)) the conditions of Theorem 2 relative to the inclusion C ⊂
C∗ (resp. C ′ ⊂ C∗). By construction of C∗, we already have (ii) and with our
hypothesis Ell(q′, c′) ⊂ C ′, we just need to verify C ⊂ C∗ to have (ii′). We can
define ∀i ∈ �1, k�, b∗

i = (bi ∨ b′
i ∨ λi < λ′

i), which gives us (i) and (i′).
Finally to verify (iii) and (iii′), we only need to define the β∗

i ’s and δ∗
i ’s such

that

∀i ∈ �1, k�,

⎧
⎪⎨

⎪⎩

bi ⇒ β∗
i
2 ≥ max

q(u)≤1
q(βiu + δi − δ∗

i)

b′
i ⇒ β∗

i
2 ≥ max

q′(u)≤1
q(β′

iu + δ′
i − δ∗

i)

which we overapproximate by a triangle inequality for the norm defined by q:

∀i ∈ �1, k�,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

bi ⇒ β∗
i ≥ βi +

√
q(δi − δ∗

i)

b′
i ⇒ β∗

i ≥ β′
ir +

√
q(δ′

i − δ∗
i)

where r ≥ min{ρ > 0| q′

ρ2
� q}

With the SDP methods of the first section, we can compute an overapprox-
imating r. For each i, if none of bi or b′

i is True, then from our hypothesis
Ell(q′, c′) ⊂ C ′, b∗

i = False and we do not have to give values to either βi or δi.
If only bi (resp. b′

i) is True, then we define δ∗
i = δi and β∗

i = βi (resp. δ∗
i = δ′

i

and β∗
i ≥ rβ′

i).
If bi = b′

i = True, we want to minimize max(βi +
√

q(δi − δ∗
i), β′

ir +√
q(δ′

i − δ∗
i)). If we fix the q-distance

√
q(δi − δ∗

i), we want to minimize the

426 M. Oulamara and A.J. Venet

q-distance
√

q(δ′
i − δ∗

i). With this geometrical point of view, we see that the
optimal δ∗

i is a barycenter of δi and δ′
i.

So we define δ∗
i = μδi +(1−μ)δ′

i where we want to find μ ∈ [0, 1] minimizing

max(βi +
√

q(δi − μδi − (1 − μ)δ′
i), β

′
ir +

√
q(δ′

i − μδi − (1 − μ)δ′
i)) =

max(βi + (1 − μ)
√

q(δi − δ′
i), β

′
ir + μ

√
q(δi − δ′

i)).

Hence, we can exactly (up to floating-point approximations) compute μ, define
δ∗
i and then β∗

i . This construction of (β∗
i , δ∗

i , b∗
i)1≤i≤k ensures that C, C ′ ⊂ C∗

and defines
�

p.

Definition of
�

. We now study the general case in which the only assumption
made is that ∀i ∈ �1, k�, λi ≤ λ′

i and ∃i ∈ �1, k�, λi < λ′
i.

We define a cone C+ = Con((q, c), (β+
i , δ+

i , λi, b
+
i)1≤i≤k), which contains the

ellipsoidal base of the two cones. The definition (with q, c and the λi) ensures

the inclusion of the ellipsoidal base of C. Let R = 1 +
k∑

i=1

β+
i (λ′

i − λi) and

Δ =
k∑

i=1

δ+
i (λ′

i − λi).

We define ∀i ∈ �1, k�, b+
i = (λi < λ′

i). Let r = min{ρ > 0| q
ρ2 � q′}, if we have

Ell(q
r2 , c′) ⊂ Ell(q

R2 , c + Δ) then Ell(q′, c′) ⊂ Ell(q
R2 , c + Δ) and from the defini-

tions of the b+
i ’s and Definition 2, we would have Ell(q′, c′)×{(λ′

1, . . . , λ
′
k)} ⊂ C+.

To get this result, we need:

Ell(
q

r2
, c′) ⊂ Ell(

q

R2
, c + Δ) ⇐⇒ {q(c′ − c − Δ) ≤ (R − r)2} ∧ {R ≥ r}

If the transformations applied to the cone are affine, the shift can be seen as the
difference between centers. So we choose to define Δ = c′ − c. Then we choose
the minimal possible value of R to have a cone as tight as possible: once the δi’s
corresponding to Δ are computed in floating-point arithmetic, we can define an
upper bound on

√
q(c′ − c − Δ) + r and define R accordingly, so that the above

inequality is verified.
These definitions of Δ and R must be implemented in terms of β+

i and δ+
i .

Since we ensured that there is at least one i such that (λ′
i − λi) �= 0, there is

always a solution. If only one i fits this criterion the solution is unique, otherwise
a choice must be made on how to weight the different variable.

This uncertainty can be easily explained: recall that in real programs, only
one loop counter is increased at a time, so we know what causes the change in
our constraint. This is not the case if many loop counters are increased at the
same time.

Finally, this definition of C+ allows us to define the widening operator
�

by:
C

�
C ′ =

(
C

�
p C+

) �
p C ′. Note that the assumptions of

�
p are verified since

C and C+ have the same ellipsoidal base, and C+, hence C
�

p C+, contains the
base of C ′.

Abstract Interpretation with Higher-Dimensional Ellipsoids 427

To ensure the convergence of the widening sequence in the cases described in
Sect. 5, we can use a real widening operator on the βi’s that sets them to +∞
after a certain number of steps, for instance.

4.6 Proof of the Characterization of Conic Inclusion

Proof (Proof of Lemma 1)
• We first prove that (i) ∧ (ii) ⇒ C ⊂ C ′. From (i), we know that
∀u ∈ R

p, q(u) ≤ 1 ⇒ q′(u+c−c′) ≤ 1. Thus, for (x, y) ∈ R
p×R

k
+ such that q(x−

c−
k∑

i=1

yiδi) ≤ (1+
k∑

i=1

βiyi)2, we define ν = (1+
k∑

i=1

βiyi) ≥
√

q(x − c −
k∑

i=1

yiδi)

and u = 1
ν (x − c −

k∑

i=1

yiδi). We have q(u) ≤ 1.

q′(x − c′ −
k∑

i=1

yiδ
′
i) = q′

(

u + (c − c′) + (ν − 1)u +
k∑

i=1

yi(δi − δ′
i)

)

≤
(

√
q′(u + c − c′) +

k∑

i=1

yi

√
q′(βiu + δi − δ′

i)

)2 (4)

So if bi = False then yi = 0, hence yi

√
q′(βiu + δi − δ′

i) ≤ yiβ
′
i, and from (ii), if

bi = True, then we have the same inequality since q(u) ≤ 1. So this inequality is
true for all i ∈ �1, k�.

Thus, we have q′(x − c′ −
k∑

i=1

yiδ
′
i) ≤ (1 +

k∑

i=1

β′
iyi)2 and ∀i ∈ �1, k� we have

yi ≥ 0 and from (ii), yi > 0 ⇒ bi ⇒ b′
i. So (x, y) ∈ C ′. So C ⊂ C ′.

• Now we prove that C ⊂ C ′ ⇒ (i) ∧ (ii). It is obvious that C ⊂ C ′ ⇒ (i) by
taking the intersections of the cones with the set {(x, 0) ∈ R

p+k}.
If ∃i ∈ �1, k� s.t. b′

i = False and bi = True, then there exist a point (x, y) of
C with yi > 0, so (x, y) /∈ C ′ and C �⊂ C ′.

If ∃i ∈ �1, k� s.t. bi = True and β′
i < maxq(u)≤1

√
q′(βiu + δi − δ′

i), then let
us take u ∈ R

p such that q(u) ≤ 1 and β′
i <

√
q′(βiu + δi − δ′

i). We define
x(t) = (1 + βit)u + tδi + c.

For any t ≥ 0, q′(x(t) − c′ − tδ′
i) ≥

(√
q′(u + c − c′) − t

√
q′(βiu + δi − δ′

i)
)2

Since β′
i <

√
q′(βiu + δi − δ′

i), and from the previous inequality, we have for
t big enough, q′(x(t) − tδ′

i − c′) > (1 + β′
i)

2. By a direct computation q(x(t) −
tδi − c) ≤ (1 + βit)2. And since bi = True, we have for y(t) such that y(t)i = t
and y(t)j �=i = 0, (x(t), y(t)) ∈ C, (x(t), y(t)) /∈ C ′ so C �⊂ C ′.

We have proven ¬(i) ∨ ¬(ii) ⇒ C �⊂ C ′, so we finally have (i) ∧ (ii) ⇐⇒
C ⊂ C ′. ��

Proof (Proof of Theorem 2). Since (c, (λi)1≤i≤k) ∈ C, it is clear that (i) is a
necessary condition. Moreover, C ⊂ {(x, y) ∈ R

p+k|∀i ∈ �1, k�, yi ≥ λi} =:
Orthλ, therefore C ⊂ C ′ ⇐⇒ C ⊂ C ′ ∩ Orthλ ⇐⇒ C ⊂ C ′ ∩ Orthλ ∧(i).

428 M. Oulamara and A.J. Venet

Directly from Definition 2, we have for R = (1+
k∑

i=1

β′
i(λi−λ′

i)) the implication

(i) ⇒ C ′ ∩ Orthλ = Con((q′

R2 , c′ +
k∑

i=1

(λi − λ′
i)δ

′
i), (

β′
i

R , δ′
i, λi, b

′
i)1≤i≤k). So up to

translation, we can reduce this case to λi = λ′
i = 0 and apply Lemma 1.

C ⊂ C ′ ⇐⇒ C ⊂ C ′ ∩ Orthλ ∧(i)

⇐⇒ (i) ∧ Ell(q, c) ⊂ Ell(
q′

R2
, c′ +

k∑

i=1

(λi − λ′
i)δ

′
i)

∧ ∀i ∈ �1, k�, bi ⇒
(

b′
i and

β′
i
2

R2
≥ max

q(u)≤1

q′

R2
(βiu + δi − δ′

i)

)

⇐⇒ (i) ∧ (ii) ∧ (iii)

��

5 Application and Convergence

In the definition of the conic extrapolation, we did not describe how to choose
the ellipsoidal base. For instance, it is possible to get an ellipsoidal shape by
computing some iterates of the loop. This seems to work well in the case of
programs composed of loops and nondeterministic counter increments: the iter-
ations capture in which direction the counters globally increase (Fig. 1). Since
the diameter of the set containing the numerical variables grows linearly, any
cone will be overapproximating for β big enough.

Fig. 1. Example of a program and its average analysis time on a 2GHz CPU. Ellipsoidal
cones have been prototyped in Python using NumPy [16], CVXOPT [14], mpmath [15].
The Apron [17] C library has been used for polyhedra. The prototype Python code and
details about benchmarks are available on http://www.eleves.ens.fr/home/oulamara/
ellcones.html.

5.1 Switched Linear Systems

However, the picture is not as nice if we add linear transformation. This is the
case, for instance, for switched linear systems in control theory (Fig. 2): if the
quadratic form associated with the ellipsoid is not a Lyapunov function of the

http://www.eleves.ens.fr/home/oulamara/ellcones.html
http://www.eleves.ens.fr/home/oulamara/ellcones.html

Abstract Interpretation with Higher-Dimensional Ellipsoids 429

Fig. 2. The structure of a Switched Linear System and some benchmarks. Experimental
conditions are the same as in Fig. 1. Except for Benchmarks 1 and 2, the resulting
polyhedron is trivial.

linear part of the system (of the matrices Ai in Fig. 2), then the growth of
its radius is exponential in the loop counters, and cannot be captured by our
conic extrapolation. So if Q is the matrix of the ellipsoidal base of the cone, the
Lyapunov conditions should be verified simultaneously : ∀i, Q−AT

i QAi � 0. This
is not always possible, but one can use the SDP solver to try to find a suitable
Q. Note that the identity matrix is not stable in the sense of control theory
and should not be included in the search of Q. When Q verifies the Lyapunov
conditions, it is easy to show that for βi large enough, the cone will be invariant
during loops iterations.

6 Concluding Remarks and Perspectives

We proposed an abstract interpretation framework based on ellipsoidal cones to
study systems with (sub-)linear growth in loop counters. The aim of this work is
twofold: to build an extension of the formal verification of linear systems, and to
devise a framework that can be used outside the context of digital filters. Indeed,
only the choice of the ellipsoidal base of the cone has to deal with control theory
considerations.

The next step is obviously to go beyond the prototype and have a robust
implementation to test this framework on actual systems. This will involve a
research on how to accurately tune and use the SDP solver, how to deal with
precision issues.

The main tools are the SDP solver and the SDP duality to check the sound-
ness of the results of operations via LMI’s. However, we are not bound to use
SDP solvers to compute these results, and exploring other options might speed
up the analysis.

It would also be interesting to generalize this framework to switched linear
systems that are more complex than those studied above. An example is the
analysis in [13].

Acknowledgments. We want to thank Pierre-Löıc Garoche and Léonard Blier for
the fruitful conversations we had with each of them during this work, as well as the
anonymous referees for the time and efforts taken to review this work.

430 M. Oulamara and A.J. Venet

References

1. Yildirim, E.: Alper. On the minimum volume covering ellipsoid of ellipsoids. SIAM
J. Optim. 17(3), 621–641 (2006)

2. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization: Analysis,
Algorithms, and Engineering Applications, vol. 2. SIAM, Philadelphia (2001)

3. Feret, J.: Static analysis of digital filters. In: Schmidt, D. (ed.) ESOP 2004. LNCS,
vol. 2986, pp. 33–48. Springer, Heidelberg (2004)

4. Feret, J.: Numerical abstract domains for digital filters. In: International Workshop
on Numerical and Symbolic Abstract Domains (NSAD 2005) (2005)

5. Roux, P., Jobredeaux, R., Garoche, P. L., Féron, É.: A generic ellipsoid abstract
domain for linear time invariant systems. In: Proceedings of the 15th ACM Inter-
national Conference on Hybrid Systems: Computation and Control, pp. 105–114.
ACM (2012)

6. Roux, P., Garoche, P.-L.: Computing quadratic invariants with min- and max-
policy iterations: a practical comparison. In: Jones, C., Pihlajasaari, P., Sun, J.
(eds.) FM 2014. LNCS, vol. 8442, pp. 563–578. Springer, Heidelberg (2014)

7. Venet, A.J.: The gauge domain: scalable analysis of linear inequality invariants.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 139–154.
Springer, Heidelberg (2012)

8. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages. ACM (1977)

9. Cousot, P., Cousot, R.: Abstract interpretation frameworks. J. Logic Comput. 2(4),
511–547 (1992)

10. Blekherman, G., Parrilo, P.A., Thomas, R.R.: Semidefinite Optimization and Con-
vex Algebraic Geometry, vol. 13. SIAM, Philadelphia (2013)

11. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38, 49–95
(1996)

12. Porkolab, L., Khachiyan, L.: On the complexity of semidefinite programs. J. Global
Optim. 10(4), 351–365 (1997)

13. Daafouz, J., Riedinger, P., Iung, C.: Stability analysis and control synthesis for
switched systems: a switched lyapunov function approach. IEEE Trans. Autom.
Control 47(11), 1883–1887 (2002)

14. Andersen, M.S., Dahl, J., Vandenberghe, L.: CVXOPT: A Python package for
convex optimization, version 1.1.6. (2013). http://www.cvxopt.org

15. Johansson, F., et al.: mpmath: a Python library for arbitrary-precision floating-
point arithmetic, version 0.18, December 2013

16. van der Walt, S., Colbert, S.C., Varoquaux, G.: The NumPy array: a structure for
efficient numerical computation. Comput. Sci. Eng. 13, 22–30 (2011)

17. Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for static
analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–
667. Springer, Heidelberg (2009)

http://www.cvxopt.org

Lightning Talks

Adam: Causality-Based Synthesis
of Distributed Systems

Bernd Finkbeiner1, Manuel Gieseking2(B), and Ernst-Rüdiger Olderog2

1 Universität des Saarlandes, Saarbrücken, Germany
2 Carl von Ossietzky Universität Oldenburg,

Oldenburg, Germany
finkbeiner@cs.uni-saarland.de,

manuel.gieseking@informatik.uni-oldenburg.de,

olderog@informatik.uni-oldenburg.de

Abstract. We present Adam, a tool for the automatic synthesis of dis-
tributed systems with multiple concurrent processes. For each process,
an individual controller is synthesized that acts on locally available infor-
mation obtained through synchronization with the environment and with
other system processes. Adam is based on Petri games, an extension of
Petri nets where each token is a player in a multiplayer game. Adam
implements the first symbolic game solving algorithm for Petri games.
We report on experience from several case studies with up to 38 system
processes.

1 Introduction

Research on the reactive synthesis problem, i.e., the challenge of constructing
a reactive system automatically from a formal specification, dates back to the
early years of computer science [5,6,16]. Over the past decade, this research has
led to tools like Acacia+ [4], Ratsy [3], and Unbeast [7], which translate a formal
specification automatically into an implementation that is correct in the sense
that the system reacts to every possible input from the system’s environment
in a way that ensures that the specification is satisfied. The tools have been
used in nontrivial applications, such as the synthesis of bus arbiter circuits [2]
and robotic control [12]. The key limitation of the current state of the art is
that the underlying system model consists of a single process. If the system
under construction consists of several distributed parts, such as several robots,
then the implementation is always based on a central controller with whom
the entire system must constantly synchronize. This is unfortunate, because
in practice, it is specifically the design of the distributed implementation with
multiple concurrent processes that is most error-prone and would, therefore,
benefit most from a synthesis tool.

In this paper, we present Adam, a synthesis tool designed for distributed
systems with multiple concurrent processes. Unlike previous tools based on

This research was partially supported by the German Research Council (DFG) in
the Transregional Collaborative Research Center SFB/TR 14 AVACS.

c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 433–439, 2015.
DOI: 10.1007/978-3-319-21690-4 25

434 B. Finkbeiner et al.

automata, Adam uses concurrent processes in the form of Petri nets as its under-
lying system model. (Adam is named in honor of Carl Adam Petri.) Our aim
is to automate the construction of complex distributed systems, such as pro-
duction plants with multiple independent robots. Rather than creating a central
controller, with whom all robots must constantly synchronize, Adam creates an
individual controller for each robot, which acts on locally available information
such as the information obtained through observations and through synchroniza-
tion with nearby robots.

Fig. 1. Example Petri game from the synthesis
of two independent robots in a manufacturing
situation with k orders on n machines (here:
k = 2, n = 3), where one machine is chosen by
the environment to be defective.

The most well-studied model
for the synthesis of distributed sys-
tems is due to Pnueli and Ros-
ner [14]. This model captures the
partial information available to the
processes by specifying for each
process the subset of events that
are visible to the process. The
decisions of the process are based
only on the history of its observa-
tions, not on the full state history.
Unfortunately, the Pnueli/Rosner
model has never been translated
into practical tools; the synthesis
problem under the Pnueli/Rosner
model is undecidable in general, and very expensive (nonelementary) in the spe-
cial cases where it can be decided [10,15].

Adam is based on the more recently developed model of Petri games [9].
The synthesis problem is modeled as a game between a team of system play-
ers, representing the processes, and an environment (player), representing the
user (and other external influences) of the system. Both the system players and
the environment are represented as tokens of a Petri net. As Petri nets, the
games capture the complex causal dependencies (and independence) between
the processes (cf. [17]). Figure 1 shows a typical application scenario, taken here
from the synthesis of robot controllers in a production plant, addressing con-
currency, usage constraints, and uncertain availability of machines. The robots
are expected to process k orders on n machines (here: k = 2, n = 3), despite
the actions of a hostile environment, which is allowed to declare one machine to
be defective. The environment, initially at place Env , chooses which machine is
defective and activates the remaining machines by putting tokens on two of the
places Ai, i ∈ {0, 1, 2}. The two system players in place Sys represent the two
robots. Different robots can take their orders concurrently to different machines.
If a robot chooses a machine Mi right away, it does not know whether Mi is
defective, i.e., without a token on Ai. Then from Mi only the bad place Bi is
reachable. If a robot chooses an active machine Mi (with a token on Ai) then
from Mi the good place Gi is reachable by consuming the token from Ai. If a
robot chooses Mi again, the token on Ai is missing, and only the bad place Bi

Adam: Causality-Based Synthesis of Distributed Systems 435

is reachable. A winning strategy for the robots must avoid any transitions to a
bad place. To this end, the robots first inform themselves, via the synchronizing
transitions t0, t1 and t2, which machines are broken (this is done simultaneously
by the two robots due to the arc multiplicity 2) and then use two different active
machines.

In recent work [9], we showed that solving Petri games with safety objec-
tives, a single environment player and an arbitrary (but fixed) number of system
players is EXPTIME-complete, and thus dramatically cheaper than compara-
ble synthesis problems in the Pnueli/Rosner setting. Adam represents the first
practical implementation of this theoretical result.

2 The Synthesis Game

We model the synthesis problem as a game between a team of system players on
one side and a hostile environment player on the other side. The system players
have a joint objective, to defeat the environment, but are independent of each
other in the sense that they have no information of each other’s state unless
they explicitly communicate. A Petri game [9] is a refinement of a Petri net.
The players are the tokens in the underlying Petri net. They are organized into
two teams, the system players and the environment players, where the system
players wish to avoid a certain “bad” place (i.e., they follow a safety objective),
while the environment players wish to reach just such a marking. To partition
the tokens into the teams, we distinguish each place p as belonging to either the
system (p ∈ PS) or the environment (p ∈ PE). A token belongs to one of these
teams whenever it is on a place that belongs to that team. Formally, a Petri
game is a structure G = (PS ,PE , T ,F , In,B), where the underlying Petri net
of G is N = (P, T ,F , In) with set of places P = PS ∪ PE , set of transitions T ,
flow relation F , initial marking In, and set of bad places B. We depict places
of PS in gray and of PE in white. In the following, we assume that there is
a single environment player and an arbitrary (but bounded) number of system
players. We further assume that the Petri net is safe, i.e., every place is, at all
times, occupied by at most one token. Petri games that are bounded, but not
necessarily safe, like the example from the introduction, can be translated into
an equivalent game with a safe net using the standard transformation.

A player (token) is always informed about its causal past. As long as different
players move in concurrent places of the net, they do not know of each other. Only
when they communicate, i.e., synchronize at a joint transition, they exchange
their knowledge about the past. Formally, this is modelled by the net unfolding.

A strategy σ for the system players will eliminate at each place of the net
unfolding some of the available branches. A strategy is winning for the system
players if all branches that lead to a bad place are eliminated. For each player
we can obtain a local controller by isolating the part of σ that is relevant for
this player. These local controllers can proceed independently unless they have
to synchronize at a joint transition with other local controllers as described by
σ. Since the winning condition of a game is a safety objective, the system play-
ers can satisfy it by doing nothing. To avoid such trivial solutions, we look for

436 B. Finkbeiner et al.

Fig. 2. Bitvector representation of a cut. The subvector encodes the ith system token.

strategies that are deadlock-avoiding in the sense that in every reachable mark-
ing, whenever there is a transition enabled in the unfolding then there is some
transition enabled in the strategy. A marking where there is no enabled transi-
tion in the unfolding either is not a deadlock. Then we say that the game has
terminated. A play π (conforming to a strategy σ) is obtained from σ by elimi-
nating all remaining choices such that at each place there is only one transition
left (determinism). The system players win the play π if it does not contain a
bad place. Otherwise, the environment wins.

3 Solving Petri Games

Petri games can be solved via a reduction to two-player games over finite graphs.
In this section, we give an informal sketch of the reduction, focusing on the sym-
bolic representation and the fixed point iteration of the game solving algorithm.
For a more formal presentation of the reduction from Petri games to two-player
games over finite graphs, the reader is referred to [9].

The two-player game simulates the Petri game through a sequence of cuts,
i.e., maximal sets of concurrent places. We annotate the system places in a cut
with a decision set, i.e., a set of transitions currently selected by the player
represented by the token on the system place. In each cut, we designate a sub-
set of the system places as type-2, which means that its strategy will no longer
synchronize (directly or indirectly through other system tokens) with the envi-
ronment. Additionally, we designate a subset of the system places as type-1.
These are places that still require a synchronization with the environment but
are, in the current cut, not able to move (following their decision sets) before
the environment makes its next move.

Cuts where all system places are either type-1 or type-2 are called mcuts.
Mcuts correspond to situations in which the system players have progressed
maximally in the sense that all non-type-2 places are blocked until the environ-
ment moves. The key idea of the reduction is to delay all environment decisions
until an mcut is reached. This ensures that all system decisions that should be
made independently of the environment choice have actually been made before
the environment decision is made, and are, hence, guaranteed to be independent
of this decision. A winning strategy for the system players must thus legally move
from mcut to mcut, in response to the environment decisions at the mcuts, with-
out encountering bad situations (such as bad places), either until the Petri net
terminates or forever, if the play never terminates.

The symbolic representation of cuts. Our representation of a cut is organized
by the tokens, rather than places: this is motivated by the fact that the number

Adam: Causality-Based Synthesis of Distributed Systems 437

of tokens in a Petri net is usually much smaller than the number of places; it is
therefore cheaper to assign to each token the currently occupied place instead of
simply representing an (arbitrary) subset of the places. A cut is represented as a
bitvector, which is composed of several subvectors, one for each token. Figure 2
depicts such a subvector for a system token i. The first part of the bitvector
encodes the place pi and its type (type-1 vs. type-2). The second part encodes
the decision of the strategy. The bit tj is set iff the player represented by token i
chooses to allow the jth transition of the Petri net. The �-bit is set right after
a transition is executed. It indicates that the player is allowed to choose a new
set of transitions. For the special case of the environment token, we only need
to encode the place, without the type, �-, and transition flags. We use BDDs to
represent sets of cuts and relations on cuts.

The game solving algorithm. The game solving algorithm consists of three
phases. Phase 1 is a preprocessing step that identifies the type-2 places in the
cuts. The strategy from type-2 places must guarantee that the tokens on the
type-2 places have no further interaction with the environment. The set of all
cuts with correct type-2 annotation is computed as a largest fixed point. Phase
2 identifies the winning mcuts, i.e., mcuts where the strategy from type-1 places
guarantees that the game continues with an infinite sequence of mcuts or reaches
an mcut with only type-2 tokens. The set of mcuts is computed as a largest
fixed point. Nested inside the largest fixed point computation is a least fixed
point iteration that finds the predecessor mcuts, by first identifying all cuts
from which the system players can force the game without further interaction
with the environment into some mcut of the current approximation of the largest
fixed point. Phase 2 also computes, as a least fixed point, the set of all cuts from
which the system players can enforce a visit of such an mcut. The game is won by
the system players iff the initial cut is in this set. Phase 3 constructs a winning
strategy if the game is won by the system players. The strategy first enforces the
visit of a winning mcut according to the computation in Phase 2. From there,
the strategy from type-1 places forces the game into new winning mcuts, and the
strategy from type-2 places ensures, according to the computation in Phase 1,
the safe continuation without any further interaction with the environment.

4 Experience with Adam

Adam is a Java-based implementation of the fixed point construction described
in Sect. 3. For the BDD operations, Adam uses BuDDy [13], a BDD library writ-
ten in C. The size of the BDDs is reduced with various optimizations, including
a compact representation of the place encodings, based on net invariants (which
reduce the set of potential places for each token). We use the DOT [1] format
as output for Graphviz for the visualization of the Petri games and the strategy
graph of the 2-player game, as well as the Petri game strategies.

We have applied Adam in several case studies from robotic control, work-
flow management, and other distributed applications. Table 1 shows representa-
tive results from several synthesis problems. The tool, more examples and their
benchmarks are available online [8].

438 B. Finkbeiner et al.

Table 1. Experimental results.

Ben. Par. #Tok #Var #P #T time memory #Ps #Ts

CM 2/1 6 66 13 10 1.4 0.31 14 8
2/2 7 96 18 16 1.3 0.29 - -

.
2/6 11 216 38 40 206.5 5.43 - -
3/1 8 92 18 15 1.3 0.29 26 12
3/2 9 132 25 24 2.1 0.3 36 18
3/3 10 172 32 33 3.3 0.38 - -
3/4 11 212 39 42 11.6 0.8 - -
3/5 12 252 46 51 180.9 5.43 - -
4/1 10 120 23 20 1.6 0.29 42 16
4/2 11 172 32 32 3.9 0.38 55 24
4/3 12 224 41 44 14.4 0.8 68 32
4/4 13 276 50 56 155.3 4.27 - -
5/1 12 146 28 25 4.0 0.38 62 20
5/2 13 208 39 40 24.3 0.8 78 30
5/3 14 270 50 55 468.3 3.5 94 40
6/1 14 172 33 30 19.6 0.8 86 24
6/2 15 244 46 48 1042.2 2.51 105 36

SR 2/1 5 86 18 17 1.3 0.29 32 16
2/2 6 116 24 26 1.6 0.29 - -
2/3 7 144 30 35 4.4 0.39 - -
2/4 8 174 36 44 42.7 0.8 - -
3/1 6 204 34 49 1155.6 10.05 79.7 45

JP 2 3 46 12 13 1.1 0.31 16 13
3 4 76 18 23 1.8 0.31 34 28

.
10 11 612 88 149 146.9 5.43 552 385
11 12 762 102 175 434.8 16.62 706 484

DW 1 3 46 12 10 0.9 0.25 10 6
2 4 72 19 16 1.8 0.30 22 15

.
19 21 492 138 118 1411.8 15.93 1144 780
20 22 516 145 124 1734.7 15.85 1264 861

DWs 1 3 36 11 6 0.8 0.31 8 3
2 5 70 21 12 1.6 0.31 23 10

.
18 37 588 181 108 1027.3 11.94 1351 666
19 39 620 191 114 1451.9 15.99 1502 741
’-’ means no winning strategy exists.

For each benchmark, the table
shows the number #Tok of tokens,
the number #Var of BDD variables
used, and the numbers #P and #T
of places and transitions, respec-
tively, of the Petri game. We give
the elapsed CPU time in s, and the
used memory in GB for solving the
problem. For the resulting solution,
#Ps and #Ts are the number of
places and transitions of the strat-
egy, respectively. Par states the
parameter size(s) of the example.
The time and memory values are an
average of 10 runs. The results were
obtained on an Intel i7-2700K CPU
with 3.50GHz and 32 GB RAM.
The experiments refer to the fol-
lowing scalable benchmarks:

• CM: Concurrent Machines (see
Fig. 1). The environment decides
which of n machines is functioning.
On these machines, k orders should
be processed, each order by one
machine. Different orders can be processed concurrently on different machines.
No machine should be used twice for processing orders.
Parameters: n machines/k orders

• SR: Self-reconfiguring Robots [11]. Each piece of material needs to be processed
by n different tools. There are n robots having all n tools to their disposal, of
which only one tool is currently used. The environment may (repeatedly) destroy
a tool on a robot R. Then the robots reconfigure themselves so that R uses
another tool and the other robots adapt their usage of tools accordingly.
Parameters: n robots with n tools/k tools will be successively destroyed

• JP: Job Processing. The environment chooses a subset of n different processors
and a job that requires handling by each processor in this subset in ascending
order. Parameter : n processors

• DW: Document Workflow. The environment hands over a document to one
of n clerks. The document then circulates among the clerks. Each clerk should
endorse it or not, but wants to make the decision dependent on who has endorsed
it already. Altogether they should reach a unanimous decision. In a simpler
variant DWs, all clerks should endorse it. Parameter : n clerks

The benchmarks represent essential building blocks for modeling various
manufacturing and workflow scenarios that can be analyzed automatically by
synthesizing winning strategies with Adam.

Adam: Causality-Based Synthesis of Distributed Systems 439

References

1. AT&T, Bell-Labs: DOT file format for Graphviz - Graph visualization software.
http://www.graphviz.org/

2. Bloem, R., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.:
Automatic hardware synthesis from specifications: a case study. In: Proceedings of
the Conference on Design, Automation and Test in Europe (DATE), pp. 1188–1193
(2007)

3. Bloem, R.P., Gamauf, H.J., Hofferek, G., Könighofer, B., Könighofer, R.: Synthe-
sizing robust systems with RATSY. In: Association, O.P. (ed.). Electronic Pro-
ceedings in Theoretical Computer Science SYNT 2012, vol. 84, pp. 47–53 (2012)

4. Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.-F.: Acacia+, a tool for LTL
synthesis. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp.
652–657. Springer, Heidelberg (2012)

5. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strate-
gies. Trans. Am. Math. Soc. 138, 295–311 (1969)

6. Church, A.: Logic, arithmetic and automata. In: Proceedings of the International
Congress of Mathematicians 1962, pp. 23–25. Uppsala (1963)

7. Ehlers, R.: Unbeast: symbolic bounded synthesis. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 272–275. Springer, Heidelberg (2011)

8. Finkbeiner, B., Gieseking, M., Olderog, E.: ADAM - Analyzer of distributed asyn-
chronous models. University of Oldenburg and Saarland University. http://www.
uni-oldenburg.de/csd/adam (2014)

9. Finkbeiner, B., Olderog, E.: Petri games: Synthesis of distributed systems with
causal memory. In: Peron, A., Piazza, C. (eds.) Proceedings of Fifth International
Symposium on Games, Automata, Logics and Formal Verification (GandALF).
EPTCS, vol. 161, pp. 217–230 (2014). http://dx.doi.org/10.4204/EPTCS.161.19

10. Finkbeiner, B., Schewe, S.: Coordination logic. In: Dawar, A., Veith, H. (eds.) CSL
2010. LNCS, vol. 6247, pp. 305–319. Springer, Heidelberg (2010)

11. Güdemann, M., Ortmeier, F., Reif, W.: Formal modeling and verification of sys-
tems with self-x properties. In: Yang, L.T., Jin, H., Ma, J., Ungerer, T. (eds.) ATC
2006. LNCS, vol. 4158, pp. 38–47. Springer, Heidelberg (2006)

12. Kress-Gazit, H., Fainekos, G., Pappas, G.: Temporal-logic-based reactive mission
and motion planning. Robot. IEEE Trans. 25(6), 1370–1381 (2009)

13. Lind-Nielsen, J.: BuDDy - Binary decision diagram package. IT-University of
Copenhagen. http://sourceforge.net/projects/buddy/

14. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. POPL’1989.
pp. 179–190. ACM Press, New York (1989)

15. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:
Proceedings of the FOCS’1990, pp. 746–757 (1990)

16. Rabin, M.O.: Automata on Infinite Objects and Church’s Problem, Regional Con-
ference Series in Mathematics, vol. 13. American Mathematical Society, Rhode
Island (1972)

17. Reisig, W.: Elements of Distributed Algorithms - Modeling and Analysis with Petri
Nets. Springer, New York (1998)

http://www.graphviz.org/
http://www.uni-oldenburg.de/csd/adam
http://www.uni-oldenburg.de/csd/adam
http://dx.doi.org/10.4204/EPTCS.161.19
http://sourceforge.net/projects/buddy/

Alchemist: Learning Guarded Affine Functions

Shambwaditya Saha(B), Pranav Garg(B), and P. Madhusudan(B)

University of Illinois, Urbana-Champaign, USA
{ssaha6,garg11,madhu}@illinois.edu

Abstract. We present a technique and an accompanying tool that
learns guarded affine functions. In our setting, a teacher starts with a
guarded affine function and the learner learns this function using equiv-
alence queries only. In each round, the teacher examines the current
hypothesis of the learner and gives a counter-example in terms of an
input-output pair where the hypothesis differs from the target func-
tion. The learner uses these input-output pairs to learn the guarded
affine expression. This problem is relevant in synthesis domains where
we are trying to synthesize guarded affine functions that have particular
properties, provided we can build a teacher who can answer using such
counter-examples. We implement our approach and show that our learner
is effective in learning guarded affine expressions, and more effective than
general-purpose synthesis techniques.

1 Introduction

We consider the problem of learning guarded affine functions, where the function
is expressed using linear inequality guards that delineate regions, and where in
each region, the function is expressed using an affine function. More precisely,
guarded affine functions are those expressible as guarded linear expressions,
which are given by the following grammar:

gle := ite(lp, gle, gle) | le
lp := le < le | le ≤ le | le = le
le := c | cx | le + le

where x ranges over a fixed finite set of variables V with domain D (which can be
reals, rationals, integers or natural numbers), and where c ranges over rationals.

We are interested in the problem of learning guarded affine functions using
only a sample of its behavior on a finite set of points. More precisely, consider
the learning setting where we have a teacher that has a target guarded affine
function f : Rd −→ R. We start with the behavior on a finite set of samples
S ⊆ R

d, and the teacher gives the value of the function on these points. The
learner then must respond with a guarded linear expression hypothesis H that
is consistent with these points. The teacher then examines H and checks if the
learner has learned the target function (i.e., checks whether H ≡ f). If yes, we
c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 440–446, 2015.
DOI: 10.1007/978-3-319-21690-4 26

Alchemist: Learning Guarded Affine Functions 441

are done; otherwise, the teacher adds a new sample s ∈ R
d where they differ

(i.e., H(s) �= f(s)), and we iterate the learning process with the learner coming
up with a new hypothesis. The goal of the learner is to learn the target guarded
affine function f .

The above model can be seen as a learning model with equivalence queries
only, or an online learning model [3]. This learning model is motivated by synthe-
sis problems, where the idea is to synthesize functions that satisfy certain prop-
erties. For instance, in an effort to help a programmer identify a guarded affine
function within a program, we can consider the program with this hole, capture
the correctness requirement (perhaps expressed using input-output examples to
the program) and then build a teacher who can check correctness of hypothe-
sized expressions [10]. Combined with the learner that we build, we will then
obtain synthesis algorithms for this problem.

We do emphasize, however, that the problem and solution we consider here
works only if there is an effective teacher who knows the target concept. In some
synthesis contexts, where the specification admits many acceptable guarded
affine functions as solutions, we would have to use heuristics to use our app-
roach (for example, the teacher may decide how the function behaves on some
inputs, from the class of possible outputs, to instruct the learner). However, as
a learning problem, our problem formulation is simple and clean.

The black-box learning approach to synthesis is in fact very common in syn-
thesis solvers. For instance, the CEGIS (counter-example guided inductive syn-
thesis) approach [11] is similar to learning in the sense that it too synthesizes from
samples, and solvers in the SyGuS format for synthesis, including the enumera-
tive solver, the stochastic solver, the symbolic solver, and Sketch [10], are based
on synthesizing using concrete valuations of variables in the specification [1].

There has also been previous work on the construction of piece-wise affine
models of hybrid dynamical systems from input-output examples [2,4,5,12] (also
see [7] for an extensive survey of the existing techniques). The problem setting,
in these works, attacks a different problem, where the goal is to learn guarded
linear functions that approximate the sample. Consequently, the work in [2] uses
techniques such as regression, while we use accurate algorithms. Also, in our
setting, we have an active learning setup where the learner keeps learning using
counterexamples till the process converges to the target function.

Contribution: In this paper, we build a learning algorithm for guarded affine
functions, that learns from a sample of points and how the target function evalu-
ates on that sample: {(x i, f(x i))}i=1,...,n. Our goal is to learn a simple guarded
linear expression that is consistent with this sample (the learning bias is towards
simpler expressions). A guarded linear expression can be thought of as a nested
if-then-else expression with linear guards, and linear expressions at its leaves.
Our algorithm is composed of two distinct phases:

– Phase 1: [Geometry] First, we synthesize the set of linear expressions that
will occur at the leaves of our guarded linear expression. This problem is to
essentially find a small set of planes that include all the given points in the

442 S. Saha et al.

(d + 1)-dimensional space (viewing the space describing the inputs and the
output of the function being synthesized), and we use a greedy algorithm that
uses computational geometry techniques for achieving this. At the end of this
phase, we have labeled every point in the sample with a plane that correctly
gives the output for that point.

– Phase 2: [Classifier] Given the linear expressions from the first phase, we then
synthesize the guards. This is done using a classification algorithm, which
decides how to assign all points in R

d to planes such that all the samples get
mapped to the correct planes. We use a decision tree classifier [6,8] for this,
which is a fast and scalable machine-learning algorithm that can discover such
a classification based on Boolean guards.

Neither phase is meant to return the best solution. The geometry phase tries
to find k planes that cover all points, and uses a greedy algorithm that need
not necessarily work; in this case, we may increase k, and hence our algorithm
might find more planes than necessary. The second phase for finding guards
also does not necessarily find the minimal tree. Needless to say, the optimal
versions of these problems are intractable. However, the algorithms we employ
are extremely efficient; there are no NP oracles (SAT/SMT solvers) used. The
learning of decision trees is based on information theory to choose the best guards
at each point, and work well in practice in producing small trees [6].

We implement our learning algorithm and also build a teacher who has partic-
ular target functions, and instructs the learner using counter-examples obtained
with the help of an SMT solver. We show that for many functions with rea-
sonable guards and linear expressions, our technique performs extremely well.
Furthermore, we can express the problem of learning guarded affine functions
in the SyGuS framework [1], and hence use the black-box synthesis algorithms
that are implemented for SyGuS. We show that our tool performs much better
than these general-purpose synthesis techniques for this class of problems.

2 A Learning Algorithm Based on Geometry and
Decision Trees

The learner learns from a set of sample points S = {(x i, vi), i = 1, . . . n}. A
guarded linear expression e satisfies such a set of samples S if the function f
defined by the expression e maps each x i to vi.

As we mentioned earlier, the learner works in two phases. The first phase
finds the leaf expressions using geometry and the second phase finds a guarded
expression that maps points to these planes. We now describe these two phases.

2.1 Finding Leaf Planes Using Geometric Techniques

The first phase, based on geometry, finds a small set of (unguarded) linear expres-
sions P such that for every sample point, there is at least one linear expression in
P that will produce the right output for that point. This phase hence discovers

Alchemist: Learning Guarded Affine Functions 443

the set of leaf expressions in the guarded linear expression. Let |S| = n where
n is large, and let us assume that we want to find k planes that cover all the
points, where k is small. Let the function being synthesized be of arity d. Each
sample point in S can be viewed as an input-output pair, p = (x , y) such that
f(x) = y. We view them as points in a (d + 1)-dimensional space, and try to
find, using a greedy strategy, a small number of planes such that every point
falls on at least one plane. We start with a small budget for k and increase k
when it doesn’t suffice.

Assuming that there are k planes that cover all the points, there must be at
least �n/k	 points that are covered by a single plane. Hence, our strategy is to
find a plane in a greedy manner that covers at least these many points. Once we
find such a plane, we can remove all the points that are covered by that plane,
and recurse, decrementing k.

Note that in a (d + 1)-dimensional space, one can always a construct a plane
that passes through any (d + 1) points. Hence, our strategy is to choose sets of
(d+2) points and check if they are coplanar (and then check if they cover enough
points in the sample). Since we are synthesizing a guarded linear expression, it is
likely that the leaf planes are defined over a local region, and hence we would like
to choose the d + 2 points such that they are close to each other. Our algorithm
Construct-Plane, depicted below, searches for a plane by (a) choosing a random
point p and taking the closest 2d points next to p, by computing the distance of
all points to p, sorting them, and picking the closest 2d points and (b) choosing
every combination of (d+2) points from this set and checking it for coplanarity.

Fig. 1. (a) Algorithm for constructing planes that cover the input points (b) Co-
planarity check for a set of points.

Coplanarity can be verified by checking the value of determinant as above
(Fig. 1b), and the plane defined by these (d + 2) points can be constructed by
solving for the co-efficients ci in the set of equations Σn

i=1cixi = cn+1, where
we substitute the xi’s with the points we have chosen. The above two require
numerical solvers and can be achieved using software like MatLab or Octave.

If the above process discovers k planes that cover all points in the sample,
then we are done. If not, we are either left with too few points (< d + 2) or too

444 S. Saha et al.

many points and have run out of the budget of planes. In the former case, we
ignore these points, compute a guarded linear expression for the points that we
have already covered using the second phase, and then add these points back as
special points on which the answers are fixed using the appropriate constants in
the sample. In the latter case, we increase our budget k, and continue.

There are several parameters that can be tuned for performance, including
(a) how many points the teacher returns in each round, (b) the number of points
in the window from which we select points to find planes, (c) the threshold of
coverage for selecting a plane, etc. These parameters can be tweaked for better
performance on the application at hand.

2.2 Finding Conditionals Using Decision Tree Learning

The first phase identifies a set of planes and labels each input in the sample with
a plane from this set that correctly maps it to its output. In the second phase,
we use state-of-the-art decision tree classification algorithm [6,8] to synthesize
the conditional guards that classify all inputs such that the inputs in the sample
are mapped to the correct planes. Decision trees can classify points according
to a finite set of numerical attributes. We choose numerical attributes that are
linear combinations of the variables with bounded integer coefficients (since we
expect the coefficients in the guards to be small, the learner considers attributes
of the form Σaixi where Σai < K for a small K, where K increases in an outer
loop). The decision-tree learner then constructs a classifier that uses Boolean
combinations of formulas of the form a ≤ t, where a is a numerical attribute and
t is a threshold (constant) which it synthesizes. Note that the linear coefficients
for the guards are enumerated by our tool— the decision tree learner just picks
appropriate numerical attribute and synthesizes the thresholds.

The decision tree learner that we use is a standard state-of-the-art decision
tree algorithm, called C5.0 [8,9], and is extremely scalable and has an inductive
bias to learn smaller trees. It constructs trees using an algorithm that does no
back-tracking, but chooses the best attributes heuristically using information
gain, calculated using Shannon’s entropy measure. We disable some features in
the C5.0 algorithm such as pruning, which is traditionally performed to reduce
overfitting, since we want a classifier that works precisely on the given sam-
ple and cannot tolerate errors. During the construction of the tree, if there
are several attributes with the highest information gain, we choose the attribute
that has the smallest absolute value. This heuristic biases the learner towards
synthesizing guards that have smaller threshold values.

3 Evaluation

We implemented the two phases of the learner as follows: The geometric phase is
implemented using a numerical solver, Octave, and the classifier phase is imple-
mented using decision tree classification algorithm C5.0. The output of both
these two phases is then combined to construct a hypothesis that is conjectured
as the target guarded linear expression.

Alchemist: Learning Guarded Affine Functions 445

Table 1. Experimental results. The timeout is set to 600s.

Target Guarded Affine Function Enumerative

solver

Stochastic

solver

Symbolic

solver

Alchemist

x + y 0.0s 0.3s 5.4s 0.7s

3x + 3y + 3 2m12.4s 16.1s timeout 0.7s

5x + 5y + 5 timeout 4m1.1s timeout 0.7s

max2 : ite(x < y, y, x) 0.0s 0.2s 2.6s 0.6s

max3 : ite(x < y, ite(y < z, z, y), ite(x < z, z, x)) timeout 5.4s timeout 1.1s

max4(x, y, z, u) timeout 6m21.6s timeout 20.5s

max5(x, y, z, u, v) timeout timeout timeout 1m30.0s

ite(x + y ≤ 1, x + y, x − y) 1.2s 2.5s timeout 0.9s

ite(x + y + z ≤ 1, x + y, x − y) 12.8s 6.5s timeout 0.8s

ite(2x + y + z ≤ 1, x + y, x − y) 6m42.7s 8.1s timeout 1.4s

ite(2x + 2y + z ≤ 1, x + y, x − y) timeout 7.9s timeout 1.4s

ite(x + y ≥ 1, ite(x + z ≥ 1, x + 1, y + 1), z + 1) timeout 20.7s timeout 1.8s

ite(x + y ≥ 1, ite(x + z ≥ 1, x + 1, y + 1),

ite(y + z ≥ 1, y + 1, z + 1))

timeout 4m37.2s timeout 2.9s

ite(x ≥ 5, 5x + 3y + 17, 3x + 1) timeout timeout timeout 0.9s

ite(x ≤ y + 4,min(x, y, z),max(x, y, z)) timeout timeout timeout 1.8s

if x + y <= 1 then 10x + 10y + 10 timeout timeout timeout 27.9s

elseif x + y <= 2 then 20x + 20y − 20

elseif x + y <= 3 then 30x + 30y + 30

elseif x + y <= 4 then 40x + 40y − 40

elseif x + y <= 5 then 50x + 50y + 50

else 60x + 60y − 60

In order to evaluate our tool, we also implemented a teacher which knows a
target guarded affine function f and provides counter-examples to the learner
using a constraint solver. Given a hypothesis H the teacher checks if there is some
valuation for variables x such that H(x) �= f(x). If such a valuation exists, the
teacher returns (x , f(x)) as a counterexample to the learner.

All experiments were performed on a system with an Intel Core i7 2.2 GHz
processor and 4GB RAM running 64-bit Ubuntu 14.04 OS, with a timeout of
600s. In Table 1 we tabulate our experimental results comparing our learner1

with the enumerative, the stochastic, and the symbolic SyGus solver [1] for
learning various target guarded affine functions of increasing complexity, both in
terms of the Boolean structure and in terms of the coefficients. We also evaluate
on relevant SyGuS benchmarks. For the stochastic solver, we report the time
averaged over ten runs. From the results, it seems the SyGus solvers are very
general and do not exploit the geometry of this domain well. Also, the machine
learning algorithms seem better at sifting through candidate guards and picking
a small subset that work.

Apart from the above mentioned solvers, we also tried the SyGus solver based
on Sketch [10] but it failed to execute for most of the problems. We could not
try [2] as being a passive algorithm which approximates the solution makes it
very hard to compare the tools empirically.
1 Our tool can be accessed at http://web.engr.illinois.edu/∼ssaha6/Alchemist/.

http://web.engr.illinois.edu/~ssaha6/Alchemist/

446 S. Saha et al.

4 Conclusions

The learning based synthesis of guarded affine functions we have proposed seems
very promising and a good alternative to existing synthesis techniques. An earlier
version of this solver was submitted as a solver to the SyGuS synthesis compe-
tition; however, note that in a more general setting, building a teacher is not
easy as the teacher does not know precisely the function to be synthesized. We
hence built a teacher who would identify at least certain inputs on which the
function was determined and feed these to the learner. A more general approach
that extends our work to solving general synthesis problems involving guarded
affine functions is an interesting direction for future work.

Acknowledgments. We thank Sariel Har-Peled for discussions on geometric tech-
niques for synthesizing leaf expressions. This work was partially supported by NSF
Expeditions in Computing ExCAPE Award #1138994.

References

1. Alur, R., Bod́ık, R., Juniwal, G., Martin, M.M.K., Raghothaman, M., Seshia, S.A.,
Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In:
Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR, USA,
20–23 October 2013, pp. 1–17 (2013)

2. Alur, R., Singhania, N.: Precise piecewise affine models from input-output data.
In: Proceedings of the 14th International Conference on Embedded Software,
EMSOFT 2014, pp. 3:1–3:10. ACM, New York, NY, USA (2014)

3. Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319–342 (1988)
4. Bemporad, A., Garulli, A., Paoletti, S., Vicino, A.: A bounded-error approach to

piecewise affine system identification. IEEE Trans. Automat. Contr. 50(10), 1567–
1580 (2005)

5. Ferrari-Trecate, G., Muselli, M., Liberati, D., Morari, M.: A clustering technique
for the identification of piecewise affine systems. Automatica 39(2), 205–217 (2003)

6. Mitchell, T.M.: Machine Learning. McGraw Hill Series in Computer Science, New
York (1997)

7. Paoletti, S., Juloski, A.L., Ferrari-Trecate, G., Vidal, R.: Identification of hybrid
systems: a tutorial. Eur. J. Control 13(2–3), 242–260 (2007)

8. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)
9. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San

Francisco (1993)
10. Solar-Lezama, A.: Program sketching. STTT 15(5–6), 475–495 (2013)
11. Solar-Lezama, A., Tancau, L., Bod́ık, R., Seshia, S.A., Saraswat, V.A.: Combi-

natorial sketching for finite programs. In: Proceedings of the 12th International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2006, San Jose, CA, USA, 21–25 October 2006, pp. 404–415
(2006)

12. Vidal, R., Soatto, S., Sastry, S.: An algebraic geometric approach to the identifi-
cation of a class of linear hybrid systems. In: Proceedings of the IEEE Conference
on Decision and Control, vol. 1, pp. 167–172, December 2003

OptiMathSAT: A Tool for Optimization
Modulo Theories

Roberto Sebastiani and Patrick Trentin(B)

DISI, University of Trento, Trento, Italy
patrick.trentin@unitn.it

Abstract. Many SMT problems of interest may require the capability
of finding models that are optimal wrt. some objective functions. These
problems are grouped under the umbrella term of Optimization Modulo
Theories – OMT. In this paper we present OptiMathSAT, an OMT tool
extending the MathSAT5 SMT solver. OptiMathSAT allows for solv-
ing a list of optimization problems on SMT formulas with linear objective
functions –on the Boolean, the rational and the integer domains, and on
their combination thereof– including MaxSMT. Multiple objective func-
tions can be combined together and handled either independently, or
lexicographically, or in a min-max/max-min fashion.

OptiMathSAT ships with an extended SMT-LIBV2 input syntax
and C API bindings, and it preserves the incremental attitude of its
underlying SMT solver.

1 Introduction

SMT solvers are currently used as backend engines in many formal verification
(FV) tools for Hardware, Software and Hybrid Systems. Many SMT problems of
interest for FV or for other disciplines, however, require the capability of finding
models that are optimal wrt. some objective functions [6,8,9,11,13–16,18–20].
These problems are grouped under the umbrella term of Optimization Modulo
Theories – OMT.

For instance, in SMT-based model checking with timed or hybrid systems,
you may want to find executions which optimize the value of some parameter
while fulfilling/violating some property –e.g., to find the minimum opening time
interval for a railcrossing causing a safety violation. (See e.g. [19] for some exam-
ples.) Also, a recent application of OMT is the SMT-based computation of the
worst-case execution time (WCET) of loop-free programs [12], which finds tighter
over-approximations of the WCET than other state-of-the-art approaches.
A longer list of OMT applications in formal verification and in other disciplines
can be found in [8,11,14–16,19].

This work is supported by Semiconductor Research Corporation (SRC) under GRC
Research Project 2012-TJ-2266 WOLF. We thank Alberto Griggio for support with
MathSAT5 code.

c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 447–454, 2015.
DOI: 10.1007/978-3-319-21690-4 27

448 R. Sebastiani and P. Trentin

In this paper we present OptiMathSAT, an OMT tool extending the
MathSAT5 SMT solver [3,10], implementing the OMT procedures described
in [18–20]. OptiMathSAT allows for solving a list of optimization problems on
SMT formulas with linear objective functions –on the Boolean, the rational and
the integer domains, and on their combination thereof– including MaxSMT.
Multiple objective functions can be combined together and handled either inde-
pendently, or lexicographically, or in a min-max/max-min fashion. Like Math-
SAT5, it is freely available for research and evaluation purposes [4], and it is
currently used in some innovative projects (see Sect. 5).

Related Tools. Currently few other OMT tools exist. Closest to OptiMathSAT
are Symba [14] and the very-recent νZ [6,7], which are both built on top of Z3.
[14] considered the problem of optimizing multiple rational cost functions at the
same time. Symba uses the underlying SMT solver as black-box, and it features
additional ad hoc techniques for detecting unbounded costs and optimization.
νZ supports both single-objective linear optimization –over a real, integer or bit-
vector term – and multi-objective optimization in either boxed, lexicographic or
Pareto-optimization mode. It ships with several specialized engines for MaxSMT
and with pre-processing techniques that re-encode the 0-1 integer variables of
the input formula into Pseudo-Boolean or MaxSMT constraints. We refer the
reader to the related work section of [19] for a more-detailed analysis of other
OMT-related approaches and tools.

Content. This paper is structured as follows. Section 2 provides a brief outline
of OptiMathSAT architecture, followed by a description of its optimization
functionalities and interfaces in Sect. 3. Section 4 presents a short example, and
Sect. 5 reviews some recent interesting applications of OptiMathSAT. Section 6
concludes the paper with hints of some future developments. An extended version
of this paper, containing a performance evaluation and some more details, is
available from OptiMathSAT web page [4].

2 Architecture

OptiMathSAT is written in C++ and it is built as an extension of Math-
SAT5, which implements the standard lazy SMT paradigm (see [5]). Unlike
the OMT algorithms in [6,14], which are based on an offline architecture –in
which the SMT Solver is incrementally called multiple times as a black-box–
OptiMathSAT is based on an inline architecture –in which the SMT solver is
run only once and its internal SAT solver is modified to handle the search for
the optima [18–20]. Although harder to implement, the inline architecture has
showed better performance for OptiMathSAT than the offline one [18,19]. (We
refer the reader to [19] for a comparison of the two architectures.)

The optimization algorithm can explore the search space in linear-search
mode, by pruning one intermediate solution at a time, or in binary-search mode,
by introducing cuts bisecting the search space, or in adaptive-search mode, which

OptiMathSAT: A Tool for Optimization Modulo Theories 449

uses adaptive heuristics to choose among the linear- and binary-search modes at
each search step.

Some functionalities, such as the control loop for lexicographic optimization
and the assertion of soft clauses, are handled at a higher level of abstraction by
means of a combination of MathSAT5 and OptiMathSAT API calls.

3 Optimization Functionalities

OptiMathSAT is mainly a tool for (single- and multiple-objective) OMT with
linear objective functions OMT(LA∪T) s.t. “LA” denotes linear arithmetic over
either the rationals (LRA), or the integers (LIA) or their combination LRIA,
and T denotes any other Nelson-Oppen theory supported by MathSAT5. For
each objective it is possible to specify both global and local bounds, if known.1

OptiMathSAT can use this information to explore the search space in binary
or in adaptive search mode, which might improve the overall performance of the
solver. We support objective functions over the rational, integer and Boolean
domains2, or their combinations.

Here we provide a brief list of OptiMathSAT optimization functionalities,
omitting the functionalities inherited from MathSAT5 [10]. A detailed descrip-
tion of the implemented algorithms is presented in [18–20].

3.1 Single-Objective Optimization

We discuss first the case in which we have only one objective function, namely
obj.

Linear Arithmetic Optimization over LRA, LIA and LRIA. Given some
term obj on LA, OptiMathSAT finds a solution (if any) which makes the
term obj minimum/maximum. This is based on a combination of SMT and
linear [integer] programming techniques.

Partial Weighted MaxSMT and SMT with Pseudo-Boolean Objec-
tives (PB-SMT). Given an input formula ϕh ∧ϕs, where ϕh contains hard
constraints and ϕs contains soft constraints with positive weights, the goal of
partial weighted MaxSMT [9,16] is to find a model M s.t. M |= ϕh∧ϕM

s and
ϕM
s is a subset of ϕs in which the soft-constraints have the largest cumulative

weight possible. Similarly, OptiMathSAT allows also for defining Pseudo-
Boolean objective functions in the form

∑
i wiψi, where wi are numerical

constants and ψi are sub-formulas.
Unlike with the procedures in [6,8,9,16], which use specialized algorithms

for MaxSMT/PB-SMT, OptiMathSAT works by encoding the problem
into the optimization of an LRA term, as described in [19]. This allows
for combining the MaxSMT terms with other objectives, as we describe in
Sect. 3.2.

1 Local bounds have a special use in boxed multi-objective optimization (see Sect. 3.2).
In single-objective and lexicographic optimization, they coincide with global bounds.

2 i.e. MaxSMT and SMT with Pseudo-Boolean objective functions.

450 R. Sebastiani and P. Trentin

Notice that it is possible to interrupt the search of OptiMathSAT (e.g., by
setting a timeout) and to still have access to the current sub-optimal solutions
and its model.

3.2 Multi-objective Combination

The interface of OptiMathSAT allows for combining multiple objective func-
tions obj1, ..., objN in various ways.

Multiple Independent Objectives [14]. (Aka Boxed Optimization [6].) Opti-
MathSAT can solve simultaneously N independent optimization problems
〈ϕ, obj1〉, ..., 〈ϕ, objN 〉, optionally building the corresponding optimum mod-
els M0, ...,MN .3 (In the empirical evaluation presented in [20], we showed
that using this optimization strategy can be considerably more efficient than
solving N single-objective optimization problems.) This option is the default
configuration.

Lexicographic Optimization. OptiMathSAT optimizes lexicographically
the objectives obj1, ..., objN by decreasing level of priority. If any objective
obji is unsatisfiable or unbounded, the search returns.

Min-max and Max-min. The goal of a min-max problem is to find the max-
imum value of an obj s.t.

∧N
i=0 (obj ≤ obji) ∧∨N

i=0 (obji = obj), obj being
a fresh variable.4 Max-min is dual. OptiMathSAT provides syntactic-sugar
extensions to SMT-LIBv2 that allow for encoding this type of objectives.

Linear Combination. Obviously, one can also create objectives that are a
linear combination of other objectives obj1, ..., objN , i.e., obj =

∑N
i=1 wi ·obji.

We remark that all the above combinations hold for obji cost functions over every
domain, including Boolean. For instance, you can combine together MaxSMT
with OMT optimization over Integer or Real objectives.

3.3 Interfaces

Input Language. OptiMathSAT functions are accessible through a list
of commands, extending the SMT-LIBv2 syntax, which is shown in a concise
description in Fig. 1. Notice that, differently from νZ [7], in case of a MaxSMT
problem we require the user to build explicitly a minimization objective using the
ID associated with the asserted soft clauses, i.e., by writing “(minimize ID)”.
The advantage of this requirement is that we allow for arbitrary composition
of the MaxSMT objective with other linear arithmetic functions, which can
be useful in particular contexts (for instance, to build obj functions on mixed
Boolean/numeric domains, as with Linear Generalized Disjunctive Programming
(LGDP) problems [17]).
3 Since the N input problems are independent to one another, the local bounds of

each objective obji do not have any side effect on the feasible solutions of all other
objectives objj , as if the N problems were solved separately.

4 Notice that in the actual encoding we drop the “
∨

” part of the formula, since it is
unnecessary and may cause extra Boolean search.

OptiMathSAT: A Tool for Optimization Modulo Theories 451

Fig. 1. SMT-LIBv2 Optimization Extensions, square brackets corresponds to optional
parameters, whereas “|” stands for alternative choices.

Fig. 2. SMT-LIBv2 encoding of the problem.

452 R. Sebastiani and P. Trentin

C API. The optimization functions of OptiMathSAT are also available
through its C API, which extends that of MathSAT5 [3]. A detailed docu-
mentation of the C API, the SMT-LIBv2 language extensions and some usage
examples are accessible on OptiMathSAT website [4].

Incremental Interface. Like MathSAT5, OptiMathSAT provides a
push/pop interface for adding and removing objectives and pieces of formulas
from the formula stack, which allows for reusing information from one optimiza-
tion search to another to improve the global performance of the search [20].

4 Example

In Fig. 2 we present a toy example that illustrates how to encode a problem
into the extended SMT-LIBv2 language of OptiMathSAT. A small com-
pany urgently needs 250 units of some goods. Suppliers s1, s2, s3, s4 offer to
supply up to 250, 150, 100, 100 units of goods starting from the minimum quan-
tity of 50, 100, 100, 50 units respectively. Their prices are 23$, 21$, 20$, 10$ per
unit respectively. Our goal is (A) to minimize the overall purchase cost and, at
cost tie, (B) to maximize the number of suppliers.

A simple OMT encoding of the problem is shown in Fig. 2. In this exam-
ple there are two combinations of suppliers –s2, s4 and s1, s3, s4– from which
we can purchase the goods at the minimum cost of 4150$. Therefore, the tie is
broken by our secondary goal (B), which imposes our preference on the second
solution. The optimum model of a lexicographic optimization is always associ-
ated with the top-most objective on the internal stack. Since in this example
there are only two objectives, this objective can be selected by passing 1 to the
set-model command. As mentioned in Sect. 3.3, notice that we explicitly ask for
ignored suppliers, the label of the MaxSMT constraints, to be minimized.
OptiMathSAT solved the problem in 10ms.

5 Applications

We briefly mention two examples of recent applications –which are very inno-
vative in their respective domains– that have been technologically enabled by
OMT and use OptiMathSAT as backend automated-reasoning engine.

Structured Learning Modulo Theories. In Machine Learning applications,
performing inference and learning in hybrid domains –characterized by both
continuous and Boolean/discrete variables– is a particularly daunting task.
Structured Learning Modulo Theories (SLMT) [21] addresses the problem
by combining (Structured-Output) Support Vector Machines (SVNs) with
OMT, so that the latter plays the role of inference and separation oracle
for the former. The tool LMT implementing the SLMT method [2] uses
OptiMathSAT as backend OMT engine.

OptiMathSAT: A Tool for Optimization Modulo Theories 453

Automated Reasoning on Constrained Goal Models. Goal Models (GM)
are used in Requirements Engineering to represent software requirements,
objectives, and design qualities [22]. Constrained Goal Models (CGM) are a
novel, formal version of GM which are enriched with constraints so that to
handle preferences, numerical attributes and resources (e.g., scores, financial
cost, workforce, etc.). OptiMathSAT is used as a backend reasoning engine
of CGM-Tool [1], a tool for building and reasoning on CGMs, allowing for
automatically verifying the realizability of a CGM and for finding optimal
realizations according to some specified criterion.

6 Future Developments

We plan to extend OptiMathSAT capabilities along several directions. For
instance, we are interested into generalizing our implementation to support
objective functions extended on other theories, i.e. bit-vector. We are also
considering to add the possibility of combining multiple objectives for Pareto-
optimization. Finally, we plan to parallelize OMT so that to exploit the multi-
core architectures of modern CPUs.

References

1. CGM-Tool. www.cgm-tool.eu
2. LMT. http://disi.unitn.it/teso/lmt/lmt.tgz
3. MathSAT 5. http://mathsat.fbk.eu/
4. OptiMathSAT. http://optimathsat.disi.unitn.it/
5. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theo-

ries. In: Handbook of Satisfiability, chap. 26, pp. 825–885. IOS Press (2009)
6. Bjorner, N., Phan, A.-D.: νZ - Maximal satisfaction with Z3. In: Proceedings

of SCSS. Invited presentation., Gammart, Tunisia, December 2014. EasyChair
Proceedings in Computing (EPiC). http://www.easychair.org/publications/?
page=862275542

7. Bjørner, N., Phan, A.-D., Fleckenstein, L.: νZ - An optimizing SMT solver. In:
Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 194–199. Springer,
Heidelberg (2015, to appear)

8. Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R., Stenico, C.: Satisfiability
modulo the theory of costs: foundations and applications. In: Esparza, J., Majum-
dar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 99–113. Springer, Heidelberg
(2010)

9. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: A modular approach
to maxSAT modulo theories. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013.
LNCS, vol. 7962, pp. 150–165. Springer, Heidelberg (2013)

10. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The mathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS,
vol. 7795, pp. 93–107. Springer, Heidelberg (2013)

11. Dillig, I., Dillig, T., McMillan, K.L., Aiken, A.: Minimum satisfying assignments
for SMT. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp.
394–409. Springer, Heidelberg (2012)

www.cgm-tool.eu
http://disi.unitn.it/teso/lmt/lmt.tgz
http://mathsat.fbk.eu/
http://optimathsat.disi.unitn.it/
http://www.easychair.org/publications/?page=862275542
http://www.easychair.org/publications/?page=862275542

454 R. Sebastiani and P. Trentin

12. Henry, J., Asavoae, M., Monniaux, D., Mäıza, C.: How to compute worst-case
execution time by optimization modulo theory and a clever encoding of program
semantics. SIGPLAN Not. 49(5), 43–52 (2014)

13. Larraz, D., Oliveras, A., Rodŕıguez-Carbonell, E., Rubio, A.: Minimal-model-
guided approaches to solving polynomial constraints and extensions. In: Sinz, C.,
Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 333–350. Springer, Heidelberg
(2014)

14. Li, Y., Albarghouthi, A., Kincad, Z., Gurfinkel, A., Chechik, M.: Symbolic opti-
mization with SMT solvers. In: POPL. ACM Press (2014)

15. Manolios, P., Papavasileiou, V.: ILP modulo theories. In: Sharygina, N., Veith, H.
(eds.) CAV 2013. LNCS, vol. 8044, pp. 662–677. Springer, Heidelberg (2013)

16. Nieuwenhuis, R., Oliveras, A.: On SAT modulo theories and optimization problems.
In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 156–169. Springer,
Heidelberg (2006)

17. Raman, R., Grossmann, I.: Modelling and computational techniques for logic based
integer programming. Comput. Chem. Eng. 18(7), 563–578 (1994)

18. Sebastiani, R., Tomasi, S.: Optimization in SMT with LAQ Cost Functions. In:
Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp.
484–498. Springer, Heidelberg (2012)

19. Sebastiani, R., Tomasi, S.: Optimization modulo theories with linear rational costs.
ACM Trans. Comput. Logics 16(2) (2015). doi:10.1145/2699915

20. Sebastiani, R., Trentin, P.: Pushing the envelope of optimization modulo theories
with linear-arithmetic cost functions. In: Baier, C., Tinelli, C. (eds.) TACAS 2015.
LNCS, vol. 9035, pp. 335–349. Springer, Heidelberg (2015)

21. Teso, S., Sebastiani, R., Passerini, A.: Structured learning modulo theories. Arti-
ficial Intelligence (2015). http://disi.unitn.it/rseba/publist.html

22. Van Lamsweerde, A.: Goal-oriented requirements engineering: a guided tour. In:
Proceedings of the Fifth IEEE International Conference on Requirements Engi-
neering, RE 2001, pp. 249–262. IEEE Computer Society (2001)

http://dx.doi.org/10.1145/2699915
http://disi.unitn.it/rseba/publist.html

Systematic Asynchrony Bug Exploration
for Android Apps

Burcu Kulahcioglu Ozkan1(B), Michael Emmi2, and Serdar Tasiran1

1 Koç University, Istanbul, Turkey
{bkulahcioglu,stasiran}@ku.edu.tr

2 IMDEA Software Institute, Madrid, Spain
michael.emmi@imdea.org

Abstract. Smartphone and tablet “apps” are particularly susceptible to
asynchrony bugs. In order to maintain responsive user interfaces, events
are handled asynchronously. Unexpected schedules of event handlers can
result in apparently-random bugs which are notoriously difficult to repro-
duce, even given the user-event sequences that trigger them.

We develop the AsyncDroid tool for the systematic discovery and
reproduction of asynchrony bugs in Android apps. Given an app and
a user-event sequence, AsyncDroid systematically executes alternate
schedules of the same asynchronous event handlers, according to a
programmable schedule enumerator. The input user-event sequence is
given either by user interaction, or can be generated by automated ui
“monkeys”. By exposing and controlling the factors which influence the
scheduling order of asynchronous handlers, our programmable enumera-
tors can explicate reproducible schedules harboring bugs. By enumerat-
ing all schedules within a limited threshold of reordering, we maximize
the likelihood of encountering asynchrony bugs, according to prevailing
hypotheses in the literature, and discover several bugs in Android apps
found in the wild.

1 Introduction

Android apps execute asynchronously: typically a number of background threads
exist to prevent long-running tasks from tying up the main ui thread. Threads
execute asynchronously-called procedures concurrently with other threads. Pro-
grammers tend to imagine atomically-handled events, without taking all possible
thread interleavings into consideration. However, event handlers often call other
asynchronous methods, and so the execution of multiple events can interleave
and result in hard-to-reproduce bugs.

In this work we present AsyncDroid1, the first concurrency testing tool for
Android apps. AsyncDroid takes a sequence of user events given by user inter-
action or automated ui “monkeys” and explores different thread interleavings to

This work is supported in part by the Scientific and Technological Research Council
of Turkey (TUBITAK).

1 http://github.com/imdea-software/async-droid.

c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 455–461, 2015.
DOI: 10.1007/978-3-319-21690-4 28

http://github.com/imdea-software/async-droid

456 B.K. Ozkan et al.

detect thrown exceptions and assertion violations. Focusing on the systematic
exploration of alternate schedules of asynchronously-executing methods, and pri-
oritizing those schedules derived from few re-orderings, our technique uncovers
many violations quickly, and uncovers all violations given enough time.

Our prototype implementation explores all deviations from a base schedule
within a user-specified bound. In addition to providing a default thread sched-
uler from which the base schedule can be generated, we also provide an inter-
face allowing users to implement their own scheduler to guide the exploration
process along their own insights. Besides control over the thread schedules, our
implementation can also record a given sequence of user events, and then replay
the same sequence events along alternate thread schedules. We implement both
scheduler control and event recording/replaying via program instrumentation,
without modifying Android runtime libraries.

Related Work. Existing approaches to bug detection in Android apps fall into
two basic categories. The first category focuses on ui input testing [1,2,4,9].
Orthogonally to these techniques, which test a single execution of any given ui-
event sequence, our goal is to explore the alternate schedules of execution for a
given ui-event sequence, thus uncovering elusive concurrency-related bugs. The
second category of techniques investigates race detection [3,7,8,10]. Our work is
complementary to these techniques and it is novel in two respects: it is a dynamic
analysis rather than static, and it does not report false positives.

While prioritized systematic exploration of concurrent program executions
has been studied before [5,11], the adaptation to event driven programs poses
some specific difficulties. A tool must explore different possible concurrent behav-
iors for a given, fixed user interaction with the program. This requires the record-
ing and replay of user input events while exploring alternate schedules. More-
over, it is nontrivial to design effective thread schedulers for the typical Android
“looper” threads, which do nothing but execute the handlers of received mes-
sages.

2 Design and Implementation

The basic functionality of AsyncDroid is to repeat a sequence of ui events over a
systematic enumeration of thread schedules. We achieve this functionality via a
program instrumentation which provides explicit control over thread scheduling,
and recording/replaying of ui events for given thread schedules.

2.1 Recording and Repeating User Events

To record the user events, we instrument each visible ui component with an
additional event handler. When run in record mode, the instrumented handler
records each event and forwards it to the original handler. This allows us to
capture both direct user interaction, and simulated “monkey” interaction.

In replay mode, we use an input repeater which reads and replays the
recorded events for every thread schedule to be tested. The input repeater runs

Systematic Asynchrony Bug Exploration for Android Apps 457

in its own thread and feeds the user events to the application concurrently to
the execution of the other threads. AsyncDroid schedules this thread as well as
the other application threads, controlling the interleaving between sending an
event and the execution in the other threads.

In approaches in the literature, the user events are recorded by saving the
coordinates of an input event and replayed by giving the same input on the same
coordinates [6]. However, the timing of the inputs differ in each schedule and a
ui component might not be visible at a time we want to replay it. Repeating
an event using only the coordinates might result in the invocation of a wrong
event, since a different view might exist on the original event’s input coordinates
at the time of replay. To overcome this, we use an abstraction of an input event
close to the application semantics. Our event abstraction keeps the path to ui
component of the user event. While replaying an event, we make sure that the
recorded path to an event fully matches to the view on the currently visible ui.

2.2 Thread Scheduling

AsyncDroid controls the scheduling of the input repeater, ui, and background
threads. To explore different execution schedules, AsyncDroid treats the begin-
nings and ends of asynchronous methods as scheduling points, only preempting
threads at these points to determine a complete schedule.

AsyncDroid’s default scheduler runs threads until becoming blocked in a
round-robin fashion. The input repeater thread is enabled if it has more events
to replay and the next event’s ui component is visible. Similarly, the ui thread
and other threads are enabled if they have some tasks to execute. In Android,
it is likely that the ui thread have repetitive runtime tasks (for interprocess
communication, ui update, etc.) in its queue and never becomes disabled during
an execution. In this case, the standard preemption bounding approach would
spend a preemption to switch from the ui thread. Our tool blocks a thread and
switches to another thread when the message queue of a current thread is empty
or it has only recurring Android-runtime messages.

Though the default scheduler runs the threads in round-robin fashion, we use
delay bounding [5] to prioritize our search of alternate executions. For a given
bound k, we systematically explore all executions which correspond to thread
schedules which are k-delay deviations from the default schedule.

AsyncDroid also allows the programmer to specify his own default scheduler
by implementing certain scheduling hooks. To this end, we provide an interface
which exposes the current list of application threads, whether each thread is
blocked, the list of pending events in the input-repeater thread, and the lists of
pending tasks in the ui and background threads. The programmer and access
these lists in deciding which thread to dispatch at any given scheduling point.

3 Case Studies

As an instructive case study, we investigate an asynchrony bug in the Vlille
Checker app used with the public bicycle-sharing program in the city of Lille,

458 B.K. Ozkan et al.

France.2 The app displays a list of bicycle stations together with their status and
information. The user can (un)mark a station as a favorite, and limit their view
to favorite stations. While the list is being viewed, station information is updated
asynchronously in a background thread to keep the ui thread responsive.

The following scenario triggers our bug, depending on the execution order
of asynchronous methods. Figure 1 shows the relevant application code with
distinguished statements labeled L1, L2, and L3.

– The user clicks to view their favorites list.

L1 To initiate the status update of the favorite stations which are currently
visible on the screen, the application creates a sublist of visible favorite
stations. Crucially for the bug in question, this sublist is not represented by
a new data structure, but is instead backed by the same data structure as
the full list of favorite stations.

– The user clicks to remove a station from the favorites list.

L2 An asynchronous task executing on the ui thread removes the station from
the favorites list.

L3 An asynchronous task executing on a background thread iterates over the
visible favorites list in order to update their statuses.

Since L2 and L3 are executed asynchronously on separate threads, they can exe-
cute in any order, depending on hard-to-determine system scheduling factors. In
the case that L2 is executed before L3, the ArrayList constructor throws a Con-
currentModificationException as the favorites list backing the visible favorites
sublist has been modified.

Fig. 1. An exception thrown only in executions of the Vlille Checker app in which the
list removal at Statement L2 is executed between the sublist creation at L1 and its use
in the constructor at L3 of the asynchronously-called doInBackground method.

To produce the bug, we record the following event sequence and systemati-
cally explore possible schedules of asynchronous methods:3

2 The bug report: https://github.com/ojacquemart/vlilleChecker/issues/60.
3 The test which produces this bug is available on AsyncDroid’s Github repository.

https://github.com/ojacquemart/vlilleChecker/issues/60

Systematic Asynchrony Bug Exploration for Android Apps 459

1. click on a menu item to display all stations,
2. click on a station to add it into the favorites,
3. click on a menu item to display the favorite stations, and
4. click on the favorite station to remove it from the favorites.

Note that many schedules of asynchronous methods for this event sequence do
not expose the bug. For instance, without incurring delays, AsyncDroid’s default
scheduler runs each thread until it is no longer enabled before moving on to
the next thread in a round-robin fashion. The input repeater thread becomes
blocked after Event 3 is actuated, since Event 4 is not enabled until the favorite
stations list becomes visible. Next, the scheduler executes the pending ui-thread
tasks, causing the asynchronous doInBackground method to become pending
on the background thread. Once the ui thread becomes idle, the scheduler exe-
cutes the background task to completion before returning to the input repeater
thread where Event 4 is enabled, the favorite stations list having been updated
and made visible. In this way, our default scheduler, without delaying, executes
Statement L3 before L2, and does not expose the bug.

However, by enumerating all 1-delay executions, AsyncDroid does discover
an execution in which the ConcurrentModificationException is thrown, by delay-
ing the background thread before executing Statement L3. This delay causes our
default scheduler to return to the input repeater thread where Event 4 is enabled,
due to the ui thread having made the favorite stations list visible. After actu-
ating Event 4, we return to the ui thread to process its onClick handler before
returning to the background thread. This 1 delay execution thus executes State-
ment L2 before L1, and throws the exception.

We also applied our tool to the ACV comics and image viewer app4, the
Jamendo online music player app5, and a hand-crafted microbenchmark with
an injected asynchrony bug. We test the ACV app by providing tap inputs to
browse, view, and rotate images. Since tap inputs are always enabled in this app,
independently of the app state, our replay is not guaranteed to be faithful to the
original event sequence, e.g., in the case that certain taps are ignored in certain
states. This limitation could be overcome by more precise tracking of ui state.

The Jamendo music player app is tested by browsing, selecting and playing a
radio channel. While playing music, recurring messages are sent to the ui thread
to display track progress. As AsyncDroid repetitively runs all schedules without
restarting the app, these recurring tasks remain in the message queue after the
execution of a schedule completes. This causes the next schedule to start with
some leftover tasks. AsyncDroid overcomes this problem by calling an optional
finalizer method implemented by the programmer in his app itself to clean up the
tasks in the message queues. We tested the Jamendo app by adding a finalizer
method into its source code.

Our hand-crafted microbenchmark inserts into and deletes from a list of
items, in response to user events. When the user wants to insert an item, it
4 https://github.com/robotmedia/droid-comic-viewer.
5 https://github.com/telecapoland/jamendo-android.

https://github.com/robotmedia/droid-comic-viewer
https://github.com/telecapoland/jamendo-android

460 B.K. Ozkan et al.

Table 1. Quantitative results of our case studies.

of events # of switch # of sch. dec 0 delay 1 delay

of conf. Bug? # of conf. Bug?

Vlille checker 5 9 29 30 No 59 Yes

7 8 33 34 No 69 Yes

ACV comic viewer 6 9 19 14 No 31 No

8 9 23 19 No 40 No

Jamendo music player 3 23 100 69 No 87 No

5 21 37 24 No 61 No

Microbenchmark 3 5 7 8 No 10 Yes

5 5 11 12 No 19 Yes

increases the items count and performs the insertion in a background thread.
If the removal of the item in the last index is processed before the background
thread, the app throws an IndexOutOfBoundsException.

Table 1 lists the quantitative results of our case studies. As a rough measure
of behavioral coverage, we measure the number of “abstract” program config-
urations encountered in each exploration, which distinguish only the number
of asynchronous tasks pending on each thread. For each run, the table depicts
the length of a fixed input event sequence, the number of context switches and
the number of scheduling decision points encountered in the zero-delay execu-
tion, and the number of abstract configurations encountered. AsyncDroid quickly
reproduces the known, yet previously nondeterministically-occurring, bugs in the
Vlille Checker and our microbenchmark in a matter of minutes using a single
delay. While we do not know whether the ACV and Jamendo apps contain a
bug, AsyncDroid does not discover one within a single delay.

4 Limitations and Future Work

Applying systematic concurrency exploration to event driven programs faces
the fundamental obstacle that some schedules may become infeasible due to
the unavailability of a given ui component at a given time. When the compo-
nent corresponding to a scheduled-for-replay event is not visible on the screen,
we delay its activation, disrupting the intended schedule. This limitation raises
research questions about how to integrate the treatment of ui events in concert
with systematic concurrency exploration.

Controlling all scheduling decisions is a key implementation challenge. In our
current prototype, we focus on the systematic analysis of interleavings between
the asynchronous methods created by the given app, and leave the scheduling of
other asynchronous methods (e.g., periodic system events) uncontrolled.

AsyncDroid currently only supports recording and replaying of certain types
of ui events: we handle simple clicks, but not text inputs nor gestures. Capturing
a wider set of ui events will allow us to test a larger set of applications. Our
future work also involves developing coverage metrics to evaluate how various
scheduling strategies compare with respect to coverage of program behaviors.

Systematic Asynchrony Bug Exploration for Android Apps 461

References

1. Anand, S., Naik, M., Harrold, M.J., Yang, H.: Automated concolic testing of smart-
phone apps. In: Proceedings of the ACM SIGSOFT 20th International Symposium
on the Foundations of Software Engineering. pp. 59:1–59:11. FSE 2012, ACM,
New York, NY, USA (2012). http://doi.acm.org/10.1145/2393596.2393666

2. Azim, T., Neamtiu, I.: Targeted and depth-first exploration for systematic testing
of android apps. In: Proceedings of the 2013 ACM SIGPLAN International Con-
ference on Object Oriented Programming Systems Languages & Applications. pp.
641–660. OOPSLA 2013, ACM, New York, NY, USA (2013). http://doi.acm.org/
10.1145/2509136.2509549

3. Bielik, P.: Effective Race Detection for Android. Master’s thesis, ETH Zurich,
Switzerland (2014)

4. Choi, W., Necula, G., Sen, K.: Guided GUI testing of Android apps with minimal
restart and approximate learning. In: Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages
and Applications. pp. 623–640. OOPSLA 2013, ACM, New York, NY, USA (2013).
http://doi.acm.org/10.1145/2509136.2509552

5. Emmi, M., Qadeer, S., Rakamarić, Z.: Delay-bounded scheduling. In: Proceed-
ings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. pp. 411–422. POPL 2011, ACM, New York, NY, USA
(2011). http://doi.acm.org/10.1145/1926385.1926432

6. Gomez, L., Neamtiu, I., Azim, T., Millstein, T.: Reran: Timing- and touch-sensitive
record and replay for Android. In: Proceedings of the 2013 International Conference
on Software Engineering. pp. 72–81. ICSE 2013, IEEE Press, Piscataway, NJ, USA
(2013). http://dl.acm.org/citation.cfm?id=2486788.2486799

7. Hsiao, C.H., Yu, J., Narayanasamy, S., Kong, Z., Pereira, C.L., Pokam, G.A.,
Chen, P.M., Flinn, J.: Race detection for event-driven mobile applications. In:
Proceedings of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation. pp. 326–336. PLDI 2014, ACM, New York, NY, USA
(2014). http://doi.acm.org/10.1145/2594291.2594330

8. Lin, Y., Radoi, C., Dig, D.: Retrofitting concurrency for Android applications
through refactoring. In: Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering. pp. 341–352. FSE 2014, ACM,
New York, NY, USA (2014). http://doi.acm.org/10.1145/2635868.2635903

9. Machiry, A., Tahiliani, R., Naik, M.: Dynodroid: An input generation system for
Android apps. In: Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering. pp. 224–234. ESEC/FSE 2013, ACM, New York, NY, USA
(2013). http://doi.acm.org/10.1145/2491411.2491450

10. Maiya, P., Kanade, A., Majumdar, R.: Race detection for Android applications. In:
Proceedings of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation. pp. 316–325. PLDI 2014, ACM, New York, NY, USA
(2014). http://doi.acm.org/10.1145/2594291.2594311

11. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of
multithreaded programs. In: Proceedings of the 2007 ACM SIGPLAN Conference
on Programming Language Design and Implementation. pp. 446–455. PLDI 2007,
ACM, New York, NY, USA (2007). http://doi.acm.org/10.1145/1250734.1250785

http://doi.acm.org/10.1145/2393596.2393666
http://doi.acm.org/10.1145/2509136.2509549
http://doi.acm.org/10.1145/2509136.2509549
http://doi.acm.org/10.1145/2509136.2509552
http://doi.acm.org/10.1145/1926385.1926432
http://dl.acm.org/citation.cfm?id=2486788.2486799
http://doi.acm.org/10.1145/2594291.2594330
http://doi.acm.org/10.1145/2635868.2635903
http://doi.acm.org/10.1145/2491411.2491450
http://doi.acm.org/10.1145/2594291.2594311
http://doi.acm.org/10.1145/1250734.1250785

Norn: An SMT Solver for String Constraints

Parosh Aziz Abdulla1, Mohamed Faouzi Atig1, Yu-Fang Chen2, Lukáš Hoĺık3,
Ahmed Rezine4, Philipp Rümmer1, and Jari Stenman1(B)

1 Department of Information Technology, Uppsala University, Uppsala, Sweden
jari.stenman@it.uu.se

2 Institute of Information Science, Academia Sinica, Taipei, Taiwan
3 Faculty of Information Technology, Brno University of Technology,

Brno, Czech Republic
4 Department of Computer and Information Science,

Linköping University, Linköping, Sweden

Abstract. We present version 1.0 of the Norn SMT solver for string con-
straints. Norn is a solver for an expressive constraint language, including
word equations, length constraints, and regular membership queries. As
a feature distinguishing Norn from other SMT solvers, Norn is a decision
procedure under the assumption of a set of acyclicity conditions on word
equations, without any restrictions on the use of regular membership.

1 Introduction

We introduce version 1.0 of the Norn SMT solver. Norn targets an expressive
constraint language that includes word equations, length constraints, and regular
membership queries. Norn is based on the calculus introduced in [1]. This version
adopts several improvements on the original version, which allow it to efficiently
establish or refute the satisfiability of benchmarks that are out of the reach of
existing state of the art solvers.

Norn aims to establish satisfiability of constraints written as Boolean com-
binations of: (i) word equations such as equalities (a · u = v · b) or disequalities
(a ·u �= v ·b), where a, b are letters and u, v are string variables denoting words of
arbitrary lengths, (ii) length constraints such as (|u| = |v| + 1), where |u| refers
to the length of the word denoted by string variable u, and (iii) predicates rep-
resenting membership in regular expressions, e.g., u ∈ c · (a + b)∗. The analysis
is not trivial as it needs to capture subtle interactions between different types
of predicates. The general decidability problem is still open. We guarantee ter-
mination of our procedure in case the considered initial constraints are acyclic.
Acyclicity is a syntactic condition and it ensures that no variable appears more
than once in word (dis)equalities during the analysis. This defines a fragment
that is rich enough to capture all the practical examples we have encountered.

This work was supported by the Czech Science Foundation project 202/13/37876P,
the Ministry of Science and Technology of Taiwan (103- 2221-E-001 -019 -MY3
and 103-2221-E-001 -020 -MY3), Uppsala Programming for Multicore Architectures
Research Center (UPMARC), and the Linköping CENIIT Center (12.04).

c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 462–469, 2015.
DOI: 10.1007/978-3-319-21690-4 29

Norn: An SMT Solver for String Constraints 463

This version of the Norn solver follows a DPLL(T) architecture in order to
turn the calculus introduced in [1] into an effective proof procedure, and intro-
duces optimizations that are key to its current efficiency: an improved approach
to handling disequalities, and a better strategy for splitting equalities compared
to [1]. Norn accepts SMT-LIB scripts as input, both in the format proposed in
[2] and in the CVC4 dialect [6], and can handle the combination of string con-
straints and linear integer arithmetic. In addition, Norn contains a fixed-point
engine for processing recursive programs in the form of Horn constraints, which
are expressed as SMT-LIB scripts with uninterpreted predicates; the algorithm
for solving such Horn constraints was introduced in [1,9].

Related work. Over the last years, several SMT solvers for strings and related
logics have been introduced. A number of tools handled strings by means of a
translation to bit-vectors [5,10,11], thus assuming a fixed upper bound on the
length of the possible words. More recently, DPLL(T)-based string solvers lift
the restriction to strings of bounded length; this generation of solvers includes
Z3-str [14], CVC4 [6], and S3 [12], which are all compared to Norn in Sect. 4.
Most of those solvers are more restrictive than Norn in their support for language
constraints. In our experience, such restrictions are particularly problematic for
software model checking, where regular membership constraints offer an elegant
and powerful way of expressing and synthesising program invariants. Another
related technique are automata-based solvers for analyzing string-manipulated
programs [13]. According to [4], automata-based solvers are faster than the
SMT-based ones on checking single execution trace. On the other hand, Norns
ability to derive loop invariants and to verify entire programs can allow it to
conclude even in the presence of an infinite number of possible single executions.
Automata-based solvers would need to provide widening operators to handle
such cases.

2 Logic and Calculus

Our constraint language includes word equations, membership queries in regular
languages and length and arithmetic inequalities. We assume a finite alphabet
Σ and write Σ∗ to mean the set of finite words over Σ. We assume w.l.o.g. that
each letter in our alphabet is represented by its unique Unicode character. We
work with a set U of string variables denoting words in Σ∗ and write Z for the
set of integer numbers.

Assume variables u, v ∈ U , integers k ∈ Z, letters c ∈ Σ, and words w ∈ Σ∗.
We further write |t| for length of word t. The syntax of the constraints is then
given by:

φ ::= φ ∧ φ || ¬ φ || ϕ constraints

ϕ ::= t = t || e ≤ e || t ∈ R atomic predicates

t ::= ε || c || u || t · t terms

R ::= ∅ || ε || c || w || R · R || R + R || R ∩ R || RC || R∗ regular expressions

e ::= k || |t| || k ∗ e || e + e integer expressions

464 P.A. Abdulla et al.

A constraint is linear if no variable appears more than once in any of its
(dis)equalities. We write wt to mean a word denoted by a term t. Semantics
of the constraints are in [1].

Given a constraint φ in our logic, we build a proof tree rooted at φ by
repeatedly applying inference rules. We assume here, without loss of generality,
that φ is given in Disjunctive Normal Form. An inference rule is of the form:

B1 B2 ... Bn

A
Name

cond

Name is the name of the rule, cond is a side condition on A for the application
of the rule, B1 B2 ... Bn are the premises, and A is the conclusion. Premises
and conclusions are constraints. Each application consumes a conclusion and
produces premises. In our calculus, if one of the produced premises turns out
to be satisfiable, then φ is also satisfiable. If none of the produced premises
is satisfiable, then φ is unsatisfiable. The inference rules are introduced in [1].
The repeated application of the rules starting from a constraint φ is guaranteed
to terminate (i.e., giving a decision procedure) in case φ is acyclic. Intuitively,
acyclicity is a syntactic condition on the occurences of variables. This condition
ensures all (dis)equalities are linear, whether in φ or after the application of
some inference rule. We describe one rule. Other rules are introduced in [1].

Rule Eq-Var eliminates variable u from the equality u · t1 = t2 ∧ φ. The
equality is satisfied if a word wu coincides with the prefix of a word wt2 . We
assume u · t1 = t2 ∧ φ is linear (see [1] for the general case). There are two sets
of premises. The first set corresponds to all the cases where wu coincides with
a word wt3 where t2 is the concatenation t3 · t4. The second set represents all
situations where wt3 is a prefix of wu which is a prefix of wt3·v with t2 being
written as the concatenation t3 · v · t4.

{t1 = t4 ∧ φ[u/t3] | t2 = t3 · t4} ∪
{t1 = v2 · t4 ∧ φ[u/t3 · v1][v/v1 · v2] | t2 = t3 · v · t4}

u · t1 = t2 ∧ φ
Eq-Var(u · t1 = t2 is linear)

3 A DPLL(T)-Style Proof Procedure for Strings

We follow the classical DPLL(T)-architecture [8] to turn the calculus from Sect. 2
into an effective proof procedure. For a given (quantifier-free) formula in our
logic, first a Boolean skeleton is computed, abstracting every atom to a Boolean
variable. A SAT-solver is then used to check satisfiability of the Boolean skeleton,
producing (in the positive case) an implicant of the skeleton; the implicant is
subsequently translated back to a conjunction of string literals, and checked for
satisfiability in the string logic.

Our theory solver for checking conjunctions of string literals implements the
rules of Sect. 2 and Sect. 3.1, and handles all necessary splitting internally, i.e.,
without involving the SAT-solver. In our experience (which is consistent with
observations in other domains, e.g., [3]), this approach makes it easier to integrate

Norn: An SMT Solver for String Constraints 465

splitting heuristics, and often shows better performance in practice. In partic-
ular, our approach to split equalities is model-based and exploits information
extracted from arithmetic constraints in order to prune the search space; the
method is explained in Sect. 3.2.

Starting from a conjunction φ = (φ= ∧φ �= ∧φ∈ ∧φa) of literals (which is here
split into equalities φ=, disequalities φ�=, membership constraints φ∈, and arith-
metic constraints φa) the theory solver performs depth-first exploration until
either a proof branch is found that cannot be closed (and constitutes a model),
or all branches have been closed and discharged. In the latter case, information
about the string literals involved in showing unsatisfiability is propagated back
to the SAT-solver as a blocking clause.

Rules are applied to φ = (φ= ∧φ �= ∧φ∈ ∧φa) in the following order: (i) Satis-
fiability of φa (in Presburger arithmetic) is checked, (ii) Compound disequalities
in φ�= are eliminated (Sect. 3.1), (iii) Equalities in φ= with complex left-hand side
are split (Sect. 3.2), (iv) Membership constraints in φ∈ with complex term are
split, and (v) Satisfiability of all remaining membership literals and arithmetic
constraints is checked.

3.1 Efficient Handling of Disequalities

To handle disequalities, we proceed differently than the method presented in [1].
For each disequality of the form t �= t′, the rule Diseq-Split produces only
two premises. The first premise corresponds to the case where the words wt and
wt′ have different length. The second case is when wt and wt′ have the same
length but contain different letters c �= c′ after a common prefix. Rather than
constructing a premise for each pair of different letters (as it is done in [1]), we
introduce two special variables µ and µ′ (called witness variables) such that the
letters c and c′ correspond to the words denoted by µ and µ′. Therefore, the
length of these witness variables is one and this fact is added to the arithmetic
constraints. Furthermore, we add a disequality µ �= µ′ in order to denote that
c is different from c′. Assuming fresh variables u, v and v′, we rewrite t �= t′

as two equalities t = u · µ · v and t′ = u · µ′ · v′. Finally, w.l.o.g. we restrict
the inference rules such that witness variables can only be substituted by other
witness variables.

{|t| �= |t′| ∧ φ} ∪
{|v| = |v′| ∧ t = u · µ · v ∧ t′ = u · µ′ · v′ ∧ |µ| = 1 ∧ |µ′| = 1 ∧ µ �= µ′ ∧ φ}

t �= t′ ∧ φ
Diseq-Split

The new Rule Reg-Witness can only be applied to a witness variable
µ in a certain case. For a formula φ, we define the condition Θ(φ, µ) to
denote that µ appears in φ only in disequalities. The Rule Reg-Witness
replaces all membership predicates {µ ∈ Ri}ni=1 with an arithmetic constraint
Unicode(R1, R2, . . . , Rn, µ). This constraint uses a fresh variable µuni s.t. the

466 P.A. Abdulla et al.

set of possible lengths of the word denoted by µuni represents the set of Uni-
code characters belonging to the intersection of all regular expressions {Ri}ni=1.
In order to do so, we construct a finite state automaton A accepting the intersec-
tion of {Ri}ni=1. Furthermore, we restrict A to accept only words of size exactly
one (since µ is a witness variable). The obtained automaton is then determined.
Notice that the determined automaton B has only transitions from the initial
state to the final one. Each transition of B is labelled by a Unicode character
interval as specified by the automata library [7] we are using. Then, for each
transition labeled by an interval of the form {min, . . . ,max}, we associate the
arithmetic constraint min ≤ |µuni| ≤ max. Finally, our arithmetic constraint
Unicode(R1, R2, . . . , Rn, µ) will be the disjunction of all associated arithmetic
constraints to all the transitions of B. In the case that the intersection is empty,
we set Unicode(R1, R2, . . . , Rn, µ) to false.

Unicode(R1 ∩ . . . ∩ Rm, u) ∧ φ

µ ∈ R1 ∧ . . . ∧ u ∈ Rm ∧ φ
Reg-Witness(Θ(φ, µ))

Finally, the Rule Diseq-Witness replaces a disequality of the form µ �= µ′

by the arithmetic constraint |µuni| �= |µ′
uni|.

|µuni| 	= |µ′
uni| ∧ φ

µ 	= µ′ ∧ φ
Diseq-Witness

(Θ(φ, µ))

3.2 Length-Guided Splitting of Equalities

The original calculus rule for handling complex equalities is Eq-Var, which
systematically enumerates the different ways of matching up left-hand and right-
hand side terms. For a practical proof procedure, naive use of this rule is sub-
optimal in two respects: the number of cases to be considered grows quickly (in
the worst case, exponentially in the number of equalities); and the rule does not
provide any guidance on the order in which the cases should be considered, which
can have dramatic impact on the performance for satisfiable problems. We found
that both aspects can be improved by eagerly taking arithmetic constraints on
the length of strings into account.

To present the approach, we assume that conjunctions φ = (φ= ∧φ�=
∧φ∈ ∧φa) are continuously saturated by propagating length information from
φ= to φa: for every equality s = t, a corresponding length equality |s| = |t| is
added, compound expressions |s · t| are rewritten to |s| + |t|, and the length |w|
of concrete words w ∈ Σ∗ is evaluated. In addition, for every variable v an
inequality |v| ≥ 0 is generated. Similar propagation is possible for membership
constraints in φ∈.

Prior to splitting equalities from φ=, it is then possible to check the satisfiabil-
ity of arithmetic constraints φa (using any solver for Presburger arithmetic), and
compute a satisfying assignment β. This assignment defines the length valβ(|v|)
of all string variables v, and thus uniquely determines how the right-hand side
of an equality u · t1 = t2 should be split into a prefix corresponding to u, and

Norn: An SMT Solver for String Constraints 467

a suffix corresponding to t1. We obtain the following modified splitting rule,
which has the side condition that u · t1 = t2 · v · t3 is linear, and that a satisfying
assignment β of φa exists such that valβ(|t2|) ≤ valβ(|u|) ≤ valβ(|t2 · v|):

(
(t1 = v2 · t3 ∧ φa ∧ φ)[u/t2 · v1]

)
[v/v1 · v2]

u · t1 = t2 · v · t3 ∧ (|u| < |t2| ∧ φa) ∧ φ

u · t1 = t2 · v · t3 ∧ (|t1| < |t3| ∧ φa) ∧ φ

u · t1 = t2 · v · t3 ∧ φa ∧ φ
Len-Eq-Split

A similar rule is introduced to cover the situation that the right-hand side has to
be split between two concrete letters, i.e., in case we have valβ(|u|) = valβ(|t2|)
and valβ(|t1|) = valβ(|t3|) for an equation u · t1 = t2 · t3.

4 Implementation and Experiments

We compare the new version of Norn1 to other solvers on two sets of benchmarks.
First, we use the well-known set of Kaluza benchmarks, which were translated
to SMT-LIB by the authors of CVC4 [6]. These benchmarks contain constraints
generated by a Javascript analysis tool, and are mainly equational, with rela-
tively little use of regular expressions. Results are given in Table 1, and show
that currently Z3-str [14] performs best for this kind of benchmarks; however,
Norn can solve 27 benchmarks that no other tool can handle (Table 2). S3 [12]
produced internal errors on a larger number of the Kaluza benchmarks, and
sometimes results that were contradictory with the other solvers: for 95 prob-
lems, S3 claimed unsat, whereas Z3-str and CVC4 reported sat. For 27 of those,
also Norn gave the answer sat. No contradictions were observed between CVC4,
Z3-str, and Norn. A direct comparison with Norn 0.3 [1] was not possible due to
lacking support for SMT-LIB input. Instead, we internally modified Norn and
reverted back to the old version of the calculus. The results indicate that our
new rules significantly improve the performance specially on large benchmarks.

As a second set of benchmarks, we considered queries generated during
CEGAR-based verification of string-processing programs [1]; those queries are
quite small, but make heavy use of regular expressions and operators like the
Kleene star. Norn could solve all of the benchmarks. We did not observe any
major difference between the two versions of the calculus (runtimes are typically
very small). Comparison with Z3-str was not possible, since the solver does not
support regular expressions.2 CVC4 and S3 showed timeouts, ran out of memory,
or crashed on a large number of the benchmarks. S3 and Norn gave contradict-
ing answers in altogether 413 cases, with manual inspection indicating that the
answers by Norn were correct. This was confirmed by the S3 authors, and will
be fixed in the near future; a corrected version was not available by the deadline.

1 Tool and benchmarks are available on http://user.it.uu.se/%7Ejarst116/norn/.
2 The recently released Z3-str2 supports regular expressions, but in a format different

from all other compared tools, so that experiments could not be carried out by the
deadline.

468 P.A. Abdulla et al.

Table 1. Experimental results. All experiments were done on an AMD Opteron 2220
SE machine, running 64-bit Linux and Java 1.8. Runtime was limited to 240 s (wall
clock time), and heap space to 1.5 GB. CEGAR were benchmarks downsized from
UTF16 when necessary.

Norn 1.0 Norn 0.3 CVC4 1.5pre Z3-str 1.0.0 S3

Kaluza (Sat) 33 072 31 018 33 772 34 770 30 925

(Unsat) 11 595 11 256 11 625 11 799 11 408

(Unknown) 2 617 5 010 1 887 715 3 081

(Crash) 0 0 0 0 1 870

CEGAR (sat) 712 712 292 – 307

(Unsat) 315 315 98 – 530

(Unknown) 0 0 637 – 158

(Crash/OOM) 0 0 0 – 32

Table 2. Complementarity of the results: number of problems for which one tool can
show sat/unsat, whereas another tool times out or crashes. For instance, Norn can
prove satisfiability of 435 Kaluza benchmarks on which CVC4 times out.

Norn 1.0 CVC4 Z3-str S3

Sat Unsat Sat Unsat Sat Unsat Sat Unsat

Norn (Kaluza) – – +1 135 +57 +1 698 +231 +64 +125

(CEGAR) – – 0 0 – – 0 0

CVC4 (Kaluza) +435 +27 – – +998 +174 0 0

(CEGAR) +420 +217 – – – – +124 +398

Z3-str (Kaluza) 0 +27 0 0 – – 0 0

(CEGAR) – – – – – – – –

S3 (Kaluza) +2 184 +339 +2 752 +312 +3 750 +486 – –

(CEGAR) +134 +56 +57 +18 – – – –

References

1. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Hoĺık, L., Rezine, A., Rümmer, P.,
Stenman, J.: String Constraints for Verification. In: Biere, A., Bloem, R. (eds.)
CAV 2014. LNCS, vol. 8559, pp. 150–166. Springer, Heidelberg (2014)

2. Bjorner, N., Ganesh, V., Michel, R., Veanes, M.: Smt-lib sequences and regular
expressions. In: Fontaine, P., Goel, A. (eds.) SMT 2012. EPiC Series, vol. 20, pp.
77–87. EasyChair (2013)

3. Griggio, A.: A practical approach to satisfiability modulo linear integer arithmetic.
JSAT 8(1/2), 1–27 (2012)

Norn: An SMT Solver for String Constraints 469

4. Kausler, S., Sherman, E.: Evaluation of string constraint solvers in the con-
text of symbolic execution. In: Crnkovic, I., Chechik, M., Grünbacher, P.
(eds.) ACM/IEEE International Conference on Automated Software Engineering,
ASE’2014, Vasteras, Sweden - 15–19 Sept 2014. pp. 259–270. ACM (2014). http://
doi.acm.org/10.1145/2642937.2643003

5. Kiezun, A., Ganesh, V., Guo, P.J., Hooimeijer, P., Ernst, M.D.: HAMPI: A Solver
for String Constraints. In: ISTA. pp. 105–116. ACM (2009)

6. Liang, T., Reynolds, A., Tinelli, C., Barrett, C., Deters, M.: A DPLL(T) theory
solver for a theory of strings and regular expressions. In: Biere, A., Bloem, R. (eds.)
CAV 2014. LNCS, vol. 8559, pp. 646–662. Springer, Heidelberg (2014)

7. Møller, A.: dk.brics.automaton - finite-state automata and regular expressions for
Java (2010). http://www.brics.dk/automaton/

8. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
from an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J.
ACM 53(6), 937–977 (2006)

9. Rümmer, P., Hojjat, H., Kuncak, V.: Disjunctive interpolants for horn-clause verifi-
cation. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 347–363.
Springer, Heidelberg (2013)

10. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic
execution framework for JavaScript. In: IEEE Symposium on Security and Privacy.
pp. 513–528. IEEE Computer Society (2010)

11. Saxena, P., Hanna, S., Poosankam, P., Song, D.: FLAX: Systematic discovery of
client-side validation vulnerabilities in rich web applications. In: NDSS. The Inter-
net Society (2010)

12. Trinh, M.T., Chu, D.H., Jaffar, J.: S3: A symbolic string solver for vulnerability
detection in web applications. In: Ahn, G., Yung, M., Li, N. (eds.) CCS. pp. 1232–
1243. ACM (2014)

13. Yu, F., Alkhalaf, M., Bultan, T.: Stranger: an automata-based string analysis
tool for PHP. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015,
pp. 154–157. Springer, Heidelberg (2010)

14. Zheng, Y., Zhang, X., Ganesh, V.: Z3-str: A Z3-based string solver for web applica-
tion analysis. In: Meyer, B., Baresi, L., Mezini, M. (eds.) ESEC/FSE. pp. 114–124.
ACM (2013)

http://doi.acm.org/10.1145/2642937.2643003
http://doi.acm.org/10.1145/2642937.2643003
http://www.brics.dk/automaton/

PVSio-web 2.0: Joining PVS to HCI

Paolo Masci1(B), Patrick Oladimeji3, Yi Zhang2, Paul Jones2,
Paul Curzon1, and Harold Thimbleby3

1 Queen Mary University of London, London, UK
{p.m.masci,p.curzon}@qmul.ac.uk

2 U.S. Food and Drug Administration, Silver Spring, MD, USA
{yi.zhang2,paul.jones}@fda.hhs.gov

3 Swansea University, Swansea, UK
{p.oladimeji,h.thimbleby}@swansea.ac.uk

Abstract. PVSio-web is a graphical environment for facilitating the
design and evaluation of interactive (human-computer) systems. Using
PVSio-web, one can generate and evaluate realistic interactive prototypes
from formal models. PVSio-web has been successfully used over the last
two years for analyzing commercial, safety-critical medical devices. It has
been used to create training material for device developers and device
users. It has also been used for medical device design, by both formal
methods experts and non-technical end users.

This paper presents the latest release of PVSio-web 2.0, which will be
part of the next PVS distribution. The new tool architecture is discussed,
and the rationale behind its design choices are presented.

PVSio-web Tool: http://www.pvsioweb.org

Keywords: Prototyping · User interface analysis · Practical formal
tools

1 Introduction

Inadequate user interface design is repeatedly reported as a root cause of many
incidents in healthcare [1,2], avionics [3], and other safety-critical domains [4].
Design and analysis of user interfaces often requires a multidisciplinary team
of human factors specialists, engineers, and end users to validate requirements,
specifications, and implementation details. Rigorous formal methods tools can
enable early identification of potential design issues. State-of-the-art verification
tools like PVS [5], however, generally have minimal front-ends that create bar-
riers when formal methods experts need to work in a multidisciplinary team
and engage with non-experts of formal methods technologies — e.g., to validate
hypotheses included in the formal models, or to discuss formal analysis results.

US Government (outside the US) 2015. The rights of this work are transferred to
the extent transferrable according to title 17 U.S.C. 105.

c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 470–478, 2015.
DOI: 10.1007/978-3-319-21690-4 30

http://www.pvsioweb.org

PVSio-web 2.0: Joining PVS to HCI 471

The tool presented in this paper, PVSio-web, significantly reduces these
barriers. PVSio-web is a web-based environment for modeling and prototyp-
ing interactive (human-computer) systems in PVS, and is particularly suitable
for: validating hypotheses included in formal models and formal properties before
starting the verification process; demonstrating formal analysis results to engi-
neers and domain specialists in a way that is easy to comprehend; and enabling
lightweight formal analysis of user interfaces based on user-centred design meth-
ods, such as user testing and expert walkthroughs of prototypes. PVSio-web can
be freely downloaded with the latest version of PVS [6] or from our repository [7].

Related Work. SCR [8] is a toolset for the analysis of system requirements and
specifications. Using SCR, one can formally specify the behavior of a system, use
visual front-ends for demonstrating the system behavior based on the specifica-
tions, and use a group of formal methods tools (including PVS) for the analysis
of system properties. In contrast to our tool, SCR lacks specialized functional-
ities needed for the analysis of user interfaces, such as rapid generation of user
interface prototypes, deployment of prototypes on mobile devices, and logging
of user interactions. Simulink [9] is a de-facto standard environment for model-
based design and analysis of dynamic systems. It provides a graphical model
editor based on Statecharts, and functions for rapid generation of realistic pro-
totypes. Unlike our tool, Simulink offers very limited functions for prototyping
user interface designs. More importantly, its architecture is not open, preventing
it from being used with PVS or other formal analysis tools. In [10], an approach
to develop realistic device prototypes using graph models and interactive pictures
is presented, but the approach is not supported by a development environment,
and the prototypes are manually crafted. PetShop [11], IVY [12] and similar
verification tools for formal analysis of user interfaces lack functions for rapid
generation of realistic prototypes. Other verification tools like Bandera [13] and
PVSioChecker [14] are not specialized for user interface analysis, and features
such as rapid prototyping are out of their intended functionalities.

2 PVSio-web: System Overview and Applications

PVSio-web provides a formal methods based, sophisticated graphical front-end
for modeling and prototyping interactive (human-computer) systems. It trans-
forms the animation capabilities of PVS, and enables the user to rapidly generate
realistic prototypes in two steps: first, a picture of the user interface is loaded
into the tool; second, programmable areas are created over the picture and linked
to the formal model specifying the human-system interaction. Programmable
areas for input widgets (e.g., buttons) over the user interface picture define how
user actions are translated into PVS expressions that can be animated within
PVSio [15], the native animation environment of PVS. Programmable areas for
output widgets (e.g., displays), on the other hand, define how results returned by
PVSio are rendered into visual elements of the prototype, so the visual appear-
ance of the prototype can closely resemble the appearance of the real system in
the corresponding state.

472 P. Masci et al.

Fig. 1. Screenshots of the main tools provided by the PVSio-web environment.

Figure 1(a) is a screenshot of PVSio-web generating a prototype, where framed
boxes are programmable overlay areas: thus, our tool embeds a script in the
area over button “0” that translates click actions over the button into a PVS
expression click 0(st), and evaluates this expression in PVSio. The function
click 0 is defined in the PVS model of the system, st being the current model
state. Our tool automatically keeps track of model states during interaction with
the prototype, and seamlessly replaces st with the current model state. The
overlay over the display region renders the value of PVS expressions returned by
PVSio (here, as numbers).

Applications. PVSio-web has been applied successfully in the analysis of com-
mercial medical devices. Using PVSio-web, we have:

– demonstrated previously undetected design issues in medical devices [16,17],
– validated requirements for medical devices [18–21], and
– created training material [22] for device developers and users.

For example, the prototype shown in Fig. 1(a) is one of many that have been used
to analyze real medical devices, here a drug infusion pump. Our analysis focused
on the data entry defining how the infusion pump responds when the user enters
configuration parameters, such as therapy data or patient data. The PVS model
of the infusion pump’s user interface was obtained by translating the source-code
implementation of its user interface software into a PVS theory. Using PVSio-
web, we generated a realistic prototype based on the formal model, and used
it to perform quick exploratory analyses of the model to understand how to

PVSio-web 2.0: Joining PVS to HCI 473

Fig. 2. PVSio-web architecture. Rectangular boxes represent the main modules of the
tool; arrows between boxes represent use relationships between modules.

best formalize human factors principles as PVS theorems. An example human
factors principle is consistency, asserting that the same user actions should
produce the same results in logically equivalent situations. We formalized this
principle as a PVS theorem that checks whether the data entry interaction of the
device consistently registered button clicks in all states. This theorem allowed
us to discover previously undetected issues with the decimal point (full details
of the analysis are in [16]). The same prototype was also used to demonstrate
the identified design issues to regulators and real device users (nurses, doctors,
medical device trainers), resulting in the recognition of the safety implications of
these issues. This and other prototypes generated using PVSio-web are currently
used in training material for hospitals [23], device manufacturers, and regulators
to raise awareness about general user interface software issues [22].

3 The PVSio-web Architecture

The architecture of the latest release of PVSio-web is shown in Fig. 2. It fol-
lows the Model-View-Controller design pattern [24], creating a clear separation
between modules responsible for the behavior of the prototype and those for its
visual appearance. In particular, the behavior of a prototype is entirely specified
using PVS executable models animated within PVSio. PVSio is used as is, with-
out any modification that might compromise its correctness or sound integration
with PVS.

PVSio-web provides multiple facets; that is, it combines different develop-
ment environments specifically designed for different target users. One facet,
Simulator View, is designed for domain specialists and end users: it includes
only elements and functionalities for exploring the behavior of prototypes gen-
erated with PVSio-web. The other facets are designed for developers and formal
methods specialists. They provide tools for creating the visual appearance of
the prototype (Prototype Builder), and for editing the PVS model. Advanced
PVS users can use the Model Editor for editing and type-checking PVS models;
developers who are novice PVS users can use a visual model editor (Emucharts
Editor) for developing formal models using a graphical notation based on Stat-
echarts [25]. The facets work well together, allowing people with different back-
ground and expertise to work together with the same underlying formal models.

474 P. Masci et al.

� The Simulator View handles the execution of prototypes developed
within PVSio-web, and logs user interactions with the prototype. This mod-
ule renders the visual elements of the prototype, and implements functions
for detecting and logging user actions over input widgets. It also translates
user actions performed on the input widgets into PVS expressions; triggers the
evaluation of PVS expressions in PVSio; and renders PVS expressions returned
by PVSio into visual elements of the prototype. Translation of user actions into
PVS expressions, and rendering of PVS expressions into visual elements are
performed in real time using template scripts created with Prototype Builder.
Example prototypes executed within Simulator View are illustrated in [17,22].

� The Prototype Builder automates the generation of a prototype, pro-
viding a graphical environment with functions for defining the visual aspect of
the prototype (typically, a picture) and for creating programmable overlay areas
that enable interaction with the prototype. Overlay areas corresponding to input
widgets define which user actions are recognized (e.g., press, release, click) and
how these actions are translated into PVS expressions. The translation is per-
formed using templates that map user actions to PVS functions on the basis of
naming conventions. An example template is click <btn>(<st>), which trans-
lates clicks performed by the user over a button <btn> into a PVS function that
takes one parameter <st>, representing the current model state. Areas corre-
sponding to output widgets use string filters to extract the actual value of the
widget from PVS expressions returned by PVSio.

� The EmuCharts Editor implements a visual editor and code generators
for creating executable formal models. With this module, developers can: define
states by drawing labelled boxes; define transitions by drawing labelled arrows;
define variables representing relevant characteristics of the system; and generate
executable models from the visual diagram. Model generators employ constructs
from languages supported by popular analysis tools and programming languages:
state labels are translated into enumerated type constants; state variables are
translated into fields of a record type defining the system state; state transitions
are translated into transition functions over system states. Language constructs
for checking well-formedness of the model are automatically embedded in the
generated models. For example, the PVS model generator introduces subtyp-
ing [26] relations so that consistency and coverage of conditions can be checked
with the PVS type-checker (e.g., see the PVS model snippet in Fig. 1(c)).

� The Model Editor is a text editor for editing formal models, providing
the typical functionalities of modern IDEs (syntax highlighting, autocomplete,
search, etc.) as well as a file browser to perform operations on the file system.

� The PVSio Wrapper spawns PVSio processes needed for model anima-
tion, and hides the native read-eval-print loop of PVSio behind an API imple-
menting a standard observer pattern [27], with functions for sending commands
to PVSio, and for receiving call-backs when PVSio returns a result. This module
implements mechanisms to disable inappropriate configurations of our tool, e.g.,
it disallows spawning multiple concurrent instances of PVSio for demonstrating
concurrent systems (the demonstration of such systems must be based on a PVS
model that explicitly defines the concurrent behavior).

PVSio-web 2.0: Joining PVS to HCI 475

� The Co-Simulator creates a communication infrastructure that enables
exchange of simulation events and data between PVS models animated within
PVSio and models animated within other simulation environments. This module
is particularly useful for the development and evaluation of complex systems. In
particular, a development team can employ different modeling and analysis tools
for different parts of a complex system, while using the Co-Simulator to verify
system properties in a coordinated simulation environment. Example prototypes
using this module to perform co-simulation of PVS models and Simulink models
are described in [28,29].

4 Implementation

The core modules of PVSio-web are entirely implemented in JavaScript, which
eases the deployment of PVSio-web to mobile devices (tablets, smartphones, etc.)
allowing demonstrations to be given conveniently to domain experts. A client-
server architecture is used, in which the server builds on NodeJS [30] and the
client relies on the JavaScript engine of web browsers. Jison [31] is employed to
automatically generate language parsers from production rules. Model generators
use Handlebars [32] for generating formal specifications from model templates.
PVSio-web 2.0 includes model generators for PVS, MAL [12], PIM [33], and
VDM-SL [34]. PVSio-web text editors build on CodeMirror [35]. PVSio-web
visual editors build on D3.js [36].

PVSio-web was first released in early 2013 [37]. The tool has been contin-
uously extended with new features, and re-engineered to improve modularity
and the overall code quality. JSLint [38] and Jasmine [39] are routinely used to
ensure that our implementation is compliant with established coding standards
and that the code is well-formed. The latest version of PVSio-web consists of
18,000 lines of JavaScript code.

5 Conclusions and Future Directions

PVSio-web shows it is possible and productive to make realistic user interfaces,
with all the benefits of web access (mobility, platform independence), connected
closely to formal methods tools. PVSio-web makes professional formal methods
accessible to end users and others, as is required in best practice for user interface
design. We believe that our tool has the potential to improve the development
of safe and dependable device user interfaces, as it facilitates using formal meth-
ods practices in an area of product design that has typically not made use of
this technology. The tool is gaining popularity: it was downloaded over 1,600
times in 2014 [40]; research groups are exploring applications of the tool to the
analysis of commercial products in other application domains (e.g., Honeywell
is using it to analyze flight decks [41]). PVSio-web has been successfully used
in tutorials [42,43] to explain the structure of PVS models, and the meaning of
PVS theorems to researchers and students that were not familiar with formal
methods. Other universities [44–47] are also using our tool as a basis for projects

476 P. Masci et al.

and student theses. Current and future development directions include improved
support for advanced formal verification techniques. For example, we are devel-
oping a new visual front-end, Proof Explorer [48], to ease the demonstration of
formal proofs, the generation of test cases from verification results, and the devel-
opment of proof strategies specialized for the analysis of user interface software
(example strategies are informally described in [21]). We are additionally devel-
oping model generators and co-simulators to link our tool with other popular
formal methods tools, including SAL [49], KeYmaera [50], and Uppaal [51]. We
are also regularly adding new case studies in medical and other domains, e.g.,
for avionics and aerospace.

Acknowledgements. This work is part of CHI+MED (EPSRC grant [EP/G059
063/1]). The authors would like to thank SRI International, in particular John Rushby,
Sam Owre and Natarajan Shankar for supporting the development of our tool.

Disclaimer. The mention of commercial products, their sources, or their use in con-
nection with material reported herein is not to be construed as either an actual or
implied endorsement of such products by the U.S. Department of Health and Human
Services.

References

1. Simone, L.: Software-related recalls: an analysis of records. Biomed. Instrum. Tech-
nol. 47(6), 514–522 (2013)

2. US Food and Drug Administration (FDA), Manufacturer and User Facility Device
Experience Database (MAUDE). http://www.fda.gov/MedicalDevices/Device
RegulationandGuidance/PostmarketRequirements/ReportingAdverseEvents/
ucm127891.htm

3. Gelman, G., Feigh, K., Rushby, J.: Example of a complementary use of model
checking and human-performance simulation. IEEE Trans. Hum. Mach. Syst.
44(5), 576–590 (2014)

4. Millett, L., Thomas, M., Jackson, D., et al.: Software for Dependable Systems:
Sufficient Evidence?. National Academies Press, Washington, DC (2007)

5. Owre, S., Rushby, J., Shankar, N.: PVS: a prototype verification system. In: Kapur,
D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg (1992)

6. PVS Specification and Verification System – GitHub repository. https://github.
com/samowre/PVS

7. PVSio-web - Interactive human-computer systems modelling and prototyping tool.
http://www.pvsioweb.org

8. Heitmeyer, C., Kirby, J., Labaw, B., Bharadwaj, R.: SCR: a toolset for specifying
and analyzing software requirements. In: Vardi, M.Y., Hu, A.J. (eds.) CAV 1998.
LNCS, vol. 1427, pp. 526–531. Springer, Heidelberg (1998)

9. Mathworks Simulink. http://www.mathworks.com/products/simulink
10. Thimbleby, H., Gow, J.: Applying graph theory to interaction design. In: Gulliksen,

J., Harning, M.B., van der Veer, G.C., Wesson, J. (eds.) EIS 2007. LNCS, vol. 4940,
pp. 501–519. Springer, Heidelberg (2008)

11. Palanque, P., Ladry, J.-F., Navarre, D., Barboni, E.: High-Fidelity Prototyping of
Interactive Systems Can Be Formal Too. In: Jacko, J.A. (ed.) HCI International
2009, Part I. LNCS, vol. 5610, pp. 667–676. Springer, Heidelberg (2009)

http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/PostmarketRequirements/ReportingAdverseEvents/ucm127891.htm
http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/PostmarketRequirements/ReportingAdverseEvents/ucm127891.htm
http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/PostmarketRequirements/ReportingAdverseEvents/ucm127891.htm
https://github.com/samowre/PVS
https://github.com/samowre/PVS
http://www.pvsioweb.org
http://www.mathworks.com/products/simulink

PVSio-web 2.0: Joining PVS to HCI 477

12. Campos, J., Harrison, M.: Interaction engineering using the IVY tool. In: Pro-
ceedings of the ACM SIGCHI Symposium on Engineering Interactive Computing
Systems (EICS09), pp. 35–44. ACM (2009)

13. Hatcliff, J., Dwyer, M.B., Păsăreanu, C.S.: Foundations of the Bandera abstraction
tools. In: Mogensen, T.Æ., Schmidt, D.A., Sudborough, I.H. (eds.) The Essence of
Computation. LNCS, vol. 2566, pp. 172–203. Springer, Heidelberg (2002)

14. Dutle, A.M., Muñoz, C.A., Narkawicz, A.J., Butler, R.W.: Software validation via
model animation. In: Blanchette, J.C., Kosmatov, N. (eds.) TAP 2015. LNCS, vol.
9154, pp. 92–108. Springer, Heidelberg (2015)

15. Muñoz, C.: Rapid prototyping in PVS, Technical report NIA Report No. 2003–03,
NASA/CR-2003-212418. National Institute of Aerospace (2003)

16. Masci, P., Zhang, Y., Jones, P., Curzon, P., Thimbleby, H.: Formal verification of
medical device user interfaces using PVS. In: Gnesi, S., Rensink, A. (eds.) FASE
2014 (ETAPS). LNCS, vol. 8411, pp. 200–214. Springer, Heidelberg (2014)

17. Masci, P., Oladimeji, P., Curzon, P., Thimbleby, H.: Tool demo: Using PVSio-web
to demonstrate software issues in medical user interfaces. In: 4th International
Symposium on Foundations of Healthcare Information Engineering and Systems
(FHIES 2014) (2014)

18. Masci, P., Ayoub, A., Curzon, P., Harrison, M., Lee, I., Thimbleby, H.: Verification
of interactive software for medical devices: PCA infusion pumps and FDA regula-
tion as an example. In: EICS2013, 5th ACM SIGCHI Symposium on Engineering
Interactive Computing Systems. ACM Digital Library (2013)

19. Masci, P., Ayoub, A., Curzon, P., Lee, I., Sokolsky, O., Thimbleby, H.: Model-based
development of the generic PCA infusion pump user interface prototype in PVS.
In: Bitsch, F., Guiochet, J., Kaâniche, M. (eds.) SAFECOMP. LNCS, vol. 8153,
pp. 228–240. Springer, Heidelberg (2013)

20. Masci, P., Rukšėnas, R., Oladimeji, P., Cauchi, P., Gimblett, A., Li, Y., Curzon,
P., Thimbleby, H.: The benefits of formalising design guidelines: a case study on
the predictability of drug infusion pumps. Innovations Syst. Softw. Eng. 11(2),
73–93 (2013)

21. Harrison, M., Masci, P., Campos, J., Curzon, P.: Demonstrating that medical
devices satisfy user related safety requirements. In: 4th International Symposium
on Foundations of Healthcare Information Engineering and Systems (FHIES 2014)
(2014)

22. Masci, P.: Design issues in medical user interfaces. https://www.youtube.com/
watch?v=T0QmUe0bwL8

23. Masci, P.: Data entry issues in medical devices. Seminar given within the Washing-
ton Adventist Hospital’s Continuing Medical Education (CME) Program (2014)

24. Krasner, G., Pope, S.: A description of the model-view-controller user interface
paradigm in the Smalltalk-80 system. J. Object Oriented Program. 1(3), 26–49
(1988)

25. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Pro-
gram. 8, 231–274 (1987)

26. Shankar, N., Owre, S.: Principles and pragmatics of Subtyping in PVS. In: Bert,
D., Choppy, C., Mosses, P.D. (eds.) WADT 1999. LNCS, vol. 1827, pp. 37–52.
Springer, Heidelberg (2000)

27. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-oriented Software. Pearson Education, Upper Saddle River (1994)

28. Masci, P., Zhang, Y., Jones, P., Oladimeji, P., D’Urso, E., Bernardeschi, C., Curzon,
P., Thimbleby, H.: Combining PVSio with Stateflow. In: Badger, J.M., Rozier, K.Y.
(eds.) NFM 2014. LNCS, vol. 8430, pp. 209–214. Springer, Heidelberg (2014)

https://www.youtube.com/watch?v=T0QmUe0bwL8
https://www.youtube.com/watch?v=T0QmUe0bwL8

478 P. Masci et al.

29. Bernardeschi, C., Domenici, A., Masci, P.: Integrated simulation of implantable
cardiac pacemaker software and heart models. In: 2nd International Conference
on Cardiovascular Technologies (CARDIOTECHNIX 2014). ScitePress Digital
Library (2014). http://www.scitepress.org

30. Node.js. http://nodejs.org
31. Jison - JavaScript Parser Generator. http://jison.org
32. Handlebars Semantic Templates. http://handlebarsjs.com
33. Bowen, J., Reeves, S.: Modelling safety properties of interactive medical systems.

In: Proceedings of the 5th ACM SIGCHI Symposium on Engineering Interactive
Computing Systems, EICS 2013, pp. 91–100. ACM (2013)

34. Masci, P., Couto, L., Larsen, P., Curzon, P.: Integrating the PVSio-web modelling
and prototyping environment with Overture. In: 13th Overture Workshop, Satellite
Event of FM 2015 (2015)

35. CodeMirror text editor for web browsers. http://codemirror.net
36. D3.js JavaScript library for dynamic creation and control of graphical elements.

http://d3js.org
37. Oladimeji, P., Masci, P., Curzon, P., Thimbleby, H.: PVSio-web: a tool for rapid

prototyping device user interfaces in PVS. In: 5th International Workshop on
Formal Methods for Interactive Systems (FMIS 2013) (2013). http://www.
pvsioweb.org

38. JSLint - JavaScript Code Quality Tool. http://www.jslint.com
39. Jasmine - JavaScript Testing Tool. http://jasmine.github.io
40. Download statistics for package pvsio-web. http://npm-stat.com/charts.html?

package=pvsio-web
41. Hall, B., Bhatt, D.: Formal Specification and Verification of Human Interactive

Interfaces Incorporating Voice Control. Project Proposal, Honeywell (2013)
42. Medical devices and HCI. Full day tutorial at NordiCHI (2014). http://cs.swan.

ac.uk/∼cspo/2014/nordichi/
43. Masci, P.: Design and analysis of software for interactive medical devices. Ph.D.

module at University of Pisa (2014). http://phd.dii.unipi.it/formazione/item/
85-dr-paolo-masci

44. Robb, N.: Exploring Aspects of Automated Test Generation on Models. Waikato
University, New Zealand, Honour Project (2015)

45. Pascoe, I.: Usability study of a system that models interactive systems. Waikato
University, New Zealand, Honour Project (2015)

46. D’Urso, E.: Emulink: a graphical modelling environment for PVS, Master’s thesis.
University of Pisa, Italy (2014)

47. Faria, C.: Web-base user interface prototyping and simulation, Master’s thesis.
University of Minho, Portugal (2014)

48. Proof Explorer. https://github.com/thehogfather/ProofExplorer
49. de Moura, L., Owre, S., Rueß, H., Rushby, J., Shankar, N., Sorea, M., Tiwari, A.:

SAL 2. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 496–500.
Springer, Heidelberg (2004)

50. Platzer, A., Quesel, J.-D.: KeYmaera: a hybrid theorem prover for hybrid systems
(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 171–178. Springer, Heidelberg (2008)

51. Behrmann, G., David, A., Larsen, K., Hakansson, J., Petterson, P., Yi, W., Hen-
driks, M.: Uppaal 4.0. In: Third International Conference on Quantitative Evalu-
ation of Systems. QEST 2006, pp. 125–126. IEEE (2006)

http://www.scitepress.org
http://nodejs.org
http://jison.org
http://handlebarsjs.com
http://codemirror.net
http://d3js.org
http://www.pvsioweb.org
http://www.pvsioweb.org
http://www.jslint.com
http://jasmine.github.io
http://npm-stat.com/charts.html?package=pvsio-web
http://npm-stat.com/charts.html?package=pvsio-web
http://cs.swan.ac.uk/~cspo/2014/nordichi/
http://cs.swan.ac.uk/~cspo/2014/nordichi/
http://phd.dii.unipi.it/formazione/item/85-dr-paolo-masci
http://phd.dii.unipi.it/formazione/item/85-dr-paolo-masci
https://github.com/thehogfather/ProofExplorer

The Hanoi Omega-Automata Format

Tomáš Babiak1, Frantǐsek Blahoudek1, Alexandre Duret-Lutz2,
Joachim Klein3(B), Jan Křet́ınský5, David Müller3, David Parker4,

and Jan Strejček1

1 Faculty of Informatics, Masaryk University, Brno, Czech Republic
2 LRDE, EPITA, Le Kremlin-Bicêtre, France

3 Technische Universität Dresden, Dresden, Germany
klein@tcs.inf.tu-dresden.de

4 University of Birmingham, Birmingham, UK
5 IST Austria, Klosterneuburg, Austria

Abstract. We propose a flexible exchange format for ω-automata, as
typically used in formal verification, and implement support for it in a
range of established tools. Our aim is to simplify the interaction of tools,
helping the research community to build upon other people’s work. A
key feature of the format is the use of very generic acceptance condi-
tions, specified by Boolean combinations of acceptance primitives, rather
than being limited to common cases such as Büchi, Streett, or Rabin.
Such flexibility in the choice of acceptance conditions can be exploited
in applications, for example in probabilistic model checking, and fur-
thermore encourages the development of acceptance-agnostic tools for
automata manipulations. The format allows acceptance conditions that
are either state-based or transition-based, and also supports alternating
automata.

1 Introduction

Finite automata over infinite words, ω-automata, play a crucial role in formal
verification. For instance, they are a key component in the automata-theoretic
approach to LTL model checking [21], where the property in question is encoded
as an ω-automaton. There is a long history of research and ongoing tool devel-
opment, trying to produce more compact automata in theory and in practice.

T. Babiak, F. Blahoudek, and J. Strejček have been supported by The Czech Science
Foundation, grant GBP202/12/G061. J. Klein and D. Müller have been supported
by the DFG through the collaborative research centre HAEC (SFB 912), the Excel-
lence Initiative by the German Federal and State Governments (cluster of excellence
cfAED and Institutional Strategy), the Graduiertenkolleg QuantLA (1763), and the
DFG/NWO-project ROCKS, and the EU-FP-7 grant MEALS (295261). J. Křet́ınský
has been supported in part by the European Research Council (ERC) under grant
267989 (QUAREM), by the Austrian Science Fund (FWF) under grants S11402-
N23 (RiSE) and Z211-N23 (Wittgenstein Award), and by the People Programme
(Marie Curie Actions) of the European Union’s Seventh Framework Programme
(FP7/2007–2013) under REA grant agreement No 291734.

c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 479–486, 2015.
DOI: 10.1007/978-3-319-21690-4 31

480 T. Babiak et al.

Formats to represent ω-automata have mostly been defined in an ad-hoc
manner, tailored to their particular tools, setting and scope, and tend to be
restricted to a few specific acceptance conditions. For classical Büchi automata,
tools often use Spin’s never claims [8] (see Fig. 1(c)), or LBT’s format [17] (see
Fig. 1(b)), which can also represent generalized Büchi automata and which was
extended with transition-based acceptance by LBTT [19]. For Rabin and Streett
automata, the format of ltl2dstar [10] can be used, provided those automata
are complete, deterministic, and use state-based acceptance.

Fig. 1. A Büchi automaton for the LTL formula p0Up1 encoded in three formats.

The one format that covers most common acceptance conditions (Büchi, gen-
eralized Büchi, co-Büchi, Rabin, Streett, etc.) and automata structures (deter-
ministic, non-deterministic, and alternating) is the XML-based Goal File Format
(GFF) used internally by the Goal tool [20]. It uses specific encodings for the
different acceptance conditions. For instance, there is a special notation to define
the sets in each acceptance pair of Rabin conditions. This necessitates changes
to the format and its parsers when introducing new acceptance conditions and
makes acceptance-agnostic manipulations difficult.

Based on our experience as implementers of tools producing, consuming, and
manipulating ω-automata, we have set out to define a common, flexible, and
extensible format for representing ω-automata in a uniform way. The result is the
Hanoi Omega-Automata (HOA) format.1 A crucial feature is the introduction
of a generic way to specify the acceptance condition as an arbitrary Boolean
formula over the acceptance primitives “infinitely often” and “finitely often”,
covering the common acceptance conditions discussed so far and more.

Firstly, this approach facilitates the exchange and usage of new acceptance
conditions, which can provide important gains in efficiency. For instance, the
generalized Rabin condition [13] has led to an orders-of-magnitude speed-up
of probabilistic LTL model checking [3,12]. Secondly, it offers flexibility in the
1 The discussion about this format started during ATVA’13 in Hanoi, hence the name.

The Hanoi Omega-Automata Format 481

choice of acceptance conditions, which can again be quite beneficial in practice,
such as for deterministic Streett and Rabin automata [9], where there is an
exponential worst-case size difference in both directions [16].

Thirdly, arbitrary Boolean combinations of acceptance conditions can be
exploited. For example, building a deterministic automaton for an LTL formula
using a product of the automata constructed for its subformulas can be ben-
eficial in practice [9]. But this normally only works when the structure of the
formula and acceptance condition are aligned, e.g., conjunctive formulas and
a conjunctive acceptance condition such as Streett. With generic acceptance,
it becomes possible to compositionally construct automata using disjunction,
conjunction, and negation of deterministic automata with unrelated acceptance
conditions. For some verification problems, such as probabilistic model checking
of LTL in Markov chains, this generic acceptance condition can be used directly
for verification.

The HOA format offers flexibility in other respects too. It supports various
structural variants of ω-automata such as labels on states or transitions and
state-based or transition-based acceptance, and can describe deterministic, non-
deterministic, and alternating automata. Despite its generality, the format also
contains features that allow a concise and readable representation in special cir-
cumstances, such as when dealing with deterministic complete automata, where
the number of transitions per state is constant.

We have implemented support for the HOA format in various established
tools, as detailed in Sect. 3, and are already seeing several of the intended bene-
fits. Interaction between existing tools has become significantly easier: they are
no longer restricted by the particular format of automata used, but only by the
algorithms implemented to work with them. This shortens development time
and can bring performance gains, as described above. It also facilitates research
into new types of automata; for instance the intermediate co-Büchi alternating
automata built by ltl3ba can now be exported to an easily-readable format.
More generally, we hope to stimulate the development of acceptance-agnostic
tools for the automata construction pipeline, e.g., for doing structural transfor-
mations such as switching between state- and transition-based acceptance or for
reduction algorithms that do not rely on a particular acceptance condition.

2 Main Features of the HOA Format

The HOA format currently supports the following:

– deterministic, non-deterministic, and alternating ω-automata,
– both state-labelled and transition-labelled ω-automata,
– generic acceptance conditions, specified in a uniform and extensible way,
– both state-based and transition-based acceptance.

482 T. Babiak et al.

The format was also designed to:

– be succinct and human-readable,
– be extensible, by allowing additional information to be stored in the headers,
– support streaming, for processing automata in batches.

The full specification of the format and some examples can be found at http://
adl.github.io/hoaf/. Below, we discuss a few of the most important features.

As seen in Fig. 1(d), an automaton is defined in two parts: a header that
specifies the characteristics of the automaton, and a body that gives the tran-
sition structure, the labels of states or transitions (in square brackets), and the
acceptance sets (in curly brackets). Numbers in the body outside any brackets
always refer to states. Labels (in square brackets) are Boolean formulas over inte-
gers that index the atomic propositions listed in the AP: header. Using indices
instead of atomic propositions makes it easy to rename an atomic proposition,
and allows using arbitrarily long names without bloating the resulting file.

Header lines that start with a capital letter are supposed to affect the seman-
tics of the automaton, while header lines that start with a lower-case letter
are only informative. The HOA specification reserves a few header names, but
additional headers can be added as needed. This gives an easy and robust way
for automata producers to extend the format and emit additional information
about the automaton: Consumers that encounter a capitalized header they do
not understand should report an error, but can safely ignore a lower-case one.

The Acceptance line specifies the acceptance condition formally. This line
has the form “Acceptance: n acc”, where n gives the number of acceptance sets
used, subsequently named 0, . . . , n − 1, and acc is a formula built according to
the following grammar.

acc ::= f | t | Inf(s) | Inf(!s) | Fin(s) | Fin(!s) | acc&acc | acc|acc | (acc)

Above, s denotes one of the acceptance sets. Membership in these sets for states
and transitions is defined in the body of the automaton. A run satisfies an
acceptance primitive Inf(s) or Fin(s) iff it visits the acceptance set s infinitely
often or at most finitely often, respectively. The same notations with !s refer to
the complement of the set s.2 A run is accepting if it satisfies the acceptance
condition acc. We do not need a negation operator, as negation can be pushed
into the acceptance primitives, e.g., ¬Inf(s) is equivalent to Fin(s).

In the case of Fig. 1(d), there is only one acceptance set, and accepting runs
should visit this acceptance set infinitely often. In the body of the automaton,
state 1 is marked with {0}, meaning that it belongs to the set 0.

Rabin acceptance with 3 pairs of acceptance sets could be defined as follows:

Acceptance: 6 (Fin(0)&Inf(1))|(Fin(2)&Inf(3))|(Fin(4)&Inf(5))

Here, a run is accepting if it visits set 0 finitely and set 1 infinitely often, or set
2 finitely and set 3 infinitely often, or analogously for sets 4 and 5.
2 Readers familiar with LTL can interpret Inf(s), Fin(s), Inf(!s), Fin(!s) as mean-

ing GFps, FG¬ps, GF¬ps, FGps, where ps is the property “belongs to set s”.

http://adl.github.io/hoaf/
http://adl.github.io/hoaf/

The Hanoi Omega-Automata Format 483

Fig. 2. A (non-simplified) transition-based generalized deterministic Rabin automaton
for the LTL formula G(Fa ∧ XFb).

Figure 2 shows an example of a transition-based generalized deterministic
Rabin automaton (such as produced internally by ltl3dra before optimiza-
tions). Here, acceptance sets are expressed in terms of transitions. As a final
example, Fig. 3 shows an alternating transition-based co-Büchi automaton, such
as those studied in [18]. Alternation is supported by allowing a transition to
have multiple destinations. Runs over alternating automata are trees, and in
this example a run is accepting iff the only transition in the acceptance set 0 is
visited finitely often in all the branches, as specified by the Acceptance: line.
This example also demonstrates that states may be named.

In general, most of the tools that are the ultimate consumers of HOA
automata, such as model checkers, will employ algorithms restricted to particular
acceptance conditions. There are often multiple ways to syntactically structure
the acceptance condition. For example, the Rabin acceptance can be expressed
with the sets in the pairs swapped or complemented, as in [14]. Therefore, we
specify canonical expression and acceptance set indices for the common accep-
tance conditions, and an optional acc-name: header line which helps tools to
detect acceptance conditions they support. However, as discussed in the intro-
duction, some verification procedures can make direct use of generic acceptance
conditions.

3 Application Support

We have implemented support for HOA in a range of tools, with the current
status available at http://adl.github.io/hoaf/support.html, including links to
releases of each tool and a Live CD ISO for easy investigation of them all.

HOA Generation. Generating automata in the HOA format is now sup-
ported by several tools: ltl2dstar [10], which translates LTL to determinis-
tic Rabin or Street automata; ltl3ba [1], which generates Büchi automata,

http://adl.github.io/hoaf/support.html

484 T. Babiak et al.

Fig. 3. Alternating transition-based co-Büchi automaton for (Fa ∧ G(b ∧ Xc)) ∨ c.

transition-based generalized Büchi automata, and very weak alternating co-
Büchi automata; ltl3dra [2], which converts a fragment of LTL to determinis-
tic Rabin automata, transition-based generalized deterministic Rabin automata,
and very weak alternating co-Büchi automata; and Rabinizer3 [12], which
translates LTL into state- and transition-based variants of deterministic Rabin
automata and generalized deterministic Rabin automata.

Furthermore, Spot [6] offers many tools for generating automata in the HOA
format: ltl2tgba [5] can translate LTL/PSL into Büchi automata, transition-
based generalized Büchi automata or monitors; randaut generates random Büchi
automata, transition-based generalized Büchi automata or monitors; and finally
dstar2tgba converts deterministic automata in the dstar format into Büchi
automata, transition-based generalized Büchi automata or monitors. The Spot
tool autfilt filters, transforms, and converts formats for Büchi automata, gen-
eralized Büchi automata, and monitors and supports reading and writing HOA,
with ltldo wrapping other LTL/PSL-to-automata translators to convert their
input and output. This command and the previous one can be used to pro-
duce HOA output from existing tools that only output never claims or the LBT
format.

HOA Parsing. There are two parsers for the HOA format. The first, in
C++, is included in Spot and is able to read a stream of automata whose
format can be either HOA, LBT or never claim. This parser powers the tools
autfilt and ltldo (presented above), and also ltlcross [4] (a verifier for LTL
translators). At the time of writing, Spot does not yet support alternation.

The second is the jhoafparser library [11], which provides a Java-based
parser. This provides a convenient interface for applications to consume the
different elements of the HOA format, taking care of basic sanity checks. The
library is accompanied by a command-line tool that checks the well-formedness
of an automaton in the HOA format and performs basic manipulations.

HOA Import. We have extended the probabilistic model checker PRISM [15]
to interface with external tools for the conversion from LTL to deterministic
automata. This is done using the HOA format and jhoafparser. In parallel, we

The Hanoi Omega-Automata Format 485

have expanded PRISM’s ω-automata verification procedures: Markov chains can
now be model checked against generic acceptance conditions, giving producers of
deterministic automata full flexibility in terms of acceptance conditions. Markov
decision processes can be checked against both generalized or standard Rabin
acceptance conditions. As a result, we have successfully interfaced PRISM with
Rabinizer3, ltl2dstar, and ltl3dra.

4 Conclusion

We have presented a new format for ω-automata that supports generic accep-
tance conditions, and implemented it in several tools. Besides smoothing the
interaction between tools, this representation of acceptance conditions allows a
significant flexibility and performance increase, which has already been harnessed
in PRISM, and encourages tool developers to expand the range of supported
acceptance conditions. The HOA format has been developed openly on GitHub,
and an issue tracker keeps a public archive of our discussion and decisions. We
encourage other tool authors to report issues and suggest improvements.

References

1. Babiak, T., Křet́ınský, M., Řehák, V., Strejček, J.: LTL to Büchi automata transla-
tion: fast and more deterministic. In: Flanagan, C., König, B. (eds.) TACAS 2012.
LNCS, vol. 7214, pp. 95–109. Springer, Heidelberg (2012)

2. Babiak, T., Blahoudek, F., Křet́ınský, M., Strejček, J.: Effective translation of LTL
to deterministic Rabin automata: beyond the (F,G)-fragment. In: Van Hung, D.,
Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 24–39. Springer, Heidelberg
(2013)

3. Chatterjee, K., Gaiser, A., Křet́ınský, J.: Automata with generalized Rabin pairs
for probabilistic model checking and LTL synthesis. In: Sharygina, N., Veith, H.
(eds.) CAV 2013. LNCS, vol. 8044, pp. 559–575. Springer, Heidelberg (2013)

4. Duret-Lutz, A.: Manipulating LTL formulas using Spot 1.0. In: Van Hung, D.,
Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 442–445. Springer, Heidelberg
(2013)

5. Duret-Lutz, A.: LTL translation improvements in Spot 1.0. Int. J. Crit. Comput.
Based Syst. 5(1/2), 31–54 (2014)

6. Duret-Lutz, A., Poitrenaud, D.: SPOT: an extensible model checking library using
transition-based generalized Büchi automata. In: MASCOTS 2004, pp. 76–83.
IEEE Computer Society Press (2004)

7. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic ver-
ification of linear temporal logic. In: PSTV 1995, pp. 3–18. Chapman and Hall
(1996)

8. Holzmann, G.J.: The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley, Reading (2003)

9. Klein, J., Baier, C.: Experiments with deterministic ω-automata for formulas of
linear temporal logic. Theor. Comput. Sci. 363(2), 182–195 (2006)

10. Klein, J., Baier, C.: On-the-fly stuttering in the construction of deterministic ω-
automata. In: Holub, J., Ždárek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 51–61.
Springer, Heidelberg (2007)

486 T. Babiak et al.

11. Klein, J., Müller, D.: The jhoafparser library (2015). http://automata.tools/hoa/
jhoafparser/

12. Komárková, Z., Křet́ınský, J.: Rabinizer 3: Safraless translation of LTL to small
deterministic automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS,
vol. 8837, pp. 235–241. Springer, Heidelberg (2014)

13. Křet́ınský, J., Esparza, J.: Deterministic automata for the (F,G)-fragment of LTL.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 7–22.
Springer, Heidelberg (2012)

14. Krishnan, S.C., Puri, A., Brayton, R.K.: Deterministic ω-automata vis-a-vis deter-
ministic Büchi automata. In: Du, D.-Z., Zhang, X.-S. (eds.) ISAAC 1994. LNCS,
vol. 834, pp. 378–386. Springer, Heidelberg (1994)

15. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011)

16. Löding, C.: Optimal bounds for transformations of ω-automata. In: Pandu Rangan,
C., Raman, V., Sarukkai, S. (eds.) FST TCS 1999. LNCS, vol. 1738, pp. 97–109.
Springer, Heidelberg (1999)

17. Rönkkö, M.: LBT: LTL to Büchi conversion. http://www.tcs.hut.fi/Software/
maria/tools/lbt/ (1999). Implements [7]

18. Tauriainen, H.: Automata and linear temporal logic: translation with transition-
based acceptance. Ph.D thesis, Helsinki University of Technology, Espoo, Finland,
Sept 2006

19. Tauriainen, H., Heljanko, K.: Testing LTL formula translation into Büchi
automata. Int. J. Softw. Tools Technol. Transf. 4(1), 57–70 (2002)

20. Tsai, M.-H., Tsay, Y.-K., Hwang, Y.-S.: GOAL for games, omega-automata, and
logics. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 883–889.
Springer, Heidelberg (2013)

21. Vardi, M.Y.: Automata-theoretic model checking revisited. In: Cook, B., Podelski,
A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 137–150. Springer, Heidelberg (2007)

http://automata.tools/hoa/jhoafparser/
http://automata.tools/hoa/jhoafparser/
http://www.tcs.hut.fi/Software/maria/tools/lbt/
http://www.tcs.hut.fi/Software/maria/tools/lbt/

The Open-Source LearnLib

A Framework for Active Automata Learning

Malte Isberner1(B), Falk Howar2, and Bernhard Steffen1

1 TU Dortmund University, 44221 Dortmund, Germany
{malte.isberner,steffen}@cs.tu-dortmund.de

2 IPSSE/TU Clausthal, 38678
Clausthal-Zellerfeld, Germany
falk.howar@tu-clausthal.de

Abstract. In this paper, we present LearnLib, a library for active
automata learning. The current, open-source version of LearnLib was
completely rewritten from scratch, incorporating the lessons learned from
the decade-spanning development process of the previous versions of
LearnLib. Like its immediate predecessor, the open-source LearnLib is
written in Java to enable a high degree of flexibility and extensibility,
while at the same time providing a performance that allows for large-scale
applications. Additionally, LearnLib provides facilities for visualizing the
progress of learning algorithms in detail, thus complementing its applica-
bility in research and industrial contexts with an educational aspect.

1 Introduction

Active automata learning, from its early beginnings almost thirty years ago [6],
inspired a number of applications in quite a number of fields (see [19] for a
survey). However, it took almost a decade for the software verification and testing
community to recognize its value of being able to provide models of black-box
systems for the plethora of model-based tools and techniques. More precisely,
it was not until the seminal works of Peled et al. [36], employing automata
learning to model check black-box systems, and Steffen et al. [18], who used it
to automatically generate test cases for legacy computer-telephony integrated
systems, that this use case of automata learning was discovered.

Since then, however, active automata learning has enjoyed quite a success
story, having been used as a valuable tool in areas as diverse as automated
GUI testing [13], fighting bot-nets [12], or typestate analysis [5,41]. Most of
these works, however, used their custom, one-off implementation of the well-
known L∗ learning algorithm [6], and hence invested relatively little effort for
optimizations, or using a more sophisticated (but harder to implement and lesser-
known) algorithm altogether.1

1 An elaborate discussion on the theoretical aspects of active automata learning, as
well as on the challenges that arise in practice, are outside the scope of this paper.
We refer the interested reader to [39] for an introduction focusing on these matters.

c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 487–495, 2015.
DOI: 10.1007/978-3-319-21690-4 32

488 M. Isberner et al.

We started developing the LearnLib2 library to provide researchers and prac-
titioners with a reusable set of components to facilitate and promote the use of
active automata learning, and to enable access to cutting-edge automata learn-
ing technology. From the beginnings of the development of LearnLib, started in
2003, until now, more than a decade has passed. In these years, many lessons
were learned on what makes for a usable, efficient and practically feasible product
that fulfills this goal (cf. [25,35,37]).

These lessons form the basis of the new LearnLib presented in this paper.
The new LearnLib is not just an overhaul of the prior version, but completely
re-written from scratch. It provides a higher level of abstraction and increased
flexibility, while simultaneously being the fastest version of LearnLib to date
(cf. Sect. 4). As a service to the community and to encourage contributions by
and collaborations with other research groups, we decided to make LearnLib
available under an open-source license (the Apache License, version 2.0 3). In the
remainder of this paper we highlight two aspects that we address with LearnLib.

Advanced Features. This is what we consider the strongest case for preferring
a comprehensive automata learning framework such as LearnLib over a custom
implementation. While implementing the original version of L∗ is not a challeng-
ing task, the situation is different for more refined active learning algorithms,
such as Rivest & Schapire’s [38], Kearns & Vazirani’s [30] or even the very recent
TTT algorithm [28]. While we found these algorithms to consistently outper-
form L∗, the latter remains the most widely used. Also, several other advanced
optimizations such as query parallelization or efficient query caches are typi-
cally neglected. Through LearnLib’s modular design, changing filters, algorithm
parameters or even the whole algorithm is a matter of a few lines of code, yield-
ing valuable insights on how different algorithms perform on certain input data.
Many of these features rely on AutomataLib, the standalone finite-state machine
library that was developed for LearnLib, which provides a rich toolbox of data
structures and algorithms for finite-state machines. The design of AutomataLib
is presented in Sect. 2, while Sect. 3 provides a more comprehensive overview of
LearnLib’s feature set.

Performance. The implementation of a learning algorithm comes with many
performance pitfalls. Even though in most cases the time taken by the actual
learning algorithm is an uncritical aspect (compared to the time spent in execut-
ing queries, which may involve, e.g., network communication), it should be kept
as low as reasonably possible. Besides, an efficient management of data struc-
tures is necessary to enable learning of large-scale systems without running into
out-of-memory conditions or experiencing huge performance slumps. In Learn-
Lib, considerable effort was spent on efficient implementations while providing
a conveniently high level of abstraction. This will be detailed in Sect. 4.

Finally, we conclude the paper by briefly discussing envisioned future work
in Sect. 5.

2 http://www.learnlib.de.
3 https://www.apache.org/licenses/LICENSE-2.0.

http://www.learnlib.de
https://www.apache.org/licenses/LICENSE-2.0

The Open-Source LearnLib 489

Fig. 1. Architecture of AutomataLib

2 AutomataLib

One of the main architectural changes of the open-source LearnLib is that it uses
a dedicated, stand-alone library for representing and manipulating automata,
called AutomataLib.4 While AutomataLib is formally independent of LearnLib,
its development process is closely intertwined with the one of LearnLib. For this
reason, AutomataLib mainly focuses on deterministic automata, even though
selected classes of non-deterministic automata are supported as well (e.g., NFAs).

AutomataLib is divided into an abstraction layer, automata implementations,
and algorithms (cf. Fig. 1). The abstraction layer comprises a set of Java inter-
faces to represent various types of automata and graphs, organized in a com-
plex, fine-grained type hierarchy. Furthermore, these interfaces were designed
in a generic fashion, to integrate existing, third-party automata implementa-
tions into AutomataLib’s interface landscape with as little effort and run-time
overhead as possible. For instance, a proof-of-concept adapter for the BRICS
automaton library5 could be realized in as little as 20 lines of Java code.

Adapters like for the BRICS library form one part of the implementation
layer. The other part are generic automaton implementations, e.g., for DFAs or
Mealy machines, that provide good defaults for general setups, and are also used
by most algorithms in LearnLib to store hypotheses.

Sample algorithms shipped with AutomataLib include minimization, equiv-
alence testing, or visualization (via GraphVIZ ’s6 dot tool). The set of func-
tionalities will be continuously extended, with a strong focus on functionality
either directly required in LearnLib, or desirable in a typical automata learning
application context.

An important aspect is that the algorithms operate solely on the abstraction
layer, meaning that they are implementation agnostic: they can be used with
a (wrapped) BRICS automaton as well as with other automaton implementa-
tions. Furthermore, the generic design enables a high degree of code reuse: the
minimization (or equivalence checking) algorithm can be used for both DFA and
Mealy machines, as it is designed to only require a deterministic automaton,
instead of a concrete machine type (or even implementation).
4 http://www.automatalib.net/.
5 http://www.brics.dk/automaton/.
6 http://www.graphviz.org/.

http://www.automatalib.net/
http://www.brics.dk/automaton/
http://www.graphviz.org/

490 M. Isberner et al.

3 LearnLib

LearnLib provides a set of components to apply automata learning in practical
settings, or to develop or analyze automata learning algorithms. These can be
grouped into three main classes: learning algorithms, methods for finding coun-
terexamples (so-called Equivalence Queries), and infrastructure components.

Learning Algorithms. LearnLib features a rich set of learning algorithms, cov-
ering the majority of algorithms which have been published (and many beyond
that). Care was taken to develop the algorithms in a modular and parame-
terizable fashion, which allows us to use a single “base” algorithm to realize
several algorithms described in the literature, e.g., by merely exchanging the
involved counterexample analysis strategy. Perhaps the best example for this is
the L∗ algorithm [6], which can be configured to pose as Maler & Pnueli’s [31],
Rivest & Schapire’s [38], or Shahbaz’s [26] algorithm, Suffix1by1 [26], or
variants thereof. Other base algorithms available in LearnLib are the Observa-
tion Pack [21] algorithm, Kearns & Vazirani’s [30] algorithm, the DHC [34]
algorithm, and the TTT [28] algorithm. These, too, can be adapted in the way
they handle counterexamples, e.g., by linear search, binary search (à la Rivest
& Schapire), or exponential search [29]. With the exception of DHC, all these
algorithms are available in both DFA and Mealy versions. Furthermore, LearnLib
features the NL∗ algorithm for learning NFAs [8].

Equivalence Tests and Finding Counterexamples. Once a learning algo-
rithm converges to a stable hypothesis, a counterexample is needed to ensure
further progress. In the context of active learning, the process of searching for
a counterexample is also referred to as an equivalence query. “Perfect” equiva-
lence queries are possible only when a model of the target system is available. In
this case, LearnLib uses Hopcroft and Karp’s near-linear equivalence checking
algorithm [4,20] available through AutomataLib. In black-box scenarios, equiv-
alence queries can be approximated using conformance tests. AutomataLib pro-
vides implementations of the W-method [14] and the Wp-method [16], two of
the few conformance tests that can find missing states. Often, the cheapest and
fastest way of approximating equivalence queries is searching for counterexam-
ples directly: LearnLib implements a random walk (only for Mealy machines),
randomized generation of tests, and exhaustive generation of test inputs (up to
a certain depth).

Infrastructure. The third class of components that come with LearnLib provide
useful infrastructure functionality such as a logging facility, an import/export
mechanism to store and load hypotheses, or utilities for gathering statistics. An
important component for many practical applications are (optimizing) filters,
which pre-process the queries posed by the learning algorithm. A universally
useful example of such a filter is a cache filter [32], eliminating duplicate queries
that most algorithms pose. Other examples include a parallelization component
that distributes queries across multiple workers [22], a mechanism for reusing sys-
tem states to reduce the number of resets [7], and for prefix-closed systems [32].

The Open-Source LearnLib 491

Fig. 2. Performance comparison between the new LearnLib and libalf. Left: run-time of
the classic L∗ algorithm on a series of randomly generated automata with state counts
between 10 and 1000. Right: run-time of five comparable algorithms from LearnLib
and libalf on a DFA with 500 states.

For a learning algorithm to work in practice, some interface to the system
under learning (SUL) needs to be available. While this is generally specific to the
SUL itself, LearnLib provides SUL adapters for typical cases, e.g., Java classes,
web-services, or processes that are interfaced with via standard I/O.

4 Evaluation

We are aware of two other open-source automata learning libraries that provide
implementations of textbook algorithms, complemented by own developments:

libalf7. The Automata Learning Framework [9], was developed primarily at
the RWTH Aachen. It is available under LGPLv3 and written in C++. Its
active development seems to have ceased; the last version was released in
April 2011.

AIDE8. The Automata-Identification Engine, under active development, is
available under the open-source license LGPLv2.1 and written in C#.

The ambitions behind LearnLib go further: It is specifically designed to easily
compose new custom learning algorithms on the basis of components for coun-
terexample analysis, approximations of equivalence queries, as well as connectors
to real life systems. Moreover, LearnLib provides a variety of underlying data
structures, and various means for visualizing the algorithm and its statistics.
This does not only facilitate the construction of highly performant custom solu-
tions, but also provides a deeper understanding of the algorithms’ characteristics.
The latter has been essential, e.g., for designing the TTT algorithm [28], which
almost uniformly outperforms all the previous algorithms.

Performance. As we have mentioned earlier, the open-source LearnLib is the
fastest version of LearnLib to date, and moreover the fastest automata learning

7 http://libalf.informatik.rwth-aachen.de/.
8 http://aide.codeplex.com/.

http://libalf.informatik.rwth-aachen.de/
http://aide.codeplex.com/

492 M. Isberner et al.

implementation that we are aware of. We have conducted a preliminary perfor-
mance evaluation, comparing the new LearnLib to libalf and the old, closed-
source version of LearnLib (which we will refer to as JLearn in order to avoid
confusion). A visualization of some of the results comparing LearnLib and libalf
is shown in Fig. 2. It can be clearly seen that in the considered setting, Learn-
Lib is more than an order of magnitude faster than libalf (even though the
former is implemented in Java while the latter is implemented in C++). More
importantly, the gap grows with the size of the system to be learned. In our
experiments, the open-source LearnLib also outperformed JLearn on a similar
scale. More detailed performance data can be found on the LearnLib website.9

Applications. The performance data demonstrates that LearnLib provides a
robust basis for fast and scalable active automata learning solutions. Conse-
quently, in its ten years of continued development, LearnLib has been used in
a number of research and industry projects, of which we briefly present some
of the more recent ones. A more complete list can be found on the LearnLib
homepage. LearnLib has been used to infer models of smart card readers [11]
and of bank cards [3]. The models were used to verify security properties of
these systems. In [2,15], models of communication protocols are inferred using
LearnLib. The models are used to verify the conformance of protocol implemen-
tations to the corresponding specifications. At TU Dortmund, LearnLib has been
used in an industry project [40] to generate models of a web application. The
models were used to test regressions in the user interface and in the business
processes of this application. The authors of [33] propose a method for gener-
ating checking circuits for functions implemented in FPGAs. The method uses
models of the functions that are inferred with LearnLib. LearnLib is also used in
other tools: PSYCO [17,23] is a tool for generating precise interfaces of software
components developed at CMU and NASA Ames. The tool combines concolic
execution and active automata learning (i.e., LearnLib). Tomte, developed at the
Radboud University of Nijmegen [1] leverages regular inference algorithms pro-
vided by LearnLib to infer richer classes of models by simultaneously inferring
sophisticated abstractions (or “mappers”).

5 Conclusion

In this paper we have presented LearnLib, a versatile open-source library of
active automata learning algorithms. LearnLib is unique in its modular design,
which has furthered the development of new learning algorithms (e.g., the TTT
algorithm [28]) and tools (e.g., Tomte [1] and PSYCO [17,23]).

While in many aspects the open-source LearnLib by far surpasses the capa-
bilities of the previous version, there are two major features which have yet to
be ported. The first is LearnLib Studio (cf. [35]), a graphical user interface for
LearnLib, and the second is an extension for learning Register Automata. An
extension for learning Register Automata with the theory of equality only was

9 http://learnlib.de/features/performance.

http://learnlib.de/features/performance

The Open-Source LearnLib 493

available upon request for the old LearnLib in binary form [24,27]. We are cur-
rently working on a generalized approach [10], which will be included in the
open-source release.

References

1. Aarts, F., Heidarian, F., Kuppens, H., Olsen, P., Vaandrager, F.: Automata learn-
ing through counterexample guided abstraction refinement. In: Giannakopoulou,
D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 10–27. Springer, Heidelberg
(2012)

2. Aarts, F., Jonsson, B., Uijen, J., Vaandrager, F.W.: Generating models of infinite-
state communication protocols using regular inference with abstraction. Form.
Meth. Syst. Des. 46(1), 1–41 (2015)

3. Aarts, F., De Ruiter, J., Poll, E.: Formal models of bank cards for free. In: 2013
IEEE Sixth International Conference on Software Testing, Verification and Vali-
dation, Workshops Proceedings, pp. 461–468, Luxembourg, 18–22 Mar 2013

4. Almeida, M., Moreira, N., Reis, R.: Testing the equivalence of regular languages. In:
Proceedings Eleventh International Workshop on Descriptional Complexity of For-
mal Systems, DCFS 2009, pp. 47–57, Magdeburg, Germany, 6–9 Jul 2009. http://
dx.doi.org/10.4204/EPTCS.3.4

5. Alur, R., Cerný, P., Madhusudan, P., Nam, W.: Synthesis of interface specifications
for java classes. In: Palsberg, J., Abadi, M. (eds.) Proceedings of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2005, pp. 98–109. ACM, Long Beach, California, USA, 12–14 Jan 2005. http://doi.
acm.org/10.1145/1040305.1040314

6. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

7. Bauer, O., Neubauer, J., Steffen, B., Howar, F.: Reusing system states by active
learning algorithms. In: Moschitti, A., Scandariato, R. (eds.) EternalS 2011. CCIS,
vol. 255, pp. 61–78. Springer, Heidelberg (2012)

8. Bollig, B., Habermehl, P., Kern, C., Leucker, M.: Angluin-style learning of NFA.
In: Proceedings IJCAI 2009, pp. 1004–1009. IJCAI 2009, San Francisco, CA, USA
(2009)

9. Bollig, B., Katoen, J.-P., Kern, C., Leucker, M., Neider, D., Piegdon, D.R.: libalf:
The automata learning framework. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV
2010. LNCS, vol. 6174, pp. 360–364. Springer, Heidelberg (2010)

10. Cassel, S., Howar, F., Jonsson, B., Steffen, B.: Learning extended finite state
machines. In: Giannakopoulou, D., Salaün, G. (eds.) SEFM 2014. LNCS, vol. 8702,
pp. 250–264. Springer, Heidelberg (2014)

11. Chalupar, G., Peherstorfer, S., Poll, E., De Ruiter, J.: Automated reverse engi-
neering using lego. In: 8th USENIX Workshop on Offensive Technologies, WOOT
2014, San Diego, CA, USA, 19 Aug 2014

12. Cho, C.Y., Babić, D., Shin, R., Song, D.: Inference and analysis of formal models
of botnet command and control protocols. In: Proceedings CCS 2010, pp. 426–440,
ACM, Chicago, Illinois, USA (2010)

13. Choi, W., Necula, G., Sen, K.: Guided gui testing of android apps with minimal
restart and approximate learning. In: Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages &
Applications, pp. 623–640. OOPSLA 2013, ACM, New York, NY, USA (2013).
http://doi.acm.org/10.1145/2509136.2509552

http://dx.doi.org/10.4204/EPTCS.3.4
http://dx.doi.org/10.4204/EPTCS.3.4
http://doi.acm.org/10.1145/1040305.1040314
http://doi.acm.org/10.1145/1040305.1040314
http://doi.acm.org/10.1145/2509136.2509552

494 M. Isberner et al.

14. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans.
Softw. Eng. 4(3), 178–187 (1978)

15. Fiterău-Broştean, P., Janssen, R., Vaandrager, F.: Learning fragments of the TCP
network protocol. In: Lang, F., Flammini, F. (eds.) FMICS 2014. LNCS, vol. 8718,
pp. 78–93. Springer, Heidelberg (2014)

16. Fujiwara, S., Von Bochmann, G., Khendek, F., Amalou, M., Ghedamsi, A.: Test
selection based on finite state models. IEEE Trans. Softw. Eng. 17(6), 591–603
(1991)

17. Giannakopoulou, D., Rakamarić, Z., Raman, V.: Symbolic learning of component
interfaces. In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 248–
264. Springer, Heidelberg (2012)

18. Hagerer, A., Hungar, H.: Model generation by moderated regular extrapolation.
In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306, p. 80. Springer,
Heidelberg (2002)

19. De la Higuera, C.: A bibliographical study of grammatical inference. Pattern
Recogn. 38(9), 1332–1348 (2005). http://dx.doi.org/10.1016/j.patcog.2005.01.003

20. Hopcroft, J., Karp, R.: A linear algorithm for testing equivalence of finite automata.
Technical report 0, Deptartment of Computer Science, Cornell U, Dec 1971

21. Howar, F.: Active learning of interface programs. Ph.D. thesis, TU Dortmund
University (2012). http://dx.doi.org/2003/29486

22. Howar, F., Bauer, O., Merten, M., Steffen, B., Margaria, T.: The teachers’ crowd:
the impact of distributed oracles on active automata learning. In: Hähnle, R.,
Knoop, J., Margaria, T., Schreiner, D., Steffen, B. (eds.) ISoLA 2011 Workshops
2011. CCIS, vol. 336, pp. 232–247. Springer, Heidelberg (2012)

23. Howar, F., Giannakopoulou, D., Rakamarić, Z.: Hybrid learning: interface gen-
eration through static, dynamic, and symbolic analysis. In: Proceedings of the
International Symposium on Software Testing and Analysis (ISSTA), pp. 268–279,
ACM (2013)

24. Howar, F., Steffen, B., Jonsson, B., Cassel, S.: Inferring canonical register
automata. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148,
pp. 251–266. Springer, Heidelberg (2012)

25. Hungar, H., Niese, O., Steffen, B.: Domain-specific optimization in automata learn-
ing. In: Hunt Jr, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 315–327.
Springer, Heidelberg (2003)

26. Irfan, M.N., Oriat, C., Groz, R.: Angluin style finite state machine inference with
non-optimal counterexamples. In: 1st International Workshop on Model Inference
In Testing (2010)

27. Isberner, M., Howar, F., Steffen, B.: Learning register automata: from languages
to program structures. Mach. Learn. 96(1–2), 65–98 (2014). http://dx.doi.org/10.
1007/s10994-013-5419-7

28. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free app-
roach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV
2014. LNCS, vol. 8734, pp. 307–322. Springer, Heidelberg (2014)

29. Isberner, M., Steffen, B.: An abstract framework for counterexample analysis in
active automata learning. In: Clark, A., Kanazawa, M., Yoshinaka, R. (eds.) Pro-
ceedings of the 12th International Conference on Grammatical Inference, ICGI
2014, Kyoto, Japan, 17–19 Sep 2014. JMLR Proceedings, vol. 34, pp. 79–93, http://
JMLR.org (2014). http://jmlr.org/proceedings/papers/v34/isberner14a.html

30. Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning Theory.
MIT Press, Cambridge (1994)

http://dx.doi.org/10.1016/j.patcog.2005.01.003
http://dx.doi.org/2003/29486
http://dx.doi.org/10.1007/s10994-013-5419-7
http://dx.doi.org/10.1007/s10994-013-5419-7
http://JMLR.org
http://JMLR.org
http://jmlr.org/proceedings/papers/v34/isberner14a.html

The Open-Source LearnLib 495

31. Maler, O., Pnueli, A.: On the learnability of infinitary regular sets. Inf. Comput.
118(2), 316–326 (1995)

32. Margaria, T., Raffelt, H., Steffen, B.: Knowledge-based relevance filtering for effi-
cient system-level test-based model generation. Innov. Syst. Softw. Eng. 1(2), 147–
156 (2005)

33. Matuova, L., Kastil, J., Kotásek, Z.: Automatic construction of on-line checking
circuits based on finite automata. In: 17th Euromicro Conference on Digital System
Design, DSD 2014, pp. 326–332, Verona, Italy, 27–29 Aug 2014

34. Merten, M., Howar, F., Steffen, B., Margaria, T.: Automata learning with on-
the-fly direct hypothesis construction. In: Hähnle, R., Knoop, J., Margaria, T.,
Schreiner, D., Steffen, B. (eds.) ISoLA 2011 Workshops 2011. CCIS, vol. 336, pp.
248–260. Springer, Heidelberg (2012)

35. Merten, M., Steffen, B., Howar, F., Margaria, T.: Next generation LearnLib. In:
Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 220–223.
Springer, Heidelberg (2011)

36. Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. In: Wu, J., Chanson,
S.T., Gao, Q. (eds.) Proceedings FORTE 1999, pp. 225–240, Kluwer Academic
(1999)

37. Raffelt, H., Steffen, B., Berg, T., Margaria, T.: LearnLib: a framework for extrap-
olating behavioral models. Int. J. Softw. Tools Technol. Transf. 11(5), 393–407
(2009)

38. Rivest, R.L., Schapire, R.E.: Inference of finite futomata using homing sequences.
Inf. Comput. 103(2), 299–347 (1993)

39. Steffen, B., Howar, F., Merten, M.: Introduction to active automata learning from
a practical perspective. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol.
6659, pp. 256–296. Springer, Heidelberg (2011)

40. Windmüller, S., Neubauer, J., Steffen, B., Howar, F., Bauer, O.: Active continuous
quality control. In: CBSE, pp. 111–120 (2013)

41. Xiao, H., Sun, J., Liu, Y., Lin, S., Sun, C.: Tzuyu: learning stateful typestates.
In: Denney, E., Bultan, T., Zeller, A. (eds.) 2013 28th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2013, pp. 432–442, IEEE,
Silicon Valley, CA, USA, 11–15 Nov 2013. http://dx.doi.org/10.1109/ASE.2013.
6693101

http://dx.doi.org/10.1109/ASE.2013.6693101
http://dx.doi.org/10.1109/ASE.2013.6693101

BBS: A Phase-Bounded Model Checker
for Asynchronous Programs

Rupak Majumdar and Zilong Wang(B)

MPI-SWS, Kaiserslautern, Germany
{rupak,zilong}@mpi-sws.org

Abstract. A popular model of asynchronous programming consists of a
single-threaded worker process interacting with a task queue. In each step
of such a program, the worker takes a task from the queue and executes
its code atomically to completion. Executing a task can call “normal”
functions as well as post additional asynchronous tasks to the queue.
Additionally, tasks can be posted to the queue by the environment.

Bouajjani and Emmi introduced phase-bounding analysis on asynchro-
nous programs with unbounded FIFO task queues, which is a system-
atic exploration of all program behaviors up to a fixed task phase. They
showed that phase-bounded exploration can be sequentialized: given a
set of recursive tasks, a task queue, and a phase bound L > 0, one can
construct a sequential recursive program whose behaviors capture all
states of the original asynchronous program reachable by an execution
where only tasks up to phase L are executed. However, there was no
empirical evaluation of the method.

We describe our tool Bbs that implements phase-bounding to analyze
embedded C programs generated from TinyOS applications, which are
widely used in wireless sensor networks. Our empirical results indicate
that a variety of subtle safety-violation bugs are manifested within a
small phase bound (3 in most of the cases). While our evaluation focuses
on TinyOS, our tool is generic, and can be ported to other platforms
that employ a similar programming model.

1 Introduction

In many asynchronous applications, a single-threaded worker process interacts
with a task queue. In each scheduling step of these programs, the worker takes a
task from the queue and executes its code atomically to completion. Executing
a task can call “normal” functions as well as post additional asynchronous tasks
to the queue. Additionally, tasks can be posted to the queue by the environ-
ment. This basic concurrency model has been used in many different settings:
in low-level server and networking code, in embedded code and sensor networks
[6], in smartphone programming environments such as Android or iOS, and in
Javascript. While the concurrency model enables the development of responsive
applications, interactions between tasks and the environment can give rise to
subtle bugs.

c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 496–503, 2015.
DOI: 10.1007/978-3-319-21690-4 33

Bbs: A Phase-Bounded Model Checker for Asynchronous Programs 497

Bouajjani and Emmi introduced phase-bounding [1]: a bounded systematic
search for asynchronous programs that explores all program behaviors up to a
certain phase of asynchronous tasks. Intuitively, the phase of a task is defined
as its depth in the task tree: the main task has phase 1, and each task posted
asynchronously by a task at phase i has phase i + 1. Their main result is a
sequentialization procedure for asynchronous programs for a given fixed bound
L on the task phase.

In this paper, we describe our tool Bbs1 that implements phase-bounding
to analyze C programs generated from TinyOS applications, which are widely
used in wireless sensor networks. Our empirical results indicate that a variety of
subtle memory-violation bugs are manifested within a small phase bound (3 in
most of the cases). From our evaluation, we conclude that phase-bounding is an
effective approach in bug finding for asynchronous programs.

While our evaluation focuses on TinyOS, our tool is generic, and can be
ported to other platforms that employ a similar programming model. We leave
certain extensions, such as handling multiple worker threads, and the experi-
mental evaluation of this technique to other domains, such as smartphone appli-
cations or Javascript programs, for future work.

2 Sequentialization Overview

We now give an informal overview of Bouajjani and Emmi’s sequentialization
procedure. Given an asynchronous program, we first perform the following simple
transformation to reduce assertion checking to checking if a global bit is set: (1)
we add a global Boolean variable gError whose initial value is false; (2) we
replace each assertion assert(e) by gError = !e; if(gError) return; and (3)
we add if(gError) return; at the beginning of each task’s body and after each
procedure call. The translation ensures that an assertion fails iff gError is true
at the end of main.

Intuitively, the sequentialization replaces asynchronous posts with “normal”
function calls. These function calls carry an additional parameter that specifies
the phase of the call: the phase of a call corresponding to an asynchronous post
is one more than the phase of the caller. The sequentialization maintains several
versions of the global state, one for each phase, and calls the task on the copy of
the global state at its phase. The task can immediately execute on that global
state, without messing up the global state at the posting task’s phase. Since
tasks are executed in FIFO order, notice that when two tasks t1 and t2 are
posted sequentially (at phase i, say), the global state after running t1 is exactly
the global state at which t2 starts executing. Thus, the copy of the global state
at phase i correctly threads the global state for all tasks executing at phase i.

The remaining complication is connecting the various copies of the global
state. For example, the global state when phase i starts is the same as the global
state at the end of executing phase i− 1, but we do not know what that state is
1 Bbs stands for Buffer phase-Bounded Sequentializer and can be downloaded at

https://github.com/zilongwang/bbs.

https://github.com/zilongwang/bbs

498 R. Majumdar and Z. Wang

(without executing phase i−1 first). Here, we use non-determinism. We guess the
initial values of the global state for each phase at the beginning of the execution.
At the end of the execution, we check that our guess was correct, using the then
available values of the global states at each phase. If the guess was correct, we
check if some copy of gError is set to true: this would imply a semantically
consistent run that had an assertion failure.

We now make the translation a bit more precise. Given a phase bound L ∈ N,
i.e., the maximal number of phases to explore, the sequentialization consists of
four steps:

1. Track the phase of tasks at which they run in an execution. Intuitively, the
phase of main, the initial task, is 1, and if a task at phase i executes post p(e),
then the new task p is at phase i+ 1. As an example, consider an error trace
in Fig. 1, task t0 is at phase 1, and tasks t1, t2 are at phase 2. This tracking
can be done by augmenting each procedure’s parameter list with an integer
k that tracks the phase of the procedure. Consequently, we also replace each
normal synchronous procedure call p(e) by p(e, k), and each asynchronous
call post p(e) by post p(e, k + 1).

2. Replace each post p(e, k + 1) by if(k < L) p(e, k + 1);, meaning that if some
task at phase k posts the task p and k + 1 does not exceed the phase bound
L, the task p is immediately called and runs at phase k+1 instead of putting
it into the task queue.

3. For each global variable g, create L copies of it, denoted by g[1], . . . , g[L]. Set
the initial value of the first copy g[1] to the initial value of g, and nondeter-
ministically guess the initial values of the other copies. For each statement of
a program, if g appears, then replace it by g[k]. Intuitively, the i-th copy of
global variables is used to record the evolution of global valuations along an
execution at phase i.

4. Run the initial task t0 at phase 1. When t0 returns, for each phase i ∈ [2, L],
enforce that the guessed initial values of the i-th copy are indeed equal to
the final values of the (i − 1)-th copy. Finally, a bug is found if some copy of
gError equals true.

Step 4 is better explained through an example. We present how a sequential-
ized execution in Fig. 2 is related to an error trace of Fig. 1. Suppose that the
phase bound L = 2 and the above first three steps have been done correctly.

Consider segment (a) in Fig. 2 and segment (1) in Fig. 1. When task t0 starts,
notice that the global state x in segment (1) and its first copy x[1] in segment
(a) are always the same because both are initialized to v0, and in each step of
their executions, the way that segment (1) modifies x is the same as the way
that segment (a) modifies x[1]. In this case, we say that segment (a) uses the
first copy of the global state to “mimic” the evolution of the global state in
segment (1).

Since the last statement of segment (a) is if(k < L) p(e, k + 1); and the
current phase k = 1, segment (b) starts. Notice that segment (b) runs at phase
2 and only modifies the second copy of the global state x[2]. Additionally, if

Bbs: A Phase-Bounded Model Checker for Asynchronous Programs 499

Fig. 1. An error trace before sequentialization. Circles denote the starting or end-
ing points of tasks. Solid lines denote the execution of tasks. Triangles with dashed
arrows indicate a post statement that posts a task to the queue; triangles without
dashed arrows are statements right after post statements. The cross represents where
the assertion fails. This error trace is read as follows: task t0 runs, posts tasks t1 and t2
to the task queue, and completes. Then t1 and t2 runs one after another. We divided
the error trace into execution segments (1)–(5), ordered by their execution order. Val-
ues of the global state x at each segment are shown. E.g., when segment (1) starts and
ends, x = v0 and x = v1, respectively. When segment (4) starts and ends, x = v4 and
x = v5, respectively. Note that due to the FIFO order, v3 = v4.

Fig. 2. The sequentialized error trace after sequentialization. Values of each copy of the
global state x at each segment are shown. E.g., when segment (a) starts and ends, the
first copy x[1] = v0 and x[1] = v1, respectively. When segment (b) starts, the second
copy x[2] is guessed to v4. When segment (b) ends, x[2] = v5.

we assume that the initial value of x[2] are guessed correctly, i.e., v4, shown in
Fig. 2, then segment (b) uses the second copy of the global state to “mimic” the
evolution of the global state in segment (4).

After segment (b) completes, the control goes back to phase 1 and segment
(c) starts. Note that segment (b) does not modify the first copy x[1], and hence
when segment (c) starts, the value of x[1] is still v1. As a result, segment (c) uses
the first copy of the global state to “mimic” the evolution of the global state in
segment (2).

After segment (c) completes, segment (d) starts. Note that since segment (c)
does not modify the second copy x[2], the value of x[2] is still v5 at the beginning
of segment (d), which is the same as the value of x at the beginning of segment
(5). Hence segment (d) uses x[2] to mimic x in segment (5). When segment (d)
completes, segment (e) starts to use the first copy x[1] to mimic segment (3).

Finally, When segment (e) completes, by using assume statements, we enforce
that the initial value for the second copy x[2] is indeed guessed to v4 in order
to satisfy the FIFO order imposed by the task queue. After the enforcement,
the sequential execution in Fig. 2 and the error trace in Fig. 1 reach exactly the
same set of global states. Hence we conclude that a bug is found.

500 R. Majumdar and Z. Wang

3 Experimental Evaluation

We first provide a brief introduction to TinyOS applications. We then present
the design of Bbs and elaborate on our experimental results.

3.1 TinyOS Execution Model

TinyOS [7] is a popular operating system designed for wireless sensor networks.
It uses nesC [6] as the programming language and provides a toolchain that
translates nesC programs into embedded C code and then compiles the C code
into executables which are deployed on sensor motes to perform operations such
as data collection.

TinyOS provides a programming language (nesC) and an execution model
tailored towards asynchronous programming. A nesC program consists of tasks
and interrupt handlers. When the program runs, TinyOS associates a scheduler,
a stack, and a task queue with it, and starts to run the “main” task on the stack.
Tasks run to completion and can post additional tasks into the task queue. When
a task completes, the scheduler dequeues the first task from the task queue, and
runs it on the stack.

Hardware interrupts may arrive at any time (when the corresponding inter-
rupt is enabled). For instance, a timer interrupt may occur periodically so that
sensors can read meters, or a receive interrupt may occur to notice sensors that
packets arrived from outside. When an (enabled) interrupt occurs, TinyOS pre-
empts the running task and executes the corresponding interrupt handler defined
in the nesC program. An interrupt handler can also post tasks to the task queue,
which is used as a mechanism to achieve deferred computation and hide the
latency of time-consuming operations such as I/O. Once the interrupt handler
completes, the interrupted task resumes.

3.2 BBS Overview

We implemented Bbs to perform phase-bounded analysis for TinyOS applica-
tions. Bbs checks user-defined assertions as well as two common memory viola-
tions in C programs: out-of-bound array accesses (OOB) and null-pointer deref-
erence.

The workflow of Bbs is shown in Fig. 3. First, given a TinyOS application
consisting of nesC files, the nesC compiler nescc combines them together and
generates a self-contained embedded C file. nescc supports many mote platforms
and generates different embedded C code based on platforms. In our work, we
let nescc generate embedded C code for MSP430 platforms.

Bbs takes as inputs the MSP430 embedded C file containing assertions and
a phase bound, and executes three modules.

The first module performs preprocessing and static analysis on the C pro-
gram to instrument interrupts and assertions. Interrupt handlers are obtained
from nescc-generated attributes in the code. A naive way to instrument inter-
rupts is to insert them before each statement of the C program. However, if a

Bbs: A Phase-Bounded Model Checker for Asynchronous Programs 501

Fig. 3. The workflow of Bbs

statement does not have potentially raced variables2, we do not need to instru-
ment interrupts before it, because the execution of such statements commutes
with the interrupt handler: either order of execution leads to the same final state.
Thus Bbs performs static analysis to compute potentially raced variables and
instruments interrupts accordingly.

The second module implements the sequentialization algorithm. The result-
ing sequential C program is fed into the bounded model checker CBMC [3,4],
which outputs either an error trace or “program safe” up to the phase bound
and the bound imposed by CBMC.

3.3 Experimental Experience with BBS

We used Bbs to analyze eight TinyOS applications in the apps directory from
TinyOS’s source tree. These benchmarks cover most of the basic functionali-
ties provided by a sensor mote such as timers, radio communication, and serial
transmission.

In Table 1, we summarize the size and complexity of these benchmarks in
terms of (1) lines of code in the cleanly reformatted ANSI C program after the
preprocessing stage, (2) the number of types of tasks that can be posted, (3)
the number of types of hardware interrupts that are expected, (4) the number
of global variables as well as the number of potentially raced variables (found
by the static analysis).

In each of the first three benchmarks, we manually injected a realistic memory
violation bug that programmers often make. The rest five benchmarks were
previously known to be buggy [2,5,8,9]. The TestSerial benchmark contains two
bugs and each of the rest has one bug. We ran Bbs on these benchmarks to see
whether it could find these bugs efficiently within small phase bounds.

Experimental Results. All experiments were performed on a 2 core Intel Xeon
X5650 CPU machine with 64GB memory and 64bit Linux (Debian/Lenny).
Table 2 lists the analysis results, showing that Bbs successfully uncovered all
bugs that are injected in the first three benchmarks, as well as all previously
known bugs in the rest five benchmarks. We report the type of bugs, the minimal
2 A potentially raced variable is accessed by both tasks and interrupt handlers, and

at least one access from both is a write.

502 R. Majumdar and Z. Wang

Table 1. TinyOS benchmarks

Benchmark LOC Tasks Interrupt Global Potentially raced

types variables global variables

TestAdc 6738 9 2 100 19

TestEui 7467 13 3 138 17

TestAM 11259 13 5 154 27

BlinkFail 3153 3 1 64 5

TestSerial 6590 10 3 127 17

TestPrintf 6882 13 3 136 18

TestDissemination 13004 17 5 166 37

TestDip 17091 25 7 243 49

Table 2. Experimental results

Benchmark Bug type Min phase Time Error trace

Seq. (s) CBMC (s) (in steps)

TestAdc NullPtr 2 3.92 15.92 2014

TestEui OOB 2 3.97 12.78 9425

TestAM NullPtr 3 5.88 342.99 12925

BlinkFail OOB 3 2.55 2.69 3773

TestSerial OOB 4 3.75 23.92 13531

User-defined 4 39.01 14161

TestPrintf OOB 3 3.78 30.32 14154

TestDissemination NullPtr 3 5.95 843.68 17307

TestDip NullPtr 3 7.69 681.81 20274

phases that are required to uncover the bugs, the time used in both sequential-
ization and CBMC, and the lengths of error traces. Notice that all bugs were
found within small phase bounds, that is, at most 4 phases. This result indicates
that the phase-bounded approach effectively uncovers interesting bugs within
small phase bounds for realistic C programs.

References

1. Bouajjani, A., Emmi, M.: Bounded phase analysis of message-passing programs.
STTT 16(2), 127–146 (2014)

2. Bucur, D., Kwiatkowska, M.Z.: Software verification for TinyOS. In: Proceedings of
the 9th ACM/IEEE International Conference on Information Processing in Sensor
Networks, IPSN 2010, pp. 400–401, ACM (2010)

3. Clarke, E., Kroning, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer,
Heidelberg (2004)

Bbs: A Phase-Bounded Model Checker for Asynchronous Programs 503

4. Clarke, E., Kroening, D., Yorav, K.: Behavioral consistency of C and Verilog pro-
grams using bounded model checking. In: Proceedings of the 40th Annual Design
Automation Conference, DAC 2003, pp. 368–371. ACM, New York, NY, USA (2003)

5. Cooprider, N., Archer, W., Eide, E., Gay, D., Regehr, J.: Efficient memory safety
for TinyOS. In: Proceedings of the 5th International Conference on Embedded Net-
worked Sensor Systems, SenSys 2007, pp. 205–218. ACM, New York, NY, USA
(2007)

6. Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesC
language: a holistic approach to networked embedded systems. In: Proceedings of
the ACM SIGPLAN 2003 Conference on Programming Language Design and Imple-
mentation, PLDI 2003, pp. 1–11. ACM, New York, NY, USA (2003)

7. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architec-
ture directions for networked sensors. In: Proceedings of the Ninth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS IX, pp. 93–104. ACM, New York, NY, USA (2000)

8. Li, P., Regehr, J.: T-check: bug finding for sensor networks. In: Proceedings of
the 9th ACM/IEEE International Conference on Information Processing in Sensor
Networks, IPSN 2010, pp. 174–185. ACM, New York, NY, USA (2010)

9. Safe TinyOS. http://docs.tinyos.net/index.php/Safe TinyOS

http://docs.tinyos.net/index.php/Safe_TinyOS

Time-Aware Abstractions in HybridSal

Ashish Tiwari(B)

SRI International, Menlo Park, CA, USA
ashish.tiwari@sri.com

Abstract. HybridSal is a tool for enabling verification of hybrid sys-
tems using infinite bounded model checking and k-induction. The core
component of the tool is an abstraction engine that automatically cre-
ates a discrete, but infinite, state transition system abstraction of the
continuous dynamics in the system. In this paper, we describe Hybrid-
Sal’s new capability to create time-aware relational abstractions, which
gives users control over the precision of the abstraction. We also describe
a novel approach for abstracting nonlinear expressions that allows us to
create time-aware relational abstractions that are more precise than those
described previously. We show that the new approach enables automatic
verification of systems that could not be verified previously.

1 Introduction

Hybrid automata is a modeling formalism in which discrete transitions and con-
tinuous evolution can be intermixed to describe fairly complex cyber-physical
systems. HybridSal [15] is a tool for performing verification of hybrid automata
models [2,3,5,6,8,9,11,14,16]. It is a tool built over the SAL tool [7] that can
be used to model and verify discrete (finite or infinite) state transition systems.
The core component of HybridSal is an abstraction engine that takes a hybrid
model and outputs a discrete (SAL) model that is a sound abstraction of the
hybrid model [13]. The abstract SAL model can be analyzed using the usual
SAL model checking tools (such as the infinite bounded model checker or the
k-induction prover).

In this paper, we revisit the relational abstraction technique [13] and its
improvement to time-aware relational abstraction [10], which are both available
in the current version of HybridSal [15]. We identify a class of problems for which
these techniques yield very coarse abstractions, and present an approach to fix
this shortcoming. The approach is based on creating sound approximations of
nonlinear functions using sound approximations of the natural logarithm (ln)
function. We present examples that can be verified using the new approach that
could not be verified previously by HybridSal.

This work was supported, in part, by the National Science Foundation under grant
CNS-1423298, and the Defense Advanced Research Projects Agency (DARPA) and
Air Force Research Laboratory (AFRL), under contract FA8750-12-C-0284. The
views, opinions, and/or findings contained in this report are those of the authors
and should not be interpreted as representing the official views or policies, either
expressed or implied, of the funding agencies.

c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 504–510, 2015.
DOI: 10.1007/978-3-319-21690-4 34

Time-Aware Abstractions in HybridSal 505

2 Relational Abstraction

The HybridSal abstraction engine constructs a so-called relational abstraction
of the system. A relational abstraction does not abstract the state space of the
system, but only over-approximates the transition relation [13]. Concretely, the
relational abstraction of a transition system (S,→) (with state space S and
transition relation →) is another transition system (S,→a) such that → ⊆ →a.

The semantics of a hybrid system is given as a state transition system (S,→d

∪ →c), where →d are transitions that capture the “discrete” behavior of the
system, and →c are transitions that capture the “continuous” behavior. The
HybridSal tool constructs relational abstraction of hybrid systems by abstracting
only the relation →c; that is, the abstract system is (S,→d ∪ →a

c). We next
briefly describe the relations →c and →a

c .
The continuous behavior of a hybrid system is typically specified using

ordinary differential equations. Consider a system of differential equations,
dx/dt = f(x), whose dynamics are constrained to remain within invariant Inv.
The concrete semantics of this continuous behavior is defined by the relation →c:

x1 →c x2if ∃F : ∃(t ≥ 0) : x1 = F (0),x2 = F (t), dF/dt = f(F (t)),
∀(0 ≤ t′ ≤ t) : F (t′) ∈ Inv (1)

Here, the function F is a solution of the differential equations [1].
It is extremely difficult to reason with the relation in Eq. 1. Relational

abstraction overcomes this problem by constructing an over-approximation of
this relation that is much easier to analyze. Henceforth, let us assume that con-
tinuous dynamics are specified using linear ordinary differential equations; for
simplicity, say dx/dt = Ax , where A is an n × n matrix.

2.1 Time-Oblivious Relational Abstraction

A relational abstraction that does not mention the time variable, t, explicitly is
called a time-oblivious relational abstraction. By default, HybridSal constructs
time-oblivious abstractions [15]. If cT is a left-eigenvector of A corresponding to
eigenvalue λ, then it is easily proved that if x →c x’ , then

cTx’ = cTxeλ(t′−t) (2)

When λ > 0, we can over-approximate the relationship between x and x’ in the
form of the following time-oblivious abstraction:

(cTx’ = cTx = 0) ∨ (cTx’ ≥ cTx > 0) ∨ (cTx’ ≤ cTx < 0) (3)

Note there is no mention of the time elapsed (t′ − t) in the above expression.
Furthermore, all expressions above are linear. Each left eigenvector of A corre-
sponding to a real eigenvalue will generate one constraint of the form in Eq. 3.
If the eigenvalue λ has a nonzero imaginary part, we can still get a piecewise

506 A. Tiwari

linear time-oblivious relational abstraction on the real and imaginary parts of
the corresponding eigenvector [15].

There are two shortcomings in the time-oblivious abstraction computed
above. First, it is too coarse. It loses all time-related information. For example,
if we have a 2-d system dx/dt = −x, dy/dt = −y, the time-oblivious abstraction
forgets that the (exponential) decay rates of x and y are the same. Second, if
matrix A is defective, that is, it has fewer eigenvectors corresponding to eigen-
value λ than the algebraic multiplicity of λ, then we do not even know how to
construct a reasonably good time-oblivious abstraction.

As an example, consider the 2-d system dx/dt = x+y, dy/dt = y. The corre-
sponding matrix A = [1, 1; 0, 1] is defective – it has eigenvalue 1 with multiplicity
2, but there is only one associated left eigenvector [0,1]. The solution of the ODE
is given by the equations:

y(t) = y(0)et, x(t) = x(0)et + y(0)tet (4)

The default time-oblivious relational abstraction constructed by HybridSal
would just have inequalities (as in Eq. 3) for y(t), but x(t) would be uncon-
strained. This is because HybridSal lacked a general technique for handling
defective A matrices.

2.2 Time-Aware Relational Abstraction

The first shortcoming of the time-oblivious abstraction computed by Hybrid-
Sal was recently recognized and it resulted in the introduction of time-aware
relational abstractions [10].

A time-aware relational abstraction relates the change in the value of an
expression to the time elapsed. It can be more precise than a time-oblivious
abstraction. Consider the exponentially increasing/decaying expression in Eq. 2
constructed from the left eigenvector cT corresponding to a real eigenvalue λ.
Taking the natural logarithm on both sides of Eq. 2, we get

ln(cTx’) = ln(cTx) + λ(t′ − t) (5)

The expressions cTx’ , cTx , and λ(t′ − t) (for a fixed value of λ) are linear
in the state variables x and the time variable t (and their next values). So,
we just need a piecewise-affine (lower and upper) approximation of the natural
logarithm function ln to construct a time-aware relational abstraction. Such an
approximation exists and is shown in Fig. 1: intuitively, the upper bound lnub is
defined by first-order Taylor approximations of ln at points ei+1 − ei [4].

Using the piecewise-linear approximation functions lnlb and lnub defined in
Fig. 1, we abstract Eq. 5 using the following linear arithmetic formula:

lnlb(cTx’) ≤ lnub(cTx) + λ(t′ − t) ∧ lnub(cTx’) ≥ lnlb(cTx) + λ(t′ − t) (6)

Since the number of intervals that define the piecewise linear approxima-
tion of the ln function is unbounded (Fig. 1), HybridSal creates an approxima-
tion that uses only finitely many intervals: (−∞, e−n], [em, +∞), and [ei, ei+1],

Time-Aware Abstractions in HybridSal 507

i = −n, . . . ,−1, 0, 1, . . . ,m − 1. When creating time-aware relational abstrac-
tions in HybridSal, the precision parameters n,m are chosen by the user (via a
commandline argument): picking a higher value increases precision.

Fig. 1. Piecewise-linear lower and upper
approximation for natural logarithm func-
tion.

The ln(x) function in Fig. 1 is
approximated by dividing the x axis
into the (infinitely many) intervals
[ei, ei+1], i ∈ Z. In the interval
[ei, ei+1], a lower-bound, lnlb(x), for
ln(x) is given by the line joining the
two end-points; that is, lnlb(x) :=

(x−ei)
(ei+1−ei) + i; whereas an upper-bound
is given by lnub(x) := lnlb(x) +
0.12. The tangents at the end-points
also provide an upper-bound; hence,
a better upper-bound, ln(2)

ub (x), is
min(lnub(x), (x−ei)

ei +i, (x−ei+1)
ei+1 +i+1).

Using lnlb and lnub, we know how to create time-aware abstractions for expo-
nentially changing expressions (Eq. 2), as well as, periodically changing expres-
sions (x(t) = x(0)

cos(θ0)
eλt cos(ωt + θ0)); see [10].

2.3 Defective Matrices

If the dynamics are specified by an A matrix that is not defective, then, for an n-
dimensional system, we can always find n linearly independent vectors, such that
for each vector c, the value of the linear expression cTx is either exponentially
changing or periodically changing. Hence, for such systems, we can get relatively
good linear, time-aware relational abstractions.

If A is defective, then we can still find n linearly independent vectors, but
now their dynamics can additionally contain terms that are “products” of expo-
nential/trigonometric function and tk, where t is the time variable and k is some
natural number. See the dynamics of x(t) in Eq. 4 for an example.

The main observation we make in this paper is that we can abstract a product
of two terms by using the approximations for ln function described above. In
particular, the equation z = xyeu can be abstracted by the expression:

(z = 0 ↔ (x = 0 ∨ y = 0)) ∧ (z > 0 ↔ ((x > 0 ∧ y > 0) ∨ (x < 0 ∧ y < 0))) ∧
lnlb(|x|) + lnlb(|y|) + u ≤ lnub(|z|) ∧ lnub(|x|) + lnub(|y|) + u ≥ lnlb(|z|) (7)

Let φ(u, x, y, z) denote the above formula. The formula φ contains only linear
expressions, and hence we can use a linear theory solver to reason about it.

We can now use the abstraction φ to construct abstractions of linear systems
whose dynamics are specified by defective matrices. Concretely, we construct
a relational abstraction of the dynamics for x(t) given in Eq. 4, namely x′ =
xet′−t + y(t′ − t)et′−t, as follows:

x′ = z1 + z2 ∧ φ(t′ − t, x, 1, z1) ∧ φ(t′ − t, y, t′ − t, z2) (8)

508 A. Tiwari

where z1, z2 are new variables. For an arbitrary A matrix, defective or not,
we can now compute time-aware relational abstractions by first transforming
A into Jordan normal form J ; say A = U−1JU . The value of each expression
cTx , where cT is a row of U , is a linear combination of terms of the form
tkeλt (or tk cos(bt)eat or tk sin(bt)eat). Thus, using φ, we can get piecewise linear
abstractions for each expression by straight-forwardly extending the ideas used
to construct the abstraction in Eq. 8 (and combine the ideas with [10] for periodic
dynamics).

3 Experiments

Dynamics where the A matrix is defective are quite common. Some of the sim-
plest examples turn out to have defective matrices. For example, a linear motion
with constant velocity is described by [ẋ; v̇] = A[x; v] + b, where A = [0, 1; 0, 0]
is defective. Similarly, linear motion with constant acceleration also gives rise to
defective A matrices. Even real-world examples appear to more often have defec-
tive A matrices than not. So, it was important for us to improve the quality of
abstraction HybridSal generates on these dynamics.

One good verification challenge benchmark is the adaptive cruise controller
from [12]. The controller sets the acceleration of the following car, af , as ȧf =
−3af −3(vf −vl)+gap−(vf +10), where vl, al denote the velocity and acceleration
of the leading car, vf , af are those of the following car, and gap is the distance
between the cars. We assume that the controller is engaged whenever gap ≥
5, 0 ≤ vl, vf ≤ 30 and gap − 0.1(v2

f − v2
l) − 10 − (vf − vi) ≥ 0. We assume

that al is an input and is constrained to be within −5m/s2 and 2m/s2, and
the velocities vl, vf are always non-negative. The goal is to prove that after it is
engaged, the controller guarantees that gap ≥ 0 always.

The currently released version of HybridSal, which includes an option to cre-
ate time-aware relational abstraction, fails to verify the above example since it
fails to use the equation v′

l − vl = al(t′ − t) (because the A matrix is defec-
tive). However, if we add a constraint that abstracts this equation (using the φ
formula), then HybridSal can prove safety. Even though al can vary arbitrarily,
this equation still holds (for some al due to mean value theorem). Note that the
quadratic term in the initial set had to be approximated by linear terms in the
HybridSal model.

To further evaluate the precision of the proposed abstraction function,
we also created several simple examples of linear systems whose A matrices
were defective, but whose explicit solutions could be worked out by hand. For
the safety property, we had an upper-bound on the value of the variable whose
solution expression had the highest degree in the time variable t. Using knowl-
edge of the explicit solution, we created initial sets and unsafe regions. We report
the results in Table 1. The current version of HybridSal, of course, fails on all
these examples. The new approach presented in this paper allowed us to prove
conservative bounds in each case. In Table 1, Column truebnd. contains the true
bound (computed by hand using the analytical solution), Column proved/CE is

Time-Aware Abstractions in HybridSal 509

Table 1. Experimental results: All six examples have 1 jordan block in the A matrix.
For each example, Column #vars denotes the number of state variables, λ is the eigen-
value(s), alg.mult. is the (sum of) algebraic multiplicity of the eigenvalue(s), #evecs
is the number of eigenvectors, truebnd. is the true upper bound (analytically calcu-
lated) for the “top” variable, proved/CE is the bound proved by the tool followed by the
bound that generated a (spurious) counter-example, and time is the time (in seconds)
taken by Yices to prove/generate a counter-example. The last two columns report the
same results, but using a refined upper bound for ln function.

name #vars λ alg. mult. #evecs true bnd. New Approach (default and refined)

proved/CE time proved/CE time

real j2 2 −1 2 1 2.2 2.8/2.7 0.5/0.5 2.6/2.5 1.7/2.3

real j3 3 −1 3 1 1.6 2.0/1.9 0.8/1.2 1.9/1.8 5.3/9.1

real j4 4 −1 4 1 3.8 4.6/4.5 2.1/4.5 4.3/4.2 41/50

real j5 5 −1 5 1 1.4 2.1/2.0 3.1/7.0 1.8/1.7 4.4/7.3

comp j4 4 −1±i 4 2 1.8 2.8/2.7 1.8/2.8 2.7/2.6 2.3/7.6

comp j6 6 −1±i 6 2 2.1 3.6/3.5 27/37 3.0/2.9 52/92

the bound that our approach was able to prove, followed by a bound that yielded
a (spurious) counter-example. Column time reports the time it took the SMT
solver (Yices) to prove the bound in Column proved/CE, followed by the time it
took Yices to find a counter-example for the second bound in Column proved/CE.

To further validate the claim that the sound approximations for ln are the
key, we used a slightly better (refined) upper-bound, ln(2)

ub defined in Fig. 1, for ln
function and re-ran the experiments, and in each case, the tool proved a tighter
safety property than before (last two columns in Table 1). As expected, using the
refined approximation caused Yices to take more time. The tool and examples
are all available from the HybridSal webpage [15].

We note that on examples that contain only non-defective matrices, there is
no overhead added by our new extension: the piecewise-linear approximation of
product terms is not triggered and the new approach becomes identical to the
old [10]. We also note that for matrices that have large eigenvalues, we may need
to create a more precise abstraction by choosing large values for the precision
parameters. Consequently, the cost of analysis (model checking) increases for
such examples. In future work, we plan to address this issue.

4 Conclusion

We presented an approach for improving the time-aware relational abstraction
that is currently computed by the HybridSal tool. In particular, we improved the
precision of the abstraction for linear systems whose A matrices are defective.
We showed that the new approach enables HybridSal to prove correctness of
systems that could not be proved correct using an approach that performed
coarse abstraction for defective A matrices. This extension is significant since
defective matrices occur frequently in models of real systems.

510 A. Tiwari

References

1. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin,
X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theor. Comput. Sci. 138(3), 3–34 (1995)

2. Alur, R., Dang, T., Ivančić, F.: Counter-example guided predicate abstraction of
hybrid systems. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619,
pp. 208–223. Springer, Heidelberg (2003)

3. Alur, R., Henzinger, T., Lafferriere, G., Pappas, G.: Discrete abstractions for hybrid
systems. Proc. IEEE 88(2), 971–984 (2000)

4. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Taylor model flowpipe construction
for non-linear hybrid systems. In: Proceedings of 33rd IEEE Real-Time Systems
Symposium, RTSS, pp. 183–192. IEEE Computer Society (2012)

5. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044,
pp. 258–263. Springer, Heidelberg (2013)

6. Clarke, E., Fehnker, A., Han, Z., Krogh, B.H., Stursberg, O., Theobald, M.: Verifi-
cation of hybrid systems based on counterexample-guided abstraction refinement.
In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 192–207.
Springer, Heidelberg (2003)

7. de Moura, L., Owre, S., Rueß, H., Rushby, J., Shankar, N., Sorea, M., Tiwari, A.:
SAL 2. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 496–500.
Springer, Heidelberg (2004)

8. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: scalable verification of hybrid systems.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395.
Springer, Heidelberg (2011)

9. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HyTech: a model checker for hybrid
systems. Softw. Tools Technol. Transf. 1, 110–122 (1997). http://www-cad.eecs.
berkeley.edu/∼tah/HyTech/

10. Mover, S., Cimatti, A., Tiwari, A., Tonetta, S.: Time-aware relational abstraction
for hybrid systems. In: EMSOFT (2013)

11. Pham, M.-D., Boncz, P., Erling, O.: S3G2: A scalable structure-correlated social
graph generator. In: Nambiar, R., Poess, M. (eds.) TPCTC 2012. LNCS, vol. 7755,
pp. 156–172. Springer, Heidelberg (2013)

12. Puri, A., Varaiya, P.: Driving safely in smart cars. In: Proceedings of the 1995
American Control Conference (1995)

13. Sankaranarayanan, S., Tiwari, A.: Relational abstractions for continuous and
hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 686–702. Springer, Heidelberg (2011)

14. Silva, B.I., Krogh, B.H.: Formal verification of hybrid system using CheckMate:
a case study. In: American Control Conference (2000)

15. Tiwari, A.: HybridSAL relational abstracter. In: Madhusudan, P., Seshia, S.A.
(eds.) CAV 2012. LNCS, vol. 7358, pp. 725–731. Springer, Heidelberg (2012)

16. Wongpiromsarn, T., Mitra, S., Murray, R.M., Lamperski, A.: Verification of peri-
odically controlled hybrid systems application to an autonomous vehicle. ACM
Tans. Embed. Comput. Syst. (ACM TECS). 11, 53 (2012)

http://www-cad.eecs.berkeley.edu/~tah/HyTech/
http://www-cad.eecs.berkeley.edu/~tah/HyTech/

A Type-Directed Approach to Program Repair

Alex Reinking and Ruzica Piskac(B)

Yale University, New Haven, USA
{ruzica.piskac,alexander.reinking}@yale.edu

Abstract. Developing enterprise software often requires composing sev-
eral libraries together with a large body of in-house code. Large APIs
introduce a steep learning curve for new developers as a result of their
complex object-oriented underpinnings. While the written code in gen-
eral reflects a programmer’s intent, due to evolutions in an API, code
can often become ill-typed, yet still syntactically-correct. Such code frag-
ments will no longer compile, and will need to be updated. We describe
an algorithm that automatically repairs such errors, and discuss its appli-
cation to common problems in software engineering.

1 Introduction

While coding, a developer often knows the approximate structure of the expres-
sion she is working on, but may yet write code that does not compile because
some fragments are not well-typed. Such mistakes occur mainly because modern
libraries often evolve into complex application programming interfaces (APIs)
that provide a large number of declarations. It is difficult, if not impossible, to
learn the specifics of every declaration and its utilization.

In this paper we propose an approach that takes ill-typed expressions and
automatically suggests several well-typed corrections. The suggested code snip-
pets follow the structure outlined in the original expression as closely as possible,
and are ranked based on their similarity to the original code. This approach can
also be seen as code synthesis. In fact, our proposed method extends the synthe-
sis functionality described in [3,6,10]. In light of program repair, plain expression
synthesis can be seen as a repair of the empty expression.

We have implemented an early prototype of our algorithm, and empirically
tested it on synthesis and repair benchmarks. The initial evaluation strongly
supports the idea of a graph-based type-directed approach to code repair and
snippet synthesis. Compared to the results reported in [3], our approach outper-
forms on similar benchmarks, sometimes by several orders of magnitude, while
still producing high-quality results.

2 Related Work

Our work is largely inspired by two synthesis tools: Prospector [6] and InSynth
[3,4]. Prospector is a tool for synthesizing code snippets containing only unary

c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 511–517, 2015.
DOI: 10.1007/978-3-319-21690-4 35

512 A. Reinking and R. Piskac

API methods. The basic synthesis algorithm used in [6] encodes method signa-
tures using a graph. Although we also encode function information in a graph
structure, our synthesis graph is more general. As explained in Sect. 4.1, we dis-
tinguish nodes into types and functions, as opposed to just types. In a way, the
connections to each function node models its succinct type as described in [3].
While our approach acts as a generalization of both these tools, we significantly
extend their capability. Our algorithm can repair ill-typed expressions, as well.

Debugging and locating errors in code [1,8] play an important role in the
process of increasing software reliability. While our approach suggests repairs
based only on a given ill-typed expression and its environment, other tools
that tackle this problem [2,5,7,9] additionally require test cases, code contracts
and/or symbolic execution.

3 Motivating Example: Correcting Multiple Errors

In this section, we show how our algorithm efficiently repairs ill-typed expres-
sions. Sometimes, such expressions might poorly reflect the structure of the
desired expression, while still retaining other useful information. This is the
case when the correct structure is obscured by passing too many or too few
arguments to a function, or by passing them in the wrong order.

The following code fragment attempts to read a compressed file though a
buffered stream while using an extensive number of calls to the standard Java
API. The developer attempts to instantiate an InputStream object:

int buffSize = 1024, compLevel = Deflater.BEST_SPEED;
String fileName = "compressed.txt";

InputStream input =
new BufferedInputStream (buffSize , new DeflaterInputStream (

new FileInputStream (), compLevel , true)); // error

In this example, the single variable assignment contains three errors. First, the
constructor for the FileInputStream requires at least one argument, yet has
received none; second, the DeflaterInputStream constructor has been passed too
many arguments; and finally, the BufferedInputStream has been passed valid
arguments, but in the wrong order.

To repair this expression, our algorithm proceeds from the bottom, viewed
as a parse tree, up to the top-level. Thus, it begins by correcting the inner-
most sub-expression: new FileInputStream(). From the entire available code, our
repair algorithm returns new FileInputStream(fileName) as the closest match. To
repair code, we consider the visible user-defined values along with the standard
libraries, favoring the values that appear closest to the point in the program
where the repair was initiated.

After substituting the new expression, the repair proceeds to correct the
DeflaterInputStream call. Since all of its arguments are well-typed, the repair
will attempt to re-use them while synthesizing a replacement. After searching
through the space of possible repairs, the algorithm finds the following snippet:

A Type-Directed Approach to Program Repair 513

new DeflaterInputStream (new FileInputStream(fileName), new

Deflater(compLevel , true))

Here, the repair wraps the extra arguments in a call to the Deflater constructor
from the Java API. Notice that even though Deflater was not previously present
in the expression, our repair algorithm was able to discover it by examining the
valid constructor calls for a DeflaterInputStream.

Finally, the algorithm rebuilds the overall expression by interchanging the
arguments in the top-level expression to arrive at the final, correct result:

new BufferedInputStream (new DeflaterInputStream (
new FileInputStream (fileName),new Deflater(compLevel , true)),

buffSize);

As we discuss in Sect. 5, the whole search and repair takes under a second to
complete.

4 The Algorithm

4.1 Synthesis Graph Construction

Our algorithm operates by searching through a data structure we call the syn-
thesis graph. Each node of the synthesis graph corresponds to either a value-
producing language entity, such as a function, variable, constant, or literal, or to
a type in the language. We therefore divide nodes into two sets Vt (type nodes)
and Vf (function nodes). Since variables, constants, and literals can be consid-
ered functions taking the empty set to their value, they belong to Vf . To every
function node, there is an incoming edge from the type it produces, and for each
distinct type that the function takes as an argument, there is an outgoing edge
from the function node to the type node. Importantly, this means that a function
on three input parameters of the same type will have out-degree exactly one.

In addition, we assign to every edge a cost, which is a subjective measure
that guides the search towards desirable traits. Such traits could include smaller
expressions or lower memory usage, similar to [4]. The cost of an expression is
defined to be an accumulation of the costs of the edges it includes.

4.2 Synthesis Procedure

We now outline the synthesis portion of our algorithm, Algorithm 1. The algo-
rithm takes as input the synthesis graph G = (Vt∪Vf , E), the type of expression
to synthesize τ , and two numbers Cmax and N . N is the number of expressions
to synthesize, and Cmax is an upper bound on the cost of an expression. The
synthesis algorithm returns a list of expressions of type τ . The first two steps can
be done using Dijkstra’s algorithm. The types in V ′

t are explored in reverse order
to avoid performing expensive recomputations. The loop finds N expressions of
type σ with the shortest cost-distance to τ in G′ and stores them in snips. This
way, GetExpressions is able to reuse these computations without reducing the
search space.

514 A. Reinking and R. Piskac

Algorithm 1. Synthesis Algorithm
input : G = (Vt ∪ Vf , E), τ ∈ Vt, Cmax, N
output : exprs, the list of expressions

G′ = (V ′
t ∪ V ′

f , E′) ←− subgraph of G reachable within Cmax from τ ;1

Sort V ′
t in descending distance away from τ ;2

snips ←− Hash table mapping types to snippets ;3

foreach σ ∈ V ′
t do4

snips [σ] ←− getExpressions(G′, snips, σ, Cmax− Dist(σ), N) ;5

exprs ←− snips [τ] ;6

Procedure. GetExpressions(G′ = (V ′
t ∪ V ′

f , E′), snips, τ, Cnow, N)

if τ ∈ Keys(snips) then return snips [τ]1

results ← ∅ ;2

foreach g ∈ V ′
f of the form g : (τ1 × · · · × τk) → τ do3

if Cost(g) > Cnow then continue4

For all i, let si ← GetExpressions(G′, snips, τi, Cnow− Cost(g), N) ;5

foreach args ∈ s1 × · · · × sk do6

if Cost(g(args)) ≤ Cnow then7

Add g(args) to results ;8

while | results | > N do9

Remove the most costly entry from results ;10

return results11

Next we describe the GetExpressions procedure, whose task is to find the
N best snippets of type τ in G′ within a prescribed cost bound Cnow. The
procedure operates recursively, and it checks the snips table to see whether it
can reuse the existing computations. To compute candidates for τ ∈ Vt, the
procedure looks at its outgoing neighbors, which are all functions whose output is
of type τ . For each function that does not immediately break the cost constraint,
GetExpressions attempts to synthesize subexpressions for each of its arguments
recursively. This only needs to be done once for each type. Then, for every
possible set of arguments to the function, it adds the allowable expressions to
the results. Furthermore, it pushes out the worst few results if the size of the set
would exceed N .

4.3 Repair Algorithm

Finally, we describe the repair algorithm, Algorithm 2. The key step in our
approach is biasing the previously-described synthesis procedures towards the
correctly-typed subexpressions of the broken expression. The intuition for this
is that the search should be directed to favor those components that the pro-
grammer intended to use. To do this, we adjust the Cost function used by Get-
Expressions to assign the lowest possible cost to the well-typed subexpressions.

A Type-Directed Approach to Program Repair 515

Informally, we call these zero-cost subexpressions “reinforced”. This lowers the
weights of results that contain these expressions, thus improving their ranking
among the returned results.

This scheme has a few advantages: first, it will very strongly prefer those
expressions that occurred as part of the given incorrect expression; second, in
cases where more than one of the same type is required, it will favor using
multiple, distinct subexpressions; and finally, if no expressions are given, then
Cost actually remains unchanged.

With this modification in place, the repair algorithm proceeds from the bot-
tom up. For each broken sub-expression in the input, we first reinforce each of
its well-typed subexpressions and then initiate a synthesis for the desired type
of the current subexpression. If any of its children are ill-typed, we recurse and
repair them first.

Notice that this means the repaired subexpressions will also be reinforced.
This behavior is desirable because it favors reusing the subexpressions generated
once the repair synthesizes a higher level. Additionally, the recursion guarantees
that reinforcing a subexpression will not interfere with a synthesis that occurs
at the same level as that subexpression. Although this algorithm, as described,
returns up to N possible repairs, in our preliminary implementation, the first
returned result was mostly the correct one, so we speculate that setting N really
low might be acceptable in a practical setting.

Algorithm 2. Repair Algorithm
input : G = (Vt ∪ Vf , E), the synthesis graph; expr, the broken expression;

Cmax, the maximum allowable cost; N , the number of repairs to
synthesize

output : repairs, a list

if expr is well-typed then return [expr]1

Write expr as expr (x1, . . . , xk) where xi are its subexpressions of type τi ;2

foreach x ∈ {x1, . . . , xk} do3

x ←− Repair (G, x, Cmax, N) ; // Replace x with a list of either4

itself or its possible corrections

foreach subs ∈ x1 × . . . × xk do5

Reinforce all expressions in subs ;6

Add all results of Synthesize (G, τ, Cmax, N) to repairs ;7

Clear reinforcements ;8

repairs ←− Best N results in repairs9

5 Preliminary Evaluation

We empirically evaluated our approach on benchmarks based on those found in
[4]. Table 1 shows the summary of the results. The runtimes were measured on
a standard university-supplied computer. For each benchmark, the best of 50

516 A. Reinking and R. Piskac

Table 1. Typical-use runtimes in various benchmarks. “Nodes” and “Edges” refer
to the size of the searched subgraph, and “Rank” indicates the correct expression’s
position among the results. The “size” refers to the number of subexpressions in the
output expression. Each test case was initialized with a small environment consisting
of five variables, and produced ten results.

Benchmark Type Size Time (ms) Nodes Edges Rank

SequenceInputStream Synthesis 3 < 1 141 149 1

SequenceInputStream Repair 5 4 – – 1

BufferedReader Synthesis 3 16 3119 4225 2

BufferedReader Repair 3 18 – – 1

AudioClip (applet) Synthesis 3 27 6808 9291 2

InputStreamReader Synthesis 2 29 7064 9673 1

FileInputStream Synthesis 2 38 7832 10516 1

Matcher (regex) Synthesis 4 93 14505 24740 1

InputStream (from byte array) Synthesis 2 116 13163 20581 2

DeflaterInputStream Repair 8 380 – – 1

consecutive trials was recorded to account for variance in process scheduling,
cache behavior, and JVM warmup. It was not uncommon to see four-to-five-fold
speed increases between the best and the worst runtimes of the algorithm. This
is due to the delay in program optimization afforded by Oracle’s JIT compiler.

It is important to note that these numbers represent a worst-case scenario
for our algorithm. Since the full set of Java libraries are rarely imported, the
algorithm should run even faster in practice as it will have smaller graphs to
search. We imported the whole Java standard library which resulted in a graph
of 45,557 nodes and 102,377 edges.

These benchmarks show that repair is fast and accurate even in the face of
multiple, difficult errors. The compressed stream example in Sect. 3 had several
distinct errors: a missing parameter, two parameters transposed, and additional
parameters passed to a function that did not accept them. Still, in three calls to
the synthesis routine, our algorithm automatically corrected all three errors in
around a third of a second.

Although it is impossible to test the full range of possible type errors every-
where they might appear in the Java standard library, if these speeds are indeed
representative of the whole space of possible errors, then our repair algorithm is
sufficiently fast to operate in an interactive setting.

6 Conclusions and Future Directions

We have seen that our algorithm efficiently subsumes the work done in [3,6,10] and
extends it to the problem of program repair. Using our novel graph-theoretic app-
roach, we efficiently solve instances of this problem to synthesize a correct expres-
sion from the salvageable parts of a broken one. We believe that the algorithm

A Type-Directed Approach to Program Repair 517

in its current state has two compelling uses. First, it can assist programmers in
writing complex expressions. Second, it could be integrated into a compiler to
provide enhanced error messages that not only point to errors, but offer ways
to correct them. We believe that our algorithm will perform useful and effective
repairs that are well-aligned with the developer’s intentions, even when the given
ill-typed expression requires several steps to repair.

Acknowledgments. We thank Tihomir Gvero and Ivan Kuraj for early discussions
about program repair.

References

1. Chandra, S., Torlak, E., Barman, S., Bodik, R.: Angelic debugging. In: Proceedings
of the 33rd International Conference on Software Engineering, ICSE 2011, pp. 121–
130. ACM, New York, NY, USA (2011)

2. Goues, C.L., Nguyen, T., Forrest, S., Weimer, W.: GenProg: a generic method for
automatic software repair. IEEE Trans. Software Eng. 38(1), 54–72 (2012)

3. Gvero, T., Kuncak, V., Kuraj, I., Piskac, R.: Complete completion using types and
weights. In: PLDI, pp. 27–38 (2013)

4. Gvero, T., Kuncak, V., Piskac, R.: Interactive synthesis of code snippets. In:
Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 418–423.
Springer, Heidelberg (2011)

5. Kaleeswaran, S., Tulsian, V., Kanade, A., Orso, A.: Minthint: automated synthesis
of repair hints. In: Proceedings of the 36th International Conference on Software
Engineering, ICSE 2014, pp. 266–276. ACM, New York, NY, USA (2014)

6. Mandelin, D., Xu, L., Bod́ık, R., Kimelman, D.: Jungloid mining: helping to nav-
igate the api jungle. In: PLDI (2005)

7. Nguyen, H.D.T., Qi, D., Roychoudhury, A., Chandra, S.: Semfix: program repair
via semantic analysis. In: Notkin, D., Cheng, B.H.C., Pohl, K. (eds.) 35th Interna-
tional Conference on Software Engineering, ICSE 2013, San Francisco, CA, USA,
18–26 May 2013, pp. 772–781. IEEE/ACM (2013)

8. Pavlinovic, Z., King, T., Wies, T.: Finding minimum type error sources. In: Pro-
ceedings of the 2014 ACM International Conference on Object Oriented Program-
ming Systems Languages & Applications, OOPSLA 2014, pp. 525–542. ACM, New
York, NY, USA (2014)

9. Pei, Y., Wei, Y., Furia, C.A., Nordio, M., Meyer, B.: Code-based automated
program fixing. In: Alexander, P., Pasareanu, C.S., Hosking, J.G. (eds.) 26th
IEEE/ACM International Conference on Automated Software Engineering, ASE
2011, Lawrence, KS, USA, 6–10 November 2011, pp. 392–395. IEEE (2011)

10. Perelman, D., Gulwani, S., Ball, T., Grossman, D.: Type-directed completion of
partial expressions. In: PLDI, pp. 275–286 (2012)

Formal Design and Safety Analysis of AIR6110
Wheel Brake System

M. Bozzano1, A. Cimatti1, A. Fernandes Pires1(B), D. Jones2, G. Kimberly2,
T. Petri2, R. Robinson2(B), and S. Tonetta1

1 Fondazione Bruno Kessler, Trento, Italy
{bozzano,cimatti,anthony,tonettas}@fbk.eu

2 The Boeing Company, P.O. Box 3707, Seattle, WA 98124, USA
{david.h.jones,greg.kimberly,tyler.j.petri,

richard.v.robinson}@boeing.com

Abstract. SAE Aerospace Information Report 6110, “Contiguous Air-
craft/System Development Process Example,” follows the development
of a complex wheel brake system (WBS) using processes in the industry
standards Arp4754A, “Guidelines for Development of Civil Aircraft and
Systems,” and Arp4761, “Guidelines and Methods for Conducting the
Safety Assessment Process on Civil Airborne Systems and Equipment.”

Air6110 employs informal methods to examine several WBS archi-
tectures which meet the same requirements with different degrees of
reliability.

In this case study, we analyze the Air6110 with formal methods.
First, WBS architectures in Air6110 formerly using informal steps are
recreated in a formal manner. Second, methods to automatically ana-
lyze and compare the behaviors of various architectures with additional,
complementary information not included in the Air6110 are presented.
Third, we provide an assessment of distinct formal methods ranging from
contract-based design, to model checking, to model based safety analysis.

Keywords: Aerospace recommended practices · Case study · Model
checking · Safety analysis · Fault tree · Contract-based design

1 Introduction

General Context. As aerospace systems become more complex and integrated, it
becomes increasingly important that the development of these systems proceeds
in a way that minimizes development errors. Advisory Circular (AC) 20-174 [13]
from the FAA specifies the Society for Automotive Engineering (SAE) guid-
ance, Aerospace Recommended Practice (ARP) Arp4754A [24], “Guidelines
for Development of Civil Aircraft and Systems,” as a method (but not the only
method) for developing complex systems. Arp4754A along with its companion
Arp4761 [23], “Guidelines and Methods for Conducting the Safety Assessment
Process on Civil Airborne Systems and Equipment,” provide the guidance that
c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 518–535, 2015.
DOI: 10.1007/978-3-319-21690-4 36

Formal Design and Safety Analysis of AIR6110 Wheel Brake System 519

original equipment manufacturers (OEMs) such as Boeing and Airbus may uti-
lize to demonstrate that adequate development and safety practices were fol-
lowed, and that final products meet performance and safety requirements while
minimizing development errors.

System safety assessment is a development process compatible with Arp4761
which ensures that system architectures meet functional and safety requirements.
Architecture decisions take system functions and safety into account through
the use of countermeasures to faults such as redundancy schemas, fault report-
ing, maintenance, and dynamic system reconfiguration based on fault detection,
isolation, and recovery (FDIR). The role of safety assessment is to evaluate
whether a selected design is sufficiently robust with respect to the criticality of
the function and the probability of fault occurrence. For example, functions with
catastrophic hazards must not have any single failure that can result in that haz-
ard. Also, each level of hazard category (catastrophic, hazardous, major, minor)
has an associated maximum probability that must be ensured by the design. For
all functions, the system architecture and design must support availability and
integrity requirements commensurate with the functional hazards. Among the
various analyses, the construction of fault trees [26] is an important practice to
compare different architectural solutions and ensure a compliant design.

The Air6110 Document. Aerospace Information Report (AIR) Air6110 [25]
is an informational document issued by the SAE that provides an example of
the application of the Arp4754A and Arp4761 processes to a specific aircraft
function and implementing systems. The non-proprietary example of a wheel
brake system (WBS) in this AIR demonstrates the applicability of design and
safety techniques to a specific architecture. The WBS in this example comprises
a complex hydraulic plant controlled by a redundant computer system with
different operation modes and two landing gears each with four wheels. The
WBS provides symmetrical and asymmetrical braking and anti-skid capabilities.
Air6110 steps the reader through a manual process leading to the creation of
several architectural variants satisfying both functional and safety requirements,
and cost constraints.

Contribution. In this paper, the informal process employed in Air6110 is exam-
ined and enhanced using a thorough, formal methodology. We show how for-
mal methods can be applied to model and analyze the case study presented in
Air6110. This formal method supports multiple phases of the process, explores
the different architectural solutions, and compares them based on automatically
produced artifacts.

The formal modeling and analysis are based on the integration of several
techniques, supported by a contract-based design tool (OCRA [7]), a model
checker (nuXmv [6]), and a platform for model-based safety analysis (xSAP [1]).
Using these techniques and tools, we create models for the various architectures
described in Air6110, demonstrate their functional correctness, and analyze a
number of requirements from the safety standpoint, automatically producing
fault trees with a large number of fault configurations, and probabilistic relia-
bility measures.

520 M. Bozzano et al.

Distinguishing Features. The work described in this paper is important for sev-
eral reasons. First, it describes a fully-automated analysis of a complex case study,
covering not only functional verification but also safety assessments. Second,
we propose the integration of different formal techniques (e.g., architectural
decomposition, contract-based design, model checking, model-based safety analy-
sis, and contract-based safety analysis) within an automated, unifying flow, which
we analyze in terms of scalability and accuracy. Finally, we report interesting
results from the standpoint of the Air6110. Specifically, we provide qualitative
and quantitative analyses of the WBS, through an examination of the respective
merits of the various architectures. We also show that a flaw affects more architec-
tures than reported in Air6110.

Related Work. The WBS described in Arp4761 has been used in the past as a
case study for techniques on formal verification, contract-based design and/or
safety analyses (see, e.g., [9,11,20,21]). With respect to these works, this case
study is much more comprehensive, describes a more elaborate design, and is
the only one to automatically produce fault trees. In [3], contract-based fault-tree
generation is applied to the Arp4761 WBS, but on a much smaller architecture
than those considered in this paper. Moreover, the current work is unique in
the literature, in that it takes into account the process described in Air6110
and analyzes the differences between the various architectures.

There are many applications of formal methods in the industrial avionics
process. The ESACS [12], ISAAC [19], and MISSA [22] projects pioneered the
ideas of model extension and model-based safety assessment, and proposed auto-
matic generation of fault trees. However, we are not aware of other significant
case studies combining contract-based design, formal verification, and model-
based safety analysis (with automated fault tree generation) as in the method-
ology described in this paper.

Plan of the Paper. In Sect. 2 we present the informal Air6110 application and
process. In Sect. 3 we give an overview of our formal process. In Sect. 4 we discuss
the formal models of the WBS. In Sect. 5 we present the results of the formal
analyses. In Sect. 6 we discuss the lessons learned, and outline future work.

2 AIR 6110

2.1 Overview of the Standards

Arp4754A [24] and Arp4761 [23] define Recommended Practices for devel-
opment and safety assessment processes for the avionics field. The practices
prescribed by these documents are recognized by the Federal Aviation Admin-
istration (FAA) as acceptable means for showing compliance with federal regu-
lations [13,14], and have been used by the industry of the field for years.

The Aerospace Information Report 6110 (Air6110) document was released
by SAE in 2011. It describes the development of sub-systems for a hypothetical
aircraft following the principles defined in Arp4754A, and shows the relation-
ships with the Arp4761. Air6110 focuses on the Wheel Brake System (WBS)

Formal Design and Safety Analysis of AIR6110 Wheel Brake System 521

of a passenger aircraft designated model S18. The hypothetical S18 aircraft is
capable of transporting between 300 and 350 passengers, and has an average
flight duration of 5 h.

2.2 Overview of the Wheel Brake System

The WBS of the S18 is a hydraulic brake system implementing the aircraft
function “provide primary stopping force”. In particular, it provides braking of
the left and right main landing gears, each with four wheels. In addition to
coupled braking, each landing gear can be individually controlled by the pilot
through a dedicated (left/right) brake pedal.

WBS Architecture and Behavior. An overview of the WBS architecture is
shown in Fig. 1. For the sake of clarity, the control system is not decomposed and
sensors for the pedal position and the wheels’ angular speed are not represented.

The WBS is composed of a physical system and a control system. The phys-
ical system includes hydraulic circuits running from hydraulic pumps to wheel
brakes and thus providing braking force to each of the 8 wheels. The physi-
cal system can be electrically controlled by the Braking System Control Unit
(BSCU) of the control system, or mechanically controlled directly through the
pedals’ mechanical position, depending on the operation mode of the WBS.

Fig. 1. WBS architecture overview (MV=Meter Valve; ASV=AntiskidShutoff Valve;
W=Wheel)

522 M. Bozzano et al.

There are 3 different operation modes. In normal mode, braking is effected by
the primary hydraulic circuit, referred to as the green circuit. The green circuit
is composed of a hydraulic pump and 8 meter valves, one valve for each wheel.
Each valve is individually controlled by electrical commands provided by the
BSCU. The BSCU signals a combined brake and antiskid command, which may
be different for each wheel. The brake command depends on the electrical signal
received from the pilot pedal. The antiskid command is computed based using
sensor inputs that indicate ground speed, wheel speed and brake command.

In alternate mode, braking is effected by a second hydraulic circuit, called
the blue circuit. The 8 wheels are mechanically braked in pair, 2 pairs per land-
ing gear. The blue circuit is composed of a hydraulic pump, 4 meter valves and
4 anti-skid shutoff valves. Each meter valve is mechanically commanded by its
associated pilot pedal. The switch between green and blue circuits is mechan-
ically controlled via a selector valve. When the selector valve detects a lack of
pressure in the green circuit, it automatically switches to the blue circuit. When
the green circuit becomes available again, it switches from the blue circuit back
to the green circuit. A lack of pressure in the green circuit can occur if the
hydraulic pump of the circuit fails or if the pressure is cut by a shutoff valve.
The shutoff valve is closed if the BSCU becomes invalid.

Emergency mode is supported by the blue circuit, operating only in case the
hydraulic pump fails. In this case, an accumulator backs up the circuit with
hydraulic pressure, supplying sufficient pressure to mechanically brake the air-
craft. An isolation valve placed before the pump prevents pressure from flowing
back to the pump.

WBS Requirements. The Air6110 document contains several requirements
for the WBS. These can be grouped in two main categories: Requirements cor-
responding to safety, e.g., the loss of all wheel braking shall be extremely remote,
and others, e.g., the WBS shall have at least two hydraulic pressure sources.

Our case study focuses on five safety requirements, that are well representa-
tive of safety requirements that should be handled during safety assessment:

S18-WBS-R-0321. Loss of all wheel braking (unannunciated or annunciated)
during landing or RTO shall be extremely remote

S18-WBS-R-0322. Asymmetrical loss of wheel braking coupled with loss of
rudder or nose wheel steering during landing or RTO shall be extremely
remote

S18-WBS-0323. Inadvertent wheel braking with all wheels locked during takeoff
roll before V1 shall be extremely remote

S18-WBS-R-0324. Inadvertent wheel braking of all wheels during takeoff roll
after V1 shall be extremely improbable

S18-WBS-R-0325. Undetected inadvertent wheel braking on one wheel w/o
locking during takeoff shall be extremely improbable

Intuitively, a safety requirement associates the description of an undesirable
behaviour or condition (e.g. “inadvertentwheel braking”)with a lower boundon its
likelihood, according to terminology (e.g. “extremely improbable”) defined in [15].

Formal Design and Safety Analysis of AIR6110 Wheel Brake System 523

2.3 The Informal Development Process

The Air6110 document describes the development process shown in Fig. 2 as
applied to the WBS. It details the development of the WBS system architecture
in four versions, each obtained after design choices of different types.

Fig. 2. Five architectures

Arch1 is the high-level architecture of the WBS. It represents the first step
in the architecture definition by defining the main functional elements of the
WBS. It incorporates only one hydraulic circuit and one Control Unit.

Arch2 is the first concrete architecture which meets basic safety require-
ments. The development of Arch2 is motivated by performing a Preliminary
System Safety Assessment (PSSA) on Arch1, which results in the introduction
of redundancy in the hydraulic circuits and in command computation with two
BSCUs in the control system.

Arch3 is motivated by trade studies on Arch2. The purpose of the trade
study is to assess other architectures answering to the same safety requirements
as Arch2 and which are less expensive and easier to maintain. Only the control
system architecture is modified by going from two BSCUs to one dual-channeled
BSCU.

Arch4 is driven by validation of safety requirements on Arch3. Specifically,
a safety requirement addressing mutual exclusion of the operating modes of
the WBS is shown to be unmet. Arch3 is modified to meet the requirement.
Only the physical system is modified, by adding an input to the selector valve
corresponding to the validity of the control system and moving the accumulator
in front of the selector valve.

For our case study, we added an architecture variant called Arch2bis which
is based on the control system architecture of Arch2 and the physical system
architecture of Arch4. The purpose is to show that it is possible to detect
the issue that motivated the change to Arch4 earlier in the design process at
Arch2.

3 Formal Approach

The formal approach to modeling and analyzing the case study follows the
process depicted in Fig. 3. The main steps are: component-based modeling of the

524 M. Bozzano et al.

Fig. 3. Overview of the process and the related tool support.

system architecture and contract-based specification of the architectural decom-
position; definition of the behavioral implementation of components at the leaves
of the architecture, generation of the full system implementation and formal ver-
ification of the properties; extension of the model with failures to include faulty
behaviors of components; production of a safety analysis based on fault-tree
analysis.

The formal approach is supported by a set of tools developed by the Fon-
dazione Bruno Kessler, namely OCRA [7,9,10,17] for contract-based specifica-
tion, verification, and safety analysis of the architecture decomposition; nuXmv
[6,16] for formal verification of the behavioral implementation; and xSAP [1,4,18]
for model-based safety analysis of the behavioral implementation.

Formal Verification of the Architectural Decomposition. The architec-
ture decomposition is expressed in the OCRA language and the component
contracts are expressed in linear temporal logic (LTL). The system architecture
is hierarchically decomposed into constituent components, until leaf components
of the system are reached. Each component has an interface defining the bound-
ary between the component implementation and its environment. An interface
consists of a set of input and output ports through which the component imple-
mentation interacts with its environment. A composite component is refined into
a synchronous composition of sub-components. The decomposition also defines
interconnections among the ports of the subcomponents and the composite com-
ponent. The implementation of a composite component is given by the compo-
sition of the implementations of the subcomponents. Similarly, the environment
of a subcomponent is given by the composition of the other subcomponents.

The properties in component contracts are formalized into LTL formulas fol-
lowing the Contract-Based Design supported by OCRA. Each component is
enriched with contracts that define the correct refinement of the architecture.
A contract is composed of an assume clause, which represents the property that
the environment of the component must ensure, and a guarantee clause which
describes the property that the component must ensure. Contracts of refined
components are refined by the contracts of their sub-components. This refine-
ment can be automatically checked by OCRA by generating and discharging a
set of proof obligations that are validity problems for LTL.

Formal Design and Safety Analysis of AIR6110 Wheel Brake System 525

Formal Verification of the Behavioral Implementation. OCRA can
also generate implementation templates for leaf components of the architecture.
Implementation templates are generated in the SMV language [6]. The user needs
to provide only the implementations of leaf components in the template. Once
done, OCRA can take into account these implementations to automatically gen-
erate a full system implementation in the SMV language. During this generation,
the component contracts are automatically translated as LTL properties in the
system implementation. Each leaf component implementation can be checked
according to the component contracts defined in the architecture decomposi-
tion using OCRA. The full system implementation can also be monolithically
checked using the symbolic model checker nuXmv.

Model-Based Safety Analysis (MBSA). xSAP is used to support extend-
ing a nominal model with failure modes provided by the user. A failure mode
represents the behavior of a component in the context of a given failure. Failure
modes can be defined from the xSAP fault library using a dedicated language
for fault-extension. Once failure modes are defined for each component, xSAP
can proceed to the fault extension of the nominal model and generate a new
SMV implementation taking into account failure behaviors.

This extended model is used to conduct Model-Based Safety Analysis on the
system using xSAP. More precisely, xSAP can generate flat fault trees based
on this extended model. Such fault tree is a set of Minimal Cut Sets (MCS),
which are the minimal configurations of faults leading to a Top Level Event
(TLE). Here, the TLEs of the fault trees are the violations of the LTL properties
resulting from the contracts provided in the architecture decomposition. Notice
that a probability can be attached to each failure mode by the user, which will
allow xSAP to compute the probability for the TLE to happen.

Contract-Based Safety Analysis (CBSA). An alternative way to perform
safety analysis is provided by OCRA given the contract-based specification of
the architecture [3]. The architecture decomposition is automatically extended
with failure modes based on the contracts to generate a hierarchical fault tree.
The TLEs of these fault trees are violations of the system contracts of the archi-
tecture. The intermediate events are violations of the subcomponents’ contracts.

4 Formal Models

4.1 Modeling Nominal Aspect

Key Features. The WBS architectures presented in Air6110 are modeled fol-
lowing the formal approach described in Sect. 3. In order to formalize the case
study, we applied some simplifying abstractions to the concrete system. First,
we consider the hydraulic circuits as a unidirectional circuit, thus avoiding rela-
tional modeling of the circuit. As a consequence, the isolation valve present in
Fig. 1 is not relevant for the modeling and is removed from our models.

526 M. Bozzano et al.

Another abstraction concerns the representation of hydraulic pressure in the
hydraulic components, for example at the valve interfaces. All ports representing
hydraulic pressure are expressed as bounded integers between 0 and 10 (rep-
resented as enumeration), as are ports representing braking force. A similar
abstraction is applied to commands sent by the BSCU. All commands are rep-
resented as boolean values. The angular speed of each wheel is treated similarly.
The angular speed of a wheel is represented by a wheel status, stopped or rolling.
Under this representation, the wheel is considered to be skidding if the aircraft
is moving and the wheel is stopped. These choices were made to limit complexity
of the models while keeping a sufficient level of detail to obtain relevant results
from the analysis.

We consider two behaviors for pressure supplied to hydraulic circuits. First,
a hydraulic pump supplies hydraulic pressure only if the pump is supplied by
electrical power and hydraulic fluid. This allows emphasizing the different mode
changes defined in the WBS, depending on the pressure supply of each circuit.
Second, the accumulator is considered to have an infinite reserve of pressure. This
choice is justified by the fact that the model does not incorporate a concept of
measuring “sufficient” pressure necessary to brake the aircraft.

Finally, all models are defined using discrete time and all component behav-
iors are instantaneous, i.e., all inputs are computed at the same time step where
inputs are provided. There is only one exception that concerns the wheel com-
ponent: Braking force applied on the wheel determines the status of the wheel
at the next step.

Architecture Decomposition. The decomposition of the WBS architectures is
accomplished according to information provided in the Air6110, extended by
clarifications from brake system subject matter experts. Each architecture is
decomposed into numerous sub-components. For example, the BSCU is decom-
posed into sub-modules that monitor the system and that create commands.
The wheel brake is decomposed into a hydraulic fuse1, a hydraulic piston and a
brake actuator. Metrics for the different architectures are given in Table 1.

Behavior Implementation. The implementation of the leaf components is pro-
vided by the user, based on the implementation templates generated by OCRA.
The architecture decomposition allows a wide reuse of the leaf component imple-
mentations through the architecture variants. For example, the leaf component
implementations of Arch2 and Arch3 are identical. The only differences are
due to the architecture decomposition at upper-levels, as introduced in Sect. 2.
Similarly, Arch2bis and Arch4 have the same leaf components; they differ from
Arch2 and Arch3 in the implementation of the selector valve that is not only
commanded by the pressure in inputs, but also by the control system validity.
The largest delta between architectures is the change from Arch1 to the rest.
Due to the lack of redundancy, some of the leaf component implementations are
different from Arch2, Arch2bis, Arch3 and Arch4, or even not present at
all, e.g., the selector valve.

1 We consider that the hydraulic fuse is a simple pipe in the nominal model.

Formal Design and Safety Analysis of AIR6110 Wheel Brake System 527

Table 1. Formal modeling metrics

Arch1 Arch2 Arch2bis Arch3 Arch4

Architecture Total components types 22 29 29 30 30

decomposition Leaf components types 15 20 20 20 20

Total components instances 100 168 168 169 169

Leaf components instances 79 143 143 143 143

Max depth 5 5 5 6 6

Nb. contracts 121 129 129 142 142

System Nb. properties 199 291 291 304 304

implementation State variables Bool. 31 79 79 79 79

Enum 55 88 88 88 88

Extended System Failure modes 28 33 33 33 33

implementation Fault variables 170 261 261 261 261

State variables Bool. 74 156 156 156 156

Enum 184 311 311 311 311

The full system implementation is automatically generated by OCRA, using
the architecture decomposition and the leaf component implementations. The
translation from the OCRA architecture to the SMV file preserves the structure,
leveraging the use of modules. The contracts present in the OCRA file are
translated as LTL properties in the system implementation. Metrics about the
system implementation are given in Table 1, where we report the number of
state variables and the number of property instances available for the system
implementation, based on the properties generated from the contracts for each
component type.

Requirements Formalization and Decomposition. The five safety requirements
expressed in Sect. 2.2 are translated as contracts at the system level. They are
modeled as follows: First, we remove flight phase and speed value from the
requirements, as we do not have sufficiently details about them in the mod-
els. The treatment of the required likelihood is ignored in the modeling, and
is delayed to the phase of safety analysis. The undesirable condition is instead
stated never to occur. For example, the requirements S18-WBS-0323 becomes
“never inadvertent wheel braking with all wheels locked”.

COMPONENT MeterValve
INTERFACE
INPUT PORT elec_cmd: boolean;
INPUT PORT mech_cmd: boolean;
INPUT PORT hyd_pressure_in: 0..10;
OUTPUT PORT hyd_pressure_out: 0..10;

CONTRACT apply_command
assume: true;
guarantee: always(((elec_cmd or mech_cmd) and hyd_pressure_in>0)

iff (hyd_pressure_out>0));

Listing 1.1. Architectural specification in OCRA for the Meter Valve

528 M. Bozzano et al.

In addition, the requirements S18-WBS-R-0322 is split into two different
contracts, one for the left side and one for the right side. The requirement S18-
WBS-R-0325 is also split in eight contracts, one for each wheel.

In the subsequent phase of contract decomposition, these five safety require-
ments are in turn broken down into contracts for sub-components, describing
the properties they must ensure, based on the description provided in Air6110
and clarifications provided by subject matter experts. Additional contracts are
also added to ensure the expected behavior of each component (e.g., braking
force is applied when commanded). The number of contracts defined on each
architecture is given in Table 1.

These contracts are then automatically translated into LTL properties in the
system implementation, as described in Sect. 3.

MODULE MeterValve(elec_cmd, mech_cmd, hyd_pressure_in)
VAR

hyd_pressure_out : {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
LTLSPEC NAME apply_command_norm_guarantee :=
(TRUE -> G(((elec_cmd | mech_cmd) & hyd_pressure_in>0) <-> hyd_pressure_out>0));

ASSIGN
hyd_pressure_out := ((mech_cmd | elec_cmd) ? hyd_pressure_in : 0) ;

Listing 1.2. Example of SMV implementation for the Meter Valve

Example of the Meter Valve. A meter valve is a valve that will open if it receives
a command. There are two possible commands: electrical or mechanical, both
described as boolean in our model. The specification of the Meter Valve in the
architecture decomposition is given Listing 1.1. Its behavioral implementation is
given Listing 1.2.

In this implementation, the only part added by the user is the ASSIGN part.
All the rest is automatically generated by OCRA based on the architecture
decomposition.

4.2 Modeling Safety Aspects

Failure Modes and Extended Model. A set of failure modes for the WBS has been
defined for each component, based on expert clarifications: hydraulic pumps can
fail to supply pressure to the hydraulic circuit; valves can fail open or closed
(meter valves and antiskid shutoff valves can also be stuck at the last commanded
position or at a random position); the accumulator can fail open or closed;
hydraulic fuses can close the circuit; brake pistons and brake actuators can be
stuck on, or off, or at the last position; wheels can fail with no rotation; sensors
or BSCU components can send erroneous signals: the selector valve (occurring
in Arch2, Arch2bis, Arch3, Arch4) can fail only to its last position; switch
gates (occurring in the control system of Arch2, Arch2bis, Arch3, Arch4)
can fail at the last position or in an intermediate position.

All failure modes described above can be encoded using predefined failure
modes in the xSAP fault library. The user specifies possible failure modes for
each component (a single component may be associated to more than one fail-
ure mode) using xSAP fault extension language. Then, the generation of the

Formal Design and Safety Analysis of AIR6110 Wheel Brake System 529

extended model is automatically carried out by xSAP. The extended model is
typically two to three times larger than the model before extension.

An example of failure mode for the meter valve is given Listing 1.3. It
describes a failure “failed closed” based on the predefined failure mode StuckAt-
ByValue available in the xSAP fault library. For more details about the fault
extension language, see [18].

EXTENSION OF MODULE MeterValve
SLICE MeterValve_faults AFFECTS hyd_pressure_out WITH

MODE MeterValve_FailedClosed {3.25e-6} : Permanent StuckAtByValue_I(
data term << 0,
data input << hyd_pressure_out,
data varout >> hyd_pressure_out,
event failure);

Listing 1.3. Example of failure mode “failed closed” for the Meter Valve

Availability of the fault extension affords a number of advantages. First, it
guarantees the alignment of the nominal and extended models, avoiding a typical
problem in safety analysis practice. Second, it saves a substantial amount of
tedious modeling of faults, and thus improves productivity. Third, as for the
implementation of the leaf components, the definition of failure modes for each
component allows a similar rate of reuse for each architecture. Metrics about the
failure modes and the extended model of each architecture are given in Table 1.
To conduct a safety analysis on the extended models, the violation of the safety
requirements described above are used as TLE.

Contract Based Safety Analysis (CBSA). The fault extension for the CBSA is
automatically managed by the tool on the architecture decomposition. In com-
parison with the fault extension provided by the user in the MBSA, the CBSA
approach takes into account all possible failure modes that will disprove the
contract of a component.

5 Automated Analyses

For the models described in the previous section, we carried out an experimental
evaluation along the following dimensions: formal verification, construction of
Fault Trees, and comparison of architectures.

Formal Verification. The monolithic models, in form of SMV files, were ana-
lyzed with respect to properties resulting from the contracts in the architec-
ture. We used nuXmv, running different verification engines: BDD-based model
checking and IC3 [5]. The same results were also obtained via the contract-
based approach of OCRA. The contract based verification process is based on
the following steps: the top level properties are stated as contracts in the form of
temporal logic formulae at the system level; each component is associated with
contracts; the correctness of each contract refinement is proved by means of tem-
poral entailment checks; the SMV module associated with each leaf component
is proved to correctly implement the corresponding contracts.

530 M. Bozzano et al.

Table 2. Results of the formal verification (time in seconds)

Arch Monolithic approach Compositional approach

BDD IC3 Ref. Impl. Tot. VPar

Arch1 38.32 56.62 1422.24 6.07 1428.31 439.62

Arch2 2700.64 153.28 102.04 1.26 103.30 24.12

Arch2bis 3069.82 153.19 32.38 1.26 33.64 1.39

Arch3 2935.88 159.01 72.87 1.29 74.16 10.74

Arch4 3429.59 158.51 29.74 1.29 31.03 1.78

All experiments have been performed on a cluster of 64-bit Linux machines
with 2.7 Ghz Intel Xeon X5650 CPU, using one core with a memory limit set
to 10Gb. The results are reported in Table 2 (with Ref. and Impl. representing
time taken for the contract refinement and leaf implementation checks).

The results show that the compositional approach is often faster than the
monolithic analysis. Consider also that contract refinement and implementation
checks are fully independent and localized, and can in principle be executed in
parallel. The VPar column in Table 2 reports maximum computation time across
various individual checks, corresponding to the limit case where each check is
run on a dedicated machine.

Aside from performance considerations, the most important result of the for-
mal verification is that the analysis of some sanity checks pinpointed a problem
with Arch2 that is not reported in Air6110. The problem is caused by the fact
that the accumulator is positioned downstream of the selector valve, so that a fault
in the accumulator can cause inadvertent braking. The problem is only reported
for Arch3; Arch2bis was included in the analysis to correct the problem.

Fault-Tree Analysis. We now consider the construction of Fault Trees for
each of the architectures and requirements, from the models obtained with the
model extension functionality of xSAP, as described in Sect. 3. Each TLE is
the violation of a system requirement. In order to cope with scalability issues,
we limited the space of the problem in two ways: restricting the set of faults,
and limiting the cardinality of the cut sets. This follows a standard practice in
traditional safety analysis: given the manual effort required, priority is given to
cut sets of lower cardinality or greater likelyhood.

The analyses have been run on the five architectures, for all safety properties
and two additional properties. For each property, cardinality goes from 1 to
5, and also with no restriction. In addition to the complete set of faults, six
different restricted sets of faults have been defined and observed. In total, 3150
fault tree constructions have been launched. Overall the activity resulted in
3089 computed fault trees and 61 computations timed out. The fault trees have
minimal cut sets ranging from 0 to tens of thousands. All fault tree constructions
have been performed using IC3 engine on a cluster of 64-bit Linux machines with
CPU going from 2.4 Ghz to 2.7 Ghz Intel Xeon, with a memory limit set to 30Gb
and a time limit of 10 h.

Formal Design and Safety Analysis of AIR6110 Wheel Brake System 531

Table 3. Fault trees results for Arch4 (- represents a timed out computation)

Arch/Prop Prob. |mcs| = 1 |mcs| = 2 |mcs| = 3 |mcs| = 4 |mcs| = 5 Full

Arch4 S18-WBS-R-0321 4.51e-10 0 6 627 629 - N

S18-WBS-R-0322-left 1.00e-05 2 2 203 46287 - N

S18-WBS-R-0322-right 1.00e-05 2 2 203 46287 - N

S18-WBS-0323 0 0 0 0 0 0 N

S18-WBS-R-0324 2.50e-11 0 1 0 2 8729 N

S18-WBS-R-0325-wheel1 1.20e-04 9 12 2596 0 0 Y

S18-WBS-R-0325-wheel2 1.20e-04 9 12 2596 0 0 Y

S18-WBS-R-0325-wheel3 1.20e-04 9 12 2596 0 0 Y

S18-WBS-R-0325-wheel4 1.20e-04 9 12 2596 0 0 Y

S18-WBS-R-0325-wheel5 1.20e-04 9 12 2596 0 0 Y

S18-WBS-R-0325-wheel6 1.20e-04 9 12 2596 0 0 Y

S18-WBS-R-0325-wheel7 1.20e-04 9 12 2596 0 0 Y

S18-WBS-R-0325-wheel8 1.20e-04 9 12 2596 0 0 Y

cmd implies braking w1 1.13e-04 13 30 7428 3815 1768 Y

braking implies cmd w1 1.25e-04 10 24 2647 4530 59 Y

For lack of space, we report only a sample of the results obtained for Arch4.
A detailed account of the results for all architectures, as well as the formal models
and artifacts produced by the analyses, are available at [2]. Table 3 reports the
number of minimal cut sets for the 15 chosen properties, for the full set of
faults, with cardinality going from 1 to 5. The last column indicates whether the
computation has been completed without cardinality bound (Y) or if it timed out
(N). We also report the probability (Prob.) for each of the top-level events, for
an association of the basic faults with a probability (in the N cases, the reported
value is a lower bound). The execution time required to generate results ranges
from seconds (for fault tree with dozens of minimal cut sets) to minutes or hours
(for fault tree with thousands of minimal cut sets).

The problem was also tackled by means of contract-based safety analysis [3].
Given the inherent scalability of the contract based approach, we were able to
produce hierarchical fault trees (HFT). The fault trees have been produced in
a few minutes for all top level contracts for the full configurations. As discussed
in [3], the compositional approach produces hierarchical fault trees whose corre-
sponding set of minimal cut sets is an over-approximation of the one obtained
with the monolithic approach. This was confirmed in the experiments. We also
notice that over-approximation is a common practice in safety analysis. The two
approaches can be considered complementary.

Architectures Comparison. We carried out a global comparison of the archi-
tectures, based on the results obtained for each of them. Basically, the findings
confirmed the weaknesses of Arch1: its number of “single points of failure”, i.e.
minimal cut sets of cardinality 1, is always greater, or equal, than in the other
architectures. The probabilities associated to the TLEs concerning the loss of
wheel braking (S18-WBS-R-0321, S18-WBS-R-0322-left/right) are also greater
than in the other architectures. The probability associated to the inadvertent
braking of one wheel without locking (S18-WBS-R-0325-wheelX) is better in

532 M. Bozzano et al.

Arch1 than in the other architectures. This is due to the fact that even if there
is the same number of minimal cut sets at lower cardinality, the components at
fault are not the same and neither is reliability.

The fault trees for the pair Arch2 and Arch3 are the same, which suggests
that the modification of the control system (i.e. the difference between the two
architectures) has no impact on the safety; same observations hold for the pair
Arch2bis and Arch4. This is to be expected, since the change is triggered by
a trade study aiming at reducing costs and easing maintenance, but the two
control systems are designed according to the same redundancy principles, i.e.
double Control Unit. The difference is that in one case the two CU’s can be phys-
ically positioned in different places, while in the other they are part of a unique
subsystem (which can, in very rare situations, break the assumption of inde-
pendence of the two CU’s). Common Cause Analysis, in particular Zonal Safety
Analysis (ZSA), could confirm this point, and will be part of future activity.

The superiority of Arch2bis on Arch2 (and similarly of Arch4 on Arch3)
is demonstrated by a lower number of minimal cut sets with cardinality greater
than 1. For the TLEs concerning the loss of wheel braking (S18-WBS-R-0321,
S18-WBS-R-0322-left/right), the lower number of minimal cut sets appears at
cardinality 3. For the TLE concerning the inadvertent braking of all wheels with
locking (S18-WBS-0323), there is no difference up to cardinality 5. Concerning
the inadvertent braking of all wheels (S18-WBS-R-0324), the lower number of
minimal cut sets appears at cardinality 4. For the TLEs concerning the inadver-
tent braking of one wheel without locking (S18-WBS-R-0325-wheelX) the lower
number of minimal cut sets appears at cardinality 2.

6 Conclusions, Lessons Learned and Further Work

We presented a complete formal analysis of the Air6110 [25], a document
describing the informal design of a Wheel Brake System. We covered all the
phases of the process, and modeled the case study by means of a combination
of formal methods including contract-based design, model checking and safety
analysis. We were able to produce modular descriptions of five architectures, and
to analyze their characteristics in terms of a set of safety requirements, automati-
cally producing over 3000 fault trees, as well as quantitative reliability measures.
We remark that one of the analyzed architectures (Arch2bis) was the result of
detecting an unexpected dependency in the phases of the Air6110. Specifically,
the trade study on the control system (leading from Arch2 to Arch3) was
carried out on an architecture suffering from a misplaced position of the accu-
mulator (fixed in Arch4). In the following, we discuss some lessons learned, and
outline directions for future activities.

Lessons Learned. The value in going from an informal description to a formal
model was clearly recognized: the Air6110 omits important information that is
assumed to be background knowledge. The ability to produce the artifacts of the
traditional design flow (e.g., architectural diagrams for visual inspection, fault

Formal Design and Safety Analysis of AIR6110 Wheel Brake System 533

trees) supported the interaction with subject matter experts, who were able to
provide fundamental information to increase the accuracy of the models.

MBSA is a fundamental factor for this kind of application. First, it provides
for automated construction of models encompassing faults from models containing
only nominal behaviours. Second, traditional verification techniques, that allow to
prove or disprove properties, are not sufficient: the automated synthesis of the set
of minimal cut sets (i.e. the configurations causing property violations) is required
to support the informal process and to provide a suitable granularity for the com-
parison of various architectural solutions. This approach also provides strong sup-
port for trade studies.

A key factor is the availability of automated and efficient engines. IC3 and
its extensions to the computation of minimal cut sets allowed for the analysis of
architectures that were completely out of reach for BDD-based safety assessment
algorithms.

The use of an architectural modeling language, as proposed in the Contract
Based approach supported by OCRA (and its integration with nuXmv), allows
to reuse both models and contracts. For example, the similar architectures (e.g.,
Arch3 and Arch4) share a very large part of their models. This also makes it
possible to analyze architectural variants with moderate effort.

There is a fundamental role for contract-based design. Its key advantages
are the ability to mimic the informal process, thus ensuring traceability, and
to support proof reuse. Contract-based design also supports the construction of
Hierarchical Fault Trees, which are a fundamental artifact compared to the flat
presentation of the set of minimal cut sets. The CBSA approach outlined in [3]
enables for hierarchical fault tree generation, which are much easier to compute,
and exhibit more structure when compared to a flat presentation of minimal
cut sets. The open problem is how to evaluate the amount of approximation
associated with the method.

Future Work. We will continue this work along the following directions, also
driven by the findings in the case study. We will explore the use of alternative
and more expressive modeling formalisms that may be more adequate to describe
systems at a higher level of detail. For example, we will consider the use of SMT
and more expressive logics, both on discrete and hybrid traces [8].

Contract-based design poses important challenges in terms of debugging. In
particular, there is a need for suitable diagnostic information to support contract
formulation (e.g., to understand why a certain contract refinement does not hold).

Another direction concerns increasing scalability for safety analysis. Realistic
cases require the analysis of tens of thousands of minimal cut sets. We will
investigate techniques to gain efficiency by introducing approximations (e.g.,
limiting cardinality and likelihood of cut sets); an important requirement will
be the ability to calculate the degree of approximation of the result.

534 M. Bozzano et al.

References

1. Bittner, B., Bozzano, M., Cavada, R., Cimatti, A., Gario, M., Griggio, A., Mattarei,
C., Micheli, A., Zampedri, G.: The xSAP Safety Analysis Platform. ArXiv e-prints
(2015)

2. Bozzano, M., Cimatti, A., Fernandes Pires, A., Jones, D., Kimberly, G., Petri, T.,
Robinson, R., Tonetta, S.: AIR6110 Wheel Brake System case study. https://es.
fbk.eu/projects/air6110

3. Bozzano, M., Cimatti, A., Mattarei, C., Tonetta, S.: Formal safety assessment via
contract-based design. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol.
8837, pp. 81–97. Springer, Heidelberg (2014)

4. Bozzano, M., Villafiorita, A.: Design and Safety Assessment of Critical Systems.
CRC Press (Taylor and Francis), Boca Raton (2010). An Auerbach Book

5. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidel-
berg (2011)

6. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,
Mover, S., Roveri, M., Tonetta, S.: The nuXmv symbolic model checker. In: Biere,
A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Heidelberg
(2014)

7. Cimatti, A., Dorigatti, M., Tonetta, S.: OCRA: a tool for checking the refinement of
temporal contracts. In: 28th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 702–705 (2013)

8. Cimatti, A., Roveri, M., Tonetta, S.: Requirements validation for hybrid systems.
In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 188–203.
Springer, Heidelberg (2009)

9. Cimatti, A., Tonetta, S.: A property-based proof system for contract-based design.
In: 38th Euromicro Conference on Software Engineering and Advanced Applica-
tions (SEAA), pp. 21–28 (2012)

10. Cimatti, A., Tonetta, S.: Contracts-refinement proof system for component-based
embedded systems. Sci. Comput. Program. 97, 333–348 (2014)

11. Damm, W., Hungar, H., Josko, B., Peikenkamp, T., Stierand, I.: Using contract-
based component specifications for virtual integration testing and architecture
design. In: Design, Automation and Test in Europe (DATE), pp. 1023–1028 (2011)

12. ESACS: The ESACS Project. www.transport-research.info/web/projects/project
details.cfm?ID=2658. Accessed 20 May 2015

13. FAA: F.A.A.: Advisory Circular (AC) 20–174. http://www.faa.gov/
documentLibrary/media/Advisory Circular/AC%2020-174.pdf

14. FAA: F.A.A.: Advisory Circular (AC) 23–1309-1E. http://www.faa.gov/
documentLibrary/media/Advisory Circular/AC%2023.1309-1E.pdf

15. FAA: F.A.A.: Advisory Circular (AC) 25.1309-1A. http://rgl.faa.gov/Regulatory
and Guidance Library/rgAdvisoryCircular.nsf/list/AC%2025.1309-1A/$FILE/
AC25.1309-1A.pdf (1988)

16. FBK: nuXmv: a new eXtended model verifier. https://nuxmv.fbk.eu
17. FBK: OCRA: A tool for Contract-Based Analysis. https://ocra.fbk.eu
18. FBK: xSAP: eXtended Safety Analysis Platform. https://xsap.fbk.eu
19. ISAAC: The ISAAC Project. http://ec.europa.eu/research/transport/projects/

items/isaac en.htm. Accessed 20 May 2015
20. Joshi, A., Heimdahl, M.P.E.: Model-based safety analysis of simulink models using

SCADE design verifier. In: Winther, R., Gran, B.A., Dahll, G. (eds.) SAFECOMP
2005. LNCS, vol. 3688, pp. 122–135. Springer, Heidelberg (2005)

https://es.fbk.eu/projects/air6110
https://es.fbk.eu/projects/air6110
www.transport-research.info/web/projects/project_details.cfm?ID=2658
www.transport-research.info/web/projects/project_details.cfm?ID=2658
http://www.faa.gov/documentLibrary/media/Advisory_Circular/AC%2020-174.pdf
http://www.faa.gov/documentLibrary/media/Advisory_Circular/AC%2020-174.pdf
http://www.faa.gov/documentLibrary/media/Advisory_Circular/AC%2023.1309-1E.pdf
http://www.faa.gov/documentLibrary/media/Advisory_Circular/AC%2023.1309-1E.pdf
http://rgl.faa.gov/Regulatory_and_Guidance_Library/rgAdvisoryCircular.nsf/list/AC%2025.1309-1A/$FILE/AC25.1309-1A.pdf
http://rgl.faa.gov/Regulatory_and_Guidance_Library/rgAdvisoryCircular.nsf/list/AC%2025.1309-1A/$FILE/AC25.1309-1A.pdf
http://rgl.faa.gov/Regulatory_and_Guidance_Library/rgAdvisoryCircular.nsf/list/AC%2025.1309-1A/$FILE/AC25.1309-1A.pdf
https://nuxmv.fbk.eu
https://ocra.fbk.eu
https://xsap.fbk.eu
http://ec.europa.eu/research/transport/projects/items/isaac_en.htm
http://ec.europa.eu/research/transport/projects/items/isaac_en.htm

Formal Design and Safety Analysis of AIR6110 Wheel Brake System 535

21. Joshi, A., Whalen, M., Heimdahl, M.: Model-based safety analysis final report.
Technical Report, NASA/CR-2006-213953, NASA (2006)

22. MISSA: The MISSA Project. www.missa-fp7.eu. Accessed 20 May 2015
23. SAE: ARP4761: Guidelines and Methods for Conducting the Safety Assessment

Process on Civil Airborne Systems and Equipment (1996)
24. SAE: ARP4754A: Guidelines for Development of Civil Aircraft and Systems (2010)
25. SAE: AIR6110: Contiguous Aircraft/System Development Process Example (2011)
26. Vesely, W., Stamatelatos, M., Dugan, J., Fragola, J., Minarick III, J., Railsback, J.:

Fault tree handbook with aerospace applications. Technical report, NASA (2002)

www.missa-fp7.eu

Meeting a Powertrain Verification Challenge

Parasara Sridhar Duggirala(B), Chuchu Fan, Sayan Mitra,
and Mahesh Viswanathan

University of Illinois, Urbana-champaign, USA
{duggira3,cfan10,mitras,vmahesh}@illinois.edu

Abstract. We present the verification of a benchmark powertrain con-
trol system using the hybrid system verification tool C2E2. This model
comes from a suite of benchmarks that were posed as a challenge problem
for the hybrid systems community, and to our knowledge, we are report-
ing its first verification. For this work, we implemented the algorithm
reported in [10] in C2E2, to automatically compute local discrepancy
(rate of convergence or divergence of trajectories) of the model. We ver-
ify the key requirements of the model, specified in signal temporal logic
(STL), for a set of driver behaviors.

1 A Challenge Problem

As the targets for fuel efficiency, emissions, and drivability become more demand-
ing, automakers are becoming interested in pushing the design automation and
verification technologies for automotive control systems. The benchmark suite
of powertrain control systems were published in [11,12] as challenge problems
that capture some of the difficulties that arise in verification of realistic systems.
It consists of a sequence of SimulinkTM/StateflowTM models of the engine with
increasing levels of sophistication and fidelity. At a high-level, the models take
inputs from a driver (throttle angle) and the environment (sensor failures), and
define the dynamics of the engine. The key controlled quantity is the air to fuel
ratio which in turn influences the emissions, the fuel efficiency, and torque gener-
ated. The requirements for the system are stated in signal temporal logic (STL).
A typical property, for example, ♦t(x ∈ [xeq − ε, xeq + ε]), states that after t
units of time, the continuous variable x is within the range xeq ± ε. Breach [4]
and STaliro [2] have been used for finding counterexamples (or falsifying) models
in [5,12–14]. These techniques can show the presence of executions that violate
a requirement, but not their absence. The technique used in this paper proves
that all the executions from a given set of initial states and a set of switching
signals satisfies (or violates) the requirement. To the best of our knowledge, this
is the first time a model in the powertrain control benchmark is verified.

The model we consider in this paper is polynomial hybrid automata model
(Model 3, Sect. 3.3) of [12]. Although this model is given as a SimulinkTM dia-
gram with switch blocks, it can be transformed to a hybrid automaton with
4 locations and 5 continuous variables. The dynamics of the system is given
by highly nonlinear polynomial differential equations. The mode transitions are
c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 536–543, 2015.
DOI: 10.1007/978-3-319-21690-4 37

Meeting a Powertrain Verification Challenge 537

brought about by the input signal from the driver and there are uncertainties in
the initial set owing to measurement inaccuracies. Using an improved version of
the C2E2 tool [6,7] we are able to perform reachability analysis of this model and
we verify the requirements with respect to a set of relevant driver behaviors. In
principle, Flow* [3] is designed to handle polynomial hybrid automata models,
however, it was unable to verify the models considered in this paper, owing to
the complexity of nonlinear dynamics.

C2E2 is a verification tool for a general class of nonlinear hybrid systems.
The previous version of C2E2 [6,7] required the user to provide a special type
of annotation for the model, called discrepancy function, which essentially cap-
tures the rate of convergence (or divergence) of neighboring trajectories. Finding
discrepancy functions for nonlinear models can be challenging. One of the main
developments that enabled this verification, is the implementation of a new algo-
rithm in C2E2 (presented in detail in [10]) for automatic computation of local
discrepancy along trajectories of the system. Using this improved C2E2, we were
not only able to find counterexamples, but also verify the key STL requirements
of the powertrain benchmark in the order of minutes.

2 Nonlinear Hybrid Powertrain Model

SimulinkTM model for the powertrain control system is shown in Fig. 1(a). The
system has four continuous variables p, λ, pe, i (see Fig. 1(b)), and four modes
of operation: startup, normal , power , and sensor fail . The mode switches (also
called transitions) are brought about by changes in the input throttle angle θin

or failure events.

Fig. 1. Figure showing the model in (a) and the model variables in (b).

The rest of the SimulinkTM diagram defines polynomial differential equa-
tions that govern the evolution of the continuous variables in the four different
modes. As an example, we reproduce the differential equation for normal mode

538 P.S. Duggirala et al.

of operation.

ṗ =c1(2θin(c20p
2 + c21p + c22) − c12(c2 + c3ωp + c4ωp2 + c5ω

2p))

λ̇ =c26(c15 + c16c25Fc + c17c
2
25F

2
c + c18ṁc + c19ṁcc25Fc − λ)

ṗe =c1(2c23θin(c20p
2 + c21p + c22) − (c2 + c3ωpe + c4ωp2

e + c5ω
2pe))

i̇ =c14(c24λ − c11).

Here Fc = 1
c11

(1 + i + c13(c24λ − c11))(c2 + c3ωpe + c4ωp2
e + c5ω

2pe), ṁc =
c12(c2 + c3ωp + c4ωp2 + c5ω

2p), and all the ci’s are constant parameters of the
model.

This model is translated to a hybrid automaton form that is accepted by
C2E2. The operating modes correspond to the locations of the automaton, the
variables correspond to the above continuous variables, the differential equations
define the trajectories, and the discrete transitions among the locations is defined
by a piecewise constant input signal θin from the driver behavior. C2E2 currently
handles only closed automaton models. Therefore, for every driver behavior of
interest, we explicitly construct a family of switching signals that determine the
timing of the mode switches. The initial set of the automaton is a ball in the state
space which corresponds to the measurement uncertainty in state components.

The goal of the powertrain control system is to maintain the air-fuel ratio
at a desired value for optimal functioning of internal combustion engine under
different driving behaviors and conditions. These control objectives or require-
ments are stated in [12] using STL formulas. An example requirement for the
normal mode of operation is the following:

rise ⇒ �(η,ζ)(0.98λref ≤ λ ≤ 1.02λref), (1)

which can be read as “If the throttle angle θin changes from 0 to 60, denoted by
the event rise, then the air-fuel ratio λ should be in the range [0.98λref , 1.02λref]
after η time units and stay in that region until ζ time units”. Here λref is the
reference (desired) air-fuel ratio and η and ζ are parameters of the property.
We note that this type of requirements can also be expressed as bounded time
invariants— the class of properties currently handled by C2E2. We simply need
to introduce a timer variable that keeps track of time elapsed since the last
occurrence of the relevant events like rise in the above example.

3 Verification Using C2E2 with Local Discrepancy

C2E2 implements a generic, simulation-based, algorithm for bounded time ver-
ification of invariant and temporal precedence properties of nonlinear hybrid
models (see [6–8] for details). The algorithm iteratively computes more pre-
cise over-approximations of the reachable states of the system until it either
proves the property (the requirement) or finds a counter-example. These over-
approximations are computed for each location and for the duration that the

Meeting a Powertrain Verification Challenge 539

system is in that location. The set of reachable states at the end of that inter-
val serves as the starting set for the next location and so on. Thus, the key
step in the algorithm is to compute and refine reach set over-approximations for
ODEs for a given location. This step uses validated simulations and discrepancy
functions [6].

A validated simulation of an ordinary differential equation (ODE) ẋ = f(x)
from an initial state x0 with error bound ε is a sequence of time-stamped regions
ψ = (R0, t0), . . . , (Rk, tk) such that for each time interval [ti−1, ti] the solution
ξ(x0, .) resides in the region Ri and dia(Ri) ≤ ε. A uniformly continuous function
β : Rn ×R

n ×R≥0 → R≥0 is a discrepancy function of the above ODE if (a) for
any pair of states x, x′ ∈ R

n, and any time t > 0, ‖ξ(x, t)− ξ(x′, t)‖ ≤ β(x, x′, t),
and (b) for any t, as x → x′, β(., ., t) → 0. Thus, β gives an upper bound on
the rate of divergence of two neighboring trajectories and this bound vanishes
as their initial states approach each other.

In order to check whether the system satisfies an invariant I over a time
horizon T , the C2E2 algorithm starts with a δ-cover of the initial set and proceeds
as follows: from each point x0 in the cover C a validated simulation is generated
and then bloated by a factor given by the discrepancy function. This bloated set
is an over-approximation of the reachset from the δ-neighborhood (Bδ(x0)) of
x0. If this set is disjoint from (or contained in) Ic then the algorithm infers that
the initial set Bδ(x0) satisfies (or violates, respectively) I. Otherwise, a finer
cover of Bδ(x0) is created and added to C for computing a more precise over-
approximation of the reach set from Bδ(x0). The first property of the discrepancy
function gives the soundness of this algorithm, and the second property gives
relative completeness (see, Theorem 13 from [6]).

This approach requires the user to provide discrepancy functions which can be
burdensome. Although Lipschitz constants, contraction metrics [15], and incre-
mental Lyapunov functions [1] can be used to get discrepancy for certain classes
of models, none of these approaches give an algorithm for computing β for gen-
eral nonlinear ODEs. In this paper, we use the algorithm presented in [10] for
computing local discrepancy functions on-the-fly along validated simulations.
This algorithm uses the Jacobian Jf and a Lipschitz constant Lf of the ODE.
First it computes a coarse over-approximation S(xi) of the reach set from a sim-
ulation point for a short duration. Then it computes an exponential (possibly
negative) bound on the divergence rate of trajectories over S(x0) by finding a
bound on the maximum eigenvalue of the symmetric part of the Jacobian Jf

over the region S(x0). We refer the reader to the technical report [10] for the
details of this algorithm.

3.1 Tool Implementation and Engineering

Implementation. For verifying the powertrain system, we implemented the local
discrepancy algorithm in C2E21. This modified implementation only requires

1 The modified tool and related files are available from http://publish.illinois.edu/
c2e2-tool/powertrain-challenge/.

http://publish.illinois.edu/c2e2-tool/powertrain-challenge/
http://publish.illinois.edu/c2e2-tool/powertrain-challenge/

540 P.S. Duggirala et al.

the user to supply the Jacobian matrix of the system. The eigenvalues of the
symmetric parts of the Jacobian are computed using Eigen library [9]. For max-
imizing the norm of error matrices our implementation uses interval arithmetic.

Coordinate Transformation. An important technical detail that makes the
implementation scale is the coordinate transformation proposed in [10]. For Jaco-
bian matrices with complex eigenvalues the local discrepancy computed directly
using the above algorithm can be a positive exponential even though the actual
trajectories are not diverging. This problem can be avoided by first computing
a local coordinate transformation and then applying the algorithm. Coordinate
transformation provides better convergence, but comes with a multiplicative cost
in the error term. This trade-off between the exponential divergence rate and
the multiplicative error has be tuned by choosing the time horizon over which
the coordinate transformation is computed.

Model Reduction. In start up and power mode of the system, the differential
equation does not update the value of the integrator variable i, i.e., i̇ = 0.
Moreover, i does not appear in the right hand side of the differential equations
for variables p, λ, pe. We take advantage of these observations, and consider only
the dynamics of the variables p, λ, and pe for computing local discrepancy.

4 Experimental Results on Powertrain Challenge

We have implemented the algorithm described in Sect. 3 as a prototype extension
of the tool C2E2. Verification of key properties of powertrain systems is typically
performed on a standard set of driver behaviors as the number of switching
signals corresponding to driver behaviors are infinite. In this paper, we pick two
sets of driver behaviors provided in [12] that visit all the modes of the system.
Further, to enable verification with C2E2, the STL properties were encoded
as bounded time safety properties. Hence, the properties in [12] which involved
integrals over paths, could not be verified. Table 1 provides the results of verifying
different STL properties.

The first six properties provided in Table 1 are invariant properties. These
invariant properties can be global (i.e. correspond to all modes) or could be
restricted to a certain mode of operation provided in the Mode column. The
invariants assert that the air-fuel ratio should not go out of the specified bounds.
Observe that C2E2 could not only prove that the given specification is satisfied,
but also that a stricter version of invariants for startup and power modes is
violated. The next four properties are about the settling time requirements.
These requirements enforce that in a given mode, whenever an action is triggered,
the fuel air ratio should be in the given range provided after η (or ηpwr for
power mode) time units. Similar to the invariant properties, C2E2 could also find
counterexample for a stricter version of the settling time requirement (ηs settling
time instead of η) in power mode. When C2E2 finds an overapproximation that
violates a given property, it immediately terminates and hence C2E2 takes less
time when it finds counterexamples. The parameters used for verification are
η = ηpwr = 1, ηs = 0.5, Ts = 9, T = 20, λref = 14.7, λpwr

ref = 12.5, and

Meeting a Powertrain Verification Challenge 541

Table 1. Table showing the result and the time taken for verifying STL specification of
the powertrain control system. Sat: Satisfied, Sim: Number of simulations performed.
All the experiments are performed on Intel Quad-Core i7 processor, with 8GB ram,
on Ubuntu 11.10.

Property Mode Sat Sim Time

�Ts,T λ ∈ [0.8λref , 1.2λref] all modes yes 53 11 m58 s

�[0,Ts]λ ∈ [0.8λref , 1.2λref] startup yes 50 10 m21 s

�[Ts,T]λ ∈ [0.95λref , 1.05λref] normal yes 50 10 m28 s

�[Ts,T]λ ∈ [0.8λpwr
ref , 1.2λpwr

ref] power yes 53 11 m12 s

�[0,Ts]λ ∈ [0.98λref , 1.02λref] startup no 2 0 m24 s

�[Ts,T]λ ∈ [0.9λpwr
ref , 1.1λpwr

ref] power no 4 0 m43 s

rise ⇒ �(η,ζ)λ ∈ [0.9λref , 1.1λref] startup yes 50 10 m40 s

rise ⇒ �(η,ζ)λ ∈ [0.98λref , 1.02λref] normal yes 50 10 m15 s

(� = power) ⇒ �(ηpwr,ζ)λ ∈ [0.95λpwr
ref , 1.05λpwr

ref] power yes 53 11 m35 s

(� = power) ⇒ �(ηs,ζ)λ ∈ [0.95λpwr
ref , 1.05λpwr

ref] power no 4 0 m45 s

Fig. 2. Figure showing the reachable set of the powertrain control system for a given
user behavior that visits different modes.

ζ = 4. Set of reachable states of the powertrain control system for a given driver
behavior is provided in Fig. 2.

5 Conclusions and Future Work

In this paper, we have successfully applied the simulation based verification
technique with local discrepancy functions to find counterexamples and verify
the polynomial hybrid automata model of powertrain benchmark challenge. This
case study suggests that verification using on-the-fly discrepancy function along

542 P.S. Duggirala et al.

with the coordinate transformation can handle complex nonlinear dynamics. In
future, we wish to extend these techniques to handle higher fidelity models in
the powertrain verification challenge. These models contain delay differential
equations, actuation delays, and look up tables, which C2E2 cannot currently
handle.

Acknowledgment. We thank Jim Kapinski, Jyo Desmukh, and Xiaoqing Jin of Toy-
ota for several useful discussions on the powertrain models. This research is funded by
research grants from the National Science Foundation (grant: CAR 1054247 and NSF
CSR 1016791) and the Air Force Office of Scientific Research (AFOSR YIP FA9550-
12-1-0336).

References

1. Angeli, D.: A lyapunov approach to incremental stability properties. IEEE Trans.
Autom. Control 47(3), 410–421 (2000)

2. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool
for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011)

3. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044,
pp. 258–263. Springer, Heidelberg (2013)

4. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 167–170. Springer, Heidelberg (2010)

5. Dreossi, T., Dang, T., Donzé, A., Kapinski, J., Jin, X., Deshmukh, J.V.: Effi-
cient guiding strategies for testing of temporal properties of hybrid systems. In:
Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp.
127–142. Springer, Heidelberg (2015)

6. Duggirala, P.S., Mitra, S., Viswanathan, M.: Verification of annotated models from
executions. In: Proceedings of the International Conference on Embedded Software,
EMSOFT 2013, pp. 1–10. IEEE (2013)

7. Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2E2: a verification tool
for stateflow models. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035,
pp. 68–82. Springer, Heidelberg (2015)

8. Duggirala, P.S., Wang, L., Mitra, S., Viswanathan, M., Muñoz, C.: Temporal prece-
dence checking for switched models and its application to a parallel landing pro-
tocol. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp.
215–229. Springer, Heidelberg (2014)

9. Eigen, a C++ template library for linear algebra. http://eigen.tuxfamily.org
Accessed Feb 2015

10. Fan, C., Mitra, S.: Bounded verification using on-the-fly discrepancy computation.
Technical report UILU-ENG-15-2201, Coordinated Science Laboratory. University
of Illinois at Urbana-Champaign (2015)

11. Jin, X., Deshmukh, J.V., Kapinski, J., Ueda, K., Butts, K.: Benchmarks for model
transformations and conformance checking. In: 1st International Workshop on
Applied Verification for Continuous and Hybrid Systems (ARCH) (2014)

http://eigen.tuxfamily.org

Meeting a Powertrain Verification Challenge 543

12. Jin, X., Deshmukh, J.V., Kapinski, J., Ueda, K., Butts, K.: Powertrain control
verification benchmark. In: Proceedings of the 17th international conference on
Hybrid systems: computation and control, pp. 253–262. ACM (2014)

13. Jin, X., Donzé, A., Deshmukh, J.V., Seshia, S.A.: Mining requirements from closed-
loop control models. In: Proceedings of the 16th international conference on Hybrid
systems: computation and control, pp. 43–52. ACM (2013)

14. Jin, X., Donzé, A., Deshmukh, J.V., Seshia, S.A.: Mining requirements from closed-
loop control models. In: EEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems (2016, to appear)

15. Lohmiller, W., Slotine, J.J.E.: On contraction analysis for non-linear systems.
Automatica 36(4), 683–696 (1998)

Synthesising Executable Gene Regulatory
Networks from Single-Cell Gene

Expression Data

Jasmin Fisher1,2, Ali Sinan Köksal3, Nir Piterman4,
and Steven Woodhouse1(B)

1 University of Cambridge, Cambridge, UK
2 Microsoft Research Cambridge, Cambridge, UK

3 University of California, Berkeley, USA
4 University of Leicester, Leicester, UK

sjw229@cam.ac.uk

Abstract. Recent experimental advances in biology allow researchers
to obtain gene expression profiles at single-cell resolution over hundreds,
or even thousands of cells at once. These single-cell measurements pro-
vide snapshots of the states of the cells that make up a tissue, instead of
the population-level averages provided by conventional high-throughput
experiments. This new data therefore provides an exciting opportunity
for computational modelling. In this paper we introduce the idea of
viewing single-cell gene expression profiles as states of an asynchronous
Boolean network, and frame model inference as the problem of recon-
structing a Boolean network from its state space. We then give a scal-
able algorithm to solve this synthesis problem. We apply our technique
to both simulated and real data. We first apply our technique to data
simulated from a well established model of common myeloid progenitor
differentiation. We show that our technique is able to recover the original
Boolean network rules. We then apply our technique to a large dataset
taken during embryonic development containing thousands of cell mea-
surements. Our technique synthesises matching Boolean networks, and
analysis of these models yields new predictions about blood development
which our experimental collaborators were able to verify.

1 Introduction

As biological data becomes more accurate and becomes available in larger
volumes, researchers are increasingly adopting concepts from computer science
to the modelling and analysis of living systems. Formal methods have been
successfully applied to gain insights into biological processes and to direct the
design of new experiments [3–5,12]. New single-cell resolution gene expression
measurement technology provides an exciting opportunity for modelling biolog-
ical systems at the cellular level. Single-cell gene expression profiles provide a
snapshot of the true states that cells can reach in the real experimental system,
a level of detail which has not been available before [15,18]. A major challenge for
c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 544–560, 2015.
DOI: 10.1007/978-3-319-21690-4 38

Synthesising Executable Gene Regulatory Networks 545

researchers is to move beyond established methods for the analysis of population
data, to new techniques that take advantage of single-cell resolution data [14].

Uncovering and understanding the gene regulatory networks (GRNs) which
underlie the behaviour of stem and progenitor cells is a central issue in molecular
cell biology. These GRNs control the self-renewal and differentiation capabilities
of the stem cells that maintain adult tissues, and become perturbed in diseases
such as cancer. They also specify the complex developmental processes that lead
to the initial formation of tissues in the embryo. Understanding how to effectively
control GRNs can lead to important insights for the programmed generation of
clinically-relevant cell types important for regenerative medicine, as well as into
the design of molecular therapies to target cancerous cells.

Biological systems can be modelled at different levels of abstraction. At a
molecular level, the biochemical events which occur inside a cell can be cap-
tured by stochastic processes, given by chemical master equations [24]. These
chemical events are fundamentally stochastic, driven by random fluctuations of
molecules present at low concentrations and by Brownian motion. Asynchro-
nous Boolean networks abstract away details of transcription, translation and
molecular binding reactions and represent the status of each modelled substance
as either active (on) or inactive (off), while using non-determinism to capture
different options that arise from stochastic behaviour [7,13,27]. In the cell, gene
activity is controlled by combinatorial logic in which proteins called transcrip-
tion factors cooperate to physically bind to a regulatory DNA region of a gene
and trigger (or inhibit) its transcription. Target genes may in turn code for tran-
scription factors, forming a complex GRN. Asynchronous Boolean networks are
particularly well suited to modelling GRNs because the combinatorial logic reg-
ulating gene activity can be expressed as a Boolean function. For example, gene
X may be activated by either the presence of gene A or by the presence of both
genes B and C. The presence of a repressor D may prevent X from becoming
triggered by the presence of these activating genes. When modelling the differ-
entiation of a cell using an asynchronous Boolean network, dynamics proceed by
a series of single–gene changes. Mature, differentiated cell types correspond to
stable attractor states of the model.

Predictions about the modes of interaction between genes resulting from
computational analysis can be tested experimentally through a range of assays.
For example, if analysis of a model predicts that gene X is activated by gene A,
a ChIP (Chromatin ImmunoPrecipitation) assay can be used to assess whether
the protein coded for by A binds to a regulatory region of X. Then, perturbations
which prevent the binding of A to this region can be introduced, and the effect
that this has on the expression of X can be examined.

State–space analyses of hand–built asynchronous Boolean network models
based on literature–derived gene regulatory interactions have been successfully
applied to model cell fate decisions, and to reproduce known experimental results
(e.g., [2,11,13]). Here we address the problem of automatically constructing such
models directly from data. If we think of single-cell gene expression profiles as the

546 J. Fisher et al.

state space of an asynchronous Boolean network, can we identify the underlying
gene regulatory logic that could have generated this data?

We encode the matching of an asynchronous Boolean network to a state
space as a synthesis problem and use constraint (satisfiability) solving techniques
for answering the synthesis problem. The synthesised network has to match
the data in two aspects. First, the resulting network should try to minimise
transitions to expression points that are not part of the sampled data. Second,
the resulting network should allow for a progression through the state space
in a way that matches the flow of time through the different experiments that
produced the data. A direct encoding of this problem into a satisfiability problem
does not scale well. We suggest a modular search that handles parts of the state
space and the network and does not need to reason about the entire network
at once. We consider two test cases. First, we try to reconstruct an existing
asynchronous Boolean network from its state space. We are able to reconstruct
Boolean rules from the original network. Second, we apply our technique to
experimental data derived from blood cell development. The network that is
produced by our technique matches known dependencies and suggests interesting
novel predictions. Some of these predictions were validated by our collaborators.

This paper describes the algorithm that we used to obtain the results in a
recently published biological paper on a single-cell resolution study of embryonic
blood development [16]. The biological paper includes full details of the exper-
iment that generated the data, and the biological validation of our resulting
synthesised model. Here, we cover the algorithmic aspects of our method.

2 Biological Motivation

Single-cell gene expression experiments produce gene expression profiles for indi-
vidually measured cells. Each of these gene expression profiles is a vector where
each element gives the level of expression of one gene in that cell. Figure 1 plots
the level of the genes Etv2 and Runx1 over 3934 cells.

Our experimental collaborators performed such gene expression profiling on
five batches of cells taken from four sequential developmental time points of
a mouse embryo. For each time point, the experiment aimed to capture every
cell with the potential to develop into a blood cell, providing a comprehensive

Fig. 1. Single–cell gene expression measurements for two genes, in 3934 cells.

Synthesising Executable Gene Regulatory Networks 547

Fig. 2. State graph. Node colours correspond to the time point at which a state was
measured. States from the earliest of the time points are coloured blue, and states from
the last time point are coloured red (Color figure online).

single–cell resolution picture of the developmental timecourse of blood develop-
ment. This resulted in a data set of 3934 cell measurements. Full details of this
experiment and our analysis can be found in [16]. This data set is the first of its
kind, attempting to capture an entire tissue’s worth of progenitor cells across a
developmental time course. This level of coverage of the potential cell state space
is required for our approach to accurately recover gene regulatory networks, and
requires the measurement of thousands of cell profiles. Later we will introduce a
synthetic data set of a few hundred cell states in order to illustrate how our app-
roach works, but we would like to stress that to be usable on real experimental
data our algorithm needs to be able to scale thousands of cell states.

For each of 3934 cells, the level of expression of 33 transcription factor genes
was measured. Expression levels are non-negative real numbers, where the value
0 indicates that the given gene is unexpressed in the cell (see Fig. 1).

The key idea introduced in this paper is to view this gene-expression data as
a sample from the state-space of an asynchronous Boolean network. In the past,
manually curated Boolean networks have been successfully used to recapitulate
experimental results [2,11,13]. SuchBooleannetworkswerehand–constructed from
biological knowledge that has accumulated in the literature over many years. Here,
we aim to produce suchBooleannetworks automatically, directly fromgene expres-
sion data, by employing synthesis techniques. We aim to produce a Boolean net-
work that can explain the data and can be used to inform biological experiments
for uncovering the nature of gene regulatory networks in real biological systems.

In order to convert the data into a format that can be viewed as a Boolean net-
work state space, we first discretise expression values to binary, assigning the value
1 to all non-zero gene expression measurements. A value of zero corresponds to the
discovery threshold of the equipment used to produce the data. Discretising the

548 J. Fisher et al.

3934 expression profiles in this way yields 3070 unique binary states, where every
state is a vector of 33 Boolean values corresponding to the activation/inactivation
level of each of 33 genes in a given cell. In an asynchronous Boolean network, transi-
tions correspond to the change of value of a single variable. Hence, we next look for
pairs of states that differ by only one gene (that is, the Hamming distance between
the two vectors is 1). An analysis of the strongly-connected components of this
graph shows that one strongly connected component contains 44 % of the states.
We note that in a random sample of 3934 elements from a space of 233, the chance
of seeing repeats or neighbours with Hamming–distance 1 is negligible.

A plot of the graph of the largest strongly connected component is given in
Fig. 2. We add an edge for every Hamming–distance 1 pair and cluster together
highly connected nodes. The colours of nodes correspond to the developmental
time the measurements was taken. Note that there is a clear separation between
the earliest developmental time point and the latest one. This representation
already suggests a clear change of states over the development of the embryo,
with separate clusters identifiable and obvious fate transitions between clusters.

We wish to find an asynchronous Boolean network that matches this graph.
For that we impose several restrictions on the Boolean network. Connections
between states correspond to a change in the value of one gene, however, we
do not know the direction of the change. Thus, we search simultaneously for
directions and update functions of the different genes that satisfy the follow-
ing two conditions: states from the earliest developmental time point should
be able to evolve, through a series of single–gene transitions, to the states from
the latest developmental time point. Secondly, the update functions must min-
imise the number of transitions that lead to additional, unobserved states, that
were not measured in the experiment.

3 Example: Reconstructing an ABN from its State Space

We first illustrate our synthesis method

Fig. 3. Boolean update functions for a
manually curated network.

using an example. We take an exist-
ing Boolean network, construct its asso-
ciated state space, and then use this
state space as input to our synthesis
method in order to try to reconstruct
the Boolean network that we started
with.

Krumsiek et al. introduce a Boolean
network model of the core regula-
tory network active in common myeloid
progenitor cells [13]. Their network is
based upon a comprehensive literature
survey. It includes a set of 11 Boolean variables (corresponding to genes) and
a Boolean update function for each variable (Fig. 3).1 The model is given
1 The function of Cebpa is modified from that in [13] to match the format we assume.

Synthesising Executable Gene Regulatory Networks 549

Fig. 4. Boolean network state space.
Initial state is coloured green, stable
states red (Color figure online).

Fig. 5. Close–up of Boolean network
state space.

a well-defined initial starting state, representing the expression profile of the
common myeloid progenitor, and computational analysis reveals an acyclic, hier-
archical state space of 214 states with four stable state attractors (Fig. 4).

These stable attractors are in agreement with experimental expression pro-
files of megakaryocytes, erythrocytes, granulocytes and monocytes; four of the
mature myeloid cell types that develop from common myeloid progenitors.

We treat the state space of this Boolean network as we would treat experi-
mental data, forgetting all directionality information, and connecting all states
which differ in the expression of only one gene by an undirected edge (Figs. 4
and 5, where each edge is labelled with the single gene that changes in value
between the states it connects). We would now like to reconstruct the Boolean
network given in Fig. 3 from this undirected state space.

For each gene, we would like to assign a direction to each of its labelled edges
(or decide that it does not exist), in a way that is compatible with a Boolean
update function. For example, in Fig. 5, we may orient the Pu.1 -labelled edge
between states 97 and 95 in the direction s97 → s95, in the direction s95 → s97,
or decide that this is not a possible update. We also allow the edge to be directed
in both directions. If s97 → s95, we want a Boolean update function uPu.1 that
takes state s97 to state s95. Since there is no Pu.1–labelled edge leaving state
s150, we can also add the constraint that uPu.1 takes s150 to s150.

We also add reachability constraints that restrict which edges are included
and their orientation. Since the state space was constructed starting from a well-
defined initial state, we would like to enforce the constraint that each non-initial
state ought to be reachable by some directed path from the initial state. Since cell
development proceeds hierarchically and unidirectionally, we favour short paths
over long paths. This eliminates routes that seem biologically implausible, for
example routes that cross a fate transition and then return to where they began.
It also reduces the space of paths we have to search through. By increasing the
lengths of allowed paths, we can increase the number of considered solutions.

550 J. Fisher et al.

Fig. 6. Synthesised update functions.

The results of applying our technique are shown in Figure 6. The method
reconstructs the Boolean update functions for all but one gene (EgrNab), in some
cases uniquely identifying the original function. We note that when multiple
solutions are found for an update function, these solutions, while not exact, all
provide useful regulatory information that could be verified experimentally. For
example, both solutions for Scl successfully predict Scl ’s activation by Gata1,
although one of the two solutions omits its repression by Pu.1.

4 Background to Asynchronous Boolean Networks

An asynchronous Boolean network (ABN) is B(V,U), where V = {v1, v2, . . . , vn}
is a set of variables, and U = {u1, u2, . . . , un} is a set of Boolean update functions.
For every ui ∈ U we have ui : {0, 1}n → {0, 1} associated with variable vi.
A state of the system is a map s : V → {0, 1}. We say that an update function

Synthesising Executable Gene Regulatory Networks 551

ui is enabled at state s if ui(s) �= s(vi), i.e. applying the update function ui to
state s changes the value of variable vi.

State s′ = (d′
1, d

′
2, . . . , d

′
n) is a successor of state s = (d1, d2, . . . , di, . . . , dn)

if for some i we have ui is enabled, d′
i = ui(s), and for all j �= i we have

d′
j = dj . That is, we get to the next state s′, by non-deterministically selecting

an enabled update function ui and updating the value of the associated variable:
s′ = (d1, d2, . . . , ui(di), . . . , dn). If no update function is enabled, the system
remains in its current, stable, state, where it will remain: s′ = s.

An ABN induces a labelled transition system T = (N,R), where N is the
set of 2n states of the ABN, and R ⊆ N × V ×N is the successor relation. Each
transition (s1, vi, s2) is labelled with the variable vi such that s1(vi) �= s2(vi).

The undirected state space of an ABN is an undirected graph S = (N,E),
where each vertex n ∈ N is uniquely labelled with a state s of the Boolean
network, and there is an edge {s1, s2} ∈ E iff s1 and s2 differ in the value
of exactly one variable, v. The edge {s1, s2} is labelled with v. In general, an
undirected state space does not have to include all 2n states induced by a Boolean
network.

An ABN B(V,U) induces a directed state space on an undirected state space
S = (N,E). Consider the transition system T = (2V , R) of B(U, V). Then, the
induced directed state space is S′ = (N,A), where (s1, s2) ∈ A implies that there
is a variable vi such that (s1, vi, s2) ∈ R. We say that (s1, s2) is compatible with
ui, if s2(vi) = us(s1), and for every j �= i we have s2(vj) = s1(vj).

5 Formal Definition of the Problem

Our synthesis problem can be stated as follows: we are given an undirected state
space S over a given set of variables V . We would like to extract a set of Boolean
update functions that induce a directed state space from S such that each of
the states in S are reachable from a given set of initial states. We also want to
ensure that no additional, undesired states not in S are reachable, by ruling out
transitions which ‘exit’ the state space.

More formally, we are given a set of variables V = {v1, v2, . . . , vn}, an undi-
rected state space S = (N,E) over V , and a set I ⊆ N of initial vertices.

We would like to find an update function ui : {0, 1}n → {0, 1} for each
variable vi ∈ V , such that the following conditions hold. Let U = {ui | vi ∈ V }
be the set of update functions.

1. Every non-initial vertex s ∈ N −I is reachable from some initial vertex si ∈ I
by a directed path in the directed state space induced by B(V,U) on S.

2. For every variable vi ∈ V , let Ni be the set of states without an outgoing
vi-labelled arc. For every i we require that for each s ∈ Ni, ui(s) = s(vi).

5.1 Generalising the Definition to Partial Data

Since we intend to apply our method in an experimental setting, where we only
have an incomplete sample from the possible states of the system, we relax

552 J. Fisher et al.

this definition to extend it to partial data. Instead of requiring that every state
is reachable from those initial states that we have measured, we only require
that a set of final states are reachable. Instead of requiring that every undesired
transition is ruled out, we seek to maximise the number of such transitions which
are eliminated. This is formally stated next.

As before, we are given a set of variables V = {v1, v2, . . . , vn}, an undirected
state space S = (N,E) over V , and a designated set I ⊆ N of initial vertices.
In addition, we are given a designated set F ⊆ N of final vertices, along with
a threshold ti for each variable vi ∈ V . The threshold ti specifies how many
undesired transitions must be ruled out.

We would like to find an update function ui : {0, 1}n → {0, 1} for each
variable vi ∈ V , such that the following conditions hold. Let U = {ui | vi ∈ V }
be the set of update functions.

1. Every final vertex sf ∈ F is reachable from some initial vertex si ∈ I by a
directed path in the directed state space induced by B(V,U) on S.

2. For every variable vi ∈ V , let Ni be the set of states without an outgoing vi-
labelled arc. For every i the number of states s ∈ Ni such that ui(s) = s(vi)
is greater or equal to ti.

In the remainder of the text, we refer to condition 1 as the reachability con-
dition and condition 2 as the threshold condition.

We restrict the search to update functions of the form f1 ∧ ¬f2, where fi
is a monotone Boolean formula. The inputs to f1 are the activating inputs to
the gene and the inputs to f2 are the the repressing inputs. This restriction was
chosen after discussion with biologist colleagues and consultation of the literature
(e.g., [2,13]).

6 A Direct Encoding

We start with a direct encoding of the search for a matching Boolean network.
The search is parameterised by the shape of update functions (how many activa-
tors and how many repressors each variable has), the length of paths from initial
states to final states, and the thresholds for each variable. By increasing the
first two parameters and decreasing the last we can explore all possible Boolean
networks.

6.1 Possible Update Functions

In order to represent the Boolean update function for gene vi, ui = f1 ∧ ¬f2,
we use a bitvector encoding. We represent the Boolean formula fj by a set of
bitvectors, {a1, a2, . . . an}, aj ∈ V ∪ {∨,∧}, where each bitvector ai represents a
variable or a Boolean operator, and solutions take the form of a binary tree. For
example, the formula v1 ∧ (v2 ∨ v3) is represented by the solution a1 = ∧, a2 =
∨, a3 = v1, a4 = v2, a5 = v3. We restrict the syntactic form of possible update

Synthesising Executable Gene Regulatory Networks 553

functions so that each variable appears only once, and each possible function
has one canonical representation. For example, the function (v1 ∧ (v2 ∨ v3)) is
included in our search space while (v1 ∧ v2) ∨ (v1 ∧ v3) is not. We search for
functions up to a maximum number of activators, Ai, and a maximum number
of repressors, Ri.

To encode the application of function ui to a state s, ui(s), we add impli-
cations which unwrap the bitvector encoding of ui to the constituent variables
and logical operators; substituting values, s(vj), for variables, vj , and directly
mapping operations to logical constraints in the Boolean satisfiability formula.
For example, the application of the function (v1 ∨ v2) ∧ ¬v3 to the state s1 is
mapped to (s1(v1) ∨ s1(v2)) ∧ ¬s1(v3).

6.2 Ensuring Reachability

To enforce the global reachability condition we consider all of the underlying
directed edges in the undirected state space S = (N,E), and their associated
single–gene transitions.

Recall that we require every final vertex to be reachable from some initial
vertex by a directed path in the directed state space induced on S by the Boolean
network. That is, we require that every final vertex is reachable by a directed
path, and that every vj-labelled edge along this path is compatible with its
associated update function, uj .

To enforce this we add constraints that track the compatibility of edges with
update functions and define reachability recursively. We consider reachability by
paths up to a maximum length: recall that we consider shorter paths to be more
biologically likely. By iteratively increasing the length of the paths considered,
we can obtain all satisfying models.

We introduce a pair of Boolean variables eij , eji for each vi-labelled undi-
rected edge {si, sj} ∈ E, which track the value of the application of ui to si and
to sj (and the compatibility of the underlying directed edges (si, sj) and (sj , si)
with ui). eij is true iff ui(si) = sj(v).

We introduce an integer given by a bitvector encoding, rn, for each node
n ∈ N . Bitvector rn encodes the fact that node n is reachable from an initial
node in rn steps, up to some maximum encodable value 2|rn| −1. Bitvector rn is
given a value of −1 to indicate that n is not reachable in this maximum number
of steps.

Reachability is then defined inductively:

1. Initial nodes are reachable in zero steps: for every i ∈ I, ri = 0.
2. A non–initial node si is reachable in M steps if there is a compatible incoming

edge (sj , si) from another node sj , and sj is itself reachable in fewer than M
steps. That is, for every n = sj ∈ N−I and m = si ∈ N such that {si, sj} ∈ E
we have eij → rm < rn. We also have that non–initial nodes cannot be reached
in zero steps: For every n ∈ N − I, rn = −1 ∨ rn > 0.

Finally, we add a constraint that every final node n ∈ F is reachable from
some initial node: rn �= −1.

554 J. Fisher et al.

6.3 Enforcing the Threshold Condition

We enforce the threshold condition for each update function as follows.
Consider an update function ui : V → {0, 1}. We say that a node s ∈ Ni

is negatively matched by ui if ui(s) = s(vi). That is, by using ui as the update
function of variable vi, ui does not change the value of vi from node s. We are
searching for an update function such that a maximum number of nodes from
Ni are negatively matched.

We add a variable, mis for each node s ∈ Ni to record whether ui negatively
matches s. We then add a constraint demanding that the number of negatively
matched nodes is greater than or equal to the threshold:

∑
s∈Ni

mis ≥ ti.
We search for satisfying assignments to the constraint variables encoding the

representation of the Boolean update functions ui for all vi in V . The resulting
synthesised Boolean network is the combination of these update functions.

Unfortunately, in practice the direct encoding of the search does not scale to
handle our experimental data. In the next section we suggest a compositional
way to solve the problem.

7 A Compositional Algorithm

We now introduce our compositional algorithm, which scales better than the
direct encoding given above. The problem of synthesising a Boolean network
from the data is partitioned to three stages. Crucially, we avoid searching for
a complete Boolean network and consider parts of the network that can be
constructed independently.

7.1 Pruning the Set of Possible Edges

We start by building a directed graph from the given undirected state space
S = (N,E), by considering which of the underlying directed edges in E are
compatible with some Boolean update function, and pruning those that are not.
We consider each underlying directed edge (s1, s2) and (s2, s1) of each of the
vi-labelled undirected edges {s1, s2} in E independently.

We pose a decision problem for each directed edge (s1, s2): whether there
exists some Boolean update function ui satisfying the threshold condition (con-
dition 2, Sect. 5.1) such that ui(s1) = s2(vi). This is encoded as a Boolean sat-
isfiability problem, adding constraints to represent the encoding of the update
function, the threshold condition, and the evaluation of the function at the spe-
cific edge under consideration. We say that a satisfying function, ui, is compatible
with (s1, s2). Once a compatible function has been found, it can quickly be eval-
uated outside the solver at other edges to try reduce the number of SAT queries
we have to make.

After making a query for each edge, we are left with a directed graph, which
is the existential projection of all compatible update functions for each of the
variables v ∈ V . We have eliminated edges which have no compatible update
function, and cannot participate in the reachability condition. On the example
data set from Sect. 3, this step removes 18 % of the possible edges.

Synthesising Executable Gene Regulatory Networks 555

7.2 Ensuring Reachability

We now come to the only part of the algorithm that considers the edges of all
variables together, in order to enforce the global reachability condition (condition
1, Sect. 5.1). This phase does not require the solving of a Boolean satisfiability
problem, and as a result is very efficient.

We construct, for each pair of initial nodes i ∈ I and final nodes f ∈ F , the
shortest path pif from i to f in the directed graph that was built in the previous
phase of the algorithm. These paths can be computed via a breadth–first search.

Due to the edge pruning of the previous phase of the algorithm, if there is
no path to a final node f , this implies that there are no satisfying models (at
the given threshold and function size parameters). Otherwise, our reachability
condition will be enforced by fixing a set of directed edges Pi for each variable
vi ∈ V corresponding to these shortest paths. We will then require that the
update function we search for, ui, is compatible with each of the edges in Pi.

We choose, for each final node f , one path pf = pif from one of the initial
nodes i. By fixing this path, we ensure that f is reachable from an initial node.
We define pf |i as the set of vi-labelled edges in the path pf . We define Pi, the
vi-labelled edges which must be fixed to ensure reachability via the chosen paths,
as the the set of vi-labelled edges in pf for each final node f :

Pi =
⋃

f∈F

{(s1, s2) | (s1, s2) ∈ pf |i} (1)

By considering only the edges in Pi, we can search for an update function
for vi independently of all other variables, while ensuring the global reachability
condition holds.

7.3 Final Update Functions

We can now search for the update function of variable vi, ui, independently of
all other variables. We fix the vi-labelled edges computed in the previous phase
and encode the search for ui as a Boolean satisfiability problem.

As before we add constraints to encode the representation of ui, and to
enforce the threshold condition. We fix each of the vi-labelled edges (s1, s2) ∈ Pi

to establish reachability, by adding a conjunction requiring that ui is compatible
with each of them: ui(s1) = s2(vi).

We search for satisfying assignments of the constraint variables encoding ui,
using an allsat procedure to extract all possible update functions for variable
vi. This gives rise to a set of update functions per variable and a set of Boolean
networks from the product of the set of update functions per variable.

We note that this final phase of the algorithm can fail to find update functions
for a variable vi, because there are no possible update functions compatible with
all of the path edges Pi that were computed in the previous phase. That is, while
each edge in Pi is individually compatible with some update function, there may
be no update function that is compatible with every edge in Pi. In order to
cope with this limitation, we can extract the minimal unsatisifiable core of the

556 J. Fisher et al.

Data set Genes States Direct (seconds) Compositional (seconds)

CMP (synthetic) 11 214 25 77
Blood stem cells 21 753 Out of Memory 5114
Embryonic (66% of states) 33 956 Out of Memory 3364
Embryonic (full) 33 1448 Out of Memory 8709

Fig. 7. Performance of direct encoding and compositional algorithm on example data
sets.

Boolean formula, and search for replacement paths that exclude incompatible
combinations of edges. This step can be iterated until satisfying solutions are
found for all variables, or until no path can be found, implying that there are
no valid models.

By extending our search from the shortest paths between initial and final
node pairs in the directed graph to the k-shortest paths between pairs and incre-
mementally increasing k [26], we can increase the number of possible update
functions that we consider. In the limit, we will obtain all satisfying models.

An implementation of our algorithm, which is written in F# and uses
Z3 as the satisfiability solver, is available at https://github.com/swoodhouse/
SCNS-Toolkit. In Fig. 7 we present experimental results from running our imple-
mentation of the direct encoding from Sect. 6 and compositional algorithm on
four data sets: the small synthetic data set from Sect. 3, the large embryonic
experimental data set from Sect. 2, and a second experimental data set covering
blood stem cells. We also show results from rerunning on the embryonic data
set with a third of states removed. All experiments were performed on an Intel
Core i5 @ 1.70GHz with 8GB of RAM, using a single thread.

While the direct encoding synthesised a matching Boolean network on the
small synthetic data set faster than our compositional algorithm, it cannot scale
to the real experimental data sets, quickly running out of memory. The composi-
tional algorithm, on the other hand, can scale to handle real data sets of the sort
produced by our experimental collaborators. All experiments terminated within
a few hours, when running on a single thread. The compositional algorithm can
easily be parallelised over variables, which would further increase its efficiency.

8 Application to the Experimental Dataset

We now return to the experimental data set introduced in Sect. 2.
Recall that cell measurements were taken from four sequential developmental

time points, and that the state graph resulting from discretisation of the data
(Fig. 2) exhibited a clear separation between the earliest developmental time
point (states coloured blue) and the latest (states coloured red). We applied our
synthesis technique to this data, taking the initial states to be the states from
the first time point, and the final states to be the states from the latest time
point. For complete details, we direct the reader to [16].

The result of the synthesis was a set of possible Boolean update functions
for each of the 33 genes, with several genes having a uniquely identified update

https://github.com/swoodhouse/SCNS-Toolkit
https://github.com/swoodhouse/SCNS-Toolkit

Synthesising Executable Gene Regulatory Networks 557

function. By applying standard techniques for the analysis of Boolean networks,
we found the stable state attractors and performed computational perturbations.
The synthesised network, along with the subsequent computational analysis led
to a set of predictions which were then tested experimentally. We found that
our results were robust when performing bootstrapping, removing a third of the
data at random and rerunning the synthesis algorithm.

Our experimental collaborators were able to validate key predictions made by
our analysis. The update function for one of the genes at the core of this network,
Erg, which directly activates many other genes, was tested experimentally by a
range of assays. Evidence was found that the activators specified in the gene’s
synthesised update function (Hoxb4 and Sox17) do indeed activate expression of
the gene, and furthermore in a fashion consistent with the Boolean “OR” logic of
the synthesised update function. This could be regarded as a “local” validation
of our model, testing two of the directed edges in the network.

Computational perturbations to another gene at the core of the network,
Sox7, indicated that when Sox7 was forced to always be expressed, stable states
corresponding to cells from the final developmental time point (blood progeni-
tors) no longer exist. Cell differentiation assays confirmed this prediction exper-
imentally, finding that when this gene was forced to be expressed, the number
of cells which normally emerge at this final time point is significantly reduced.
This can be thought of as a “global” validation of our model, as it is a prediction
about the behaviour of the whole network under a certain perturbation.

9 Related Work

Previous analyses of single-cell gene expression data have mostly been based
on statistical properties of the data viewed as a whole, such as the correlation
in the level of expression of pairs of genes [8,15]. Such analysis cannot recover
mechanistic Boolean logic, does not infer the direction of interactions and cannot
easily distinguish direct from indirect influence.

Boolean networks were introduced by Kauffman in order to study random
models of genetic regulatory networks [10]. They have since been applied in
a range of contexts, from modelling blood stem and progenitor differentiation
[2,13], to the yeast apoptosis network [11], to the network regulating pluripotency
in embryonic stem cells [9]. BDD-based algorithms for state-space exploration
and finding attractors of Boolean networks have been introduced [7,27].

Synthesis is the problem of producing programs or designs from their speci-
fications. In recent years much progress has been made on the usage of SAT and
SMT solvers for synthesis. Essentially, the existence of a program that solves a
certain problem is posed as a satisfiability query. Then, a solver tries to search
for a solution to the query, which corresponds to a program. For example, Srivas-
tava et al. [22,23] show that the capabilities of SMT solvers to solve quantified
queries enable the search for conditions and code fragments that match a given
specification. Similarly, Solar-Lezama et al. [21] build a framework for writing
programs with “holes” and letting a search algorithm find proper implementa-
tions for them. The approach of reactive synthesis [19] is similar to ours in the

558 J. Fisher et al.

type of artefact that it produces. However, the techniques that we are using are
more related to those explained above. Recently, Beyene et al. [1] have shown
how constraint solving can be used also in the context of reactive synthesis.

Synthesis has recently been applied in the context of biology. Köksal et al. show
howto synthesise state-machine-likemodels fromgenemutation experiments using
a novel counterexample-guided inductive synthesis (CEGIS) algorithm [12]. Their
approach uses constraint solvers to search for program completions that match
given specifications, as explained above. Both the data and the type of model are
different to those dealt with here, which called for a new approach.

Recently, there have been several applications of synthesis to Boolean net-
works. Dunn et al. [6] and Xu et al. [25] show how to fit an existing static, topo-
logical regulatory network for embryonic stem cells to gene expression data in
order to obtain an executable Boolean network, under the assumption that exper-
imentally measured data represent stable states of the system. This assumption
may be appropriate for cell lines maintained in culture, but it does not adapt
well to developmental processes such as ours, where cells are transiting through
intermediate states in order to develop into a particular lineage.

Recent work of Karp and Sharan [20] shows how to synthesise Boolean net-
works given a topological network and a set of perturbation experiments, by
reduction to integer linear programming. In [17], Paoletti et al. synthesise a
related class of models (which incorporate timing and spatial information) from
perturbation data, via reducion to SMT. To the best of our knowledge, our app-
roach is the first to synthesise gene regulatory network models directly from raw
gene expression data, without the need of either genetic perturbation data or
a-priori information about the topology of the network.

10 Conclusions and Future Work

We presented a technique for synthesising Boolean networks from single–cell
resolution gene-expression data. This new and exciting type of data allows us to
consider the state of each cell separately, giving rise to “state snapshots”, which
we treat as the states of an asynchronous Boolean network. Our key insight is
that the update functions of each variable can be sought after separately, giving
rise to reasonably sized satisfiability queries. We then combine the single gene
update functions by considering the flow of time included in the data.

We are able to reconstruct rules from a manually curated Boolean network
and produce a set of possible Boolean networks for the given experimental data,
for which no similar curated Boolean network is available. The discussion with
biologists about this Boolean network led to a set of predictions, which were
then experimentally validated in the lab.

We are awaiting similar data from additional experiments to apply the same
technique to. At the same time, we are considering the usage of advanced
search techniques, as used in this paper, to the analysis of other types of high-
throughput data. Future work in the experimental domain includes the validation
of more of the links in our synthesised network, and the design of further gene

Synthesising Executable Gene Regulatory Networks 559

perturbation experiments motivated by the results of computational perturba-
tions. An interesting question for future research is whether techniques like ours,
which achieve scalability by treating different aspects of a graph data structure
seperately, are applicable to other domains where graph–like data is generated.

Acknowledgements. We thank B. Gottgens, V. Moignard, and A. Wilkinson for
sharing with us the biological data, discussing with us its biological significance, and
for discussions on the resulting Boolean network, and its meaningfulness. We thank R.
Bodik, S. Srivastava and B. Hall for helpful discussions.

References

1. Beyene, T.A., Chaudhuri, S., Popeea, C., Rybalchenko, A.: A constraint-based
approach to solving games on infinite graphs. In: 41st Symposium on Principles of
Programming Languages, pp. 221–234. ACM (2014)

2. Bonzanni, N., Garg, A., Feenstra, K.A., Schtte, J., Kinston, S., Miranda-Saavedra,
D., Heringa, J., Xenarios, I., Gottgens, B.: Hard-wired heterogeneity in blood stem
cells revealed using a dynamic regulatory network model. Bioinformatics 29(13),
i80–i88 (2013)

3. Claessen, K., Fisher, J., Ishtiaq, S., Piterman, N., Wang, Q.: Model-checking sig-
nal transduction networks through decreasing reachability sets. In: Sharygina, N.,
Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 85–100. Springer, Heidelberg
(2013)

4. Cook, B., Fisher, J., Hall, B.A., Ishtiaq, S., Juniwal, G., Piterman, N.: Finding
instability in biological models. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS,
vol. 8559, pp. 358–372. Springer, Heidelberg (2014)

5. Cook, B., Fisher, J., Krepska, E., Piterman, N.: Proving stabilization of biological
systems. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp.
134–149. Springer, Heidelberg (2011)

6. Dunn, S.-J., Martello, G., Yordanov, B., Emmott, S., Smith, A.G.: Defining an
essential transcription factor program for nave pluripotency. Science 344(6188),
1156–1160 (2014)

7. Garg, A., Di Cara, A., Xenarios, I., Mendoza, L., De Micheli, G.: Synchronous
versus asynchronous modeling of gene regulatory networks. Bioinformatics 24(17),
1917–1925 (2008)

8. Guo, G., Luc, S., Marco, E., Lin, T.-W., Peng, C., Kerenyi, M.A., Beyaz, S., Kim,
W., Xu, J., Das, P.P., Neff, T., Zou, K., Yuan, G.-C., Orkin, S.H.: Mapping cellular
hierarchy by single-cell analysis of the cell surface repertoire. Cell Stem Cell 13(4),
492–505 (2013)

9. Peterson, H., Abu-Dawud, R., Garg, A., Wang, Y., Vilo, J., Xenarios, I., Adjaye,
J.: Qualitative modeling identifies IL-11 as a novel regulator in maintaining self-
renewal in human pluripotent stem cells. Front Physiol. 4, 303 (2013)

10. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic
nets. J. Theor. Biol. 22, 437–467 (1969)

11. Kazemzadeh, L., Cvijovic, M., Petranovic, D.: Boolean model of yeast apoptosis
as a tool to study yeast and human apoptotic regulations. Front Physiol. 3, 446
(2012)

12. Koksal, A., Pu, Y., Srivastava, S., Bodik, R., Piterman, N., Fisher, J.: Synthesis
of biological models from mutation experiments. In: POPL (2013)

560 J. Fisher et al.

13. Krumsiek, J., Marr, C., Schroeder, T., Theis, F.J.: Hierarchical differentiation of
myeloid progenitors is encoded in the transcription factor network. PLoS One 6(8),
e22649 (2011)

14. Moignard, V., Gottgens, B.: Transcriptional mechanisms of cell fate decisions
revealed by single cell expression profiling. Bioessays 36, 419–426 (2014)

15. Moignard, V., Macaulay, I., Swiers, G., Buettner, F., Schutte, J., Calero-Nieto, F.,
Kinston, S., Joshi, A., Hannah, R., Theis, F., Jacobsen, S., de Bruijn, M., Gottgens,
B.: Characterization of transcriptional networks in blood stem and progenitor cells
using high-throughput single-cell gene expression analysis. Nat. Cell Biol. 15(4),
363–372 (2013)

16. Moignard, V., Woodhouse, S., Haghverdi, L., Lilly, J., Tanaka, Y., Wilkinson, A.,
Buettner, F., Macaulay, I., Jawaid, W., Diamanti, E., Nishikawa, S., Piterman, N.,
Kouskoff, V., Theis, F., Fisher, J., Gottgens, B.: Decoding the regulatory network
of early blood development from single-cell gene expression measurements. Nat.
Biotechnol. 33, 269–276 (2015)

17. Paoletti, N., Yordanov, B., Hamadi, Y., Wintersteiger, C.M., Kugler, H.: Analyzing
and synthesizing genomic logic functions. In: Biere, A., Bloem, R. (eds.) CAV 2014.
LNCS, vol. 8559, pp. 343–357. Springer, Heidelberg (2014)

18. Pina, C., Fugazza, C., Tipping, A.J., Brown, J., Soneji, S., Teles, J., Peterson, C.,
Enver, T.: Inferring rules of lineage commitment in haematopoiesis. Nat. Cell Biol.
14, 287–294 (2012)

19. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: 16th Symposium
on Principles of Programming Languages, pp. 179–190. ACM Press (1989)

20. Sharan, R., Karp, R.M.: Reconstructing boolean models of signaling. J. Comput.
Biol. 20(3), 249–257 (2013)

21. Solar-Lezama, A., Rabbah, R.M., Bod́ık, R., Ebcioglu, K.: Programming by sketch-
ing for bit-streaming programs. In: Programming Language Design and Implemen-
tation, pp. 281–294. ACM (2005)

22. Srivastava, S., Gulwani, S., Foster, J.S.: From program verification to program
synthesis. In: 37th Symposium on Principles of Programming Languages, pp. 313–
326. ACM (2010)

23. Srivastava, S., Gulwani, S., Foster, J.S.: Template-based program verification and
program synthesis. Int. J. Softw. Tools Technol. Transfer 15(5–6), 497–518 (2013)

24. Wilkinson, D.: Stochastic Modelling for Systems Biology, 2nd edn. Chapman and
Hall/CRC, Boca Raton, Florida (2012)

25. Xu, H., Ang, Y.-S., Sevilla, A., Lemischka, I.R., Ma’ayan, A.: Construction and val-
idation of a regulatory network for pluripotency and self-renewal of mouse embry-
onic stem cells. PLoS Comput. Biol. 10(8), e1003777 (2014)

26. Yen, J.Y.: Finding the k shortest loopless paths in a network. Manag. Sci. 17(11),
712–716 (1971)

27. Zheng, D., Yang, G., Li, X., Wang, Z., Liu, F., He, L.: An efficient algorithm for
computing attractors of synchronous and asynchronous boolean networks. PLOS
ONE 8, e60593 (2013)

Empirical Software Metrics for Benchmarking
of Verification Tools

Yulia Demyanova, Thomas Pani(B), Helmut Veith, and Florian Zuleger

Vienna University of Technology, Vienna, Austria
thomas.pani@tuwien.ac.at

Abstract. In this paper we study empirical metrics for software source
code, which can predict the performance of verification tools on spe-
cific types of software. Our metrics comprise variable usage patterns,
loop patterns, as well as indicators of control-flow complexity and are
extracted by simple data-flow analyses. We demonstrate that our met-
rics are powerful enough to devise a machine-learning based portfolio
solver for software verification. We show that this portfolio solver would
be the (hypothetical) overall winner of both the 2014 and 2015 Inter-
national Competition on Software Verification (SV-COMP). This gives
strong empirical evidence for the predictive power of our metrics and
demonstrates the viability of portfolio solvers for software verification.

1 Introduction

The success and gradual improvement of software verification tools in the last two
decades is a multidisciplinary effort – modern software verifiers combine methods
from a variety of overlapping fields of research including model checking, sta-
tic analysis, shape analysis, SAT solving, SMT solving, abstract interpretation,
termination analysis, pointer analysis etc.

The mentioned techniques all have their individual strengths, and a modern
software verification tool needs to pick and choose how to combine them into
a strong, stable and versatile tool. The trade-offs are based on both technical
and pragmatic aspects: many tools are either optimized for specific application
areas (e.g. device drivers), or towards the in-depth development of a technique
for a restricted program model (e.g. termination for integer programs). Recent
projects like CPA [10] and FrankenBit [20] have explicitly chosen an eclectic
approach which enables them to combine different methods more easily.

There is growing awareness in the research community that the benchmarks
in most research papers are only useful as proofs of concept for the individual
contribution, but make comparison with other tools difficult: benchmarks are
often manually selected, handcrafted, or chosen a posteriori to support a certain
technical insight. Oftentimes, neither the tools nor the benchmarks are avail-
able to other researchers. The annual International Competition on Software
Verification (SV-COMP, since 2012) [2,3,8,9] is the most ambitious attempt to
remedy this situation. Now based on more than 5,500 C source files, SV-COMP

c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 561–579, 2015.
DOI: 10.1007/978-3-319-21690-4 39

562 Y. Demyanova et al.

has the most diverse and comprehensive collection of benchmarks available, and
is a natural starting point for a more systematic study of tool performance.

In this paper, we demonstrate that the competition results can be explained
by intuitive metrics on the source code. In fact, the metrics are strong enough to
enable us to construct a portfolio solver which would (hypothetically) win SV-
COMP 2014 [2] and 2015 [3]. Here, a portfolio solver is a SW verification tool
which uses heuristic preprocessing to select one of the existing tools [19,24,32].

Table 1. Sources of complexity for 4 tools participating in SV-COMP’15, marked with
+/−/N/A when supported/not supported/no information is available. Extracted from
competition reports [7] and tool papers [14,17].

Source of complexity CBMC Predator CPAchecker SMACK Corresp. feature

Unbounded loops − N/A N/A − LSB,LST,Lsimple,
Lhard

Pointers + + + + PTR

Arrays + − N/A + ARRAY INDEX

Dynamic data structures N/A + N/A + PTR STRUCT
REC

Non-static pointer offsets − + N/A N/A OFFSET

Non-static size of
heap-allocated memory

+ + N/A N/A ALLOC SIZE

Pointers to functions + N/A N/A N/A mfpcalls,mfpargs

Bit operations + − + − BITVECTOR

Integer variables + + + + SCALAR INT

Recursion − − − + mreccalls

Multi-threading + − − − THREAD DESCR

External functions + − N/A N/A INPUT

Structure fields + + N/A + STRUCT FIELD

Big CFG (≥ 100 KLOC) + N/A N/A + mcfgblocks,
mmaxindeg

Of course it is pointless to let a portfolio solver compete in the regular com-
petition (except, maybe in a separate future track), but for anybody who just
wants to verify software, it provides useful insights. Portfolio solvers have been
successful (and controversial) in combinatorially cleaner domains such as SAT
solving [25,33,37], quantified boolean satisfiability (QSAT) [30,31,34], answer
set programming (ASP) [18,27], and various constraint satisfaction problems
(CSP) [19,26,28]. In contrast to software verification, in these areas constituent
tools are usually assumed to be correct.

As an approach to software verification, portfolio solving brings interesting
advantages: (1) a portfolio solver optimally uses available resources, (2) it can

Empirical Software Metrics for Benchmarking of Verification Tools 563

avoid incorrect results of partially unsound tools, (3) machine learning in com-
bination with portfolio solving allows us to select between multiple versions of
the same tool with different runtime parameters, (4) the portfolio solver gives
good insight into the state-of-the-art in software verification.

To choose the software metrics, we consider the zoo of techniques discussed
above along with their target domains, our intuition as programmers, as well as
the tool developer reports in their competition contributions. Table 1 summarizes
these reports for tools CBMC, Predator, CPAchecker and SMACK: The first
column gives obstacles the tools’ authors identified, columns 2–5 show whether
the feature is supported by respective tool, and the last column references the
corresponding metrics, which we introduce in Sect. 2. The obtained metrics are
naturally understood in three dimensions that we motivate informally first:

1. Program Variables. Does the program deal with machine or unbounded inte-
gers? Are the ints used as indices, bit-masks or in arithmetic? Dynamic data
structures? Arrays? Interval analysis or predicate abstraction?

2. Program Loops. Reducible loops or goto programs? For-loops or ranking func-
tions? Widening, loop acceleration, termination analysis, or loop unrolling?

3. Control Flow. Recursion? Function pointers? Multithreading? Simulink or
complex branching?

Our hypothesis is that precise metrics along these dimensions allow us to
predict tool performance. The challenge lies in identifying metrics which are pre-
dictive enough to understand the relationship between tools and benchmarks,
but also simple enough to be used in a preprocessing and classification step. Sec-
tions 2.1, 2.2 and 2.3 describe metrics which correspond to the three dimensions
sketched above, and are based on simple data-flow analyses.

Our algorithm for the portfolio is based on machine learning (ML) using
support vector machines (SVMs) [12,15] over the metrics defined above. Figure 1
depicts our experimental results on SV-COMP’15: Our tool T P is the overall
winner and outperforms all other tools – Sect. 4 contains a detailed discussion.

A machine-learning based method for selecting model checkers was previously
introduced in [35]. Similar to our work, the authors use SVM classification with
weights (cf. Sect. 3.1). Our approach is novel in the following ways:

– First, the results in [35] are not reproducible because (1) the benchmark is
not publicly available, (2) the verification properties are not described, and
(3) the weighting function – in our experience crucial for good predictions –
is not documented.

– Second, we use a larger set of verification tools (22 tools vs. 3). Our benchmark
is not restricted to device drivers and is 10 times larger (49 MLOC vs. 4 MLOC
in [35]).

– Third, in contrast to structural metrics of [35] our metrics are computed using
data-flow analysis. Based on tool designer reports (Table 1) we believe that
they have superior predictive power. Precise comparison is difficult due to
non-reproducibility of [35].

564 Y. Demyanova et al.

0
%

1
0

%
2
0

%
3
0

%
4
0

%
5
0

%
6
0

%
7
0

%
8
0

%
9
0

%
1
0
0

%
0

%

5
%

1
0

%

1
5

%

2
0

%

2
5

%

n
o
t

sh
o
w

n
fo

r

c
la

ri
ty

&
c
o
m

-

p
re

h
e
n
si

b
il
it
y

b
la

st

cb
m

c
(1

73
1)

cp
ac

h
ec

ke
r
(4

88
9)

es
b
m

c
(-
21

61
)

se
ah

or
n

(-
62

28
)

sm
ac

k

u
lt
im

at
ea

u
to

m
iz
er

(2
30

1)

T
P

T
ca

t

T
v
bs

re
p
o
rt

s
co

rr
ec

t
a
n
sw

er

reportsincorrectanswer

O
ve

ra
ll

S
V

-C
O

M
P

sc
o
re

in
p
a
re

n
th

es
es

F
ig
.
1
.
D

ec
is

iv
en

es
s-

re
li
a
b
il
it
y

p
lo

t
fo

r
S
V

-C
O

M
P

’1
5
.
T

h
e

h
o
ri

zo
n
ta

l
a
x
is

g
iv

es
th

e
p
er

ce
n
ta

g
e

o
f
co

rr
ec

t
a
n
sw

er
s
c,

th
e

v
er

ti
ca

l
a
x
is

th
e

n
u
m

b
er

o
f
in

co
rr

ec
t

a
n
sw

er
s
i.

D
a
sh

ed
li
n
es

co
n
n
ec

t
p
o
in

ts
o
f
eq

u
a
l
d
ec

is
iv

en
es

s
c
+
i.

T
h
e

O
ve

ra
ll

S
V

-C
O

M
P

sc
o
re

is
g
iv

en
(i

f
av

a
il
a
b
le

)
in

p
a
re

n
th

es
es

.

Empirical Software Metrics for Benchmarking of Verification Tools 565

While portfolio solvers are important, we also think that the software metrics
we define in this work are interesting in their own right. Our results show that
categories in SVCOMP have characteristic metrics. Thus, the metrics can be
used to (1) characterize benchmarks not publicly available, (2) understand large
benchmarks without manual inspection, (3) understand presence of language
constructs in benchmarks.

Summarizing, in this paper we make the following contributions:

– We define software metrics along the three dimensions – program variables,
program loops and control flow – in order to capture the difficulty of program
analysis tasks (Sect. 2).

– We develop a machine-learning based portfolio solver for software verification
that learns the best-performing tool from a training set (Sect. 3).

– We experimentally demonstrate the predictive power of our software metrics in
conjunction with our portfolio solver on the software verification competitions
SV-COMP’14 and SV-COMP’15 (Sect. 4).

2 Source Code Metrics for Software Verification

We introduce program features along the three dimensions – program variables,
program loops and control flow – and describe how to derive corresponding
metrics. Subsequent sections demonstrate their predictive power: In Sect. 3 we
describe a portfolio solver for software verification based on our metrics. In
Sect. 4 we experimentally demonstrate the portfolio’s success, thus attesting the
descriptive and predictive power of our metrics and the portfolio.

2.1 Variable Role Based Metrics

The first set of features that we introduce are variable roles. Intuitively, a variable
role is a usage pattern of how a variable is used in a program.

Fig. 2. Different usage patterns of integer variables.

Example 1. Consider the C program in Fig. 2a, which computes the number
of non-zero bits of the variable x. In every loop iteration, a non-zero bit of x is
set to zero and the counter n is incremented. For a human reading the program,
the statements n=0 and n++ in the loop body signal that n is a counter, and
statement x = x & (x-1) indicates that x is a bit vector.

566 Y. Demyanova et al.

Example 2. Consider the program in Fig. 2b, which reads a decimal number
from a text file and stores its numeric representation in variable val. State-
ment fd=open(path, flags) indicates that variable fd stores a file descriptor
and statement isdigit(c) indicates that c is a character, because function
isdigit() checks whether its parameter is a decimal digit character.

Criteria for Choosing Roles. We implemented 27 variable roles and give
their informal definition in Table 2. Our choice of roles is inspired by standard
concepts used by programmers. In order to create the list of roles we inspected
the source code of the cBench benchmark [1] and came up with a minimum set
of roles such that every variable is assigned at least one role.

Roles as Features for Selecting a Verification Tool. The developer reports
in SV-COMP’15 [7] give evidence of the relevance of variable roles for selecting
verification tools. Most often authors mention language constructs which –
depending on whether they are fully, partially, or not modeled by a tool –
constitute its strong or weak points. We give examples of such constructs in
Table 1 and relate them to variable roles. A preliminary experiment in [16], where
we have successfully used variable roles to predict categories in SV-COMP’13,
gives further evidence for our claim.

Definition of Roles. We define roles using data-flow analysis, an efficient fixed-
point algorithm popular in optimizing compilers [6]. Our current definition of
roles is control-flow insensitive, and the result of analysis is a set of variables
ResR which are assigned role R. We give the definition of variable roles in [16].

Example 3. We describe the process of computing roles on the example of role
LINEAR for the code in Fig. 2a. Initially, the algorithm assigns to ResLINEAR

the set of all variables {x, y, n}. Then it computes the greatest fixed point in
three iterations. In iteration 1, variable x is removed, because it is assigned
expression x & (x-1), resulting in ResLINEAR = {y, n}. In iteration 2, variable
y is removed, because it is assigned variable x, resulting in ResLINEAR = {n}.
In iteration 3, ResLINEAR does not change, and the result of the analysis is
ResLINEAR = {n}.

Definition 1 (Variable Role Based Metrics). For a given benchmark file
f , we compute the mapping ResR from variable roles to the program variables
of f . We derive role metrics mR that represent the relative occurrence of each
variable role R: mR = |ResR|

/
|V ars|, where R ∈ Roles.

2.2 Loop Pattern Based Metrics

The second set of program features we introduce is a classification of loops.
The capability of Turing complete imperative languages to express unbounded

Empirical Software Metrics for Benchmarking of Verification Tools 567

Table 2. List of variable roles with informal definitions. Type struct type stands for
a C structure, any type for an arbitrary C type.

C type Role name Informal definition

int ARRAY INDEX Occurs in an array subscript expression

ALLOC SIZE Passed to a standard memory allocation function

BITVECTOR Used in a bitwise operation or assigned the result of a
bitwise operation or a BITVECTOR variable

BOOL Assigned and compared only to 0,1, the result of a
boolean operation or a BOOL variable

BRANCH COND Used in the condition of an if statement

CHAR Used in a library function which manipulates
characters, or assigned a character literal

CONST ASSIGN Assigned only literals or CONST ASSIGN variables

COUNTER Changed only in increment/decrement statements

FILE DESCR Passed to a library function which manipulates files

INPUT Assigned the result of an external function or passed
to it as a parameter by reference

LINEAR Assigned only linear combinations of LINEAR
variables

LOOP BOUND Used in a loop condition in a comparison operation,
where it is compared to a LOOP ITERATOR
variable

LOOP ITERATOR Occurs in loop condition, assigned in loop body

MODE Not used in comparison operations other than == and
!=; assigned and compared to constant values only

OFFSET Added to or subtracted from a pointer

SCALAR INT Scalar integer variable

SYNT CONST Not assigned in the program (a global or an unused
variable, or a formal parameter to a global
function)

THREAD DESCR Passed to a function of pthread library

USED IN ARITHM Used in addition/subtraction/multiplication/division

float SCALAR FLOAT Scalar float variable

int*, float* PTR SCALAR Pointer to a scalar value

struct type* PTR STRUCT Pointer to a structure

PTR STRUCT PTR Pointer to a structure which has a pointer field

PTR STRUCT REC Pointer to a recursively defined structure

PTR COMPL STRUCT Pointer to a recursively defined structure with more
than one pointer, e.g. doubly linked lists

any type* HEAP PTR Assigned the result of a memory allocation

PTR Pointer to any value

iteration entails hard and in general undecidable problems for any non-trivial
program analysis. On the other hand, in many cases iteration takes trivial forms,
for example in loops enumerating a bounded range (counting). In [29] we intro-

568 Y. Demyanova et al.

duce a family of loop patterns that capture such differences. Ability to reason
about bounds or termination of loops allows a verification tool to discharge the
(un)reachability of assertions after the loop, or to compute unrolling factors and
soundness limits in the case of bounded model checking. Thus we expect our
loop patterns to be useful program features for constructing our portfolio.

Criteria for Choosing Loop Patterns. We start with a termination proce-
dure for a restricted set of bounded loops. This loop pattern is inspired by basic
(bounded) FOR-loops, a frequently used programming pattern. It allows us to
implement an efficient termination procedure using syntactic pattern matching
and data-flow analysis. Additionally, this loop class lends itself to derive both a
stronger notion of boundedness, and weaker notions (heuristics) of termination.
We give an informal description of these patterns in Table 3; for details cf. [29]

Usefulness of Loop Patterns. In [29] we give evidence that these loop pat-
terns are a common engineering pattern allowing us to describe loops in a variety
of benchmarks, that they indeed capture classes of different empirical hardness,
and that the hardness increases as informally described in Table 3.

Definition 2 (Loop Pattern Based Metrics). For a given benchmark file f ,
we compute LSB,LST,Lsimple,Lhard, and the set of all loops Loops. We derive
loop metrics mP that represent the relative occurrence of each loop pattern P :
mP = |LP |

/
|Loops| where P ∈ {ST,SB, simple,hard}.

Table 3. List of loop patterns with informal descriptions.

Loop pattern Empirical hardness Informal definition

Syntactically bounded loops
LSB

Easy The number of executions of the
loop body is bounded (considers
outer control flow)

Syntactically terminating
loops LST

Intermediate The loop terminates whenever
control flow enters it (disregards
outer control flow)

Simple loops Lsimple Advanced A heuristic derived from
syntactically terminating loops
by weakening the termination
criteria. A good heuristic for
termination

Hard loops Lhard Hard Any loop that is not classified as
simple

Empirical Software Metrics for Benchmarking of Verification Tools 569

2.3 Control Flow Based Metrics

Complex control flow poses another challenge for program analysis. To measure
its presence, we introduce five additional metrics: For control flow complexity, we
count (a) the number of basic blocks in the control flow graph (CFG) mcfgblocks,
and (b) the maximum indegree of any basic block in the CFG mmaxindeg. To
represent the use of function pointers, we measure (a) the ratio of call expressions
taking a function pointer as argument mfpcalls, and (b) the ratio of function call
arguments that have a function pointer type mfpargs. Finally, to describe the use
of recursion, we measure the number of direct recursive function calls mreccalls.

3 A Portfolio Solver for Software Verification

3.1 Preliminaries on Machine Learning

In this section we introduce standard terminology from the machine learning
(ML) community as can for example be found in [11].

Data Representation. A feature vector is a vector of real numbers x ∈ R
n.

A labeling function L : X → Y maps a set of feature vectors X ⊆ R
n to a set

Y ⊆ R, whose elements are called labels.

Supervised Machine Learning. In supervised ML problems, labeling function
L is given as input. Regression is a supervised ML problem where labels are real
numbers Y ⊆ R. In classification, in contrast, labels belong to a finite set of
integers Y ⊆ Z. Binary classification considers two classes Y = {1,−1}, and a
problem with more than two classes is called multi-class classification.

Given a set of feature vectors X, labeling function L and error measure
function Err : R

s × R
s → R, where s = |X|, a supervised ML algorithm

searches for function M : Rn → Y in some function space such that the value
Err(L(X),M(X)) is minimal.

Support Vector Machine. A support vector machine (SVM) [12,15] is
a supervised ML algorithm, parametrized by a kernel function K(xi, xj) ≡
φ(xi)T φ(xj), that finds a hyperplane wφ(xi) − b = 0 separating the data with
different labels. In the case of binary classification,

M(x) = sign

(
s∑

i=1

wiL(xi)φ(xi)T φ(x)

)

and Err =
1
2
wT w + C

s∑

i=1

ξi (1)

where sign(n) =

{
−1 if n < 0
1 if n ≥ 0

, xi ∈ X is a feature vector, C > 0 is the penalty

parameter of the error term, function φ is implicitly given through kernel function

570 Y. Demyanova et al.

K, and w, b and ξ are existentially quantified parameters of the optimization
problem

min
w,b,ξ

Err, subject to L(xi)(wT φ(xi) + b) ≥ 1 − ξi and ξi ≥ 0 (2)

with ξi measuring the degree of misclassification of point xi.
The kernel function K and C ∈ R are parameters of SVM. An example of

a non-linear kernel function is the Radial Basis Function (RBF): K(xi, xj) =
exp(−γ‖xi − xj‖2), γ > 0.

Probabilistic Classification. Probabilistic classification is a generalization of
the classification algorithm, which searches for a function MP : Rn → (Y →
[0, 1]) mapping a feature vector to a class probability distribution, which is a
function P : Y → [0, 1] from a set of classes Y to the unit interval. There is a
standard algorithm for estimating class probabilities for SVM [36].

Creating and Evaluating a Model. Function M is called a model, the set X
used for creating the model is called training set, and the set used for evaluating
the model X ′ is called test set.

To avoid overly optimistic evaluation of the model, it is common to require
that the training and test sets are disjoint: X ∩X ′ = ∅. A model which produces
accurate results with respect to the error measure for the training set, but results
in a high error for previously unseen feature vectors x
∈ X, is said to overfit.

Data Imbalances. Labeling function L is said to be imbalanced when it
exhibits an unequal distribution between its classes: ∃yi, yj ∈ Y .Num(yi)/
Num(yj) ∼ 100, where Num(y) = |{x ∈ X | L(x) = y}|, i.e. imbalances of the
order 100:1 and higher. Data imbalances significantly compromise the perfor-
mance of most standard learning algorithms [21].

A common solution for the imbalanced data problem is to use a weighting
function W : X → R [23]. SVM with weights is a generalization of SVM, where

Err = 1
2wT w + C

s∑

i=1

W (xi)ξi. W is usually chosen empirically.

An orthogonal solution of dealing with data imbalances is the reduction
of a multi-class classification problem to multiple binary classification prob-
lems: one-vs-all classification creates one model per class i, with the label-

ing function Li(x) =

{
1 if L(x) = i

−1 otherwise
, and the predicted value calculated as

M(x) = choose({i | Mi(x) = 1}), where a suitable operator choose is used to
choose a single class from multiple predicted classes.

Empirical Software Metrics for Benchmarking of Verification Tools 571

3.2 The Competition on Software Verification SV-COMP

Setup. A verification task in SV-COMP is given as a C source file f and a
verification property p. The property is either a label reachability check or a
memory safety check (comprising checks for freedom of unsafe deallocations,
unsafe pointer dereferences, and memory leaks). The expected answer ExpAns
is provided for each task by the designers of the benchmark. The verification
tasks are partitioned into categories, manually grouped by characteristic features
such as usage of bitvectors, concurrent programs, linux device drivers, etc.

Scoring. The competition assigns a score to each tool’s result on a verification
task v. The category score of a tool is defined as the sum of scores for individual
tasks in the category. In addition, medals are awarded to the three best tools
in each category. The Overall SV-COMP score considers all verification tasks,
with each constituent category score normalized by the number of tasks in it.

3.3 Tool Selection as a Machine Learning Problem

In this section, we first describe the setup of our portfolio solver T P, and then
define the notion of the best-performing tool tbest predicted by T P.

Definitions. A verification task v = 〈f, p, type〉 is a triple of a source file f ,
the property p and property type type (e.g. reachability or safety). Function
ExpAns : Tasks → {true, false} maps verification task v ∈ Tasks to true if
the property p holds for f and to false otherwise. We identify each verification
tool by a unique natural number t ∈ N.

The result of a run of a tool t on a verification task v is a pair 〈anst,v,
runtimet,v〉, where anst,v ∈ {true, false, unknown} is the tool’s answer whether
the property holds, and runtimet,v ∈ R is the runtime of the tool in seconds.
The expected answer for a task v is a boolean value ExpAns(v).

Machine Learning Data. We compute feature vectors from the metrics and
the results of the competition as follows: for verification task v we define
feature vector x(v)=(mARRAY INDEX(v), . . . , mPTR(v),mST(v), . . . , mhard(v),
mcfgblocks(v), . . . , mreccalls(v), type(v)), where the mi(v) are our metrics from
Sect. 2 and type(v) ∈ {0, 1} encodes if the property is reachability or memory
safety.

The portfolio solver predicts a tool identifier t ∈ {1, . . . , n}, which is a multi-
class classification problem. We use a generalization of the one-vs-all classifica-
tion to solve the problem. We define the labeling function Lt(v) for tool t and
task v as follows:

Lt(v) =

⎧
⎪⎨

⎪⎩

1 if anst,v = ExpAns(v)
2 if anst,v = unknown

3 if anst,v
= unknown ∧ anst,v
= ExpAns(v)

572 Y. Demyanova et al.

where we treat opted-out categories as if the tool answered unknown for all of
the category’s verification tasks.

Formulation of the Machine Learning Problem. Given |Tools| classifica-
tion problems for a task v, the portfolio algorithm chooses a tool tbest as follows:

tbest =

⎧
⎪⎨

⎪⎩

choose(TCorr(v)) if TCorr(v)
= ∅
choose(TUnk(v)) if TCorr(v) = ∅ ∧ TUnk(v)
= ∅
twinner if TCorr(v) = ∅ ∧ TUnk(v) = ∅

where TCorr(v) = {t ∈ Tools | Mt(v) = 1}, TUnk(v) = {t ∈ Tools |
Mt(v) = 2} and twinner is the winner of the competition, e.g. CPAchecker in SV-
COMP’15. We now describe two alternative ways of implementing the operator
choose.

1. “Success/Fail + Time”: T PSuccFailT ime. We formulate |Tools| additional
regression problems, where the predicted value is the runtime of the tool
runtimet,v. We define choose(T) = arg min

t∈T
runtimet,v.

2. “Success/Fail + Probability”: T PSuccFailProb. We define the operator
choose(T) = arg max

t∈T
Pt,v, where Pt,v is class probability estimate.

In Table 4 we compare the two choose operators for category Overall in the
setup of SV-COMP’14 according to 3 different criteria: the score, the percentage
of correctly and incorrectly answered tasks and the place in the competition.

Configuration T PSuccFailProb yields a higher score and number of correct
answers with less runtime. We believe this is due to the tool runtimes varying in
the range of 5 orders of magnitude (from tenth parts of a second to 15 min), which
causes high error rates in the predicted runtime. We therefore use configuration
T PSuccFailProb and in the following refer to it as T P.

Table 4. Comparison of 2 formulations of T P.

Setting Correct/Incorrect/ Score Runtime, s Place

Unknown answers, %

T PSuccFailT ime 92/3/6 1384 279859 1

T PSuccFailProb 93/1/5 1494 132688 1

The Weighting Function. We analyzed the results of SV-COMP’14 and
observed, that the labeling function in the formulation of T PSuccFailProb is
highly imbalanced: the label which corresponds to incorrect answers, Lt(v) = 3,
occurs in less than 4 % for all tools.

We therefore use SVM with weights, in accordance with the standard practice
in machine learning. We note that we use the same weighting function for our

Empirical Software Metrics for Benchmarking of Verification Tools 573

experiments in the setup of SV-COMP’15 without any changes. Given a task v
and tool t, we calculate the weighting function W as follows:

W (v, t) = Potential(v) ∗ Criticality(v) ∗ Performance(t, Cat(v))
∗ Speed(t, Cat(v))

– where Potential(v) = scoremax(v)− scoremin(v) is the difference of the max-
imal and minimal possible scores for task v. For example, in the setup of
SV-COMP’14, if v is safe, then scoremax(v) = 2 and scoremin(v) = −8;

– Criticality(v) =
1

|{t ∈ Tools | anst,v = ExpAns(v)}| is inversely propor-

tional (subject to a constant factor) to the probability of randomly choosing
a tool which gives the expected answer;

– Performance(t, c) =
cat score(t, c)

cat score(tcbest, c)
is the ratio of the scores of tool

t and the best in category c tool tcbest, where given the score scoret,v of
tool t for task v, tcbest = arg max

ti∈Tools

(
cat score(ti, c)

)
and cat score(t, c) =

∑

{v∈Tasks|Cat(v)=c}

(
scoret,v

)
;

– Speed(t, c) =
ln(rel time(t, c))

ln(rel time(tcfst, c))
is the relative difference of the orders

of magnitude of the fraction in total runtime of the time spent by tool t
and the fastest in category c tool tcfst respectively, where rel time(t, c) =
(
cat time(t, c)

)/(∑

ti∈Tools

cat time(ti, c)
)
, tcfst = arg min

ti∈Tools

(
cat time(ti, c)

)

and cat time(t, c) =
∑

{v∈Tasks|Cat(v)=c}
runtimet,v.

Implementation of T P. Finally, we discuss the details of the implementa-
tion of T P. We use the SVM ML algorithm with the RBF kernel and weights
implemented in the LIBSVM library [13]. To find optimal parameters for a ML
algorithm with respect to the error measure function, we do exhaustive search
on the grid, as described in [22].

4 Experimental Results

4.1 SV-COMP 2014 vs. 2015

As described in Sect. 3.2, SV-COMP provides two metrics for comparing tools:
score and medal counts. As the scoring policy has recently changed (the penalties
for incorrect answers were increased) after a close jury vote [4], we are interested
in how stable the scores are under different scoring policies. The following table
gives the three top-scoring tools in Overall and their scores in SV-COMP’14
and ’15, as well as the top-scorers of SV-COMP’14 if the 2015 scoring policy
had been applied, and vice versa:

574 Y. Demyanova et al.

Competition Scoring 1st place (score) 2nd place (score) 3rd place (score)

SV-COMP’14 Original CBMC (3,501) CPAchecker (2,987) LLBMC (1,843)

Like ’15 CPAchecker (3,035) CBMC (2,515) LLBMC (2,004)

SV-COMP’15 Original CPAchecker (4,889) Ult. Aut. (2,301) CBMC (1,731)

Like ’14 CPAchecker (5,537) SMACK (4,120) CBMC (3,481)

Discussion. Clearly, the scoring policy has a major impact on the competition
results: If the ’15 policy is applied to SV-COMP’14, the first and second placed
tools switch ranks. SV-COMP’15, applying the previous year’s policy has an
even stronger effect: Ultimate Automizer loses its silver medal to SMACK, a tool
originally not among the top three, and CBMC almost doubles its points.

Given that SV-COMP score and thus also medal counts are rather volatile,
we introduce decisiveness-reliability plots (DR-plots) in the next section to com-
plement our interpretation of the competition results.

4.2 Decisiveness-Reliability Plots

To better understand the competition results, we create scatter plots where
each data point v = (c, i) represents a tool that gives c% correct answers and
i% incorrect answers. Figures 1 and 3 show such plots based on the verification
tasks in SV-COMP’14 and ’15. Each data point marked by an unfilled circle� represents one competing tool. The rectilinear distance c + i from the origin
gives a tool’s decisiveness, i.e. the farther from the origin, the fewer times a tool
reports “unknown”. The angle enclosed by the horizontal axis and v gives a tool’s
(un)reliability, i.e. the wider the angle, the more often the tool gives incorrect
answers. Thus, we call such plots decisiveness-reliability plots (DR-plots).

Discussion. Figures 1 and 3 show DR-plots for the verification tasks in SV-
COMP’14 and’15. For 2014, all the tools are performing quite well on soundness:
none of them gives more than 4 % of incorrect answers. CPAchecker, ESBMC
and CBMC are highly decisive tools, with more than 83 % correct answers.

In 2015 (Fig. 1) the number of verification tasks more than doubled, and
there is more variety in the results: We see that very reliable tools (BLAST,
SMACK, and CPAchecker) are limited in decisiveness – they report “unknown”
in more than 40 % of cases. The bounded model checkers CBMC and ESBMC
are more decisive at the cost of giving up to 10 % incorrect answers. We also
give Overall SV-COMP scores (where applicable) in parentheses. Clearly, tools
close together in the DR-plot not necessarily have similar scores because of the
different score weights prescribed by the SV-COMP scoring policy.

Referring back to Figs. 1 and 3, we also show the theoretic strategies
Tcat and Tvbs marked by a square �: Given a verification task v, Tcat selects
the tool winning the corresponding competition category Cat(v). Tvbs is the
virtual best solver (VBS) and selects the best performing tool per verification

Empirical Software Metrics for Benchmarking of Verification Tools 575

0
%

1
0

%
2
0

%
3
0

%
4
0

%
5
0

%
6
0

%
7
0

%
8
0

%
9
0

%
1
0
0

%
0

%

2
%

4
%

6
%

8
%

1
0

%

n
o
t

sh
o
w

n
fo

r

c
la

ri
ty

&
c
o
m

-

p
re

h
e
n
si

b
il
it
y

bl
as

t

cb
m
c
(3

50
1)

cp
ac

he
ck

er
(2

98
7)

cp
al
ie
n

es
bm

c
(9

75
)

fb
it

llb
m
c
(1

84
3)

pr
ed

at
or

(-
18

4)

sy
m
bi
ot

ic
(-
22

0)

uf
o

T
P T
ca
t T

v
bs

re
p
o
rt

s
co

rr
ec

t
a
n
sw

er

reportsincorrectanswer

C
o
rr

ec
ta

n
d

in
co

rr
ec

t
a
n
sw

er
s

b
y

to
o
ls

o
n

S
V

-C
O

M
P

’1
4
,

O
ve

ra
ll
 S

V
-C

O
M

P
sc

o
re

in
p
a
re

n
th

es
es

F
ig
.
3
.
D

ec
is

iv
en

es
s-

re
li
a
b
il
it
y

p
lo

t
fo

r
S
V

-C
O

M
P

’1
4
.

576 Y. Demyanova et al.

(a) Overall SV-COMP score, runtime and medal counts for SV-COMP’14.

blast cbmc

cpa-
che-
cker

cpa-
lien

esbmc fbit llbmc ufo T P Tcat Tvbs

Overall
468
2066

1292
4991

1235
1865

266
776

695
4024

666
898

853
978

735
381

1494
2211

1732
1310

1840
270

Medals 1/0/0 2/2/2 2/1/1 0/0/0 1/0/1 0/0/2 1/0/1 1/1/0 1/5/1 - -

(b) Overall SV-COMP score, runtime and medal counts for SV-COMP’15.

blast
cas-
cade

cbmc

cpa-
che-
cker

pre-
da-

torhp
smack

ulti-
mate-
kojak

ulcseq T P Tcat Tvbs

Overall
737
4546

806
5146

684
11936

2228
6288

389
96

1542
8727

1215
7979

273
12563

2511
6260

3231
4360

3768
1882

Medals 1/0/0 0/0/0 1/1/1 2/1/5 1/0/1 2/1/1 0/2/0 0/0/0 1/6/1 - -

Fig. 4. Experimental results for the eight best competition participants in Overall,
plus our portfolio T P and the idealized strategies Tcat, Tvbs on random subsets of SV-
COMP, given as arithmetic mean of 10 experiments on the resp. test sets testyear. The
first row shows the Overall SV-COMP score and beneath it the runtime in minutes. We
highlight the gold, silver, and bronze medal in dark gray, light gray and white+bold
font, respectively. The second row shows the number of gold/silver/bronze medals won
in individual categories.

task. Both strategies illustrate that combining tools can yield an almost per-
fect solver, with ≥ 95% correct and 0 % incorrect answers. (Note that these
figures may give an overly optimistic picture – after all the benchmarks are sup-
plied by the competition participants.) The results for Tvbs compared to Tcat

indicate that leveraging not just the category winner provides an advantage in
both reliability and decisiveness. A useful portfolio would thus lie somewhere
between CPAchecker, CBMC, Tcat, and Tvbs, i.e. improve upon the decisiveness
of constituent tools while minimizing the number of incorrect answers.

4.3 Evaluation of Our Portfolio Solver

We implemented the ML-based portfolio T P for SV-COMP’14 in our tool Ver-
ifolio [5]. When competition results for SV-COMP’15 became available, we suc-
cessfully evaluated the existing techniques on the new data. We present these
results both in terms of the traditional metrics used by the competition (SV-
COMP score and medals), and by its placement in DR-plots:

Setup. For our experiments we did not rebuild the infrastructure of SV-COMP,
but use numeric results from the competition to compare our portfolio approach
against other tools. Following a standard practice in ML [11], we randomly split
the verification tasks of SV-COMP’year into a training set trainyear and a test
set testyear with a ratio of 60:40. We train our portfolio on trainyear and re-run
the competition on testyear, with the portfolio participating as an additional

Empirical Software Metrics for Benchmarking of Verification Tools 577

tool. As the partitioning into training and test sets is randomized, we conduct
the experiment 10 times and report the arithmetic mean of all figures. Figures
4a and b show the Overall SV-COMP scores, runtimes and medal counts. The
DR-plots in Figs. 1 and 3 show the portfolio marked by a filled circle •.

Overhead of Feature Extraction. By construction, our portfolio incurs an over-
head for feature extraction and prediction before actually executing the selected
tool. We find this overhead to be negligible with a median time of x̃features = 0.5
seconds for feature extraction and x̃prediction = 0.5 seconds for prediction.

Discussion. First, we discuss our results in terms of Overall SV-COMP score
and medals. The experimental results for SV-COMP’14 in Fig. 4a show that our
portfolio overtakes the original Overall winner CBMC with 16 % more points. It
wins a total of seven medals (1/5/1 gold/silver/bronze) compared to CBMC’s
six medals (2/2/2). For SV-COMP’15 (Fig. 4b), our portfolio T P is again the
strongest tool, collecting 13 % more points than the original Overall winner
CPAchecker. Both CPAchecker and T P collect 8 medals, with CPAchecker’s
2/1/5 against T P’s 1/6/1.

Second, we discuss the DR-plots in Figs. 1 and 3. Our portfolio T P positions
itself between CPAchecker, CBMC and the theoretic strategies Tcat and Tvbs.
Furthermore, T P falls halfway between the concrete tools and idealized strate-
gies. We think this is a promising result, but also leaves room for future work.
Here we invite the community to contribute further feature definitions, learning
techniques, portfolio setups, etc. to enhance this approach.

Constituent Verifiers Employed by Our Portfolio. Our results could suggest that
T P implements a trade-off between CPAchecker’s conservative-and-sound and
CBMC’s decisive-but-sometimes-unsound approach. Contrarily, our experiments
show that significantly more tools get selected by our portfolio solver. Addition-
ally, we find that our approach is able to select domain-specific solvers: For
example, in the Concurrency category, T P almost exclusively selects variants of
CSeq, which translates concurrent programs into equivalent sequential ones.

Wrong Predictions. Finally, we investigate cases of wrong predictions made by
the portolio solver, which are due to two reasons:

First, ML operates on the assumption that the behavior of a verification
tool is the same for different verification tasks with the same or very similar
metrics. However, sometimes this is not the case because tools are (1) unsound,
e.g. SMACK in category Arrays, (2) buggy, e.g. BLAST in DeviceDrivers64, or
(3) incomplete, e.g. CPAchecker in ECA.

Second, the data imbalances lead to the following bias in ML: For a verifica-
tion tool that is correct most of the time, ML will prefer the error of predicting
that the tool is correct (when in fact incorrect) over the error that a tool is incor-
rect (when in fact correct), i.e. “good” tools are predicted to be even “better”.

578 Y. Demyanova et al.

References

1. Collective benchmark (cBench). http://ctuning.org/wiki/index.php/CTools:
CBench. Accessed 6 Feb 2015

2. Competition on Software Verification 2014. http://sv-comp.sosy-lab.org/2014/.
Accessed 6 Feb 2015

3. Competition on Software Verification 2015. http://sv-comp.sosy-lab.org/2015/.
Accessed 6 Feb 2015

4. SV-COMP 2014 - Minutes. http://sv-comp.sosy-lab.org/2015/Minutes-2014.txt.
Accessed 6 Feb 2015

5. Verifolio. http://forsyte.at/software/verifolio/. Accessed 11 May 2015
6. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Princiles, Techniques, and Tools.

Addison-Wesley, Reading (1986)
7. Baier, C., Tinelli, C. (eds.): TACAS 2015. LNCS, vol. 9035. Springer, Heidelberg

(2015)
8. Beyer, D.: Status report on software verification. In: Ábrahám, E., Havelund, K.

(eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 373–388. Springer, Heidelberg
(2014)

9. Beyer, D.: Software verification and verifiable witnesses. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 401–416. Springer, Heidelberg (2015)

10. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification: con-
cretizing the convergence of model checking and program analysis. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 504–518. Springer, Heidelberg
(2007)

11. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York
(2006)

12. Boser, B.E., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classi-
fiers. In: Conference on Computational Learning Theory (COLT 1992), pp. 144–152
(1992)

13. Chang, C., Lin, C.: LIBSVM: a library for support vector machines. ACM TIST
2(3), 27 (2011)

14. Clarke, E., Kroning, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

15. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297
(1995)

16. Demyanova, Y., Veith, H., Zuleger, F.: On the concept of variable roles and its
use in software analysis. In: Formal Methods in Computer-Aided Design (FMCAD
2013), pp. 226–230 (2013)

17. Dudka, K., Peringer, P., Vojnar, T.: Byte-precise verification of low-level list manip-
ulation. In: Logozzo, F., Fähndrich, M. (eds.) Static Analysis. LNCS, vol. 7935,
pp. 215–237. Springer, Heidelberg (2013)

18. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., Schneider, M.T., Ziller, S.:
A portfolio solver for answer set programming: preliminary report. In: Delgrande,
J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 352–357. Springer,
Heidelberg (2011)

19. Gomes, C.P., Selman, B.: Algorithm portfolios. Artif. Intell. 126(1–2), 43–62 (2001)
20. Gurfinkel, A., Belov, A.: FrankenBit: bit-precise verification with many bits. In:

Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp.
408–411. Springer, Heidelberg (2014)

http://ctuning.org/wiki/index.php/CTools:CBench
http://ctuning.org/wiki/index.php/CTools:CBench
http://sv-comp.sosy-lab.org/2014/
http://sv-comp.sosy-lab.org/2015/
http://sv-comp.sosy-lab.org/2015/Minutes-2014.txt
http://forsyte.at/software/verifolio/

Empirical Software Metrics for Benchmarking of Verification Tools 579

21. He, H., Garcia, E.A.: Learning from imbalanced data. Knowl. Data Eng. 21(9),
1263–1284 (2009)

22. Hsu, C.W., Chang, C.C., Lin, C.J., et al.: A practical guide to support vector
classification (2003)

23. Huang, Y.M., Du, S.X.: Weighted support vector machine for classification with
uneven training class sizes. Mach. Learn. Cybern. 7, 4365–4369 (2005)

24. Huberman, B.A., Lukose, R.M., Hogg, T.: An economics approach to hard com-
putational problems. Science 275(5296), 51–54 (1997)

25. Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algo-
rithm selection and scheduling. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp.
454–469. Springer, Heidelberg (2011)

26. Lobjois, L., Lemâıtre, M.: Branch and bound algorithm selection by performance
prediction. In: Mostow, J., Rich, C. (eds.) National Conference on Artificial Intelli-
gence and Innovative Applications of Artificial Intelligence Conference, pp. 353–358
(1998)

27. Maratea, M., Pulina, L., Ricca, F.: The multi-engine ASP solver me-asp. In: del
Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS, vol. 7519, pp. 484–
487. Springer, Heidelberg (2012)

28. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., OSullivan, B.: Using case-
based reasoning in an algorithm portfolio for constraint solving. In: Irish Confer-
ence on Artificial Intelligence and Cognitive Science (2008)

29. Pani, T.: Loop patterns in C programs. Diploma Thesis (2014). http://forsyte.at/
static/people/pani/sloopy/thesis.pdf

30. Pulina, L., Tacchella, A.: A multi-engine solver for quantified boolean formulas.
In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 574–589. Springer, Heidelberg
(2007)

31. Pulina, L., Tacchella, A.: A self-adaptive multi-engine solver for quantified boolean
formulas. Constraints 14(1), 80–116 (2009)

32. Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)
33. Roussel, O.: Description of ppfolio. http://www.cril.univ-artois.fr/∼roussel/

ppfolio/solver1.pdf
34. Samulowitz, H., Memisevic, R.: Learning to solve QBF. In: Proceedings of the

Conference on Artificial Intelligence (AAAI), pp. 255–260 (2007)
35. Tulsian, V., Kanade, A., Kumar, R., Lal, A., Nori, A.V.: MUX: algorithm selection

for software model checkers. In: Working Conference on Mining Software Reposi-
tories, pp. 132–141 (2014)

36. Wu, T.F., Lin, C.J., Weng, R.C.: Probability estimates for multi-class classification
by pairwise coupling. J. Mach. Learn. Res. 5, 975–1005 (2004)

37. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: portfolio-based algo-
rithm selection for SAT. J. Artif. Intell. Res. (JAIR) 32, 565–606 (2008)

http://forsyte.at/static/people/pani/sloopy/thesis.pdf
http://forsyte.at/static/people/pani/sloopy/thesis.pdf
http://www.cril.univ-artois.fr/~roussel/ppfolio/solver1.pdf
http://www.cril.univ-artois.fr/~roussel/ppfolio/solver1.pdf

Interpolation, IC3/PDR, and Invariants

Property-Directed Inference of Universal
Invariants or Proving Their Absence

A. Karbyshev1(B), N. Bjørner2, S. Itzhaky3, N. Rinetzky1, and S. Shoham4

1 Tel Aviv University, Tel Aviv, Israel
karbyshev@post.tau.ac.il

2 Microsoft Research, Redmond, USA
3 Massachusetts Institute of Technology, Cambridge, USA
4 The Academic College of Tel Aviv Yaffo, Tel Aviv, Israel

Abstract. We present Universal Property Directed Reachability
(PDR∀), a property-directed procedure for automatic inference of invari-
ants in a universal fragment of first-order logic. PDR∀ is an extension of
Bradley’s PDR/IC3 algorithm for inference of propositional invariants.
PDR∀ terminates when it either discovers a concrete counterexample,
infers an inductive universal invariant strong enough to establish the
desired safety property, or finds a proof that such an invariant does not
exist. We implemented an analyzer based on PDR∀, and applied it to a
collection of list-manipulating programs. Our analyzer was able to auto-
matically infer universal invariants strong enough to establish memory
safety and certain functional correctness properties, show the absence
of such invariants for certain natural programs and specifications, and
detect bugs. All this, without the need for user-supplied abstraction pred-
icates.

1 Introduction

We present Universal Property Directed Reachability (PDR∀), a procedure for
automatic inference of quantified inductive invariants, and its application for
the analysis of programs that manipulate unbounded data structures such as
singly-linked and doubly-linked list data structures. For a correct program, the
inductive invariant generated ensures that the program satisfies its specification.
For an erroneous program, PDR∀ produces a concrete counterexample. Histori-
cally, this has been addressed by abstract interpretation [17] algorithms, which
automatically infer sound inductive invariants, and bounded model checking
algorithms, which explore a limited number of loop iterations in order to sys-
tematically look for bugs [6,13]. We continue the line of recent works [2,32] which
simultaneously search for invariants and counterexamples. We follow Bradley’s
PDR/IC3 algorithm [9] by repeatedly strengthening a candidate invariant until
it either becomes inductive, or a counterexample is found.

In our experience, the correctness ofmanyprograms canbeprovenusinguniver-
sal invariants. Hence, we simplify matters by focusing on inferring universal first-
order invariants. When PDR∀ terminates, it yields one of the following outcomes:
c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 583–602, 2015.
DOI: 10.1007/978-3-319-21690-4 40

584 A. Karbyshev et al.

Fig. 1. Motivating examples. n∗(x , y) means a (possibly empty) path of n-fields from
x to y .

(i) a universal inductive invariant strong enough to show that the program respects
the property, (ii) a concrete counterexamplewhich shows that the programviolates
the desired safety property, or (iii) a proof that the program cannot be proven correct
using a universal invariant in a given vocabulary.

Diagram Based Abstraction. Unlike previous work [2,32], we neither assume
that the predicates which constitute the invariants are known, nor apriori bound
the number of universal quantifiers. Instead, we rely on first-order theories with a
finite model property : for such theories, SMT-based tools are able to either return
UNSAT, indicating that the negation of a formula ϕ is valid, or construct a finite
model σ of ϕ. We then translate σ into a diagram [10]—a formula describing
the set of models that extend σ—and use the diagram to construct a universal
clause to strengthen a candidate invariant.

Property-Directed Invariant Inference. Similarly to IC3, PDR∀ iteratively
constructs an increasing sequence of candidate inductive invariants F0 · · ·FN .
Every Fi over-approximates the set Ri of states that can be reached by up to
i execution steps from a given set of initial states. In every iteration, PDR∀

Property-Directed Inference of Universal Invariants 585

uses SMT to check whether one of the candidate invariants became inductive.
If so, then the program respects the desired property. If not, PDR∀ iteratively
strengthens the candidate invariants and adds new ones, guided by the consid-
ered property. Specifically, it checks if there exists a bad state σ which satisfies
FN but not the property. If so, we use SMT again to check whether there is a
state σa in FN−1 that can lead to a state in the diagram ϕ of σ in one execution
step. If no such state exists, the candidate invariant FN can be strengthened
by conjoining it with the negation of ϕ. Otherwise, we recursively strengthen
Fi−1 to exclude σa from its over-approximation of Ri−1. If the recursive process
tries to strengthen F0, we stop and use a bounded model checker to look for a
counterexample of length N . If no counterexample is found, PDR∀ determines
that no universal invariant strong enough to prove the desired property exists
(see Lemma 1). We note that PDR∀ is not guaranteed to terminate, although in
our experience it often does.

Example 1. Procedure split(), shown in Fig. 1(a), moves the elements not satis-
fying the condition C from the list pointed to by h to the list pointed by g. PDR∀

can infer tricky inductive invariants strong enough to prove several interesting
properties: (i) memory safety, i.e., no null dereference and no memory leaks;
(ii) all the elements satisfying C are kept in h; (iii) all the elements which do
not satisfy C are moved to g ; (iv) no new elements are introduced; and (v) stabil-
ity, i.e., the reachability order between the elements satisfying C is not changed.
Our implementation verified that split() satisfies all the above properties fully
automatically by inferring an inductive loop invariant consisting of 36 clauses
(among them 19 are universal formulae) in 206 sec.

Example 2. Procedure filter(), shown in Fig. 1(b), removes and deallocates the
elements not satisfying the condition C from the list pointed to by h. The figure
also shows the loop invariant inferred by PDR∀ when it was asked to verify
a simplified version of property (iii): all the elements which do not satisfy C
are removed from h. The invariant highlights certain interesting properties of
filter(). For example, clause L4 says that if the head element of the list was
processed and kept in the list (this is the only way i �= h can hold), then j
becomes an immediate predecessor of i . Clause L7 says that all the elements x3

reachable from h and not satisfying C must occur after j .

Experimental Evaluation. We implemented PDR∀ on top of the decision pro-
cedure of [32], and applied it to a collection of procedures that manipulate (pos-
sibly sorted) singly linked lists, doubly-linked lists, and multi-linked lists. Our
analysis successfully verified interesting specifications, detected bugs in incorrect
programs, and established the absence of universal invariants for certain correct
programs.

Main Contributions. The main contributions of this work can be summarized
as follows.

• We present PDR∀, a pleasantly simple, yet surprisingly powerful, combination
of PDR [9] with a strengthening technique based on diagrams [10]. PDR∀

586 A. Karbyshev et al.

enjoys a high-degree of automation because it does not require pre-defined
abstraction predicates.

• The diagram-based abstraction is particularly interesting as it is determined
“on-the-fly” according to the structural properties of the bad states discovered
in PDR’s traversal of the state space.

• We prove that the diagram-based abstraction is precise in the sense that if
PDR∀ finds a spurious counterexample then the program cannot be proven
correct using a universal invariant. We believe that this is a unique feature of
our approach.

• We implemented PDR∀ on top of a decision procedure for logic AER [31], and
applied it successfully to verify a collection of list-manipulating programs,
detect bug, and prove the absence of universal invariants. We show that our
technique outperforms an existing state-of-the-art less-automatic PDR-based
verification technique [32] which uses the same decision procedure.

2 Preliminaries

Programs. We handle single loop programs, i.e., we assume that a program has
the form while Cond do Cmd , where Cmd is loop-free. We encode more com-
plicated control structures, e.g., nested or multiple loops, by explicitly recording
the program counter. For clarity, in our examples we allow for a sequence of
instructions preceding the loop. Technically, we encode their effect in the loop’s
pre-condition.

From Programs to Transition Systems. The semantics of a program is
described by a transition system, which consists of a set of states and transitions
between states.

Program States. We consider the states of the program at the beginning of
each iteration of the loop. A program state is represented by a first-order model
σ = (U , I) over a vocabulary V which consists of constants and relation symbols,
where U is the universe of the model, and I is the interpretation function of
the symbols in V. For example, to represent memory states of list manipulating
programs, we use a vocabulary V which associates every program variable x with
a constant x , every boolean field C with a unary predicate C (·), and every pointer
field n with a binary predicate n∗(·, ·) which represents its reflexive transitive
closure.1 We use a special constant null to denote the null value. We depict
memory states σ = (U , I) as directed graphs (see Fig. 2). Individuals in U ,
representing heap locations, are depicted as circles labeled by their name. We
draw an edge from the name of constant x and of a unary predicate C to an
individual v if σ |= x = v or σ |= C (v), respectively. We draw an n∗-annotated
edge between v and u if σ |= n∗(v , u). For clarity, we do not show edges that
can be inferred from the reflexive and transitive nature of n∗.
1 We reason about list-manipulating programs using logic EAR [32]. Hence, values of

pointer fields n are defined indirectly by a formula over n∗, but n is not included in
the vocabulary.

Property-Directed Inference of Universal Invariants 587

Transition Relation. The set of transitions of a program is defined using a
transition relation. A transition relation is a set of models of a double vocabulary
V̂ = V � V ′, where vocabulary V is used to describe the source state of the
transition and vocabulary V ′ = {v ′ | v ∈ V} is used to describe its target state:
A model σ′ = (U , I ′) over V ′ describes a program state σ = (U , I), where
I(v) = I ′(v ′) for every symbol v ∈ V.

Definition 1 (Reduct). Let σ̂ = (U , I) be a model of V̂, and let Σ ⊆ V̂. The
reduct of σ̂ to Σ is the model (U , Ii) of Σ where for every symbol v ∈ Σ,
Ii(v) = I(v).

We often write a transition σ̂ as a pair of states (σ1, σ2), such that σ1 is the
reduct of σ̂ to vocabulary V, and σ2 is the state described by the reduct to V ′.
Each transition (σ1, σ2) describes one possible execution of the loop body, Cmd ,
i.e., it relates the state σ1 at the beginning of an iteration of the loop to the
state σ2 at the end of the iteration. We say that σ2 is a successor of σ1, and σ1

is a predecessor of σ2.

Properties and Assertions. Properties are sets of states. We express prop-
erties using logical formulae over V. For example, we express properties of
list-manipulation programs, e.g., their pre- and post-conditions, Pre and Post ,
respectively, using assertions written in a fragment of first-order logic with tran-
sitive closure. In our analysis, these assertions are translated into equisatisfi-
able first-order logic formulae [31]. We use (ϕ)′ to denote the formula obtained
by replacing every constant and relation symbol in formula ϕ with its primed
version.

Verification Problem. The transition system of a program is represented by
a pair TS = (Init , ρ), where Init is a first-order formula over V used to denote
the initial states of the program, and ρ is a formula over V̂ used to denote its
transition relation. A state σ is initial if σ |= Init , and a pair of states (σ1, σ2) is
a transition if (σ1, σ2) |= ρ. We say that a state is reachable by at most i steps of
ρ (or i -reachable for short, when ρ is clear from the context) if it can be reached
by at most i applications of ρ starting from some initial state. We denote the set
of i -reachable states by Ri . We say that a state is reachable if it is i -reachable for
some i . We say that TS satisfies a safety property P if all reachable states satisfy
P. We often define Bad def= ¬P, and refer to states satisfying Bad as bad states. We
define ρ

def= Cond ∧ wlp(Cmd , Id), where wlp(Cmd , Id) denotes the weakest lib-
eral precondition of the loop body and Id is a conjunction of equalities between
V and V ′ (see [31] for more details). We define Init and Bad using the pro-
grams pre- and post- conditions: Init def= Pre and Bad def= ¬Cond∧¬Post . That is,
a state is initial if it satisfies the pre-condition, and it is bad if it satisfies the
negation of the loop condition (which indicates termination of the loop) but does
not satisfy the post-condition. This captures the requirement that when the loop
terminates the post-condition needs to hold.

588 A. Karbyshev et al.

Fig. 2. Graphical depiction of models found during the analysis of the running example.

Example 3. In Example 2, Init def=(i = h) ∧ (j = null) and Bad def=(i = null) ∧
¬(h �= null → (∀v .n∗(h, v) → C (v))). Note that these refer to the pre- and
post-conditions that should hold right before the loop begins and right after it
terminates, respectively. Here, a state is bad if i = null (i.e., it occurs when the
loop terminates) and h points to a non-empty list that contains an element not
having the property C .

Invariants. An invariant of a program is a property that should hold for all
reachable states. It is inductive if it is closed under application of ρ.

Definition 2 (Invariants). Let TS = (Init , ρ) be a transition system and P a
safety property over V. A formula I is a safety inductive invariant (invariant,
in short) for TS and P if (i) Init ⇒ I, and (ii) I ∧ ρ ⇒ (I)′, and (iii) I ⇒ P.

If there exists an invariant for TS and P, then TS satisfies P. An invariant is
universal if it is equivalent to a universal formula in prenex normal form. We
note that the invariants inferred by PDR∀ are conjunctions of universal clauses,
where a universal clause is a universally quantified disjunction of literals (positive
or negative atomic formulae).

3 Universal-Property-Directed Reachability

In this section, we present Universal Property Directed Reachability (PDR∀),
an algorithm for checking if a transition system TS satisfies a safety prop-
erty P. PDR∀ is an adaptation of Bradley’s property-directed reachability
(IC3) algorithm [9] that uses universal formulae instead of propositional pred-
icates [9,22,29] or predicate abstraction [32]. We use Example 2 as a running
example throughout this section.

Requirements. We require that the transition relation ρ, as well as the Init and
Bad conditions, are expressible in a first-order logic L (We can partly handle
transitive closure using the approach of [31]. See Sect. 5.) We require that every
satisfiable formula in L has a finite model, and assume to have a decision pro-
cedure SAT (ψ), which checks if a formula ψ in L is satisfiable, and a function
model(ψ), which returns a finite model σ of ψ if such a model exists and None
otherwise.

Property-Directed Inference of Universal Invariants 589

3.1 Diagrams as Structural Abstractions

PDR∀ iteratively strengthens a candidate invariant by retrieving program states
that lead to bad states and checking whether the retrieved states are reachable.
In that sense, PDR∀ is similar to IC3. The novel aspect of our approach is the
use of diagrams [10] to generalize individual states into sets of states before
checking for reachability. Diagrams provide a structural abstraction of states by
existential formulae: The diagram of a finite model σ, denoted by Diag(σ), is an
existential cube which describes explicitly the relations between all the elements
of the model.2

Definition 3 (Diagrams). Given a finite model σ = (U , I) over alphabet V,
the diagram of σ, denoted by Diag(σ), is a formula over alphabet V which denotes
the set of models in which σ can be isomorphically embedded. Diag(σ) is con-
structed as follows.

– For every element ei ∈ U , a fresh variable xei is introduced.
– ϕdistinct is a conjunction of inequalities of the form xei �= xej for every pair of

distinct elements ei �= ej in the model.
– ϕconstants is a conjunction of equalities of the form c = xe for every constant

symbol c such that σ |= c = e.
– ϕatomic is a conjunction of atomic formulae which include for every predicate

p ∈ V the atomic formula p(x̄e) if σ |= p(ē), and ¬p(x̄e) otherwise.

Then: Diag(σ) def= ∃xe1 . . . xe|U| .ϕdistinct ∧ ϕconstants ∧ ϕatomic .

Intuitively, one can think of Diag(σ) as the formula produced by treating individ-
uals in σ as existentially quantified variables and explicitly encoding the inter-
pretation of every constant and every predicate using a conjunction of equalities,
inequalities, and atomic formulae. For example, the diagram of σb , depicted in
Fig. 2(σb), is

Diag(σb)
def= ∃x0, x1, x2. x0 �= x1 ∧ x0 �= x2 ∧ x1 �= x2 ∧

h = x0 ∧ j = x1 ∧ i = x2 ∧ null = x2 ∧
¬C (x0) ∧ ¬C (x1) ∧ ¬C (x2) ∧
n∗x0x0 ∧ n∗x1x1 ∧ n∗x2x2 ∧ n∗x0x1 ∧
¬n∗x0x2 ∧ ¬n∗x1x0 ∧ ¬n∗x1x2 ∧ ¬n∗x2x0 ∧ ¬n∗x2x1 .

The first line records the fact that the universe of σb consists of three elements.
The second line characterizes the interpretations of all the constant symbols in
σb . The other lines capture precisely the interpretation of predicates C and n∗

in σb .

2 Definition 3, as well as the property formulated by Lemma 1, are an adaptation of
the standard model-theoretic notion of a diagram [10].

590 A. Karbyshev et al.

Lemma 1. Let σ be a model over V, and let φ be a closed existential first-order
formula over V. If σ |= φ then Diag(σ) ⇒ φ.

Semantically, Lemma 1 means that for any models σ and σi such that σi |=
Diag(σ) if σ |= φ then σi |= φ. This implies that if a bad state is reachable from
σ and the program can be proven correct using an inductive universal invari-
ant I then all the states in σ’s diagram are unreachable too: I is an inductive
invariant, thus any state σ leading to a bad state must satisfy (closed existen-
tial) formula ¬I. Hence, Diag(σ) ⇒ ¬I, which means that all states satisfying
Diag(σ) are unreachable. In this sense, the abstraction based on diagrams is
precise for programs with universal invariants.

3.2 Data Structures and Frames

PDR∀ is shown in Algorithm 1. It uses procedures block() and analyzeCEX(),
shown in Algorithms 2 and 3, respectively, as subroutines. The algorithm uses an
array F of frames, where a frame is a conjunction of universal clauses. For clarity,
we refer to the ith entry of the array using subscript notation, i.e., Fi instead of
F [i]. Intuitively, frame Fi over-approximates Ri , the set of i -reachable states.
The algorithm also maintains a frame counter N which records the number of
frames it developed. We refer to F0 as the initial frame, to FN as the frontier
frame, and to any Fi , where 0 ≤ i < N , as a back frame.

PDR∀ maintains several invariants which ensure that every frame Fi is an
over-approximation of Ri , and hence that the sequence of developed frames is
an over-approximation of all the traces of the program of length N + 1 or less.
Technically, this means that the algorithm constructs an approximate reachability
sequence.

Definition 4. Let TS = (Init , ρ) be a transition system and P a safety property.
A sequence 〈F0,F1, . . . ,FN 〉 is an approximate reachability sequence for TS and
P if:

(i) Init ⇒ F0.
(ii) Fi ⇒ Fi+1, for all 0 ≤ i < N , i.e., for every state σ, if σ |= Fi then

σ |= Fi+1.
(iii) Fi ∧ ρ ⇒ (Fi+1)′, for all 0 ≤ i < N , i.e., for every transition (σ1, σ2) |= ρ,

if σ1 |= Fi then σ2 |= Fi+1.
(iv) Fi ⇒ P, for all 0 ≤ i ≤ N .

Items (ii) and (iii) ensure that every frame includes the states of the previous
frame and their successors, respectively. Together with item (i), it follows by
induction that for every 0 < i ≤ N the set of states (models) that satisfy Fi is a
superset of the set Ri . Furthermore, by item (iv) no frame includes a bad state.

Property-Directed Inference of Universal Invariants 591

Algorithm 1. PDR∀ (Init , ρ,Bad)
1 if SAT(Init ∧ Bad) then

2 exit invalid : model(Init ∧ Bad)

3 F0 := Init

4 F1 := true

5 N := 1

6 while true do

7 if there exists 0 ≤ j < N

such that Fj+1 ⇒ Fj then

8 return valid

9 if ¬SAT(FN ∧ Bad) then

10 FN+1 := true

11 N := N + 1

12 else

13 σb := model(FN ∧ Bad)

14 block(N , σb)

Algorithm 2. block(j , σ)
21 ϕ = Diag(σ)

22 if (j = 0) ∨ (j = 1 ∧ SAT(ϕ ∧ Init)) then

23 analyzeCEX(j ,N)

24 while SAT(Fj−1 ∧ ρ ∧ (ϕ)′) do

25 σa = reduct(model(Fj−1 ∧ ρ ∧ (ϕ)′))
26 block(j − 1, σa)

27 for i = 0 . . . j do

28 Fi := Fi ∧ ¬ϕ

Algorithm 3. analyzeCEX(j ,N)
31 if j = 0∧there exists σ0, . . . , σN such that

32 σ0 |= Init

33 (σi , σi+1) |= ρ for every 0 ≤ i < N , and

34 σN |= Bad

35 then exit invalid : σ0, . . . , σN

36 else exit No Universal Invariant Exists

3.3 Iterative Construction of an Approximate
Reachability Sequence

PDR∀ is an iterative algorithm. At every iteration, the algorithm either strength-
ens the N th frame, if it contains a bad state, or starts to develop the N +1th
frame, otherwise. In addition, in every iteration, it might also strengthen some
of the back frames. Each strengthening of frame Fi is performed by determining
a universal clause ϕi which holds for any i -reachable state, and then conjoining
Fi with ϕi .

Initialization. The algorithm first checks that the initial states and the bad
states do not intersect. If so, it exits and returns the state that satisfies both
Init and Bad as a counterexample (line 2). Otherwise, it sets F0 to represent the
set of initial states (line 3), F1 to represent all possible states (line 4), and the
frame counter to 1. Note that at this point, F1 is a trivial over-approximation
of the set of initial states and their successors, but it might contain bad states.

Iterative Construction. The algorithm then starts its iterative search for
an inductive invariant (line 6). Recall that when the algorithm develops the
N th frame, it has already managed to determine an approximate reachability
sequence 〈F0, . . . ,FN−1〉. Hence, every iteration starts by checking whether a
fixpoint has been reached (line 7).If true, then an inductive invariant proving
unreachability of Bad has been found, and the algorithm returns valid (line
8). Otherwise, the algorithm keeps on strengthening the frontier frame FN by
searching for a bad witness, a bad state in the frontier frame (line 9). If no
such state exists, it means that no bad state is N -reachable. Moreover, at this
point 〈F0, . . . ,FN 〉 is an approximate reachability sequence. Thus, the iterative
strengthening of FN terminates and a new frontier frame is initialized to true
(line 10 and 11).

592 A. Karbyshev et al.

If the frontier frame contains a bad witness, i.e. FN ∧ Bad is satisfiable,
then there might be an N -reachable bad state. Due to our requirement for finite
satisfiability of the logic, the bad witness is a finite model. Given a bad witness
σb (line 13), the algorithm tries to determine whether it is indeed reachable, and
thus the program does not satisfy its specification, or whether σb was discovered
due to some over-approximation in one of the back frames. This check is done
by invoking procedure block() with the index of the frontier frame and σb as
parameters (line 14). The latter either returns a counterexample, determines
that it is impossible to prove the specification using a universal invariant (in the
given logic and vocabulary), or strengthens the frontier frame to exclude the set
of states in the diagram of σb , and possibly strengthens some back frames too
(see below). The iterative construction and strengthening of the frames continues
until reaching a fixpoint, finding a counterexample, or determining the absence
of a universal invariant.3

Example 4. When analyzing the running example, our algorithm discovers that
state σb , shown in Fig. 2, is a bad witness when F1 = true, and thus it invokes
block(1, σb). In this example, block() succeeds to block σb . Unfortunately, the
strengthened frame F 1

1 (see below) still has bad models. Therefore, the iterative
strengthening continues and the next iterations find σ′

b , depicted in Fig. 2, as
a bad witness model for F 1

1 , σ′′
b as a bad witness model of F 2

1 and σ′′′
b as a

bad witness model of F 3
1 . At that point, however, the algorithm determines

that the strengthened frame F 4
1 does not have a bad witness. 〈F0,F 4

1 〉 is now
an approximate reachability sequence and PDR∀ goes on and initializes a new
frame, F2, to true, and the search for an inductive invariant continues.

Diagram-Based Abstract Blocking. Procedure block(j , σ), shown in Algo-
rithm 2, gets an index of a frame j = 0 · · ·N and a state σ which is included in
the j th frame, i.e., σ |= Fj , and tries to determine whether σ is j -reachable. The
unique aspect of our approach is the way in which it abstracts σ to a set of states
in order to accelerate the strengthening routine. Namely, the use of diagrams.
More specifically, PDR∀ computes the diagram ϕ of σ (line 21) and then checks
whether there is a j -reachable state satisfying ϕ. Importantly, due to Lemma 1,
if a universal invariant exists then the generalization of σ to its diagram will not
include any reachable state, hence the abstraction is precise in the sense that it
maintains unreachability. In this case the strengthening of Fj is also guaranteed
to succeed, excluding not only σ, but its entire diagram.

The check if the diagram ϕ of σ includes a j -reachable state is done con-
servatively by determining whether some state of ϕ is an initial state or has a
predecessor in Fj−1. (Recall that Fj−1 over-approximates Rj−1.) The former is

3 For efficiency, in our implementation we represent each frame as a set of clauses (with
the meaning of conjunction) and check implication (line 7) by checking inclusion of
these sets. To facilitate this fixpoint computation, any clause ϕ in Fi that is inductive
in Fi , i.e., Fi ∧ρ ⇒ (ϕ)′ is also propagated forward to Fi+1. In particular, this allows
to initialize a new frontier frame FN , for 1 < N , to a tighter over-approximation of
RN than true (line 10) [22].

Property-Directed Inference of Universal Invariants 593

equivalent to checking if ϕ∧ Init is satisfiable. Note that if we reached the initial
frame, i.e., if j = 0, then σ |= Init , hence the above formula is guaranteed to be
satisfiable. Explicitly checking that ϕ ∧ Init is satisfiable is required only at the
second frame, i.e., if j = 1:

Lemma 2. For every 1 < j ≤ N , when block(j , σ) is called, Fi ⇒ ¬Diag(σ) for
every i ≤ j − 1. In particular, Init ⇒ ¬Diag(σ).

If the algorithm finds an adverse initial state, i.e., an initial state satisfying ϕ,
(line 22),4 it invokes procedure analyzeCEX() for further analysis (see below).
Otherwise, the algorithm checks if the formula δ = Fj−1 ∧ ρ ∧ (ϕ)′ is satisfiable
(line 24),5 i.e., whether some state of ϕ has a predecessor in Fj−1. There can be
two cases:

Case I. If δ is unsatisfiable then no state represented by ϕ is j -reachable. Hence,
Fj remains an over-approximation of Rj even if any state of ϕ is excluded. The
exclusion is done by conjoining the j th frame with the universal formula ¬ϕ
(line 28), and results in a strengthening of Fj . In fact, ¬ϕ is conjoined to any
back frame (line 27). We refer to the exclusion of the states of ϕ as the blocking
of (the diagram of) σ from frame Fj .

Example 5. In our running example, in the first iteration block(1, σb) updates
F 0

1 to F 1
1 = true∧¬Diag(σb). This excludes σb , but also all states where i = null ,

C is empty, and j is n-reachable from h in any (nonzero) number of steps. In
later iterations block updates F 2

1 = F 1
1 ∧ ¬Diag(σ′

b), F
3
1 = F 2

1 ∧ ¬Diag(σ′′
b), and

F 4
1 = F 3

1 ∧ ¬Diag(σ′′′
b).

Case II. If δ is satisfiable, then there exists an adverse state σa in frame Fj−1,
a state which is the predecessor of some state of the diagram of σ that we try
to block at frame Fj . Note that σa is not necessarily a predecessor of σ itself.
The adverse state σa is found by taking the reduct of a (finite) model of δ (line
25). If an adverse model σa exists then the algorithm recursively tries to block it
from Fj−1 (line 26). The recursive procedure continues until the adverse state is
either blocked or the algorithm finds an adverse initial state (line 22). Note that
blocking an adverse state during the development of the N th frame leads to a
strengthening of some back frame Fi , and thus tightens its over-approximation
of Ri .

Finding Concrete Counterexamples and Proving the Absence of
Universal Invariants. Procedure analyzeCEX(), shown in Algorithm 3, is
called when an adverse initial state is found. Such a state indicates that an
abstract counterexample exists:

4 If Init is a universal formula, then Lemma 2 holds for j = 1 as well, hence j =
1 ∧ SAT (ϕ ∧ Init) never holds, and its check can be omitted (line 22).

5 As an optimization, one can consider δ′ = Fj−1 ∧ ¬ϕ ∧ ρ ∧ (ϕ)′ instead of δ. The
two formulae are equivalent since Fj−1 ⇒ ¬ϕ (by Lemma 2 for j > 1, and since it
was checked for j = 1), but the strenthening of δ can make the satisfiability check
cheaper.

594 A. Karbyshev et al.

Definition 5 (Abstract and Spurious Counterexamples). A sequence of
formulae 〈φj , φj+1 · · · φN 〉 is an abstract counterexample if the formulae φj ∧
Init, φN ∧Bad, and ϕi ∧ρ∧ (φi+1)′, for every i = j · · ·N −1, are all satisfiable.
The abstract counterexample is spurious if there exists no sequence of states
〈σj , σj+1 · · · σN 〉 such that σj |= Init, σN |= Bad, and for every j ≤ i < N ,
(σi , σi+1) |= ρ.

An abstract counterexample does not necessarily describe a real counterex-
ample. In fact, if j �= 0, the counterexample is necessarily spurious (as, if a real
counterexample shorter than N had existed, the algorithm would have already
terminated during the development of the N −1th frame). However, when j = 0,
the algorithm determines if the abstract counterexample is real or spurious by
checking whether a bad state can be reached by N applications of the transition
relation (line 31). Technically, analyzeCEX() can be implemented using a sym-
bolic bounded model checker [5]. If a real counterexample is found, the algorithm
reports it (line 35). Otherwise, the obtained counterexample is spurious. Tech-
nically, this means that the property is neither verified nor falsified. In our case,
the algorithm can determine that the verification effort is doomed: The spurious
counterexample is in fact a proof for the absence of a universal invariant (see
Proposition 1).

Generalization of Blocked Diagrams. Rather than blocking a diagram φ
from frames 0 · · · j by conjoining them with the clause ¬φ (line 28), our imple-
mentation uses a minimal unsat core of ψ = ((Init)′ ∨ (Fj−1 ∧ρ))∧ (ϕ)′ to define
a clause L which implies ¬φ and is also disjoint from Init and unreachable from
Fj−1. Blocking is done by conjoining L with Fi for every i ≤ j .6

4 Correctness

In this section we formalize the correctness guarantees of PDR∀. We recall that
if PDR∀ terminates it reports that either the program is safe, the program is
not safe, providing a counterexample, or the program cannot be verified using a
universal inductive invariant.

Lemma 3. Let TS = (Init , ρ) be a transition system and let P be a safety
property. If PDR∀ returns valid then TS satisfies P. Further, if PDR∀ returns
a counterexample, then TS does not satisfy P.

Proof. PDR∀ returns valid if there exists i such that Fi+1 ⇒ Fi . Therefore,
Fi ∧ ρ ⇒ (Fi+1)′ ⇒ (Fi)′. Recall that, by the properties of an approximate
reachability sequence, Init ⇒ F0 ⇒ Fi and Fi ⇒ P. Therefore, Fi is an inductive
invariant, which ensures that TS satisfies P. The second part of the claim follows
immediately from the definition of a counterexample. �

6 We can also use inductive generalization, i.e., look for a minimal subclause L of ¬φ
that is still inductive relative to Fj−1, meaning ((Init)′ ∨ (Fj−1 ∧ L ∧ ρ)) ∧ (¬L)′ is
unsatisfiable.

Property-Directed Inference of Universal Invariants 595

Proposition 1. Let TS = (Init , ρ) be a transition system and let P be a safety
property. If PDR∀ obtains a spurious counterexample 〈φj · · · φN 〉 then there exists
no universal safety inductive invariant I for TS and P.

Proof. Assume that there exists a universal safety inductive invariant I over V.
We show by induction on the distance N − i = 0 · · ·N , of Fi from FN that every
state σi generated by PDR∀ at frame Fi is such that σi |= ¬I. This implies,
by Lemma 1, that every diagram φi generated by PDR∀ at frame Fi is such
that φi ⇒ ¬I, and hence φi ⇒ ¬Init . (Recall that by definition Init ⇒ I,
i.e., ¬I ⇒ ¬Init). This contradicts the existence of a spurious counterexample,
where φj ∧ Init is satisfiable.

The base case of the induction pertains to FN . It follows immediately from
the property that a state σN generated at frame FN is a model of the formula
FN ∧ Bad , and in particular is a model of Bad = ¬P, i.e., σN |= ¬P. Since
I ⇒ P, or equivalently ¬P ⇒ ¬I, we conclude that σN |= ¬I.

Consider a state generated at frame Fi . Then σi is the reduct of a model of
the formula Fi ∧ ρ ∧ (Diag(σi+1))′ to V. Moreover, by the induction hypothesis,
σi+1 |= ¬I. Since ¬I is an existential formula, this means by Lemma1 that
Diag(σi+1) ⇒ ¬I. We conclude that Fi ∧ ρ ∧ (Diag(σi+1))′ ⇒ Fi ∧ ρ ∧ (¬I)′.
Therefore, σi is also (a reduct of) a model of the formula Fi ∧ ρ ∧ (¬I)′. If we
assume that σi |= I, we would get that I∧ρ∧(¬I)′ is satisfiable, in contradiction
I being inductive. Hence, σi |= ¬I. �

Example 6. Procedure traverseTwo(), presented in Figure 3 together with its
pre- and post-condition, traverses two lists until it finds their last elements. If
the lists have a shared tail then p and q should point to the same element when
the traversal terminates. The program indeed satisfies this property. However,
this cannot be proven correct using an inductive universal invariant: Take, as
usual, Init to be the procedure’s precondition and P to be the safety property
whose negation is Bad = (i = null ∧ j = null) ∧ ¬post , where post is the
procedure’s postcondition. Consider the state σ0 depicted in Figure 4. Clearly,
this model satisfies Init . Therefore, if I exists, σ0 |= I. σ0 is a predecessor of
σt

1 and hence it should be the case that σt
1 |= I. Now consider σ1, which is a

submodel of σt
1 and interprets all constants as in σ1. If I is universal, then σ1 |= I

as well. However, σ1 �|= P, in contradiction to the property of a safety invariant.
Indeed, when using PDR∀, the spurious counterexample 〈σ0, σ1, σ2〉 presented
in Figure 4 is obtained. This indicates that no universal invariant for P exists.
Note that state σ1 is a predecessor of σ2 and recall that σ0 is a predecessor of
σt

1. The spurious counterexample was obtained because σt
1 satisfies the diagram

of state σ1.

5 Implementation and Empirical Evaluation

PDR∀ is parametric in the vocabulary, and can be implemented on top of any
decision procedure for finite satisfiability of first-order logic formulae. The lan-
guage of these formulae should be expressive enough to capture the assertions,

596 A. Karbyshev et al.

Fig. 3. A procedure that finds the last elements of two non-empty acyclic lists.

Fig. 4. A spurious counterexample found for procedure traverseTwo(), shown in
Fig. 3.

transition system, and space of candidate invariants. Our algorithm is not guar-
anteed to terminate, thus the underlying logic does not have to be decidable.
Our implementation, however, uses EAR which is a decidable logic [31].

EAR allows for relational first-order formulae with a quantifier prefix of the
form ∃∗∀∗ and a deterministic transitive-closure operator ∗, but forbids func-
tional symbols. We use n∗ to construct reachability constraints over the pointer
field n, e.g., in Examples1 and 2, and to define the “next” relation n [31] using
a universal formula. We note that The latter can be done only when the prefix
of the resulting formula is of the form ∃∗∀∗.

EAR satisfiability is reducible to effectively-propositional (EPR) satisfiability,
also known as the Bernays-Schönfinkel-Ramsey class, and hence is decidable
and enjoys the small model property, i.e., every satisfiable formula in EAR is
guaranteed to have a finite model. Technically, the reduction introduces axioms
(EPR formulae) that capture the reflexivity, transitivity, acyclicity and linearity
properties of the ∗ operator [31].

Benchmarks. We implemented PDR∀ and applied it to a collection of proce-
dures that manipulate singly-linked lists, doubly-linked lists, multi-linked lists,
and implementations of an insertion-sort algorithm [16], and a union-find algo-
rithm [16]. Our experiments were conducted using a 3.6GHz Intel Core i7
machine with 32GB of RAM, running Ubuntu 14.04. We used the 64bit version
of Z3 4.4 [19] with the default settings to check satisfiability of EPR formulae.
Table 1 summarizes our experimental results.

(a) Verification. Our analyzer successfully verified memory safety, i.e., the
absence of null-dereferences and of memory leaks, preservation of data-structure
integrity, meaning that the procedure never creates cycles in the list, and
functional correctness of several singly- and doubly-linked list manipulating

Property-Directed Inference of Universal Invariants 597

Table 1. Experimental results. Running time is measured in seconds. N denotes the
highest index for a developed frame Fi . “# Z3” denotes the number of calls to Z3.
AF denotes “Abstraction Failure” of [32]. TO means timeout (> 1 hr). (a) Correct
programs; “# Cl. (∀)” = number of (∀-)clauses in the inferred invariant. (b) Cor-
rect programs for which there is no universal inductive invariant. (c) Incorrect pro-
gram; “C.e. size”is the maximal number of elements in a model that arises in the
counterexample.

Full Memory safety Memory safety [32]
(a) Verification Time N # Z3 # Cl. (∀) Time N # Z3 # Cl. (∀) Time N # Z3 # Cl. (∀)
— Singly-linked lists —
concat 2.1 3 59 7 (4) 1.5 4 59 5 (2) AF
delete 15 5 279 23 (12) 1.5 3 59 7 9.7 4 108 11
delete-all 16 6 300 16 (9) 0.6 3 37 3 (1) 2.7 3 60 6
filter 26 5 336 19 (12) 2.6 4 98 9 (1) 6.6 5 144 9
insert-at 1.9 3 70 9 (2) 1.6 4 60 9 (1) 7.8 5 157 10
insert 3.2 3 71 9 (2) 1.4 3 59 7 (1) 2.1 3 48 7
merge 201 6 1251 34 (22) 12 5 255 13 (3) AF
reverse 13 5 218 12 (7) 6.0 7 183 5 (1) 8.4 6 266 5
split 206 8 1143 36 (19) 9.6 6 216 13 24 6 186 10
uf-find 37 7 531 21 (13) 4.9 9 201 7 (2) 8.3 11 309 10
uf-union 77 6 618 26 (12) 79 8 819 22 (4) TO
— Sorted singly-linked lists —
sorted-insert 6.2 3 95 14 (6) 1.8 3 56 8 (1) 26 3 63 10
sorted-merge 655 8 1822 36 (22) 18 5 263 11 (3) AF
bubble-sort 112 11 931 24 (8) 2.0 5 53 4 (1) 3.5 6 54 2
insertion-sort 1934 14 4783 41 (18) 265 13 1878 37 (6) TO
— Doubly-linked lists —
create 15 6 195 9 (5) 5.5 6 135 7 (2) 47 3 43 6
delete 4.2 3 68 11 (4) 1.5 3 36 5 (2) 403 6 98 8
insert-at 8.0 5 130 15 (6) 2.7 3 60 10 (3) 439 5 208 16
— Composite linked-list structures —
nested-flatten 734 17 3018 34 (20) 262 14 1714 25 (10) AF
nested-split 278 9 930 25 (19) 7.3 4 152 9 (1) AF
overlaid-delete 163 6 918 26 (5) 60 5 518 23 (3) TO
ladder 117 7 723 30 (16) 9.2 6 152 13 (3) 12 4 70 7

(b) Absence of a universal invariant Description Time N Z3
shared-tail See Example6 3.6 2 42
comb See Section5(b) 2 3 52

(c) Bug finding Bug description Time N Z3 C.e. size
insert-at Precondition is too weak (omitted e �= null) 0.4 1 11 4
filter Forgot a corner case where ¬C (h) 3 1 21 4
insertion-sort Typo: typed j instead of i 5 4 68 4
sorted-merge Forgot to link the two segments 7.5 1 49 4

procedures. The precondition says that the expected input is a (possibly empty)
acyclic list, and the post-condition is the one expected from the procedure’s
name. For example, the post-condition of reverse() is that it returns a list com-
prised of the same elements as in its input, but in reversed order. To verify the

598 A. Karbyshev et al.

absence of memory leaks, we used a unary predicate alloc(·) to record whether
a node is allocated. To verify the other properties, we used auxiliary predicates
to mark the elements of the input list and record the reachability order between
them.

We also verified the correctness of several procedures that manipulate
sorted lists: sorted-insert() inserts an element into its appropriate place in
a sorted list, sorted-merge() creates a sorted list by merging two sorted ones,
and bubble-sort() and insertion-sort() sort their input lists. We represented
the order on data elements by a binary predicate together with the appropriate
axioms.

In addition, we verified several procedures that manipulate multi-linked lists:
overlaid-delete() takes an overlaid list and deletes a given element. (Overlaid
lists use multiple pointer fields to index the same set of elements in different
orders.) nested-split() moves all the elements not satisfying C into a sub-
list. flatten() takes a nested list and flattens it by concatenating its sublists.
ladder() creates a copy t of a list h and places a pointer p from every element
in h to its counterpart in list t. We then verify that the p field of every element
in h points to a distinct element in list t. This property indicates, indirectly,
that both lists have the same length. Finally, we verify the union-find algorithm.
E.g., for compressing find() operation, we prove the it maintains the reachability
between every node and its root and preserves the elements.

We compared our results to [32], where EAR was used to verify properties
of list-manipulating programs with PDR, using human-supplied (universally-
quantified) abstraction predicates as templates. We note that [32] can also estab-
lish certain functional correctness properties, but theirs are strictly weaker than
ours. For example, they do not verify that a reversed list does not contain more
elements than in its input list.

(b) Verifying the Absence of Universal Invariants. Our tool was also able
to show that certain properties cannot be verified with a universal invariant. It
proved that procedure shared-tail(), described in Example 6, does not have a
universal invariant. We applied our tool to procedure comb(), which is a simplified
version of ladder() where the newly allocated elements are not linked together,
hence resulting in a heap shaped like a comb. The tool discovered that it is not
possible to use a universal invariant to prove that when comb() terminates there
is no null-valued p-field in the input list.

(c) Bug Finding. We also ran our analysis on programs containing deliberate
bugs. In all of the cases, the method was able to detect the bug and generate a
concrete trace in which the safety or correctness properties are violated.

6 Related Work

Synthesizing quantified invariants has received significant attention. Several
works have considered discovery of quantified predicates, e.g., based on coun-
terexamples [18] or by extension of predicate abstraction to support free vari-
ables [24,33]. Our inferred invariants are comprised of universally quantified

Property-Directed Inference of Universal Invariants 599

predicates, but unlike these approaches, our computation of the predicates is
property directed and does not employ predicate abstraction. Additional works
for generation of quantified invariants include using abstract domains of quan-
tified data automata [25,26] or ones tailored to Presburger arithmetic with
arrays [20], instantiating quantifier templates [8,38], applying symbolic proof
techniques [30], or using abstractions based on separation logic [4,21].

Other works aim to identify loop invariants given a set of predicates as can-
didate ingredients. Houdini [23] is the first such algorithm of which we are aware.
Santini [39,40] is a recent algorithm which is based on full predicate abstraction.
In the context of IC3, predicate abstraction was used in [7,12,32], the last of
which specifically targeting shape analysis. In contrast to previous work, our
algorithm does not require a pre-defined set of predicates, and is therefore more
automatic: The diagrams provide an “on-the-fly” abstraction mechanism.

PDR has been shown to work extremely well in other domains, such as hard-
ware verification [9,22]. Subsequently, it was generalized to software model check-
ing for program models that use linear real arithmetic [29] and linear rational
arithmetic [11]. The latter employs a quantifier-elimination procedure for linear
rational arithmetic to provide an approximate pre-image operation. In contrast,
our use of diagrams allows us to obtain a natural approximation which is precise
for programs that can be verified using universal invariants.

The reduction we use into EPR creates a parametrized array-based system
(where the range of the arrays are Booleans). A number of tools have been
developed for general array-based systems. The SAFARI [3] system is relevant.
It is related to MCMT and Cubicle [14,15,27,28], SAFARI uses symbolic pre-
conditions to propagate symbolic states in the form of cubes that are conjunc-
tions of literals over array constraints, and uses interpolants to synthesize universal
invariants. Our method for propagating and inductively generalizing diagrams dif-
fers by being based on PDR.

The logic used by our implementation has limited capabilities to express
properties of list segments that that are not pointed to by variables [32]. This
is similar to the self-imposed limitations on expressibility used in a number of
shape analysis algorithms [4,21,34–37,41]. Past experience, as well as our own,
has shown that despite these limitations it is still possible to successfully analyze
a rich set of programs and properties.

7 Conclusions

PDR∀ is a combination of PDR/IC3 [9] with the model-theoretic notion of dia-
grams [10]. The latter provide PDR an aggressive strengthening scheme in which
the structural properties of a bad state are abstracted “on-the-fly” by a formula
describing all of its possible extensions, which are then blocked together within
the same iteration of PDR’s main refinement loop. This obviates the need for
user-supplied abstraction predicates. This form of automation is particularly
important when one tries to verify tricky programs, e.g., programs that manipu-
late unbounded data structures, against a variety (of possibly changing) specifi-
cations. Indeed, our implementation successfully analyzed multiple specifications

600 A. Karbyshev et al.

of tricky list-manipulating programs, discovered counterexamples, and, uniquely
to our approach, showed that certain programs cannot be proven correct using a
universal invariant. Interestingly, we noticed that sometimes the tool had to work
harder to verify simple properties than when it was asked to verify complicated
ones. In particular, verifying partial correctness properties was done faster when
verified together with memory safety than without. In hindsight, this might not
be surprising due to the property guided nature of the analysis.

We are very pleased with the simplicity of our approach and believe that the
notion of diagram-based abstractions is particularly useful for the verification of
programs that manipulate unbounded state. In the future, we plan to apply it
in other contexts too, e.g., for the verification of network programs [1].

Acknowledgments. We thank Mooly Sagiv and the reviewers for helpful comments.
This work was supported by EU FP7 project ADVENT (308830), ERC grant agreement
no. [321174-VSSC], by Broadcom Foundation and Tel Aviv University Authentication
Initiative, and by BSF grant no. 2012259.

References

1. The Open Networking Foundation. http://opennetworking.org
2. Albarghouthi, A., Berdine, J., Cook, B., Kincaid, Z.: Spatial interpolants. CoRR,

abs/1501.04100 (2015)
3. Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S., Sharygina, N.: SAFARI:

SMT-based abstraction for arrays with interpolants. In: Madhusudan, P., Seshia,
S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 679–685. Springer, Heidelberg (2012)

4. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W., Wies, T., Yang,
H.: Shape analysis for composite data structures. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 178–192. Springer, Heidelberg (2007)

5. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. Adv. Comput. 58, 118–149 (2003)

6. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

7. Birgmeier, J., Bradley, A.R., Weissenbacher, G.: Counterexample to induction-
guided abstraction-refinement (CTIGAR). In: Biere, A., Bloem, R. (eds.) CAV
2014. LNCS, vol. 8559, pp. 831–848. Springer, Heidelberg (2014)

8. Bjørner, N., McMillan, K., Rybalchenko, A.: On solving universally quantified horn
clauses. In: Logozzo, F., Fähndrich, M. (eds.) Static Analysis. LNCS, vol. 7935,
pp. 105–125. Springer, Heidelberg (2013)

9. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidel-
berg (2011)

10. Chang, C., Keisler, H.: Model Theory. Studies in Logic and the Foundations of
Mathematics. Elsevier Science, New York (1990)

11. Cimatti, A., Griggio, A.: Software model checking via IC3. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 277–293. Springer, Heidelberg
(2012)

http://opennetworking.org

Property-Directed Inference of Universal Invariants 601

12. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: IC3 modulo theories via
implicit predicate abstraction. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014
(ETAPS). LNCS, vol. 8413, pp. 46–61. Springer, Heidelberg (2014)

13. Clarke, E., Kroening, D., Yorav, K.: Behavioral consistency of C and Verilog pro-
grams using bounded model checking. In: Proceedings of the 40th Annual Design
Automation Conference, DAC 2003, pp. 368–371. ACM, New York, NY, USA
(2003)

14. Conchon, S., Goel, A., Krstić, S., Mebsout, A., Zäıdi, F.: Cubicle: a parallel SMT-
based model checker for parameterized systems. In: Madhusudan, P., Seshia, S.A.
(eds.) CAV 2012. LNCS, vol. 7358, pp. 718–724. Springer, Heidelberg (2012)

15. Conchon, S., Goel, A., Krstic, S., Mebsout, A., Zäıdi, F.: Invariants for finite
instances and beyond. In: Formal Methods in Computer-Aided Design, FMCAD
2013, Portland, OR, USA, 20–23 October 2013, pp. 61–68. IEEE (2013)

16. Cormen, T., Leiserson, C., Rivest, R.: Introduction To Algorithms. MIT Press,
Cambridge (1990)

17. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252 (1977)

18. Das, S., Dill, D.L.: Counter-example based predicate discovery in predicate abstrac-
tion. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517, pp.
19–32. Springer, Heidelberg (2002)

19. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

20. Dillig, I., Dillig, T., Aiken, A.: Symbolic heap abstraction with demand-driven
axiomatization of memory invariants. In: Cook, W.R., Clarke, S.. Rinard, M.C.
(eds.) ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pp. 397–410. ACM (2010)

21. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separation
logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp.
287–302. Springer, Heidelberg (2006)

22. Eén, N., Mishchenko, A., Brayton, R.: Efficient implementation of property
directed reachability. In: FMCAD (2011)

23. Flanagan, C., M. Leino, K.R.: Houdini, an annotation assistant for ESC/Java. In:
Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 500–517. Springer,
Heidelberg (2001)

24. Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. SIGPLAN
Not. 37(1), 191–202 (2002)

25. Garg, P., Löding, C., Madhusudan, P., Neider, D.: Learning universally quanti-
fied invariants of linear data structures. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 813–829. Springer, Heidelberg (2013)

26. Garg, P., Madhusudan, P., Parlato, G.: Quantified data automata on skinny trees:
an abstract domain for lists. In: Logozzo, F., Fähndrich, M. (eds.) Static Analysis.
LNCS, vol. 7935, pp. 172–193. Springer, Heidelberg (2013)

27. Ghilardi, S., Ranise, S.: Backward reachability of array-based systems by SMT
solving: termination and invariant synthesis. Log. Methods Comput. Sci. 6(4), 1–
48 (2010)

28. Ghilardi, S., Ranise, S.: MCMT: a model checker modulo theories. In: Giesl, J.,
Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 22–29. Springer, Heidelberg
(2010)

602 A. Karbyshev et al.

29. Hoder, K., Bjørner, N.: Generalized property directed reachability. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 157–171. Springer, Heidelberg
(2012)

30. Hoder, K., Kovács, L., Voronkov, A.: Invariant generation in vampire. In: Abdulla,
P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 60–64. Springer,
Heidelberg (2011)

31. Itzhaky, S., Banerjee, A., Immerman, N., Nanevski, A., Sagiv, M.: Effectively-
propositional reasoning about reachability in linked data structures. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 756–772. Springer, Heidelberg
(2013)

32. Itzhaky, S., Bjørner, N., Reps, T., Sagiv, M., Thakur, A.: Property-directed shape
analysis. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 35–51.
Springer, Heidelberg (2014)

33. Lahiri, S.K., Bryant, R.E.: Predicate abstraction with indexed predicates. ACM
Trans. Comput. Logic 9(1), 4 (2007). doi:10.1145/1297658.1297662

34. Lev-Ami, T., Immerman, N., Sagiv, M.: Abstraction for shape analysis with fast
and precise transformers. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol.
4144, pp. 547–561. Springer, Heidelberg (2006)

35. Manevich, R., Yahav, E., Ramalingam, G., Sagiv, M.: Predicate abstraction and
canonical abstraction for singly-linked lists. In: Cousot, R. (ed.) VMCAI 2005.
LNCS, vol. 3385, pp. 181–198. Springer, Heidelberg (2005)

36. Podelski, A., Wies, T.: Counterexample-guided focus. In: POPL (2010)
37. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic.

TOPLAS 24(3), 217–298 (2002)
38. Srivastava, S., Gulwani, S.: Program verification using templates over predicate

abstraction. In: PLDI, pp. 223–234 (2009)
39. Thakur, A., Lal, A., Lim, J., Reps, T.: PostHat and all that: attaining most-

precise inductive invariants. TR-1790, Computer Science Department, University
of Wisconsin, Madison, WI, April 2013

40. Thakur, A., Lal, A., Lim, J., Reps, T.: PostHat and all that: automating abstract
interpretation. Electronic Notes in Theoretical Computer Science (2013)

41. Yorsh, G., Reps, T., Sagiv, M.: Symbolically computing most-precise abstract oper-
ations for shape analysis. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS,
vol. 2988, pp. 530–545. Springer, Heidelberg (2004)

http://dx.doi.org/10.1145/1297658.1297662

Efficient Anytime Techniques
for Model-Based Safety Analysis

Marco Bozzano, Alessandro Cimatti, Alberto Griggio,
and Cristian Mattarei(B)

Fondazione Bruno Kessler, Trento, Italy
mattarei@fbk.eu

Abstract. Safety analysis investigates system behavior under faulty
conditions. It is a fundamental step in the design of complex systems, that
is often mandated by certification procedures. Safety analysis includes
two key steps: the construction of all minimal cut sets (MCSs) for a
given property (i.e. the sets of basic faults that may cause a failure), and
the computation of the corresponding probability (given probabilities for
the basic faults).

Model-based Safety Analysis relies on formal verification to carry out
these tasks. However, the available techniques suffer from scalability
problems, and are unable to provide useful results if the computation
does not complete.

In this paper, we investigate and evaluate a family of IC3-based
algorithms for MCSs computation. We work under the monotonicity
assumption of safety analysis (i.e. an additional fault can not prevent the
violation of the property). We specialize IC3-based routines for parame-
ter synthesis by optimizing the counterexample generalization, by order-
ing the exploration of MCSs based on increasing cardinality, and by
exploiting the inductive invariants built by IC3 to accelerate convergence.

Other enhancements yield an “anytime” algorithm, able to produce
an increasingly precise probability estimate as the discovery of MCSs
proceeds, even when the computation does not terminate.

A thorough experimental evaluation clearly demonstrates the substan-
tial advances resulting from the proposed methods.

Keywords: Formal methods · Safety analysis · Fault tree · IC3 · Para-
meter synthesis

1 Introduction

Safety analysis [1–3] is an essential step for the design of critical systems. Safety
analysis activities aim at demonstrating that a given system meets the condi-
tions that are required for its deployment and use in the presence of faults.
In many application domains, such activities are mandatory to obtain system
certification. Safety analysis includes two key steps: (i) the construction of all
minimal cut sets (MCSs), i.e. (minimal) sets of faults that lead to a top level
c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 603–621, 2015.
DOI: 10.1007/978-3-319-21690-4 41

604 M. Bozzano et al.

event (TLE), such as the loss of a desirable functionality; and (ii)the computa-
tion of the corresponding fault probability (i.e. the probability of reaching the
TLE), given probabilities for the basic faults.

In recent years, there has been a growing interest in model-based safety
analysis (MBSA) [3–9]. Its purpose is to automate the most tedious and error-
prone activities that today are carried out manually. This is done by analyzing
models where selected variables represent the occurrence of faults. Cut sets are
assignments to such variables that lead to the violation of the property. For-
mal verification tools, notably those based on model checking [8,10] have been
extended to automate traditional safety analysis activities, such as the genera-
tion of minimal cut sets, and to perform probabilistic evaluation.

The practical application of MBSA in an industrial setting poses two key
problems. The first one is scalability. In addition to the sheer size of the models,
a specific factor is the possibly huge number of relevant MCSs, corresponding to
different fault combinations. The second problem is to support the state of the
practice. In manual safety analysis, the exploration often proceeds according to
the importance and likelihood of fault configurations: MCSs of lower cardinality,
that are typically associated with higher probability, are explored before the
ones with higher cardinality. When the analysis is considered to be sufficiently
thorough, over-approximation techniques are used to assess the weight of the
unexplored MCSs.

In this paper, we investigate and evaluate a family of efficient algorithms for
safety analysis. We work under the monotonicity assumption, commonly adopted
in safety analysis, that an additional fault can not prevent the violation of the
property. We specialize IC3-based routines for parameter synthesis by optimizing
the generalization of counterexamples, and by ordering the exploration of MCSs
based on increasing cardinality. We also propose a way to accelerate convergence
by exploiting the inductive invariants built by IC3.

The practical applicability of our approach is enhanced by proposing a method
to precisely compute the under- and over-approximated probability of failure.
This technique produces an increasingly precise estimation as the discovery of
MCSs proceeds, with the advantage of providing an “anytime” algorithm.

The described approach was implemented within the xSAP platform for
safety analysis [11,12], extending and integrating the model checking routines of
the underlying nuXmv model checker [13]. We carried out a thorough experi-
mental evaluation on a number of benchmarks from various sources. The results
clearly demonstrate the substantial advances resulting from the proposed meth-
ods. First, we can complete the computation of all MCSs more efficiently, and
for much larger problems than previously possible. Second, even when the com-
putation fails to terminate due to the number of MCSs, the algorithms pro-
duce intermediate approximations of increasing precision at the growth of the
available computation resources. Furthermore, although here we concentrate on
invariant properties of finite-state systems, our techniques can be easily extended
to consider also arbitrary LTL properties and infinite-state models (where faults
are still expressed with propositional variables).

Efficient Anytime Techniques for Model-Based Safety Analysis 605

Related Work. The field of MBSA is receiving increasing attention [14]. Many
works cover aspects of modeling (see for example [10,11,15,16]), and propose
dedicated mechanisms for the description of faults, also in probabilistic settings.
Here, we work within assumptions derived from practical industrial experience.
In particular, we assume that the faults are specified as discrete variables in a
qualitative transition system, and that probabilities are attached to the basic
faults after MCSs have been computed.

The ESACS project [16] pioneered the idea of model-based safety assessment
by means of model checking techniques. The work in [17] proposes an algorithmic
approach to the automatic construction of fault trees. The approach relies on
the structure of the system, and does not apply model checking techniques.

In this paper, we focus on the fully automated construction of MCSs for a
given transition system. There are relatively few works addressing the problem
[8,18,19]. They share two key differences with respect to the work presented
here. First, they do not rely on recent IC3 [20] techniques; second, none of them
tackles the problem of anytime techniques. Specifically, the approach in [18]
proposes the idea of layering of the exploration in terms of cardinality of MCSs.
The approach is SAT-based, using bounded model checking; it does not directly
discuss the problem of reaching convergence, likely adopting an induction-based
approach. [16] investigates the generation of orders between faulty events, using
a BDD-based approach. Automated fault tree analysis in probabilistic settings
is covered in [21]. In [8], an approach based on BDDs and dynamic cone of
influence is proposed. The approach does not scale well for models containing
many variables. In [19], techniques based on SAT-based bounded model checking
are combined with BDD-based techniques in order to achieve completeness. The
approach is shown to substantially outperform the engines used in a proprietary
industrial tool.

The work on IC3-based parameter synthesis [22] can in principle address the
problem tackled in this paper. Here we propose several enhancements based on
the specific features of the problem, with dramatic improvements in terms of
scalability.

Structure of the Paper. The rest of this paper is structured as follows. In Sect. 2
we overview SA, and in Sect. 3 we formally characterize the problem of MBSA.
In Sect. 4 we discuss the available baseline, and in Sect. 5 we present our new
algorithms for MCS computation. In Sect. 6 we discuss the anytime approxima-
tion. In Sect. 7 we experimentally evaluate the approach, and in Sect. 8 we draw
some conclusions and present directions for future work.

2 Safety Analysis

Traditional techniques for safety analysis include Fault Tree Analysis (FTA)
and Failure Mode and Effects Analysis (FMEA) [23,24]. FTA is a deductive
technique, whereby an undesired state (the so called top level event – TLE)
is specified, and the system is analyzed for the possible fault configurations

606 M. Bozzano et al.

(sets of faults, a.k.a. basic events) that may cause the top event to occur. Fault
configurations are arranged in a tree, which makes use of logical gates to depict
the logical interrelationships linking such events with the TLE, and which can be
evaluated quantitatively, to determine the probability of the TLE. Of particular
importance in safety analysis is the list of minimal fault configurations, i.e. the
Minimal Cut Sets (MCSs).

FMEA works in a bottom-up fashion, and aims at producing a tabular
representation (called FMEA table) that represents the causality relationships
between (sets of) faults and a list of properties (representing undesired states, as
in the case of FTs). Although FMEA is different in spirit from FTA, generation
of MCSs can also be used as a building block for computing FMEA tables, in
particular under the assumption of monotonicity (i.e., any super-set of a MCS
will still cause the TLE) [3,25].

More specifically, a cut set is a set of faults that represents a necessary, but
not sufficient, condition that may cause a system to reach an unwanted state/be-
haviour. For instance, the cut set {battery1 failure, battery2 failure} may cause
the safety hazard “fuel pump malfunctioning” in a 2-redundant electrical system.
Moreover, minimality implies that every proper super-set of it cannot prevent
the possibility to have the malfunction. When the safety hazard is reachable
without triggering of any fault, the FT collapses to true, representing the empty
cut set (which is evidently minimal).

An important aspect of safety assessment is the quantitative evaluation of
FTs, i.e. the association of FT nodes with probabilities. In particular, the deter-
mination of the probability of the TLE is used to estimate the likelihood of the
safety hazard it represents. Such computation can be carried out by evaluating
the probability of the logical formula given by the disjunction of the MCSs (each
MCS, in turn, being the conjunction of its constituent faults). It is standard
practice, in particular for complex systems, to consider only cut sets up to a
maximum cardinality – in order to simplify the computation. This approach
is justified by the fact that, in practical cases, cut sets with high cardinality
have low probabilities, and may be “safely” ignored. However, it is essential to
have criteria to estimate the error which is inherent in such approximation, since
under-approximating the probability of a hazard would not be acceptable.

3 Model-Based Safety Analysis

3.1 Minimal Cut Set Computation

We represent a plant using a transition system, as follows. A transition system
is a tuple S = 〈V, F, I, T 〉, where V is the set of state variables, F ⊆ V is a
set of parameters, the failure mode variables; I is the initial formula over V ;
T is the transition formula over V and V ′ (V ′ being the next version of the state
variables). A state s (resp. s′) is an assignment to the state variables V (V ′).
A trace of S is a sequence π = s0, s1, . . . , sn of states such that s0 satisfies I and
for each k, 1 ≤ k ≤ n, 〈sk−1, sk〉 satisfies T .

A cut set is formally defined as follows [8].

Efficient Anytime Techniques for Model-Based Safety Analysis 607

Definition 1 (Cut set). Let S = 〈V, F, I, T 〉 be a transition system, FC ⊆ F a
fault configuration, and TLE a formula over V (the top level event). We say that
FC is a cut set of TLE, written cs(FC,TLE) if there exists a trace s0, s1, . . . , sk

for S such that: i) sk |= TLE; ii) ∀f ∈ F f ∈ FC ⇐⇒ ∃i ∈ {0, . . . , k} (si |= f).

Intuitively, a cut set is a fault configuration whose faults are active at some point
along a trace witnessing the occurrence of the top level event. In safety analysis,
it is important to identify the fault configurations that are minimal in terms of
failure mode variables – as they represent simpler explanations for the top level
event, and they have higher probability, under the assumption of independent
faults. Minimal configurations, called minimal cut sets, are defined as follows.

Definition 2 (Minimal Cut Sets). Let S = 〈V, F, I, T 〉 be a transition system
and FConf = 2F be the set of all fault configurations, and TLE a top level event.
We define the set of cut sets and minimal cut sets of TLE as follows:

CS(TLE) = {FC ∈ FConf | cs(FC,TLE)}
MCS(TLE) = {cs ∈ CS(TLE) | ∀cs′ ∈ CS(TLE) (cs′ ⊆ cs ⇒ cs′ = cs)}
The previous definition of MCS is based on the assumption that fault configu-

rations are monotonic, i.e. activating additional faults cannot prevent triggering
the top level event. This is an assumption that is commonly applied in practice,
considering that it leads to a conservative over-approximation of the unreliabil-
ity (probability of TLE). In cases where this is not desirable, the notion of MCS
can be generalized to the more general one of prime implicant [26] i.e., with no
monotonicity assumption. However, this is not considered here.

Algorithm 1. Probability computation.
Input: BDD (n), Probability map (P), Hashtable (cache)
Result: Probability

1 if n in cache then
2 return cache[n];

3 if n = � then
4 return 1.0 ;

5 if n = ⊥ then
6 return 0.0 ;

7 pthen = Probability computation(get then node(n), P, cache);
8 pelse = Probability computation(get else node(n), P, cache);
9 pcur = P(get var(n));

10 cache[n] = pcur · pthen + (1.0 − pcur) · pelse;
11 return cache[n];

608 M. Bozzano et al.

3.2 Computing Faults Probability

Given a set of MCSs and a mapping P giving the probability for the basic faults,
it is possible to compute the probability of the occurrence of the top-level event.
Under the assumption that basic faults are independent1, the probability of a
single MCS σ is given by the product of the probabilities of its basic faults:

P(σ) =
∏

fi∈σ

P(fi).

For a set of MCSs S, the probability can be computed using the above and the
following recursive formula:

P(S1 ∪ S2) = P(S1) + P(S2) − P(S1 ∩ S2).

Interpreting the set of MCSs as a disjuction of partial assignments to the
fault variables, then it is possible to represented such formula using a Binary
Decision Diagram, a simple and efficient way of computing its probability is
shown in Algorithm 1. The algorithm exploits the following facts:

(i) the probability of two disjoint sets is simply the sum of the two probabilities;
and

(ii) the two children t and e of a BDD node with variable v correspond to the
two disjoint sets of assignments for the formulae v∧t and ¬v∧e respectively;

(iii) if the variable v does not occur in the formula f , then f is independent
from v, and so P(v ∧ f) = P(v) · P(f);

(iv) P(¬v) = 1 − P(v) by definition.

4 Basic Algorithms for MCS Computation

BDD-Based Algorithms. The work in [8] presents a series of symbolic algorithms
for the computation of MCSs using BDDs. The algorithms are based on a reacha-
bility analysis on the symbolic transition system extended with history variables
for fault events. Intuitively, each state is decorated with the faults that have
occurred in its history; at the end of the reachability, each state is thus associ-
ated with the set of cut sets that are required to reach it. MCSs are extracted by
projecting the reachable states over the history variables and then minimizing
the result, using standard routines provided by BDD packages.

Exploiting BMC. An improved version of the BDD-based routines is presented
in [19], by exploiting Bounded Model Checking (BMC) as a preprocessing step.
Essentially, the idea is to run BMC up to a maximum (user-defined) depth k to
check the invariant property stating that the top level event can never be reached.
Whenever a counterexample trace is found, a cut set cs (not necessarily minimal)

1 Specific techniques for the case of common cause analysis are out of the scope of this
paper.

Efficient Anytime Techniques for Model-Based Safety Analysis 609

is extracted from it, and the model is strengthened with constraints excluding
all the supersets of cs. When no more counterexamples of length at most k are
found, a BDD-based algorithm is invoked on the strengthened model, in order
to discover the remaining cut sets not yet covered.

The approach can be generalized to completely avoid the use of BDDs. The
idea is to use the BMC engine incrementally to enumerate cut sets, and combine
it with a generic “black box” procedure for checking invariant properties, invoked
periodically (e.g. before increasing the BMC bound k) to check whether all the
MCSs have been enumerated.

MCS via Parameter Synthesis. The work in [22] presents an efficient exten-
sion of the IC3 algorithm (called ParamIC3) that allows to compute, given a
model M depending on some parameters P , the set of all values of P such that
the model satisfies a given invariant property. The algorithm works by com-
plement, constructing the set of “good” parameters by incrementally blocking
“bad” assignments extracted from counterexample traces generated by IC3.

The technique can be immediately exploited also for MCS computation as fol-
lows. First, the model is extended with history variables for fault events, as in [8].
The parameter synthesis algorithm is then invoked on the extended model, con-
sidering the history variables as parameters, and checking the property that the
top level event is never triggered. Each “bad” assignment blocked by ParamIC3
(see [22]) corresponds to a fault configuration reaching the top level event. When
the algorithm terminates, the MCS set can be extracted by simply dropping the
subsumed bad assignments.

5 Efficient Algorithms for MCS Computation

In practice, the BDD-based routines of [8] show rather poor scalability, and are
typically not applicable to problems of realistic size. Using BMC as a preprocess-
ing step helps significantly [19], but ultimately also this technique is limited by
the scalability problems of BDD-based approaches. The technique of [22], being
based on the very-efficient IC3 algorithm, is much more promising. However, in
the basic formulation given in the previous section, its performance is extremely
poor when the number of possible fault configurations leading to the top level
event is large. In this Section, we show how the situation can be dramatically
improved by exploiting the monotonicity assumption on faults under which we
are operating.

5.1 Monotonic Parameter Synthesis

The first (trivial) improvement exploits the definition of monotonicity to gen-
eralize the set of “bad” parameters to be blocked whenever IC3 generates a
counterexample trace. This idea is similar to the dynamic pruning optimization
of [8] for BDD-based computation. The monotonicity assumption ensures that
if a set of faults F is sufficient to generate the top level event, so does any set

610 M. Bozzano et al.

S ⊇ F . Therefore, any assignment to the (parameters corresponding to the) fault
variables γ = {fj , . . . , fk} ∪ {¬fi, . . . ,¬fh} extracted from an IC3 counterexam-
ple trace can be immediately generalized to γ′ = {fj , . . . , fk}, by dropping all
the variables assigned to false.

The above optimization prevents the algorithm from explicitly considering
all cut sets that are subsumed by the one just found, i.e. F = {fj , . . . , fk}.
However, F itself might not be minimal. In this case, IC3 would later have to
find another configuration G ⊂ F , and the effort spent in blocking F would have
been wasted.

We address this by modifying the branching heuristic of the SAT solver used
by IC3. In the modified heuristic, (SAT variables corresponding to) faults are
initially assigned to false, and they have higher priority than the other variables,
so that no other variable is assigned by a SAT decision before all the fault
variables are assigned. This ensures that fault variables are assigned to true only
when necessary to satisfy the constraints.

The above idea is very simple to implement and integrate in the IC3-based
algorithm (in total, it requires about 20 lines of code), and it provides a sig-
nificant performance boost (as we will show in Sect. 7). However, it is still not
sufficient to ensure that no redundant cut sets are generated. The reason is
that, by the nature of IC3, ParamIC3 enumerates counterexample traces in an
increasing order of length k, so that it only considers traces of length k+1 when
all the traces of length ≤ k have already been excluded.2 This means that, if
the shortest trace that leads to the top level event from a set F of faults is k,
but there exists another set of faults S ⊃ F that leads to the top level event in
h < k steps, then S will necessarily be blocked by ParamIC3 before F . In some
extreme cases, this might make the heuristic completely ineffective.

5.2 Enumerating only MCS

We address the problem by incorporating in our algorithm a solution originally
proposed in [18]. The idea is to force the algorithm to proceed by layering, by
forcing the search to compute the cuts sets of increasing cardinality, instead
of analyzing traces of increasing length. The pseudo-code for the basic version
is shown in Algorithm 2. At each iteration of the main loop, the algorithm
uses an “atmost” constraint c to limit the cardinality of the cut sets generated,
by relaxing the invariant property to check from ¬TLE to (¬TLE ∨ ¬c). The
termination check is performed by invoking the “regular” version of IC3 on the
model strengthened to exclude the already-computed cut sets, to check whether

2 For readers familiar with IC3, strictly speaking this is not fully accurate: if the IC3
implementation uses a priority queue for managing counterexamples to induction
[20], some counterexamples of length h > k may be generated before all those of
length ≤ k are blocked. However, the argument still holds in this case, so the issue
can be ignored for simplicity.

Efficient Anytime Techniques for Model-Based Safety Analysis 611

Algorithm 2. Basic MCS enumeration with ParamIC3
Input: Model (M = 〈I, T 〉), Top level event (TLE), Faults (F)
Result: MCS

1 bound = 1;
2 MCS = ⊥;
3 while True do
4 c = make atmost(F , bound);
5 region = ParamIC3(I ∧ ¬ MCS, T ∧ ¬ MCS, (¬TLE ∨ ¬c), F);
6 MCS = MCS ∨ ¬ region;
7 done = IC3(I ∧ ¬ MCS, T ∧ ¬ MCS, ¬TLE);
8 if done then
9 return MCS

10 else
11 bound = bound + 1;

there are other fault configurations that can reach the top level event. It is
easy to see that Algorithm 2 enumerates only the MCSs, and thus it avoids
the exponential blow-up suffered from ParamIC3 on the model of Example 1.
However, it does so at a significant price, since it needs two IC3 calls per iteration.
On less pathological examples, the overhead introduced might largely outweigh
the potential benefits.

Algorithm 2 can be improved by exploiting the capability of IC3 (and so
also of ParamIC3) of generating a proof for verified properties in the form of an
inductive invariant entailing the property P . In our specific case, the inductive
invariant ψ produced by ParamIC3 on line 5 of Algorithm 2 would satisfy the
following: (i)I ∧ ¬MCS ∧ region |= ψ; (ii)ψ ∧ T ∧ ¬MCS ∧ region |= ψ′; and
(iii)ψ ∧ ¬MCS ∧ region |= (¬TLE ∨ ¬c). The first improvement is based on
the observation that the inductive invariant can be fed back to ParamIC3 at
the next iteration of the main loop, thus avoiding the need of restarting the
search from scratch. The second improvement, instead, exploits the computed
invariant to check whether all the MCSs have been enumerated, thus avoiding
the second invocation of IC3 of line 7. This is done by checking with a SAT
solver whether the current invariant ψ is strong enough to prove that the top
level event cannot be reached by any fault configuration not covered by the
already-computed cut sets. Note that this does not affect completeness, since in
the worst case the atmost constraints simplifies to true after |F | iterations of
the loop. However, the hope is that in practice the inductive invariant will allow
to exit the loop much earlier. The enhanced algorithm is shown in Algorithm 3,
where the improvements are displayed in red.

612 M. Bozzano et al.

Algorithm 3. Enhanced MCS enumeration with ParamIC3
Input: Model (M = 〈I, T 〉), Top level event (TLE), Faults (F)
Result: MCS

1 bound = 1;
2 MCS = ⊥;
3 invar = �;
4 while True do
5 c = make atmost(F , bound);
6 region, invar = ParamIC3(I ∧ ¬ MCS ∧ invar, T ∧ ¬ MCS ∧ invar,

(¬TLE ∨ ¬c), F);
7 MCS = MCS ∨ ¬ region;
8 done = check unsat(¬ MCS ∧ invar ∧ TLE);
9 if done then

10 return MCS
11 else
12 bound = bound + 1;

Example 1. Consider the following example, using the syntax of nuXmv [13].
There are N fault variables, and suppose the top level event occurs when the
status variable becomes false, i.e., whenever at least one fault occurs. Therefore,
the MCSs for this model are the N singleton sets containing one fault variable
each. However, the TRANS constraint forces an inverse dependency between the
number of steps to reach the top level event and the cardinality of the smallest
cut sets needed: for k steps, the smallest cut sets have cardinality N − k, and
there are

(
N
k

)
of them. Therefore, even with the branching heuristic described

above, ParamIC3 will generate an exponential number of counterexamples (since∑N
k=1

(
N
k

)
= 2N − 1) before finding the MCSs. �

1 MODULE main
2 IVAR
3 fault_1 : boo lean ;
4 ...
5 fault_N : boo lean ;
6
7 DEFINE fault_count := fault_1 + ... + fault_N ;
8
9 VAR counter : 1 .. N ;

10 status : boo lean ;
11
12 ASSIGN
13 i n i t (counter) := 1 ;
14 next (counter) := counter = 10 ? 1 : counter + 1 ;
15
16 TRANS (fault_count = 0) | (fault_count > (N − counter)) ;
17
18 ASSIGN
19 i n i t (status) := TRUE;
20 next (status) := (fault_count = 0) ;

Efficient Anytime Techniques for Model-Based Safety Analysis 613

6 Anytime Approximation

An additional benefit of Algorithm 3 compared to the other algorithms of Sects. 4
and 5 is that it provides an “anytime” approximation behaviour on the set
of MCSs, in the sense that at any point during its execution, the candidate
solution is a subset of all the MCSs. As pointed out in Sect. 2, however, such
underapproximation is useful only if it is possible to estimate its error in terms of
failure probability. Here, we show a simple but effective procedure for estimating
the approximation error on the fly, during the execution of Algorithm 3. This
allows to consider a bound on the error as an alternative stopping criterion for
the algorithm, which might be useful in cases when the full computation of all
the MCSs would be too expensive.

The idea is to keep two running bounds for the probability x of reaching
the top-level event, such that at any point in the execution of the algorithm
PL(TLE) ≤ x ≤ PU (TLE). Initially, we set PL(TLE) = 0 and PU (TLE) = 1.
When a minimal cut set m1 is found, PL(TLE) is incremented by computing the
probability of the fault configurations represented by m1 that are not covered
by the already-computed MCSs. This can be done by constructing the BDD for
the formula m1 ∧¬MCS, and then computing its probability with Algorithm 1.3

For updating the upper bound PU (TLE), instead, we exploit fact that
Algorithm 3 proceeds by layers of increasing cardinality. More precisely, when
ParamIC3 returns at line 7, we know that all the fault configurations of car-
dinality smaller or equal to the current bound that are not included in MCS
will definitely not cause the top-level event. The probability Pexcluded of these
configurations can be computed with Algorithm 1 by constructing the BDD
for the formula ¬make atmost(F ,bound) ∧ ¬MCS. With this, the new value of
PU (TLE) is given by 1−Pexcluded. An illustration of this idea is shown in Fig. 1.
The red area represents the minimal cut sets found within a specific cardinal-
ity, and the blue one shows all the supersets of those cut sets. The white area
denotes the configurations that cannot cause the TLE, whereas the gray one
represents the unknown part. Figure 2 shows instead an example of the evolu-
tion of the error bounds during the execution of Algorithm 3 for one instance of
our benchmark set: PL(TLE) becomes non-zero after the first cut set found, and
then grows continuously at every cut set, whereas PU (TLE) decreases in steps,
whenever an individual cardinality has been fully explored.

7 Experimental Evaluation

We have implemented the algorithms described in the previous sections in the
xSAP [11,12] platform for model-based safety analysis. In this Section, we exper-
imentally evaluate their performance and effectiveness. The benchmarks and
executables for reproducing the results are available at https://es-static.fbk.eu/

people/mattarei/dist/FTA2015/.
3 For performance reasons, it might make sense to perform this computation for clus-

ters of cut sets rather than for individual ones, trading granularity for efficiency.

https://es-static.fbk.eu/people/mattarei/dist/FTA2015/
https://es-static.fbk.eu/people/mattarei/dist/FTA2015/

614 M. Bozzano et al.

Fig. 1. Illustration of the probability
error estimation in Algorithm 3.

Fig. 2. Example of evolution of probability
error bounds.

7.1 Benchmarks

The benchmarks used for the evaluation come from a set of real-world test cases
from the avionics domain, where safety assessment and Fault Tree Analysis are
parts of the formal analysis of the models.

Aircraft Electrical System. The first set of benchmarks describes the archi-
tecture of an aircraft-oriented electrical system. These problems were developed
as part of the MISSA project [27], and previously analyzed using OCAS, a propri-
etary model-based safety assessment platform, as well as the FSAP [28] toolset.
This comparison is described in [19]. This family of benchmarks is composed of
four different models, where each of them is a refinement of the previous one. The
properties that are taken into account describe the situation when the system
that manages the alternate/continuous current is malfunctioning. Each model
has two properties, for a total of 8 benchmark instances. The size of the models
varies from 35 to 297 state variables and from 437 to 14030 AND gates (in an
And-Inverter-Graph representation [29] of the transition relation), whereas the
number of faults is between 9 and 105.

Next-Gen Collision Avoidance. The second set of instances comes from the
analysis of a novel, “next generation” air traffic control system that is being
studied at NASA. Part of the activities involves the evaluation of different tech-
nological approaches in order to discover the safer and most efficient one. This
process is supported by different analysis techniques, and one of those is based
on formal model-based safety assessment. The formal model is composed of
an on-ground Air Traffic Control System (ATC), a set of aircraft that rely on
ground-based separation systems like the ATC (GSEP), and a set of aircraft that
have self-separating capabilities (SSEP) as support of the standard ground-based
approach.

Efficient Anytime Techniques for Model-Based Safety Analysis 615

The benchmark instances encode different architectural solutions for the
Next-gen collision avoidance system. The system is composed of various numbers
of GSEP and SSEP aircraft, and one ATC. The models contain 47 basic faults,
and the objective is to compute the MCSs for the violation of the property “Two
Aircraft shall not have a Loss of Separation”, meaning that the distance between
two aircraft is below a certain safety limit. The models are scaled by varying the
number of aircraft of each kind (GSEP and SSEP, from 0 to 3 each) and the
number communication rounds between each aircraft and the ATC (from 1 to
10). The size of the models varies from 162 to 330 state variables and from 1700
to 5110 AND gates.

Wheel Braking System. The third family of benchmarks models an aircraft-
based wheel braking system (WBS), described in the Aerospace Information
Report, version 6110 [30]. The model was developed in a joint project between
FBK and The Boeing Company [31], and it is representative of an industrial
system of significant size. The WBS describes a redundant architecture that
takes as input the pedal information (the brake signal coming from the pilot),
computes the braking force that has to be applied to the 8 wheels, and drives
the hydraulic system in order to physically operate the right braking force. This
system is characterized by three redundant sub units:

(i) normal brake system, receiving the pedal information and driving the hydra-
ulic system. This unit is composed of two sub components that work in
parallel in order to prevent that a single failure can cause the complete
malfunctioning;

(ii) alternate brake system, receiving the pedal information and the output from
the normal brake system: when the latter one is not operating as expected,
it operates as backup by driving the hydraulic system;

(iii) emergency brake system, behaving similarly to the alternate one: it receives
pedal information and both outputs from the normal and alternate sub
systems, and operates as a backup of the alternate one.

The benchmark set consists of 4 different variants of the WBS architecture,
expressing various kinds of faulty behaviour. The models contain 261 fault vari-
ables and 1482 state variables, whereas the number of AND gates varies between
35182 and 35975.

7.2 Performance Evaluation

In the first part of our analysis, we evaluate the performance of different tech-
niques for the computation of the set of MCSs. We consider the following
algorithms:

BDD is the procedure of [8];
BMC+BDD is the enhancement of [19] that uses BMC as a preprocessor. The

BMC implementation uses the branching heuristic described in Sect. 5 for
reducing the number of fault configurations to enumerate;

616 M. Bozzano et al.

BMC+IC3 is the variant of the previous technique outlined in Sect. 4, using
IC3 as a “black box” invariant checking procedure. (The branching heuristic
of Sect. 5 for fault variables is used also in this case);

ParamIC3 is a basic version of ParamIC3, exploiting monotonicity for gener-
alizing parameter regions to block;

ParamIC3+faultbranch is the enhanced version of ParamIC3 that uses the
branching heuristic for fault variables of Sect. 5;

MCS-ParamIC3-simple is the basic MCS procedure described in of
Algorithm 2. We use m-cardinality networks [32] for encoding the cardinality
constraints;

MCS-ParamIC3 is the enhanced MCS procedure of Algorithm 3;
MCS-BMC+IC3 is an anytime variant of BMC+IC3, in which the BMC

solver is forced to enumerate only MCSs, using cardinality constraints: when-
ever IC3 finds that a given cardinality has been fully enumerated, the bound
of the atmost constraint is increased, and BMC is restarted;

MCS-BMC+IC3-swipe is a variant of the above, in which IC3 is invoked
less frequently and BMC is limited to a maximum counterexample length k,
instead of fully enumerating a given cardinality. This is expected to improve
performance, at the price of losing the “anytime” feature.

We have run our experiments on a cluster of Linux machines with 2.5GHz
Intel Xeon E5420 CPUs, using a timeout of 1 hour and a memory limit of 4Gb.
The results are shown in Fig. 3. The plots show the number of solved instances (y-
axis) in the given timeout (x-axis) for each of the algorithms considered. More
information is provided in Table 1, where for each configuration we show the
number of solved instances and the total execution time (excluding timeouts).

From the results, we can clearly see the benefits of the techniques discussed in
Sect. 5. Using the specialized branching heuristic, ParamIC3+faultbranch per-
forms very well in general, especially on the Elec.Sys and NextGen families.
However, for the harder WBS instances, the heuristic is not enough. On the
contrary, the cardinality-based enumeration introduces an overhead for easier
problems, but it pays off for harder ones, making MCS-ParamIC3 the best per-
forming overall. Moreover, even for simpler problems the integrated approach
of Algorithm 3 is not very far from the performance of ParamIC3+faultbranch.
More importantly, the anytime behaviour of MCS-ParamIC3 is extremely useful
in all cases in which none of the algorithms terminates, i.e. in the majority of
the WBS instances. Its usefulness is evaluated in Sect. 7.3.

7.3 Error Estimation

In order to assess the usefulness of the anytime behaviour, we evaluate the
effectiveness of our technique for estimating error bounds on the probability
of faults. For this, we consider the instances of the WBS benchmark set that
could not be completed within the timeout, and for each of them we study the
evolution of the probability bounds during the execution of MCS-ParamIC3. The
results are summarized in Table 2, where we show the number of MCSs found

Efficient Anytime Techniques for Model-Based Safety Analysis 617

Fig. 3. Results of performance evaluation.

Table 1. Summary of scalability evaluation.

Algorithm # solved Total time (sec)
All Elec.Sys NextGen WBS

MCS-ParamIC3 72 8 58 6 7837
MCS-ParamIC3-simple 72 8 58 6 19326
ParamIC3+faultbranch 70 8 58 4 3222
MCS-BMC+IC3-swipe 68 6 58 4 9896
MCS-BMC+IC3 67 6 57 4 23210
BMC+IC3 64 6 58 0 5477
ParamIC3 56 8 48 0 6787
BMC+BDD 10 5 5 0 10753
BDD 5 5 0 0 3377

618 M. Bozzano et al.

Table 2. Evolution of probability error bounds on hard WBS instances.

Instance card # MCS Time PL(TLE) PU (TLE)

M1-S18-WBS-R-0321 2 6 3.686 4.4999799997e-10 4.7856862743e-09

3 627 27.937 4.5052040749e-10 4.5368234398e-10

4 629 96.760 4.5052047798e-10 4.5052230781e-10

5a 38950 3549.163 4.5052047798e-10 4.5052230781e-10

M1-S18-WBS-R-0322-left 1 2 1.809 9.9999750001e-06 1.4392898712e-05

2 2 3.827 1.0000324995e-05 1.0004616980e-05

3 203 23.106 1.0000325102e-05 1.0000328223e-05

4a 46287 3271.215 1.0000325102e-05 1.0000328223e-05

M1-S18-WBS-R-0323 6 13689 480.034 1.0696143952e-28 3.5789505917e-22

7a 52035 3596.097 1.0701599223e-28 3.5789505917e-22

M1-S18-WBS-R-0324 2 1 3.603 2.5000000000e-11 4.3619410877e-09

4 2 9.273 2.5000000001e-11 2.5001833724e-11

5 8729 360.012 2.5000000003e-11 2.5000000881e-11

6a 23995 2905.057 2.5000000003e-11 2.5000000881e-11

M1-cmd implies braking w1 1 13 4.508 1.1299483157e-04 1.1708790375e-04

2 30 12.944 1.1299924596e-04 1.1300309322e-04

3 7428 265.771 1.1299925205e-04 1.1299925473e-04

4 3815 865.818 1.1299925205e-04 1.1299925205e-04

5 1768 1956.225 1.1299925205e-04 1.1299925205e-04

6 168 3465.792 1.1299925205e-04 1.1299925205e-04
a: cardinalities for which not all the MCSs could be computed within the timeout

of each cardinality, as well as the evolution of the probability bounds during the
execution for a representative subset of the WBS instances (we could not include
all instances for lack of space).

From the table, we can see how for most instances error bounds converge
quickly towards the actual fault probability, and then continue improving very
slowly, confirming the intuition of safety engineers that it is often enough to
consider only MCSs of small cardinality in practice. There is only one case where
the bounds are very loose, namely the M1-S18-WBS-R-323 instance. However,
in this case the fault probability is several order of magnitudes smaller than for
the other properties.

We remark that the probabilities for the basic faults are not artificially gen-
erated; on the contrary, they have been estimated by domain experts, and the
error bounds that we have obtained matched their expectations. The table shows
that, for these problems, the error estimation provided by our technique is pre-
cise enough to make our results useful in practice even when the computation
of the set of MCSs does not terminate.

8 Conclusions and Future Work

In this paper we presented a family of algorithms for model-based safety analysis,
based on IC3. The algorithms tightly integrate the generation and minimization

Efficient Anytime Techniques for Model-Based Safety Analysis 619

of cut sets, and enable the computation of the hazard probability, both numeri-
cally and symbolically. Moreover, we introduced a method to provide an estimate
for the remaining computation, when the generation does not terminate, and to
safely approximate the final result. This makes the approach anytime, and makes
it possible to deal with cases where the number of cut sets may explode.

There are several directions of ongoing and future work. First, we are extend-
ing our implementation to handle arbitrary LTL properties and infinite-state
systems. Second, concerning the routines for MCS generation, we want to inves-
tigate the role of parallelization, based on partitioning/cofactoring the space of
parameters. Another line of research which is orthogonal with respect to the
generation of MCSs is their presentation in a more structured way, namely as a
multi-level Fault Tree (rather than as DNF). Ongoing work includes generation
of hierarchical FTs using contract-based design [25].

An important open challenge we wish to explore is the relaxation of the
monotonicity assumption on faults. Traditionally, in the avionics and aerospace
domain (from which our benchmarks are taken) non-monotonic analysis is rarely
considered, as it does not provide significant benefits – most systems are indeed
monotonic and, whenever they are not, monotonic analysis already provides
an accurate over-approximation. However, in other domains this is known not
to be the case: for example, in circuits two subsequent inversions may prevent
the occurrence of a top level event. Given the hardness of the non-monotonic
analysis, it may be also worth to compute a monotonic over-approximation and
find other means to tighten the measure (or to compute the tightness of the
approximation). Finally, we want to study strategies to detect non-monotonicity,
as in some cases it may be unclear whether it holds or not.

References

1. Leveson, N.G.: Safeware: System Safety and Computers. Addison-Wesley, Boston
(1995)

2. Storey, N.: Safety Critical Computer Systems. Addison-Wesley, Boston (1996)
3. Bozzano, M., Villafiorita, A.: Design and Safety Assessment of Critical Systems,

an Auerbach Book. CRC Press (Taylor and Francis), Boca Raton (2010)
4. Bozzano, M., Villafiorita, A., et al.: ESACS: an integrated methodology for design

and safety analysis of complex systems. In: Proceedings of ESREL 2003, pp. 237–
245 (2003)

5. Bieber, P., Bougnol, C., Castel, C., Christophe Kehren, J.P., Metge, S., Seguin, C.:
Safety assessment with AltaRica. In: Jacquart, R. (ed.) Building the Information
Society. IFIP International Federation for Information Processing, vol. 156, pp.
505–510. Springer, Heidelberg (2004)

6. Bozzano, M., Cavallo, A., Cifaldi, M., Valacca, L., Villafiorita, A.: Improving safety
assessment of complex systems: an industrial case study. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 208–222. Springer, Heidelberg
(2003)

7. Joshi, A., Miller, S., Whalen, M., Heimdahl, M.: A proposal for model-based safety
analysis. In: Proceedings of DASC. IEEE Computer Society (2005)

620 M. Bozzano et al.

8. Bozzano, M., Cimatti, A., Tapparo, F.: Symbolic Fault Tree Analysis for Reactive
Systems. In: Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura, Y. (eds.) ATVA
2007. LNCS, vol. 4762, pp. 162–176. Springer, Heidelberg (2007)

9. Bozzano, M., Cimatti, A., Katoen, J.P., Nguyen, V., Noll, T., Roveri, M.: Safety,
dependability and performance analysis of extended AADL models. Comput. J.
54(5), 754–775 (2011)

10. Bozzano, M., Cimatti, A., Katoen, J.-P., Nguyen, V.Y., Noll, T., Roveri, M.: The
COMPASS approach: correctness, modelling and performability of aerospace sys-
tems. In: Buth, B., Rabe, G., Seyfarth, T. (eds.) SAFECOMP 2009. LNCS, vol.
5775, pp. 173–186. Springer, Heidelberg (2009)

11. xSAP: The xSAP safety analysis platform. http://xsap.fbk.eu
12. Bittner, B., Bozzano, M., Cavada, R., Cimatti, A., Gario, M., Griggio, A., Mattarei,

C., Micheli, A., Zampedri, G.: The xSAP safety analysis platform. In: 1504.07513
13. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,

Mover, S., Roveri, M., Tonetta, S.: The nuXmv symbolic model checker. In: Biere,
A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Heidelberg
(2014)

14. Morel, M.: Model-based safety approach for early validation of integrated and
modular avionics architectures. In: Ortmeier, F., Rauzy, A. (eds.) IMBSA 2014.
LNCS, vol. 8822, pp. 57–69. Springer, Heidelberg (2014)

15. Batteux, M., Prosvirnova, T., Rauzy, A., Kloul, L.: The altarica 3.0 project for
model-based safety assessment. In: 11th IEEE International Conference on Indus-
trial Informatics, INDIN 2013, Bochum, Germany, 29–31 July 2013, pp. 741–746.
IEEE (2013)

16. Bozzano, M., Villafiorita, A.: Integrating fault tree analysis with event ordering
information. In: Proceedings of ESREL 2003, pp. 247–254 (2003)

17. Majdara, A., Wakabayashi, T.: Component-based modeling of systems for auto-
mated fault tree generation. Reliab. Eng. Syst. Saf. 94(6), 1076–1086 (2009)

18. Abdulla, P.A., Deneux, J., St̊almarck, G., Ågren, H., Åkerlund, O.: Designing safe,
reliable systems using scade. In: Margaria, T., Steffen, B. (eds.) ISoLA 2004. LNCS,
vol. 4313, pp. 115–129. Springer, Heidelberg (2006)

19. Bozzano, M., Cimatti, A., Lisagor, O., Mattarei, C., Mover, S., Roveri, M., Tonetta,
S.: Safety assessment of AltaRica models via symbolic model checking. Sci. Com-
put. Program. 98(4), 464–483 (2015)

20. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer,
Heidelberg (2011)

21. Böde, E., Peikenkamp, T., Rakow, J., Wischmeyer, S.: Model based importance
analysis for minimal cut sets. In: Cha, S.S., Choi, J.-Y., Kim, M., Lee, I.,
Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 303–317. Springer,
Heidelberg (2008)

22. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Parameter synthesis with IC3. In:
Proceedings of FMCAD, pp. 165–168. IEEE (2013)

23. SAE: ARP4761 Guidelines and Methods for Conducting the Safety Assessment
Process on Civil Airborne Systems and Equipment, December 1996

24. Vesely, W., Stamatelatos, M., Dugan, J., Fragola, J., Minarick III, J., Railsback, J.:
Fault Tree Handbook with Aerospace Applications. NASA Headquarters,
Washington DC (2002)

25. Bozzano, M., Cimatti, A., Mattarei, C., Tonetta, S.: Formal safety assessment via
contract-based design. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol.
8837, pp. 81–97. Springer, Heidelberg (2014)

http://xsap.fbk.eu
http://arxiv.org/abs/1504.07513

Efficient Anytime Techniques for Model-Based Safety Analysis 621

26. Coudert, O., Madre, J.: Fault tree analysis: 1020 prime implicants and beyond. In:
Proceedings of RAMS (1993)

27. MISSA: The MISSA Project. http://www.missa-fp7.eu. Accessed 28 Jan 2015
28. Bozzano, M., Villafiorita, A.: The FSAP/NuSMV-SA safety analysis platform.

STTT 9(1), 5–24 (2007)
29. Biere, A., Heljanko, K., Wieringa, S.: AIGER (2011). http://fmv.jku.at/aiger/
30. SAE: AIR 6110. Contiguous Aircraft/ System Development Process Example,

December 2011
31. Bozzano, M., Cimatti, A., Pires, A.F., Jones, D., Kimberly, G., Petri, T., Robin-

son, R., Tonetta, S.: A formal account of the AIR6110 wheel brake system. In:
Proceedings of CAV, LNCS 9206 (2015)

32. Ab́ıo, I., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.: A parametric app-
roach for smaller and better encodings of cardinality constraints. In: Proceedings
of CP (2013)

http://www.missa-fp7.eu
http://fmv.jku.at/aiger/

Boosting k-Induction
with Continuously-Refined Invariants

Dirk Beyer, Matthias Dangl, and Philipp Wendler

University of Passau, Passau, Germany

Abstract. k-induction is a promising technique to extend bounded
model checking from falsification to verification. In software verification,
k-induction works only if auxiliary invariants are used to strengthen the
induction hypothesis. The problem that we address is to generate such
invariants (1) automatically without user-interaction, (2) efficiently such
that little verification time is spent on the invariant generation, and
(3) that are sufficiently strong for a k-induction proof. We boost the
k-induction approach to significantly increase effectiveness and efficiency
in the following way: We start in parallel to k-induction a data-flow-
based invariant generator that supports dynamic precision adjustment
and refine the precision of the invariant generator continuously during
the analysis, such that the invariants become increasingly stronger. The
k-induction engine is extended such that the invariants from the invariant
generator are injected in each iteration to strengthen the hypothesis. The
new method solves the above-mentioned problem because it (1) automat-
ically chooses an invariant by step-wise refinement, (2) starts always with
a lightweight invariant generation that is computationally inexpensive,
and (3) refines the invariant precision more and more to inject stronger
and stronger invariants into the induction system. We present and eval-
uate an implementation of our approach, as well as all other existing
approaches, in the open-source verification-framework CPAchecker.
Our experiments show that combining k-induction with continuously-
refined invariants significantly increases effectiveness and efficiency, and
outperforms all existing implementations of k-induction-based verifica-
tion of C programs in terms of successful results.

1 Introduction

Advances in software verification in recent years have lead to increased efforts
towards applying formal verification methods to industrial software, in par-
ticular operating-systems code [3,4,34]. One model-checking technique that is
implemented by half of the verifiers that participated in the 2015 Competition
on Software Verification [7] is bounded model checking (BMC) [16,17,22]. For
unbounded systems, BMC can be used only for falsification, not for verifica-
tion [15]. This limitation to falsification can be overcome by combining BMC

A preliminary version of this article appeared as technical report [8].

c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 622–640, 2015.
DOI: 10.1007/978-3-319-21690-4 42

Boosting k-Induction with Continuously-Refined Invariants 623

with mathematical induction and thus extending it to verification [26]. Unfor-
tunately, inductive approaches are not always powerful enough to prove the
required verification conditions, because not all program invariants are induc-
tive [2]. Using the more general k-induction [38] instead of standard induction is
more powerful [37] and has already been implemented in the DMA-race analy-
sis tool Scratch [27] and in the software verifier Esbmc [35]. Nevertheless,
additional supportive measures are often required to guide k-induction and take
advantage of its full potential [25]. Our goal is to provide a powerful and com-
petitive approach for reliable, general-purpose software verification based on
BMC and k-induction, implemented in a state-of-the-art software-verification
framework.

Our contribution is a new combination of k-induction-based model check-
ing with automatically-generated continuously-refined invariants that are used to
strengthen the induction hypothesis, which increases the effectiveness and effi-
ciency of the approach. BMC and k-induction are combined in an algorithm
that iteratively increments the induction parameter k (iterative deepening). The
invariant generation runs in parallel to the k-induction proof construction, start-
ing with relatively weak (but inexpensive to compute) invariants, and increasing
the strength of the invariants over time as long as the analysis continues. The
k-induction-based proof construction adopts the currently known set of invari-
ants in every new proof attempt. This approach can verify easy problems quickly
(with a small initial k and weak invariants), and is able to verify complex prob-
lems by increasing the effort (by incrementing k and searching for stronger invari-
ants). Thus, it is both efficient and effective. In contrast to previous work [35], the
new approach is sound. We implemented our approach as part of the open-source
software-verification framework CPAchecker [12], and we perform an extensive
experimental comparison of our implementation against the two existing tools that
use k-induction and against other common software-verification approaches.

Contributions. We make the following contributions:

• a novel approach for providing continuously-refined invariants from data-flow
analysis with precision adjustment in order to repeatedly inject invariants to
k-induction,

• an effective and efficient tool implementation of a framework for software
verification with k-induction that allows to express all existing approaches to
k-induction in a uniform, module-based, configurable architecture, and

• an extensive experimental evaluation of (a) all approaches and their imple-
mentations in the framework, (b) the two existing k-induction tools Cbmc
and Esbmc, and (c) the two different approaches predicate analysis and value
analysis; the result being that the new technique outperforms all existing
k-induction-based approaches to software verification.

Availability of Data and Tools. Our experiments are based on benchmark
verification tasks from the 2015 Competition on Software Verification. All bench-
marks, tools, and results of our evaluation are available on a supplementary web
page1.
1 http://www.sosy-lab.org/∼dbeyer/cpa-k-induction/

(successfully evaluated by the CAV 2015 Artifact Evaluation Committee)

http://www.sosy-lab.org/~dbeyer/cpa-k-induction/

624 D. Beyer, M. Dangl, and P. Wendler

1 int main() {
2 unsigned int x1 = 0, x2 = 0;
3 int s = 1;
4

5 while (nondet()) {
6 if (s == 1) x1++;
7 else if (s == 2) x2++;
8

9 s++;
10 if (s == 5) s = 1;
11

12 if ((s == 1) && (x1 != x2)) {
13 // Valid safety property
14 ERROR: return 1;
15 }
16 }
17 }

Fig. 1. Safe example program
example-safe, which cannot be
proven with existing k-induction-based
approaches

1 int main() {
2 unsigned int x1 = 0, x2 = 0;
3 int s = 1;
4

5 while (nondet()) {
6 if (s == 1) x1++;
7 else if (s == 2) x2++;
8

9 s++;
10 if (s == 5) s = 1;
11 }
12

13 if (s >= 4) {
14 // Violation: s may be 4
15 ERROR: return 1;
16 }
17 }

Fig. 2. Unsafe example program
example-unsafe, where some
approaches may produce a wrong
proof

Example. We illustrate the problem of k-induction that we address, and the
strength of our approach, on two example programs. Both programs encode an
automaton, which is typical, e.g., for software that implements a communication
protocol. The automaton has a finite set of states, which is encoded by variable s,
and two data variables x1 and x2. There are some state-dependent calculations
(lines 6 and 7 in both programs) that alternatingly increment x1 and x2, and a
calculation of the next state (lines 9 and 10 in both programs). The state variable
cycles through the range from 1 to 4. These calculations are done in a loop with
a non-deterministic number of iterations. Both programs also contain a safety
property (the label ERROR should not be reachable). The program example-safe
in Fig. 1 checks that in every fourth state, the values of x1 and x2 are equal; it
satisfies the property. The program example-unsafe in Fig. 2 checks that when
the loop exits, the value of state variable s is not greater or equal to 4; it violates
the property.

First, note that the program example-safe is difficult or impossible to prove
with many classical software-verification approaches other than k-induction:
(1) BMC cannot prove safety for this program because the loop may run
arbitrarily long. (2) Explicit-state model checking fails because of the huge
state space (x1 and x2 can get arbitrarily large). (3) Predicate analysis with
counterexample-guided abstraction refinement (CEGAR) and interpolation is
able to prove safety, but only if the predicate x1 = x2 gets discovered. If
the interpolants contain instead only predicates such as x1 = 1, x2 = 1,
x1 = 2, etc., the predicate analysis will not terminate. Which predicates
get discovered is hard to control and usually depends on internal interpola-
tion heuristics of the satisfiability-modulo-theory (SMT) solver. (4) Traditional
1-induction is also not able to prove the program safe because the assertion
is checked only in every fourth loop iteration (when s equals 1). Thus, the
induction hypothesis is too weak (the program state s = 4, x1 = 0, x2 = 1
is a counterexample for the step case in the induction proof).

Boosting k-Induction with Continuously-Refined Invariants 625

Intuitively, this program should be provable by k-induction with a k of at
least 4. However, for every k, there is a counterexample to the inductive-step
case that refutes the proof. For such a counterexample, set s = −k, x1 = 0,
x2 = 1 at the beginning of the loop. Starting in this state, the program would
increment s k times (induction hypothesis) and then reach s = 1 with property-
violating values of x1 and x2 in iteration k+1 (inductive step). It is clear that s
can never be negative, but this fact is not present in the induction hypothesis,
and thus, the proof fails. This illustrates the general problem of k-induction-
based verification: safety properties often do not hold in unreachable parts of the
state space of a program, and k-induction alone does not distinguish between
reachable and unreachable parts of the state space. Therefore, approaches based
on k-induction without auxiliary invariants will fail to prove safety for program
example-safe.

This program could of course be verified more easily if it were rewritten to
contain a stronger safety property such as s ≥ 1∧s ≤ 4∧(s = 2 ⇒ x1 = x2 +1)∧
(s �= 2 ⇒ x1 = x2) (which is a loop invariant and allows a proof by 1-induction
without auxiliary invariants). However, our goal is to automatically verify real
programs, and programmers usually neither write down trivial properties such
as s ≥ 1 nor more complex properties such as s �= 2 ⇒ x1 = x2 .

Our approach of combining k-induction with invariants proves the program
safe with k = 4 and the invariant s ≥ 1. This invariant is easy to find auto-
matically using an inexpensive data-flow analysis, such as an interval analysis.
For larger programs, a more complex invariant might be necessary, which might
get generated at some point by our continuous strengthening of the invariant.
Furthermore, stronger invariants can reduce the k that is necessary to prove a
program. For example, the invariant s ≥ 1 ∧ s ≤ 4 ∧ (s �= 2 ⇒ x1 = x2) (which
is still weaker than the full loop invariant above) allows to prove the program
with k = 2. Thus, our strengthening of invariants can also shorten the inductive
proof procedure and lead to better performance.

An existing approach tries to solve this problem of a too-weak induction
hypothesis by initializing only the variables of the loop-termination condition
to a non-deterministic value in the step case, and initializing all other vari-
ables to their initial value in the program [35]. However, this approach is not
strong enough for the program example-safe and even produces a wrong proof
(unsound result) for the program example-unsafe. This second example pro-
gram contains a different safety property about s, which is violated. Because
the variable s does not appear in the loop-termination condition, it is not set
to an arbitrary value in the step case as it should be, and the inductive proof
wrongly concludes that the program is safe because the induction hypothesis is
too strong, leading to a missed bug and a wrong result. Our approach does not
suffer from this unsoundness, because we add only invariants to the induction
hypothesis that the invariant generation has proven to hold.

Related Work. The use of auxiliary invariants is a common technique in soft-
ware verification [2,9,10,18,19,20,23,30,36], and techniques combining data-flow
analysis and SMT solvers also exist [28,31]. In most cases, the purpose is to
speed up the analysis. For k-induction, however, the use of invariants is crucial

626 D. Beyer, M. Dangl, and P. Wendler

in making the analysis terminate at all (cf. Fig. 1). There are several approaches
to software verification using BMC in combination with k-induction.

Split-Case Induction. We use the split-case k-induction technique [26,27], where
the base case and the step case are checked in separate steps. Earlier versions of
Scratch [27] that use this technique transform programs with multiple loops
into programs with only one single monolithic loop using a standard approach [1].
The alternative of recursively applying the technique to nested loops is discarded
by the authors of Scratch [27], because the experiments suggested it was less
efficient than checking the single loop that is obtained by the transformation.
We also experimented with single-loop transformation, but our experimental
results suggest that checking all loops at once in each case instead of checking
the monolithic transformation result (which also encodes all loops in one) has
no negative performance impact, so for simplicity, we omit the transformation.
Scratch also supports combined-case k-induction [25], for which all loops are
cut by replacing them with k copies each for the base and the step case, and
setting all loop-modified variables to non-deterministic values before the step
case. That way, both cases can be checked at once in the transformed program
and no special handling for multiple loops is required. When using combined-
case k-induction, Scratch requires loops to be manually annotated with the
required k values, whereas its implementation of split-case k-induction supports
iterative deepening of k as in our implementation. Contrary to Scratch, we do
not focus on one specific problem domain [26,27], but want to provide a solution
for solving a wide range of heterogeneous verification tasks.

Auxiliary Invariants. While both the split-case and the combined-case
k-induction supposedly succeed with weaker auxiliary invariants than for
example the inductive invariant approach [5], the approaches still do require
auxiliary invariants in practice, and the tool Scratch requires these invariants
to be annotated manually [25,27]. There are techniques for automatically gen-
erating invariants that may be used to help inductive approaches to succeed
(e.g. [2,9,20]. These techniques, however, do not justify their additional effort
because they are not guaranteed to provide the required invariants on time,
especially if strong auxiliary invariants are required. Based on previous ideas of
supporting k-induction with invariants generated by lightweight data-flow analy-
sis [24], we therefore strive to leverage the power of the k-induction approach
to succeed with auxiliary invariants generated by a data-flow analysis based on
intervals. However, to handle cases where it is necessary to invest more effort
into invariant generation, we increase the precision of these invariants over time.

Invariant Injection. A verification tool using a strategy similar to ours is
PKind [28,33], a model checker for Lustre programs based on k-induction. In
PKind, there is a parallel computation of auxiliary invariants, where candi-
date invariants derived by templates are iteratively checked via k-induction and,
if successful, added to the set of known invariants [32]. While this allows for
strengthening the induction hypothesis over time, the template-based approach
lacks the flexibility that is available to an invariant generator using dynamic
precision refinement [11], and the required additional induction proofs are

Boosting k-Induction with Continuously-Refined Invariants 627

potentially expensive. We implemented checking candidate invariants with
k-induction as a possible strategy of our invariant generation component.

Unsound Strengthening of Induction Hypothesis. Esbmc does not require addi-
tional invariants for k-induction, because it assigns non-deterministic values only
to the loop-termination condition variables before the inductive-step case [35]
and thus retains more information than our as well as the Scratch implemen-
tation [25,27], but k-induction in Esbmc is therefore potentially unsound. Our
goal is to perform a real proof of safety by removing all pre-loop information in
the step case, thus treating the unrolled iterations in the step case truly as “any
k consecutive iterations”, as is required for the mathematical induction. Our
approach counters this lack of information by employing incrementally-refined
invariant generation.

Parallel Induction. PKind checks the base case and the step case in parallel,
and Esbmc supports parallel execution of the base case, the forward condition,
and the inductive-step case. In contrast, our base case and inductive-step case
are checked sequentially, while our invariant generation runs in parallel to the
base- and step-case checks.

2 k-Induction with Continuously-Refined Invariants

Our verification approach consists of two algorithms that run concurrently.
One algorithm is responsible for generating program invariants, starting with
an imprecise invariant, continuously refining (strengthening) the invariant. The
other algorithm is responsible for finding error paths with BMC, and for con-
structing safety proofs with k-induction, for which it periodically picks up the
new invariant that the former algorithm has constructed so far. The k-induction
algorithm uses information from the invariant generation, but not vice versa.
In our presentation, we assume that each program contains at most one loop;
in our implementation, we handle programs with multiple loops by checking all
loops together.

Iterative-Deepening k-Induction. Algorithm 1 shows our extension of the
k-induction algorithm to a combination with continuously-refined invariants.
Starting with an initial value for the bound k, e.g., 1, we iteratively increase the
value of k after each unsuccessful attempt at finding a specification violation or
proving correctness of the program using k-induction. The following description
of our approach to k-induction is based on split-case k-induction [25], where
for the propositional state variables s and s′ within a state-transition system
that represents the program, the predicate I(s) denotes that s is an initial state,
T (s, s′) states that a transition from s to s′ exists, and P (s) asserts the safety
property for the state s.

Base Case. Lines 3 to 5 implement the base case, which consists of running BMC
with the current bound k. This means that starting from an initial program state,
all paths of the program up to a maximum path length k− 1 are explored. If an
error path is found, the algorithm terminates.

628 D. Beyer, M. Dangl, and P. Wendler

Algorithm 1 Iterative-Deepening k-Induction

Input:
the initial value kinit ≥ 1 for the bound k,
an upper limit kmax for the bound k,
a function inc : N → N with ∀n ∈ N : inc(n) > n for increasing the bound k,
the initial states defined by the predicate I,
the transfer relation defined by the predicate T , and
a safety property P

Output: true if P holds, false otherwise
1: k := kinit
2: while k ≤ kmax do

3: base_case := I(s0)∧
k−1∨

n=0

(
n−1∧

i=0
T (si,si+1)∧¬P(sn)

)

4: if sat(base_case) then
5: return false

6: forward_condition := I(s0)∧
k−1∧

i=0
T (si,si+1)

7: if ¬sat(forward_condition) then
8: return true

9: step_casen :=
n+k−1∧

i=n

(P(si)∧T (si,si+1))∧¬P(sn+k)

10: repeat
11: Inv := get_currently_known_invariant()
12: if ¬sat(Inv(sn)∧ step_casen) then
13: return true
14: until Inv = get_currently_known_invariant()
15: k := inc(k)
16: return unknown

Algorithm 2 Continuous Invariant Generation using Configurable Program Analysis

Input:
a configurable program analysis with dynamic precision adjustment D,
the initial states defined by predicate I,
a coarse initial precision π0,
a safety property P

Output: true if P holds
1: π := π0
2: Inv := true
3: loop
4: reached := CPAAlgorithm(D, I,π)
5: if ∀s ∈ reached : P(s) then
6: return true

7: Inv := Inv∧ ∨

s∈reached
s

8: π := RefinePrec(π,reached)

Boosting k-Induction with Continuously-Refined Invariants 629

Forward Condition. Otherwise we check whether there exists a path with length
k′ > k − 1 in the program, or whether we have already fully explored the state
space of the program (lines 6 to 8). In the latter case the program is safe and
the algorithm terminates. This check is called the forward condition [29].

Inductive Step. Checking the forward condition can, however, only prove safety
for programs with finite (and short) loops. Therefore, the algorithm also attempts
an inductive proof (lines 9 to 14). The inductive-step case checks if, after every
sequence of k loop iterations without a property violation, there is also no prop-
erty violation before loop iteration k+1. For model checking of software, however,
this check would often fail inconclusively without auxiliary invariants [8]. In our
approach, we make use of the fact that the invariants that were generated so far
by the concurrently-running invariant-generation algorithm hold, and conjunct
these facts to the induction hypothesis. Thus, the inductive-step case proves a
program safe if the following condition is unsatisfiable:

Inv(sn) ∧
n+k−1∧

i=n

(P (si) ∧ T (si, si+1)) ∧ ¬P (sn+k)

where Inv is the currently available program invariant, and sn, . . . , sn+k is any
sequence of states. If this condition is satisfiable, then the induction check is
inconclusive, and the program is not yet proved safe or unsafe with the current
value of k and the current invariant. If during the time of the satisfiability check
of the step case, a new (stronger) invariant has become available (condition in
line 14 is false), we immediately re-check the step case with the new invariant.
This can be done efficiently using an incremental SMT solver for the repeated sat-
isfiability checks in line 12. Otherwise, we start over with an increased value of k.

Note that the inductive-step case is similar to a BMC check for the presence
of error paths of length exactly k + 1. However, as the step case needs to consider
any consecutive k + 1 loop iterations, and not only the first such iterations, it
does not assume that the execution of the loop iterations begins in an initial
state. Instead, it assumes that there is a sequence of k iterations without any
property violation (induction hypothesis).

Continuous Invariant Generation. Our continuous invariant generation
incrementally produces stronger and stronger program invariants. It is based on
iterative refinement, each time using an increased precision. After each strength-
ening of the invariant, it can be used as injection invariant by the k-induction
procedure. It may happen that this analysis proves safety of the program all by
itself, but this is not its main purpose here.

Our k-induction module works with any kind of invariant-generation pro-
cedure, as long as its precision, i.e., its level of abstraction, is configurable.
We implemented two different invariant-generation approaches: KI and DF,
described below.

630 D. Beyer, M. Dangl, and P. Wendler

Invariant Generation

k-induction (KI)
Algorithm 1

Data-Flow Analysis (DF)
Algorithm 2

injects

Fig. 3. Configurable design of a k-induction
framework

We use the design of Fig. 3
to explain our flexible and mod-
ular framework for k-induction:
k-induction is a verification tech-
nique, i.e., an invariant gener-
ation. In this paper, the main
algorithm is thus the k-induction,
as defined in Algorithm 1.
We denote the algorithm by KI. If invariants are generated and injected into
KI, we denote this injection by KI←. Thus, the use of generated invariants that
are produced by a data-flow analysis (DF) are denoted by KI←DF. If the invari-
ant generator continuously refines the invariants and repeatedly injects those
invariants into KI, this is denoted by KI ���←−, more specifically, if data-flow analy-
sis with dynamic precision adjustment (our new contribution) is used, we have
KI ���←−DF, and if the PKind approach is used, i.e., KI is used to construct invari-
ants, we have KI ���←−KI. Now, since the second KI, which constructs invariants
for injection into the first KI, can again get invariants injected, we can further
build an approach KI ���←−KI ���←−DF that combines all approaches such that the
invariant-generating KI benefits from the invariants generated with DF, and
the main KI algorithm that tries to prove program safety benefits from both
invariant generators.

KI. PKind [33] introduced the idea to construct invariants for injection in par-
allel, using a template-based method that extracts candidate invariants from the
program and verifies their validity using k-induction [32]. If the candidate invari-
ants are found to be valid, they are injected to the main k-induction procedure.
We re-implemented the PKind approach in our framework (KI ���←−KI), using a
separate instance of k-induction to prove candidate invariants. Being based on
k-induction, the power of this technique is continuously increased by increas-
ing k. We derive the candidate invariants by taking the negations of assump-
tions on the control-flow paths to error locations. Similar to our Algorithm2,
each time this k-induction algorithm succeeds in proving a candidate invari-
ant, the previously-known invariant is strengthened with this newly generated
invariant. In our tool, we used an instance of Algorithm1 to implement this app-
roach. We are thus able to further combine this technique with other auxiliary
invariant-generation approaches.

DF. As a second invariant-generation approach (our contribution), we use the
reachability algorithm CPAAlgorithm for configurable program analysis with
dynamic precision adjustment [11]. Algorithm 2 shows our continuous invari-
ant generation. The initial program invariant is represented by the formula true.
We start with running the invariant-generating analysis once with a coarse ini-
tial precision (line 4). After each run of the program-invariant generation, we
strengthen the previously-known program invariant with the newly-generated
invariant (line 7, note that the program invariant Inv is not a safety invariant)
and announce it globally (such that the k-induction algorithm can inject it).

Boosting k-Induction with Continuously-Refined Invariants 631

If the analysis was able to prove safety of the program, the algorithm
terminates (lines 5 to 6). Otherwise, the analysis is restarted with a higher preci-
sion. The CPAAlgorithm takes as input a configurable program analysis (CPA), a
set of initial abstract states, and a precision. It returns a set of reachable abstract
states that form an over-approximation of the reachable program states. Depend-
ing on the used CPA and the precision, the analysis by CPAAlgorithm can be
efficient and abstract like data-flow analysis or expensive and precise like model
checking.

For invariant generation, we choose an abstract domain based on expressions
over intervals [8]. Note that this is not a requirement of our approach, which
works with any kind of domain. Our choice is based on the high flexibility of
this domain, which can be fast and efficient as well as precise. For this CPA, the
precision is a triple (Y, n,w), where Y ⊆ X is a specific selection of important
program variables, n is the maximal nesting depth of expressions in the abstract
state, and w is a boolean specifying whether widening should be used. Those
variables that are considered important will not be over-approximated by joining
abstract states. With a higher nesting depth, more precise relations between
variables can be represented. The use of widening ensures timely termination
(at the expense of a lower precision), even for programs with loops with many
iterations, like those in the examples of Figs. 1 and 2. An in-depth description
of this abstract domain is presented in a technical report [8].

3 Experimental Evaluation

We implemented all existing approaches to k-induction, compare all configura-
tions with each other, and the best configuration with other k-induction-based
software verifiers, as well as to two standard approaches to software verification:
predicate and value analysis.

Benchmark Verification Tasks. As benchmark set we use verification tasks
from the 2015 Competition on Software Verification (SV-COMP’15) [7]. We took
all 3 964 verification tasks from the categories ControlFlow, DeviceDrivers64,
HeapManipulation, Sequentialized, and Simple. The remaining categories were
excluded because they use features (such as bit-vectors, concurrency, and recur-
sion) that not all configurations of our evaluation support. A total of 1 148 ver-
ification tasks in the benchmark set contain a known specification violation.
Although we cannot expect an improvement for these verification tasks when
using auxiliary invariants, we did not exclude them because this would unfairly
give advantage to the new approach (which spends some effort generating invari-
ants, which are not helpful when proving existence of an error path).

Experimental Setup. All experiments were conducted on computers with two
2.6 GHz 8-Core CPUs (Intel Xeon E5-2560 v2) with 135 GB of RAM. The operat-
ing system was Ubuntu 14.04 (64 bit), using Linux 3.13 and OpenJDK 1.7. Each
verification task was limited to two CPU cores, a CPU run time of 15 min, and

632 D. Beyer, M. Dangl, and P. Wendler

a memory usage of 15 GB. The benchmarking framework BenchExec2 ensures
precise and reproducible results.

Presentation. All benchmarks, tools, and the full results of our evaluation are
available on a supplementary web page.3 All reported times are rounded to two
significant digits. We use the scoring scheme of SV-COMP’15 to calculate a score
for each configuration. For every real bug found, 1 point is assigned, for every
correct safety proof, 2 points are assigned. A score of 6 points is subtracted
for every wrong alarm (false positive) reported by the tool, and 12 points are
subtracted for every wrong proof of safety (false negative). This scoring scheme
values proving safety higher than finding error paths, and significantly punishes
wrong answers, which is in line with the community consensus [7] on difficulty
of verification vs. falsification and importance of correct results. We consider
this a good fit for evaluating an approach such as k-induction, which targets at
producing safety proofs.

In Figs. 4 and 5, we present experimental results using a plot of quantile
functions for accumulated scores as introduced by the Competition on Soft-
ware Verification [6], which shows the score and CPU time for successful results
and the score for wrong answers. A data point (x, y) of a graph means that
for the respective configuration the sum of the scores of all wrong answers
and the scores for all correct answers with a run time of less than or equal
to y seconds is x. For the left-most point (x, y) of each graph, the x-value shows
the sum of all negative scores for the respective configuration and the y-value
shows the time for the fastest successful result. For the right-most point (x, y)
of each graph, the x-value shows the total score for this configuration, and the
y-value shows the maximal run time. A configuration can be considered better,
the further to the right (the closer to 0) its graph begins (fewer wrong answers),
the further to the right it ends (more correct answers), and the lower its graph
is (less run time).

Comparison of k-Induction-Based Approaches. We implemented all
approaches in the Java-based open-source software-verification framework
CPAchecker [12], which is available online4 under the Apache 2.0 License.
For the experiments, we used version 1.4.5-cav15 of CPAchecker, with
SMTInterpol [21] as SMT solver (using uninterpreted functions and linear
arithmetic over integers and reals). The k-induction algorithm of CPAchecker
was configured to increment k by 1 after each try (in Algorithm 1, inc(k) = k+1).
The precision refinement of the DF-based continuous invariant generation (Algo-
rithm 2) was configured to increment the number of important program variables
in the first, third, fifth, and any further precision refinements. The second preci-
sion refinement increments the expression-nesting depth, and the fourth disables
the widening.
2 https://github.com/dbeyer/benchexec
3 http://www.sosy-lab.org/∼dbeyer/cpa-k-induction/
4 http://cpachecker.sosy-lab.org

https://github.com/dbeyer/benchexec
http://www.sosy-lab.org/~dbeyer/cpa-k-induction/
http://cpachecker.sosy-lab.org

Boosting k-Induction with Continuously-Refined Invariants 633

Table 1. Results of k-induction-based configurations in CPAchecker for all 3 964 ver-
ification tasks with different approaches for generating auxiliary invariants

Approach KI
KI←DF

KI ���←−KI KI ���←−DF KI ���←−KI ���←−DF
(0,1, t) (8,2, t) (16,2, t) (16,2, f)

Score 2246 3944 4117 4062 3992 3535 4249 4 282
Correct results 1531 2377 2462 2428 2392 2169 2507 2 519
Wrong proofs 1 1 2 1 1 1 1 1
Wrong alarms 30 30 30 30 30 30 26 25
CPU time (h) 530 330 330 340 340 380 320 320
Wall time (h) 440 240 210 210 210 270 190 170

Times for correct results only:
CPU time (h) 17 32 39 36 36 28 36 41
Wall time (h) 13 19 22 20 20 18 20 22

k-Values for correct safe results only:
Max. final k 101 101 100 100 126 101 112 111
Avg. final k 1.7 1.4 1.7 1.8 1.8 1.8 1.8 1.9

We evaluated the following groups of k-induction approaches: (1) without
any auxiliary invariants (KI), (2) with auxiliary invariants of different precisions
generated by the DF approach (KI←DF), and (3) with continuously-refined
invariants (KI ���←−).

The k-induction-based configuration using no auxiliary invariants (KI) is an
instance of Algorithm 1 where get currently known invariant() always returns true
as invariant and Algorithm2 does not run at all.

The configurations using generated invariants (KI←DF) are also instances
of Algorithm 1. Here, Algorithm 2 runs in parallel, however, it terminates after
one loop iteration. We denote these configurations with triples (s, n, w) that
represent the precision (Y, n,w) of the invariant generation with s being the
size of the set of important program variables (s = |Y |). For example, the first
of these configurations, (0, 1, true), has no variables in the set Y of important
program variables (i.e., all variables get over-approximated by the merge opera-
tor), the maximum nesting depth of expressions in the abstract state is 1, and the
widening operator is used. The remaining configurations we use are (8, 2, true),
(16, 2, true), and (16, 2, false). These configurations were selected because they
represent some of the extremes of the precisions that are used during dynamic
invariant generation. It is impossible to cover every possible valid configuration
within the scope of this paper.

There are three configurations using continuously-refined invariants: (1) using
the k-induction approach similar to PKind to generate invariants, refining by
increasing k, denoted as KI ���←−KI, (2) using the DF-based approach to gen-
erate invariants, refining by precision adjustment, denoted as KI ���←−DF, and
(3) using both approaches in parallel combination, denoted as KI ���←−KI ���←−DF.
All configurations using invariant generation run the generation in parallel to the
main k-induction algorithm, an instance of Algorithm1.

634 D. Beyer, M. Dangl, and P. Wendler

Score and Reported Results. The configuration KI with no invariant generation
receives the lowest score of 2 246, and (as expected) can verify only 1 531 pro-
grams successfully. This shows that it is indeed important in practice to enhance
k-induction-based software verification with invariants. The configurations
KI←DF using invariant generation produce similar numbers of correct results
(around 2 400), improving upon the results of the plain k-induction without auxil-
iary invariants by a score of 1 700 to 1 800. Even though these configurations solve
a similar number of programs, a closer inspection reveals that each of the con-
figurations is able to correctly solve significant amounts of programs where the
other configurations run into timeouts. This observation explains the high score of
4 249 points achieved by our approach of injecting the continuously-refined invari-
ants generated with data-flow analysis into the k-induction engine (configuration
KI ���←−DF). By combining the advantages of fast and coarse precisions with
those of slow but fine precisions, it correctly solves 2 507 verification tasks, which
is 45 more than the best of the chosen configurations without dynamic refinement.
Using a k-induction-based invariant generation as done by PKind (configuration
KI ���←−KI) is also a successful technique for improving the amount of solvable ver-
ification tasks, and thus, combining both invariant-generation approaches with
continuously refining their precision and injecting the generated invariants into
the k-induction engine (configuration KI ���←−KI ���←−DF) is the most effective of all
evaluated k-induction-based approaches, with a score of 4 282, and 2 519 correct
results. The few wrong proofs produced by the configurations are not due to con-
ceptual problems, but only due to incompleteness in the analyzer’s handling of
certain constructs such as unbounded arrays and pointer aliasing.

Performance. Table 1 shows that by far the largest amount of time is spent by
the configuration KI (no auxiliary invariants), because for those programs that
cannot be proved without auxiliary invariants, the k-induction procedure loops
incrementing k until the time limit is reached. The wall times and CPU times for
the correct results correlate roughly with the amount of correct results, i.e., on
average about the same amount of time is spent on correct verifications, whether
or not invariant generation is used. This shows that the overhead of generating
auxiliary invariants is well-compensated.

The configurations with invariant generation have a relatively higher CPU
time compared to their wall time because these configurations spend some
time generating invariants in parallel to the k-induction algorithm. The results
show, however, that the time spent for the continuously-refined invariant gen-
eration clearly pays off as the configuration using both data-flow analysis and
k-induction for invariant generation is not only the one with the most correct
results, but at the same time one of the two fastest configurations with only 320 h
in total. Even though they produced much more correct results, the configura-
tions KI ���←−KI ���←−DF and KI ���←−DF did not exceed the times of the chosen
configurations using invariant generation without continuous refinement. The
configuration KI ���←−KI using only k-induction to continuously generate invari-
ants is slower, but produces results for some programs where the configuration

Boosting k-Induction with Continuously-Refined Invariants 635

Table 2. Results of k-induction-based tools for all 3 964 verification tasks

Tool CBMC ESBMC CPACHECKER

Configuration sequential parallel KI ���←−KI ���←−DF

Score −4372 1674 1716 4 282
Correct results 1949 2050 2059 2 519
Wrong proofs 666 156 152 1
Wrong alarms 5 9 13 25
CPU time (h) 360 290 370 320
Wall time (h) 360 290 200 170

Times for correct results only:
CPU time (h) 3.9 16 26 41
Wall time (h) 3.9 16 13 22

k-Values for correct safe results only:
Max. final k 50 2048 1952 111
Avg. final k 1.1 5.3 7.1 1.9

KI ���←−DF fails. The results show that the combination of the techniques reaps
the benefits of both.

These results show that the additional effort invested in generating auxil-
iary invariants is well-spent, as it even decreases the overall time due to the
fewer timeouts. As expected, the continuously-refined invariants solve many
tasks quicker than the configurations using invariant generation with high pre-
cisions and without refinement.

Final value of k. The bottom of Table 1 shows some statistics about the final val-
ues of k for the correct safety proofs. There are only small differences between
the maximum k values of most of the configurations. Interestingly, the con-
figuration using non-dynamic invariant generation with high precision has a
higher maximum final value of k than the others, because for the verification
task afnp2014 true-unreach-call.c.i, a strong invariant generated only with
this configuration allowed the proof to succeed. This effect is also observable in
the continuously-refined configurations using invariants generated by data-flow
analysis: They are also able to solve this verification task, and, by dynami-
cally increasing the precision, find the required auxiliary invariant even earlier
with loop bounds 112 and 111, respectively. There is also a verification task in
the benchmark set, gj2007 true-unreach-call.c.i, where most configurations
need to unroll a loop with bound 100 to prove safety, while the strong invariant
generation technique allows the proof to succeed earlier, at a loop bound of 16.
The continuously-refined configurations benefit from the same effect: KI ���←−DF
and KI ���←−KI ���←−DF solve this task at loop bounds 22 and 19, respectively.

636 D. Beyer, M. Dangl, and P. Wendler

Fig. 4. Quantile functions of k-induction-based tools
(CPAchecker in configuration KI ���←−KI ���←−DF) for
accumulated scores showing the CPU time for the suc-
cessful results; linear scale between 0 s and 1 s, logarith-
mic scale beyond

Comparison with Other
Tools. For comparison
with other k-induction-
based tools, we evalu-
ated Esbmc and Cbmc,
two software model check-
ers with support for
k-induction. For Cbmc, we
used version 5.1 in com-
bination with a wrapper
script for split-case
k-induction provided by
M. Tautschnig. For Esbmc
we used version 1.25.2
in combination with a
wrapper script that
enables k-induction (based
on the SV-COMP’13
submission [35]). We also provide results for the experimental parallel k-induction
of Esbmc, but note that our benchmark setup is not focused on parallelization
(using only two CPU cores and a CPU-time limit instead of wall time). The
CPAchecker configuration in this comparison is the one with continuously-
refined invariants and both invariant generators (KI ���←−KI ���←−DF). Table 2 gives
the results; Fig. 4 shows the quantile functions of the accumulated scores for each
configuration. The results forCbmc are not competitive, which may be attributed
to the experimental nature of its k-induction support.

Score. CPAchecker in configuration KI ���←−KI ���←−DF successfully verifies al-
most 500 tasks (20 %) more than Esbmc. Furthermore, it has only 1 missed bug,
which is related to unsoundness in the handling of some C features, whereas
Esbmc has more than 150 wrong safety proofs. This large number of wrong
results must be attributed to the unsound heuristic of Esbmc for strengthen-
ing the induction hypothesis, where it retains potentially incorrect information
about loop-modified variables [35]. We have previously also implemented this
approach in CPAchecker and obtained similar results [8]. The large number of
wrong proofs reduces the confidence in the soundness of the correct proofs. Con-
sequently, the score achieved by CPAchecker in configuration KI ���←−KI ���←−DF
is much higher than the score of Esbmc (4 282 compared to 1 674 points). This
clear advantage is also visible in Fig. 4. The parallel version of Esbmc performs
somewhat better than its sequential version, and misses fewer bugs. This is due
to the fact that the base case and the step case are performed in parallel, and the
loop bound k is incremented independently for each of them. The base case is
usually easier to solve for the SMT solver, and thus the base-case checks proceed
faster than the step-case checks (reaching a higher value of k sooner). Therefore,
the parallel version manages to find some bugs by reaching the relevant k in
the base-case checks earlier than in the step-case checks, which would produce

Boosting k-Induction with Continuously-Refined Invariants 637

a wrong safety proof at reaching k. However, the number of wrong proofs is still
much higher than with our approach, which is conceptually sound. Thus, the
score of the new, sound approach is more than 2 500 points higher.

Performance. Table 2 shows that our approach needs only 10 % more CPU time
than the sequential version of Esbmc for solving a much higher number of tasks,
and even needs less CPU and wall time than the parallel version of Esbmc.
This indicates that due to our invariants, we succeed more often with fewer
loop unrollings, and thus in less time. It also shows that the effort invested for
generating the invariants is well spent.

Final Value of k. The bottom of Table 2 contains some statistics on the final value
of k that was needed to verify a program. The table shows that for safe programs,
CPAchecker needs a loop bound that is (on average) only about one third of
the loop bound that Esbmc needs. This advantage is due to the use of generated
invariants, which make the induction proofs easier and likely to succeed with
a smaller number of k. The verification task array true-unreach-call2.i is
solved by Esbmc after completely unwinding the loop, therefore reaching the
large k-value 2 048. In the parallel version, the (quicker) detached base case hits
this bound while the inductive step case is still at k = 1952.

Comparison with Other Approaches. We also compare our combination of
k-induction with continuously-refined invariants with other common approaches
for software verification. We use for comparison two analyses based on CEGAR,
a predicate analysis [13] and a value analysis [14]. Both are implemented in
CPAchecker, which allows us to compare the approaches inside the same tool,
using the same run-time environment, SMT solver, etc., and focus only on the
conceptual differences between the analyses.

Fig. 5. Quantile functions of different approaches
implemented in CPAchecker (k-induction in configu-
ration KI ���←−KI ���←−DF) for accumulated scores showing
the CPU time for the successful results

Figure 5 shows a quan-
tile plot to compare the
configuration KI ���←−KI ���←−
DF with CPAchecker
predicate analysis and
value analysis. The pred-
icate analysis solves 2 463
verification tasks in a total
of 280 CPU hours, and
achieves a score of 4 201.
The value analysis solves
2 367 verification tasks in
a total of 303 CPU hours,
andachieves a score of 4 216
because it has a few wrong
results less.Thehigher num-
ber of solved tasks (2 519)
and the higher score (4 282)

638 D. Beyer, M. Dangl, and P. Wendler

of the k-induction-based configuration show that k-induction is clearly competi-
tive with the state-of-the-art in software verification, if it is boosted by injecting
continuously-refined invariants.

4 Conclusion

We have presented the novel idea of injecting invariants into k-induction that
are generated using data-flow analysis with dynamic precision adjustment, and
contribute a publicly available implementation of our idea within the software-
verification framework CPAchecker. Our extensive experiments show that the
new approach outperforms all existing implementations of k-induction for soft-
ware verification, and that it is competitive compared to other, more mature tech-
niques for software verification. We showed that a sound, effective, and efficient
k-induction approach to general-purpose software verification is possible, and that
the additional resources required to achieve these combined benefits are negligible
if invested judiciously. At the same time, there is still room for improvement of
our technique. An interesting improvement would be to add an information flow
between the two cooperating algorithms in the reverse direction. If the k-induction
procedure could tell the invariant generation which facts it misses to prove safety,
this could lead to a more efficient and effective approach to generate invariants
that are specifically tailored to the needs of the k-induction proof. Already now,
CPAchecker is parsimonious in terms of unrollings, compared to other tools.
The low k-values required to prove many programs show that even our current
invariant generation is powerful enough to produce invariants that are strong
enough to help cut down the necessary number of loop unrollings. k-induction-
guided precision refinement might direct the invariant generation towards provid-
ing weaker but still useful invariants for k-induction more efficiently.

Acknowledgments. We thank M. Tautschnig and L. Cordeiro for explaining the opti-
mal available parameters for k-induction, for the verifiersCbmc andEsbmc, respectively.

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools.
Addison-Wesley, Reading (1986)

2. Awedh, M., Somenzi, F.: Automatic invariant strengthening to prove properties
in bounded model checking. In: Proceedings of DAC, pp. 1073–1076. ACM/IEEE
(2006)

3. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: SLAM and static driver verifier: tech-
nology transfer of formal methods inside microsoft. In: Proceedings of IFM, LNCS,
vol. 2999, pp. 1–20. Springer (2004)

4. Ball, T., Levin, V., Rajamani, S.K.: A decade of softwaremodel checking with SLAM.
Commun. ACM 54(7), 68–76 (2011)

5. Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured programs. In:
Proceedings of PASTE, pp. 82–87. ACM (2005)

Boosting k-Induction with Continuously-Refined Invariants 639

6. Beyer, D.: Second competition on software verification. In: Proceedings of TACAS,
LNCS, vol. 7795, pp. 594–609. Springer (2013)

7. Beyer, D.: Software verification and verifiable witnesses. In: Proceedings of TACAS,
LNCS, vol. 9035, pp. 401–416. Springer (2015)

8. Beyer, D., Dangl, M., Wendler, P.: Combining k-induction with continuously-
refined invariants. Technical Report MIP-1503, University of Passau, January 2015.
arXiv:1502.00096

9. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Invariant synthesis
for combined theories. In: Proceedings of VMCAI, LNCS, vol. 4349, pp. 378–394.
Springer (2007)

10. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Path invariants. In:
Procedings of PLDI, pp. 300–309. ACM (2007)

11. Beyer, D., Henzinger, T.A., Théoduloz, G.: Program analysis with dynamic precision
adjustment. In: Proceedings of ASE, pp. 29–38. IEEE (2008)

12. Beyer, D., Keremoglu, M.:CPAchecker: A tool for configurable software verifica-
tion. In: Proceedings of CAV, LNCS, vol. 6806, pp. 184–190. Springer (2011)

13. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-
block encoding. In: Proceedings of FMCAD, pp. 189–197. FMCAD (2010)

14. Beyer, D., Löwe, S.: Explicit-state software model checking based on CEGAR and
interpolation. In: Proceedings of FASE, LNCS, vol. 7793, pp. 146–162. Springer
(2013)

15. Biere, A.: Handbook of Satisfiability. IOS Press, Amsterdam (2009)
16. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model check-

ing. Adv. Comput. 58, 117–148 (2003)
17. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs.

In: Proceedings of TACAS, LNCS, vol. 1579, pp. 193–207. Springer (1999)
18. Bjørner, N., Browne, A., Manna, Z.: Automatic generation of invariants and inter-

mediate assertions. Theor. Comput. Sci. 173(1), 49–87 (1997)
19. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,

D., Rival, X.: A static analyzer for large safety-critical software. In: Proceedings of
PLDI, pp. 196–207. ACM (2003)

20. Bradley, A.R., Manna, Z.: Property-directed incremental invariant generation. FAC
20(4–5), 379–405 (2008)

21. Christ, J., Hoenicke, J., Nutz, A.: SMTInterpol: An interpolating SMT solver. In:
Proceedings of SPIN, LNCS, vol. 7385, pp. 248–254. Springer (2012)

22. Cordeiro, L., Fischer, B., Silva, J.P.M.: SMT-based bounded model checking for
embedded ANSI-C software. In: Proceedings of ASE, pp. 137–148. IEEE (2009)

23. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Procedings of POPL, pp. 84–96 (1978)

24. Donaldson, A.F., Haller, L., Kroening, D.: Strengthening induction-based race
checking with lightweight static analysis. In: Proceedings of VMCAI, LNCS, vol.
6538, pp. 169–183. Springer, Heidelberg (2011)

25. Donaldson, A.F., Haller, L., Kroening, D., Rümmer, P.: Software verification using
k -induction. In: Proceeding of Static Analysis. LNCS, vol. 6887, pp. 351–368.
Springer (2011)

26. Donaldson, A.F., Kroening, D., Rümmer, P.: Automatic analysis of scratch-pad
memory code for heterogeneous multicore processors. In: Proceedings of TACAS,
LNCS, vol. 6015, pp. 280–295. Springer (2010)

27. Donaldson, A.F., Kröning, D., Rümmer, P.: Automatic analysis of DMA races using
model checking and k-induction. FMSD 39(1), 83–113 (2011)

http://arxiv.org/abs/1502.00096

640 D. Beyer, M. Dangl, and P. Wendler

28. Garoche, P.-L., Kahsai, T., Tinelli, C.: Incremental invariant generation using logic-
based automatic abstract transformers. In: Proceedings of NFM, LNCS, vol. 7871,
pp. 139–154. Springer (2013)

29. Große, D., Le, H.M., Drechsler, R.: Proving transaction and system-level properties
of untimed SystemC TLM designs. In: Proceedings of MEMOCODE, pp. 113–122.
IEEE (2010)

30. Gupta,A.,Rybalchenko,A.: InvGen: an efficient invariant generator. In: Proceedings
of CAV, LNCS, vol. 5643, pp. 634–640. Springer (2009)

31. Albarghouthi, A., Gurfinkel, A., Li, Y., Chaki, S., Chechik, M.: UFO: verification
with interpolants and abstract interpretation. In: Proceedings of TACAS, LNCS,
vol. 7795, pp. 637–640. Springer (2013)

32. Kahsai, T., Ge, Y., Tinelli, C.: Instantiation-based invariant discovery. In: Proceed-
ings of NFM, LNCS, vol. 6617, pp. 192–206. Springer (2011)

33. Kahsai, T., Tinelli, C.: Pkind: a parallel k-induction based model checker. In: Pro-
ceedings of International Workshop on Parallel and Distributed Methods in Verifi-
cation, EPTCS 72, pp. 55–62 (2011)

34. Khoroshilov, A., Mutilin, V., Petrenko, A., Zakharov, V.: Establishing linux driver
verification process. In: Proceedings of PSI, LNCS, vol. 5947, pp. 165–176. Springer
(2010)

35. Morse, J., Cordeiro, L., Nicole, D., Fischer, B.: Handling unbounded loops with
ESBMC 1.20. In: Proceedings of TACAS, LNCS, vol. 7795, pp. 619–622. Springer
(2013)

36. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable analysis of linear systems
using mathematical programming. In: Proceedings of VMCAI, LNCS, vol. 3385,
pp. 25–41. Springer (2005)

37. Sheeran, M., Singh, S., St̊almarck, G.: Checking safety properties using induc-
tion and a SAT-solver. In: Proceedings of FMCAD, LNCS, vol. 1954, pp. 108–125.
Springer (2000)

38. Wahl, T.: The k-induction principle (2013). http://www.ccs.neu.edu/home/wahl/
Publications/k-induction.pdf

http://www.ccs.neu.edu/home/wahl/Publications/k-induction.pdf
http://www.ccs.neu.edu/home/wahl/Publications/k-induction.pdf

Fast Interpolating BMC

Yakir Vizel1, Arie Gurfinkel2(B), and Sharad Malik1

1 Electrical Engineering Department, Princeton University, Princeton, USA
2 Carnegie Mellon Software Engineering Institute, Pittsburgh, USA

arie@sei.cmu.edu

Abstract. Bounded Model Checking (BMC) is well known for its sim-
plicity and ability to find counterexamples. It is based on the idea of
symbolically representing counterexamples in a transition system and
then using a SAT solver to check for their existence or their absence.
State-of-the-art BMC algorithms combine a direct translation to SAT
with circuit-aware simplifications and work incrementally, sharing infor-
mation between different bounds. While BMC is incomplete (it can only
show existence of counterexamples), it is a major building block of several
complete interpolation-based model checking algorithms. However, tradi-
tional interpolation is incompatible with optimized BMC. Hence, these
algorithms rely on simple BMC engines that significantly hinder their
performance. In this paper, we present a Fast Interpolating BMC (Fib)
that combines state-of-the-art BMC techniques with interpolation. We
show how to interpolate in the presence of circuit-aware simplifications
and in the context of incremental solving. We evaluate our implementa-
tion of Fib in AVY, an interpolating property directed model checker,
and show that it has a great positive effect on the overall performance.
With the Fib, AVY outperforms ABC implementation of Pdr on both
HWMCC’13 and HWMCC’14 benchmarks.

1 Introduction

Bounded Model Checking (BMC) [4,5] has emerged as an efficient bug-finding
model checking algorithm. It is based on an exploration of bounded paths in a
transition system with respect to a property. The main idea behind it is to unroll
the transition system up to a given bound k. Unrolling is done by duplicating
the transition system k times, attaching the k copies together, and creating a
formula, called the BMC or the unrolling formula, representing all paths of

This material is based upon work funded and supported by the Department of
Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University
for the operation of the Software Engineering Institute, a federally funded research
and development center. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the
views of the United States Department of Defense. This material has been approved
for public release and unlimited distribution. DM-0002152.

c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 641–657, 2015.
DOI: 10.1007/978-3-319-21690-4 43

642 Y. Vizel et al.

length k. The formula is then constrained by the checked property and is passed
to a SAT-solver. If the formula is found to be satisfiable, a counterexample of
length k exists. Otherwise, the formula is unsatisfiable, thus no counterexample
of length k exists.

State-of-the-art BMC engines are able to find a long counterexample or prove
properties up to a large bound. We call such engines fast. Their efficiency lies in a
variety of optimizations that use advances in SAT-solving, such as incrementality
and assumptions [14,15] as well as circuit-aware simplifications [1]. Circuit-aware
simplifications, such as SAT-sweeping [21], use high-level structure of the design
to simplify the unrolling formula before sending it to the SAT-solver.

While BMC is incomplete, it is the basis of many complete SAT-based
model checking algorithms, such as Interpolation-based Model Checking (Imc)
[22,27,28], and k-induction, and others (e.g., [23,25]). We focus on the applica-
tions of BMC in Imc. Imc engines use a simple, non-optimized, BMC. This
is largely due to the complexity of interpolation in the presence of circuit-
aware simplifications and incremental SAT. For instance, simplifications destroy
the structure of the unrolling formula, making interpolation difficult. Using sim-
ple BMC engines significantly hinders the performance of Imc.

In this paper, we present a Fast Interpolating BMC (Fib). Fib combines
the state-of-the-art circuit-aware simplifications, incremental solving, and inter-
polation. The key insight is to apply simplifications in a way that enables to
reconstruct the interpolants from the simplified formula to interpolants for the
original formula. To deal with incremental SAT, we extend clausal proofs [18]
and their interpolation [17] to the incremental setting.

To elaborate, let F = A(X,Y)∧B(Y,Z) be an unsatisfiable formula. A Craig
interpolant I(Y) is a formula such that A(X,Y) → I(Y) and I(Y)∧B(Y,Z) → ⊥.
An interpolant is dependent on the structure of F and its partitioning into A
and B. A simplification procedure is not aware of the interpolation partitioning of
F , and, thus, might destroy it, eliminating the ability to interpolate. For example,
consider a case where a simplification procedures finds the variables y1, y2 ∈ Y to
be equivalent. The simplified formula is F ′ = F [y2 ← y1], i.e., y2 is substituted
with y1. An interpolant I ′(Y) with respect to F ′ it is not necessarily an interpolant
with respect to F since I ′ does not have the information about y1 being equal to y2.
This equality is a consequence of F , but after substitution, it is implicitly embed-
ded in the simplified formula F ′, and thus lost.

In Fib, we simplify different partitions of the formula separately, explic-
itly propagating facts between partitions. This compactly logs the simplification
steps. Since Fib takes control from the simplifier by managing the generated
consequences, it can then use this information to reconstruct the interpolant
I ′(Y) of the simplified formula F ′ to an interpolant that matches F .

Furthermore, since interpolation requires a proof-logging SAT-solver, we
develop an incremental SAT-solver that logs proofs [18] incrementally. Unlike
a regular incremental SAT-solver, a proof-logging solver must efficiently manage
the proof and learned clauses. In the incremental setting, the proof grows with
each call to the solver. This dramatically increases the memory requirements
of the solver. We, therefore, introduce a heuristic to keep the proof as small as
possible while maintaining the benefits of an incrementality.

Fast Interpolating BMC 643

We evaluate Fib on the benchmarks from the Hardware Model Checking
Competitions (HWMCC’13 and ’14). We show that the performance of Fib lies
between that of a highly optimized (we use &bmc command of ABC [8]) and sim-
ple BMC engines. More importantly, to evaluate the impact of Fib in the context
of Imc, we have integrated it in Avy [28], an advanced interpolation-based algo-
rithm that was shown to be on-par with Pdr. We compare Avy+Fib to Avy
and to the implementation of Pdr in ABC (pdr command). Our results show
that Avy+Fib solves more instances on both HWMCC’13 and HWMCC’14
than either Avy or Pdr. Additionally, when comparing run-time, Avy+Fib
is the most efficient. Our experiments show the importance of a fast BMC
engine in Imc.

We make the following contributions: (1) we show how to combine interpola-
tion and an optimized BMC engine; (2) we implement our technique in a BMC
engine called Fib and evaluate its performance and impact in the context of an
advanced interpolation-based model checker Avy; and (3) our implementation
is publicly available and can be used by others in future research.

Related Work. There is a large body of work on structure-aware formula sim-
plification and the interaction between simplifications and SAT-solvers (e.g.,
[1,6,13,24]). However, these works do not deal with proofs or interpolation.

The closest work that deals with proofs, simplifications, and logic synthesis
is [9]. Their goal is to certify correctness of combinatorial equivalence checking
(CEC). The key insight is that the proof of simplification steps naturally corre-
sponds to extended resolution [26]. While this procedure can be used to construct
an extended resolution proof that tracks both simplifications and SAT-solving,
interpolation over extended resolution is difficult. For example, the interpolant
is worst-case exponential in the size of the proof [7].

Alternatively, advanced SAT-preprocessing can be used to simulate circuit-
aware simplifications directly on CNF [20]. For example, Blocked Clauses Elim-
ination (BCE) [19] simulates Cone-Of-Influence (COI) reduction. Recently, a
proof format, called DRAT, that can log such preprocessing efficiently, was intro-
duced in [29]. However, since DRAT simulates extended resolution, interpolation
is not trivial and the same problem as in [9] arises. In contrast, our approach
uses existing simplification and interpolation procedures and guarantees that the
interpolants are linear in the size of resolution proofs involved.

2 Preliminaries

In this section we describe the needed background for the reminder of the paper.

Propositional Satisfiability. Given a set U of Boolean variables, a literal � is a
variable u ∈ U or its negation. A clause is a disjunction of literals. A proposi-
tional formula F in Conjunctive Normal Form (CNF) is a conjunction of clauses.
It is often convenient to treat a clause as a set of literals, and a CNF as a set of
clauses. For example, given a CNF formula F , a clause c and a literal �, we write

644 Y. Vizel et al.

� ∈ c to mean that � occurs in c, and c ∈ F to mean that c occurs in F . A CNF
is satisfiable if there exists a satisfying assignment such that every clause in it is
evaluated to �. Otherwise, it is unsatisfiable. A SAT-solver is a complete decision
procedure that determines whether a given CNF is satisfiable. If the clause set is
satisfiable then the SAT solver returns a satisfying assignment for it. Otherwise,
if the solver is proof-logging, it produces a proof of unsatisfiability [16,17,23,30].
In this work we use DRUP-proofs [18]. A DRUP-proof π is a sequence of all
clauses learned and deleted during the execution of the SAT-solver, in the order
in which the learning and deletion happen.

We assume that the reader is familiar with the basic interface of an incre-
mental SAT-solver [14]. We use the following API: (a) Sat Add(ϕ) adds clauses
corresponding to the formula ϕ to the solver; (b) Sat DB is the set of all currently
added clauses; (c) Sat Reset resets the solver to the initial state; (d) To Cnf(F)
converts a formula F to CNF; (e) Sat Solve(A) returns true if Sat DB is satisfi-
able; Note that Sat Solve(A) optionally takes a set of literals A, called assump-
tions. If A is not empty, then Sat Solve(A) determines whether A and Sat DB
are satisfiable together. We also use Is Sat(ϕ) for deciding whether ϕ is satisfi-
able, and Sat Mus(F) for a Minimal Unsatisfiable Subset (MUS) [11] of a CNF
F . The MUS is computed relative to the clauses already added to the solver.

Modeling Hardware Circuits. A hardware circuit can be described by a propo-
sitional formula where state variables (registers), and primary inputs are rep-
resented by Boolean variables V and Z, respectively, and the logical operators
correspond to the gates. Let V ′ be a set of primed Boolean variables representing
a successor value of state variables V . For each variable v ∈ V , let fv(V,Z) be
the next-state function (NSF) of v. The operation of the circuit is captured by
a transition relation Tr(V,Z, V ′) ≡

∧
v′∈V ′ v′ = fv(V,Z).

For example, a counter circuit shown in Fig. 1(a) can be modeled by a tran-
sition system Tr({v0, v1, v2}, ∅, {v′

0, v
′
1, v

′
3}) defined as a conjunction of the fol-

lowing NSFs:

v′
0 = ¬v0 v′

1 = v0
= v1 v′
2 = v2

A state s is an assignment to the state variables V . It can be represented
as a conjunction of literals that is satisfied in s. More generally, a formula over
V represents the set of states that satisfy it. A transition system is a tuple
T = 〈V,Z, Init ,Tr , P 〉, where the formulas Init(V) and P (V) over V represent
the set of initial states and safe states of a circuit, respectively. We call ¬P (V)
the set of bad states. For simplicity, we assume that Init(V) =

∧
v∈V ¬v and

P (V) is a literal. Tr(V,Z, V ′) is a transition relation associating a state s to
its successor state s′ under a given assignment of the inputs Z. For simplicity,
we often omit the primary inputs Z from the transition relation, and omit V
and Z from the signature of the transition system when they are clear from the
context. We write V i is to denote the variables in V after i steps of the transition
relation. Thus, V 0 ≡ V and V 1 ≡ V ′.

Every propositional formula can be represented by a combinational circuit or
a graph. One such representation is And Inverted Graph (AIG) [3]. A formula

Fast Interpolating BMC 645

P

v0

v1

v2

(a) Counter

v0
0

v0
1

v0
2

P 1

v1
0

v1
1

v1
2

v2
0

v2
1

v2
2

P 2

(b) Unrolling of the counter to k = 2

Fig. 1. A counter and its unrolling.

Input: A transition system T = (Init ,Tr ,¬P), and a number N
1 if Is Sat(Init ∧ ¬P) then return CEX
2 for k ← 1 to N do
3 Gk ← Init(V 0) ∧ (

∧k−1
i=0 Tr(V i, V i+1)) ∧ ¬P (V k)

4 if Is Sat(Gk) then return CEX
5 end
6 return No CEX of length ≤ N

Fig. 2. A Simple BMC.

ϕ(X) over a set of variables X corresponds to a circuit with a set of inputs X,
internal nodes corresponding to logical operators, and an output Oϕ that is set
to 1 for all assignments to the input X that satisfy ϕ. Note that a circuit with
multiple outputs represents multiple, independent, propositional formulas – one
per output.

Bounded Model Checking. A transition system T is unsafe iff there exists a path
from the initial state in Init to a bad state in ¬P that satisfies the transition
relation. This path is called a counterexample. T is unsafe iff there exists a
number k such that the following k-unrolling formula is satisfiable:

Init(V 0) ∧
(

k−1∧

i=0

Tr(V i, V i+1)

)

∧ ¬P (V k) (1)

It is useful to view (1) as a combinatorial circuit with inputs V 0 and a single
output representing the value of ¬P (V k). For example, a circuit corresponding
to two unrollings of the counter in Fig. 1(a) is shown in Fig. 1(b). Each step of
the unrolling (indicated by dashed lines in the figure) is called a frame.

SAT-based Bounded Model Checking (BMC) [5] determines whether a tran-
sition system is unsafe by deciding satisfiability of the unrolling formula (1) for
increasing values of k. A simple BMC algorithm in shown in Fig. 2.

In practice, fast state-of-the-art BMC implementations combine the simple
reduction of BMC to SAT with circuit-aware simplifications of the unrolling

646 Y. Vizel et al.

Input: A transition system T = (Init ,Tr ,¬P), a number N
1 if Is Sat(Init ∧ ¬P) then return CEX

2 G ← Init(V 0) ∧
(∧N

i=0 Tr(V
i, V i+1)

)

3 (G′, E) ← Simplify(G, ∅)
4 for k ← 1 to N do
5 Cone ← Get Coi(G′,¬P (V k))
6 Sat Add(Cone)
7 if Sat Solve({¬P (V k)}) then return CEX
8 end
9 return No CEX of length ≤ N

Fig. 3. Fast BMC.

formula. Furthermore, they use an incremental SAT interface to share learned
clauses between checks for different values of k. To give a general account of
circuit aware simplifications, we abstract them using a function

G′(X,Y), E′(Y) = Simplify(G(X,Y), E(X)) (2)

that takes a formula G(X,Y) and a set of input constraints E over X and returns
a simplified formula G′(X,Y) and a set of output constraints E′(Y) such that:

E(X) → (G′(X,Y) ≡ G(X,Y)) (E(X) ∧ G(X,Y)) → E′(Y) (3)

The form of admissible constraints in E depends on the simplification. For exam-
ple, constant propagation (CP) or ternary simulation requires that E(X) is of
the form

∧
i xi = ci, where xi ∈ X and ci ∈ {0, 1}. The output constraints E′(Y)

for CP are also of the same form. Another, more general simplification, is SAT-
sweeping [21] which, restricts the constraints to be equalities between inputs.
For our purposes, the inner workings of the simplifications are not important,
and we refer an interested reader to ample literature on this subject.

A pseudo-code of a fast BMC is shown in Fig. 3. Unlike simple BMC (Fig. 2),
it first constructs a complete unrolling (line 2), then applies circuit-aware sim-
plifications (line 3), and enters the main loop. In each iteration of the loop, it
uses a function Get Coi to find the cone-of-influence of the output at depth k
(line 5), adds the clauses corresponding to the cone to the solver (line 6, and
checks whether the current set of clauses is unsatisfiable together with assump-
tion ¬P (V k) (line 7). For simplicity, we assume that conversion to CNF is deter-
ministic and that Sat Add silently ignores clauses that are already known to the
solver. A fast BMC is significantly faster than simple BMC and can get much
deeper into the circuit.

Craig interpolation. Given a pair of inconsistent formulas (A,B) (i.e., A ∧ B |=
⊥), a Craig interpolant [10] for (A,B) is a formula I such that:

A → I I → ¬B L(I) ⊆ L(A) ∩ L(B) (4)

Fast Interpolating BMC 647

where L(A) denotes the set of all variables in A. A sequence (or path) interpolant
extends interpolation to a sequence of formulas. We write F = [F1, . . . , FN] to
denote a sequence with N elements, and Fi for the ith element of the sequence.
Given an unsatisfiable sequence of formulas A = [A1, . . . , AN], (i.e., A1 ∧ · · · ∧
AN |= ⊥) a sequence interpolant I = seqItp(A) for A is a sequence of formulas
I = [I1, . . . , IN−1] such that:

A1 → I1 ∀1 < i < N · Ii−1 ∧ Ai → Ii IN−1 ∧ AN → ⊥ (5)

and for all 1 ≤ i ≤ N , L(Ii) ⊆ L(A1 ∧ · · · ∧ Ai) ∩ L(Ai+1 ∧ · · · ∧ AN).

3 Simplification-Aware Interpolation

We begin with an illustration of the difficulties of interpolation in the presence
of circuit-aware simplifications. Consider the counter circuit and its unrolling
G shown in Fig. 1. Recall, initially all registers are zero. Assume that we want
an interpolant between the first and second frames G0 and G1, respectively,
where G = G0 ∧ G1, under the assumption ¬P 2 = ¬(v2

0 ∧ v2
1 ∧ v2

2). Simplifying
G using constant propagation, which replaces outputs of gates with constants
based on the values of its inputs, reduces it to v2

0 = 0 ∧ v2
1 = 1 ∧ v2

2 = 0 that
is trivially unsatisfiable together with ¬P 2. However, the simplification destroys
the partitioning structure of G, making interpolation meaningless. Alternatively,
assume that the simplification does not eliminate intermediate values of the
registers. Then, the simplification might reduce G to G′ = G′

0 ∧ G′
1, where

G′
0 ≡ v1

0 = 1 ∧ v1
1 = 0 ∧ v1

2 = 0 G′
1 ≡ v2

0 = 0 ∧ v2
1 = 1 ∧ v2

2 = 0

While the partitioning structure is preserved, not every interpolant of (G′
0, G

′
1 ∧

¬P 2) is an interpolant of (G0, G1∧¬P 2). For example, � is an interpolant in the
first case, but not in the second. Such problems are even more severe for more
complicated simplifications such as SAT-sweeping, in which case additionally
variables that are local to a partition before the simplification might become
shared between partitions after.

The source of the problems is that the reasoning done by the simplification
is hidden from the interpolation procedure. One way to expose it is to use proof-
logging simplifications. Let G be a circuit, and G′ a simplified version of G such
that G → G′ and G′ → ⊥. Then, there exists a resolution proof π1 of G → G′

and a resolution proof π2 of G′ → ⊥. If we require a simplification to produce
π1 while constructing G′, and require a SAT-solver to produce π2 while deciding
satisfiability of G′, then, we can construct a complete resolution proof π = π1 ; π2

of G → ⊥ and apply interpolation to π. In fact, this approach is used in [17] for
interpolation in the presence of SAT pre-processing [12].

While there are suggestions in literature (e.g., [9]) on how to extract reso-
lution proofs out of circuit-aware simplifications, this is non-trivial. It requires
significant changes to existing simplifiers, and is particularly difficult for sim-
plifications that are done as a by-product of using efficient data-structures such

648 Y. Vizel et al.

Input: G = G0 ∧ G1 ∧ · · · ∧ Gk

1 Initialize 〈E0 ← ∅, . . . , Ek+1 ← ∅〉
2 for i ← 0 to k do
3 (G′

i, Ei+1) ← Simplify(Gi, Ei)
4 end
5 return (G′

0 ∧ · · · ∧ G′
k, 〈E1, · · · , Ek+1〉)

Fig. 4. Localized simplification (Loc Simp(G)).

as AIGs and BDDs. Furthermore, as shown in [9], circuit-aware simplifications
correspond naturally to extended resolution proofs. However, interpolation over
extended resolution is difficult, and the interpolants are worst-case exponen-
tial in the size of the proof. Furthermore, the proof logging is likely to incur a
non-trivial overhead and is likely to be much more detailed than necessary for
interpolation in our target applications.

In this section, we suggest an alternative light-weight approach. Instead
of applying the simplifications to the complete unrolling, we apply them to
each individual frame (or partition), and propagate constraints between frames.
Instead of requiring simplifications to be proof-logging, we log the constraints
that are exchanged. In our setting, simplifications preserve the partitioning of
the original formula. We show how to use the logged constraints to reconstruct
a sequence interpolant of the simplified formula to a sequence interpolant of the
original formula. Finally, we propose a minimization algorithm to ensure that
the final interpolant does not contain redundant constraints.

Constraint-Logging Simplifications. Let G = G0(V 0, V 1) ∧ · · · ∧ Gk(V k, V k+1)
be a formula divided into k partitions. Note that variables are shared between
two adjacent partitions only. Our constraint-logging simplification algorithm
Loc Simp is shown in Fig. 4. It processes the formula G left-to-right. In each
step, it simplifies Gi using constraints Ei of the prefix, and generates new con-
sequences Ei+1 to be used by the next step. For example, if G is an unrolling
formula, then Ei is a set of consequences that are implied by the states reachable
in (i + 1) states from the initial state. Note that in this case, the initial state is
embedded in G0.

Let G′ = G′
0∧· · ·∧G′

k be a formula obtained by Loc Simp(G) and E1, . . . , Ek+1

be the corresponding trail of constraints. Assume that G′ is unsatisfiable, and let
I = 〈I1, . . . , Ik〉 be a sequence interpolant of G′. Recall that I is an interpolant
w.r.t. the simplified formula G′ and, therefore, may not be an interpolant w.r.t.
the original formula G. The reason is that some of the consequences that were
generated by the simplification are present implicitly in the simplified formula
and, thus, are missing from the interpolant. This requires a post-processing step
that adds the missing information to the sequence-interpolant.

Theorem 1. Let G = G0(V 0, V 1) ∧ · · · ∧ Gk(V k, V k+1) be a formula parti-
tioned into k parts, and let (G′ = G′

0 ∧ · · · ∧ G′
k, 〈E1, . . . , Ek+1〉) be the result of

Fast Interpolating BMC 649

Loc Simp(G). If G′ is unsatisfiable and 〈I ′
1, . . . , I

′
k〉 is a sequence-interpolant of

G′ then

– G is unsatisfiable, and
– 〈I ′

1 ∧ E1, . . . , I
′
k ∧ Ek〉 is a sequence-interpolant of G.

Proof. Since 〈I ′
1, . . . , I

′
k〉 is a sequence-interpolant of G′ we know that:

G′
0 → I ′

1 ∀1 ≤ i < k · (I ′
i ∧ G′

i) → I ′
i+1 I ′

k ∧ G′
k → ⊥ (6)

By construction, the trail 〈E0, . . . , Ek+1〉 satisfies:

G0 → E1 ∀1 ≤ i ≤ k · (Ei ∧ Gi) → Ei+1 (7)

Finally, by the properties of Simplify, we have:

G0 → G′
0 ∀1 ≤ i < k · (Ei ∧ Gi) → G′

i (8)

Combining the above together, we get:

G0 → I ′
1 ∧ E1 ∀1 ≤ i < k · (I ′

i ∧ Ei ∧ Gi) → (I ′
i+1 ∧ Ei+1) I ′

k ∧ Ek ∧ G′
k → ⊥

(9)

Theorem 1 gives a simple way to reconstruct a sequence-interpolant of the
simplified formula to the original formula. However, the resulting interpolant
is likely not to be minimal. Each Ei may contain many constraints that are
not necessary for the validity of the sequence-interpolant. Thus, we propose an
algorithm to minimize sequence interpolants. First, we formally define what we
mean by minimality.

Definition 1. Let Ī = 〈I1, . . . , Ik〉 be a sequence-interpolant where each element
Ii is a conjunction (or a set) of constraints. The sequence Ī is minimal if any
other sequence obtained by removing at least one constraint from any of the Ii

is not a sequence-interpolant.

Our algorithm, Min Itp, is shown in Fig. 5. It takes a partitioned formula G and
a sequence interpolant I as input, and returns a minimal sequence interpolant
I ′. It applies an iterative backward search for the necessary constraints from Ik

to I1. In each iteration, it computes the needed constraints I ′
i ⊆ Ii that ensures

that I ′
i ∧Gi → I ′

i+1. This is accomplished by asserting Gi ∧¬I ′
i+1 and computing

an MUS of Ii relative to those background constraints. The soundness of Min Itp
follows from the loop invariant described above. The minimality follows from the
minimality of the MUS computation.

Lemma 1. Let G = G0(V 0, V 1) ∧ · · · ∧ Gk(V k, V k+1) be an unsatisfiable for-
mula partitioned into k parts, and I be its sequence interpolant. Then, I′ =
Min Itp(G, I) is a minimal sequence interpolant for G.

650 Y. Vizel et al.

Input: G = G0 ∧ · · · ∧ Gk, I = 〈I1, . . . , Ik〉
1 Ik+1 = ⊥
2 for i ← k to 1 do
3 Sat Reset()
4 Sat Add(¬Ii+1)
5 Sat Add(Gi)
6 I ′

i = Sat Mus(Ii)
7 end
8 return 〈I ′

1, . . . , I
′
k〉

Fig. 5. Minimal sequence-interpolant Min Itp(G, I).

Recall that in the traditional interpolation techniques the size of the inter-
polant is linear in the size of the resolution proof. In the presence of the sim-
plifications, the size of the interpolant is linear in the size of the resolution
proof of the simplified formula and the number of constraints introduced by the
simplification, whichever is greater. Let F = A(X,Y) ∧ B(Y,Z) be an unsat-
isfiable formula and F ′ = A′(X,Y) ∧ B′(Y,Z) be a simplified formula, where
(A′, E) = Simplify(A, ∅), and B′ = Simplify(B,E). An interpolant I ′, com-
puted with respect to F ′, is linear in the size of the resolution proof for F ′.
Let the size of E be bounded by ψ(A) (i.e. |E| ≤ ψ(A)), and let I = I ′ ∧ E
be the interpolant constructed by our method. Since I is generated by adding
constraints from E to I ′, its size is bounded by max{|I ′|, ψ(A)}. Interestingly,
for common simplifications like CP and SAT-sweeping, ψ(A) = |Y |, it can only
generate as many consequences as the number of interface variables. Thus, in
this case the size of interpolant is bounded by the number of shared variables or
the size of the simplified proof, whichever is greater.

Fast Interpolating BMC. Using the machinery of simplification-aware interpola-
tion, we now present our fast interpolating BMC (Fib) algorithm. The pseudo-
code of Fib is shown in Fig. 6. Structurally, it is similar to the fast BMC shown
in Fig. 3. The first difference is that the unrolling formula G is partitioned into
frames Gi. Second, instead of simplifying the unrolling, we use Loc Simp to sim-
plify each frame and collect the trail of side-constraints. Then, in each iteration
of the main loop, the cone of influence of the current ¬P (V k) is computed and
added to the SAT-solver. If the result is UNSAT, Fib computes an interpolant
of the current simplified k-unrolling, extends it with the side-conditions, and
minimizes using Min Itp. The result is made available to the user using a call
to yield. Thus, in addition to detecting counterexamples, Fib computes a trail
of sequence interpolants. One sequence for each safe bound.

Note that we assume that it is possible to compute interpolants (see the call
to ttSat Itp) in an incremental SAT-solver. That is, we expect interpolants to be
available after the SAT-solver is called with assumptions, and during repeated
calls to Sat Solve with new clauses added in between. While in theory support-
ing interpolation in an incremental SAT-solver is straight-forward, it is difficult
to do efficiently in practice. We address this issue in the next section.

Fast Interpolating BMC 651

Input: T = (Init ,Tr , P), a number N ≥ 0
1 if Is Sat(Init ∧ ¬P) then return CEX
2 else yield 〈P 〉
3 G0 ← Init(V 0) ∧ Tr(V 0, V 1)
4 for i ← 1 to N − 1 do Gi ← Tr(V i, V i+1)
5 (G′, 〈E1, . . . , EN 〉) = Loc Simp(G0 ∧ · · · ∧ GN−1)
6 for k ← 1 to N do
7 Cone ← Get Coi(G′,¬P (V k))
8 Sat Add(Cone)
9 if Sat Solve(¬P (V k)) then return CEX

10 〈I ′
1, . . . , I

′
k〉 ← Sat Itp(k)

11 〈I1, . . . , Ik〉 ← 〈I ′
1 ∧ E1, . . . , I

′
k ∧ Ek〉

12 yield Min Itp(G, 〈I1, . . . , Ik〉)
13 end
14 return No CEX of length ≤ N

Fig. 6. Fast Interpolating BMC (Fib).

4 Interpolating Incremental SAT Solver

In this section, we describe our implementation of an interpolating incremental
solver that supports both an incremental addition of clauses and solving with assu-
mptions. The keys to our approach are DRUP [18] and DRUP-interpolation [17].

DRUP proofs were introduced in [18] in the context of SAT-solver certifica-
tion. Since we use them for interpolation, we begin by reviewing DRUP-proofs
and interpolation as they appear in [17]. Let F be an unsatisfiable propositional
formula in CNF. A DRUP-proof π is a sequence of all clauses learned and deleted
during the execution of the SAT-solver, in the order in which the learning and
deletion happen. Meaning, the first clause in π is the first learned clause, and
the last clause is the empty clause. Let π = 〈c0, . . . , cn〉 be a DRUP-proof, then
a non-deleted clause ci is derivable by trivial resolution [2] from F and from all
non-deleted clauses cj for 0 ≤ j < i. The interpolation procedure in [17] labels
each clause in ci ∈ π with a sequence of propositional formule Ī(ci), where the
label of the last clause, i.e. Ī(cn), is the sequence-interpolant.

Fib uses the SAT-solver incrementally in two ways: (1) the solver is called
with assumptions, and (2) new clauses are added. The two steps are iterated
repeatedly. Because of multiple calls, the learned clauses that are currently part
of the SAT-solver’s database are being used in a consecutive calls to the solver.

We first address the problem of interpolation under assumptions. In the pres-
ence of assumptions, the final learned clause produced by the solver, provided
that the instance is unsatisfiable, is not the empty clause, but a clause contain-
ing negated assumption literals. We claim that whenever the assumptions are
local to each interpolation-partition the formula that marks the final clause is
the sequence-interpolant.

652 Y. Vizel et al.

Proposition 1. Let F = F1(X1, Y1,X2) ∧ · · · ∧ Fk(Xk, Yk,Xk+1) be a propo-
sitional formula in CNF. Assume that F is unsatisfiable under assumptions
{a1, . . . , ak}. Let π = {c0, . . . , cn} be a corresponding DRUP-proof. If for all
1 ≤ i ≤ k, ai ∈ Yi, then a Ī(cn) is a sequence-interpolant of

∧k
i=1(Fi ∧ ai).

Incremental addition of new clauses and multiple calls to Sat Solve create
new challenges to a proof-logging SAT solver. First, the solver must ensure that
the DRUP-proof remains consistent. More precisely, every learned clause in a
DRUP-proof must be derivable by trivial resolution [2] using original clauses and
learned clauses that were part of Sat DB when it was learned. This is tricky in an
incremental setting because original clauses might be added after learned clauses.
For example, assume that initially Sat DB contained the set of original clauses F1

and after some time the DRUP-proof is a sequence of two clauses (c1, c2). Then,
by the DRUP property, c2 follows from F1∧c1 by trivial resolution. Next, assume
that additional original clauses F2 were added to the solver via Sat Add. After
some time, the DRUP-proof might be (c1, c2, c3). At this point, the fact that c2

is derivable only from F1 and c1 is lost. This makes it difficult to reconstruct
(or even approximate) the original resolution proof produced by the SAT-solver
to derive c2. While this might be an issue if the goal is to validate the solver,
it is not in our case. The database of clauses Sat DB is growing monotonically.
Thus, if a clause was derivable by a trivial resolution at one point, it remains
derivable if new clauses are added to the database. Hence, in our implementation,
we disregard the order in which the original clauses are added to the database.
Thus, the proof that is found during interpolation might be significantly different
from the original proof used implicitly by the SAT-solver.

Another challenge is memory requirement. In an incremental solver, learned
clauses are re-used between the calls to Sat Solve and the number of learned
clauses grows monotonically. This is not an issue for non-interpolating solvers
since they prune learned clauses even in a non-incremental mode. However, an
interpolating solver that logs the DRUP-proof must keep all clauses ever learned
in memory because even though a clause is deleted at one time, it might have
participated in the proof at prior time. To address this, we use the following
heuristic. Recall that DRUP-interpolation first finds the core clauses and then
traverses them, rebuilding the proof and generating the interpolant. We change
it to also mark as core the unit clauses that are on the trail during the last
conflict. The intuition is that units are very strong consequences and are likely
to be useful in other Sat Solve calls. Finally, between every call to Sat Solve,
we prune the DRUP proof and the learned clauses from all non-core clauses.
Thus, the only learned clauses that remain between Sat Solve calls are clauses
that appear in the last resolution proof, units on the trail, and clauses that are
necessary to derive the units from Sat DB.

5 Experiments

We have implemented Fib inside our model checking framework Avy1. We
evaluate our implementation of Fib in two ways. First, we evaluate Fib as a
1 Source code is available at: https://bitbucket.org/arieg/extavy.

https://bitbucket.org/arieg/extavy

Fast Interpolating BMC 653

BMC engine by comparing it with both a simple BMC and a fast BMC (&bmc)
of ABC [8]. Second, we integrate Fib in Avy, an Interpolation-based Model
Checker, and show the impact it has on performance, both in run-time and the
number of solved instances. We use all of HWMCC’13 and ’14 benchmarks, an
Intel Xeon 2.4GHz processor with 128GB of memory, and a timeout of 900 s.

BMC Evaluation. We compare Fib to a simple BMC implementation, and then
to a fast BMC of ABC. We expect Fib to perform in between the fast and simple
BMCs. Figure 7 shows a comparison of runtime when running all the different
BMC algorithms until depth 40 on the benchmarks in which at least one tool
ran to completion. That is, at least one tool either finds a counterexample or
proves no counterexamples of depth up to 40. As expected, Fib is more efficient
than a simple BMC on most cases and ABC BMC is more efficient than Fib.
Some of the difference are due to the way simplification is applied in Fib. We
believe that with a more careful implementation this gap can be closed.

(a) Fib vs. Simple BMC (b) Fib vs. ABC’s BMC

Fig. 7. Runtime comparison between Fib, ABC’s BMC (&bmc) and Simple BMC. Points
above the line are in favor of Fib. Square represents a timeout.

Figure 8 shows a comparison of the depth reached during an execution of the
algorithms for bound 40 in the presence of a predefined time limit. Clearly, Fib
reaches deeper bounds compared to the simple BMC engine. Compared to ABC
BMC, Fib is mostly on par with a few cases in favor of ABC. Note that the
problem is exponential in the depth, so even a small increase is significant.

On a few test cases, we have noticed that Fib performs worse than a sim-
ple BMC engine. Analyzing those cases revealed that sometime the simplified
formula, even though having less clauses and less variables, is harder for the
SAT-solver. While this is not a common case, it may happen. Our intuition is
that this is most likely due to the solver spending more time in a harder part of
the search space.

Model Checking Evaluation. For these sets of experiments, we have integrated
Fib in Avy and called it Avy+Fib. We compared Avy+Fib with the original

654 Y. Vizel et al.

(a) Fib vs. Simple BMC (b) Fib vs. ABC’s BMC

Fig. 8. Depth comparison between Fib, ABC’s BMC and Simple BMC. Triangles are
cases solved to completion by at least one tool. Points below the line are in favor of
Fib. Triangle represents timeout.

Table 1. Summary of solved instances on HWMCC’13 and HWMCC’14.

Benchmark Status Avy+Fib Avy Pdr VBS(Avy+Fib) VBS(Avy)

HWMCC’13 SAFE 67 66 50 76 74

UNSAFE 19 19 16 22 22

Runtime (s) 151,302 156,806 167,302 – –

HWMCC’14 SAFE 60 56 49 64 60

UNSAFE 28 24 20 31 30

Runtime (s) 126,293 139,336 150,586 – –

Avy and with ABC implementation of Pdr (pdr). Table 1 summarizes the num-
ber of solved instances by each algorithm and total runtime on the entire bench-
mark. Avy+Fib solves the most cases in both HWMCC’13 and HWMCC’14.
On HWMCC’13 it solves 5 more cases than Avy and 32 more cases than Pdr,
and it cannot solve 4 cases solved by Avy and 12 cases solved by Pdr. On
HWMCC’14 it solves 8 more than Avy and 26 more than Pdr, and it cannot
solve 1 case solved by Avy and 7 cases solved by Pdr.

Table 1 also shows two Virtual Best (VBS) results. The first corresponds
to combining Avy+Fib and Pdr, the second to combining Avy and Pdr. As
expected, the addition of Avy+Fib to Pdr is the better option.

As we describe in Sect. 3, during the computation of an interpolant, the set
of constraints generated by the simplifier is minimized. We measured the time
minimization takes. The median value are 5.6 s and 4.78 s for HWMCC’13 and
’14, respectively. This shows that in most cases this process is efficient.

Even though Avy+Fib uses a faster BMC engine than Avy, there are still
cases solved by Avy and not by Avy+Fib. Analyzing those showed that some-
times simplification creates “noise” and forces a proof that is very dependent
on the initial state. Since Fib propagates the initial values as far as it can, it
might also increase the convergence bound of Avy. This behavior may hurt

Fast Interpolating BMC 655

(a) Avy+Fib vs. Pdr (b) Avy+Fib vs. Avy

Fig. 9. Runtime comparison of Avy+Fib, Avy+BMC and Pdr on HWMCC’13 (green)
and HWMCC’14 (blue) benchmarks. Rhombus represents a timeout.

performance, yet we rarely observe it in practice. Moreover, in some cases, even
when the convergence bound is increased, Avy+Fib is still faster than Avy.

Considering total runtime, Avy+Fib is more efficient than both Avy and
Pdr. Figure 9 shows run-time comparison per test case for each HWMCC’13
and ’14. Analyzing individual runtimes shows that Avy+Fib (just like Avy)
is very different from Pdr. Each of them performs better than the other on a
different class of benchmarks. This is evident in Fig. 9(a) where most of the points
are on the extremes (axis) of the plots. Figure 9(b) shows that Avy+Fib is more
efficient than Avy on most of the benchmarks. We also analyzed the median
value w.r.t. runtime on solved instances. Avy’s median values on HWMCC’13
and ’14 are 94.2 and 35.9, respectively. While for Avy+Fib, the values are 53.4
and 23.4 respectively.

6 Discussion and Conclusions

The paper presents a novel method for interpolation over BMC formulas when
circuit-aware simplifications are applied. Our approach is based on the observa-
tion that for the purpose of interpolation, only the consequences generated by
the simplifier need to be logged. These consequences can then be used to recon-
struct an interpolant w.r.t. to the original formula from an interpolant computed
w.r.t. the simplified formula. This approach is simpler than trying to reconstruct
the proof itself.

We implemented our approach in an engine called Fib and evaluated its
impact on model checking by incorporating it into Avy. The experimental results
show that Fib improves the performance of Avy significantly.

Fib puts some restrictions on the way the simplifier operates. This can be seen
in the gap between Fib and ABC’s BMC engine. We believe that most of these
restrictions can be removed and that interpolation is possible even when using
an unrestricted simplifier. Enabling this may further close the gap between Fib
and state-of-the-art BMC engines. We leave this challenge for future research.

656 Y. Vizel et al.

References

1. Amla, N., Du, X., Kuehlmann, A., Kurshan, R.P., McMillan, K.L.: An analy-
sis of SAT-Based model checking techniques in an industrial environment. In:
Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 254–268.
Springer, Heidelberg (2005)

2. Beame, P., Kautz, H.A., Sabharwal, A.: Towards understanding and harnessing
the potential of clause learning. J. Artif. Intell. Res. (JAIR) 22, 319–351 (2004)

3. Biere, A.: Aiger: (AIGER is a format, library and set of utilities for And-Inverter
Graphs (AIGs)). http://fmv.jku.at/aiger/

4. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. Adv. Comput. 58, 117–148 (2003)

5. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

6. Bjesse, P., Borälv, A.: Dag-aware circuit compression for formal verification. In:
2004 International Conference on Computer-Aided Design (ICCAD 2004), 7–11
November 2004, San Jose, CA, USA, pp. 42–49 (2004)

7. Bonet, M.L., Pitassi, T., Raz, R.: No feasible interpolation for TC0-frege proofs.
In: 38th Annual Symposium on Foundations of Computer Science, FOCS 1997,
Miami Beach, Florida, USA, 19–22 October 1997, pp. 254–263. IEEE Computer
Society (1997)

8. Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
24–40. Springer, Heidelberg (2010)

9. Chatterjee, S., Mishchenko, A., Brayton, R.K., Kuehlmann, A.: On resolution
proofs for combinational equivalence. In: Proceedings of the 44th Design Automa-
tion Conference, DAC 2007, San Diego, CA, USA, 4–8 June 2007, pp. 600–605
(2007)

10. Craig, W.: Linear reasoning. a new form of the Herbrand-Gentzen theorem. J.
Symb. Log. 22(3), 250–268 (1957)

11. Dershowitz, N., Hanna, Z., Nadel, A.: A scalable algorithm for minimal unsatisfi-
able core extraction. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121,
pp. 36–41. Springer, Heidelberg (2006)

12. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61–75. Springer, Heidelberg (2005)

13. Eén, N., Mishchenko, A., Sörensson, N.: Applying logic synthesis for speeding up
SAT. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp.
272–286. Springer, Heidelberg (2007)

14. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

15. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electr.
Notes Theor. Comput. Sci. 89(4), 543–560 (2003)

16. Goldberg, E.I., Novikov, Y.: Verification of proofs of unsatisfiability for CNF for-
mulas. In: DATE, pp. 10886–10891 (2003)

17. Gurfinkel, A., Vizel, Y.: Druping for interpolants. In: Formal Methods in
Computer-Aided Design, FMCAD 2014, Lausanne, Switzerland, 21–24 October
2014, pp. 99–106 (2014)

http://fmv.jku.at/aiger/

Fast Interpolating BMC 657

18. Heule, M., Hunt Jr., W.A., Wetzler, N.: Trimming while checking clausal proofs.
In: FMCAD, pp. 181–188 (2013)

19. Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: Esparza, J.,
Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 129–144. Springer,
Heidelberg (2010)

20. Järvisalo, M., Biere, A., Heule, M.: Simulating circuit-level simplifications on CNF.
J. Autom. Reasoning 49(4), 583–619 (2012)

21. Kuehlmann, A.: Dynamic transition relation simplification for bounded property
checking. In: 2004 International Conference on Computer-Aided Design (ICCAD
2004), 7–11 November 2004, San Jose, CA, USA, pp. 50–57 (2004)

22. McMillan, K.L.: Interpolation and SAT-Based model checking. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003)

23. McMillan, K.L., Amla, N.: Automatic abstraction without counterexamples. In:
Tools and Algorithms for the Construction and Analysis of Systems, Proceedings
of 9th International Conference, TACAS 2003, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2003, Warsaw, Poland,
7–11 April 2003, pp. 2–17 (2003)

24. Mishchenko, A., Chatterjee, S., Brayton,R.K.: Dag-aware AIG rewriting a fresh
look at combinational logic synthesis. In: Proceedings of the 43rd Design Automa-
tion Conference, DAC 2006, San Francisco, CA, USA, 24–28 July 2006, pp. 532–535
(2006)

25. Sheeran, M., Singh, S., St̊almarck, G.: Checking safety properties using induction
and a SAT-solver. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS,
vol. 1954, pp. 108–125. Springer, Heidelberg (2000)

26. Tseitin, G.S.: On the complexity of derivations in the propositional calculus. Stud.
Math. Math. Logic Part II, 115–125 (1968)

27. Vizel, Y., Grumberg, O.: Interpolation-sequence based model checking. In:
FMCAD, pp. 1–8 (2009)

28. Vizel, Y., Gurfinkel, A.: Interpolating property directed reachability. In: Biere, A.,
Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 260–276. Springer, Heidelberg
(2014)

29. Wetzler, N., Heule, M.J.H., Hunt Jr., W.A.: DRAT-trim: efficient checking and
trimming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT 2014.
LNCS, vol. 8561, pp. 422–429. Springer, Heidelberg (2014)

30. Zhang, L., Malik, S.: Extracting small unsatisfiable cores from unsatisfiable
Boolean formula. In: SAT (2003)

Counterexample-Guided Polynomial Loop
Invariant Generation by Lagrange Interpolation

Yu-Fang Chen1(B), Chih-Duo Hong1, Bow-Yaw Wang1, and Lijun Zhang2

1 Institute of Information Science, Academia Sinica, Taipei, Taiwan
yfc@iis.sinica.edu.tw

2 State Key Laboratory of Computer Science, Institute of Software,
CAS, Beijing, China

Abstract. We apply multivariate Lagrange interpolation to synthesiz-
ing polynomial quantitative loop invariants for probabilistic programs.
We reduce the computation of a quantitative loop invariant to solving
constraints over program variables and unknown coefficients. Lagrange
interpolation allows us to find constraints with less unknown coeffi-
cients. Counterexample-guided refinement furthermore generates linear
constraints that pinpoint the desired quantitative invariants. We evalu-
ate our technique by several case studies with polynomial quantitative
loop invariants in the experiments.

1 Introduction

A probabilistic program may change its computation due to probabilistic choices.
Consider, for instance, the Miller-Rabin algorithm for primality test [27]. Given
a composite number, the algorithm reports incorrectly with probability at most
0.25. Since the outcome of the algorithm is not always correct, classical pro-
gram correctness specifications [9,14,20] do not apply. For probabilistic pro-
grams, quantitative specifications are needed to reason about program correct-
ness [8,23,24]. Instead of logic formulae, probabilistic programs are specified by
numerical functions over program variables. Since a probabilistic program gives
random outcomes, a numerical function may have different values on different
executions. The expected value of a numerical function is then determined by
the probability distribution induced by the executions of program.

Since probabilistic programs are specified by numerical functions, their cor-
rectness can be established by annotations with expectations. In particular, cor-
rectness of while loops can be proved by inferring special expectations called
the quantitative loop invariants [24,25]. Similar to classical programs, finding
general quantitative loop invariants is hard. Techniques for generating linear
quantitative loop invariants however are available [1,15,22,25].

Interestingly, existing linear loop invariant generation techniques can be
extended to synthesize polynomial invariants [1]. Observe that polynomial mul-
tivariate polynomials are linear combinations of monomials. For instance, any

c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 658–674, 2015.
DOI: 10.1007/978-3-319-21690-4 44

Counterexample-Guided Polynomial Loop Invariant Generation 659

polynomial over x, y with degree 2 is a linear combination of the monomials
1, x, y, x2, y2, and xy. It suffices to find coefficients of the monomials to represent
any multivariate polynomial of a fixed degree. Linear loop invariant generation
techniques can hence be applied to infer invariants of a fixed degree. The number
of monomials however grows rapidly. Quadratic polynomials over 5 variables, for
example, are linear combinations of 21 monomials. One then has to find as many
coefficients. It is unclear whether the extended approach is still feasible.

In this paper, we develop a Lagrange interpolation-based technique to syn-
thesize polynomial loop invariants for simple loops in probabilistic programs.
Lagrange interpolation is a well-known method to construct explicit expres-
sions for polynomials by sampling. For example, suppose that the values of f(x)
are known to be s1, s3, and s4 at the sampling points 1, 3, and 4, respec-
tively. By Lagrange interpolation, we immediately have an explicit expression of
f(x) = s1 · (x−3)(x−4)

(1−3)(1−4) +s3 · (x−1)(x−4)
(3−1)(3−4) +s4 · (x−1)(x−3)

(4−1)(4−3) . Our new technique employs
multivariate Lagrange interpolation. Similar to previous techniques [15,22], we
use conditions of quantitative loop invariants as constraints. Lagrange interpola-
tion moreover allows us to simplify the constraints and sometimes to determine
several coefficients. In the example, suppose f(3) = 1 is known. Then it suffices
to determine s1 and s4 to construct an explicit expression of f(x). In contrast, if
f(x) is represented as c0+c1x+c2x

2, then f(3) = 1 only gives c0+3c1+9c2 = 1
and determines none of the coefficients. Lagrange interpolation hence can reduce
the number of unknown coefficients and make our technique more scalable.

Although there are less unknown coefficients, one still has to solve non-
linear constraints. We give heuristics to determine coefficients efficiently. Our
heuristics first perform random experiments and obtain linear constraints about
coefficients. An SMT solver is then used to find candidate coefficients from the
constraints. If there is no candidate, then the desired loop invariant does not
exist. Otherwise, quantifier elimination verifies whether the candidate coefficients
give a loop invariant. If so, our technique has found a quantitative loop invariant.
Otherwise, we add more linear constraints to exclude infeasible coefficients.

We apply our technique to find quantitative loop invariants for ten annotated
loops from non-trivial probabilistic programs. Our case studies range from gam-
bler’s ruin problem [13] to simulation of a fair coin with a biased coin [15]. Over
1000 random runs, our technique is able to synthesize polynomial quantitative
loop invariants within 15 s on average. Besides, 97.5 % of the runs can finish
within a 300 s timeout.

Related Work. Constraint-based techniques for automated loop invariants gen-
eration have been much progressed over the past years [4,5,17,18,21,22,29].
Gupta and Rybalchenko [18,19] proposed a GEGAR framework, so that static
and dynamic information of a program can be exploited incrementally to restrict
the search space of qualitative loop invariants. Sankaranarayanan et al. [29] used
Gröbner bases to reduce the generation of algebraic polynomial loop invariants
to solving non-linear constraints in the parametric linear form. These techniques
however deal with classical programs and cannot be applied to probabilistic
programs directly. McIver and Morgan [24] were among the first to consider

660 Y.-F. Chen et al.

quantitative loop invariants for probabilistic programs. Katoen et al. [22] studied
the synthesis of quantitative loop invariants using a constraint-solving approach.
The approach was further developed and implemented in the Prinsys tool [15],
which synthesizes quantitative invariants by solving constraints over unknown
template coefficients. The performance of the tool however is sensitive to manu-
ally supplied templates. Recently, a technique based on abstract interpretation is
proposed in [1]. It formulates linear loop invariants with the collecting semantics
and synthesizes coefficients via fixed-point computation. Although the authors
only report experiments on linear loop invariants, the technique can be extended
to generate polynomial invariants by representing polynomials as linear combi-
nations of monomials. The effectiveness of the extension however is unclear.

We have the following organization. After preliminaries, we review proba-
bilistic programs in Sect. 3. Quantitative loop invariants are presented in Sect. 4.
Section 5 introduces multivariate Lagrange interpolation. Our technical contri-
bution is presented in Sect. 6. Applications are given in Sect. 7. We evaluate our
technique in the following section. Section 9 concludes our presentation.

2 Preliminaries

Let xm be a sequence of variables x1, x2, . . . , xm. We use R[xn
m] to denote the

set of real coefficient polynomials over m variables of degree at most n. Observe
that R[xn

m] can be seen as a vector space over R of dimension d =
(
m+n
n

)
. For

instance, the set of d monomials {xd1
1 xd2

2 · · · xdm
m : 0 ≤ d1 + d2 + · · · + dm ≤ n}

forms a basis of R[xn
m]. Given f ∈ R[xn

m] and expressions e1, e2, . . . , em, we use
f(e1, e2, . . . , em) to denote the polynomial obtained by replacing xi with ei for
1 ≤ i ≤ m in f . Particularly, f(v) is the value of f at v ∈ R

m.
A constraint is a quantifier-free logic formula with equality, linear order,

addition, multiplication, division, and integer constants. A constraint is linear
if it contains only linear expressions; otherwise, it is non-linear. A quantified
constraint is a constraint with quantifiers over its variables. A valuation over
xm assigns a value to each variable in xm. A model of a constraint is a valuation
which evaluates the constraint to true.

Given a quantified constraint, quantifier elimination removes quantifiers and
returns a logically equivalent constraint. Given a linear constraint, a Satisfiability
Modulo Theory (SMT) solver returns a model of the constraint if it exists.

3 Probabilistic Programs

A probabilistic program in the probabilistic guarded command language is of the
following form:

P ::= skip | abort |x := E |P ;P |P [p]P | if (G) then {P} else {P} |while (G) {P}
where E is an expression and G is a Boolean expression. For p ∈ (0, 1), the prob-
abilistic choice command P0[p]P1 executes P0 with probability p and P1 with

Counterexample-Guided Polynomial Loop Invariant Generation 661

probability 1 − p. For instance, x := 1 [0.75]x := 0 sets x to 1 with probability
0.75 and to 0 with probability 0.25. A program state is a valuation over pro-
gram variables. For simplicity, we assume program variables are in non-negative
integers, and use 0 and 1 for the truth values false and true respectively.

Example 1. Consider the following probabilistic program:

z := 0; while (0 < x < y) { x :=x + 1 [0.5]x :=x − 1; z := z + 1; }

The program models a game where a player has x dollars at the beginning and
keeps tossing a coin with head probability 0.5. The player wins one dollar for
each head and loses one dollar for each tail. The game ends either when the
player loses all his money, or when he wins y − x dollars for a predetermined
y > x. The variable z counts the number of tosses made by the player during
the game.

3.1 Expectations

From an initial program state, a probabilistic program can have different final
program states due to probabilistic choice commands. Particularly, a function
over program variables gives different values on different final program states.
Note that a probabilistic program induces a probability distribution on final
program states. One therefore can discuss the expected value of any function
over program variables with respect to that probability distribution. More pre-
cisely, one can take an expectation transformer [24] approach to characterize a
probabilistic program by annotating the program with expectations.

Formally, an expectation is a function mapping program states to a non-
negative real number. An expectation is called a post-expectation when it is to
be evaluated on final program states. Similarly, an expectation is called a pre-
expectation if it is to be evaluated on initial program states. Let preE and postE
be expectations, and prog a probabilistic program. We say a quantitative Hoare
triple 〈preE〉 prog 〈postE〉 holds if the expected value of postE is no less than
that of preE before executing prog. Note that the expected values of postE and
preE are functions over states and hence are compared pointwisely.

For any Boolean expression G, define the indicator function [G] = 1 if G is
true and [G] = 0 otherwise. Consider an qualitative Hoare triple {P} prog {Q}
with a pre-condition P , a post-condition Q, and a classical program prog.
Observe that {P} prog {Q} holds if and only if 〈[P]〉 prog 〈[Q]〉 holds. Expecta-
tions are therefore the quantitative analogue to predicates for classical programs.

3.2 Expectation Transformer for Probabilistic Programs

Let P and Q be probabilistic programs, g a post-expectation, x a program vari-
able, E an expression, G a Boolean expression, and p ∈ (0, 1). Define the expec-
tation transformer wp(· , g) as follows [24].

662 Y.-F. Chen et al.

wp(skip, g) = g
wp(abort, g) = 0

wp(x := E, g) = g[x/E]
wp(P ;Q, g) = wp(P,wp(Q, g))

wp(if (G) then {P} else {Q}, g) = [G] · wp(P, g) + [¬G] · wp(Q, g)
wp(P [p]Q, g) = p · wp(P, g) + (1 − p) · wp(Q, g)

wp(while (G) {P}, g) = μX.([G] · wp(P,X) + [¬G] · g).

Here g[x/E] denotes the formula obtained from g by replacing free occurrences
of x by E. The least fixed point operator μ is defined over the domain of expec-
tations [16]. It can be shown that 〈f〉 P 〈g〉 if and only if f ≤ wp(P, g). That is,
wp(P, g) is the greatest lower bound of pre-expectation of P with respect to g.
We say wp(P, g) is the weakest pre-expectation of P with respect to g.

Example 2. The weakest pre-expectation of command x :=x + 1 [p]x :=x − 1
with respect to x is computed below:

wp(x := x + 1 [p]x := x − 1, x)
= p · wp(x :=x + 1, x) + (1 − p) · wp(x := x − 1, x)
= p · (x + 1) + (1 − p) · (x − 1)
= x + 2p − 1

It follows that 〈x + 2p − 1〉 x :=x + 1 [p]x :=x − 1 〈x〉 holds.

4 Quantitative Loop Invariants

Given a pre-expectation preE, a post-expectation postE, a Boolean expression
G, and a loop-free probabilistic program body, we would like to verify whether

〈preE〉 while (G) {body} 〈postE〉

holds or not. One way to solve this problem is to compute the weakest pre-
expectation wp(while (G) {body}, postE) and check if it is not less than preE
pointwisely. However, the weakest pre-expectation of a while-command requires
fixed point computation. To avoid the expensive computation, we can solve the
problem by finding quantitative loop invariants.

Theorem 1 ([15,24]). Let preE be a pre-expectation, postE a post-expectation,
G a Boolean expression, and body a loop-free probabilistic program. To show

〈preE〉 while (G) {body} 〈postE〉,

it suffices to find a loop invariant I which is an expectation such that

1. (boundary) preE ≤ I and I · [¬G] ≤ postE;
2. (invariant) I · [G] ≤ wp(body, I);
3. (soundness) the loop terminates from any state in G with probability 1, and

Counterexample-Guided Polynomial Loop Invariant Generation 663

(a) the number of iterations is finite;
(b) I is bounded above by some fixed constant; or
(c) the expected value of I · [G] tends to zero as the loop continues to iterate.

In this paper, we only focus on checking the boundary and invariant condi-
tions in Theorem 1. One however can show that any polynomial expectation is
sound for all examples we consider. In fact, one can establish the soundness of a
large class of loop invariants before any specific invariant is found. For instance,
it can be shown that any polynomial expectation satisfies the third soundness
condition, as long as the probability of exiting the loop is bounded below by a
non-zero constant in each iteration. We refer the reader to [24] for more details
of sufficient conditions for soundness.

5 Multivariate Lagrange Interpolation

Fix a degree n of quantitative loop invariants and number of variables m. Let
d =

(
m+n
n

)
. Multivariate Lagrange interpolation is a method to construct an

explicit expression for any polynomial in R[xn
m] by sampling, see e.g., [6,26,30].

Given d sampling points s1, s2, . . . , sd ∈ R
m, we can compute a Lagrange basis

as follows [28]. Let {b1, b2, . . . , bd} = {xd1
1 xd2

2 · · · xdm
m : d1 + d2 + · · · + dm ≤ n}

be the set of monomials in R[xn
m]. For 1 ≤ i ≤ d, define

Mi = det

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

b1(s1) · · · bd(s1)
...

...
b1 · · · bd
...

...
b1(sd) · · · bd(sd)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

← the ith row

Observe that Mi ∈ R[xn
m] for 1 ≤ i ≤ d. Moreover, Mi(sj) = 0 for i �= j and

M1(s1) = M2(s2) = · · · = Md(sd) = r for some r ∈ R. If r = 0, then there
is a geometrical dependency among the sampling points s1, s2, . . . , sd [2], and
thus no Lagrange basis could be determined from these points. If r �= 0, define
Bi = Mi/r for 1 ≤ i ≤ d. Then B(s1, s2, . . . , sd) = {Bi : 1 ≤ i ≤ d} ⊆ R[xn

m] is
called a Lagrange basis of R[xn

m].
Observe that Bi(sj) = [i = j] for 1 ≤ i, j ≤ d. Thus

∑d
i=1 f(si)Bi(sj) = f(sj)

for 1 ≤ j ≤ d. Moreover, given any f ∈ R[xn
m], we can write f =

∑d
i=1 f(si)Bi.

Define the Lagrange functional L[s1, s2, . . . , sd] : Rd → R[xn
m] by

L[s1, s2, . . . , sd](c1, c2, . . . , cd) =
d∑

i=1

ciBi.

Then f = L[s1, s2, . . . , sd](f(s1), f(s2), . . . , f(sd)) for any f ∈ R[xn
m]. We shall

call f(s1), f(s2), . . . , f(sd) ∈ R the coefficients for f on basis B(s1, s2, . . . , sd).

664 Y.-F. Chen et al.

6 Interpolation of Loop Invariants

Suppose we would like to find a quantitative loop invariant I ∈ R[xn
m] for

〈preE〉 while (G) {body} 〈postE〉
where preE is a pre-expectation, postE is a post-expectation, G is a Boolean
expression, and body is a loop-free probabilistic program. Assume the soundness
of I can be verified. We shall use Lagrange interpolation to find I.

Let s1, s2, . . . , sd ∈ R
m be sampling points that determine a Lagrange basis.

If the coefficients I(s1), I(s2), . . . , I(sd) ∈ R are known, then

I = L[s1, s2, . . . , sd](I(s1), I(s2), . . . , I(sd))

by Lagrange interpolation. Our idea therefore is to find the coefficients via
constraint-solving. By the boundary and invariant conditions in Theorem 1, we
have the following requirements about any loop invariant I:

preE ≤ I
I · [¬G] ≤ postE

I · [G] ≤ wp(body, I).
(1)

Example 3. Consider

〈xy − x2〉 z := 0; while (0 < x < y) { x := x + 1 [0.5]x :=x − 1; z := z + 1; } 〈z〉.
The following must hold for any loop invariant I

xy − x2 ≤ I
I · [x ≤ 0 ∨ y ≤ x] ≤ z

I · [0 < x < y] ≤ 0.5 · I(x + 1, y, z + 1) + 0.5 · I(x − 1, y, z + 1).

Observe that wp(x :=x + 1 [0.5]x := x − 1; z := z + 1, I(x, y, z)) =
wp(x := x + 1 [0.5]x :=x − 1, I(x, y, z +1)) = 0.5 ·wp(x :=x + 1, I(x, y, z +1))+
0.5 · wp(x := x − 1, I(x, y, z + 1)) = 0.5 · I(x + 1, y, z + 1) + 0.5 · I(x − 1, y, z + 1).

Requirements (1) can have indicators on both sides of inequality, which is
beyond the capability of the solvers we use. We would like to obtain a constraint
by removing indicators in two steps. First, we rewrite the expectations to a
normal form. An expectation is in disjoint normal form (DNF) if it is of the
form f = [P1] · f1 + · · · + [Pk] · fk, where P1, P2, . . . , Pk are disjoint, that is, at
most one of P1, P2, . . . , Pk evaluates to true on any valuation.

Theorem 2 ([22]). Given an expectation of the form f = [P1]·f1+· · ·+[Pk]·fk,
f is equivalent to the following expectation in DNF:

∑

I⊆K

⎡

⎣

(
∧

i∈I

Pi

)

∧ ¬
⎛

⎝
∧

j∈K\I
Pj

⎞

⎠

⎤

⎦ ·
∑

i∈I

fi

where K = {1, 2, . . . , k}.

Counterexample-Guided Polynomial Loop Invariant Generation 665

We then transform inequalities between expectations in DNF to constraints.

Theorem 3 ([15]). Suppose f = [P1] · f1 + · · · + [Pk] · fk and g = [Q1] · g1 +
· · · + [Qh] · gh are expectations over xm in DNF. f ≤ g iff for every xm

∧

j∈K

∧

i∈H

((Pj ∧ Qi) ⇒ fj ≤ gi) ∧
∧

j∈K

((
∧

i∈H

¬Qi ∧ Pj

)
⇒ fj ≤ 0

)
∧ ∧

i∈H

((
∧

j∈K

¬Pj ∧ Qi

)

⇒ 0 ≤ gi

)

where K = {1, 2, . . . , k} and H = {1, 2, . . . , h}.
Example 4. By Theorems 2 and 3, requirements in Example 3 are equivalent to

xy − x2 ≤ I ∧
(x ≤ 0 ∨ y ≤ x) ⇒ I ≤ z ∧
(x ≤ 0 ∨ y ≤ x) ⇒ 0 ≤ z ∧
(0 < x < y) ⇒ I ≤ 0.5 · I(x + 1, y, z + 1) + 0.5 · I(x − 1, y, z + 1) ∧
(0 < x < y) ⇒ 0 ≤ 0.5 · I(x + 1, y, z + 1) + 0.5 · I(x − 1, y, z + 1)

for every x, y, z.

We define the loop invariant constraint φ[s1, s2, . . . , sd](c1, c2, . . . , cd) as the
constraint transformed from the requirements (1), where the quantitative loop
invariant I is replaced by Lagrange functional L[s1, s2, . . . , sd](c1, c2, . . . , cd).

Example 5. We have the following loop invariant constraint from Example 4.

φ[s1, s2, . . . , s10](c1, c2, . . . , c10) =
xy − x2 ≤ L[s1, s2, . . . , s10](c1, c2, . . . , c10) ∧
(x ≤ 0 ∨ y ≤ x) ⇒ L[s1, s2, . . . , s10](c1, c2, . . . , c10) ≤ z ∧
(0 < x < y) ⇒ 2 · L[s1, s2, . . . , s10](c1, c2, . . . , c10) ≤

L[s1, s2, . . . , s10](c1, c2, . . . , c10)(x + 1, y, z + 1) +
L[s1, s2, . . . , s10](c1, c2, . . . , c10)(x − 1, y, z + 1).

With loop invariant constraints, it is easy to state our goal. Observe that
∃s1, s2, . . . , sd ∃c1, c2, . . . , cd ∀xm. φ[s1, s2, . . . , sd](c1, c2, . . . , cd) implies the exis-
tence of a quantitative loop invariant satisfying the boundary and invariant
conditions in Theorem 1. Our strategy hence is to choose sampling points
s1, s2, . . . , sd such that ∃c1, c2, . . . , cd ∀xm. φ[s1, s2, . . . , sd](c1, c2, . . . , cd) holds.

We will choose sampling points to simplify the loop invariant constraint.
Recall that sampling points are not unique in Lagrange interpolation. For a
loop invariant constraint, we select sampling points so that several coefficients
among c1, c2, . . . , cd are determined. This helps us to evaluate the quantified loop
invariant constraint ∃c1, c2, . . . , cd ∀xm. φ[s1, s2, . . . , sd](c1, c2, . . . , cd).

To evaluate the quantified loop invariant constraint, observe that the
Lagrange functional L[s1, s2, . . . , sd](c1, c2, . . . , cd) is a multivariate polynomial

666 Y.-F. Chen et al.

over c1, c2, . . . , cd and xm. A loop invariant constraint is hence non-linear. How-
ever, φ[s1, s2, . . . , sd](c1, c2, . . . , cd)(e) is a linear constraint over coefficients for
every experiment e ∈ Z

m, i.e., valuation over xm. We therefore use experiments
to construct a series of linear constraints and find coefficients by an SMT solver.

Input: 〈preE〉 while (G) {body} 〈postE〉 : a loop over program variables xm; n :
the degree of an loop invariant

Output: I : a loop invariant satisfying the boundary and invariant conditions
in Theorem 1

d ← (m+n
n

)
;

s1, s2, . . . , sd ← SamplingPoints();
C ← InitialConstraint(s1, s2, . . . , sd);
while C has a model do

ĉ1, ĉ2, . . . , ĉd ← a model of C from an SMT solver;
switch RandomExperiments(C) do

case Pass:
switch UQElem(xm, φ[s1, s2, . . . , sd](ĉ1, ĉ2, . . . , ĉd)) do

case True: return L[s1, s2, . . . , sd](ĉ1, ĉ2, . . . , ĉd) case
CounterExample (e) : RefineConstraint(C, e)

end
case CounterExample (e) : RefineConstraint(C, e)

end
end
//No loop invariant

Algorithm 1: Quantitative loop invariant synthesis

Algorithm 1 shows our top-level algorithm. The algorithm starts by choosing
sampling points (Sect. 6.1). The sampling points are then used to construct the
initial linear constraint over coefficients (Sect. 6.2). The while loop evaluates the
quantified loop invariant constraint ∃c1, c2, . . . , cd ∀xm. φ[s1, s2, . . . , sd](c1, c2,
. . . , cd). In each iteration, the algorithm selects coefficients ĉ1, ĉ2, . . . , ĉd by a
model of the linear constraint obtained from an SMT solver. It then checks
whether ∀xm. φ[s1, s2, . . . , sd](ĉ1, ĉ2, . . . , ĉd) is true. The algorithm does this by
first trying a number of random experiments (Sect. 6.3). Only after the random
experiments are passed, will the algorithm performs universal quantifier elimina-
tion to evaluate the quantified constraint (Sect. 6.4). If the random experiments
fail, or quantifier elimination does not evaluate to true, our algorithm refines the
linear constraint by a counterexample and reiterates (Sect. 6.5).

6.1 Choosing Sampling Points

In Lagrange interpolation, sampling points need be chosen in the first place. We
would like to choose sampling points so that as many coefficients are determined
as possible. To this end, observe that L[s1, s2, . . . , sd](c1, c2, . . . , cd)(si) = ci for
1 ≤ i ≤ d. In other words, φ[s1, s2, . . . , sd](c1, c2, . . . , cd)(si) can be significantly

Counterexample-Guided Polynomial Loop Invariant Generation 667

simplified if a sampling point si is used as an experiment. Consider, for instance,
the boundary condition in our running example:

xy − x2 ≤ L[s1, s2, . . . , sd](c1, c2, . . . , cd)(x, y, z); and
(x ≤ 0 ∨ y ≤ x) ⇒ L[s1, s2, . . . , sd](c1, c2, . . . , cd)(x, y, z) ≤ z

If sj = (0, 3, 0) is a sampling point, then the condition can be simplified to 0 ≤ cj
and cj ≤ 0. Thus cj is determined by choosing (0, 3, 0) as both a sampling point
and an experiment.

Ideally, one would choose sampling points so that all coefficients are deter-
mined. Unfortunately, such points tend to be geometrically dependent in prac-
tice. Thus we cannot expect to establish a Lagrange basis from these points
exclusively. Instead, we try to find sampling points which yield a Lagrange basis
and determine as many coefficients as possible. We adopt a weighted random
search for this purpose. That is, we pick sampling points randomly according
to their weights, so that points determining more coefficients are more likely
to be picked. If the randomly selected sampling points fail to yield a Lagrange
basis, we discard them and select other sampling points randomly again. In our
experiments, this heuristic finds pretty good sampling points in reasonable time.

6.2 Initial Constraint

After sampling points are chosen, we compute the initial linear constraint over
coefficients. Recall that L[s1, s2, . . . , sd](c1, c2, . . . , cd)(si) = ci for 1 ≤ i ≤ d.
By taking sampling points as experiments, the loop invariant constraint φ[s1, s2,
. . . , sd](c1, c2, . . . , cd) is simplified to a linear constraint over c1, c2, . . . , cd.

Example 6. Consider the loop invariant constraint in Example 5. We first choose
10 sampling points s1, . . . , s10 (see table below) to establish a Lagrange basis. We
then compute the initial constraints by simplifying the loop invariant constraint
with the sampling points. For example, we obtain constraint c2 = 0 from point
s2 = (2, 2, 0) as follows:

φ[s1, s2, . . . , s10](c1, c2, . . . , c10)(2, 2, 0)
iff (2 · (2 − 2) ≤ c2) ∧ ((2 ≤ 0 ∨ 2 ≤ 2) ⇒ c2 ≤ 0) ∧

(0 < 2 < 2 ⇒ 0 ≤ −2c1 − 42c2 + 3c3 + 27c4 + 9c5 + 6c6 + 14c7 − 12c8 − 3c10)
iff 0 ≤ c2 ∧ c2 ≤ 0
iff c2 = 0.

We list all initial constraints in the following table, where φ[s1, s2, . . . , s10](c1,
c2, . . . , c10)(si) is denoted by ψ(si) for simplicity.

Note that our choice of sampling points helps the initial constraints determine
5 coefficients. If a standard monomial basis were used, none of the coefficients
could be determined by the initial constraints.

668 Y.-F. Chen et al.

i si ψ(si) i si ψ(si) i si ψ(si)

1 0, 3, 0 c1 = 0 2 2, 2, 0 c2 = 0 3 0, 3, 1 0 ≤ c3 ≤ 1

4 1, 1, 0 c4 = 0 5 1, 1, 2 0 ≤ c5 ≤ 2 6 2, 2, 1 0 ≤ c6 ≤ 1

7 3, 3, 0 c7 = 0 8 0, 0, 1 0 ≤ c8 ≤ 1 9 0, 1, 0 c9 = 0

10 2, 3, 3 6 ≤ 3c10 ≤ −4c1 − 36c2 + 5c3 + 30c4 + 12c5 − 6c6 + 16c7 − 14c8

6.3 Random Experiments

From a linear constraint of coefficients, we obtain a model ĉ1, ĉ2, . . . , ĉd of
the linear constraint from an SMT solver. Recall that we would like to check
if ∀xm. φ[s1, s2, . . . , sd](ĉ1, ĉ2, . . . , ĉd) is true. Before using expensive quanti-
fier elimination immediately, we first perform a number of random tests. If
φ[s1, s2, . . . , sd] (ĉ1, ĉ2, . . . , ĉd)(e) evaluates to true for all random experiments
e ∈ Z

m, the coefficients ĉ1, ĉ2, . . . , ĉd may induce a loop invariant. Otherwise, a
witness experiment e is used to refine the linear constraint over coefficients.

When the coefficients do not induce a loop invariant, the random experiments
make it possible to avoid expensive quantifier elimination and to obtain a witness
experiment without resorting to an SMT solver. This possibility is important,
because the solver we use does not always find a valid witness experiment.

6.4 Universal Quantifier Elimination

After random tests, we perform quantifier elimination check if ∀xm. φ[s1, s2, . . . ,
sd](ĉ1, ĉ2, . . . , ĉd) is true. If so, the polynomial L[s1, s2, . . . , sd] (ĉ1, ĉ2, . . . , ĉd) is
a quantitative loop invariant satisfying the boundary and invariant conditions.
Otherwise, we obtain a witness experiment to refine our linear constraint.

Universal quantifier elimination is carried out in two steps. We first eliminate
the quantifiers in the ordered field theory [3,11]. Intuitively, the ordered field
theory formalizes real numbers R. Since quantifier elimination tools such as
Redlog [10] employ algebra and real algebraic geometry, eliminating quantifiers
over real numbers is more efficient than over integers. If ∀xm. φ[s1, s2, . . . , sd]
(ĉ1, ĉ2, . . . , ĉd) is true over R, it is also true over Z. Thus ĉ1, ĉ2, . . . , ĉd induces a
quantitative loop invariant. Otherwise, we perform quantifier elimination over Z.

If ∀xm. φ[s1, s2, . . . , sd](ĉ1, ĉ2, . . . , ĉd) evaluates to true over Z, we are done.
Otherwise, quantifier elimination gives a constraint equivalent to the quantified
query. We then use an SMT solver to obtain a witness experiment. We abort the
procedure if the solver times-out or fails to yield a valid witness experiment.

6.5 Constraint Refinement

Let e = (x̂1, x̂2, . . . , x̂m) ∈ Z
m be a witness experiment such that φ[s1, s2, . . . , sd]

(ĉ1, ĉ2, . . . , ĉd)(e) evaluates to false. Recall that we would like to find coefficients
c1, c2, . . . , cd such that φ[s1, s2, . . . , sd](c1, c2, . . . , cd) is true for every valuations
over xm. Particularly, φ[s1, s2, . . . , sd](c1, c2, . . . , cd)(x̂1, x̂2, . . . , x̂m) must also be

Counterexample-Guided Polynomial Loop Invariant Generation 669

true for such coefficients. Note that φ[s1, s2, . . . , sd](c1, c2, . . . , cd)(x̂1, x̂2, . . . , x̂m)
is a linear constraint on coefficients c1, c2, . . . , cd that excludes the incorrect
coefficients ĉ1, ĉ2, . . . , ĉd. By adding the linear constraint to the current set of
constraints, our algorithm will find different coefficients in the next iteration.

Table 1. Summary of results. The name of each experiment is shown in column Name.
The annotated pre- and post-expectations are shown in columns preE and postE, respec-
tively. Column Time lists the mean execution times our prototype took to verify the
annotations, and TO denotes the timeout ratios. Besides, columns L, T, and S show
the average times our prototype spent in sampling a Lagrange basis, making random
tests and synthesizing coefficients, respectively. Finally, columns #L, #T, and #S
show the average numbers of iterations our prototype has taken to find sampling points,
make random tests, and refine constraints, respectively. The last six columns are cal-
culated based on the runs that finished within timeouts.

Name preE postE Time TO L T S #L #T #S

Ruin xy − x2 z 3.6 s 0% 0.3 s 2.8 s 0.3 s 5.2 61.5 5.0

Geo1 x + 3zy x 3.0 s 0% 1.4 s 1.5 s 0.1 s 21.4 32.1 1.0

Geo2 x + 15
2

z x 8.0 s 0% 1.4 s 4.9 s 0.2 s 22.3 108 3.8

Bin1 x + 1
4
ny x 4.5 s 0% 1.4 s 2.9 s 0.1 s 22.7 64.0 1.0

Bin2 1
8
n2 − 1

8
n + 3

4
ny x 77.5 s 19% 0.4 s 9.0 s 15.8 s 5.9 185 10.3

Sum 1
4
n2 + 1

4
n x 2.5 s 0% 0.1 s 1.9 s 0.4 s 1.2 42.7 5.8

Prod 1
4
n2 − 1

4
n xy 15.7 s 5% 0.3 s 4.3 s 2.3 s 4.2 97.0 6.5

Coin1 1
2

− 1
2
x 1 − x + xy 2.0 s 0% 0.4 s 1.2 s 0.3 s 5.7 27.1 3.6

Coin2 1
2

− 1
2
y x + xy 3.9 s 0% 0.6 s 1.4 s 1.8 s 9.8 32.0 4.2

Coin3 8
3

− 8
3
x − 8

3
y + 1

3
n n 18.5 s 1% 12.6 s 2.6 s 1.4 s 202 57.9 7.2

7 Applications

We have implemented a prototype in JavaScript to test our techniques. For each
simple loop, we manually perform the weakest pre-expectation computation and
the DNF transformation to translate the requirements (1) into loop invariant
constraints. We then use our prototype to find a quantitative loop invariant based
on the constraints. Our prototype uses GNUOctave [12] to compute Lagrange
interpolation, Z3 [7] to solve linear constraints, and Redlog [10] to perform
quantifier elimination. The experiments are done on an Intel Xeon 3.07 GHz
Linux workstation with 16 GB RAM.

We consider six types of applications: gambler’s ruin problem, geometric
distribution, binomial distribution, sum of random series, product of random
variables, and simulation of a fair coin. We also consider variants of geometric and
binomial distributions. For the fair-coin simulation, we find three quantitative
loop invariants to prove the correctness and the expected execution time of the

670 Y.-F. Chen et al.

simulation. In each probabilistic program, we annotate the while loop with a pre-
expectation and a post-expectation. Note that the annotated pre-expectation
is by construction a precise estimate of the annotated post-expectation at the
entrance of the loop.

Our results are summarized in Table 1. We use a fixed random seed for all
experiments and compute the averages over 100 random runs with a 300 s time-
out. The prototype may synthesize different loop invariants in different runs of
the same experiment. We now discuss the applications in more details.

Gambler’s Ruin Problem. In Example 1, we consider a game where a player
has x dollars initially and plays until he loses all his money or wins up to y − x
dollars for some y > x. The expected number of rounds before the game ends is
E[z] = x · (y − x). Our prototype proves this result within 3.6 s on average.

Geometric Distribution. The geometric distribution describes the number of
tails before the first head in a sequence of coin-tossing. When the probability of
head is 0.25, we expect to see 1−0.25

0.25 = 3 tails before the first head. The following
program computes a geometrically distributed random variable x:

x := 0; z := 1; while (z �= 0) { z := 0 [0.25]x := x + y; }
Our prototype finds a quantitative loop invariant for the pre-expectation E[x] =
3y within 3 s on average.

We moreover consider the following variant of the game. A player keeps
flipping a coin until the head turns up. He wins k dollars if the tail turns up at
the kth flip. The variant is modeled as follows.

x := 0; y := 0; z := 1; while (z �= 0) { y := y + 1; z := 0 [0.25]x :=x + y; }
The expected amount of money a player can win is E[x] = 1

2

(
0.25−2 − 1

)
= 15

2 .
Our prototype proves this result within 8 s on average.

Binomial Distribution. The binomials distribution describes the number of
heads that appear in a fixed number of coin-tossing. If the probability of head is
0.25 and the number of tosses is n, then the expected number of heads is 0.25n.
The following program computes a binomially distributed random variable x:

x := 0; while (0 < n) { x :=x + y [0.25] skip; n := n − 1; }
Our prototype proves E[x] = 0.25ny within 4.5 s on average. We moreover con-
sider the following variant. A player flips a coin for n times. At the kth flip, he
wins k dollars if the head turns up and wins y dollars otherwise. This game can
be modeled as follows.

x := 0; while (0 < n) { x := x + n [0.25]x := x + y; n := n − 1; }
The expected amount of money a player can win is E[x] = 0.25 · 1

2n(n + 1) +
(1 − 0.25) · ny = 1

8n2 − 1
8n + 3

4ny. Our prototype proves this result within 77.5 s
on average.

Counterexample-Guided Polynomial Loop Invariant Generation 671

Sum of Random Series. Consider a game where a player flips a coin for n
times. The player wins k dollars if the head turns up at the kth flip. The following
program models this game when the head probability of the coin is 0.5:

x := 0; while (0 < n) { x := x + n [0.5] skip; n := n − 1; }
The expected amount of money the player can win from this game is E[x] =
0.5 · ∑n

i=1 i = 0.5 · 1
2n(n + 1) dollars. Our prototype proves this result within

2.5 s on average.

Product of Dependent Random Variables. We consider a game where two
players flip a coin for n times. The first player wins one dollar for each head
and the second player wins one dollars for each tail. When the head probability
of the coin is 0.5, this game can be modeled by the following program where
variables x, y represent the amount of money won by the respective players:

while (0 < n) { x := x + 1 [0.5] y := y + 1; n :=n − 1; }
It can be shown that E[xy] = 1

4 (n2 −n). Our prototype proves this result within
15.7 s on average.

Simulation of a Fair Coin. We consider an algorithm that simulates a fair
coin flip using biased coins [15]:

x := 0; y := 0; n := 0;
while (x = y) { x := 1 [0.25]x := 0; y := 1 [0.25] y := 0; n :=n + 1; }

The algorithm uses two biased coins x and y with head probability 0.25. The
main loop flips the two coins at each iteration and terminates when the coins
show different outcomes. The value of x is then taken as the final outcome, with
1 representing the head and 0 representing the tail.

To see that the algorithm indeed simulates a fair coin flip, we prove

0.5 − 0.5x ≤ wp(loop, 1 − x + xy) and 0.5 − 0.5y ≤ wp(loop, x + xy),

where loop denotes the while-loop in the program. Since x = y = 0 before the
loop starts and xy = 0 after the loop stops, we see that 0.5 ≤ E[1 − x] and
0.5 ≤ E[x] on termination. Since x ∈ {0, 1}, it follows that Pr{x = 1} = Pr{x =
0} = 0.5 on termination and thus the correctness of the algorithm is concluded.

Observe moreover that the number of iterations until the two coins show
different outcomes is the geometric distribution with head probability 0.25 ·2(1−
0.25) = 0.375. Hence, the expected number of iterations is E[n] = 1−0.375

0.375 + 1 =
8
3 . This result is verified by our prototype within 18.5 s on average.

8 Evaluation

Our technique is closely related to the Prinsys tool [15], which implements
the constraint-based quantitative invariant synthesis approach developed in [22].

672 Y.-F. Chen et al.

Prinsys receives a probabilistic program and a template with unknown coef-
ficients. It derives loop invariant constraints from the template and exploits
SMT-solvers to perform quantifier elimination and simplification for the con-
straints. The tool generates a formula, which is in effect a conjunction of non-
linear inequalities, describing all coefficients that make the supplied template
an inductive loop invariant. A concrete quantitative invariant has to be derived
manually by extracting solutions from the formula.

For our prototype, the input is a quantitative Hoare triple and there are
three possible outputs: “unknown” (due to timeout or invalid counterexamples),
“disproved” with a witness (a valuation of program variables), and “proved”
with a proof (a quantitative loop invariant). For Prinsys, it receives a program
and a template, and outputs a constraint describing all inductive loop invariants
in form of the template. To verify a specific Hoare triple with Prinsys, one
has to encode the interested pre- and post-expectations as well as the form of
possible invariants into the same template. Designing a template for Prinsys
is a tricky task that needs to be done on a case-by-case basis. In contrast, our
technique does not require manually supplied templates, though the degree of
loop invariants has to be fixed a priori.

One could use templates to represent non-linear loop invariants. We neverthe-
less failed to verify any of our non-linear examples with Prinsys. In particular,
we could not generate formulae that subsume the quantitative loop invariants
computed by our prototype. This however does not imply that our examples are
beyond the capability of Prinsys, since we could not arguably try all templates
manually. The designers of Prinsys also examined their tool on some non-linear
examples, e.g., the gambler’s ruin problem, and reported negative results in [15].
Generally, when the supplied template is non-linear, it becomes intractable to
derive a loop invariant, or even to decide the existence of a loop invariant, from
the formula yielded by Prinsys. Maybe a counterexample-refinement approach
is helpful here, but this requires further research and experiments.

9 Conclusion

We propose an automated technique to generate polynomial quantitative invari-
ants for probabilistic programs by Lagrange interpolation. Fixing the degree of
loop invariants, our technique can infer polynomial quantitative loop invariants
for simple loops. By choosing sampling points carefully, constraints are simpli-
fied so that coefficients of loop invariants can be determined. We also develop
a counterexample-guided refining heuristics to find coefficients of quantitative
loop invariants. We report applications in several case studies.

Our technique does not yet support parameters such as probability in proba-
bilistic choice commands. Such parameters would induce non-linear constraints
over coefficients and parameters. SMT solvers however could not find candidate
coefficients and parameters as easily. Also, non-determinism is not implemented
in our prototype. We plan to address both issues in our future work.

Counterexample-Guided Polynomial Loop Invariant Generation 673

Acknowledgments. This work was supported by the Ministry of Science and Tech-
nology of Taiwan (103-2221-E-001 -019 -MY3, 103-2221-E-001 -020 -MY3) and the
Natural Science Foundation of China (NSFC) under grant No. 61472473, 61428208,
61361136002, the CAS/SAFEA International Partnership Program for Creative
Research Teams.

References

1. Chakarov, A., Sankaranarayanan, S.: Expectation invariants for probabilistic pro-
gram loops as fixed points. In: Müller-Olm, M., Seidl, H. (eds.) Static Analysis.
LNCS, vol. 8723, pp. 85–100. Springer, Heidelberg (2014)

2. Charles, K., Hang-Chin, L.: Vandermonde determinant and Lagrange interpolation
in R

s. In: Nonlinear and Convex Analysis: Proceedings in Honor of Ky Fan, vol.
107, p. 23. CRC Press (1987)

3. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decompostion. In: Automata Theory and Formal Languages 2nd GI Conference
Kaiserslautern, 20–23 May 1975, pp. 134–183. Springer (1975)

4. Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear invariant generation using
non-linear constraint solving. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003.
LNCS, vol. 2725, pp. 420–432. Springer, Heidelberg (2003)

5. Cousot, P.: Proving program invariance and termination by parametric abstraction,
lagrangian relaxation and semidefinite programming. In: Cousot, R. (ed.) VMCAI
2005. LNCS, vol. 3385, pp. 1–24. Springer, Heidelberg (2005)

6. De Boor, C., Ron, A.: On multivariate polynomial interpolation. Constructive
Approximation 6(3), 287–302 (1990)

7. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

8. Den Hartog, J., de Vink, E.P.: Verifying probabilistic programs using a hoare like
logic. Int. J. Found. Comput. Sci. 13(03), 315–340 (2002)

9. Dijkstra, E.W.: A Discipline of Programming. Prentice-hall, Englewood Cliffs
(1976)

10. Dolzmann, A., Sturm, T.: Redlog: computer algebra meets computer logic. Acm
Sigsam Bulletin 31(2), 2–9 (1997)

11. Dolzmann, A., Sturm, T., Weispfenning, V.: Real quantifier elimination in practice.
In: Matzat, B.H., Greuel, G.-M., Hiss, G. (eds.) Algorithmic Algebra and Number
Theory, pp. 221–247. Springer, Heidelberg (1999)

12. Eaton, J.W., Bateman, D., Hauberg, S.: GNU Octave. Network thoery, London
(1997)

13. Uslar, M., Specht, M., Rohjans, S., Trefke, J., Gonzalez, J.M.V.: Introduction.
In: Uslar, M., Specht, M., Rohjans, S., Trefke, J., Gonzalez, J.M.V. (eds.) The
Common Information Model CIM. POWSYS, vol. 2, pp. 3–48. Springer, Heidelberg
(2012)

14. Floyd, R.W.: Assigning meanings to programs. Math. Aspects Comput. Sci. 19(1),
19–32 (1967)

15. Gretz, F., Katoen, J.-P., McIver, A.: Prinsys—on a quest for probabilistic loop
invariants. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST
2013. LNCS, vol. 8054, pp. 193–208. Springer, Heidelberg (2013)

674 Y.-F. Chen et al.

16. Gretz, F., Katoen, J.P., McIver, A.: Operational versus weakest pre-expectation
semantics for the probabilistic guarded command language. Perform. Eval. 73,
110–132 (2014)

17. Gulwani, S., Srivastava, S., Venkatesan, R.: Program analysis as constraint solving.
In: ACM SIGPLAN Notices, vol. 43, pp. 281–292. ACM (2008)

18. Gupta, A., Majumdar, R., Rybalchenko, A.: From tests to proofs. In: Kowalewski,
S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 262–276. Springer,
Heidelberg (2009)

19. Gupta, A., Rybalchenko, A.: InvGen: an efficient invariant generator. In: Bouajjani,
A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 634–640. Springer, Heidelberg
(2009)

20. Hoare, C.A.R.: An axiomatic basis for computer programming. CACM 12(10),
576–580 (1969)

21. Kapur, D.: Automatically generating loop invariants using quantifier elimination-
preliminary report. In: IMACS International Conference on Applications of Com-
puter Algebra. Citeseer (2004)

22. Katoen, J.-P., McIver, A.K., Meinicke, L.A., Morgan, C.C.: Linear-invariant gen-
eration for probabilistic programs: In: Cousot, R., Martel, M. (eds.) SAS 2010.
LNCS, vol. 6337, pp. 390–406. Springer, Heidelberg (2010)

23. Kozen, D.: Semantics of probabilistic programs. JCSS 22(3), 328–350 (1981)
24. McIver, A., Morgan, C.C.: Abstraction, Refinement and Proof for Probabilistic

Systems. Springer, Heidelberg (2006)
25. Morgan, C.: Proof rules for probabilistic loops. In: Proceedings of the BCS-FACS

7th Refinement Workshop, Workshops in Computing. Springer Verlag. (1996)
26. Olver, P.J.: On multivariate interpolation. Stud. Appl. Math. 116(2), 201–240

(2006)
27. Rabin, M.O.: Probabilistic algorithm for testing primality. J. Number Theory

12(1), 128–138 (1980)
28. Saniee, K.: A simple expression for multivariate Lagrange interpolation. SIAM

Undergraduate Research Online 1(1) (2008)
29. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Non-linear loop invariant genera-

tion using Gröbner bases. ACM SIGPLAN Notices 39(1), 318–329 (2004)
30. Sauer, T., Xu, Y.: On multivariate Lagrange interpolation. Math. Comput.

64(211), 1147–1170 (1995)

Author Index

Abate, Alessandro I-195
Abdulla, Parosh Aziz I-462
Ábrahám, Erika I-214
Akazaki, Takumi II-356
Alur, Rajeev II-163, II-395
Arvind II-109
Atig, Mohamed Faouzi I-462
Aydin, Abdulbaki I-255

Babiak, Tomáš I-479
Bacchus, Fahiem II-70
Bang, Lucas I-255
Bansal, Kshitij II-87
Barrett, Clark II-87, II-198
Ben-Amram, Amir M. II-304
Beyer, Dirk I-622
Bjørner, N. I-583
Blahoudek, František I-479
Bozzano, Marco I-518, I-603
Brázdil, Tomáš I-158
Brenguier, Romain II-251
Brim, Luboš I-195
Broman, David II-429
Bruintjes, Harold I-214
Bubel, Richard I-273
Bultan, Tevfik I-255

Caspi, Dror II-144
Černý, Pavol II-163, II-180
Češka, Milan I-195
Chakraborty, Supratik II-128
Chatterjee, Krishnendu I-140, I-158
Chen, Yu-Fang I-462, I-658
Chhatani, Dinesh II-128
Chlipala, Adam II-109
Chmelík, Martin I-158
Christ, Jürgen II-37
Cimatti, A. I-518
Cimatti, Alessandro I-603
Clarke, Edmund M. II-180
Cook, Byron I-13
Corzilius, Florian I-214
Curzon, Paul I-470

D’Silva, Vijay II-271
Dangl, Matthias I-622
Das, Ankush I-324
Dave, Nirav II-109
de Boer, Frank S. I-273
de Gouw, Stijn I-273
Dehnert, Christian I-214
Demyanova, Yulia I-561
Desai, Ankush II-429
Deshmukh, Jyotirmoy V. II-234
Deters, Morgan II-198
Dietsch, Daniel I-49
Dimitrov, Dimitar I-307
Dolby, Julian I-235
Duggirala, Parasara Sridhar I-536
Durand-Gasselin, Antoine I-67
Duret-Lutz, Alexandre I-479

Eidson, John C. II-429
Emmi, Michael I-455
Erez, Amit II-20
Esparza, Javier I-67

Fan, Chuchu I-536
Fellner, Andreas I-158
Fernandes Pires, A. I-518
Fernandez, Matthew II-144
Ferrère, Thomas II-322
Finkbeiner, Bernd I-30, I-433
Fisher, Jasmin I-544
Foster, Jeffrey S. II-377
Fränzle, Martin II-338

Gajavelly, Rajkumar II-128
Ganesh, Vijay I-235
Ganty, Pierre I-67
Garbuzov, Dmitri II-413
Gardner, Philippa I-3
Garg, Pranav I-440
Gehr, Timon I-307
Genaim, Samir II-304
Gieseking, Manuel I-433
Griggio, Alberto I-603
Grigore, Radu I-290

Gulwani, Sumit I-398
Gurfinkel, Arie I-343, I-641

Hähnle, Reiner I-273
Haldankar, Tanmay II-128
Hasuo, Ichiro II-356
Hawblitzel, Chris I-362, II-449
Heizmann, Matthias I-49
Henzinger, Thomas A. II-180
Hoenicke, Jochen II-37
Holík, Lukáš I-462
Hong, Chih-Duo I-658
Howar, Falk I-487

Ibsen-Jensen, Rasmus I-140
Isberner, Malte I-487
Itzhaky, S. I-583

Jagannathan, Suresh II-3
Jain, Mitesh I-103
Jansen, Nils I-214
Jeon, Jinseong II-377
Jones, D. I-518
Jones, Paul I-470
Junges, Sebastian I-214

Kahsai, Temesghen I-343
Karbyshev, A. I-583
Katoen, Joost- Pieter I-214
Katsirelos, George II-70
Khasidashvili, Zurab II-128
Khlaaf, Heidy I-13
Kiefer, Stefan I-290
Kimberly, G. I-518
King, Tim II-87
Klein, Joachim I-479
Kneuss, Etienne II-217
Kobayashi, Naoki II-287
Köksal, Ali Sinan I-544
Komuravelli, Anvesh I-343
Konnov, Igor I-85
Köpf, Boris I-178
Koukoutos, Manos II-217
Křetínský, Jan I-158, I-479
Kuncak, Viktor II-198, II-217
Kuwahara, Takuya II-287
Kwiatkowska, Marta I-195

Lahiri, Shuvendu K. I-324, I-362
Lal, Akash I-324
Langenfeld, Vincent I-49
Leino, K. Rustan M. I-380

Leslie-Hurd, Rebekah II-144
Li, Yi I-324

Madhusudan, P. I-440
Majumdar, Rupak I-67, I-496, II-234
Maler, Oded II-322
Malik, Sharad I-641
Manolios, Panagiotis I-103, II-53
Mansky, William II-413
Masci, Paolo I-470
Mattarei, Cristian I-603
Mistry, Rakesh II-128
Mitra, Sayan I-536
Mosaad, Peter Nazier II-338
Müller, David I-479

Nadel, Alexander II-20
Navas, Jorge A. I-343
Ničković, Dejan II-322

Oladimeji, Patrick I-470
Olderog, Ernst-Rüdiger I-433
Oulamara, Mendes I-415
Ozkan, Burcu Kulahcioglu I-455

Pais, Jorge II-53
Pani, Thomas I-561
Papavasileiou, Vasilis II-53
Parker, David I-479
Pavlogiannis, Andreas I-140
Petrank, Erez II-449
Petri, Gustavo II-3
Petri, T. I-518
Piskac, Ruzica I-511
Piterman, Nir I-13, I-544
Podelski, Andreas I-49
Prabhu, Vinayak S. II-234

Qadeer, Shaz II-429, II-449
Qiu, Xiaokang II-377

Rabe, Markus N. I-30
Radhakrishna, Arjun II-163, II-180
Raghothaman, Mukund II-395
Randour, Mickael I-123
Raskin, Jean-François I-123, II-251
Reinking, Alex I-511
Reynolds, Andrew II-87, II-198
Rezine, Ahmed I-462
Rinetzky, N. I-583
Robinson, R. I-518
Rot, Jurriaan I-273
Rümmer, Philipp I-462

676 Author Index

Rybalchenko, Andrey I-178
Ryzhyk, Leonid II-180

Saha, Shambwaditya I-440
Samanta, Roopsha II-180
Sánchez, César I-30
Sankur, Ocan I-123
Sato, Ryosuke II-287
Sebastiani, Roberto I-447
Seger, Carl-Johan H. II-128
Seshia, Sanjit A. II-429
Shoham, S. I-583
Singh, Rishabh I-398
Sinha, Rohit I-362
Smith, Gareth I-3
Solar-Lezama, Armando II-377
Steffen, Bernhard I-487
Stenman, Jari I-462
Stergiou, Christos II-395
Strejček, Jan I-479
Subramanian, Sanu I-235

Tarrach, Thorsten II-180
Tasiran, Serdar I-455, II-449
Thimbleby, Harold I-470
Tinelli, Cesare II-198
Tiwari, Ashish I-504
Tonetta, S. I-518
Trentin, Patrick I-447
Tripakis, Stavros II-395
Tripp, Omer I-235

Udupa, Abhishek II-395
Ulus, Dogan II-322
Unno, Hiroshi II-287
Urban, Caterina II-271

Vechev, Martin I-307
Veith, Helmut I-85, I-561
Venet, Arnaud J. I-415
Vijayaraghavan, Muralidaran II-109
Viswanathan, Mahesh I-536
Vizel, Yakir I-641
Volk, Matthias I-214
von Gleissenthall, Klaus I-178

Wang, Bow-Yaw I-658
Wang, Zilong I-496
Watt, Conrad I-3
Wendler, Philipp I-622
Widder, Josef I-85
Wies, Thomas II-87
Wood, Thomas I-3
Woodhouse, Steven I-544
Wüstholz, Valentin I-380

Zdancewic, Steve II-413
Zhan, Naijun II-338
Zhang, Lijun I-658
Zhang, Xiangyu I-235
Zhang, Yi I-470
Zheng, Yunhui I-235
Zhu, He II-3
Zou, Liang II-338
Zuleger, Florian I-561

Author Index 677

	Preface
	Organization
	Abstracts of Invited Talks
	A Trusted Mechanised Specificationof JavaScript: One Year On
	CAV: An Industrial Perspective
	Effective and Scalable Verification: BridgingResearch and Industry

	Contents – Part I
	Contents – Part II
	Invited Paper
	A Trusted Mechanised Specification of JavaScript: One Year On
	1 Introduction
	2 JSCert at POPL'14
	3 JSCert at CAV'15
	References

	Model Checking and Refinements
	On Automation of CTL* Verification for Infinite-State Systems
	1 Introduction
	2 Preliminaries
	3 Overview
	4 Checking CTL* Formulae
	4.1 ProveCTL*

	5 Evaluation
	6 Concluding Remarks
	References

	Algorithms for Model Checking HyperLTL and HyperCTL*
	1 Introduction
	2 Temporal Logics for Hyperproperties
	3 Automata-Theoretic Model Checking of HyperCTL*
	3.1 The Alternation-Free Fragment
	3.2 The Full Logic

	4 Symbolic Model Checking of Circuits
	5 Case Studies and Experimental Results
	5.1 Case Study 1: Information Flow Properties of I2C
	5.2 Case Study 2: Symmetry in Mutual Exclusion Protocols
	5.3 Case Study 3: Error Resistant Codes

	6 Conclusions
	References

	Fairness Modulo Theory: A New Approach to LTL Software Model Checking
	1 Introduction
	2 Example
	3 Preliminaries
	4 Büchi Program and Büchi Program Product
	5 LTL Software Model Checking
	6 Implementation and Evaluation
	7 Related Work
	8 Conclusion and Future Work
	References

	Model Checking Parameterized Asynchronous Shared-Memory Systems
	1 Introduction
	2 Formal Model: Non-atomic Networks
	2.1 Systems as Languages
	2.2 Non-atomic Networks
	2.3 The Model-Checking Problem for Linear-Time Properties

	3 MC(FSM,FSM) is NP-Complete
	3.1 (FSM,FSM)-Networks: Populations and Transition System
	3.2 The Abstract Transition System
	3.3 Realizable Cycles of the Abstract Transition System

	4 MC(PDM,FSM) is NP-Complete
	5 MC(PDM,PDM) is in NEXPTIME
	5.1 A FSM for Runs of Bounded Effective Stack Height
	5.2 The Reduction Theorem

	References

	SMT and POR Beat Counter Abstraction: Parameterized Model Checking of Threshold-Based Distributed Algorithms
	1 Introduction
	2 A Motivating Example
	3 Parameterized Counter Systems
	3.1 Counter Systems
	3.2 Contexts and Slices
	3.3 Parameterized Reachability

	4 Main Result: A Complete Set of Schemas
	4.1 Special Case I: One Context and One Looplet
	4.2 Special Case II: One Context and Multiple Looplets
	4.3 The General Case
	4.4 Optimization: Smaller Complete Sets of Schemas

	5 Checking a Schema with SMT
	6 Experiments
	7 Discussions
	References

	Skipping Refinement
	1 Introduction
	2 Motivating Examples
	3 Skipping Simulation and Refinement
	3.1 Skipping Refinement

	4 Automated Reasoning
	5 Experimental Evaluation
	6 Related Work and Discussion
	7 Conclusion and Future Work
	References

	Quantitative Reasoning
	Percentile Queries in Multi-dimensional Markov Decision Processes
	1 Introduction
	2 Preliminaries
	3 Multiple Reachability and Contraction of MECs
	4 Inf, Sup, LimInf, LimSup Payoff Functions
	5 Mean-Payoff
	6 Shortest Path
	7 Discounted Sum
	References

	Faster Algorithms for Quantitative Verification in Constant Treewidth Graphs
	1 Introduction
	2 Definitions
	3 Minimum Cycle
	4 The Minimum Ratio and Mean Cycle Problems
	4.1 Exact Solution
	4.2 Approximating the Minimum Mean Cycle

	5 The Minimum Initial Credit Problem
	5.1 The Decision Problem for General Graphs
	5.2 The Value Problem for General Graphs
	5.3 The Value Problem for Constant-Treewidth Graphs

	6 Experimental Results
	References

	Counterexample Explanation by Learning Small Strategies in Markov Decision Processes
	1 Introduction
	2 Preliminaries
	3 Computing -Optimal Strategies
	4 Importance of Decisions
	5 Efficient Representations
	5.1 BDD Representation
	5.2 Representation Using Decision Trees

	6 Experiments
	6.1 Decision Tree Learning
	6.2 Results
	6.3 Understanding Decision Trees

	7 Conclusion
	References

	Symbolic Polytopes for Quantitative Interpolation and Verification
	1 Introduction
	2 Example
	3 Counting Integer Points in Polytopes
	4 Interpolation with Cardinality Constraints
	5 Interpolation with Parametric Cardinalities
	6 Verification of Programs with Cardinality Constraints
	7 Experiments
	8 Related Work
	9 Conclusion
	References

	Adaptive Aggregation of Markov Chains: Quantitative Analysis of Chemical Reaction Networks
	1 Introduction
	2 Computation of the Transient Probability Distribution
	3 Aggregations for Model Checking of Time-Bounded Specifications
	4 Quantitative Analysis of Chemical Reaction Networks
	5 Experimental Evaluation on Two Case Studies
	6 Conclusions
	References

	PROPhESY: A PRObabilistic ParamEter SYnthesis Tool
	1 Introduction
	2 Features and Contributions
	3 Formal Foundations
	4 Supported Techniques
	4.1 Model Checking
	4.2 Parameter Synthesis

	5 Implementation and Experiments
	6 Related Work
	7 Conclusion and Future Work
	References

	Software Analysis
	Effective Search-Space Pruning for Solvers of String Equations, Regular Expressions and Length Constraints
	1 Introduction
	1.1 Related Work
	1.2 Formal Preliminaries

	2 Overview of the Design Z3str2 String Solver
	3 Word Equation Sub-solver in Z3str2
	4 New Techniques for Improving Efficiency of String Solvers
	4.1 Subroutine for Detecting Overlapping Variables in Word Equations
	4.2 String and Integer Theory Integration

	5 Soundness of the Z3str2 Algorithm
	6 Experimental Results
	6.1 Performance Results
	6.2 Interpretation of Results

	7 Conclusion
	References

	Automata-Based Model Counting for String Constraints
	1 Introduction
	2 Automata Construction for String Constraints
	2.1 String Constraint Language
	2.2 Mapping Constraints to Automata

	3 Automata-Based Model Counting
	4 Implementation
	5 Experiments
	6 Conclusions and Future Work
	References

	OpenJDK's Java.utils.Collection.sort() Is Broken: The Good, the Bad and the Worst Case
	1 Introduction
	2 Implementation of TimSort
	3 Breaking the Invariant
	3.1 The Length of runLen

	4 Worst Case Stack Size
	4.1 Breaking TimSort

	5 Verification of a Fixed Version
	5.1 Experimental Evaluation

	6 Experience with KeY
	7 Conclusion and Future Work
	References

	Tree Buffers
	1 Introduction
	2 Tree Buffers
	3 Space Efficient Algorithms
	3.1 The Garbage Collecting Algorithm
	3.2 The Amortized Algorithm
	3.3 The Real-Time Algorithm

	4 Monitoring
	4.1 Regular-Expression Searching
	4.2 Runtime Verification

	5 Experiments
	5.1 Datasets
	5.2 Empirical Results

	6 Conclusions, Related Work, and Future Work
	References

	Learning Commutativity Specifications
	1 Introduction
	2 Overview
	3 Background
	4 Learning Formulas
	4.1 Learning Objective
	4.2 Formula Search
	4.3 Predicate Discovery

	5 Sampling
	5.1 Type-Aware Sampling
	5.2 Black-Box Interface
	5.3 Hypothesis Stabilization

	6 Inferring Commutativity Specifications
	6.1 Commutativity Specifications
	6.2 Sampling for Commutativity

	7 Evaluation
	8 Related Work
	9 Conclusion
	References

	Angelic Verification: Precise Verification Modulo Unknowns
	1 Introduction
	2 Programming Language
	3 Angelic Verification
	3.1 Problem Formulation
	3.2 Finding Angelic Bugs

	4 ExplainError
	5 Evaluation
	5.1 Comparison with SDV
	5.2 Comparison Against PREfix

	6 Related Work
	7 Conclusions
	References

	The SeaHorn Verification Framework
	1 Introduction
	2 Pre-Processing for Verification
	3 Flexible Semantics for Developers
	4 Verification Engines
	4.1 SMT-Based Model Checking with Spacer
	4.2 Abstract Interpretation with Ikos

	5 Experimental Evaluation
	6 Conclusion
	References

	Automatic Rootcausing for Program Equivalence Failures in Binaries
	1 Introduction
	1.1 Overview

	2 Background
	3 Problem Formulation
	3.1 Instrumentation
	3.2 Different Checks

	4 Searching for a Fix
	5 Evaluation
	5.1 Different Optimization Levels
	5.2 JIT Versus Compiled Binaries

	6 Related Work
	7 Conclusion
	References

	Fine-Grained Caching of Verification Results
	1 Introduction
	2 Motivating Example
	3 Verification Architecture and Basic Caching
	3.1 Architecture
	3.2 Basic Caching
	3.3 Prioritizing Procedure Implementations Using Checksums

	4 Fine-Grained Caching
	4.1 Fine-Grained Dependency Tracking Using Statement Checksums
	4.2 Injecting Explicit Assumptions and Partially Verified Checks
	4.3 Algorithm for Injecting Cached Verification Results

	5 Evaluation
	6 Related Work
	7 Conclusions and Future Work
	References

	Predicting a Correct Program in Programming by Example
	1 Introduction
	2 Motivating Examples
	3 Domain-Specific Languages (DSLs) for PBE in VSA
	3.1 An Abstract Language La for PBE Systems
	3.2 Data Structure for Representing a Set of La Expressions
	3.3 Ranking the Set of La Expressions

	4 Learning the Ranking Function
	4.1 Preliminaries
	4.2 Automated Training Data Generation
	4.3 Gradient Descent Based Learning Algorithm

	5 Case Study: FlashFill
	5.1 Efficient Expression Features
	5.2 Experimental Evaluation

	6 Related Work
	7 Conclusion
	References

	Abstract Interpretation with Higher-Dimensional Ellipsoids and Conic Extrapolation
	1 Introduction
	2 Ellipsoidal Operations
	2.1 A Test of Inclusion
	2.2 Computation of the Union
	2.3 Affine Assignments
	2.4 Variable Packing

	3 Verifying Linear Matrix Inequalities
	3.1 Cholesky Decomposition
	3.2 Practical Aspects of the Ellipsoidal Operations

	4 Conic Extrapolation
	4.1 Conditions of Inclusion
	4.2 Test of Inclusion
	4.3 Affine Operations on Cones
	4.4 Addition and Removal of Counters
	4.5 A Widening Operator
	4.6 Proof of the Characterization of Conic Inclusion

	5 Application and Convergence
	5.1 Switched Linear Systems

	6 Concluding Remarks and Perspectives
	References

	Lightning Talks
	Adam: Causality-Based Synthesis of Distributed Systems
	1 Introduction
	2 The Synthesis Game
	3 Solving Petri Games
	4 Experience with Adam
	References

	Alchemist: Learning Guarded Affine Functions
	1 Introduction
	2 A Learning Algorithm Based on Geometry and Decision Trees
	2.1 Finding Leaf Planes Using Geometric Techniques
	2.2 Finding Conditionals Using Decision Tree Learning

	3 Evaluation
	4 Conclusions
	References

	OptiMathSAT: A Tool for Optimization Modulo Theories
	1 Introduction
	2 Architecture
	3 Optimization Functionalities
	3.1 Single-Objective Optimization
	3.2 Multi-objective Combination
	3.3 Interfaces

	4 Example
	5 Applications
	6 Future Developments
	References

	Systematic Asynchrony Bug Exploration for Android Apps
	1 Introduction
	2 Design and Implementation
	2.1 Recording and Repeating User Events
	2.2 Thread Scheduling

	3 Case Studies
	4 Limitations and Future Work
	References

	Norn: An SMT Solver for String Constraints
	1 Introduction
	2 Logic and Calculus
	3 A DPLL(T)-Style Proof Procedure for Strings
	3.1 Efficient Handling of Disequalities
	3.2 Length-Guided Splitting of Equalities

	4 Implementation and Experiments
	References

	PVSio-web 2.0: Joining PVS to HCI
	1 Introduction
	2 PVSio-web: System Overview and Applications
	3 The PVSio-web Architecture
	4 Implementation
	5 Conclusions and Future Directions
	References

	The Hanoi Omega-Automata Format
	1 Introduction
	2 Main Features of the HOA Format
	3 Application Support
	4 Conclusion
	References

	The Open-Source LearnLib
	1 Introduction
	2 AutomataLib
	3 LearnLib
	4 Evaluation
	5 Conclusion
	References

	BBS: A Phase-Bounded Model Checker for Asynchronous Programs
	1 Introduction
	2 Sequentialization Overview
	3 Experimental Evaluation
	3.1 TinyOS Execution Model
	3.2 BBS Overview
	3.3 Experimental Experience with BBS

	References

	Time-Aware Abstractions in HybridSal
	1 Introduction
	2 Relational Abstraction
	2.1 Time-Oblivious Relational Abstraction
	2.2 Time-Aware Relational Abstraction
	2.3 Defective Matrices

	3 Experiments
	4 Conclusion
	References

	A Type-Directed Approach to Program Repair
	1 Introduction
	2 Related Work
	3 Motivating Example: Correcting Multiple Errors
	4 The Algorithm
	4.1 Synthesis Graph Construction
	4.2 Synthesis Procedure
	4.3 Repair Algorithm

	5 Preliminary Evaluation
	6 Conclusions and Future Directions
	References

	Formal Design and Safety Analysis of AIR6110 Wheel Brake System
	1 Introduction
	2 AIR 6110
	2.1 Overview of the Standards
	2.2 Overview of the Wheel Brake System
	2.3 The Informal Development Process

	3 Formal Approach
	4 Formal Models
	4.1 Modeling Nominal Aspect
	4.2 Modeling Safety Aspects

	5 Automated Analyses
	6 Conclusions, Lessons Learned and Further Work
	References

	Meeting a Powertrain Verification Challenge
	1 A Challenge Problem
	2 Nonlinear Hybrid Powertrain Model
	3 Verification Using C2E2 with Local Discrepancy
	3.1 Tool Implementation and Engineering

	4 Experimental Results on Powertrain Challenge
	5 Conclusions and Future Work
	References

	Synthesising Executable Gene Regulatory Networks from Single-Cell Gene Expression Data
	1 Introduction
	2 Biological Motivation
	3 Example: Reconstructing an ABN from its State Space
	4 Background to Asynchronous Boolean Networks
	5 Formal Definition of the Problem
	5.1 Generalising the Definition to Partial Data

	6 A Direct Encoding
	6.1 Possible Update Functions
	6.2 Ensuring Reachability
	6.3 Enforcing the Threshold Condition

	7 A Compositional Algorithm
	7.1 Pruning the Set of Possible Edges
	7.2 Ensuring Reachability
	7.3 Final Update Functions

	8 Application to the Experimental Dataset
	9 Related Work
	10 Conclusions and Future Work
	References

	Empirical Software Metrics for Benchmarking of Verification Tools
	1 Introduction
	2 Source Code Metrics for Software Verification
	2.1 Variable Role Based Metrics
	2.2 Loop Pattern Based Metrics
	2.3 Control Flow Based Metrics

	3 A Portfolio Solver for Software Verification
	3.1 Preliminaries on Machine Learning
	3.2 The Competition on Software Verification SV-COMP
	3.3 Tool Selection as a Machine Learning Problem

	4 Experimental Results
	4.1 SV-COMP 2014 vs. 2015
	4.2 Decisiveness-Reliability Plots
	4.3 Evaluation of Our Portfolio Solver

	References

	Interpolation, IC3/PDR, and Invariants
	Property-Directed Inference of Universal Invariants or Proving Their Absence
	1 Introduction
	2 Preliminaries
	3 Universal-Property-Directed Reachability
	3.1 Diagrams as Structural Abstractions
	3.2 Data Structures and Frames
	3.3 Iterative Construction of an Approximate Reachability Sequence

	4 Correctness
	5 Implementation and Empirical Evaluation
	6 Related Work
	7 Conclusions
	References

	Efficient Anytime Techniques for Model-Based Safety Analysis
	1 Introduction
	2 Safety Analysis
	3 Model-Based Safety Analysis
	3.1 Minimal Cut Set Computation
	3.2 Computing Faults Probability

	4 Basic Algorithms for MCS Computation
	5 Efficient Algorithms for MCS Computation
	5.1 Monotonic Parameter Synthesis
	5.2 Enumerating only MCS

	6 Anytime Approximation
	7 Experimental Evaluation
	7.1 Benchmarks
	7.2 Performance Evaluation
	7.3 Error Estimation

	8 Conclusions and Future Work
	References

	Boosting k-Induction with Continuously-Refined Invariants
	1 Introduction
	2 k-Induction with Continuously-Refined Invariants
	3 Experimental Evaluation
	4 Conclusion
	References

	Fast Interpolating BMC
	1 Introduction
	2 Preliminaries
	3 Simplification-Aware Interpolation
	4 Interpolating Incremental SAT Solver
	5 Experiments
	6 Discussion and Conclusions
	References

	Counterexample-Guided Polynomial Loop Invariant Generation by Lagrange Interpolation
	1 Introduction
	2 Preliminaries
	3 Probabilistic Programs
	3.1 Expectations
	3.2 Expectation Transformer for Probabilistic Programs

	4 Quantitative Loop Invariants
	5 Multivariate Lagrange Interpolation
	6 Interpolation of Loop Invariants
	6.1 Choosing Sampling Points
	6.2 Initial Constraint
	6.3 Random Experiments
	6.4 Universal Quantifier Elimination
	6.5 Constraint Refinement

	7 Applications
	8 Evaluation
	9 Conclusion
	References

	Author Index

