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Abstract. Forms of synchrony can greatly simplify modeling, design,
and verification of distributed systems. Thus, recent advances in clock
synchronization protocols and their adoption hold promise for system
design. However, these protocols synchronize the distributed clocks only
within a certain tolerance, and there are transient phases while synchro-
nization is still being achieved. Abstractions used for modeling and ver-
ification of such systems should accurately capture these imperfections
that cause the system to only be “almost synchronized.” In this paper,
we present approximate synchrony, a sound and tunable abstraction
for verification of almost-synchronous systems. We show how approxi-
mate synchrony can be used for verification of both time synchroniza-
tion protocols and applications running on top of them. We provide an
algorithmic approach for constructing this abstraction for symmetric,
almost-synchronous systems, a subclass of almost-synchronous systems.
Moreover, we show how approximate synchrony also provides a useful
strategy to guide state-space exploration. We have implemented approx-
imate synchrony as a part of a model checker and used it to verify mod-
els of the Best Master Clock (BMC) algorithm, the core component of
the IEEE 1588 precision time protocol, as well as the time-synchronized
channel hopping protocol that is part of the IEEE 802.15.4e standard.

1 Introduction

Forms of synchrony can greatly simplify modeling, design, and verification of
distributed systems. Traditionally, a common sense of time is established using
time-synchronization (clock-synchronization) protocols or systems such as the
global positioning system (GPS), network time protocol (NTP), and the IEEE
1588 [20] precision time protocol (PTP). These protocols, however, synchronize
the distributed clocks only within a certain bound. In other words, at any time
point, clocks of different nodes can have differing values, but time synchroniza-
tion ensures that those values are within a specified offset of each other, i.e.,
they are almost synchronized.

Distributed protocols running on top of time-synchronized nodes are designed
under the assumption that while processes at different nodes make independent
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progress, no process falls very far behind any other. Figure 1 provides examples
of such real world systems. For example, Google Spanner [8] is a distributed
fault tolerant system that provides consistency guarantees when run on top of
nodes that are synchronized using GPS and atomic clocks, wireless sensor net-
works [27,28] use time synchronized channel hopping (TSCH) [1] as a standard
for time synchronization of sensor nodes in the network, and IEEE 1588 precision
time protocol (PTP) [20] has been adopted in industrial automation, scientific
measurement [22], and telecommunication networks. Correctness of these proto-
cols depends on having some synchrony between different processes or nodes.

Fig. 1. Almost-synchronous systems
comprise an application protocol running
on top of a time-synchronization layer.

When modeling and verifying sys-
tems that are almost-synchronous it
is important to compose them using
the right concurrency model. One
requires a model that lies somewhere
between completely synchronous (lock-
step progress) and completely asyn-
chronous (unbounded delay). Various
such concurrency models have been
proposed in the literature, including
quasi-synchrony [7,18] and bounded-
asynchrony [16]. However, we discuss in
Sect. 7, these models permit behaviors
that are typically disallowed in almost-synchronous systems. Alternatively, one
can use formalisms for hybrid or timed systems that explicitly model clocks
(e.g., [2,3]), but the associated methods (e.g., [17,21]) tend to be less efficient
for systems with a huge discrete state space, which is typical for distributed
software systems.

In this paper, we introduce symmetric, almost-synchronous (SAS) sys-
tems, a class of distributed systems in which processes have symmetric timing
behavior. In our experience, protocols at both the application layer and the
time-synchronization layer can be modeled as SAS systems. Additionally, we
introduce the notion of approximate synchrony (AS) as a concurrency model for
almost-synchronous systems, which also enables one to compute a sound discrete
abstraction of a SAS system. Intuitively, a system is approximately-synchronous
if the number of steps taken by any two processes do not differ by more than a
specified bound, denoted Δ. The presence of the parameter Δ makes approxi-
mate synchrony a tunable abstraction method. We demonstrate three different
uses of the approximate synchrony abstraction:

1. Verifying Time-Synchronized Systems: Suppose that the system to be
verified runs on top of a layer that guarantees time synchronization through-
out its execution. In this case, we show that there is a sound value of Δ which
can be computed using a closed form equation as described in Sect. 3.2.

2. Verifying Systems with Recurrent Logical Behavior: Suppose the sys-
tem to be verified does not rely on time synchronization, but its traces contain
recurrent logical conditions — a set of global states that are visited repeatedly
during the protocol’s operation. We show that an iterative approach based
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on model checking can identify such recurrent behavior and extract a value
of Δ that can be used to compute a sound discrete abstraction for model
checking (see Sect. 4). Protocols verifiable with this approach include some at
the time-synchronization layer, such as IEEE 1588 [20].

3. Prioritizing State-Space Exploration: The approximate synchrony abstr-
action can also be used as a search prioritization technique for model checking.
We show in Sect. 6 that in most cases it is more efficient to search behaviors
for smaller value of Δ (“more synchronous” behaviors) first for finding bugs.

We present two practical case studies: (i) a time-synchronized channel hop-
ping (TSCH) protocol that is part of the IEEE802.15.4e [1] standard, and (ii) the
best master clock (BMC) algorithm of the IEEE 1588 precision time protocol.
The former is system where the nodes are time-synchronized, while the latter
is the case of a system with recurrent logical behavior. Our results show that
approximate synchrony can reduce the state space to be explored by orders of
magnitude while modeling relevant timing semantics of these protocols, allowing
one to verify properties that cannot be verified otherwise. Moreover, we were able
to find a so-called “rogue frame” scenario that the IEEE 1588 standards com-
mittee had long debated without resolution (see our companion paper written
for the IEEE 1588 community [6] for details).

Our abstraction technique can be used with any finite-state model checker.
In this paper we implement it on top of the Zing model checker [4], due to its
ability to control the model checker’s search using an external scheduler that
enforces the approximate synchrony condition.

To summarize, this paper makes the following contributions:

– The formalism of symmetric, almost synchronous (SAS) systems and its use
in modeling an important class of distributed systems (Sect. 2);

– A tunable abstraction technique, termed approximate synchrony (Sects. 2
and 3);

– Automatic procedures to derive values of Δ for sound verification (Sects. 3
and 4);

– An implementation of approximate synchrony in an explicit-state model
checker (Sect. 5), and

– The use of approximate synchrony for verification and systematic testing of
two real-world protocols, the BMC algorithm (a key component of the IEEE
1588 standard), and the time synchronized channel hopping protocol (Sect. 6).

2 Formal Model and Approach

In this section, we define clock synchronization precisely and formalize the notion
of symmetric almost-synchronous (SAS) systems, the class of distributed systems
we are concerned with in this paper.

2.1 Clocks and Synchronization

Each node in the distributed system has an associated (local) physical clock χ,
which takes a non-negative real value. For purposes of modeling and analysis,
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we will also assume the presence of an ideal (global) reference clock, denoted t.
The notation χ(t) denotes the value of χ when the reference clock has value t.
Given this notation, we describe the following two basic concepts:

1. Clock Skew: The skew between two clocks χi and χj at time t (according to
the reference clock) is the difference in their values |χi(t) − χj(t)|.

2. Clock Drift: The drift in the rate of a clock χ is the difference per unit time
of the value of χ from the ideal reference clock t.

Time synchronization ensures that the skew between any two physical clocks in
the network is bounded. The formal definition is as below.

Definition 1. A distributed system is time-synchronized (or clock-synchronized)
if there exists a parameter β such that for every pair of nodes i and j and for
any t,

|χi(t) − χj(t)| ≤ β (1)

For ease of exposition, we will not explicitly model the details of dynamics
of physical clocks or the updates to them. We will instead abstract the clock
dynamics as comprising arbitrary updates to χi variables subject to additional
constraints on them such as Eq. 1 (wherever such assumptions are imposed).

Example 1. The IEEE 1588 precision time protocol [20] can be implemented so
as to bound the physical clock skew to the order of sub-nanoseconds [22], and
the typical clock drift to at most 10−4 [20].

2.2 Symmetric, Almost-Synchronous Systems

We model the distributed system as a collection of processes, where processes are
used to model both the behavior of nodes as well as of communication channels.
There can be one or more processes executing at a node.

Formally, the system is modeled as the tuple MC = (S, δ, I, id,χ, τ ) where

– S is the set of discrete states of the system,
– δ ⊆ S × S is the transition relation for the system,
– I ⊆ S is the set of initial states,
– id = {1, 2, . . . ,K} is the set of process identifiers,
– χ = (χ1, χ2, . . . , χK) is a vector of local clocks, and
– τ = (τ1, τ2, . . . , τK) is a vector of process timetables. The timetable of the ith

process, τi, is an infinite vector (τ1
i , τ2

i , τ3
i , . . .) specifying the time instants

according to local clock χi when process i executes (steps). In other words,
process i makes its jth step when χi = τ j

i .

For convenience, we will denote the ith process by Pi. Since in practice the
dynamics of physical clocks can be fairly intricate, we choose not to model these
details — instead, we assume that the value of a physical clock χi can vary
arbitarily subject to additional constraints (e.g., Eq. 1).
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The kth nominal step size of process Pi is the intended interval between the
(k − 1)th and kth steps of Pi, viz., τk

i − τk−1
i . The actual step size of the process

is the actual time elapsed between the (k − 1)th and kth step, according to the
ideal reference clock t. In general, the latter differs from the former due to clock
drift, scheduling jitter, etc.

Motivated by our case studies with the IEEE 1588 and 802.15.4e standards,
we impose two restrictions on the class of systems considered in this paper:

1. Common Timetable: For any two processes Pi and Pj , τi = τj . Note that this
does not mean that the process step synchronously, since their local clocks
may report different values at the same time t. However, if the system is time
synchronized, then the processes step “almost synchronously.”

2. Bounded Process Step Size: For any process Pi, its actual step size lies in an
interval [σl, σu]. This interval is the same for all processes. This restriction
arises in practice from the bounded drift of physical clocks.

A set of processes obeying the above restrictions is termed a symmetric, almost-
synchronous (SAS) system. The adjective “symmetric” refers only to the timing
behavior — note that the logical behavior of different processes can be very
different. Note also that SAS systems may or may not be running on top of a
time synchronization layer, i.e., SAS systems and time-synchronized systems are
orthogonal concepts.

Example 2. The IEEE 1588 protocol can be modeled as a SAS system. All
processes intend to step at regular intervals called the announce time interval.
The specification [20] states the nominal step size for all processess as 1 second;
thus the timetable is the sequence (0, 1, 2, 3, . . .). However, due to the drift of
clocks and other non-idealities such as jitter due to OS scheduling, the step size
in typical IEEE 1588 implementations can vary by ±10−3. From this, the actual
step size of processes can be derived to lie in the interval [0.999, 1.001].

Traces and Segments. A timed trace (or simply trace) of the SAS system MC

is a timestamped record of the execution of the system according to the global
(ideal) time reference t. Formally, a timed trace is a sequence h0, h1, h2, . . . where
each element hj is a triple (sj ,χj , tj) where sj ∈ S is a discrete (global) state
at time t = tj and χj = (χ1,j , χ2,j , . . . , χK,j) is the vector of clock values at
time tj . For all j, at least one process makes a step at time tj , so there exists
at least one i and a corresponding mi ∈ {0, 1, 2, . . .} such that χi,j(tj) = τmi

i .
Moreover, processes step according to their timetables; thus, if any Pi makes its
mith and lith steps at times tj and tk respectively, for mi < li, then χi,j(tj) =
τmi
i < τ li

i = χi,k(tk). Also, by the bounded process step size restriction, if any
Pi makes its mith and mi + 1th steps at times tj and tk respectively (for all
mi), |tk − tj | ∈ [σl, σu]. Finally, s0 ∈ I and δ(sj , sj+1) holds for all j ≥ 0 with
the transition into sj occuring at time t = tj .A trace segment is a (contiguous)
subsequence hj , hj+1, . . . , hl of a trace of MC .

2.3 Verification Problem and Approach

The central problem considered in this paper is as follows:
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Problem 1. Given an SAS system MC modeled as above, and a linear temporal
logic (LTL) property Φ with propositions over the discrete states of MC , verify
whether MC satisfies Φ.

One way to model MC would be as a hybrid system (due to the continuous
dynamics of physical clocks), but this approach does not scale well due to the
extremely large discrete state space. Instead, we provide a sound discrete abstrac-
tion MA of MC that preserves the relevant timing semantics of the ‘almost-
synchronous’ systems. (Soundness is formalized in Sect. 3).
There are two phases in our approach:

1. Compute Abstraction Parameter: Using parameters of MC (relating to clock
dynamics), we compute a parameter Δ characterizing the “approximate syn-
chrony” condition, and use Δ to generate a sound abstract model MA.

2. Model Checking: We verify the temporal logic property Φ on the abstract
model using finite-state model checking.

The key to this strategy is the first step, which is the focus of the following
sections.

3 Approximate Synchrony

We now formalize the concept of approximate synchrony (AS) and explain how it
can be used to generate a discrete abstraction of almost-synchronous distributed
systems. Approximate synchrony applies to both (segments of) traces and to
systems.

Definition 2. (Approximate Synchrony for Traces) A trace (segment) of a
SAS system MC is said to satisfy approximate synchrony (is approximately-
synchronous) with parameter Δ if, for any two processes Pi and Pj in MC , the
number of steps Ni and Nj taken by the two processes in that trace (segment)
satisfies the following condition:

|Ni − Nj | ≤ Δ

Although this definition is in terms of traces of SAS systems, we believe the
notion of approximate synchrony is more generally applicable to other distrib-
uted systems also. An early version of this definition appeared in [10].

The definition extends to a SAS system in the standard way:

Definition 3. (Approximate Synchrony for Systems) A SAS system MC sat-
isfies approximate synchrony (is approximately-synchronous) with parameter Δ
if all traces of that system satisfy approximate synchrony with parameter Δ.

We refer to the condition in Definition 3 above as the approximate synchrony
(AS) condition with parameter Δ, denoted AS(Δ). For example, in Fig. 2, exe-
cuting step 5 of process P1 before step 3 of process P2 violates the approximate
synchrony condition for Δ = 2. Note that Δ quantifies the “approximation”
in approximate synchrony. For example, for a (perfectly) synchronous system
Δ = 0, since processes step at the same time instants. For a fully asynchronous
system, Δ = ∞, since one process can get arbitrarily ahead of another.
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3.1 Discrete Approximate Synchrony Abstraction

We now present a discrete abstraction of a SAS system. The key modification
is to (i) remove the physical clocks and timetables, and (ii) include instead an
explicit scheduler that constrains execution of processes so as to satisfy the
approximate synchrony condition AS(Δ).

Fig. 2. AS(Δ) vio-
lated for Δ = 2

Formally, given a SAS system MC = (S, δ, I, id,χ, τ ),
we construct an Δ-abstract model MA as the tuple
(S, δa, I, id, ρΔ) where ρΔ is a scheduler process that
performs an asynchronous composition of the processes
P1,P2, . . . ,PK while enforcing AS(Δ). Conceptually, the
scheduler ρΔ maintains state counts Ni of the numbers of
steps taken by each process P̂i from the initial state.1 A con-
figuration of MA is a pair (s,N) where s ∈ S and N ∈ Z

K

is the vector of step counts of the processes. The abstract
model MA changes its configuration according to its transi-
tion function δa where δa((s,N), (s′, N ′)) iff (i) δ(s, s′) and
(ii) N ′

i = Ni+1 if ρΔ permits Pi to make a step and N ′
i = Ni

otherwise.
In an initial state, all processes Pi are enabled to make a step. At each step

of δa, ρΔ enforces the approximate synchrony condition by only enabling Pi to
step iff that step does not violate AS(Δ). Behaviors of MA are untimed traces,
i.e., sequences of discrete (global) states s0, s1, s2, . . . where sj ∈ S, s0 is an
initial (global) state, and each transition from sj to sj+1 is consistent with δa

defined above.
Note that approximate synchrony is a tunable timing abstraction. Larger the

value of Δ, more conservative the abstraction. The key question is: for a given
system, what value of Δ constitutes a sound timing abstraction, and how do
we automatically compute it? Recall that one model is a sound abstraction of
another if and only if every execution trace of the latter (concrete model MC)
is also an execution trace of the former (abstract model MA). In our setting,
the Δ-abstract and concrete models both capture the protocol logic in an iden-
tical manner, and differ only in their timing semantics. The concrete model
explicitly models the physical clocks of each process as real-valued variables as
described in Sect. 2. The executions of this model can be represented as timed
traces (sequences of timestamped states). On the other hand, in the Δ-abstract
model, processes are interleaved asynchronously while respecting the approxi-
mate synchrony condition stated in Definition 3. An execution of the Δ-abstract
model is an untimed trace (sequences of states). We equate timed and untimed
traces using the “untiming” transformation proposed by Alur and Dill [3] — i.e.,
the traces must be identical with respect to the discrete states.

1 The inclusion of step counts may seem to make the model infinite-state. We will show
in Sect. 5 how the model checker can be implemented without explicitly including
the step counts in the state space.
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3.2 Computing Δ for Time-Synchronized Systems

We now address the question of computing a value of Δ such that the resulting
MA is a sound abstraction of the original SAS system MC . We consider here
the case when MC is a system running on a layer that guarantees time syn-
chronization (Eq. 1) from the initial state. A second case, when nodes are not
time-synchronized and approximate synchrony only holds for segments of the
traces of a system, is handled in Sect. 4.

Consider a SAS system in which the physical clocks are always synchronized
to within β, i.e., Eq. 1 holds for all time t and β is a tight bound computed based
on the system configuration. Intuitively, if β > 0, then Δ ≥ 1 since two processes
are not guaranteed to step at the same time instants, and so the number of steps
of two processes can be off by at least one. The main result of this section is that
SAS systems that are time-synchronized are also approximately-synchronous,
and the value of Δ is given by the following theorem.

Theorem 1. Any SAS systemMC satisfying Eq. 1 is approximately-synchronous
with parameter Δ =

⌈
β
σl

⌉
. (Proof in [12])

Suppose the abstract model MA is constructed as described in Sect. 3.1 with
Δ as given in Theorem 1 and σl is the lower bound of the step size defined in
Sect. 2.2. Then as a corollary, we can conclude that MA is a sound abstraction
of MC : every trace of MC satisfies AS(Δ) and hence is a trace of MA after
untiming.

Example 3. The Time-Synchronized Channel Hopping (TSCH) [1] protocol is
being adopted as a part of the low power Medium Access Control standard
IEEE802.15.4e. It can be modeled as a SAS system since it has a time-slotted
architecture where processes share the same timetable for making steps. The
TSCH protocol has two components: one that operates at the application layer,
and one that provides time synchronization, with the former relying upon the
latter. We verify the application layer of TSCH that assumes that nodes in the
system are always time-synchronized within a bound called the “guard time”
which corresponds to β. Moreover, in practice, β is much smaller than σl and
thus Δ is typically 1 for implementations of the TSCH.

4 Systems with Recurrent Logical Conditions

We now consider the case of a SAS system that does not execute on top of a
layer that guarantees time synchronization (i.e., Eq. 1 may not hold). We identify
behavior of certain SAS systems, called recurrent logical conditions, that can be
exploited for abstraction and verification. Specifically, even though AS(Δ) may
not hold for the system for any finite Δ, it may still hold for segments of every
trace of the system.

Definition 4. (Recurrent Logical Condition) For a SAS system MC , a recur-
rent logical condition is a predicate logicConv on the state of MC such that
MC satisfies the LTL property G F logicConv.
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Our verification approach is based on finding a finite Δ such that, for every
trace of MC , segments of the trace between states satisfying logicConv satisfy
AS(Δ). This property of system traces can then be exploited for efficient model
checking.

We begin with an example of a recurrent logical condition case in the context
of the IEEE 1588 protocol (Sect. 4.1). We then present our verification approach
based on inferring Δ for trace segments via iterative use of model checking
(Sect. 4.2).

4.1 Example: IEEE 1588 Protocol

The IEEE 1588 standard [20], also known as the precision time protocol (PTP),
enables precise synchronization of clocks over a network. The protocol consists
of two parts: the best master clock (BMC) algorithm and a time synchronization
phase. The BMC algorithm is a distributed algorithm whose purpose is two-fold:
(i) to elect a unique grandmaster clock that is the best clock in the network, and
(ii) to find a unique spanning tree in the network with the grandmaster clock
at the root of the tree. The combination of a grandmaster clock and a spanning
tree constitutes the global stable configuration known as logical convergence
that corresponds to the recurrent logical condition. The second phase, the time
synchronization phase, uses this stable configuration to synchronize or correct
the physical clocks (more details in [20]).

Fig. 3. Phases of the IEEE 1588 time-synchronization protocol

Figure 3 gives an overview of the phases of the IEEE 1588 protocol execution.
The distributed system starts executing the first phase (e.g., the BMC algorithm)
from an initial configuration. Initially, the clocks are not guaranteed to be syn-
chronized to within a bound β. However, once logical convergence occurs, the
clocks are synchronized shortly thereafter. Once the clocks have been synchro-
nized, it is possible for a failure at a node or link to break clock synchronization.
The BMC algorithm operates continually, with the goal of ensuring that, if time
synchronization is broken, the clocks will be re-synchronized. Thus, a typical
1588 protocol execution is structured as a (potentially infinite) repetition of the
two phases: logical convergence, followed by clock synchronization. We exploit
this recurrent structure to show in Sect. 4.2 that we can compute a value of
Δ obeyed by segments of any trace of the system. The approach operates by
iterative model checking of a specially-crafted temporal logic formula.
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Note that the time taken by the protocol to logically converge depends on
various factors including network topology and clock drift. In Sect. 6, we demon-
strate empirically that the value of Δ depends on the number of steps (length
of the segment) taken by BMCA to converge which in turn depends on factors
mentioned above.

4.2 Iterative Algorithm to Compute Δ-Abstraction for Verification

Given a SAS system MC whose traces have a recurrent structure, and an LTL
property Φ, we present the following approach to verify whether MC satisfies Φ:

1. Define recurrent condition: Guess a recurrent logical condition, logicConv, on
the global state of MC .

2. Compute Nmin: Guess an initial value of Δ, and compute, from parameters
σl, σu of the processes in MC , a number Nmin such that the AS(Δ) condition
is satisfied on all trace segments where no process makes Nmin or more steps.
We describe the computation of Nmin in more detail below.

3. Verify if Δ is sound: Verify using model checking on MA that, every trace
segment that starts in an initial state or a state satisfying logicConv and
ends in another state in logicConv satisfies AS(Δ). This is done by checking
that no process makes Nmin or more steps in any such segment. Note that
verifying MA in place of MC is sound as AS(Δ) is obeyed for up to Nmin

steps from any state. Further details, including the LTL property checked,
are provided below.

4. Verify MC using Δ: If the verification in the preceding step succeeds, then
a model checker can verify Φ on a discrete abstraction M̂A of MC , which,
similar to MA, is obtained by dropping physical clocks and timetables, and
enforcing the AS(Δ) condition to segments between visits to logicConv. For-
mally, M̂A = (S, δ̂a, I, id, ρΔ) where δ̂a differs from δa only in that for a
configuration (s,N), N ′

i = 0 for all i if s′ ∈ logicConv (otherwise it is identi-
cal to δa).

However, if the verification in Step 3 fails, we go back to Step 2 and incre-
ment Δ and repeat the process to compute a sound value of Δ.

Figure 4 depicts this iterative approach for the specific case of the BMC
algorithm. We now elaborate on Steps 2 and 3 of the approach.

Step 2: Computing Nmin for a Given Δ. Recall from Sect. 2.2 that the
actual step size of a process lies in the interval [σl, σu]. Let Pf be the fastest
process (the one that makes the most steps from the initial state) and Ps be
the slowest (the fewest steps). Denote the corresponding number of steps by Nf

and Ns respectively. Then the approximate synchrony condition in Definition 3
is always satisfied if Nf −Ns ≤ Δ. We wish to find the smallest number of steps
taken by the fastest process when AS(Δ) is violated. We denote this value as
Nmin, and obtain it by formulating and solving a linear program.

Suppose first that Ps and Pf begin stepping at the same time t. Then, since
the time between steps of Pf is at least σl and that between steps of Ps is at
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Fig. 4. Iterative algorithm for computing Δ exploiting logical convergence

most σu, the total elapsed must be at least σlNf and at most σuNs, yielding
the inequality σlNf ≤ σuNs.

However, processes need not begin making steps simultaneously. Since each
process must make its first step at least σu seconds into its execution, the max-
imum initial offset between processes is σu. The smallest value of Nf occurs
when the fast process starts σu time units after the slowest one, yielding the
inequality:

σlNf + σu ≤ σuNs

We can now set up the following integer linear program (ILP) to solve for
Nmin:

min Nf s.t.

Nf ≥ Ns, Nf − Ns > Δ, σlNf + σu ≤ σuNs, Nf , Ns ≥ 1

Nmin is the optimal value of this ILP. In effect, it gives the fewest steps any
process can take (smallest Nf ) to violate the approximate synchrony condition
AS(Δ).

Example 4. For the IEEE 1588 protocol, as described in Sect. 2.2, the actual
process step sizes lie in [0.999, 1.001]. Setting Δ = 1, solving the above ILP
yields Nmin = 1502.

Step 3: Temporal Logic Property. Once Nmin is computed, we verify on the
discrete abstraction MA whether, from any state satisfying I ∨ logicConv, the
model reaches a state satisfying logicConv in less than Nmin steps. This also
verifies that all traces in the BMC algorithm satisfy the recurrent logicConv
property and the segments between logicConv satisfy AS(Δ). We perform this by
invoking a model checker to verify the following LTL property, which references
the variables Ni recording the number of steps of process Pi:

(I ∨ logicConv) =⇒ F
[
logicConv ∧ (

∧

i

(0 < Ni < Nmin)
)]

(2)

We show in Sect. 5 how to implement the above check without explicitly includ-
ing the Ni variables in the system state. Note that it suffices to verify the
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above property on the discrete abstraction MA constrained by the scheduler
ρΔ because we explore no more than Nmin steps of any process and so MA is a
sound abstraction. The overall soundness result is formalized below.

Theorem 2. If the abstract model MA satisfies Property 2, then all traces of
the concrete model MC are traces of the model M̂A (after untiming) (Proof
in [12])
In Sect. 6, we report on our experiments verifying properties of the BMC algo-
rithm by model checking the discrete abstract model M̂A as described above.

5 Model Checking with Approximate Synchrony

We implemented approximate synchrony within zing [4], an explicit state model
checker. zing performs a “constrained” asynchronous composition of processes,
using an external scheduler to guide the interleaving. Approximate synchrony
is enforced by an external scheduler that explores only those traces satisfying
AS(Δ) by scheduling, in each state, only those processes whose steps will not
violate AS(Δ).

Section 4 described an iterative approach to verify whether a Δ-abstract
model of a protocol is sound. The soundness proof depends on verifying
Property 2. A näıve approach for checking this property would be to include
a local variable Ni in each process as part of the process state to keep track
of the number of steps executed by each process, causing state space explosion.
Instead, we store the values of Ni for each i external to the system state, as a
part of the model checker explorer.

var StateTable : Dictionary〈State, List〈int〉〉;
BoundedDFS(s : State) {

var i : int, s′ : State, steps′ : List〈int〉;
i := 0;
while (i <#Processes(s)){

steps′ :=IncElement(i, StateTable[s]);
if ¬ CheckASCond(steps′)

∨ steps′[i] > (Nmin + Δ)
∨ s |= logicConv then
continue ;

s′ :=NextState(s, i);
if steps′[i] = Nmin then

assert(s′ |= logicConv);
if s′ /∈ Domain(StateTable)

∨ ¬(steps′ ≥pt StateTable[s′]) then
StateTable[s′] := steps′;
BoundedDFS(s′);

i := i + 1; } }
Verify() {

StateTable[sinitial ] = newList〈int〉;
BoundedDFS(sinitial );}

Fig. 5. Algorithm for Verification of
Property 2

The algorithm in Fig. 5 performs
systematic bounded depth first search
for a state sinitial, belonging to the
set of all possible initial states. To
check whether all traces of length Nmin

satisfy eventual logical convergence
under AS(Δ) constraint, we enforce
two bounds: first, the final depth bound
is (Nmin +Δ) and second, in each state
a process is enabled only if executing
that process does not violate AS(Δ). If
a state satisfies logicConv then we ter-
minate the search along that path.

The BoundedDFS function is called
recursively on each successor state and
it explore only those traces that sat-
isfy AS(Δ). If the steps executed by
a process is Nmin then the logicConv
monitor is invoked to assert if s′ |= logicConv (i.e. we have reached logical con-
vergence state) and if the assertion fails we increment the value of Δ as described
in Sect. 4.2. Nmin and Δ values are derived as explained in Sect. 4.2.



Approximate Synchrony 441

StateTable is a map from reachable state to the tuple of steps with which
it was last explored. steps′ is the vector of number of steps executed by each
process and is stored as a list of integers. #Processes(s) returns the number of
enabled processes in the state s. IncElement(i, t) increments the ith element of
tuple t and returns the updated tuple. CheckASCond(steps′) checks the following
condition that ∀s1, s2 ∈ steps′ |s1 − s2| ≤ Δ.

To avoid re-exploring a state which may not lead to new states, we do not
re-explore a state if it is revisited with steps′ greater than what it was last visited
with. The operator ≥pt does a pointwise comparison of the integer tuples. We
show in the following section that we are able to obtain significant state space
reduction using this implementation.

6 Evaluation

In this section, we present our empirical evaluation of the approximate synchrony
abstraction, guided by the following goals:

• Verify two real-world standards protocols: (1) the best master clock algorithm
in IEEE 1588 and (2) the time synchronized channel hopping protocol in IEEE
802.15.4e.

• Evaluate if we can verify properties that cannot be verified with full asyn-
chrony (either by reducing state space or by capturing relevant timing con-
straints).

• Evaluate approximate synchrony as an iterative bounding technique for find-
ing bugs efficiently in almost-synchronous systems.

6.1 Modeling and Experimental Setup

We model the system in P [11], a domain-specific language for writing event-
driven protocols. A protocol model in P is a collection of state machines inter-
acting with each other via asynchronous events or messages. The P compiler
generates a model for systematic exploration by Zing [4]. P also provides ways
of writing LTL properties as monitors that are synchronously composed with
the model. Both the case studies, the BMC algorithm and the TSCH protocol,
are modeled using P. Each node in the protocol is modeled as a separate P
state machine. Faults and message losses in the protocol are modeled as non-
deterministic choices.

All experiments were performed on a 64-bit Windows server with Intel Xeon
ES-2440, 2.40GHz (12 cores/24 threads) and 160 GB of memory. Zing can
exploit parallelism as its iterative depth-first search algorithm is completely par-
allelized. All timing results reported in this section are when Zing is run with
24 threads. We use the number of states explored and the time taken to explore
them as the comparison metric.
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Table 1. Temporal properties verified for the case studies

Protocol Temporal property Description

BMCA F G (logicConv) Eventually the BMC algorithm stabilizes with a
unique spanning tree having the grandmaster
at its root. The system is said to be in
logicConv state when the system has
converged to the expected spanning tree

TSCH
∧

i∈n G(¬desynchedi) A node in TSCH is said to be desynched - if it
fails to synchronize with its master within the
threshold period. The desired property of a
correct system is that the nodes are always
synchronized

6.2 Verification and Testing Using Approximate Synchrony

We applied approximate synchrony in three different contexts: (1) Time syn-
chronized Channel Hopping protocol (time synchronized system) (2) Best Mas-
ter Clock Algorithm in IEEE 1588 (exploiting recurrent logical condition)
(3) Approximate Synchrony as a bounding technique for finding bugs.

Verification of the TSCH Protocol . Time Synchronized Channel Hopping
(TSCH) is a Medium Access Control scheme that enables low power operations
in wireless sensor network using time-synchronization. It makes an assumptions
that the clocks are always time-synchronized within a bound, referred to as the
‘guard’ time in the standard. The low power operation of the system depends
on the sensor nodes being able to maintain synchronization (desynchroniza-
tion property in Table 1). A central server broadcasts the global schedule that
instructs each sensor node when to perform operations. Whether the system sat-
isfies the desynchronization property depends on this global schedule, and the
standard provides no recommendation on these schedules.

We modeled the TSCH as a SAS system and used Theorem 1 to calculate
the value of Δ2. We verified the desynchronization property (Table 1) in the
presence of failures like message loss, interference in wireless network, etc. For the
experiments we considered three schedules (1) round-robin: nodes are scheduled
in a round robin fashion, (2) shared with random back-off: all the schedule slots
are shared and conflict is resolved using random back-off (3) Priority Scheduler:
nodes are assigned fixed priority and conflict is resolved based on the priority.

We were able to verify if the property was satisfied for a given topology
under the global schedule, and generated a counterexample otherwise (Table 2)
which helped the TSCH system developers in choosing the right schedules for low
power operation. Using sound approximate synchrony abstraction (with Δ = 1),
we could accurately capture the “almost synchronous” behavior of the TSCH
system.
2 For system of nodes under consideration, the maximum clock skew, ε = 120μs and

nominal step size of 100ms, the value of Δ = 1.
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Table 2. Verification results using Approximate Synchrony.

Verification of BMC Algorithm

Network Safety Property Convergence Property

Topology Fully Asynchronous Model with Approximate Model with Approximate

(#Nodes) Model Synchrony Synchrony
States Time Property Δ States Time Property Δ States Time Property

Explored (h:mm) Proved Explored (h:mm) Proved Explored (hh:mm) Proved
Linear(5) 1.2 E+9 7:12 Yes 1 9.5 E+5 0:35 Yes 1 5.3 E+8 6:33 Yes
Star(5) 2.4 E+10 9:40 Yes 1 5.8 E+5 0:54 Yes 1 4.1 E+7 5:10 Yes

Random(5) 9.19 E+9 9:01 Yes 2 5.5 E+6 1:44 Yes 2 1.8 E+9 9:10 Yes
Ring(5) 7.1 E+12* * No 1 4.8 E+7 3:44 Yes 1 8 E+9 8:04 Yes
Linear(7) 1.4 E+13* * No 1 4.6 E+7 3:05 Yes 1 1.0 E+8 6:21 Yes
Star(7) 1.1 E+13* * No 2 3.7 E+8 5:06 Yes 2 3.3 E+10 13:34 Yes
Ring(7) 3.3 E+12* * No 2 6.8 E+8 8:04 Yes 2 2.1 E+10 11:11 Yes

Random(6) 1.1 E+13* * No 3 5.7 E+9 6:00 Yes 3 1.3 E+10 10:34 Yes
Random(7) 1.1 E+13* * No 3 8.1 E+8 7:11 Yes 3 9.9 E+10 10:11 Yes

Verification of TSCH Protocol
Network Round-Robin Scheduler Shared with CSMA Priority Scheduler
Topology States Time Property States Time Property States Time Property
(#Nodes) Explored (h:mm) Satisfied Explored (h:mm) Satisfied Explored (h:mm) Satisfied
Linear(5) 4.4 E+4 0:20 Yes 1.2 E+2# 0:03 No 2.4E +3# 0:09 No
Random(5) 3.6 E+2# 0:05 No 6.2 E+3# 0:12 No 1.9E +6 0:35 Yes
Mesh(5) 1.7 E+7 4:05 Yes 9.1 E+6 2:01 Yes 9.3 E+5 0:31 Yes

* denotes end of exploration as model checker ran out of memory,# denotes property violated and counter example is reported

Verification of BMC Algorithm. The BMC algorithm is a core component of
the IEEE 1588 precision time protocol. It is a distributed fault tolerant protocol
where nodes in the system perform operations periodically to converge on a
unique hierarchical tree structure, referred to as the logical convergence state in
Sect. 4. Note that the convergence property for BMCA holds only in the presence
of almost synchrony — it does not guarantee convergence in the presence of
unbounded process delay or message delay. Hence, it is essential to verify BMC
using the right form of synchrony.

We generated various verification instances by changing the configuration
parameters such as number of nodes, clock characteristics, and the network
topology. The results in Table 2 for the BMC algorithm are for 5 and 7 nodes
in the network with linear, star, ring, and random topologies. The Δ value used
for verification of each of these configurations was derived by using the iterative
approach described in Sect. 4.2. The results demonstrate that the value of Δ
required to construct the sound abstraction varies depending on network topol-
ogy, and clock dynamics. Table 2 shows the total number of states explored and
time taken by the model checker for proving the safety and convergence property
(Table 1) using the sound Δ-abstract model. Approximate synchrony abstraction
is orders of magnitude faster as it explores the reduced state-space. BMCA algo-
rithm satisfies safety invariant even in the presence of complete asynchrony. For
demonstrating the efficiency of using approximate synchrony we also conducted
the experiments with complete asynchronous composition, exploring all possible
interleaving (for safety properties). The complete asynchronous model is simple
to implement but fails to prove the properties for most of the topologies.

An upshot of our approach is that we are the first to prove that the BMC algo-
rithm in IEEE 1588 achieves logical convergence to a unique stable state for some
interesting configurations. This was possible because of the sound and tunable
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approximate synchrony abstraction. Although experiments with 5/7 nodes may
seem small, networks of this size do occur in practice, e.g., in industrial automa-
tion where one has small teams of networked robots on a factory floor.

Endlessly Circulating (Rogue) Frames in IEEE 1588: The possibility
of an endlessly circulating frame in a 1588 network has been debated for a
while in the standards committee. Using formal model of BMC algorithm under
approximate synchrony, we were able to reproduce a scenario were rogue frame
could occur. Existence of a rogue frame can lead to network congestion or cause
the BMC algorithm to never converge. The counter example was cross-validated
using simulation and is described in detail in [6]. It was well received by the
IEEE 1588 standards committee.

Table 3. Iterative Approximate Synchrony with bound Δ for finding bugs faster.

Buggy models Iterative depth bounding Non-iterative AS Iterative AS

with random search

Depth States Time Δ States Time Δ States Time

Explored (h:mm) Δ Explored (h:mm) Δ Explored (h:mm)

BMCA Bug 1 51 1.4 E+3 0:05 2 1.1 E+3 0:04 0 2.1 E+2 0:02

BMCA Bug 2 64 5.9 E+5 0:15 2 6.1 E+4 0:14 0 1.6 E+3 0:04

BMCA Bug 3 101 9.4 E+7 0:45 3 3.3 E+5 0:17 1 9.1 E+2 0:05

ROGUE FRAME Bug 1 44 3.9 E+5 0:18 2 9.7 E+6 0:29 1 5.6 E+4 0:12

ROGUE FRAME Bug 2 87 4.4 E+4 0:09 2 2.1 E+3 0:05 1 1.1 E+3 0:03

SPT Bug 1 121 8.4 E+8 1:05 3 8.1 E+4 0:11 0 5.5 E+2 0:04

Approximate Synchrony as a Search Prioritization Technique. Approx-
imate synchrony can also be used as a bounding technique to prioritize search.
We collected buggy models during the process of modeling the BMC algorithm
and used them as benchmarks, along with buggy instance of the Perlman’s Span-
ning Tree Protocol [24] (SPT). We used AS as an iterative bounding technique,
starting with Δ = 0 and incrementing Δ after each iteration. For Δ = 0, the
model checker explores only synchronous system behaviors. Increasing the value
could be considered as adding bounded asynchronous behaviors incrementally.
Table 3 shows comparison between iterative AS, non-iterative AS with fixed value
of Δ taken from Table 2 and iterative depth bounding with random search. Num-
ber of states explored and the corresponding time taken for finding the bug is
used as the comparison metric. Results demonstrate that most of the bugs are
found at small values of Δ (hence iterative search is beneficial for finding bugs).
Some bugs like the rogue frame error, that occur only when there is asynchrony
were found with minimal asynchrony in the system (Δ = 1). These results con-
firm that prioritizing search based on approximate synchrony is beneficial in
finding bugs. Other bounding techniques such as delay bounding [15] and con-
text bounding [23] can be combined with approximate synchrony but this is left
for future work.



Approximate Synchrony 445

7 Related Work

The concept of partial synchrony has been well-studied in the theory of dis-
tributed systems [13,14,25]. There are many ways to model partial synchrony
depending on the type of system and the end goal (e.g., formal verification).
Approximate synchrony is one such approach, which we contrast against the
most closely-related work below.

Hybrid/Timed Modeling: The choice of modeling formalism greatly influ-
ences the verification approach. A time-synchronized system can be modeled as
a hybrid system [2]. However, it is important to note that, unlike traditional
hybrid systems examples from the domain of control, the discrete part of the
state space for these protocols is very large. Due to this we observed that lead-
ing hybrid systems verification tools, such as SpaceEx [17], cannot explore the
entire state space.

There has been work on modeling timed protocols using real-time formalisms
such as timed automata [3], where the derivatives of all continuous-time variables
are equal to one. While tools based on the theory of timed automata do not
explicitly support modeling and verification of multi-rate timed systems [21],
there do exist techniques for approximating multirate clocks. For instance, Huang
et al. [19] propose the use of integer clocks on top of UPPAAL models. Daws
and Yovine [9] show how multirate timed systems can be over-approximated into
timed automata. Vaandrager and Groot [29] models a clock that can proceed
with different rate by defining a clock model consisting of one location and
one self transition. Such models only approximately represent multirate time
systems. By contrast, our approach algorithmically constructs abstractions that
can be refined to be more precise by tuning the value of Δ, and results in an sound
untimed model that can be directly checked by a finite-state model checker.

Synchrony and Asynchrony: There have been numerous efforts devoted
towards mixing synchronous and asynchronous modeling. Multiclock Esterel [26]
and communicating reactive processes (CRP) [5] extend the synchronous lan-
guage Esterel to support a mix of synchronous and asynchronous processes.
Bounded asynchrony is another such modeling technique with applications to
biological systems [16]. It can be used to model systems in which processes can
have different but constant rates, and can be interleaved asynchronously (with
possible stuttering) before they all synchronize at the end of a global “period.”
Approximate synchrony has no such synchronizing global period. The quasi-
synchronous (QS) [7,18] approach is designed for communicating processes that
are periodic and have almost the same period. QS [18] is defined as “Between
any two successive activations of one period process, the process on any other
process is activated either 0, 1, or at most 2 times”. As a consequence, in both
quasi-synchrony and bounded asynchrony, the difference of the absolute number
of activations of two different processes can grow unboundedly. In contrast, the
definition of AS does not allow this difference to grow unbounded.
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8 Conclusion

This paper has introduced two new concepts: a class of distributed systems
termed as symmetric, almost-synchronous (SAS) systems, and approximate syn-
chrony, an abstraction method for such systems. We evaluated applicability of
approximate synchrony for verification in two different contexts: (i) application-
layer protocols running on top of time-synchronized systems (TSCH), and
(ii) systems that do not rely on time synchronization but exhibit recurrent logical
behavior (BMC algorithm). We also described an interesting search prioritization
technique based on approximate synchrony with the key insight that, prioritizing
synchronous behaviors can help in finding bugs faster.

In this paper, we focus on verifying protocols that fit the SAS formalism
defined in Sect. 2.2. While other protocols whose behavior and correctness relies
on using values of timestamps do not natively fit into the SAS formalism, they
can be abstracted using the suitable methods (e.g., using a state variable to
model a local timer for a process whose value is incremented on each step of
that process — with approximate synchrony the timer values across different
processes will not differ by more than Δ). Evaluating such abstractions for proto-
cols like Google Spanner and others that use timestamps would be an interesting
next step.

Acknowledgments. The first and second authors were supported in part by
TerraSwarm, one of six centers of STARnet, a Semiconductor Research Corporation
program sponsored by MARCO and DARPA. The fourth author was supported in part
by the Swedish Research Council (#623-2013-8591) and the iCyPhy Research Center
(Industrial Cyber-Physical Systems, supported by IBM and United Technologies).

References

1. 15.4e 2012. IEEE standard for local and metropolitan area networks-part 15.4:
Low-rate wireless personal area networks (LR-WPANs) amendment 1: MAC sub-
layer (2012)

2. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin,
X., Olivero, A., Sifakis, J., Yovine, S.: The Algorithmic Analysis of Hybrid Sys-
tems.Theoretical Computer Science. Kluwer Academic Publisher, The Netherlands
(1995)

3. Alur, R., Dill, D.L.: A Theory of Timed Automata.Theoretical Computer Science.
Kluwer Academic Publishers, The Netherlands (1994)

4. Andrews, T., Qadeer, S., Rajamani, S.K., Rehof, J., Xie, Y.: Zing: a model checker
for concurrent software. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol.
3114, pp. 484–487. Springer, Heidelberg (2004)

5. Berry, G., Ramesh, S., Shyamasundar, R.: Communicating reactive processes. In:
Proceedings of POPL (1993)

6. Broman, D., Derler, P., Desai, A., Eidson, J.C., Seshia, S.A.: Endlessly circulating
messages in IEEE 1588–2008 systems. In: Proceedings of the 8th International
IEEE Symposium on Precision Clock Synchronization for Measurement, Control
and Communication (ISPCS), September 2014



Approximate Synchrony 447

7. Caspi, P., Mazuet, C., Reynaud Paligot, N.: About the design of distributed control
systems: the quasi-synchronous approach. In: Voges, U. (ed.) SAFECOMP 2001.
LNCS, vol. 2187, p. 215. Springer, Heidelberg (2001)

8. Corbett, J.C., Dean, J., Epstein, M., Fikes, A., Frost, C., Furman, J.J., Ghemawat,
S., Gubarev, A., Heiser, C., Hochschild, P., Hsieh, W., Kanthak, S., Kogan, E., Li,
H., Lloyd, A., Melnik, S., Mwaura, D., Nagle, D., Quinlan, S., Rao, R., Rolig, L.,
Saito, Y., Szymaniak, M., Taylor, C., Wang, R., Woodford, D.: Spanner: google’s
globally-distributed database. In: Proceedings of OSDI (2012)

9. Daws, C., Yovine, S.: Two examples of verification of multirate timed automata
with Kronos. In: Proceedings of RTSS (1995)

10. Desai, A., Broman, D., Eidson, J., Qadeer, S., Seshia, S.A.: Approximate syn-
chrony: An abstraction for distributed time-synchronized systems. Technical report
UCB/EECS-2014-136, University of California, Berkeley, June 2014

11. Desai, A., Gupta, V., Jackson, E.K., Qadeer, S., Rajamani, S.K., Zufferey, D.P.:
Safe asynchronous event-driven programming. In: Proceedings of PLDI (2013)

12. Desai, A., Seshia, S.A., Qadeer, S., Broman, D., Eidson, J.: Approximate syn-
chrony: An abstraction for distributed almost-synchronous systems. Techni-
cal report UCB/EECS-2015-158, EECS Department, University of California,
Berkeley, May 2015

13. Dolev, D., Dwork, C., Stockmeyer, L.: On the minimal synchronism needed for
distributed consensus. J. ACM 34(1), 77–97 (1987)

14. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. J. ACM 35(2), 288–323 (1988)
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