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Abstract. Building on the work by Fainekos and Pappas and the one by
Donzé and Maler, we introduce AvSTL, an extension of metric interval
temporal logic by averaged temporal operators. Its expressivity in captur-
ing both space and time robustness helps solving falsification problems
(searching for a critical path in hybrid system models); it does so by
communicating a designer’s intention more faithfully to the stochastic
optimization engine employed in a falsification solver. We also intro-
duce a sliding window-like algorithm that keeps the cost of computing
truth/robustness values tractable.

1 Introduction

Model-Based Development of Hybrid Systems. The demand for quality assurance
of cyber-physical systems (CPS) is ever-rising, now that computer-controlled
artifacts—cars, aircrafts, and so on—serve diverse safety-critical tasks every-
where in our daily lives. In the industry practice of CPS design, deployment of
model-based development (MBD) has become a norm. In MBD, (physical and
costly) testing workbenches are replaced by (virtual and cheap) mathematical
models; and this reduces by a great deal the cost of running a development
cycle—design, implementation, evaluation, and redesign.

One of the distinctive features of CPS is that they are hybrid systems and
combine discrete and continuous dynamics. For MBD of such systems the soft-
ware Stmulink has emerged as an industry standard. In Simulink a designer
models a system using block diagrams—a formalism strongly influenced by con-
trol theory—and runs simulation, that is, numerical solution of the system’s
dynamics.

Falsification. The models of most real-world hybrid systems are believed to be
beyond the reach of formal verification. While this is certainly the case with
systems as big as a whole car, a single component of it (like automatic transmis-
sion or an engine controller) overwhelms the scalability of the state-of-art formal
verification techniques, too.

What is worse, hybrid system models tend to have black-box components. An
example is fuel combustion in an engine. Such chemical reactions are not easy to
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model with ODEs, and are therefore commonly represented in a Simulink model
by a look-up table—a big table of values obtained by physical measurements
[18,19]. The lack of structure in a look-up table poses a challenge to formal
verification: each entry of the table calls for separate treatment; and this easily
leads to state-space explosion.

Under such circumstances, falsification by stochastic optimization has proved
to be a viable approach to quality assurance [7,18,19]. The problem is formulated
as follows:

The falsification problem

Given: amodel M (a function from an input signal
to an output signal), and
a specification p (a temporal formula),

Answer: a critical path, that is, an input signal oj, such
that the output M (o, ) does not satisfy ¢

Tin ,_| M(Uin)
M
e b%, @

Unlike testing or monitoring—where input oy, is given and we check if M (oy,) =
p—a falsification solver employs stochastic optimization techniques (like the
Monte-Carlo ones) and iteratively searches for a falsifying input signal oy,.

Falsification is a versatile tool in MBD of hybrid systems. It is capable of
searching for counterexamples, hence revealing potential faults in the design.
One can also take, as a specification ¢, the negation —1) of a desirable property ;
then successful falsification amounts to synthesis of an input signal that satisfies
1. Stochastic optimization used in falsification typically does not rely on the
internal structure of models, therefore the methodology is suited for models
with black-box components. Falsification is fairly scalable, making it a realistic
option in the industrial MBD scenarios; see e.g. [18,19].

The current work aims at enhancing falsification solvers, notable among
which are S-TaLiRo [7] and BREACH [11]. An obvious way to do so is via
improvement of stochastic optimization; see e.g. [24,26]. Here we take a differ-
ent, logical approach.

Robustness in Metric Temporal Logics. Let us turn to a formalism in which a
specification ¢ is expressed. Metric interval temporal logic (MITL) [6], and its
adaptation signal temporal logic (STL) [23], are standard temporal logics for
(continuous-time) signals. However their conventional semantics—where satis-
faction is Boolean—is not suited for falsification by stochastic optimization. This
is because a formula ¢, no matter if it is robustly satisfied and barely satisfied,
yields the same truth value (“true”), making it not amenable to hill climb-style
optimization.

It is the introduction of robust semantics of MITL [16] that set off the idea
of falsification by optimization. In robust semantics, a signal ¢ and a formula ¢
are assigned a continuous truth value [o, ¢] € R that designates how robustly
the formula is satisfied. Such “robustness values” constitute a sound basis for
stochastic optimization.
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The original robust semantics in [16] is concerned
with space robustness: for example, the truth values of
Cro,10(v > 80) (“the velocity reaches 80km/h within
10 sec.”) are 20 and 0, for the green and red signals
on the right. Therefore space robustness is a “vertical
margin” between a signal and a specification. An effi-
cient algorithm is proposed in [12] for computing this
notion of robustness.

The notion of robustness is extended in [13] to take 2. .
time robustness also into account. Consider the same Time t sec]
specification $pg 19)(v > 80) against the green and red signals on the right. The
green one is more robust since it reaches 80 km/h much earlier than the deadline
(10s), while the red one barely makes the deadline.

The current work continues this line of work, with the slogan that expressivity
of temporal logic should help falsification. With more expressivity, a designer’s
concerns that were previously ignored (much like time robustness was ignored
in [16]) come to be reflected in the continuous truth value. The latter will in
turn help stochastic optimization by giving additional “hints.” We however are
in a trade-off situation: the more expressive a logic is, the more expensive com-
putation of truth values is in general.
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Contributions. We aim at: a good balance in the last trade-off between expressiv-
ity and computational cost; and thereby enhancing falsification solvers by giving
more “hints” to stochastic optimization procedures. Our technical contributions
are threefold.

The Logic AvSTL. We introduce averaged STL (AvSTL); it is an extension
of STL [23] by so-called averaged temporal operators like Uy and <;. The (con-
tinuous) truth values of the new operators are defined by the average of truth
values in a suitable interval. We show that this simple extension of STL suc-
cessfully combines space and time robustness in [13,16]; and that its expressivity
covers many common specifications (expeditiousness, persistence, deadline, etc.)
encountered in the context of CPS.

An Algorithm for Computing AvSTL Robustness. It is natural to expect
that nonlocal temporal operators—like U7, & and their averaged variants—
incur a big performance penalty in computing truth values. For STL (without
averaged modalities) an efficient algorithm is proposed in [12]; it employs the
idea of the sliding window minimum algorithm [22] and achieves complexity that
is linear with respect to the size of an input signal (measured by the number of
timestamps).

We show that, under mild and realistic assumptions, the same idea as in [12]
can be successfully employed to compute AvSTL truth values with linear
complexity.

Enhancing S-TaLiRo: Implementation and Experiments. We use
S-TaLiRo and demonstrate that our logic AvSTL indeed achieves a reasonable
balance between expressivity and computational cost. We present our proto-
type implementation: it takes S-TaLiRo and lets the above algorithm (called the
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AvVSTL evaluator) replace TaLiRo, S-TaLiRo’s original engine for computing
STL truth values (see Fig. 7 in Sect. 4).

For its evaluation, we pick some benchmark models M and STL specifica-
tions ¢p—they are mostly automotive examples from [18]—and compare perfor-
mance between:

— our prototype, run for M and the original STL specification ¢,' and
— our prototype, run for M and a refinement of ¢ given as an AvSTL formula.

For benchmarks of a certain class we observe substantial performance improve-
ment: sometimes the latter is several times faster; and in some benchmarks we
even see the latter succeed in falsification while the former fails to do so.

Related Work. Besides those which are discussed in the above and the below, a
closely related work is [2] (its abstract appeared in [3]). There a notion of con-
formance between two models M7, My is defined; and it is much like (an arity-2
variation of) combination of space and time robustness. Its use in falsification
and comparison with the current approach is future work.

Organization of the Paper. In Sect.2 we introduce the logic AvSTL: its syn-
tax, semantics, some basic properties and examples of temporal specifications
expressible in it. In Sect. 3, building on [12], an algorithm for computing AvSTL
truth values is introduced and its complexity is studied. The algorithm is imple-
mented and used to enhance a falsification solver S-TaLiRo, in Sect. 4, where
experiment results are presented and discussed.

We used colors in some figures for clarity. Consult the electronic edition in
case the colors are unavailable. Most of the proofs are deferred to an appendix
in the extended version [4], where the other appendices are found, too.

2 Averaged Signal Temporal Logic AvSTL

We introduce averaged STL (AvSTL). It is essentially an extension of MITL
[6] and STL [23] with so-called averaged temporal operators. We describe its
syntax and its semantics (that is inspired by robust semantics in [13,16]). We
also exemplify the expressivity of the logic, by encoding common temporal spec-
ifications like expeditiousness, persistence and deadline. Finally we will discuss
the relationship to the previous robustness notions [13,16] for STL.

2.1 Syntax

We let = stand for the syntactic equality. We let R denote the set of real numbers,
with R>¢ and R<o denoting its obvious subsets. We also fix the set Var of
variables, each of which stands for a physical quantity (velocity, temperature,
etc.).

! This is the control case of our experiments. We do not use S-TaLiRo itself, because
we would like to disregard the potential disadvantage caused by the communication
between the AvSTL evaluator (the additional component) and S-TaLiRo. We note
that the AvSTL evaluator is capable of evaluating STL formulas, too.
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Table 1. Definition of positive and negative robustness
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Definition 2.1. (Syntax). In AvSTL, the set AP of atomic propositions and
the set Fml of formulas are defined as follows.

AP> lu=z<r|z<r[z>r|xz>r wherez€ Var,r €R -
Fml>p u=T|L|l|=pleVe|loAp|oUro|oUro|eRie|eRry

Here I is a closed non-singular interval in Rxq, i.e. I = [a,b] or [a,c0) where
a < b. The overlined operator U is called the averaged-until operator.

We introduce the following connectives as abbreviations, as usual: ;1 — @2 =
(mp1) Vo, Oro = TUrp, Orp = L R1rp, Orp = TUrp and Urp = LRy p. We
omit subscripts I for temporal operators if I = [0, 00). The operators Ry, O and
O; are called the averaged-release, averaged-eventually and averaged-henceforth
operators, respectively. We say a formula ¢ is averaging-free if it does not contain
any averaged temporal operators.

2.2 Robust Semantics

AvSTL formulas, much like STL formulas in [13,16], are interpreted over (real-
valued, continuous-time) signals. The latter stand for trajectories of hybrid
systems.

Definition 2.2 (Signal). A signal over Var is a function o: R>o — (RV2r);
it is therefore a bunch of physical quantities indexed by a continuous notion of
time.

For a signal o and t € Rxq, o' denotes the t-shift of o, that is, o'(t') =
o(t+1t).



Time Robustness in MTL and Expressivity in Hybrid System Falsification 361

The interpretation of a formula ¢ over a signal ¢ is 1
given by two different “truth values,” namely posi-
tive and negative robustness. They are denoted by
[o, ©]" and [o, @], respectively. 1
We will always have [o, ¢]" > 0 and [o, ¢]~ <
0. We will also see that, for averaging-free ¢, it is never the case that o, go]]+ >0
and o, ¢]~ < 0hold at the same time. See the figure on the right for an example,
where a sine-like (black) curve is a signal o. The blue and red curves stand for
the positive and negative robustness, of the formula x > 0 over the (¢-shifted)
signal o, respectively.

X0

0 1

Time t

Definition 2.3 (Positive/Negative Robustness). Let 0: R>o — RV2 be a
signal and ¢ be an AvSTL formula. We define the positive robustness [o, (p]]+ €
R>o U {oo} and the negative robustness [o, ¢] € R<o U {—o0} by mutual
induction, as shown in Table 1. Here M and U denote infimums and supremums
of real numbers, respectively.

The definition in Table1 is much like the one for STL [12,13],% except for the
averaged modalities on which a detailed account follows shortly. Conjunctions
and disjunctions are interpreted by infimums and supremums, in a straightfor-
ward manner.

Figure 1 illustrates the semantics of averaged-temporal operators—the nov-
elty of our logic AvSTL. Specifically, the black line designates a signal o
whose only variable is x; and we consider the “averaged-eventually” formula
Oo,1)(z > 0). For this formula, the definition in Table 1 specializes to:

—_— + —_— —

[o, <>1[0,1] (z>0)] [o, <>1[0,1] (z=0)]

:/ (U ovot)@))dr, d :/ (U onot)@))dn
0 7/€[0,7] 0 7'€[0,7]

These values obviously coincide with the 1

sizes of the blue and red areas in Fig.1, <0

respectively. Through this “area” illustra- p

tion of the averaged-eventually operator we -1

see that: the sooner ¢ is true, the more 0 Time t 1

(positively) robust $rep is. It is also clear

from Fig.1 that our semantics captures Fig.1. The positive and negative
space robustness too: the bigger a vertical robustness of $pg qj(x > 0) at t = 0.
margin is, the bigger an area is.

Remark 2.4. Presence of averaged temporal operators forces separation of two
robustness measures (positive and negative). Assume otherwise, i.e. that we have
one robustness measure that can take both positive and negative values; then

2 There is no distinction between strict inequalities (<) and non-strict ones (<). This
is inevitable in the current robustness framework. This is also the case with STL
in [12,13].
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robustness that floats between positive and negative values over time can “can-
cel out” after an average is taken. This leads to the failure of soundness (see
Propositions 2.9 and 2.10; also [13,16]), and then a positive robustness value no
longer witnesses the Boolean truth of (the qualitative variant of) the formula.
This is not convenient in the application to falsification.

2.3 Basic Properties of AvSTL

Lemma 2.5 (Temporal Monotonicity). Let 0 < to < t < t’. The following
hold.

lo, o1 Uy 2] < o, o1 Upg ey 21" [0, 01 Uy g 02l < [0, o1 Upeg ey 2]~
[o, 01 Rito.y 21" > [0, 01 Ritg.e) 02l [0, 01 Ritg. 021~ > [0, 01 Risg ) 2]~

The inequalities hold also for the averaged temporal operators. a

We can now see well-definedness of Definition 2.3: we need that the integrals are
defined; and the lemma shows that the integrated functions are monotone, hence
Riemann integrable.

In Definition 2.3, the definitions for averaged operators with an infinite end-
point (like H[O,w)gp) are given in terms of non-averaged operators. This is so
that their well-definedness is immediate; the following lemma justifies those
definitions.

. = +
Lemma 2.6. For any ty € Rxo, [o, ¢1 U, 00 gpg]]Jr = tll)rglo[[m 01 Upg g 2] -
The same is true if we replace [_]* with [_]~, and if we replace U with R. O

1 T T 1 T 1
2 0.8 9 0.8 P 0.8
£06 £06 £06
204 204 204
e e e
0.2 0.2 0.2
0 0 0
0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 10 20 30 40 50 60 70 80 90 100
Time t Time t Time t
Fig. 2. Expeditiousness Fig. 3. Deadline Fig. 4. Persistence

2.4 Common Temporal Specifications Expressed in AvSTL

Here we shall exemplify the expressivity of AvSTL, by encoding typical tempo-
ral specifications encountered in the model-based development of cyber-physical
systems.

Remark 2.7. In what follows we sometimes use propositional variables such as
airbag and gear,. For example, gear, is a shorthand for the atomic formula
Tgear, = 0 in AvSTL, where the variable Tgear, 18 assumed to take a discrete
value (1 or —1).
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Expeditiousness (Cry). Consider the following informal specification: after
heavy braking, the airbag must operate within 10ms. Its formalization in STL
is straightforward by the formula [J(heavyBraking — <[ 10jairbag). However,
an airbag that operates after 1ms. is naturally more desirable than one that
operates after 9.99 ms. The STL formula fails to discriminate between these two
airbags.

Such expeditiousness (“as soon as possible”) requirements are more ade-
quately modeled in AvSTL, using the averaged-eventually modality <j. See
Fig. 2, where the horizontal axis is for time t. The vertical axis in the figure
stands for the positive robustness value [oy, 6[0,1O]airbag]]+ of the formula
Olo,10)2irbag, where oy is a signal in which airbag operates (i.e. Zairpag becomes
from —1 to 1) at time t. We see that the formula successfully distinguishes an
early-bird airbag from a lazy one.

Therefore the AvSTL formula [J(heavyBraking — <o 10jairbag) formal-
izes a (refined) informal specification that: after heavy braking, the airbag must
operate within 10ms; but the sooner the better. It is not hard to expect that
the latter is more faithful to the designer’s intention than the original informal
specification.

Deadline (<o 719V Orr44)@)- The expeditiousness-type requirement that we
have discussed is sometimes too strict. Let us consider the following scenario:
there is a deadline set at time T and arrival by then is rewarded no matter how
late; and then there is a deadline extension by time ¢ and arrival between the
deadline and the extended one is rewarded too, but with certain deduction.

Such a deadline specification is expressed in AvSTL by the formula
Cro,m¥ V O 1469, combining non-averaged and averaged eventually modal-
ities. See Fig.3, where the positive robustness of the formula (&g 5airbag) V
(O5,545)2irbag) is plotted, for the same signals o} as before (i.e. in o the airbag
operates at time t).

Persistence (j ¢ A E[T,T+5]g0). Persistence (“for as long as possible”)
specifications are dual to deadline ones and expressed by a formula Ujg 1) A
ﬁ[T,TJr(;] . An example is the following informal specification on automatic trans-
mission: when a gear shifts into first, it never shifts into any other gear for the
coming 50 ms. A likely intention behind it is to prevent mechanical wear of gears
that is caused by frequent gear shifts. In this case the following specification
would be more faithful to the intention: when a gear shifts into first, it never
shifts into any other gear for the coming 50 ms., and preferably for longer. This is
formalized by the formula (J(shiftIntoGear; — [y 50 gear; /\ﬁ[50’50+5]gear1).

For illustration, Fig.4 plots the positive robustness of U 5o gear; A
5[50’60]gear1 for signals o}, where gear; is true in o] from time 0 to ¢, and
is false afterwards.

Other Temporal Specifications. Expressivity of AvSTL goes beyond the
three examples that we have seen—especially after the extension of the language
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with time-reversed averaged temporal operators. The reversal of time here corre-
sponds to the symmetry between left and right time robustness in [13]. Such an
extension of AvSTL enables us to express specifications like punctuality (“no
sooner, no later”) and periodicity. The details will be reported in another venue.

2.5 Soundness of Refinements from STL to AvSTL

In Sect.2.4 we have seen some scenarios where an STL specification is refined
into an AvSTL one so that it more faithfully reflects the designer’s intention.
The following two are prototypical:

— (O-refinement) the refinement of ¢ (“eventually ¢, within I7) into ¢
(“eventually ¢ within I, but as soon as possible”); and

— (O-refinement) the refinement of Oy, 4 (“always ¢ throughout [a, b]”) into
D[a,b]gp/\ﬁ[bﬁw]go (“always ¢ throughout [a, b], and desirably also in [b, b+4]").

The following soundness results guarantee validity of the use of these refinements
in falsification problems. Completeness, in a suitable sense, holds too.

Definition 2.8. A positive context is an AvSTL formula with a hole [] at a
positive position. Formally, the set of positive contexts is defined as follows:

Cu=[lICVelpVC|CApleAC|CU | U C|CUr¢ | @U;C
[CRI¢|eRiIC|I|CRrp|9RrC where ¢ is an AvSTL formula.

For a positive context C and an AvSTL formula 4, C[¢)] denotes the formula
obtained by substitution of ¢ for the hole [] in C.

Proposition 2.9 (Soundness and Completeness of C-Refinement). Let C
be a positive context. Then [o, C@[a,b]cp]]]+ > 0 implies [o, C[O[a’b]go]r' > 0.
Moreover, for any b such that b < b, [o, C[<>[a7b/]<p]]]+ > 0 dmplies
[0, CC )] > 0. O

Proposition 2.10 (Soundness and Completeness of U-Refinement).

Let C be a positive context. Then [[J,C[D[a7b]cp/\ﬁ[b,b+5]<p]ﬂ+ > 0 implies

[o, C[D[a,b]go}]]Jr > 0. Moreover, for any b > b, [o, C[D[a7b/]g0]]]+ > 0 implies
= +

[[O', C[D[a,b]SD A D[b,b-«-&]@]]] > 0. O

2.6 Relationship to Previous Robustness Notions

Our logic AvSTL captures space robustness [16]—the first robustness notion
proposed for MITL/STL, see Sect. l—because the averaging-free fragment of
AvSTL coincides with STL and its space robust semantics, modulo the sepa-
ration of positive and negative robustness (Remark 2.4).
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The relationship to space-time robustness pro-
posed in [13] is interesting. In [13] they combine time ¢
and space robustness in the following way: for each .
time ¢ and each space robustness value ¢ > 0, (right) cz /\
time robustness relative to ¢, denoted by 0 (¢, 0,t),
is defined by “how long after time ¢ the formula ¢ ol 6.,6..6.,
maintains space robustness c¢.” See the figure on the
right, where the space-time robustness 67 (x > 0,0,0) is depicted.

After all, space-time robustness in [13] is a function from ¢ to 0} (p, 0,t);
and one would like some real number as its characteristic. A natural choice of
such is the area surrounded by the graph of the function (the shaded area in
the figure), and it is computed in the same way as Lebesgue integration, as the
figure suggests.

What corresponds in our AvSTL framework to this “area” characteristic
value is the robustness of the formula i[om) (z > 0) computed by Riemann inte-
gration (here we have to ignore the normalizing factor ﬁ in Table 1). Therefore,
very roughly speaking: our “averaged” robustness is a real-number characteris-
tic value of the space-time robustness in [13]; and the correspondence is via the
equivalence between Riemann and Lebesgue integration.

3 A Sliding-Window Algorithm for AvSTL Robustness

We shall present an algorithm for computing AvSTL robustness. It turns out
that the presence of averaged modalities like O—with an apparent nonlocal
nature—does not incur severe computational overhead, at least for formulas in
which averaged modalities are not nested. The algorithm is an adaptation of the
one in [12] for STL robustness; the latter in turn relies on the sliding window
minimum algorithm [22]. The algorithm’s time complexity is linear with respect
to the number of timestamps in the input signal; it exhibits a practical speed,
too, as we will see later in Sect. 4.
Firstly we fix the class of signals to be considered.

Definition 3.1 (Finitely Piecewise-Constant/Piecewise-Linear Sig-
nal). A 1-dimensional signal o: R>¢ — R is finitely piecewise-constant (FPC) if
it arises from a finite sequence [ (to,70), (t1,71), -« (tny rn)] of timestamped val-
ues, via the correspondence o (t) = r; (for ¢ € [t;,t;41)). Here 0 =g < -+ - < ty,
r; € R, and ¢,41 is deemed to be co.

Similarly, a 1-dimensional signal o: R>g — R is finitely piecewise-linear
(FPL) if it is identified with a finite sequence [(to,70,q0),- -, (tn,7nsn) ]
of timestamped values, via the correspondence o(t) = r; + ¢q;(t — t;) (for
t € [ti,ti1+1)). Here ¢; € R is the slope of o in the interval [t;,;11).

The definitions obviously extend to many-dimensional signals o: R>¢ —
RVar_
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We shall follow [12,13] and measure an algorithm’s complexity in terms of
the number of timestamps (n in the above); the latter is identified with the size
of a signal.

Definition 3.2 (Robustness Signal [p],). Let o : R>g — RV2" be a signal,
and ¢ be an AvSTL formula. The positive robustness signal of ¢ over o is
the signal [¢]} : R>o — R defined by: [¢](t) £ [oF, ¢] . Recall that o' (t') =
o(t +t') is the t-shift of o (Definition 2.2). The negative robustness signal [¢],
is defined in the same way.

An averaged modality turns a piecewise-constant signal into a piecewise-linear
one.

Lemma 3.3

1. Let ¢ be an averaging-free AvSTL formula. If a signal o is finitely piecewise-
constant (or piecewise-linear), then so is [p|F.

2. Let ¢ be an AvSTL formula without nested averaged modalities. If a signal
o is finitely piecewise-constant, then (@]t is finitely piecewise-linear.

- too.

The above holds for the negative robustness signal [p]
Proof. Straightforward by the induction on the construction of formulas. a

Our algorithm for computing AvSTL robustness [o, ¢] will be focused on:
(1) a finitely piecewise-constant input signal o; and (2) an AvSTL formula ¢
where averaged modalities are not nested. In what follows, for presentation, we
use the (non-averaged and averaged) eventually modalities ¢, O in describing
algorithms. Adaptation to other modalities is not hard; for complex formulas,
we compute the robustness signal [¢], by induction on ¢.

3.1 Donzé et al.’s Algorithm for STL Robustness

We start with reviewing the algorithm [12] for STL robustness. Our algorithm
for AvSTL robustness relies on it in two ways: 1) the procedures for averaged
modalities like &) derive from those for non-averaged modalities in [12]; and
(2) we use the algorithm in [12] itself for the non-averaged fragment of AvSTL.

Remark 3.4. The algorithm in [12] computes the STL robustness [o, ¢] for a
finitely piecewise-linear signal o. We need this feature e.g. for computing robust-
ness of the formula [J(heavyBraking — O 10jairbag): note that, by Lemma 3.3,
the robustness signal for g 1gjairbag is piecewise-linear even if the input signal
is piecewise-constant.

Consider computing the robustness signal [, ¢]s, assuming that the signal
[¢], is already given.? The task calls for finding the supremum of [¢],(7) over

3 In the rest of Sect. 3.1, for simplicity of presentation, we assume that [¢]o is piecewise-
constant. We note that the algorithm in [12] nevertheless extends to piecewise-linear

[¢lo-
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Fig. 6. Use of stackqueues and their operations, in the sliding window algorithm

T € [t + a,t + b]; and this must be done for each ¢. Naively doing so leads to
quadratic complexity.

Instead Donzé et al. in [12] employ a sliding window of size b—a and let it scan
the signal [¢], from right to left. The scan happens once for all, hence achieving
linear complexity. See Fig. 5, where we take [Ojg 5(x > 0)]F as an example, and
the blue shaded area designates the position of the sliding window. The window
slides from [3, 8] to the closest position to the left where its left-endpoint hits a
new timestamped value of [¢],, namely [1, 6].

It is enough to know the shape of the blue (partial) ., dequene
signal in Fig.5, at each position of the window. The _:_>
blue signal denotes the (black) signal o’s local supre- e ﬂﬂﬂﬂ
mum within the window; more precisely, it denotes
the value of the signal [o*, O (2 > 0)]" at time ¢ + 7, where 7 € [0,5] and ¢
is the leftmost position of the window. We can immediately read off the signal
[Clo,51(x > 0)]F from the blue signals: the former is the latter’s value at the
rightmost position of the window.

The keys in the algorithms in [12,22] lie in:

— use of the stackqueue data structure (depicted above on the right) for the
purpose of representing the blue (partial) signal in Fig. 5; and
— use of the operations push, pop and dequeue for updating the blue signal.

See Fig. 6, where each entry of a stackqueue is a timestamped value (t, ). We see
that the slide of the window, from top-left to top-right in Fig. 6, is expressed by
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Algorithm 1. An algorithm for computing [, )0

Require: An FPC signal [¢]s given as a sequence (£0,70), .-, (tn,Tn)
Ensure: The FPL signal [O[, p)¢]o
ttemp =t —a;

F = [ (tremp + @, [plo (tremp + @) ]; > F is the FPC signal 7 — [o?, O, -1¢]
s:=(b—a) - [¢lo(temp + a); > The area of F'
G := [ (tremp,s/(b — a),0) ; > The FPC signal [S, 4¢]o

while tiemp > 0 do
told = Ttemp;
tiemp := the greatest ¢ such that t < tog A (It +a=1t; VIY,r') € F.t+b=1t));
Deq := {(t,7) € F |t > ttemp + b}; F := F\ Deq; > Dequeue old elements in F
Pop :={(t,r) € F | r < [plo(ttemp +a)}; F :=F \ Pop; > Pop small elements in F
tpop := min{t | (t,7) € F' or t = temp + b};
F = [(ttemp + a, [¢]o (ttemp + a))} UF > Push the left endpoint of the window to F
Tieft := min{r | (¢,7) € F};
Tright ‘= max{r ‘ (t,’f‘) € F}7
5:= 85— (told — ttemp) * Tright — area(Pop) + (tPOp - (ttemp +a)) - Tieft
G = {(ttemm s/(b - a)7 Tright — Tleft)} uaG

end while

dequeue, pop and then push operations to stackqueues (in Fig. 6: from top-left
to bottom-left, bottom-right and then top-right). Pseudocode for the algorithm
can be found in [4, Appendix A.1].

3.2 An Algorithm for AvSTL Robustness

It turns out that the last algorithm is readily applicable to computing AvSTL
robustness. Consider an averaged-eventually formula &, 3¢ as an example.
What we have to compute is the size of the shaded areas in Fig.5 (see also
Fig. 1); and the shape of the blue signals in Fig. 5 carry just enough information
to do so.

Pseudocode for the adaptation of the previous algorithm (in Sect.3.1) to
Olap)e is found in Algorithm 1. Its complexity is linear with respect to the num-
ber n of the timestamp values that represent the signal [¢],.

An algorithm for the averaged-henceforth formula [ﬁ[a’b] ¢|o is similar. Exten-
sions to averaged-until and averaged-release operators are possible, too; they use
doubly-linked lists in place of stackqueues. See [4, Appendix A.2] for more details.
Combining with the algorithm in Sect. 3.1 to deal with non-averaged temporal

operators, we have the following complexity result. The complexity is the same
as for STL [12].

Theorem 3.5. Let ¢ be an AvSTL formula in which averaged modalities are
not nested. Let o be a finitely piecewise-constant signal. Then there exists an
algorithm to compute [o, ]|* with time-complezity in O(d1¥|¢||o]) for some
constant d.

The same is true for the negative robustness [o, @] . a
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Remark 3.6. The reason for our restriction to finitely piecewise-constant input
signals is hinted in Remark 3.4; let us further elaborate on it. There the averaged
modality O 10) turns a piecewise-constant signal into a piecewise-linear one
(Lemma 3.3); and then the additional Boolean connectives and non-averaged
modalities (outside < 107) are taken care of by the algorithm in [12], one that
is restricted to piecewise-linear input.

It is not methodologically hard to extend this workflow to piecewise-
polynomial input signals (hence to nested averaged modalities as well). Such
an extension however calls for computing local suprema of polynomials, as well
as their intersections—tasks that are drastically easier with affine functions. We
therefore expect the extension to piecewise-polynomial signals to be computa-
tionally much more expensive.

4 Enhanced Falsification: Implementation
and Experiments

We claim that our logic AvSTL achieves a Cyber-Physical System Model
good balance between expressivity—that com-
municates a designer’s intention more faithfully M

to a falsification solver—and computational cost,

System System
thus contributing to the model-based develop- Inputs oo D
ment of cyber-physical systems. In this section Stoshar E! Specification |
we present our implementation that combines: \ s
(1) S-TaLiRo [7], one of the state-of-art falsifica- AL o &

00

tion solvers that relies on robust MTL semantics 04’1)@;\6‘
and stochastic optimization; and (2) the AvSTL 4@&
evaluator, an implementation of the algorithm v
in Sect. 3.2. Our experiments are on automotive .. .

¢ falsificati ) ... Fig.7. An overview of S-
examples of falsification prob'lems3 the results indi- TaLiRo (from [1]), with our
cate that (refinement of specifications by) AvSTL
brings considerable performance improvement.

modification

Implementation. S-TaLiRo [7] is “a Matlab toolbox that searches for trajec-
tories of minimal robustness in Simulink/Stateflow” [1]. Recall the formalization
of a falsification problem (Sect.1). S-TaLiRo’s input is: (1) a model M that is a
Simulink/Stateflow model; and (2) a specification ¢ that is an STL formula.
S-TaLiRo employs stochastic simulation in the following S-TaLiRo loop:

Choose an input signal o;, randomly.

Compute the output signal M(cj,) with Simulink.

Compute the robustness [M(oin), ¢].

If the robustness is < 0 then return o;, as a critical path. Otherwise choose a
new oj, (hopefully with a smaller robustness) and go back to Step 2.

=W =

Our modification of S-TaLiRo consists of: 1) changing the specification formalism
from STL to AvSTL (with the hope that the robustness [M (o), ] carries
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Table 2. Experiment results. Time is in seconds. The “Succ.” columns show how many
trials succeeded among the designated number of trials; the “Iter.” columns show the
average number of iterations of the S-TaLiRo loop, executed in each trial (max. 1000);
and the “Time” columns show the average time that each trial took. For the last two
we also show the average over successful trials.

Problem 1. Falsification means finding an input signal that keeps the engine speed w below 2000 rpm, for 7" seconds. The
bigger T’ is, the harder the problem is. We applied <-refinement.

Problem 1 T = 20 T = 30 T = 40
Specification Succ. Iter.| Time| Succ. Iter.| Time| Succ.| Iter.| Time
to be falsified /100 |(Succ.)|(Succ.)| /100|(Succ.)|(Succ.)| /100 |(Succ.)|(Succ.)

Clo, 1) (w > 2000) 100 128.8| 20.2 81| 440.9| 825 32| 834.3| 162.9
128.8| 20.2 309.7| 59.0 4822 944
Oo,7)(w > 2000) 100 123.9| 229 98] 249.8| 46.1 81| 539.6| 1109
1239| 229 234.5| 434 431.6| 89.2

Problem 2. Falsification means finding an input signal that keeps w within a range of 3500-4500 rpm for 7" consecutive
seconds, at a certain stage. We applied <-refinement.

Problem 2 T =10
Specification Succ.| Iter.| Time
to be falsified /100 |(Succ.)|(Succ.)

U0, 7 (w < 3500 V w > 4500) 45] 625.4| 209.1
167.7| 56.1
U0 0,77 (w < 3500 V w > 4500) 74| 442.0| 1543
2459| 86.6

Problem 3. Falsification means finding an input signal that shifts the gear into the fourth within 7" seconds. The smaller 7"
is, the harder the problem is. Here gear, is a propositional variable. We applied O-refinement.

Problem 3 T=4 T =4.5 T=5
Specification Succ.| Iter.| Time|Succ.| Iter.[ Time|Succ.| Iter.| Time
to be falsified /20|(Succ.)|(Succ.)| /20](Succ.)|(Succ.)| /20|(Succ.)|(Succ.)

Ulo,71gear, 0 1000‘ 166.9 11‘ 742‘8‘ 1229 18‘ 449.0‘ 71.8
- - 532.3| 875 387.7| 619

Ulo,771—gear, 17] 570.1| 94.0] 20| 250.5| 40.3| 20| 107.5 17.6
AOqp, 101 —gear, 4942| 818 250.5| 40.3 107.5| 17.6

Problem 4. Falsification means finding input with which the gear never stays in the third consecutively for 7" seconds. The
smaller 7T is, the harder the problem is. Here gear is a propositional variable. We applied O-refinement.

Problem 4 T=1 T=2
Specification Succ.| Iter| Time|Succ.| Iter.| Time
to be falsified /20|(Succ.)|(Succ.)| /20](Succ.)|(Succ.)

< (D[O,T] gear,) 14| 556.1| 132.0| 20| 82.8] 20.6

365.8| 87.1 82.8| 20.6

< (D[Q7T]gear3 A D[Tym]gear3) 20 105.1| 36.3| 20| 29.7| 10.2
105.1] 363 20| 29.7| 102

Problem 5. Falsification means finding input that violates the following requirement: after the gear is shifted, it stays the
same for T' seconds. (the smaller T, the harder). gear,, . . ., gear, are propositional variables. We applied O-refinement.

Problem 5 (¢ = 0.04) T =0.8 T=1 T=2
Specification Succ. Iter.| Time|Succ.| Iter.| Time|Succ. Iter.| Time
to be falsified /20|(Succ.)|(Succ.)| /20](Succ.)|(Succ.)| /20|(Succ.)|(Succ.)

/\,.:1,__”4 O ((ﬁgear1 A O[U,E]gearl) 2| 972.5| 402.5| 19| 356.8| 155.6| 20| 27.4| 11.8

— (D[EYT_,_E]geari)) 724.5| 297.8 322.9| 1409 274 118
/\,.:1,__”4 O ((ﬁgear1 A O[U,E]gearl) 12| 561.1| 349.1| 20| 93.1| 57.8] 20| 42.7| 269
— (D[E_T+£]geari A E[T+E75]geari)) 268.5| 167.3 93.1| 578 427 269

Problem 6. Falsification means finding an input signal that steers the vehicle speed v over 85 kph within 7" seconds, while
keeping the engine speed w below 4500 rpm. The smaller 7" is, the harder the problem is. We applied O-refinement.

Problem 6 T =10 T =12
Specification Succ. Iter.| Time|Succ.| Iter.| Time
to be falsified /20|(Succ.)|(Succ.)| /20| (Succ.)|(Succ.)
Uto, (v < 85) V O(w > 4500) 12 714.9| 1414 17| 3745 722
524.9| 108.1 264.1 51.2
(Opo,71(v < 85) Apr,20) (v < 85)) 12| 766.7| 149.0| 20| 423.6| 85.7
V<O (w > 4500) 611.2| 1189 423.6| 85.7
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more information to be exploited in stochastic optimization); and 2) using, in
Step 3 of the above loop, the AvSTL evaluator based on the sliding-window
algorithm in Sect. 3. See Fig. 7.

Experiments. As a model M we used the automatic transmission model
from [18], where it is offered “as benchmarks for testing-based falsification” [18].
The same model has been used in several works [15,20,25]. The model has two
input ports (throttle and brake) and six output ports (the engine speed w,
the vehicle speed v, and four mutually-exclusive Boolean ports gear,,...,gear,
for the current gear). See [4, Appendix C] for more details. As a specification ¢
to falsify, we took six examples from [18], sometimes with minor modifications.
They constitute Problems 1-6 in Table 2.

Our goal is to examine the effect of our modification to S-TaLiRo. For the
model M (that is fixed) and each of the six specifications ¢, experiments are
done with:

— M and the original STL formula ¢, as a control experiment; and

— M and the AvSTL formula ¢’ that is obtained from ¢ as a refinement.
The latter specifically involves &-refinement and O-refinement described in
Sect. 2.5.

Faster, or more frequent, falsification in the latter setting witnesses effectiveness
of our AvSTL approach. We note that falsifying ¢’ indeed means falsifying ¢,
because of the soundness of the refinement (Propositions2.9 and 2.10).

A single falsification trial consists of at most 1000 iterations of the S-TaLiRo
loop. For each specification ¢ (i.e. for each problem in Table2) we made 20—
100 falsification trials, sometimes with different parameter values 7. We made
multiple trials because of the stochastic nature of S-TaLiRo.

Experiment Results and Discussion. The experiment results are in Table 2.
We used Matlab R2014b and S-TaLiRo ver.1.6 beta on ThinkPad T530 with Intel
Core i7-3520M 2.90GHz CPU with 3.7 GB memory. The OS is Ubuntul4.04 LTS
(64-Dbit).

Notable performance improvement is observed in Problems 3-5, especially
in their harder instances. For example, our AvSTL enrichment made 17 out
of 20 trials succeed in Problem 3 (T = 4), while no trials succeeded with the
original STL specification. A similar extreme performance gap is observed also
in Problem 5 (T = 0.8).

Such performance improvement in Problems 3-5 is not surprising. The speci-
fications for these problems are concerned solely with the propositional variables
gear, (cf. Remark2.7); and the space robustness semantics for STL assigns to
these specifications only 0 or 1 (but no values in-between) as their truth values.
We can imagine such “discrete” robustness values give few clues to stochastic
optimization algorithms.

Both of ¢- and O-refinement in Sect. 2.5 turn out to be helpful. The latter’s
effectiveness is observed in Problems 3-5; the former improves a success rate
from 32/100 to 81/100 in Problem 1 (T = 40).



372 T. Akazaki and I. Hasuo

Overall, the experiment results seem to support our claim that the com-
plexity of (computing robustness values in) AvSTL is tractable. There is no
big difference in the time each iteration takes, between the STL case and the
AvSTL case.

5 Conclusions and Future Work

We introduced AvSTL, an extension of STL with averaged temporal operators.
It adequately captures both space and time robustness; and we presented an
algorithm for computing robustness that is linear-time with respect to the “size”
of an input signal. Its use in falsification of CPS is demonstrated by our prototype
that modifies S-Tal.iRo.

As future work, we wish to compare our averaged temporal operators with
other quantitative temporal operators, among which are the discounting ones
[5,6]. The latter are closely related to mean-payoff conditions [10,14] as well as
to energy constraints [8,9], all of which are studied principally in the context of
automata theory.

Application of AvSTL to problems other than falsification is another impor-
tant direction. Among them is parameter synthesis, another task that S-TaLiRo
is capable of. We are now looking at application to sequence classification (see
e.g. [21]), too, whose significant role in model-based development of CPS is
widely acknowledged.
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