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Preface

It is our great pleasure to welcome you to CAV 2015, the 27th International Confer-
ence on Computer-Aided Verification, held in San Francisco, California, during July
18–24, 2015.

The CAV conference series is dedicated to the advancement of the theory and
practice of computer-aided formal analysis methods for hardware and software sys-
tems. The conference covers the spectrum from theoretical results to concrete appli-
cations, with an emphasis on practical verification tools and the algorithms and
techniques that are needed for their implementation. CAV considers it vital to continue
spurring advances in hardware and software verification while expanding to new
domains such as biological systems and computer security.

The CAV 2015 program included five keynotes, technical papers (58 long and 11
short papers accepted out of 252 submissions), 11 co-located events (VSTTE – Verified
Software: Theories, Tools, and Experiments; SMT – Satisfiability Modulo Theories,
EC2, IPRA – Interpolation: From Proofs to Applications; SYNT – Synthesis; VeriSure –
Verification and Assurance; HCVS – Horn Clauses for Verification and Synthe-
sis; VMW – Verification Mentoring Workshop, REORDER, SNR – Symbolic and
Numerical Methods for Reachability Analysis; VEMDP – Verification of Engineered
Molecular Devices and Programs), the Artifact Evaluation as well as briefings from the
SMT and Synthesis competitions.

The invited keynote speakers were Philippa Gardner (Imperial College London),
Leslie Lamport (Microsoft Research), Bob Kurshan (Cadence), William Hung (Syn-
opsys), and Peter O’Hearn (University College London and Facebook).

Many people worked hard to make CAV 2015 a success. We thank the authors and
the keynote speakers for providing the excellent technical material, the Program
Committee for their thorough reviews and the time spent on evaluating all the sub-
missions and discussing them during the on-line discussion period, and the Steering
Committee for their guidance throughout the planning for CAV 2015.

We also thank Temesghen Kahsai, Local Chair, for his dedication and help with
CAV 2015 planning and Hana Chockler, Sponsorship Chair, for helping to bring much
needed financial support to the conference; Dirk Beyer, Workshop Chair, and all the
organizers of the co-located events for bringing their events to the CAV week; Eliz-
abeth Polgreen for the program and proceedings; Arie Gurfinkel, Temesghen Kahsai,
Michael Tautschnig, and the Artifact Evaluation Committee for their work on evalu-
ating the artifacts submitted.

We gratefully acknowledge NSF for providing financial support for student par-
ticipants. We sincerely thank the CAV sponsors for their generous contributions:

– Google (Platinum sponsor)
– NASA, Fujitsu, SGT, Facebook, Microsoft (Gold sponsors)
– IBM, Cadence (Silver sponsors)
– Intel, Samsung (Bronze sponsors)



We also thank Carnegie Mellon University Silicon Valley and the University of
Oxford for their support.

Finally, we hope you find the proceedings of CAV 2015 intellectually stimulating
and practically valuable.

May 2015 Corina S. Păsăreanu
Daniel Kroening

VI Preface



Organization

Program Committee

Aws Albarghouthi University of Toronto, Canada
Jade Alglave University College London, UK
Domagoj Babic Google
Armin Biere Johannes Kepler University, Austria
Roderick Bloem Graz University of Technology, Austria
Ahmed Bouajjani LIAFA, University of Paris Diderot, France
Marius Bozga Verimag/CNRS, France
Aaron Bradley Mentor Graphics
David Brumley Carnegie Mellon University, USA
Tevfik Bultan University of California at Santa Barbara, USA
Krishnendu Chatterjee Institute of Science and Technology (IST)
Swarat Chaudhuri Rice University, USA
Marsha Chechik University of Toronto, Canada
Hana Chockler King’s College London, UK
Byron Cook Microsoft Research
Isil Dillig Stanford University, USA
Dino Distefano Facebook
Alastair Donaldson Imperial College London, UK
Azadeh Farzan University of Toronto, Canada
Antonio Filieri University of Stuttgart, Germany
Jasmin Fisher Microsoft Research
Indradeep Ghosh Fujitsu Labs of America
Patrice Godefroid Microsoft Research
Aarti Gupta Princeton University, USA
Arie Gurfinkel Software Engineering Institute, CMU, USA
Gerard Holzmann NASA/JPL, USA
Warren Hunt University of Texas, USA
Ranjit Jhala University of California San Diego, USA
Barbara Jobstmann EPFL, Jasper DA, and CNRS-Verimag,

Switzerland/France
Joost-Pieter Katoen RWTH Aachen University, Germany
Daniel Kroening University of Oxford, UK
Marta Kwiatkowska University of Oxford, UK
Akash Lal Microsoft Research, India
Darko Marinov University of Illinois at Urbana-Champaign, USA
Ken McMillan Microsoft Research
Kedar Namjoshi Bell Labs



David Parker University of Birmingham, UK
Corina Pasareanu CMU/NASA Ames Research Center, USA
André Platzer Carnegie Mellon University, USA
Zvonimir Rakamaric University of Utah, USA
Grigore Rosu University of Illinois at Urbana-Champaign, USA
Philipp Ruemmer Uppsala University, Sweden
Mooly Sagiv Tel Aviv University, Israel
Sriram Sankaranarayanan University of Colorado, Boulder, USA
Koushik Sen University of California, Berkeley, USA
Natarajan Shankar SRI International
Natasha Sharygina Università della Svizzera Italiana, Italy
Sharon Shoham Technion, Israel
Nishant Sinha IBM Research Labs
Fabio Somenzi University of Colorado at Boulder, USA
Manu Sridharan Samsung Research America
Ofer Strichman Technion, Israel
Zhendong Su UC Davis, USA
Cesare Tinelli The University of Iowa, USA
Emina Torlak U.C. Berkeley, USA
Tayssir Touili LIAFA, CNRS and University Paris Diderot, France
Thomas Wahl Northeastern University, USA
Georg Weissenbacher Vienna University of Technology, Austria
Eran Yahav Technion, Israel

Additional Reviewers

Abdelkader, Karam
Abdullah, Syed Md.

Jakaria
Abraham, Erika
Aiswarya, C.
Akshay, S.
Alberti, Francesco
Alt, Leonardo
André, Etienne
Arechiga, Nikos
Asarin, Eugene
Astefanoaei, Lacramioara
Athanasiou, Konstantinos
Aydin, Abdulbaki
Backeman, Peter
Balakrishnan, Gogul
Bang, Lucas
Barbot, Benoit
Barrett, Clark

Bartocci, Ezio
Basset, Nicolas
Ben Sassi,

Mohamed Amin
Ben-David, Shoham
Benes, Nikola
Berdine, Josh
Bertrand, Nathalie
Bhatt, Devesh
Blackshear, Sam
Bocic, Ivan
Bogomolov, Sergiy
Bornholt, James
Bortz, David
Brain, Martin
Brockschmidt, Marc
Brotherston, James
Bruns, Glenn
Bushnell, David

Calcagno, Cristiano
Ceska, Milan
Chakarov, Aleksandar
Chakravarthy, Venkat
Chan, May T.M.
Chapman, Martin
Chau, Cuong
Chen, Xin
Chen, Yuting
Cherini, Renato
Chiang, Wei-Fan
Chmelik, Martin
Choi, Wontae
Cimatti, Alessandro
Ciobaca, Stefan
Clancy, Kevin
Combaz, Jacques
Cox, Arlen
D’Antoni, Loris

VIII Organization



D’Silva, Vijay
Dan, Andrei Marian
Dang, Thao
Darulova, Eva
David, Cristina
De Niz, Dionisio
Degorre, Aldric
Dehnert, Christian
Dhok, Monika
Diaz, Marcio
Dimjasevic, Marko
Dor, Nurit
Doyen, Laurent
Dragoi, Cezara
Dutertre, Bruno
Dutra, Rafael
Ebtekar, Aram
Ehlers, Rüdiger
Eide, Eric
Eisner, Cindy
Enea, Constantin
Fainekos, Georgios
Falcone, Ylies
Fedyukovich, Grigory
Feret, Jerome
Ferrere, Thomas
Fisman, Dana
Forejt, Vojtech
Fraer, Ranan
Frehse, Goran
Fu, Xiang
Fu, Zhoulai
Fuhs, Carsten
Fulton, Nathan
Gao, Sicun
Garg, Pranav
Garoche, Pierre-Loic
Gascon, Adria
Gerard, Leonard
Ghorbal, Khalil
Giacobbe, Mirco
Girard, Antoine
Gligoric, Milos
Goel, Shilpi
Gong, Liang
Gordon, Colin S.

Gotsman, Alexey
Gretz, Friedrich
Griesmayer, Andreas
Grinchtein, Olga
Grumberg, Orna
Gu, Yijia
Guck, Dennis
Gupta, Ashutosh
Gvero, Tihomir
Gyori, Alex
Günther, Henning
Haase, Christoph
Hadarean, Liana
Hahn, Ernst Moritz
Hall, Ben
Hall, Benjamin
Hallé, Sylvain
Hamza, Jad
He, Shaobo
Heizmann, Matthias
Henriques, David
Henry, Julien
Heule, Marijn
Hofferek, Georg
Horn, Alexander
Hyvärinen, Antti
Ivancic, Franjo
Ivrii, Alexander
Jain, Mitesh
Jansen, Nils
Jeannin, Jean-Baptiste
Ji, Ran
Jovanovic, Aleksandra
Jovanović, Dejan
Kafle, Bishoksan
Kahsai, Temesghen
Kahveci, Tuba
Kaminski, Benjamin

Lucien
Kannan, Jayanthkumar
Kapinski, James
Karbyshev, Aleksandr
Karimi, Derrick
Keidar-Barner, Sharon
Keller, Chantal
Kennedy, Andrew

Khalimov, Ayrat
Khlaaf, Heidy
Kiefer, Stefan
Kim, Chang Hwan Peter
Kincaid, Zachary
King, Andy
King, Tim
Kini, Keshav
Koenighofer, Robert
Komuravelli, Anvesh
Konnov, Igor
Koskinen, Eric
Kretinsky, Jan
Kugler, Hillel
Kuncak, Viktor
Laarman, Alfons
Lahav, Ori
Lahiri, Shuvendu
Lampka, Kai
Lange, Martin
Lano, Kevin
Lawford, Mark
Le, Vu
Legay, Axel
Li, Goudong
Li, Guodong
Li, Peng
Li, Wenchao
Li, Yi
Liang, Tianyi
Lin, Yu
Liu, Peizun
Loos, Sarah
Luo, Qingzhou
Maler, Oded
Marescotti, Matteo
Martins, João G.
Martins, Ruben
Meel, Kuldeep
Mehne, Ben
Meller, Yael
Mereacre, Alexandru
Meshman, Yuri
Miné, Antoine
Misailovic, Sasa
Mitra, Sayan

Organization IX



Mitsch, Stefan
Moore, Brandon
Moses, Yoram
Mover, Sergio
Moy, Matthieu
Mukherjee, Rajdeep
Mukherjee, Suvam
Musuvathi, Madanlal
Müller, Andreas
Nadel, Alexander
Naiman, Lev
Natraj, Ashutosh
Navas, Jorge A
Neider, Daniel
Nellen, Johanna
Nguyen, Huu Vu
Nickovic, Dejan
Nimal, Vincent
Nori, Aditya
Norman, Gethin
O’Hearn, Peter
Ober, Iulian
Oehlerking, Jens
Olivo, Oswaldo
Olmedo, Federico
Ong, Luke
Otop, Jan
Ouaknine, Joel
Owre, Sam
Padon, Oded
Palikareva, Hristina
Paoletti, Nicola
Papavasileiou, Vasilis
Park, Daejun
Partush, Nimrod
Pek, Edgar
Peleg, Hila
Piterman, Nir
Podelski, Andreas
Pommellet, Adrien
Pous, Damien
Prasad, Mukul
Prähofer, Herbert
Puggelli, Alberto

Qian, Xuehai
Qiu, Xiaokang
Quesel, Jan-David
Radoi, Cosmin
Ramachandran, Jaideep
Ratschan, Stefan
Ray, Sayak
Rinetzky, Noam
Rodríguez Carbonell,

Enric
Roeck, Franz
Rungta, Neha
Ryvchin, Vadim
Safránek, David
Salay, Rick
Sawaya, Geof
Schewe, Sven
Schlaipfer, Matthias
Scholl, Christoph
Schrammel, Peter
Schäf, Martin
Schäfer, Andreas
See, Abigail
Seidl, Martina
Selfridge, Ben
Serbanuta, Traian Florin
Sethi, Divjyot
Sharma, Rahul
Sheinvald, Sarai
Shi, August
Shmulevich, Ilya
Sinz, Carsten
Slivovsky, Friedrich
Sogokon, Andrew
Solovyev, Alexey
Sousa Pinto, Joao
Srivathsan, B
Stefanescu, Andrei
Stefanescu, Gheorghe
Sticksel, Christoph
Suda, Martin
Sun, Chengnian
Sun, Yutian
Szekeres, Laszlo

Taghdiri, Mana
Tautschnig, Michael
Thakur, Aditya
Tiwari, Ashish
Tonetta, Stefano
Topcu, Ufuk
Tracol, Mathieu
Tsiskaridze, Nestan
Tzoref-Brill, Rachel
Ulbrich, Mattias
Urban, Caterina
Urban, Christian
Vafeiadis, Viktor
Veitsman, Maor
Velner, Yaron
Vizel, Yakir
Voelzer, Hagen
Von Essen, Christian
Völp, Marcus
Wachter, Björn
Wang, Zilong
Wehrman, Ian
Wei, Ou
Wetzler, Nathan
Whalen, Mike
Wickerson, John
Wiltsche, Clemens
Wintersteiger, Christoph
Wolf, Karsten
Wolf, Verena
Wu, Zhilin
Yorav, Karen
Yorsh, Greta
Yoshida, Hiroaki
Younes, Håkan L.S.
Yu, Fang
Zawadzki, Erik
Zeljić, Aleksandar
Zhang, Qirun
Zhang, Yi
Zheng, Yunhui
Zutshi, Aditya

X Organization



Contents – Part II

SMT Techniques and Applications

POLING: SMT Aided Linearizability Proofs . . . . . . . . . . . . . . . . . . . . . . . . . 3
He Zhu, Gustavo Petri, and Suresh Jagannathan

Finding Bounded Path in Graph Using SMT for Automatic Clock Routing . . . 20
Amit Erez and Alexander Nadel

Cutting the Mix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Jürgen Christ and Jochen Hoenicke

The Inez Mathematical Programming Modulo Theories Framework . . . . . . . 53
Panagiotis Manolios, Jorge Pais, and Vasilis Papavasileiou

Using Minimal Correction Sets to More Efficiently Compute Minimal
Unsatisfiable Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Fahiem Bacchus and George Katsirelos

Deciding Local Theory Extensions via E-matching . . . . . . . . . . . . . . . . . . . 87
Kshitij Bansal, Andrew Reynolds, Tim King, Clark Barrett,
and Thomas Wies

HW Verification

Modular Deductive Verification of Multiprocessor Hardware Designs . . . . . . 109
Muralidaran Vijayaraghavan, Adam Chlipala, Arvind, and Nirav Dave

Word-Level Symbolic Trajectory Evaluation. . . . . . . . . . . . . . . . . . . . . . . . 128
Supratik Chakraborty, Zurab Khasidashvili, Carl-Johan H. Seger,
Rajkumar Gajavelly, Tanmay Haldankar, Dinesh Chhatani,
and Rakesh Mistry

Verifying Linearizability of Intel® Software Guard Extensions . . . . . . . . . . . 144
Rebekah Leslie-Hurd, Dror Caspi, and Matthew Fernandez

Synthesis

Synthesis Through Unification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Rajeev Alur, Pavol Černý, and Arjun Radhakrishna

http://dx.doi.org/10.1007/978-3-319-21668-3_1
http://dx.doi.org/10.1007/978-3-319-21668-3_2
http://dx.doi.org/10.1007/978-3-319-21668-3_3
http://dx.doi.org/10.1007/978-3-319-21668-3_4
http://dx.doi.org/10.1007/978-3-319-21668-3_5
http://dx.doi.org/10.1007/978-3-319-21668-3_5
http://dx.doi.org/10.1007/978-3-319-21668-3_6
http://dx.doi.org/10.1007/978-3-319-21668-3_7
http://dx.doi.org/10.1007/978-3-319-21668-3_8
http://dx.doi.org/10.1007/978-3-319-21668-3_9
http://dx.doi.org/10.1007/978-3-319-21668-3_9
http://dx.doi.org/10.1007/978-3-319-21668-3_10


From Non-preemptive to Preemptive Scheduling
Using Synchronization Synthesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Pavol Černý, Edmund M. Clarke, Thomas A. Henzinger,
Arjun Radhakrishna, Leonid Ryzhyk, Roopsha Samanta,
and Thorsten Tarrach

Counterexample-Guided Quantifier Instantiation for Synthesis in SMT. . . . . . 198
Andrew Reynolds, Morgan Deters, Viktor Kuncak, Cesare Tinelli,
and Clark Barrett

Deductive Program Repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Etienne Kneuss, Manos Koukoutos, and Viktor Kuncak

Quantifying Conformance Using the Skorokhod Metric . . . . . . . . . . . . . . . . 234
Jyotirmoy V. Deshmukh, Rupak Majumdar, and Vinayak S. Prabhu

Pareto Curves of Multidimensional Mean-Payoff Games . . . . . . . . . . . . . . . 251
Romain Brenguier and Jean-François Raskin

Termination

Conflict-Driven Conditional Termination . . . . . . . . . . . . . . . . . . . . . . . . . . 271
Vijay D’Silva and Caterina Urban

Predicate Abstraction and CEGAR for Disproving Termination
of Higher-Order Functional Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

Takuya Kuwahara, Ryosuke Sato, Hiroshi Unno, and Naoki Kobayashi

Complexity of Bradley-Manna-Sipma Lexicographic Ranking Functions . . . . 304
Amir M. Ben-Amram and Samir Genaim

Measuring with Timed Patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
Thomas Ferrère, Oded Maler, Dejan Ničković, and Dogan Ulus

Automatic Verification of Stability and Safety for Delay Differential
Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

Liang Zou, Martin Fränzle, Naijun Zhan, and Peter Nazier Mosaad

Time Robustness in MTL and Expressivity in Hybrid System Falsification. . . 356
Takumi Akazaki and Ichiro Hasuo

Concurrency

Adaptive Concretization for Parallel Program Synthesis . . . . . . . . . . . . . . . . 377
Jinseong Jeon, Xiaokang Qiu, Armando Solar-Lezama,
and Jeffrey S. Foster

XII Contents – Part II

http://dx.doi.org/10.1007/978-3-319-21668-3_11
http://dx.doi.org/10.1007/978-3-319-21668-3_11
http://dx.doi.org/10.1007/978-3-319-21668-3_12
http://dx.doi.org/10.1007/978-3-319-21668-3_13
http://dx.doi.org/10.1007/978-3-319-21668-3_14
http://dx.doi.org/10.1007/978-3-319-21668-3_15
http://dx.doi.org/10.1007/978-3-319-21668-3_16
http://dx.doi.org/10.1007/978-3-319-21668-3_17
http://dx.doi.org/10.1007/978-3-319-21668-3_17
http://dx.doi.org/10.1007/978-3-319-21668-3_18
http://dx.doi.org/10.1007/978-3-319-21668-3_19
http://dx.doi.org/10.1007/978-3-319-21668-3_20
http://dx.doi.org/10.1007/978-3-319-21668-3_20
http://dx.doi.org/10.1007/978-3-319-21668-3_21
http://dx.doi.org/10.1007/978-3-319-21668-3_22


Automatic Completion of Distributed Protocols with Symmetry . . . . . . . . . . 395
Rajeev Alur, Mukund Raghothaman, Christos Stergiou, Stavros Tripakis,
and Abhishek Udupa

An Axiomatic Specification for Sequential Memory Models . . . . . . . . . . . . . 413
William Mansky, Dmitri Garbuzov, and Steve Zdancewic

Approximate Synchrony: An Abstraction for Distributed
Almost-Synchronous Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429

Ankush Desai, Sanjit A. Seshia, Shaz Qadeer, David Broman,
and John C. Eidson

Automated and Modular Refinement Reasoning for Concurrent Programs . . . 449
Chris Hawblitzel, Erez Petrank, Shaz Qadeer, and Serdar Tasiran

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467

Contents – Part II XIII

http://dx.doi.org/10.1007/978-3-319-21668-3_23
http://dx.doi.org/10.1007/978-3-319-21668-3_24
http://dx.doi.org/10.1007/978-3-319-21668-3_25
http://dx.doi.org/10.1007/978-3-319-21668-3_25
http://dx.doi.org/10.1007/978-3-319-21668-3_26


Contents – Part I

Invited Paper

A Trusted Mechanised Specification of JavaScript: One Year On . . . . . . . . . 3
Philippa Gardner, Gareth Smith, Conrad Watt, and Thomas Wood

Model Checking and Refinements

On Automation of CTL* Verification for Infinite-State Systems . . . . . . . . . . 13
Byron Cook, Heidy Khlaaf, and Nir Piterman

Algorithms for Model Checking HyperLTL and HyperCTL� . . . . . . . . . . . . 30
Bernd Finkbeiner, Markus N. Rabe, and César Sánchez

Fairness Modulo Theory: A New Approach to LTL Software
Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Daniel Dietsch, Matthias Heizmann, Vincent Langenfeld,
and Andreas Podelski

Model Checking Parameterized Asynchronous Shared-Memory Systems . . . . 67
Antoine Durand-Gasselin, Javier Esparza, Pierre Ganty,
and Rupak Majumdar

SMT and POR Beat Counter Abstraction: Parameterized Model Checking
of Threshold-Based Distributed Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 85

Igor Konnov, Helmut Veith, and Josef Widder

Skipping Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Mitesh Jain and Panagiotis Manolios

Quantitative Reasoning

Percentile Queries in Multi-dimensional Markov Decision Processes . . . . . . . 123
Mickael Randour, Jean-François Raskin, and Ocan Sankur

Faster Algorithms for Quantitative Verification in Constant
Treewidth Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Krishnendu Chatterjee, Rasmus Ibsen-Jensen,
and Andreas Pavlogiannis

Counterexample Explanation by Learning Small Strategies in Markov
Decision Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Tomáš Brázdil, Krishnendu Chatterjee, Martin Chmelík,
Andreas Fellner, and Jan Křetínský

http://dx.doi.org/10.1007/978-3-319-21690-4_1
http://dx.doi.org/10.1007/978-3-319-21690-4_2
http://dx.doi.org/10.1007/978-3-319-21690-4_3
http://dx.doi.org/10.1007/978-3-319-21690-4_4
http://dx.doi.org/10.1007/978-3-319-21690-4_4
http://dx.doi.org/10.1007/978-3-319-21690-4_5
http://dx.doi.org/10.1007/978-3-319-21690-4_6
http://dx.doi.org/10.1007/978-3-319-21690-4_6
http://dx.doi.org/10.1007/978-3-319-21690-4_7
http://dx.doi.org/10.1007/978-3-319-21690-4_8
http://dx.doi.org/10.1007/978-3-319-21690-4_9
http://dx.doi.org/10.1007/978-3-319-21690-4_9
http://dx.doi.org/10.1007/978-3-319-21690-4_10
http://dx.doi.org/10.1007/978-3-319-21690-4_10


Symbolic Polytopes for Quantitative Interpolation and Verification . . . . . . . . 178
Klaus von Gleissenthall, Boris Köpf, and Andrey Rybalchenko

Adaptive Aggregation of Markov Chains: Quantitative Analysis
of Chemical Reaction Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Alessandro Abate, Luboš Brim, Milan Češka, and Marta Kwiatkowska

PROPhESY: A PRObabilistic ParamEter SYnthesis Tool . . . . . . . . . . . . . . . 214
Christian Dehnert, Sebastian Junges, Nils Jansen, Florian Corzilius,
Matthias Volk, Harold Bruintjes, Joost- Pieter Katoen,
and Erika Ábrahám

Software Analysis

Effective Search-Space Pruning for Solvers of String Equations,
Regular Expressions and Length Constraints. . . . . . . . . . . . . . . . . . . . . . . . 235

Yunhui Zheng, Vijay Ganesh, Sanu Subramanian, Omer Tripp,
Julian Dolby, and Xiangyu Zhang

Automata-Based Model Counting for String Constraints. . . . . . . . . . . . . . . . 255
Abdulbaki Aydin, Lucas Bang, and Tevfik Bultan

OpenJDK’s Java.utils.Collection.sort() Is Broken: The Good, the Bad
and the Worst Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

Stijn de Gouw, Jurriaan Rot, Frank S. de Boer, Richard Bubel,
and Reiner Hähnle

Tree Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
Radu Grigore and Stefan Kiefer

Learning Commutativity Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Timon Gehr, Dimitar Dimitrov, and Martin Vechev

Angelic Verification: Precise Verification Modulo Unknowns . . . . . . . . . . . . 324
Ankush Das, Shuvendu K. Lahiri, Akash Lal, and Yi Li

The SeaHorn Verification Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli,
and Jorge A. Navas

Automatic Rootcausing for Program Equivalence Failures in Binaries . . . . . . 362
Shuvendu K. Lahiri, Rohit Sinha, and Chris Hawblitzel

Fine-Grained Caching of Verification Results . . . . . . . . . . . . . . . . . . . . . . . 380
K. Rustan M. Leino and Valentin Wüstholz

Predicting a Correct Program in Programming by Example . . . . . . . . . . . . . 398
Rishabh Singh and Sumit Gulwani

XVI Contents – Part I

http://dx.doi.org/10.1007/978-3-319-21690-4_11
http://dx.doi.org/10.1007/978-3-319-21690-4_12
http://dx.doi.org/10.1007/978-3-319-21690-4_12
http://dx.doi.org/10.1007/978-3-319-21690-4_13
http://dx.doi.org/10.1007/978-3-319-21690-4_14
http://dx.doi.org/10.1007/978-3-319-21690-4_14
http://dx.doi.org/10.1007/978-3-319-21690-4_15
http://dx.doi.org/10.1007/978-3-319-21690-4_16
http://dx.doi.org/10.1007/978-3-319-21690-4_16
http://dx.doi.org/10.1007/978-3-319-21690-4_17
http://dx.doi.org/10.1007/978-3-319-21690-4_18
http://dx.doi.org/10.1007/978-3-319-21690-4_19
http://dx.doi.org/10.1007/978-3-319-21690-4_20
http://dx.doi.org/10.1007/978-3-319-21690-4_21
http://dx.doi.org/10.1007/978-3-319-21690-4_22
http://dx.doi.org/10.1007/978-3-319-21690-4_23


Abstract Interpretation with Higher-Dimensional Ellipsoids
and Conic Extrapolation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

Mendes Oulamara and Arnaud J. Venet

Lightning Talks

ADAM: Causality-Based Synthesis of Distributed Systems . . . . . . . . . . . . . . . 433
Bernd Finkbeiner, Manuel Gieseking, and Ernst-Rüdiger Olderog

Alchemist: Learning Guarded Affine Functions. . . . . . . . . . . . . . . . . . . . . . 440
Shambwaditya Saha, Pranav Garg, and P. Madhusudan

OptiMathSAT: A Tool for Optimization Modulo Theories . . . . . . . . . . . . . . 447
Roberto Sebastiani and Patrick Trentin

Systematic Asynchrony Bug Exploration for Android Apps . . . . . . . . . . . . . 455
Burcu Kulahcioglu Ozkan, Michael Emmi, and Serdar Tasiran

Norn: An SMT Solver for String Constraints . . . . . . . . . . . . . . . . . . . . . . . 462
Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen,
Lukáš Holík, Ahmed Rezine, Philipp Rümmer, and Jari Stenman

PVSio-web 2.0: Joining PVS to HCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470
Paolo Masci, Patrick Oladimeji, Yi Zhang, Paul Jones, Paul Curzon,
and Harold Thimbleby

The Hanoi Omega-Automata Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
Tomáš Babiak, František Blahoudek, Alexandre Duret-Lutz,
Joachim Klein, Jan Křetínský, David Müller, David Parker,
and Jan Strejček

The Open-Source LearnLib: A Framework for Active Automata Learning . . . 487
Malte Isberner, Falk Howar, and Bernhard Steffen

BBS: A Phase-Bounded Model Checker for Asynchronous Programs . . . . . . . 496
Rupak Majumdar and Zilong Wang

Time-Aware Abstractions in HybridSal . . . . . . . . . . . . . . . . . . . . . . . . . . . 504
Ashish Tiwari

A Type-Directed Approach to Program Repair . . . . . . . . . . . . . . . . . . . . . . 511
Alex Reinking and Ruzica Piskac

Formal Design and Safety Analysis of AIR6110 Wheel Brake System. . . . . . 518
M. Bozzano, A. Cimatti, A. Fernandes Pires, D. Jones, G. Kimberly,
T. Petri, R. Robinson, and S. Tonetta

Contents – Part I XVII

http://dx.doi.org/10.1007/978-3-319-21690-4_24
http://dx.doi.org/10.1007/978-3-319-21690-4_24
http://dx.doi.org/10.1007/978-3-319-21690-4_25
http://dx.doi.org/10.1007/978-3-319-21690-4_26
http://dx.doi.org/10.1007/978-3-319-21690-4_27
http://dx.doi.org/10.1007/978-3-319-21690-4_28
http://dx.doi.org/10.1007/978-3-319-21690-4_29
http://dx.doi.org/10.1007/978-3-319-21690-4_30
http://dx.doi.org/10.1007/978-3-319-21690-4_31
http://dx.doi.org/10.1007/978-3-319-21690-4_32
http://dx.doi.org/10.1007/978-3-319-21690-4_33
http://dx.doi.org/10.1007/978-3-319-21690-4_34
http://dx.doi.org/10.1007/978-3-319-21690-4_35
http://dx.doi.org/10.1007/978-3-319-21690-4_36


Meeting a Powertrain Verification Challenge . . . . . . . . . . . . . . . . . . . . . . . 536
Parasara Sridhar Duggirala, Chuchu Fan, Sayan Mitra,
and Mahesh Viswanathan

Synthesising Executable Gene Regulatory Networks from Single-Cell
Gene Expression Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544

Jasmin Fisher, Ali Sinan Köksal, Nir Piterman, and Steven Woodhouse

Empirical Software Metrics for Benchmarking of Verification Tools . . . . . . . 561
Yulia Demyanova, Thomas Pani, Helmut Veith, and Florian Zuleger

Interpolation, IC3/PDR, and Invariants

Property-Directed Inference of Universal Invariants or Proving Their
Absence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583

A. Karbyshev, N. Bjørner, S. Itzhaky, N. Rinetzky, and S. Shoham

Efficient Anytime Techniques for Model-Based Safety Analysis . . . . . . . . . . 603
Marco Bozzano, Alessandro Cimatti, Alberto Griggio,
and Cristian Mattarei

Boosting k-Induction with Continuously-Refined Invariants . . . . . . . . . . . . . 622
Dirk Beyer, Matthias Dangl, and Philipp Wendler

Fast Interpolating BMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641
Yakir Vizel, Arie Gurfinkel, and Sharad Malik

Counterexample-Guided Polynomial Loop Invariant Generation
by Lagrange Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 658

Yu-Fang Chen, Chih-Duo Hong, Bow-Yaw Wang, and Lijun Zhang

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675

XVIII Contents – Part I

http://dx.doi.org/10.1007/978-3-319-21690-4_37
http://dx.doi.org/10.1007/978-3-319-21690-4_38
http://dx.doi.org/10.1007/978-3-319-21690-4_38
http://dx.doi.org/10.1007/978-3-319-21690-4_39
http://dx.doi.org/10.1007/978-3-319-21690-4_40
http://dx.doi.org/10.1007/978-3-319-21690-4_40
http://dx.doi.org/10.1007/978-3-319-21690-4_41
http://dx.doi.org/10.1007/978-3-319-21690-4_42
http://dx.doi.org/10.1007/978-3-319-21690-4_43
http://dx.doi.org/10.1007/978-3-319-21690-4_44
http://dx.doi.org/10.1007/978-3-319-21690-4_44


SMT Techniques and Applications



Poling: SMT Aided Linearizability Proofs

He Zhu(B), Gustavo Petri, and Suresh Jagannathan

Purdue University, West Lafayette, USA
zhuhemail@gmail.com

Abstract. Proofs of linearizability of concurrent data structures gen-
erally rely on identifying linearization points to establish a simulation
argument between the implementation and the specification. However,
for many linearizable data structure operations, the linearization points
may not correspond to their internal static code locations; for example,
they might reside in the code of another concurrent operation. To over-
come this limitation, we identify important program patterns that expose
such instances, and describe a tool (Poling) that automatically verifies
the linearizability of implementations that conform to these patterns.

1 Introduction

Linearizability [13] is the de facto correctness condition for the implementation
of concurrent data structures. In a nutshell, linearizability establishes an obser-
vational equivalence between a multi-step fine-grained implementation, and an
atomic coarse-grained specification of the data structure [7]. Thus, linearizability
implies that each operation of a data structure implementation can be considered
as executing atomically with respect to other concurrent operations.

While the definition of linearizability is intuitively simple, its proofs tend to
be complex, and oftentimes depend on complicated simulation relations between
the abstraction and the implementation (eg. [3,18]). A common strategy to define
linearizability simulations is to identify program points in the implementation of
the data structure – known as linearization points (LP) – upon whose execution
an operation can be considered to have happened atomically [21]. Technically, a
linearization point indicates in a weak simulation argument a unique and atomic
step in the execution of the implementation at which the specification and the
implementation match their behaviors.

In this paper, we present a lightweight technique which reduces this complex
task into a property checking problem. In our approach, the abstract specification
of a data structure operation is defined using recursive functions on heaplets
(assertions describing a portion of the heap). We model these assertions as a set
of memory locations following [17], enabling the use of SMT solvers to discharge
our proof obligations. For example, at a linearization point (LP) of a stack push
method, the set of locations conforming the stack after the execution of LP,
should be equal to the set of locations conforming the stack before the push,
plus an additional location containing the new value pushed. The validity of the
formulae relating these two states of this linearizability argument (over sets) is

c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part II, LNCS 9207, pp. 3–19, 2015.
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decidable because they can be translated to quantifier-free formulas over integers
and functions, and can be solved by using SMT solvers.

Tools like Cave [22] are succesful at automatically proving linearizability
for data structures where the linearization points – static program locations –
can be affixed to static program locations within each operation implementa-
tion. Unfortunately, a large class of lock-free linearizable data structures resist
proofs by identifying such linearization points [3,11,16]. This should not be sur-
prising since the definition of linearizability only requires the existence of a
linearization for each invocation, which is intrinsically a semantical property of
the implementation. Such a linearization needs not always correspond to the
execution of predefined instructions within the code of the operation implemen-
tation. Our work extends previous efforts on the automation of linearizability
proofs leveraging internal linearization points [22], by identifying data structure
implementations whose linearization points may reside in code belonging to a
concurrent operation.

We do so by identifying two common patterns, occurring in fine-grained con-
current algorithms which cannot be verified using linearization points. Our ideas
extend the state of the art in automatic linearizability verification by extending
Cave [22] beyond linearization points. To the verification of linearizability by
linearization points, Poling adds the following three notable features.

– Firstly, Poling converges faster than Cave in all the benchmarks that both
tools can handle. This can be attributed to the fact that Poling reasons
about separation logic (SL) verification conditions by interpreting them as
sets of memory locations, following [17], with efficient SMT solvers.

– Secondly, Poling can verify linearizability for implementations that use help-
ing [14], a mechanism that allows an operation performed by one thread to
be completed by a concurrent operation of a different thread.

– Finally, Poling is sensitive to hindsight [16], a specific pattern in which the
linearization of operations that do not update the state (called pure) can only
be established a posteriori of their execution, and it might depend on other
threads operations.

2 Overview

In the tradition of Cave, we focus on the linearizability of concurrent data
structures implemented using linked lists. Some examples of such data structures
are: stacks, queues and sets (see [12]). In our work we assume a garbage collected
environment. Our approach is defined with respect to the most general client
(MGC) program in which an unbounded number of threads interact though a
single shared instance of the data structure [21], hence generalizing any possible
client.

To introduce Poling, consider the implementation of a lock-free stack due
to Treiber [19] shown in Fig. 1. The stack is organized as a linked list of nodes
containing a payload (val), and a next pointer to the following node in the
list. The head of the list is saved in the field first of a shared global variable
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TOP
first val next

0

val next val next val next

int push (v) {
x = new Node(v);

while(true) {
y = TOP->first;

x->next = y;

〈 if (TOP->first==y) {
TOP->first = x;

break; } 〉 }
return; }

int pop () {
while(true) {

y = TOP->first; // L0

if (y==0) return EMPTY;

else z = y->next;

〈 if (TOP->first==y) {
TOP->first = z; // L

break; } 〉 }
return y->val; }

Fig. 1. Treiber stack.

TOP, which serves as the synchronization point for competing threads. Thus,
TOP->first points to the last-in node, when there is one, and it contains 0 if
the stack is empty. The operations push and pop are presented. As customary,
we group blocks that should be executed atomically with “〈” and “〉” (in this
case they represent an inline of a cas instruction). The operation push creates
a new node - it reads the head of the linked list, and then tries to atomically
update it. If some other thread modifies TOP->first between the read and the
write, the update is aborted and the process is reiterated. A similar argument
applies to pop.

Since linearizability relates the implementation to a specification, the pro-
grammer must provide the specification. In the case of Cave this is done by
means of a simple language with primitives for the interpretation of lists and
sets. The programmer can use these primitives to operationally specify the data
structure. On the other hand, in Poling the specification is done declaratively
using recursive functions. The specification of pop is defined declaratively as:

vals(σ, TOP->first) = r :: vals(σ′, TOP->first) ⇐⇒ pop() = r
vals(σ, TOP->first) = [ ] ⇐⇒ pop() = Empty

In these equations, TOP and first are program variables. The keyword vals is
a primitive used to abstractly refer to the contents of a data structure, where
the argument σ represents the current state, and the argument TOP->first is a
program expression pointing to the first element of the list. The state resulting
from executing pop is represented by the symbol σ′. Finally, the return value
of pop is denoted by r. Then, the specification of pop establishes the relation
between the abstract state of the list before and after its execution. In this
example, Poling interprets vals(σ, TOP->first) as a recursive function [17],
defining the values stored in the locations reachable from TOP->first in σ.
Recursive functions will be formalized in Sect. 3.

In Fig. 1, the program point marked with L0 corresponds to the linearization
point of pop when the list is empty. The specification for the non-empty case is
satisfied at the program point L, because the set of values of locations reachable
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push(v)

b = tryPush(v)

return true

[popdesc.g == W]
popdesc.d = v
popdesc.g = C

[popdesc.g != W]

[b] [!b]

(b)

pop()

r = tryPop()

[r != NULL]

[r == NULL]

return r

[popdesc.g = W]
popdesc.g = F

[popdesc.g = F]
popdesc.g = W

[popdesc.g = C]
r = popdesc.d
popdesc.g = F

(a1)

(a2)

(a3)

struct desc {
//@operation
method op;
//@parameter
//@return
value d;
value g;

};
desc popdesc;
popdesc.op = pop;

Fig. 2. Elimination based stack. The formulae in square brackets are assumes and each
node denotes an atomic block. Struct desc is an annotated descriptor.

from TOP->first in a state σ (before the execution of the statement at L)
equals to the set of values reachable in the resulting state (σ′) plus the element
pointed by y, which is pop’s return value. Importantly no other point in pop
changes the values of the reachable locations. Poling using the set of memory
locations at L calls an SMT solver to automatically check whether the update to
these locations, before and after L, respects the specification of pop. We present
verification details in Sect. 4.

The example shown in Fig. 2 (adapted from [6]) is a simplification of the HSY
stack [10]. The stack uses an underlying Treiber implementation, but improves
its performance for high-contention scenarios through an elimination layer, an
occurrence of the helping mechanism. The example allows pairs of overlapping
instances of pop and push to exchange their values without accessing the list.
Each operation attempts an iteration of the Treiber implementation, and if it
fails it applies the helping mechanism. The process is iterated until the operation
succeeds. Helping is implemented by storing a descriptor of a pending pop into
the shared state variable popdesc. In the descriptor, if the value of g is W(aiting)
in location a1, there is an invocation of pop ready to be helped. If the value of
g is C(ollided), then a pair of push and pop invocations is in the process of
exchanging the value through g in location b. The helping completes or gives
up when pop sets the value of g back to F(ree), in locations a2 and a3, so that
another instance of helping can happen. Importantly, the linearization of pop
can happen in the code of a concurrent push in location b and, in location a2,
the pop can witness that it has been helped because the transition through a1
to a2 can only be caused by an action that happened in location b of a push
thread, where it was linearized.

We exploit this witnessing strategy in our linearization proofs. When an
operation is linearized by another operation that helps it, we record the state
at which the operation was linearized. Then, in the verification of the helped
operation, we can use the recorded state as a witness to check that it was indeed
helped by a concurrent operation. We observe that the witnessing is carried out
through the descriptors (popdesc). To verify how a push can find and then help
a pending pop, we allow programmers to use JML-style markers to annotate the
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descriptor data structure, indicating for an operation’s name, the parameters and
the return value (in Fig. 2 denoted via @operation, @parameter and @return
respectively). We cover the details of the verification in Sect. 4.

3 Formal Model

We define a data structure D as a pair (DΣ , DM) consisting of DΣ , the domain
of the data structure; and DM a set of method names, or primitive operations
in the terminology of [13]. We call an invocation of the method m simply an
operation, and use the metavariable opm to range over the set Ops of all possible
invocations. In turn, operations can be decomposed into a tuple opm = (m, t, v, r)
containing a thread identifier t ∈ T id, a vector with the arguments v, and if the
operation is completed, a return value r.

Program Model. We omit a description of the program state and operational
semantics of the programming language, assumed to be a standard first-order,
shared-memory, concurrent, imperative language. We assume a set of states σ ∈
DΣ , and an operational semantics with execution steps between states labeled
by events ev ∈ Evs following the judgment: σ

t,ev−−→ σ′. Events capture data
and control-flow actions (loads, stores, conditionals, etc.) with the addition of
invocation and response events of operation opm, denoted inv(opm) and res(opm)
respectively. These latter two kinds of events serve to delimit the “duration” of
operation invocations. We assume the obvious extension of this step judgment
to traces of events ranged by tr ∈ Evs∗, denoted σ

tr−→ σ′, with the obvious
inductive definition. Where unnecessary, we also omit the intermediate states.

Linearizability. Following [21], and without loss of generality, we assume a thread
makes at most one invocation to an operation of the data structure. We then
overload the notations for invocations and responses as inv(t) and res(t), for
thread t. We define history(tr) to be the projection of invocation and response
events in trace tr. Traces induce a partial order between operations. We say that
a operation t precedes operation t′ in tr t′intr (t ≺tr t′) as defined below1:

t ≺tr t′ ⇐⇒ ∃ tr0 tr1 tr2, tr = tr0 · res(t) · tr1 · inv(t′) · tr2

We say that a history is sequential if each invocation event inv(t) is immediately
followed by its corresponding response event res(t).

Definition 1 (Linearizable History). A history h is linearizable w.r.t. the
specification of a data structure D if, and only if, there exists a sequential trace
hs of D such that ≺h⊆≺Hs

, and the set of operations of h and hs coincide.

This notion is trivially lifted to implementations by requiring every implemen-
tation trace to have a linearizable history.
1 We eschew treating uncompleted invocations [13], which is a simple extension.
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Set Specification. As hinted in Sect. 2, we abstract the data structure through
an abstraction function: vals(σ, x), which for a given state σ represents the set of
values stored in the data structure pointed by the program variable x. This allows
us to express the abstract data structure specification as an equation relating
the initial state σ and final state σ′. Then for Set data structures implemented
as an ordered list, where we assume that the global variable head(Set) points to
the beginning of the list, we write:

vals(σ′, head(Set)) = {v} ∪ vals(σ, head(Set)) ⇐⇒ add(v) = true

vals(σ′, head(Set)) ∪ {v} = vals(σ, head(Set)) ⇐⇒ contains(v) = true

v /∈ vals(σ, head(Set)) ⇐⇒ contains(v) = false

Order Preserving Specifications. Using the concatenation operator (::)
instead of union (∪) as above, we can capture the behavior of data structures
whose temporal behavior imposes an ordering. For example a stack pop should
always return the “last” value pushed. Assuming that head(D) is the global vari-
able pointing to the first element of the list, we can specify pop and dequeue –
where we omit all other methods – as:

vals(σ, head(Stk)) = r :: vals(σ′, head(Stk)) ⇐⇒ pop() = r
vals(σ, head(Queue)) = vals(σ′, head(Queue)) :: r ⇐⇒ dequeue() = r

State Abstraction. Since we use RGSep [21], we abstract the program state σ
using separation logic formulae, denoted by a metavariable ψ. The syntax of
these formulae is given by the following grammars, where ≈ ranges over binary
relations of expression.

ψ :: = P ∗ P ′ | ψ ∨ ψ′

P :: = Π ∧ Γ
Π :: = true | false | E ≈ E′ | (Π ∧ Π ′)
Γ :: = emp | Etl �→ ρ | Γ ∗ Γ′ | lsegtl,ρ(E,E)

We briefly describe these assertions (details can be found in [21]): 1. The formulae
are given in disjunctive normal form, representing the different possible states
reachable through different paths, 2. Each of the disjuncts has two parts, the
local state, P predicating over the state local to the thread, and a shared state
P ′ – demarcated by a box [21] – which predicates over the state accessible to

all threads, 3. Further, each of these states can be separated into a pure part
Π, only concerned with stack allocated variables, and a spatial part Γ, which
describes the heap, 4. Finally, heap assertions include the standard separation
logic operators, where Etl �→ ρ denotes that the location E contains a record
ρ (a mapping from field names to values), where the special field tl points to
the next node in a linked list, and lsegtl,ρ(E,E′) denotes a linked list segment
starting at location E and ending at E′. The same convention applies to tl. All
the nodes in this list segment share a same field-value mapping described in ρ.

Data Structure Abstraction. We use the method of [17] to discharge proof oblig-
ations about the state using an SMT solver. In [17] SL assertions are encoded as
predicates on sets of memory locations. To that end, we define in Fig. 3 a data
structure abstraction function that takes an RGSep assertion, and transforms
it into a set of values. This is the function �vals�(ψσ, x), which is the symbolic
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Fig. 3. Recursive abstraction definition

counterpart to the function vals(σ, x) used for specifications. This recursive
abstraction definition represents the set of elements that inhabit the data struc-
ture. The function Find(Γ,E), simply finds the syntactic atomic occurrence of a
node or a list starting from E in the spacial formula Γ. We omit its trivial recur-
sive definition over RGSep formulae. Here, the capitalized expressions VALS are
uninterpreted functions in the logic of the underlying theorem provers we use
[17]. Finally, notice that if we substitute the concatenation operator (::) for all the
occurrences of the union operator (∪) in Fig. 3, we obtain a recursive definition
for lists instead of sets. A refined definition of our data structure abstraction is
given in [25] (that also considers reachable locations that are logically detached).

4 Verification

Our verification begins after a pass of the frontend of Cave [22], which given the
implementation of a data structure D, uses symbolic execution and shape analy-
sis to produce D’s data structure invariant [4] and RGSep [21] rely-guarantee
actions. To aid the verification of the helping mechanism, Poling requires the
programmer to instrument descriptors (as exemplified in Fig. 2). A simple analy-
sis could be implemented to instrument the descriptors automatically, or an
interface could be implemented to indicate the thread descriptors, but we omit
this unrelated step to simplify our development.

Central to our development are LP (linearization point) functions.

Definition 2 (Valid LP). Assume a trace tr : σi
tr−→ σf of the data structure D,

and a function � : Ops → DΣ, mapping each operation op of tr to the state in
tr exactly prior to the linearization of op. We say that � is a valid linearization
point function for tr with respect to an abstract specification ϕ if:

1. every operation op ∈ tr, has an LP state (i.e. �(op)) strictly between its
invocation (inv(op)) and its response (res(op)). Formally:

∃ tr(1:4), σi
tr−→ σf = σi

tr1−−→ · inv(op)−−−−→ · tr2−−→ �(op) tr3−−→ · res(op)−−−−→ · tr4−−→ σf

2. only the states that linearize operations can affect the abstract data structure:

σ1 /∈ {�(op) | op ∈ tr} and σi
tr−→ σf = σi

tr1−−→ σ1
ev−→ σ2

tr2−−→ σf

⇒ vals(σ1, head(D)) = vals(σ2, head(D))
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3. for each operation op ∈ tr, we have that the LP state, and its subsequent state
are related by the data structure specification ϕ. Formally, if the abstract
specification of op = (m, t, v, r) is ϕ, for a trace of op: σi

tr−→ σf = σi
tr1−−→

�(op) ev−→ σ̂
tr2−−→ · res(op)−−−−→ σr

tr3−−→ σf where (m(v) = σr(r)):
(1) if op is the only operation linearized in �(op) (i.e. there does not exist
another op′, such that op′ �= op ∧ �(op′) = �(op)) then

[�(op)/σ][σ̂/σ′]ϕ

(2) if there does exist one op′ whose abstract specification is ϕ′, such that
op′ �= op ∧ �(op′) = �(op)2 then, for any (ghost) state σg,

([�(op)/σ][σg/σ′]ϕ ⇒ [σg/σ][σ̂/σ′]ϕ′)∨([�(op)/σ][σg/σ′]ϕ′ ⇒ [σg/σ][σ̂/σ′]ϕ)

In condition 3, to verify whether an operation op can be linearized when op
is the single operation linearized in state �(op), we prove that the specification
[�(op)/σ][σ̂/σ′]ϕ is respected by the execution step from the LP state �(op). In
the substitution, the parametric pre state σ and post state σ′ of the specification
ϕ, are replaced with the LP state and its post state σ̂. However, in the case of
helping, many operations can be linearized in a single step (e.g. a push and a
pop exemplified in Fig. 2). We handle this case by introducing ghost states. For
example, if an event �(op) ev−→ σ̂ linearizes two operations; say �(op) = �(op′), we
check that there exists an intermediate state σg such that �(op) and σg satisfy
the specification of op and σg and σ̂ satisfy the specification of op′, or viceversa.
Intuitively this mediates and orders the linearization of the two operations.

Theorem 1. A data structure implementation D is linearizable with respect to
an abstract specification ϕ, if for every trace tr of the implementation, there
exists a valid D-LP function with respect to the specification ϕ.3

Witness States. Definition 2 paired with Theorem 1 provides us with a way of
checking linearizability by constructing valid LP functions. However, since LP
functions map operations to states, it could be the case that the LP state of a
certain operation may precede an event from a thread other than the one whose
operation is linearized. The same argument applies when multiple operations are
linearized in a single step. This is true for the helping mechanism of Fig. 2. In
this case, we define witness states as states from which one thread can make
sure that it has been linearized, i.e. that a prior LP state (�(op)) exists. For
the simple case where the linearization point of an operation can be identified
with its own program statement, the witness state is exactly the state before
executing this statement. We prove linearizability by identifying witness states.
In our approach, we distinguish effectful witness states where the abstract data
structure is altered (like L in Fig. 1), from pure (or effect-less) witness state that
leave the abstract data structure intact (like L0 in Fig. 1).
2 Definition 2 is defined for at most two operations linearized in one step. It can be
extended to handle the case when finitely many operations are helped in one step.

3 Theorems are proved in [25].
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Fig. 4. General framework. (The full pseudo code is provided in [25]).

Algorithm. We present our overall verification strategy in Fig. 4. We first use
heuristics derived from Cave to identify a set of states as candidate witness
states (ψσ), paired with the event (ev) to be executed next; such events include
all the memory reads or writes. The abstract states (ψσ) are obtained through the
symbolic execution of Cave. The function Check verifies whether in a symbolic
state ψσ the linearization of the operation can be witnessed w.r.t. its abstract
specification ϕ. Programmers provide ϕ through the definition vals(σ, head(D))
which is translated into the symbolic version �vals�(ψσ, head(D)).

Consider the pseudo-code of Check (given in Fig. 4). In line 2 we symbolically
execute the event ev from the state ψσ. To check if the abstract specification ϕ
is fulfilled, in line 3, we replace the initial and final state with the ones obtained
by symbolic execution and then unroll the definitions �vals�(ψσ, head(D)) and
�vals�(ψσ′ , head(D)) that are mentioned in the specification of the method, and
encode them using first order logic (FOL) with set theories following [17]. We
feed the unrolled formulae to an SMT solver (the arguments v and return values r
in the specification are also replaced with proper program variables, not shown
here). Notice that satisfiability of quantifier-free formulas over sets/multisets
with set union (∪) is decidable. Concatenation (::) is considered as uninterpreted.
If the formula is provable we have identified a witness state.

This strategy only applies to the case when linearization can be syntactically
associated to instructions of the operation’s own code, i.e. LPs. Lines 4-6 deal
with the cases when the linearization point might reside in operations of concur-
rent threads, which will be covered in the subsequent sections. If we are not able
to prove ϕ in ψσ after these checks, at line 7, before reporting this state is not
a candidate witness, we check that the abstract data structure did not change.
We recall that we assume that only linearization events can modify the abstract
state of the data structure. Hence, if the state did change, we abort the process
in line 9, and report that the implementation could not be proved linearizable.
After all the witness states are validated, following the strategy in [22], we use
a simple data-flow analysis to verify each program path has either exactly one
witness state or at least one pure witness.
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Example 1. Consider the pop method of the stack implementation of Fig. 1. With
the method delineated above we obtain a symbolic state before the program point
L (we only show the shared state):

TOP �→ (first : y) ∗ y �→ z ∗ lsegnext(z, 0)

This state is rendered from the successful test in the pop (TOP �→ first = y). We
will consider this state to be the witness state of pop (i.e. ψσ). The assignment
of z to TOP->first would then be performed. To verify whether this implemen-
tation is faithful to the Stack specification, we first symbolically execute the
instruction at L to render the post state after L (i.e. ψσ′):

TOP �→ (first : z) ∗ lsegnext(z, 0) ∗ y �→ z

According to the abstract specification of pop (Definition 3), we have to prove:

�vals�(ψσ, TOP �→ (first)) = r :: �vals�(ψσ′ , TOP �→ (first))

After unfolding, and substituting the special return symbol r with the actual
return value, we obtain:

VAL(y)::VALS(z, 0) = VAL(y)::VALS(z, 0)

which is clearly provable. Moreover,

�vals�(ψσ, TOP �→ (first)) = �vals�(ψσ′ , TOP �→ (first))

holds for all the other states of pop. After all these verification steps, our method
concludes that the program state before L is a valid effectful witness state.

Helping Verification. Consider a trace σi
tr1−−→ �(op′)

t,ev−−→ σ
tr2−−→ σf corre-

sponding to an execution of a data structure where op′ is specified as (m, t′, v, r).
This trace is typical of algorithms implementing the helping mechanism. Here,
the event (ev) that linearizes thread t′ (the thread executing op′) is taken by a
concurrent thread t. A key ingredient of this pattern are the descriptors, which
are used to keep information about ongoing invocations performed by different
threads (c.f. popdesc in Fig. 2). A thread can acknowledge its concurrent threads
through its descriptors which are used by the concurrent threads to complete
helping. In our proof, a thread under verification can retrieve the specifications
of the other concurrent operations through their descriptors.

To exploit such descriptors, we add to the symbolic state, a set that represents
helped operations. We call this set the Spec Pool, and use it to keep track of
the synchronization entailed through the descriptors. Operations that perform
helping are assumed to affect the Spec Pool. In the Spec Pool, each helped
operation is equipped with (1) the condition that must hold upon its linearization
and (2) the rely actions (used by the helper thread) that linearize it.

We provide a pictorial description of the process in Fig. 5. Here we consider
an event �(op′)

t,ev−−→ σ from thread t which helps a concurrent operation op′. This
event modifies the Spec Pool by inserting a tuple (op′, α(ψσ), RG) indicating
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Fig. 5. Spec pool.

that op′ has been helped at a state σ, and RG is the rely-guarantee actions
extracted from this step [23], where α is a function that encodes a SL formula
ψσ into a FOL formula. A verification step from op′ (i.e. t′) can observe the effects
of t at state σ′ (by checking a first order logical implication between α(ψσ) and
α(ψσ′)). When verifying op′ we also need to check that σ′ can only be reached
with the help of the rely action RG, absent of which σ′ would be unreachable for
t′. If the check is successful, σ′ is considered as the witness state for op′. Figure 6
presents the definition of α(ψ). Simply stated, we keep the pure part of the SL
formula and forget about the list segments. We encode the field-value mapping
of a memory location (Etls �→ ρ) into a conjunction of equations; each equation
encodes the value ρ(pf) of a field pf on the location E. We encode E only if it is
marked as a descriptor (local variables are implicitly existentially quantified).

Our approach hence reduces the problem of verifying linearizability to the
following proof obligations: (a) we must check how an operation can be helped at
the valid LP state in Fig. 5 (i.e. linearized by another thread); this corresponds
to the helps function in Fig. 4, (b) for the thread that is helped, we must check
the code that detects whether the operation has been helped at the valid witness
state in Fig. 5; this corresponds to the helped function in Fig. 4, and (c) we must
check that the helped operation is linearized exactly once.

For (a) we prove whether a given execution step in thread t can linearize
another thread t′ (with t′ �= t), directly following Definition 2. Let us consider
how this proof works for push and pop of Fig. 2. At the statement b of push we
detect the descriptor popdesc, representing a concurrent pop thread. Assuming
head(Stk) = TOP, we check:

∀ψgst,
(

�vals�(ψgst, TOP) = v :: �vals�(ψσ, TOP) ⇒
�vals�(ψgst, TOP) = popdesc.d :: �vals�(ψσ′ , TOP)

)

Fig. 6. Data abstraction from SL formula to FOL formula.
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According to Definition 2, ψgst is a necessary intermediate state in the abstract
data structure between the push and pop operations (it does not exist in the
actual execution). The precedent is obtained from the push’s operation specifi-
cation, with the argument substituted with the formal parameter v. The con-
sequent is the specification of pop’s operation, substituting the return value for
popdesc.d, known from the descriptor. Since the stack is not updated by the
instruction b, after unrolling we can prove the above formula. Both operations
are linearized in this step. After verifying that pop is helped, we create a Spec
Pool item (op′, ψ′, RG), representing the result of helping at statement b:
(
pop, ∃v.popdes.g = C ∧ popdes.d = v, popdes �→ (g : W) � popdes �→ (g : C)

)

As stated, ψ′ is the data abstraction of state σ′ while RG here only shows the
key rely-guarantee action ([21]), i.e., g is changed from W(aiting) to C(ollided).

We prove (b) by showing that if a thread t′ is linearized by another thread t,
this fact is manifest through the Spec Pool. To prove that t′ has been helped in
a state ψσ′ , we need to find a pool element (op′, ψ′, RG) such that the operation
of t′ is with the same method name to op′, and prove with an SMT solver that:

(ψ′ ⇒ α(ψσ′)) ∧ ¬(ψ′ ∧ α(ψσ′\RG))

The first conjunct implies that op′ may have been linearized by another thread,
and the second one ensures that this could only result from other threads’ inter-
ference RG. To check that this linearization could not have been possible with-
out the interference from another thread’s helps, we compute the state ψσ′\RG

by symbolically executing the method (using Cave) to the code location of σ′

dropping the rely action RG. Then the conditions recorded in the Spec Pool
(the conditions hold upon helping) must contradict ψσ′\RG. Consider the path
reaching the statement a2 in pop in Fig. 2. The conditions in the Spec Pool for
pop (ψ′) entail the data abstraction of state at a2 (abstracted as popdesc.g = C).
The only possible way to satisfy this assertion is by the rely RG, since originally
we had popdesc.g = W at a1. We conclude that the pop was linearized by RG,
the action made by a concurrent push. We also need to ensure a program path
that witnesses helping must return the value of the return-field instrumented in
the descriptor (e.g. return popdesc.d at a2).

We prove (c) by checking that an operation can only be helped once (e.g.
helping for thread t′ should be prohibited from state σ′′ in the trace in Fig. 5).
We leave the details in [25].

Our verification procedure maintains the Spec Pool as part of the abstract
state, and calls function Check of Fig. 4 twice. In the first pass, we construct the
Spec Pool by identifying helping scenarios; in the second pass, we exploit the
Spec Pool to identify helped operations. Specifically, in Fig. 4, when a candidate
state fails to fulfill the specification at line 3, we attempt to prove (a), calling
function helps at line 4, which identifies a set of descriptors in the state that
enable helping. If successful, the corresponding pool items are created (in the
first pass). Otherwise, at line 5, by calling function helped, we attempt proof
obligation b to check if the operation has been helped (in the second pass).
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Verification with Hindsight. This pattern is based on the Hindsight Lemma
of [16]. In the interest of space we shall avoid presenting a full example like
Lazy set [9] (see [25]), which implements a set with an optimistic lock free con-
tains operations using a linked list. As in the picture below, each node contains
three fields: a value, a mark bit representing whether the item has been removed
from the list (marked with grey), and a link (denoted as n) to the following node.

1 5
7

10
15 ∞TOP

The fundamental invariants for this algorithm are: 1. the elements in the
set are ordered for fast lookups through the lock-free contains method, 2. the
elements in the list are all reachable from the TOP pointer, and are not marked,
3. removed elements are marked before being unlinked, and 4. the next pointer
of a removed node never changes, hence it might still point to a node in the data
structure, until this node is in turn removed. In the figure, the set contains the
elements 7 and 15, but from the removed nodes we know that it contained the
elements 1, 5 and 10 at some point in the past. A concurrent contains operation,
which started before the elements were removed, may assume 1, 5 and 10 are
still contained. Following [16], we shall call nodes that are reachable from TOP
(including those that are marked) backbone nodes (e.g. 7 and 15). Conversely,
nodes that cannot be reached from TOP are called exterior nodes (e.g. 1, 5 and 10).

Lemma 1 (Hindsight [16]). Let tr be an execution of the set data structure
presented above satisfying:

1. An exterior node never becomes a backbone node.
2. The successor of an exterior node will never change.
3. If the successor of a backbone node changes, the node remains a backbone

node in the immediate following state.

Then, for any states σi = tr(i), σk = tr(k) such that 0 ≤ i ≤ k < |tr| and for
any nodes u, v, w such that u.n �→ v is a backbone link in σi, and v.n �→ w is a
link (not necessarily in the backbone) in σk, there exists a state σj = tr(j) such
that i ≤ j ≤ k and v.n �→ w is a backbone link in σj.

Lemma 1 allows us to use exterior nodes and links in the current state to infer
that there existed a past state in which the exterior nodes were in the backbone.
Using this information we attempt to linearize the contains method, even if the
found node is, in the current state, an exterior node. However, Lemma1 cannot
be used directly because, although an exterior link v.n �→ w might be found in
the current state, its premise, that a link u.n �→ v was present in the backbone
in a previous state, cannot be immediately established by looking at the current
state in the symbolic execution. To resolve this problem we propose Theorem 2
which we exploit to automate the application of Lemma1 in Poling.
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Theorem 2. If there is an exterior link v.n �→ w in σ, a past state of σ in which
the link is a backbone link exists provided the following conditions:

1. The premises of Lemma 1 hold, and
2. Reach(head(D), v) can be proved in the sequential state σseq.4

The sequential counterpart σseq of a state σ in a trace of an operation op,

σi
inv(op)−−−−→ · tr2−−→ σ

tr3−−→ · res(op)−−−−→ σf , is obtained by execution from σi to σ dropping
all the steps from op’s concurrent operations (executing op sequentially).

Note that the second condition ensures a temporal traversal to v (see [16])
and hence guarantees that v.n �→ w was once a backbone link. The verification of
this pattern (e.g. contains operation) is implemented in the hindsight function
in line 6 in the Check function (Fig. 4). In this function, exploiting Theorem2, if
an exterior link v.n �→ w is found in a candidate state σ and Reach(head(D), v)
holds in σseq (we compute ψσseq by utilizing symbolic execution with an empty
set of rely-guarantee actions in the implementation), we construct a past state
σp and substitute it for σ when verifying the method’s specification. If the verifi-
cation succeeds, σ is a pure witness state for the verifying thread’s linearization,
that is, we can deduce the existence of LP state (σp) from witness state σ. We
also customize the symbolic execution engine to verify all the three premises in
Lemma 1: for each execution step σ

t,ev−−→ σ′, we collect exterior nodes (symboli-
cally) in σ (ψσ), and verify that the step ev does not change their successors and
they do not become reachable from head(D); we also collect backbone nodes and
check, if their successors are changed by ev, then they remain reachable from
head(D) in σ′ (ψ′

σ). If any of these checks fails, the hindsight function (Fig. 4)
returns false.

Fig. 7. Hindsight application rule.

To reconstruct a past state σp as above, we introduce the Hindsight Lemma
application rule in Fig. 7. The rule is an adaptation of May-subtraction [23].
Intuitively, May-Subtract(P , Q) considers the ways in which an RGSep assertion
Q can be removed from another assertion P . Our application rule works as
May-Subtract(ψD

Inv, v.n �→ w) to subtract an exterior link out of data structure
invariant, and return the remaining state with the link added back. The auxiliary
function exp (expose) considers all the ways in which v can be matched to a node
or linked list assertion. Notice that since the only thing that is assumed in
the rule (the hypotheses) is the data structure shape invariant ψD

Inv (derived
from Cave), the resulting symbolic state is an abstraction of an actual past
state. The correctness of this rule is guaranteed by the proof of Theorem 2.
4 Reach is the obvious reachability predicate over SL formulas.
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Limitations. Although Poling can automatically handle concurrent data struc-
tures with non-internal linearization points, we acknowledge that it cannot verify
a class of concurrent data structure whose linearization points depend on future
behaviors [11]. We expect to extend Poling to support this class of programs
in the future.

5 Experimental Results

We evaluated Poling5 on 11 examples, divided into 3 categories shown in the
tables of Fig. 8. In the first table we present algorithms provable using internal
linearization points. We compare the times that Cave (version 2.1) and Poling
take to verify the algorithms and notice that for all these programs Poling
outperforms Cave. This can be attributed to our usage of SMT solvers following
[17] to efficiently discharge linearizability proof obligations.

The second table presents algorithms falling under the hindsight pattern. We
considered set implementation algorithms that perform an optimistic contains
(or lookup) operation. Optimistic set [16] traverses the list optimistically (with-
out acquiring any locks, or synchronizing with other threads) to find a node. In
contrast, Lazy set [9], and its variant Vechev CAS set [24] use a bit for marking
nodes before deletion.

The last table includes programs that implement the helping mechanism.
Conditional compare-and-swap (CCAS) [20] is a simplified version of the well
known RDCSS algorithm [8]. If a CCAS method finds a (thread) descriptor in its
targeting shared memory location, they attempt to help complete the operation
in that descriptor before performing its own. Finally, HSY stack is the full HSY
stack implementation [10]. Our running time in this complex example is compa-
rable to a rewriting technique illustrated in [6]. As expected, Cave cannot prove
all the programs in the second and third categories.

Linearization Points
Program CAVE Poling

LockCoupling set [12] 13.28s 4.01s
Vechev DCAS set [24] 73.90s 3.15s
2lock queue [15] 2.91s 2.51s
Treiber [19] 0.28s 0.06s
MSqueue [15] 7.66s 1.12s
DGLMqueue [5] 9.40s 1.47s

Hindsight
Program Poling

Vechev CAS set [24] 868.44s
Optimistic set [16] 27.51s
Lazy set [9] 321.78s

Helping
Program Poling

CCAS [20] 0.82s
HSY stack [10] 5.98s

Fig. 8. Experimental results.

6 Related Work and Conclusion

Related Work. Most techniques on linearizability verification (e.g., [1,2]) are
based on forward simulation arguments, and typically only work for methods
5 Project page: https://www.cs.purdue.edu/homes/zhu103/poling/index.html.

https://www.cs.purdue.edu/homes/zhu103/poling/index.html
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with internal linearization points local to their own code locations. To deal with
external linearization points, [3] proposed a technique limited to the case where
only read-only operations may have external linearization points.

Complete backward simulation strategies have been proposed in [18]. How-
ever, they are often difficult to automate. Other methods combine both forward
and backward simulations, using history and/or prophecy variables [21], instru-
menting the program with auxiliary state [14], or using logical relations to con-
struct relational proofs [20]. A general and modular proof strategy is proposed
in [14], that, along with lightweight instrumentation, leverages rely-guarantee
reasoning to manually verify algorithms with external linearization points. In
contrast, our method exploits witness states to infer a proof automatically. The
helping mechanism is also considered in [6] (which does not deal with the hind-
sight pattern) by rewriting the implementation so that all operations have their
linearization points within their rewritten code. Our technique does not rely on
rewritings because the relevant witness is found within the Spec Pool.

Our technique can be considered an adaptation of [17] which verifies sequen-
tial data structures using recursive definitions on heaplets. Similar to Poling,
the automata based approach [1] is also a property checking algorithm which for-
malizes linearizability specifications as automata, and checks the cross-product
of a symbolic encoding of the program with the specification automata for safety.
The main difference between Poling and [1] resides in the verification of imple-
mentations with external linearization points.

Conclusion. We describe a procedure and a tool Poling that automatically
checks the linearizability of fine-grained concurrent data structures. Poling
abstracts concurrent data structure into sets of locations following [17] and con-
siders linearizability verification as a property checking technique, which are
efficiently solved with an SMT solver. Poling extends prior art by incorporat-
ing important concurrent programming patterns: algorithms using helping, and
algorithms that can be proved using the hindsight lemma [16]. Our experimental
results provide evidence of the effectiveness of our tool.
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Abstract. Automating the routing process is essential for the semi-
conductor industry to reduce time-to-market and increase productivity.
This study sprang from the need to automate the following critical task
in clock routing: given a set of nets, each net consisting of a driver and
a receiver, connect each driver to its receiver, where the delay should be
almost the same across the nets. We demonstrate that this problem can
be reduced to bounded-path, that is, the NP-hard problem of finding a
simple path, whose cost is bounded by a given range, connecting two
given vertices in an undirected positively weighted graph. Furthermore,
we show that bounded-path can be reduced to bit-vector reasoning and
solved with a SAT-based bit-vector SMT solver. In order to render our
solution scalable, we override the SAT solver’s decision strategy with a
novel graph-aware strategy and augment conflict analysis with a graph-
aware procedure. Our solution scales to graphs having millions of edges
and vertices. It has been deployed at Intel for clock routing automation.

1 Introduction

Integrated circuits (IC) are made up of a large number of transistors forming
logical gates connected by nets. The process of finding the geometrical layout
of all the nets is called routing. Routing is an essential stage of the physical
design process [25]. A clock is a control signal that synchronizes data transfer
in the circuit. Specialized algorithms are required for routing the clock nets as
opposed to other types of nets [26]. This is because the clock must arrive at
all functional units at almost the same time. Clock nets must be routed before
the other nets (except the power nets), hence rapid clock routing is critical for
decreasing the time-to-market of semiconductor products. In clock routing, the
following requirement must often be met for a set of nets, each net consisting
of a driver and a receiver: wires connecting the driver to the receiver must have
almost the same delay across the nets. This type of routing is called matching
constrained routing (MCR). This paper shows how to automate MCR.

Section 2 reviews related work and provides some preliminaries. We define
the bounded path problem (or, simply, bounded-path) as follows: given a positively
weighted undirected graph, a source s and a target t, find a bounded path (that
is, a simple path, whose cost lays within a given cost range) from s to t. Section 3
shows that MCR can be reduced to bounded-path in a grid graph.
c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part II, LNCS 9207, pp. 20–36, 2015.
DOI: 10.1007/978-3-319-21668-3 2
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Section 4 demonstrates that bounded-path is NP-hard even for a grid graph.
It also shows how to reduce bounded-path to bit-vector (BV) logic. Solving
bounded-path instances originating in MCR with a BV solver does not scale
to industrial instances. Section 5 remedies this situation by proposing a new
problem-aware approach to solving bounded-path within an eager BV solver
[9,14]. First, we override the decision strategy of the SAT solver with a graph-
aware strategy, which builds a bounded path from source to target explicitly.
Second, we augment conflict analysis with graph-aware reasoning.

The main conceptual novelty of our approach w.r.t the decision procedure,
independent of the particular problem, is the pivotal role of the decision strategy.
While custom SAT decision heuristics have been applied previously [3,24], our
decision strategy replaces constraints, that is, it guarantees that the algorithm
is sound even after we remove the heaviest part of the constraints used in our
initial reduction to BV logic. In addition, we use the decision strategy rather than
constraints for heuristically optimizing the solution (w.r.t track utilization).

Furthermore, the underlying ideas behind graph-aware reasoning can be used
to speed-up SAT-based approaches to other graph reachability problems, such as
routing in the presence of design patterns [23] and cooperative path finding [28].

Section 6 of this work presents experimental results. We study the impact
various aspects of our approach have on crafted bounded-path instances (avail-
able in [11]). In addition, we demonstrate that our approach solves a family
of instances originating in the clock routing of modern Intel designs. Section 7
concludes our work.

2 Related Work and Preliminaries

The term clock routing is often associated with a routing scenario where the
driver needs to be connected to multiple receivers within the same net, form-
ing a tree wherein the delay from the driver to each receiver should be almost
identical [13,31]. This scenario does not fall within the scope of this work.

The current solutions for MCR in IC [16,22] are designed for handling analog
and mixed designs with exactly zero allowed skew (where skew is deviation
in delay). The solution space explored in [16,22] is limited to cases where the
number of wire segments in all nets is identical, and the length, layer and width of
respective wires are identical. These limitations guarantee that the zero allowed
skew requirement is met but are too restrictive for our setting. In particular,
if the routing area is not rectangular (a common phenomenon in hierarchical
designs with non-rectangular hierarchical block boundaries), none of the valid
routing solutions are expected to conform to these limitations in a variety of
test-cases. In addition, in our setting the allowed skew is greater than zero.

A propositional formula in Conjunctive Normal Form (CNF) is a conjunc-
tion/set of Boolean clauses, where each clause is a disjunction of literals and a
literal is a Boolean variable or its negation. A SAT solver [8,20,27] receives a
CNF formula and returns a satisfying assignment to its variables, if one exists.
An eager BV solver [9,14] works by preprocessing the given BV formula [9,14,21],
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bit-blasting it to CNF and solving with SAT. We assume that the reader is famil-
iar with the basics of modern SAT and eager BV solving. See [17] for a recent
overview.

Propositional satisfiability has been applied to solving the NP-complete prob-
lem of FPGA routing since [30]. From [30] we borrow the idea of using connectiv-
ity constraints to ensure that two given nodes are connected. The core problem
in MCR of routing with almost the same delay does not exist in FPGA routing.

A DPLL(T) [15] theory solver for reasoning about costs to ensure that any
satisfying assignment lays within some user-given cost bound has been proposed
in [10]. Conceptually, the added value of our approach lies in: (a) introducing the
concept of a decision strategy which replaces constraints and guides the solver
towards a good solution while meeting additional optimization goals, and (b)
introducing graph-aware reasoning.

We need some graph theory-related notations. Given an undirected graph
G = (V,E), where each edge e ∈ E is associated with a positive cost ce, a source
node s ∈ V , a target node t ∈ V , and a simple path π from s to t of cost c
(where the cost of a path is the sum of the costs of its edges), π is the longest
path if there is no path from s to t of cost greater than c. π is bounded in the
given cost range [cmin, cmax], if cmin ≤ c ≤ cmax. A vertex v ∈ V is internal if
it is neither a source nor a target. We denote by S =

∑
e∈E ce the sum of the

costs of all the edges in the graph. Let m = (cmax+cmin)/2 be the middle of the
cost range. Then the actual skew k = |c−m|/(cmax −m) is the deviation of the
generated path’s cost from the middle. Sometimes the cost range is provided as
a pair consisting of the target cost tc and the allowed skew a, which is equivalent
to the cost range [(1 − a) ∗ tc, (1 + a) ∗ tc].

We define a grid graph next. Let I be the infinite graph whose vertex set
consists of all points of the plane with integer coordinates and in which two
vertices are connected if the Euclidean distance between them is equal to 1.
A grid graph is a finite, node-induced sub-graph of I. A vertex v in a grid graph is
uniquely determined by its coordinates (vx, vy). A vertical track i or a horizontal
track i comprises vertices whose x-coordinate or y-coordinate, respectively, is i.
The maximal degree of a vertex in a grid graph is 4. An edge in a grid graph
is either vertical, if the x-coordinates of its vertices are identical, or, otherwise,
horizontal. The grid graph G is mainly vertical if most of its edges are vertical,
otherwise it is mainly horizontal. Figure 4a on page 13 is an example of a mainly
vertical grid graph. A vertex v = (vx, vy) is to the north/south/east/west of
u = (ux, uy) if vy > uy/vy < uy/vx > ux/vx < ux, respectively.

Finally, we provide some relevant complexity results. Let longest-path be
the problem of finding a longest path. Longest-path is NP-hard even for an
unweighted graph, since Hamiltonian-path is trivially reducible to longest-path
(see, e.g., [18]). Moreover, Hamiltonian-path, and thus longest-path, is NP-hard
even for an unweighted grid graph [19]. Clearly, finding a longest path in a
weighted graph and a weighted grid graph is also NP-hard. Longest-path is
polynomial for some special grid graph classes, including solid grid graphs, where
all of the bounded faces have area one (that is, the grid has no “holes”) [29].
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3 Matching Constrained Routing in Clock Routing

Let net be a subset of vertices in a 3-dimensional grid. Routing is about connect-
ing all the vertices for each net with wires, where intersecting and/or touching
wires which belong to different nets is not allowed (once the vertices have been
connected the wiring is also considered to be part of the net).

Consider our more specific setting. Let {n0, n1, . . . , nk} be a set of nets, where
each net comprises the driver (source vertex) and the receiver (target vertex).
First, as in any routing, in MCR one must connect the driver to the receiver
for each net without intersection. Second, in MCR the delay must be similar for
each net up to an allowed skew, where the delay is the amount of time it takes
for the signal to travel from the driver to the receiver.

In our setting, the routing can use two adjacent x-y planes of the 3-
dimensional grid only, where one plane is called the horizontal metal and the
other is the vertical metal. The wires in the horizontal/vertical metal must lay
along the horizontal/vertical tracks only, respectively. The two metals can be
connected (with so-called vias). Superimposing the two metals reduces the prob-
lem space to a two-dimensional grid graph, where each intersection between
available sub-tracks induces a vertex as shown in Fig. 1.

The routing delay depends on the length of the wires and the physical prop-
erties of the metals used. To model the similar delay requirement, we associate
each edge with a cost proportional to the length of the wire represented by
the edge, multiplied by a constant Ch or Cv, depending on whether the edge
is horizontal or vertical. The ratio between constants Ch and Cv represents the
difference in delay between the horizontal and vertical metals.

To generate routing with similar delay for the given set of nets, we proceed
as follows. For each net independently we find the shortest path connecting its
driver to its receiver. We then select as a reference cost (RC) the cost of the
longest shortest path πrc connecting the driver to the receiver for some net nrc.
πrc comprises the solution for nrc. Then, for each remaining net we formulate
and solve a separate bounded-path instance, with the target cost being the RC
and the allowed skew being user given (e.g., 2.5 %), where sub-tracks occupied
by previously laid out nets are not part of the problem, as shown in Fig. 1. Hence
the resulting grid graphs are normally not solid.

Moreover, as is the case with other routing algorithms, the router is requested
to use as few tracks as possible. It is also desirable to minimize the actual skew.
Both of these requirements are naturally translated into similar requirements for
the bounded-path solver. Both are not strict in the sense that a good enough
rather than the optimal solution is required.

4 Reducing Bounded-Path to Bit-Vector Reasoning

This section shows that bounded-path is NP-hard, and provides an encoding of
bounded-path into BV logic. We start with Proposition 1, which shows that
bounded-path is NP-hard by reducing longest-path to a binary search over
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Fig. 1. Reducing the physical design problem (left) to a grid graph (right). On the left
we see a bird’s-eye view on a piece of layout with some of the vertical and horizontal
tracks already occupied by wires. On the right we see the grid graph generation process.
Legal sub-tracks are formed in non-occupied track parts, not too close to wires ends.
Intersections and edge points of the legal sub-tracks are the vertices in the resulting
grid graph. Edges are induced by the connections between the vertices.

the entire cost range, where each invocation solves bounded-path. Proposition 1
holds for any graph class for which longest-path is NP-hard, including weighted
grid graphs induced by MCR. The extended version of this work [12] details the
proof of Proposition 1 and provides lower-level examples of our encoding, which
is introduced next.

Proposition 1. The bounded path problem is NP-hard.

We propose a reduction of bounded-path to bit-vector (BV) logic. Given an
instance of bounded-path, our encoding ensures that a BV solver will output
sat and return a bounded path iff such exists.

We call an edge/vertex active iff it appears on the path from s to t and
inactive otherwise. Consider now Fig. 2.

First, we associate each edge e and vertex v with a Boolean variable ae and
av, respectively, to represent whether the edge or the vertex, respectively, is
active (items 1a and 1b in Fig. 2). The set of active vertices and edges comprise
the bounded path returned by the solver for a satisfiable problem. The variables
cv and dire, discussed next, are intended to contain meaningful values for active
edges and vertices only.

Second, each vertex v is associated with a BV variable cv which represents
the cost of the path from the source s to v if v is active (item 2a in Fig. 2). The
width of cv for each v is set to �log2S� + 1 to be able, in the worst case, to
accommodate the cost of all the edges S without overflow.

Third, each edge e is associated with a Boolean variable representing its
direction dire (item 2b in Fig. 2). The direction dire is intended to contain 0
for e = (v, u) iff v is closer to s than u on the constructed path from s to t, in
which case we say that e is v-outgoing and u-incoming. The other option is that
dire = 1, and we say that e is u-outgoing and v-incoming.

Next, we introduce the constraints. They can be classified into connectivity
constraints and cost constraints.
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Connectivity constraints guarantee that a valid path of an arbitrary cost from
s to t is constructed by the solver. Given a vertex v, let the set of v’s neighbors
be the set of edges touching v. Constraint 3a ensures that if an edge e = (v, u) is
active, then both v and u are active, while constraint 3b ensures that each vertex
has a proper number of active neighbors. Specifically, an inactive vertex has no
active neighbors. The source and the target vertices have one active neighbor
each, while an internal active vertex has two active neighbors.

Figure 2 contains a high-level representation of constraint 3b’s encoding. The
actual encoding requires a solver supporting conditional cardinality constraints
of the form a → exactlykN (that is, if a Boolean a holds, then exactly k out of
the set of Boolean variables N hold), where k is either 0, 1, or, 2 and N can be
as large as the maximal vertex degree. While such constraints are not part of the
standard BV language [4], an eager SMT solver can easily be extended to support
them. This can be done by encoding the cardinality constraint exactlykN as
a set of clauses (the problem is well-studied; see [7] for an overview) and then
adding the selector literal ¬a to each clause. Note that in a grid graph, the
maximal degree of any vertex is 4, hence conditional cardinality constraints can
be expressed with just a few clauses.

Consider now the cost constraints. They ensure that the cost of the con-
structed path falls within the specified cost range.

Constraints 4a to 4c guarantee that the direction is set correctly for any
active edge. Namely, constraint 4a ensures that the active edge touching the
source s must be s-outgoing, while constraint 4b ensures that the active edge
touching the target t must be t-incoming (note that connectivity constraints
guarantee that there is one and only one active edge touching the source and
the target). Constraint 4c guarantees that if an internal vertex v is active, it has
one v-incoming and one v-outgoing edge.

Finally, constraints 4d to 4f ensure that the eventual cost falls within the
specified range. The cost is 0 for the source (constraint 4d) and it falls within the
user-given range for the target (constraint 4f). The cost is propagated through
the path’s vertices taking advantage of the fact that the previous vertex is avail-
able through the direction of the incoming edge (constraint 4e).

5 Graph-Aware Solving

This section introduces graph-aware reasoning that enhances the eager approach
to BV solving. In our new approach, the BV solver is provided with the con-
nectivity variables and constraints only; the cost variables and constraints are
omitted, thus substantially reducing the size of the problem. Our graph-aware
decision strategy ensures that the path returned will still be bounded.

5.1 Graph-Aware Solving with Augmented Conflict Analysis

Consider Algorithm 1 which comprises the algorithmic framework of our app-
roach. The algorithm contains five functions:
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Algorithm 1. Graph-Aware Solving

1: function Solve(Graph G, Source s, Target t, Cost cmin, Cost cmax)
2: For every vertex v, compute the minimal cost m(v) to t with Dijkstra
3: Generate connectivity constraints and bit-blast to SAT
4: tc:=(cmax + cmin)/2
5: P := []; l :=s; curr cost :=0; stage:=init

6: loop
7: s:= Run the SAT solver
8: if s = sat then
9: return P

10: else if s = unsat then
11: return No path exists
12: else � s = unknown
13: Refine by providing the clause ¬P to the SAT solver and restart the

SAT solver

14: function OnDecision(Decision level d)
15: if stage �= shortestp and curr cost + m(l) ≥ tc then
16: stage:=shortestp

17: if stage = shortestp then
18: N := unassigned edges in nbors(l)
19: return e ∈ N minimizing ce + m(other ver(e, l))

20: e:= NextEdge
21: l :=PathPushBack(e,d)
22: return ae

23: function OnImplication(Literal l)
24: if l ≡ ae for e = (l , v) then
25: l := PathPushBack(e, not a decision)

26: function OnBacktrack(Decision level d)
27: {P , l , curr cost , stage} :=backtrack point(d)

28: function PathPushBack(Edge e, Decision level d)
29: if d �= not a decision then
30: backtrack point(d):= {P , l , curr cost , stage}
31: curr cost :=curr cost + ce
32: Push e to the back of P
33: u:=other ver(e, l)
34: if curr cost + m(u) > cmax or (u = t and curr cost < cmin) then
35: Stop the SAT solver and have it return unknown

36: if u = t then
37: Stop the SAT solver and have it return sat

38: return u
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Algorithm 2. Grid-Aware Strategies

1: function GetUnassignedEdge(Direction d)
2: if e = (l , u) or e = (u, l) ∈ E, such that u is to the d from v, exists and

unassigned then
3: return e
4: else
5: return ∅

6: function ChooseDirOrdered
7: for all d ∈ D do
8: if GetUnassignedEdge(d) �= ∅ then
9: return GetUnassignedEdge(d)

10: return ∅

11: function GridAwareNextEdge
12: if stage = init then
13: if ChooseDirOrdered({south, west}) �= ∅ then
14: return ChooseDirOrdered(south, west)

15: stage:=spend

16: if stage = spend then
17: if lx = tx then
18: stage:=sec init

19: sec init main dir:= s to the south of t ? south : north
20: else
21: d:= ChooseDirOrdered({north, south, east, west})
22: if d = west and there is no simple path from l to t then
23: Stop the SAT solver and have it return unknown

24: return d
25: if stage = sec init then
26: if ChooseDirOrdered({sec init main dir, east}) �= ∅ then
27: return ChooseDirOrdered({sec init main dir, east})

28: stage:=sec spend

29: if stage = sec spend then
30: d:= ChooseDirOrdered({north, south, west, east})
31: if d = east and there is no simple path from l to t then
32: Stop the SAT solver and have it return unknown

33: return d

1. Solve: the main function invoked by the user.
2. OnDecision: this function is invoked by the underlying SAT solver to get a

decision literal when it has to take a decision.
3. OnImplication: invoked by the SAT solver whenever it derives a new impli-

cation (that is, whenever a value for a variable is forced by propagation).
4. OnBacktrack: invoked by the SAT solver whenever it backtracks.
5. PathPushBack: a multi-functional auxiliary function, explained later.

Solve receives the graph G, the source s, the target t, the minimal cost
cmin and the maximal cost cmax. It returns a path P from s to t, whose cost is
bounded by [cmin, cmax], if available. The function starts at line 2 by computing
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1. Connectivity variables
(a) Boolean ae: ae is 1 iff e ∈ E is active.
(b) Boolean av: av is 1 iff v ∈ V is active.

2. Cost variables
(a) BV cv: the cost of the path from s to v
(b) Boolean dire: the direction of e ∈ E

3. Connectivity constraints
(a) ae implies av and au, where e = (v, u)
(b) Each vertex v has exactly n active neighbor edges, where:

i. n=0 if the vertex is inactive
ii. n=1 if v is the source or the target
iii. n=2 if v is an active internal vertex

4. Cost constraints
(a) The active edge touching the source s is s-outgoing
(b) The active edge touching the target t is t-incoming
(c) For every active internal vertex v, there must be one v-outgoing and

one v-incoming active edge
(d) cs = 0
(e) cv = ce + cu, given an active internal vertex v, where e, touching v

and u, is the v-incoming edge
(f) cmin ≤ ct ≤ cmax

Fig. 2. Translating bounded-path to BV

the minimal cost m(v) from each node v to the target t with one invocation of
the Dijkstra algorithm. As we will see, the minimal costs are required for the
decision strategies and conflict analysis. At line 3, connectivity constraints are
generated and bit-blasted to SAT (word-level preprocessing can also be applied
before bit-blasting). The SAT solver is not yet invoked at this stage. At line 4,
the target cost tc, comprising the middle of the range [cmin, cmax], is computed.
The algorithm will try to build a path from s to t whose cost is as close as
possible to tc (in accordance with the actual skew minimization requirement).

The main loop of the algorithm starts at line 6. It uses the following variables,
initialized at line 5:

1. P holds the edges of a simple path starting at s. If the algorithm completes
successfully, P will hold a path from s to t bounded by [cmin, cmax].

2. l contains the latest vertex of the generated path from s to t.
3. curr cost contains the overall cost of (the edges of) P so far.
4. stage contains the current stage of the decision strategy (explained later in

Sects. 5.2 and 5.3).

The main loop invokes the SAT solver at line 7. The solver may return three
possible results. If the solver returns sat, then P is guaranteed to contain a
bounded path from s to t; thus P is returned to the user. If it returns unsat,
there is no solution, and a special value is returned to the user.
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In addition, the solver may return the value unknown, meaning that a graph
conflict was encountered and refinement is required. A graph conflict is a situa-
tion where no path from s to t with prefix P and cost bounded by [cmin, cmax]
exists. Our algorithm may identify three types of graph conflicts, shown in Fig. 3
and discussed later. When a graph conflict is encountered, the algorithm refines
the problem by adding a new graph conflict clause which prevents regeneration
of the current path P . The graph conflict clause contains activation variables
corresponding to the edges in the path P , negated (the clause can be optionally
minimized by removing edges from its tail as long as the conflict still occurs).
Then the algorithm continues to the next iteration of the loop. After restarting
(where by restarting we mean backtracking to decision level 0), the algorithm
will pick the same decisions until but not including the latest edge, which has
to be different in order to satisfy the graph conflict clause.

5.2 Interactive SAT Solving

We continue the presentation of Algorithm1. Given a vertex v, let nbors(v) be
the set of v’s neighbors (recall that v’s neighbors are the edges touching v). Given
a vertex v and an edge e ∈ nbors(v), the other vertex of e, other ver(e, v), is the
vertex u �= v, touched by e.

Consider the function OnDecision, invoked by the SAT solver to pick the
next decision. It receives the current decision level d and returns an unassigned
literal, which is picked by the SAT solver as the next decision literal.

At each stage of the algorithm, let the cost low bound (CLB) be c(P )+m(l),
that is, the cost of the current path P from s to the latest vertex l plus the
pre-computed minimal cost from l to t. Once CLB is greater than or equal to
the target cost, the algorithm enters the shortest path stage shortestp (see
lines 15 to 16), where the cost of any path from s to t with prefix P cannot
be lower than the target cost. Hence, the algorithm picks an edge so as to have
CLB as low as possible after the edge is picked (lines 17 to 19). Note that if the
pre-computed shortest path is still not occupied, the algorithm will arrive at t,
where the path cost is exactly the target cost. If the shortest path stage is not
entered, OnDecision invokes a core decision strategy (described in Sect. 5.3) to
pick the next unassigned decision literal. The choice is crucial for performance,
but does not alter the correctness.

After an edge is picked, OnDecision invokes the auxiliary function Path-
PushBack, providing it the edge e and the decision level d. Normally, Path-
PushBack pushes e to the end of P and returns the new latest vertex l , and
then OnDecision returns ae as the next decision literal (all this is unless Path-
PushBack discovers a graph conflict or finds that the problem is satisfied). We
will get back to the functionality of PathPushBack a bit later.

The function OnImplication is invoked by the SAT solver whenever its
Boolean Constraint Propagation (BCP) learns a new implication. It receives the
implied literal. If the literal activates an edge e touching the latest vertex l , then
e is pushed to P using PathPushBack and l is updated accordingly.
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Now consider PathPushBack. First, if the function is invoked when a new
decision is taken, it creates a backtrack point at decision level d (lines 29 to 30) so
as to let the algorithm (or, more specifically, function OnBacktrack) restore all
the relevant variables when (and if) the SAT solver backtracks to decision level
d. Creating the backtrack point and backtracking whenever required is essential
to maintaining the consistency of the algorithm. Then PathPushBack updates
the current cost curr cost and pushes e to the end of P .

Line 34 of PathPushBack checks conditions 1 and 2 in Fig. 3 that might
trigger a graph conflict (condition 3 is discussed in Sect. 5.3). First, a graph
conflict occurs when the target t is reached, but the cost is not bounded. Note
that triggering a graph conflict on this occasion is essential to guaranteeing the
soundness of the algorithm. Second, a graph conflict is identified when CLB
exceeds the maximal value cmax for any non-target vertex. This is not necessary
for soundness, but advisable for pruning the search space, thus improving per-
formance. If a graph conflict is identified, PathPushBack stops the SAT solver
and asks it to return unknown.

If no graph conflict is identified, the algorithm checks whether the target
is reached within the required cost, in which case it stops the SAT solver and
has it return sat. Finally, if none of the stopping conditions were triggered,
PathPushBack returns the new latest vertex on the path.

1. P connects s to t, but P ’s cost is not within [cmin, cmax]
2. The CLB c(P) + m(l) exceeds the maximal value cmax and l �= t
3. The target t is no longer reachable (see an example in Fig. 4a)

Fig. 3. Graph conflict conditions

5.3 Core Decision Strategies

This section proposes the core decision strategies for Algorithm 1. We start
by proposing the following simple graph-aware strategy, applicable to finding
a bounded path in any graph: go away from the target until the shortest path
stage is entered. This is done by always preferring an edge e such that CLB, after
picking e, is the lowest possible. Unfortunately, this simple strategy cannot be
used for MCR in our setting, since it ignores the track minimization requirement.

Recall the grid graph related definitions from Sect. 2. We propose a grid-aware
decision strategy for the problem of finding a bounded path from s = (sx, sy)
to t = (tx, ty) in a grid graph G, where the maximal x-coordinate/y-coordinate
is X/Y , respectively. We make the following assumptions regarding the input
problem without restricting the generality: (a) G is mainly vertical; (b) sy < ty
or (sy = ty and |sy| ≤ |Y − sy|); (c) sx ≤ tx. Any grid graph can be transformed
to meet these conditions by rotating G by 90◦, if necessary, to meet the first
condition, and choosing the point (0,0) out of the 4 corners to meet the last two
conditions.
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Our grid-aware strategy is designed to find a bounded path in a grid graph,
keeping two main goals in mind:

1. Graph conflicts-awareness: try to avoid graph-aware conflicts and identify
them when they cannot be avoided.

2. Track minimization: try to minimize the number of tracks in the path.

The function GridAwareNextEdge in Algorithm 2 implements the strat-
egy (it is intended to be called at line 20 in Algorithm 1). The algorithm has
five stages, where the shortest path stage shortestp is entered whenever CLB
is greater than or equal to the target cost at any other stage as discussed in
Sect. 5.2 and shown in Algorithm 1. The remaining four stages are explained
below.

During the initial stage init, the algorithm goes towards the corner (0, 0),
that is, southwards and westwards, whenever possible. See Fig. 4a for an illus-
tration and lines 12 to 15 in Algorithm 2 for the implementation of stage init.
The implementation applies an auxiliary function ChooseDirOrdered, which
receives an ordered sequence of directions D = {d1, d2, . . .}. It returns an unas-
signed edge e touching l , such that other ver(e, l) is to the di of l , where i is
the lowest possible index, such that e exists and is unassigned. After the init
stage, the algorithm enters the spend stage.

During the spend stage, the algorithm tries to “spend the cost” using as few
tracks as possible by moving along the vertical tracks coast-to-coast whenever
possible (recall that the vertical tracks have more edges than the horizontal
tracks by our convention). When moving along a vertical track is no longer
possible, the algorithm turns towards the target t (in order not to block the way
to t). This stage can finish with the following possible outcomes:

1. The algorithm is turned away to the west by the SAT solver’s propagation and
there is no longer any path from l to t (line 22), where the latter condition is
checked using DFS. In this case, a graph conflict corresponding to condition 3
in Fig. 3 is triggered, and the algorithm stops the SAT solver. An example of
such an outcome is shown in Fig. 4a. In this case, a conflict clause is generated
by Algorithm 1. After restarting the SAT solver, the algorithm follows the
same path as before until an implication in the new conflict clause turns it
to the east and the graph conflict is avoided, as shown in Fig. 4b.

2. PathPushBack in Algorithm 1 halts the main loop of Algorithm 1 due to a
graph conflict or when a bounded path from s to t is found (the latter is an
unlikely corner case).

3. The shortest path stage shortestp is entered.
4. The vertical track of t is reached (line 17), in which case the second initial-

ization stage sec init is entered.

During the second initial stage sec init (lines 25 to 28), the algorithm goes
to one of the eastern corners according to the relative position of l with respect
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to t. When moving to the corner is no longer possible, the algorithm enters the
second spend stage sec spend.

During the second spend stage sec spend (lines 29 to 33), the algorithm
spends the cost similarly to the first spend stage spend, except that it moves
eastwards and does not stop when the vertical track of t is reached. In our
example in Fig. 4b, stage sec spend is finished when CLB becomes equal to the
target cost and the shortest path stage is entered.
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(a) Conflict
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(c) Packing

Fig. 4. Application of the grid-aware strategies. Assume the cost of each edge is 1
and the requested cost range is [70, 80]. The red dotted edges correspond to the initial
stages init and sec init, the black solid edges correspond to the cost spend stages
spend and sec spend, while the blue dashed edges correspond to the shortest path
stage shortestp. A graph conflict situation is shown in Fig. 4a; the eventual solution
after the conflict is handled is shown in Fig. 4b; the packing effect is shown in Fig. 4c.

Remark 1. Assume the grid-aware strategy can go either eastwards or along
the vertical track during the spend stage after circumventing an obstacle. Con-
sider the choices at vertex (2, 9) in Fig. 4a for an example. Algorithm 2 prefers
continuing along the vertical track. An alternative would be preferring to go
westwards (implementation-wise, that would require replacing the parameters to
ChooseDirOrdered at line 21 in Algorithm 2 by {west, north, south, east}).
Similarly, such an algorithm would prefer going eastwards whenever possible dur-
ing the sec spend stage. We call this alternative approach packing. Its impact
is shown in Fig. 4c. Packing is designed to use all the available space in the grid
graph, thus it is better suited to cases where there are many obstacles or the
target cost is high. However, it comes at the price of excessive track usage. Note
the “ripple effect” of occupying the horizontal tracks 6,5 and 4, created by the
turn westwards at point (2, 6).

Remark 2. Our approach is expected to generate non-optimal results in terms of
track minimization for a generic rectilinear polygon as compared to a (possibly
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holed) mainly vertical rectangle, since some of the polygon’s rectangles might
be mainly horizontal (even though, most of the edges are vertical). We leave
designing an adaptive strategy that would change the explored dimension on-
the-fly to future work.

6 Experimental Results

First, we present experiments conducted on artificially generated test bench-
marks. The benchmarks and detailed results are available in [11]. The bench-
marks comprise diversified parametrized instances of bounded-path in grid
graphs, generated as follows:
1: for all t ∈

{
101, 102, 103

}
do

2: for all d ∈ {0, 0.25, 0.5, 0.75, 1} do
3: for all vcost ∈ {102, 104, 106, 108, 110, 112, 114, 116, 118, 120} do
4: for all r ∈ {0.1, 0.2, 0.3, 0.4, 0.5} do
5: c:=S × r � S is the overall edges cost
6: Generate a square grid of size t×t with randomly set source and

target. Remove any node v (along with the edges nbors(v)) with probability
d/t. Set the cost of each horizontal and vertical edge to 100 and vcost ,
respectively. Set the target cost to c and the allowed skew to 2.5 %.

The parameters were selected as follows so as to diversify the instances and to
be able to analyze various aspects of the algorithms’ performance: (a) t stands
for the number of tracks along each dimension, hence t × t is the grid size; (b)
d determines the dilution rate. We remove (d/t)t2 = dt vertices on average at
random, so as to defragment the grid graph. (c) vcost determines the vertical
cost, while the horizontal cost is static; (d) r determines the target cost as a
function of the overall edges cost S.

We compared the following algorithms, implemented on top of Intel’s eager
SMT solver Hazel: (a) BV: reduction to BV, described in Sect. 4. (b) Graph:
Algorithm 1 with the graph-aware strategy described in the first paragraph of
Sect. 5.3. (c) Grid: Algorithm 1 with the grid-aware strategy in Algorithm 2 (d)
GridP: Algorithm 1 with the grid-aware strategy Algorithm 2 and packing (recall
Remark 1 in Sect. 5.3).

We used machines with 32Gb of memory running Intel� Xeon� processors
with 3Ghz CPU frequency. The time-out was set to 600 sec.

Table 1 presents the number of instances solved within the time-out per grid
size. Table 2 shows the overall number of tracks used for all the algorithms
(except BV) on benchmarks solved by all these algorithms. Tables 3 and 4 show
the number of instances Grid and GridP, respectively, solve per each combina-
tion of r and d values for s = 102. The main conclusions are as follows.

Plain translation to BV does not scale even to 100×100 grids. To validate that
this result is independent of the underlying solver, in an additional experiment,
we verified that the two leading SAT solvers Lingeling [5,6] and Glucose 4.0 [1,2]
can solve none of the CNF instances corresponding to benchmarks with t = 100
and d ∈ {0, 1}. The CNF instances, available in [11], were dumped by Hazel
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Table 1. Solved per grid size Table 2. Tracks used in %

Table 3. Grid: solved out of 10
instances per cell, given r&d for
s = 102

Table 4. GridP: solved out of 10
instances per cell, given r&d for s = 102

after the world-level preprocessing stage. We could not run external BV solvers
as is, since they do not support conditional cardinality constraints.

GridP is the most robust strategy as it solves the most test instances. More-
over, when the target cost is not too high (r < 0.5), GridP solves all the instances
for s = 102. Grid cannot solve instances with high target costs and/or dilution
rates. Hence, as expected, packing is useful for handling grids with many obsta-
cles. The performance of Graph is surprisingly good for such a simple strategy.

As expected, Grid is by far the best algorithm in terms of track minimization.
We also conducted experiments on a family of real-world instances generated

by Intel’s clock routing flow. The family has 51 benchmarks. The number of
edges in the benchmarks ranges from 70,492 to 4,436,948, with an average of
1,203,631, while the number of vertices ranges between 44,320 and 2,837,800
with the average of 780,782. The results can be summarized as follows: (a) BV
solved none of the 51 instances, Grid and Graph solved all the instances, while
GridP solved 49 instances. (b) Grid used 285 tracks overall, Graph used 863
tracks, while GridP used 387 tracks. Hence, unlike in the case of randomized
test instances, it pays to use Grid on real-world instances. Grid is successfully
applied for clock routing automation at Intel.

7 Conclusion

We have presented an SMT-based approach to automating the matching con-
strained routing problem that has emerged in the clock routing of integrated
circuits. We reduced the problem to bounded-path, that is, the problem of find-
ing a simple path, whose cost is bounded by a user-given range, connecting two
given vertices in an undirected positively weighted graph. We have shown that
bounded-path can be solved by applying an eager bit-vector solver, but only
if the solver is enhanced with a dedicated graph-aware decision strategy and
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graph-aware conflict analysis. Our solution scales to graphs having millions of
edges and vertices. It has been successfully deployed at Intel as part of the core
engine for automatic clock routing.

Acknowledgments. We are grateful to Nachum Dershowitz for suggesting and prov-
ing that bounded-path is NP-hard (the paper’s proof differs from Nachum’s proof). We
thank Paul Inbar, Eran Talmor, and Vadim Ryvchin for their useful comments.
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Abstract. While linear arithmetic has been studied in the context of
SMT individually for reals and integers, mixed linear arithmetic allowing
comparisons between integer and real variables has not received much
attention. For linear integer arithmetic, the cuts from proofs algorithm
has proven to have superior performance on many benchmarks. In this
paper we extend this algorithm to the mixed case where real and integer
variables occur in the same linear constraint. Our algorithm allows for
an easy integration into existing SMT solvers. Experimental evaluation
of our prototype implementation inside the SMT solver SMTInterpol
shows that this algorithm is successful on benchmarks that are hard for
all existing solvers.

1 Introduction

The theory of linear arithmetic is fundamental in system modelling and verifi-
cation. SMT solvers supported this theory from the beginning. In recent years,
lots of work has been devoted to improve the support and performance for this
theory [9,12,13,17]. Usually, two theories are supported for linear arithmetic: lin-
ear arithmetic over the rational/real numbers (LRA), and linear arithmetic over
integers (LIA). While the first theory can be solved by the Simplex algorithm
the latter needs more techniques to ensure that the solution has integer values.
While each of the two theories has many applications for itself, some appli-
cations require both theories. An example for this is the verification of timed
automata or hybrid systems where continuous variables are used for physical
entities and integer variables for control. Also planning and scheduling problems
require mixed integer and real arithmetic. While there exists some support for
this theory, there is still room for improvement.

Boosting performance on satisfiability modulo mixed linear arithmetic broad-
ens the applicability of SMT solvers. For linear integer arithmetic, the cuts from
proofs algorithm [7] greatly improved the state of the art. On SMTLIB bench-
marks with many real but few or no integer solutions, the algorithm significantly
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outperforms traditional techniques like the Omega test [18] or cutting plane
techniques based on Gomory cuts. Improving the performance on mixed linear
arithmetic is a next logical step to increase applicability of modern SMT solvers.

In this paper, we lift the cuts from proof algorithm from linear arithmetic over
the integers to mixed linear arithmetic. We give a new technique to derive cuts in
mixed linear arithmetic based on a basis transformation of the constraint system.
We experimentally compare our implementation with other SMT solvers that
support mixed linear arithmetic. This evaluation shows that our new technique
is able to solve problems that cannot be solved by existing techniques.

Related Work. Only very few publications address mixed linear arithmetic in
the context of SMT. Berezin et al. [3] present an extension of the Omega test
to mixed arithmetic. The decision procedure splits the variables into real-valued
variables and integer-valued variables. Then, it uses Fourier-Motzkin elimination
for the real-valued variables and the Omega-test to eliminate the integer vari-
ables. The Fourier-Motzkin elimination usually produces an exponential blow-up
of the input problem. The technique is therefore more memory intensive than
our technique.

Dutertre and de Moura [9] present a way to compute mixed Gomory cuts
in the context of the state of the art Simplex-based theory solver for linear
arithmetic. The derivation is based on the current assignment, a row in the
Simplex tableau, and non-trivial reasoning. Since Gomory cuts are used as theory
lemmas in the proof of unsatisfiability, they have to be justified. This is especially
important for proof producing or interpolating solvers. The derivation of Gomory
cuts is much more involved than the simple technique presented here based on
extended branches.

A lot of research exists in the context of MILP solvers. These solvers use a
variety of different cuts (see [14,19] for details). MILP solvers use floating-point
arithmetic making them imprecise and unstable [16]. Our technique is designed
for integration into SMT solvers that typically use arbitrary precision arithmetic
to ensure soundness. In the evaluation section, we do not compare against MILP
solvers since these can be unsound due to rounding problems.

There are several techniques for solving linear integer arithmetic [4,10,11],
some of which can be extended to mixed arithmetic, although we are not aware of
any publications. A variation of the algorithm from [10] is used in MathSAT and
CVC4. This is similar to ours but use a diophantine equation solver to generate
the branch instead of the Hermite normal form.

2 Notation and Preliminaries

The algorithms in this paper are used to solve a system of linear inequalities.
We use x to denote a vector of variables x1, . . . , xn. Given a matrix A ∈ Qm×n

and a vector b ∈ Qm we solve the problem Ax ≤ b. Here ≤ on vectors is defined
component-wise. Strict inequalities can be expressed by allowing infinitesimal
numbers in b. However, we ignore strict inequalities in this paper to keep the
presentation simple.
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The variables x1, . . . , xn can be (depending on the problem) real or integer
valued, i. e., we are interested in integer or real solutions of the above system. It
is easy to see that for every real solution there is also a rational solution, so it
is enough to distinguish between solutions in Q and Z. We note that Ax ≤ b is
equivalent to λAx ≤ λb for λ > 0. Therefore we can w.l.o.g. assume that A is
an integer matrix.

In the case of mixed arithmetic, we distinguish between rational-valued vari-
ables x1, . . . , xn1 and integer-valued variables xn1+1, . . . , xn. The goal is to find a
rational solution for the first n1 variables and an integer solution for the second
n2 = n − n1 variables. Thus, the vector x is a vector consisting of real-valued
variables and integer-valued variables.

In this paper we need the notion of nonsingular and unimodular matrices
and the Hermite normal form. A matrix U ∈ Qn×n is nonsingular if det(U) �= 0.
A matrix U ∈ Zn×n is unimodular if |det(U)| = 1. We remind the reader that a
matrix is nonsingular if and only if it has an inverse U−1 ∈ Qn×n with UU−1 =
U−1U = Id , where Id denote the identity matrix. Moreover, a matrix U ∈ Zn×n

is unimodular if and only if it has an inverse U−1 that is also an integer matrix.
A matrix H ∈ Qn×n is in Hermite normal form1 if (i) H is lower triangular,

(ii) hii > 0 for 1 ≤ i ≤ n, and (iii) hij ≤ 0 and |hij | < hii for j < i ≤ n. For
every nonsingular integer matrix A there is a unique unimodular matrix U and
a unique matrix H in Hermite normal form with H = AU . This also holds for
rational matrices: If a nonsingular A ∈ Qn×n is given we can multiply it with
λ > 0 such that λA ∈ Zn×n. Then the unique H ′, U with H ′ = λAU results
in a unique H = (1/λ)H ′ with H = AU . Note that since U is unimodular, the
matrix H is an integer matrix if and only if A is an integer matrix.

3 Solving Linear Integer Arithmetic and Mixed Linear
Arithmetic

We first review the state of the art in satisfiability solving modulo the theory of
linear integer arithmetic. Let A ∈ Zn×m and b ∈ Zm. To find an integer solution
of Ax ≤ b, SMT solvers first compute a rational solution of Ax ≤ b, which is
called the LP relaxation. If the relaxation is unsatisfiable, the original formula
is unsatisfiable, too. Otherwise let x 0 = (x01, . . . , x0n) be the values assigned
to the variables in the solutions to the relaxation. If all x0i are integral, the
original formula is satisfiable. Otherwise the relaxation is refined by means of
branches xi ≤ �x0i� ∨ xi ≥ 	x0i
 in a branch-and-bound solver or by cuts in a
branch-and-cut solver. Both techniques remove the current non-integral solution
from the relaxation. For a detailed overview and derivations of different cuts we
refer to [19].

1 We follow [7] and use column-style Hermite normal form with negative coefficients
in the lower left triangle for nonsingular square matrices.
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Instead of branches, modern solvers introduce extended branches. These are
defined by a vector r ∈ Zn and branch on r ·x ≤ �r ·x 0�∨r ·x ≥ 	r ·x 0
. Thus,
an extended branch does not have to be along one of the variables. Most SMT
solvers come with a DPLL engine, that can be used to decide on the branch.
In this case the theory solver can ask the DPLL engine to decide on the new
literal and add it to the constraint system. This procedure is repeated until
the LP relaxation becomes unsatisfiable or an assignment satisfies both, the LP
relaxation and the integer constraints of the variables. When the LP relaxation
becomes unsatisfiable a conflict is produced and the DPLL engine will explore
the other branch. When all branches have been explored the original system is
known to be unsatisfiable. This is the technique used in our solver SMTInterpol.

Another technique introduces cuts. These are constraints of the form r ·x ≤ c
that are implied by the current constraint system Ax ≤ b and exclude the cur-
rent rational solution in the LP relaxation. An example are Gomory cuts [9].
Cuts have the advantage that they can be propagated and no backtracking is
necessary. While they exclude only non-integer solutions, their negation can still
be satisfiable in conjunction with the LP relaxation. Thus, cut constraints need
a specialised proof rule. An interpolating SMT solver also needs a specialised
procedure to interpolate these cuts. Branches on the other hand are simple
case splits. A way to achieve the best of both worlds is the cuts from proofs
algorithm [7]. This algorithm computes extended branches. But as we will see in
the next section, one of the two cases is trivially unsatisfiable. Thus, the other
case can be propagated by the theory and no backtracking is necessary. This
algorithm combines the strength of cuts with the simplicity of branches.

4 Cuts from Proofs

We will now give a short overview of the cuts from proofs algorithm. We focus
on the main ideas needed for our adaptation to mixed arithmetic. In this chapter
we assume that x only contains integer variables.

The algorithm is based on the Simplex algorithm. The solution space forms
a polyhedron in Qn. If the solution space is non-empty, the Simplex algorithm
returns a solution of Ax ≤ b. We further assume that the returned solution x 0 is
a vertex of the polyhedron, i. e., there is a nonsingular square submatrix A′ and
a corresponding vector b′, such that A′x0 = b’ . We call A′x ≤ b ′ the defining
constraints of the vertex. If the returned solution is not on a vertex we introduce
artificial branches on input variables into A and use these branches as defining
constraints. These branches are rarely needed in practise.

The main idea is to bring the constraint system A′x ≤ b ′ into a Hermite
normal form H and to compute the unimodular matrix U with A′U = H. The
Hermite normal form is uniquely defined. The constraint system A′x ≤ b ′ is
equivalent to Hy ≤ b ′ with y := U−1x . Since the solution x 0 of A′x 0 = b ′ is
not integral, the corresponding vector y0 = U−1x 0 is not integral, either. The
cuts from proofs algorithm creates an extended branch on one of the components
yi of y , i. e., yi ≤ �y0i� or yi ≥ 	y0i
.
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Although the description in Dillig et al. [7] looks different, they really do the
same. They introduce the notion of proof of unsatisfiability, which they define as
an equation dr ·x = n where r is an integer vector, n, d are integers, and d does
not divide n. It is clear that this equation cannot have integer solutions for x .
In particular, they define r as the i-th row of H−1A′ and n/d as the i-th entry
of H−1b. From this proof of unsatisfiability they generate the extended branch

1/g(dir i · x ) ≤ �ni/g� ∨ 1/g(dir i · x ) ≥ 	ni/g


where g is the greatest common divisor of the components of dir i. However,
g = di since r i is a row of the unimodular matrix U−1. Thus, they branch on
yi ≤ �y0i� or yi ≥ 	y0i
.

Due to the special shape of the Hermite normal form used here and in [7],
the constraint Hy ≤ b ′ implies that y ≤ y0. This means that the second branch
can be omitted, i. e., one can introduce the cut yi ≤ �y0i�. This is shown in the
following lemma.

Lemma 1. Let Ax0 = b and H = AU the Hermite normal form of A. Let
y0 = U−1x0. Then

Ax ≤ b implies that U−1x ≤ y0

Proof. We assume Ax ≤ b and show for every row i that (U−1x )i ≤ y0i by
induction over i. Let i ≥ 1. Since (HU−1x )i = (Ax )i ≤ bi,

n∑

j=1

hij(U−1x )j = (HU−1x )i ≤ bi = (Ax 0)i = (Hy0)i =
n∑

j=1

hijy0j .

Isolating hii(U−1x )i on the left hand side, we get (note that hij = 0 for j > i)

hii(U−1x )i ≤ hiiy0i +
i−1∑

j=1

hij(y0j − (U−1x )j).

From the induction hypothesis (U−1x )j ≤ y0j and hij ≤ 0 for j < i we derive
hii(U−1x )i ≤ hiiy0i. Now (U−1x )i ≤ y0i follows, since hii > 0. ��

Example 1. The following example stems from Pugh [18]. Given the constraint
system 27 ≤ 11x + 13y ≤ 45 and −10 ≤ 7x − 9y ≤ 4. Figure 1 shows that these
constraints form a parallelogram that does not contain any integer solution. The
Simplex algorithm may choose as defining constraints the upper bounds (which
are the thick lines in the diagram):

[
11 13
7 −9

] [
x
y

]
=

[
45
4

]

This gives a non-integer solution for x and y. The algorithm then proceeds by
computing the Hermite normal form as

H =
[

1 0
−103 190

]
=

[
11 13
7 −9

] [
−7 13
6 −11

]
= AU.
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From this it computes the cuts as

U−1

[
x
y

]
≤ H−1b ⇔

[
11x + 13y
6x + 7y

]
≤

[
45

� 4639
190 �

]
=

[
45
24

]
.

The second cut 6x + 7y ≤ 24 is now added to the system. It follows from the
original constraints because

103
190

· (11x + 13y ≤ 45) +
1

190
(7x − 9y ≤ 4) gives 6x + 7y ≤ 4639

190
.

The figure depicts this cut graphically. Although this cut removes only a
small part of the solution space, it replaces the constraint 11x + 13y ≤ 45 by
a constraint with smaller coefficients. Continuing with this constraint, the same
algorithm will produce the second cut x + y ≤ � 388

103� = 3. This cut then replaces
the previous cut in the defining constraints and the third cut is x ≤ � 31

16� = 1.
For the fourth and last cut the Simplex algorithm chooses another constraint,
e. g., −10 ≤ 7x − 9y, since the lower right constraint is not inside the solution
space anymore. This produces the cut y ≤ � 17

9 � = 1. The solution space is now
empty, which means the system is unsatisfiable. ��

1st cut

2nd cut

3rd cut
4th cut

0.5 1 1.5 2 2.5
0.5

1

1.5

2

2.5

x

y

Fig. 1. Run of the cuts from proofs algorithm on Example 1. The black lines are the
constraints, which form a parallelogram without integer solutions. The thick lines on
the right denote the defining constraints for the first cut. The second cut is computed
from the first cut and the lower right constraint and so on. The fourth cut shows that
there are no integer solutions.

Why is yi ≤ �y0i� a good cut? It is not clear how to answer this question. One
can argue that one replaces the variables x with new variables y and solves a
very simple constraint system Hy ≤ b by doing cuts on the y variables. Also, it
can be seen that if the constraint yi ≤ �y0i� replaces the corresponding i-th row
in the defining constraint for every cut (which is what under certain condition
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the Bland heuristic [19] would do), the resulting constraint system has an integer
solution. But the best answer is that it empirically works.

Although the Hermite normal form is unique there is still an important
way the produced cuts can be influenced. The order of the defining constraints
directly determines the quality of the produced cuts. As a heuristic, the con-
straints that are most unlikely to change should come first. For this reason we
put equality constraints first in the matrix A′. Other than this, we put the rows
in the reverse order in which they would be chosen by the Bland heuristic.

Our view of the algorithm is that it transforms the basis x using a unimodular
matrix U to a basis y , such that the constraint system Ax ≤ b has a much
simpler representation Hy ≤ b in the new constraint system. Then it creates
cuts on the coordinates of the new basis y that are not yet integral. In the next
section we want to extend this idea to mixed problems where some variables are
real variables and some variables are integer variables.

5 Mixed Cuts from Proofs

As mentioned in the previous section, the basic idea of the cuts from proof
algorithm can be described by a transformation of the basis x to a new basis
y where the current constraint system is simpler. In this section we extend this
idea to mixed real/integer arithmetic.

For mixed arithmetic the basis x = (x1 . . . , xn1 , xn1+1, . . . , xn) is split into n1

real variables and n2 = n − n1 integer variables. The transformed basis y = Ux
should have the same number of real and integer variables. To achieve this the
matrix must have the form

U =
[
U(r) V
0 U(i)

]

where all coefficients of U(i) are integral.
We further require that every valid solution of y should correspond to a valid

solution of x . Therefore, the matrix U must be invertible and its inverse should
have again this form. The inverse of U is

U−1 =

[
U−1
(r) −U−1

(r)V U−1
(i)

0 U−1
(i)

]

We require that U−1
(i) ∈ Zn2×n2 (hence U(i) must be unimodular) and that U(r)

is nonsingular. We call a matrix of this form a mixed transformation matrix.

Definition 1. Given a mixed problem with n1 real and n2 integer variables and
n = n1 + n2. A matrix U ∈ Qn×n is a mixed transformation matrix if there are
a nonsingular U(r) ∈ Qn1×n1 , a unimodular U(i) ∈ Zn2×n2 , and V ∈ Qn1×n2 ,
such that

U =
[
U(r) V
0 U(i)

]
.
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By the above observation the mixed transformation matrices form a subgroup
of Qn×n, i. e., the inverse of a mixed transformation matrix is again a mixed
transformation matrix. Thus, we have the following lemma stating that a valid
solution for the original system corresponds to a valid solution of the transformed
coordinate system.

Lemma 2. Let U be a mixed transformation matrix. Then

x ∈ (Qn1 × Zn2) if and only if Ux ∈ (Qn1 × Zn2).

Proof. Follows directly from the shape of U and U−1. ��

Again we bring the matrix A of defining constraints into a normal form H with
H = AU where U is a mixed transformation matrix. We call this the mixed
normal form. A matrix H is in mixed normal form if

H =
[
Id 0
∗ H(i)

]

where Id ∈ Qn1×n1 is the identity matrix, ∗ is an arbitrary Qn2×n1 matrix, and
H(i) ∈ Qn2×n2 is in Hermite normal form.

A matrix has a normal form if and only if the first n1 constraints are linear
independent on the real variables. Thus we may have to reorder the matrix A to
put these rows first. Since the matrix A is nonsingular, it is always possible to
reorder the rows of A such that the top-left n1 × n1 submatrix is nonsingular.

Lemma 3. Let A ∈ Qn×n, such that the upper left n1 × n1 submatrix is non-
singular. Then A has a unique mixed normal form H = AU , such that U is a
mixed transformation matrix.

Proof. Existence. We subdivide A into
[
A11 A12

A21 A22

]

and note that A11 is invertible in Qn1×n1 . We set U(r) = A−1
11 . Then we transform

the matrix A22 − A21U(r)A12 into Hermite Normal Form H(i) with

H(i) = (A22 − A21U(r)A12)U(i).

The mixed normal form is

H =
[

Id 0
A21U(r) H(i)

]
=

[
A11 A12

A21 A22

] [
U(r) −U(r)A12U(i)

0 U(i)

]
.

Uniqueness. Assume that H = AU with

H =
[
Id 0

H21 H22

]
, A =

[
A11 A12

A21 A22

]
, U =

[
U11 U12

0 U22

]
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where H22 is in Hermite normal form and U22 is unimodular. The top left corner
of H gives Id = A11U11, thus U11 = A−1

11 is unique. The top right corner of H
gives 0 = A11U12 + A12U22, thus U12 = −A−1

11 A12U22. Inserting this into the
equation for the bottom right corner of H gives

H22 = (−A21A
−1
11 A12 + A22)U22

Thus, H22 is the unique Hermite normal form of −A21A
−1
11 A12 + A22 and U22 is

also unique. This shows that U is unique and therefore also H = AU . ��
Example 2. We change the constraint system of Example 1 and make the vari-
able x real-valued. Secondly, we require that x − �x� ≤ 0.2. To express this we
introduce an integer variable z representing �x�. The constraint system is

27 ≤ 11x + 13y ≤ 45
−10 ≤ 7x − 9y ≤ 4

0 ≤ x − z ≤ 0.2

Figure 2 depicts the solution space. The integer points are denoted by crosses;
x, y must lie in one of the horizontal thick lines for z, y to be integer and the last
constraint to be satisfied. Also x, y must lie in the parallelogram. As can be seen
from the figure, there is a solution, e. g., x = 1.2, y = 2, z = 1. Our algorithm
uses the Simplex algorithm to find a vertex in the solution space. We assume it
uses as defining constraints

11x + 13y ≤ 45
−7x + 9y ≤ 10

z − x ≤ 0

with the solution x = z = 55
38 , y = 85

38 . The mixed normal form is

H =

⎡

⎣
1 0 0

−7/11 100/11 0
−1/11 −9/11 1

⎤

⎦ =

⎡

⎣
11 13 0
−7 9 0
−1 0 1

⎤

⎦

⎡

⎣
1/11 −13/11 0

0 1 0
0 −2 1

⎤

⎦ = AU

From this it computes the cuts as

U−1

⎡

⎣
x
y
z

⎤

⎦ ≤ H−1b ⇔

⎡

⎣
11x + 13y

y
2y + z

⎤

⎦ ≤

⎡

⎣
45

�85/38�
�225/38�

⎤

⎦ =

⎡

⎣
45
2
5

⎤

⎦ .

The figure visualises the cuts. Note that the cut 2y + z ≤ 5 is for the z variable,
so x may still be in the differently shaded area right of this cut. When the two
cuts y ≤ 2 and 2y + z ≤ 5 are introduced, the Simplex algorithm will search for
a new vertex, e. g., x = 8

7 , y = 2, z = 1 with the defining constraints

−7x + 9y ≤ 10,

y ≤ 2,

2y + z ≤ 5.

This solution has integer values for y and z and the algorithm terminates with
this solution.
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y ≤ 2

2y + z ≤ 5

0.5 1 1.5 2 2.5
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Fig. 2. Run of our algorithm on Example 2. The thick lines on the top denote the
defining constraints. From the constraints two cuts are computed. These cuts meet at
the vertex y = 2, z = 1, which can be extended to a feasible solution with x = 8/7.

Our algorithm introduces extended branches yi ≤ �y0i� ∨ yi ≥ 	y0i
. As in
Lemma 1, one can see that these branches are cuts if the matrix H contains
only nonpositive values in the lower left triangle. However, Lemma 3 shows that
H21 = A21A

−1
11 and there are examples where the coefficients of this matrix are

positive. Moreover, since the mixed normal form is unique, there is no simple fix.
In the above example we had to carefully choose the defining constraints to get
cuts instead of branches. In our implementation of the algorithm we usually get
several extended branches until the defining constraints contain enough integer
constraints, which means that there are only few non-zero entries in H21. Then
usually cuts are generated.

6 Implementation and Evaluation

We implemented the technique presented in this paper in the SMT solver SMT-
Interpol [5]. When experimenting, we discovered that most of the time spent by
SMTInterpol was not in the cut engine, but in trying to find a solution to the
LP relaxation and deciding on already created extended branches. In the runs
we investigated further, SMTInterpol quickly creates several extended branches
and cuts and then spends hours in the DPLL engine and the Simplex algorithm
to solve the LP relaxation. In the end, the benchmark is solved without adding
a new branch or cut. The main problem is that our implementation keeps all
branches and cuts generated by the technique proposed here and even decides
on them. To rectify this problem, we created a second version of SMTInterpol
that removes cuts and branches that did not help to close the current branch in
the decision tree of the DPLL engine. This version is still experimental and part
of ongoing work.
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We evaluated the technique on a number of benchmarks. We used hard con-
junctive benchmarks, since we aimed at evaluating the cut engine and not the
DPLL engine. Since SMTLIB [2] currently does not contain a logic for mixed
linear arithmetic without arrays or quantifiers, we created the logic QF LIRA.
This logic is also supported by CVC4 [1], MathSAT 5 [6], yices 2 [8], and Z3 [15]2.

In the evaluation we include a virtual solver that combines yices 2 and both
versions of SMTInterpol. We do not report times on this solver, but only the
number of benchmarks that would be solved by a portfolio of the combined
solvers. We chose yices 2 since it is the best performing solver on our benchmark
set (closely followed by MathSAT).

The evaluation was performed on StarExec3 using a timeout of 600 seconds
for both CPU and wall time. Memory was limited to 8 GB. We created some
benchmarks based on existing benchmarks for linear integer arithmetic, espe-
cially those that test the cut generation engine. In the following, we will discuss
the benchmarks and the results.

Family Cut Lemmas Biased. To generate this set of benchmarks, we used all
benchmarks from the cut lemmas family from QF LIA that are flagged as unsat-
isfiable. We systematically switched the sort of the variables in the order of their
declaration. After we switched one variable, we ran SMTInterpol for five minutes
to check if the benchmark was still unsatisfiable. If it was we kept the modifica-
tion. Otherwise we reverted to the last unsatisfiable modification. The goal is to
create a hard unsatisfiable and a few hard satisfiable benchmarks by finding the
limit where the satisfiability of the benchmarks changes. Since the modification
was guided by SMTInterpol, we call this family biased. The chosen modifications
depend on which solver we initially used to solve the benchmark. We created
a total of 1575 benchmarks. Even though we could know the status of most of
these benchmarks, we did not include it in the file4. But we checked that if two
or more solvers solved the same benchmark, they agreed on the status.

The results are shown in Table 1. The difference between wall time and CPU
time for SMTInterpol is caused by the Java virtual machine. SMTInterpol itself
is single threaded, but, e. g., the garbage collection runs in parallel. We remark
that the virtual solver (combination of yices 2 and both variants of SMTInterpol)
solves all but 22 benchmarks. One of the remaining benchmarks can be solved by
both CVC4 and MathSAT 5 which additionally solves three more benchmarks.
The remaining 18 cannot be solved by any of the solvers used in the evaluation.
Furthermore, both versions of SMTInterpol could solve benchmarks that no
competing solver (CVC4, MathSAT 5, yices 2, or Z3) could solve.

Figure 3 shows scatter plots that compare yices 2 resp. MathSAT 5 and the
version of SMTInterpol that forgets literals. The white area at the bottom of each
2 Z3 actually warns the user that it does not know this logic. The solver works never-

theless and interprets the logic as expected.
3 See https://www.starexec.org/starexec/secure/explore/spaces.jsp?id=62799 using

username public and password public.
4 This causes StarExec to report both results sat and unsat as wrong.

https://www.starexec.org/starexec/secure/explore/spaces.jsp?id=62799
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Table 1. Results of the evaluation on the benchmarks from the biased family. For
each solver we report the number of solved benchmarks, the number of satisfiable resp.
unsatisfiable benchmarks, the wall and CPU time and the number of benchmarks that
could not be solved by any competing solver.

Solver # solved # sat # unsat wall time CPU time # only

SMTInterpol 1107/1575 447 660 64079 68397 42

SMTInterpol forget 1226/1575 465 761 94262 99743 57

CVC4 1309/1575 483 826 63338 63359 0

MathSAT 5 1404/1575 521 883 59959 60000 3

yices 2 1427/1575 509 918 29272 29289 10

Z3 1147/1575 511 636 71688 71736 0

virtual 1553/1575 539 1014

plot is caused by the startup overhead of the Java virtual machine. Both plots show
that there are several problems on which yices 2 and MathSAT 5 time out while
SMTInterpol solves them in less than a second. Overall the difficulty of a problem
for yices 2 and MathSAT 5 is quite unrelated to the difficulty for SMTInterpol.
This undermines the thesis that these solver complement each other well. It is also
reflected in the number of benchmarks solved by the virtual solver.
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Fig. 3. Scatter plot comparing yices 2 resp. MathSAT 5 and the version of SMTInterpol
that forgets literals on the biased family.

Family Cut Lemmas Unbiased. Again, we used all benchmarks from the
cut lemmas family that are flagged as unsatisfiable. This time, we created 10
new benchmarks from each of these benchmarks by randomly changing the sort
of 20 % of the variables from integer to real. We chose that percentage because it
creates roughly the same number of unsat and sat benchmarks. This family does
not use any solver in the creation and should thus not be biased to a specific
solver. We created a total of 930 benchmarks in this division. Since we do not
know the status of these benchmarks, no status information is recorded in the
generated files. But, again, whenever two solvers solved the same benchmark,
they agreed on the status.



Cutting the Mix 49

Table 2. Results of the evaluation on the benchmarks from the unbiased family. For
each solver we report the number of solved benchmarks, the number of satisfiable resp.
unsatisfiable benchmarks, the wall and CPU time, and the number of benchmarks that
could not be solved by any competing solver.

Solver # solved # sat # unsat wall time CPU time # only

SMTInterpol 697/930 218 479 33421 35936 27

SMTInterpol forget 751/930 236 515 43473 46340 29

CVC4 785/930 239 546 35037 35109 0

MathSAT 5 832/930 259 573 28686 28695 3

yices 2 831/930 250 581 22260 22267 7

Z3 708/930 239 469 38762 38779 0

virtual 915/930 270 645

The results are shown in Table 2. From the 15 benchmarks that could not
be solved by the virtual solver, three could only be solved by MathSAT 5. Both
versions of SMTInterpol solve several benchmarks that cannot be solved by
CVC4, MathSAT 5, yices 2, or Z3.

The scatter plots comparing yices 2 resp. MathSAT 5 to the forget version
of SMTInterpol look almost identical to the ones shown in Fig. 3.

Table 3. Results of the evaluation on the benchmarks from the dillig family. For each
solver we report the number of solved benchmarks, the number of satisfiable resp.
unsatisfiable benchmarks, the wall and CPU time and the number of benchmarks that
could not be solved by any competing solver.

Solver # solved # sat # unsat wall time CPU time # only

SMTInterpol 2204/2330 2187 17 10858 14710 0

SMTInterpol forget 2194/2330 2176 18 13303 17319 1

CVC4 1967/2330 1938 29 44360 44372 0

MathSAT 5 2317/2330 2288 29 17309 17333 0

yices 2 2302/2330 2273 29 17115 17132 0

Z3 2101/2330 2072 29 69255 69344 0

virtual 2330/2330 2301 29

Family Dillig. The benchmarks from the cuts from proofs paper [7] are available
in the SMTLIB in QF LIA in the dillig family. For each of these benchmarks,
we created 10 new benchmarks where we randomly changed the sort of 20 %
of the variables from integer to real. This lead to a total of 2330 benchmarks.
Since the benchmarks are randomly generated, we do not know the status. But
the solvers agreed on the status of those benchmarks that could be solved by
multiple solvers.
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The results for the dillig family are shown in Table 3. The virtual solver
solves all benchmarks in this family even though no single solver could solve all
benchmarks.

The scatter plots from Fig. 4 compare yices 2 resp. MathSAT 5 and the forget
version of SMTInterpol. This time there seems to be a strange line at slightly
more than one second. Either SMTInterpol solves a benchmark in this time or
it does not solve the benchmark at all.
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Fig. 4. Scatter plots comparing yices 2 resp. MathSAT 5 and the version of SMTIn-
terpol that forgets literals on the dillig family.

Family Tightrhombus. We created 44 benchmarks specifically designed to test
the cut engine. These benchmarks are inspired by the tightrhombus benchmarks
used to test the cut engine for QF LIA. They encode a tight rhombus in the
following way. Choose coefficients cx > 0, cy > 0 and scale s > 0. The rhombus
for QF LIA is created as

0 ≤ (cx · s)x − (cy · s + 1)y ≤ s − 1 ∧ 1 ≤ (cx · s + 1)x − (cy · s)y ≤ s

for integer variables x and y. For mixed arithmetic, we use a real-valued variable
y and bound the distance between y and the nearest integer point. The bound
can be computed for each rhombus. Since yices 2 does not support the to int
construct from SMTLIB, we encode it using a fresh integer variable z. We created
benchmarks for cx = 273, cy = 245 resp. cx = 283, cy = 245 for scales s = 10i+1,
0 ≤ i ≤ 10. We carefully chose the bound on the distance between y and z such
that the benchmark is barely satisfiable. To create unsatisfiable benchmarks, we
subtracted a small value from the bound. We chose 10−13 to not create trivially
unsatisfiable benchmarks since the minimal distance between y and z for scale
1011 is very small.

The results for this family are shown in Table 4. We omit the virtual solvers
since both version of SMTInterpol solve all the benchmarks. While CVC4 only
solves benchmarks with scale up to 4, MathSAT solves all satisfiable benchmarks
with cx = 273, but has problems on the other set. Similarly, Z3 solves almost
all satisfiable benchmarks with cx = 283 (except for scale s = 1011) but has
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Table 4. Results of the evaluation on the benchmarks from the tightrhombus family.
For each solver we report the number of solved benchmarks, the number of satisfiable
resp. unsatisfiable benchmarks, the wall and CPU time and the number of benchmarks
that could not be solved by any competing solver.

Solver # solved # sat # unsat wall time CPU time # only

SMTInterpol 44/44 22 22 15 20 12

SMTInterpol forget 44/44 22 22 15 20 12

CVC4 20/44 10 10 585 585 0

MathSAT 5 21/44 15 6 326 326 0

yices 2 18/44 10 8 514 514 0

Z3 21/44 15 6 364 365 0

problems on the other set. Also note that 12 benchmarks were solved only by
either of the variants of SMTInterpol, but not by the other solvers.

This evaluation shows that the clear winner is a combination of the (to our
knowledge unpublished) technique used by yices 2 with the technique presented
in this paper. Such a combination advances the state of the art in mixed linear
arithmetic solving in the SMT context. Furthermore, the technique presented
in this paper is able to solve some benchmarks that no other technique can
solve. The comparison between the performances of the different versions of
SMTInterpol shows that removal of literals that do not contribute to closing of
a decision branch sometimes is beneficial.

7 Conclusion and Future Work

We presented a novel method to compute cuts in mixed linear arithmetic solving
in the context of SMT. The method is inspired by the cuts from proofs algorithm
used to solve integer linear arithmetic. It transforms the original constraint sys-
tem into a simpler one. This is achieved by transforming the basis of the original
constraint system into a new one. Cuts and branches are then created for the
new basis. We showed in some experiments that this new technique is able to
solve benchmarks that cannot be solved by state-of-the-art solvers.

The evaluation showed that the cut engine is not the bottleneck. Instead
SMTInterpol spends most time in the Simplex algorithm and the DPLL engine
deciding on the extended branches. An investigation when and which branches
and cuts should be removed from the solver is part of future work.
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Abstract. Our Mathematical Programming Modulo Theories (MPMT)
constraint solving framework extends Mathematical Programming tech-
nology with techniques from the field of Automated Reasoning, e.g.,
solvers for first-order theories. In previous work, we used MPMT to syn-
thesize system architectures for Boeing’s Dreamliner and we studied the
theoretical aspects of MPMT by means of the Branch and Cut Modulo
T (BC(T )) transition system. BC(T ) can be thought of as a blueprint
for MPMT solvers. This paper provides a more practical and algorith-
mic view of BC(T ). We elaborate on the design and features of Inez, our
BC(T ) constraint solver. Inez is an open-source, freely available superset
of the OCaml programming language that uses the SCIP Branch and Cut
framework to extend OCaml with MPMT capability. Inez allows users
to write programs that arbitrarily interweave general computation with
MPMT constraint solving.

1 Introduction

The ILP (or, more generally, Mathematical Programming) Modulo Theories
(IMT or MPMT) framework accommodates Mathematical Programming (MP)
instances, where some variable symbols have meaning in background first-order
theories [21]. In previous work, we used this approach to solve systems archi-
tectural synthesis problems with hard real-time constraints for Boeing and we
introduced the Branch and Cut Modulo T (BC(T )) architecture for solving
MPMT [17,21]. BC(T ) combines Branch and Cut (B&C) with theory reason-
ing. B&C is the most established family of algorithms for solving ILP instances,
empowering such powerful solvers as CPLEX [2], Gurobi [3], and SCIP [8].

We have formalized BC(T ) as a highly non-deterministic transition sys-
tem [21]. By abstracting away solver implementation details, the BC(T ) transi-
tion system captures a wide range of possible implementations, and facilitates
theoretical analysis. BC(T ) can be thought of a design space for MPMT solvers.
Implementing an MPMT solver involves zooming in on a region of this design
space, with assorted performance trade-offs. To inform efficient solver design,
this paper provides an algorithmic (and more deterministic) view of BC(T ).
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Inez1 extends the SCIP [8] solver and we show how to implement MPMT on
top of a B&C-based solver. We explain as much of the operation of the B&C
core as needed to demonstrate where theory solvers fit, with an emphasis on
the interface between theory solvers and B&C. We do not cover purely internal
operations of either side. For example, we treat Simplex (which handles real
relaxations within B&C) purely as a black box. We use congruence closure (CC)
as an example of a background procedure. Given that the core operations of CC
are well-known [27], our discussion only covers the BC(T )-specific aspects. Our
choice of CC is motivated by its wide applicability and by the relatively simple
(but not trivial) constraints and algorithms involved.

We provide an overview of the features of Inez. Notably, Inez provides data-
base techniques for reasoning in the presence of data [22]. Inez additionally
supports user-provided axioms through local theory extensions [30]. Inez is imple-
mented in OCaml, and makes extensive use of OCaml language constructs and
technologies. In fact, the standard way of interacting with the solver is via scripts
in a superset of OCaml. Programming with Inez is qualitatively different from
programming in a standard programming language because Inez allows us to
write programs that arbitrarily interleave general computation with MPMT con-
straint solving. To our knowledge, Inez is the first system that allows expressing
constraints over uninterpreted functions within a programming language, with
minimal syntactic overhead, while providing type-safety.

The rest of the paper is organized as follows. Section 2 introduces our superset
of the OCaml language through a worked example, and explains how OCaml
facilitates our implementation efforts. Section 3 describes the core BC(T ) setup
as a set of algorithms, while Sect. 4 discusses extensions on top of this setup.
Section 5 provides an overview of related work. We conclude with Sect. 6. In the
interest of space, we do not provide experimental results. We refer the interested
readers to our previous work for a comparison of Inez against SMT solvers on
instances from the SMT-LIB [21], and also on database problems [22].

2 The Inez Language

In this section, we introduce some of the most notable features of Inez by means
of a worked example. We focus on the user-facing aspects of Inez, i.e., on its input
language, which is a superset of OCaml. Our extensions over OCaml are language
constructs (and supporting APIs) for easily expressing logical constraints and
seamlessly integrating with the underlying constraint solver. Building on top of
OCaml allows us to provide a mixed functional and constraint language that
users can utilize to express their models in a compact and self-contained way.

Inez utilizes the Camlp4 framework [1] to extend OCaml by assigning mean-
ing to programs that are syntactically valid (i.e., recognized by the unmodified
OCaml grammar) but semantically invalid. The semantics of programs accepted
by unmodified OCaml do not change under Inez. This design decision has mul-
tiple benefits. First, the syntax of Inez programs is natural, given that these
1 https://github.com/vasilisp/inez.

https://github.com/vasilisp/inez
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programs are syntactically valid OCaml anyway. Also, there are no additional
syntactic constructs to cause trouble for editors and other tools. Finally, the
implementation is cleaner, because all that it does is transform Abstract Syntax
Trees (ASTs) produced by the Camlp4 parser.

Our integration of OCaml and constraints has great impact from a user per-
spective. For instance, consider a problem that depends on raw data defined and
stored in a different location than the problem code, e.g., in a plain text file,
spreadsheet, database or web service. With Inez, data retrieval, data processing,
and constraint solving can all happen side by side, in the same environment.
We present concrete Inez code that obtains data from a database, defines data
structures to store and manipulate this data, and finally produces and solves an
MPMT instance. In the interest of succinctness, we omit the data retrieval code.
A complete implementation (based on MySQL [4] and the mysql protocol [5]
library) can be found online.2

The example is based on a facility location problem [10]. We are given a finite
set of locations and a finite set of cities. Each city requires a certain number of
units of some product. We have to decide where to place facilities in order to
satisfy the needs of the cities, while maximizing our earnings.

1 open Sc r i p t ; ;
2 open Core . Std ; ;
3
4 let n c i t i e s = db g e t n c i t i e s ( ) ; ;
5 let l o c a t i o n s = db g e t l o c a t i o n s ( ) ; ;
6 let revenue = db get revenue ( ) ; ;
7 let capac i ty = db ge t capac i t y ( ) ; ;
8 let demand = db get demand ( ) ; ;
9 let n l o c a t i o n s = Array . l ength l o c a t i o n s ; ;

Lines 1 and 2 are a typical preamble for Inez scripts. The module Script
contains useful functions for interacting with Inez, while Core.Std refers to Jane
Street Core, which is a featureful alternative to INRIA’s OCaml base library.
Inez uses Jane Street Core internally, and we recommend that Inez scripts also
use this library. Lines 4 to 8 perform queries to a database instance to obtain
data relevant to the problem: (4) an integer n cities with the number of cities
we plan to serve; (5) an array locations where each position corresponds to the
ZIP code of a potential location; (6) a matrix revenue, such that for 0 ≤ i <
n cities and 0 ≤ j < n locations, revenue.(i).(j) represents the revenue of
selling to city i a unit of product fabricated at location j; (7) an array capacity,
where for 0 ≤ j < n locations, capacity.(j) is the production capacity for a
factory in location j; and (8) an array demand that represents the demand, in
units of product, from each city. Finally, we define n locations as the size of
the array locations, i.e., the number of potential locations.
2 http://www.ccs.neu.edu/home/pete/2015/cav-example.zip.

http://www.ccs.neu.edu/home/pete/2015/cav-example.zip
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10 let bu i ld =
11 let f = f r e s h b o o l v a r ( ) in Array . i n i t n l o c a t i o n s ˜ f ; ;
12
13 let product ion =

14 let f =

15 let f =
16 let v = f r e s h i n t v a r ( ) in

17 con s t r a i n (˜ l o g i c ( v >= 0 ) ) ; v in
18 Array . i n i t n l o c a t i o n s ˜ f in

19 Array . i n i t n c i t i e s ˜ f ; ;

Each city is identified by an integer c ∈ [0 . . . n cities − 1]. Each location is
identified by the corresponding ZIP code in the locations array. Line 10 defines
an array of size n locations, where each element is an Inez Boolean variable,
created by the function fresh bool var. The library function Array.init ini-
tializes each element of the array, by calling its f argument (a function) with
the corresponding index as the argument. (In our case, the argument to f is
ignored, hence the underscore.) Each Boolean variable corresponds to a loca-
tion and represents whether a facility is built there or not. Similarly, line 13
defines a two-dimensional matrix of Inez integer variables. The two dimensions
correspond to cities and locations: for each possible pair of city c and location l,
production.(c).(l) represents the planned production (in units of product) of
a factory to-be-built in location l destined to city c. The Inez-provided function
constrain adds a formula to the solver context. In line 17 we constrain each
integer variable so that it only takes positive values.

For expressing these constraints, we utilize the ~logic keyword. ~logic
allows expressing terms and formulas with minimal syntactic overhead. We uti-
lize Camlp4 infrastructure to preprocess applications of ~logic to ensure that
the intended meaning over terms and formulas applies. Specifically, (a) integer
literals become Inez integer terms; (b) the literals true and false become formu-
las; and (c) operators like + and && obtain meaning over terms and formulas (as
opposed to their standard meaning over OCaml integers and Booleans, respec-
tively). For instance, given integer variables x and y, ~logic (x + 1) is an Inez
term, while ~logic (1 <= y && x <= 0) is an Inez formula. Inez integer terms
and formulas are regular OCaml values that can be passed around.

20 let co s t ( : Int ) = (˜ f r e e : Int ) ; ;
21
22 for i = 0 to n l o c a t i o n s − 1 do
23 let i = t o i i in
24 con s t r a i n (˜ l o g i c ( co s t i >= h i s t l b i &&
25 co s t i <= hi s t ub i ) )
26 done ; ;

Now consider the following situation. During an early planning phase, the
exact cost of building a facility on a given location may be unknown. However,
experience from similar previous developments could provide bounds for these
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costs. We use an uninterpreted function (UF) to express this. Given an integer
representing the ID of a location, the UF cost (Line 20) returns an integer that
corresponds to the cost of building a facility on that location. The syntax for UFs
follows closely the standard syntax for defining OCaml functions. Inez recognizes
the declaration of cost as its own responsibility because of the keyword ~free in
the function body. The declaration produces an actual OCaml function cost from
integer terms to integer terms. (Integer terms belong to an OCaml datatype that
describes symbolic integer expressions; integer terms differ from OCaml integers.)
Functions can also operate over Booleans. (The Int annotations could have been
omitted, because integer is the default.)

The function toi (Line 23) converts an OCaml integer to an integer term.
We use constrain to bound the return values of cost (Line 25). The upper
(respectively lower) bound for each location is computed by the OCaml function
hist ub (respectively hist lb), which retrieves historical construction data from
a database and analyzes the current situation in order to provide estimate bounds
for the cost of building. We impose this constraint across all locations by means
of a standard OCaml for loop (Lines 22-26).

Also, suppose that we have some knowledge about the global building costs
for each location and how they compare to one another. That is, given two ZIP
codes, we can determine where it is cheaper to build a factory. This knowledge
allows us to define an ordering among ZIP codes, and thus assign to each a
unique identifier in the range [0 . . . n locations − 1] such that the ZIP code with
id 0 is the cheapest location and the one with id n locations − 1 is the most
expensive. Given such ids, cost is monotonically increasing. Monotonicity can
be expressed in Inez by means of an axiom, as follows:

27 as s e r t ax iom
28 (˜ f o r a l l x (˜ f o r a l l y ( [ x <= y ] , co s t x <= cos t y ) ) ) ; ;

The function assert axiom is used to introduce an axiom. The keyword ~forall
defines two universally quantified variables x and y. We subsequently provide a
list of assumptions (in this case just x <= y), followed by a conclusion (cost x
<= cost y). We provide details on our implementation of axioms in Sect. 4.2.

We subsequently add constraints to ensure that the units produced by each
factory that is built will not exceed its capacity, i.e., that

∀l ∈ locations.

[

(
∑

c∈cities

production[c][l]) ≤ build [l] ∗ capacity [l]

]

.

The Inez encoding is

29 for l = 0 to n l o c a t i o n s − 1 do
30 con s t r a i n
31 ( let c i t i e s = L i s t . i n i t n c i t i e s ˜ f : Fn . id

32 and f c = product ion . ( c ) . ( l ) in
33 ˜ l o g i c
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34 (sum c i t i e s ˜ f <= i i t e bu i ld . ( l ) ( t o i capac i ty . ( l ) ) 0 ) )
35 done ; ;

We notably use the Inez-provided function sum (Line 34), to express the sum
of Inez terms resulting from the application of the function f on each element of
the list cities. Additionally, we use the function iite (Line 34) that encodes
an if-then-else condition. The first argument to iite is an Inez formula, while
the second and third are Inez integer expressions for each possible case. Our
application of iite ensures that, if a factory is built on location l, then we
obtain the capacity from the corresponding array, otherwise the capacity is zero.

Our concrete example additionally enforces that the demands of each city
are satisfied, which can be expressed mathematically as:

∀c ∈ cities.

[

(
∑

l∈locations

production[c][l]) = demand [c]

]

In the interest of brevity, we omit the corresponding Inez code.
Finally, we define an objective function, which is to maximize the earnings,

i.e., the total revenue minus the cost of building the factories. The corresponding
Inez code specifies the optimization criterion by means of the maximize function
(and re-uses constructs that we have described already):

36 maximize
37 ( let c i t i e s = L i s t . i n i t n c i t i e s ˜ f : Fn . id
38 and l o c a t i o n s = L i s t . i n i t n l o c a t i o n s ˜ f : Fn . id in

39 let s1 =
40 ˜ l o g i c (sum c i t i e s ˜ f : ( fun c −> sum l o c a t i o n s ˜ f : ( fun l −>
41 revenue . ( c ) . ( l ) ∗ product ion . ( c ) . ( l ) ) ) )

42 and s2 =
43 ˜ l o g i c (sum l o c a t i o n s ˜ f : ( fun l −>
44 i i t e bu i ld . ( l ) ( co s t ( t o i l ) ) 0 ) ) in
45 ˜ l o g i c ( s1 − s2 ) ) ; ;

46

47 s o l v e p r i n t r e s u l t ( ) ; ;

Line 47 starts the solving process and prints the result (which can be one
of opt, sat, unsat, unbounded, or unknown) to the standard output. Note that
our example builds a single set of constraints, and calls the underlying solver
once. In general, Inez provides an incremental push/pop interface that allows the
user to add and remove constraints, and perform multiple queries. As an exam-
ple, consider that for the presented problem we had two different optimization
criteria: first maximize the earnings and second minimize the number of facto-
ries. One could achieve this by push-ing the first maximization criterion, solving
the problem, registering the maximum value obtained, and finally pop-ing the
criterion. One could then add a constrain that restricts the first criterion to be
equal to the registered value and minimize the second criterion. The full power of
OCaml is available to determine future steps by examining intermediate results.
Inez thus provides a framework for constraint-based algorithms.



The Inez Mathematical Programming Modulo Theories Framework 59

We conclude this section with an overview of the OCaml features that we
have utilized to provide the functionality described in this section. Interestingly,
(a) Generalized Algebraic Data Types (GADTs) [18] allow us to represent terms
and formulas in a type-safe way; (b) the extensibility of Inez is reflected on the
module system, i.e., extending the backend amounts to instantiating a functor
that given a theory solver (wrapped up as a module) produces a solver for the
resulting logic (i.e., another module); (c) the toplevel system allows us to build
custom read-evaluate-print loops that interactively interpret OCaml plus our
logic fragments; finally, (d) camlidl enables relatively seamless interaction with
C/C++ code (like SCIP and our implementation of CC).

3 An Algorithmic View of BC(T )

This section provides a set of interconnected algorithms that together implement
BC(T ). We thus document the architecture empowering the backend of Inez. The
algorithms primarily operate upon nodes and sets thereof. Each node is described
by a set of integer linear constraints, i.e., constraints of the form c1 · v1 + · · · +
cn · vn {< | ≤ | = | ≥ | >} c, where ci are integer constants, vi are variable
symbols, and the right-hand side c is an integer constant. While we provide
support for mixed integer linear constraints (i.e., integer and real variables side-
by-side) through an experimental version of Inez, our discussion focuses on the
integer case for simplicity. A node characterizes an open subproblem that needs
to be explored. Nodes also carry metadata, like known variable bounds.

In addition to the integer linear constraints, the input to the solver con-
tains uninterpreted function (UF) constraints. We assume that variable abstrac-
tion [20] has happened as a preprocessing step, resulting in linear constraints that
do not involve UF terms. The definitions symbol that is used in the pseudocode
stands for a collection of atomic formulas of the form v = f(l), where v is a
variable symbol, f is a UF symbol, and l is a list of arguments of the form w+k,
where w is a variable symbol and k is an integer constant. Entirely concrete
terms are a special case that can be encoded with a single integer variable fixed
to zero. UF terms thus involve limited arithmetic, as is common practice [27].
definitions is an immutable global constant.

Our pseudocode uses sum types (also known as tagged unions) for some of
the variables. Sum types have multiple constructors that correspond to differ-
ent cases for the values carried. The constructor of a particular element serves
as a tag denoting which case the element belongs in. Furthermore, the magic
constant ∗ stands for non-deterministic Boolean choice. ∗ is used in condition-
als where heuristics apply. 〈e〉 denotes that standard operators within e are to
be interpreted over syntactic objects, e.g., 〈v − w〉 is not a concrete integer or
real, but a term representing the subtraction of w from v. We follow a generally
applicative style, e.g., operations that modify a node (by producing new linear
constraints and bounds) produce a new node. Our presentation is top-down.

Our CC solver is implemented by the functions with suffix cc (check cc,
enforce cc, propagate cc, and branch cc). These are the functions that need
to be replaced (or enhanced) for supporting a theory other than ∅.



60 P. Manolios et al.

function bc(p : node) : (Unsat|Optimal(assignment))
P ← {p}
α ← None
while P �= ∅ do

q ← pick(P )
P ← P \ {q}
match solve node(q, obj(α)) with

case Unsat
noop() // do nothing

case Solved(β)
α ← Some(β)

case Branched(Q)
P ← P ∪ Q

match α with
case None

return Unsat

case Some(β)
return Optimal(β)

3.1 High-Level Functions

The top-level B&C procedure, bc, accepts as its argument a set of integer linear
constraints, p. p corresponds to the root node of the B&C search tree. bckeeps
track of a set P of nodes to be examined (initialized with {p}). α carries a can-
didate satisfying (integer) assignment. α, belonging in a sum type, is of the form
Some(β) if an assignment β is known; α is None otherwise. The loop body in
bcpicks one of the remaining nodes in P and processes it by calling solve node.
The implementation of pick(not provided) may involve sophisticated heuris-
tics for the choice of next node to be examined. A bias towards the children
of the node that was more recently branched upon (i.e., depth-first search) is
common.

solve nodereceives as arguments the node p to be processed, in addition to
an upper bound l for the objective values of the solutions of interest. l corre-
sponds to an already-known solution. (We assume that the function obj that
computes l and our comparisons with l take care of the possibility of no known
solution or unbounded solution, by supporting the special constants +∞,−∞.)
solve node performs three processing stages: (a) propagation (Sect. 3.2);
(b) solving a continuous relaxation of the linear constraints; and (c) enforc-
ing constraints against a relaxation-obtained solution (Sect. 3.3). Enforcing may
result in branching (Sect. 3.4). The aforementioned stages operate on one node
at a time, always called p in the respective functions, while their output may be
multiple nodes, as a result of branching.
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function
solve node(p : node, l : int) : (Unsat|Solved(assignment)|Branched({node}))

match propagate (p) with
case Unsat

return Unsat

case Unmodified
noop()

case Modified(p′)
p ← p′

match solve relaxation(p) with
case Unsat

return Unsat

case Modified(p′)
return solve node(p′, l)

case Solved(α)
if obj(α) ≥ l then

return Unsat
else

match enforce(p, α) with
case Sat

return Solved(α)

case Unsat
return Unsat

case Modified(p′)
return solve node(p′, l)

case Branched(P )
return Branched(P )

3.2 Propagation

The function propagate attempts to reduce the domain of variables. In the
process of doing so, it may detect infeasibility (response Unsat); if it succeeds,
propagate returns a version p′ of the original node p modified with new bounds
(Modified(p′)); Unmodified means that no propagation was possible, neither was
the function able to detect infeasibility. The implementation we provide combines
ILP (propagate ilp) and CC (propagate cc) propagation techniques. We do
not explain propagate ilp, which is internal to the ILP solver, and as such
orthogonal to BC(T ). Either kind of propagation can be skipped. We repeat-
edly perform propagation, until a fixpoint is reached, or until a heuristic for
termination returns true, e.g., after a fixed number of rounds. In practice, SCIP
employs various constraint handlers that provide propagation procedures of dif-
ferent priority. The top-level propagation procedure takes into account priorities
to combine the sub-procedures.
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function propagate (p : node) : (Unsat|Modified(node)|Unmodified)
m ← false
while ∗ do

if ∗ then
match propagate ilp(p) with

case Unsat
return Unsat

case Modified(p′)
p ← p′

m ← true

case Unmodified
noop()

if ∗ then
match propagate cc(p) with

case Unsat
return Unsat

case Modified(p′)
p ← p′

m ← true

case Unmodified
noop()

return m ?Modified(p) :Unmodified

propagate cc is described in a declarative way. Our concrete implementa-
tion is similar to the CC procedures in SMT, and therefore takes offsets into
account [27]. equalities(p) stands for known equalities of the form v = w + k,
where v and w are integer variables and k is an integer constant. We implement
this by defining an auxiliary variable dv,w = v − w for every interesting pair of
variables v and w. We can subsequently query whether dv,w is fixed. For any
equality v = w + k implied by the already known equalities (conjoined with
definitions), we try to fix the upper and lower bound of v − w to k (via the
functions set lb and set ub that provide an interface to the ILP solver), and
report unsatisfiability if this is impossible. The outer forall statement should be
read as a declarative specification (i.e., we range over all relevant v, w), not as
a suggestion for efficient implementation.

3.3 Enforcing Continuous Relaxations

In solve node, propagation is followed by solving a continuous relaxation.
A response Unsat for the relaxation implies that the integer constraints of the
node (which are strictly harder than the real constraints of the relaxation) are
also unsatisfiable. If solve relaxation returns an assignment α (case Solved(α)),
solve node first checks whether α is better than the already known solution
(obj(α) < l), and does not further process the node if not; integer solutions can be
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function propagate cc(p : node) : (Unsat|Modified(node)|Unmodified)
m ← false
forall v, w ∈ variables(p) do

if equalities(p) ∧ definitions |=Z v = w + k for some k ∈ Z then
match set lb(p, 〈v − w〉, k) with

case Unsat
return Unsat

case Modified(p′)
m ← true
p ← p′

case Unmodified
noop()

match set ub(p, 〈v − w〉, k) with
case Unsat

return Unsat

case Modified(p′)
m ← true
p ← p′

case Unmodified
noop()

return m ?Modified(p) :Unmodified

at most as good as the solution to the relaxation. Otherwise, enforce is executed.
If α is not integer, or if it is theory-inconsistent, enforce is responsible for explain-
ing why, e.g., by introducing implied linear constraints violated by α. enforce
may determine that α satisfies all constraints (response Sat), or that the node (and
not just α) is infeasible (response Unsat). In either of these cases, solve node has
solved p. Enforcing may result in learning new linear constraints or bounds (case
Modified(p′)), in which case solve node re-processes the node.

enforce combines different kinds of enforcement, in much the same way that
propagate combines different kinds of propagation. The part of enforcement
that is related to integrality (enforce ilp) may branch around a real solution,
or apply cut generation techniques [12,15]. ILP cut generation techniques are
beyond the scope of this paper. Conversely, the implementation of enforce ilp
is not shown. We proceed to describe CC enforcement (enforce cc). First,
enforce cc calls check cc to check whether α is theory-consistent. check cc
reports that α does not satisfy the UF constraints if there exist calls v = f(l)
and v′ = f(l′) of some function f , such that all arguments in the respective
positions of the lists of arguments l and l′ have the same value under α, but
α(v) �= α(v′). check cc then returns the conflict (f, v, v′, l, l′) to explain what
is wrong with α. If no conflict is found, bcreceives α, and α becomes the new
candidate solution. In case check cc returns a conflict, enforce cc ensures that
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function
enforce(p : node, α : assignment) : (Sat|Unsat|Modified(node)|Branched({node}))

match enforce ilp(p, α) with
case Sat

return enforce cc(p, α)

case Unsat
return Unsat

case Modified(p′)
return Modified(p′)

case Branched(P )
return Branched(P )

function enforce cc(p : node, α : assignment) :
(Sat|Unsat|Modified(node)|Branched({node}))

match check cc(p, α) with
case Conflict(c)

match propagate cc(p) with
case Unsat

return Unsat

case Modified(p′)
return Modified(p′)

case Unmodified
return Branched(branch cc(p, c))

case Sat
return Sat

propagation has happened by calling propagate ccagain. The latter function
may have been skipped during the propagation stage. enforce cc only needs to
act further if propagation can neither detect unsatisfiability, nor produce new
information. In this case, enforce cc proceeds by branching.

Note that CC enforcement happens after the corresponding method for the
ILP constraints. CC enforcement thus only ever deals with integer assignments,
which yields cleaner implementation. Additionally, this design prioritizes ILP-
related over theory-related operations, thus emphasizing ILP-heavy problems.

3.4 Branching

Branching is what our CC implementation performs when all else fails. Con-
cretely, the following invariant holds when we get to branch cc. There exists
an integer solution for the non-theory constraints of p (given that integrality
enforcement has succeeded), but the integer bounds that hold for p do not allow
any information to be propagated, neither can we deduce unsatisfiability of p.
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function check cc(p : node, α : assignment) : (Sat|Conflict(conflict))
m ← {} // m is a map

foreach 〈v = f(l)〉 ∈ definitions do
c ← [α(w) + k|〈w + k〉 in l] // list comprehension over l
if (f, c) ∈ keys(m) then

(v′, l′) ← m[(f, c)]
if α(v) �= α(v′) then

return Conflict(f, v, v′, l, l′)

else
m[(f, c)] ← (v, l)

return Sat

When we call branch ccfrom enforce cc, we have access to a conflict
(f, v, v′, l, l′). Note that there must be some position i ∈ [0, arity(f) − 1] such
that the equality l[i] = l′[i] is not implied by the bounds visible to propagate cc.
Otherwise, all arguments would have been equal, and propagate cc would have
produced the equality v = v′, which is violated. It is always possible to branch
on whether l[i] < l′[i], l[i] = l′[i], or l[i] > l′[i]. If, according to the bounds on
v − v′, v = v′ is a possibility, then we may instead choose to branch on whether
v < v′, v = v′, or v > v′. Our branching involves very little guesswork. A con-
flict (f, v, v′, l, l′) provides a witness for the gap between the assignment under
examination α (which is not feasible with respect to UF) and the more limited
information that is available as bounds in p (which do not entail infeasibility).
In order to steer the ILP solver away from the problematic assignment α (and
other assignments similar to it), we have to examine the aforementioned gap.
We do so by branching driven by the conflict.

The branching strategy we outlined is in alignment with the Nelson-Oppen
(NO) scheme for combining decision procedures [20,25]. We branch on pairs
of variables that are shared between ILP and UF, i.e., make progress towards
an arrangement of the shared variables. Such branching will eventually produce
subproblems for which CC has all the information on the shared variables that it
needs to determine (in)feasibility of the UF constraints (in definitions); similarly,
for the UF-feasible subproblems, the ILP solver (with no more input possible
from CC) has all the information it needs to apply complete techniques and
determine feasibility. We thus guarantee termination of the combination.

4 Extensions

4.1 Propositional Structure

We have so far not discussed integer linear constraints that appear under arbi-
trary propositional structure. Inez provides such support by utilizing indicator
constraints. Such constraints have the form l ⇒ Σ0≤i<n[ci · xi] ≤ c, where l is a
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function branch cc(p : node, (f, v, v′, l, l′) : conflict) : {node}
if ∗ ∧ lb(p, 〈v − v′〉) ≤ 0 ∧ ub(p, 〈v − v′〉) ≥ 0 then

P ← {〈p ∧ v = v′〉}
if lb(p, 〈v − v′〉) < 0 then

P ← P ∪ {〈p ∧ v < v′〉}
if ub(p, 〈v − v′〉) > 0 then

P ← P ∪ {〈p ∧ v > v′〉}
return P

for i ∈ [0, arity(f) − 1] do
if α(l[i]) = α(l′[i]) then

if lb(p, 〈l[i] − l′[i]〉) < 0 ∨ ub(p, 〈l[i] − l′[i]〉) > 0 then
P ← {〈p ∧ l[i] = l′[i]〉}
if lb(p, 〈l[i] − l′[i]〉) < 0 then

P ← P ∪ {〈p ∧ l[i] < l′[i]〉}
if ub(p, 〈l[i] − l′[i]〉) > 0 then

P ← P ∪ {〈p ∧ l[i] > l′[i]〉}
return P

assert(false) // unreachable

possibly negated Boolean variable, ci and c are constants, and vi are variables.
Indicator constraints can establish equivalence between a Boolean variable b and
an inequality Σ0≤i<n[ci · xi] ≤ c via the constraints b ⇒ Σ0≤i<n[ci · xi] ≤ c and
¬b ⇒ −Σ0≤i<n[ci · xi] ≤ −c − 1. Once we have Boolean variables like b, encod-
ing propositional structure can be done via clauses (which are a special case of
integer linear inequalities) in a Tseitin-like fashion.

Indicator constraints can be encoded in terms of integer linear con-
straints [21], based on a technique that is known as Big-M. SCIP deals with
indicator constraints via a specialized constraint handler (rather than via Big-
M). This handler implements indicator constraints through propagation, enforc-
ing, and branching functions that fit in BC(T ) just like their CC counterparts
(Sect. 3).

4.2 Local Theory Extensions

We demonstrate how to support user-provided axioms within BC(T ) and Inez.
Such axioms constrain newly defined function symbols (beyond the ones in the
signature ΣZ of Linear Integer Arithmetic, e.g., +). We thus extend QFLIA by
axiomatizing new functions. Throughout this section, we assume a first-order
signature Σ, comprised of the axiomatized function symbols.

An example of the kinds of axioms we support was given via the axiom
in Line 28 of our introductory example. Our axiom is only meaningful as an
extension of (Integer Linear) Arithmetic. The intended meaning (monotonic-
ity of cost) is only achieved because ≤ is already constrained by Arithmetic.
More generally, we support axioms that are universally quantified disjunctions
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of inequalities that may contain function symbols. Our focus on clauses is not
a restriction; collections of clausal axioms can be used to encode axioms with
more complex structure.

Our implementation of axioms in Inez builds upon results on local theory
extensions [30] that allow us to replace axioms with a finite set of instances
thereof (computed based on the set of terms that appear in the formula). In
our case, the instantiation procedure produces clauses, where the literals involve
arithmetic and the Σ-function symbols.

While in principle we can simply encode the axiom instances of interest
as part of the input formula (Sect. 4.1), our implementation applies a special-
ized procedure that retains the clausal structure. The literals are inequalities,
e.g., for our monotonicity example we have inequalities of the form x ≤ y and
cost(x) ≤ cost(y) over x and y that appear in the input as arguments to cost.
By introducing fresh variables, we simplify these literals by rewriting them to
the form v ≤ c, where v is a variable and c is a constant. We then employ a SCIP
handler for constraints of the form

∨
i vi ≤ ci, that notably employs SAT-like

techniques for clauses [6].

4.3 Databases

Inez provides an extension aimed at database analysis [22]. The workhorse of
this extension is what we call table membership constraints, which have the form

(x1+c1, . . . , xk+ck) ∈ {(y1,1+d1,1, . . . , y1,k+d1,k), . . . , (yl,1+dl,1, . . . , yl,k+dl,k)},

where xi, yi,j are variables and ci, di,j are (integer) constants. On top of table
membership, Inez provides higher-level database-inspired modeling constructs.

Table membership fits in BC(T ) just like CC. Functions propagate db and
enforce db replace (or enhance) the corresponding CC functions, while every-
thing else remains unchanged. Design decisions in enforce db resemble the ones
in enforce cc, e.g., branching (driven by the data) happens only as a last resort.

5 Related Work

Frontend: Existing projects that enhance programming languages with con-
straints [7,19,31] differ from Inez both with respect to the language constructs
that they provide and the underlying constraint technology.

Backend: Inez seeks to combine the strengths of MP solvers [2,3,8] and solvers
for first-order theories [24,25,29], e.g., as implemented within Lazy SMT [28].
Previous work on similar combinations has focused on improving the arithmetic
capabilities [13,16] of SMT solvers by integrating MP engines [9,14,23], and on
extending SMT for optimization [11,26]. MPMT differs by having as its core an
MP solver, as opposed to a SAT solver.



68 P. Manolios et al.

6 Conclusions

We provided an overview of the techniques that empower the Inez constraint
solver. Inez is an open-source, freely available system that instantiates the BC(T )
architecture for Mathematical Programming Modulo Theories. We described the
concrete algorithms used to in Inez to efficiently implement BC(T ). Inez is an
extension of OCaml that allows users to write programs that orchestrate arbi-
trary interleaving between general computation and MPMT constraint solving.
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Abstract. An unsatisfiable set is a set of formulas whose conjunction
is unsatisfiable. Every unsatisfiable set can be corrected, i.e., made sat-
isfiable, by removing a subset of its members. The subset whose removal
yields satisfiability is called a correction subset. Given an unsatisfiable
set F there is a well known hitting set duality between the unsatisfiable
subsets of F and the correction subsets of F : every unsatisfiable subset
hits (has a non-empty intersection with) every correction subset, and,
dually, every correction subset hits every unsatisfiable subset. An impor-
tant problem with many applications in practice is to find a minimal
unsatisfiable subset (mus) of F , i.e., an unsatisfiable subset all of whose
proper subsets are satisfiable. A number of algorithms for this important
problem have been proposed. In this paper we present new algorithms for
finding a single mus and for finding all muses. Our algorithms exploit in
a new way the duality between correction subsets and unsatisfiable sub-
sets. We show that our algorithms advance the state of the art, enabling
more effective computation of muses.

1 Introduction

A set of formulas is said to be unsatisfiable if the conjunction of its members
has no model (is unsatisfiable). A minimal unsatisfiable set (a mus) has the
additional property that every proper subset of it is satisfiable.

Given an unsatisfiable set F the task of computing a mus contained in F
(a mus of F) has long been an important problem for a range of verification
applications related to diagnosis and debugging, e.g., program type debugging,
circuit diagnosis, production configuration (see [6]).

muses have become even more important with the increasing applications
of sat based approaches in system analysis and verification. In [23] a num-
ber of ways that muses can be used in sat based bounded model checking
(bmc) are presented. For example, a mus might tell the user that the prop-
erty being checked did not play a role in deriving unsat , thus indicating that
the system specification is unconstrained. muses also play an important role in
applications that exploit unsatisfiable sets (sometimes called unsatisfiable cores).
c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part II, LNCS 9207, pp. 70–86, 2015.
DOI: 10.1007/978-3-319-21668-3 5
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As discussed in [6] many of these application can benefit significantly from com-
puting muses rather than just using the default unsatisfiable core returned by
the solver. Formal equivalence checking, proof-based abstraction refinement, and
boolean function bi-decomposition are three important applications in which
computing a mus has proved to be beneficial [6]. Belov et al. [4] present some
more recent results quantifying the benefits of computing muses in the hybrid
counterexample/proof-based abstraction engine gla implemented in the abc
verification tool [9]. A more recent application of muses arises in the Franken-
Bit verifier [12] where muses are used to compute invariants [13].

With this range of applications it is not surprising that there has been an
extensive amount of research into developing more effective algorithms for com-
puting muses, e.g., [5,6,11,14,18–20] (see [6] for a more extensive list).

In this paper we continue this line of research and present new algorithms for
computing muses. Our new algorithms exploit the well known hitting set duality
between the unsatisfiable subsets of an unsatisfiable set F and the correction sub-
sets of F . Our algorithms work in particular with minimal subsets—the duality
also holds between minimal unsatisfiable subsets and minimal correction subsets.
This duality has been exploited before to compute all muses in the camus sys-
tem [16]. However, in camus the first step was to compute the set of all mcses,
AllMcses, from which all muses can be extracted by finding all minimal hitting
sets of AllMcses. Unfortunately in practice it is often impossible to complete the
first step of computing AllMcses.

We find new ways to exploit the mus/mcs connection in order to compute a
single mus and to incrementally compute all muses. Our method does not require
computing AllMcses. We show empirically that our new algorithms advance the
state of the art in mus computation, and thus can potentially enhance a range
of applications in formal methods that rely on computing muses.

2 Background

Let T be some background theory and F be a set of T-formulas such that the
conjunction of these formulas is T-unsat , i.e., their conjunction has no T-model .
In many applications it is useful to identify a smaller subset of F that is T-unsat .
In practice, if the T-sat status of various subsets of F can be effectively deter-
mined, then finding a minimal subset of F that is T-unsat is often achievable.

In this paper we will always regard a set of formulas F as representing the
conjunction of its members. So, e.g., F is T-unsat means

∧
f∈F f is T-unsat .

Definition 1 (MUS). An unsatisfiable subset U of F is a subset of F that is
T-unsat . A Minimal Unsatisfiable Set (mus) of F is a unsatisfiable subset
M ⊆ F that is minimal w.r.t. set inclusion. That is, M is T-unsat and every
proper subset S � M , S is T-sat .

Definition 2 (MSS). A satisfiable subset of F is a subset of F that is T-sat .
A Maximal Satisfiable Subset (mss) of F is a satisfiable subset S ⊆ F that
is maximal w.r.t set inclusion. That is, S is T-sat and for every proper superset
U � S such that U ⊆ F , U is T-unsat .
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Definition 3 (MCS). A correction subset of F is a subset of F whose comple-
ment in F is T-sat . A Minimal Correction Subset (mcs) of F is a correction
subset C ⊆ F that is minimal w.r.t. set inclusion, i.e., F \ C is an mss of F .

Definition 4. A formula f ∈ F is said to be critical (or a transition formula
[7]) for F when F is T-unsat and F − {f} is T-sat .

Intuitively, a mus is an unsatisfiable set that cannot be reduced without causing
it to become satisfiable; a mss is a satisfiable set that cannot be added to without
causing it to become unsatisfiable; and an mcs is a minimal set of removals from
F that causes F to become satisfiable.

A critical formula for F is one whose removal from F causes F to become
satisfiable. It should be noted if f is critical for F then (a) f must be contained
in every mus of F and (b) {f} is an mcs of F . Furthermore, it can be observed
that M is a mus if and only if every f ∈ M is critical for M . Note that a formula
f that is critical for a set S is not necessarily critical for a superset S′ ⊃ S. In
particular, S′ might contain other muses that do not contain f .

Duality. There is a well known hitting set duality between muses and mcses
that to the best of our knowledge was first presented formally by Reiter [22] in
the context of diagnosis problems.

A hitting set H of a collection of sets C is a set that “hits” every set in C in the
sense that it has a non empty intersection with each such set: ∀C ∈ C.H ∩C �= ∅.
A hitting set H is minimal (or irreducible) if no subset of H is a hitting set.

Let AllMuses(F) (AllMcses(F)) be the set containing all muses (mcses) of
F . Then Reiter’s result can be recast to show that M ∈ AllMuses(F) iff M is
a minimal hitting set of AllMcses(F), and dually, C ∈ AllMcses(F) iff C is a
minimal hitting set of AllMuses(F). Intuitively, we can see that if a mus M fails
to hit an mcs C, then M ⊆ F−C, i.e., M is a subset of a satisfiable set and
hence can’t be unsatisfiable. Similarly, if an mcs C fails to hit a mus M then
F−C ⊇ M is a superset of an unsatisfiable set and hence can’t be satisfiable.
It is also not hard to see that the duality between mcses and muses also holds
for non-minimal sets. That is, every correction subset (not necessarily minimal)
hits all unsatisfiable subsets and vice versa.

Although we have discussed muses and mcses in the context of a fixed
set of formulas F we will also be working with subsets of F . It is useful to
point out that if F ′ ⊆ F , then AllMuses(F ′) ⊆ AllMuses(F) and in general
AllMuses(F ′) �= AllMuses(F). Hence, if f is critical for F it is critical for all
unsatisfiable subsets of F (f is critical iff it is contained in every mus).

An mcs C ′ of F ′ ⊂ F is not necessarily an mcs of F , however C ′ can always
be extended to an mcs C of F . In particular, we can add the formulas of F \ F ′

to F ′ one at a time. If C ′ is no longer a correction subset of F ′ ∪ {f} we add f
to C ′. At each stage the augmented C ′ is an mcs of the augmented F ′, and at
the end C ′ has been extended to be an mcs of F . Since we have not seen this
observation previously in the literature, and its proof is illustrative of concepts
needed in our algorithms, we provide a proof here.
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Proposition 1. Let C ′ ∈ AllMcses(F ′) and f ∈ F \ F ′. If C ′ is a correction
subset of F ′ ∪ {f} it is an mcs of F ′ ∪ {f}, and if it is not then C ′ ∪ {f} is an
mcs of F ′ ∪ {f}.

Proof. C ′ is a minimal correction subset of F ′ if and only if for every a ∈ C ′

there exists a mus M ∈ AllMuses(F ′) such that M ∩ C ′ = {a}. That is, M
is only hit by a, hence C ′ will no longer be a correction subset if we remove
a. M serves as a witness that a is needed in C ′, and C ′ is minimal iff every
member of C ′ has a witness. Since AllMuses(F ′) ⊆ AllMuses(F ′ ∪ {f}), the
witnesses for C ′ remain valid after adding f to F ′ and if C ′ corrects F ′ ∪ {f}
it must be an mcs of F ′ ∪ {f}. If C ′ does not correct F ′ ∪ {f} then there are
some muses in AllMuses(F ′ ∪ {f}) that are not hit by C ′. But since C ′ hits
all muses in AllMuses(F ′) these un-hit muses must contain f . So C ′ ∪ {f} is a
correction subset of F ′ ∪ {f}. Furthermore, any of these new muses can serve
as a witness for f , and for every a ∈ C there is a witness for a in AllMuses(F ′)
which cannot contain f . Hence, these witnesses remain valid when f is added to
C ′, and C ′ ∪ {f} is an mcs of F ′ ∪ {f}. �

Although we have given the above definitions in terms of an arbitrary theory T,
in the rest of this paper we will work with T being ordinary propositional logic
(Prop) and F being a set of clauses. In particular, our algorithms assume access
to some basic facilities of modern sat solvers. Some of these facilities are also
available in modern smt solvers, and thus some of our ideas could be lifted to
theories handled by smt solvers.

3 Prior MUS Algorithms

Current state-of-the-art algorithms for computing muses have converged on ver-
sions of Algorithm 1.

Algorithm 1 operates on a working set of clauses W = (unkn∪crits) with the
clauses of unknown status, unkn, initially equal to F . In the main while loop
the status of each clause in unkn is resolved and its size reduced until unkn = ∅.
At this point W consists only of a set of clauses, crits, all of which are known
to be critical for W . As observed above this implies that W = crits is a mus.

The input assumption is that W = F is unsat , and this condition is an
invariant of the algorithm. Each iteration of the main loop selects a clause of
unknown status c ∈ unkn and tests the satisfiability of W \ {c}. We have that
W \ {c} |= ¬c, as W has no models. Hence, we can make the sat test of W \ {c}
more efficient by adding the implied ¬c (since c is a clause, ¬c is a set of unit
clauses which are particularly advantageous for a sat solver).

If W \ {c} is sat then we know that c is critical for W (and for all subsets of
W that the algorithm subsequently works with). In this case we can additionally
find more critical clauses by applying the technique of recursive model rotation
(rmr) [7,24]. Note that the satisfying model π returned is such that π |= (crits∪
unkn)\{c} and π �|= c, which is the condition required for rmr to work correctly.
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Algorithm 1. findmus
(
F

)
: Current state-of-the-art algorithm for com-

puting a mus

Input: F an unsatisfiable set of clauses
Output: a mus of F

1 crits ← ∅
2 unkn ← F
3 while unkn �= ∅ do
4 c ← choose c ∈ unkn
5 unkn ← unkn \ {c}
6 (sat?,π,κ) ← SatSolve(crits ∪ unkn ∪ {¬c})

/* SatSolve returns the status (sat or unsat), a model π if sat, or an unsat
subset κ of the input if unsat. */

7 if sat? then
8 crits ← crits ∪ {c}
9 C ← ermr (c, crits, unkn, π)

10 crits ← crits ∪ C
11 unkn ← unkn \ C
12 else
13 if κ ⊆ (crits ∪ unkn) then
14 unkn ← unkn ∩ κ
15 return crits

Every newly identified critical clause is removed from unkn and added to crits
thus reducing the number of iterations of the main loop.

If W \ {c} is unsat then there is some mus of W that does not contain c.
The algorithm then focuses on finding one of these muses by removing c from
W . Note that there might also be muses of W that do contain c so the final
mus found depends on the order in which clauses of unkn are tested. One final
optimization is that we can obtain an unsat core, κ, from the sat solver. If that
core did not depend on the added ¬c clauses then we can reduce W by setting
it to κ. In this case it must be that crits ⊆ κ: all the clauses of crits are critical
for W \ {c}. Hence, to make W = κ we simply need to remove from unkn all
clauses not in κ. This optimization is called clause set refinement [20].

Algorithm 1 is used in state of the art mus finding algorithms like [8,20], and
these systems also add a number of other lower level optimizations as described
in [20]. The main difference between these mus finding systems is that some use a
modified sat solver that keeps track of the resolution proof used to derive unsat
[20]—the unsatisfiable subset κ is extracted from that proof—while others use
selector variables for the input clauses and the technique of sat solving under
assumptions to obtain κ [10].

4 MCS Based MUS Finding

In this section we present our new algorithms for finding muses. Our algorithms
are based on the duality between mcses and muses mentioned in Sect. 2. This
duality has been exploited in previous work, in particular in the camus system
[16]. However, in that prior work the first step was to compute all mcses of the
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input formula F , AllMcses(F), after which muses were found by finding minimal
hitting sets of AllMcses(F). This first step is very expensive, and sometimes
cannot be completed since there can be exponential number of mcses. So camus
is not very effective for the task of finding a single mus. In this work we revisit this
duality to arrive at algorithms that do not require an exhaustive enumeration of
all mcses.

4.1 Finding a Single MUS

Algorithm 2 is our new algorithm for finding a single mus. Like Algorithm 1, it
operates on the working set of clauses W = (unkn ∪ crits) with the clauses of
unknown status, unkn, initially equal to F . In the main while loop a minimal
correction subset of W is computed using Algorithm 3. Algorithm 3 works to find
not just any mcs: it searches for an mcs contained entirely in unkn. Every clause
in the set crits is critical for W , and thus every clause in crits is a singleton mcs.
We are not interested in finding these mcses. If there is no mcs in unkn it must
be the case that W remains unsat even if all of unkn is removed from it. That
is, crits is an unsatisfiable set all of whose members are critical—it is a mus.

If we do find an mcs, CS , we then choose some clause from it, c, add c to
crits and remove all of CS from unkn. Algorithm 3 also returns the satisfying
solution, π it found for W \ CS (verifying that CS is a correction subset). This
solution can be used to find more criticals using rmr. Note that since CS is
a minimal correction subset it must be the case that π �|= a for every a ∈ CS .
Thus, π |= (crits∪unkn)\{c} and π �|= c, which is the condition required for rmr
to work correctly. As will be described below we have developed an extension of
standard rmr, em-rmr, that can find even more new criticals.

Clause set refinement can be used within this algorithm. Algorithm3 (find-
mcs) computes an unsatisfiable core whenever |CS | ≥ 1. From this core an
unsatisfiable set κ ⊆ crits ∪ unkn can be extracted and used as in Algorithm1
to reduce unkn to unkn ∩ κ. A simpler solution, however, is to do another sat
call on the unsatisfiable set crits ∪unkn whenever |CS | > 1. In this case the sat
solver has just refuted a closely related formula in find-mcs and can exploit its
previously learned clauses to quickly refute crits ∪unkn. The core it returns can
then be intersected with unkn. In our experiments, we confirmed that in the vast
majority of cases the cost of this step is negligible typically taking less than a
second cumulatively.

However, in those cases where the instance contains only one mus all mcses
will have size 1, and we would never get to perform clause set refinement. We
address this deficiency by forcing a sat call on crits ∪ unkn whenever clause set
refinement has not been performed for some time. The logic of when to do the
sat call and returning a reduced unkn set is encapsulated in the refine-clause-
set subroutine.

Theorem 1. If its input formula F is unsat, find-mcs correctly returns an
mcs of crits ∪ unkn contained in unkn if any exist, em-rmr correctly returns a
set of clauses critical for crits ∪ unkn, and refine-clause-set correctly returns
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Algorithm 2. mcs-mus
(
F

)
: Find a mus of F using mcs duality.

Input: F an unsatisfiable set of clauses
Output: a mus of F

1 crits ← ∅
2 unkn ← F
3 while true do
4 (CS , π) ← find-mcs(crits, unkn) // Find CS , an mcs contained in unkn.
5 if CS = null then
6 return crits
7 c ← choose c ∈ CS
8 crits ← crits ∪ {c}
9 unkn ← unkn \ CS

10 C ← em-rmr (c,crits,unkn, π)
11 crits ← crits ∪ C
12 unkn ← unkn \ C
13 unkn ← refine-clause-set(crits, unkn, |CS | > 1)

an unsatisfiable subset of crits ∪ unkn, then Algorithm2 will return a mus of its
input formula F .

Proof. We show that two invariants hold in the main loop of Algorithm2: (1)
crits ∪ unkn is unsat and (2) every clause in crits is critical for crits ∪ unkn.

Algorithm 2 terminates when find-mcs is unable to find a correction subset
in unkn. This happens when crits∪unkn remains unsat even after all the clauses
of unkn are removed, i.e., when it detects that crits is unsat (see Algorithm 3).
In this case, we know that crits is an unsat set of clauses and from invariant
(2) all of its members are critical, i.e., it is a mus. Hence, the correctness of
Algorithm 2 follows from the invariants.

Initially crits = ∅ and unkn = F , and F is unsat by assumption. So the
invariants hold at the start of the main loop. Assume that they hold up until the
i−1’th iteration of the main loop. If in the i’th iteration we fail to find an mcs
contained in unkn, then crits is unsat and unchanged from the i−1’th iteration.
So invariant (1) holds and by induction so does invariant (2).

Otherwise, let CS be the mcs returned by find-mcs with CS ⊆ unkn. CS
is an mcs of W = crits ∪ unkn, therefore there is a witness M ∈ AllMuses(W )
for every c ∈ CS with M ∩ CS = {c}. Algorithm 2 updates crits to crits ∪ {c}
(for some c ∈ CS ) and unkn to unkn \CS . Let this updated set crits ∪ unkn be
W ′ = W \ CS ∪ {c}. We have that M ⊆ W ′ so invariant (1) continues to hold.
Furthermore, let M ′ ∈ AllMuses(W ′) be any mus of W ′. Since AllMuses(W ′) ⊆
AllMuses(W ), M ′ is also a mus of W . Hence M ′ must be hit by the mcs CS and
since W ′ only contains c from CS we must have c ∈ M ′. This shows that c hits
all muses of W ′, i.e., removing it from W ′ removes all muses from W ′ making
W ′ sat . That is, c is critical for W ′ = crits ∪ unkn, and invariant (2) continues
to hold.

Finally since we are assuming that em-rmr is correct, the invariants are
preserved after em-rmr moves some clauses from unkn to crits. The call to
refine-clause-set cannot affect invariant (2) and since we assume that it is
correct, it preserves also invariant (1). �
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Algorithm 3. findmcs(crits, unkn): Find an mcs of crits ∪unkn entirely
contained in unkn.
Input: (crits, unkn) Two sets of clauses whose union is unsatisfiable.
Output: CS an mcs of crits ∪ unkn that is contained in unkn and a model π

such that π |= (crits ∪ unkn) \ CS
1 (sat?, π, κ) ← SatSolve(crits)
2 if not sat? then
3 return null
4 CS ← {c ∈ unkn | π �|= c}
5 while |CS | > 1 do
6 (sat?, π′, κ) ← SatSolve(crits ∪ (unkn \ CS) ∪ atLeastOneIsTrue(CS))
7 if sat? then
8 CS ← {c ∈ CS | π′ �|= c}
9 π ← π′

10 else
11 return (CS , π)
12 return (CS , π)

Finding a Constrained MCS. There are two state of the art algorithms for
finding mcses, CLD [17] and Relaxation Search [3]. Both can be modified to find
an mcs in a particular subset of the input clauses. We tried Relaxation Search
but found that an approach that is similar to CLD, but not identical, worked
best for our purposes. The resulting Algorithm 3 finds an mcs of the union of
its two input clause sets, crits and unkn that is constrained to be contained
in unkn.

Initially a sat test is performed on crits. If crits is unsat , then there is no
correction subset contained in unkn so the algorithm returns null. Otherwise,
we have a satisfying model π of crits. The set of clauses falsified by any model
is always a correction subset, and for π this correction subset, CS , is contained
in unkn. The algorithm makes CS minimal by a sequence of sat calls, each one
asking the sat solver to find a new model that falsifies a proper subset of clauses
from the previous model. At each iteration, CS is updated to be the reduced
set of falsified clauses. This continues until a model cannot be found or CS is
reduced down to one clause. If a model cannot be found this means that adding
any clause of CS to (crits ∪ unkn) \CS yields an unsatisfiable formula, i.e., CS
is an mcs. If CS is reduced to one clause then that clause must be an mcs since
crits ∪ unkn is unsatisfiable, and an invariant of the algorithm is that CS is
always a correction set of crits ∪ unkn.

The main difference between Algorithm 3 and CLD of [17] lies in the encod-
ing of atLeastOneIsTrue(CS ) constraint passed to the sat solver. In CLD this
constraint is encoded as one large clause that is the disjunction of all of the
clauses in CS . π falsifies all clauses of CS , so it must falsify their disjunction,
therefore this disjunction is not a tautology. Furthermore, when the disjunction
is satisfied at least one more clause of CS must also be satisfied. In Algorithm 3
we instead add a selection variable to each clause of CS . That is, each clause
ci ∈ CS is transformed into the clause c+i = ci ∨ ¬si, where si is a new variable
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not appearing elsewhere in the formula. Making si true strengthens c+i back
to ci, while making it false satisfies c+i , effectively removing it from the CNF.
With these selector variables atLeastOneIsTrue(CS ) can be encoded as a clause
containing all of the selector variables:

∨
ci∈CS si.

In addition, we found that in 90 % of cases when the sat call is able to
find an improving model it was able to do so without backtracking (no conflicts
were found). Hence, a lot of the time of the solver is spent in descending a
single branch that changes little between iterations of Algorithm3. This time can
be significantly reduced if we backtrack only to the point where the branches
diverge. This is similar to techniques used already in general sat solving for
improving restarts [21] and in incremental sat solving for reducing the overhead
of assumptions [1]. We found that these two simple changes had a surprisingly
positive effect on efficiency.

Recursive Model Rotation (RMR). If F is unsatisfiable then it follows
from the definition that a clause c is critical for F if and only if there exists a
model π such that π |= F \ {c}. Hence, if in Algorithm 1 or Algorithm 2, we find
for the current set of working clauses W = (unkn ∪ crits) a model π such that
π |= W \ {c} we know that c is critical for W .

The technique of rmr [7] is to examine models that differ from π by only
one assignment to see if we can find a model that witnesses the criticality of a
clause different from c whose status is still undetermined. This is accomplished
by flipping π’s assignments to the variables of c one by one. Each such flipped
model satisfies c and can be checked to see if it falsifies only one other unknown
clause. If such a clause c′ is found, then c′ is now known to be critical, and
we can recursively flip the model that witnesses its criticality. Recursive model
rotation has been found to be very effective in mus finding, eliminating many
sat tests. Eager model rotation (ermr) [20] improves rmr by allowing it to
falsify a critical clause, which may enable further rotations.

We have found that we can effectively find more critical clauses than ermr
using Algorithm 4. This algorithm first runs ermr and then uses a sat solver to
find a model that witnesses the criticality of a clause of unknown status. This
is done by using a standard encoding of an “at most one” constraint over the
negation of the selector variables of the clauses currently in unkn. This forces the
model to satisfy all clauses of crits ∪ unkn except one. (The model must falsify
that remaining clause as crits∪unkn is unsatisfiable). This sequence of sat calls
can in principle find all critical clauses, but it can sometimes take too long. In
practice, we put a strict time bound on the sat call, and found that within that
bound we could still find a useful number of additional critical clauses. As we
will show in Sect. 5, this method can sometimes hinder performance, but also
allows us to solve some instances that were otherwise too hard.

4.2 Finding All MUSES

We have also developed an algorithm for finding all muses. Our algorithm
exploits the idea of using a sat formula to represent a constrained collection
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Algorithm 4. em-rmr(c, crits , unkn, π) find more criticals than ermr

Input: (c, crits, unkn, π): crits ∪ unkn is unsat ; all clauses of crits are critical
for crits ∪ unkn, c ∈ crits; π �|= c, and π |= (crits ∪ unkn) \ {c}.

Output: Returns an additional set of clauses critical for crits ∪ unkn.
1 while true do
2 crits ′ ← crits ∪ ermr (c, crits, unkn, π)
3 unkn ′ ← unkn \ crits ′

4 (sat?, π, κ) ← SatSolve(crits ′ ∪ atMostOne({¬si | ci ∈ unkn ′}))
5 if sat? then
6 c ← the single ci ∈ unkn ′ such that π |= ¬si
7 crits ′ ← crits ′ ∪ {c}
8 unkn ′ ← unkn ′ \ {c}
9 else

10 return (crits ′ \ crits)

of sets. This idea was also used in the marco system which also enumerates
all muses [15]. Specifically, if we regard each propositional variable as being a
set element, then the set of variables made true by any model can be viewed as
being a set. The set of satisfying models then represents a collection of sets.

In marco, all muses are enumerated by maintaining a sat formula ClsSets
which contains a variable si for each clause ci ∈ F . Clauses are added to ClsSets
to exclude all already found muses as well as all supersets of these muses. For
example, if M = {c1, c3, c4} is a known mus then the clause (¬s1 ∨ ¬s3 ∨ ¬s4)
ensures that every satisfying model of ClsSets excludes at least one clause of M—
this blocks M and all supersets of M from being solutions to ClsSets. A sat
test is preformed on ClsSets which extracts a subset F ′ of F not containing any
known mus. If F ′ is unsat one of its muses is extracted using Algorithm 1 and
then blocked in ClsSets, otherwise marco grows F ′ into an mss-mcs pair 〈S,F \
S〉 and a clause is added to ClsSets to block F \ S and all of its supersets. For
example, for a correction subset C = {c1, c3, c4} the clause (s1∨s3∨s4) is added
to ClsSets. When ClsSets becomes unsat , all muses have been enumerated.

Algorithm 5 is our new algorithm for enumerating all muses of an unsatis-
fiable formula F . The high level structure of Algorithm5 is similar to that of
marco but rather than treating the mus extraction procedure as a black box,
it records the (not necessarily minimal) correction subsets discovered during the
MUS procedure and uses them to accelerate the extraction of future muses. In
particular, muses and mcses are blocked in the same way as in marco. Hence,
at any stage the set F ′ obtained from a sat solution of ClsSets has the properties
(a) F ′ does not contain any known muses and (b) F ′ hits all known correction
subsets. We want F ′ to hit all known correction subsets as otherwise F ′ can-
not contain a mus. When ClsSets becomes unsatisfiable all muses have been
enumerated (and blocked).

Given a sat solution F ′ of ClsSets, we extract a mus using a procedure sim-
ilar to Algorithm 2. In addition, however, we mirror the removal of clauses from
unkn by setting the corresponding variable in ClsSets to false. Unit propagation
in ClsSets may then give us more variables that can be moved to crits, because
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Algorithm 5. mcs-mus-all
(
F

)
: Enumerate all muses of F using mcs

duality.
Input: F an unsatisfiable set of clauses
Output: enumerate all muses of F

1 ClsSets ← empty set of clauses and the set of variables {si | ci ∈ F}
2 while true do
3 (sat?, π, κ) ← SatSolve(ClsSets) // Setting all decisions to true
4 if not sat? then
5 return // All muses enumerated
6 F ′ ← {ci | ci ∈ F ∧ π |= si}
7 Fc ← F \ F ′

8 (sat?, π, κ) ← SatSolve(F ′)
9 if sat? then

10 ClsSets ← ClsSets ∪ (
∨

ci∈Fc si) // mcs

11 else
12 crits ← {ci | si ∈ UP (ClsSets ∪ {(¬sj)|cj ∈ Fc}}
13 unkn ← F ′ \ crits
14 while true do
15 (CS , π) ← find-mcs(crits, unkn)
16 if CS = null then
17 enumerate(crits) // crits is a mus
18 ClsSets ← ClsSets ∪ (

∨
ci∈crits ¬si) // Block this mus

19 break
20 else
21 c ← choose c ∈ CS

22 CSF ← extend-cs (CS , π, F ′, Fc)
23 ClsSets ← ClsSets ∪ (

∨
ci∈CSF si) // Correction set

24 Fc ← Fc ∪ (CS \ {c})
25 crits ← crits ∪ {c} ∪ {ci | si ∈ UP (ClsSets ∪ {(¬sj)|cj ∈ Fc}}
26 unkn ← unkn \ (CS ∪ crits)
27 crits ← em-rmr (c,crits,unkn,π)
28 unkn ← refine-clause-set(crits, unkn, |CS | > 1),

previously discovered correction sets must be hit. Once a mus is constructed, all
these assignments to ClsSets are retracted.

One complication that arises in comparison to Algorithm 2 is that when we
discover an mcs, it is only an mcs of crits ∪ unkn, but we can only add mcses
of F to ClsSets. Therefore, we need to extend each mcs that we discover to
an mcs of F . The function extend-cs does this by adding to CS all clauses of
F \ (crits ∪ unkn) that were violated by π. We choose not to minimize this CS ,
as it can be costly especially if F is much bigger than crits ∪ unkn.

An additional insight arising from the ideas of Relaxation Search [3] is that if
while solving ClsSets we force the sat solver to always set its decision variables
to true, then the set F ′ we obtain will be a maximal set satisfying (a) and
(b) above. Thus the set of excluded clauses Fc = F \ F ′ must be a minimal
hitting set of the set of known muses. Each known mus in ClsSets forces the
exclusion of at least one clause. Thus Fc, is a hitting set of the known muses.
Since setting all decision variables to true causes the inclusion of clauses, all
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exclusions must be forced by unit propagation. This means that each excluded
clause arises from a mus all of whose other clauses have already been included
in F ′. That is, for each excluded clause c in Fc there is some known mus M
such that M ∩ Fc = {c}. This shows that Fc is minimal.

Theorem 2. If its input formula F is unsat, All-MCS-MUS returns all MUSes
of its input formula F .

Proof (Sketch). First note that all muses and all msses are solutions of ClsSets.
At each iteration, it produces either a satisfiable set, whose complement is an
mcs, or an unsatisfiable set which is reduced to a mus. Each is subsequently
blocked so cannot be reported again, nor can any of its supersets. Additionally,
the inner loop generates correction subsets, which it blocks in ClsSets, without
checking if they are mcses of F . If these are mcses then they will not be pro-
duced as solutions of ClsSets. So the algorithm will produce only muses and
mcses before ClsSets becomes unsat. Additionally, it will produce all muses, as
this is the only way to block such solutions.

It remains to show that it produces correct mcses and muses. For mcses, it
follows from the fact that the formula is satisfiable and the solution is maximal.
For muses, we only need to show that unit propagation in ClsSets produces
critical clauses. Indeed, all correction sets that are blocked in ClsSets are either
produced by solutions of ClsSets itself or as mcses of some subset of F , extended
to a correction set of F . When such a blocking clause becomes unit, it means
that exactly one of the clauses of the corresponding correction set remains in
crits ∪ unkn. A mus must hit all correction sets, so the sole remaining clause
is critical for crits ∪ unkn. The correctness of the rest of the mus extraction
procedure follows from the correctness of Algorithm 2. �

5 Empirical Evaluation

We implemented all of our new algorithms C++, and evaluated them against
state-of-the-art algorithms for the corresponding tasks. We ran all experiments
on a cluster of 48-core Opteron 6176 nodes at 2.3 GHz having 378 GB RAM.

Discovering MCSES. The state of the art in discovering mcses is cld [17]
and Relaxation Search (rs) [3]. We compared Algorithm 3, (denoted mcscl)
using minisat as the sat solver without preprocessing [10], against cld and rs
in the tasks of identifying a single mcs and generating all mcses of a formula,
on a set comprising 1343 industrial instances from sat competitions and struc-
tured maxsat instances from maxsat evaluations [17]. We show cactus plots
comparing the three algorithms in both tasks in Fig. 1, with a timeout of 1800
seconds.

We first note that there is a relatively small window in which the algo-
rithms may differentiate. In the case of discovering a single mcs, more than
1200 instances are solved instantaneously by all 3 algorithms, while some 20 of
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Fig. 1. Number of solved instances against time for (a) generating a single mcs and
(b) generating all mcses of a formula.

them are out of reach for all. Regardless, mcscl is faster than the other two
algorithms, for easy instances as well as hard ones and finds an mcs in 17 more
instances than cld and 5 more instances than rs. Similarly, in the case of discov-
ering all mcses, all 3 algorithms solve approximately 400 instances in less than a
second, while 700 have too many mcses to enumerate. In this case, mcscl again
outperforms both the other alternatives, finding all mcses in 15 more instances
than rs and 9 more instances than cld.

Discovering a Single MUS. For this task, we used a set of 324 instances
assembled by Belov et al. [5] for the evaluation of the tool dmuser. We tested
implementations of mcs-mus that used either minisat or glucose [2] as the
backend sat solver both with preprocessing enabled. We modified these solvers to
bound time spent in preprocessing to 5 % of total runtime. We evaluated mcs-
mus with em-rmr or with only eager model rotation. We compared against
muser [8] using minisat and using glucose, and against haifa-muc [20]
(based on minisat). For all algorithms, we preprocess the instances by trim-
ming them using glucose and the tool DRAT-trim, which is a particularly
effective heuristic clause set refinement method, but which cannot prove mini-
mality and rarely produces a minimal mus. We also compare against dmuser
[5] a system that augments a “core” mus extraction algorithms with more elab-
orate trimming techniques. dmuser yields significant improvements to muser
and haifa-muc and potentially could also improve mcs-mus. However, we have
not, as yet, integrated mcs-mus into dmuser to test this. The timeout in this
experiment—including trimming—was set to 3600 seconds. Results are shown
in Fig. 2.

Our first observation is that the combination of minisat and assumption-
based solving is deficient, as is evident by the very poor performance of muser
with minisat. Nevertheless, mcs-mus with minisat is comparable to both haifa-
muc and muser with glucose1. We also see that em-rmr improves performance
1 Our results seem to contradict the findings of Belov et al. [5], who found that muser

with glucose was worse than haifa-muc. It is unclear why this is the case.
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Fig. 2. Number of solved instances against time for extracting a single mus.

overall in this case, yielding the second best combination among core algorithms.
When paired with its glucose backend, mcs-mus becomes the overall best algo-
rithm for this task, surpassing even ITr-HM-A, the best configuration of dmuser
reported in [5]. However, the improvement of mcs-mus when moving from min-
isat to glucose is not as dramatic as that of muser. It is, however, clearly
ahead of other core algorithms and although it solves just 6 more instances than
the next closest algorithm it does so significantly faster and even solves 2 more
instances than dmuser. Interestingly, em-rmr improves mcs-mus with minisat
but makes things worse when glucose is used.

Discovering All MUSES. Here we compare Algorithm 5 (mcs-mus-all)
against the state of the art for discovering multiple (potentially all) muses,
marco [15]. We use only the minisat backend, as that is what marco is based
on, with the additional optimization that for every unsatisfiable subset that we
minimize, we create a copy of the sat solver in which we can do destructive
updates. This is implicit in marco, which uses an external tool for extracting
a mus.

We used the set of benchmarks from the MUS track of the 2011 sat com-
petition2 (without trimming) and ran both algorithms for 3600 seconds on each
instance. In Fig. 3 we show scatter plots of the time taken by each algorithm to
generate the first mus, of the time taken to differentiate between an instance
with one mus or many and of the number of muses generated within the time-
out. Determining whether an instance contains one mus or many involves either
successfully terminating generation or generating a second mus.

We see that mcs-mus-all is more effective than marco at generating the
first mus and differentiating between instances with a single mus or many muses.
Indeed, it finds a mus in 20 more instances than marco and differentiates 17
more instances. However, when marco can generate several muses, it is typi-
cally more efficient at doing so, especially for very large numbers of muses. We
conjecture that in these cases, extracting a single mus is so efficient, that the
2 http://www.satcompetition.org/2011.

http://www.satcompetition.org/2011
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Fig. 3. (a) Time for finding a single mus, (b) Time to differentiate between single-mus
and multiple-mus instances, (c) number of muses generated, in logscale. In all cases,
points above the line indicate mcs-mus-all was better.

overhead of keeping track of the correction sets that mcs-mus-all generates out-
weighs their potential benefit. This means that when the objective is to generate
a variety of muses quickly on instances of moderate difficulty, mcs-mus-all is
to be preferred, but for large numbers of muses in easy instances, marco is
preferable.

6 Conclusions

We have proposed a novel approach to extracting muses from unsatisfiable for-
mulas. We exploited the well-known hitting set duality between correction sets
and unsatisfiable subsets and used a greedy approach which, given an unhit mcs,
can extend a set of clauses so that they are guaranteed to be a subset of a mus.
We further extended this algorithm to generating all muses. These developments
hinge in part on our new very efficient mcs extraction algorithm. In all cases,
we have demonstrated that the new algorithms outperform the state of the art.
Despite this, there is little tuning or low level optimizations in our implementa-
tion, in contrast to the current state of the art [20]. This suggests that in future
work we explore such optimizations to widen the gap.
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Abstract. Satisfiability Modulo Theories (SMT) solvers incorporate
decision procedures for theories of data types that commonly occur in
software. This makes them important tools for automating verification
problems. A limitation frequently encountered is that verification prob-
lems are often not fully expressible in the theories supported natively by
the solvers. Many solvers allow the specification of application-specific
theories as quantified axioms, but their handling is incomplete outside
of narrow special cases.

In this work, we show how SMT solvers can be used to obtain com-
plete decision procedures for local theory extensions, an important class
of theories that are decidable using finite instantiation of axioms. We
present an algorithm that uses E-matching to generate instances incre-
mentally during the search, significantly reducing the number of gener-
ated instances compared to eager instantiation strategies. We have used
two SMT solvers to implement this algorithm and conducted an extensive
experimental evaluation on benchmarks derived from verification condi-
tions for heap-manipulating programs. We believe that our results are of
interest to both the users of SMT solvers as well as their developers.

1 Introduction

Satisfiability Modulo Theories (SMT) solvers are a cornerstone of today’s veri-
fication technology. Common applications of SMT include checking verification
conditions in deductive verification [14,26], computing program abstractions in
software model checking [1,9,27], and synthesizing code fragments in software
synthesis [5,6]. Ultimately, all these tasks can be reduced to satisfiability of
formulas in certain first-order theories that model the semantics of prevalent
data types and software constructs, such as integers, bitvectors, and arrays. The
appeal of SMT solvers is that they implement decision procedures for efficiently
reasoning about formulas in these theories. Thus, they can often be used off the
shelf as automated back-end solvers in verification tools.

To the memory of Morgan Deters.

c© Springer International Publishing Switzerland 2015
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Some verification tasks involve reasoning about universally quantified formu-
las, which goes beyond the capabilities of the solvers’ core decision procedures.
Typical examples include verification of programs with complex data structures
and concurrency, yielding formulas that quantify over unbounded sets of memory
locations or thread identifiers. From a logical perspective, these quantified formu-
las can be thought of as axioms of application-specific theories. In practice, such
theories often remain within decidable fragments of first-order logic [2,7,9,23].
However, their narrow scope (which is typically restricted to a specific program)
does not justify the implementation of a dedicated decision procedure inside the
SMT solver. Instead, many solvers allow theory axioms to be specified directly
in the input constraints. The solver then provides a quantifier module that is
designed to heuristically instantiate these axioms. These heuristics are in gen-
eral incomplete and the user is given little control over the instance generation.
Thus, even if there exists a finite instantiation strategy that yields a decision
procedure for a specific set of axioms, the communication of strategies and tac-
tics to SMT solvers is a challenge [12]. Further, the user cannot communicate
the completeness of such a strategy. In this situation, the user is left with two
alternatives: either she gives up on completeness, which may lead to usability
issues in the verification tool, or she implements her own instantiation engine as
a preprocessor to the SMT solver, leading to duplication of effort and reduced
solver performance.

The contributions of this paper are two-fold. First, we provide a better under-
standing of how complete decision procedures for application-specific theories
can be realized with the quantifier modules that are implemented in SMT solvers.
Second, we explore several extensions of the capabilities of these modules to bet-
ter serve the needs of verification tool developers. The focus of our exploration
is on local theory extensions [21,36]. A theory extension extends a given base
theory with additional symbols and axioms. Local theory extensions are a class
of such extensions that can be decided using finite quantifier instantiation of the
extension axioms. This class is attractive because it is characterized by proof and
model-theoretic properties that abstract from the intricacies of specific quanti-
fier instantiation techniques [15,20,36]. Also, many well-known theories that are
important in verification but not commonly supported by SMT solvers are in
fact local theory extensions, even if they have not been presented as such in
the literature. Examples include the array property fragment [8], the theory
of reachability in linked lists [25,32], and the theories of finite sets [39] and
multisets [38].

We present a general decision procedure for local theory extensions that relies
on E-matching, one of the core components of the quantifier modules in SMT
solvers. We have implemented our decision procedure using the SMT solvers
CVC4 [3] and Z3 [11] and applied it to a large set of SMT benchmarks com-
ing from the deductive software verification tool GRASShopper [29,31]. These
benchmarks use a hierarchical combination of local theory extensions to encode
verification conditions that express correctness properties of programs manip-
ulating complex heap-allocated data structures. Guided by our experiments,
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we developed generic optimizations in CVC4 that improve the performance of
our base-line decision procedure. Some of these optimizations required us to
implement extensions in the solver’s quantifier module. We believe that our
results are of interest to both the users of SMT solvers as well as their develop-
ers. For users we provide simple ways of realizing complete decision procedures
for application-specific theories with today’s SMT solvers. For developers we pro-
vide interesting insights that can help them further improve the completeness
and performance of today’s quantifier instantiation modules.

Related Work. Sofronie-Stokkermans [36] introduced local theory extensions as a
generalization of locality in equational theories [15,18]. Further generalizations
include Psi-local theories [21], which can describe arbitrary theory extensions
that admit finite quantifier instantiation. The formalization of our algorithm
targets local theory extensions, but we briefly describe how it can be generalized
to handle Psi-locality. The original decision procedure for local theory extensions
presented in [36], which is implemented in H-Pilot [22], eagerly generates all
instances of extension axioms upfront, before the base theory solver is called.
As we show in our experiments, eager instantiation is prohibitively expensive
for many local theory extensions that are of interest in verification because it
results in a high degree polynomial blowup in the problem size.

In [24], Swen Jacobs proposed an incremental instantiation algorithm for local
theory extensions. The algorithm is a variant of model-based quantifier instan-
tiation (MBQI). It uses the base theory solver to incrementally generate partial
models from which relevant axiom instances are extracted. The algorithm was
implemented as a plug-in to Z3 and experiments showed that it helps to reduce
the overall number of axiom instances that need to be considered. However,
the benchmarks were artificially generated. Jacob’s algorithm is orthogonal to
ours as the focus of this paper is on how to use SMT solvers for deciding local
theory extensions without adding new substantial functionality to the solvers.
A combination with this approach is feasible as we discuss in more detail below.

Other variants of MBQI include its use in the context of finite model find-
ing [33], and the algorithm described in [17], which is implemented in Z3. This
algorithm is complete for the so-called almost uninterpreted fragment of first-
order logic. While this fragment is not sufficiently expressive for the local theory
extensions that appear in our benchmarks, it includes important fragments such
as Effectively Propositional Logic (EPR). In fact, we have also experimented
with a hybrid approach that uses our E-matching-based algorithm to reduce the
benchmarks first to EPR and then solves them with Z3’s MBQI algorithm.

E-matching was first described in [28], and since has been implemented in
various SMT solvers [10,16]. In practice, user-provided triggers can be given
as hints for finer grained control over quantifier instantiations in these imple-
mentations. More recent work [13] has made progress towards formalizing the
semantics of triggers for the purposes of specifying decision procedures for a
number of theories. A more general but incomplete technique [34] addresses the
prohibitively large number of instantiations produced by E-matching by priori-
tizing instantiations that lead to ground conflicts.
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2 Example

We start our discussion with a simple example that illustrates the basic idea
behind local theory extensions. Consider the following set of ground literals

G = {a + b = 1, f(a) + f(b) = 0}.

We interpret G in the theory of linear integer arithmetic and a monotonically
increasing function f : Z → Z. One satisfying assignment for G is:

a = 0, b = 1, f(x) = {−1 if x ≤ 0, 1 if x > 0}. (1)

We now explain how we can use an SMT solver to conclude that G is indeed
satisfiable in the above theory.

SMT solvers commonly provide inbuilt decision procedures for common the-
ories such as the theory of linear integer arithmetic (LIA) and the theory of
equality over uninterpreted functions (UF). However, they do not natively sup-
port the theory of monotone functions. The standard way to enforce f to be
monotonic is to axiomatize this property,

K = ∀x, y. x ≤ y =⇒ f(x) ≤ f(y), (2)

and then let the SMT solver check if G ∪ {K} is satisfiable via a reduction
to its natively supported theories. In our example, the reduction target is the
combination of LIA and UF, which we refer to as the base theory, denoted by T0.
We refer to the axiom K as a theory extension of the base theory and to the
function symbol f as an extension symbol.

Most SMT solvers divide the work of deciding ground formulas G in a
base theory T0 and axioms K of theory extensions between different modules.
A quantifier module looks for substitutions to the variables within an axiom K,
x and y, to some ground terms, t1 and t2. We denote such a substitution as
σ = {x �→ t1, y �→ t2} and the instance of an axiom K with respect to this sub-
stitution as Kσ. The quantifier module iteratively adds the generated ground
instances Kσ as lemmas to G until the base theory solver derives a contradic-
tion. However, if G is satisfiable, as in our case, then the quantifier module does
not know when to stop generating instances of K, and the solver may diverge,
effectively enumerating an infinite model of G.

For a local theory extension, we can syntactically restrict the instances Kσ
that need to be considered before concluding that G is satisfiable to a finite set of
candidates. More precisely, a theory extension is called local if in order to decide
satisfiability of G ∪ {K}, it is sufficient to consider only those instances Kσ in
which all ground terms already occur in G and K. The monotonicity axiom K
is a local theory extension of T0. The local instances of K and G are:

Kσ1 = a ≤ b =⇒ f(a) ≤ f(b) where σ1 = {x �→ a, y �→ b},

Kσ2 = b ≤ a =⇒ f(b) ≤ f(a) where σ2 = {x �→ b, y �→ a},

Kσ3 = a ≤ a =⇒ f(a) ≤ f(a) where σ3 = {x �→ a, y �→ a}, and
Kσ4 = b ≤ b =⇒ f(b) ≤ f(b) where σ4 = {x �→ b, y �→ b}.
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Note that we do not need to instantiate x and y with other ground terms in G,
such as 0 and 1. Adding the above instances to G yields

G′ = G ∪ {Kσ1,Kσ2,Kσ3,Kσ4}.

which is satisfiable in the base theory. Since K is a local theory extension, we
can immediately conclude that G ∪ {K} is also satisfiable.

Recognizing Local Theory Extensions. There are two useful characterizations of
local theory extensions that can help users of SMT solvers in designing axiomati-
zation that are local. The first one is model-theoretic [15,36]. Consider again the
set of ground clauses G′. When checking satisfiability of G′ in the base theory,
the SMT solver may produce the following model:

a = 0, b = 1, f(x) = {−1 if x = 0, 1 if x = 1, -1 otherwise}. (3)

This is not a model of the original G∪{K}. However, if we restrict the interpre-
tation of the extension symbol f in this model to the ground terms in G ∪ {K},
we obtain the partial model

a = 0, b = 1, f(x) = {−1 if x = 0, 1 if x = 1, undefined otherwise}. (4)

This partial model can now be embedded into the model (1) of the theory exten-
sion. If such embeddings of partial models of G′ to total models of G∪{K} always
exist for all sets of ground literals G, then K is a local theory extension of T0. The
second characterization of local theory extensions is proof-theoretic and states
that a set of axioms is a local theory extension if it is saturated under (ordered)
resolution [4]. This characterization can be used to automatically compute local
theory extensions from non-local ones [20].

Note that the locality property depends both on the base theory as well as
the specific axiomatization of the theory extension. For example, the following
axiomatization of a monotone function f over the integers, which is logically
equivalent to Eq. (2) in T0, is not local:

K = ∀x. f(x) ≤ f(x + 1).

Similarly, if we replace all inequalities in Eq. (2) by strict inequalities, then the
extension is no longer local for the base theory T0. However, if we replace T0 by
a theory in which ≤ is a dense order (such as in linear real arithmetic), then the
strict version of the monotonicity axiom is again a local theory extension.

In the next two sections, we show how we can use the existing technology
implemented in quantifier modules of SMT solvers to decide local theory exten-
sions. In particular, we show how E-matching can be used to further reduce the
number of axiom instances that need to be considered before we can conclude
that a given set of ground literals G is satisfiable.
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3 Preliminaries

Sorted First-Order Logic. We present our problem in sorted first-order logic with
equality. A signature Σ is a tuple (Sorts, Ω,Π), where Sorts is a countable set
of sorts and Ω and Π are countable sets of function and predicate symbols,
respectively. Each function symbol f ∈ Ω has an associated arity n ≥ 0 and
associated sort s1 ×· · ·× sn → s0 with si ∈ Sorts for all i ≤ n. Function symbols
of arity 0 are called constant symbols. Similarly, predicate symbols P ∈ Π have
an arity n ≥ 0 and sort s1 × · · · × sn. We assume dedicated equality symbols
≈s ∈ Π with the sort s × s for all sorts s ∈ Sorts, though we typically drop the
explicit subscript. Terms are built from the function symbols in Ω and (sorted)
variables taken from a countably infinite set X that is disjoint from Ω. We denote
by t : s that term t has sort s.

A Σ-atom A is of the form P (t1, . . . , tn) where P ∈ Π is a predicate symbol
of sort s1 × · · · × sn and the ti are terms with ti : si. A Σ-formula F is either a
Σ-atom A, ¬F1, F1 ∧ F2, F1 ∨ F2, or ∀x : s.F1 where F1 and F2 are Σ-formulas.
A Σ-literal L is either A or ¬A for a Σ-atom A. A Σ-clause C is a disjunction
of Σ-literals. A Σ-term, atom, or formula is said to be ground, if no variable
appears in it. For a set of formulas K, we denote by st(K) the set of all ground
subterms that appear in K.

A Σ-sentence is a Σ-formula with no free variables where the free variables
of a formula are defined in the standard fashion. We typically omit Σ if it is
clear from the context.

Structures. Given a signature Σ = (Sorts, Ω,Π), a Σ-structure M is a function
that maps each sort s ∈ Sorts to a non-empty set M(s), each function symbol
f ∈ Ω of sort s1 × · · · × sn → s0 to a function M(f) : M(s1) × · · · × M(sn) →
M(s0), and each predicate symbol P ∈ Π of sort s1 × · · · × sn to a relation
M(s1) × · · · × M(sn). We assume that all structures M interpret each symbol
≈s by the equality relation on M(s). For a Σ-structure M where Σ extends a
signature Σ0 with additional sorts and function symbols, we write M |Σ0 for the
Σ0-structure obtained by restricting M to Σ0.

Given a structure M and a variable assignment ν : X → M , the evaluation
tM,ν of a term t in M,ν is defined as usual. For a structure M and an atom A
of the form P (t1, . . . , tn), (M,ν) satisfies A iff (tM,ν

1 , . . . , tM,ν
n ) ∈ M(P ). This is

written as (M,ν) |= A. From this satisfaction relation of atoms and Σ-structures,
we can derive the standard notions of the satisfiability of a formula, satisfying
a set of formulas (M,ν) |= {Fi}, validity |= F , and entailment F1 |= F2. If a
Σ-structure M satisfies a Σ-sentence F , we call M a model of F .

Theories and Theory Extensions. A theory T over signature Σ is a set of Σ-
structures. We call a Σ-sentence K an axiom if it is the universal closure of a
Σ-clause, and we denote a set of Σ-axioms as K. We consider theories T defined
as a class of Σ-structures that are models of a given set of Σ-sentences K.

Let Σ0 = (Sorts0, Ω0,Π) be a signature and assume that the signature
Σ1 = (Sorts0 ∪Sortse, Ω0 ∪ Ωe,Π) extends Σ0 by new sorts Sortse and function
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symbols Ωe. We call the elements of Ωe extension symbols and terms starting
with extension symbols extension terms. Given a Σ0-theory T0 and Σ1-axioms
Ke, we call (T0,Ke, T1) the theory extension of T0 with Ke, where T1 is the set of
all Σ1-structures M that are models of Ke and whose reducts M |Σ0 are in T0.
We often identify the theory extension with the theory T1.

4 Problem

We formally define the problem of satisfiability modulo theory and the notion
of local theory extensions in this section.

Let T be a theory over signature Σ. Given a Σ-formula φ, we say φ is
satisfiable modulo T if there exists a structure M in T and an assignment ν
of the variables in φ such that (M,ν) |= φ. We define the ground satisfiability
modulo theory problem as the corresponding decision problem for quantifier-free
formulas.

Problem 1 (Ground satisfiability problem for Σ-theory T).

input: A quantifier-free Σ-formula φ.
output: sat if φ is satisfiable modulo T , unsat otherwise.

We say the satisfiability problem for T is decidable if there exists a procedure
for the above problem which always terminates with sat or unsat. We write
entailment modulo a theory as φ |=T ψ.

We say an axiom of a theory extension is linear if all the variables occur
under at most one extension term. We say it is flat if there there is no nesting of
terms containing variables. It is easy to linearize and flatten the axioms by using
additional variables and equality. As an example, ∀x.φ with f(x) and f(g(x)) as
terms in F may be written as

∀xyz.x ≈ y ∧ z ≈ g(y) =⇒ F ′

where F ′ is obtained from F by replacing f(g(x)) with f(z). For the remainder
of the paper, we assume that all extension axioms Ke are flat and linear. For
the simplicity of the presentation, we assume that if a variable appears below a
function symbol then that symbol must be an extension symbol.

Definition 2 (Local Theory Extensions). A theory extension (T0,Ke, T1) is
local if for any set of ground Σ1-literals G: G is satisfiable modulo T1 if and only
if G ∪ Ke[G] is satisfiable modulo T0 extended with free function symbols. Here
Ke[G] is the set of instances of Ke where the subterms of the instantiation are
all subterms of G or Ke (in other words, they do not introduce new terms).

For simplicity, in the rest of this paper, we work with theories T0 which have
decision procedures for not just T0 but also T0 extended with free function sym-
bols. Thus, we sometimes talk of satisfiability of a Σ1-formula with respect a
Σ0-theory T0, to mean satisfiability in the T0 with the extension symbols in Σ1
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treated as free function symbols. In terms of SMT, we only talk of extensions of
theories containing uninterpreted functions (UF).

A naive decision procedure for ground SMT of a local theory extension T1 is
thus to generate all possible instances of the axioms Ke that do not introduce
new ground terms, thereby reducing to the ground SMT problem of T0 extended
with free functions.

Hierarchical Extensions. Note that local theory extensions can be stacked to form
hierarchies ((. . . ((T0,K1, T1),K2, T2), . . . ),Kn, Tn). Such a hierarchical arrange-
ment of extension axioms is often useful to modularize locality proofs. In such
cases, the condition that variables are only allowed to occur below extension
symbols (of the current extension) can be relaxed to any extension symbol of
the current level or below. The resulting theory extension can be decided by
composing procedures for the individual extensions. Alternatively, one can use
a monolithic decision procedure for the resulting theory Tn, which can also be
viewed as a single local theory extension (T0,K1 ∪ · · · ∪ Kn, Tn). In our experi-
mental evaluation, which involved hierarchical extensions, we followed the latter
approach.

5 Algorithm

In this section, we describe a decision procedure for a local theory extension,
say (T0,Ke, T1), which can be easily implemented in most SMT solvers with
quantifier instantiation support. We describe our procedure DT1 as a theory
module in a typical SMT solver architecture. For simplicity, we separate out
the interaction between theory solver and core SMT solver. We describe the
procedure abstractly as taking as input:

– the original formula φ,
– a set of extension axioms Ke,
– a set of instantiations of axioms that have already been made, Z, and
– a set of T0 satisfiable ground literals G such that G |= φ ∧ (

∧
ψ∈Z ψ), and

– a set equalities E ⊆ G between terms.

It either returns

– sat, denoting that G is T1 satisfiable; or
– a new set of instantiations of the axioms, Z ′.

For completeness, we describe briefly the way we envisage the interaction
mechanism of this module in a DPLL(T) SMT solver. Let the input problem
be φ. The SAT solver along with the theory solvers for T0 will find a subset of
literals G from φ ∧ (

∧
ψ∈Z ψ) such that its conjunction is satisfiable modulo T0.

If no such satisfying assignment exists, the SMT solver stops with unsat. One
can think of G as being simply the literals in φ on the SAT solver trail. G will
be sent to DT1 along with information known about equalities between terms.
The set Z can be also thought of as internal state maintained by the T1-theory
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solver module, with new instances Z ′ sent out as theory lemmas and Z updated
to Z ∪ Z ′ after each call to DT1 . If DT1 returns sat, so does the SMT solver and
stops. On the other hand, if it returns a new set of instances, the SMT solver
continues the search to additionally satisfy these.

E-matching. In order to describe our procedure, we introduce the well-studied
E-matching problem. Given a universally quantified Σ-sentence K, let X(K)
denote the quantified variables. Define a Σ-substitution σ of K to be a mapping
from variables X(K) to Σ-terms of corresponding sort. Given a Σ-term p, let
pσ denote the term obtained by substituting variables in p by the substitutions
provided in σ. Two substitutions σ1, σ2 with the same domain X are equivalent
modulo a set of equalities E if ∀x ∈ X.E |= σ1(x) ≈ σ2(x). We denote this as
σ1 ∼E σ2.

Problem 3 (E-matching).

input: A set of ground equalities E, a set of Σ-terms G, and patterns P .
output: The set of substitutions σ over the variables in p, modulo E, such that

for all p ∈ P there exists a t ∈ G with E |= t ≈ pσ.

E-matching is a well-studied problem, specifically in the context of SMT. An
algorithm for E-matching that is efficient and backtrackable is described in [10].
We denote this procedure by E.

The procedure DT1(φ,Ke, Z,G,E) is given in Fig. 1. Intuitively, it adds all
the new instances along the current search path that are required for local theory
reasoning as given in Definition 2, but modulo equality. For each axiom K in
Ke, the algorithm looks for function symbols containing variables. For example,
if we think of the monotonicity axiom in Sect. 2, these would be the terms f(x)
and f(y). These terms serve as patterns for the E-matching procedure. Next,
with the help of the E-matching algorithm, all new instances are computed (to
be more precise, all instances for the axiom K in Z which are equivalent modulo
∼E are skipped). If there are no new instances for any axiom in Ke, and the set
G of literals implies φ, we stop with sat. as effectively we have that G ∪ Ke[G] is
satisfiable modulo T0. Otherwise, we return this set.

We note that though the algorithm DT1 may look inefficient because of the
presence of nested loops, keeping track of which substitutions have already hap-
pened, and which substitutions are new. However, in actual implementations all
of this is taken care of by the E-matching algorithm. There has been significant
research on fast, incremental algorithms for E-matching in the context of SMT,
and one advantage of our approach is to be able to leverage this work.

Correctness. The correctness argument relies on two aspects: one, that if the
SMT solver says sat (resp. unsat) then φ is satisfiable (resp. unsatisfiable) modulo
T1, and second, that it terminates.

For the case where the output is unsat, the correctness follows from the
fact that Z only contains instances of Ke. The sat case is more tricky, but the
main idea is that the set of instances made by DT1(φ,Ke, Z,G,E) are logically
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DT1(φ, Ke, Z, G, E)
Local variable: Z′, initially an empty set.

1. For each K ∈ Ke:
(a) Define the set of patterns P to be the function symbols in K containing variables. We

observe that because the axioms are linear and flat, these patterns are always of the form
f(x1, . . . , xn) where f is an extension symbol and the xi are quantified variables.

(b) Run E(E, G, P ) obtaining substitutions S. Without loss of generality, assume that σ ∈
S returned by the algorithm are such that st(Kσ) ⊆ st(G ∪ Ke). For the special case
of the patterns in (a), for any σ not respecting the condition there exists one in the
equivalence class that respects the condition. Formally, ∀σ.∃σ′.σ′ ∼E σ ∧ st(Kσ′) ⊆
st(G∪Ke). We make this assumption only for simplicity of arguments later in the paper.
If one uses an E-matching procedure not respecting this constraint, our procedure will
still be terminating and correct (albeit total number of instantiations suboptimal).

(c) For each σ ∈ S, if there exists no Kσ′ in Z such that σ ∼E σ′, then add Kσ to Z′ as
a new instantiation to be made.

2. If Z′ is empty, return sat, else return Z′.

Fig. 1. Procedure DT1

equivalent to Ke[G]. Thus, when the solver stops, G∪Ke[G] is satisfiable modulo
T0. As a consequence, G is satisfiable modulo T1. Since G |= φ, we have that φ
is satisfiable modulo T1.

The termination relies on the fact that the instantiations returned by proce-
dure DT1(φ,Ke, Z,G,E) do not add new terms, and they are always a subset of
Ke[φ]. Since, Ke[φ] is finite, eventually D will stop making new instantiations.
Assuming that we have a terminating decision procedure for the ground SMT
problem of T0, we get a terminating decision procedure for T1.

Theorem 4. An SMT solver with theory module DT1 is a decision procedure
for the satisfiability problem modulo T1.

Psi-Local Theories. We briefly explain how our approach can be extended to
the more general notion of Psi-local theory extensions [21]. Sometimes, it is not
sufficient to consider only local instances of extension axioms to decide satis-
fiability modulo a theory extension. For example, consider the following set of
ground literals:

G = {f(a) = f(b), a �= b}
Suppose we interpret G in a theory of an injective function f : S → S with a
partial inverse g : S → S for some set S. We can axiomatize this theory as a
theory extension of the theory of uninterpreted functions using the axiom

K = ∀x, y. f(x) = y =⇒ g(y) = x.

G is unsatisfiable in the theory extension, but the local instances of K with
respect to the ground terms st(G) = {a, b, f(a), f(b)} are insufficient to yield a
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contradiction in the base theory. However, if we consider the local instances with
respect to the larger set of ground terms

Ψ(st(G)) = {a, b, f(a), f(b), g(f(a)), g(f(b))},

then we obtain, among others, the instances

f(a) = f(b) =⇒ g(f(b)) = a and f(b) = f(a) =⇒ g(f(a)) = b.

Together with G, these instances are unsatisfiable in the base theory.
The set Ψ(st(G)) is computed as follows:

Ψ(st(G)) = st(G) ∪ { g(f(t)) | t ∈ st(G) }

It turns out that considering local instances with respect to Ψ(st(G)) is sufficient
to check satisfiability modulo the theory extension K for arbitrary sets of ground
clauses G. Moreover, Ψ(st(G)) is always finite. Thus, we still obtain a decision
procedure for the theory extension via finite instantiation of extension axioms.
Psi-local theory extensions formalize this idea. In particular, if Ψ satisfies cer-
tain properties including monotonicity and idempotence, one can again provide
a model-theoretic characterization of completeness in terms of embeddings of
partial models. We refer the reader to [21] for the technical details.

To use our algorithm for deciding satisfiability of a set of ground literals
G modulo a Psi-local theory extension (T0,Ke, T1), we simply need to add an
additional preprocessing step in which we compute Ψ(st(G)) and define G′ =
G ∪ { instclosure(t) | t ∈ Ψ(st(G)) } where instclosure is a fresh predicate
symbol. Then calling our procedure for T1 with G′ decides satisfiability of G
modulo T1.

6 Implementation and Experimental Results

Benchmarks. We evaluated our techniques on a set of benchmarks generated
by the deductive verification tool GRASShopper [19]. The benchmarks encode
memory safety and functional correctness properties of programs that manip-
ulate complex heap-allocated data structures. The programs are written in a
type-safe imperative language without garbage collection. The tool makes no
simplifying assumptions about these programs like acyclicity of heap structures.

GRASShopper supports mixed specifications in (classical) first-order logic and
separation logic (SL) [35]. The tool reduces the program and specification to
verification conditions that are encoded in a hierarchical combination of (Psi-)
local theory extensions. This hierarchy of extensions is organized as follows:

1. Base theory: at the lowest level we have UFLIA, the theory of uninterpreted
functions and linear integer arithmetic, which is directly supported by SMT
solvers.
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2. GRASS: the first extension layer consists of the theory of graph reachability
and stratified sets. This theory is a disjoint combination of two local theory
extensions: the theory of linked lists with reachability [25] and the theory of
sets over interpreted elements [39].

3. Frame axioms: the second extension layer consists of axioms that encode the
frame rule of separation logic. This theory extension includes arrays as a
subtheory.

4. Program-specific extensions: The final extension layer consists of a combina-
tion of local extensions that encode properties specific to the program and
data structures under consideration. These include:
– axioms defining memory footprints of SL specifications,
– axioms defining structural constraints on the shape of data structures,
– sorted constraints, and
– axioms defining partial inverses of certain functions, e.g., to express injec-

tivity of functions and to specify the content of data structures.

We refer the interested reader to [29–31] for further details about the encoding.
The programs considered include sorting algorithms, common data structure

operations, such as inserting and removing elements, as well as complex opera-
tions on abstract data types. Our selection of data structures consists of singly
and doubly-linked lists, sorted lists, nested linked lists with head pointers, binary
search trees, skew heaps, and a union find data structure. The input programs
comprise 108 procedures with a total of 2000 lines of code, 260 lines of proce-
dure contracts and loop invariants, and 250 lines of data structure specifications
(including some duplicate specifications that could be shared across data struc-
tures). The verification of these specifications are reduced by GRASShopper to
816 SMT queries, each serves as one benchmark in our experiments. 802 bench-
marks are unsatisfiable. The remaining 14 satisfiable benchmarks stem from
programs that have bugs in their implementation or specification. All of these
are genuine bugs that users of GRASShopper made while writing the programs.1

We considered several versions of each benchmark, which we describe in more
detail below. Each of these versions is encoded as an SMT-LIB 2 input file.
Experimental Setup. All experiments were conducted on the StarExec plat-
form [37] with a CPU time limit of one hour and a memory limit of 100 GB.
We focus on the SMT solvers CVC4 [3] and Z3 [11]2 as both support UFLIA and
quantifiers via E-matching. This version of CVC4 is a fork of v1.4 with special
support for quantifiers.3

In order to be able to test our approach with both CVC4 and Z3, wher-
ever possible we transformed the benchmarks to simulate our algorithm. We
describe these transformations in this paragraph. First, the quantified formulas
in the benchmarks were linearized and flattened, and annotated with patterns
to simulate Step 1(a) of our algorithm (this was done by GRASShopper in our
1 See www.cs.nyu.edu/∼kshitij/localtheories/ for the programs and benchmarks used.
2 We used the version of Z3 downloaded from the git master branch at http://z3.

codeplex.com on Jan 17, 2015.
3 This version is available at www.github.com/kbansal/CVC4/tree/cav14-lte-draft.

www.cs.nyu.edu/~kshitij/localtheories/
http://z3.codeplex.com
http://z3.codeplex.com
www.github.com/kbansal/CVC4/tree/cav14-lte-draft
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experiments, but may also be handled by an SMT solver aware of local theories).
Both CVC4 and Z3 support using these annotations for controlling instantiations
in their E-matching procedures. In order to handle Psi-local theories, the addi-
tional terms required for completeness were provided as dummy assertions, so
that these appear as ground terms to the solver. In CVC4, we also made some
changes internally so as to treat these assertions specially and apply certain
additional optimizations which we describe later in this section.
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Fig. 2. # of eager instantiations vs. E-matching instantiations inside the solver

Experiment 1. Our first experiment aims at comparing the effectiveness of
eager instantiation versus incremental instantiation up to congruence (as done
by E-matching). Figure 2 charts the number of eager instantiations versus the
number of E-matching instantiations for each query in a logarithmic plot.4 Points
lying on the central line have an equal number of instantiations in both series
while points lying on the lower line have 10 times as many eager instantiations as
E-matching instantiations. (The upper line corresponds to 1

10 .) Most benchmarks
require substantially more eager instantiations. We instrumented GRASShopper
to eagerly instantiate all axioms. Subfigure (a) compares upfront instantiations
with a baseline implementation of our E-matching algorithm. Points along the
x-axis required no instantiations in CVC4 to conclude unsat. We have plotted
the above charts up to 10e10 instantiations. There were four outlying bench-
marks where upfront instantiations had between 10e10 and up to 10e14 instances.
E-matching had zero instantiations for all four. Subfigure (b) compares against
an optimized version of our algorithm implemented in CVC4. It shows that incre-
mental solving reduces the number of instantiations significantly, often by sev-
eral orders of magnitude. The details of these optimizations are given later in
the section.
4 Figure 2 does not include timeouts for CVC4.
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Table 1. Comparison of solvers on uninstantiated benchmarks (time in sec.)

C UD C UL C ULO Z3 UD Z3 UL Z3 ULO
family # # time # time # time # time # time # time
sl lists 139 127 70 139 383 139 17 138 1955 138 1950 139 68
dl lists 70 66 1717 70 843 70 33 56 11375 56 11358 70 2555
sl nested 63 63 1060 63 307 63 13 52 6999 52 6982 59 1992
sls lists 208 181 6046 204 11230 208 3401 182 20596 182 20354 207 4486
trees 243 229 2121 228 22042 239 7187 183 41208 183 40619 236 27095
soundness 79 76 17 79 1533 79 70 76 7996 76 8000 79 336
sat 14 - - 14 670 14 12 - - 10 3964 14 898
total 816 742 11032 797 37009 812 10732 687 90130 697 93228 804 37430

Experiment 2. Next, we did a more thorough comparison on running times
and number of benchmarks solved for uninstantiated benchmarks. These results
are in Table 1. The benchmarks are partitioned according to the types of data
structures occurring in the programs from which the benchmarks have been gen-
erated. Here, “sl” stands for singly-linked, “dl” for double-linked, and “sls” for
sorted singly-linked. The binary search tree, skew heap, and union find bench-
marks have all been summarized in the “trees” row. The row “soundness” con-
tains unsatisfiable benchmarks that come from programs with incorrect code or
specifications. These programs manipulate various types of data structures. The
actual satisfiable queries that reveal the bugs in these programs are summarized
in the “sat” row.

We simulated our algorithm and ran these experiments on both CVC4 (C)
and Z3 obtaining similar improvements with both. We ran each with three con-
figurations:

UD Default. For comparison purposes, we ran the solvers with default options.
CVC4’s default solver uses an E-matching based heuristic instantiation proce-
dure, whereas Z3’s uses both E-matching and model-based quantifier instanti-
ation (MBQI). For both of the solvers, the default procedures are incomplete
for our benchmarks.

UL These columns refer to the E-matching based complete procedure for local
theory extensions (algorithm in Fig. 1).5

ULO Doing instantiations inside the solver instead of upfront, opens the room
for optimizations wherein one tries some instantiations before others, or
reduces the number of instantiations using other heuristics that do not affect
completeness. The results in these columns show the effect of all such
optimizations.

As noted above, the UL and ULO procedures are both complete, whereas UD is
not. This is also reflected in the “sat” row in Table 1. Incomplete Instantiation-
based procedures cannot hope to answer “sat”. A significant improvement can

5 The configuration C UL had one memory out on a benchmark in the tree family.
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be seen between the UL and ULO columns. The general thrust of the opti-
mizations was to avoid blowup of instantiations by doing ground theory checks
on a subset of instantiations. Our intuition is that the theory lemmas learned
from these checks eliminate large parts of the search space before we do further
instantiations.

For example, we used a heuristic for Psi-local theories inspired from the obser-
vation that the axioms involving Psi-terms are needed mostly for completeness,
and that we can prove unsatisfiable without instantiating axioms with these
terms most of the time. We tried an approach where the instantiations were
staged. First, the instantiations were done according to the algorithm in Fig. 1
for locality with respect to ground terms from the original query. Only when
those were saturated, the instantiations for the auxiliary Psi-terms were gener-
ated. We found this to be very helpful. Since this required non-trivial changes
inside the solver, we only implemented this optimization in CVC4; but we think
that staging instantiations for Psi-local theories is a good strategy in general.

A second optimization, again with the idea of cutting instantiations, was
adding assertions in the benchmarks of the form (a = b)∨ (a �= b) where a, b are
ground terms. This forces an arbitrary arrangement over the ground terms before
the instantiation procedure kicks in. Intuitively, the solver first does checks with
many terms equal to each other (and hence fewer instantiations) eliminating as
much of the search space as possible. Only when equality or disequality is relevant
to the reasoning is the solver forced to instantiate with terms disequal to each
other. One may contrast this with ideas being used successfully in the care-
graph-based theory combination framework in SMT where one needs to try all
possible arrangements of equalities over terms. It has been observed that equality
or disequality is sometimes relevant only for a subset of pairs of terms. Whereas
in theory combination this idea is used to cut down the number of arrangements
that need to be considered, we use it to reduce the number of unnecessary
instantiations. We found this really helped CVC4 on many benchmarks.

Another optimization was instantiating special cases of the axioms first by
enforcing equalities between variables of the same sort, before doing a full instan-
tiation. We did this for axioms that yield a particularly large number of instances
(instantiations growing with the fourth power of the number of ground terms).
Again, we believe this could be a good heuristic in general.
Experiment 3. Effective propositional Logic (EPR) is the fragment of first
order-logic consisting of formulas of the shape ∃x∀y.G with G quantifier-free and
where none of the universally quantified variables y appears below a function
symbol in G. Theory extensions that fall into EPR are always local. Our third
exploration is to see if we can exploit dedicated procedures for this fragment
when such fragments occur in the benchmarks. For the EPR fragment, Z3 has
a complete decision procedure that uses model-based quantifier instantiation.
We therefore implemented a hybrid approach wherein we did upfront partial
instantiation to the EPR fragment using E-matching with respect to top-level
equalities (as described in our algorithm). The resulting EPR benchmark is then
decided using Z3’s MBQI mode. This approach can only be expect to help where
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Table 2. Comparison of solvers on partially instantiated benchmarks (time in sec.)

C PL C PLO Z3 PM Z3 PL Z3 PLO
family # # time # time # time # time # time
sl lists 139 139 664 139 20 139 9 139 683 139 29
dl lists 70 70 3352 70 50 70 41 67 12552 70 423
sl nested 63 63 2819 63 427 63 182 56 7068 62 804
sls lists 208 206 14222 207 3086 208 37 203 17245 208 1954
trees 243 232 7185 243 6558 243 663 222 34519 242 8089
soundness 79 78 156 79 49 79 23 79 2781 79 39
sat 14 14 85 14 22 13 21 12 1329 14 109
total 816 802 28484 815 10213 815 976 778 76177 814 11447

there are EPR-like axioms in the benchmarks, and we did have some which were
heavier on these. We found that on singly linked list and tree benchmarks this
hybrid algorithm significantly outperforms all other solver configurations that
we have tried in our experiments. On the other hand, on nested list benchmarks,
which make more heavy use of purely equational axioms, this technique does
not help compared to only using E-matching because the partial instantiation
already yields ground formulas.

The results with our hybrid algorithm are summarized in Column Z3 PM of
Table 2. Since EPR is a special case of local theories, we also tried our E-matching
based algorithm on these benchmarks. We found that the staged instantiation
improves performance on these as well. The optimization that help on the unin-
stantiated benchmarks also work here. These results are summarized in the same
table.

Overall, our experiments indicate that there is a lot of potential in the design
of quantifier modules to further improve the performance of SMT solvers, and
at the same time make them complete on more expressive decidable fragments.

7 Conclusion

We have presented a new algorithm for deciding local theory extensions, a class
of theories that plays an important role in verification applications. Our algo-
rithm relies on existing SMT solver technology so that it can be easily imple-
mented in today’s solvers. In its simplest form, the algorithm does not require
any modifications to the solver itself but only trivial syntactic modifications to
its input. These are: (1) flattening and linearizing the extension axioms; and
(2) adding trigger annotations to encode locality constraints for E-matching. In
our evaluation we have experimented with different configurations of two SMT
solvers, implementing a number of optimizations of our base line algorithm. Our
results suggest interesting directions to further improve the quantifier modules
of current SMT solvers, promising better performance and usability for applica-
tions in automated verification.
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Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)

4. Basin, D.A., Ganzinger, H.: Complexity analysis based on ordered resolution. In:
Proceedings, 11th Annual IEEE Symposium on Logic in Computer Science, pp.
456–465. IEEE. New Brunswick, New Jersey, USA, July 27–30 1996

5. Beyene, T.A., Chaudhuri, S., Popeea, C., Rybalchenko, A.: A constraint-based
approach to solving games on infinite graphs. In: POPL, pp. 221–234. ACM (2014)

6. Bodik, R., Torlak, E.: Synthesizing programs with constraint solvers. In:
Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 3–3. Springer,
Heidelberg (2012)
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Abstract. We present a new framework for modular verification of
hardware designs in the style of the Bluespec language. That is, we for-
malize the idea of components in a hardware design, with well-defined
input and output channels; and we show how to specify and verify com-
ponents individually, with machine-checked proofs in the Coq proof assis-
tant. As a demonstration, we verify a fairly realistic implementation of a
multicore shared-memory system with two types of components: memory
system and processor. Both components include nontrivial optimizations,
with the memory system employing an arbitrary hierarchy of cache nodes
that communicate with each other concurrently, and with the proces-
sor doing speculative execution of many concurrent read operations.
Nonetheless, we prove that the combined system implements sequen-
tial consistency. To our knowledge, our memory-system proof is the first
machine verification of a cache-coherence protocol parameterized over an
arbitrary cache hierarchy, and our full-system proof is the first machine
verification of sequential consistency for a multicore hardware design that
includes caches and speculative processors.

1 Introduction

A modern high-performance, cache-coherent, distributed-memory hardware sys-
tem is inherently complex. Such systems by their nature are highly concurrent
and nondeterministic. The goal of this work is to provide a framework for full
verification of complex hardware systems.

Modularity has long been understood as a key property for effective design
and verification in this domain, decomposing systems into pieces that can be
specified and verified independently. In our design, processors and memory sys-
tems independently employ intricate optimizations that exploit opportunities for
parallelism. We are able to prove that each of these two main components still
provides strong guarantees to support sequential consistency (SC) [25], and then
compose those proofs into a result for the full system. Either component may be
optimized further without requiring any changes to the implementation, specifi-
cation, or proof of the other. Our concrete optimizations include speculation in
processors and using a hierarchy of caches in memory.
c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part II, LNCS 9207, pp. 109–127, 2015.
DOI: 10.1007/978-3-319-21668-3 7
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We thus present the first mechanized proof of correctness of a realis-
tic multiprocessor, shared-memory hardware system, including the first
mechanized correctness proof of a directory-based cache-coherence
protocol for arbitrary cache hierarchies, i.e., the proof is parameterized
over an unknown number of processors connected to an unknown number of
caches in an unknown number of levels (e.g., L1, L2). Our proof has been carried
out in the Coq proof assistant and is available at http://github.com/vmurali/
SeqConsistency. Since our technique is based on proof assistants, the computa-
tional complexity of verification remains constant for any choice of parameters.
In the process, we introduce a methodology for modular verification of
hardware designs, based on the theory of labeled transition systems (LTSes).

LTSes as hardware descriptions are an established idea [2,17,18], for which
there are compilers that convert LTSes into efficient hardware. Our work is
based on the Bluespec language [3,6], whose semantics match the formalism of
this paper. Bluespec specifies hardware components as atomic rules of a transi-
tion system over state elements, and its commercial compiler synthesizes these
specs into circuits (i.e., Verilog code) with competitive performance. The model
that we verify is close to literally transliterated from real Bluespec designs that
have been compiled to hardware. Our cache-coherent memory system is based
on a Bluespec implementation [13] used to implement an FPGA-based simu-
lator for a cache-coherent multiprocessor PowerPC system [23]. The hardware
synthesized from that implementation is rather efficient: an 8-core system with
a 2-level cache hierarchy can run 55 million instructions per second on the BEE
FPGA board [10]. Within Coq we adopt a semantics style very close to Bluespec,
using inductive definitions of state transition systems, where each transition rule
corresponds to an atomic Bluespec rule.

Our high-level agenda here is to import to the hardware-verification domain
good ideas from the worlds of programming-language semantics and formal soft-
ware verification, and to demonstrate some advantages of human-guided deductive
techniques over model-checking techniques that less readily support modularity
and generalization over infinite families of systems, and which may provide less
insight to hardware designers (e.g., by not yielding human-understandable invari-
ants about systems).

Paper Organization: We begin with a discussion of related work in Sect. 2.
Section 3 introduces our flavor of the labeled transition systems formalism, includ-
ing a definition of trace refinement. Section 4 shows a generic decomposition of
any multiprocessor system, independently of the memory model that it imple-
ments, and discusses the store atomicity property of the memory subcomponent.
Section 5 gives a simple formal model of sequential consistency. The following sec-
tions refine the two main subcomponents of our multiprocessor system. Section 7
discusses definition and verification of a speculative processor model, and Sect. 8
defines and proves our hierarchical cache-coherence protocol. Finally, Sect. 9
shows the whole-system modular proof of our complex system and ends with
some conclusions in Sect. 10.

http://github.com/vmurali/SeqConsistency
http://github.com/vmurali/SeqConsistency


Modular Deductive Verification of Multiprocessor Hardware Designs 111

2 Related Work

Hardware verification is dominated by model checking – for example, processor
verification [8,29] and (more recently) Intel’s execution cluster verification [22].
Many abstraction techniques are used to reduce designs to finite state spaces,
which can be explored exhaustively. There are limits to the construction of sound
abstractions, so verifications of protocols such as cache-coherence have mostly
treated systems with concrete topologies, involving particular finite numbers
of caches and processors. For instance, explicit-state model checking tools like
Murphi [15] or TLC [21,26] are able to handle only single-level cache hierar-
chies with fewer than ten addresses and ten CPUs, as opposed to the billions of
addresses in a real system, or the ever-growing number of CPUs. Symbolic model-
checking techniques have fared better: McMillan et al. have verified a two-level
MSI protocol based on the Gigamax distributed multiprocessor using SMV [31].
Optimizations on these techniques (e.g., partial-order reduction [4], symmetry
reduction [5,11,12,16,19,37], compositional reasoning [20,28,30], extended-
FSM [14]) also scale the approach, verifying up to two levels of cache hierar-
chy, but are unable to handle multi-level hierarchical protocols. In fact, related
work by Zhang et al. [37] insists that parameterization should be restricted to
single dimensions for the state-of-the-art tools to scale practically. In all these
cases, finding invariants automatically is actually hard. Chou et al. [12] require
manual insertion of extra invariants, called “non-interference lemmas”, to elimi-
nate counterexamples that violate the required property. Flow-based methodol-
ogy [35] gives yet another way of manually specifying invariants. In general, we
believe that the level of complexity of the manually specified invariants between
those approaches and ours is similar. Moreover, we might hope to achieve higher
assurance and understanding of design ideas by verifying infinite families of
hardware designs, which resist reduction to finite-state models. Past work by
Zhang et al. [37] has involved model-checking hierarchical cache-coherence pro-
tocols [38], with a restriction to binary trees of caches only, relying on paper-
and-pencil proofs about the behavior of fractal-like systems. Those authors agree
that, as a result, the protocol suffers from a serious performance handicap. Our
cache protocol in this paper is chosen to support more realistic performance
scaling.

Theorem provers have also been used to verify microprocessors, e.g., HOL to
verify an academic microprocessor AVI-1 [36]. Cache-coherence proofs have also
used mechanized theorem provers, though all previous work has verified only
single-level hierarchies. Examples include using ACL2 for verifying a bus-based
snoop protocol [32], using a combination of model-checking and PVS [33] to
verify the FLASH protocol [24], and using PVS to mechanize some portions of a
paper-and-pencil proof verifying that the Cachet cache-coherence protocol [34]
does not violate the CRF memory model. The first two of these works do not
provide insights that can be used to design and verify other protocols. The last
falls short of proving a “full functional correctness” property of a memory system.
In this paper, we verify that property for a complex cache protocol, based on
human-meaningful invariants that generalize to related protocols.
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3 Labeled Transition Systems

We make extensive use of the general theory of labeled transition systems, a
semantics approach especially relevant to communicating concurrent systems. As
we are formalizing processors for Turing-complete machine languages, it is chal-
lenging to prove that a system preserves almost any aspect of processor behav-
ior from a model such as SC. To focus our theorems, we pick the time-honored
property of termination. An optimized system should terminate or diverge iff
the reference system could also terminate or diverge, respectively. All sorts of
other interesting program properties are reducible to this one, in the style of
computability theory. Our basic definitions of transition systems build in special
treatment of halting, so that we need not mention it explicitly in most of the
following contexts.

Definition 1. A labeled transition system (LTS) is a ternary relation, over
SH × Lε × SH , for some sets S of states and L of labels. We usually do not
mention these sets explicitly, as they tend to be clear from context. We write Xε

for lifting of a set X to have an extra “empty” element ε (like an option type
in ML). We write XH for lifting of a set X to have an extra “halt” element H.
We also implicitly consider each LTS to be associated with an initial state in S.

For LTS A, we write (s) �−→
A

(s′) as shorthand for (s, �, s′) ∈ A, and we write A0

for A’s initial state. The intuition is that A is one process within a concurrent
system. The label � from set L of labels is produced when A participates in some
IO exchange with another process; otherwise it is an empty or “silent” label ε.
For brevity, we may omit labels for ε steps.

3.1 Basic Constructions on LTSes

From an LTS representing single-step system evolution, we can build an LTS
capturing arbitrary-length evolutions.

Definition 2. The transitive-reflexive closure of A, written A∗, is a derived
LTS. Where A’s states and labels are S and L, the states of A∗ are S, and the
labels are L∗, or sequences of labels from the original system. A∗ steps from s
to s′ when there exist zero or more transitions in A that move from s to s′. The
label of this transition is the concatenation of all labels generated in A, where
the empty or “silent” label ε is treated as an identity element for concatenation.

We also want to compose n copies of an LTS together, with no explicit com-
munication between them. We apply this construction later to lift a single-CPU
system to a multi-CPU system.

Definition 3. The n-repetition of A, written An, is a derived LTS. Where
A’s states and labels are S and L, the states of An are Sn, and the labels are
[1, n] × L, or pairs that tag labels with which component system generated them.
These labels are generated only when the component system generates a label.
The whole system halts whenever one of the components halts.
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Eventually, we need processes to be able to communicate with each other, which
we formalize via the + composition operator that connects same-label transitions
in the two systems, treating the label as a cooperative communication event that
may now be hidden from the outside world, as an ε label.

Definition 4. Where A and B are two LTSes sharing labels set L, and with
state sets SA and SB respectively, the communicating composition A + B is
a new LTS with states SA × SB and an empty label set, defined as follows:

A
(a) −→

A
(a′) a′ �= H

(a, b) −−−−−→
A + B

(a′, b)
B

(b) −→
B

(b′) b′ �= H

(a, b) −−−−−→
A + B

(a, b′)
HA

(a) −→
A

(H)

(a, b) −−−−−→
A + B

(H)

HB

(b) −→
B

(H)

(a, b) −−−−−→
A + B

(H)
Join

(a)
�−→
A

(a′) (b)
�−→
B

(b′) a′, b′ �= H

(a, b) −−−−−→
A + B

(a′, b′)

3.2 Refinement Between LTSes

We need a notion of when one LTS “implements” another. Intuitively, transition
labels and halting are all that the outside world can observe. Two systems that
produce identical labels and termination behavior under all circumstances can
be considered as safe substitutes for one another. We need only an asymmetrical
notion of compatibility:

Definition 5. For some label domain L, let f : L → Lε be a function that is
able to replace labels with alternative labels, or erase them altogether. Let LTSes
A and B have the same label set L. We say that A trace-refines B w.r.t. f ,
or A �f B, if:

∀sA, η. (A0)
η−−→

A∗ (sA) ⇒ ∃sB. (B0)
f(η)−−−→
B∗ (sB) ∧ (sA = H ⇔ sB = H)

Each label in the trace is replaced by the mapping of f on it, and labels
mapped to ε by f are dropped. f is overloaded to denote the multilabel version
when applied to η.

For brevity, we write A � B for A �id B, for identity function id, forcing traces
in the two systems to match exactly. Under this notion of identical traces, we
say that A is sound w.r.t. B. That case matches traditional notions of trace
refinement, often proved with simulation arguments, which we also adopt.

3.3 A Few Useful Lemmas

We need the following theorems in our proof.

Theorem 1. � is reflexive and transitive.

Theorem 2. If A �f B, then An �fn Bn, where fn is f lifted appropriately
to deal with indices (fn(i, �) = (i, �′) when f(�) = �′, and fn(i, �) = ε when
f(�) = ε).

Theorem 3. If A �f A′ and B �f B′, then A + B �id A′ + B′.

All these theorems can be proved using standard techniques.
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4 Decomposing a Shared-Memory Multiprocessor System

Any conventional multiprocessor system can be divided logically into three com-
ponents, as shown in Fig. 1. The top-level system design is shown in the mid-
dle, while the details of its components, the memory system and the processor
(Pi), are shown in the magnified boxes. The processor component Pi can be
implemented in a variety of ways, from one executing instructions one-by-one
in program order, to a complex one speculatively executing many instructions
concurrently to exploit parallelism. The memory component is normally imple-
mented using a hierarchy of caches, in order to increase the performance of the
overall system, because the latency of accessing memory directly is large com-
pared to that of accessing a much smaller cache. Between each processor and
the global memory subsystem appears some local buffer, LBi, each specific to
processor Pi.

Fig. 1. Components of a multiprocessor system

Popular ISAs, such as Intel x86, ARM, and PowerPC, do not guarantee
sequential consistency. However, we want to emphasize that, in every weak-
memory system we are aware of, the main memory still exposes atomic loads
and stores! Weaker semantics in a core Pi arise only because of (1) reordering
of memory instructions by the core and/or (2) the properties of the local buffers
LBi connected to Pi.

Consequently, we focus on this opportunity to simplify proof decomposition.
We prove that our main memory component satisfies an intuitive store atom-
icity property – which is an appropriate specification of the memory compo-
nent even for implementations of weaker memory models. Store atomicity can
be understood via the operational semantics of Fig. 2, describing an LTS that
receives load and store requests (Ld and St) from processors and sends back load
responses (LdRp). The transfer happens via input buffers ins(p) from processor
p and output buffers outs(p) to processor p. Note that this model allows the
memory system to answer pending memory requests in any order (as indicated
by the bag union operator 
), even potentially reordering requests from a single
processor, so long as, whenever it does process a request, that action appears to
take place atomically.
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Fig. 2. LTS for a simple memory

Figure 2 provides our first example of a hardware component specified as an
LTS via a set of inference rules. Such notation may seem far from the domain
of synthesizable hardware, but it is actually extremely close to Bluespec nota-
tion, and the Bluespec compiler translates automatically to hardware circuits
in Verilog [1].

The memory component is composed of a hierarchy of caches, with cache
nodes labeled like “L1,” “L2,” etc., to avoid the latency of round trips with
main memory. Therefore, it is the responsibility of the hierarchy of caches (which
forms the memory subcomponent) to implement the store atomicity property.
In fact, as we prove in Sect. 8, the purpose of the cache-coherence protocol is
to establish this invariant for the memory subcomponent. Concretely, we have
verified a directory-based protocol for coordinating an arbitrary tree of caches,
where each node stores a conservative approximation of its children’s states.

As an instance of the above decomposition, we prove that a multiprocessor
system with no local buffering in between the processor and the memory compo-
nents indeed implements SC. We implement a highly speculative processor that
executes instructions and issues loads out of order, but commits instructions
(once some “verification” is done) in order.

The processor itself can be decomposed into several components. In the
zoomed-in version of Fig. 1, we show a highly speculative out-of-order-issue
processor. We have the normal architectural state, such as values of registers.
Our proofs are generic over a family of instruction set architectures, with para-
meters for opcode sets and functions for executing opcodes and decoding them
from memory. Other key components are a branch predictor, which guesses at
the control-flow path that a processor will follow, to facilitate speculation; and
a reorder buffer (ROB), which decides which instructions along that path to try
executing ahead of schedule. Our proofs apply to an arbitrary branch predictor
and any reorder buffer satisfying a simple semantic condition.

Our framework establishes theorems of the form “if system A has a run with
some particular observable behavior, then system B also has a run with the
same behavior.” In this sense, we say that A correctly implements B. Other
important properties, such as deadlock freedom for A (which might get stuck
without producing any useful behavior), are left for future work.
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5 Specifying Sequential Consistency

Our final theorem in this paper establishes that a particular complex hardware
system implements sequential consistency (SC) properly. We state the theorem
in terms of the trace refinement relation � developed in Sect. 3. Therefore, we
need to define an LTS embodying SC. The simpler this system, the better. We
need not worry about its performance, since we prove that an optimized system
remains faithful to it.

Figure 3 defines an LTS for an n-processor system that is sequentially consis-
tent, parameterized over details of the ISA. In particular, the ISA gives us some
domains of architectural states s (e.g., register files) and of program counters
pc. A function dec(s, pc) figures out which instruction pc references in the cur-
rent state, returning the instruction’s “decoded” form. A companion function
exec(s, pc, d) actually executes the instruction, returning a new state s′ and the
next program counter pc′.

Fig. 3. LTS for SC with n simple processors

The legal instruction forms, which are outputs of dec, are (Nm, x), for an
operation not accessing memory; (Ld, x, a), for a memory load from address
a; (St, a, v), for a memory store of value v to address a; and H, for a “halt”
instruction that moves the LTS to state H. The parameter x above represents
the rest of the instruction, including the opcode, registers, constants, etc.

The legal inputs to exec encode both a decoded instruction and any relevant
responses from the memory system. These inputs are (Nm, x) and St, which need
no extra input from the memory; and (Ld, x, v), where v gives the contents of
the requested memory cell.

We define the initial state of SC as (θ0,m0), where m0 is some initial memory
fixed throughout our development, mapping every address to value v0; and θ0
maps every processor ID to (s0, pc0), using architecture-specific default values
s0 and pc0.

This LTS encodes Lamport’s notion of SC, where processors take turns exe-
cuting nondeterministically in a simple interleaving. Note that, in this setting,
an operational specification such as the LTS for SC is precisely the proper
characterization of full functional correctness for a hardware design, much as
a precondition-postcondition pair does that in a partial-correctness Hoare logic.
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Our SC LTS fully constrains observable behavior of a system to remain consis-
tent with simple interleaving. Similar operational models are possible as top-level
specifications for systems following weaker memory models, by giving the LTS for
the local buffer component and composing the three components simultaneously.

Our final, optimized system is parameterized over an ISA in the same way
as SC is. In the course of the rest of this paper, we define an optimized system
O and prove O � SC. To support a modular proof decomposition, however, we
need to introduce a few intermediate systems first.

Fig. 4. LTS for a simple decoupled processor (Pref)

6 Respecifying Sequential Consistency with
Communication

Realistic hardware systems do not implement the monolithic SC of Fig. 3 directly.
Instead, there is usually a split between processors and memory. Here we for-
malize that split using LTSes that compose to produce a system refining the SC
model.

Figure 4 defines an LTS for a simple decoupled processor (Pref). Memory
does not appear within a processor’s state. Instead, to load from or store to
an address, requests are sent to the memory system and responses are received.
Both kinds of messages are encoded as labels: ToM for requests to memory and
ToP for responses from memory back to the processor.

A state of Pref is a triple (s, pc,wait), giving the current architectural state
s and program counter pc, as well as a Boolean flag wait indicating whether the
processor is blocked waiting for a response from the memory system. As in the
SC model, the state of the processor is changed to H whenever dec returns H.

As initial state for system Pref, we use (s0, pc0,⊥).
The simple memory defined earlier in Fig. 2 is meant to be composed with Pref

processors. A request to memory like (t, Ld, a) asks for the value of memory cell
a, associating a tag t that the processor can use to match responses to requests.
Those responses take the form (t, Ld, v), giving the value v of the requested
memory address.
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A memory state is a triple (ins, outs,m), giving not just the memory m itself,
but also buffers ins and outs for receiving processor requests and batching up
responses to processors, respectively. We define the initial state of the Mm LTS
as (∅, ∅,m0), with empty queues.

Now we can compose these LTSes to produce an implementation of SC.
For a system of n processors, our decoupled SC implementation is Pn

ref+Mm.

Theorem 4. Pn
ref + Mm � SC

Proof. By induction on traces of the decoupled system, relating them to those
of the SC reference (similar to the technique in WEB refinement [27]). We
need to choose an abstraction function f from states of the complex system
to states of the simple system. This function must be inductive in the appro-
priate sense: a step from s to s′ on the left of the simulation relation must be
matched by sequences of steps on the right from f(s) to f(s′). We choose f that
just preserves state components in states with no pending memory-to-processor
responses. When such responses exist, f first executes them on the appropriate
processors. �

7 Speculative Out-of-Order Processor

We implement a speculative processor, which may create many simultaneous out-
standing requests to the memory – as an optimization to increase parallelism.
Our processor proof is in some sense generic over correct speculation strategies.
We parameterize over two key components of a processor design: a branch pre-
dictor (which makes guesses about processor-local control flow in advance of
resolving conditional jumps) and a reorder buffer (which decides what specula-
tive instructions – such as memory loads – are worth issuing at which moments,
in effect reordering later instructions to happen before earlier instructions have
finished).

The branch predictor is the simpler of the two components, whose state is
indicated with metavariable bp. The operations on such state are curPpc(bp)
(to extract the current program-counter prediction); nextPpc(bp) (to advance
to predicting the next instruction); and setNextPpc(bp, pc) (to reset prediction
to begin at a known-accurate position pc). We need not impose any explicit
correctness criterion on branch predictors; the processor uses predictions only
as hints, and it always resets the predictor using setNextPpc after detecting an
inaccurate hint.

The interface and formal contract of a reorder buffer are more involved. We
write rob as a metavariable for reorder-buffer state, and φ denotes the state of
an empty buffer. The operations associated with rob are:

– insert(pc, rob), which appends the program instruction at location pc to the
list of instructions that the buffer is allowed to consider executing.

– compute(rob), which models a step of computation inside the buffer, returning
both an updated state and an optional speculative load to issue. For instance,
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Fig. 5. Speculating, out-of-order issue processor

it invokes the dec and exec functions (as defined for SC) internally to obtain
the next program counter, state, etc. (but the actual states are not updated).

– updLd(rob, t, v), which informs the buffer that the memory has returned result
value v for the speculative load with tag t �= ε.

– commit(rob), which returns the next instruction in serial program order, if
we have accumulated enough memory responses to execute it accurately, or
returns ε otherwise. When commit returns an instruction, it also returns the
associated program counter plus the next program counter to which it would
advance afterward. Furthermore, the instruction is extended with any relevant
response from memory (used only for load instructions, obtained through
updLd) and with the new architectural state (e.g., register file) after execution.

– retire(rob), which informs the buffer that its commit instruction was executed
successfully, so it is time to move on to the next instruction.

Figure 5 defines the speculative processor LTS Pso. This processor may issue
arbitrary speculative loads, but it commits only the instruction that comes next
in serial program order. The processor will issue two kinds of loads, a specula-
tive load (whose tag is not ε) and a commit or real load (whose tag is ε). To
maintain SC, every speculative load must have a matching verification load later
on, and we maintain the illusion that the program depends only on the results
of verification loads, which, along with stores, must be issued in serial program
order.

When committing a previously issued speculative load instruction, the asso-
ciated speculative memory load response is verified against the new commit load
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response. If the resulting values do not match, the processor terminates all past
uncommitted speculation, by emptying the reorder buffer and resetting the next
predicted program counter in the branch predictor to the correct next value. In
common cases, performance of executing loads twice is good, because it is likely
that the verification load finds the address already in a local cache – thanks to
the recent processing of the speculative load. Moreover, 60 % to 90 % of verifica-
tion loads can be avoided by tracking speculative loads [9]; in the future we will
extend our proofs to include such optimizations.

A full processor state is (s, pc,wait , rob, bp), comprising architectural state,
the program counter, a Boolean flag indicating whether the processor is waiting
for a memory response about an instruction being committed, and the reorder-
buffer and branch-predictor states. Its initial state is given by (s0, pc0,⊥, φ, bp0).
The interface of this processor with memory (i.e., communication labels with
ToM,ToP) is identical to that of the reference processor.

Finally, we impose a general correctness condition on reorder buffers (Fig. 6).
Intuitively, whenever the buffer claims (via a commit output) that a particular
instruction is next to execute (thus causing certain state changes), that instruc-
tion must really be next in line according to how the program runs in the SC
system, and its execution must really cause those state changes.

Fig. 6. Correctness of reorder buffer

When this condition holds, we may conclude the correctness theorem for out-
of-order processors. We use a trace-transformation function noSpec that drops all
speculative-load requests and responses (i.e., those load requests and responses
whose tags are not ε). See Definition 5 for a review of how we use such func-
tions in framing trace refinement. Intuitively, we prove that any behavior by the
speculating processor can be matched by the simple processor, with speculative
messages erased.

Theorem 5. Pso �noSpec Pref

Proof. By induction on Pso traces, using an abstraction function that drops the
speculative messages and the rob and bp states to relate the two systems. The
reorder-buffer correctness condition is crucial to relate its behavior with the
simple in-order execution of Pref. �

Corollary 1. Pn
so �noSpecn Pn

ref

Proof. Direct consequence of Theorems 5 and 2 (the latter is about
n-repetition). �
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8 Cache-Based Memory System

We now turn our attention to a more efficient implementation of memory. With
the cache hierarchy of Fig. 1, we have concurrent interaction of many proces-
sors with many caches, and the relationship with the original Mm system is far
from direct. However, this intricate concurrent execution is crucial to hiding the
latency of main-memory access. Figure 7 formalizes as an LTS Mc the algorithm
we implemented (based on a published implementation [13]) for providing the
memory abstraction on top of a cache hierarchy. We have what is called an
invalidating directory-based hierarchical cache-coherence protocol.

We describe a state of the system using fields d , ch, cs, dir , w , dirw , ins, outs.
The ins and outs sets are the interfaces to the processors and are exactly the same
as in Mm (Fig. 2). We use parent(c, p) to denote that p is the parent of c.

A coherence state is M , S, or I, broadly representing permissions to modify,
read, or do nothing with an address, respectively, the decreasing permissions
denoted by M > S > I. More precisely, if a node n is in coherence state M or S
for some address, then there might be some node in n’s subtree that has write
or read permissions, respectively, for that address. Coherence state of cache c
for address a is denoted by cs(c, a). d(c, a) represents the data in cache c for
address a.

w(c, a) stores the permission an address a in cache c is waiting for, if any.
That is, cache c has decided to upgrade its coherence state for address a to
a more permissive value, but it is waiting for acknowledgment from its parent
before upgrading.

dir(p, c, a) represents the parent p’s notion of the coherence state of the child
c for address a. We later prove that this notion is always conservative, i.e., if
the parent assumes that a child does not have a particular permission, then
it is guaranteed in this system that the child will not have that permission.
dirw(p, c, a) denotes whether the parent p is waiting for any downgrade response
from its child c for address a, and if so, the coherence state that the child must
downgrade to as well.

There are three types of communication channels in the system: (i) ch(p, c,RR)
(which carries both downgrade request and upgrade response messages from par-
ent p to its child c), (ii) ch(c, p,Rq) (which carries upgrade request messages from
child c to its parent p) and (iii) ch(c, p,Rp) (which carries downgrade response
messages from child c to its parent p). While the ch(c, p,Rp) and ch(p, c,RR)
channels deliver messages between the same pair of nodes in the same order in
which the messages were injected (i.e., they obey the FIFO property, indicated
by the use of :: in Fig. 7), ch(c, p,Rq) need not obey such a property (indicated
by the use of 
 for unordered bags in Fig. 7). This asymmetry arises because
only one downgrade request can be outstanding for one parent-child pair for an
address.

Here is an intuition on how the transitions work in the common case. A cache
can spontaneously decide to upgrade its coherence state, in which case it sends
an upgrade request to its parent. The parent then makes a local decision on
whether to send a response to the requesting child or not, based on its directory
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Fig. 7. LTS for cache-coherent shared-memory system

approximation and its own coherence state cs. If cs is lower than the requested
upgrade, then it cannot handle the request, and instead must decide to upgrade
cs. Once the parent’s cs is not lower than the requested upgrade, it makes sure
that the rest of its children are “compatible” with the requested upgrade (given
by the dirCompat definition below). If not, the parent must send requests to
the incompatible children to downgrade. Finally, when the cs’s upgrade and
children’s downgrade responses are all received, the original request can be
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responded to. A request in ins can be processed by an L1 cache only if it is
in the appropriate state, otherwise it has to request an upgrade for that address.

Definition 6. dirCompat(p, c, x, a) =

{
x = M ⇒ ∀c′ �= c. dir(p, c′, a) = I
x = S ⇒ ∀c′ �= c. dir(p, c′, a) ≤ S

A complication arises because a cache can voluntarily decide to downgrade its
state. This transition is used to model invalidation of cache lines to make room
for a different location. As a result, the parent’s dir and the corresponding cs
of the child may go out of sync, leading to the parent requesting a child to
downgrade when it already has. To handle this situation, the child has to drop
the downgrade request when it has already downgraded to the required state
(Rule DropReq in Fig. 7), to avoid deadlocks by not dequeuing the request.

8.1 Proving Mc is Store Atomic

We must prove the following theorem, i.e., the cache-based system is sound with
respect to the simple memory.

Theorem 6. Mc � Mm

We present the key theorem needed for this proof below. Throughout this section,
we say time to denote the number of transitions that occurred before reaching
the specified state.

Theorem 7. A is store atomic, i.e., A � Mm and Mm � A iff for any load
request ToM(t, Ld, a) received, the response ToP(t, Ld, v) sent at time T is such
that

1. v = v0 (the initial value of any memory address) and no store request ToM(St,
a, v′) has been processed at any time T ′ such that T ′ < T or

2. There is a store request ToM(St, a, v) that was processed at time Tq such that
Tq < T and no other store request ToM(St, a, v′) was processed at any time
T ′ such that Tq < T ′ < T .

The proof that Mc obeys the properties in Theorem 7 is involved enough
that we state only key lemmas that we used.

Lemma 1. At any time T , if address a in cache c obeys cs(c, a) ≥ S and
∀i. dir(c, i, a) ≤ S, then a will have the latest value, i.e.,

1. d(c, a) = v0 and no store request ToM(St, a, v) has been processed at any time
T ′ such that T ′ < T or

2. There is a store request ToM(St, a, v) that was processed at time Tq such that
Tq < T ∧ d(c, a) = v and no other store request ToM(St, a, v′) was processed
at any time T ′ such that Tq < T ′ < T .

It is relatively straightforward to prove the properties of Theorem 7, given
Lemma 1. To prove Lemma 1, it has to be decomposed further into the following,
each of which holds at any time.
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Lemma 2. If some response m for an address a is in transit (i.e., we are con-
sidering any time T such that Ts ≤ T ≤ Tr where Ts is the time of sending m
and Tr the time of receiving m), then no cache can process store requests for a,
and m must be sent from a cache c where cs(c, a) ≥ S and ∀i. dir(c, i, a) ≤ S.

Lemma 3. At any time, ∀p,∀c,∀a. parent(c, p) ⇒
cs(c, a) ≤ dir(p, c, a) ∧ dirCompat(p, c, dir(p, c, a), a) ∧ dir(p, c, a) ≤ cs(p, a)

The same proof structure can be used to prove other invalidation-based protocols
with inclusive caches (where any address present in a cache will also be present
in its parent) like MESI, MOSI, and MOESI; we omit the discussion of extending
this proof to these for space reasons. The MSI proof is about 12,000 lines of Coq
code, of which 80 % can be reused as-is for the other protocols.

9 The Final Result

With our two main results about optimized processors and memories, we can
complete the correctness proof of the composed optimized system.

First, we need to know that, whenever the simple memory can generate some
trace of messages, it could also generate the same trace with all speculative mes-
sages removed. We need this property to justify the introduction of speculation,
during our final series of refinements from the optimized system to SC.

Theorem 8. Mm �noSpecn Mm

Proof. By induction on traces, with an identity abstraction function. �

That theorem turns out to be the crucial ingredient to justify placing a specu-
lative processor in-context with simple memory.

Theorem 9. Pn
so + Mm � Pn

ref + Mm

Proof. Follows from Theorem 3 (our result about +), Corollary 1, and
Theorem 8. �

The last theorem kept the memory the same while refining the processor. The
next one does the opposite, switching out memory.

Theorem 10. Pn
so + Mc � Pn

so + Mm

Proof. Follows from Theorems 6 and 3 plus reflexivity of � (Theorem 1). �

Theorem 11. Pn
so + Mc � SC

Proof. We twice apply � transitivity (Theorem 1) to connect Theorems 10, 9,
and 4 �
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10 Conclusions and Future Work

In this paper, we developed a mechanized modular proof of a parametric hierar-
chical cache-coherence protocol in Coq and use this proof modularly for a veri-
fication of sequential consistency for a complete system containing out-of-order
processors. Our proof modularization corresponds naturally to the modulariza-
tion seen in hardware implementations, allowing verification to be carried out
in tandem with the design. Our overall goal is to enable design of formally veri-
fied hardware systems. To this end, we have been working on a DSL in Coq for
translating to and from Bluespec, and we are developing appropriate libraries
and proof automation, extending the work of Braibant et al. [7] with support
for modular specification and verification, systematizing some elements of this
paper’s Coq development that are specialized to our particular proof.

While we provide a clean interface for an SC system, we are also working on
encompassing relaxed memory models commonly used in modern processors.
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Abstract. Symbolic trajectory evaluation (STE) is a model checking
technique that has been successfully used to verify industrial designs.
Existing implementations of STE, however, reason at the level of bits,
allowing signals to take values in {0, 1, X}. This limits the amount of
abstraction that can be achieved, and presents inherent limitations to
scaling. The main contribution of this paper is to show how much more
abstract lattices can be derived automatically from RTL descriptions,
and how a model checker for the general theory of STE instantiated
with such abstract lattices can be implemented in practice. This gives us
the first practical word-level STE engine, called STEWord. Experiments
on a set of designs similar to those used in industry show that STEWord
scales better than word-level BMC and also bit-level STE.

1 Introduction

Symbolic Trajectory Evaluation (STE) is a model checking technique that grew
out of multi-valued logic simulation on the one hand, and symbolic simulation
on the other hand [2]. Among various formal verification techniques in use today,
STE comes closest to functional simulation and is among the most successful for-
mal verifiation techniques used in the industry. In STE, specifications take the
form of symbolic trajectory formulas that mix Boolean expressions and the tem-
poral next-time operator. The Boolean expressions provide a convenient means
of describing different operating conditions in a circuit in a compact form. By
allowing only the most elementary of temporal operators, the class of proper-
ties that can be expressed is fairly restricted as compared to other temporal
logics (see [4] for a nice survey). Nonetheless, experience has shown that many
important aspects of synchronous digital systems at various levels of abstraction
can be captured using this restricted logic. For example, it is quite adequate
for expressing many of the subtleties of system operation, including clocking
schemas, pipelining control, as well as complex data computations [7,8,12].
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In return for the restricted expressiveness of STE specifications, the STE
model checking algorithm provides siginificant computational efficiency. As a
result, STE can be applied to much larger designs than any other model check-
ing technique. For example, STE is routinely used in the industry today to carry
out complete formal input-output verification of designs with several hundred
thousand latches [7,8]. Unfortunately, this still falls short of providing an auto-
mated technique for formally verifying modern system-on-chip designs, and there
is clearly a need to scale up the capacity of STE even further.

The first approach that was pursued in this direction was structural decom-
position. In this approach, the user must break down a verification task into
smaller sub-tasks, each involving a distinct STE run. After this, a deductive
system can be used to reason about the collections of STE runs and verify
that they together imply the desired property of the overall design [6]. In the-
ory, structural decomposition allows verification of arbitrarily complex designs.
However, in practice, the difficulty and tedium of breaking down a property into
small enough sub-properties that can be verified with an STE engine limits the
usefulness of this approach significantly. In addition, managing the structural
decomposition in the face of rapidly changing RTL limits the applicability of
structural decomposition even further.

A different approach to increase the scale of designs that can be verified is
to use aggressive abstraction beyond what is provided automatically by current
STE implementations. If we ensure that our abstract model satisfies the require-
ments of the general theory of STE, then a property that is verified on the
abstract model holds on the original model as well. Although the general theory
of STE allows a very general circuit model [11], all STE implementations so far
have used a three-valued circuit model. Thus, every bit-level signal is allowed to
have one of three values: 0, 1 or X, where X represents “either 0 or 1”. This
limits the amount of abstraction that can be achieved. The main contribution
of this paper is to show how much more abstract lattices can be derived auto-
matically from RTL descriptions, and how the general theory of STE can be
instantiated with these lattices to give a practical word-level STE engine that
provides significant gains in capacity and efficiency on a set of benchmarks.

Operationally, word-level STE bears similarities with word-level bounded
model checking (BMC). However, there are important differences, the most sig-
nificant one being the use of X-based abstractions on slices of words, called
atoms, in word-level STE. This allows a wide range of abstraction possibilities,
including a combination of user-specified and automatic abstractions – often a
necessity for complex verification tasks. Our preliminary experimental results
indicate that by carefully using X-based abstractions in word-level STE, it is
indeed possible to strike a good balance between accuracy (cautious propagation
of X) and performance (liberal propagation of X).

The remainder of the paper is organized as follows. We discuss how words
in an RTL design can be split into atoms in Sect. 2. Atoms form the basis
of abstracting groups of bits. In Sect. 3, we elaborate on the lattice of values
that this abstraction generates, and Sect. 4 presents a new way of encoding
values of atoms in this lattice. We also discuss how to symbolically simulate
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RTL operators and compute least upper bounds using this encoding. Section 5
presents an instantiation of the general theory of STE using the above lattice,
and discusses an implementation. Experimental results on a set of RTL bench-
marks are presented in Sect. 6, and we conclude in Sect. 7.

2 Atomizing Words

In bit-level STE [2,12], every variable is allowed to take values from {0, 1,X},
where X denotes “either 0 or 1”. The ordering of information in the values 0,
1 and X is shown in the lattice in Fig. 1, where a value lower in the order has
“less information” than one higher up in the order. The element � is added
to complete the lattice, and represents an unachievable over-constrained value.
Tools that implement bit-level STE usually use dual-rail encoding to reason
about ternary values of variables. In dual-rail encoding, every bit-level variable v
is encoded using two binary variables v0 and v1. Intuitively, vi indicates whether v
can take the value i, for i in {0, 1}. Thus, 0, 1 and X are encoded by the valuations
(0, 1), (1, 0) and (1, 1), respectively, of (v0, v1). By convention, (v0, v1) = (0, 0)
denotes �. An undesired consequence of dual-rail encoding is the doubling of
binary variables in the encoded system. This can pose serious scalability issues
when verifying designs with wide datapaths, large memories, etc. Attempts to
scale STE to large designs must therefore raise the level of abstraction beyond
that of individual bits.

Fig. 1. Ternary
lattice

In principle, one could go to the other extreme, and run
STE at the level of words as defined in the RTL design. This
requires defining a lattice of values of words, and instantiating
the general theory of STE [11] with this lattice. The difficulty
with this approach lies in implementing it in practice. The
lattice of values of an m-bit word, where each bit in the word
can take values in {0, 1,X}, is of size at least 3m. Symbolically
representing values from such a large lattice and reasoning about them is likely
to incur overheads similar to that incurred in bit-level STE. Therefore, STE
at the level of words (as defined in the RTL design) does not appear to be a
practical proposition for scaling.

The idea of splitting words into sub-words for the purpose of simplifying
analysis is not new (see e.g. [5]). An aggressive approach to splitting (an extreme
example being bit-blasting) can lead to proliferation of narrow sub-words, mak-
ing our technique vulnerable to the same scalability problems that arise with
dual-rail encoding. Therefore, we adopt a more controlled approach to splitting.
Specifically, we wish to split words in such a way that we can speak of an entire
sub-word having the value X without having to worry about which individual
bits in the sub-word have the value X. Towards this end, we partition every
word in an RTL design into sub-words, which we henceforth call atoms, such
that every RTL statement that reads or updates a word either does so for all
bits in an atom, or for no bit in an atom. In other words, no RTL statement
(except the few discussed at the end of this section) reads or updates an atom
partially.
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The above discussion leads to a fairly straightforward algorithm for identify-
ing atoms in an RTL design. We refer the reader to the full version of the paper [3]
for details of our atomization technique, and illustrate it on a simple example
below. Figure 2(a) shows a System-Verilog code fragment, and Fig. 2(b) shows
an atomization of words, where the solid vertical bars represent the boundaries
of atoms. Note that every System-Verilog statement in Fig. 2(a) either reads or
writes all bits in an atom, or no bit in an atom. Since we wish to reason at the
granularity of atoms, we must interpret word-level reads and writes in terms of
the corresponding atom-level reads and writes. This can be done either by mod-
ifying the RTL, or by taking appropriate care when symbolically simulating the
RTL. For simplicity of presentation, we show in Fig. 2(c) how the code fragment
in Fig. 2(b) would appear if we were to use only the atoms identified in Fig. 2(b).
Note that no statement in the modified RTL updates or reads a slice of an atom.
However, a statement may be required to read a slice of the result obtained by
applying an RTL operator to atoms (see, for example, Fig. 2(c) where we read a
slice of the result obtained by adding concatenated atoms). In our implementa-
tion, we do not modify the RTL. Instead, we symbolically simulate the original
RTL, but generate the expressions for various atoms that would result from
simulating the modified RTL.

Fig. 2. Illustrating atomization

Once the boundaries of all atoms are
determined, we choose to disregard val-
ues of atoms in which some bits are set
to X, and the others are set to 0 or 1.
This choice is justified since all bits in
an atom are read or written together.
Thus, either all bits in an atom are con-
sidered to have values in {0, 1}, or all of
them are considered to have the value
X. This implies that values of an m-bit
atom can be encoded using m + 1 bits,
instead of using 2m bits as in dual-rail
encoding. Specifically, we can associate
an additional “invalid” bit with every m-
bit atom. Whenever the “invalid” bit is
set, all bits in the atom are assumed to
have the value X. Otherwise, all bits are assumed to have values in {0, 1}. We
show later in Sects. 4.1 and 4.2 how the value and invalid bit of an atom can be
recursively computed from the values and invalid bits of the atoms on which it
depends.

Memories and arrays in an RTL design are usually indexed by variables
instead of by constants. This makes it difficult to atomize memories and arrays
statically, and we do not atomize them. Similarly, if a design has a logical shift
operation, where the shift length is specified by a variable, it is difficult to stat-
ically identify subwords that are not split by the shift operation. We ignore all
such RTL operations during atomizaion, and instead use extensional arrays [13]
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to model and reason about them. Section 4.2 briefly discusses the modeling of
memory/array reads and writes in this manner. A more detailed description is
available in the full version of the paper [3].

3 Lattice of Atom Values

Recall that the primary motivation for atomizing words is to identify the right
granularity at which an entire sub-word (atom) can be assigned the value X
without worrying about which bits in the sub-word have the value X. Therefore,

an m-bit atom a takes values from the set {
m bits

︷ ︸︸ ︷
0 · · · 00, . . .

m bits
︷ ︸︸ ︷
1 · · · 11,X}, where X is

a single abstract value that denotes an assignment of X to at least one bit of a.
Note the conspicuous absence of values like 0X1 · · · 0 in the above set. Figure 3(a)
shows the lattice of values for a 3-bit atom, ordered by information content. The
� element is added to complete the lattice, and represents an unachievable over-
constrained value. Figure 3(b) shows the lattice of values of the same atom if
we allow each bit to take values in {0, 1,X}. Clearly, the lattice in Fig. 3(a) is
shallower and sparser than that in Fig. 3(b).

Fig. 3. Atom-level and bit-level lattices

Consider an m-bit word w that has been partitioned into non-overlapping
atoms of widths m1, . . . mr, where

∑r
j=1 mj = m. The lattice of values of w

is given by the product of r lattices, each corresponding to the values of an
atom of w. For convenience of representation, we simplify the product lattice by
collapsing all values that have at least one atom set to � (and therefore represent
unachievable over-constrained values), to a single � element. It can be verified
that the height of the product lattice (after the above simplification) is given
by r + 1, the total number of elements in it is given by

∏r
j=1

(
2mj + 1

)
+ 1 and

the number of elements at level i from the bottom is given by
(
m
i

) ∏i
j=1 2mj ,
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where 0 < i ≤ r. It is not hard to see from these expressions that atomization
using few wide atoms (i.e., small values of r and large values of mj) gives shallow
and sparse lattices compared to atomization using many narrow atoms (i.e., large
values of r and small values of mj). The special case of a bit-blasted lattice (see
Fig. 3(b)) is obtained when r = m and mj = 1 for every j ∈ {1, . . . r}.

Using a sparse lattice is advantageous in symbolic reasoning since we need
to encode a small set of values. Using a shallow lattice helps in converging fast
when computing least upper bounds – an operation that is crucially needed
when performing symbolic trajectory evaluation. However, making the lattice
of values sparse and shallow comes at the cost of losing precision of reasoning.
By atomizing words based on their actual usage in an RTL design, and by
abstracting values of atoms wherein some bits are set to X and the others are
set to 0 or 1, we strike a balance between depth and density of the lattice of
values on one hand, and precision of reasoning on the other.

4 Symbolic Simulation with Invalid-Bit Encoding

As mentioned earlier, an m-bit atom can be encoded with m + 1 bits by asso-
ciating an “invalid bit” with the atom. For notational convenience, we use
val(a) to denote the value of the m bits constituting atom a, and inv(a) to
denote the value of its invalid bit. Thus, an m-bit atom a is encoded as a pair
(val(a), inv(a)), where val(a) is a bit-vector of width m, and inv(a) is of Boolean
type. Given (val(a), inv(a)), the value of a is given by ite(inv(a),X, val(a)), where
“ite” denotes the usual “if-then-else” operator. For clarity of exposition, we call
this encoding “invalid-bit encoding”. Note that invalid-bit encoding differs from
dual-rail encoding even when m = 1. Specifically, if a 1-bit atom a has the value
X, we can use either (0, true) or (1, true) for (val(a), inv(a)) in invalid-bit encod-
ing. In contrast, there is a single value, namely (a0, a1) = (1, 1), that encodes
the value X of a in dual-rail encoding. We will see in Sect. 4.2 how this degree of
freedom in invalid-bit encoding of X can be exploited to simplify the symbolic
simulation of word-level operations on invalid-bit-encoded operands, and also to
simplify the computation of least upper bounds.

Symbolic simulation is a key component of symbolic trajectory evaluation. In
order to symbolically simulate an RTL design in which every atom is invalid-bit
encoded, we must first determine the semantics of word-level RTL operators with
respect to invalid-bit encoding. Towards this end, we describe below a generic
technique for computing the value component of the invalid-bit encoding of the
result of applying a word-level RTL operator. Subsequently, we discuss how the
invalid-bit component of the encoding is computed.

4.1 Symbolically Simulating Values

Let op be a word-level RTL operator of arity k, and let res be the result of apply-
ing op on v1, v2, . . . vk, i.e., res = op(v1, v2, . . . vk). For each i in {1, . . . k}, sup-
pose the bit-width of operand vi is mi, and suppose the bit-width of res is mres.
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We assume that each operand is invalid-bit encoded, and we are interested in
computing the invalid-bit encoding of a specified slice of the result, say res[q : p],
where 0 ≤ p ≤ q ≤ mres − 1. Let 〈op〉 : {0, 1}m1 × · · · × {0, 1}mk → {0, 1}mres

denote the RTL semantics of op. For example, if op denotes 32-bit unsigned
addition, then 〈op〉 is the function that takes two 32-bit operands and returns
their 32-bit unsigned sum. The following lemma states that val(res[q : p]) can
be computed if we know 〈op〉 and val(vi), for every i ∈ {1, . . . k}. Significantly,
we do not need inv(vi) for any i ∈ {1, . . . k} to compute val(res[q : p]).

Lemma 1. Let v =
(
〈op〉(val(v1), val(v2), . . . val(vk))

)
[q : p]. Then val(res[q : p])

is given by v, where res = op(v1, v2, . . . vk).

The proof of Lemma 1, given in [3], exploits the observation that if inv(res[q : p])
is true, then the value of val(res[q : p]) does not matter. Lemma 1 tells us
that when computing val(res[q : p]), we can effectively assume that invalid-
bit encoding is not used. This simplifies symbolic simulation with invalid-bit
encoding significantly. Note that this simplification would not have been possible
had we not had the freedom to ignore val(res[q : p]) when inv(res[q : p]) is true.

4.2 Symbolically Simulating Invalid Bits

We now turn to computing inv(res[q : p]). Unfortunately, computing inv(res[q : p])
precisely is difficult and involves operator-specific functions that are often com-
plicated. We therefore choose to approximate inv(res[q : p]) in a sound man-
ner with functions that are relatively easy to compute. Specifically, we allow
inv(res[q : p]) to evaluate to true (denoting res[q : p] = X) even in cases where
a careful calculation would have shown that op(v1, v2, . . . vk) is not X. How-
ever, we never set inv(res[q : p]) to false if any bit in res[q : p] can take the
value X in a bit-blasted evaluation of res. Striking a fine balance between the
precision and computational efficiency of the sound approximations is key to
building a practically useful symbolic simulator using invalid-bit encoding. Our
experience indicates that simple and sound approximations of inv(res[q : p]) can
often be carefully chosen to serve our purpose. While we have derived templates
for approximating inv(res[q : p]) for res obtained by applying all word-level
RTL operators that appear in our benchmarks, we cannot present all of them
in detail here due to space constraints. We present below a discussion of how
inv(res[q : p]) is approximated for a subset of important RTL operators. Impor-
tantly, we use a recursive formulation for computing inv(res[q : p]). This allows
us to recursively compute invalid bits of atoms obtained by applying complex
sequences of word-level operations to a base set of atoms.

Word-Level Addition: Let +m denote an m-bit addition operator. Thus, if a
and b are m-bit operands, a +m b generates an m-bit sum and a 1-bit carry.
Let the carry generated after adding the least significant r bits of the operands
be denoted carryr. We discuss below how to compute sound approximations of
inv(sum[q : p]) and inv(carryr), where 0 ≤ p ≤ q ≤ m − 1 and 1 ≤ r ≤ m.
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It is easy to see that the value of sum[q : p] is completely determined by
a[q : p], b[q : p] and carryp. Therefore, we can approximate inv(sum[q : p]) as
follows: inv(sum[q : p])= inv(a[q : p]) ∨ inv(b[q : p]) ∨ inv(carryp).

To see why the above approximation is sound, note that if all of inv(a[q : p]),
inv(b[q : p]) and inv(carryp) are false, then a[q : p], b[q : p] and carryp must
have non-X values. Hence, there is no uncertainty in the value of sum[q : p] and
inv(sum[q : p]) = false. On the other hand, if any of inv(a[q : p], inv(b[q : p]) or
inv(carryp) is true, there is uncertainty in the value of sum[q : p].

The computation of inv(carryp) (or inv(carryr)) is interesting, and deserves
special attention. We identify three cases below, and argue that inv(carryp) is
false in each of these cases. In the following, 0 denotes the p-bit constant 00 · · · 0.

1. If
(
inv(a[p − 1 : 0]) ∨ inv(b[p − 1 : 0])

)
= false, then both inv(a[p − 1 : 0]) and

inv(b[p − 1 : 0]) must be false. Therefore, there is no uncertainty in the values
of either a[p − 1 : 0] or b[p − 1 : 0], and inv(carryp) = false.

2. If
(
¬inv(a[p− 1 : 0])∧ (val(a[p− 1 : 0]) = 0)

)
= true, then the least significant

p bits of val(a) are all 0. Regardless of val(b), it is easy to see that in this case,
val(carryp) = 0 and inv(carryp) = false.

3. This is the symmetric counterpart of the case above, i.e.,
(
¬inv(b[p − 1 : 0]) ∧

(val(b[p − 1 : 0]) = 0)
)

= true.

We now approximate inv(carryp) by combining the conditions corresponding to
the three cases above. In other words,

inv(carryp) =
(
inv(a[p − 1 : 0])∨inv(b[p − 1 : 0])

)
∧

(
inv(a[p − 1 : 0])∨(val(a[p − 1 : 0]) 
=0)

)
∧

(
inv(b[p − 1 : 0])∨(val(b[p − 1 : 0]) 
=0)

)

Word-Level Division: Let ÷m denote an m-bit division operator. This is
among the most complicated word-level RTL operators for which we have derived
an approximation of the invalid bit. If a and b are m-bit operands, a ÷m b
generates an m-bit quotient, say quot, and an m-bit remainder, say rem. We
wish to compute inv(quot[q : p]) and inv(rem[q : p]), where 0 ≤ p ≤ q ≤
m − 1. We assume that if inv(b) is false, then val 
= 0; the case of a ÷m b with
(val(b), inv(b)) = (0, false) leads to a “divide-by-zero” exception, and is assumed
to be handled separately.

The following expressions give sound approximations for inv(quot[q : p]) and
inv(rem[q : p]). In these expressions, we assume that i is a non-negative integer
such that 2i ≤ val(b) < 2i+1. We defer the argument for soundness of these
approximations to the full version of the paper [3], for lack of space.

inv(quot[q : p]) = ite(inv(b), temp1, temp2), where
temp1 = inv(a) ∨ (val(a[m − 1 : p]) 
= 0) and
temp2 = ite(val(b) = 2i, temp3, (i < p) ∨ inv(a[m − 1 : p])), where
temp3 = (p + i ≤ m − 1) ∧ inv(a[min(q + i,m − 1) : p + i]))

inv(rem[q : p])= inv(b) ∨ ite(val(b) = 2i, (i > p) ∧ inv(a[min(q, i − 1) : p]), i ≥ p)
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Note that the constraint 2i ≤ val(b) < 2i+1 in the above formulation refers to a
fresh variable i that does not appear in the RTL. We will see later in Sect. 5 that
a word-level STE problem is solved by generating a set of word-level constraints,
every satisfying assignment of which gives a counter-example to the verification
problem. We add constraints like 2i ≤ val(b) < 2i+1 in the above formulation,
to the set of word-level constraints generated for an STE problem. This ensures
that every assignment of i in a counterexample satisfies the required constraints
on i.

If-then-else: Consider a conditional assignment statement “if (BoolExpr) then
x = Exp1; else x = Exp2;”. Symbolically simulating this statement gives x =
ite(BoolExpr,Exp1,Exp2). The following gives a sound approximation of inv(x[q :
p]); the proof of soundness is given in the full version of the paper [3].

inv(x[q : p]) = ite(inv(BoolExpr), temp1, temp2), where

temp1 = inv(Exp1[q : p]) ∨ inv(Exp2[q : p]) ∨ (val(Exp1[q : p]) �= val(Exp2[q : p]))

temp2 = ite(val(BoolExpr), inv(Exp1[q : p]), inv(Exp2[q : p]))

Bit-Wise Logical Operations: Let ¬m and ∧m denote bit-wise negation and
conjunction operators respectively, for m-bit words. If a, b, c and d are m-bit
words such that c = ¬ma and d = a∧m b, it is easy to see that the following give
sound approximations of inv(c) and inv(d).

inv(c[q : p]) = inv(a[q : p])
inv(d[q : p]) =

(
inv(a[q : p]) ∨ inv(b[q : p])

)
∧

(
inv(a[q : p]) ∨ (val(a[q : p]) 
= 0)

)
∧

(
inv(b[q : p]) ∨ (val(b[q : p]) 
= 0)

)

The invalid bits of other bit-wise logical operators (like disjunction, xor, nor,
nand, etc.) can be obtained by first expressing them in terms of ¬m and ∧m and
then using the above approximations.

Memory/Array Reads and Updates: Let A be a 1-dimensional array, i be an
index expression, and x be a variable and Exp be an expression of the base type
of A. For notational convenience, we will use A to refer to both the array, and the
(array-typed) expression for the value of the array. On symbolically simulating
the RTL statement “x = A[i];”, we update the value of x to read(A, i), where the
read operator is as in the extensional theory of arrays (see [13] for details). Sim-
ilarly, on symbolically simulating the RTL statement “A[i] = Exp”, we update
the value of array A to update(Aorig, i,Exp), where Aorig is the (array-typed)
expression for A prior to simulating the statement, and the update operator is
as in the extensional theory of arrays.

Since the expression for a variable or array obtained by symbolic simulation
may now have read and/or update operators, we must find ways to compute sound
approximations of the invalid bit for expressions of the form read(A, i)[q : p]. Note
that since A is an array, the symbolic expression for A is either (i) Ainit, i.e. the
initial value of A at the start of symbolic simulation, or (ii) update(A′, i′,Exp′) for
some expressions A′, i′ and Exp′, where A′ has the same array-type as A, i′ has
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an index type, and Exp′ has the base type of A. For simplicity of exposition, we
assume that all arrays are either completely initialized or completely uninitialized
at the start of symbolic simulation. The invalid bit of read(A, i)[q : p] in case (i)
is then easily seen to be true if Ainit denotes an uninitialized array, and false
otherwise. In case (ii), let v denote read(A, i). The invalid bit of v[q : p] can then
be approximated as:

inv(v[q : p]) = inv(i) ∨ inv(i′) ∨ ite
(
val(i) = val(i′), inv(Exp′[q : p]), temp

)
, where

temp = inv(read(A′, i)[q : p]).

We defer the argument for soundness of the above approximation to the full
version of the paper [3].

4.3 Computing Least Upper Bounds

Let a = (val(a), inv(a)) and b = (val(b), inv(b)) be invalid-bit encoded elements
in the lattice of values for an m-bit atom. We define c = lub(a, b) as follows.

(a) If (¬inv(a) ∧ ¬inv(b) ∧ (val(a) 
= val(b)), then c = �.
(b) Otherwise, inv(c) = inv(a) ∧ inv(b) and val(c) = ite(inv(a), val(b), val(a)) (or

equivalently val(c) = ite(inv(b), val(a), val(b))).

Note the freedom in defining val(c) in case (b) above. This freedom comes from
the observation that if inv(c) = true, the value of val(c) is irrelevant. Furthermore,
if the condition in case (a) is not satisfied and if both inv(a) and inv(b) are false,
then val(a) = val(b). This allows us to simplify the expression for val(c) on-the-fly
by replacing it with val(b), if needed.

5 Word-Level STE

In this section, we briefly review the general theory of STE [11] instantiated
to the lattice of values of atoms. An RTL design C consists of inputs, outputs
and internal words. We treat bit-level signals as 1-bit words, and uniformly talk
of words. Every input, output and internal word is assumed to be atomized
as described in Sect. 2. Every atom of bit-width m takes values from the set
{0 . . .2m − 1,X}, where constant bit-vectors have been represented by their
integer values. The values themselves are ordered in a lattice as discussed in
Sect. 3. Let ≤m denote the ordering relation and �m denote the lub operator in
the lattice of values for an m-bit atom. The lattice of values for a word is the
product of lattices corresponding to every atom in the word. Let A denote the
collection of all atoms in the design, and let D denote the collection of values of
all atoms in A. A state of the design is a mapping s : A → D ∪ � such that if
a ∈ A is an m-bit atom, then s(a) is a value in the set {0, . . .2m − 1,X,�}. Let
S denote the set of all states of the design, and let (S,�,�) be a lattice that is
isomorphic to the product of lattices corresponding to the atoms in A.
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Given a design C, let TrC : S → S define the transition function of C.
Thus, given a state s of C at time t, the next state of the design at time t + 1
is given by TrC(s). To model the behavior of a design over time, we define a
sequence of states as a mapping σ : N → S, where N denotes the set of natural
numbers. A trajectory for a design C is a sequence σ such that for all t ∈ N,
TrC(σ(t)) � σ(t+1). Given two sequences σ1 and σ2, we abuse notation and say
that σ1 � σ2 iff for every t ∈ N, σ1(t) � σ2(t).

The general trajectory evaluation logic of Seger and Bryant [11] can be instan-
tiated to words as follows. A trajectory formula is a formula generated by the
grammar ϕ ::= a is val | ϕ and ϕ | P → ϕ | Nϕ, where a is an atom of C, val
is a non-X, non-� value in the lattice of values for a, and P is a quantifier-free
formula in the theory of bit-vectors. Formulas like P in the grammar above are
also called guards in STE parlance.

We use Seger et al’s [2,12] definitions for the defining sequence of a trajectory
formula ψ given the assignment φ, denoted [ψ]φ, and for the defining trajectory
of ψ with respect to a design C, denoted [[ψ]]φC . Details of these definitions may
be found in the full version of the paper [3]. In symbolic trajectory evaluation, we
are given an antecedent Ant and a consequent Cons in trajectory evaluation logic.
We are also given a quantifier-free formula Constr in the theory of bit-vectors with
free variables that appear in the guards of Ant and/or Cons. We wish to determine
if for every assignment φ that satisfies Constr, we have [Cons]φ � [[Ant]]φC .

5.1 Implementation

We have developed a tool called STEWord that uses symbolic simulation with
invalid-bit encoding and SMT solving to perform STE. Each antecedent and
consequent tuple has the format (g, a, vexpr, start, end), where g is a guard, a
is the name of an atom in the design under verification, vexpr is a symbolic
expression over constants and guard variables that specifies the value of a, and
start and end denote time points such that end ≥ start + 1.

An antecedent tuple (g, a, vexpr, t1, t2) specifies that given an assignment φ of
guard variables, if φ |= g, then atom a is assigned the value of expression vexpr,
evaluated on φ, for all time points in {t1, . . . t2−1}. If, however, φ 
|= g, atom a is
assigned the value X for all time points in {t1, . . . t2 − 1}. If a is an input atom,
the antecedent tuple effectively specifies how it is driven from time t1 through
t2 − 1. Using invalid-bit encoding, the above semantics is easily implemented
by setting inv(a) to ¬g and val(a) to vexpr from time t1 through t2 − 1. If a is
an internal atom, the defining trajectory requires us to compute the lub of the
value driven by the circuit on a and the value specified by the antecedent for
a, at every time point in {t1, . . . t2 − 1}. The value driven by the circuit on a
at any time is computed by symbolic simulation using invalid-bit encoding, as
explained in Sects. 4.1 and 4.2. The value driven by the antecedent can also be
invalid-bit encoded, as described above. Therefore, the lub can be computed as
described in Sect. 4.3. If the lub is not �, val(a) and inv(a) can be set to the value
and invalid-bit, respectively, of the lub. In practice, we assume that the lub is
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not � and proceed as above. The conditions under which the lub evaluates to �
are collected separately, as described below. The values of all internal atoms that
are not specified in any antecedent tuple are obtained by symbolically simulating
the circuit using invalid-bit encoding.

If the lub computed above evaluates to �, we must set atom a to an unachiev-
able over-constrained value. This is called antecedent failure in STE parlance. In
our implementation, we collect the constraints (formulas representing the con-
dition for case (a) in Sect. 4.3) under which antecedent failure occurs for every
antecedent tuple in a set AntFail. Depending on the mode of verification, we do
one of the following:

– If the disjunction of formulas in AntFail is satisfiable, we conclude that there
is an assignment of guard variables that leads to an antecedent failure. This
can then be viewed as a failed run of verification.

– We may also wish to check if [Cons]φ � [[Ant]]φC only for assignments φ that
do not satisfy any formula in AntFail. In this case, we conjoin the negation of
every formula in AntFail to obtain a formula, say NoAntFail, that defines all
assignments φ of interest.

A consequent tuple (g, a, vexpr, t1, t2) specifies that given an assignment φ of
guard variables, if φ |= g, then atom a must have its invalid bit set to false and
value set to vexpr, (evaluated on φ) for all time points in {t1, . . . t2−1}. If φ 
|= g,
a consequent tuple imposes no requirement on the value of atom a. Suppose
that at time t, a consequent tuple specifies a guard g and a value expression
vexpr for an atom a. Suppose further that (val(a), inv(a)) gives the invalid-bit
encoded value of this atom at time t, as obtained from symbolic simulation.
Checking whether [Cons]φ(t)(a) � [[Ant]]φC(t)(a) for all assignments φ reduces to
checking the validity of the formula

(
g → (¬inv(a) ∧ (vexpr = val(a)))

)
. Let

us call this formula OKa,t. Let T denote the set of all time points specified
in all consequent tuples, and let A denote the set of all atoms of the design.
The overall verification goal then reduces to checking the validity of the formula
OK �

∧
t∈T , a∈A OKa,t. If we wish to focus only on assignments φ that do

not cause any antecedent failure, our verification goal is modified to check the
validity of NoAntFail → OK. In our implementation, we use Boolector [1], a state-
of-the-art solver for bit-vectors and the extensional theory of arrays, to check
the validity (or satisfiability) of all verification formulas (or their negations)
generated by STEWord.

6 Experiments

We used STEWord to verify properties of a set of System-Verilog word-level
benchmark designs. Bit-level STE tools are often known to require user-guidance
with respect to problem decomposition and variable ordering (for BDD based
tools), when verifying properties of designs with moderate to wide datapaths.
Similarly, BMC tools need to introduce a fresh variable for each input in each
time frame when the value of the input is unspecified. Our benchmarks were
intended to stress bit-level STE tools, and included designs with control and
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datapath logic, where the width of the datapath was parameterized. Our bench-
marks were also intended to stress BMC tools by providing relatively long
sequences of inputs that could either be X or a specified symbolic value, depend-
ing on a symbolic condition. In each case, we verified properties that were sat-
isfied by the system and those that were not. For comparative evaluation, we
implemented word-level bounded model checking as an additional feature of
STEWord itself. Below, we first give a brief description of each design, followed
by a discussion of our experiments.

Design 1: Our first design was a three-stage pipelined circuit that reads four
pairs of k-bit words in each cycle, computed the absolute difference of each pair,
and then added the absolute differences with a current running sum. Alterna-
tively, if a reset signal was asserted, the pipeline stage that stored the sum was
reset to the all-zero value, and the addition of absolute differences of pairs of
inputs started afresh from the next cycle. In order to reduce the stage delays in
the pipeline, the running sum was stored in a redundant format and carry-save-
adders were used to perform all additions/subtractions. Only in the final stage
was the non-redundant result computed. In addition, the design made extensive
use of clock gating to reduce its dynamic power consumption – a characteristic of
most modern designs that significantly complicates formal verification. Because
of the non-trivial control and clock gating, the STE verification required a simple
datapath invariant. Furthermore, in order to reduce the complexity in specifying
the correctness, we broke down the overall verification goal into six properties,
and verified these properties using multiple datapath widths.

Design 2: Our second design was a pipelined serial multiplier that reads two
k-bit inputs serially from a single k-bit input port, multiplied them and made the
result available on a 2k-bit wide output port in the cycle after the second input
was read. The entire multiplication cycle was then re-started afresh. By asserting
and de-asserting special input flags, the control logic allowed the circuit to wait
indefinitely between reading its first and second inputs, and also between reading
its second input and making the result available. We verified several properties
of this circuit, including checking whether the result computed was indeed the
product of two values read from the inputs, whether the inputs and results were
correctly stored in intermediate pipeline stages for various sequences of asserting
and de-asserting of the input flags, etc. In each case, we tried the verification
runs using different values of the bit-width k.

Design 3: Our third design was an implementation of the first stage in a typical
digital camera pipeline. The design is fed the output of a single CCD/CMOS
sensor array whose pixels have different color filters in front of them in a Bayer
mosaic pattern [9]. The design takes these values and performs a “de-mosaicing”
of the image, which basically uses a fairly sophisticated interpolation tech-
nique (including edge detection) to estimate the missing color values. The chal-
lenge here was not only verifying the computation, which entailed adding a fairly
large number of scaled inputs, but also verifying that the correct pixel values
were used. In fact, most non-STE based formal verification engines will encounter
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difficulty with this design since the final result depends on several hundreds of
8-bit quantities.

Design 4: Our fourth design was a more general version of Design 3, that takes
as input a stream of values from a single sensor with a mosaic filter having
alternating colors, and produces an interpolated red, green and blue stream as
output. Here, we verified 36 different locations on the screen, which translates
to 36 different locations in the input stream. Analyzing this example with BMC
requires providing new inputs every cycle for over 200 cycles, leading to a blow-
up in the number of variables used.

For each benchmark design, we experimented with a bug-free version, and
with several buggy versions. For bit-level verification, we used both a BDD-based
STE tool [12] and propositional SAT based STE tool [10]; specifically, the tool
Forte was used for bit-level STE. We also ran word-level BMC to verify the same
properties.

In all our benchmarks, we found that Forte and STEWord successfully veri-
fied the properties within a few seconds when the bitwidth was small (8 bits).
However, the running time of Forte increased significantly with increasing bit-
width, and for bit-widths of 16 and above, Forte could not verify the properties
without serious user intervention. In contrast, STEWord required practically the
same time to verify properties of circuits with wide datapaths, as was needed
to verify properties of the same circuits with narrower datapaths, and required
no user intervention. In fact, the word-level SMT constraints generated for a
circuit with a narrow datapath were almost identical to those generated for the
same circuit with a wider datapath, except for the bit-widths of atoms. This is
not surprising, since once atomization is done, symbolic simulation is agnostic
to the widths of various atoms. An advanced SMT solver like Boolector is often
able to exploit the word-level structure of the final set of constraints and solve
it without resorting to bit-blasting.

The BMC experiments involved adding a fresh variable in each time frame
when the value of an input was not specified or conditionally specified. This
resulted in a significant blow-up in the number of additional variables, especially
when we had long sequences of conditionally driven inputs. This in turn adversely
affected SMT-solving time, causing BMC to timeout in some cases.

To illustrate how the verification effort with STEWord compared with the
effort required to verify the same property with a bit-level BDD- or SAT-based
STE tool, and with word-level BMC, we present a sampling of our observations
in Table 1, where no user intervention was allowed for any tool. Here “-” indicates
more than 2 hours of running time, and all times are on an Intel Xeon 3GHz CPU,
using a single core. In the column labeled “Benchmark”, Designi-Pj corresponds
to verifying property j (from a list of properties) on Design i. The column labeled
“Word-level latches (# bits)” gives the number of word-level latches and the
total number of bits in those latches for a given benchmark. The column labeled
“Cycles of Simulation” gives the total number of time-frames for which STE and
BMC was run. The column labeled “Atom Size (largest)” gives the largest size
of an atom after our atomization step. Clearly, atomization did not bit-blast all
words, allowing us to reason at the granularity of multi-bit atoms in STEWord.
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Table 1. Comparing verification effort (time) with STEWord, Forte and BMC

Benchmark STEWord Forte (BDD

and SAT)

BMC Word-level latches (#

bits)

Cycles of

simulation

Atom size

(largest)

Design1-P1 2.38s - 3.71s 14 latches 12 31

(32 bits) - (235 bits wide)

Design1-P1 2.77s - 4.53s 14 latches 12 64

(64 bits) - (463 bits wide)

Design2-P2 1.56s - 1.50s 4 latches 6 32

(16 bits) - (64 bits wide)

Design2-P2 1.65s - 1.52s 4 latches 6 64

(32 bits) - (128 bits wide)

Design3-P3 24.06s - - 54 latches 124 16

(16 bits) - (787 bits wide)

Design4-P4 56.80s - - 54 latches 260 16

(16 bits) - (787 bits wide)

Design4-P4 55.65s - - 54 latches 260 32

(32 bits) - (1555 bits wide)

Our experiments indicate that when a property is not satisfied by a circuit,
Boolector finds a counterexample quickly due to powerful search heuristics imple-
mented in modern SMT solvers. BDD-based bit-level STE engines are, however,
likely to suffer from BDD size explosion in such cases, especially when the bit-
widths are large. In cases where there are long sequences of conditionally driven
inputs (e.g., design 4) BMC performs worse compared to STEWord, presumably
beacause of the added complexity of solving constraints with significantly larger
number of variables. In other cases, the performance of BMC is comparable
to that of STEWord. An important observation is that the abstractions intro-
duced by atomization and by approximations of invalid-bit expressions do not
cause STEWord to produce conservative results in any of our experiments. Thus,
STEWord strikes a good balance between accuracy and performance. Another
interesting observation is that for correct designs and properties, SMT solvers
(all we tried) sometimes fail to verify the correctness (by proving unsatisfiability
of a formula). This points to the need for further developments in SMT solving,
particularly for proving unsatisfiability of complex formulas. Overall, our exper-
iments, though limited, show that word-level STE can be beneficial compared
to both bit-level STE and word-level BMC in real-life verification problems.

We are currently unable to make the binaries or source of STEWord publicly
available due to a part of the code being proprietary. A web-based interface to
STEWord, along with a usage document and the benchmarks reported in this
paper, is available at http://www.cfdvs.iitb.ac.in/WSTE/.

7 Conclusion

Increasing the level of abstraction from bits to words is a promising approach
to scaling STE to large designs with wide datapaths. In this paper, we proposed

http://www.cfdvs.iitb.ac.in/WSTE/
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a methodology and presented a tool to achieve this automatically. Our app-
roach lends itself to a counterexample guided abstraction refinement (CEGAR)
framework, where refinement corresponds to reducing the conservativeness in
invalid-bit expressions, and to splitting existing atoms into finer bit-slices. We
intend to build a CEGAR-style word-level STE tool as part of future work.
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Abstract. IntelR© Software Guard Extensions (SGX) is a collection of
CPU instructions that enable an application to create secure contain-
ers that are inaccessible to untrusted entities, including the operating
system and other low-level software. Establishing that the design of
these instructions provides security is critical to the success of the fea-
ture, however, SGX introduces complex concurrent interactions between
the instructions and the shared hardware state used to enforce secu-
rity, rendering traditional approaches to validation insufficient. In this
paper, we introduce Accordion, a domain specific language and compiler
for automatically verifying linearizability via model checking. The com-
piler determines an appropriate linearization point for each instruction,
computes the required linearizability assertions, and supports experi-
mentation with a variety of model configurations across multiple model
checking tools. We show that this approach to verifying linearizability
works well for validating SGX and that the compiler provides improved
usability over encoding the problem in a model checker directly.

1 Introduction

When a programmer writes code to manipulate a computer, they have a mental
model of the machine, involving a small set of registers with processors execut-
ing assembly instructions atomically. The reality of a modern multiprocessor is
significantly more complex. The exposed registers are a small component of the
internal processor state and execution of a single assembly instruction is not
necessarily atomic with respect to other processors. This internal concurrency is
particularly complex in the new Intel R© Software Guard Extensions (SGX) [17],
which introduce security critical internal processor state that is shared between
privileged and user-mode instructions.

SGX is a collection of CPU instructions that enable an application to create
secure containers within the application address space. These secure containers,
called enclaves, provide strong integrity and confidentiality guarantees for the
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code and data pages that reside inside the enclave. Once placed in an enclave,
memory pages are inaccessible to untrusted entities, including the operating
system and other low-level software. SGX allows programmers to isolate the
security-critical portion of their application, for example, to harden applications
against vulnerabilities [15] or to protect their computation in an untrusted envi-
ronment like the cloud [1].

To maximize compatibility with the existing software ecosystem, the SGX
instructions work in tandem with the operating system (OS), trusting the OS
to manage the system resources associated with enclave pages, such as page
table mappings, but verifying that the OS never breaks the confidentiality and
integrity guarantees of SGX. To this end, SGX tracks metadata for each enclave
page to ensure that every access is secure. Accesses to this data structure, which
is shared across all logical processors, must be appropriately synchronized to
maintain security, while still maximizing parallelism for performance.

Finding the appropriate line between security and performance has been a
particularly difficult aspect of the SGX architecture design and was a source of
bugs that could have been devastating for the feature had they not been found
soon enough. Applying formal verification techniques early in the design process
enabled us to find pernicious concurrency bugs and to increase our confidence
that we were not overlooking a critical error in the design. Though formal verifi-
cation is commonly used at Intel R© for arithmetic and protocol validation, SGX
has more in common with software algorithms where multiple threads access a
shared data structure and is not a natural fit for the hardware verification tools
and methodologies that are currently in place.

Identifying this similarity to software algorithms led us to linearizability as
a correctness condition. Linearizability [14] is a classic approach to reasoning
about concurrent accesses to a shared data structure. A system is linearizable
if each operation (in our case, instruction) appears to take effect atomically at
some moment in time between its invocation and response, called its lineariza-
tion point. In a linearizable system, we cannot observe the difference between a
sequentialized trace where each instruction executes atomically at its lineariza-
tion point and a real trace that arises in the concurrently executing system.

An important consequence of linearizability is that we can reason about
operations on linearizable concurrent data structures as if they were atomic. As
such, we can divide our verification challenge into two tasks: first, to prove that
the SGX instructions uphold the desired security guarantees in a sequential (or
single threaded) setting; and second, to prove that the system is linearizable. We
have verified the sequential correctness of the instructions using DVF [13], but
in this paper we focus on the second task, proving that SGX is linearizable.

We employ a standard technique for model checking linearizability [9,23]
using a domain-specific heuristic for placing linearization points. Scalability
presents a major challenge in our setting—there are 22 instructions that share
the concurrent data structure, some of which contain as many as 50 inter-
leaving points—and design changes during the early stages of development are
frequent. The primary contribution of this paper is a domain specific language
and compiler that supports automatic linearizability checking while providing
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fine-grained control over the generated model to improve scalability without the
overhead of creating multiple models by hand. A secondary contribution of the
paper is a demonstration of our approach on the industrial case study of SGX.
We first describe how to prove that SGX is linearizable directly using model
checking and then show how this process is improved by the use of Accordion.
With this approach, we identified previously undiscovered concurrency bugs in
a design that had already been intensively reviewed.

The remainder of the paper is organized as follows. In Sect. 2, we give an
overview of the internal hardware data structures used by SGX, as well as the
SGX instructions, to provide a basis for understanding the examples in the
later sections. Section 3 describes our formal model of SGX in the iPave model
checker and illustrates an architecture bug that was caught as a violation of
linearizability. Section 4 introduces Accordion, our domain specific language and
compiler for automatically proving linearizability. The remaining sections discuss
related work (Sect. 5) and provide a summary (Sect. 6).

2 SGX Overview

SGX defines new processor internal state, outlined in Sect. 2.1, and a collection
of instructions for creating, executing, and manipulating enclaves, covered in
Sect. 2.2. In this paper, we focus on the instructions and processor state that
directly affect the integrity and confidentiality guarantees of SGX, and thus,
are particularly interesting targets of our linearizability analysis. For a complete
overview of SGX, see the Programmer’s Reference Manual [17].

2.1 Enclave Page Cache

The Enclave Page Cache (EPC) is a protected area of memory used to store
enclave code and data as well as some additional management structures intro-
duced by SGX. Each page of EPC memory has an associated entry in the Enclave
Page Cache Map (EPCM), which tracks metadata for that page. The SGX
instructions use this metadata to ensure that EPC memory pages are always
accessed in a secure manner. The EPCM is also used in the address translation
lookup algorithm for enclave memory accesses, providing a secure additional
layer of access control on top of existing mechanisms such as segmentation, pag-
ing tables, and extended paging tables [16].

The EPCM is managed by the processor as part of SGX operation and is
never directly accessible to software or to devices. The format of the EPCM is
microarchitectural and implementation specific, but conceptually each EPCM
entry contains the following fields:

VALID Unallocated EPC pages are considered to be invalid. Pages in this state
cannot be read or written by enclave threads and can only be operated on by
allocation instructions that specifically require an invalid page as an input.
If the VALID bit is not set, the remaining fields should not be examined.
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OWNER An enclave instance is identified by its enclave control structure, which
is a special kind of EPC page called an SECS. Each EPC page is associated
with a single enclave instance. We track membership in an enclave instance
through the OWNER field in the EPCM, which points to the SECS page of the
enclave to which the page belongs.

PAGETYPE The PAGETYPE field describes the kind of data that is stored in the EPC
page. In this paper we discuss four types of enclave page contents: regular
enclave code or data (REG), thread control structures (TCS), enclave control
structures (SECS), and data that has been deallocated but not yet reclaimed
(TRIM).

LINADDR Enclave pages are accessible through a single linear address that is fixed
at allocation time. SGX ensures that all accesses to an EPC page are through
the appropriate linear address by comparing the address of the access to the
stored LINADDR value.

RWX EPC page permissions may be set independently from page table and
extended page table permissions, resulting in the minimal common access
rights. The RWX bits of the EPCM track these supplementary permissions.

PENDING When an EPC page is dynamically added to a running enclave, the
enclave code approves the addition of the new page as a protection mecha-
nism against malicious or buggy systems software (see Sect. 2.2). During this
intermediate period when the page has been allocated but not approved, the
PENDING bit is set to prevent enclave code from accessing the page.

MODIFIED When the EPCM attributes of a page are dynamically modified by
systems software, such as the PAGETYPE, the enclave code acknowledges the
change using a process similar to dynamic EPC page allocation. In this case,
the MODIFIED bit is set to prevent enclave code from accessing the page.

See Sect. 2.2 for a description of how these fields are manipulated by the enclave
instructions.

Figure 1 illustrates how the EPCM enforces security on enclave page accesses,
even in the presence of incorrect OS behavior. In this example, the OS has
incorrectly mapped a page belonging to enclave B to enclave A, but any attempt
by A to access the page will be prevented by the SGX hardware due to the
mismatch in the EPCM OWNER field.

2.2 Instructions

A summary of the SGX instructions is shown in Table 1. The remainder of this
section will examine the behavior and usage of each instruction in more detail.

Enclave Creation. The enclave creation process begins with ECREATE, a super-
visor instruction that allocates an enclave control structure from a free EPC
page. As part of invoking the instruction, systems software selects the desired
location in the EPC for the enclave control structure and a linear address range
that will be associated with the enclave. A successful call to ECREATE sets the
VALID bit for the page, sets the OWNER pointer to itself, sets the PAGETYPE to
SECS, and the EPCM RWX bits to zero.
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Fig. 1. Security protection in SGX. Systems software controls enclave memory with
traditional structures like page tables, but cannot override the SGX security guarantees.
Here, the OS maps enclave A’s virtual address A2 to physical page X, which belongs to
enclave B. Before allowing a memory access to X, the hardware checks the OWNER field,
issuing a fault if the access does not come from enclave B. Here, this check prevents an
unsecure access to X through the illegal mapping A2.

Enclave Initialization and Teardown. Once the SECS has been created, the
enclave is initialized by copying data from normal memory pages into the EPC
using EADD. A successful call to EADD sets the VALID bit for the page, associates
the page with the specified enclave and sets the OWNER pointer to the appropriate
SECS, sets the PAGETYPE to the specified type, and initializes the RWX bits. To
destroy an enclave, system software deallocates all of its pages using EREMOVE.

Entering and Exiting an Enclave. SGX supports a standard call and return
execution pattern through the instructions EENTER and EEXIT. The EENTER
instruction puts the processor in a new enclave execution mode whereas EEXIT
exits enclave mode and clears any enclave register state.

Dynamic Memory Management. Once an enclave is running, dynamic
changes to its memory are performed as a collaborative effort between systems
software and the enclave. The OS may allocate a new page (EAUG), deallocate
a page or convert a REG page into a TCS (EMODT), and restrict the EPCM per-
missions available to the enclave (EMODPR). Without checks in place within the
enclave, this could provide a vector for systems software to corrupt enclave data.
To address this concern, we introduce the enclave-mode instruction EACCEPT,
which an enclave executes to approve a change that was made by the OS.
A successful call to EACCEPT finalizes the change by clearing the PENDING and
MODIFIED bits. We also enable the enclave to perform dynamic changes itself
where possible to reduce the number of enclave/kernel transitions. SGX cur-
rently supports enclave-mode permission extension (EMODPE) and a variant of
EACCEPT that supports initialization of a newly allocated page (EACCEPTCOPY).
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Table 1. Summary of the SGX instruction set. The table describes the instruction
name, the processor mode from which the instruction should be called (supervisor,
user, or enclave mode), and the usage of the instruction.

Name Mode Description

EACCEPT enclave Approve a dynamic memory change

EACCEPTCOPY enclave Approve and initialize a dynamically allocated page

EAUG supervisor Dynamically allocate a REG page

EADD supervisor Allocate a REG or TCS page

ECREATE supervisor Allocate SECS page and initialize control structure

EENTER user Call an enclave function

EEXIT enclave Return from enclave execution

EMODPE enclave Extend the EPCM permissions of a page

EMODPR supervisor Restrict the EPCM permissions of a page

EMODT supervisor Change the type of a page

EREMOVE supervisor Deallocate an enclave page

3 Proving SGX Is Linearizable in iPave

We encode linearizability as a model checking problem by inserting an assertion
at the linearization point of each instruction. The assertion compares the current
state of the EPCM (reached by some concurrent execution) with the known value
that the EPCM would hold in a sequential execution. Any mismatch between
the expected state and the actual state is caught by the model checker, and indi-
cates that the instruction has observed an update by a concurrently executing
instruction (that is, the instruction is not linearizable at that point). The lin-
earization points are easy to identify in SGX because the instruction definitions
all follow a similar pattern:

1. Pre-checking of parameters
2. Lock acquisition(s)
3. EPCM and other state checks
4. EPCM and other state updates
5. Lock release(s)

There is occasionally overlap between these steps, but it is always the case that
a write is the last access to the EPCM and that this is a location where a correct
SGX instruction implementation will have a linearization point.

We determine the appropriate linearization assertion on a per instruction
basis by examining the EPCM state on which the instruction depends. We will
see examples of this in the coming sections. In general, any EPCM value read by
the instruction should not change between the time of the read and linearization
point. The value of any EPCM field written by the instruction should not change
between the time of the write and the linearization point. In some cases, track-
ing the value that was written requires the use of logic variables to remember
intermediate values of the state.
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3.1 Model Overview

We construct our formal model of SGX in iPave [10], a graphical specification
language and SMT-based bounded model checker built on top of Boolector [4].
Similar to other modeling languages, an iPave model is specified as a finite
state machine with guarded transitions between states. An example instruction
specification in iPave is shown in Fig. 2. We can see that the EMODPE instruction
shown in the figure follows the standard pattern, performing pre-checks on the
EPCM to see if the running enclave may access the target page, acquiring a
lock to synchronize accesses to the EPCM, checking that the state of the page
is appropriate for the operation, and finally updating the RWX bits of the page.

Fig. 2. Simplified EMODPE instruction specification in iPave. The model begins execu-
tion in the EMODPE START state in the upper left-hand corner of the diagram. Circles
represent start or end states, rounded boxes represent intermediate states in the model’s
execution, and arrows represent transitions. Arrows may be labeled with guards and
actions of the form guard ; action1; ...; actionn;, which will only be executed if
the guard is true. Either the guard or the action sequence may be empty; here the
empty action sequence is represented by the effectless nop. Linearization checks and
logic variable assignments are shown in bold.

The primary purpose of the iPave model is to verify that the SGX accesses
to the EPCM are linearizable. To keep the problem tractable, the content of the
model includes the minimum state necessary to describe the interaction between
the instructions and the EPCM. The modeled state includes:
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– A single concrete EPCM entry and its fields (see Sect. 2.1).
– An abstract representation of “the other” EPCM entries on the machine.

Accesses to EPCM entries by SGX instructions are symmetric, so we employ
this abstraction for improved performance.

– A single concrete enclave. Threads may enter this enclave and execute instruc-
tions on pages that belong to this enclave.

– An abstract representation of “the other” SGX enclaves.
– An array of logical processor states, which includes per hardware-thread data

such as whether the processor is executing in enclave mode (and thus, allowed
to access EPC pages) and other microarchitectural state.

– Metadata used to track model parameters and write assertions.

To improve the performance of the model checker, we initialize the state to an
arbitrary reachable configuration, rather than a zeroed initial state. Though not
all reachable states are known a priori, there is an easily calculable subset of
the reachable states that can be used for initialization. In our experience, this
significantly reduces the steps required to find interesting bugs. All of the SGX
instructions described in Sect. 2.2 are modeled, as well as other relevant events
such as memory accesses by enclave and non-enclave code.

3.2 Linearizability Assertions

We add linearizability checks to our iPave model according to the algorithm
described at the beginning of the section, but optimize the insertion of the lin-
earization point to reduce the number of possible interleavings. Our optimization
is sound, but makes assumptions about the other instructions, making the app-
roach less ideal than the general algorithm that we implement in Accordion.
Examining Fig. 2, we see that the linearization checks are performed immedi-
ately before the state update to the RWX bits, avoiding the need to introduce an
additional state after the RWX assignment. Immediately before the linearization
point, we save the value of the RWX bits into logic variables. The intermediate
state Process Page serves as a preemption point where other instructions could
access the EPCM, after which we insert the linearization checks. In the case of
EMODPE, the page must be valid, not pending, not modified, have the REG type,
and belong to the currently running enclave. Furthermore, the values contained
in the EPCM RWX bits should match the values saved in the logic variables. No
other aspects of the state are accessed by the instruction, and thus no other
fields need to be checked by our assertion.

3.3 Results

Our linearizability model in iPave uncovered architectural concurrency bugs
that had not been discovered by manual inspection or testing, despite inten-
sive review. We were also able to confirm a number of previously discovered
bugs and increase overall confidence in the architecture design. Formal verifica-
tion using iPave has been integrated into the SGX development and validation
flow, where such methods were not previously common practice.
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As an example of the kind of race that this methodology can detect, consider
again the EMODPE example from Fig. 2. In that example, the PAGETYPE and OWNER
of the page being modified by the instruction are checked twice: once before the
EPC page lock is taken and once afterward. In an earlier version of the instruction
definition, shown in Fig. 3, the OWNER is only checked before the lock acquisition
and the PAGETYPE is only checked afterward. Due to an interaction with the
EREMOVE instruction that is possible when a page has the type TRIM, this design
allowed EMODPE to change the permissions of a page that did not belong to the
running enclave, a clear violation of the SGX security guarantees. Though the
bug might seem straightforward, it depends on a particular interleaving that is
not easily triggered through testing.

(* Check security attributes of the EPC page *)
IF ((EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).OWNER != CR_ACTIVE_SECS))

Then #PF(DS:RCX); FI;
(* Check the EPC page for concurrency *)
IF (EPC page in use by another SGX2 instruction) Then #GP(0); FI;
(* Re-check security attributes of the EPC page *)
IF ((EPCM(DS:RCX).PENDING != 0) or (EPCM(DS:RCX).MODIFIED != 0) or

(EPCM(DS:RCX).PAGETYPE != REG) or (EPCM(DS:RCX).LINADDR != DS:RCX))
Then #PF(DS:RCX); FI;

Fig. 3. Original EMODPE specification excerpt (Simplified)

The race condition found using iPave is shown in Table 2. The initial state
for the model is that the concrete EPCM page belongs to the running enclave
and is valid, not pending, not modified, and of the TRIM type. Examination of
the race case revealed the root cause: the EPCM constraints in EMODPE were not
sufficient to prevent the page from being removed during the instruction, nor
was the removal detected as a failure mode of the instruction. The additional
checks in the model shown in Fig. 2 prevent this race.

4 Automating the Process with Accordion

The iPave model was sufficient to demonstrate linearizability for a reasonably
concrete model of SGX, but the modeling language and toolchain did not provide
us with all of the features that we would like for our architecture explorations.
We found that the graphical nature of the input language created a heavy trans-
lation burden from the original SGX specification. The translation process was a
frequent source of modeling errors, and the disconnect between the specification
and modeling language made it difficult for the architects to understand and
evaluate the accuracy of the model. A further source of difficulty was the lack of
abstraction mechanisms, such as functions, in the language. As a result, it was
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Table 2. EMODPE race example

Step Logical processor X Logical processor Y

1 Start EMODPE

2 Check VALID and OWNER fields

3 Start EREMOVE

4 Check PAGETYPE and MODIFIED fields

5 Remove page; set VALID=0

6 End EREMOVE

7 Allocate page to another enclave with
VALID=1, MODIFIED=0, PENDING=0,
PAGETYPE=REG

8 Acquire exclusive access to page

9 Perform post-lock EPCM checks

10 Continue on another enclave’s page!

not easy to experiment with different SGX configurations (number of simultane-
ously running threads, number of memory pages, instructions to include in the
verification run), and modifications required extensive manual effort.

To address the gaps in iPave for our usage, we designed and implemented
Accordion, a domain specific language and compiler for proving linearizability.
We focused on the following goals in the design of the language:

Mirror Existing Design Specification Language. Instruction set extensions
are typically specified in a semi-formal notation that is not machine check-
able. The Accordion language should match this syntax as closely as possible
so that architects can comprehend the models easily, while also providing a
machine checkable format with a defined semantics. The ultimate goal is that
Accordion will supplant the informal specification language for SGX.

Support Rapid Prototyping. Design changes are frequent as a feature is
extended and optimized. Bugs must be found as early in the design process
as possible for verification to be worthwhile. Synchronization behavior is a
particular source of experimentation, so the language should support a variety
of locking primitives and should make varying the size and location of atomic
blocks simple for the designer.

Enable Designers to Leverage a Variety of Analysis Tools. No tool con-
sistently yields superior results. A single source avoids translation errors and
provides significant time savings.

Support Experimentation within a Particular Analysis Tool. Model
checkers and other verification tools can be sensitive to the size of the input
problem. When analyzing a particular design, the validator needs to exper-
iment with the configuration of the model to produce results in a timely
fashion.
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Automate Linearizability Analysis. Calculate the linearization points and
generate linearizability assertions automatically in the compiler.

Facilitate Experimentation with Different Interleaving Semantics. In
our experience, full interleaving semantics does not scale to models of the
complete SGX architecture. To gain traction in our analysis, we would like
to evaluate a collection of models with a variety of interleaving semantics, for
example, analyzing atomic versions of enclave initialization instructions with
fully interleaved versions of the dynamic memory management instructions.

In the remainder of this section, we will show how Accordion meets these goals by
providing an overview of the language syntax, describing the compiler implemen-
tation in Haskell [18], and sketching the algorithm for automatically calculating
linearization points and linearizability checks.

4.1 Language Syntax

The Accordion language supports a basic set of types including physical addresses,
Boolean values, and unsigned integers. SGX data structures like the EPCM are
built into the language as well, but ultimately we would like to introduce user-
defined data structures to maximize extensibility to future hardware features. The
expression language contains constants, variables, standard Boolean and arith-
metic operations, structure accesses (for reading SGX data structures), and an
address validation operation that performs SGX-specific checks on a physical add-
ress, such as membership in the EPC. The statement language includes variable
assignments, conditionals, assertions, mutex and reader/writer lock acquire and
release operations, abort statements, structure updates (for writing to SGX data
structures), and atomic blocks (used to override the default grouping of state-
ments into rules in the compiler; see Sect. 4.2).

Figure 4 shows the code for the EMODPE instruction in Accordion syntax and
is analogous to the iPave specification shown in Fig. 2. As we will see in the
next section, Accordion is implemented as an embedded domain specific lan-
guage in Haskell, so aspects of the Haskell syntax are mixed with the Accordion
syntax in the example. The instruction specification is written as a function
with four arguments, only three of which are used by EMODPE. The argument
cr active secs is a pointer to the enclave that is currently running, rcx con-
tains the physical address of the EPC page to be modified, and rbx contains
a data structure called a secinfo that specifies the desired permissions for the
target EPC page. In hardware, and in the model produced by the Accordion
compiler, these instruction parameters are provided implicitly as part of the
system state.

Those familiar with Haskell will notice that the code is written in a monad
using do-notation, but it is not essential to understand this mechanism in order
to comprehend the code. The instruction content begins on Line 3 with a check
that the target EPC page is accessible (valid, regular, and owned by the cur-
rently running enclave). If the check fails, execution will abort with page fault
semantics (#PF). If the check succeeds, the instruction will continue with the
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1 emodpe : : SGXInstruction
2 emodpe c r a c t i v e s e c s rbx rcx = do
3 i f t ( ( ! ) ( ( epcm rcx ) . v a l i d ) | |
4 (epcm rcx ) . pagetype != REG | |
5 (epcm rcx ) . owner != c r a c t i v e s e c s ) (do
6 (#)PF rcx )
7 (epcm rcx ) . mutex . acqu i r e ( ) (do
8 (#)GP 0)
9 i f t ( ( ! ) ( epcm rcx ) . v a l i d ) | | ( epcm rcx ) . pt != REG | |

10 (epcm rcx ) . pending | | ( epcm rcx ) . modi f i ed | |
11 (epcm rcx ) . owner != c r a c t i v e s e c s ) ( atomic $ do
12 (epcm rcx ) . mutex . r e l e a s e ( )
13 (#)PF rcx )
14 (epcm rcx ) . r =: ( epcm rcx ) . r | | ( s e c i n f o rbx ) . r
15 (epcm rcx ) .w =: (epcm rcx ) .w | | ( s e c i n f o rbx ) .w
16 (epcm rcx ) . x =: ( epcm rcx ) . x | | ( s e c i n f o rbx ) . x
17 (epcm rcx ) . mutex . r e l e a s e ( )
18 end o f f l ow

Fig. 4. Simplified EMODPE specification in accordion.

next statement at the leftmost level of indentation (Line 7). The rest of the
code follows a similar pattern of execution. Except for the occurrences of do, $,
and some case mismatches, the syntax shown here is very close to the informal
specification language used by the SGX architects.

4.2 Compiler Implementation

We implemented Accordion as an embedded domain specific language (DSL) in
Haskell [11]. When writing an embedded DSL, the language designer encodes the
abstract syntax tree of the new language directly in the host language, allowing
the designer to take advantage of the parser and type system of the host language
in their DSL. This allowed us to get a version of Accordion running much faster
than would have been possible with a standalone DSL. The disadvantage to using
an embedded DSL is that there are certain syntactic aspects of the host language
that cannot be overridden. For example, we cannot use the same symbol for
assignment in Accordion as in the SGX specification, :=, because of the special
treatment of colon in Haskell.

Model Generation. Our compiler supports two back-ends: one for generat-
ing Murphi syntax—which is compatible with the explicit state model checker
CMurphi [7] and its distributed counterpart PReach [3]—and one for generating
input to the symbolic bounded model checker SAL [2]. We found that running
SAL with a relatively low bound performed well on many of our examples and
was useful for finding early modeling bugs. PReach was slow to run but for small
enough models (with either an abstract definition of the SGX instructions or a
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model that does not include the full instruction set) was able to give us a full
proof of linearizability.

The full SGX architecture without any simplifying abstractions is too large
to be fully verified, which is why it is so important for the compiler to provide
support for generating models with a variety of configurations. We provide con-
trol over the number of threads, the number of memory pages, and the set of
instructions to include in the generated model with compile time flags. Interleav-
ing semantics are also specified at compile time on a per instruction basis. By
default, every statement in an Accordion program becomes a rule in the result-
ing model. Sometimes, we are interested in evaluating the concurrent interaction
between two or three instructions at this level, but are not interested in ana-
lyzing the initialization instructions that are necessary to drive the model into
an interesting state. In those cases, we would compile the specification with full
interleaving semantics for the instructions of interest but with atomic semantics,
where the entire instruction becomes a single model transition, for the rest. The
DSL also provides an atomic primitive for concurrency control between these
extremes. Figure 4 shows an example of this primitive on Line 11, which will
cause the lock release statement on Line 12 and the abort statement on Line 13
to compile to a single model checker rule.

Linearizability Inference. As discussed in Sect. 3, the SGX instruction defin-
itions follow a common pattern that makes the location of the linearization point
clear from a cursory inspection. In fact, this pattern is predictable enough that
it can be computed, along with the precise set of checks that must be satisfied
in order for the instruction to be linearizable.

Calculating the linearization point is relatively straightforward. We perform
a backward walk through the control flow graph of the instruction, skipping
past any abort statements (end of flow or a fault) or lock releases, until an
SGX state update is found. We insert the linearization point here, after the final
state update that the instruction performs. In our EMODPE example from Fig. 4,
the linearization point would be placed in between Lines 16 and 17.

Once the linearization point has been identified, the compiler computes the
assertion that should be placed there in the generated code. For this analysis, the
compiler performs a forward walk over the control flow graph of the instruction,
accumulating assumptions based on the portions of the SGX state that the
instruction reads or writes. In Line 3 of EMODPE, for example, the instruction
checks that the VALID bit is set, that the PAGETYPE is REG, and that the OWNER
of the page matches the running enclave. This will generate an assertion that
checks for that scenario at the linearization point. If another thread has modified
the VALID bit, PAGETYPE, or OWNER of the page in the mean time, the assertion
will fail. The full linearization assertion for EMODPE is:
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assert( (epcm rcx).valid ∧ (epcm rcx).pagetype = REG ∧
(epcm rcx).owner = cr active secs ∧
(!)(epcm rcx).pending ∧ (!)(epcm rcx).modified ∧
(epcm rcx).r = ((epcm rcx).r’ ‖ (secinfo rbx).r) ∧
(epcm rcx).w = ((epcm rcx).w’ ‖ (secinfo rbx).w) ∧
(epcm rcx).x = ((epcm rcx).x’ ‖ (secinfo rbx).x) )

As outlined in Sect. 3, this assertion checks that any state accessed by the instruc-
tion does not change between the time of the access and the linearization point.
The values r’, w’, and x’ in the example are logic variables used to track the
intermediate value of the EPCM.

Recall that the buggy version of EMODPE discussed in Sect. 3.3 checked the
page owner before acquiring the lock but not afterward and only checked the
page type afterward. This allowed the page to be removed and assigned to a
different owner, without the ownership change being caught by the instruction.
We can see that these automatically generated linearization assertions would
catch this error, by identifying the requirement that the page owner remain
unchanged from the moment of the first read until the linearization point.

Results. The models produced by the Accordion compiler are able to replicate
the bugs that were found both by inspection and by formal verification using
iPave. By making use of Accordion’s model configuration facilities, we are able
to construct experiments that find bugs in a matter of minutes and complete a
total verification for a subset of instructions in a matter of hours, as opposed to
the many hours or even days that iPave would require. These models are by no
means equivalent, but for design-time analysis of new instructions the immediate
feedback provided by the Accordion models is more useful than a long-running
exhaustive verification. We can of course perform a full verification of SGX using
Accordion as well.

No new bugs were found using Accordion because the SGX architecture was
largely stable by the time our work on Accordion was complete. However, there
are many ongoing projects within the SGX architecture team that would benefit
from the sorts of analysis that Accordion provides.

5 Related Work

Model checking linearizability is not itself a new idea. Our algorithm for check-
ing linearizability using a shadow state is equivalent to the algorithm for veri-
fying commit-atomicity in [9]. In our case, we are able to calculate the shadow
state within the Accordion compiler and generate the appropriate linearizability
checks, avoiding the need to explicitly track the shadow state in the generated
model. Much of the other work on linearizability to date has focused on gen-
eral purpose concurrent data structures, such as lists [6,22,24]. There are also
tools for automatically proving linearizability, such as CAVe [23] and Line-Up [5].
With SGX, our domain specific knowledge allows us to prove linearizability with
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a simpler approach, using off-the-shelf tools. We focus our efforts on the model
generation code, which supports experimentation with a variety of tools and
model configurations. Unlike other tools, Accordion provides fine grained con-
trol over the interleaving semantics in the generated model, allowing for a great
deal of control over the possible schedules.

Similar to our work, CHESS [20] tackles the challenge of finding concurrency
bugs in large systems that may not be amenable to full verification. The tool
uses a happens-before analysis to analyze the concurrent execution of a system
and exhaustively explores all interleavings in the program. This approach is not
ideal for SGX because we do not use a standard set of concurrency primitives
in our implementation. CHESS achieves scalability by bounding the number of
context switches that may occur in a particular run of the system and by scoping
the context switches to an area of interest in the program. These techniques for
improving scalability would likely work well in our problem domain where races
tend to involve a small number of context switches and where we have a strong
sense for where races are likely to occur.

The Copilot DSL [21] is similar to our work on Accordion in that it is also
embedded in Haskell and provides multiple formal verification back-ends. One
back-end that Copilot compiles to is the Haskell SBV library [8], which supports
reasoning about Haskell programs using SMT. This approach would be a valuable
extension to Accordion. Currently our sequential verification proofs which use
SMT and our linearization work using model checking are not connected via the
same source. The two projects differ in the domain targeted by the DSLs: Copilot
focuses on run-time monitoring for hard real-time programs, an area with very
different considerations than SGX design. Other domain specific languages for
hardware design exist, such as Kansas Lava [12] and Hawk [19], but these target
low-level circuit designs rather than high-level features like SGX.

6 Summary

This paper introduced our approach to verifying SGX, a novel collection of hard-
ware instructions for providing strong integrity and confidentiality guarantees in
a highly concurrent setting. We identified linearizability as the relevant correct-
ness condition for analyzing concurrent interactions between SGX instructions
and described an algorithm for demonstrating linearizability using off-the-shelf
model checking tools. Our work showed that this approach is capable of finding
critical security bugs and underscored the importance of performing formal veri-
fication early in the design process of complex features like SGX. Building on the
success of our verification in iPave, we outlined the development of the Accordion
domain specific language and compiler, a tool that automatically proves lineariz-
ability for SGX instructions via model checking and supports experimentation
with a wide variety of model configurations across multiple model checking tools.
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Abstract. Given a specification and a set of candidate programs (pro-
gram space), the program synthesis problem is to find a candidate pro-
gram that satisfies the specification. We present the synthesis through
unification (STUN) approach, which is an extension of the counter-
example guided inductive synthesis (CEGIS) approach. In CEGIS, the
synthesizer maintains a subset S of inputs and a candidate program Prog

that is correct for S. The synthesizer repeatedly checks if there exists a
counterexample input c such that the execution of Prog is incorrect on c.
If so, the synthesizer enlarges S to include c, and picks a program from
the program space that is correct for the new set S.

The STUN approach extends CEGIS with the idea that given a pro-
gram Prog that is correct for a subset of inputs, the synthesizer can try
to find a program Prog′ that is correct for the rest of the inputs. If Prog
and Prog′ can be unified into a program in the program space, then a
solution has been found. We present a generic synthesis procedure based
on the STUN approach and specialize it for three different domains by
providing the appropriate unification operators. We implemented these
specializations in prototype tools, and we show that our tools often per-
forms significantly better on standard benchmarks than a tool based on
a pure CEGIS approach.

1 Introduction

The task of program synthesis is to construct a program that satisfies a given
declarative specification. The computer-augmented programming [2,17] app-
roach allows the programmers to express their intent in different ways, for
instance by providing a partial program, or by defining the space of candidate
programs, or by providing positive and negative examples and scenarios. This
approach to synthesis is becoming steadily more popular and successful [5].

We propose a novel algorithmic approach for the following problem: given
a specification, a set of candidate programs (a program space), and a set of
all possible inputs (an input space), find a candidate program that satisfies the
specification on all inputs from the input space. The basic idea of our approach
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is simple: if we have a candidate program that is correct only on a part of the
input space, we can attempt to find a program that works on the rest of the
input space, and then unify the two programs. The unification operator must
ensure that the resulting program is in the program space.

The program space is syntactically restricted to a set which can be specified
using a typed grammar. If this grammar contains if statements, and its expres-
sion language is expressive enough, then a simple unification operator exists.
A program Prog for inputs that satisfy an expression C, and a program Prog′

that works on the rest of the inputs can be unified into if (C) then Prog else Prog′.
Even when if statements are not available, different unification operators may
exist. These unification operators may be preferable to unification through if
statements due to efficiency reasons. However, such unification operators may
not be complete — it might not be possible to unify two given programs. We
present an approach that deals with such cases with appropriate backtracking.

Our approach, which we dub STUN, works as follows: its first step is to
choose a program Prog that works for a subset IG of the input space. This step
can be performed by any existing method, for instance by multiple rounds of
the CEGIS loop [16]. The STUN procedure then makes a recursive call to itself
to attempt to synthesize a program Prog′ for inputs on which Prog is incorrect.
An additional parameter is passed to the recursive call — unification constraints
that ensure that the program Prog′ obtained from the recursive call is unifiable
with Prog. If the recursive call succeeds, programs Prog and Prog′ can be unified,
and the solution to the original problem was found. If the recursive call fails,
then we need to backtrack, and choose another candidate for program Prog. In
this case, we also use a form of conflict-driven learning.

Problem Domains. We instantiate the STUN approach to three different
problem domains: bit-vector expressions, separable specifications for conditional
linear arithmetic expressions, and non-separable specifications for conditional
linear arithmetic expressions. In each domain, we provide a suitable unification
operator, and we resolve the nondeterministic choices in the STUN algorithm.

We first consider the domain of bit-vector expressions. Here, the challenge
is the absence of if-conditionals, which makes the unification operator harder
to define. We represent bit-vector programs as (expr, ρ), where expr is a bit-
vector expression over input variables and additional auxiliary variables, and
ρ is a constraint over the auxiliary variables. Two such pairs (expr1, ρ1) and
(expr2, ρ2) can be unified if there exists a way to substitute the auxiliary vari-
ables in expr1 and expr2 to make the expressions equal, and the substitution
satisfies the conjunction of ρ1 and ρ2. A solver based on such a unification opera-
tor has comparable performance on standard benchmarks [1] as existing solvers.

For the second and third domain we consider, the program space is the set of
conditional linear-arithmetic expressions (CLEs) over rationals. The difference
between the two domains is in the form of specifications. Separable specifications
are those where the specification only relates an input and its corresponding
output. In contrast, the non-separable specifications can place constraints over
outputs that correspond to different inputs. For instance, x > 0 =⇒ f(x+2) =
f(x)+7 is a non-separable specification, as it relates outputs for multiple inputs.
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The second domain of separable specifications and CLEs over rationals is
an ideal example for STUN, as the unification operator is easy to implement
using conditions of CLEs. We obtain an efficient implementation where partial
solutions are obtained by generalization of input-output examples, and such
partial solutions are then unified. Our implementation of this procedure is order-
of-magnitude faster on standard benchmarks than the existing solvers.

The third domain of non-separable specifications for CLEs requires solving
constraints for which finding a solution might need an unbounded number of
unification steps before convergence. We therefore implement a widening version
of the unification operator, further demonstrating the generality of the STUN
approach. Our implementation of this procedure performs on par with existing
solvers on standard benchmarks.

Comparing CEGIS and STUN. The key conceptual difference between exist-
ing synthesis methods (CEGIS) and our STUN approach is as follows: CEGIS
gradually collects a set of input-output examples (by querying the specification),
and then finds a solution that matches all the examples. The STUN approach
also collects input-output examples by querying the specification, but it finds
a (general) solution for each of them separately, and then unifies the solutions.
The STUN method has an advantage if solutions for different parts of the input
space are different. In other words, CEGIS first combines subproblems, and then
solves, while STUN first solves, and then combines solutions. The reason is that
such solutions can be in many cases easily unifiable (if for instance the program
space has if conditionals), but finding the whole solution at once for examples
from the different parts of input space (as CEGIS requires) is difficult.

Summary. The main contributions of this work are two-fold. First, we propose
a new approach to program synthesis based on unification of programs, and we
develop a generic synthesis procedure using this approach. Second, we instanti-
ate the STUN synthesis procedure to the domains of bit-vector expressions, and
conditional linear expressions with separable and non-separable specifications.
We show that in all cases, our solver has comparable performance to existing
solvers, and in some cases (conditional linear-arithmetic expressions with sepa-
rable specifications), the performance on standard benchmarks is several orders
of magnitude better. This demonstrates the potential of the STUN approach.

2 Overview

In this section, we first present a simplified view of synthesis by unification (the
UNIF loop), which works under very strong assumptions. We then describe what
extensions are needed, and motivate our STUN approach.

UNIF Loop. Let us fix a specification Spec, a program space P (a set of candi-
date programs), and an input space I. The program synthesis problem is to find
a program in P that satisfies the specification for all inputs in I.

A classical approach to synthesis is the counterexample-guided inductive syn-
thesis (CEGIS) loop. We choose the following presentation for CEGIS in order to
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contrast it with UNIF. In CEGIS (depicted in Fig. 1), the synthesizer maintains
a subset J ⊆ I of inputs and a candidate program Prog ∈ P that is correct for
J . If J = I, i.e., if Prog is correct for all inputs in I, the CEGIS loop terminates
and returns Prog. If there is an input on which Prog is incorrect, the first step is
to find such an input c. The second step is to find a program that is correct for
both c and all the inputs in J . In Fig. 1, this is done in the call to syntFitAll).
This process is then repeated until J is equal to I.

The unification approach to synthesis is based on a simple observation: if we
have a program Prog that is correct for a subset J of inputs (as in CEGIS),
the synthesizer can try to find a program Prog′ that is correct for some of the
inputs in I \ J , and then attempt to unify Prog and Prog′ into a program in
the program space P. We call the latter option the UNIF loop. It is depicted in
Fig. 2. In more detail, the UNIF loop works as follows. We first call syntFitSome
in order to synthesize a program Prog′ that works for some inputs in I but not
in J . Let J ′ be the set of those inputs in I \ J for which Prog′ satisfies Spec.

Next, we consider two programs J · Prog and J ′ · Prog, where the notation
J · Prog denotes a program that on inputs in J behaves as Prog, and on other
inputs its behavior is undefined. We need to unify the two programs to produce
a program (in the program space P) which is defined on J ∪J ′. The unification
operator denoted by ⊕, and the unified program is obtained as J ·Prog⊕J ′·Prog.
If the program space is closed under if conditionals, and if Prog and Prog′

are in P, then the unification is easy. We obtain if J then Prog else if J ′

then Prog′ else ⊥. Note that we abuse notation here: the symbols J and J ′,
when used in programs, denote expressions that define the corresponding input
spaces.

(Prog,J )
such that

∀j : j ∈ J ⇔ (Prog(j) |= Spec)

J ?
= I

return Prog

c ← ctrex(Prog,Spec)

(J , Prog) ←
syntFitAll(J ∪ {c},Spec)

yes

no

Fig. 1. CEGIS loop for input space I
and specification Spec

(Prog,J )
such that

∀j : j ∈ J ⇔ (Prog(j) |= Spec)

J ?
= I

return Prog

(J ′, Prog′) ←
syntFitSome(I \ J ,Spec)

J ← J ∪ J ′
Prog ← (J · Prog) ⊕ (J ′ · Prog′)

yes

no

Fig. 2. UNIF loop for input space I
and specification Spec

Example 1. Consider the following specification for the function max.

Spec = f(x, y) ≥ x ∧ f(x, y) ≥ y ∧ (f(x, y) = x ∨ f(x, y) = y)

The input space I is the set of all pairs of integers. The program space P is the
set of all programs in a simple if-language with linear-arithmetic expressions.

We demonstrate the UNIF loop (Fig. 2) on this example. We start with an
empty program ⊥. The program works for no inputs (i.e., the input space is ∅),
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so we start with the pair (⊥, ∅) at the top of Fig. 2. As ∅ �= I, we go to the
right-hand side of Fig. 2, and call the procedure syntFitSome.

We now describe the procedure syntFitSome(K,Spec) for the linear arith-
metic domain. It takes two parameters: a set of inputs K, and a specification
Spec, and returns a pair (J ′, Prog′) consisting of a set ∅ �= J ′ ⊆ K and a
program Prog′ which is correct on J ′. We pick an input-output example from
the input space K. This can be done by using a satisfiability solver to obtain a
model of Spec. Let us assume that the specification is in CNF. An input-output
example satisfies at least one atom in each clause. Let us pick those atoms. For
instance, for the example (2, 3) → 3, we get the following conjunction G of atoms:
G ≡ f(x, y) ≥ x ∧ f(x, y) ≥ y ∧ f(x, y) = y. We now generate a solution for the
input-output example and G. For linear arithmetic, we could “solve for f(x, y)”,
i.e. replace f(x, y) by t and solve for t. Let us assume that the solution Prog0
that we obtain is a function that on any input (x, y) returns y. We then plug the
solution Prog0 to G, and simplify the resulting formula in order to obtain G0,
where G0 is y ≥ x. G0 defines the set of inputs for which the solution is correct.
We have thus effectively obtain the pair (G0, Prog0) that the function returns
(this effectively represents the program if y ≥ x then y else ⊥).

In the second iteration, we now call the function syntFitSome(K,Spec) with
the parameter K = ¬G0. We now ask for an input-output example where the
input satisfies ¬G0. Let us say we obtain (5, 4), with output 5. By a similar
process as above, we obtain a program Prog1 that for all inputs (x, y) returns
x, and works for all input that satisfy G1 ≡ x ≥ y.

The next step of the STUN loop asks us to perform the unification (G0 ·
Prog0) ⊕ (G1 · Prog1). Given that we have if conditionals in the language, this
step is simple. We unify the two programs to obtain: if y ≥ x then y else x.

From the UNIF Loop to STUN. The main assumption that the UNIF loop
makes is that the unification operator ⊕ always succeeds. We already mentioned
that this is the case when the program space is closed under if conditionals. If the
program space is not closed under if conditionals, or if we do not wish to use this
form of unification for other reasons, then the UNIF loop needs to be extended.
An example of a program space that is not closed under if conditionals, and
that is an interesting synthesis target, are bit-vector expressions.

The STUN algorithm extends UNIF with backtracking (as explained in the
introduction, this is needed since the unifcation can fail), and at each level, a
CEGIS loop can be used in syntFitSome. The CEGIS and UNIF loops are thus
combined, and the combination can be fine-tuned for individual domains.

3 Synthesis Through Unification Algorithm

Overview. The STUN procedure is presented in Algorithm 1. The input to the
algorithm consists of a specification Spec, a program space P, input space I,
and outer unification constraints (OUCs) ψ. OUCs are constraints on the pro-
gram space which are needed if the synthesized program will need to be unified
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Algorithm 1. The STUN (synthesis through unification) procedure
Input: Specification Spec, Program space P, Input space I, outer unification con-

straints (OUCs) ψ
Output: Prog ∈ P s.t. ∀inp ∈ I : Prog[inp] |= Spec and Prog |= ψ, or None

Global variables: learned unification constraints (LUCs) β, initialized to true
1: ϕ ← true // CEGIS constraints
2: if I = ∅ return �, true // input space is empty, base case of recursion
3: while true do
4: (Prog, timeOut) ← Generate(P,Spec, I, ϕ, ψ, β) // generate next candidate
5: if Prog = None then
6: if ¬timeOut then
7: β ← β ∧ LearnFrom(Spec, ψ, β) //learn unification constraints
8: return None //no solution exists
9: inp ← PickInput(I, Prog) //take a positive- or a counter-example

10: if Prog[inp] �|= Spec then
11: ϕ ← ϕ ∧ project(Spec, inp) //get a constraint from a counter-example
12: else
13: IG, IB ← splitInpSpace(Spec, Prog, inp) // IG ⊆ {inp′ | Prog[inp′] |= Spec}

// and inp ∈ IG, so IB � I and we can make a recursive call
14: Prog′ ← STUN (Spec, ψ ∧ UnifConstr(IG, Prog), P, IB) //recursive call
15: if Prog′ �= None return IG · Prog⊕ IB · Prog′ //return the unified program

with an already created program. The algorithm is implemented as a recursive
(backtracking) procedure STUN. At each level, a decision is tried: a candidate
program that satisfies OUCs is generated, and passed to the recursive call. If
the recursive call is successful, the returned program is unified with the cur-
rent candidate. If the recursive call is unsuccessful, it records learned unification
constraint (LUCs) to the global variable β, ensuring progress.

Algorithm Description. The algorithm first checks whether the input space
is empty (this is the base case of our recursion). If so, we return a program �
(Line 2), a program which can be unified with any other program.

If the input space I is not empty, we start the main loop (Line 3). In the loop,
we need to generate a program Prog (Line 4) that works for a nonempty subset
of I. The generated program has to satisfy “CEGIS” constraints ϕ (that ensure
that the program is correct on previously seen inputs at this level of recursion),
OUCs ψ that ensure that the program is unifiable with programs already created
in the upper levels of recursion, and LUCs β, which collects constraints learned
from the lower levels of recursion. If the call to Generate fails (i.e., returns None),
we exit this level of recursion, and learn constraints unification constraints that
can be inferred from the failed exploration (Line 7). The only exception is when
Generate fails due to a timeout, in which case we are not sure whether the task
was unrealizable, and so no constraints are learned. Learning the constraints
(computed by the function LearnFrom) is a form of conflict-driven learning.

Once a program Prog is generated, we need to check whether it works for
all inputs in I. If it does not, we need to decide whether to improve Prog (in a
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CEGIS-like way), or generate a program Prog′ that works for inputs on which
Prog does not work. The decision is made as follows. We pick an input inp and
check whether the program Prog is correct on inp (Line 10). If Prog is not correct
on inp, then we have found a counterexample, and we use it to strengthen our
CEGIS constraints (Line 11). We refer to this branch as CEGIS-like branch.

If Prog is correct on inp, then we know that Prog is correct for at least one
input, and we can make a recursive call to generate a program that is correct for
the inputs for which Prog is not. We refer to this branch as the UNIF-like branch.
The first step is to split the input space I into the set IG (an underapproximation
of the set of inputs on which Prog works containing at least inp), and IB, the
rest of the inputs (Line 13). We can now make the recursive call on IB (Line 14).
We pass the OUCs ψ to the recursive call, in addition to the information that
the returned program will need to be unified with Prog (this is accomplished
by adding UnifConstr(IG, Prog)). If the recursive call does not find a program
(i.e., returns Prog′ = None), then the loop continues, and another candidate is
generated. If the recursive call successfully returns a program Prog′, this program
is unified with with Prog (Line 15). In more detail, we have a program Prog that
works on inputs in IG, and a program Prog′ that works on inputs in IB , and we
unify them with the unification operator ⊕ to produce IG · Prog ⊕ IB · Prog′.
We know that the unification operator will succeed, as the unification constraint
UnifConstr(IG, Prog) was passed to the recursive call.

The input choice (line 9), here nondeterministic, can be tuned for individual
domains to favor positive- or counter-examples, and hence, CEGIS or UNIF.

Example 2. Consider a specification that requires that the right-most bit set to
1 in the input bit-vector is reset to 0. This problem comes from the Hacker’s
Delight collection [20]. A correct solution is, for instance, given by the expression
x & (x − 1). We illustrate the STUN procedure on this example. The full STUN
procedure for the bit-vector domain will be presented in Sect. 4.

Unification. The unification operator IG · Prog ⊕ IB · Prog′ works as follows.
IG · Prog and IB · Prog′ can be unified if there exists a way to substitute the
constants ci and c′

i occuring in Prog and Prog′ with sub-expressions expri and
expr′

i such that after the substitution, Prog and Prog′ are equal to the same
program Prog∗, and for all input in IG, expri[i] = ci and for all inputs in
IB, expr′

i[i] = c′
i. Note that this is a (very) simplified version of the unification

operator introduced in the next section. It is used here to illustrate the algorithm.

Unification Gone Wrong. Let us assume that the Generate function at Line 4
generates the program x |0 (this can happen if say the simpler programs already
failed). Note that | is the bitwise or operator. Now let us assume that at Line 9,
we pick the input 0. The program matches Spec at this input. The set IG is
{0}, and we go to the recursive call at Line 14 for the rest of the input space,
with the constraint that the returned program must be unifiable with x |0. In the
recursive call, Generate is supposed to find a program that is unifiable with x |0,
i.e., of the form x | c for some constant c. Further, for the recursive call to finally
succeed (i.e., take the else branch at Line 12), we need this program to be correct
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on some input other than x = 0. However, as it can be seen, there is no such
program and input. Hence, the procedure eventually backtracks while adding a
constraint that enforces that the program x | 0 will no longer be attempted.

Unification Gone Right. After the backtracking, with the additional con-
straint, the program generation procedure is forbidden from generating the pro-
gram x |0. The Generate procedure instead generates say x&−1. As before, for
the recursive call to finally succeed, the program generation procedure is asked
to find a program unifiable with x & −1 (i.e., of the form x & c) that works for
an input other than 0. Let us assume that generated program in the next level
of recursion is x & 4; one input for which this is correct is x = 5. Attempting to
unify these functions, the unification operator is asked to find an expression expr
such that expr[0/x] = −1 and expr[5/x] = 4. One such candidate for expr is
x−1. This leads to a valid solution x&(x−1) to the original synthesis problem.

Soundness. The procedure splitInpSpace(Spec, Prog, inp) is sound if for every
invocation, it returns a pair (IG, IB) such that {inp} ⊆ IG ⊆ {inp′ |
Prog[inp′] |= Spec}∧IB = I\IG. The unification operator ⊕ is sound w.r.t. Spec
and P if for programs Prog1 and Prog2 satisfying Spec on inputs in I1 and I2,
respectively, the program I1 ·Prog1 ⊕I2 ·Prog2 is in P and that it satisfies Spec
on I1∪I2. The procedure STUN is sound if for all inputs P, I, Spec, ψ, it returns
a program Prog such that Prog ∈ P and that ∀inp ∈ I : Prog[inp] |= Spec.

Theorem 1. Let us fix specification Spec and program space P. If splitInpSpace
and the unification operator ⊕ are sound, then the STUN procedure is sound.

Domains and Specifications. We instantiate STUN approach to three
domains: bit-vector expressions, separable specifications for conditional linear-
arithmetic expressions, and non-separable specifications for conditional linear
arithmetic expressions. Separable specifications are those where the specification
relates an input and its corresponding output, but does not constrain outputs
that correspond to different inputs. Formally, we define separable specifications
syntactically — they are of the form f(x) = o ∧ Φ(o, x), where x is the tuple of
all input variables, o is the output variable, f is the function being specified, and
Φ is a formula. For example, the specification Spec ≡ f(x, y) ≥ x ∧ f(x, y) ≥ y
is separable as Spec = (f(x, y) = o) ∧ (o ≥ x ∧ o ≥ y), and the specification
f(0) = 1 ∨ f(1) = 1 is a non-separable specification.

Notes About Implementation. We have implemented the STUN procedure
for each of the three domains described above is a suite of tools. In each case, we
evaluate our tool on the benchmarks from the SyGuS competition 2014 [1], and
compare the performance of our tool against the enumerative solver eSolver
[2,18]. The tool eSolver was the overall winner in the SyGuS competition 2014,
and hence, is a good yardstick that represents the state of the art.

4 Domain: Bit-Vector Expressions

The first domain to which we apply the STUN approach is the domain of
bit-vector expressions specified by separable specifications. Each bit-vector
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expression is either an input variable, a constant, or a standard bit-vector oper-
ator applied to two sub-expressions. This syntax does not have a top level
if-then-else operator that allows unification of any two arbitrary programs.

Here, we instantiate the Generate procedure and the unification operator of
Algorithm 1 to obtain a nondeterministic synthesis procedure (nondeterministic
mainly in picking inputs that choose between the CEGIS-like and UNIF-like
branches). Later, we present a practical deterministic version of the algorithm.

Representing Candidate Programs. In the following discussion, we repre-
sent programs using an alternative formalism that lets us lazily instantiate con-
stants in the program. This representation is for convenience only—the procedure
can be stated without using it. Formally, a candidate bit-vector program Prog over
inputs v1, . . . , vn is a tuple 〈expr, ρ〉 where: (a) expr is a bit-vector expression over
{v1, . . . , vn} and auxiliary variables {SubProg0, . . . , SubProgm} such that each
SubProgi occurs exactly once in expr; and (b) ρ is a satisfiable constraint over
SubProgi’s. Variables SubProgi represent constants of expr whose exact values
are yet to be synthesized, and ρ is a constraint on their values. Intuitively, in the
intermediate steps of the algorithm, instead of generating programs with explicit
constants, we generate programs with symbolic constants along with constraints
on them. A concrete program can be obtained by replacing the symbolic constants
with values from some satisfying assignment of ρ.

Unification. As mentioned briefly in Sect. 3, two candidate programs are unifi-
able if the constants occurring in the expressions can be substituted with sub-
expressions to obtain a common expression. However, the presence of symbolic
constants requires a more involved definition of the unification operator. Fur-
ther, note that the symbolic constants in the two programs do not have to be
the same. Formally, programs Prog = 〈expr, ρ〉 and Prog′ = 〈expr′, ρ′〉 over
input spaces I and I ′ are unifiable if:

– There exists an expression expr∗ that can be obtained from expr by replacing
each variable SubProgi in expr by an expression expri, over the formal inputs
{v1, . . . , vn} and new auxiliary variables {SubProg∗

1, . . . , SubProg
∗
k}. Further,

the same expression expr∗ should also be obtainable from expr′ by replacing
each of its sub-programs SubProg′

i by an expression expr′
i.

– Constraint ρ∗ =
∧

V ρ[∀i.expri[V]/SubProgi] ∧
∧

V′ ρ′[∀i.expr′
i[V ′]/SubProg′

i]
is satisfiable. Here, V and V ′ range over inputs from I and I ′, respectively.

If the above conditions hold, one possible unified program I · Prog ⊕ I ′ · Prog′

is Prog∗ = (expr∗, ρ∗). Intuitively, in the unified program, each SubProgi is
replaced with a sub-expression expri, and further, ρ∗ ensures that the constraints
from the individual programs on the value of these sub-expressions are satisfied.

Example 3. The programs Prog = (x & SubProg0, SubProg0 = −1) and
Prog′ = (x & SubProg′

0, SubProg
′
0 = 4) over the input spaces I = (x = 0)

and I ′ = (x = 5) can be unified into (x & (x − SubProg∗
0), (0 − SubProg∗

0 =
−1) ∧ (5 − SubProg∗

0 = 4)). Here, both SubProg0 and SubProg′
0 are replaced

with x − SubProg∗
0 and the constraints have been instantiated with inputs from

corresponding input spaces.
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Unification Constraints. In this domain, an outer unification constraint ψ
is given by a candidate program ProgT . Program (expr, ρ) |= ψ if ProgT =
(exprT , ρT ) and expr can be obtained from exprT by replacing each SubProgTi
with appropriate sub-expressions. A learned unification constraint β is given
by

∧
Not(ProgiF ). Program (expr, ρ) |= β if for each ProgiF = (exprF , ρF ),

there is no substitution of SubProgFi ’s that transforms exprF to expr. Intu-
itively, a Prog satisfies ψ = ProgT and β =

∧
Not(ProgiF ) if Prog can be

unified with ProgT and cannot be unified with any of ProgiF . Boolean com-
binations of unification constraints can be easily defined. In Algorithm1, we
define UnifConstr(I, Prog) = Prog and LearnFrom(Spec, ψ, β) = Not(ψ). Note
that using the alternate representation for programs having symbolic constants
lets us have a very simple LearnFrom that just negates ψ – in general, a more
complex LearnFrom might be needed.

Program Generation. A simple Generate procedure enumerates programs,
ordered by size, and checks if the expression satisfies all the constraints.

Theorem 2. Algorithm1 instantiated with the procedures detailed above is a
sound synthesis procedure for bit-vector expressions.

A Practical Algorithm. We instantiate the non-deterministic choices in the
procedure from Theorem 2 to obtain a deterministic procedure. Intuitively, this
procedure maintains a set of candidate programs and explores them in a fixed
order based on size. Further, we optimize the program generation procedure
to only examine programs that satisfy the unification constraints, instead of
following a generate-and-test procedure. Additionally, we eliminate the recur-
sive call in Algorithm 1, and instead store the variables IG locally with individ-
ual candidate programs. Essentially, we pass additional information to convert
the recursive call into a tail call. Formally, we replace ρ in the candidate pro-
grams with {(V0, ρ0), . . . , (Vk, ρk)} where Vi’s are input valuations that represent
IG from previous recursive calls. Initially, the list of candidate programs con-
tains the program (SubProg0, ∅). In each step, we pick the first candidate (say
(expr, {(V0, ρ0), . . .})) and concretize expr to expr∗ by substituting SubProgi’s
with values from a model of

∧
i ρi. If expr∗ satisfies Spec, we return it.

Otherwise, there exists an input inp on which expr∗ is incorrect. We obtain
a new constraint ρinp on SubProgi’s by substituting the input and the expression
expr∗ in the specification Spec. If ρinp is unsatisfiable, there are no expressions
which can be substituted for SubProgi’s to make expr correct on inp. Hence,
the current candidate is eliminated–this is equivalent to a failing recursive call
in the non-deterministic version.

Instead, if ρinp is satisfiable, it is added to the candidate program. Now, if∧
ρi ∧ ρinp is unsatisfiable, the symbolic constants SubProgi’s cannot be instan-

tiated with explicit constants to make expr correct on all the seen inputs Vi.
However, SubProgi’s can possibly be instantiated with other sub-expressions.
Hence, we replace the current candidate with programs where each SubProgi is
replaced with a small expression of the form operator(e1, e2) where e1 and e2 are
either input variables or fresh SubProgi variables. Note that while substituting
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Algorithm 2. A deterministic STUN algorithm for bit-vector expressions
1: Candidates ← 〈(SubProg0, ∅)〉
2: while true do
3: (expr, {(V0, ρ0), . . . , (Vn, ρn)}) ← Candidates[0]
4: expr∗ ← substitute(expr, getModel(

∧
i ρi))

5: if � ∃inp : expr∗[inp] �|= Spec return expr∗

6: ρinp ← concretize(expr,Spec, inp) where expr∗[inp] �|= Spec
7: if ¬Satisfiable(ρinp) then
8: Candidates ← tail(Candidates)
9: else

10: Candidates[0] ← (expr, {(V0, ρ0), . . . , (Vn, ρn)} ∪ {(Vinp, ρinp)})
11: if ¬Satisfiable(∧ ρi ∧ ρinp) then
12: Candidates ← tail(Candidates)
13: for all SubProgi ∈ AuxVariables(expr), expr′ ← LevelOneExprs() do
14: Candidates ← append(Candidates, substitute(Prog, (SubProgi, expr

′)))

these expression for SubProgi in ρj , the input variables are replaced with the
corresponding values from Vj .

Informally, each (expr, ρi) is a candidate program generated at one level
of the recursion in the non-deterministic algorithm and each valuation Vi is the
corresponding input-space. An iteration where ρinp is unsatisfiable is a case where
there is no program that is correct on inp is unifiable with the already generated
program, and an iteration where

∧
ρi ∧ρinp is unsatisfiable when the unification

procedure cannot replace the symbolic constants with explicit constants, but
instead has to search through more complex expressions for the substitution.

Theorem 3. Algorithm2 is a sound and complete synthesis procedure for bit-
vector expressions.

Experiments. We implemented Algorithm 2 in a tool called Auk and evaluated
it on benchmarks from the bit-vector track of SyGuS competition 2014 [1]. For
the full summary of results, see the full version [3]. For easy benchmarks (where
both tools take < 1 second), eSolver is faster than Auk. However, on larger
benchmarks, the performance of Auk is better. We believe that these results are
due to eSolver being able to enumerate small solutions extremely fast, while
Auk starts on the expensive theory reasoning. On larger benchmarks, Auk is
able to eliminate larger sets of candidates due to the unification constraints while
eSolver is slowed down by the sheer number of candidate programs.

5 Domain: CLEs with Separable Specifications

We now apply the STUN approach to the domain of conditional linear arithmetic
expressions (CLEs). A program Prog in this domain is either a linear expression
over the input variables or is if(cond) Prog else Prog′, where cond is a boolean
combination of linear inequalities. This is an ideal domain for the UNIF loop
due to the natural unification operator that uses the if-then-else construct. Here,
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we present our algorithm for the case where the variables range over rationals.
Later, we discuss briefly how to extend the technique to integer variables.

Unification. Given two CLEs Prog and Prog′, and input spaces I and I ′, we
define I ·Prog⊕I ′ ·Prog′ to be the program if (I) Prog else if (I ′) Prog′ else ⊥.
Note that we assume that I and I ′ are expressed as linear constraints. Here,
since any two programs can be unified, unification constraints are not used.

Program Generation. Algorithm 3 is the program generation procedure
Generate for CLEs for rational arithmetic specifications. Given a specification
Spec and input space I, it first generates a concrete input-output example such
that the input is in I and the example satisfies Spec. Then, it generalizes the
input-output pair to a program as follows. From each clause of Spec, we pick one
disjunct that evaluates to true for the current input-output pair. Each disjunct
that constrains the output can be expressed as o op φ where op ∈ {≤,≥, <,>}
and φ is a linear expression over the input variables. Recall from the definition of
separable specifications that o is the output variable that represents the output
of the function to be synthesized. Each such inequality gives us either an upper
or a lower bound (in terms of input variables) on the output variable. These
bounds are evaluated using the input-output example, and the strictest upper
and lower bounds are chosen. The algorithm then returns an expression Prog
that respects these strictest bounds. We define the SplitInpSpace procedure from
Algorithm 1 as follows: input space IG is obtained by substituting the program
Prog into the disjuncts, and IB is obtained as I ∧ ¬IG.

Theorem 4. Algorithm1 instantiated with the procedures detailed above is a
sound and complete synthesis procedure for conditional linear rational arithmetic
expressions specified using separable specifications.

Extension to Integers. The above procedure cannot be directly applied when
variables range over integers instead of rationals. Here, each disjunct can be put
into the form c · o op φ where c is a positive integer and φ is a linear integer
expression over inputs. For rationals, this constraint can be normalized to obtain
o op 1

cφ. In the domain of integers, 1
cφ is not necessarily an integer.

Algorithm 3. Procedure Generate
Require: Specification Spec in CNF, Input space I
Ensure: Candidate program Prog

1: if I = ∅ return �
2: pex ← getModel(I ∧ Spec)
3: LB ← −∞, UB ← ∞
4: for all Clause of Spec do
5: Pick Disjunct in Clause such that Disjunct [pex ] holds
6: if o occurs in Disjunct and Disjunct ≡ (o op φ) then
7: case op ∈ {≤, <} ∧ UB [pex ] > φ[pex ] : UB ← φ
8: case op ∈ {≥, >} ∧ LB [pex ] < φ[pex ] : LB ← φ
9: return (LB + UB)/2
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There are two possible ways to solve this problem. A simple solution is to
modify the syntax of the programs to allow floor �·� and ceiling �·� functions.
Then, c · o ≤ φ and c · o ≥ φ can be normalized as o ≤ �φ/c� and o ≥ �φ/c�.
The generation procedure can then proceed using these normalized expressions.
The alternative approach is to use a full-fledged decision procedure for solving the
constraints of the form o op 1

cφ. However, this introduces divisibility constraints
into the generated program. For a detailed explanation on this approach and
techniques for eliminating the divisibility constraints, see [14].
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Fig. 3. Results on separable linear integer benchmarks

Experiments. We implemented the above procedure in a tool called Puf-
fin and evaluated it on benchmarks from the linear integer arithmetic track
with separable specifications from the SyGuS competition 2014. The results
on three classes of benchmarks (maxn, array searchn, and array sumn) have
been summarized in Fig. 3. The maxn benchmarks specify a function that out-
puts the maximum of n input variables (the illustrative example from Sect. 2
is max2). Note that the SyGuS competition benchmarks only go up to max5.
The array searchn and array sumn benchmarks respectively specify functions
that search for a given input in an array, and check if the sum of two consecu-
tive elements in an array is equal to a given value. In all these benchmarks, our
tool significantly outperforms eSolver and other CEGIS-based solvers. This is
because the CEGIS solvers try to generate the whole program at once, which
is a complex expression, while our solver combines simple expressions generated
for parts of the input spaces where the output expression is simple.

6 Domain: Non-Separable Specifications for CLEs

Here, we consider CLEs specified by non-separable specifications. While this
domain allows for simple unification, non-separable specifications introduce com-
plications. Further, unlike the previous domains, the problem itself is undecidable.

First, we define what it means for a program Prog to satisfy a non-separable
specification on an input space I. In further discussion, we assume that the
program to be synthesized is represented by the function f in all specifications
and formulae. We say that Prog satisfies Spec on I if Spec holds whenever the
inputs to f in each occurrence in Spec belong to I. For example, program Prog(i)
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satisfies Spec ≡ f(x) = 1∧x′ = x+1 =⇒ f(x′) = 1 on the input space 0 ≤ i ≤ 2
if (0 ≤ x ≤ 2 ∧ 0 ≤ x′ ≤ 2) =⇒ Spec[f ← Prog] holds, i.e., we require Spec to
hold when both x and x′ belong to the input space.

Unification and Unification Constraints. The unification operator we use
is the same as in Sect. 5. However, for non-separable specifications, the outputs
produced by Prog on I may constrain the outputs of Prog′ on I ′, and hence,
we need non-trivial unification constraints. An outer unification constraint ψ is
a sequence 〈(I0, Prog0), (I1, Prog1), . . .〉 where Ii’s and Progi’s are input spaces
and programs, respectively. A learned unification constraint β is given by

∧
ρi

where each ρi is a formula over f having no other free variables. Intuitively, Ii

and Progi fix parts of the synthesized function, and ρi’s enforce the required rela-
tionships between the outputs produced by different Progi’s. Formally, Prog |= ψ
if its outputs agree with each Progi on Ii and Prog |= β if ∧ρi[Prog/f ] holds.

Program Generation. The Generate procedure works using input-output
examples as in the previous section. However, it is significantly more complex
due to the presence of multiple function invocations in Spec. Intuitively, we
replace all function invocations except one with the partial programs from the
unification constraints and then solve the arising separable specification using
techniques from the previous section. We explain the procedure in detail using
an example.

Example 4. Consider the specification Spec given by x �= y =⇒ f(x) + f(y) =
10. Here, the only solution is the constant function 5. Now, assume that the
synthesis procedure has guessed that Prog0 given by Prog0(i) = 0 is a program
that satisfies Spec for the input space I0 ≡ i = 0.

The unification constraint ψ0 = 〈(Prog0, I0)〉 is passed to the recursive call to
ensure that the synthesized function satisfies f(0) = 0. The program generation
unction in the recursive call works as follows: it replaces the invocation f(x) in
Spec with the partial function from ψ to obtain the constraint (x = 0 ∧ x �=
y =⇒ Prog0(0) + f(y) = 10). Solving to obtain the next program and input
space, we get Prog1(i) = 10 for the input space I1 ≡ i = 1. Now, the unification
constraint passed to the next recursive call is ψ = 〈(Prog0, I0), (Prog1, I1)〉.

Again, instantiating f(x) with Prog0 and Prog1 in the respective input
spaces, we obtain the constraint (x = 0 ∧ x �= y =⇒ Prog0(x) + f(y) =
10) ∧ (x = 1 ∧ x �= y =⇒ Prog1(x) + f(y) = 10). Now, this constraint does not
have a solution—for y = 2, there is no possible value for f(y). Here, a reason
β = ρ0 (say ρ0 ≡ f(1) = f(0)) is learnt for the unsatisfiability and added to
the learned constraint. Note that this conflict-driven learning is captured in the
function LearnFrom in Algorithm 1. Now, in the parent call, no program satisfies
β as well as ψ = 〈(Prog0, I0), (Prog1, I1)〉. By a similar unsatisfiability analysis,
we get ρ1 ≡ f(0) = 5 as the additional learned constraint. Finally, at the top
level, with β ≡ f(0) = f(1) ∧ f(0) = 5, we synthesize the right value for f(0).

Example 5 (Acceleration). Let Spec ≡ (0 ≤ x, y ≤ 2 =⇒ f(x, y) = 1)∧ (x = 4∧
y = 0 =⇒ f(x, y) = 0)∧(f(x, y) = 1∧(x′, y′) = (x+2, y+2) =⇒ f(x′, y′) = 1).

The synthesis procedure first obtains the candidate program Prog0(i, j) = 1
on the input space I0 ≡ 0 ≤ i ≤ 1 ∧ 0 ≤ j ≤ 1. The recursive call is passed
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(Prog0, I0) as the unification constraint and generates the next program frag-
ment Prog1(i, j) = 1 on the input space I1 ≡ 0 ≤ i − 2 ≤ 2 ∧ 0 ≤ j − 2 ≤ 2.
Similarly, each further recursive call generates Progn(i, j) = 1 on the input space
In given by 0 ≤ i−2∗n ≤ 2∧0 ≤ j−2∗n ≤ 2. The sequence of recursive calls do
not terminate. To overcome this problem, we use an accelerating widening oper-
ator. Intuitively, it generalizes the programs and input spaces in the unification
constraints to cover more inputs. In this case, the acceleration operator we define
below produces the input space I∗ ≡ 0 ≤ i ∧ 0 ≤ j ∧ −2 ≤ i − j ≤ 2. Proceeding
with this widened constraint lets us terminate with the solution program.

Acceleration. The accelerating widening operator ∇ operates on unifica-
tion constraints. In Algorithm1, we apply ∇ to the unification constraints
being passed to the recursive call on line 14, i.e., we replace the expression
ψ ∧ UnifConstr(IG, Prog) with ∇(ψ ∧ UnifConstr(IG, Prog), β).

While sophisticated accelerating widening operators are available for partial
functions (see, for example, [9,11]), in our implementation, we use a simple one.
Given an input unification constraint 〈(I0, Prog0), . . . , (In, Progn)〉, the acceler-
ating widening operator works as follows: (a) If Progn �= Progj for all j < n, it
returns the input. (b) Otherwise, Progn = Progj for some j < n and we widen
the domain where Progn is applicable to I∗ where Ij ∪ In ⊆ I∗. Intuitively,
we do this by letting I∗ = ∇(Ii, Ij) where ∇ is the widening join operation for
convex polyhedra abstract domain [10]. However, we additionally want Progn on
I∗ to not cause any violation of the learned constraints β =

∧
ρi. Therefore, we

use a widening operator with bounds on the convex polyhedral abstract domain
instead of the generic widening operator. The bounds are obtained from the
concrete constraints. We do not describe this procedure explicitly, but present
an example below. The final output returned is 〈(I0, Prog0), . . . , (I∗, Progn)〉.

Example 6. Consider the specification Spec = f(0) = 1 ∧ (f(x) = 1 ∧ 0 ≤
x ≤ 10 =⇒ f(x + 1) = 1) ∧ (f(12) = 0). After two recursive calls, we get
the unification constraint ψ = 〈(i = 0, Prog0(i) = 1), (i = 1, Prog1(i) = 1)〉.
Widening, we generalize the input spaces i = 0 and i = 1 to I∗ = (i ≥ 0).
However, further synthesis fails due to the clause f(12) = 0 from Spec, and we
obtain a learned unification constraint β ≡ f(12) = 0 at the parent call.

We then obtain an additional bound for the unification as replacing f by
Prog1 violates f(12) = 0. With this new bound, the widening operator returns
the input space I∗ = (12 > i ≥ 0), which allows us to complete the synthesis.

Theorem 5. Algorithm1 instantiated with the procedures described above is
a sound synthesis procedure for conditional linear expressions given by non-
separable specifications.

Experiments. We implemented the above procedure in a tool called Razor-
bill and evaluated it linear integer benchmarks with non-separable specifica-
tions from SyGuS competition 2014. For the full summary of results, see the
full version [3]. As for the bit-vector benchmarks, on small benchmarks (where
both tools finish in less than 1 second), eSolver is faster. However, on larger
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benchmarks, Razorbill can be much faster. As before, we hypothesize that this
is due to eSolver quickly enumerating small solutions before the STUN based
solver can perform any complex theory reasoning.

7 Concluding Remarks

Related Work. Algorithmic program synthesis became popular a decade ago
with the introduction of CEGIS [17]. Much more recently, syntax-guided synthe-
sis [2] framework, where the input to synthesis is a program space and a specifica-
tion, was introduced, along with several types of solvers. Our synthesis problem
falls into this framework, and our solvers solve SyGuS problem instances. Kuncak
et al. [14] present another alternative (non-CEGIS) solver for linear arithmetic
constraints.

STUN is a general approach to synthesis. For instance, in the domain of syn-
thesis of synchronization [4,6,7,13,19], the algorithm used can be presented as
an instantiation of STUN. The approach is based on an analysis of a counterex-
ample trace that infers a fix in the form of additional synchronization. The bug
fix works for the counterexample and possibly for some related traces. Such bug
fixes are then unified similarly as in the STUN approach.

A synthesis technique related to STUN is based on version-space algebras
[12,15]. There, the goal is to compose programs that works on a part of a single
input (say a string) to a transformation that would work for the complete sin-
gle input. In contrast, STUN unifies programs that work for different parts of
the input space. The combination of the two approaches could thus be fruitful.

The widening operator has been introduced in [8], and has been widely used
in program analysis, but not in synthesis. We proposed to use it to accelerate
the process in which STUN finds solutions that cover parts of the input space.
Use of other operators such as narrowing is worth investigating.

Limitations. We mentioned that the simple unification operator based on if
statements might lead to inefficient code. In particular, if the specification is
given only by input-output examples, the resulting program might be a sequence
of conditionals with conditions corresponding to each example. That is why we
proposed a different unification operator for the bit-vector domain, and we plan
to investigate unification further. Furthermore, a limitation of STUN when com-
pared to CEGIS is that designing unification operators requires domain knowl-
edge (knowledge of the given program space).

Future Work. We believe STUN opens several new directions for future
research. First, we plan to investigate unification operators for domains where
the programs have loops or recursion. This seems a natural fit for STUN, because
if for several different input we find that the length of the synthesized sequence of
instructions in the solution depends on the size of the input, then the unification
operator might propose a loop in the unified solution. Second, systems that at
runtime prevent deadlocks or other problems can be thought of as finding solu-
tions for parts of the input space. A number of such fixes could then be unified
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into a more general solution. Last, we plan to optimize the prototype solvers we
presented. This is a promising direction, as even our current prototypes have
comparable or significantly better performance than the existing solvers.
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Abstract. We present a computer-aided programming approach to con-
currency. The approach allows programmers to program assuming a
friendly, non-preemptive scheduler, and our synthesis procedure inserts
synchronization to ensure that the final program works even with a pre-
emptive scheduler. The correctness specification is implicit, inferred from
the non-preemptive behavior. Let us consider sequences of calls that the
program makes to an external interface. The specification requires that
any such sequence produced under a preemptive scheduler should be
included in the set of such sequences produced under a non-preemptive
scheduler. The solution is based on a finitary abstraction, an algorithm
for bounded language inclusion modulo an independence relation, and
rules for inserting synchronization. We apply the approach to device-
driver programming, where the driver threads call the software interface
of the device and the API provided by the operating system. Our exper-
iments demonstrate that our synthesis method is precise and efficient,
and, since it does not require explicit specifications, is more practical
than the conventional approach based on user-provided assertions.

1 Introduction

Concurrent shared-memory programming is notoriously difficult and error-prone.
Program synthesis for concurrency aims to mitigate this complexity by synthe-
sizing synchronization code automatically [4,5,8,11]. However, specifying the
programmer’s intent may be a challenge in itself. Declarative mechanisms, such
as assertions, suffer from the drawback that it is difficult to ensure that the
specification is complete and fully captures the programmer’s intent.
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We propose a solution where the specification is implicit. We observe that
a core difficulty in concurrent programming originates from the fact that the
scheduler can preempt the execution of a thread at any time. We therefore give
the developer the option to program assuming a friendly, non-preemptive, sched-
uler. Our tool automatically synthesizes synchronization code to ensure that
every behavior of the program under preemptive scheduling is included in the
set of behaviors produced under non-preemptive scheduling. Thus, we use the
non-preemptive semantics as an implicit correctness specification.

The non-preemptive scheduling model dramatically simplifies the develop-
ment of concurrent software, including operating system (OS) kernels, net-
work servers, database systems, etc. [13,14]. In this model, a thread can only
be descheduled by voluntarily yielding control, e.g., by invoking a blocking
operation. Synchronization primitives may be used for communication between
threads, e.g., a producer thread may use a semaphore to notify the consumer
about availability of data. However, one does not need to worry about protecting
accesses to shared state: a series of memory accesses executes atomically as long
as the scheduled thread does not yield.

In defining behavioral equivalence between preemptive and non-preemptive
executions, we focus on externally observable program behaviors: two program
executions are observationally equivalent if they generate the same sequences of
calls to interfaces of interest. This approach facilitates modular synthesis where a
module’s behavior is characterized in terms of its interaction with other modules.
Given a multi-threaded program C and a synthesized program C′ obtained by
adding synchronization to C, C′ is preemption-safe w.r.t. C if for each execution
of C′ under a preemptive scheduler, there is an observationally equivalent non-
preemptive execution of C. Our synthesis goal is to automatically generate a
preemption-safe version of the input program.

We rely on abstraction to achieve efficient synthesis of multi-threaded pro-
grams. We propose a simple, data-oblivious abstraction inspired by an analysis
of synchronization patterns in OS code, which tend to be independent of data
values. The abstraction tracks types of accesses (read or write) to each memory
location while ignoring their values. In addition, the abstraction tracks branch-
ing choices. Calls to an external interface are modeled as writes to a special
memory location, with independent interfaces modeled as separate locations. To
the best of our knowledge, our proposed abstraction is yet to be explored in the
verification and synthesis literature.

Two abstract program executions are observationally equivalent if they are
equal modulo the classical independence relation I on memory accesses: accesses
to different locations are independent, and accesses to the same location are
independent iff they are both read accesses. Using this notion of equivalence,
the notion of preemption-safety is extended to abstract programs.

Under abstraction, we model each thread as a nondeterministic finite automa-
ton (NFA) over a finite alphabet, with each symbol corresponding to a read or a
write to a particular variable. This enables us to construct NFAs N , represent-
ing the abstraction of the original program C under non-premptive scheduling,
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and P , representing the abstraction of the synthesized program C′ under pre-
emptive scheduling. We show that preemption-safety of C′ w.r.t. C is implied
by preemption-safety of the abstract synthesized program w.r.t. the abstract
original program, which, in turn, is implied by language inclusion modulo I of
NFAs P and N . While the problem of language inclusion modulo an indepen-
dence relation is undecidable [2], we show that the antichain-based algorithm for
standard language inclusion [9] can be adapted to decide a bounded version of
language inclusion modulo an independence relation.

Our overall synthesis procedure works as follows: we run the algorithm for
bounded language inclusion modulo I, iteratively increasing the bound, until it
reports that the inclusion holds, or finds a counterexample, or reaches a timeout.
In the first case, the synthesis procedure terminates successfully. In the second
case, the counterexample is generalized to a set of counterexamples represented
as a Boolean combination of ordering constraints over control-flow locations
(as in [11]). These constraints are analyzed for patterns indicating the type of
concurrency bug (atomicity, ordering violation) and the type of applicable fix
(lock insertion, statement reordering). After applying the fix(es), the procedure
is restarted from scratch; the process continues until we find a preemption-safe
program, or reach a timeout.

We implemented our synthesis procedure in a new prototype tool called Liss
(Language Inclusion-based Synchronization Synthesis) and evaluated it on a
series of device driver benchmarks, including an Ethernet driver for Linux and
the synchronization skeleton of a USB-to-serial controller driver. First, Liss was
able to detect and eliminate all but two known race conditions in our exam-
ples; these included one race condition that we previously missed when synthe-
sizing from explicit specifications [5], due to a missing assertion. Second, our
abstraction proved highly efficient: Liss runs an order of magnitude faster on
the more complicated examples than our previous synthesis tool based on the
CBMC model checker. Third, our coarse abstraction proved surprisingly precise
in practice: across all our benchmarks, we only encountered three program loca-
tions where manual abstraction refinement was needed to avoid the generation
of unnecessary synchronization. Overall, our evaluation strongly supports the
use of the implicit specification approach based on non-preemptive scheduling
semantics as well as the use of the data-oblivious abstraction to achieve practical
synthesis for real-world systems code.

Contributions. First, we propose a new specification-free approach to synchro-
nization synthesis. Given a program written assuming a friendly, non-preemptive
scheduler, we automatically generate a preemption-safe version of the program.
Second, we introduce a novel abstraction scheme and use it to reduce preemption-
safety to language inclusion modulo an independence relation. Third, we present
the first language inclusion-based synchronization synthesis procedure and tool
for concurrent programs. Our synthesis procedure includes a new algorithm for
a bounded version of our inherently undecidable language inclusion problem.
Finally, we evaluate our synthesis procedure on several examples. To the best of
our knowledge, Liss is the first synthesis tool capable of handling realistic (albeit
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void open dev() {
1: while (*) {
2: if (open==0) {
3: power up();
4: }
5: open=open+1;
6: yield; } }

void close dev() {
7: while (*) {
8: if (open>0) {
9: open=open-1;
10: if (open==0) {
11: power down();
12: } }
13: yield; } }

void open dev abs() {
1: while (*) {
2: (A) r open;

if (*) {
3: (B) w dev;
4: }
5: (C) r open;

(D) w open;
6: yield; } }

void close dev abs() {
7: while (*) {
8: (E) r open;

if (*) {
9: (F) r open;

(G) w open;
10: (H) r open;

if (*) {
11: (I) w dev;
12: } }
13: yield; } }

(b)(a)

Fig. 1. Running example and its abstraction

simplified) device driver code, while previous tools were evaluated on small frag-
ments of driver code or on manually extracted synchronization skeletons.

Related Work. Synthesis of synchronization is an active research area [3–6,10–
12,15,16]. Closest to our work is a recent paper by Bloem et al. [3], which uses
implicit specifications for synchronization synthesis. While their specification is
given by sequential behaviors, ours is given by non-preemptive behaviors. This
makes our approach applicable to scenarios where threads need to communicate
explicitly. Further, correctness in [3] is determined by comparing values at the
end of the execution. In contrast, we compare sequences of events, which serves
as a more suitable specification for infinitely-looping reactive systems.

Many efforts in synthesis of synchronization focus on user-provided specifi-
cations, such as assertions (our previous work [4,5,11]). However, it is hard to
determine if a given set of assertions represents a complete specification. In this
paper, we are solving language inclusion, a computationally harder problem than
reachability. However, due to our abstraction, our tool performs significantly bet-
ter than tools from [4,5], which are based on a mature model checker (CBMC [7]).
Our abstraction is reminiscent of previously used abstractions that track reads
and writes to individual locations (e.g., [1,17]). However, our abstraction is novel
as it additionally tracks some control-flow information (specifically, the branches
taken) giving us higher precision with almost negligible computational cost. The
synthesis part of our approach is based on [11].

In [16] the authors rely on assertions for synchronization synthesis and include
iterative abstraction refinement in their framework. This is an interesting exten-
sion to pursue for our abstraction. In other related work, CFix [12] can detect
and fix concurrency bugs by identifying simple bug patterns in the code.

2 Illustrative Example

Fig. 1a contains our running example. Consider the case where the procedures
open dev() and close dev() are invoked in parallel, possibly multiple times
(modeled as a non-deterministic while loop). The functions power up() and
power down() represent calls to a device. For the non-preemptive scheduler,
the sequence of calls to the device will always be a repeating sequence of one
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call to power up(), followed by one call to power down(). Without additional
synchronization, however, there could be two calls to power up() in a row when
executing it with a preemptive scheduler. Such a sequence is not observationally
equivalent to any sequence that can be produced when executing with a non-
preemptive scheduler.

Fig. 1b contains the abstracted versions (we omit tracking of branch-
ing choices in the example) of the two procedures, open dev abs() and
close dev abs(). For instance, the instruction open = open + 1 is abstracted
to the two instructions labeled (C) and (D). The abstraction is coarse, but
still captures the problem. Consider two threads T1 and T2 running the
open dev abs() procedure. The following trace is possible under a preemp-
tive scheduler, but not under a non-preemptive scheduler: T1.A; T2.A; T1.B;
T1.C; T1.D; T2.B; T2.C; T2.D. Moreover, the trace cannot be transformed
by swapping independent events into any trace possible under a non-preemptive
scheduler. This is because instructions A and D are not independent. Hence,
the abstract trace exhibits the problem of two successive calls to power up()
when executing with a preemptive scheduler. Our synthesis procedure finds this
problem, and fixes it by introducing a lock in open dev() (see Sect. 5).

3 Preliminaries and Problem Statement

Syntax. We assume that programs are written in a concurrent while language
W. A concurrent program C in W is a finite collection of threads 〈T1, . . . , Tn〉
where each thread is a statement written in the syntax from Fig. 2. All W vari-
ables (program variables std var, lock variables lock var, and condition vari-
able cond var) range over integers and each statement is labeled with a unique
location identifier l. The only non-standard syntactic constructs in W relate to
the tags. Intuitively, each tag is a communication channel between the program
and an interface to an external system, and the input(tag) and output(tag, expr)
statements read from and write to the channel. We assume that the program
and the external system interface can only communicate through the channel.
In practice, we use the tags to model device registers. In our presentation, we
consider only a single external interface. Our implementation can handle com-
munication with several interfaces.

expr ::= std var | constant | operator(expr, expr, . . ., expr)

lstmt ::= loc: stmt | lstmt; lstmt

stmt ::= skip | std var := expr | std var := havoc()

| if (expr) lstmt else lstmt | while (expr) lstmt | std var := input(tag)

| output(tag, expr) | lock(lock var) | unlock(lock var)

| signal(cond var) | await(cond var) | reset(cond var) | yield

Fig. 2. Syntax of W
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Semantics. We begin by defining the semantics of a single thread in W, and then
extend the definition to concurrent non-preemptive and preemptive semantics.
Note that in our work, reads and writes are assumed to execute atomically and
further, we assume a sequentially consistent memory model.

Single-Thread Semantics. A program state is given by 〈V,P〉 where V is a valua-
tion of all program variables, and P is the statement that remains to be executed.
Let us fix a thread identifier tid .

The operational semantics of a thread executing in isolation is given in Fig. 3.
A single execution step 〈V,P〉 α−→ 〈V ′,P ′〉 changes the program state from 〈V,P〉
to 〈V ′,P ′〉 while optionally outputting an observable symbol α. The absence of
a symbol is denoted using ε. Most rules from Fig. 3 are standard—the special
rules are the Havoc, Input, and Output rules.

1. Havoc: Statement l : x := havoc assigns x a non-deterministic value (say k)
and outputs the observable (tid , havoc, k, x).

2. Input, Output: l : x := input(t) and l : output(t, e) read and write values
to the channel t, and output (tid , input, k, t) and (tid , output, k, t), where k is
the value read or written, respectively.

Intuitively, the observables record the sequence of non-deterministic guesses,
as well as the input/output interaction with the tagged channels. In the following,
e represents an expression and e[v/V[v]] evaluates an expression by replacing all
variables v with their values in V.

Fig. 3. Single thread semantics of W

Non-Preemptive Semantics. The non-preemptive semantics of W is presented in
the full version [18]. The non-preemptive semantics ensures that a single thread
from the program keeps executing as detailed above until one of the following
occurs: (a) the thread finishes execution, or it encounters (b) a yield statement,
or (c) a lock statement and the lock is taken, or (d) an await statement and the
condition variable is not set. In these cases, a context-switch is possible.
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Preemptive Semantics. The preemptive semantics of a program is obtained from
the non-preemptive semantics by relaxing the condition on context-switches, and
allowing context-switches at all program points (see full version [18]).

3.1 Problem Statement

A non-preemptive observation sequence of a program C is a sequence α0 . . . αk

if there exist program states Spre
0 , Spost

0 , . . . , Spre
k , Spost

k such that accord-
ing to the non-preemptive semantics of W, we have: (a) for each 0 ≤ i ≤ k,
〈Spre

i 〉 αi−→ 〈Spost
i 〉, (b) for each 0 ≤ i < k, 〈Spost

i 〉 ε−→∗〈Spre
i+1〉, and (c) for the ini-

tial state Sι and a final state (i.e., where all threads have finished execution) Sf ,
〈Sι〉 ε−→∗〈Spre

0 〉 and 〈Spost
k 〉 ε−→∗〈Sf 〉. Similarly, a preemptive observation sequence

of a program C is a sequence α0 . . . αk as above, with the non-preemptive seman-
tics replaced with preemptive semantics. We denote the sets of non-preemptive
and preemptive observation sequences of a program C by [[C]]NP and [[C]]P ,
respectively.

We say that observation sequences α0 . . . αk and β0 . . . βk are equivalent if:

– The subsequences of α0 . . . αk and β0 . . . βk containing only symbols of the
form (tid , Input, k, t) and (tid ,Output, k, t) are equal, and

– For each thread identifier tid , the subsequences of α0 . . . αk and β0 . . . βk con-
taining only symbols of the form (tid ,Havoc, k, x) are equal.

Intuitively, observable sequences are equivalent if they have the same interaction
with the interface, and the same non-deterministic choices in each thread. For
sets of observable sequences O1 and O2, we write O1 ⊆ O2 to denote that each
sequence in O1 has an equivalent sequence in O2. Given a concurrent program
C and a synthesized program C′ obtained by adding synchronization to C, the
program C′ is preemption-safe w.r.t. C if [[C′]]P ⊆ [[C]]NP .

We are now ready to state our synthesis problem. Given a concurrent program
C, the aim is to synthesize a program C′, by adding synchronization to C, such
that C′ is preemption-safe w.r.t. C.

3.2 Language Inclusion Modulo an Independence Relation

We reduce the problem of checking if a synthesized solution is preemption-safe
w.r.t. the original program to an automata-theoretic problem.

Abstract Semantics for W. We first define a single-thread abstract semantics
for W (Fig. 4), which tracks types of accesses (read or write) to each memory
location while abstracting away their values. Inputs/outputs to an external inter-
face are modeled as writes to a special memory location (dev). Even inputs are
modeled as writes because in our applications we cannot assume that reads from
the external interface are free of side-effects. Havocs become ordinary writes to
the variable they are assigned to. Every branch is taken non-deterministically
and tracked. The only constructs preserved are the lock and condition variables.
The abstract program state consists of the valuations of the lock and condition
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variables and the statement that remains to be executed. In the abstraction, an
observable is of the form (tid , {read,write, exit, loop, then, else}, v, l) and observes
the type of access (read/write) to variable v and records non-deterministic
branching choices (exit/loop/then/else). The latter are not associated with any
variable.

In Fig. 4, given expression e, the function Reads(tid , e, l) represents the
sequence (tid , read, v1, l) · . . . · (tid , read, vn, l) where v1, . . . , vn are the variables
in e, in the order they are read to evaluate e.

Fig. 4. Single thread abstract semantics of W

The abstract program semantics is the same as the concrete program seman-
tics where the single thread semantics is replaced by the abstract single thread
semantics. Locks and conditionals and operations on them are not abstracted.

As with the concrete semantics of W, we can define the non-preemptive and
preemptive observable sequences for abstract semantics. For a concurrent pro-
gram C, we denote the sets of abstract preemptive and non-preemptive observable
sequences by [[C]]Pabs and [[C]]NP

abs , respectively.
Abstract observation sequences α0 . . . αk and β0 . . . βk are equivalent if:

– For each thread tid , the subsequences of α0 . . . αk and β0 . . . βk containing only
symbols of the form (tid , a, v, l), with a ∈ {read,write, exit, loop, then, else} are
equal,

– For each variable v, the subsequences of α0 . . . αk and β0 . . . βk containing only
write symbols (of the form (tid ,write, v, l)) are equal, and

– For each variable v, the multisets of symbols of the form (tid , read, v, l) between
any two write symbols, as well as before the first write symbol and after the
last write symbol are identical.

We first show that the abstract semantics is sound w.r.t. preemption-safety (see
full version for the proof [18]).
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Theorem 1. Given concurrent program C and a synthesized program C′

obtained by adding synchronization to C, [[C′]]Pabs ⊆ [[C]]NP
abs ⇒ [[C′]]P ⊆ [[C]]NP .

Abstract Semantics to Automata. An NFA A is a tuple (Q,Σ,Δ,Qι, F )
where Σ is a finite alphabet, Q,Qι, F are finite sets of states, initial states and
final states, respectively and Δ is a set of transitions. A word σ0 . . . σk ∈ Σ∗ is
accepted by A if there exists a sequence of states q0 . . . qk+1 such that q0 ∈ Qι

and qk+1 ∈ F and ∀i : (qi, σi, qi+1) ∈ Δ. The set of all words accepted by A is
called the language of A and is denoted L(A).

Given a program C, we can construct automata A([[C]]NP
��∫ ) and A([[C]]P��∫ )

that accept exactly the observable sequences under the respective semantics.
We describe their construction informally. Each automaton state is a program
state of the abstract semantics and the alphabet is the set of abstract observable
symbols. There is a transition from one state to another on an observable symbol
(or an ε) iff the program can execute one step under the corresponding semantics
to reach the other state while outputting the observable symbol (on an ε).

Language Inclusion Modulo an Independence Relation. Let I be a non-
reflexive, symmetric binary relation over an alphabet Σ. We refer to I as the
independence relation and to elements of I as independent symbol pairs. We
define a symmetric binary relation ≈ over words in Σ∗: for all words σ, σ′ ∈ Σ∗

and (α, β) ∈ I, (σ · αβ · σ′, σ · βα · σ′) ∈≈. Let ≈t denote the reflexive transitive
closure of ≈.1 Given a language L over Σ, the closure of L w.r.t. I, denoted
CloI(L), is the set {σ ∈ Σ∗: ∃σ′ ∈ L with (σ, σ′) ∈ ≈t}. Thus, CloI(L) consists
of all words that can be obtained from some word in L by repeatedly commuting
adjacent independent symbol pairs from I.

Definition 1. (Language Inclusion Modulo an Independence Rela-
tion). Given NFAs A,B over a common alphabet Σ and an independence rela-
tion I over Σ, the language inclusion problem modulo I is: L(A) ⊆ CloI(L(B))?

We reduce preemption-safety under the abstract semantics to language
inclusion modulo an independence relation. The independence relation I
we use is defined on the set of abstract observable symbols as follows:
((tid , a, v, l), (tid ′, a′, v′, l′)) ∈ I iff tid �= tid ′, and one of the following holds:
(a) v �= v′ or (b) a �= write ∧ a′ �= write.

Proposition 1. Given concurrent programs C and C′, [[C′]]Pabs ⊆ [[C]]NP
abs iff

L(A([[C′]]P��∫ )) ⊆ CloI(L(A([[C]]NP
��∫ ))).

4 Checking Language Inclusion

We first focus on the problem of language inclusion modulo an independence rela-
tion (Definition 1). This question corresponds to preemption-safety (Theorem. 1,
Proposition 1) and its solution drives our synchronization synthesis (Sect. 5).

1 The equivalence classes of ≈t are Mazurkiewicz traces.
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Theorem 2. For NFAs A,B over alphabet Σ and an independence relation
I ⊆ Σ × Σ, L(A) ⊆ CloI(L(B)) is undecidable [2].

Fortunately, a bounded version of the problem is decidable. Recall the relation
≈ over Σ∗ from Sect. 3.2. We define a symmetric binary relation ≈i over Σ∗:
(σ, σ′) ∈≈i iff ∃(α, β) ∈ I: (σ, σ′) ∈≈, σ[i] = σ′[i+1] = α and σ[i+1] = σ′[i] = β.
Thus ≈i consists of all words that can be optained from each other by commuting
the symbols at positions i and i+1. We next define a symmetric binary relation
� over Σ∗: (σ, σ′) ∈� iff ∃σ1, . . . , σt: (σ, σ1) ∈≈i1 , . . . , (σt, σ

′) ∈≈it+1 and i1 <
. . . < it+1. The relation � intuitively consists of words obtained from each other
by making a single forward pass commuting multiple pairs of adjacent symbols.
Let �k denote the k-composition of � with itself. Given a language L over Σ, we
use Clok,I(L) to denote the set {σ ∈ Σ∗ : ∃σ′ ∈ L with (σ, σ′) ∈�k}. In other
words, Clok,I(L) consists of all words which can be generated from L using a
finite-state transducer that remembers at most k symbols of its input words in
its states.

Definition 2. (Bounded Language Inclusion Modulo an Independence
Relation). Given NFAs A,B over Σ, I ⊆ Σ × Σ and a constant k > 0, the
k-bounded language inclusion problem modulo I is: L(A) ⊆ Clok,I(L(B))?

Theorem 3. For NFAs A,B over Σ, I ⊆ Σ ×Σ and a constant k > 0, L(A) ⊆
Clok,I(L(B)) is decidable.

We present an algorithm to check k-bounded language inclusion modulo I, based
on the antichain algorithm for standard language inclusion [9].

Antichain Algorithm for Language Inclusion. Given a partial order (X,�),
an antichain over X is a set of elements of X that are incomparable w.r.t. �.
In order to check L(A) ⊆ CloI(L(B)) for NFAs A = (QA, Σ,ΔA, Qι,A, FA) and
B = (QB , Σ,ΔB , Qι,B , FB), the antichain algorithm proceeds by exploring A
and B in lockstep. While A is explored nondeterministically, B is determinized
on the fly for exploration. The algorithm maintains an antichain, consisting of
tuples of the form (sA, SB), where sA ∈ QA and SB ⊆ QB . The ordering relation
� is given by (sA, SB) � (s′

A, S′
B) iff sA = s′

A and SB ⊆ S′
B . The algorithm also

maintains a frontier set of tuples yet to be explored.
Given state sA ∈ QA and a symbol α ∈ Σ, let succα(sA) denote {s′

A ∈
QA : (sA, α, s′

A) ∈ ΔA}. Given set of states SB ⊆ QB , let succα(SB) denote
{s′

B ∈ QB : ∃sB ∈ SB : (sB , α, s′
B) ∈ ΔB}. Given tuple (sA, SB) in the frontier

set, let succα(sA, SB) denote {(s′
A, S′

B) : s′
A ∈ succα(sA), S′

B = succα(sB)}.
In each step, the antichain algorithm explores A and B by computing α-

successors of all tuples in its current frontier set for all possible symbols α ∈ Σ.
Whenever a tuple (sA, SB) is found with sA ∈ FA and SB ∩ FB = ∅, the algo-
rithm reports a counterexample to language inclusion. Otherwise, the algorithm
updates its frontier set and antichain to include the newly computed succes-
sors using the two rules enumerated below. Given a newly computed successor
tuple p′:
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– Rule 1: if there exists a tuple p in the antichain with p � p′, then p′ is not
added to the frontier set or antichain,

– Rule 2: else, if there exist tuples p1, . . . , pn in the antichain with p′ �
p1, . . . , pn, then p1, . . . , pn are removed from the antichain.

The algorithm terminates by either reporting a counterexample, or by declaring
success when the frontier becomes empty.

Antichain Algorithm for k-Bounded Language Inclusion modulo I. This
algorithm is essentially the same as the standard antichain algorithm, with the
automaton B above replaced by an automaton Bk,I accepting Clok,I(L(B)). The
set QBk,I

of states of Bk,I consists of triples (sB , η1, η2), where sB ∈ QB and
η1, η2 are k-length words over Σ. Intuitively, the words η1 and η2 store symbols
that are expected to be matched later along a run. The set of initial states of Bk,I

is {(sB , ∅, ∅) : sB ∈ IB}. The set of final states of Bk,I is {(sB , ∅, ∅) : sB ∈ FB}.
The transition relation ΔBk,I

is constructed by repeatedly applying the following
rules, in order, for each state (sB , η1, η2) and each symbol α. In what follows,
η[\i] denotes the word obtained from η by removing its ith symbol.

1. Pick new s′
B and β ∈ Σ such that (sB , β, s′

B) ∈ ΔB

2. (a) If ∀i: η1[i] �= α and α is independent of all symbols in η1,
η′
2 := η2 · α and η′

1 := η1, (b) else, if ∃i: η1[i] = α and α is independent of all
symbols in η1 prior to i, η′

1 := η1[\i] and η′
2 := η2 (c) else, go to 1

3. (a) If ∀i: η′
2[i] �= β and β is independent of all symbols in η′

2,
η′
1 :=η′

1 · β, (b) else, if ∃i: η′
2[i] = β and β is independent of all symbols in η′

2

prior to i, η′
2 := η′

2[\i] (c) else, go to 1
4. Add ((sB , η1, η2), α, (s′

B , η′
1, η

′
2)) to ΔBk,I

and go to 1.

Example 1. In Fig. 5, we have an NFA B with L(B) = {αβ, β}, I = {(α, β)}
and k = 1. The states of Bk,I are triples (q, η1, η2), where q ∈ QB and
η1, η2 ∈ {∅, α, β}. We explain the derivation of a couple of transitions of Bk,I .
The transition shown in bold from (q0, ∅, ∅) on symbol β is obtained by apply-
ing the following rules once: 1. Pick q1 since (q0, α, q1) ∈ ΔB . 2(a). η′

2 := β,
η′
1 := ∅. 3(a). η′

1 := α. 4. Add ((q0, ∅, ∅), β, (q1, α, β)) to ΔBk,I
. The tran-

sition shown in bold from (q1, α, β) on symbol α is obtained as follows: 1.
Pick q2 since (q1, β, q2) ∈ ΔB . 2(b). η′

1 := ∅, η′
2 := β. 3(b). η′

2 := ∅. 4. Add
((q1, α, β), β, (q2, ∅, ∅)) to ΔBk,I

. It can be seen that Bk,I accepts the language
{αβ, βα, β} = Clok,I(B).

Proposition 2. Given k > 0, NFA Bk,I described above accepts Clok,I(L(B)).

We develop a procedure to check language inclusion modulo I by iteratively
increasing the bound k (see the full version [18] for the complete algorithm).
The procedure is incremental: the check for k + 1-bounded language inclusion
modulo I only explores paths along which the bound k was exceeded in the
previous iteration.
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q0 start

q1

q2

B:

α

β

β

q0, start

q1, , q2, β, α q2, , q1, α, β

q2, β, α q2, , q2, , q2, α, β

α α β β

α β α β

Fig. 5. Example for illustrating construction of Bk,I for k = 1 and I = {(α, β)}.

5 Synchronization Synthesis

We now present our iterative synchronization synthesis procedure, which is based
on the procedure in [11]. The reader is referred to [11] for further details. The
synthesis procedure starts with the original program C and in each iteration
generates a candidate synthesized program C′. The candidate C′ is checked for
preemption-safety w.r.t. C under the abstract semantics, using our procedure
for bounded language inclusion modulo I. If C′ is found preemption-safe w.r.t.
C under the abstract semantics, the synthesis procedure outputs C′. Otherwise,
an abstract counterexample cex is obtained. The counterexample is analyzed to
infer additional synchronization to be added to C′ for generating a new synthe-
sized candidate.

The counterexample trace cex is a sequence of event identifiers:
tid0.l0; . . . ; tidn.ln, where each li is a location identifier. We first analyze the
neighborhood of cex, denoted nhood(cex), consisting of traces that are permu-
tations of the events in cex. Note that each trace corresponds to an abstract
observation sequence. Furthermore, note that preemption-safety requires the
abstract observation sequence of any trace in nhood(cex) to be equivalent to
that of some trace in nhood(cex) feasible under non-preemptive semantics. Let
bad traces refer to the traces in nhood(cex) that are feasible under preemptive
semantics and do not meet the preemption-safety requirement. The goal of our
counterexample analysis is to characterize all bad traces in nhood(cex) in order
to enable inference of synchronization fixes.

In order to succinctly represent subsets of nhood(cex), we use ordering con-
straints. Intuitively, ordering constraints are of the following forms: (a) atomic
constraints Φ = A < B where A and B are events from cex. The constraint
A < B represents the set of traces in nhood(cex) where event A is scheduled
before event B; (b) Boolean combinations of atomic constraints Φ1 ∧Φ2, Φ1 ∨Φ2

and ¬Φ1. We have that Φ1∧Φ2 and Φ1∨Φ2 respectively represent the intersection
and union of the set of traces represented by Φ1 and Φ2, and that ¬Φ1 represents
the complement (with respect to nhood(cex)) of the traces represented by Φ1.

Non-preemptive Neighborhood. First, we generate all traces in nhood(cex)
that are feasible under non-preemptive semantics. We represent a single trace
π using an ordering constraint Φπ that captures the ordering between non-
independent accesses to variables in π. We represent all traces in nhood(cex) that
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are feasible under non-preemptive semantics using the expression Φ =
∨

π Φπ.
The expression Φ acts as the correctness specification for traces in nhood(cex).

Example. Recall the counterexample trace from the running example in
Sect. 2: cex = T1.A; T2.A; T1.B; T1.C; T1.D; T2.B; T2.C; T2.D. There are two
trace in nhood(cex) that are feasible under non-preemptive semantics:
π1 = T1.A; T1.B; T1.C; T1.D; T2.A; T2.B; T2.C; T2.D and π2 = T2.A; T2.B; T2.C;
T2.D;T1.A;T1.B;T1.C;T1.D. We represent π1 as Φ(π1) = {T1.A, T1.C, T1.D} <
T2.D ∧ T1.D < {T2.A, T2.C, T2.D} ∧ T1.B < T2.B and π2 as Φ(π2) = T2.D <
{T1.A, T1.C, T1.D}∧{T2.A, T2.C, T2.D} < T1.D∧T2.B < T1.B. The correctness spec-
ification is Φ = Φ(π1) ∨ Φ(π2).

Counterexample Generalization. We next build a quantifier-free first order
formula Ψ over the event identifiers in cex such that any model of Ψ corresponds
to a bad trace in nhood(cex). We iteratively enumerate models π of Ψ , building
a constraint ρ = Φ(π) for each model π, and generalizing each ρ into ρg to
represent a larger set of bad traces.

Example. Our trace cex from Sect. 2 would be generalized to T2.A < T1.D∧T1.D <
T2.D. Any trace that fulfills this constraint is bad.

Inferring Fixes. From each generalized formula ρg described above, we infer
possible synchronization fixes to eliminate all bad traces satisfying ρg. The key
observation we exploit is that common concurrency bugs often show up in our
formulas as simple patterns of ordering constraints between events. For example,
the pattern tid1.l1 < tid2.l2 ∧ tid2.l

′
2 < tid1.l

′
1 indicates an atomicity violation

and can be rewritten into lock(tid1.[l1 : l′1], tid2.[l2 : l′2]). The complete list of
such rewrite rules is in the full version [18]. This list includes inference of locks
and reordering of notify statements. The set of patterns we use for synchroniza-
tion inference are not complete, i.e., there might be generalized formulae ρg that
are not matched by any pattern. In practice, we found our current set of patterns
to be adequate for most common concurrency bugs, including all bugs from the
benchmarks in this paper. Our technique and tool can be easily extended with
new patterns.

Example. The generalized constraint T2.A < T1.D ∧ T1.D < T2.D matches the
lock rule and yields lock(T2.[A : D], T1.[D : D]). Since the lock involves events in
the same function, the lock is merged into a single lock around instructions A and
D in open dev abs. This lock is not sufficient to make the program preemption-
safe. Another iteration of the synthesis procedure generates another counterex-
ample for analysis and synchronization inference.

Proposition 3. If our synthesis procedure generates a program C′, then C′ is
preemption-safe with respect to C.

Note that our procedure does not guarantee that the synthesized program C′

is deadlock-free. However, we avoid obvious deadlocks using heursitics such as
merging overlapping locks. Further, our tool supports detection of any additional
deadlocks introduced by synthesis, but relies on the user to fix them.
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6 Implementation and Evaluation

We implemented our synthesis procedure in Liss. Liss is comprised of 5000 lines
of C++ code and uses Clang/LLVM and Z3 as libraries. It is available as open-
source software along with benchmarks at https://github.com/thorstent/Liss.
The language inclusion algorithm is available separately as a library called Limi
(https://github.com/thorstent/Limi). Liss implements the synthesis method
presented in this paper with several optimizations. For example, we take advan-
tage of the fact that language inclusion violations can often be detected by
exploring only a small fraction of the input automata by constructing A([[C]]NP

��∫ )
and A([[C]]P��∫ ) on the fly.

Our prototype implementation has several limitations. First, Liss uses func-
tion inlining and therefore cannot handle recursive programs. Second, we do not
implement any form of alias analysis, which can lead to unsound abstractions.
For example, we abstract statements of the form “*x = 0” as writes to variable
x, while in reality other variables can be affected due to pointer aliasing. We
sidestep this issue by manually massaging input programs to eliminate aliasing.

Finally, Liss implements a simplistic lock insertion strategy. Inference rules
(see Sect. 5) produce locks expressed as sets of instructions that should be inside a
lock. Placing the actual lock and unlock instructions in the C code is challenging
because the instructions in the trace may span several basic blocks or even
functions. We follow a structural approach where we find the innermost common
parent block for the first and last instructions of the lock and place the lock and
unlock instruction there. This does not work if the code has gotos or returns
that could cause control to jump over the unlock statement. At the moment, we
simply report such situations to the user.

We evaluate our synthesis method against the following criteria: (1) Effec-
tiveness of synthesis from implicit specifications; (2) Efficiency of the proposed
synthesis procedure; (3) Precision of the proposed coarse abstraction scheme on
real-world programs.

Implicit vs Explicit Synthesis. In order to evaluate the effectiveness of syn-
thesis from implicit specifications, we apply Liss to the set of benchmarks used
in our previous ConRepair tool for assertion-based synthesis [5]. In addition,
we evaluate Liss and ConRepair on several new assertion-based benchmarks
(Table 1). The set includes microbenchmarks modeling typical concurrency bug
patterns in Linux drivers and the usb-serial macrobenchmark, which mod-
els a complete synchronization skeleton of the USB-to-serial adapter driver. We
preprocess these benchmarks by eliminating assertions used as explicit specifi-
cations for synthesis. In addition, we replace statements of the form assume(v)
with await(v), redeclaring all variables v used in such statements as condi-
tion variables. This is necessary as our program syntax does not include assume
statements.

We use Liss to synthesize a preemption-safe version of each benchmark. This
method is based on the assumption that the benchmark is correct under non-
preemptive scheduling and bugs can only arise due to preemptive scheduling.

https://github.com/thorstent/Liss
https://github.com/thorstent/Limi
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Table 1. Experiments

Name LOC Th It MB BF(s) Syn(s) Ver(s) CR(s)

ConRepair benchmarks [5]

ex1.c 18 2 1 1 < 1s < 1s < 1s < 1s

ex2.c 23 2 1 1 < 1s < 1s < 1s < 1s

ex3.c 37 2 1 1 < 1s < 1s < 1s < 1s

ex5.c 42 2 3 1 < 1s < 1s 2s < 1s

lc-rc.c 35 4 0 1 - - < 1s 9s

dv1394.c 37 2 1 1 < 1s < 1s < 1s 17s

em28xx.c 20 2 1 1 < 1s < 1s < 1s < 1s

f acm.c 80 3 1 1 < 1s < 1s < 1s 1871.99s

i915 irq.c 17 2 1 1 < 1s < 1s < 1s 2.6s

ipath.c 23 2 1 1 < 1s < 1s < 1s 12s

iwl3945.c 26 3 1 1 < 1s < 1s < 1s 5s

md.c 35 2 1 1 < 1s < 1s < 1s 1.5s

myri10ge.c 60 4 0 1 - - < 1s 1.5s

usb-serial.bug1.c 357 7 2 1 0.4s 3.1s 3.4s ∞b

usb-serial.bug2.c 355 7 1 3 0.7s 2.1s 12.9s 3563s

usb-serial.bug3.c 352 7 1 4 3.8s 1.3s 111.1s ∞b

usb-serial.bug4.c 351 7 1 4 93.9s 2.4s 123.1s ∞b

usb-serial.ca 357 7 0 4 - - 103.2s 1200s

CPMAC driver benchmark

cpmac.bug1.c 1275 5 1 1 1.3s 113.4s 21.9s -

cpmac.bug2.c 1275 5 1 1 3.3s 68.4s 27.8s -

cpmac.bug3.c 1270 5 1 1 5.4s 111.3s 8.7s -

cpmac.bug4.c 1276 5 2 1 2.4s 124.8s 31.5s -

cpmac.bug5.c 1275 5 1 1 2.8s 112.0s 58.0s -

cpmac.ca 1276 5 0 1 - - 17.4s -

Th=Threads, It=Iterations, MB=Max bound, BF=Bug finding, Syn=
Synthesis, Ver=Verification, Cr=ConRepair aa bug-free example
btimeout after 3 hours

We discovered two benchmarks (lc-rc.c and myri10ge.c) that violated this
assumption, i.e., they contained race conditions that manifested under non-
preemptive scheduling; Liss did not detect these race conditions. Liss was able
to detect and fix all other known races without relying on assertions. Further-
more, Liss detected a new race in the usb-serial family of benchmarks, which
was not detected by ConRepair due to a missing assertion. We compared the
output of Liss with manually placed synchronization (taken from real bug fixes)
and found that the two versions were similar in most of our examples.
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Performance and Precision. ConRepair uses CBMC for verification and
counterexample generation. Due to the coarse abstraction we use, both steps are
much cheaper with Liss. For example, verification of usb-serial.c, which was
the most complex in our set of benchmarks, took Liss 103 s, whereas it took
ConRepair 20 min [5].

The loss of precision due to abstraction may cause the inclusion check to
return a counterexample that is spurious in the concrete program, leading to
unnecessary synchronization being synthesized. On our existing benchmarks,
this only occurred once in the usb-serial driver, where abstracting away the
return value of a function led to an infeasible trace. We refined the abstraction
manually by introducing a condition variable to model the return value.

While this result is encouraging, synthetic benchmarks are not necessarily
representative of real-world performance. We therefore implemented another set
of benchmarks based on a complete Linux driver for the TI AR7 CPMAC Eth-
ernet controller. The benchmark was constructed as follows. We manually pre-
processed driver source code to eliminate pointer aliasing. We combined the
driver with a model of the OS API and the software interface of the device
written in C. We modeled most OS API functions as writes to a special mem-
ory location. Groups of unrelated functions were modeled using separate loca-
tions. Slightly more complex models were required for API functions that affect
thread synchronization. For example, the free irq function, which disables the
driver’s interrupt handler, blocks waiting for any outstanding interrupts to fin-
ish. Drivers can rely on this behavior to avoid races. We introduced a condition
variable to model this synchronization. Similarly, most device accesses were mod-
eled as writes to a special ioval variable. Thus, the only part of the device that
required a more accurate model was its interrupt enabling logic, which affects
the behavior of the driver’s interrupt handler thread.

Our original model consisted of eight threads. Liss ran out of memory on
this model, so we simplified it to five threads by eliminating parts of driver
functionality. Nevertheless, we believe that the resulting model represents the
most complex synchronization synthesis case study, based on real-world code,
reported in the literature.

The CPMAC driver used in this case study did not contain any known con-
currency bugs, so we artificially simulated five typical race conditions that com-
monly occur in drivers of this type [4]. Liss was able to detect and automatically
fix each of these defects (bottom part of Table 1). We only encountered two pro-
gram locations where manual abstraction refinement was necessary.

We conclude that (1) our coarse abstraction is highly precise in practice;
(2) manual effort involved in synchronization synthesis can be further reduced
via automatic abstraction refinement; (3) additional work is required to improve
the performance of our method to be able to handle real-world systems without
simplification. In particular, our analysis indicates that significant speed-up can
be obtained by incorporating a partial order reduction scheme into the language
inclusion algorithm.
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7 Conclusion

We believe our approach and the encouraging experimental results open several
directions for future research. Combining the abstraction refinement, verification
(checking language inclusion modulo an independence relation), and synthesis
(inserting synchronization) more tightly could bring improvements in efficiency.
An additional direction we plan on exploring is automated handling of deadlocks,
i.e., extending our technique to automatically synthesize deadlock-free programs.
Finally, we plan to further develop our prototype tool and apply it to other
domains of concurrent systems code.
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Abstract. We introduce the first program synthesis engine imple-
mented inside an SMT solver. We present an approach that extracts
solution functions from unsatisfiability proofs of the negated form of
synthesis conjectures. We also discuss novel counterexample-guided tech-
niques for quantifier instantiation that we use to make finding such proofs
practically feasible. A particularly important class of specifications are
single-invocation properties, for which we present a dedicated algorithm.
To support syntax restrictions on generated solutions, our approach can
transform a solution found without restrictions into the desired syntactic
form. As an alternative, we show how to use evaluation function axioms
to embed syntactic restrictions into constraints over algebraic datatypes,
and then use an algebraic datatype decision procedure to drive synthe-
sis. Our experimental evaluation on syntax-guided synthesis benchmarks
shows that our implementation in the CVC4 SMT solver is competitive
with state-of-the-art tools for synthesis.

1 Introduction

The synthesis of functions that meet a given specification is a long-standing
fundamental goal that has received great attention recently. This functionality
directly applies to the synthesis of functional programs [17,18] but also trans-
lates to imperative programs through techniques that include bounding input
space, verification condition generation, and invariant discovery [28–30]. Func-
tion synthesis is also an important subtask in the synthesis of protocols and reac-
tive systems, especially when these systems are infinite-state [3,27]. The SyGuS
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format and competition [1,2,22] inspired by the success of the SMT-LIB and
SMT-COMP efforts [5], has significantly improved and simplified the process of
rigorously comparing different solvers on synthesis problems.

Connection between synthesis and theorem proving was established already
in early work on the subject [12,20]. It is notable that early research [20] found
that the capabilities of theorem provers were the main bottleneck for synthesis.
Taking lessons from automated software verification, recent work on synthesis
has made use of advances in theorem proving, particularly in SAT and SMT
solvers. However, that work avoids formulating the overall synthesis task as a
theorem proving problem directly. Instead, existing work typically builds cus-
tom loops outside of an SMT or SAT solver, often using numerous variants of
counterexample-guided synthesis. A typical role of the SMT solver has been to
validate candidate solutions and provide counterexamples that guide subsequent
search, although approaches such as symbolic term exploration [15] also use an
SMT solver to explore a representation of the space of solutions. In existing
approaches, SMT solvers thus receive a large number of separate queries, with
limited communication between these different steps.

Contributions. In this paper, we revisit the formulation of the overall synthesis
task as a theorem proving problem. We observe that SMT solvers already have
some of the key functionality for synthesis; we show how to improve existing
algorithms and introduce new ones to make SMT-based synthesis competitive.
Specifically, we do the following.

– We show how to formulate an important class of synthesis problems as the
problem of disproving universally quantified formulas, and how to synthesize
functions automatically from selected instances of these formulas.

– We present counterexample-guided techniques for quantifier instantiation,
which are crucial to obtain competitive performance on synthesis tasks.

– We discuss techniques to simplify the synthesized functions, to help ensure
that they are small and adhere to specified syntactic requirements.

– We show how to encode syntactic restrictions using theories of algebraic
datatypes and axiomatizable evaluation functions.

– We show that for an important class of single-invocation properties, the syn-
thesis of functions from relations, the implementation of our approach in
CVC4 significantly outperforms leading tools from the SyGuS competition.

Preliminaries. Since synthesis involves finding (and so proving the existence)
of functions, we use notions from many-sorted second-order logic to define the
general problem. We fix a set S of sort symbols and an (infix) equality predicate
≈ of type σ × σ for each σ ∈ S. For every non-empty sort sequence σ ∈ S+

with σ = σ1 · · · σnσ, we fix an infinite set Xσ of variables xσ1···σnσ of type
σ1 × · · · × σn → σ. For each sort σ we identity the type () → σ with σ and
call it a first-order type. We assume the sets Xσ are pairwise disjoint and let
X be their union. A signature Σ consists of a set Σs ⊆ S of sort symbols
and a set Σf of function symbols fσ1···σnσ of type σ1 × · · · × σn → σ, where
n ≥ 0 and σ1, . . . , σn, σ ∈ Σs. We drop the sort superscript from variables or
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function symbols when it is clear from context or unimportant. We assume that
signatures always include a Boolean sort Bool and constants � and ⊥ of type Bool
(respectively, for true and false). Given a many-sorted signature Σ together with
quantifiers and lambda abstraction, the notion of well-sorted (Σ-)term, atom,
literal, clause, and formula with variables in X are defined as usual in second-
order logic. All atoms have the form s ≈ t. Having ≈ as the only predicate
symbol causes no loss of generality since we can model other predicate symbols
as function symbols with return sort Bool. We will, however, write just t in place
of the atom t ≈ �, to simplify the notation. A Σ-term/formula is ground if it has
no variables, it is first-order if it has only first-order variables, that is, variables
of first-order type. When x = (x1, . . . , xn) is a tuple of variables and Q is either
∀ or ∃, we write Qx ϕ as an abbreviation of Qx1 · · · Qxn ϕ. If e is a Σ-term or
formula and x = (x1, . . . , xn) has no repeated variables, we write e[x] to denote
that all of e’s free variables are from x; if t = (t1, . . . , tn) is a term tuple, we write
e[t] for the term or formula obtained from e by simultaneously replacing, for all
i = 1, . . . , n, every occurrence of xi in e by ti. A Σ-interpretation I maps: each
σ ∈ Σs to a non-empty set σI , the domain of σ in I, with BoolI = {�,⊥}; each
uσ1···σnσ ∈ X∪Σf to a total function uI : σI

1 ×· · ·×σI
n → σI when n > 0 and to

an element of σI when n = 0. The interpretation I induces as usual a mapping
from terms t of sort σ to elements tI of σI . If x1, . . . , xn are variables and
v1, . . . , vn are well-typed values for them, we denote by I[x1 �→ v1, . . . , xn �→ vn]
the Σ-interpretation that maps each xi to vi and is otherwise identical to I.
A satisfiability relation between Σ-interpretations and Σ-formulas is defined
inductively as usual.

A theory is a pair T = (Σ, I) where Σ is a signature and I is a non-empty class
of Σ-interpretations, the models of T , that is closed under variable reassignment
(i.e., every Σ-interpretation that differs from one in I only in how it interprets
the variables is also in I) and isomorphism. A Σ-formula ϕ[x] is T -satisfiable
(resp., T -unsatisfiable) if it is satisfied by some (resp., no) interpretation in I.
A satisfying interpretation for ϕ models (or is a model of) ϕ. A formula ϕ is
T -valid, written |=T ϕ, if every model of T is a model of ϕ. Given a fragment L of
the language of Σ-formulas, a Σ-theory T is satisfaction complete with respect
to L if every T -satisfiable formula of L is T -valid. In this paper we will consider
only theories that are satisfaction complete wrt the formulas we are interested in.
Most theories used in SMT (in particular, all theories of a specific structure such
various theories of the integers, reals, strings, algebraic datatypes, bit vectors,
and so on) are satisfaction complete with respect to the class of closed first-
order Σ-formulas. Other theories, such as the theory of arrays, are satisfaction
complete only with respect to considerably more restricted classes of formulas.

2 Synthesis Inside an SMT Solver

We are interested in synthesizing computable functions automatically from for-
mal logical specifications stating properties of these functions. As we show later,
under the right conditions, we can formulate a version of the synthesis problem in
first-order logic alone, which allows us to tackle the problem using SMT solvers.
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We consider the synthesis problem in the context of some theory T of sig-
nature Σ that allows us to provide the function’s specification as a Σ-formula.
Specifically, we consider synthesis conjectures expressed as (well-sorted) formulas
of the form

∃fσ1···σnσ ∀xσ1
1 · · · ∀xσn

n P [f, x1, . . . , xn] (1)

or ∃f ∀x P [f,x], for short, where the second-order variable f represents the
function to be synthesized and P is a Σ-formula encoding properties that f
must satisfy for all possible values of the input tuple x = (x1, . . . , xn). In this
setting, finding a witness for this satisfiability problem amounts to finding a
function of type σ1 × · · · × σn → σ in some model of T that satisfies ∀x P [f,x].
Since we are interested in automatic synthesis, we the restrict ourselves here to
methods that search over a subspace S of solutions representable syntactically
as Σ-terms. We will say then that a synthesis conjecture is solvable if it has a
syntactic solution in S.

In this paper we present two approaches that work with classes L of syn-
thesis conjectures and Σ-theories T that are satisfaction complete wrt L. In
both approaches, we solve a synthesis conjecture ∃f ∀x P [f,x] by relying on
quantifier-instantiation techniques to produce a first-order Σ-term t[x] of sort
σ such that ∀x P [t,x] is T -satisfiable. When this t is found, the synthesized
function is denoted by λx. t .

In principle, to determine the satisfiability of ∃f ∀x P [f,x] an SMT solver
supporting the theory T can consider the satisfiability of the (open) formula
∀x P [f,x] by treating f as an uninterpreted function symbol. This sort of Skolem-
ization is not usually a problem for SMT solvers as many of them can process
formulas with uninterpreted symbols. The real challenge is the universal quan-
tification over x because it requires the solver to construct internally (a finite
representation of) an interpretation of f that is guaranteed to satisfy P [f,x] for
every possible value of x [11,24].

More traditional SMT solver designs to handle universally quantified formu-
las have focused on instantiation-based methods to show unsatisfiability. They
generate ground instances of those formulas until a refutation is found at the
ground level [10]. While these techniques are incomplete in general, they have
been shown to be quite effective in practice [9,25]. For this reason, we advo-
cate approaches to synthesis geared toward establishing the unsatisfiability of
the negation of the synthesis conjecture:

∀f ∃x ¬P [f,x] (2)

Thanks to our restriction to satisfaction complete theories, (2) is T -unsatisfiable
exactly when the original synthesis conjecture (1) is T -satisfiable.1 Moreover, as

1 Other approaches in the verification and synthesis literature also rely implicitly, and
in some cases unwittingly, on this restriction or stronger ones. We make satisfaction
completeness explicit here as a sufficient condition for reducing satisfiability problems
to unsatisfiability ones.
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we explain in this paper, a syntactic solution λx. t for (1) can be constructed
from a refutation of (2), as opposed to being extracted from the valuation of f
in a model of ∀x P [f,x].

Two Synthesis Methods. Proving (2) unsatisfiable poses its own challenge
to current SMT solvers, namely, dealing with the second-order universal quan-
tification of f . To our knowledge, no SMT solvers so far had direct support
for higher-order quantification. In the following, however, we describe two spe-
cialized methods to refute negated synthesis conjectures like (2) that build on
existing capabilities of these solvers.

The first method applies to a restricted, but fairly common, case of syn-
thesis problems ∃f ∀x P [f,x] where every occurrence of f in P is in terms of
the form f(x). In this case, we can express the problem in the first-order form
∀x.∃y.Q[x, y] and then tackle its negation using appropriate quantifier instanti-
ation techniques.

The second method follows the syntax-guided synthesis paradigm [1,2] where
the synthesis conjecture is accompanied by an explicit syntactic restriction on
the space of possible solutions. Our syntax-guided synthesis method is based on
encoding the syntax of terms as first-order values. We use a deep embedding into
an extension of the background theory T with a theory of algebraic data types,
encoding the restrictions of a syntax-guided synthesis problem.

For the rest of the paper, we fix a Σ-theory T and a class P of quantifier-free
Σ-formulas P [f,x] such that T is satisfaction complete with respect to the class
of synthesis conjectures L := {∃f ∀x P [f,x] | P ∈ P}.

3 Refutation-Based Synthesis

When axiomatizing properties of a desired function f of type σ1 ×· · ·×σn → σ,
a particularly well-behaved class are single-invocation properties (see, e.g., [13]).
These properties include, in particular, standard function contracts, so they can
be used to synthesize a function implementation given its postcondition as a
relation between the arguments and the result of the function. This is also the
form of the specification for synthesis problems considered in complete functional
synthesis [16–18]. Note that, in our case, we aim to prove that the output exists
for all inputs, as opposed to, more generally, computing the set of inputs for
which the output exists.

A single-invocation property is any formula of the form Q[x, f(x)] obtained
as an instance of a quantifier-free formula Q[x, y] not containing f . Note that
the only occurrences of f in Q[x, f(x)] are in subterms of the form f(x) with the
same tuple x of pairwise distinct variables.2 The conjecture ∃f ∀x Q[x, f(x)] is
logically equivalent to the first-order formula

∀x ∃y Q[x, y] (3)

2 An example of a property that is not single-invocation is ∀x1 x2 f(x1, x2) ≈ f(x2, x1).
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By the semantics of ∀ and ∃, finding a model I for it amounts (under the
axioms of choice) to finding a function h : σI

1 × · · · × σI
n → σI such that for all

s ∈ σI
1 × · · · × σI

n , the interpretation I[x �→ s, y �→ h(s)] satisfies Q[x, y]. This
section considers the case when P consists of single-invocation properties and
describes a general approach for determining the satisfiability of formulas like (3)
while computing a syntactic representation of a function like h in the process.
For the latter, it will be convenient to assume that the language of functions
contains an if-then-else operator ite of type Bool × σ × σ → σ for each sort σ,
with the usual semantics.

If (3) belongs to a fragment that admits quantifier elimination in T , such
as the linear fragment of integer arithmetic, determining its satisfiability can be
achieved using an efficient method for quantifier elimination [7,21]. Such cases
have been examined in the context of software synthesis [17]. Here we propose
instead an alternative instantiation-based approach aimed at establishing the
unsatisfiability of the negated form of (3):

∃x ∀y ¬Q[x, y] (4)

or, equivalently, of a Skolemized version ∀y ¬Q[k, y] of (4) for some tuple k of
fresh uninterpreted constants of the right sort. Finding a T -unsatisfiable finite
set Γ of ground instances of ¬Q[k, y], which is what an SMT solver would do to
prove the unsatisfiability of (4), suffices to solve the original synthesis problem.
The reason is that, then, a solution for f can be constructed directly from Γ , as
indicated by the following result.

Proposition 1. Suppose some set Γ = {¬Q[k, t1[k]], . . . ,¬Q[k, tp[k]]} where
t1[x], . . ., tp[x] are Σ-terms of sort σ is T -unsatisfiable. One solution for
∃f ∀x Q[x, f(x)] is λx. ite(Q[x, tp], tp, ( · · · ite(Q[x, t2], t2, t1) · · · )).

Example 1. Let T be the theory of linear integer arithmetic with the usual sig-
nature and integer sort Int. Let x = (x1, x2). Now consider the property

P [f,x]:=f(x) ≥ x1 ∧ f(x) ≥ x2 ∧ (f(x) ≈ x1 ∨ f(x) ≈ x2) (5)

with f of type Int × Int → Int and x1, x2 of type Int. The synthesis problem
∃f ∀x P [f,x] is solved exactly by the function that returns the maximum of its
two inputs. Since P is a single-invocation property, we can solve that problem
by proving the T -unsatisfiability of the conjecture ∃x ∀y ¬Q[x, y] where

Q[x, y] := y ≥ x1 ∧ y ≥ x2 ∧ (y ≈ x1 ∨ y ≈ x2) (6)

After Skolemization the conjecture becomes ∀y ¬Q[a, y] for fresh constants
a = (a1, a2). When asked to determine the satisfiability of that conjecture an
SMT solver may, for instance, instantiate it with a1 and then a2 for y, produc-
ing the T -unsatisfiable set {¬Q[a, a1],¬Q[a, a2]}. By Proposition 1, one solution
for ∀x P [f,x] is f = λx. ite(Q[x, x2], x2, x1), which simplifies to λx. ite(x2 ≥
x1, x2, x1), representing the desired maximum function. �
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1. Γ := {G ⇒ Q[k, e]} where k consists of distinct fresh constants
2. Repeat

If there is a model I of T satisfying Γ and G
then let Γ := Γ ∪ {¬Q[k, t[k]]} for some Σ-term t[x] such that t[k]I = eI ;
otherwise, return “no solution found”

until Γ contains a T -unsatisfiable set {¬Q[k, t1[k]], . . . , ¬Q[k, tp[k]]}
3. Return λx. ite(Q[x, tp[x]], tp[x], ( · · · ite(Q[x, t2[x]], t2[x], t1[x]) · · · )) for f

Fig. 1. A refutation-based synthesis procedure for single-invocation property
∃f ∀xQ[x, f(x)].

Synthesis by Counterexample-Guided Quantifier Instantiation. Given
Proposition 1, the main question is how to get the SMT solver to generate the
necessary ground instances from ∀y ¬Q[k, y]. Typically, SMT solvers that reason
about quantified formulas use heuristic quantifier instantiation techniques based
on E-matching [9], which instantiates universal quantifiers with terms occurring
in some current set of ground terms built incrementally from the input formula.
Using E-matching-based heuristic instantiation alone is unlikely to be effective in
synthesis, where required terms need to be synthesized based on the semantics of
the input specification. This is confirmed by our preliminary experiments, even
for simple conjectures. We have developed instead a specialized new technique,
which we refer to as counterexample-guided quantifier instantiation, that allows
the SMT solver to quickly converge in many cases to the instantiations that
refute the negated synthesis conjecture (4).

The new technique is similar to a popular scheme for synthesis known as
counterexample-guided inductive synthesis, implemented in various synthesis
approaches (e.g., [14,29]), but with the major difference of being built-in directly
into the SMT solver. The technique is illustrated by the procedure in Fig. 1,
which grows a set Γ of ground instances of ¬Q[k, y] starting with the formula
G ⇒ Q[k, e] where G and e are fresh constants of sort Bool and σ, respectively.
Intuitively, e represents a current, partial solution for the original synthesis con-
jecture ∃f ∀x Q[x, f(x)], while G represents the possibility that the conjecture
has a (syntactic) solution in the first place.

The procedure, which may not terminate in general, terminates either when
Γ becomes unsatisfiable, in which case it has found a solution, or when Γ is
still satisfiable but all of its models falsify G, in which case the search for a
solution was inconclusive. The procedure is not solution-complete, that is, it is
not guaranteed to return a solution whenever there is one. However, thanks to
Proposition 1, it is solution-sound: every λ-term it returns is indeed a solution
of the original synthesis problem.

Finding Instantiations. The choice of the term t in Step 2 of the procedure
is intentionally left under Specified because it can be done in a number of ways.
Having a good heuristic for such instantiations is, however, critical to the effec-
tiveness of the procedure in practice. In a Σ-theory T , like integer arithmetic,
with a fixed interpretation for symbols in Σ and a distinguished set of ground
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Σ-terms denoting the elements of a sort, a simple, if naive, choice for t in Fig. 1
is the distinguished term denoting the element eI . For instance, if σ is Int in
integer arithmetic, t could be a concrete integer constant (0,±1,±2, . . .). This
choice amounts to testing whether points in the codomain of the sought function
f satisfy the original specification P .

More sophisticated choices for t, in particular where t contains the variables
x, may increase the generalization power of this procedure and hence its ability
to find a solution. For instance, our present implementation in the cvc4 solver
relies on the fact that the model I in Step 2 is constructed from a set of equiva-
lence classes over terms computed by the solver during its search. The procedure
selects the term t among those in the equivalence class of e, other than e itself.
For instance, consider formula (6) from the previous example that encodes the
single-invocation form of the specification for the max function. The DPLL(T)
architecture, on which cvc4 is based, finds a model for Q[a, e] with a = (a1, a2)
only if it can first find a subset M of that formula’s literals that collectively entail
Q[a, e] at the propositional level. Due to the last conjunct of (6), M must include
either e ≈ a1 or e ≈ a2. Hence, whenever a model can be constructed for Q[a, e],
the equivalence class containing e must contain either a1 or a2. Thus using the
above selection heuristic, the procedure in Fig. 1 will, after at most two itera-
tions of the loop in Step 2, add the instances ¬Q[a, a1] and ¬Q[a, a2] to Γ . As
noted in Example 1, these two instances are jointly T -unsatisfiable. We expect
that more sophisticated instantiation techniques can be incorporated. In par-
ticular, both quantifier elimination techniques [7,21] and approaches currently
used to infer invariants from templates [8,19] are likely to be beneficial for cer-
tain classes of synthesis problems. The advantage of developing these techniques
within an SMT solver is that they directly benefit both synthesis and verifica-
tion in the presence of quantified conjectures, thus fostering cross-fertilization
between different fields.

4 Refutation-Based Syntax-Guided Synthesis

In syntax-guided synthesis, the functional specification is strengthened by an
accompanying set of syntactic restrictions on the form of the expected solutions.
In a recent line of work [1,2,22] these restrictions are expressed by a grammar R
(augmented with a kind of let binder) defining the language of solution terms,
or programs, for the synthesis problem. In this section, we present a variant of
the approach in the previous section that incorporates the syntactic restriction
directly into the SMT solver via a deep embedding of the syntactic restriction
R into the solver’s logic. The main idea is to represent R as a set of algebraic
datatypes and build into the solver an interpretation of these datatypes in terms
of the original theory T .

While our approach is parametric in the background theory T and the restric-
tion R, it is best explained here with a concrete example.
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∀x y ev(x1, x, y) ≈ x ∀s1 s2 x y ev(leq(s1, s2), x, y) ≈ (ev(s1, x, y) ≤ ev(s2, x, y))

∀x y ev(x2, x, y) ≈ y ∀s1 s2 x y ev(eq(s1, s2), x, y) ≈ (ev(s1, x, y) ≈ ev(s2, x, y))

∀x y ev(zero, x, y) ≈ 0 ∀c1 c2 x y ev(and(c1, c2), x, y) ≈ (ev(c1, x, y) ∧ ev(c2, x, y))

∀x y ev(one, x, y) ≈ 1 ∀c x y ev(not(c), x, y) ≈ ¬ev(c, x, y)

∀s1 s2 x y ev(plus(s1, s2), x, y) ≈ ev(s1, x, y) + ev(s2, x, y)

∀s1 s2 x y ev(minus(s1, s2), x, y) ≈ ev(s1, x, y) − ev(s2, x, y)

∀c s1 s2 x y ev(if(c, s1, s2), x, y) ≈ ite(ev(c, x, y), ev(s1, x, y), ev(s2, x, y))

Fig. 2. Axiomatization of the evaluation operators in grammar R from Example 2.

Example 2. Consider again the synthesis conjecture (6) from Example 1 but now
with a syntactic restriction R for the solution space expressed by these algebraic
datatypes:

S := x1 | x2 | zero | one | plus(S,S) | minus(S,S) | if(C,S,S)
C := leq(S,S) | eq(S,S) | and(C,C) | not(C)

The datatypes are meant to encode a term signature that includes nullary con-
structors for the variables x1 and x2 of (6), and constructors for the symbols of
the arithmetic theory T . Terms of sort S (resp., C) refer to theory terms of sort
Int (resp., Bool).

Instead of the theory of linear integer arithmetic, we now consider its com-
bination TD with the theory of the datatypes above extended with two evalua-
tion operators, that is, two function symbols evS×Int×Int→Int and evC×Int×Int→Bool

respectively embedding S in Int and C in Bool. We define TD so that all of its
models satisfy the formulas in Fig. 2. The evaluation operators effectively define
an interpreter for programs (i.e., terms of sort S and C) with input parameters
x1 and x2.

It is possible to instrument an SMT solver that supports user-defined
datatypes, quantifiers and linear arithmetic so that it constructs automatically
from the syntactic restriction R both the datatypes S and C and the two eval-
uation operators. Reasoning about S and C is done by the built-in subsolver
for datatypes. Reasoning about the evaluation operators is achieved by reduc-
ing ground terms of the form ev(d, t1, t2) to smaller terms by means of selected
instantiations of the axioms from Fig. 2, with a number of instances proportional
to the size of term d. It is also possible to show that TD is satisfaction complete
with respect to the class

L2 := {∃g ∀z P [λz. ev(g,z), x] | P [f,x] ∈ P}

where instead of terms of the form f(t1, t2) in P we have, modulo β-reductions,
terms of the form ev(g, t1, t2).3 For instance, the formula P [f,x] in Eq. (5) from
Example 1 can be restated in TD as the formula below where g is a variable of
type S:
3 We stress again, that both the instrumentation of the solver and the satisfaction

completeness argument for the extended theory are generic with respect to the syn-
tactic restriction on the synthesis problem and the original satisfaction complete
theory T .
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Pev[g,x] := ev(g,x) ≥ x1 ∧ ev(g,x) ≥ x2 ∧ (ev(g,x) ≈ x1 ∨ ev(g,x) ≈ x2)

In contrast to P [f,x], the new formula Pev[g,x] is first-order, with the role of
the second-order variable f now played by the first-order variable g.

When asked for a solution for (5) under the restriction R, the instru-
mented SMT solver will try to determine instead the TD-unsatisfiability
of ∀g ∃x ¬Pev[g,x]. Instantiating g in the latter formula with s :=
if(leq(x1, x2), x2, x1), say, produces a formula that the solver can prove to be
TD-unsatisfiable. This suffices to show that the program ite(x1 ≤ x2, x2, x1), the
analogue of s in the language of T , is a solution of the synthesis conjecture (5)
under the syntactic restriction R. �

1. Γ := ∅
2. Repeat

k be a tuple of distinct fresh constants.
If there is a model I of TD satisfying Γ and G, then Γ := Γ ∪ {¬Pev[e

I , k]} ;
otherwise, return “no solution found”

Let

If there is a model J of TD satisfying Γ , then Γ := Γ ∪ {G ⇒ Pev[e, k
J ]} ;

otherwise, return eI as a solution

(a)

(b)

Fig. 3. A refutation-based syntax-guided synthesis procedure for ∃f ∀xPev[f,x].

To prove the unsatisfiability of formulas like ∀g ∃x ¬Pev[g,x] in the exam-
ple above we use a procedure similar to that in Sect. 3, but specialized to the
extended theory TD. The procedure is described in Fig. 3. Like the one in Fig. 1,
it uses an uninterpreted constant e representing a solution candidate, and a
Boolean variable G representing the existence of a solution. The main difference,
of course, is that now e ranges over the datatype representing the restricted
solution space. In any model of TD, a term of datatype sort evaluates to a term
built exclusively with constructor symbols. This is why the procedure returns
in Step 2b the value of e in the model I found in Step 2a. As we showed in
the previous example, a program that solves the original problem can then be
reconstructed from the returned datatype term.

Implementation. We implemented the procedure in the cvc4 solver. Figure 4
shows a run of that implementation over the conjecture from Example 2. In this
run, note that each model found for e satisfies all values of counterexamples found
for previous candidates. After the sixth iteration of Step 2a, the procedure finds
the candidate if(leq(x1, x2), x2, x1), for which no counterexample exists, indicating
that the procedure has found a solution for the synthesis conjecture. Currently,
this problem can be solved in about 0.5 s in the latest development version of
cvc4.

To make the procedure practical it is necessary to look for small solutions to
synthesis conjectures. A simple way to limit the size of the candidate solutions is
to consider smaller programs before larger ones. Adapting techniques for finding
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alumroFdeddAledoMpetS
2a {e x1, . . .} ¬Pev[x1, a1, b1]
2b {a1 0, b1 1, . . .} G ⇒ Pev[e, 0, 1]
2a {e x2, . . .} ¬Pev[x2, a2, b2]
2b {a2 1, b2 0, . . .} G ⇒ Pev[e, 1, 0]
2a {e one, . . .} ¬Pev[one, a3, b3]
2b {a3 2, b3 0, . . .} G ⇒ Pev[e, 2, 0]
2a {e plus(x1, x2), . . .} ¬Pev[plus(x1, x2), a4, b4]
2b {a4 1, b4 1, . . .} G ⇒ Pev[e, 1, 1]
2a {e if(leq(x1, one), one, x1), . . .} ¬Pev[if(leq(x1, one), one, x1), a5, b5]
2b {a5 1, b5 2, . . .} G ⇒ Pev[e, 1, 2]
2a {e if(leq(x1, x2), x2, x1), . . .} ¬Pev[if(leq(x1, x2), x2, x1), a6, b6]
2b none

For i = 1, . . . , 6, ai and bi are fresh constants of type Int.

Fig. 4. A run of the procedure from Fig. 3.

finite models of minimal size [26], we use a strategy that starting, from n = 0,
searches for programs of size n + 1 only after its has exhausted the search for
programs of size n. In solvers based on the DPLL(T ) architecture, like cvc4,
this can be accomplished by introducing a splitting lemma of the form (size(e) ≤
0 ∨ ¬size(e) ≤ 0) and asserting size(e) ≤ 0 as the first decision literal, where size
is a function symbol of type σ → Int for every datatype sort σ and stands for the
function that maps each datatype value to its term size (i.e., the number of non-
nullary constructor applications in the term). We do the same for size(e) ≤ 1
if and when ¬size(e) ≤ 0 becomes asserted. We extended the procedure for
algebraic datatypes in cvc4 [6] to handle constraints involving size. The extended
procedure remains a decision procedure for input problems with a concrete upper
bound on terms of the form size(u), for each variable or uninterpreted constant
u of datatype sort in the problem. This is enough for our purposes since the only
term u like that in our synthesis procedure is e.

Proposition 2. With the search strategy above, the procedure in Fig. 3 has the
following properties:

1. (Solution Soundness) Every term it returns can be mapped to a solution of
the original synthesis conjecture ∃f ∀x P [f,x] under the restriction R.

2. (Refutation Soundness) If it answers “no solution found”, the original con-
jecture has no solutions under the restriction R.

3. (Solution Completeness) If the original conjecture has a solution under R,
the procedure will find one.

Note that by this proposition the procedure can diverge only if the input
synthesis conjecture has no solution. We refer the reader to a longer version of
this paper for a proof of Proposition 2 [23]. For a general idea, the proof of solu-
tion soundness is based on the observation that when the procedure terminates
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at Step 2b, Γ has an unsatisfiable core with just one instance of ¬P [g,x]. The
procedure is refutation sound since when no model of Γ in Step 2a satisfies G, we
have that even an arbitrary e cannot satisfy the current set of instances added
to Γ in Step 2b. Finally, the procedure is solution complete first of all because
Step 2a and 2b are effective thanks to the decidability of the background theory
TD. Each execution of Step 2a is guaranteed to produce a new candidate since
TD is also satisfaction complete. Thus, in the worst case, the procedure amounts
to an enumeration of all possible programs until a solution is found.

5 Single Invocation Techniques for Syntax-Guided
Problems

In this section, we considered the combined case of single-invocation synthesis
conjectures with syntactic restrictions. Given a set R of syntactic restrictions
expressed by a datatype S for programs and a datatype C for Boolean expres-
sions, consider the case where (i) S contains the constructor if : C × S × S → S
(with the expected meaning) and (ii) the function to be synthesized is specified
by a single-invocation property that can be expressed as a term of sort C. This
is the case for the conjecture from Example 2 where the property Pev[g,x] can
be rephrased as:

PC[g,x] := ev(and(leq(x1, g), and(leq(x2, g), or(eq(g, x1), eq(g, x2)))),x) (7)

where again g has type S, x = (x1, x2), and x1 and x2 have type Int. The
procedure in Fig. 1 can be readily modified to apply to this formula, with PC[g, k]
and g taking the role respectively of Q[k, y] and y in that figure, since it generates
solutions meeting our syntactic requirements. Running this modified procedure
instead the one in Fig. 3 has the advantage that only the outputs of a solution
need to be synthesized, not conditions in ite-terms. However, in our experimental
evaluation found that the overhead of using an embedding into datatypes for
syntax-guided problems is significant with respect to the performance of the
solver on problems with no syntactic restrictions. For this reason, we advocate an
approach for single-invocation synthesis conjectures with syntactic restrictions
that runs the procedure from Fig. 1 as is, ignoring the syntactic restrictions
R, and subsequently reconstructs from its returned solution one satisfying the
restrictions. For that it is useful to assume that terms t in T can be effectively
reduced to some (T -equivalent and unique) normal form, which we denote by t↓.

Say the procedure from Fig. 1 returns a solution λx. t for a function f . To
construct from that a solution that meets the syntactic restrictions specified by
datatype S, we run the iterative procedure described in Fig. 5. This procedure
maintains an evolving set A of triples of the form (t, s,D), where D is a datatype,
t is a term in normal form, s is a term satisfying the restrictions specified by D.
The procedure incrementally makes calls to the subprocedure rcon, which takes
a normal form term t, a datatype D and the set A above, and returns a pair
(s, U) where s is a term equivalent to t in T , and U is a set of pairs (s′,D′) where
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1. A := ∅ ; t′ := t
2. for i = 1, 2, . . .

(s, U) := rcon(t′, S, A);
if U is empty, return s; otherwise, for each datatype Dj occurring in U

let di be the ith term in a fair enumeration of the elements of Dj

let ti be the analogue of di in the background theory T
add (ti , ti, Dj) to A

rcon(t, D, A)
if (t, s, D) ∈ A, return (s, ∅); otherwise, do one of the following:
(1) choose a f(t1, . . . , tn) s.t. f(t1, . . . , tn) = t and f has an analogue cD1...DnD in D

let (si, Ui) = rcon(ti , Di, A) for i = 1, . . . , n
return (f(s1, . . . , sn), U1 ∪ . . . ∪ Un)

(2) return (t, {(t, D)})

(a)
(b)

Fig. 5. A procedure for finding a term equivalent to t that meets the syntactic restric-
tions specified by datatype S.

s′ is a subterm of s that fails to satisfy the syntactic restriction expressed by
datatype D′. Overall, the procedure alternates between calling rcon and adding
triples to A until rcon(t,D,A) returns a pair of the form (s, ∅), in which case s
is a solution satisfying the syntactic restrictions specified by S.

Example 3. Say we wish to construct a solution equivalent to λx1 x2.x1+(2∗x2)
that meets restrictions specified by datatype S from Example 2. To do so, we let
A = ∅, and call rcon((x1+(2∗x2))↓,S, A). Since A is empty and + is the analogue
of constructor plusSSS of S, assuming (x1 + (2 ∗ x2)) ↓ = x1 + (2 ∗ x2), we may
choose to return a pair based on the result of calling rcon on x1 ↓ and (2 ∗ x2)↓.
Since xS1 is a constructor of S and x1 ↓ = x1, rcon(x1,S, A) returns (x1, ∅). Since
S does not have a constructor for ∗, we must either choose a term t such that
t↓ = (2 ∗x2)↓ where the topmost symbol of t is the analogue of a constructor in
S, or otherwise return the pair (2∗x2, {(2∗x2,S)}). Suppose we do the latter, and
thus rcon(x1+(2∗x2),S, A) returns (x1+(2∗x2), {(2∗x2,S)}). Since the second
component of this pair is not empty, we pick in Step 2b the first element of S,
x1 say, and add (x1, x1,S) to A. We then call rcon((x1 + (2 ∗ x2))↓,S, A) which
by the same strategy above returns (x1 + (2 ∗ x2), {(2 ∗ x2,S)}). This process
continues until we pick, the term plus(x2, x2) say, whose analogue is x2 + x2.
Assuming (x2 + x2) ↓ = (2 ∗ x2) ↓, after adding the pair (2 ∗ x2, x2 + x2,S) to
A, rcon((x1 + (2 ∗ x2)) ↓,S, A) returns the pair (x1 + (x2 + x2), ∅), indicating
that λx1 x2. x1 + (x2 + x2) is equivalent to λx1 x2. x1 + (2 ∗ x2), and meets the
restrictions specified by S. �

This procedure depends upon the use of normal forms for terms. It should be
noted that, since the top symbol of t is generally ite, this normalization includes
both low-level rewriting of literals within t, but also includes high-level rewriting
techniques such as ite simplification, redundant subterm elimination and destruc-
tive equality resolution. Also, notice that we are not assuming that t ↓ = s ↓ if
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and only if t is equivalent to s, and thus normal forms only underapproximate
an equivalence relation between terms. Having a (more) consistent normal form
for terms allows us to compute a (tighter) underapproximation, thus improv-
ing the performance of the reconstruction. In this procedure, we use the same
normal form for terms that is used by the individual decision procedures of
cvc4. This is unproblematic for theories such as linear arithmetic whose normal
form for terms is a sorted list of monomials, but it can be problematic for theo-
ries such as bitvectors. As a consequence, we use several optimizations, omitted
in the description of the procedure in Fig. 5, to increase the likelihood that the
procedure terminates in a reasonable amount of time. For instance, in our imple-
mentation the return value of rcon is not recomputed every time A is updated.
Instead, we maintain an evolving directed acyclic graph (dag), whose nodes are
pairs (t, S) for term t and datatype S (the terms we have yet to reconstruct),
and whose edges are the direct subchildren of that term. Datatype terms are
enumerated for all datatypes in this dag, which is incrementally pruned as pairs
are added to A until it becomes empty. Another optimization is that the pro-
cedure rcon may choose to try simultaneously to reconstruct multiple terms of
the form f(t1, . . . , tn) when matching a term t to a syntactic specification S,
reconstructing t when any such term can be reconstructed.

Although the overhead of this procedure can be significant when large sub-
terms do not meet the syntactic restrictions, we found that in practice it quickly
terminates successfully for a majority of the solutions we considered where recon-
struction was possible, as we discuss in the next section. Furthermore, it makes
our implementation more robust, since it effectively treats in the same way dif-
ferent properties that are equal modulo normalization (which is parametric in
the built-in theories we consider).

6 Experimental Evaluation

We implemented the techniques from the previous sections in the SMT solver
cvc4 [4], which has support for quantified formulas and a wide range of theo-
ries including arithmetic, bitvectors, and algebraic datatypes. We evaluated our
implementation on 243 benchmarks used in the SyGuS 2014 competition [1]
that were publicly available on the StarExec execution service [31]. The bench-
marks are in a new format for specifying syntax-guided synthesis problems [22].
We added parsing support to cvc4 for most features of this format. All SyGuS
benchmarks considered contain synthesis conjectures whose background theory
is either linear integer arithmetic or bitvectors. We made some minor modifica-
tions to benchmarks to avoid naming conflicts, and to explicitly define several
bitvector operators that are not supported natively by cvc4.

We considered multiple configurations of cvc4 corresponding to the tech-
niques mentioned in this paper. Configuration cvc4+sg executes the syntax-
guided procedure from Sect. 4, even in cases where the synthesis conjecture is
single-invocation. Configuration cvc4+si-r executes the procedure from Sect. 3
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array (32) bv (7) hd (56) icfp (50) int (15) let (8) multf (8) Total (176)
# time # time # time # time # time # time # time # time

esolver 4 2250.7 2 71.2 50 878.5 0 0 5 1416.7 2 0.0 7 0.6 70 4617.7
cvc4+sg 1 3.1 0 0 34 4308.9 1 0.5 3 1.7 2 0.5 7 628.3 48 4943
cvc4+si-r (32) 1.2 (6) 4.7 (56) 2.1 (43) 3403.5 (15) 0.6 (8) 1.0 (8) 0.2 (168) 3413.3
cvc4+si 30 1449.5 5 0.1 52 2322.9 0 0 6 0.1 2 0.5 7 0.1 102 3773.2

Fig. 6. Results for single-invocation synthesis conjectures, showing times (in seconds)
and number of benchmarks solved by each solver and configuration over 8 bench-
mark classes with a 3600 s timeout. The number of benchmarks solved by configuration
cvc4+si-r are in parentheses because its solutions do not necessarily satisfy the given
syntactic restrictions.

on all benchmarks having conjectures that it can deduce are single-invocation.
In total, it discovered that 176 of the 243 benchmarks could be rewritten into
a form that was single-invocation. This configuration simply ignores any syntax
restrictions on the expected solution. Finally, configuration cvc4+si uses the
same procedure used by cvc4+si-r but then attempts to reconstruct any found
solution as a term in required syntax, as described in Sect. 5.

We ran all configurations on all benchmarks on the StarExec cluster.4 We
provide comparative results here primarily against the enumerative CEGIS solver
ESolver [32], the winner of the SyGuS 2014 competition. In our tests, we found
that ESolver performed significantly better than the other entrants of that
competition.

Benchmarks with Single-Invocation Synthesis Conjectures. The results
for benchmarks with single-invocation properties are shown in Fig. 6. Config-
uration cvc4+si-r found a solution (although not necessarily in the required
language) very quickly for a majority of benchmarks. It terminated successfully
for 168 of 176 benchmarks, and in less than a second for 159 of those. Not all
solutions found using this method met the syntactic restrictions. Nevertheless,
our methods for reconstructing these solutions into the required grammar, imple-
mented in configuration cvc4+si, succeeded in 102 cases, or 61 % of the total.
This is 32 more benchmarks than the 70 solved by ESolver, the best known
solver for these benchmarks so far. In total, cvc4+si solved 34 benchmarks that
ESolver did not, while ESolver solved 2 that cvc4+si did not.

The solutions returned by cvc4+si-r were often large, having an order of
10 K subterms for harder benchmarks. However, after exhaustively applying
simplification techniques during reconstruction with configuration cvc4+si, we
found that the size of those solutions is comparable to other solvers, and in
some cases even smaller. For instance, among the 68 benchmarks solved by both
ESolver and cvc4+si, the former produced a smaller solution in 15 cases and
the latter in 9. Only in 2 cases did cvc4+si produce a solution that had 10
more subterms than the solution produced by ESolver. This indicates that in
addition to having a high precision, the techniques from Sect. 5 used for solution
reconstruction are effective also at producing succinct solutions for this bench-
mark library.

4 A detailed summary can be found at http://lara.epfl.ch/w/cvc4-synthesis.

http://lara.epfl.ch/w/cvc4-synthesis
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int (3) invgu (28) invg (28) vctrl (8) Total (67)
# time # time # time # time # time

esolver 3 1.6 25 86.3 25 85.6 5 29.5 58 203.0
cvc4+sg 3 1476.0 23 811.6 22 2283.2 5 2933.1 53 7503.9

Fig. 7. Results for synthesis conjectures that are not single-invocation, showing times
(in seconds) and numbers of benchmarks solved by cvc4 and ESolver over 4 bench-
mark classes with a 3600 s timeout.

Configuration cvc4+sg does not take advantage of the fact that a synthesis
conjecture is single-invocation. However, it was able to solve 48 of these bench-
marks, including a small number not solved by any other configuration, like one
from the icfp class whose solution was a single argument function over bitvectors
that shifted its input right by four bits. In addition to being solution complete,
cvc4+sg always produces solutions of minimal term size, something not guaran-
teed by the other solvers and cvc4 configurations. Of the 47 benchmarks solved
by both cvc4+sg and ESolver, the solution returned by cvc4+sg was smaller
than the one returned by ESolver in 6 cases, and had the same size in the oth-
ers. This provides an experimental confirmation that the fairness techniques for
term size described in Sect. 4 ensure minimal size solutions.

Benchmarks with Non-single-invocation Synthesis Conjectures. Con-
figuration cvc4+sg is the only cvc4 configuration that can process bench-
marks with synthesis conjectures that are not single-invocation. The results for
ESolver and cvc4+sg on such benchmarks from SyGuS 2014 are shown in
Fig. 7. Configuration cvc4+sg solved 53 of them over a total of 67. ESolver
solved 58 and additionally reported that 6 had no solution. In more detail,
ESolver solved 7 benchmarks that cvc4+sg did not, while cvc4+sg solved 2
benchmarks (from the vctrl class) that ESolver could not solve. In terms of
precision, cvc4+sg is quite competitive with the state of the art on these bench-
marks. To give other points of comparison, at the SyGuS 2014 competition [1]
the second best solver (the Stochastic solver) solved 40 of these benchmarks
within a one hour limit and Sketch solved 23.

Overall Results. In total, over the entire SyGuS 2014 benchmark set, 155
benchmarks can be solved by a configuration of cvc4 that, whenever possible,
runs the methods for single-invocation properties described in Sect. 3, and other-
wise runs the method described in Sect. 4. This number is 27 higher than the 128
benchmarks solved in total by ESolver. Running both configuration cvc4+sg
and cvc4+si in parallel5 solves 156 benchmarks, indicating that cvc4 is highly
competitive with state-of-the-art tools for syntax guided synthesis. cvc4’s per-
formance is noticeably better than ESolver on single-invocation properties,
where our new quantifier instantiation techniques give it a distinct advantage.

Competitive Advantage on Single-Invocation Properties in the Pres-
ence of Ite. We conclude by observing that for certain classes of benchmarks,
5 cvc4 has a portfolio mode that allows it to run multiple configurations at the same

time.
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n 2 3 4 5 6 7 8 9 10
esolver 0.01 1377.10 – – – – – – –
cvc4+si 0.01 0.02 0.03 0.05 0.1 0.3 1.6 8.9 81.5

Fig. 8. Results for parametric benchmarks class encoding the maximum of n integers.
The columns show the run time for ESolver and cvc4 with a 3600 s timeout.

configuration cvc4+si scales significantly better than state-of-the-art synthe-
sis tools. Figure 8 shows this in comparison with ESolver for the problem of
synthesizing a function that computes the maximum of n integer inputs. As
reported by Alur et al. [1], no solver in the SyGuS 2014 competition was able to
synthesize such a function for n = 5 within one hour.

For benchmarks from the array class, whose solutions are loop-free programs
that compute the first instance of an element in a sorted array, the best reported
solver for these in [1] was Sketch, which solved a problem for an array of length
7 in approximately 30 minutes.6 In contrast, cvc4+si was able to reconstruct
solutions for arrays of size 15 (the largest benchmark in the class) in 0.3 s, and
solved each of the benchmarks in the class but 8 within 1 s.

7 Conclusion

We have shown that SMT solvers, instead of just acting as subroutines for
automated software synthesis tasks, can be instrumented to perform synthe-
sis themselves. We have presented a few approaches for enabling SMT solvers to
construct solutions for the broad class of syntax-guided synthesis problems and
discussed their implementation in cvc4. This is, to the best of our knowledge,
the first implementation of synthesis inside an SMT solver and it already shows
considerable promise. Using a novel quantifier instantiation technique and a
solution enumeration technique for the theory of algebraic datatypes, our imple-
mentation is competitive with the state of the art represented by the systems
that participated in the 2014 syntax-guided synthesis competition. Moreover,
for the important class of single-invocation problems when syntax restrictions
permit the if-then-else operator, our implementation significantly outperforms
those systems.

Acknowledgments. We would like to thank Liana Hadarean for helpful discussions
on the normal form used in cvc4 for bit vector terms.
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Abstract. We present an approach to program repair and its applica-
tion to programs with recursive functions over unbounded data types.
Our approach formulates program repair in the framework of deductive
synthesis that uses existing program structure as a hint to guide synthe-
sis. We introduce a new specification construct for symbolic tests. We
rely on such user-specified tests as well as automatically generated ones
to localize the fault and speed up synthesis. Our implementation is able
to eliminate errors within seconds from a variety of functional programs,
including symbolic computation code and implementations of functional
data structures. The resulting programs are formally verified by the Leon
system.

1 Introduction

This paper explores the problem of automatically repairing programs written
as a set of mutually recursive functions in a purely functional subset of Scala.
We consider a function to be subject to repair if it does not satisfy its spec-
ification, expressed in the form of pre- and postcondition. The task of repair
consists of automatically generating an alternative implementation that meets
the specification. The repair problem has been studied in the past for reactive
and pushdown systems [8,10,11,19,20,26]. We view repair as generalizing, for
example, the choose construct of complete functional synthesis [15], sketching
[21,22], and program templates [23], because the exact location and nature of
expressions to be synthesized is left to the algorithm. Repair is thus related to
localization of error causes [12,14,27]. To speed up our repair approach, we do use
coarse-grained error localization based on derived test inputs. However, a more
precise nature of the fault is in fact the outcome of our tool, because the repair
identifies a particular change that makes the program correct. Using tests alone
as a criterion for correctness is appealing for performance reasons [7,17,18], but
this can lead to erroneous repairs. We therefore leverage prior work [13] on veri-
fying and synthesizing recursive functional programs with unbounded data-types
(trees, lists, integers) to provide strong correctness guarantees, while at the same
time optimizing our technique to use automatically derived tests. By phrasing
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D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part II, LNCS 9207, pp. 217–233, 2015.
DOI: 10.1007/978-3-319-21668-3 13



218 E. Kneuss et al.

the problem of repair as one of synthesis and introducing tailored deduction rules
that use the original implementation as guide, we allow the repair-oriented syn-
thesis procedure to automatically find correct fixes, in the worst case resorting
to re-synthesizing the desired function from scratch. To make the repair app-
roach practical, we found it beneficial to extend the power and generality of the
synthesis engine itself, as well as to introduce explicit support for symbolic tests
in the specification language and the repair algorithm.

Contributions. The overall contribution of this paper is a new repair algorithm
and its implementation inside a deductive synthesis framework for recursive func-
tional programs. The specific new techniques we contribute are the following.

– Exploration of similar expressions. We present an algorithm for expres-
sion repair based on a grammar for generating expressions similar to a given
expression (according to an error model we propose). We use such grammars
within our new generic symbolic term exploration routine, which leverages test
inputs as well as an SMT solver, and efficiently explores the space of expres-
sions that contain recursive calls whose evaluation depends on the expression
being synthesized.

– Fault localization. To narrow down repair to a program fragment, we local-
ize the error by doing dynamic analysis using test inputs generated auto-
matically from specifications. We combine two automatic sources of inputs:
enumeration techniques and SMT-based techniques. We collect traces leading
to erroneous executions and compute common prefixes of branching decisions.
We show that this localization is in practice sufficiently precise to repair size-
able functions efficiently.

– Symbolic examples. We propose an intuitive way of specifying possibly sym-
bolic input-output examples using pattern matching of Scala. This allows the
user to partially specify a function without necessarily having to provide full
inputs and outputs. Additionally, it enables the developer to easily describe
properties of generic (polymorphic) functions. We present an algorithm for
deriving new examples from existing ones, which improves the usefulness of
example sets for fault localization and repair.

In our experience, the combination of formal specification and symbolic
examples gives the user significant flexibility when specifying functions, and
increases success rates when discovering and repairing program faults.

– Integration into a deductive synthesis and verification framework.
Our repair system is part of a deductive verification system, so it can automat-
ically produce new inputs from specification, prove correctness of code for all
inputs ranging over an unbounded domain, and synthesize program fragments
using deductive synthesis rules that include common recursion schemas.

The repair approach offers significant improvements compared with synthesis
from scratch. Synthesis alone scales poorly when the expression to synthesize is
large. Fault localization focuses synthesis on the smaller, invalid portions of the
program and thus results in big performance gains. The source code of our tool
and additional details are available from http://leon.epfl.ch as well as http://
lara.epfl.ch/w/leon-repair.

http://leon.epfl.ch
http://lara.epfl.ch/w/leon-repair
http://lara.epfl.ch/w/leon-repair
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Fig. 1. The syntax tree translation in function desugar has a strong ensuring clause,
requiring semantic equivalence of transformed and the original tree, as defined by
several recursive evaluation functions. desugar contains an error. Our system finds it,
repairs the function, and proves the resulting program correct.

Example. Consider the following functionality inspired by a part of a compiler.
We wish to transform (desugar) an abstract syntax-tree of a typed expression
language into a simpler untyped language, simplifying some of the constructs and
changing the representation of some of the types, while preserving the semantics
of the transformed expression. In Fig. 1, the original syntax trees are represented
by the class Expr and its subclasses, whereas the resulting untyped language trees
are given by SExpr. A syntax tree of Expr either evaluates to an integer, to a
boolean, or to no value if it is not well typed. We capture this by defining a
type-checking function typeOf, along with two separate semantic functions, semI

and semB. SExpr, on the other hand, always evaluates to an integer, as defined
by the simSem function. For brevity, most subclass definitions are omitted.

The desugar function translates a syntax tree of Expr into one of SExpr. We
expect the function to ensure that the transformation preserves the semantics
of the tree: originally integer-valued trees evaluate to the same value, boolean-
valued trees now evaluate to 0 and 1, representing false and true, respectively,
and mistyped trees are left unconstrained. This is expressed in the postcondition
of desugar.
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The implementation in Fig. 1 contains a bug: the thn and els branches of the
Ite case have been accidentally switched. Using tests automatically generated
using generic enumeration of small values, as well as from a verification attempt
of desugar, our tool is able to find a coarse-grained location of the bug, as the
body of the relevant case of the match statement. During repair, one of the
rules performs a semantic exploration of expressions similar to the invalid one.
It discovers that using the expression SIte(desugar(cond), desugar(thn), desugar(els))

instead of the invalid one makes the discovered tests pass. The system can then
formally verify that the repaired program meets the specification for all inputs. If
we try to introduce similar bugs in the correct desugar function, or to replace the
entire body of a case with a dummy value, the system successfully recovers the
intended case of the transformation. In some cases our system can repair multiple
simultaneous errors; the mechanism behind that is explained in Sect. 2.2. Note
that the developer communicates with our system only by writing code and
specifications, both of which are functions in an existing functional programming
language. This illustrates the potential of repair as a scalable and developer-
friendly deployment of synthesis in software development.

2 Deductive Guided Repair

We next describe our deductive repair framework. The framework currently
works under several assumptions, which we consider reasonable given the state
of the art in repair of infinite-state programs. We consider the specifications of
functions as correct; the code is assumed wrong if it cannot be proven correct
with respect to this specification for all of the infinitely many inputs. If the
specification includes input-output tests, it follows that the repaired function
must have the same behavior on these tests. We do not guarantee that the out-
put of the function is the same as the original one on tests not covered by the
specification, though the repair algorithm tends to preserve some of the existing
behaviors due to the local nature of repair. It is the responsibility of the devel-
oper to sufficiently specify the function being repaired. Although under-specified
benchmarks may produce unexpected expressions as repair solutions, we found
that even partial specifications often yield the desired repairs. A particularly
effective specification style in our experience is to give a partial specification
that depends on all components of the structure (for example, describes prop-
erty of the set of stored elements), and then additionally provide a finite number
of symbolic input-output tests. We assume that only one function of the program
is invalid; the implementation of all other functions is considered valid as far as
the repair of interest is concerned. Finally, we assume that all functions of the
program, even the invalid one, terminate.

Stages of the Repair Algorithm. The function being repaired passes through
the following stages, which we describe in the rest of the paper:

– Test generation and verification. We combine enumeration- and SMT-
based techniques to either verify the validity of the function, or, if it is not
valid, discover counterexamples (examples of misbehaviors).
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– Fault localization. Our localization algorithm then selects the smallest
expression executed in all failing tests, modulo recursion.

– Synthesis of similar expressions. This erroneous expression is replaced by
a “program hole”. The now-incomplete function is sent to synthesis, with the
previous expression used as a synthesis hint. (Neither the notion of holes nor
the notion of synthesis hints has been introduced in prior work on deductive
synthesis [13]).

– Verification of the solution. Lastly, the system attempts to prove the
validity of the discovered solution. Our results in Sect. 5, Fig. 4 indicate in
which cases the synthesized function passed the verification.

Repair Framework. Our starting point is the deductive synthesis framework
first introduced in [13]. We show how this framework can be applied to program
repair by introducing dedicated rules, as well as special predicates. We reuse the
notation for synthesis tasks [[ā 〈Π � φ〉 x̄]]: ā denotes the set of input variables,
x̄ denotes the set of output variables, φ is the synthesis predicate, and Π is the
path condition to the synthesis problem. The framework relies on deduction rules
that take such an input synthesis problem and either (1) solve it immediately
by returning the tuple 〈P | T 〉 where P corresponds to the precondition under
which the term T is a solution, or (2) decompose it into sub-problems, and
define a way to compute the overall solution from sub-solutions. We illustrate
these rules as well as their notation with a rule for splitting a problem containing
a top-level or:

[[ā 〈Π � φ1〉 x̄]] � 〈P1 | T1〉 [[ā 〈Π � φ2〉 x̄]] � 〈P2 | T2〉
[[ā 〈Π � φ1 ∨ φ2〉 x̄]] � 〈P1 ∨ P2 | if(P1) {T1} else {T2}〉

This rule should be interpreted as follows: from an input synthesis problem
[[ā 〈Π � φ1 ∨ φ2〉 x̄]], the rule decomposes it in two subproblems: [[ā 〈Π � φ1〉 x̄]]
and [[ā 〈Π � φ2〉 x̄]]. Given corresponding solutions 〈P1 | T1〉 and 〈P2 | T2〉, the
rule solves the input problem with 〈P1 ∨ P2 | if(P1) {T1} else {T2}〉.

To track the original (incorrect) implementation along instantiations of our
deductive synthesis rules, we introduce a guiding predicate into the path con-
dition of the synthesis problem. We refer to this guiding predicate as �[expr],
where expr represents the original expression. This predicate does not have any
logical meaning in the path-condition (it is equivalent to true), but it provides
syntactic information that can be used by repair-dedicated rules. These rules are
covered in detail in Sects. 2.1, 2.2 and 3.

2.1 Fault Localization

A contribution of our system is the ability to focus the repair problem to a small
sub-part of the function’s body that is responsible for its erroneous behavior. The
underlying hypothesis is that most of the original implementation is correct. This
technique allows us to reuse as much of the original implementation as possible
and minimizes the size of the expression given to subsequent more expensive
techniques. Focusing also has the profitable side-effect of making repair more
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predictable, even in the presence of weak specifications: repaired implementation
tends to produce programs that preserve some of the existing branches, and thus
have the same behavior on the executions that use only these preserved branches.
We rely on the list of examples that fail the function specification to lead us to
the source of the problem: if all failing examples only use one branch of some
branching expression in the program, then we assume that the error is contained
in that branch. We define F as the set of all inputs of collected failing tests (see
Sect. 4). We describe focusing using the following rules.

If-Focus. Given the input problem [[ā 〈�[if(c) {t} else {e}] � φ〉 x̄]] we first
check if there is an alternative condition expression such that all failing tests
succeed:

If-Focus-Condition:

∃C.∀ī ∈ F . φ[x̄ 
→ if(C(ā)) {t} else {e}, ā 
→ ī]
[[ā 〈�[c] ∧ Π � φ[x̄ 
→ if(x′) {t} else {e}]〉 x′]] � 〈P | T 〉

[[ā 〈�[if(c) {t} else {e}] ∧ Π � φ〉 x̄]] � 〈P | if(T ) {t} else {e}〉
Instead of solving this higher-order hypothesis, we execute the function and non-
deterministically consider both branches of the if (and do so within recursive
invocations as well). If a valid execution exists for each failing test, the formula
is considered satisfiable enabling us to focus on the condition. Otherwise, we
check whether c evaluates to either true or false for all failing inputs, allowing us
to focus on the corresponding branch:

If-Focus-Then:
[[ā 〈�[t] ∧ c ∧ Π � φ〉 x̄]] � 〈P | T 〉 ∀ī ∈ F .c[ā 
→ ī]

[[ā 〈�[if(c) {t} else {e}] ∧ Π � φ〉 x̄]] � 〈P | if(c) {T} else {e}〉

If-Focus-Else:
[[ā 〈�[e] ∧ ¬c ∧ Π � φ〉 x̄]] � 〈P | T 〉 ∀ī ∈ F .¬c[ā 
→ ī]

[[ā 〈�[if(c) {t} else {e}] ∧ Π � φ〉 x̄]] � 〈P | if(c) {t} else {T}〉
We use analogous rules to repair match expressions, which are ubiquitous in our
programs. Here, if all failing tests lead to one particular branch of the match, we
focus on that particular branch.

The above rules use tests to locally approximate the validity of branches.
They are sound only if F is sufficiently large. Our system therefore performs an
end-to-end verification for the complete solution, ensuring the overall soundness.

2.2 Guided Decompositions

In case focusing rules fail to identify a single branch of an if- or match-expression
as responsible, we might still benefit from reusing most of the expression. In the
case of if, reuse is limited to the if-condition, but for a match-expression, this
may extend to multiple valid cases. To this end, we introduce rules analogous to
focus, that do decompositions based on the guide.

If-Split:
[[ā 〈�[t] ∧ c ∧ Π � φ〉 x̄]] � 〈P1 | T1〉 [[ā 〈�[e] ∧ ¬c ∧ Π � φ〉 x̄]] � 〈P2 | T2〉
[[ā 〈�[if(c) {t} else {e}] ∧ Π � φ〉 x̄]] � 〈(c∧P1) ∨ (¬c∧P2) | if(c) {T1} else {T2}〉
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To reuse the valid branches of an if or a match-expression on which focus
failed, we introduce a rule that solves the problem if the guiding expression
satisfies the specification.

Guided-Verify: =
Π |= φ[x̄ 
→ term]

[[ā 〈�[term] ∧ Π � φ〉 x̄]] � 〈true | term〉

2.3 Generating Recursive Calls

Our purely functional language often requires us to synthesize recursive imple-
mentations. Consequently, the synthesizer must be able to generate calls to the
function currently getting synthesized. However, we must take special care to
avoid introducing calls resulting in a non-terminating implementation. (Such an
erroneous implementation would be conceived as valid if it trivially satisfies the
specification due to inductive hypothesis over a non-well-founded relation.)

Our technique consists of recording the arguments a at the entry point of the
function, f, and keeping track of these arguments through the decompositions.
We represent this information with a syntactic predicate ⇓ [f(a)], similar to the
guiding predicate from the previous sections. We then heuristically assume that
reducing the arguments a will not introduce non-terminating calls.

We illustrate this mechanism by considering the desugar function shown in
Fig. 1. We start by injecting the entry call information as

[[e 〈⇓[desugar(e)] ∧ ... � φ〉 x]]

This synthesis problem will then be decomposed by the various deduction
rules available in the framework. An interesting case to consider is a decomposi-
tion by pattern-matching on e which specializes the problem to known variants
of Expr. The specialized problem for the Plus variant will look as follows:

[[e1 , e2 〈⇓[desugar(Plus(e1, e2))] ∧ ... � φ〉 x]]

As a result, we assume that the calls desugar(e1) and desugar(e2) are likely to
terminate, so they are considered as candidate expressions when symbolically
exploring terms, as explained in Sect. 3.

This relatively simple technique allows us to introduce recursive calls while
filtering trivially non-terminating calls. In the case where it still introduces infi-
nite recursion, we can discard the solution using a more expensive termination
checker, though we found that this is seldom needed in practice.

2.4 Synthesis Within Repair

The repair-specific rules described earlier aim at solving repair problems accord-
ing to the error model. Thanks to integration into the Leon synthesis frame-
work, general synthesis rules also apply, which enables the repair of more intri-
cate errors. This achieves an appealing combination between fast repairs for
predictable errors and expressive, albeit slower, repairs for more complicated
errors.
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3 Counterexample-Guided Similar-Term Exploration

After following the overall structure of the original problem, it is often the case
that the remaining erroneous branches can be fixed by applying small changes
to their implementations. For instance, an expression calling a function might
be wrong only in one of its arguments or have two of its arguments swapped.
We exploit this assumption by considering different variations to the original
expression. Due to the lack of a large code base in pure Scala subset that Leon
handles, we cannot use statistically informed techniques such as [9], so we define
an error model following our intuition and experience from previous work.

We use the notation G(expr) to denote the space of variations of expr and
define it in the form of a grammar as

G(expr)::=Gswap(expr) | Garg(expr) | G∗2(expr)

with the following forms of variations.

Swapping Arguments. We consider here all the variants of swapping two
arguments that are compatible type-wise. For instance, for an operation with
three operands of the same type:

Gswap(op(a,b,c))::=op(b,a,c) | op(a,c,b) | op(c,b,a)

Generalizing One Argument. This variation corresponds to making a mis-
take in only one argument of the operation we generalize:

Garg(op(a,b,c))::=op(G(a),b,c) | op(a,G(b),c) | op(a,b,G(c))

Bounded Arbitrary Expression. We consider a grammar of interesting
expressions of the given type and of limited depth. This grammar considers
all operations in scope as well as all input variables. It also considers safe recur-
sive calls discovered in Sect. 2.3. Finally, it includes the guiding expression as
a terminal, which corresponds to possibly wrapping the source expression in
an operation. For example, given a predicate ⇓ [listSum(Cons(h,t))] and a mod
function Int× Int → Int in scope, an integer operation op(a,b,c) is generalized as:

G∗2(op(a,b,c)) ::= GInt2 | GInt1 | GInt0

GInt2 ::= GInt1 + GInt1

| GInt1 − GInt1

| mod(GInt1, GInt1)
| listSum(t)

GInt1 ::= GInt0 + GInt0

| GInt0 − GInt0

| mod(GInt0, GInt0)
| listSum(t)

GInt0 ::= 0 | 1 | h | op(a,b,c)
Our grammars cover a range of variations corresponding to common errors.
During synthesis, the system generates a specific grammar for each invocation
of this repair rule, and explores symbolically the space of all expressions in the
grammar. We rely on a CEGIS-loop bootstrapped with our test inputs to explore
these expressions. This can be abstractly represented by the following rule:
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CEGIS-Gen: =
∃T ∈ L(G(term)) ∀ā.Π =⇒ φ[x̄ 
→ T]
[[ā 〈�[term] ∧ Π � φ〉 x̄]] � 〈true | T〉

Even though this rule is inherently incomplete, it is able to fix common
errors efficiently. Our deductive approach allows us to introduce such tailored
rules without loss of generality: errors that go beyond this model may be repaired
using more general, albeit slower synthesis rules.

Precise Handling of Recursive Calls in CEGIS. Our system uses a sym-
bolic approach to avoid enumerating expressions explicitly [13]. When consider-
ing recursive calls among possible expressions within CEGIS, the interpretation
of such calls needs to refer back to this same expression. Our previous approach
[13] treats recursive invocations of the function under synthesis as satisfying only
the postcondition, leading to spurious counter-examples. Our new solution first
constructs a parametrized program explicitly representing the search space: given
a grammar G at a certain unfolding level, we construct a function cTree(ā, B) in
which we describe non-terminals as values with each production guarded by a
distinct entry of the B array, as in the following repair a case of the size function.

def cTree[T](h: T, t: List[T],
B: Array[Boolean]) = {

val c1 = if (B(0)) 0
else if (B(1)) 1
else if (B(2)) size(t, B)
else

val c2 = if (B(3)) 0
else if (B(4)) 1
else if (B(5)) size(t, B)
else

val c3 = if (B(6)) c1 + c2
else if (B(7)) c1 − c2
else

c3 }

def size[T](l: List[T],
B: Array[Boolean]): Int = {

l match {
case Cons(h, t) ⇒ cTree(h, t, B)
case Nil() ⇒ 0

}
}
def nonEmpty(l: List[T],

B: Array[Boolean]) = {
size(l, B) > 0

}

In this new program, the function under repair is defined using the partial solu-
tion corresponding to the current deduction tree, in which we call cTree at the
point of the CEGIS invocation. Other unsolved branches of the deduction tree
become synthesis holes. We augment transitive callers with this additional B

argument, passing it accordingly. This ensures that a specific valuation of B cor-
responds exactly to a program where the point of CEGIS invocation is replaced
by the corresponding expression. We rely on tests collected in Sect. 4 to test indi-
vidual valuations of B, removing failing expression from the search space. Finally,
we perform CEGIS using symbolic term exploration with the SMT solver to find
candidate expressions [13].
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4 Generating and Using Tests for Repair

Tests play an essential role in our framework, allowing us to gather information
about the valid and invalid parts of the function. In this section we elaborate
on how we select, generate, and filter examples of inputs and possibly outputs.
Several components of our system then make use of these examples. We dis-
tinguish two kinds of tests: input tests and input-output tests. Namely, input
tests provide valid inputs for the function according to its precondition, while
input-output tests also specify the exact output corresponding to each input.

Extraction and Generation of Tests. Our system relies on three main sources
for tests that are used to make the repair process more efficient.

(1) User-provided symbolic input-output tests. It is often interesting for the
user to specify how a function behaves by listing a few examples providing inputs
and corresponding outputs. However, having to provide full inputs and outputs
can be tedious and impractical. To make specifying families of tests convenient,
we define a passes construct to express input-output examples, relying on pat-
tern matching in our language to symbolically describe sets of inputs and their
corresponding outputs. This gives us an expressive way of specifying classes of
input-output examples. Not only may the pattern match more than one input,
but the corresponding outputs are given by an expression which may depend
on the pattern’s variables. Wildcard patterns are particularly useful when the
function does not depend on all aspects of its inputs. For instance, a function
computing the size of a generic list does not inspect the values of individual list
elements. Similarly, the sum of a list of integers could be specified concisely for
all lists of sizes up to 2. Both examples are illustrated by Fig. 2.

Fig. 2. Partial specifications using the passes construct, allowing to match more than
one inputs and providing the expected output as an expression.

Having partially symbolic input-output examples strikes a good balance
between literal examples and full-functional specifications. From the symbolic
tests, we generate concrete input-output examples by instantiating each pattern



Deductive Program Repair 227

several times using enumeration techniques, and executing the output expres-
sion to yield an output value. For instance, from case Cons(a, Cons(b, Nil()))
⇒ a + b we will generate the following tests resulting from replacing a, b with
all combinations of values from a finite set, including, for example, test with
input Cons(1, Cons(2, Nil())) and output 3. We generate up to 5 distinct tests
per pattern, when possible. These symbolic specifications are the only forms of
tests provided by the developer; any other tests that our system uses are derived
automatically.

(2) Generated input tests. We rely on the same enumeration technique to
generate inputs satisfying the precondition of the function. Using a generate and
test approach, we gather up to 400 valid input tests in the first 1000 enumerated.

(3) Solver-generated Tests. Lastly, we rely on the underlying solvers for recur-
sive functions of Leon [25] to generate counter-examples. Given that the function
is invalid and that it terminates, the solver (which is complete for counter-
examples) is guaranteed to eventually provide us with at least one failing test.

Classifying and Minimizing Traces. We partition the set of collected tests
into passing and failing sets. A test is considered as failing if it violates a precon-
dition, a postcondition, or emits one of various other kinds of runtime errors when
the function to repair is executed on it. In the presence of recursive functions,
a given test may fail within one of its recursive invocations. It is interesting in
such scenarios to consider the arguments of this specific sub-invocation: they are
typically smaller than the original and are better representatives of the failure.
To clarify this, consider the example in Fig. 3 (based on the program in Fig. 1):

Fig. 3. Code and invocation graph for desugar. Solid borderlines stand for passing tests,
dashed ones for failing ones. Type constructors for literals have been omitted.

Assume the tests collected are And(BooleanLiteral(true), BooleanLiteral(true)),
Ite(BooleanLiteral(true), IntLiteral(0), IntLiteral(1)) and BooleanLiteral(true). When
executed with these tests, the function produces the graph of eval invocations
shown on the right of Fig. 3. A trivial classification tactic would label all three
tests as faulty, even though it is obvious that all errors can be explained by the
bug in BooleanLiteral, due to the dependencies between tests. More generally, a
failing test should also be blamed for the failure of all other tests that invoke
it transitively. Our framework deploys this smarter classification. Thus, in our
example, it would only label BooleanLiteral(true) as a failing example, which would
lead to correct localization of the problem on the faulty branch. Note that this
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process will discover new failing tests not present in the original test set, if they
occur as recursive sub-invocations.

Our experience with incorporating tests into the Leon system indicate that
they are proving time and again to be extremely important for the tool’s effi-
ciency, even though our system is in its spirit based on verification as opposed
to testing alone. In addition to allowing us to detect errors sooner and filter out
wrong synthesis candidates, tests also allow us to quickly find the approximate
error location.

5 Evaluation

We evaluate our implementation on a set of benchmarks in which we manually
injected errors (Fig. 4). The programs mainly focus on data structure implemen-
tations and syntax tree operations. Each benchmark is comprised of algebraic
data-type definitions and recursive functions that manipulate them, specified
using strong yet still partial preconditions and postconditions. We manually
introduced errors of different types in each copy of the benchmarks. We ran our
tool unassisted until completion to obtain a repair, providing it only with the
name of the file and the name of the function to repair (typically the choice of
the function could also have been localized automatically by running the verifi-
cation on the entire file). The experiments were run on an Intel(R) Core(TM)
i7-2600K CPU @ 3.40GHz with 16GB RAM, with 2GB given to the Java Virtual
Machine. While the deductive reasoning supports parallelism in principle, our
implementation is currently single-threaded.

For each benchmark of Fig. 4 we provide: (1) the name of the benchmark
and the broken operation; (2) a short classification of the kind of error intro-
duced. The error kinds include: a small variation of the original program, a
completely faulty match-case, a missing match-case, a missing necessary if-split,
a missing function call, and finally, two separate variations in the same function.
We describe the relevant sizes (counted in abstract syntax tree nodes) of: (3) the
overall benchmark, (4) the erroneous function, (5) the localized error, and (6) the
repaired expression. The full size of the program is relevant because our repair
algorithm may introduce calls to any function defined in the benchmark, and
also because the verification of a function depends on other functions in the file
(recall Fig. 1). We also include the time, in seconds, our tool took to: (7) collect
and classify tests and (8) repair the broken expression. Finally, we report (9) if
the system could formally (and automatically) prove the validity of the repaired
implementation. Our examples are challenging to verify, let alone repair. They
contain both functional and test-based specifications to capture the intended
behavior. Many rely on unfolding procedure of [24,25] to handle contracts that
contain other auxiliary recursive functions. The fast exponentiation algorithm
of Numerical.power relies on non-linear reasoning of the Z3 SMT solver [4].

An immediate observation is that fault localization is often able to focus the
repair to a small subset of the body. Combined with the symbolic term explo-
ration, this translates to a fast repair if the error fell within the error model.
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Fig. 4. Automatically repaired functions using our system. We provide for each oper-
ation: a small description of the kind of error introduced, the overall program size,
the size of the invalid function, the size of the erroneous expression we locate and the
size of the repaired version. We then provide the times our tool took to: gather and
classify tests, and repair the erroneous expression. Finally, we mention if the resulting
expression verifies. The source of all benchmarks can be found on http://lara.epfl.ch/
w/leon-repair (see also http://leon.epfl.ch)

http://lara.epfl.ch/w/leon-repair
http://lara.epfl.ch/w/leon-repair
http://leon.epfl.ch
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Among the hardest benchmarks are the ones labeled as having “2 variations”.
For example, Compiler.desugar5 is similar to one in Fig. 1 but contains two errors.
In those cases, localization returns the entire match as the invalid expression.
Our guided repair uses the existing match as the guide and successfully resyn-
thesizes code that repairs both erroneous branches. Another challenging example
is Heap.merge3, for which the more elaborate If-Focus-Condition rule of Sect. 2.1
kicks in to resynthesize the condition of the if expression.

The repairs listed in evaluation are not only valid according to their specifi-
cation, but were also manually validated by us to match the intended behavior.
A failing proof thus does not indicate a wrong repair, but rather that our system
was not able to automatically derive a proof of its correctness, often due to insuf-
ficient inductive invariants. We identify three scenarios under which repair itself
may not succeed: if the assumptions mentioned in Sect. 2 are violated, when the
necessary repair is either too big or outside of the scope of general synthesis,
or if test collection does not yield sufficiently many interesting failing tests to
locate the error.

6 Further Related Work

Much of the prior work focused on imperative programming, without native
support for algebraic data types, making it typically infeasible to even automat-
ically verify data structure properties of the kind that our benchmarks contain.
Syntax-guided synthesis format [1,2] does not support algebraic data types, or
specific notion of repair (it could be used to specify some of the sub-problems
that our system generates, such those of Sect. 3).

GenProg [7] and SemFix [17] accept as input a C program along with user-
provided sets of passing and failing test cases, but no formal specification. Our
technique for fault localization is not applicable to a sequential program with
side-effects, and these tools employ statistical fault localization techniques, based
on program executions. GenProg applies no code synthesis, but tries to repair
the program by iteratively deleting, swapping, or duplicating program state-
ments, according to a genetic algorithm. SemFix, on the other hand, uses syn-
thesis, but does not take into account the faulty expression while synthesizing.
AutoFix-E/E2 [18] operates on Eiffel programs equipped with formal contracts.
Formal contracts are used to automatically generate a set of passing and failing
test cases, but not to verify candidate solutions. AutoFix-E uses an elaborate
mechanism for fault localization, which combines syntactic, control flow and sta-
tistical dynamic analysis. It follows a synthesis approach with repair schemas,
which reuse the faulty statement (e.g. as a branch of a conditional). Samanta
et al. [20] propose abstracting a C program with a boolean constraint, repairing
this constraint so that all assertions in the program are satisfied by repeatedly
applying to it update schemas according to a cost model, then concretize the
boolean constraint back to a repaired C program. Their approach needs devel-
oper intervention to define the cost model for each program, as well as at the
concretization step. Logozzo et al. [16] present a repair suggestion framework
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based on static analysis provided by the CodeContracts static checker [5]; the
properties checked are typically simpler than those in our case. In [6], Gopinath
et al. repair data structure operations by picking an input which exposes a sus-
picious statement, then using a SAT-solver to discover a corresponding concrete
output that satisfies the specification. This concrete output is then abstracted
to various possible expressions to yield candidate repairs, which are filtered with
bounded verification. In their approach, Chandra et al. [3] consider an expres-
sion as a candidate for repair if substituting it with some concrete value fixes a
failing test.

Repair has also been studied in the context of reactive and pushdown systems
with otherwise finite control [8,10,11,19,20,26]. In [26], the authors generate
repairs that preserve explicitly subsets of traces of the original program, in a way
strengthening the specification automatically. We deal with the case of functions
from inputs to outputs equipped with contracts. In case of a weak contract
we provide only heuristic guarantees that the existing behaviors are preserved,
arising from the tendency of our algorithm to reuse existing parts of the program.

7 Conclusions

We have presented an approach to program repair of mutually recursive func-
tional programs, building on top of a deductive synthesis framework. The starting
point gives it the ability to verify functions, find counterexamples, and synthe-
size small fragments of code. When doing repair, it has proven fruitful to first
localize the error and then perform synthesis on a small fragment. Tests proved
very useful in performing such localization, as well as for generally speeding up
synthesis and repair. In addition to deriving tests by enumeration and verifica-
tion, we have introduced a specification construct that uses pattern matching to
describe symbolic tests, from which we efficiently derive concrete tests without
invoking full-fledged verification. In case of tests for recursive functions, we per-
form dependency analysis and introduce new ones to better localize the cause
of the error. While localization of errors within conditional control flow can be
done by analyzing test runs, the challenge remains to localize change inside large
expressions with nested function calls. We have introduced the notion of guided
synthesis that uses the previous version of the code as a guide when searching
for a small change to an existing large expression. The use of a guide is very
flexible, and also allows us to repair multiple errors in some cases.

Our experiments with benchmarks of thousands of syntax tree nodes in size,
including tree transformations and data structure operations confirm that repair
is more tractable than synthesis for functional programs. The existing (incorrect)
expression provides a hint on useful code fragments from which to build a correct
solution. Compared to unguided synthesis, the common case of repair remains
more predictable and scalable. At the same time, the developer need not learn
a notation for specifying holes or templates. We thus believe that repair is a
practical way to deploy synthesis in software development.
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Abstract. The conformance testing problem for dynamical systems
asks, given two dynamical models (e.g., as Simulink diagrams), whether
their behaviors are “close” to each other. In the semi-formal approach
to conformance testing, the two systems are simulated on a large set
of tests, and a metric, defined on pairs of real-valued, real-timed tra-
jectories, is used to determine a lower bound on the distance. We show
how the Skorokhod metric on continuous dynamical systems can be used
as the foundation for conformance testing of complex dynamical models.
The Skorokhod metric allows for both state value mismatches and tim-
ing distortions, and is thus well suited for checking conformance between
idealized models of dynamical systems and their implementations. We
demonstrate the robustness of the metric by proving a transference the-
orem: trajectories close under the Skorokhod metric satisfy “close” log-
ical properties in the timed linear time logic TLTL augmented with a
rich class of temporal and spatial constraint predicates. We provide an
efficient window-based streaming algorithm to compute the Skorokhod
metric, and use it as a basis for a conformance testing tool for Simulink.
We experimentally demonstrate the effectiveness of our tool in finding
discrepant behaviors on a set of control system benchmarks, including
an industrial challenge problem.

1 Introduction

A fundamental question in model-based design is conformance testing: whether
two models of a system display similar behavior. For discrete systems, this ques-
tion is well-studied [19,20,28,29], and there is a rich theory of process equiva-
lences based, e.g., on bisimilarity. For continuous and hybrid systems, however,
the state of the art is somewhat unsatisfactory. While there is a straightforward
generalization of process equivalences to the continuous case, in practice, equiva-
lence notions such as bisimilarity are always too strong and most systems are not
bisimilar. Since equivalence is a Boolean notion, one gets no additional informa-
tion about the systems other than they are “not bisimilar.” Further, even if two
dynamical systems are bisimilar, they may still differ in many control-theoretic
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properties. Thus, classical notions for equivalence and conformance have been of
limited use in industrial practice.

In recent years, the notion of bisimulation has therefore been generalized
to metrics on systems, which quantify the distance between them. For exam-
ple, one approach is that of ε-bisimulation, which requires that the states of
the two systems remain “close” forever (within an ε-ball), rather than coincide
exactly. Under suitable stability assumptions on the dynamics, one can con-
struct ε-bisimulations [17,18]. Unfortunately, proving the pre-requisites for the
existence of ε-bisimulations for complex dynamical models, or coming up with
suitable and practically tractable bisimulation functions is extremely difficult in
practice. In addition, establishing ε-bisimulation requires full knowledge of the
system dynamics making the scheme inapplicable where one system is an actual
physical component with unknown dynamics. So, these notions have also been
of limited industrial use so far.

Instead, a more pragmatic semi-formal approach has gained prominence in
industrial practice. In this approach, the two systems are executed on the same
input sequences and a metric on finite trajectories is used to evaluate the close-
ness of these trajectories. The key to this methodology is the selection of a good
metric, with the following properties:

– Transference. Closeness in the metric must translate to preserving interesting
classes of logical and functional specifications between systems, and

– Tractability. The metric should be efficiently computable.

In addition, there is the more informal requirement of usability : the metric should
classify systems which the engineers consider close as being close, and conversely.

The simplest candidate metric is a pointwise metric that computes the max-
imum pointwise difference between two trajectories, sometimes generalized to
apply a constant time-shift to one trajectory [15]. Unfortunately, for many prac-
tical models, two trajectories may be close only under variable time-shifts. This
is the case, for example, for two dynamical models that may use different numer-
ical integration techniques (e.g., fixed step versus adaptive step) or when some
component in the implementation has some jitter. Thus, the pointwise metric
spuriously reports large distances for “close” models. More nuanched hybrid dis-
tances have been proposed [1], but the transference properties of these metrics
w.r.t. common temporal logics are not yet clear.

In this work we present a methodology for quantifying conformance between
real-valued dynamical systems based on the Skorokhod metric [12]. The
Skorokhod metric allows for mismatches in both the trace values and in the
timeline, and quantifies temporal and spatial variation of the system dynam-
ics under a unifying framework. The distortion of the timeline is specified by a
retiming function r which is a continuous bijective strictly increasing function
from R+ to R+. Using the retiming function, we obtain the retimed trace x (r(t))
from the original trace x(t). Intuitively, in the retimed trace x (r(t)), we see
exactly the same values as before, in exactly the same order, but the time dura-
tion between two values might now be different than the corresponding duration
in the original trace. The amount of distortion for the retiming r is given by
supt≥0|r(t) − t|. Using retiming functions, the Skorokhod distance between two
traces x and y is defined to be the least value over all possible retimings r of:
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max

(

sup
t∈[0,T ]

|r(t) − t|, sup
t∈[0,T ]

D
(
x (r(t)) , y(t)

)
)

,

where D is a pointwise metric on values. In this formula, the first component
quantifies the timing discrepancy of the timing distortion required to “match”
two traces, and the second quantifies the value mismatch (in the metric space O)
of the values under the timing distortion. The Skorokhod metric was introduced
as a theoretical basis for defining the semantics of hybrid systems by providing
an appropriate hybrid topology [8,9]. We now demonstrate its usefulness in the
context of conformance testing.

Transference. We show that the Skorokhod metric gives a robust quantifi-
cation of system conformance by relating the metric to TLTL (timed LTL)
enriched with (i) predicates of the form f(x1, . . . , xn) ≥ 0, as in Signal Tem-
poral Logic [15], for specifying constraints on trace values; and (ii) freeze quan-
tifiers, as in TPTL [4], for specifying temporal constraints (freeze quantifiers
can express more complex timing constraints than bounded timing constraints,
e.g., of MTL). TLTL subsumes MTL and STL [15]. We prove a transference
theorem: flows (and propositional traces) which are close under the Skorokhod
metric satisfy “close” TLTL formulae for a rich class of temporal and spatial
predicates, where the untimed structure of the formulae remains unchanged, only
the predicates are enlarged.

Tractability. We improve on recent polynomial-time algorithms for the
Skorokhod metric [25] by taking advantage of the fact that, in practice, only
retimings that map the times in one trace to “close” times in the other are of
interest. This enables us to obtain a streaming sliding-window based monitoring
procedure which takes only O(W ) time per sample, where W is the window size
(assuming the dimension n of the system to be a constant).

Usability. Using the Skorokhod distance checking procedure as a subroutine,
we have implemented a Simulink toolbox for conformance testing. Our tool inte-
grates with Simulink’s model-based design flow for control systems, and provides
a stochastic search-based approach to find inputs which maximize the Skorokhod
distance between systems under these inputs.

We present three case studies from the control domain, including industrial
challenge problems; our empirical evaluation shows that our tool computes sharp
estimates of the conformance distance reasonably fast on each of them. Our input
models were complex enough that techniques such as ε-bisimulation functions
are inapplicable. We conclude that the Skorokhod metric can be an effective
foundation for semi-formal conformance testing for complex dynamical models.
Proofs of the theorems are given in the accompanying technical report [13].

Related Work. The work of [1,2] is closely related to ours. In it, robustness
properties of hybrid state sequences are derived with respect to a trace met-
ric which also quantifies temporal and spatial variations. Our work differs in
the following ways. First, we guarantee robustness properties over flows rather
than only over (discrete) sequences. Second, the Skorokhod metric is a stronger
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form of the (T, J, (τ, ε))-closeness degree1,2 (for systems which do not have
hybrid time); and allows us to give stronger robustness transference guaran-
tees. The Skorokhod metric requires order preservation of the timeline, which
the (T, J, (τ, ε))-closeness function does not. Preservation of the timeline order
allows us to (i) keep the untimed structure of the formulae the same (unlike in
the transference theorem of [1]); (ii) show transference of a rich class of global
timing constraints using freeze quantifiers (rather than only for the standard
bounded time quantifiers of MTL/MITL). However, for implementations where
the timeline order is not preserved, we have to settle for the less stronger guar-
antees provided by [1]. The work of [15] deals with spatial robustness of STL;
the only temporal disturbances considered are constant time-shifts for the entire
signal where the entire signal is moved to the past, or to the future by the same
amount. In contrast, the Skorokhod metric incorporates variable time-shifts.

2 Conformance Testing with the Skorokhod Metric

2.1 Systems and Conformance Testing

Traces and Systems. A (finite) trace or a signal π : [Ti, Te] �→ O is a mapping
from a finite closed interval [Ti, Te] of R+, with 0 ≤ Ti < Te, to some topological
space O. If O is a metric space, we refer to the associated metric on O as DO.
The time-domain of π, denoted tdom(π), is the time interval [Ti, Te] over which
it is defined. The time-duration of π, denoted tlen(π), is sup (tdom(π)). The t-
suffix of π for t ∈ tdom(π), denoted πt, is the trace π restricted to the interval
(tdom(π) ∩ [t, tlen(π)]. We denote by π↓T ′

e
the prefix trace obtained from π by

restricting the domain to [Ti, T
′
e] ⊆ tdom(π).

A (continuous-time) system A :
(
R

[ ]
+ �→ Oip

)
�→

(
R

[ ]
+ �→ Oop

)
, where R

[ ]
+ is

the set of finite closed intervals of R+, transforms input traces πip : [Ti, Te] �→ Oip

into output traces πop : [Ti, Te] �→ Oop (over the same time domain). We require
that the system is causal : if A(πip) �→ πop, then for every min tdom(π) ≤ T ′

e <
max tdom(π), the system A maps πip↓T ′

e
to πop↓T ′

e
. Common examples of such

systems are (causal) dynamical and hybrid dynamical systems [7,30].

Conformance Testing. Let A1 and A2 be systems and let DTR be a metric
over output traces. For a set Πip of input traces, we define the (quantitative)
conformance between A1 and A2 w.r.t. Πip as supπip∈Πip

DTR (A1 (πip) ,A2 (πip))
The conformance between A1 and A2 is their conformance w.r.t. the set of all
input traces.

The conformance testing problem asks, given systems A1,A2, a trace metric
DTR, a tolerance δ, and a set of test input traces Πtest , if the quantitative
conformance between A1 and A2 w.r.t. Πtest is more than δ. Clearly, conformance
w.r.t. Πtest is a lower bound on the conformance between A1 and A2.
1 Instead of having two separate parameters τ and ε for time and state variation, we

pre-scale time and the n state components with n + 1 constants, and have a single
value quantifying closeness of the scaled traces.

2 Informally, two signals x, y are (T, J, (τ, ε))-close if for each point x(t), there is a
point y(t′) with |t − t′| < τ such that D(x(t), y(t′)) < ε; and similarly for y(t).
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Algorithm 1. Algorithm for conformance testing
Input: Systems A1, A2, trace metric DTR, time horizon T , input parameterization F ,

termination criterion terminate?
Output: Input u that achieves maximum distance between A1 and A2

1 d ← 0, u ←⊥, dmax ← 0, umax ←⊥
2 while not(terminate?) do
3 u ← pickNewInputs(F, T, d)
4 y1 ← simulate(A1, u, T ) and y2 ← simulate(A2, u, T )
5 d ← DTR(y1, y2)
6 if d > dmax then dmax ← d , umax ← u

7 end

8 return“on input umax, outputs A1(umax) and A2(umax) differ by dmax by time T”

Algorithm 1 is a standard optimization-guided adaptive testing algorithm.
To define the set Πtest of test inputs, we use a fixed finite parameterization of
the input space using a finite set F of basis functions and fix a time horizon T .
We only generate inputs obtained as a linear combination

∑
f∈F pf · f of basis

functions over the interval [0, T ], where the coefficients {pf | f ∈ F} come from
a closed convex subset of R|F |.

In each step, Algorithm 1 picks an input signal u and computes the dis-
tance between the corresponding outputs y1 = A1(u) and y2 = A2(u). Based
on heuristics that rely on the current distance, and a possibly bounded history
of costs, the procedure then picks a new value for u by choosing new values
for the coefficients {pf | f ∈ F}. For instance, in a gradient-ascent based pro-
cedure, the new value of u is chosen by estimating the local gradient in each
direction in the input-parameter space, and then picking the direction that has
the largest (positive) gradient. In our implementation, we use the Nelder-Mead
(or nonlinear simplex) algorithm to pick new inputs.

On termination (e.g., when some maximum number of iterations is reached),
the algorithm returns the conformance distance between A1 and A2 w.r.t. the
set of tests generated. One can compare the distance to some tolerance δ chosen
based on engineering requirements.

Sampling and Polygonal Traces. In practice, the output behaviors of the
systems are observed with a sampling process, thus y1 and y2 on line 4 are
discrete time-sampled sequences. We go from these sequences to output traces
by linearly interpolating between the sampled time points.

Formally, a polygonal trace π : Iπ �→ O where O is a vector space with
the scalar field R is a continuous trace such that there exists a finite sequence
min Iπ = t0 < t1 < · · · < tm = max Iπ of time-points such that the trace segment
between tk and tk+1 is affine for all 0 ≤ k < m, i.e., for tk ≤ t ≤ tk+1 we have
π(t) = π(tk) + t−tk

tk+1−tk
·(π(tk+1) − π(tk)).

Given a timed trace sequence tseq, let [[tseq]]LI denote the polygonal trace
obtained from tseq by linear interpolation. Let tseqπ, tseqπ′ be two corresponding
samplings of the traces π, π′, respectively. For a trace metric DTR, we have:

DTR(π, π′) ≤ DTR ([[tseqπ]]LI, [[tseqπ′ ]]LI) + DTR ([[tseqπ]]LI, π) + DTR
(
[[tseqπ′ ]]LI, π

′).
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If Δsamerr is a bound on the distance between a trace and an interpolated com-
pletion of its sampling, we have that DTR(π, π′) ≤ DTR([[tseqπ]]LI, [[tseqπ′ ]]LI) +
2·Δsamerr. Thus, a value of 2·Δsamerr needs to be added in the testing algorithm
to account for the error due to polygonal approximations.

2.2 The Skorokhod Metric

We now define the Skorokhod metric, which we use as the metric in Algorithm 1.
A retiming r : I �→ I ′, for closed intervals I, I ′ of R+ is an order-preserving
(i.e., monotone) continuous bijective function from I to I ′; thus if t < t′ then
r(t) < r(t′). Let RI �→I′ be the class of retiming functions from I to I ′ and let I be
the identity retiming. Intuitively, retiming can be thought of as follows: imagine
a stretchable and compressible timeline; a retiming of the original timeline gives
a new timeline where some parts have been stretched, and some compressed,
without the timeline having been broken. Given a trace π : Iπ → O, and a
retiming r : I �→ Iπ; the function π ◦ r is another trace from I to O.

Definition 1 (Skorokhod Metric). Given a retiming r : I �→ I ′, let ||r−I||sup
be defined as ||r − I||sup = supt∈I |r(t) − t|. Given two traces π : Iπ �→ O and
π′ : Iπ′ �→ O, where O is a metric space with the associated metric DO, and a
retiming r : Iπ �→ Iπ′ , let ‖π − π′ ◦ r‖sup be defined as:

‖π − π′ ◦ r‖sup = supt∈Iπ
DO

(
π(t), π′ (r(t))

)
.

The Skorokhod distance3 between the traces π() and π′() is defined to be:

DS(π, π′) = inf
r∈RIπ �→I

π′
max(‖r − I‖sup , ‖π − π′ ◦ r‖sup). �� (1)

Intuitively, the Skorokhod distance incorporates two components: the first com-
ponent quantifies the timing discrepancy of the timing distortion required to
“match” two traces, and the second quantifies the value mismatch (in the met-
ric space O) of the values under the timing distortion. In the retimed trace π ◦ r,
we see exactly the same values as in π, in exactly the same order, but the times
at which the values are seen can be different.

The following theorem shows that the Skorokhod distance between polygonal
traces can be computed efficiently. We remark that after retiming, the retimed
version π ◦ r of a polygonal trace π need not be polygonal (see e.g., [24]).

Theorem 1 (Computing the Distance Between Polygonal Traces [25]).
Let π : Iπ �→ Rn and π′ : Iπ′ �→ Rn be two polygonal traces with mπ and mπ′

affine segments respectively. Let the Skorokhod distance between them (for the
L2 norm on Rn) be denoted as DS(π, π′).

1. Given δ ≥ 0, it can be checked whether DS(π, π′) ≤ δ in time O (mπ ·mπ′ ·n).

3 The two components of the Skorokhod distance (the retiming, and the value differ-
ence components) can be weighed with different weights – this simply corresponds
to a change of scale.
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2. Suppose we restrict retimings to be such that the i-th affine segment of π can
only be matched to π′ affine segments i − W through i + W for all i, where
W ≥ 1. Under this retiming restriction, we can determine, with a streaming
algorithm, whether DS(π, π′) ≤ δ in time O ((mπ + mπ′)·n·W ). ��

Let us denote by DW
S (π, π′) the Skorokhod difference between π, π′ under the

retiming restriction of the second part of Theorem 1, i.e., the value obtained by
restricting the retimings in Eq. 14. The value DW

S (π, π′) is an upper bound on
DS(π, π′). In addition, for W ′ < W , we have DW

S (π, π′) ≤ DW ′
S (π, π′).

3 Transference of Logical Properties

In this section, we demonstrate a transference result for the Skorokhod metric
for a version of the timed linear time logic TLTL [4]. The logic we consider
generalizes MTL and STL. We show that if the Skorokhod distance between
two traces is small, they satisfy close TLTL formulae. Given a formula φ of
TLTL satisfied by trace π1, we can compute a “relaxation” of φ that will be
satisfied by the “close” trace π2. We first present the results in a propositional
framework, and then extend to Rn-valued spaces for a logic generalizing STL.

3.1 The Logic TLTL

Let P be a set of propositions. A propositional trace π over P is a trace where the
topological space is 2P , with the associated metric DP(σ, σ′) = 0 if σ = σ′, and
∞ otherwise, for σ, σ′ ∈ 2P . We restrict our attention to propositional traces with
finite variability: we require that there exists a finite partition of tdom(π) into
disjoint subintervals I0, I1, . . . , Im such that π is constant on each subinterval.
The set of all timed propositional traces over P is denoted by Π(P).

Definition 2 (TLTL(FT) Syntax). Given a set of propositions P, a set of
(time) variables VT, and a set FT of functions from Rl

+ to R, the formulae of
TLTL(FT) are defined by the following grammar.

φ := p | true | fT(x) ∼ 0 | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 U φ2 | x.φ where

– p ∈ P and x ∈ VT, and x = (x1, . . . , xl) with xi ∈ VT for all 1 ≤ i ≤ l;
– fT ∈ FT is a real-valued function, and ∼ is one of {≤, <,≥, >}. ��

The quantifier “x.” is known as the freeze quantifier, and binds variable x to the
current time. A variable x is defined to be free in φ as follows. The variable x is
not free in x.Ψ , or in p (a proposition), or in true, or in fT(x1, . . . , xl) ∼ 0 where
xi �= x for all i. It is also not free in φ if φ does not contain an occurrence of x.
It is free in ¬ψ iff x is free in ψ; and it is free in φ1

∧∨ φ2, or in φ1 U φ2, iff x is
free in either φ1 or in φ2. Finally, variable x is free in fT(x1, . . . , xl) ∼ 0 if some
xi is x. A formula is closed if it has no free variables.
4 DW

S is not a metric over traces (the triangle inequality fails).
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Definition 3 (TLTL(FT) Semantics). Let π : I �→ 2P be a timed propositional
trace, and let E : VT �→ I be the time environment mapping the variables in VT to
time values in I. The satisfaction of the trace π with respect to the TLTL(FT)
formula φ in the time environment E is written as π |=E φ, and is defined
inductively as follows (denoting t0 = min tdom(π)).

π |=E p for p ∈ P iff p ∈ π(t0); π |=E true; π |=E ¬Ψ iff π �|=E Ψ ;

π |=E φ1 ∧ φ2 iff π |=E φ1 and π |=E φ2; π |=E φ1 ∨ φ2 iff π |=E φ1 or π |=E φ2;

π |=E fT(x1, . . . , xl) ∼ 0 iff fT(E(x1), . . . , E(xl)) ∼ 0 for ∼ ∈ {≤, <, ≥, >};

π |=E x.ψ iff π |=E[x:=t0] ψ where E [x := t0] agrees with E for all xi�=x, andmapsx to t0;

π |=E φ1 U φ2 iff πt |=E φ2 for some t ∈ I and πt′ |=E φ1 ∨ φ2 for all t0 ≤ t′ < t.

A timed trace π is said to satisfy the closed formula φ (written as π |= φ) if there
is some environment E such that π |=E φ. ��

We define additional temporal operators in the standard way: the “eventually”
operator ♦φ stands for true U φ; and the “always” operator �φ stands for ¬♦¬φ.
TLTL(FT) provides a richer framework than MTL [23] for expressing timing
constraints as: (i) freeze quantifiers allow specification of constraints between
distant contexts, which the bounded temporal operators in MTL cannot do;
and (ii) the predicates fT() ∼ 0 for fT ∈ FT allow the specification of complex
timing requirements not expressible in MTL. Note that even if the predicates
fT() ∼ 0 are restricted to be of the form x1 − x2 + c ∼ 0, where x1, x2 are freeze
variables, and c is a constant, TLTL(FT) is more expressive than MTL [6] (and
hence more expressive than MITL on which STL is based).

Example 1 (TLTL(FT) Subsumes MTL). Let FT be the set of two variable
functions of the form f(x, y) = x − y + c where c is a rational constant. Then
TLTL(FT) subsumes MTL. The MTL formula p U [a,b]q can be written as

x.
(
p U y.

(
(y ≤ x + b) ∧ (y ≥ x + a) ∧ q

))
.

We explain the formula as follows. We assign the “current” time tx to the variable
x, and some future time ty to the variable y. The values tx and ty are such that
at time ty, we have q to be true, and moreover, at all times between tx and ty,
we have p ∨ q to be true. Furthermore, ty must be such that ty ∈ [tx + a, tx + b],
which is specified by the term (y ≤ x + b) ∧ (y ≥ x + a). ��

Example 2 (Temporal Constraints). Suppose we want to express that whenever
the event p occurs, it must be followed by a response q, and then by r. In
addition, we have the following timing requirement: if εpq, εqr, εpr are the time
delays between p and q, between q and r, and between p and r, respectively,
then: we must have ε2pq + ε2qr + ε2pr ≤ d for a given positive constant d. This can
be written using freeze quantifiers as the TLTL formula φ:

x.
(
p → ♦

(
y.

(
q ∧ ♦

[
z.

(
r ∧

(
(y − x)2 + (z − y)2 + (z − x)2 ≤ d

))]) ))
. ��
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3.2 Transference of TLTL Properties for Propositional Traces

We now show that if a timed propositional trace π satisfies a TLTL(FT) formula
φ, then any timed trace π′ that is at most δ distance away from π satisfies a
slightly relaxed version of the formula φ, the degree of relaxation being governed
by δ; and the variance of the functions in FT over the time interval containing
the time domains of π and π′.

We define the distance DS between two propositional traces as the Skorokhod
distance, where we use DP as the distance between two sets of propositions.

Next, we define relaxations of TLTL(FT) formulae. The relaxations are
defined as a syntactic transformation on formulae in negation-normal form, i.e.,
in which negations only appear at the propositions. It can be showed that every
TLTL(FT) formula can be rewritten in negation-normal form, when we addi-
tionally use the waiting for operator, W, defined as:

π |=E φ1 W φ2 iff either (1) πt |=E φ1 for all t ∈ Iπ; or (2) πt |=E φ2 for
some t ∈ Iπ; and πt′ |=E φ1 ∨ φ2 for all min Iπ ≤ t′ < t.

Definition 4 (δ-relaxation of TLTL(FT) Formulae). Let φ be a TLTL(FT)

formula in which negations appear only on the propositional symbols. The δ
relaxation of φ (for δ≥0) over a closed interval J , denoted rxδ

J(φ), is defined as:

rxδ
J(p) = p

rxδ
J(¬p) = ¬p

rxδ
J(φ1 ∧ φ2) = rxδ

J(φ1) ∧ rxδ
J(φ2)

rxδ
J(x.ψ) = x.rxδ

J(ψ)
rxδ

J(φ1 U φ2) = rxδ
J(φ1)U rxδ

J (φ2)

rxδ
J(true) = true

rxδ
J(false) = false

rxδ
J(φ1 ∨ φ2) = rxδ

J(φ1) ∨ rxδ
J(φ2)

rxδ
J(φ1 W φ2) = rxδ

J(φ1)W rxδ
J(φ2)

rxδ
J (fT(x1, . . . , xl)) ∼ 0) =

{
fT(x1, . . . , xl) + KfT

J (δ) ∼ 0 if ∼∈ {>,≥}
fT(x1, . . . , xl) − KfT

J (δ) ∼ 0 if ∼∈ {<,≤},

where KfT

J : [0,max tdom(J) − min tdom(J)] �→ R+, and

KfT

J (δ)def= sup
t1, . . . , tl ∈ J
t′1, . . . , t

′
l ∈ J

⎧
⎨

⎩

∣
∣
∣
∣
∣
∣

fT(t1, . . . , tl)
−

fT(t′1, . . . , t
′
l)

∣
∣
∣
∣
∣
∣

s.t. |ti − t′i| ≤ δ for all i

⎫
⎬

⎭

(2)

Thus, instead of comparing the fT() values to 0, we relax by comparing instead
to ±KfT

J (δ). The other cases recursively relax the subformulae. The functions
KfT

J (δ) define the maximal change in the value of fT that can occur when the
input variables can vary by δ. The role of J is to restrict the domain of the freeze
quantifier variables to the time interval J (from R+) in order to obtain the least
possible relaxation on a given trace π (e.g., we do not care about the values of
a function in FT outside of the domain tdom(π) of the trace).

Example 3 (δ-relaxation for Bounded Temporal Operators – MTL). We demon-
strate how δ-relaxation operates on bounded time constraints. Consider again
the MTL formula φ = p U [a,b]q. When written as a TLTL formula and relaxed
using the rxδ

R+
function, the relaxed TLTL formula is equivalent to the MTL

formula p U [a−2·δ , b+2·δ]q. ��
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Theorem 2 (Transference for Propositional Traces). Let π, π′ be two
timed propositional traces such that DS(π, π′) < δ for some finite δ. Let φ
be a closed TLTL(FT) formula in negation-normal form. If π |= φ, then
π′ |= rxδ

Iπ,π′ (φ) where Iπ,π′ is the convex hull of tdom(π) ∪ tdom(π′). ��

Theorem 2 relaxes the freeze variables over the entire signal time-range Iπ,π′ ; it
can be strengthened by relaxing over a smaller range: if π |= φ, and t1, . . . , tk
are time-stamp assignments to the freeze variables x1, . . . , xk which witness π
satisfying φ, then xi only needs to be relaxed over [ti − δ, ti + δ] rather than the
larger interval Iπ,π′ . These smaller relaxation intervals for the freeze variables
can be incorporated in Eq. 2. We omit the details for ease of presentation.

Example 4. Recall Example 2, and the formula φ presented in it. Suppose a
trace π satisfies φ; and let DS (π, π′) < δ (using the Skorokhod metric for propo-
sitional traces). Our transference theorem ensures that (i) π′ will satisfy the
same untimed formula p → ♦ (q ∧ ♦r); and (ii) it gives a bound on how much
the timing constraints need to be relaxed in φ in order to ensure satisfaction by
π′; it states that π′ satisfies the following relaxed formula φ′.

π′ |= x.
(
p → ♦

(
y.

(
q ∧ ♦

[
z.

(
r ∧

(
(y − x)2 + (z − y)2 + (z − x)2 ≤ d†))]) ))

where d† = d + 12 · δ2 + 4
√

3 · δ ·
√

d (see [13]). ��

3.3 Transference of TLTL Properties for Rn-valued Signals

A timed Rn-valued trace π is a function from a closed interval I of R+ to Rn.
For α = (α0, . . . , αn) ∈ Rn, we denote the k-th dimensional value αk as α[k].
The π projected function onto the k-th R dimension is denoted by πk : I �→ R.

To define the semantics of TLTL formulae over timed Rn-valued sequences,
we use booleanizing predicates μ : Rn �→ B, as in STL [15], to transform Rn-
valued sequences into timed propositional sequences. These predicates are part
of the logical specification. In this work, we restrict our attention to traces and
predicates such that each predicate varies only finitely often on the finite time
traces under consideration. Since we also have freeze variables, TLTL with pred-
icates is strictly more expressive than STL5 (as in the propositional case [6]).

Definition 5 (TLTL(FT, FS) Syntax). Given a set of variables VT (the freeze
variables), a set of ordered variables VS (the signal variables), and two sets
FT,FS of functions, the formulae of TLTL(FT, FS) are defined by the grammar:

φ := true | fT(x) ∼ 0 | fS(y) ∼ 0 | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 U φ2 | x.φ where

– x ∈ VT, and x = (x1, . . . , xl) with xi ∈ VT for all 1 ≤ i ≤ l;
– z = (z1, . . . , zd) with zj ∈ VS for all 1 ≤ j ≤ d (with d ≤ n);
– VT and VS are disjoint;
– fT ∈ FT and fS ∈ FS are real-valued functions, and ∼ is ≤, <,≥, or >. ��
5 STL is MITL enriched with booleanzing predicates, i.e., STL is MITL(FS).
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The semantics of TLTL(FT, FS) is straightforward and similar to the proposi-
tional case (Definition 3). The only new ingredients are the booleanizing predi-
cates fS(z) ∼ 0: we define π |=E fS(z1, . . . , zd) ∼ 0 iff fS(πj1 [t0], . . . , πjd

[t0]) ∼ 0
for any freeze variable environment E , where t0 = min tdom(π), and zi is the
ji-th variable in VS (i.e., zi refers to the ji-th dimension in the signal trace). We
require that for a timed Rn-valued trace π to satisfy φ, the arity of the functions
in FS occurring in φ should not be more than n, that is, functions should not
refer to dimensions greater than n for an Rn trace.
δ relaxation of TLTL(FT, FS). Let JVS

be a mapping from VS to closed intervals
of R, thus JVS

(z) denotes a sub-domain of z ∈ VS. The relaxation function rxδ
J,JVS

which operates on TLTL(FT, FS) formulae is defined analogous to the relaxation
function rxδ

J in Definition 4. We omit the similar cases, and only present the new
case for the predicates formed from FS.

rxδ
J,JVS

(fS(z1, . . . , zl)) ∼ 0) =

⎧
⎨

⎩

fS(z1, . . . , zl) + K
fS
J,JVS

(δ) ∼ 0 if ∼ ∈ {>, ≥};
fS(z1, . . . , zl) − K

fS
J,JVS

(δ) ∼ 0 if ∼ ∈ {<, ≤}

where KfS

J,JVS
:
[
0, maxz∈VS

|maxJVS
(z) − minJVS

(z)|
]

�→ R+ is a function s.t.

K
fS
J,JVS

(δ) = sup
ui ∈ JVS

(zi); u′
i ∈ JVS

(z′
i)

for all i

⎧
⎨

⎩

∣
∣
∣
∣
∣
∣

fS(u1, . . . , ul)
−

fS(u
′
1, . . . , u′

l)

∣
∣
∣
∣
∣
∣
s.t. |ui−u′

i| ≤ δ for all i

⎫
⎬

⎭
.

The functions KfS

J,JVS
(δ) define the maximal change in the value of fS that can

occur when the input variables can vary by δ over the intervals in JVS
(z) and

J . The role of JVS
in the above definition is to restrict the domain of the signal

variables in order to obtain the least possible relaxation bounds on the signal
constraints; as was done in Definition 4 for the freeze variables.

Theorem 3 (Transference for Rn-valued Traces). Let π, π′ be two Rn-
valued traces such the Skorokhod distance between them is less than δ for some
finite δ. Let φ be a closed TLTL(FT, FS) formula in negation-normal form. If
π |= φ, then π′ |= rxδ

Iπ,π′ ,IVS
(φ), where

– Iπ,π′ is the convex hull of tdom(π) ∪ tdom(π′); and
– IVS

(z) is the convex hull of {π(t)[k] | t ∈ tdom(π)} ∪ {π′(t)[k] | t ∈ tdom(π′)};
where z is the k-th variable in the ordered set VS. ��

Theorem 3 can be strengthened similar to the strengthening mentioned for
Theorem 2 by relaxing the variables over smaller intervals obtained from assign-
ments to variables which witness π |= φ.

Example 5 (Spatial Constraints and Transference). Recall Example 2, suppose
that the events p, q, and r are defined by the following predicates over real
variables α1 and α2. Let p ≡ α1 + 10·α2 ≥ 3; the predicate q ≡ |α1| + |α2| ≤ 20;
and r ≡ |α1| + |α2| ≤ 15. Let π satisfy this formula with these predicates, and
let π′ be δ close to π, for a finite δ under the Skorokhod metric for R2. Our
robustness theorem ensures that π′ will satisfy the relaxed formula

x.
(
pδ → ♦(y.

(
qδ ∧ ♦

[
z.
(
rδ ∧ ((y − x)2 + (z − y)2 + (z − x)2 ≤ d + 12·δ2)

)]) ))
.
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[
ḣ1

ḣ2

]
=

[
i − d1−d2

] [
ḣ1

ḣ2

]
=

[ −d1
i − d2

]
h2 < �2

h1 < �1

Fig. 1. System A1 used for benchmarking Skorokhod Distance computation. Inflow
rate i, Drain rate d1 for tank 1 and d2 for tank 2 are all inputs to the system.

where the relaxed predicates pδ, qδ, rδ are defined as follows: pδ ≡ α1 + 10·α2 ≥
3 − 22·δ; qδ ≡ |α1| + |α2| ≤ 20 + 4·δ; and rδ ≡ |α1| + |α2| ≤ 15 + 4·δ. ��

4 Experimental Evaluation

We have implemented a streaming, sliding window-based monitoring routine
which checks, given a fixed δ, whether the linear interpolations of two time-
sampled traces are at Skorokhod distance at most δ away from each other. The
least such δ value is then computed by binary search over the monitoring routine.
The upper limit of the search range is set to the pointwise metric (i.e., assuming
the identity retiming) between the two traces. The traces to the monitoring rou-
tine are pre-scaled, each dimension (and the time-stamp) is scaled by a different
constant. The constants are chosen so that after scaling, one unit of deviation
in one dimension is as undesirable as one unit of jitter in other dimensions.

We have integrated the monitoring routine in an adaptive testing proce-
dure for Simulink blocks based on Algorithm 1. The output of Algorithm 1 is
compared against tolerance levels (e.g., maximum allowed jitter) given by the
engineering requirements. In the following, we evaluate the effectiveness of the
Skorokhod metric in conformance testing of Simulink applications.

Skorokhod Distance Computation Benchmark. We first show that
the window-based implementation is efficient using the following benchmark.
Figure 1 shows a hybrid dynamical system A1 consisting of two water tanks,
each with an outlet from which water drains at a constant rate dj . Both tanks
share a single inlet pipe that is switched between the tanks, filling only one tank
at any given time at a constant inflow rate of i. When the water-level in tank
j falls below level �j , the pipe switches to fill it. The drain and inflow rates d1,
d2 and i are assumed to be inputs to the system. Now consider a version A2

that incorporates an actuation delay that is a function of the inflow rate. This
means that after the level drops to �j for tank j, the inlet pipe starts filling it
only after a finite time. A1 and A2 have the same initial water level. We perform
a fixed number of simulations by systematically choosing drain and inflow rates
d1, d2, i to generate traces (water-level vs. time) of both systems and compute
their Skorokhod distance. We summarize the results in Table 1.

Recall that the Skorokhod distance computation involves a sequence of mon-
itoring calls with different δ values picked by a binary-search procedure. Thus,
the total time to compute DS is the sum over the computation times for individ-
ual monitoring calls plus some bookkeeping. In Table 1, we make a distinction
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Table 1. Computation of DS(π1, π2), where π1 is a trace of system A1 described in
Fig. 1, and π2 is a trace of system A2, which is A1 with an actuation delay. D2 is the
pointwise L2 distance. Both π1 and π2 contain equally spaced 2001 time points over a
simulation horizon of 100 s.

Window Avg. DS Avg. Time taken (secs) D2−DS
D2

size Computation Monitoring Max. Avg. Std. dev.

20 8.58 0.81 0.13 0.11 0.03 0.03

40 8.35 1.55 0.26 0.23 0.06 0.06

60 8.09 2.31 0.39 0.34 0.1 0.09

80 7.88 3.05 0.52 0.38 0.1 0.11

100 7.72 3.77 0.64 0.38 0.1 0.11

between the average time to monitor traces (given a δ value), and the average
time to compute DS. There are an average of 6 monitoring calls per DS com-
putation. We ran 64 simulations by choosing different input values, and then
computing DS for increasing window sizes. As the window size increases, the
average DS decreases and the computation time increases linearly, as expected
from Theorem 1. Finally, the Skorokhod distance can be significantly smaller
than the simpler metric D2 (defined as the maximum of the pointwise L2 norm).
This discrepancy becomes more prominent with increased window size. With a
window size of 100, the variation between DS and D2 was up to 38% (mean
difference of 10% with std. deviation of 11%).

Case Study I: LQR-Based Controller. The first case study for conformance
testing is an aircraft pitch control application taken from the openly accessible
control tutorials for Matlab and Simulink [27]. The authors describe a linear
dynamical system of the form: ẋ = (A − BK)x + Bθdes. Here, x describes the
vector of continuous state variables and θdes is the desired reference provided as
an external input. One of the states in the x vector is the pitch angle θ, which
is also the system output. The controller gain matrix K is computed using the
linear quadratic regulator method [5], a standard technique from optimal control.
We are interested in studying a digital implementation of the continuous-time
controller obtained using the LQR method. To do so, we consider sampled-data
control where the controller samples the plant output, computes, and provides
the control input to the plant every Δ s. To model sensor delay, we add a fixed
delay element to the system; thus, the overall system now represents a delay-
differential equation.

Control engineers are typically interested in the step response of a system.
In particular, quantities such as the overshoot/undershoot of the output signal
(maximum positive/negative deviation from a reference value) and the settling
time (time it takes for transient behaviors to converge to some small region
around the reference value) are of interest. Given a settling time and overshoot
for the first system, we would like the second system to display similar charac-
teristics. We remark that both of these properties can be expressed in STL (and
hence in TLTL(FT, FS)), see [21] for details. We quantify system conformance
(and thereby adherence to requirements) in terms of the Skorokhod distance, or,
in other words, maximum permitted time/space-jitter value δ. For this system,
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Table 2. Variation in Skorokhod Distance with changing sampling time for an aircraft
pitch control system with an LQR-based controller. Time taken indicates the total time
spent in computing the upper bound on the Skorokhod distance across all simulations.
We choose a window size chosen of 150 samples and simulate the system for 5 s with
a variable-step solver.

Controller Skorokhod Time taken (seconds) Number of

Sample-Time distance to compute DS simulations

(seconds)

0.01 0.012 232 104

0.05 0.049 96 104

0.1 0.11 70 106

0.3 0.39 45 104

0.5 1.51 40 101

we know that at nominal conditions, the settling time is approximately 2.5 s, and
that we can tolerate an increase in settling time of about 0.5 s. Thus, we chose a
time-scaling factor of 2 = 1

0.5 . We observe that the range of θ is about 0.4 radi-
ans, and specify an overshoot of 20% of this range as being permissible. Thus,
we pick a scaling factor of 1

0.08 for the signal domain. In other words, Skorokhod
distance δ = 1 corresponds to either a time-jitter of 0.5 s, or a space-discrepancy
of 0.08 radians.

We summarize the results of conformance testing for different values of sam-
pling time Δ in Table 2. As expected, the conformance increases with increasing
Δ. The time taken to compute the Skorokhod distance decreases with increasing
Δ, as the number of time-points in the two traces decreases.

Case Study II: Air-Fuel Ratio Controller. In [21], the authors present three
systems representing an air-fuel ratio (λ) controller for a gasoline engine, that
regulate λ to a given reference value of λref = 14.7. Of interest to us are the sec-
ond and the third systems. The former has a continuous-time plant model with
highly nonlinear dynamics, and a discrete-time controller model. In [22], the
authors present a version of this system where the controller is also continuous.
We take this to be A1. The third system in [21] is a continuous-time closed-loop
system where all the system differential equations have right-hand-sides that are
polynomial approximations of the nonlinear dynamics in A1. We call this polyno-
mial dynamical system A2. The rationale for these system versions is as follows:
existing formal methods tools cannot reason about highly nonlinear dynamical
systems, but tools such as Flow* [10], C2E2 [16], and CORA [3] demonstrate
good capabilities for polynomial dynamical systems. Thus, the hope is to ana-
lyze the simpler systems instead. In [21], the authors comment that the system
transformations are not accompanied by formal guarantees. By quantifying the
difference in the system behaviors, we hope to show that if the system A2 satis-
fies the temporal requirements ϕ presented in [21], then A1 satisfies a relaxation
of ϕ. We pick a scaling factor of 2 for the time domain, as a time-jitter of 0.5
s is the maximum deviation we wish to tolerate in the settling time, and pick
0.68 = 1

0.1∗λref
as the scaling factor for λ (which corresponds to the worst case

tolerated discrepancy in the overshoot).



248 J.V. Deshmukh et al.

Table 3. Conformance testing for closed-loop A/F ratio controller at different engine
speeds. We scale the signals such that 0.5 s of time-jitter is treated equivalent to 10 % of
the steady-state value (14.7) of the A/F ratio signal. The simulation traces correspond
to a time horizon of 10 s and the window size is 300.

Engine Skorokhod Computation Total Time Number of

speed (rpm) distance Time (secs) taken (secs) simulations

1000 0.31 218 544 700

1500 0.20 240 553 700

2000 0.27 223 532 700

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
2900

2930

2960

2990
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Fig. 2. Outputs showing a Skorokhod distance of 1.04.

Table 3 summarizes the results of conformance testing for these systems.
In [14], the authors posed a challenge problem for conformance testing. They
reported that the original nonlinear system and the approximate polynomial
system both satisfy the STL requirements specifying overshoot/undershoot and
settling time. We, however, found an input that causes the outputs of the two
systems to have a high Skorokhod distance. Thus, comparing the two systems
by considering equi-satisfaction of a given set of STL requirements such as over-
shoot/undershoot and settling time may not always be sufficient. Our experiment
indicates that the Skorokhod metric may be a better measure of conformance.

Case Study III: Engine Timing Model. The Simulink demo palette from
Mathworks [26] contains a system representing a four-cylinder spark ignition
internal combustion engine based on a model by Crossley and Cook [11]. This
system is then enhanced by adding a proportional plus integral (P+I) control
law. The integrator is used to adjust the steady-state throttle as the desired
engine speed set-point changes, and the proportional term compensates for phase
lag introduced by the integrator. In an actual implementation of such a system,
such a P+I controller is implemented using a discrete-time integrator. Such
integrator blocks are typically associated with a particular numerical integration
technique, e.g., forward-Euler, backward-Euler, trapezoidal, etc. It is expected
that different numerical techniques will produce slight variation in the results.
We wish to quantify the effect of using different numerical integrators in a closed-
loop setting. We checked if the user-provided tolerance of δ = 1.0 is satisfied by
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systems A1 and A2, where A1 is the original system provided in [26] and A2 is a
modified system that uses the backward Euler method to compute the discrete-
time integral in the controller. We scale the outputs in such a way that a value
discrepancy of 1% of the the output range (∼ 1000) is equivalent to a time
discrepancy of 0.1 s. These values are chosen to bias the search towards finding
signals that have a small time jitter. This is an interesting scenario for this case
study where the two systems are equivalent except for the underlying numerical
integration solver. We find the signal shown in Fig. 2, for which we find output
traces with Skorokhod distance 1.04. The experiment uses 296 simulations and
the total time taken to find the counterexample is 677 s.

5 Conclusion

We argue that the Skorokhod metric provides a robust basis for checking con-
formance between dynamical systems. We showed that it provides transference
of a rich class of temporal logic properties and that it can be computed effi-
ciently, both in theory and in practice. Our experiments indicate that confor-
mance checking using the Skorokhod metric can be integrated into a testing flow
for Simulink models and can find non-conformant behaviors effectively, allowing
for independent weighing of time and value distortions.
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Abstract. In this paper, we study the set of thresholds that the protag-
onist can force in a zero-sum two-player multidimensional mean-payoff
game. The set of maximal elements of such a set is called the Pareto
curve, a classical tool to analyze trade-offs. As thresholds are vectors
of real numbers in multiple dimensions, there exist usually an infinite
number of such maximal elements. Our main results are as follow. First,
we study the geometry of this set and show that it is definable as a
finite union of convex sets given by linear inequations. Second, we pro-
vide a Σ2P algorithm to decide if this set intersects a convex set defined
by linear inequations, and we prove the optimality of our algorithm by
providing a matching complexity lower bound for the problem. Further-
more, we show that, under natural assumptions, i.e. fixed number of
dimensions and polynomially bounded weights in the game, the prob-
lem can be solved in deterministic polynomial time. Finally, we show
that the Pareto curve can be effectively constructed, and under the for-
mer natural assumptions, this construction can be done in deterministic
polynomial time.

1 Introduction

Two-player zero-sum games played on graphs are adequate models for open
reactive systems [12], i.e. systems maintaining a continuous interaction with
their environment. In such model, Eve (the protagonist) models the system,
Adam (the antagonist) models the environment, and a winning strategy for Eve
in this game represents a controller that enforces a good property (modeled as the
winning condition in the game) against all possible behaviors of the environment.
Recently, there has been a large effort to study quantitative extensions of those
graph games, see e.g. [6]. Those extensions are useful to model quantitative
aspects of reactive systems such as mean energy or peak energy consumption,
mean response time, etc. In practice, a system is most often exhibiting several
such quantitative aspects, and they may be conflicting, e.g. one may need to
consume more energy in order to ensure of a lower mean response time. This is
why there is a clear need to study multi-dimensional quantitative games.

In [15], the threshold problem for multi-dimensional mean-payoff games is
studied, i.e. given a d-dimensional value vector v ∈ R

d, does Eve have a strategy
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against all strategies of Adam to enforce values larger or equal to v. As weights
in the game are given as vectors in multiple dimensions, there are usually an
infinite number of incomparable thresholds that Eve is able to enforce. The set
of maximal thresholds that Eve can enforce is called the Pareto curve, it is the
classical tool to analyze trade-offs. Another application of the Pareto curve is the
study of multiplayer games. For instance to compute Nash equilibria, a multi-
player game with mean-payoff objectives is transformed into a multidimensional
mean-payoff two-player game [2], and the Pareto curve of this multidimensional
game allows us to compute the equilibria of the original multiplayer game. In
this paper, we study the Pareto curve and the set of thresholds that Eve can
enforce in a multidimensional mean-payoff games.

Contributions. To effectively analyze the trade-offs in systems formalized by
multidimensional mean-payoff games, we need algorithms to answer queries
about Pareto curves or to compute an effective representation of them. This
is the subject of this paper. Our main contributions are as follows.

First, we characterize the geometry of the set of thresholds that Eve can
force: we show that this infinite set can be effectively represented as a (finite)
union of convex sets defined by linear inequations. We obtain this result both
for games where the mean-payoff is given dimension by dimension using lim inf
(Theorem 4), and for a mixture of lim inf and lim sup (Theorem 10). Using this
symbolic representation as a finite union of convex sets, it is now possible for
instance to optimize linear functions by calls to linear programming.

Second, we study the computational complexity of natural associated deci-
sion problems. We provide a Σ2P algorithm to decide if this set of thresholds
intersects a convex set defined by linear inequations, and we prove the optimal-
ity of our algorithm by providing a matching complexity lower bound for the
problem (Theorem 6). To obtain this result and several others in our paper,
we extensively use techniques from discrete geometry [9] but we also need to
establish new non-trivial results. In particular, we provide new results on the
complexity of manipulating and querying linear sets defined by sets of linear
inequations (Theorem 3). We believe that those results are of interest on their
own. Equipped with those new results, we show that, even if the Pareto curve is
represented by an exponential number of convex sets, each of them being defined
by an exponential number of linear inequations, they are well behaved. Indeed,
all the inequations that are needed to represent the Pareto curve and its down-
ward closure (the set of thresholds that can be forced by Eve), have encoding
that are bounded by polynomial functions in the size of the game.

Third, we show that it is possible to answer queries on the set thresholds
that Eve can force (Theorem 7) and to construct the Pareto curve (Theorem 8)
in deterministic polynomial time for fixed number of dimensions and polynomi-
ally bounded weights. Those results are of practical relevance as the number
of dimension while multiple is often quite low in practice, and polynomially
bounded weight is also a reasonable assumption, see [4,8,16] for papers where
those two properties are exploited.
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Related Works. In [1], Alur et al. consider languages of infinite words definable
by Boolean queries over multidimensional mean-payoff automata. They study the
accumulation points of infinite runs as a way to define an acceptance condition.
They do not consider the construction of the Pareto curves associated to lan-
guages. Here, we show how to construct the Pareto curves in the more general
and challenging setting of multidimensional mean-payoff games.

In [11], Papadimitriou et al. define a general procedure to construct approx-
imations of Pareto curves. For models with fixed number of dimensions, they
identify conditions that are sufficient to ensure that this approximation can
be constructed in polynomial time. This technique has been used e.g. to provide
approximate constructions of the Pareto curves for discounted sum Markov deci-
sion processes [7]. With the technique of [11], we can obtain approximations of
the Pareto curves of multidimensional mean-payoff games in polynomial time for
fixed number of dimensions. Here we provide a stronger result as we show how
to construct exact representations of the Pareto curves (and not only approx-
imations!) of multidimensional mean-payoff games in deterministic polynomial
time for fixed number of dimensions.

Structure of the Paper. Section 2 defines the problems that we solve. Section 3
establishes general complexity results on the geometric objects that we use in the
core of our paper. Section 4 solves the lim inf case. We concentrate on this case
first as it exhibits all the difficulties of the general case with simpler notations.
Section 5 deals with the construction of a concrete representation of the Pareto
curve. In Sect. 6 we solve the general problem in which lim inf and lim sup are
mixed.

For lack of space, the technical proofs are omitted, and can be found in [3].

2 Preliminaries

Arenas. We define arenas for two players that we call Eve and Adam. An arena A
is a tuple 〈States∃,States∀,Edges〉, where:

– States = States∃�States∀ is a finite set of states partitioned between the states
of Eve and those of Adam;1

– Edges ⊆ States × States is the set of edges. W.l.o.g. we assume that for all
s ∈ States, there exists s′ ∈ States such that (s, s′) ∈ Edges.

A play proceeds as follows. Whenever we arrive at a state s: if s ∈ States∃,
then Eve selects a state s′ such that (s, s′) ∈ Edges; if s ∈ States∀, then Adam
selects a state s′ such that (s, s′) ∈ Edges. The game then continues from s′

and this is repeated to form an infinite sequence of states. Formally, a play
in the arena A is an infinite sequence of states ρ = ρ0ρ1 · · · such that for all
i ≥ 0, (ρi, ρi+1) ∈ Edges. We write ρ≤ n for the prefix ρ0 · · · ρn. A history h
of the arena A is a (finite and non-empty) prefix of a play, i.e. an element of
States∗ · States.
1 We will write |States| for the cardinal of States.



254 R. Brenguier and J.-F. Raskin

Strategies. Let A be an arena, a strategy for Eve maps histories ending in a
state of States∃ to a successor of that state. Formally, it is a function σ∃ : States∗ ·
States∃ → States, such that for all histories h and states s, (s, σ∃(h · s)) ∈ Edges.
Similarly, a strategy for Adam is a function σ∀ : States∗ · States∀ → Actions, such
that for all for all histories h and states s, (s, σ∀(h · s)) ∈ Edges. A strategy σ∀ is
memoryless if for all histories h and h′, and all states s, σ∀(h ·s) = σ∀(h′ ·s). We
write M for the (finite) set of memoryless strategies of Adam. Let σ∃ be a strategy
for Eve, a play ρ is compatible with the strategy σ∃ if, for all k ≥ 0, if ρk ∈ States∃
then ρk+1 = σ∃(ρ≤ k). We write OutcomeA(s, σ∃) for the set of plays in A that
are compatible with strategy σ∃ and have initial state s (i.e. ρ such that ρ0 = s).
These plays are called outcomes of σ∃ from s. We simply write Outcome(s, σ∃)
when A is clear from context. The set of outcomes OutcomeA(s, σ∀) of a strategy
of Adam is defined symmetrically.

Weighted Game. A weighted game G = 〈A, w, I, J〉 is an arena A equipped
with a weight function w : Edges 
→ Z

d, and a partition of the set of dimensions
[[1, d]] = {1, 2, . . . , d} into I � J = [[1, d]]. We call d the dimension of G. Given
a weight function w, we write wi for the projection to the i-th dimension of
the function w. We write WG for the maximal absolute value appearing in the
weights: WG = max{|wi(e)| | i ∈ [[1, d]], e ∈ Edges}. The mean-payoff inferior
and mean-payoff superior over dimension i of a play ρ are given by:

MPi(ρ) = lim inf
n→∞

1
n

∑

0≤k<n

wi(ρk, ρk+1),

MPi(ρ) = lim sup
n→∞

1
n

∑

0≤k<n

wi(ρk, ρk+1).

The goal of Eve is to maximize the mean-payoff inferior for the dimensions
in I, and the mean-payoff superior for the dimensions in J . Let G be a weighted
game, s a state of G, and v ∈ R

d, we say that a strategy σ∃ ensures thresholds
v from state s if for all outcomes ρ ∈ OutcomeA(s, σ∃), for all dimensions i ∈ I,
MPi(ρ) ≥ vi, and for all dimensions j ∈ J , MPj(ρ) ≥ vj .

Pareto Optimality. We are interested in strategies of Eve that ensure thresh-
olds as high as possible on all dimensions. However, since the weights are mul-
tidimensional, there is not a unique maximal threshold in general. We use the
concept of Pareto optimality to identify the most interesting thresholds. To define
the set of Pareto optimal thresholds, we first define the set of thresholds that
Eve can force:

value(G, s) =
{

v ∈ R
d | ∃σ∃ · ∀ρ ∈ Outcome(s, σ∃) · ∀i ∈ I : MPi(ρ) ≥ vi

∧∀j ∈ J : MPj(ρ) ≥ vj

}
.

A threshold v ∈ R
d is Pareto optimal from s if is maximal in the set value(G, s).

So the set of Pareto optimal thresholds is defined as:

PO(G, s) = {v ∈ value(G, s) | ¬∃v′ ∈ value(G, s) : v′ > v}.
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We refer to this set as the Pareto curve of the game. Our goal is to compute a
representation of this curve. Note that the set of thresholds that Eve can force
is exactly equal to the downward closure of the Pareto optimal thresholds, i.e.
value(G, s) =↓ PO(G, s).

Linear Inequations. Let a ∈ Q
d be a vector in d dimensions. The associated

linear function αa : R
d 
→ R is the function αa(x) =

∑
i∈[[1,d]] ai ·xi that computes

the weighted sum relative to a. A linear inequation is a pair (a, b) where a ∈
Q

d\{0} and b ∈ Q. The half-space satisfying (a, b) is the set 1
2space(a, b) = {x ∈

R
d | αa(x) ≥ b}. A linear equation is also given by a pair (a, b) where a ∈ Q

d\{0}
and b ∈ Q but we associate to it the hyperplane hplane(a, b) = {x ∈ R

d |
αa(x) = b}. If H = 1

2space(a, b) is a half-space, we sometimes write hplane(H)
for the associated hyperplane hplane(a, b). A system of linear inequations is a
set λ = {(a1, b1), . . . , (al, bl)} of linear inequations. The polyhedron generated by
λ is the set polyhedron(λ) =

⋂
(a,b)∈λ

1
2space(a, b).

A natural problem, is to try to optimize the threshold we can ensure with
respect to a linear function α : R

d 
→ R. We are looking for a strategy σ∃ which
ensures a threshold v ∈ R

d, and such that there is no σ′
∃ which ensures a thresh-

old v′ ∈ R
d, with α(v′) > α(v). To make this into a decision problem, we fix a

real b, and ask if it is possible to ensure threshold v such that α(v) ≥ b. We con-
sider a generalization of this problem which considers a set of linear inequations
instead of a single one.

Polyhedron Value Problem. Given a mean-payoff game G, a set of linear
inequations λ over elements of R

d, the polyhedron value problem asks whether
there is a strategy σ∃ and a value v ∈ polyhedron(λ) such that σ∃ ensures v.
Note that this is equivalent to ask whether polyhedron(λ) intersects value(G, s).

Remark 1. Other works ([8,15] for instance) focus on the 0-value problem, which
is a special case of the polyhedron value problem (take as polyhedron the set
R

d
+). This special case is simpler: we will show that the polyhedron value problem

is Σ2P-complete while the 0-value problem is coNP-complete [15].

Consider a system with n resources R1, . . . , Rn that are shared among d
agents A1, . . . , Ad. Two agents cannot access the same resource at the same
time and can request one resource at any time. We want to control the access to
the resources in a way that minimizes the time that is spent during the waiting
period by the different agents. This situation can be seen as a d dimensional
game, in which if Ai is waiting then the reward is −1 on the i-th dimension
and 0 otherwise. A situation with two agents and one resource is represented in
Fig. 1.

On each dimension, the average corresponds to the opposite of the average
waiting time of each agent. For limit inferior objectives the controller cannot
ensure a payoff of 0 on all dimensions. However, it can ensure thresholds like
(−1, 0), (0,−1), or (− 1

2 ,− 1
2 ), and in fact all the thresholds on the line segment

from point (−1, 0) to (0,−1), or below it (this set is the set of feasible thresholds).
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A1 waits R1 A1 waits R1

A2 waits R1 A2 waits R1

A1 and A2 wait R1 A1 and A2 wait R1

0, 0

0, 0

0, 0

−1, 0

0, 0

0,−1

−1, 0

0,−1

−1,−1

Fig. 1. A two-dimensional mean-payoff game. Rounded
states belong to Eve and rectangles to Adam.

(0,−1)

(−1, 0)

Fig. 2. Pareto curve
of the game of Fig. 1.

Figure 2 shows the Pareto curve of the game. To illustrate the polyhedron value
problem, assume we want a strategy which gives at least − 1

3 on the first dimen-
sion, at least − 3

4 on the second one: this corresponds to solution of the problems
with λ = ((1, 0),− 1

3 ), ((0, 1),− 3
4 ). The frontier of this polyhedron is represented

by dotted lines on the figure. This polyhedron has a non-empty intersection with
the set of feasible thresholds, which means the problem has a solution.

3 Geometrical Representations

Since our typical reader may not be familiar with all the notions of discrete
geometry that we need, we summarize in this section useful notions and prop-
erties related to convex sets which are useful for our characterization of the sets
PO(G, s) and value(G, s). For an introduction to discrete geometry, we refer the
interested reader to [9]. We also prove new results in Theorems 1, 2 and 3 on
manipulating and querying polytopes and systems of linear inequations. Those
results are necessary to prove the main theorems of our paper, and we believe
that they are of interest on their own.

To allow computational complexity measure, the size of the representations
of geometrical objects is relevant. We give here the number of bits required to
represent the objects that we manipulate. The size of a rational number r = p

q ∈
Q where p ∈ Z, q ∈ N, p and q are relatively prime, is: ||r|| = 1+�log2(|p|+1)�+
�log2(q + 1)�. The size of a vector v = (r1, . . . , rd) is ||v|| = d +

∑
i∈[[1,d]] ||ri||.

The size of an equation (a, b) is ||(a, b)|| = ||a|| + ||b|| and the size of a system of
equations λ is ||λ|| =

∑
(a,b)∈λ ||(a, b)||.

A bounded polyhedron is called a polytope. A face F of P is a subset of P of
the form F = P ∩HF , where HF is a half-space such that P ⊆ HF . In that case,
say that HF defines face F of P . A face of dimension 1 is called a vertex. If P has
dimension d′, then a face of dimension d′ − 1 is called a facet. Given a polytope
P , a complete set of facet-defining half-spaces F contains for each facet F a half-
space HF = 1

2space(aF , bF ) such that P ∩ hplane(aF , bF ) = F and P ⊆ HF .
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We will write F(P ) for such a set. The convex hull of a set of points X ⊆ R
d

is the set conv(X) =
{∑

x∈X tx · x | ∀x ∈ X. tx ∈ [0, 1] ∧
∑

x∈X tx = 1
}
. The

downward closure of a set of points X ⊆ R
d, is the set ↓ X = {x | ∃x′ ∈ X. ∀i ∈

[[1, d]]. xi ≤ x′
i}.

If X is a finite set of points, the convex hull P = conv(X) can be written
as a finite intersection of half-spaces [9], it is therefore a polytope. It can be
represented either by its extremal points or as the intersection of its facet-defining
half-spaces.

For our algorithms, it is important to be able to go from the half-space
representation to the extremal point representation and vice-versa. We need
also to bound the complexity of the objects that we obtain, i.e. we want to
ensure that the half-spaces are defined with inequations of polynomial size and
the extremal points to be representable with polynomial encodings. We will show
in Theorem 3 that this is possible.

Small Solutions of Large Systems of Equations. The following theorem
establishes that if a system of linear equations has a solution, then it also has a
solution with a small encoding.

Theorem 1. There is a polynomial function P1 such that for all system
of equations λ of R

d, if
⋂

(a,b)∈λ hplane(a, b) �= ∅, then there exists x ∈⋂
(a,b)∈λ hplane(a, b) whose representation has size smaller than P1(d) · (1 +

max{||(a, b)|| | (a, b) ∈ λ}).

The proof given in long version of this paper relies on a result of [10] that we
extend to non-singular, and non-square matrices of rational numbers rather than
integers. Note also that our bound depends on the number of dimension d but
not on the number of equations as in [10].

Fig. 3. Illustration of
Lemma 1 in the case of
two dimensions: In this
example, the possible
witnesses of the property
are circled.

Small Witnesses of Large Systems of Inequa-
tions. To decide the polyhedron value problem, our
algorithm nondeterministically constructs solutions of
large systems of inequations. We show in Theorem 2
that we can restrict the guesses to points whose rep-
resentation is of polynomial size. The proof relies on
Lemma 1 that says that if a system of inequations has
a solution, then there is one at the intersections of at
most d of the hyperplanes defined by the associated
equations. This is illustrated in Fig. 3: in two dimen-
sions, if a collection of half-spaces (i.e. half-planes
here) intersect (green shaded area in the picture), then
either there is a point at the intersection of two bound-
ary lines which is in the intersection (this is the case
in our example for the blue points), or one of these lines is included in the
intersection (this would be the case for instance if we only took parallel lines).
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Lemma 1. Let H1, . . . , Hn be n inequations of R
d. If

⋂n
i=1

1
2space(Hi) �= ∅

then there are k ≤ d indexes i1, . . . , id such that:

1.
⋂k

j=1 hplane(Hij ) �= ∅, and
2.

⋂k
j=1 hplane(Hij ) ⊆

⋂n
i=1

1
2space(Hi).

From Lemma 1, we conclude that small solutions always exists for systems
of linear inequations independently of the number of inequations. Note that the
main difference between the next theorem and Theorem 1 is that we consider
here systems of inequations rather than equations.

Theorem 2. There is a polynomial function P1 such that for all systems
of inequations λ of R

d, if polyhedron(λ) �= ∅ then there is a point
x ∈ polyhedron(λ) whose representation has size smaller than P1(d) · (1 +
max{||(a, b)|| | (a, b) ∈ λ}).

Size Obtained When Changing the Representation of Polyhedra. As
already recalled, it is well known that we can represent a polytope either as the
intersection of half-spaces (solutions of a system of inequations) or by the finite
set of its vertices (extremal points). Theorem 3 characterizes the complexity of
one representation w.r.t. the other. Point 1 tells us how to bound the size of
the inequations in the half-spaces representation as a function of the size of the
representation of the points in the vertices representation. Point 2 does the same
for the downward closure of the convex hull of the set of points. Point 3 tells us
how to bound the size of the representation of the vertices as a function of the
size of the inequations in the half-space representation. Proofs can be found in
the long version of this paper.

Theorem 3. There are polynomial functions P2 and P3 such that:

1. given a finite set of points V = {v1, . . . , vn}, there are k ≤ nd inequations
(a1, b1), . . . , (ak, bk) whose representations have size smaller than P2(d) · (2 +
log2(max{||v|| | v ∈ V })) and such that

⋂
i∈[[1,k]]

1
2space(ai, bi) = conv(V ).

2. given a finite set of points V = {v1, . . . , vn}, there are k ∈ N inequations
(a1, b1), . . . , (ak, bk) whose representations have size smaller than P2(d) · (2+
log2(max{||v|| | v ∈ V })) and such that

⋂
1≤i≤k

1
2space(ai, bi) =↓ conv(V ).

3. given a polytope P (i.e. a bounded polyhedron) represented by a system
of inequations λ, such that P =

⋂
(a,b)∈λ

1
2space(a, b), there is a finite

set V of points whose representations have size smaller than P3(d) · (2 +
log2(max{||(a, b)|| | (a, b) ∈ λ})) and such that conv(V ) = P .

4 The Limit Inferior Case

Let us fix for this section a weighted game G = 〈States∃,States∀,Edges, w, I, J〉
with J = ∅, i.e. the averages for all dimensions are defined using lim inf. In this
case, the set of thresholds that can be ensured by Eve from state s ∈ States is:

value(G, s) =
{
v ∈ R

d | ∃σ∃. ∀ρ ∈ Outcome(s, σ∃). ∀i ∈ [[1, d]]. MPi(ρ) ≥ vi

}
.
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To obtain a geometrical characterization of this set, we first study the set of
thresholds that Eve can ensure when Adam plays according to a fixed memoryless
strategy. Then, we show that the set value(G, s) is the intersection of those sets
for all the memoryless strategies of Adam. With the results of previous section, we
deduce that if there is a solution to the polyhedron value problem, then there is
one of bounded size which allows us to justify the correctness of a Σ2P-algorithm
for this problem. Finally, we show that this algorithm has optimal worst-case
complexity by providing a matching Σ2P-lower bound.

Playing Against Memoryless Strategies of Adam. Memoryless strategies
for Adam are important as they are optimal for the threshold problem [15], i.e. if
Adam has a strategy to prevent Eve from ensuring some threshold v then he has
a memoryless one to do so. Our analysis relies on simple cycles. Let S ⊆ States
be a subset of states of the arena of G. A simple cycle within S is a finite
sequence of states s0 · s1 · · · sn ∈ S∗, such that s0 = sn, and for all i and j,
0 ≤ i < j < n, si �= sj . We write C(S) for the set of simple cycles of A within S.
Let σ∀ ∈ M be a memoryless strategy for Adam, this strategy induces the graph
G(σ∀) = 〈States,Edgesσ∀〉 where Edgesσ∀ = {(s, s′) ∈ Edges | s ∈ States∃ ∨ (s ∈
States∀ ∧ σ∀(s) = s′)} which is a subgraph of the game arena in which Adam
plays according to the memoryless strategy σ∀. We denote by SCC(s, σ∀) the set
of strongly connected components accessible from s in G(σ∀).

Lemma 2. For all σ∀ ∈ M, for all infinite paths ρ = ρ0ρ1 . . . ρn . . . in G(σ∀),
let S ∈ SCC(ρ0, σ∀) be such that Inf(ρ) ⊆ S, then

MP(ρ) ∈↓ conv

({
1
|c| · w(c) | c ∈ C(S)

})
.

Proof. An accumulation point of a sequence x0, x1, . . . , xn, . . . of vectors in R
d

is a vector x ∈ R
d such that for every open set containing x, there are infi-

nitely many elements in the sequence which belong to the open set. It is proved
in [1] that if a run ρ gets trapped for ever in the SCC S (i.e. Inf(ρ) ⊆ S)
the set of accumulation points of the sequence ( 1

n · w(ρ≤ n))≤n is included in

conv
({

1
|c| · w(c) | c ∈ C(S)

})
. Now, let us show that MP(ρ) is smaller than

any accumulation point of the infinite sequence of vectors ( 1
n · w(ρ≤ n))≤ n.

Indeed, if x be an accumulation point of that sequence, then for all dimension
i the sequence 1

nwi(ρ≤ n) comes infinitely often arbitrarily close to xi. This
implies that lim inf 1

nwi(ρ≤ n) is smaller than xi for all dimensions i. Therefore

MP(ρ) ≤ x and MP(ρ) ∈↓ {x} ⊆↓ conv
({

1
|c| · w(c) | c ∈ C(S)

})
. ��
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s11, 0 0, 1

Fig. 4. Example of a game
where MP(ρ) does not belong to

conv
({

1
|c| · w(c) | c ∈ C(S)

})
for

all path ρ.

Note that it is not always the case
that MP(ρ) is in the convex hull of{

1
|c| · w(c) | c ∈ C(S)

}
. The example Fig. 4

shows that the downward closure operator is
necessary. In this example, the sequence of
vectors (1, 0)2

1 · (0, 1)2
2 · (1, 0)2

3 · (0, 1)2
4 · · ·

which can be obtained with a path ρ that
cycles on state s1 is such that MP(ρ) = (0, 0)
which is not in the convex hull of (1, 0) and (0, 1) (this convex hull is the set of
points (t, 1 − t) with t ∈ [[0, 1]]).

Lemma 3. For all σ∀ ∈ M, for all s ∈ States, for all S ∈ SCC(s, σ∀), for
all v ∈ conv

({
1
|c| · w(c) | c ∈ C(S)

})
, there exists an infinite path ρ of G(σ∀)

starting from s such that MP(ρ) = v.

Proof. Let {c1, c2, . . . , cn} be a set of simple cycles in S such that v =∑n
i=1 λi

1
|ci| · w(ci), with

∑n
i=1 λi = 1, and λi ∈ [0, 1], i.e. v is a linear combina-

tion of the average weights of the simple cycles. It is proved in [15, Lemma 11],
that we can build a path ρ that starts in s, reaches the SCC S and then cycles
within S between the simple cycles c1, c2, . . . , cn in such a way that the MP on
each dimension j, 1 ≤ j ≤ d is equal to vj =

∑n
i=1 λi

1
|ci| · w(ci)j . ��

Characterizing the Feasible Thresholds. As Adam can play optimally with
memoryless strategies, the set of feasible thresholds that Eve can force is obtained
by considering the intersection of all the sets of thresholds that she can enforce
against those memoryless strategies of Adam.

Theorem 4. Let G be a game and s a state of G:

value(G, s) =
⋂

σ∀∈M

⋃

S∈SCC(s,σ∀)

↓ conv

({
1
|c| · w(c) | c ∈ C(S)

})

Proof. For the left to right inclusion. Assume that σ∃ is a winning strategy of Eve
for the threshold v. For all memoryless strategies σ∀ ∈ M of Adam, we have that
ρ = Outcome(s, σ∃, σ∀) is such that MP(ρ) ≥ v. By Lemma 2, MP(ρ) belongs to
the set ↓ conv

({
1
|c| · w(c) | c ∈ C(S)

})
, and as this set is downward closed it

contains v.
For the right to left inclusion. Take any v in the set on the right. By Lemma 3,

for all memoryless strategy σ∀ ∈ M of Adam, we know that there exists an
infinite path ρ starting from s in the graph G(σ∀) and such that MP(ρ) = v.
This is equivalent to say that there exists a strategy σ∃ for Eve such that
MP(Outcome(s, σ∃, σ∀)) = v. So, this means that memoryless strategies of Adam
cannot force from s an outcome with MP which is not at least equal to v. As
memoryless strategies of Adam are optimal, it means that Adam cannot obtain



Pareto Curves of Multidimensional Mean-Payoff Games 261

from s an outcome with MP which is not at least equal to v, no matter the strat-
egy that he plays. As multidimensional mean-payoff games are determined [15],
it means that Eve has a strategy to force outcomes from s with a MP at least
equal to v, which in turn implies that v ∈ value(G, s). ��

Remark 2. As a corollary of Theorem 4, notice that the set value(G, s) is closed.

Small Witnesses for Polyhedron Value Problem. We now show that if
value(G, s) ∩ polyhedron(λ) �= ∅, then there is a witness whose representation
is polynomial.

Theorem 5. There is a polynomial function P4 such that, for all weighted
game G, for all states s, and system of linear inequations λ, if value(G, s) ∩
polyhedron(λ) �= ∅ then there exists x ∈ Q

d such that:

1. x ∈ value(G, s) ∩ polyhedron(λ)
2. ||x|| ≤ P4(d)·(2+max{||(aj , bj)|| | (aj , bj) ∈ λ}+log2((WG+1)·(|States|+1))).

Proof. It follows from Theorem 4 that value(G, s) ∩ polyhedron(λ) �= ∅

if, and only if, there is a function f : M 
→ 2States, such that f(σ∀) ∈
SCC(s, σ∀) for all strategy σ∀ and polyhedron(λ) intersects

⋂
σ∀∈M

↓
conv

({
1
|c| · w(c) | c ∈ C(f(σ∀))

})
. The values 1

|c| · w(c) such that c ∈ C(S)
for some SCC S, are such that their numerator is smaller in absolute
value than WG · (|States| + 1) and their denominator is smaller in absolute
value than |States| + 1. Let a = (WG + 1) · (|States| + 1). We know by
Theorem 3.3 that the set ↓ conv

({
1
|c| · w(c) | c ∈ C(S)

})
can be written as

the intersection of half-spaces H1, . . . , Hk whose representation have size smaller
than P2(d) · (2 + log2(a)). We conclude using Theorem 2 that there is a value
x ∈ value(G, s) ∩ polyhedron(λ) whose representation have size smaller than
d · P1(d) · (1 + max{||Hi||, ||(aj , bj)|| | i ∈ [[1, k]], (aj , bj) ∈ λ}) which is smaller
than d · P1(d) · (1 + P2(d) · (2 + log2(a) + max{||(aj , bj)|| | (aj , bj) ∈ λ})). We
obtain the result for P4(d) = d · P1(d) · (1 + P2(d)). ��

Based on this property, we design a non-deterministic algorithm and charac-
terize the complexity of our decision problem.

Theorem 6. The polyhedron value problem is Σ2P-complete for mean-payoff
inferior.

Proof. Easiness. Based on Theorem 5, our algorithm is: 1. guess in polynomial
time a value v; 2. check in deterministic polynomial time that it satisfies the set of
linear equations λ (see e.g. [14, Theorem 3.3]); and 3. check in non-deterministic
polynomial time that v belong to value(G, s). This last check is based on the
following result for the threshold problem: it is proved in [15, Theorem 7.2] that
given a weighted game G, a state s, and a threshold v ∈ Q

d, the problem of
deciding whether Eve has a winning strategy for the objective {ρ | MP(ρ) ≥ v}
is coNP-complete. Our algorithm is thus in Σ2P= NPNP = NPcoNP.
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Eve

C1Adam C2Adam C3Adam

x1

x2

¬y1

x1

¬x2

¬y1

¬x1

¬x2

y1

(1,0,1,1,0,0)

(1,1,1,0,0,0)

(1,1,1,1,−1,1)

(1,0,1,1,0,0)

(1,1,0,1,0,0)

(1,1,1,1,−1,1)

(0,1,1,1,0,0)

(1,1,0,1,0,0)

(1,1,1,1,1,−1)

Fig. 5. Example of the encoding of QSAT2 into the polyhedron value problem, for
formula φ = ∃x1.∃x2.∀y1. (x1 ∧ x2 ∧ ¬y1) ∨ (x1 ∧ ¬x2 ∧ ¬y1) ∨ (¬x1 ∧ ¬x2 ∧ y1). In a
vector (v1, v2, v3, v4, v5, v6), v1 is associated to x1, v2 to ¬x1, v3 to x2, v4 to ¬x2, v5 to
y1, and v6 to ¬y1.

Hardness. We illustrate the reduction on an example. The full proof that
the polyhedron value problem is Σ2P-hard can be found in the long version
of this paper.

Consider a QSAT2 formula: φ = ∃x1. · · · ∃xn. ∀y1. · · · ∀ym. C1 ∨ · · · ∨ Cp

where each Ci is the conjunction of at most three literals Ci = �i,1 ∧ �i,2 ∧ �i,3

and literals are of the form: xj , ¬xj , yj , or ¬yj . The construction of the game is
illustrated in Fig. 5. There is one dimension for each literal of the formula. We
consider the constraint λ that enforces than on each dimension associated to a
literal yj or ¬yj the mean-payoff should be greater than 0, and the sum on the
dimension associated to xj and ¬xj (for j fixed) should be 1. It is possible to
show that the polyhedron value problem is true if, and only if, the formula φ
is valid.

Intuitively, if φ is valid, there is a partial valuation of the x variables that
makes the remainder of the formula hold. From this partial valuation, we define a
vector v that is 1 on dimensions associated to x literals that are true and 0 on the
other dimensions. Such a vector satisfies the constraints λ. For each memoryless
strategy of Adam, we can construct a counter strategy of Eve that is winning,
and this is enough to show that Eve has a winning strategy. To construct this
strategy, first notice that if the strategy of Adam chooses one literal in some
clause and its negation in another clause, Eve can win by alternating between
the two (this ensures 0 for this literal and 1 for the others). We can now assume
that the strategy of Adam defines a valuation for the literals y, by setting those
that are reachable to true. Then because φ is valid, Eve can choose a clause that
holds under the valuation that we defined. Then Adam will always chose a literal
that is true under this valuation and this ensures a payoff above v. ��

Polynomial Time Algorithm for Fixed Number of Dimensions. We
have seen in the previous paragraphs that the polyhedron value problem is
Σ2P-complete. Now, we show that the problem has a much better worst-case



Pareto Curves of Multidimensional Mean-Payoff Games 263

complexity for fixed number of dimensions and polynomially bounded weights,
two hypotheses which are reasonable in practice.

Theorem 7. The polyhedron value problem is solvable in polynomial time for
mean-payoff inferior with fixed number of dimensions, polynomially bounded
weights and a system a linear constraints with polynomially bounded numera-
tors and denominators.

Proof. Thanks to Theorem 5, for the polyhedron value problem, there are
no more than 2P4(d)·(2+max{||(a,b)|||(a,b)∈λ}+log2((WG+1)·(|States|+1))) candidate wit-
nesses. This quantity is equal to (4 · 2max{||(a,b)|||(a,b)∈λ} · ((WG + 1) · (|States| +
1)))P4(d). Note that the size of equations in λ are logarithmic in the values of
numerators and denominators that appear in it, so 2max{||(a,b)|||(a,b)∈λ} is polyno-
mial with respect to these values (but exponential with respect to d). The bound
on the number of candidates is polynomial when the number of dimensions d
is fixed and W is polynomially bounded. As the threshold problem for mul-
tidimensional weight mean-payoff games is solvable in polynomial time when
the number of dimensions is fixed and the weights are polynomially bounded
[8, Theorem 1], we obtain a polynomial time algorithm by simply testing all the
polynomially many witnesses. ��

5 Constructing the Pareto Curve

Let G be a game of dimension d, we define the set of half-spaces HG and points
VG that are relevant for the representation of value(G, s). HG and VG are defined
as the set of half-spaces and points with representation size bounded by P2(d)·
(2+ log2((WG +1) · (|States|+1))). The following lemma explains why those sets
are relevant.

Lemma 4. Let G be a game of dimension d and s a state of G. The set
value(G, s) can be written as a finite union of polyhedra, each of them definable
as the intersection of half-spaces H1, . . . , Hk ∈ HG. Moreover if H1, . . . , Hk are
half-spaces of HG and ∩1≤j≤kHj �= ∅ then the intersection ∩1≤j≤kHj contains
a point of VG.

Equivalence Classes. We say that two points x and y are equivalent with
respect to the set of half-spaces H, written x ∼H y, if they satisfy the same set
of equations and inequations defined by H. Formally x ∼H y if for all H ∈ H,
x ∈ H ⇔ y ∈ H and x ∈ hplane(H) ⇔ y ∈ hplane(H). Given a point x, we
write [x]H = {y | x ∼H y} the equivalence class containing x. These equivalence
classes are known in geometry as cells [13]. We write C(H) the set of cells
defined by H. The following lemma, says that cells which intersect value(G, s)
are included in it.
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Lemma 5. Let c ∈ C(HG) be a cell, c ∩ value(G, s) �= ∅ if, and only if, c ⊆
value(G, s).

From this we deduce a method to compute a representation of the set
value(G, s) as a finite union of cells in C(HG). Given a tuple of at most
d + 1 points X ⊆ VG with |X| ≤ d + 1, we consider the geometrical center
b(X) =

∑
x∈X

1
d+1 · x. We write B(VG) the set of all these point, it contains

at most |VG |d+1 points. The following lemma states that value(G, s) can be
represented as the union of all cells that contain a point in B(VG) which is in
value(G, s). Note that the fact that we do not need many points to cover each
cell is coherent with Buck’s theorem [5,13].

Lemma 6. Let G be a game of dimension d, s a state of G, We have that:

[−WG ,WG ]d ∩ value(G, s) = [−WG ,WG ]d ∩
⋃

x∈B(VG)∩value(G,s)

[x]HG

As a corollary, we obtain an effective procedure to compute a representation
of the set value(G, s). The complexity of this procedure is given in the following
theorem both for the general case, and for fixed number of dimensions and
polynomially bounded weights.

Theorem 8. There is a deterministic exponential time algorithm that given a
game G and a state s, constructs a effective representation of [−WG ,WG ]d ∩
value(G, s) as a union of cells. Moreover, when the dimension d is fixed and
weights are polynomially bounded in the size of G, then the algorithm works in
deterministic polynomial time.

Proof. The algorithm is based on the result of Lemma 6. We enumerate all
subsets of d + 1 points in VG . Because of their size, the number of points in
VG is bounded by 2P4(d)·(2+log2((WG+1)·(|States|+1))) which equals (4 · (WG + 1) ·
(|States| + 1))P4(d). The number of subsets of d + 1 points is thus bounded by
(4 · (WG +1) · (|States|+1))P4(d)·(d+1). Note that it is exponential in general, but
with polynomially bounded weights, WG is polynomial in the sizes of the input,
so that with d fixed this number of subsets is polynomially bounded.

Now for each of these subsets, we compute the geometrical center x, and test
whether it is in value(G, s). Thanks to [8, Theorem 1], there is an algorithm
that works in time O(|States|2 · |Edges| · d · WG · (d · |States| · WG)d2+2·d+1) to
determine whether a point is in value(G, s). This is exponential in general, but
polynomial when the number of dimension is fixed and weights are polynomially
bounded.

Then, to determine the cell corresponding to the geometrical center x, we
test for each H ∈ HG whether x ∈ H: the intersection of the half-spaces that
contain x and the complement of those that do not contain is equal to the cell
containing x. Since the sizes of the half-spaces in H are bounded by P2(d) · (2 +
log2((WG + 1) · (|States| + 1))), we can test that x belongs to one of them in
polynomial time and there are no more than (4 · (WG + 1) · (|States| + 1))P2(d)

such half-spaces. Therefore testing all half-spaces can be done in exponential
time in general, and in polynomial time with fixed dimension and polynomially
bounded weights. ��
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Pareto Curve. The Pareto curve is composed of the maximal points in
[−WG ,WG ]d ∩ value(G, s). To describe this curve, we need to refine the cells
in C(HG): we add to HG the half-spaces that are necessary to represent the
downward closure of cells in C(HG) (details can be found in the long version of
this paper).

Theorem 9. There is a deterministic exponential algorithm, that given a game
G and a state s, computes an effective representation of PO(G, s) as a union of
cells. Moreover, when the dimension d is fixed and the weights are polynomially
bounded then the algorithm works in deterministic polynomial time.

Proof (Sketch). The algorithm works by computing a representation of
value(G, s) as a union of cells. Then, for each of these cells we check that there
is no cell above by using the downward closure operator: this is where refining
the cells is required. The number of those cells is exponential so these checks
can be done in exponential time. Moreover in the case where the dimension is
fixed and weights are polynomially bounded, this number is polynomial so the
algorithm works in polynomial time. ��

6 General Case

We now consider the general case in which the average of dimensions in I ⊂ [[1, d]]
are defined using lim inf and the average of dimensions in J ⊆ [[1, d]] are defined
using lim sup. We give a characterization of the feasible thresholds as we did
in Theorem 4. While the main ideas are similar, the characterization here is
substantially more complicated and relies on a notion of subgame defined as
follows. A subarena for Eve is a tuple 〈States′∃,States′∀,Edges′〉 with States′ ⊆
States, Edges′ ⊆ Edges and such that ∀s ∈ States′∀. (s, s′) ∈ Edges ⇒ (s, s′) ∈
Edges′ (i.e. it does not restrict actions of Adam). The game 〈A′, w′, I ′, J ′〉 is a
subgame for Eve of 〈A, w, I, J〉 if A′ is a subarena for Eve of A and w′ = w,
I ′ = I, and J ′ = J . We write Sub(G, s) the set of subgames for Eve which contain
the state s.

Theorem 10. Let G be a weighted game and s a state of G, then value(G, s)
equals:

⋃

G′∈Sub(G,s)

⋂

s′∈States′
↑J

⎛

⎝
⋂

σ∀∈M

⋃

S′∈SCC(s′,G′(σ∀))

↓ conv

({
1

|c| · w(c) | c ∈ C(S′)
})
⎞

⎠

where ↑J X = {x ∈ R
d | ∀j ∈ J. ∃x′ ∈ X. ∀i ∈ I ∪ {j}. xi = x′

i}.

Example 1. Consider the example of Fig. 6. We choose J = {1, 2} and I = {3},
i.e. we consider the limit superior of the weights for the two first coordinate and
the limit inferior for the last one. There is only one strategy of the adversary
and one strongly connected component in this game. There are two simple cycles
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2,−2, 0

−2, 2, 1

Fig. 6. A one-state
3-dimensional mean-
payoff game, controlled
by Eve. We refer to the
3 dimensions by x, y
and z respectively.

↑{1,2}

↓
x

y

1
1

(2,−2, 0)

(−2, 2, 0) (2, 2, 0)

Fig. 7. Pareto optimum
for z = 0.

↑{1,2}

↓
x

y

1
1

(0, 0, 1
2
)

(−2, 2, 1
2
)

(0, 2, 1
2
)

Fig. 8. Pareto optimum
for z = 1

2
.

and their weight are (2,−2, 0) and (−2, 2, 1). We represented in Figs. 7 and 8 the
feasible thresholds we can ensure with z = 0 and z = 1

2 .
For z = 0 the line segment between (−2, 2, 0) and (2,−2, 0) is below the

convex hull of (2,−2, 0) and (−2, 2, 1). The downward closure this segment is
the area that is below and left of this segment. The operator ↑{1,2} gives the
whole area below of (2, 2, 0) which is the Pareto optimum for z = 0. For z = 1
only (−2, 2, 1) is below the weight of a simple cycle therefore it will be the Pareto
optimum for z = 1. The convex hull of (−2, 2, 1) and (2,−2, 0) is above the plane
z = 1

2 for coordinates of x and y between (0, 0) and (−2, 2). The operator ↑{1,2}
will give the whole area below (0, 2, 1

2 ) which is the Pareto optimum for z = 0.

Thanks to the characterization of Theorem 10, we can express the value prob-
lem in terms of intersection of convex sets with a small description and using
techniques similar to the ones used in the case of limit inferior we can show the
following:

Theorem 11. The polyhedron value problem is Σ2P-complete.

The algorithm uses Theorem 10 and relies on the same principle as for lim inf.
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Abstract. Conflict-driven learning, which is essential to the perfor-
mance of sat and smt solvers, consists of a procedure that searches
for a model of a formula, and refutation procedure for proving that no
model exists. This paper shows that conflict-driven learning can improve
the precision of a termination analysis based on abstract interpretation.
We encode non-termination as satisfiability in a monadic second-order
logic and use abstract interpreters to reason about the satisfiability of
this formula. Our search procedure combines decisions with reachability
analysis to find potentially non-terminating executions and our refuta-
tion procedure uses a conditional termination analysis. Our implemen-
tation extends the set of conditional termination arguments discovered
by an existing termination analyzer.

1 Conflict-Driven Learning for Termination

Conflict-driven learning procedures are integral to the performance of sat and
smt solvers. Such procedures combine search and refutation to determine if a
formula is satisfiable. Conflicts discovered by search drive refutation, and search
learns from refutation to avoid regions of the search space without solutions.

Our work is driven by the observation that discovering a small number of
disjunctive termination arguments is crucial to the performance of certain ter-
mination analyzers [27]. Figure 1 summarizes our lifting of conflict-driven learn-
ing to termination analysis. We use reachability analysis to find a set of states
that constitute potentially non-terminating execution. We apply a conditional
termination analysis to this set to eliminate states from which all executions ter-
minate. Unlike termination analysis, which solves a decision problem and returns
a yes or no answer, conditional termination analysis is concerned with discov-
ering sufficient conditions for termination. Sufficient conditions for termination
play the role of learned clauses in our analysis. They prevent subsequent runs of
reachability analysis from revisiting states from which termination is guaranteed.

Our conflict driven conditional termination procedure (cdct) can be viewed
as a sound but incomplete solver for a family of monadic, second-order formulae.
Büchi’s theorem shows that the language of a Büchi automaton is non-empty
exactly if a formula in the monadic second-order theory of one successor (s1s) is
satisfiable [5]. This theorem can be viewed encoding non-termination of a finite-
state program as satisfiability in s1s. We introduce s1s(t), an extension of s1s
c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part II, LNCS 9207, pp. 271–286, 2015.
DOI: 10.1007/978-3-319-21668-3 16
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Search Refutation

Propagate

Decide
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Generalize

sat unsat

Conflict

sat/smt Termination

Satisfiability Non-Termination

Model Infinite execution

Countermodel Finite or infeasible trace

Constraint Propagation Reachability Analysis

Conflict Analysis Termination Analysis

Fig. 1. Conflict driven learning as applied to termination

to sequences of first-order structures, and encode non-termination in a control-
flow graph (cfg) as satisfiability in s1s(t). A model of a formula is an infinite
execution that respects the transition constraints in the cfg.

Formulating non-termination as satisfiability provides a clear route for lifting
cdcl to non-termination. We combine decisions with reachability in an abstract
domain to construct and refine assignments to second-order variables in the
same way that sat solvers construct and refine partial assignments. A notable
difference to standard abstract interpretation is that our assignments are neither
over- nor under-approximations of the set of reachable states. Our conflict analy-
sis uses backwards abstract interpretation to enlarge the set of states from which
termination is guaranteed. We present a generalized unit rule for combining rank-
ing functions with reachability analysis. These components are combined in our
new analysis, which we have implemented and evaluated against state-of-the-art
termination provers.

2 Non-Termination as Second-Order Satisfiability

The two contributions of this section are the logic s1s(t), which extends the
monadic second-order logic of one successor (s1s) with a theory and an encoding
of program non-termination as satisfiability in this theory.

2.1 Monadic Second-Order Theories of One Successor

We use =̂ for definition. Let P(S) be the powerset of S. For f : A → B, the
function f [a �→ b] maps a to b and c distinct from a to f(c). The symbols
x, y, z range over first-order variables in Vars, f, g, h over functions in Fun, and
P,Q,R over predicates in Pred . We use a set Pos of first-order position variables
whose elements are i, j, k, a set SVar of monadic second-order variables denoted
X,Y,Z, a unary successor function suc and a binary successor predicate Suc.

Our logic consists of three families of formulae called state, transition and
trace formulae, which are interpreted over first-order structures, pairs of first-
order structures and infinte sequences of first-order structures respectively. The
formulae are named after how they are interpreted over programs.
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t ::= x | f(t0, . . . , tn) Term
ϕ ::= P (t0, . . . , tn) | ϕ ∧ ϕ | ¬ϕ State Formula
ψ ::= suc(x) = t | ψ ∧ ψ | ¬ψ Transition Formula
Φ ::= X(i) | Suc(i, j) | ϕ(i) | ψ(i)

| Φ ∧ Φ | ¬Φ | ∃i : Pos.Φ Trace formula

A first-order interpretation (Val , I) defines functions I(f) and relations I(P )
over values in Val . The value �t�s of a term t in a state s : Vars → Val , is s(x) if
t is x, and I(f)(�t0�s, . . . , �tn�s) if t is f(t0, . . . , tn). The interpretation of a state
formula is the standard first-order semantics. A transition formula is interpreted
at a transition, that is, a pair of states (r, s). A formula ϕ in which the symbol
suc does not occur is interpreted at the state r, while suc(x) = t compares the
value of the term t in r with the value of x in the successor state s.

(r, s) |= P (t0, . . . , tn) if (�t0�r, . . . , �tn�r) ∈ I(P )
(r, s) |= ϕ ∧ ψ if (r, s) |= ϕ and (r, s) |= ψ

(r, s) |= ¬ϕ if (r, s) �|= ϕ (r, s) |= suc(x) = t if �x�s = �t�r

A trace τ : N → (Vars → Val) is an infinite sequence of states and τ(m) is
the state at position m. A position assignment σ : (Pos → N) ·∪ (SVar → P(N))
maps position variables to N and second-order variables to subsets of N such that
{σ(X) | X ∈ SVar} partitions N. We explain this partition condition shortly.
A trace formula is interpreted with respect to an s1s(t) structure (τ, σ).

Note that there are first-order variables of two sorts in a trace formula.
A trace formula Φ asserting that the transition formula ψ(x, y) =̂ suc(x) = y +1
is true at the trace position denoted by i has the form ψ(x, y)(i). The predicate
Suc(i, j) asserts that the position j occurs immediately after i.

(τ, σ) |= Suc(i, j) if σ(i) + 1 = σ(j) (τ, σ) |= ϕ(i) if τ(σ(i)) |= ϕ

(τ, σ) |= ψ(i) if (τ(σ(i)), τ(σ(i) + 1)) |= ψ (τ, σ) |= X(i) if σ(i) ∈ σ(X)
(τ, σ) |= Φ ∧ Ψ if (τ, σ) |= Φ and (τ, σ) |= Ψ (τ, σ) |= ¬Φ if (τ, σ) �|= Φ

(τ, σ) |= ∃i : Pos.Φ if (τ, σ[i �→ n]) |= Φ for some n in N

An s1s(t) structure (τ, σ) is a model of Φ if (τ, σ) |= Φ, and is a countermodel
otherwise. A trace formula is satisfiable if it has a model. An s1s(t) structure
is defined using an infinite trace, so finite traces cannot be models of a formula.

2.2 Encoding Non-Termination in S1S(T)

We now recall control flow graphs (cfgs) and encode non-termination as satis-
fiability. A command in Cmd is an assignment x := t of a term t to a first-
order variable x, or is a condition [ϕ], where ϕ is a state formula. A cfg
G = (Loc, E, in, ex, stmt) consists of a finite set of locations Loc including an
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(∀i.First(i) ⇒ Xin(i)) ∧ (∀i.Xex(i) ⇒ Last(i))
∧ ∀i.∀j.Xin(j) ∧ Suc(i, j) ⇒ (suc(x) = x − 1)(i) ∧ Xa(i)
∧ ∀i.∀j.Xa(j) ∧ Suc(i, j) ⇒ (x �= 0 ⇒ suc(x) = x)(i) ∧ Xin(i)
∧ ∀i.∀j.Xex(j) ∧ Suc(i, j) ⇒ (x = 0 ⇒ suc(x) = x)(i) ∧ Xin(i)

in

a

ex

[x �= 0]

[x = 0]

x := x − 1

Fig. 2. A formula encoding non-termination of the program shown in the monadic
second-order theory of one successor over integer arithmetic.

initial location in, an exit location ex, edges E ⊆ Loc × Loc, and a labelling
stmt : E → Cmd of edges with commands. To assist the presentation, we assume
that the exit location ex has no successors.

The formula Transc below defines the semantics of commands using the con-
dition SameV =̂

∧
x∈V suc(x) = x, that variables in V are not modified. The

set of models of Transc is the transition relation Relc. We write Transe and
Rele for the transition formula and relation of the command stmt(e). The for-
mula InfG extends the translation of Büchi automata to s1s to encode cfgs in
s1s(t). We write First(i) =̂ ∀j.¬Suc(j, i) for the first position on a trace and
Last(i) =̂ ∀j.¬Suc(i, j) for a position that cannot be on an infinite trace.

Transc =̂

{
b =⇒ SameVars if c = [b]
suc(x) = t ∧ SameVars\{x} if c = x := t

InfG =̂ (∀i.First(i) =⇒ Xin(i)) ∧ (∀j.Xex(j) =⇒ Last(j))

∧
∧

v∈Loc

∀i.∀j.Xv(j) ∧ Suc(i, j) =⇒
∨

(u,v)∈E

Trans(u,v)(i) ∧ Xu(i)

The formula InfG encodes program behaviour as follows. Consider an s1s(t)
structure (τ, σ). The interpretation σ(X�) of a second-order variable X� repre-
sents positions on the trace when execution is at location �. Such an interpre-
tation partitions N because each position on a trace corresponds to a unique
location. The entry constraint on First(i) ensures execution begins at in. The
exit constraint implying Last(j) enforces that an infinite execution does not
visit ex. The conditions involving Suc(i, j) are called transition constraints and
express that consecutive states on a trace must respect the transition relation
of G. Theorem 1 expresses non-termination as satisfiability.

Theorem 1. A cfg G has a non-terminating execution iff InfG is satisfiable.

We believe this is a simple yet novel encoding of non-termination that allows the
duality between search and refutation to be exploited for termination analysis.
In contrast, the second-order encoding of termination in [13] uses a predicate for
disjunctive well-foundedness and is solved in a different manner.

Example 1. A cfg G and the formula InfG for a program with a variable x of
type Z are shown in Fig. 2. We write a trace as a sequence of values of x. Let τ
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be the trace −1,−1,−2,−2, . . . and σ the assignment mapping Xex to the empty
set, and Xin and Xa to even and odd positions, respectively. The structure (τ, σ)
is a model of InfG. Every structure (τ, δ), with τ as before, in which δ(Xex) is
not empty is a countermodel of InfG because ex is not reachable if x is initially
−1, so some transition in τ must violate a transition constraint in InfG. Every
structure (τ ′, δ′) with x non-negative in τ ′(0) is also a countermodel of InfG

because executions with x initially non-negative terminate. Since τ ′ is infinite
by definition, some transition in τ ′ must be infeasible. Terminating executions
cannot be models of InfG because traces in s1s(t) structures are infinite. �
The formula InfG is a conjunction of formulae in which second-order variables
and first-order program variables are free but first-order position variables are
bound. We exploit this structure in our analysis.

3 Conflict-Driven Conditional Termination

The conflict-driven conditional termination procedure (cdct) in Algorithm 1
generalizes cdcl from sat to termination analysis. The input is the formula
InfG. The output (result,Δ,Θ) is a result concerning a set of structures Δ and
a set Θ of piecewise-defined ranking functions (pdrfs).

The value of result is one of divergent, terminates, or unknown. cdct returns
divergent if the traces represented by Δ do not reach the exit location, which
could be due to non-termination or undefined behaviour; It returns terminates
if Δ is empty and Θ guarantees termination for all states. It returns unknown
if cdct cannot prove termination and cannot progress. This happens if the
abstract domain cannot accurately represent non-terminating executions, if the
ranking functions used cannot express a termination argument, or a bound on
the number of decisions has been exceeded.

cdct maintains four global data structures. The trail tr is a sequence of
assignments to second-order variables. The explanation array exp contains in
each element exp[i], the decision or constraint used by propagation to add tr [i] to
the trail. The set of pdrfs Θ, generated by conditional termination analysis, are
our analogue of learned clauses. The blocking constraints Ψ contain constraints
representing two types of states, which need not be revisited. One is states from
which all executions terminate. The other is states for which cdct could neither
prove termination nor demonstrate non-termination.

Each execution of the cdct loop begins with a call to Search(), which
attempts to find a non-terminating execution. If Search() returns divergent,
cdct returns. If Search() returns unknown, the trail represents a potential con-
flict because it has discovered a set of states from which some execution ter-
minates. The conflict is potential because the trail may also contain models of
InfG. This is a difference to sat and smt solvers where a conflict contradicts a
formula.

The conflict analysis procedure Analyze()extracts from a potential conflict a
definite conflict θ, expressed as a ranking function. The domain of θ represents
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Algorithm 1. CDCT(InfG)
Trail: tr ← ε
Explanations: exp ← ε
Blocking constraints: Ψ ← ∅
pdrfs: Θ ← ∅
while true do

result ← Search()
if result = divergent or
(result = unknown and exceeded()) then

return (result, [tr ], Θ)

θ ← Analyze()
Θ ← Θ ∪ {θ}
Ψ ← Ψ ∪ Learn([tr ], θ)
if Backtrack() = false then

return (terminates, [ε], Θ)

Z s tep (Z x ) {
i f (x>20)

return 3 ;
else i f (x>10)

return 2 ;
else

return 1 ;
}
void main ( ) {

y , i : Z

[ a ] i f (y>0)
i = −s tep (y ) ;

else
i = step (−y ) ;

[ b ] while (y<−3||y>3)
y = y+i ;

[ ex ]}

states from which all executions terminate. The learning step Learn() generates a
blocking constraint to drive subsequent search away from these states. Learning
also generates a blocking constraint if cdct cannot make progress analyzing
[tr ]. This happens if no more decisions can be made and no ranking function can
be extracted. cdct then backtracks if possible.

An Example Run. A program is shown in C-like syntax alongside Algorithm1.
The location a is reached after the variables are initialized, b is the loop head, and
ex is the exit location. The program terminates but the abstract interpretation-
based tool FuncTion [32] cannot prove termination. cdct enables FuncTion
to prove termination while also avoiding case explosion. Even though other tools
may be able to prove termination, we believe cdct is interesting because similar
ideas could be used to expand the programs handled by those tools.

In this example, we use an interval abstract domain and affine ranking func-
tions. Search() uses reachability analysis to derive the intervals y:[−3, 3], i:[−3, 3]
at ex but termination analysis fails. Decisions restrict the range of a vari-
able at a location: for example, Search() heuristically uses conditions from the
code to make the decisions y:[1,∞] and y:[−∞, 10] at location a. Reachabil-
ity derives the range y:[1, 3], i:[−1,−1] at ex, which is a conflict, because no
trace with these states at ex satisfies InfG. Analyze() represents this conflict as
Xex �→ {y:[1, 3], i:[−1,−1] → 0}, which assigns a pdrf to the second-order vari-
able Xex and expresses that the program terminates in 0 steps for the states
shown. The pdrf is propagated backwards through the program by an abstract
interpreter [31] to derive the second-order assignments below. We omit the inter-
val on i, which is unchanged.

Xex �→ y:[1, 3] → 0,Xb �→ y:[1, 3] → 1,Xb �→ y:[4, 4] → 3,Xb �→ y:[5, 5] → 5
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If these assignments are propagated to location b, we could only prove that the
program terminates for y:[1, 5] at a. Instead, we apply widening to the pdrfs
to derive Xb �→ {y:[1, 3] → 1, y:[4, 10] → 2x + 5}, which bounds the number of
steps to termination at the loop head for y in the ranges shown. We heuristically
expand the piece y:[4, 10] of the pdrf to y:[1,∞] and check if the 2x + 5 is still
a ranking function. Since it is, we have proved termination for executions with
y:[1,∞], i:[−1,−1] at b, despite having explicitly only analyzed the range y:[0, 5].

The learning step complements the decision y:[1,∞] and uses Xa �→ y:[−∞, 0]
to restrict future search. Learnt constraints typically have more structure.
A similar run of cdct can show termination when y is initially non-positive.

Consider the program with the loop condition changed to (y > −3). Now, the
program does not always terminate. Decisions and learning can infer a ranking
function for positive y as before. Decisions can also discover that for Xa �→
y:[−1,−1], ex is unreachable, indicating non-termination (as all locations lead
to ex). In this way, cdct proves conditional termination using disjunctions of
ranking functions and also identifies non-terminating executions.

4 Search for a Conflict

We now show how a trail, a data structure used by sat solvers, can be used to
make explicit the incremental progress made by an abstract interpreter.

Abstract Domains. A bounded lattice (L,,�,�) is a partially ordered set with
a meet �, a join �, a greatest element � (top), and a least element ⊥ (bottom).
A concrete domain for forward analysis (P(State),⊆, F ) is a lattice of states
with a set F = {postc | c ∈ Cmd} of monotone functions called transformers,
where postc(S) is the image of S under the transition relation for c. An abstract
domain is a bounded lattice (A,, G,�) with a set of abstract transformers
G =

{
postA

c | c ∈ Cmd
}

and a widening operator � : A × A → A. There is a
monotone concretization function γ : A → P(State) satisfying that γ(�) = State
and γ(⊥) = ∅. The transformers satisfy the soundness condition postc(γ(a)) ⊆
γ(postA

c (a)) that abstract transformers overapproximate concrete transformers.
Literals are essential for propagation and conflict analysis in sat. The ana-

logue of literals in abstract domains are complementable meet-irreducibles [11].
A lattice element c is a meet-irreducible if a � b = c implies that a = c or b = c.
Let MA be the meet-irreducibles of A. An abstract element a has a concrete com-
plement if there exists an a in A such that γ(a) = ¬γ(a). A meet decomposition
of an element a is a finite set mdc(a) ⊆ MA satisfying that

�
mdc(a) = a and

that there is no strict subset S ⊂ mdc(a) with
�

S = a. A has complementable
meet irreducibles if every m ∈ MA has a concrete complement m ∈ MA.

Example 2. The interval lattice has elements [a, b], where a ≤ b ∈ Z∪{−∞,∞}.
The intervals [−∞, k], [k,∞] are meet-irreducibles, unlike [0, 2]. The set S =
{[−∞, 2], [0,∞], [−5,∞]} satisfies

�
S = [0, 2] but is not a meet decomposition

because {[−∞, 2], [0,∞]} ⊂ S. The concrete complements of [−∞, k] and [k,∞]
are [k + 1,∞] and [−∞, k − 1], while [0, 2] has no concrete complement. �
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Algorithm 2. Search()

while true do
Propagate()
if tr(Xex) = ⊥ then

return divergent

d ← dec(InfG, Ψ, tr)
if [tr ] 
 [tr ·d] then

return unknown

Trail tr exp Modification

1 ε Initial state
2 Xex:[−∞, 0], Xex:[0, ∞] {in, a, ex} Propagation

3a ↪→ Xin:[9, ∞] Xin:[0, ∞] dec Decision
4a Xa:[1, ∞] {a, in} Propagation
5a Xin:[−∞, 0] dec Decision
6a Xa:⊥ {a, in} Propagation

3b Xin:[−∞, −7] dec Decision
4b Xa:[−∞, −7], Xex:⊥ {a, in} Propagation

Abstract Assignments. sat solvers use partial assignments to incrementally con-
struct a model. We introduce abstract assignments, which use abstract domains
to represent s1s(t) structures. Let Struct be the set of s1s(t) structures. The lat-
tice of abstract assignments (AsgA,) contains the set AsgA =̂ SVar → A with
the pointwise order : asg  asg ′ if asg(X)  asg ′(X) for all X in SVar . The meet
and join are also defined pointwise. An abstract assignment asg represents a set
of s1s(t) structures as defined by the concretization conc : AsgA → P(Struct).

conc(asg) =̂ {(τ, σ) | for all X ∈ SVar . {τ(i) | i ∈ σ(X)} ⊆ γ(asg(X))}

An abstract assignment asg is a definite conflict for Φ if no model of Φ is in
conc(asg) and is a potential conflict if conc(asg) contains a countermodel of Φ.

Trail. We introduce a trail, which contains meet-irreducibles as in [4,10] and
in which a second-order variable can appear multiple times. A trail over A is
the empty sequence ε or the concatenation tr ·(X:m), where X is a second-order
variable and m is a complementable meet-irreducible. A trail tr defines the
assignment [tr ] where [ε] =̂ λY.� and [tr ·(X:m)] maps X to [tr ](X) � m and all
other Y to [tr ](Y ). A trail tr is in potential/definite conflict with Φ if [tr ] is. We
write tr(X) for [tr ](X). An explanation exp for a trail of length n is a function
from [0, n − 1] to constraints in InfG or learnt clauses.

Search(). Algorithm 2 extends a trail tr by propagating constraints from the
cfg, making decisions, or applying a generalized unit rule. It returns divergent
if tr(Xex) is ⊥, meaning that ex is unreachable. It returns unknown if tr(Xex)
is not ⊥ and no decisions can be made. This trail is a potential conflict because
every structure in conc([tr ]) with a non-empty assignment to Xex violates the
constraint Xex(i) =⇒ Last(i), hence is a countermodel of InfG.

Example 3. The table alongside Algorithm2 illustrates the construction of tr
and exp during interval analysis of the program in Fig. 2. The exp column shows
the locations of the propagated constraints. The rows 1, 2, 3a, 4a, 5a, 6a represent
a run of Search(). The trail is initially empty and the result of standard interval
analysis is the trail Xex:[−∞, 0],Xex:[0,∞] in step 2, representing the assignment
{Xin �→ �,Xa �→ �,Xex �→ [0, 0]}. An arbitrary decision Xin:[9,∞] in step 3a is
not sound (see Example 3) and the smallest sound decision containing it is [0,∞].
Propagation yields Xa:[1,∞] in step 4a. The decision Xin:[−∞, 0] in step 5a
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Algorithm 3. Propagate()

asg ← [tr ]
foreach S ∈ scc(InfG) do

asg ′ ← Reach(S, asg)
foreach Xv:m ∈ mdiff (asg ′, asg)
do

tr ← tr ·(Xv:m)

foreach ψ ∈ Ψ do
tr ← gunit(tr , ψ)

Algorithm 4. Analyze()

dc ← {j �→ � | 0 ≤ j ≤ |tr |}
dc[|tr |] ← {|tr | �→ [tr ](Xex) → 0}
i ← |tr |
repeat

if dc[i] = � or exp[i] = nil then
continue
rk ← Term(exp[i], dc[i])
dc[i] ← �
i ← i − 1
Update(dc, tr , rk)

until Unique Implication Point
return [dc]

is sound, and when propagated, yields a conflict in step 6a, so search returns
unknown. An alternative run is 1, 2, 3b, 4b. A decision Xin:[−∞,−7] is sound,
and propagation yields Xa:[−∞,−7] and Xex:⊥, so search returns divergent. �
Propagate(). Algorithm 3 calls an abstract interpreter and stores the results
in the trail in a form amenable to conflict analysis and learning. The notion
of meet-difference makes explicit the incremental change between two calls to
the abstract interpreter. Formally, the meet-difference of a, b ∈ A mdiff (a, b) =
mdc(a)\mdc(b). The meet-difference of two abstract assignments is the pointwise
lift mdiff (asg , asg ′) = {Xv:m | m ∈ mdiff (asg(Xv), asg ′(Xv)),Xv ∈ SVar}.

In a transition constraint ψ =̂ ∀i.∀j.Xv(j)∧Suc(i, j) ⇒ . . ., we write sink(ψ)
for Xv. A strongly connected component ( scc) of InfG is a set of transition
constraints T such that the set of locations {v | ψ ∈ T,Xv = sink(ψ)} is an scc
of G. The set of sccs of InfG is scc(InfG). Propagate() calls a standard abstract
interpreter on each scc and uses a meet-difference calculation to extend the trail
with new information. Propagate() also applies a generalized unit rule gunit ,
explained in §conflicts. Propagation is sound in the sense that it does not elimi-
nate models of the constraints involved.

Lemma 1. If (τ, σ) satisfies InfG and Ψ and is in conc([tr ]), it is also in
conc([tr ]) after invoking Propagate().

Decisions. The abstract assignment computed by (the abstract interpreter used
by) Propagate() can be refined using decisions. Boolean decisions make variables
true or false and first-order decisions use values [7,24] but our decisions, like those
in [11], use abstract domain elements.

A decision is an element X:m that can be on a trail. A decision is sound if
conc(X:m) ∪ conc(X:m) = Struct . That is, considering the structures in m and
m amounts to considering all possible structures.

Example 4. Recall the unsound decision Xin:[9,∞] from Example 3. The struc-
ture (τ, σ) with τ = 9, 9, 8, 8, . . . and σ partitioning Xin and Xa into even and
odd values is not in conc(Xin:[9,∞]) as x cannot be 8 at in. Similarly, it is not
in conc(Xin:[−∞, 8]) so conc(Xin:[9,∞]) ∪ conc(Xin:[−∞, 8]) �= Struct . �
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The unsoundness arises because pointwise lifting does not preserve concrete com-
plements. Though m is the concrete complement of m in A, [Xv:m] need not be
the concrete complement of [Xv:m] in AsgA. Unsound decisions can be extended
by propagation to a post-fixed point to cover all structures. All decisions on
variables Xv in singleton sccs with no self-loops are sound.

A decision rule dec(InfG, Ψ, tr) returns an abstract domain element d such
that [tr ·(Xv:d)]  [tr ]. The decision rule makes progress if this order is strict.
Unlike in sat the decision rule can cause divergence of cdct because an infinite
series of decisions like [0,∞], [1,∞], . . . may not change the result of propagation.

5 Conflict Analysis

Unlike sat and smt solvers, which generate definite conflicts, Search() generates
potential conflicts. We apply backwards abstract interpretation with ranking
functions to extract definite conflicts, and use widening to generalize them.

Ranking Function Domains. Due to space limitations, we only briefly recall the
concrete domain of ranking functions, which provides the intuition for conflict
analysis, and discuss the abstract domain informally. See [8,31] for details.

We write f : A � B for a partial function whose domain is dom(f).
A ranking function f : State � O for a relation R is a map from states to
ordinals satisfying that for all s in dom(f) and (s, t) in R, t is in dom(f) and
f(t) < f(s). A concrete domain for termination analysis (Rank ,�, B) is a lat-
tice of ranking functions with backwards transformers B = {bkw c | c ∈ Cmd}
defined below. Informally f � g if f is defined on a state when g is and yields
a lower rank: f � g =̂ dom(f) ⊇ dom(g) and for all x in dom(g), f(x) < g(x).
The transformer bkw c maps a ranking function f to one defined on states with
all their successors in dom(f). Recall that Relc is the transition relation for a
command c.

bkw c(f) =̂ λs.

⎧
⎪⎨

⎪⎩

0 if Relc(s) = ∅
sup {f(r) | r ∈ Relc(s)} + 1 ifRelc(s) ⊆ dom(f)
undefined otherwise

A subset P ⊆ A of a domain A is an abstract partition if {γ(a) | a ∈ P} partitions
State. Let Fun ⊆ Rank be a lattice of functions, for example, affine functions.

A piecewise defined ranking function (pdrf) over Fun and A is a set ρ =̂
{a1 �→ f1, . . . , ak �→ fk} such that {a1, . . . , ak} is an abstract partition, and each
fi is in Fun. The abstract domain of pdrfs (aRank ,�,Abd) is a lattice aRank
with abduction transformers Abd . The concretization γr : aRank → Rank of
a ρ as above maps states to ranking functions: γr(ρ) =̂ {s �→ fi | s ∈ γ(ai)}.
The order and lattice operations are defined in terms of partition refinement
and unification [31]. To compare ρ1 and ρ2, we consider the coarsest abstract
partition that refines the abstract partitions of both and compare the ranking
functions in each block pointwise.
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Conflict analysis starts with a precondition for termination and finds a weaker
precondition for termination, hence performs abduction. The abduction trans-
formers satisfy the soundness condition: γr(abdc(ρ)) � bkw c(γr(ρ)), which states
that the termination bounds obtained with pdrfs are weaker than those that
could be obtained in the concrete domain. A sound abduction transformer is
underapproximating. A ranking assignment rk : SVar → aRank associates a
pdrf with each second-order variable. Ranking assignments form a lattice with
point-wise meet and join and have a special order � for fixed point checks [31].
To exchange information between Analyze() and Search() we extract a meet-
irreducible representation of the domains of pdrfs. The meet-projection of a
pdrf ρ =̂ {ai �→ fi} is the set of sets of meet-irreducibles mpr(ρ) =̂ {mdc(ai)}
and provides a dnf-like representation of the abstract partition in ρ.

Analyze(). Algorithm 4 uses an array dc to construct and generalize a definite
conflict. Each dc[i] represents termination conditions for states in the trail. Exe-
cutions from states at ex terminate immediately so the last element of dc is
{Xex �→ {[tr ](Xex) �→ 0}} and all other elements are �. The conflict analysis
loop walks backwards through the trail and extends dc[i]. Forward propagation
through the scc exp[i] added tr [i] to the trail, so dc[i] is propagated backwards
through exp[i] to generalize the conflict to a ranking assignment rk . New pdrfs
are added to dc by the procedure Update(). Specifically, for each Xv modified by
Term(), and m ∈ mpr(rk(Xv)), Update() finds trail indices with tr [j]  Xv:m
and sets dc[j] to the appropriate pdrf. Analyze() continues until a unique impli-
cation point is reached, which is typically a dominator in the cfg at which a
decision was made. Analyze() returns [dc], a representation of the pdrfs in dc.

Learn() and the Generalized Unit Rule. Information computed by Search()
is communicated to Analyze() using the trail, while information from Analyze()
is represented within Search() by a blocking constraint and is incorporated in
search using generalized unit rule. We describe these very briefly.

A set C = {X1:m1, . . . , Xk:mk} of elements can be complemented element-
wise to obtain C = {X1:m1, . . . , Xk:mk}. If C is viewed as a conjunction of
literals representing a conflict, C is a clause the procedure can learn. Learn()
applies meet-projection to a pdrf and complements this projection to obtain a
blocking constraint. In practice, we simplify the partitions of the pdrf to avoid
an explosion of blocking constraints, analogous to subsumption in sat.

The generalized unit rule [10] extends a trail using a blocking constraint.
Assume that Ψ has the form {X0:m0, . . . , Xk:mk}. The trail gunit(tr , Ψ) is tr ·
(Xk:mk) if [tr ](Xi) � mi = ⊥ for 0 ≤ i < k and is tr otherwise. The generalized
unit rule refines a trail in the sense that [gunit(tr , Ψ)]  [tr ]. If tr is inconsistent
with Ψ , [tr ] will represent ⊥. Having presented all components of the procedure,
we now investigate how it works in practice.

6 Implementation

We have incorporated cdct in our prototype static analyzer FuncTion (http://
www.di.ens.fr/∼urban/FuncTion.html), which is based on piecewise-defined

http://www.di.ens.fr/~urban/FuncTion.html
http://www.di.ens.fr/~urban/FuncTion.html
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Fig. 3. Overview of the experimental evaluation.

ranking functions [31]. A version without cdct [32] participated in the 4th Inter-
national Competition on Software Verification (SV-COMP 2015).

FuncTion+cdct accepts (non-deterministic) programs in a C-like syntax.
It is implemented in OCaml and uses the APRON library [20]. The pieces
of a pdrf can be represented with intervals, octagons or convex polyhedra,
and ranking functions within the pieces are represented by affine functions. The
precision of the analysis can also be controlled by adjusting the widening delay.

Experimental Evaluation. We evaluated our tool against 288 terminating C
programs from the termination category of SV-COMP 2015. In particular, we
compared FuncTion+cdct with other tools from the termination category of
SV-COMP 2015 : AProVE [29], FuncTion without cdct [32], HIPTnT+ [22],
and Ultimate Automizer [18]. The experiments were performed on a system
with a 1.30 GHz 64-bit Dual-Core CPU (Intel i5-4250U) and 4 GB of RAM. For
the other tools, since we did not have access to their competition version, we
used the SV-COMP 2015 results obtained on more powerful systems with a
3.40 GHz 64-bit Quad-Core CPU (Intel i7-4770) and 33 GB of RAM.

Figure 3 summarizes our evaluation. The first column is the number of pro-
grams each tool could prove terminating. The second column reports the average
running time in seconds, and the last column reports the number of time outs,
which was set to 180 seconds. In Fig. 3b, the first column (�) lists the number
of programs that FuncTion+cdct proved terminating and the tool could not,
the second column (�) reports the number of programs that the tool proved
terminating and FuncTion+cdct could not, and the last two columns report
the number of programs that the tool and FuncTion+cdct were both able
(×) or unable (�) to prove terminating. The same symbols are used in Fig. 4.

Figure 3a shows that cdct causes a 9% improvement in FuncTion+cdct
compared to FuncTion without cdct. The increase in runtime is not evenly
distributed, and about 2% of the test cases require more than 20 seconds to
be analyzed by FuncTion+cdct (cf. Fig. 4a). In these cases the decision
heuristics do not quickly isolate sets of states on which the abstract interpreter
makes progress. Figure 4a shows that, as expected, FuncTion without cdct
terminates with an unknown result earlier. Figures 4b and 4d show that though
AProVE and Ultimate Automizer were run on more powerful machines,
FuncTion+cdct is generally faster but proves termination of respectively 19%
and 9% fewer programs (cf. Fig. 3a). HIPTnT+ proves termination of 16% more
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Fig. 4. Detailed comparison of FuncTion against its previous version [32] (a),
AProVe [29] (b), HIPTnT+ [22] (c), and Ultimate Automizer [18] (d).

programs than FuncTion+cdct (cf. Fig. 4a), but FuncTion+cdct proves
termination of 52% of the program that HIPTnT+ is not able to prove termi-
nating (8% of the total test cases, cf. Fig. 3b). When comparing with FuncTion
without cdct [32], we observed a 2x speedup in the SV-COMP 2015 machines,
so the runtime comparison of FuncTion+cdct and HIPTnT+ is inconclu-
sive. Finally, thanks to the support for piecewise-defined ranking functions, 1%
of the programs could be proved terminating only by FuncTion+cdct (2.7%
by AProVE, 1% by HIPTnT+, and 1.7% by Ultimate Automizer). No
tool could prove termination for 0.7% of the programs.

7 Related Work and Conclusion

Büchi’s work relating automata and logic [5] is the basis for automata-based ver-
ification and synthesis. We depart from most work in this tradition in two ways.
One is the use of sequences of first-order structures as in first-order temporal
logics [19] and the other is to go from a graph-based representation to a formula,
which is opposite of the translation used in automata-theoretic approaches. The
use of s1s for pointer analysis [26], and termination [25] is restricted to decid-
able cases, as is [9]. Program analysis questions have been formulated with set-
constraints [1] and second-order Horn clauses [13], but solutions to these formulae
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are typically invariants and ranking functions, not errors, and the methods used
to solve them differ from cdct.

A key intuition behind our work is to lift algorithmic ideas from sat solvers to
program analysis. The same intuition underlies smpp [17], which lifts dpll(t) to
programs, acdcl [10,11], which lifts cdcl to lattices, the lifting of St̊almarck’s
method [30], and lazy annotation, which uses interpolants for learning [23]. The
idea of guiding an abstract interpreter away from certain regions appears in
dagger [14] and Vinta [2], from which cdct differs in the use of a trail in
search and a unit rule in learning. Our generalized unit rule is from acdcl,
but the use of s1s(t), potential conflicts and the combination with pdrfs is
all new. The widening used in cdct preserves a termination guarantee and
we believe that algorithms for generating small interpolants [3] can help design
better widening operators.

Finally, termination analysis is a thriving area with more approaches than
we can discuss. A fundamental problem is the efficient discovery of disjunctions
of ranking functions [27]. We use backward analysis, as in [8,12], and our combi-
nation of conditional termination [6] with non-termination [15,21] is crucial. The
approach of [22] is similar ours with a different refutation step and information
exchange mechanism. At a high level, cdct is the dual of [16], which underap-
proximates non-terminating executions and overapproximates terminating ones,
while we overapproximate non-termination and underapproximate termination.
We believe cdct can be extended to transition-based approaches [28], but the
challenge is to develop search and learning.
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Abstract. We propose an automated method for disproving termina-
tion of higher-order functional programs. Our method combines higher-
order model checking with predicate abstraction and CEGAR. Our
predicate abstraction is novel in that it computes a mixture of under- and
overapproximations. For non-determinism of a source program (such as
random number generation), we apply underapproximation to generate
a subset of the actual branches, and check that some of the branches in
the abstract program is non-terminating. For operations on infinite data
domains (such as integers), we apply overapproximation to generate a
superset of the actual branches, and check that every branch is non-
terminating. Thus, disproving non-termination reduces to the problem
of checking a certain branching property of the abstract program, which
can be solved by higher-order model checking. We have implemented a
prototype non-termination prover based on our method and have con-
firmed the effectiveness of the proposed approach through experiments.

1 Introduction

We propose an automated method for disproving termination of higher-order
functional programs (i.e., for proving that a given program does not terminate for
some input). The method plays a role complementary to the automated method
for proving termination of higher-order programs (i.e., for proving that a given
program terminates for all inputs) [18]. Several methods have recently been pro-
posed for proving non-termination of programs [7–9,11,13,14,19], but most of
them have focused on first-order programs (or, while programs) that can be rep-
resented as finite control graphs. An exception is work on term rewriting systems
(TRS) [9,11]; higher-order programs can be encoded into term rewriting systems,
but the definition of non-termination is different: TRS is non-terminating if there
exists a term that has a non-terminating rewriting sequence, not necessarily the
initial term.

c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part II, LNCS 9207, pp. 287–303, 2015.
DOI: 10.1007/978-3-319-21668-3 17
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Our approach is based on a combination of higher-order model check-
ing [15,21] with predicate abstraction and CEGAR (counterexample-guided
abstraction refinement). Values of a base type (such as integers) are abstracted
to (tuples of) Booleans by using predicates, and higher-order functions are
abstracted accordingly. Higher-order model checking is then used to analyze
the abstracted program. A combination of predicate abstraction and higher-
order model checking has been previously proposed for verifying safety proper-
ties of higher-order programs (i.e., for proving that a program does not reach
an error state in all execution paths) [16]. With respect to that work, the app-
roach of the present paper is novel in that we combine overapproximation and
underapproximation. Note that predicate abstraction [3,12,16] usually yields an
overapproximation, i.e., an abstract program that contains a superset of pos-
sible execution paths of the original program. With such an abstraction, non-
termination of the abstract program (the existence of a non-terminating path)
does not imply that of the original program. To address this problem, we use
both under- and overapproximations. For a deterministic computation step of
the original program, we apply overapproximation but check that every branch
of the overapproximation has a non-terminating path. For a non-deterministic
branch of the original program (such as random number generation and an input
from the environment), we apply under -approximation, and check that some
branch of the underapproximation has a non-terminating path.

Figure 1 illustrates how under- and overapproximations are combined. The
program considered here is of the form:

let x = ∗ in let y = x + 1 in let z = ∗ in · · · .

Here, ∗ generates a random integer. Thus, the program has the execution tree
shown on the top of Fig. 1. The first and third steps are non-deterministic, while
the second step (corresponding to y = x + 1) is deterministic. Suppose that the
predicates used for abstracting the values of x, y, and z are x > 0, y > 0, and
0 ≤ z < x + y (these predicates do not necessarily yield a good abstraction, but
are sufficient for explaining the combination of under- and overapproximations).
Then, the abstract program has the execution tree shown on the bottom of the
figure. Due to the predicate abstraction, the infinitely many branches on the
value of x have been replaced by two branches x > 0 and ¬x > 0. The node
∃ means that only one of the branches needs to have an infinite path (for the
original program having a non-terminating path). The deterministic path from
x = n to y = n + 1 has now been replaced by non-deterministic branches y > 0
and ¬y > 0. The node ∀ indicates that every child of the node must have an
infinite path. Below the node x > 0, however, we do not have a node for ¬y > 0,
as x > 0 and y = x + 1 imply y > 0. The infinite branches on z have been
replaced by non-deterministic branches on ¬(0 ≤ z < x + y) or 0 ≤ z < x + y.
As is the case for x, the branches are marked by ∃, meaning that one of the
branches needs to have an infinite path. Note that below the node ¬x > 0, we
only have a branch for ¬(0 ≤ z < x + y). This is because, when x ≤ 0, there
may be no z that satisfies 0 ≤ z < x + y; so, even if there may be an infinite
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execution sequence along that path, we cannot conclude that the source program
is non-terminating. Thus, this part of the tree provides an under -approximation
of the source program.

An abstract program is actually represented as a tree-generating program
that generates an execution tree like the one shown on the bottom of Fig. 1.
Higher-order model checking is then used for checking, informally speaking, that
every child of each ∀-node has a non-terminating path, and that some child of
each ∃-node has a non-terminating path.

Before abstraction:

· · · x = −1

y = 0

· · · z = 0

· · ·

· · ·

x = 0

y = 1

· · · z = 0

· · ·

· · ·

x = 1

y = 2

· · · z = 0

· · ·

· · ·

· · ·

After abstraction: ∃

¬x > 0

∀

¬y > 0

∃

¬(0 ≤ z < x + y)

· · ·

y > 0

∃

¬(0 ≤ z < x + y)

· · ·

x > 0

∀

y > 0

∃

¬(0 ≤ z < x + y)

· · ·

0 ≤ z < x + y

· · ·

Fig. 1. Execution trees before/after abstraction

The use of overapproximation for disproving termination has also been pro-
posed recently by Cook et al. [8]. Although their theoretical framework is general,
their concrete method for automation is limited to first-order programs. They
also propose a restricted form of combination of underapproximation and over-
approximation, but underapproximation can be followed by overapproximation,
but not vice versa.

The rest of this paper is structured as follows. Section 2 defines the language
used as the target of our verification. Sections 3 and 4 describe predicate abstrac-
tion and CEGAR respectively. Section 5 reports experiments. Section 6 discusses
related work and Sect. 7 concludes the paper.
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2 Language

In this section, we introduce the language of source programs, used as the target
of non-termination verification. It is a simply typed, call-by-value higher-order
functional language. Throughout the paper, we often use the following abbrevi-
ations: ẽ for a possibly empty sequence e1, . . . , en, and {ei}i∈{1,...,n} for the set
{e1, . . . , en}.

P (programs) := {fi xi = ei}i∈{1...n}
e (expressions) := ( ) | y v | if a then e1 else e2

| let x = a in e | let x = *int in e
a (simple expressions) ::= x | n | op (a) v (values) := n | y v

f x = e ∈ P |x| = |v|
f v −→P [v/x] e

[[a]] = n

let x = a in e −→P [n/x] e
let x = *int in e −→P [n/x] e

if n then e0 else e1 −→P e0 if n = 0 if 0 then e0 else e1 −→P e1

Fig. 2. The syntax and operational semantics of the language

The syntax and operational semantics of the language is given in Fig. 2. The
meta-variable fi ranges over a set of function names, and x, y range over the
set of function names and ordinary variables. The meta-variable n ranges over
the set of integers, and op over a set of integer operations. We omit Booleans
and regard a non-negative integer as true, and 0 as false. We require that y ṽ
in the definition of e is a full application, i.e., that all the necessary arguments
are passed to y, and y ṽ has a base type. In contrast, y ṽ in the definition of v
is a partial application. Whether y ṽ is a full or partial application is actually
determined by the simple type system mentioned below.

The expression let x = *int in e randomly generates an integer, binds x
to it, and evaluates e. The meanings of the other expressions should be clear.
A careful reader may notice that we have only tail calls. This is for the simplicity
of the presentation. Note that it does not lose generality, because we can apply
the standard continuation-passing-style (CPS) transformation to guarantee that
all the function calls are in this form. We assume that for every program {fi x̃i =
ei}i∈{1...n}, main ∈ {f1, . . . , fn}.

We assume that programs are simply-typed. The syntax of types is given by:
τ ::=int | � | τ1 → τ2. The types int and � describe integers and the unit value
( ) respectively. The type τ1 → τ2 describes functions from τ1 to τ2. The typing
rules for expressions and programs are given in the full version [17], which are
standard except that the body of each function definition can only have type
�. This does not lose generality since the CPS transformation guarantees this
condition.

The one-step reduction relation e1 −→P e2 is defined by the rules in Fig. 2,
where [[a]] stands for the value of the simple expression a. A program P is non-
terminating if there is an infinite reduction sequence main →P e1 →P e2 →P . . ..
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D (programs) := {fi xi = Mi}i∈{1...n}
M (expressions) := c(M1, . . . , Mk) | y V | let x = (b1, . . . , bk) in M

| br∀ {ψ1 → M1, . . . , ψk → Mk} | br∃ {ψ1 → M1, . . . , ψk → Mk}
b (Booleans) ::= true | false V (values) ::= (b1, . . . , bk) | y V
ψ (Boolean expressions) ::= b | #i(x) | ψ1 ∨ ψ2 | ¬ψ

E[f V1 · · · Vk] −→D E[[V1/x1, . . . , Vk/xk]M ] if f x1 · · · xk = M ∈ D

E[let x = (b1, . . . , bk) in M ] −→D E[[(b1, . . . , bk)/x]M ]

E[br∀ {ψ1 → M1, . . . , ψk → Mk}] −→D E[br∀(Mi1 , . . . , Mi )]
if {ψi | i ∈ {1, . . . , k} , [[ψi]] = true} = {ψi1 , . . . , ψi }

E[br∃ {ψ1 → M1, . . . , ψk → Mk}] −→D E[br∃(Mi1 , . . . , Mi )]
if {ψi | i ∈ {1, . . . , k} , [[ψi]] = true} = {ψi1 , . . . , ψi }

E (evaluation contexts) ::= [ ] | c(M1, . . . , Mi−1, E, Mi+1, . . . , Mn)

Fig. 3. The syntax and semantics of the target language

3 Predicate Abstraction

3.1 Target Language

The target language of predicate abstraction is a higher-order simply-typed func-
tional language having Booleans and special tree constructors as primitives. The
syntax is given in Fig. 3. We assume that for every program {fi x̃i = Mi}i∈{1...n},
main ∈ {f1, . . . , fn}. Each expression generates a possibly infinite tree, describing
possible executions of a source program. The expression c(M1, . . . , Mk) generates
a node labeled with c, having the trees generated by M1, . . . , Mk as its children.
Here, c ranges over the set {end, call, br∀, br∃} of tree constructors. The con-
structors end and call have arities 0 and 1 respectively, while br∀ and br∃
may have arbitrarily many children. We just write end for end(). The expression
let x = (b1, . . . , bk) in M binds x to the tuple (b1, . . . , bk), and evaluates M .
The expression br∀ {ψ1 → M1, . . . , ψk → Mk} (br∃ {ψ1 → M1, . . . , ψk → Mk},
resp.) generates the node br∀ (br∃, resp.), and adds the tree generated by
Mi as a child of the node if ψi evaluates to true, where the order of children
does not matter. The Boolean expression #ix denotes the i-th element of the
tuple x. For example, let x = (true, false) in br∀{#1(x) → end,#2(x) →
call(call(end)), #1(x) ∨ #2(x) → call(end)} generates the tree:

br∀

end call

end

The formal semantics is given through the reduction relation M −→D M ′,
defined in Fig. 3. The tree generated by a program D, written Tree(D), is
the “limit” of the trees obtained from a (possibly infinite) reduction sequence
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main −→D M1 −→D M2 −→D · · ·. For example, the program {main =
call(main)} generates an infinite (linear) tree consisting of infinitely many call
nodes.

Intuitively, the tree generated by a program of the target language describes
possible execution sequences of a source program. The property that a source
program has a non-terminating execution sequence is transformed to the prop-
erty of the tree that (i) every child of each br∀ node has an infinite path, and
(ii) some child of each br∃ node has an infinite path. More formally, the set of
(infinite) trees that represent the existence of a non-terminating computation is
the largest set NonTermTrees such that for every T ∈ NonTermTrees, T
satisfies one of the following conditions.

1. T = call(T ′) and T ′ ∈ NonTermTrees
2. T = br∀(T1, . . . , Tk) and Ti ∈ NonTermTrees for all i ∈ {1, . . . , k}.
3. T = br∃(T1, . . . , Tk) and Ti ∈ NonTermTrees for some i ∈ {1, . . . , k}.

The property above can be expressed by MSO (the monadic second order logic;
or equivalently, modal μ-calculus or alternating parity tree automata); thus
whether the tree generated by a program of the target language belongs to
NonTermTrees can be decided by higher-order model checking [15,21].

3.2 Abstraction

We now formalize predicate abstraction for transforming a source program to
a program (of the target language) that generates a tree that approximately
represents the possible execution sequences of the source program. Following
Kobayashi et al. [16], we use abstraction types for expressing which predicate
should be used for abstracting each value. The syntax of abstraction types is:

σ(abstraction types) ::= � | int[Q1, . . . , Qk] | x : σ1 → σ2

Q (predicates) ::= λx.ϕ ϕ ::= n1x1 + · · · + nkxk ≤ n | ϕ1 ∨ ϕ2 | ¬ϕ

The type � describes the unit value, and int[Q1, . . . , Qk] describes an integer that
should be abstracted by using the predicates Q1, . . . , Qk. For example, given an
abstraction type int[λx.x ≤ 1, λx.2x − 1 ≤ 0], the integer 1 is abstracted to
(true, false). In the syntax above, we list only linear inequalities as primitive
constraints, but we can include other constraints (such as those on uninter-
preted function symbols) as long as the underlying theory remains decidable.
The type x : σ1 → σ2 describes a function whose argument and return value
should be abstracted according to σ1 and σ2 respectively. In σ2, the argument
can be referred to by x if x has an integer type int[Q1, . . . , Qk]. For example,
x : int[λx.x ≤ 0] → int[λy.y − x ≤ 0] describes a function from integers to inte-
gers whose argument should be abstracted using the predicate λx.x ≤ 0 and
whose return value should be abstracted using λy.y − x ≤ 0. Thus, the succes-
sor function (defined by f x = x + 1) will be abstracted to a Boolean function
λb.false (because the return value x + 1 is always greater than x, no matter
whether x ≤ 0 or not).
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The predicate abstraction for expressions and programs is formalized using
the relations Γ 	 e : σ � M and 	 P : Γ � D, where Γ , called an abstraction
type environment, is of the form x1 : σ1, . . . , xn : σn. Intuitively, Γ 	 e : σ � M
means that under the assumption that each free variable xi of e is abstracted
according to σi, the expression e is abstracted to M according to the abstraction
type σ. In the judgment 	 P : Γ � D, Γ describes how each function defined in
P should be abstracted.

The relations are defined by the rules in Fig. 4. Here, we consider, without
loss of generality, only if-expressions of the form if x then e1 else e2. Also,
function arguments are restricted to the syntax: v ::= y ṽ. (In other words,
constants may not occur; note that x c can be replaced by let y = c in x y.)
We assume that each let-expression is annotated with an abstraction type that
should be used for abstracting the value of the variable. Those abstraction types,
as well as those for functions are automatically inferred by the CEGAR proce-
dure described in Sect. 4.

Γ ( ) : end
(PA-Unit)

|= b1Q1(a) ∧ · · · ∧ bkQk(a) ⇒ θΓ ψ(b1,...,bk) (for each b1, . . . , bk ∈ {true, false})
Γ, x : int[Q1, . . . , Qk] e : M

Γ let x : int[Q1, . . . , Qk] = a in e :
br∀ ψ(b1,...,bk) → let x = (b1, . . . , bk) in M | b1, . . . , bk ∈ {true, false}

(PA-Sexp)
|= x = 0 ⇒ θΓ ψ1 |= x = 0 ⇒ θΓ ψ2 Γ e1 : M1 Γ e2 : M2

Γ if x then e1 else e2 : br∀ {ψ1 → M1, ψ2 → M2}
(PA-If)

|= θΓ ψ(b1,...,bk) ⇒ ∃x.b1Q1(x) ∧ · · · ∧ bkQk(x) (for each b1, . . . , bk ∈ {true, false})
Γ, x : int[Q1, . . . , Qk] e : M

Γ let x : int[Q1, . . . , Qk] = *int in e :
br∃ ψ(b1,...,bk) → let x = (b1, . . . , bk) in M | b1, . . . , bk ∈ {true, false}

(PA-Rand)
Γ (y) = x1 : σ1 → · · · → xk : σk → σ

Γ vi : [v1/x1, . . . , vi−1/xi−1]σi Vi for each i ∈ {1, . . . , k}
Γ y v1 · · · vk : [v1/x1, . . . , vk/xk]σ y V1 · · · Vk

(PA-App)

{fi : x : σi → }i∈{1,...,k} , x : σj ei : Mi for each j ∈ {1, . . . , k}
fi xi = ei}i∈{1,...,k} : {fi : x : σi → }i∈{1,...,k} {fi xi = call(Mi)}i∈{1,...,k}

(PA-Prog)

Fig. 4. Predicate abstraction rules

The rule PA-Unit just replaces the unit value with end, which repre-
sents termination. The rule PA-Sexp overapproximates the value of a sim-
ple expression a. Here, θΓ is the substitution that replaces each variable x
of type int[Q′

1, . . . , Q
′
n] in Γ with (Q′

1(x), . . . , Q′
n(x)). For example, if Γ =
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x : int[λx.x ≤ 0, λx.x ≤ 2], y : int[λy.y ≤ x], then θΓ (#2(x) ∧ #1(y)) is
#2(x ≤ 0, x ≤ 2) ∧ #1(y ≤ x), i.e., x ≤ 2 ∧ y ≤ x. The formula biQi(a)
stands for Qi(a) if bi = true, and ¬Qi(a) if bi = false. Basically, the rule
generates branches for all the possible values (b1, . . . , bk) for (Q1(a), . . . , Qk(a)),
and combines them with node br∀ (which indicates that this branch has been
obtained by an overapproximation). To eliminate impossible values, we compute
a necessary condition ψ(b1,...,bk) for (Q1(a), . . . , Qk(a)) = (b1, . . . , bk) to hold,
and guard the branch for (b1, . . . , bk) with ψ(b1,...,bk). The formula ψ(b1,...,bk) can
be computed by using an SMT solver, as in ordinary predicate abstraction [3,16].
(The rule generates 2k branches, leading to code explosion. This is for the sake
of simplicity; the eager splitting of branches is avoided in the actual implemen-
tation.) The rule PA-If is similar: branches for the then- and else-clauses are
generated, but they are guarded by necessary conditions for the branches to be
chosen.

The rule PA-Rand for random number generation is a kind of dual to PA-
SExp. It applies an underapproximation, and generates branches for all the pos-
sible values (b1, . . . , bk) for (Q1(x), . . . , Qk(x)) under the node br∃. Each branch
is guarded by a sufficient condition for the existence of a value for x such that
(Q1(x), . . . , Qk(x)) = (b1, . . . , bk), so that for each branch, there must be a cor-
responding execution path of the source program. The rule PA-App for applica-
tions is the same as the corresponding rule of [16]. Finally, the rule PA-Prog for
programs just transforms the body of each function definition, but adds a special
node call to keep track of function calls. Note that a program is non-terminating
if and only if it makes infinitely many function calls.

Example 1. Let us consider the following program LOOP.

loop h x =let b = (x > 0) in

if b then let d = *int in let y = x + d in h y (loop app) else ( )
app m k =k m main = let r = *int in loop app r

LOOP is non-terminating; in fact, if *int is always evaluated to 1, then we
have:

main −→∗ loop app 1 −→∗ app 2 (loop app) −→∗ loop app 2 −→∗ · · ·

Let ΓLOOP be an abstraction type environment:

loop : (int[λν.ν > 1] → (int[λν.ν > 1] → �) → �) → int[λν.ν > 1] → �

app : int[λν.ν > 1] → (int[λν.ν > 1] → �) → �

By using ΓLOOP and the following abstraction types for b, d, and r:

b : int[λν.ν �= 0], d : int[λν.x + ν > 1], r : int[λν.ν > 1],



Predicate Abstraction and CEGAR for Disproving Termination 295

the program LOOP is abstracted to the following program DLOOP.

loop h x = call(br∀{true → let b = true in M1,
¬x → let b = false in M1})

app m k = call(k m)
main = call(br∃{true → let r = true in loop app r,

true → let r = false in loop app r})
where
M1 = br∀ {b → M2,¬b → end}
M2 = br∃ {true → let d = true in M3, true → let d = false in M3}
M3 = br∀{d → let y = true in h y (loop app),

¬d → let y = false in h y (loop app)}.

For example, let b : int[λν.ν �= 0] = x > 0 in e is transformed by PA-Sexp
as follows:

|= (x > 0) = 0 ⇒ true |= ¬((x > 0) = 0) ⇒ ¬(x > 1)(= θΓ (¬x))
Γ, b : int[λν.ν = 0] e : M1

Γ let b : int[λν.ν = 0] = x > 0 in e
br∀ {true → let b = true in M1, ¬x → let b = false in M1}

where

Γ = ΓLOOP, h : (int[λν.ν > 1] → (int[λν.ν > 1] → �) → �), x : int[λν.ν > 1].

Here, recall that a non-zero integer is treated as true in the source language;
thus, ¬((x > 0) �= 0) means x ≤ 0. Since Tree(DLOOP) ∈ NonTermTrees, we
can conclude that the program LOOP is non-terminating (based on Theorem 1
below). �

The soundness of predicate abstraction is stated as follows (see the full ver-
sion [17] for a proof).

Theorem 1. Suppose 	 P : Γ � D. If Tree(D) ∈ NonTermTrees, then P is
non-terminating.

4 Counterexample-Guided Abstraction Refinement
(CEGAR)

This section describes our CEGAR procedure to refine abstraction based on a
counterexample. Here, a counterexample output by a higher-order model checker
is a finite subtree T of Tree(D), obtained by removing all but one branches of
each br∀ node. Figure 5 illustrates Tree(D) and a corresponding counterexample
(showing Tree(D) �∈ NonTermTrees). In the figure, “· · ·” indicates an infinite
path. For each br∀ node, a model checker picks one branch containing a finite
path, preserving the branches of the other nodes (br∃, call, and end).
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br∃

br∀

· · · end

br∀

· · · end

br∃

br∀

end

br∀

end

Fig. 5. Tree(D) (left) and a corresponding counterexample (right)

We analyze each path of the counterexample tree to infer new abstraction
types for refining abstraction. To that end, we need to distinguish between two
types of paths in the counterexample tree: one that has been introduced due to
overapproximation, and the other due to underapproximation. Figure 6 illus-
trates the two types. For each type, the lefthand side shows the computation
tree of a source program, and the righthand side shows the tree generated by the
abstract program. Thick lines show a path of a counterexample tree. In the exam-
ple of Type I, the computation of a source program takes the then-branch and
falls into a non-terminating computation, but predicate abstraction has intro-
duced the spurious path taking the else branch, which was detected as a part of
the counterexample. In the example of Type II, a source program generates a
random number and non-deterministically branches to a non-terminating com-
putation or a terminating computation. After predicate abstraction, the two
branches by the random number generation have been merged; instead, the next
deterministic computation step has been split into two by an overapproximation.
This situation occurs, for example, for

let x : int[ ] = *int in let y : int[λy.y �= 0] = x in if y then loop() else ().

The program generated by the abstraction is

br∃{true → br∀{true → let y = true in · · · ,
true → let y = false in · · · }}.

Thus, the branches at *int in the original program have been moved to the
branches at br∀. The classification of the paths of a counterexample into Type I
or II can be performed according to the feasibility of the path, i.e., whether there
is a corresponding computation path in the source program. An infeasible path
is Type I, since it has been introduced by an overapproximation, and a feasible
path is Type II; it has a corresponding computation path, but the two kinds of
non-determinism (expressed by br∃ and br∀) have been confused by predicate
abstraction. We need to refine the predicates (or, abstraction types) used for
overapproximation for a Type I path, and those used for underapproximation
for a Type II path. In the example program above, by refining the abstraction
type for x to int[λx.x �= 0], we obtain

br∃{true → let x = true in br∀ {x → let y = true in · · · } ,
true → let x = false in br∀ {¬x → let y = false in · · · }}.
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Thus, the branches on terminating/non-terminating paths are moved to the node
br∃.

Fig. 6. Two types of paths in a counterexample

The refinement of abstraction types based on Type I (i.e., infeasible) paths
can be performed in the same way as our previous work [16]. Thus, we focus
below on how to deal with a Type II path.

4.1 Dealing with Type II Paths

Given a program P and a Type II path π, we first prepare fresh predicate
variables R1, . . . , Rk (called separating predicates), and replace each expression
for random number generation let ri = *int in ei with:1

let ri = *int in assume(Ri(ri)); ei.

Here, an expression assume(φ); e evaluates to e only if φ is true. Then, we
instantiate Ri’s so that the following conditions hold.

(C1) P has no longer an execution path along π.
(C2) If the execution along π reaches let ri = *int in assume(Ri(ri)); ei, there

is at least one value for ri such that Ri(ri) holds.

Condition C1 is for separating the path π at br∃ node (recall Fig. 6; the
problem of a Type II path has been that terminating/non-terminating paths are
merged at br∃ node). Condition C2 ensures that the paths separated from π are
not empty. By C2, for example, an absurd assume statement like assume(false)
is excluded out. We then add the instantiations of R1, . . . , Rk to the abstraction
types for r1, . . . , rk.

For the example

let x : int[ ] = *int in let y : int[λy.y �= 0] = x in if y then loop() else ()

discussed above, we insert an assume statement as follows.

let x = *int in assume(R(x)); let y = x in if y then loop() else ().
1 Actually, we apply the replacement to each instance of let ri = *int in ei along

the execution path π, so that different assume conditions can be used for different
instances of the same expression; we elide the details here.
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Here, the Type II path π is the one that goes through the else-branch. Thus, a
condition R(x) that makes it infeasible is x �= 0. As a result, λx.x �= 0 is added
to the abstraction type for x.

We sketch below how to instantiate R1, . . . , Rk. Using the technique of [16]
condition (I) can be reduced to a set of non-recursive Horn clauses over predicate
variables. Condition (II) is, on the other hand, reduced to constraints of the form

R1(x̃1) ∧ · · · ∧ Rn(x̃n) ∧ C ⇒ ∃x.R(x) ∧ C ′.

Thus, it remains to solve (non-recursive) existentially quantified Horn
clauses [4]. To solve them, we first remove existential quantification by using
a Skolemization-based technique similar to [4]. We prepare a linear template of
Skolem function and move existential quantifiers out of universal quantifiers. For
example, given

∀r. (∃ν.ν ≤ 1 ∧ R(ν)) ∧ ∀r. (R(r) ∧ ¬(r > 0) ⇒ false) ,

we prepare the linear template c0 + c1r and transform the constraints into:

∃c0, c1.∀ν.r. (ν = c0 + c1r ⇒ ν ≤ 1 ∧ R(ν)) ∧ ∀ (R(r) ∧ ¬(r > 0) ⇒ false) .

We then remove predicate variables by resolution, and get:

∀ν.r.ν = c0 + c1r ⇒ ν ≤ 1 ∧ ν > 0

Finally, we solve constraints in the form of ∃x̃.∀ỹ.φ and obtain coefficients of
linear templates that we introduced in the first step. We adopt the existing con-
straint solving technique based [24] on Farkas’ Lemma. For the running example,
we obtain c0 = 2, c1 = 0 as a solution of the constraints.

Now that we have removed existential quantification, we are left with non-
recursive Horn clause constraints, which can be solved by using the existing
constraint solving technique [23]. For the example above, we get

∀ν.r. (ν = 2 ⇒ ν ≤ 1 ∧ R(ν)) ∧ (R(r) ∧ ¬(r > 0) ⇒ ⊥)

and obtain R = λν.ν > 0 as a solution.

5 Implementation and Experiments

We have implemented a non-termination verifier for a subset of OCaml, as an
extension of MoCHi [16], a software model checker for OCaml programs. We use
HorSat [5] as the backend higher-order model checker, and Z3 [20] as the backend
SMT solver. The web interface of our non-termination verification tool is avail-
able online [1]. We evaluated our tool by experiments on two benchmark sets: (1)
test cases consisting of higher-order programs and (2) a standard benchmark set
on non-termination of first-order programs [7,19]. Both experiments were con-
ducted on a machine with Intel Xeon E3-1225 V2 (3.20GHz, 16GB of memory)
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Table 1. The result of the first benchmark set

Program Cycle Time (msec) Program Cycle Time (msec)

loopHO 2 1,156 unfoldr nonterm 3 13,540

indirect e 1 111 passing cond 2 9,202

indirectHO e 1 112 inf clos 2 12,264

foldr nonterm 4 20,498 fib CPS nonterm 1 133

alternate 1 95 fixpoint nonterm 2 168

with timeout of 60 seconds. The first benchmark set and an online demo page
are available from our website [1].

Table 1 shows the result of the first evaluation. The columns ‘program’,
‘cycle’, and ‘time’ show the name of each test case, the number of CEGAR
cycles, and the elapsed time (in milliseconds), respectively. For foldr nonterm,
we have used a different mode for a backend constraint solver; with the default
mode, our verifier has timed out. All the programs in the first benchmark set are
higher-order programs; so, they cannot be directly verified by previous tools. Our
tool could successfully verify all the programs to be non-terminating (except that
we had to change the mode of a backend constraint solver for foldr nonterm).

We explain below two of the programs in the first benchmark set: inf clos
and alternate. The program inf clos is:

is zero n = (n = 0) succ app f n = f (n + 1)
f n cond = let b = cond n in if b then ( ) else f n (succ app cond)
main = f *int is zero.

It has the following non-terminating reduction sequence:

main −→∗ f 1 is zero −→∗ f 1 (succ app is zero) −→∗ f 1 (succ app2 is zero)
−→∗ f 1 (succ appm is zero) −→∗ · · · .

Note that succ appm is zero n is equivalent to n+m = 0; hence b in the function
f always evaluates to false in the sequence above. For proving non-termination,
we need to reason about the value of the higher-order argument cond, so the
previous methods for non-termination of first-order programs are not applicable.

The following program alternate shows the strength of our underapproxi-
mation.

f g h z = let x = *int in if x > 0 then g (f h g) else h (f h g)
proceed u = u ( ) halt u = ( ) main = f proceed halt ( )

It has the following non-terminating reduction sequence:

main −→∗ f proceed halt ( )
−→∗ if 1 > 0 then proceed(f halt proceed) else · · · −→∗ f halt proceed ( )
−→∗ if − 1 > 0 then · · · else proceed(f proceed halt) −→∗ f proceed halt ( )
−→∗ · · · .
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Here, since the arguments g and h are swapped for each recursive call, the pro-
gram does not terminate only if positive and negative integers are created alter-
nately by *int. Thus, the approach of Chen et al. [7] (which underapproximates a
program by inserting assume statements and then uses a safety property checker
to prove that the resulting program never terminates) would not be applica-
ble. In our approach, by using the abstraction type int[λx.x > 0] for x, f is
abstracted to:

f g h z = br∃{true → let x = true in br∀ {x → g(f h g)},
true → let x = false in br∀ {¬x → h(f h g)}}.

Thus, both branches of the if-expression are kept in the abstract program, and
we can correctly conclude that the program is non-terminating.

For the second benchmark, we have borrowed a standard benchmark set
consisting of 78 programs categorized as “known non-terminating examples”
[7,19]. (Actually, the original set consists of 81 programs, but 3 of them turned
out to be terminating.) The original programs were written in the input language
for T2 [2]; we have automatically converted them to OCaml programs. Our tool
could verify 48 programs to be non-terminating in the time limit of 60 seconds.
According to Larraz et al. [19], CPPINV [19], T2-TACAS [7], APROVE [6,10],
JULIA [22], and TNT [13] could verify 70, 51, 0, 8, and 19 programs respectively,
with the same limit but under a different environment. Thus, our tool is not the
best, but competitive with the state-of-the-art tools for proving non-termination
of first-order programs, despite that our tool is not specialized for first-order
programs. As for the comparison with T2-TACAS [7], our tool could verify 7
programs for which T2-TACAS failed, and ours failed for 10 programs that T2-
TACAS could verify.

6 Related Work

Methods for disproving termination have recently been studied actively [7,8,
13,19]. Most of them, however, focused on programs having finite control-
flow graphs with numerical data. For example, the state-of-the-art method by
Larraz et al. [19] enumerates a strongly connected subgraph (SCSG), and checks
whether there is a computation that is trapped in the SCSG using a SMT solver.
Thus, it is not obvious how to extend those techniques to deal with recursion
and higher-order functions. Note that unlike in safety property verification, we
cannot soundly overapproximate the infinite control-flow graph of a higher-order
program with a finite one.

Technically, the closest to our work seems to be the series of recent work
by Cook et al. [7,8]. They apply an underapproximation by inserting assume
statements, and then either appeal to a safety property checker [7], or apply
an overapproximation [8] to prove that the underapproximated program is non-
terminating for all execution paths. A problem of their underapproximation [7]
is that when an assume statement assume(P ) is inserted, all the computations
such that ¬P are discarded; so if P is wrongly chosen, they may overlook a
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non-terminating computation present in the branch where ¬P holds. As in the
case for alternate discussed in Sect. 5, in the presence of higher-order functions,
there may be no proper way for inserting assume conditions. In contrast, with our
predicate abstraction, given a predicate P , we basically keep both branches for P
and ¬P , and apply an underapproximation only if the satisfiability of P or ¬P is
not guaranteed (recall Fig. 1). In Cook et al.’s method [8], underapproximation
cannot be applied after overapproximation, whereas under- and overapproxima-
tion can be arbitrarily nested in our method. Furthermore, although the frame-
work of Cook et al. [8] is general, their concrete method can be applied to detect
only non-termination in the form of lasso for programs having finite control-flow
graphs. Harris et al. [14] also combine under- and overapproximation, but in a
way different from ours: they use under- and overapproximation for disproving
and proving termination respectively, not both for disproving termination.

There have also been studies on non-termination of term rewriting systems
(TRS). Higher-order programs can be encoded into term rewriting systems, but
the resulting analysis would be too imprecise. Furthermore, as mentioned in
Sect. 1, the definition of non-termination is different.

Higher-order model checking has been recently applied to program verifi-
cation [15,16]. Predicate abstraction has been used for overapproximation for
the purpose of safety property verification, but the combination of under- and
overapproximation is new. Kuwahara et al. [18] have proposed a method for
proving termination of higher-order programs; our new method for disproving
termination plays a complementary role to that method.

The constraints generated in our CEGAR phase can be regarded as spe-
cial instances of “existentially quantified Horn clauses” considered by Beyene
et al. [4], where only acyclic clauses are allowed. Our constraint solving algorithm
is specialized for the case of acyclic clauses. Incidentally, Beyene et al. [4] used
existentially quantified clauses for verifying CTL properties of programs. Since
non-termination can be expressed by the CTL formula EG¬terminated , their
technique can, in principle, be used for verifying non-termination. Like other
methods for non-termination, however, the resulting technique seems applicable
only to programs with finite control-flow graphs.

7 Conclusion

We have proposed an automated method for disproving termination of higher-
order programs. The key idea was to combine under- and overapproximations
by using predicate abstraction. By representing the approximation as a tree-
generating higher-order program, we have reduced non-termination verification
to higher-order model checking. The mixture of under- and overapproximations
has also required a careful analysis of counterexamples, for determining whether
and how under- or overapproximations are refined. We have implemented the
proposed method and confirmed its effectiveness. Future work includes optimiza-
tions of the implementation and integration with the termination verifier [18].



302 T. Kuwahara et al.

Acknowledgments. We would like to thank Carsten Fuhs for providing us with their
experimental data and pointers to related work, and anonymous referees for useful
comments. This work was partially supported by Kakenhi 23220001 and 25730035.

References

1. MoCHi(Non-termination): Model Checker for Higher-Order Programs. http://
www-kb.is.s.u-tokyo.ac.jp/∼kuwahara/nonterm/

2. T2 temporal prover. http://research.microsoft.com/en-us/projects/t2/
3. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate

abstraction of C programs. In: PLDI 2001, pp. 203–213. ACM (2001)
4. Beyene, T.A., Popeea, C., Rybalchenko, A.: Solving existentially quantified horn

clauses. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 869–
882. Springer, Heidelberg (2013)

5. Broadbent, C., Kobayashi, N.: Saturation-based model checking of higher-order
recursion schemes. In: CSL 2013. LIPIcs, vol. 23, pp. 129–148 (2013)
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Abstract. In this paper we turn the spotlight on a class of lexicographic
ranking functions introduced by Bradley, Manna and Sipma in a seminal
CAV 2005 paper, and establish for the first time the complexity of some
problems involving the inference of such functions for linear-constraint
loops (without precondition). We show that finding such a function, if one
exists, can be done in polynomial time in a way which is sound and com-
plete when the variables range over the rationals (or reals). We show that
when variables range over the integers, the problem is harder—deciding
the existence of a ranking function is coNP-complete. Next, we study
the problem of minimizing the number of components in the ranking
function (a.k.a. the dimension). This number is interesting in contexts
like computing iteration bounds and loop parallelization. Surprisingly,
and unlike the situation for some other classes of lexicographic ranking
functions, we find that even deciding whether a two-component ranking
function exists is harder than the unrestricted problem: NP-complete
over the rationals and ΣP

2 -complete over the integers.

1 Introduction

Proving that a program will not go into an infinite loop is one of the most fun-
damental tasks of program verification, and has been the subject of voluminous
research. Perhaps the best known, and often used, technique for proving termi-
nation is the ranking function. This is a function ρ that maps the program states
into the elements of a well-founded ordered set, such that ρ(s) > ρ(s′) holds for
any consecutive states s and s′. This implies termination since infinite descent
in a well-founded order is impossible.

We focus on numerical loops, where a state is described by the values of a
finite set of numerical variables; we consider the setting of integer-valued vari-
ables, as well as rational-valued (or real-valued) variables. We ignore details of
the programming language; we assume that we are provided an abstract descrip-
tion of the loop as a finite number of alternatives, that we call paths, each one
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defined by a finite set of linear constraints on the program variables x, y, . . . and
the primed variables x′, y′, . . . which refer to the state following the iteration.
The following is such a loop consisting of four paths, Q1, . . . ,Q4:

Q1 = {x ≥ 0, x′ ≤ x − 1, y′ = y, z′ = z}
Q2 = {x ≥ 0, x′ ≤ x − 1, y′ = y, z ≥ 0, z′ ≤ z − 1}
Q3 = { x′ = x, y ≥ 0, y′ ≤ y − 1, z ≥ 0, z′ ≤ z − 1}
Q4 = { x′ = x, y ≥ 0, y′ ≤ y − 1, z′ = z}

Note that Qi are convex polyhedra. A transition from a state x̄ to x̄′ is possi-
ble iff (x̄, x̄′) is a point in some path Qi. We remark that our results hold for
arbitrarily-complex control-flow graphs (CFGs), we prefer to use the loop setting
for clarity.

A popular tool for proving the termination of such loops is linear ranking
functions (LRFs). An LRF is a function ρ(x1, . . . , xn) = a1x1 + · · · + anxn + a0

such that any transition (x̄, x̄′) satisfies (i) ρ(x̄) ≥ 0; and (ii) ρ(x̄) − ρ(x̄′) ≥ 1.
E.g., ρ(x, y, z) = x is an LRF for a loop that consists of only Q1 and Q2 above,
ρ(x, y, z) = y is an LRF for Q3 and Q4, and ρ(x, y, z) = z is an LRF for Q2

and Q3. However, there is no LRF that satisfies the above conditions for all
paths Q1, . . . ,Q4. An algorithm to find an LRF using linear programming (LP)
has been found by multiple researchers in different places and times and in some
alternative versions [1,10,14,21,23,26]. Since LP has a polynomial-time complex-
ity, most of these methods yield polynomial-time algorithms. These algorithms
are complete for loops with rational-valued variables, but not with integer-valued
variables. Indeed, [4] shows loops that have LRFs over the integers but do not
even terminate over the rationals. In a previous work [4] we considered the integer
setting, where complete algorithms were proposed and a complexity classification
was proved: to decide whether an LRF exists is coNP-complete.

LRFs do not suffice for all loops (e.g., the 4-path loop above), and thus, a
natural question is what to do when an LRF does not exist; and a natural answer
is to try a richer class of ranking functions. Of particular importance is the class
of lexicographic-linear ranking functions (LLRFs). An LLRF is a d-tuple of affine-
linear functions, 〈ρ1, . . . , ρd〉, required to descend lexicographically. Interestingly,
Alan Turing’s early demonstration [28] of how to verify a program used an LLRF
for the termination proof. Algorithms to find LLRFs for linear-constraint loops
(or CFGs) can use LP techniques, extending the work on LRFs. Alias et al. [1]
extended the polynomial-time LRF algorithm to LLRFs and gave a complete
solution for CFGs. As for LRFs, the solution is incomplete for integer data, and
in [4] we established for LLRFs over the integers results that parallel those for
LRFs, in particular, to decide whether an LLRF exists is coNP-complete.

Interestingly, when trying to define the requirements from a numeric “lex-
icographic ranking function” (corresponding to the conditions (i) and (ii) on
an LRF, above), different researchers had come up with different definitions.
In particular, the definition in [1] is more restrictive than the definition in [4].
Furthermore, an important paper [5] on LLRF generation that preceded both
works gave yet a different definition. We give the precise definitions in Sect. 2;
for the purpose of introduction, let us focus on the LLRFs of [5] (henceforth,
BMS-LLRFs, after the authors), and illustrate the definition by an example.
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Consider the above loop defined by Q1, . . . ,Q4. A possible BMS-LLRF for
this loop is ρ(x, y, z) = 〈x, y〉. The justification is this: in Q1 and Q2, the function
ρ1(x, y) = x is ranking (non-negative and decreasing by at least 1). In Q3 and Q4,
ρ2(x, y) = y is ranking, while ρ1 is non-increasing. This is true over the rationals
and a fortiori over the integers. The following points are important: (1) for each
path we have an LRF, which is one of the components of the BMS-LLRF; and
(2) previous (lower-numbered) components are only required to be non-
increasing on that path. Note that this LLRF does not satisfy the requirements
of [1] or [4].

The goal of this paper is to understand the computational complexity of some
problems related to BMS-LLRFs, starting with the most basic problem, whether
a given loop has such LLRF. We note that [5] does not provide an answer, as
a consequence of attempting to solve a much harder problem—they consider a
loop given with a precondition and search for a BMS-LLRF together with a
supporting linear invariant. We do not know if this problem is even decidable
when parameters like the number of constraints in the invariants are not fixed
in advance (when they are, the approach of [5] is complete, but only over the
reals, and at a high computational cost – even without a precondition).

We consider the complexity of finding a BMS-LLRF for a given loop, without
preconditions. We prove that this can be done in polynomial time when the loop
is interpreted over the rationals, while over the integers, deciding the existence
of a BMS-LLRF is coNP-complete. An exponential-time synthesis algorithm is
also given. These results are similar to those obtained for the previously studied
classes of LLRFs [4], but are shown for the first time for BMS-LLRFs.

Next, we consider the number of components d in a BMS-LLRF 〈ρ1, . . . , ρd〉.
This number is informally called the dimension of the function. It is interesting
for several reasons: An upper bound on the dimension is useful for fixing the
template in the constraint-solving approach, and plays a role in analyzing the
complexity of corresponding algorithms. In addition, an LLRF can be used to
infer bounds on the number of iterations [1]; assuming linear bounds on individ-
ual variables, a polynomial bound of degree d is clearly implied, which motivates
the desire to minimize the dimension, to obtain tight bounds. A smaller dimen-
sion also means better results when LLRFs are used to guide parallelization [15].

Importantly, the algorithms of Alias et al. [1] and Ben-Amram and Genaim [4]
are optimal w.r.t. the dimension, i.e., they synthesize LLRFs of minimal dimen-
sion for the respective classes. We note that it is possible for a loop to have
LLRFs of all three classes but such that the minimal dimension is different in
each (see Sect. 4). We also note that, unlike the case for the previous classes, our
synthesis algorithm for BMS-LLRFs is not guaranteed to produce a function of
minimal dimension. This leads us to ask: (1) what is the best a priori bound
on the dimension, in terms of the number of variables and paths; and (2) how
difficult it is to find an LLRF of minimal dimension. As a relaxation of this opti-
mization problem, we can pose the problem of finding an LLRF that satisfies a
given bound on the dimension. Our results are summarized in Table 1. There is
a striking difference of BMS-LLRFs from other classes w.r.t. to the minimum
dimension problem: the complexity jumps from PTIME (resp. coNP-complete)
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to NPC (resp. ΣP
2 -complete) over rationals (resp. integers). This holds for any

fixed dimension larger than one (dimension one is an LRF).

Table 1. Summary of results, considering a loop of k paths over n variables. Those in
the third row are new, the others are from previous works or follow by minor variations.

LLRF type Dimension Existence Fixed dimension

bound over Q over Z over Q over Z

ADFG [1] min(n, k) PTIME coNP-complete PTIME coNP-complete

BG [4] n PTIME coNP-complete PTIME coNP-complete

BMS [5] k PTIME coNP-complete NP-complete ΣP
2 -complete

2 Preliminaries

Polyhedra. A rational convex polyhedron P ⊆ Qn (polyhedron for short) is the
set of solutions of a set of inequalities Ax ≤ b, namely P = {x ∈ Qn | Ax ≤ b},
where A ∈ Qm×n is a rational matrix of n columns and m rows, x ∈ Qn and
b ∈ Qm are column vectors of n and m rational values respectively. We say that
P is specified by Ax ≤ b. We use calligraphic letters, such as P and Q to denote
polyhedra. For a given polyhedron P ⊆ Qn we let I(P) be P ∩Zn, i.e., the set of
integer points of P. The integer hull of P, commonly denoted by PI , is defined
as the convex hull of I(P). It is known that PI is also a polyhedron. An integer
polyhedron is a polyhedron P such that P = PI . We also say that P is integral.

Multipath Linear-Constraint Loops. A multipath linear-constraint loop
(MLC loop) with k paths has the form:

∨k
i=1 Ai

(
x
x′

)
≤ ci where x =

(x1, . . . , xn)T and x′ = (x′
1, . . . , x

′
n)T are column vectors, and for q > 0,

Ai ∈ Qq×2n, ci ∈ Qq. Each path Ai

(
x
x′

)
≤ ci is called an abstract transi-

tion. The loop is a rational loop if x and x′ range over Qn, and it is an inte-
ger loop if they range over Zn. We say that there is a transition from a state
x ∈ Qn to a state x′ ∈ Qn, if for some 1 ≤ i ≤ k,

( x
x′

)
satisfies the i-th

abstract transition. In such case we say that x is an enabled state. We use x′′

as a shorthand for a transition
(
x
x′

)
, and consider it as a point in Q2n. The set

of transitions satisfying a particular abstract transition is a polyhedron in Q2n,
denoted Qi, namely Aix′′ ≤ ci. In our work it is convenient to represent an MLC
loop by its transition polyhedra Q1, . . . ,Qk, which we often write with explicit
equalities and inequalities. These are sometimes referred to as the paths of the
multipath loop.

Ranking Functions. An affine linear function ρ : Qn 	→ Q is of the form
ρ(x) = λ · x + λ0 where λ ∈ Qn and λ0 ∈ Q. We define Δρ : Q2n 	→ Q

as Δρ(x′′) = ρ(x) − ρ(x′). Given a set T ⊆ Q2n, representing transitions, we
say that ρ is an LRF for T if for every x′′ ∈ T we have (i) ρ(x) ≥ 0; and
(ii) Δρ(x′′) ≥ 1. We say that ρ is an LRF for a rational (resp. integer) loop,
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specified by Q1, . . . ,Qk, when it is an LRF for
⋃k

i=1 Qi (resp.
⋃k

i=1 I(Qi)). For
a rational loop, there is a polynomial-time algorithm to either find an LRF
or determine that none exists [23]. Its essence is that using Farkas’ Lemma
[25, p. 93], it is possible to set up an LP problem whose feasibility is equivalent
to the existence of ρ that satisfies (i) and (ii) over Q1, . . . ,Qk.

A d-dimensional affine function τ : Qn → Qd is expressed by a d-tuple
τ = 〈ρ1, . . . , ρd〉, where each component ρi : Qn → Q is an affine linear function.
The number d is informally called the dimension of τ . Next we define when such
a function is BMS-LLRF [5] for a given rational or integer MLC loop. We then
compare with ADFG-LLRFs (due to [1]) and BG-LLRFs (due to [4]).

Definition 1 (BMS-LLRF). Given k sets of transitions T1, . . . , Tk ⊆ Q2n, we
say that τ = 〈ρ1, . . . , ρd〉 is a BMS-LLRF for T1, . . . , Tk iff for every 1 ≤ � ≤ k
there is 1 ≤ i ≤ d such that the following hold for any x′′ ∈ T�:

∀j < i .Δρj(x′′) ≥ 0 , (1)
ρi(x) ≥ 0 , (2)

Δρi(x′′) ≥ 1 . (3)

We say that T� is ranked by ρi.

We say that τ is a BMS-LLRF for a rational (resp. integer) loop, specified by
Q1, . . . ,Qk, when it is a BMS-LLRF for Q1, . . . ,Qk (resp. I(Q1), · · · , I(Qk)). It
is easy to see that the existence of a BMS-LLRF implies termination.

Definition 2 (BG-LLRF). Given a set of transitions T ⊆ Q2n, we say that
τ = 〈ρ1, . . . , ρd〉 is a BG-LLRF for T iff for every x′′ ∈ T there is 1 ≤ i ≤ d
such that the following hold:

∀j < i .Δρj(x′′) ≥ 0 , (4)
∀j ≤ i . ρj(x) ≥ 0 , (5)

Δρi(x′′) ≥ 1 . (6)

We say that x is ranked by ρi.

We say that τ is a BG-LLRF for a rational (resp. integer) loop, specified by
Q1, . . . ,Qk, when it is a BG-LLRF for Q1 ∪ · · · ∪Qk (resp. I(Q1)∪ · · · ∪ I(Qk)).
It is easy to see that the existence of a BG-LLRF implies termination.

Note the differences between the definitions: in one sense, BG-LLRFs are
more flexible because of the different quantification — for every transition x′′

there has to be a component ρi that ranks it, but i may differ for different
x′′, whereas in BMS-LLRFs, all transitions that belong to a certain T� have
to be ranked by the same component. In another sense, BMS-LLRFs are more
flexible because components ρj with j < i can be negative (compare (2) with
(5)). Thus, there are loops that have a BMS-LLRF and do not have a BG-LLRF
(see loop in Sect. 1); and vice versa (see [4, Ex. 2.12]). A third type of LLRFs is
attributed to [1], hence we refer to it as ADFG-LLRF. It is similar to BG-LLRFs
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but requires all components to be non-negative in every enabled state. That is,
condition (5) is strengthened. Interestingly, the completeness proof in [1] shows
that the above-mentioned flexibility of BG-LLRFs adds no power in this case;
therefore, ADFG-LLRFs are a special case of both BG-LLRFs and BMS-LLRFs.

The decision problem Existence of a BMS-LLRF deals with deciding whether
a given MLC loop admits a BMS-LLRF, we denote it by BMS-LexLinRF(Q)
and BMS-LexLinRF(Z) for rational and integer loops respectively. The corre-
sponding decision problems for ADFG- and BG-LLRFs are solved in [1] and [4],
respectively, over the rationals; the case of integers is only addressed in [4] for
BG-LLRFs, but the complexity results apply to ADFG-LLRFs as well.

3 Synthesis of BMS-LLRFs

In this section we describe a complete algorithm for synthesizing BMS-LLRFs
for rational and integer MLC loops; and show that the decision problems
BMS-LexLinRF(Q) and BMS-LexLinRF(Z) are PTIME and coNP-complete,
respectively. We assume a given MLC loop Q1, . . . ,Qk where each Qi is given as
a set of linear constraints, over 2n variables (n variables and n primed variables).

Definition 3. Let T1, . . . , Tk be sets of transitions such that Ti ⊆ Q2n. We say
that an affine linear function ρ is a BMS quasi-LRF (BMS-QLRF for short) for
T1, . . . , Tk if every transition x′′ ∈ T1 ∪ · · · ∪ Tk satisfies Δρ(x′′) ≥ 0, and for at
least one T�, ρ is an LRF (such T� is said to be ranked by ρ).

Example 1. The following are BMS-QLRFs for the loop consisting of Q1, . . . ,Q4

presented in Sect. 1: f1(x, y, z)=x, which ranks {Q1,Q2}; f2(x, y, z)=y which
ranks {Q3,Q4}; and f3(x, y, z)=z which ranks {Q2,Q3}.

Lemma 1. There is a polynomial-time algorithm that finds a BMS-QLRF ρ, if
there is any, for Q1, . . . ,Qk.

Proof. The algorithm iterates over the paths Q1, . . . ,Qk. In the i-th iteration
it checks if there is an LRF ρ for Qi that is non-increasing for all other paths,
stopping if it finds one. The algorithm makes at most k iterations. Each iteration
can be implemented in polynomial time using Farkas’ Lemma (as in [23]). �

Our procedure for synthesizing BMS-LLRFs is depicted in Algorithm1. In each
iteration (i.e., call to LLRFSYN): it finds a BMS-QLRF ρ for the current paths
(Line 2); it eliminates all paths that are ranked by ρ (Line 3); and calls recursively
to handle the remaining paths (Line 4). The algorithm stops when all paths are
ranked (Line 1), or when it does not find a BMS-QLRF (Line 6).

Example 2. Consider the MLC loop example in Sect. 1. Procedure LLRFSYN is
first applied to 〈Q1,Q2,Q3,Q4〉, and at Line 2 we can choose the BMS-QLRF
x which ranks Q1 and Q2. Hence these are eliminated at Line 3, and at Line 4
LLRFSYN is applied recursively to 〈∅, ∅,Q3,Q4〉. Then at Line 2 we can choose the
BMS-QLRF y which ranks Q3 and Q4. The next recursive call receives empty
polyhedra, and thus the check at Line 1 succeeds and the algorithm returns 〈x, y〉.
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Algorithm 1. Synthesizing BMS-LLRFs
LLRFSYN(〈Q1, . . . , Qk〉)
begin

1 if 〈Q1, . . . , Qk〉 are all empty then return nil
2 if Q1, . . . , Qk has a BMS-QLRF ρ then
3 ∀1 ≤ i ≤ k. Q′

i := ∅ if Qi is ranked by ρ, otherwise Q′
i = Qi

4 τ ← LLRFSYN(〈Q′
1, . . . , Q′

k〉)
5 if τ �= None then return ρ::τ

6 return None

Lemma 2. If LLRFSYN(〈Q1, . . . ,Qk〉) returns τ different from None, then τ is
a BMS-LLRF for the rational loop Q1, . . . ,Qk.

The proof of the above lemma is straightforward. Thus, Algorithm1 is a sound
algorithm for BMS-LLRFs. The following proposition shows completeness.

Proposition 1. There is a BMS-LLRF for Q1, . . . ,Qk if and only if every sub-
set of {Q1, . . . ,Qk} has a BMS-QLRF.

Proof. The “if” direction is implied by the LLRFSYN procedure, in such case it
will find a BMS-LLRF. For the “only if” direction, let τ = 〈ρ1, . . . , ρd〉 be a
BMS-LLRF for Q1, . . . ,Qk, and let Q�1 , . . . ,Q�j be an arbitrary subset of the
loop’s paths. Since τ is a BMS-LLRF for Q1, . . . ,Qk, each Q�i is ranked by some
ρli . Let l = min{l1, . . . , lj}, then ρl is a BMS-QLRF for Q�1 , . . . ,Q�j . �

Lemma 3. Procedure LLRFSYN can be implemented in polynomial time.

Proof. Procedure LLRFSYN makes at most k steps (since at least one path is
eliminated in every step). Further, all steps are elementary except checking for
a BMS-QLRF which can be done in polynomial time as stated by Lemma 1. �

Corollary 1. BMS-LexLinRF(Q) ∈ PTIME.

So far we have considered only rational loops, next we consider integer loops.

Lemma 4. There is a complete algorithm for synthesizing a BMS-QLRF for
I(Q1), . . . , I(Qk).

Proof. The algorithm computes the integer hull Q1I , . . . ,QkI , and then proceeds
as in the rational case (Lemma 1). Correctness follows from the fact that for inte-
gral polyhedra the implied inequalities over the rationals and integers coincide,
i.e., Q1I , . . . ,QkI and I(Q1), . . . , I(Qk) have the same BMS-QLRFs. �

Lemma 5. When procedure LLRFSYN is applied to the integer hulls
Q1I , . . . ,QkI , it finds a BMS-LLRF for I(Q1), . . . , I(Qk), if one exists.
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Proof. Soundness follows from the fact that QI contains I(Q); for completeness,
note that: (i) Proposition 1 holds also for integer loops; and (ii) Line 3 of LLRFSYN
does not change the transition polyhedra, it only eliminates some, which means
that they remain integral throughout the recursive calls. Thus, in each iteration
the check at Line 2 is complete (see Lemma 4). �

In the general case this procedure has an exponential time complexity since
computing the integer hull requires an exponential time. However, for special
cases in which the integer hull can be computed in polynomial time [4, Sect. 4] it
has polynomial time complexity. The following lemma implies (assuming P�=NP)
that the exponential time complexity is unavoidable in general.

Theorem 1. BMS-LexLinRF(Z) is a coNP-complete problem.

Proof. The coNP-hardness follows from the reduction in [4, Sect. 3.1], since it
constructs a loop that either does not terminate or has an LRF. The inclusion
in coNP is based on arguments similar to those in [4, Sect. 5]; briefly, we use the
generator representation of the transition polyhedra to construct a polynomial-
size witness against existence of an LLRF (see [2]). �

4 The Dimension of BMS-LLRFs

Ben-Amram and Genaim [4, Cor. 5.12,p. 32] showed that if a given MLC loop
has a BG-LLRF, then it has one of dimension at most n, the dimension of the
state space. The same proof can be used to bound the dimension of ADFG-
LLRFs by n as well. Hence for ADFG-LLRFs the bound min(n, k) holds (k is
the number of paths), due to the fact that associating LLRF components with
paths is no loss of generality for ADFG-LLRFs [1]. In the case of BMS-LLRFs,
the bound k clearly holds, and the next example shows that it is tight.

Example 3. Define an MLC loop Q1, . . . ,Qk for some k > 0, over variables x, y,
where each Qi = {x′ ≤ x, x′ + i · y′ ≤ x + i · y − 1, x + i · y ≥ 0}. Define
fi(x, y) = x + i · y. It is easy to check that (i) fi is an LRF for Qi, and is non-
increasing for any Qj with i < j ≤ k; and (ii) there are no distinct Qi and Qj

that have a common LRF. From (i) it follows that 〈f1, . . . , fk〉 is a BMS-LLRF
for this loop, and from (ii) it follows that any BMS-LLRF must have (at least)
dimension k, since different paths cannot be ranked by the same component. We
remark that this loop has no BG-LLRF (hence, also no ADFG-LLRF).

The above discussion emphasizes the difference between the various definitions
of LLRFs, when considering the dimension. The next example emphasizes this
difference further, it shows that there are loops, having LLRFs of all three kinds,
for which the minimal dimension is different according to each definition. This
also means that the implied bounds on the number of iterations (assuming, for
simplicity, that all variables have the same upper bound) are different.
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Example 4. Consider an MLC loop specified by the following paths

Q1 =
{

r ≥ 0, t ≥ 0, x ≥ 0, z ≥ 0, w ≥ 0,
}

r′ < r, t′ < t,

Q2 =
{

r ≥ 0, s ≥ 0, t ≥ 0, x ≥ 0, z ≥ 0, w ≥ 0,
}

r′ = r, s′ < s, t′ < t,

Q3 =
{

r ≥ 0, s ≥ 0, t′ = t x ≥ 0, z ≥ 0, w ≥ 0,
}

r′ = r, s′ = s, x′ < x,

Q4 =
{

r ≥ 0, s ≥ 0, t′ = t x ≥ 0, y ≥ 0, z ≥ 0, w ≥ 0,
}

r′ = r, s′ = s, x′ = x, y′ < y, z′ < z,

Q5 =
{ r ≥ 0, s ≥ 0, t′ = t x ≥ 0, y ≥ 0, z ≥ 0, w ≥ 0, }

r′ = r, s′ = s, x′ = x, y′ < y, z′ = z, w′ < w

where, for readability, we use < for the relation “smaller at least by 1”. This
loop has the BMS-LLRF 〈t, x, y〉, which is neither a BG-LLRF or ADFG-LLRF
because t is not lower-bounded on all the paths. Its shortest BG-LLRF is of
dimension 4, e.g., 〈r, s, x, y〉, which is not an ADFG-LLRF because y is not
lower-bounded on all the paths. Its shortest ADFG-LLRF is of dimension 5,
e.g., 〈r, s, x, z, w〉. This reasoning is valid for both integer and rational variables.

Next, we consider the problem of minimal dimension. We ask (1) whether our
algorithms return an LLRF with minimal dimension; and (2) what do we gain (or
lose?) in terms of computational tractability if we fix a bound on the dimension in
advance. Importantly, the algorithms of [1,4] are optimal w.r.t. the dimension,
i.e., they synthesize LLRFs of minimal dimension. In both cases the optimal
result is obtained by a greedy algorithm, that constructs the LLRF by adding
one dimension at a time, taking care in each iteration to rank as many transitions
as possible. The next example shows that a greedy choice in Algorithm1 fails to
guarantee optimality, for both rational and integer loops. Intuitively, the greedy
approach worked in [1,4] because the classes of quasi-LRFs used to construact
LLRFs are closed under conic combinations, so there is always an optimal choice
that dominates all others. This is not true for BMS-QLRFs.

Example 5. Consider the MLC loop of Sect. 1. If at Line 2 of Algorithm 1 we seek
a BMS-QLRF that ranks a maximal number of the paths, we can use any of those
derived in Example 1: f1 = x; f2 = y; or f3 = z. However, these alternatives
lead to BMS-LLRFs of different dimensions: (i) choose f1 to rank {Q1,Q2}, and
then f2 to rank {Q3,Q4}. (ii) choose f2 to rank {Q3,Q4}, and then f1 to rank
{Q1,Q2}. (iii) choose f3 to rank {Q2,Q3}, but then there is no single function
that ranks {Q1,Q4}. Take f1 to rank Q1 and then f2 to rank Q4. The dimension
of the BMS-LLRF in the first two cases is 2, and in the last one it is 3.

Since Algorithm 1 is not guaranteed to find a BMS-LLRF of minimal dimension,
it is natural to ask how hard is the problem of finding a BMS-LLRF of minimal
dimension? This can be posed as a decision problem: does a given MLC loop have
a BMS-LLRF with dimension at most d? This decision problem is denoted by
BMS-LexLinRF(d,Q) and BMS-LexLinRF(d,Z) for rational and integer loops
respectively. Note that d is a constant, however, it will be clear that accepting
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d as an input does not change the complexity class of these problems. Also note
that for d = 1 it is just the LRF problem. Similar problems can be formulated
for ADFG- and BG-LLRFs, of course. In these two settings, the imposition of a
dimension bound does not change the complexity class.

Theorem 2. Given a rational MLC loop, and d ≥ 1, it is possible to determine
in polynomial time if there is an ADFG-LLRF (resp. BG-LLRFs) for the loop
of dimension at most d. For integer MLC loops, the problem is coNP-complete.

Proof. The case of rational loops is straightforward since the corresponding syn-
thesis algorithms find LLRFs with minimal dimension, and are in PTIME. The
integer case follows easily from the techniques of [4] (see [2]). �

5 Complexity of BMS-LEXLINRF (d,Q)

In this section we show that BMS-LexLinRF(d,Q) is NP-complete.

Theorem 3. For d ≥ 2, BMS-LexLinRF(d,Q) is an NP-complete problem.

For inclusion in NP, a non-deterministic algorithm for the problem works as
follows. First, it guesses a partition of {1, . . . , k} into d sets J1, . . . , Jd, of which
some may be empty (we can assume they are last). Then it proceeds as in
Algorithm 1 but insists that the paths indexed by Jr be ranked at the r-th
iteration. This may fail, and then the algorithm rejects. If a BMS-LLRF of
dimension at most d exists, there will be an accepting computation.

For NP-hardness we reduce from the NP-complete problem d-Colorability of
3-Uniform Hypergraphs [20,22]. An instance of this problem is a set H of m sets
F1, . . . , Fm (hyperedges, or “faces”), where each Fi includes exactly 3 elements
from a set of vertices V = {1, . . . , n}, and we are asked whether we can choose
a color (out of d colors) for each vertex such that every face is not monocolored.

We construct a rational MLC loop in 3m variables and n paths. The variables
are indexed by vertices and faces: variable xi,j corresponds to i ∈ Fj ∈ H. For
each vertex 1 ≤ i ≤ n we define Qi as a conjunction of the following:
∑

k : i∈Fk

xi,k −
∑

k : i∈Fk

x′
i,k ≥ 1 (7)

∑

k : j∈Fk

xj,k −
∑

k : j∈Fk

x′
j,k ≥ 0 for all vertex j �= i (8)

xi,k ≥ 0 for all face Fk s.t. i ∈ Fk (9)
xj,k ≥ 0 for all vertex j and face Fk s.t. j ∈ Fk ∧ i /∈ Fk (10)

xi,k + xj,k ≥ 0 for all vertex j �= i and face Fk s.t. i, j ∈ Fk (11)

We claim that a rational loop that consists of these n paths has a BMS-LLRF
of dimension d iff there is a valid d-coloring for the vertices V .
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Assume given a d-coloring, namely a division of the vertices in d disjoint sets
V = C1 ∪ · · · ∪ Cd, such that the vertices of each Ci are assigned the same color.
We construct a BMS-LLRF 〈g1, . . . , gd〉 such that g� ranks all paths Qi with
i ∈ C�. We assume that each C� is non-empty (otherwise we let g�(x) = 0).

We start with C1. For each Fk ∈ H, define a function fk as follows: if Fk ∩
C1 = ∅ we let fk(x) = 0; if Fk ∩ C1 = {i} we let fk(x) = xi,k; and if Fk ∩ C1 =
{i, j} we let fk(x) = xi,k + xj,k. We claim that g1(x) =

∑
k fk is a BMS-QLRF

for Q1, . . . ,Qn that ranks all paths Qi with i ∈ C1, which we justify as follows:

1. g1 is non-increasing on all Qj , and decreasing for each Qi with i ∈ C1. To see
this, rewrite g(x) as

∑
ι∈C1

∑
k : ι∈Fk

xι,k. As each inner sum is non-increasing
by (7, 8), we conclude that g1 is non-increasing on all paths. Moreover, for
i ∈ C1, the sum

∑
k : i∈Fk

xi,k appears in g1 and is decreasing according to
(7), thus g1 is decreasing for each Qi with i ∈ C1.

2. g1 is non-negative for all Qi with i ∈ C1, because all fk are non-negative
on these paths. To see this, pick an arbitrary i ∈ C1 and an arbitrary face
Fk: if i ∈ Fk, and it is the only vertex from C1 in Fk, then fk(x) = xi,k is
non-negative on Qi by (9); if i ∈ Fk but there is another vertex j ∈ C1 in
Fk, then fk(x) = xi,k + xj,k is non-negative on Qi by (11); if i /∈ Fk, then for
any j ∈ Fk we have xj,k ≥ 0 by (10), and then fk is non-negative since it is
a sum of such variables. Note that g1 can be negative for Qj with j �∈ C1.

Similarly, we construct BMS-QLRFs g2, . . . , gd such that g� ranks Qi for i ∈ C�.
Clearly 〈g1, . . . , gd〉 is a BMS-LLRF for this loop.

Now suppose we have a BMS-LLRF of dimension d; we analyze what paths
Qi can be associated with each component, and show that for any face Fk, the
three paths that are indexed by its vertices, i.e., Qi for i ∈ Fk, cannot be all
associated with the same component. Which clearly yields a d-coloring.

Suppose that for some face Fk = {i1, i2, i3}, the paths Qi1 ,Qi2 and Qi3
are associated with the same component, i.e., all ranked by the same function,
say g. Thus Δg(x′′) ≥ 1 must be implied by the constraints of Qi1 ,Qi2 and Qi3 ,
independently. Now since, in each path, the only constraint with a non-zero free
coefficient is (7), it follows that the coefficients of variables xi1,k, xi2,k and xi3,k

in g(x) are positive, i.e., g(x) = a1 · xi1,k + a2 · xi2,k + a3 · xi3,k + h(x) where
h(x) is a combination of other variables, and a1, a2, a3 > 0. Similarly, g(x) ≥ 0
must be implied by the constraints of each of three paths independently. For
this to hold, g must be a positive linear combination of functions constrained
to be non-negative by these paths, and do not involve primed variables. Now
consider variables xi1,k, xi2,k and xi3,k, and note that they participate only in
the following constraints in Qi1 (left), Qi2 (middle) and Qi3 (right):

xi1,k ≥ 0 xi2,k ≥ 0 xi3,k ≥ 0
xi1,k + xi2,k ≥ 0 xi1,k + xi2,k ≥ 0 xi2,k + xi3,k ≥ 0
xi1,k + xi3,k ≥ 0 xi2,k + xi3,k ≥ 0 xi1,k + xi3,k ≥ 0

This means that the corresponding coefficients in g, i.e., ā = (a1 a2 a3), must
be equal to linear combinations of the corresponding coefficients in the above
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constraints. Namely, there exist b1, . . . , b9 ≥ 0 such that

ā =
(
b1 b2 b3

) ·
(

1 0 0
1 1 0
1 0 1

)

ā =
(
b4 b5 b6

) ·
(

0 1 0
1 1 0
0 1 1

)

ā =
(
b7 b8 b9

) ·
(

0 0 1
0 1 1
1 0 1

)

From these nine equations, and the constraints bi ≥ 0 for all i, we necessarily
get a1 = a2 = a3 = 0, which contradicts a1, a2, a3 > 0 as we concluded before,
and thus paths corresponding to {i1, i2, i3} of Fk cannot be all associated with
the same component. This concludes the proof of Theorem 3.

6 Complexity of BMS-LEXLINRF (d,Z)

In this section we turn to the problem BMS-LexLinRF(d,Z), and show that it
is harder than BMS-LexLinRF(d,Q), specifically, it is ΣP

2 -complete. The class
ΣP

2 is the class of decision problems that can be solved by a standard, non-
deterministic computational model in polynomial time assuming access to an
oracle for an NP-complete problem. I.e., ΣP

2 = NPNP . This class contains both
NP and coNP, and is likely to differ from them both (this is an open problem).

Theorem 4. For d ≥ 2, BMS-LexLinRF(d,Z) is a ΣP
2 -complete problem.

The rest of this section proves Theorem 4. For inclusion in ΣP
2 we use a non-

deterministic procedure as in the proof of Theorem3. Note that the procedure
needs to find (or check for existence of) BMS-QLRFs over the integers, so it needs
a coNP oracle. For ΣP

2 -hardness we reduce from the canonical ΣP
2 -complete

problem (follows from [27, Theorem 4.1]): evaluation of sentences of the form

∃X1 . . . Xn ∀Xn+1 . . . X2n ¬φ(X1, . . . , X2n) (∗)

where the variables Xi are Boolean and the formula φ is in 3CNF form. Thus,
φ is given as a collection of m clauses, C1, . . . , Cm, each clause Ci consisting of
three literals Lj

i ∈ {X1, . . . , X2n, ¬X1, . . . ,¬X2n}, 1 ≤ j ≤ 3. The reduction is
first done for d = 2, and later extended to d > 2 as well.

Let us first explain a well-known approach for reducing satisfiability of a
Boolean formula φ to satisfiability of integer linear constraints. We first associate
each literal Lj

i with an integer variables xi,j . Note that the same Boolean variable
(or its complement) might be associated with several constraint variables. Let
C be the set of (1) all conflicting pairs, that is, pairs ((i, j), (r, s)) such that Lj

i

is the complement of Ls
r; and (2) pairs ((i, j), (i, j′)) with 1 ≤ j < j′ ≤ 3, i.e.,

pairs of literals that appear in the same clause. We let F be a conjunction of the
constraints: xi,j + xr,s ≤ 1 for each ((i, j), (r, s)) ∈ C; and 0 ≤ xi,j ≤ 1 for each
1 ≤ i ≤ m and 1 ≤ j ≤ 3. An assignment for xi,j that satisfies F is called a non-
conflicting assignment, since if two variables correspond to conflicting literals
(or to literals of the same clause) they cannot be assigned 1 at the same time.
The next Lemma relates integer assignments with assignments to the Boolean
variables of (	). Given a literal L, i.e., Xv or ¬Xv, we let lsum(L) be the sum
of all xi,j where Lj

i ≡ L (we use 0 and 1 for false and true).
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Lemma 6. (A) If σ is a satisfying assignment for φ, then there is a non-
conflicting assignment for F such that (1) xi,1+xi,2+xi,3 = 1 for all 1 ≤ i ≤ m;
(2) σ(Xv) = 1 ⇒ lsum(¬Xv) = 0; and (3) σ(Xv) = 0 ⇒ lsum(Xv) = 0. (B) If
φ is unsatisfiable, then for any non-conflicting assignment for F there is at least
one 1 ≤ i ≤ m such that xi,1 + xi,2 + xi,3 = 0.

Proof. (A) If σ satisfies φ, we construct a satisfying assignment for F : first every
xi,j is assigned the value of Lj

i , and then we turn some xi,j from 1 to 0 so that
at most one variable of each clause is set to 1. Since we only turn 1s to 0s,
when σ(Xv) = 1 (resp. σ(Xv) = 0) all constraint variables that correspond to
¬Xv (resp. Xv) have value 0, and thus lsum(¬Xv) = 0 (resp. lsum(Xv) = 0).
(B) If F has a non-conflicting assignment in which xi,1 + xi,2 + xi,3 = 1 for all
1 ≤ i ≤ m, then we can construct a satisfying assignment σ for φ in which σ(Xv)
is max

(
{xi,j |Li

j ≡ Xv} ∪ {1 − xi,j |Li
j ≡ ¬Xv}

)
, so φ is satisfiable. �

Next we proceed with the reduction, but first we give an outline. We build an
integer loop, call it T , with 2n + 2 abstract transitions: 2n transitions named
Ψv,a, for 1 ≤ v ≤ n and a ∈ {0, 1}; plus two named Φ and Ω. These are defined so
that existence of a BMS-LLRF 〈f1, f2〉 for T implies: (1) Ψv,0 and Ψv,1, for each
1 ≤ v ≤ n, cannot be ranked by the same fi, and the order in which they are
ranked will represent a value for the existentially-quantified variable Xv; (2) Φ
cannot be ranked by f1, and it is ranked by f2 iff ∀Xn+1 . . . X2n ¬φ(X1, . . . , X2n)
is true assuming the values induced for X1, . . . , Xn in the previous step; and (3)
Ω is necessarily ranked by f1, its only role is to force Φ to be ranked by f2. All
these points will imply that (	) is true. For the other direction, if (	) is true we
show how to construct a BMS-LLRF 〈f1, f2〉 for T . Next we formally define the
variables and abstract transitions of T , and prove the above claims.

Variables: Loop T includes 4m+2n+1 variables: (1) every literal Lj
i contributes

a variable xi,j ; (2) for each 1 ≤ i ≤ m, we add a control variable xi,0 which is
used to check if clause Ci is satisfied; (3) for each 1 ≤ v ≤ n, we add variables
zv,0 and zv,1 which help in implementing the existential quantification; and (4)
variable w, which helps in ranking the auxiliary transition Ω.

Transitions: First we define Φ, the transition that intuitively checks for satis-
fiability of φ(X1, . . . , X2n). It is a conjunction of the following constraints

0 ≤ xi,j ≤ 1 ∧ x′
i,j = xi,j for all 1 ≤ i ≤ m, 1 ≤ j ≤ 3 (12)

xi,j + xr,s ≤ 1 for all ((i, j), (r, s)) ∈ C (13)
xi,0 ≥ 0 ∧ x′

i,0 = xi,0 + xi,1 + xi,2 + xi,3 − 1 for all 1 ≤ i ≤ m (14)
zv,0 ≥ 0 ∧ z′

v,0 = zv,0 − lsum(Xv) for all 1 ≤ v ≤ n (15)
zv,1 ≥ 0 ∧ z′

v,1 = zv,1 − lsum(¬Xv) for all 1 ≤ v ≤ n (16)
w′ = w (17)

Secondly, we define 2n transitions which, intuitively, force a choice of a
Boolean value for each of X1, . . . , Xn. For 1 ≤ v ≤ n and a ∈ {0, 1},
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transition Ψv,a is defined as a conjunction of the following constraints

zv,a ≥ 0 ∧ z′
v,a = zv,a − 1 (18)

zu,b ≥ 0 for all 1 ≤ u ≤ n, b ∈ {0, 1}, u �= v (19)
z′
u,b = zu,b for all 1 ≤ u ≤ n, b ∈ {0, 1}, (u, b) �= (v, a) (20)

x′
i,0 ≥ 0 ∧ x′

i,0 = xi,0 for all 1 ≤ i ≤ m (21)
w ≥ 0 ∧ w′ = w (22)

Finally we define the abstract transition Ω, which aids in forcing a desired form
of the BMS-LLRF, and it is defined as a conjunction of the following constraints

w ≥ 0 ∧ w′ = w − 1 (23)
zu,b ≥ 0 ∧ z′

u,b = zu,b for all 1 ≤ u ≤ n, b ∈ {0, 1} (24)

Now, we argue that in order to have a two-component BMS-LLRF for T , the
transitions have to be associated to the two components in a particular way.

Lemma 7. Suppose that 〈f1, f2〉 is a BMS-LLRF for T . Then, necessarily, the
correspondence between the BMS-LLRF components and transitions is as fol-
lows: (i) Ω is ranked by f1; (ii) Φ is ranked by f2; (iii) for 1 ≤ v ≤ n, one of
Ψv,0 and Ψv,1 is ranked by f1, and the other by f2.

Proof. An LRF for Ω must involve w, since it is the only decreasing variable,
and cannot involve any xi,j since they change randomly. Similarly, an LRF for Φ
cannot involve w as it has no lower bound, and it must involve at least one xi,j

since no function that involves only zv,a variable(s) decreases for an initial state
in which all xi,j are assigned 0. Note that such LRF cannot be non-increasing for
Ω since xi,j change randomly in Ω. Thus, we conclude that Ω must be associated
with f1 and Φ with f2. For the last point, for each 1 ≤ v ≤ n, transitions Ψv,0 and
Ψv,1 must correspond to different positions because variables that descend in one
(namely zv,a of Ψv,a) are not bounded in the other (since (19) requires u �=v). �

Lemma 8. A BMS-LLRF of dimension two exists for T iff (	) is true.

Proof. Assume that a BMS-LLRF 〈f1, f2〉 exists for T , we show that (	) is true.
By Lemma 7 we know how the transitions are associated with the positions,
up to the choice of placing Ψv,0 and Ψv,1, for each 1 ≤ v ≤ n. Suppose that, for
each 1 ≤ v ≤ n, the one which is associated with f2 is Ψv,av

, i.e., av ∈ {0, 1}, and
let āv be the complement of av. By construction we know that: (i) in Ψv,av

the
variables zv,āv

and xi,j with j ≥ 1 change randomly, which means that f2 cannot
involve them; and (ii) in Φ the variable w is not lower bounded, which means
that f2 cannot involve w. Since these transitions must be ranked by f2, we can
assume that f2 has the form f2(x, z, w) =

∑
i ci ·xi,0 +

∑
v cv ·zv,av

where ci and
cv are non-negative rational coefficients. We claim that (	) is necessarily true;
for that purpose we select the value av for each Xv, and next we show that this
makes it is impossible to satisfy φ(X1, . . . , X2n). Assume, to the contrary, that
there is a satisfying assignment σ for φ, such that σ(Xv) = av for all 1 ≤ v ≤ n.
By Lemma 6 we know that we can construct an assignment to the variables xi,j



318 A.M. Ben-Amram and S. Genaim

such that (i) xi,1 + xi,2 + xi,3 = 1, for each 1 ≤ i ≤ m, which means that
x′

i,0 = xi,0 at (14); and (ii) for each 1 ≤ v ≤ m, if av = 0 (resp. av = 1),
then lsum(Xv) = 0 (resp. lsum(¬Xv) = 0), which means that z′

v,av
= zv,av

at (15) (resp. (16)). Hence f2 as described above does not rank Φ since none of
its variables change, contradicting our assumption. We conclude that (	) is true.

Now assume that (	) is true, we construct a BMS-LLRF of dimension two.
The assumption means that there are values a1, . . . , an for the existentially-
quantified variables to satisfy the sentence. Let f1(x, z, w) = w + Σn

v=1zv,āv

and f2(x, z, w) = Σm
i=1xi,0 +

∑
v zv,av

. We claim that 〈f1, f2〉 is a BMS-LLRF
such that: (i) f1 is an LRF for Ω and Ψv,āv

, and non-increasing for Ψv,av
and

Φ; and (ii) f2 is an LRF for Ψv,av
and Φ. All this is easy to verify, except

possibly that f2 is an LRF for Φ, for which we argue in more detail. By assump-
tion, φ(a1, . . . , an,Xn+1, . . . , X2n) is unsatisfiable. Consider a state in which Φ is
enabled; by (12, 13), this state may be interpreted as a selection of non-conflicting
literals. If one of the selected literals does not agree with the assignment chosen
for X1, . . . , Xn, then by (15, 16) the corresponding variable zv,av

is decreasing.
Otherwise, there must be an unsatisfied clause, and the corresponding variable
xi,0 is decreasing. All other variables involved in f2 are non-increasing, all are
lower bounded, so f2 is an LRF for Φ. �

ΣP
2 -hardness of BMS-LexLinRF(d,Z) for d = 2 follows from Lemma 8. For

d > 2, we add to T additional d − 2 paths as those of Example 3; and to each
original path in T we add x′=x and y′=y (x, y are used in Example 3). Then,
the new loop has a BMS-LLRF of dimension d iff (	) is true. This concludes the
proof of Theorem 4.

7 Related Work

LLRFs appear in the classic works of Turing [28] and Floyd [16]. Automatic
generation of LRFs and LLRFs for linear-constraint loops begins, in the context
of logic programs, with Sohn and van Gelder [26]. For imperative programs,
it begins with Colón and Sipma [10,11]. The work of Feautrier on schedul-
ing [14,15] includes, in essence, generation of LRFs and LLRFs. All these works
gave algorithms that yield polynomial time complexity (inherited from LP),
except for Colón and Sipma’s method which is based on LP duality and polars.
The polynomial-time LP method later reappeared in [21,23]. These methods are
complete over the rationals and can be used in an integer setting by relaxing the
loop from integer to rational variables, sacrificing completeness. This complete-
ness problem was pointed out (but not solved) in [21,24], while [12,14] pointed
out the role of the integer hull in ensuring completeness. Bradley et al. [7] use a
bisection search over the space of coefficients for inferring LRFs over the integers,
which yields completeness at exponential cost (as argued in [4]).

Alias et al. [1] extended the LP approach to LLRFs, obtaining a polynomial-
time algorithm which is sound and complete over the rationals (for their notion
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of LLRF). The (earlier) work of Bradley et al. [5] introduced BMS-LLRFs and
used a “constraint-solving method”that finds such LLRFs along with support-
ing invariants. The method involves an exponential search for the association of
paths to LLRF components, and is complete over the reals. Subsequent work used
more complex extensions of the LLRF concept [6,8]. Harris et al. [17] demon-
strate that it is advantageous, to a tool that is based on a CEGAR loop, to search
for LLRFs instead of LRFs only. The LLRFs they use are BMS-LLRFs. Simi-
lar observations have been reported in [13] (also using BMS-LLRFs), [9] (using
ADFG-LLRFs) and [19] (using a an iterative construction that extends BMS-
LLRFs). Heizmann and Leike [18] generalize the constraint-based approach by
defining the concept of a “template” for which one can solve using a constraint
solver. They also provide a template for ADFG-LLRFs (of constant dimension).
Ben-Amram [3] shows that every terminating monotonicity-constraint program
has a piecewise LLRF of dimension at most 2n. Piecewise LLRFs are also used
in [29], with no completeness result, there they are inferred by abstract inter-
pretation.

8 Conclusion

This work contributes to understanding the design space of the ranking-function
method, a well-known method for termination analysis of numeric loops, as
well as related analyses (iteration bounds, parallelization schedules). This design
space is inhabited by several kinds of “ranking functions” previously proposed.
We focused on BMS-LLRFs and compared them to other proposals of a similar
nature. We characterized the complexity of finding, or deciding the existence of,
BMS-LLRF for rational and integer MLC loops. We also compared these three
methods regarding the dimension of the LLRF, and the complexity of optimiz-
ing the dimension, which turns out to be essentially harder for BMS-LLRFs.
Given our reductions, it is easy to show that it is impossible to approximate the
minimal dimension of BMS-LLRFs, in polynomial time, within a factor smaller
than 3

2 , unless P=NP for rational loops, and ΣP
2 =ΔP

2 for integer loops (see [2]).
We conclude that none of the three methods is universally preferable. Even

ADFG-LLRFs, which in principle are weaker than both other methods, have
an advantage, in that the algorithm for computing them may be more efficient
in practice (due to solving smaller LP problems). If this is not a concern, they
can be replaced by BG-LLRFs, so we are left with two, incomparable techniques.
This incomparability stems from the fact that BG-LLRFs and BMS-LLRFs relax
the restrictions of ADFG-LLRFs in two orthogonal directions: the first in quan-
tifying over concrete transitions rather than abstract ones, and the second in
allowing negative components. By making both relaxations, we get a new type
of LLRF [19], which is as in Definition 2 but relaxing condition (5) to hold only
for j = i, but for which the computational complexity questions are still open.
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Abstract. We propose a declarative measurement specification lan-
guage for quantitative performance evaluation of hybrid (discrete-
continuous) systems based on simulation traces. We use timed regular
expressions with events to specify patterns that define segments of sim-
ulation traces over which measurements are to be taken. In addition,
we associate measure specifications over these patterns to describe a
particular type of performance evaluation (maximization, average, etc.)
to be done over the matched signal segments. The resulting language
enables expressive and versatile specification of measurement objectives.
We develop an algorithm for our measurement framework, implement it
in a prototype tool, and apply it in a case study of an automotive com-
munication protocol. Our experiments demonstrate that the proposed
technique is usable with very low overhead to a typical (computationally
intensive) simulation.

1 Introduction

Verification consists in checking whether system behaviors, sequences of states
and events, satisfy some specifications. These specifications are expressed in a
formalism, for example temporal logic, with well-defined semantics such that
the satisfaction or violation of a property ϕ by a behavior w can be computed
based on ϕ and w. To perform exhaustive formal verification, property ϕ is
typically converted into an automaton A¬ϕ that accepts only violating sequences
which is later composed with the system model and checked for emptiness. Such
specifications are also used in a more lightweight and scalable form of verification
(known as runtime verification in software and assertion checking in hardware)
where individual behaviors are checked for property satisfaction. In this context,
the formal specification language can be used to automatically derive property
monitors rather than inspect execution traces manually or program monitors by
hand. The specification formalism allows us to focus on the observable properties
of the system we are interested in and write them in a declarative way, separated
from their implementation. It is this concept that we export from the qualitative
to the quantitative world.

Properties offer a purely qualitative way to evaluate systems and their behav-
iors: correct or incorrect. There are many contexts, however, where we want also
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to associate quantitative measures with systems and their executions. Consider
for example a real-time system with both safety-critical and non-critical aspects,
evaluated according to the temporal distance between pairs of request and service
events. Its safety-critical part will be evaluated according to whether some dis-
tance goes beyond a hard deadline. In contrast, its non-critical part is typically
evaluated based on quality-of-service performance measures which are numerical
in nature, such as the average response time or throughput.

Quantitative measures are used heavily in the design of cyber-physical
systems involving heterogeneous components of computational and physical
natures. Such systems exhibit continuous and hybrid behaviors and are often
designed using modeling languages such as Simulink, Modelica or hardware
description languages. These models are analyzed using a combination of numer-
ical and discrete-event simulation, producing traces from which performance
measures are extracted to evaluate design quality. Measures are computed by
applying various operations such as summation/integration, arithmetical opera-
tions, max-min, etc. to certain segments of the simulation trace. The boundaries
of these segments are defined according to the occurrence of certain events and
patterns in the trace. When the measures are simple they are realized by inserting
additional observer blocks to the system model but when they are more complex,
they are extracted using manually-written (and error prone) procedural scripts
that perform computations over the traces.

v

t

t

t

v1

v2

b1

b2

r s t1 t2

Fig. 1. Stopping distance measurement for anti-lock brake systems.

We illustrate how measurements can be used to compare two correct imple-
mentations of an anti-lock brake system (ABS), which prevents wheels from
locking during heavy braking or on slippery roads. Figure 1 depicts braking con-
trol signals b1 and b2 and velocity signals v1 and v2 for two controller models C1

and C2. The driver starts to brake fully at t = r and then the ABS takes control
at t = s and applies rapid pulsation to prevent locking. Both controllers C1

and C2 satisfy the anti-lock property but we also want to compare the distance
covered during their respective breaking periods. These periods are identified as
those where signal b matches some braking pattern, and are the intervals (r, t1)
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for C1 and (r, t2) for C2. Integrating vi over respective intervals (r, ti) for i = 1..2
we get a numerical measure and conclude that C1 performs better.

In this paper we propose a declarative and formal measure specification lan-
guage for automatically extracting measures from hybrid discrete-continuous
traces. The patterns that define the scope of measurements are expressed using
a variant of the timed regular expressions (tre) of [2,3], specially adapted for
this purpose by adding preconditions, postconditions and events. An additional
language layer is used to define the particular measures applied to the matching
segments. The actual extraction of the measures takes advantage of the recent
pattern matching procedure introduced in [19] for computing the set of segments
of a Boolean signal that match a timed regular expression. In the general case,
the number of such matches can be uncountable and the procedure of [19] repre-
sents them as a finite union of zones. In our language, where pattern boundaries
are punctual events, we obtain a finite number of matches.

The resulting framework provides a step toward making the common prac-
tice of quantitative measurement extraction more rigorous, bridging the gap
between qualitative verification and quantitative performance evaluation. We
demonstrate the applicability of our approach using the Distributed System
Interface (DSI3) standard protocol [15] developed by the automotive industry.
We formalize in our language measurements of some features described in the
standard, extract them from simulation traces and report the performance of
our prototype implementation.

Related Work

The approach proposed in this paper builds upon the timed regular expressions
introduced in [2,3] and shown there to be equivalent in expressive power to timed
automata. We omit the renaming operator used for this expressivity theoretical
result and enrich the formalism with other features that lead to a pattern lan-
guage dedicated to measurements, which we call conditional tre. Precondition
and postcondition constraints allow us to express zero-duration events such as
rising and falling edges of dense-time Boolean signals. Focusing on patterns that
start and end with an event, the pattern matching algorithm of [19] returns a
finite number of matching segments.

Our approach differs in several respects from monitoring procedures based
on real-time temporal logics and their extensions to real-valued signals such as
STL [16]. In a nutshell here is the difference between satisfaction in temporal
logic and matching in regular expression. For any temporal logic with future
operators, satisfaction of ϕ by a behavior w is defined as (w, 0) |= ϕ. To compute
this satisfaction value of ϕ at 0 we need to compute (w, t) |= ψ for some sub-
formulas ψ of ϕ and some time t ≥ 0, in other words determine whether some
suffix of w satisfies ψ. This can be achieved by associating with every formula ϕ
a satisfaction signal relative to w which is true for every t such that (w, t) |= ϕ.
On the other hand, the matching of a regular expression ϕ in w is not defined
relative to a single time point but to a pair of points (t, t′) such that the segment
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of w between t and t′ satisfies the expression. This property of regular expressions
makes them ideal for defining intervals that match patterns.

The recent work on assertion-based features [7] is similar in spirit to ours.
The authors propose an approach for quantitative evaluation of mixed-signal
design properties expressed as regular expressions. In contrast to our work, the
regular expressions are extended with local variables, which are used to explicitly
store values of interest, such as the beginning and the end time of a matched
pattern. This work addresses the problem of measuring properties (features) of
hybrid automata models using formal methods. We also mention the extension
to tre proposed in [13] that combines specification of real-time events and states
occurring in continuous-time signals. Their syntax and primitive constructs are
inspired by and extend industrial standards PSL [10] and SVA [20]. This work
focuses on a translation from tre to timed automata acceptors, but does not
address the problem of pattern matching an expression on a concrete trace.

In the context of modeling resource-constrained computations, quantitative
languages [6] were studied as generalizations of formal languages in which traces
are associated with a real number rather than a Boolean value. The authors use
weighted automata to define several classes of quantitative languages and deter-
mine the trace values by computing maximum, limsup, liminf, limit average and
discounted sum over a (possibly infinite) trace. The ideas of quantitative lan-
guages are further extended in [14], by defining the model measuring problem.
The model checking problems of TCTL and LTL are extended in [1,11,21] to a
model measuring paradigm by parameterizing the bounds of the temporal oper-
ators. The authors propose algorithms for identifying minimum and maximum
parameter values for which the model satisfies the temporal formula. A similar
extension is proposed in [4] for signal temporal logic (STL), where both the tem-
poral bounds and real-valued thresholds are written as parameters and inferred
from signals. Robust interpretation of temporal logic specifications [8,9,12] is
another way to associate numbers with traces according to how strongly they
satisfy or violate a property.

Hardware designers and others who use block diagrams for control and signal
processing often realize measurement using additional observer blocks, but these
are restricted to online measurements. As a result commercial circuit simulation
suites offer scripting languages or built-in functions dedicated to measurement
extraction, such as the .measure (Synopsys) and .extract (Mentor Graphics)
libraries. The former is structured according to the notion of trigger and tar-
get events, the measurement being performed on the segment(s) of the trace
in between. This is particularly suited for timing analysis such as rise-time or
propagation time. The latter is more general but relies mostly on functional com-
position. Absolute time of events in the trace can be found by threshold crossing
functions, and then passed on as parameters to other measurement primitives to
apply an aggregating function over suitable time intervals. In the approach we
propose, one gains the expressiveness of the language of timed regular expres-
sion, that allow to detect complex sequences of events and states in the trace.
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This facilitates repeated measurements over a sequence of specified patterns, by
clearly separating the behavior description from the measure itself.

2 Timed Regular Expression Patterns

In this section, we first recall the definition of the timed regular expressions (tre)
from [19]. Such expressions were defined over Boolean signals and in order to use
them for real-valued signals we add predicates on real values to derive Boolean
signals. This straightforward extension is still not entirely suitable for defining
measurement segments, for the simple reason that an arbitrary regular expres-
sion may have infinitely many matches. For example an atomic proposition p is
matched by all sub-segments of a dense-time Boolean signal where p continu-
ously holds. Consequently in the second part of this section, we propose a novel
extension that we call conditional timed regular expressions (ctre). This exten-
sion enables to condition the match of a tre to a prefix and suffix, and allows
defining events of zero duration. We define a restriction to ctre, that we call
event-bounded timed regular expressions (e-tre), which guarantees that the set
of patterns matching a e-tre is always finite. Thanks to this finiteness prop-
erty, we will use e-tre as the main building block in defining our measurement
specification language.

2.1 Timed Regular Expressions

Let X and B be sets of real and propositional variables and w : [0, d] → Rm×Bn,
where m = |X| and n = |B|, a multi-dimensional signal of length d. For a variable
v ∈ X ∪ B we denote by πv(w) the projection of w on its component v.

A propositional variable b ∈ B admits a negation ¬b, which value at time t
is the opposite of that of b. For θ a concrete predicate R → B we may create
a propositional symbol θ(x) which interpretation at time t will be given by the
evaluation of θ on the value of real variable x at time t. We define the projection
of w on ¬b by letting π¬b(w)[t] = 1 − πb(w)[t], and the projection of w on
θ(x) by letting πθ(x)(w)[t] = θ(πx(w)[t]). A proposition p is taken to be either a
variable b ∈ B, a predicate θ(x) over some real variable x, or their negation ¬b
and ¬θ(x) respectively. We assume a given set of real predicates and take P the
set of propositions derived from real and propositional variables as described.
A signal is said to have finite variability if for every proposition p ∈ P the set of
discontinuities of πp(w) is finite.

We now define the syntax of timed regular expressions according to the fol-
lowing grammar:

ϕ := ε | p | ϕ1 · ϕ2 | ϕ1 ∪ ϕ2 | ϕ1 ∩ ϕ2 | ϕ∗ | 〈ϕ〉I

where p is a proposition of P , and I is an interval of R+.
The semantics of a timed regular expression ϕ with respect to a signal w

and times t ≤ t′ in [0, d] is given in terms of a satisfaction relation (w, t, t′) |= ϕ
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inductively defined as follows:

(w, t, t′) |= ε ↔ t = t′

(w, t, t′) |= p ↔ t < t′ and ∀ t < t′′ < t′, πp(w)[t′′] = 1
(w, t, t′) |= ϕ1 · ϕ2 ↔ ∃ t ≤ t′′ ≤ t′, (w, t, t′′) |= ϕ1 and (w, t′′, t′) |= ϕ2

(w, t, t′) |= ϕ1 ∪ ϕ2 ↔ (w, t, t′) |= ϕ1 or (w, t, t′) |= ϕ2

(w, t, t′) |= ϕ1 ∩ ϕ2 ↔ (w, t, t′) |= ϕ1 and (w, t, t′) |= ϕ2

(w, t, t′) |= ϕ∗ ↔ (w, t, t′) |= ε or (w, t, t′) |= ϕ · ϕ∗

(w, t, t′) |= 〈ϕ〉I ↔ t′ − t ∈ I and (w, t, t′) |= ϕ

Following the definitions in [19], we characterize the set of segments of w
that match an expression ϕ by their match set. The match set of expression ϕ
over w is the set of all pairs (t, t′) such that the segment of w between t and t′

matches ϕ.

Definition 1 (Match Set). For any signal w and expression ϕ, we define their
match set as

M(ϕ,w) := {(t, t′) ∈ R2 | (w, t, t′) |= ϕ}

We recall that a match set is a subset of [0, d] × [0, d] confined to the upper
triangle defined by t ≤ t′ taking t, t′ the first and second coordinates of R2.
It has been established that such a set can always be represented as a finite
union of zones. In Rn, zones are a special class of convex polytopes definable by
intersections of inequalities of the form xi ≥ ai, xi ≤ bi and xi − xj ≤ ci,j or
corresponding strict inequalities. We say that a zone is punctual when the value
of each variable is uniquely defined, with for instance ai = bi for all i = 1..n. We
use zones in R2 to describe the relation between t and t′ in a match set.

Theorem 1 ([19]). For any finite variability signal w and tre ϕ, the set
M(ϕ,w) is a finite union of zones.

2.2 Conditional TRE

We propose in the sequel conditional timed regular expressions (ctre) that
extend tre. This extension enables to condition the match of a tre to a prefix
or a suffix. We introduce in the syntax of ctre two new binary operators, “?”
for preconditions, and “!” for postconditions. For some expressions ϕ1 and ϕ2

a trace w matches the expression ϕ1 ? ϕ2 at (t, t′) if it matches ϕ2 and there
is an interval ending at t where w matches ϕ1. Symmetrically w matches the
expression ϕ1 ! ϕ2 at (t, t′) if it matches ϕ1 and there is an interval beginning at
t′ where w matches ϕ2. We define formally the semantics of these operators for
ϕ1, ϕ2 arbitrary ctre and w an arbitrary signal as follows:

(w, t, t′) |= ϕ1 ? ϕ2 ↔ (w, t, t′) |= ϕ2 and ∃t′′ ≤ t, (w, t′′, t) |= ϕ1

(w, t, t′) |= ϕ1 ! ϕ2 ↔ (w, t, t′) |= ϕ1 and ∃t′′ ≥ t′, (w, t′, t′′) |= ϕ2

A precondition ϕ1 and a postcondition ϕ3 can be associated to an expression ϕ2

independently as we have ϕ1 ?(ϕ2 ! ϕ3) ≡ (ϕ1 ? ϕ2) ! ϕ3 so that such expressions
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may be noted ϕ1 ? ϕ2 ! ϕ3 without ambiguity. Associating several conditions can
form a sequential condition as with (ϕ1 ? ϕ2) ? ϕ3 ≡ (ϕ1 · ϕ2) ? ϕ3, or conjoint
conditions as with ϕ1 ?(ϕ2 ? ϕ3) ≡ (ϕ1 ? ϕ3) ∩ (ϕ2 ? ϕ3). There are further rela-
tionships with respect to other tre operators, which we will not detail.

2.3 TRE with Events

Another important aspect of ctre is that they enable defining rise and fall
events of zero duration associated to propositional terms. The rise edge ↑ p associ-
ated to the propositional term p is obtained by syntactic sugar as ↑ p := ¬p ? ε ! p,
while the fall edge ↓ p corresponds to ↓ p := ↑ ¬p. We now define a restriction of
ctre that we call tre with events. This sub-class of ctre consists of restricting
the use of conditional operators to the definition of events. The introduction of
events in tre still guarantees the finite representation of their match set.

Corollary 1 (of Theorem 1). For any finite variability signal w and tre with
events ϕ, the set M(ϕ,w) is a finite union of zones.

Proof. By induction on the expression structure. For expressions of the form
ϕ = ↑ p, the match set M(ϕ,w) is of the form {(t, t) : t ∈ R}. By finite
variability hypothesis R is finite as contained in the set of discontinuities of p,
and in particular M(ϕ,w) is a finite union of punctual zones. All other operators
are part of the grammar of timed regular expressions, and the proof of Theorem1
grants us the property.

In what follows we consider events to be part of the syntax of timed regular
expressions, and will just write tre instead of tre with events.

Remark. Our support for events is minimal as compared to the real-time regular
expressions of [13] where the authors use special operators ##0 and ##1 for
event concatenation. Their work extends discrete-time specification languages,
which have the supplementary notion of clocks noted @(↑ c) with c a Boolean
variable, and the implicit notion of clock context. A clock @(↑ c) can then be used
in conjunction with a proposition p to form a clocked event noted @(↑ c) p. Such
an event allows to probe the value of p at the exact times where ↑ c occurs, which
we did not consider. Assuming we dispose of atomic expressions @(↑ c) p holding
punctually at times such that ↑ c occurs and p is true, the event concatenation
##1 can be emulated by @(↑ c) p ##1@(↑ d) q ≡ @(↑ c) p · d∗ · ¬d · @(↑ d) q.

We now say that a tre is event-bounded when of the form ↑ p, ψ1 ·ϕ ·ψ2, ψ1∪ψ2,
or ψ1∩ϕ with p a proposition, and ψ1, ψ2 event-bounded tre. Such expressions,
that we call e-tre for short, have an important “well-behaving” property as
follows. Given an arbitrary finitely variable signal w, an e-tre can be matched
in w only a finite number of times. In the following lemma, we demonstrate that
the match set for arbitrary finite signal w and e-tre ψ consists of a finite number
of points (t, t′) with t an occurrence of a begin event and t′ an occurrence of an
end event.
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Lemma 1. Given an e-tre ψ and a signal w, their associated match set
M(ψ,w) is finite.

Proof. By induction on the expression structure. Consider an arbitrary signal w
and an event ↑ p; by finite variability assumption there are finitely many time
points in w where ↑ p occurs, so that its match set relatively to w is finite. Now
let ψ be an e-tre of the form ψ = ψ1 · ϕ · ψ2. The signal w matches ψ on the
segment (t, t′) if and only if there exists some times s and s′ such that w matches
ψ1 on (t, s) and matches ψ2 on (s′, t′). By induction hypothesis there are finitely
many such times t, t′, s and s′ so that ψ itself has a finite number of matches.
One can easily see that the finiteness of the match set is also preserved by unions
and intersections ψ1 ∪ ψ2 and ψ1 ∩ ϕ, which concludes our proof.

3 Measuring with Conditional TRE

In this section, we propose a language for describing mixed-signal measures, and
a procedure to compute such measures. In our approach, we will use measure
patterns based on timed regular expressions to specify signal segments of interest.
More precisely, a measure pattern consists of three parts: (1) the main pattern;
(2) the precondition; and (3) the postcondition. The main pattern is an e-tre
that specifies the portion of the signal over which the measure is taken. Using
e-tre to express main patterns ensures the finiteness of signal segments, while
pre- and post- conditions expressed as general tre allow to define additional
constraints. We formally define measure patterns as follows.

Definition 2 (Measure Pattern). A measure pattern ϕ is a ctre of the form
α ? ψ ! β, where α and β are tre, while ψ is an e-tre.

Note that preconditions and postconditions can be made optional by using ε as
we have ε ? ϕ ≡ ϕ and ϕ ! ε ≡ ϕ. In what follows we may use simpler formulas to
express their semantic equivalent, for instance writing ϕ to refer to the measure
pattern ε ? ϕ ! ε.

According to previous definitions, the match set of a measure pattern α ? ψ ! β
gives us the set of all segments of the signal, represented as couples (t, t′), such
that (w, t, t′) |= ψ, and w satisfies both the precondition α before t and the
postcondition β after t′.

Proposition 1. For any signal w and a pattern ϕ = α ? ψ ! β, their associated
match set set is given by

M(ϕ,w) = {(t, t′) : ∃s ≤ t ≤ t′ ≤ s′, (w, s, t) |= α
and (w, t, t′) |= ψ
and (w, t′, s′) |= β }

Theorem 2 (Match Set Finiteness). For any signal w and measure pattern
ϕ = α ? ψ ! β, their associated match set M(ϕ,w) is finite.



330 T. Ferrère et al.

Proof. This is a direct consequence of Lemma 1. The set M(ϕ,w) is included in
M(ψ,w), which makes it finite.

The match set of a measure pattern may be obtained by selecting the punctual
zones of M(ψ,w) that meet a zone of M(α,w) at the beginning, and a zone
of M(β,w) at the end. Match sets of arbitrary tre are computable following
the proof of Theorem 1. The overall procedure to compute the match set of a
measure pattern appears as Algorithm 1. It uses the procedure zones(ϕ,w) as
appearing in [19] which returns a set of zones whose union is equal to M(ϕ,w)
for any timed regular expression ϕ and signal w. For a zone z we denote by π1(z)
and π2(z) projections on its first and second coordinates respectively.

Algorithm 1. Computation of the match set M(ϕ,w).
Require: measure pattern ϕ = α ? ψ ! β, signal w
Ensure: M(ϕ, w)
1: M(ϕ, w) ← ∅
2: Zα ← zones(α, w)
3: Zβ ← zones(β, w)
4: Zψ ← zones(ψ, w)
5: for all {(t, t′)} ∈ Zψ do
6: for all z ∈ Zα, z′ ∈ Zβ do
7: if t ∈ π2(z) and t′ ∈ π1(z

′) then
8: M(ϕ, w) ← M(ϕ, w) ∪ {(t, t′)}
9: end if

10: end for
11: end for
12: return M(ϕ, w)

The computation of a match set for a measure pattern ϕ and a signal w
enables powerful pattern-driven performance evaluation of hybrid or continuous
systems. Once the associated match set M(ϕ,w) is computed, we propose a two
stage analysis of signals.

In the first step, we compute a scalar value for each segment of w that
matches ϕ, either from absolute times of that match, or from the values of a
real signal x in w during that match. A measure is then written with the syntax
op(ϕ) with op ∈ {time, valuex, duration, infx, supx, integralx, averagex} being some
sampling or aggregating operator. The semantics [[ ]]w of these operators is given
in Table 1; it associates to a measure op(ϕ) and trace w a multiset containing
the scalar values computed over each matched interval.1

In the second step, we reduce the multiset of scalar values computed over
the signal matched intervals in M(ϕ,w) to a single scalar. Typically, given the
multiset A = [[op(ϕ)]]w of scalar values associated with these signal segments, this

1 We use multiset semantics as several patterns may have exactly the same measured
value, in which case set semantics would not record its number of occurrences.
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Table 1. Standard measure operators.

phase consists in computing standard statistical indicators over A, such as the
average, maximum, minimum or standard deviation. This final step is optional,
the set of basic measurements sometimes provides sufficient information.

Anti-lock Brake System Example. We now refer back to our first example
from Fig. 1 and propose measure pattern formalization to evaluate performance
of the controller. We first formalize the pattern of a brake control signal b under
a (heavy) braking situation. The main pattern ψ starts with a rise event on b
and a braking period with the duration in I, continues with one or more pulses
with duration in J , and ends with a fall event on b:

ψ := ↑ b · 〈b〉I · 〈¬b · b〉+J · ↓ b

We also need to ensure that the speed should be zero at the end of braking
situation, with the postcondition β := (v ≤ 0). Finally, we can measure the
stopping distance using the expression

integralv(ψ ! β)

integrating v over intervals matching the measure pattern.

4 Case Study

4.1 Distributed Systems Interface

Distributed systems interface (DSI3) is a flexible and powerful bus standard [15]
developed by the automotive industry. It is designed to interconnect multiple
remote sensor and actuator devices to a controller. The controller interacts with
the sensor devices via so-called voltage and current lines. In this paper we focus
on two phases of the DSI3 protocol:

– the initialization phase called the discovery mode;
– one of the stationary phases called the command and response mode.
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In the discovery mode, prior to any interaction the power is turned on, resulting
in a voltage ramp from 0V to Vhigh. The communication is initiated by the
controller that probes the presence/absence of sensors by emitting analog pulses
on the voltage line. Connected sensor devices respond in turn with another pulse
sent over the current line. At the end of this interaction, a final short pulse is
sent to the sensors interfaces, marking the end of the discovery mode.

In the command and response mode, the controller sends a command to the
sensor as a series of pulses (or pulse train) on the voltage line, which transmits
its response by another pulse train on the current line. For power-demanding
applications the command-response pairs are followed by a power pulse, which
goes above Vhigh. This allows the sensor to load a capacitor used for powering
its internal operation.

The DSI3 standard provides a number of ordering and timing requirements
that determine correct communication between the controller and the sensor
devices: (1) minimal time between the power turned on and first discovery pulse;
(2) maximal duration of discovery mode; (3) expected time between two con-
secutive discovery pulses; (4) expected time between command and response.
Figure 2 illustrates the discovery mode in the DSI3 protocol and provides a
high-level overview of its ordering and timing requirements. In this example, the
controller probes five sensor interfaces.

)3()4()1(

(2)

Discovery response

Power ramp Discovery pulse End discovery pulse

0

Vlow

Vhigh

0

I2resp

Iresp

v

i

Fig. 2. DSI3 discovery mode – overview.

The correctness of a DSI3 protocol implementation in an automotive airbag
system was studied in [17]. The above requirements were formalized as assertions
expressed in signal temporal logic (STL) and the monitoring tool AMT [18] was
used to evaluate the simulation traces. In this paper we do more than checking
correctness, but evaluate the performance of a controller and sensor implemen-
tation. We use measure patterns to specify signal segments of interest and define
several measures within the framework introduced in Sect. 3. We study two spe-
cific measures: (1) the time between consecutive discovery pulses; and (2) the
amount of energy transmitted to the sensor through power pulses.
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In order to generate simulation traces, we model our system as follows: the
controller is a voltage-source, and the sensor is a current-source in parallel with a
resistive-capacitive load. The schematic is shown in Fig. 3. During the discovery
phase the load is disabled; the voltage source generates randomized pulses in
which the time between two discovery pulses has a Gaussian distribution with
a mean of 250μs and a standard deviation of 3.65μs. During the power pulses
of the command and response mode, the load is enabled and randomized, with
C = 120nF and R uniformly distributed in the range [25Ω, 35Ω]. Threshold levels
are 4.6V low, 7.8V high, 8.3V power, and 11.5V idle.

e(t) a(t)

R

C

Controler Sensor

i

v

Fig. 3. Electrical model of the system.

4.2 Measurements

Time Between Consecutive Discovery Pulses. In order to characterize a
discovery pulse, we first define three regions of interest – when the voltage v is
(1) below Vlow; (2) between Vlow and Vhigh; and (3) above Vhigh. We specify these
regions with the following predicates:

vl ≡ v ≤ Vlow

vb ≡ Vlow ≤ v ≤ Vhigh

vh ≡ v ≥ Vhigh

Next, we describe the shape of a discovery pulse. Such a pulse starts at the
moment when the signal v moves from vh to vb. The signal then must go into vl,
vb and finally come back to vh. In addition to its shape, the DSI3 specification
requires the discovery pulse to have a certain duration between some dmin and
dmax. This timing requirement allows distinguishing a discovery pulse from other
pulses, such as the end-of-discovery pulse. We illustrate the requirements for a
discovery pulse in Fig. 4-a and formalize it with the following e-tre:

ψdp ≡ ↓ (vh) · 〈vb · vl · vb〉[dmin,dmax]· ↑ (vh)

In order to measure the time between consecutive discovery pulses, we need
to characterize signal segments that we want to measure. The associated pattern
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shall start at the beginning of a discovery pulse and end at the beginning of the
next one, as depicted by the ψ region in Fig. 4-a. It consists of a discovery pulse
ψdp, followed by the voltage signal being in the vh region, and terminating when
the voltage leaves vh. This description is not sufficient – we also need to ensure
that this segment is effectively followed by another discovery pulse. Hence we add
a postcondition that specifies this additional constraint. The measure pattern
ϕ1 ≡ α1 ? ψ1 ! β1 is formalized as follows.

α1 ≡ ε
ψ1 ≡ ψdp · vh· ↓ (vh)
β1 ≡ ψdp

Finally, we evaluate the measure expression μ1 := duration(ϕ1) over signal w.

time between 2 consecutive pulses

∈ [dmin, dmax]

ψ β

↓ (vh)

Vlow

Vhigh

vb vbvl

vhṙdp ṙdp

↓ (vh) ↑ (vh)

(a)

Power Phase

i

Vpwr

Vidle

(b)

Fig. 4. (a) Consecutive discovery pulses with timing; (b) Power pulse and flow.

Energy Transfer from Controller to Sensor. In the DSI3 protocol, the
discovery mode can be followed by a stationary command and respond mode.
A command and respond mode sequence is a pulse train that consists of a com-
mand subsequence in the form of potential pulses between Vhigh and Vlow, a
response subsequence by means of current pulses between 0 and Iresp, and fin-
ishes by a power pulse rising to potential Vidle in which a large current can be
drawn by the sensor. We first characterize the power pulse as depicted in Fig. 4-b.
It occurs when the voltage goes from below Vpwr to above Vidle, and back under
Vpwr. The three regions of interest are specified with the following predicates.

vh ≡ v ≥ Vpwr

vt ≡ Vpwr ≤ v ≤ Vidle

vp ≡ v ≥ Vidle

Hence the pattern specifying a power pulse is expressed as

ψ2 ≡ ↑(vh) · vt · vp · vt · ↓(vh)

The measure pattern does not have pre- or post-conditions as all other commu-
nications occur with v below Vidle, hence α2 = β2 = ε. The measure pattern ϕ2
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is equivalent to its main pattern ψ2. Given v the voltage and i the current on
the communication line, the energy transfered to the sensor is given by the area
under the signal v × i between the start and end of power pulse. We assume
that such a signal is given in the simulation trace w, and evaluate the measure
expression μ2 := integralv×i(ψ2) over signal w.

4.3 Experimental Results

We extended the prototype tool developed in [19] with algorithms for matching
zero-duration events and conditional tre as appearing in measure patterns, and
with the support of measure operations introduced in Sect. 3. The implemen-
tation was done in Python and uses the C library from IF [5] for computing
operations on zones. For our experiment we apply a scenario according to which
our electrical model is switched on/off 100 times in sequence to stress the dis-
covery mode of DSI3. The set of traces we generate conform to the discovery,
and command-and-response modes of the protocol. We then compute match sets
for properties presented in Sect. 4.2 over these simulation traces using our proto-
type implementation. In Fig. 5, we depict measurement results using histograms.
The distribution of the times between two discovery pulses follows a normal dis-
tribution according to the timing parameters used to generate it. The energy
transfered to the sensor through power pulses has a flatter distribution as the
result of a uniformly distributed load resistance value.
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Fig. 5. (a) Distribution of μ1, the time between two consecutive discovery pulses;
(b) Distribution of μ2, the energy transmitted per power pulse.

We then compared the execution times to compute measurements, using a
periodic sampling with different sampling rates – note that our method supports
variable step sampling without extra cost. The computation times are given in
Table 2 with the detailed computation time needed for predicate evaluation (Tp),
match set computation (Tm), measure aggregation (Ta) and total computation
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time (T ). Computation of match sets does not depend on the number of samples
but on the number of uniform intervals of atomic propositions; evaluation of real
predicates by linear interpolation, and computing measures like integration can
be done in time linear in the number of samples.

Table 2. Computation times (s)

Measure μ1 Measure μ2

# samples Tp Tm Ta T Tp Tm Ta T

1M 0.047 0.617 0.000 0.664 0.009 0.004 0.011 0.024

5M 0.197 0.612 0.000 0.809 0.050 0.005 0.047 0.103

10M 0.386 0.606 0.000 0.992 0.101 0.005 0.100 0.216

20M 0.759 0.609 0.000 1.368 0.203 0.005 0.260 0.468

5 Conclusion and Future Work

We presented a formal measurement specification language that can be used
for evaluating cyber-physical systems based on their simulation traces. Starting
from a declarative specification of the patterns that should be matched in the
segments to be measured, we apply a pattern matching algorithm for timed
regular expressions to find out the scope of measurements. The applicability of
our framework was demonstrated on a standard mixed-signal communication
protocol from the automotive domain.

In the future, we plan to develop an online extension of the presented pattern
matching and measurement procedure. It will enable the application of measure-
ments during the simulation process as well as performing measurements on real
cyber-physical systems during their execution. We believe that the extension of
regular expressions that we introduced is sufficiently expressive to capture com-
mon mixed signal properties, and could be used in other application domains,
something that we intend to explore further.
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8. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer,
Heidelberg (2013)
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Abstract. Delay differential equations (DDEs) arise naturally as mod-
els of, e.g., networked control systems, where the communication delay in
the feedback loop cannot always be ignored. Such delays can prompt oscil-
lations and may cause deterioration of control performance, invalidating
both stability and safety properties. Nevertheless, state-exploratory auto-
matic verification methods have until now concentrated on ordinary dif-
ferential equations (and their piecewise extensions to hybrid state) only,
failing to address the effects of delays on system dynamics. We over-
come this problem by iterating bounded degree interval-based Taylor
overapproximations of the time-wise segments of the solution to a DDE,
thereby identifying and automatically analyzing the operator that yields
the parameters of the Taylor overapproximation for the next temporal
segment from the current one. By using constraint solving for analyzing
the properties of this operator, we obtain a procedure able to provide
stability and safety certificates for a simple class of DDEs.

1 Introduction

“Despite [. . . ] very satisfactory state of affairs as far as [ordinary] dif-
ferential equations are concerned, we are nevertheless forced to turn to
the study of more complex equations. [. . . ] the rate of change of physical
systems depends not only on their present state, but also on their past
history.” [2, p. iii]

Ever since we first managed to make a children’s swing oscillate with ourselves
sitting happily on top, all of us are perfectly aware of the impact of feedback
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delays on the performance of control loops. The same is true for more serious
applications in automatic control, where digital implementation of the controller,
though adding flexibility , comes at the price of introducing increasingly relevant
delays into the feedback loop between controller and plant. The sources of such
delays are manifold: conversions between analog and digital signal domains, com-
plex digital signal-processing chains enhancing, filtering, and fusing sensory sig-
nals before they enter control, sensor networks harvesting multiple sensor sources
before feeding them to control, or network delays in networked control applica-
tions physically removing the controller(s) from the control path. In each such
application, describing the feedback dynamics of the controlled system by con-
joining the ordinary differential equations (ODEs) describing the plant dynamics
with the ODEs describing control may be misleading, as the delays introduced
into the feedback loop may induce significantly deviating dynamics; cf. Fig. 1 for
a simple example. Delays may prompt oscillations in otherwise convergently sta-
ble feedback loops or vice versa, they can destabilize otherwise stable orbits [40],
can stretch dwell times, may induce residual error that never settles, or can cause
transient overshoot into unsafe operational regimes (e.g. to negative values in
Fig. 1), to name just a few of the various possible effects fundamentally altering
system dynamics. Unmodeled delays in a control loop thus have the potential to
invalidate any stability or safety certificate obtained on the delay-free model, as
delays may significantly deteriorate control performance.

Given the omnipresence of such delays in modern control schemes, the appar-
ent lack of tools permitting their safe automatic analysis surprises. While delay
differential equations (DDEs) describing system dynamics as a function

d
dt

x (t) = f(x (t),x(t − δ1), . . . ,x (t − δn)), with δn > . . . > δ1 > 0, (1)

of past system states have long been suggested as an adequate means of mod-
eling delayed feedback systems [2], their tool support still seems to be confined
to numerical simulation based on integration from discontinuity to discontinu-
ity, e.g. by Matlab’s dde23 algorithm. Such numerical simulation, despite being
extremely useful in system analysis, nevertheless fails to provide reliable certifi-
cates of system properties, as it is numerically approximate only — in fact, error
control even is inferior to ODE simulation codes as dynamic step-size control is
much harder to attain for DDEs due to the non-local effects of step-size changes.
Counterparts to the plethora of techniques for safely enclosing set-based initial
value problems of ODEs, be it safe interval enclosures [25,27,37], Taylor mod-
els [3,28], or flow-pipe approximations based on polyhedra [6], zonotopes [13],
ellipsoids [19], or support functions [22], are thus urgently needed for DDEs. As
in the ODE case, such techniques would safely (and preferably tightly) overap-
proximate the set of states reachable at any given time point from the set of
initial values. The reason for their current lack is that DDEs are in some respect
much more complex objects than ODEs: DDEs belong to the class of systems
with functional state, i.e., the future (and past) is not determined by a single
temporal snapshot of the state variables, yet by a segment of a trajectory. This
renders the systems infinite-dimensional; in fact, as can be seen from Eq. (1),
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transformed copies of the initial segment of duration δn will generally be found
in higher-order derivatives of x (t) even after arbitrarily long time.

A safe enclosure method for DDEs therefore has to manipulate computational
enclosures of sets of trajectory segments x : [a, b] → Rn rather than computa-
tional enclosures of sets of states x ∈ Rn, like interval boxes, zonotopes, ellip-
soids, or support functions. A reasonable data structure could be interval-based
Taylor forms, being able to enclose a set of functions by a parametric Taylor
series with parameters in interval form. To avoid dimension explosion incurred
by the ever-growing degree of the Taylor series along the time axis, following the
idea of Taylor models [3,28], we employ Taylor series of fixed degree and move
higher-degree terms into the parametric uncertainty. We use this data structure
to iterate bounded degree Taylor overapproximations of the time-wise segments
of the solution to a DDE, thereby identifying and automatically analyzing the
operator that yields the parameters of the Taylor overapproximation for the next
temporal segment from the current one. By using constraint solving for analyz-
ing the properties of this operator, we obtain an automatic procedure providing
stability and safety certificates for a simple class of DDEs of the form

d
dt

x (t) = f(x (t − δ)) (2)

with linear or polynomial f : Rn → Rn. While this form is very restrictive, in
particular excluding immediate feedback between the state vector x (t) and its
dynamics d

dtx (t) in the model of the physical plant, it serves well as an illustrative
example for exposing the method, and can easily be generalized by combination
with the well-developed techniques for flow-pipe approximations of ODEs.

2 Related Work

Driven by the demand for safety cases (in a broad sense) for safety-critical control
systems, we have over the past decades seen a rapidly growing interest in auto-
matic verification procedures for system models involving continuous quantities
and dynamics described by, a.o., differential equations. Verification problems of
primary interest are thereby invariance properties concerning the dynamically
reachable states and stability properties describing the long-term behavior.

Invariance properties are a prototypical safety property. A natural approach
to their automatic verification is state-space exploration aiming at computing the
reachable state space. Unfortunately, only very few families of restrictive linear
dynamic systems feature a decidable state reachability problem [16,20]. A more
generally applicable option is to compute overapproximations of the state sets
reachable under time-bounded continuous dynamics, and then to embed them,
e.g., into depth-bounded automatic verification by bounded model checking,
or into unbounded verification by theorem proving. Among the many abstrac-
tion techniques proposed for over-approximating reachable sets of continuous
dynamics given as ordinary differential equations are use of interval arithmetic
[25,27,33,37], Taylor models [3,28], flow-pipe approximations based on polyhe-
dra [6], zonotopes [13], ellipsoids [19], or support functions [22], and abstraction
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based on discovering invariants [23,31,32,36]. There are several bounded model
checkers available for continuous and hybrid systems, like iSAT-ODE [8], Flow*
[5], and dReach [18], to name just a few. Theorem provers for ODE dynamics
and hybrid systems are also available, e.g., KeYmaera [30] or HHL Prover [41].

Safety verification is complemented by automatic procedures for providing
certificates of stability. Most such methods are based on the automatic con-
struction of Lyapunov functions [4] or piecewise Lyapunov functions [29]. Again,
such procedures can only be complete for restricted, mostly linear cases, though
incomplete extensions to rather general classes exist, e.g. [24].

Delay differential equations (DDEs) [2] model continuous processes with
delayed feedback, be it natural dynamic systems [1] or technical applications in
automatic control, which increasingly feature feedback delay due to, a.o., commu-
nication networks. As the delay substantially alters system behavior, verification
of properties of DDE is an independent area of research. Albeit there is extensive
literature on the theory of DDEs, obviously also addressing the question of how
to manually verify stability, fully automatic proof procedures for such models
are currently lacking and thus provide an open area of research. To this end, it
should be noted that DDE model a richer class of delay phenomena than sample-
and-hold devices or sampled controllers, even if the latter come equipped with
delayed output delivery. Such devices can well be modeled by hybrid automata,
providing an infinite-state yet finite-dimensional Markovian model, and conse-
quently can be analyzed by the corresponding verification tools. The functional
state of DDE, in contrast, is infinite-dimensional.

3 Overview of Our Approach

Fig. 1. Solutions to the ODE ẋ =
−x (dashed graph) and the related
DDE ẋ(t) = −x(t − 1) (solid line),
both on similar initial conditions
x(0) = 1 and x([0, 1]) ≡ 1, respec-
tively.

A reasonably small delay does not affect
the solution of a linear ordinary differential
equation (ODE) much, such that analyzing
the ODE derived from the DDE by ignor-
ing the delays may be indicative of the over-
all behavior. Unfortunately, it is unclear how
much delay can be ignored in general, as this
depends on the property under investigation.
The following example demonstrates the dif-
ference between a DDE and the related ODE
obtained by neglecting delays.

In Fig. 1, the dashed and solid lines rep-
resent the solution of the ODE ẋ = −x with-
out delay and of the related DDE ẋ(t) =
−x(t − 1) with 1 second delay, respectively.
Both are given as initial value problems,
where for the ODE we assume an initial value
x(0) = 1, which we generalize for the DDE to
x([0, 1]) ≡ 1. Figure 1 demonstrates that the
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delay tremendously prolongs dwell times, as well as invalidates some safety prop-
erties: the dashed line (representing the ODE behavior) always stays above the
horizontal axis whereas, in contrast, the solid line (representing the DDE solu-
tion) visits the negative range repeatedly. Even though the difference between
the solutions of the ODE and the DDE becomes smaller when the delay turns
smaller, it is in general hard to say how small a delay may ensure conservation
of some safety property valid of the ODE. Hence, it is necessary to have native
methods for analyzing the behaviour of DDE.

3.1 Computing Enclosures by Taylor Models

In the following, we will as a running example show how to analyze the DDE

ẋ(t) = −x(t − 1) (3)

with the initial condition x([0, 1]) ≡ 1.
The solution to the DDE (3) can be computed segment-wise by integration,

computing segments of duration 1 each. As we know the initial segment, we can
set f0(t) = 1 for t ∈ [0, 1], and can assume that the segment number n ∈ N

satisfies n ≥ 1 in what follows. Clearly, the solution of Eq. (3) over the time
interval (n, n + 1] can be represented by using its solution over the previous 1
second interval (i.e., the solution on (n − 1, n]) as follows:

x(n + t) = x(n) +
∫ n−1+t

n−1

−x(s)ds, for t ∈ (0, 1]. (4)

We simplify Eq. (4) by renaming x(n+ t1) to fn(t1). Thus, fn(t) : (0, 1] → R

is the solution of Eq. (3) on interval (n, n + 1], but the domain of the solution is
shifted to interval (0, 1] to obtain a normalized presentation, i.e.,

fn(t) = fn−1(1) +
∫ t

0

−fn−1(s)ds, t ∈ (0, 1] (5)

From Eq. (5) it follows that the degree of the solution fn over the n-th
interval will be n − 1, e.g., 3599 after one hour. Therefore, even if the DDE
easily is solvable by polynomials, its representation rapidly gets too complex to
be algorithmically analyzable due to excessive degrees and number of monomials.
For instance, it is hard to calculate the reachable set of the DDE in Eq. (3).

In order to address this issue, we will propose a method based on bounded-
degree interval Taylor models to over-approximate the solution by polynomials
with fixed degree. For instance, suppose we are trying to over-approximate the
solution by polynomials of degree 2. We can then predefine a template of the
form fn(t) = an0 + an1t + an2t

2 on interval [n, n + 1], where an0, an1, and an2

are interval parameters able to incorporate the approximation error necessarily
incurred by bounding the degree of the polynomial. Thus, the solution on the
next interval can be safely over-approximated using such a Taylor model.
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To compute the Taylor model, we first need to obtain the first and second
derivative f

(1)
n+1(t) and f

(2)
n+1(t) of solution segment n + 1 based on the preceding

segment. The first derivative f
(1)
n+1(t) is computed directly from Eq. (3) as

f
(1)
n+1(t) = −fn(t) = −an0 − an1t − an2t

2 .

The second derivative f
(2)
n+1(t) is computed based on f

(1)
n+1(t) by

f
(2)
n+1(t) =

d (f (1)
n+1(t))
d t

= −an1 − 2an2t .

Note that while polynomial derivative rules do in general not lift to interval
Taylor series, as the interval parameters permit to cover functions locally exhibit-
ing larger derivatives, the generation process of the interval Taylor series for the
first derivative avoids this fallacy here.

Using a Lagrange remainder with fresh variable ξn ∈ [0, 1], we hence obtain

fn+1(t) = fn(1) +
f
(1)
n+1(0)

1!
t +

f
(2)
n+1(ξn)

2!
t2

= (an0 + an1 + an2) − an0t − an1 + 2an2ξn

2
t2.

In order to proceed towards analysis of the asymptotic behavior of the sys-
tem, we in a second step derive the operator expressing the relation between
Taylor coefficients in the current and the next step. By replacing fn+1(t) with
its parametric form an+10+an+11t+an+12t

2 in the above equation, one therefore
derives the operator

[
an+10

an+11

an+12

]

=

[
1 1 1

−1 0 0
0 − 1

2
−ξn

] [
an0

an1

an2

]

(6)

mapping the coefficients of the Taylor form at step fn to the coefficients of the
Taylor form of fn+1. Hence, the coefficients change every second according to the
above linear operator, which can be made time-invariant (yet interval-valued)
by replacing ξn with its interval [0, 1].

Having obtained such a linear and time-invariant discrete system, we can in
a third step determine whether this discrete dynamic system is asymptotically
or robustly stable using the method proposed in [7]. If this holds, the sequence of
coefficients finally converges to an equilibrium point, which in turn implies that
the DDE in Eq. (3) is also asymptotically or robustly stable.

If we are interested in safety verification rather than stability, the above
operator can be iterated within bounded model checking (BMC), using any BMC
tool built on top of an arithmetic SMT solver being able to address polynomial
arithmetic, e.g. iSAT [11]. For a given safety property like S(x)=̂ − 1 ≤ x ≤ 1,
the requirement in the n-th segment translates to ∀t ∈ [0, 1] : S(fn(t)), where
fn is the Taylor form stemming from the n-th iteration of the above linear
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operator. Hence, the safety property S(x) for system (3) becomes safety property
∀n ∈ N, t ∈ [0, 1] : S(fn(t)) in system (6). Discharging this proof obligation in
BMC requires polynomial constraint solving due to the Taylor forms involved.

We can also conduct unbounded safety verification by means of pursuing BMC
for sufficiently many steps ks in case our DDE is stabilizing. The corresponding
upper bound ks on the number of steps can be computed via the following pro-
cedure (please refer to [7] for details): The asymptotic or robust stability of the
linear time-invariant discrete dynamic system in Eq. (6) is guaranteed by solving
a linear matrix inequality given by Theorem 1, which also gives a Lyapunov func-
tion V (an0, an1, an2, ξn) (denoted by V (A(n), ξn) in the following, where A(n)
represents an0,an1, and an2). Using the Lyapunov function, we first compute by
iSAT3 the largest c such that V (A(n), ξn) ≤ c∧¬S(fn(t)) is unsatisfiable. Then
we calculate the minimum reduction dm on the condition V (A(n), ξn) ≥ c, i.e.

dm = min{V (A(n), ξn) − V (A(n + 1), ξn+1) | V (A(n), ξn) ≥ c} ,

where the constraint can be eliminated by Lagrange multipliers and dm can be
calculated by Matlab function fmincon. The existence of such c implies that
V (A(n), ξn) ≤ c → S(fn(t)) holds, which implies that after ks = V (A(0),ξ0)−c

dm

steps we can be sure to reside inside the safety region S(fn(t)). As V (A(0), ξ0)
is linear in ξ0 (as explained in the next section), it follows that it is monotonic
or antimonic in ξ0 and thus max

(
V (A(0),0)−c

dm
, V (A(0),1)−c

dm

)
provides an upper

bound for ks. Hence, all that remains to be done is to pursue BMC for ks steps,
as safety violations can only arise transiently during those first ks steps.

In fact, there is no need to blindly unwind and compute the BMC problems
up to depth ks. Instead, it suffices to do so until the Lyapunov function decreases
to below c —which is guaranteed after at most ks steps, but maybe faster— and
then stop. Hence, we may save a lot of computations by checking for the goal
¬S(fn(t))∨V (A, ξ) ≤ c at each step in our BMC process. If the condition holds,
the bounded model checking procedure terminates immediately. Then of course
we need to disambiguate cases by determining which disjunct in ¬S(fn(t)) ∨
V (A, ξ) ≤ c is satisfied. If the first alternative ¬S(fn(t)) is satisfied, then a
counter-example to the safety property is found, otherwise the safety property
has been certified by the BMC in at most ks steps.

In this example, no linear (i.e., Taylor order 1) enclosure for the DDE in
Eq. (3) suffices to prove the safety property −1 ≤ x ≤ 1, but the enclosure
computed for degree 2 guarantees it.

4 Formal Analysis of Polynomial DDEs

In this section, we will generalize the basic idea to a general technique for poly-
nomial DDE of shape (2). The DDE under consideration thus are of the form

ẋ(t + δ) = g(x(t)), ∀t ∈ [0, δ] : x(t) = p0(t), (7)
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where x is a state vector in Rm, p0(t) is a vector of polynomials in Rm[x]
representing the initial condition as a trajectory of the DDE in the initial δ time
units, and g is a vector of polynomials in Rm[x].

In order to compute an enclosure for the trajectory defined by DDE (7), we
predefine a template interval Taylor form of fixed degree k as

fn(t) = an0 + an1t + · · · + ank
tk, (8)

where an0 , . . . ,ank
are interval-vector parameters. As before, fn is used to

enclose the trajectory for time interval [nδ, (n + 1)δ]. In what follows, we set
f0(t) = p0(t) and will compute the successive fn recursively from it. For nota-
tional convenience, we denote [an0 , . . . ,ank

] by a matrix A(n) in Rm×(k+1).

4.1 Constraints on Interval Parameters

As explained in Sect. 3, the trajectory induced by the DDE in Eq. (7) can be
represented by a piecewise function, with the duration of each piece being the
feedback delay δ. In order to compute an enclosure for the whole trajectory of
the DDE, we may calculate the relation between A(n) and A(n+1). In contrast
to the linear case of the previous section, we now need to exploit different orders
of Lie derivatives f

(1)
n+1,f

(2)
n+1, . . . ,f

(k)
n+1, which can be computed as follows:

f
(1)
n+1(t) = g(fn(t)),f (2)

n+1(t) =
d f

(1)
n+1(t)
d t

, . . . ,f
(k)
n+1(t) =

d f
(k−1)
n+1 (t)
d t

, (9)

i.e., the first-order Lie derivative is obtained directly from Eq. (7) and the (i+1)-
st order Lie derivative is computed from the i-th order Lie derivative by symbolic
differentiation. The Taylor expansion of fn+1(t) is derived from this as

fn+1(t) = fn(δ) +
f
(1)
n+1(0)

1!
t + · · · +

f
(k−1)
n+1 (0)
(k − 1)!

tk−1 +
f
(k)
n+1(ξn)

k!
tk , (10)

where ξn is a vector ranging over [0, δ]m.
From Eq. (10), by comparing the coefficients of the monomials with the same

degree at the two sides, a relation between An and A(n+1) is obtained. It can
be represented as a vector of polynomial equations possibly involving ξn, say

A(n + 1) = R(A(n), ξn) (11)

where R is a vector of polynomial functions of overall type Rm(k+2) → Rm(k+1).
After substituting ξ with interval [0, δ], Eq. (11) again forms a time-invariant

discrete dynamic system. The stability of this system can again be determined by
existing approaches, as can the bounded and unbounded model-checking prob-
lems of the original system (7). We will elaborate on the approach subsequently.
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4.2 Stability of the Time-Invariant Discrete Dynamic System

In this section, we discuss how to determine the stability of the resulting time-
invariant discrete dynamic system in Eq. (11), which implies stabilization of the
original system (7) to a stable orbit f→∞ which cycles through every δ time
units. We distinguish a linear and a more general polynomial case concerning
the right-hand side g of the DDE (as well as the initial condition).

Linear g: In case g in (7) is a linear function, f
(1)
n+1(t), . . . ,f

(k)
n+1(t) are all linear

in the entries of A(n) according to Eq. (9). Using Eq. (10), the equation (11)
can hence be reformulated as

A(n + 1) = T (ξn)A(n) , (12)

with T (ξn) an m × m-matrix whose entries are linear in the components of ξn.
The stability analysis for a linear time-invariant discrete dynamic system of

form (12) can be pursued using the following theorem from [7]:

Theorem 1 (Stability Analysis [7]). A system of the form

x(n + 1) = T (ξn)x(n) T (ξn) =
N∑

i=1

λniTi λni ≥ 0,
N∑

i=1

λni = 1

is asymptotically/robustly stable if and only if there exist symmetric positive
definite matrices Si, Sj and matrices Gi with appropriate dimensions such that

[
Gi + GT

i − Si GT
i TT

i

Ti Gi Sj

]
> 0

for all i = 1, ..., N and j = 1, ..., N . Moreover, the corresponding Lyapunov

function is V (x(n), ξn) = x(n)T (
N∑

i=1

λniS
−1
i )x(n).

In order to exploit Theorem 1, we have to reformulate T (ξn) in Eq. (12) to

T (ξn) =
N∑

i=1

λniTi, where λni ≥ 0,

N∑

i=1

λni = 1. (13)

From Eqs. (8) and (9), we recover that the degree of f (i)
n (t) is k + 1 − i, for

i = 1, · · · , k. Furthermore, according to Eq. (12), each entry tij of T (ξn) is linear
in the components of ξn, written as tij(ξn), for i = 1, . . . , m and j = 1, . . . , m.
For each tij(ξn), we have

tij(ξn) = (1 − ξn1

δ
)tij(ξn)[0/ξn1] +

ξn1

δ
tij [δ/ξn1], (14)

where e[b/a] stands for substituting b for a in e. Hence,

T (ξn) = (1 − ξn1

δ
)T (ξn)[0/ξn1] +

ξn1

δ
T (ξn)[δ/ξn1] (15)
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as tij(ξn) is linear in ξn1. Obviously, 0 ≤ 1 − ξn1
δ ≤ 1 and 0 ≤ ξn1

δ ≤ 1, as
ξn1 ∈ [0, 1]. By repeating the above procedure m times, we obtain

T (ξn) =
2m∑

i=1

λi(ξn)Ti, λi(ξn) ≥ 0,

2m∑

i=1

λi(ξn) = 1, (16)

where Ti is a matrix, by substituting for each component of ξn either of the
extremal values 0 or δ in T (ξn). This is sound due to the linearity in ξn. Equation
(16) constitutes a form where the stability of the time-invariant linear discrete
dynamic system of Eq. (12) can be determined by the method of Theorem 1. Note
that stabilization of the sequence of Taylor forms implies global stabilization of
the underlying linear DDE (12), as the Taylor forms converge towards 0.

Polynomial g: When g is nonlinear, the relation between A(n + 1) and A(n)
expressed in Eq. (11) becomes nonlinear. Thanks to existing methods on com-
puting parametric Lyapunov functions, such as [24,34], we can apply such tech-
niques to analyze the stability of a time-invariant polynomial discrete dynamic
system of Eq. (11), as it arises for polynomial g. In this paper, we build on the
idea from [34] and adapt it to the discrete-time setting of Eq. (11).

A parametric polynomial in y of degree k is of the form
∑

(
∑

α)≤k bαyα,
where y = (y1, · · · , ym),α = (α1, · · · , αm),yα = yα1

1 · · · yαm
m ,

∑
α =

∑m
i=1 αi.

We will subsequently denote such a polynomial by p(y, b), where b stands the
vector of the coefficients.

Definition 1. Given a dynamic system as in Eq. (11) and state sets A, B and
BA with BA ⊂ A, a parametric polynomial p((A, ξ), b) is called a relaxed Lya-
punov function with respect to A and BA iff

∃b ∈ B.∀A(n) ∈ A.∀ξn, ξn+1 ∈ [0, δ]m.

A(n) /∈ BA =⇒ p((A(n + 1), ξn+1), b) − p((A(n), ξn), b) < 0 , (17)

where A and B are domain constraints on A(n) and b respectively, BA is a basin
of attraction.

In Definition 1, for any b0 which satisfies (17), the relaxed Lyapunov function
p((A, ξ), b0) behaves like Lyapunov function in A \ BA for the time-invariant
discrete polynomial dynamic system in Eq. (11), abbreviated as V (A, ξ). Com-
puting such b satisfying (17) can be achieved with interval arithmetic according
to the method given in [34] as follows:

Step 1: Replace vector variables A(n), ξn, and ξn+1 in (17) respectively with
the corresponding intervals (A(n) is bounded by A), and simplify the
formula with interval arithmetic.

Step 2: Solve the resulting constraints on b, which are a set of linear interval
inequalities (LIIs), by Rohn’s approach [35] (will be elaborated below).
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Step 3: If the LIIs do not have a solution, bisect the intervals for vector variables
A(n), ξn and ξn+1, and repeat the steps 1 and 2 until a solution of b is
found or the length of intervals is smaller than a prescribed threshold ε.

LIIs can be solved almost exactly using Rohn’s approach [35] as follows: first,
replace each variable a by an expression a1 −a2, where a1 ≥ 0 and a2 ≥ 0; then,
replace Ia � 0 by Ia1 − Ia2 � 0, which is equivalent to I+a1 − I−a2 � 0, where
I+ = max I, I− = min I and � ∈ {<,≤}. One thus derives a system of linear
inequalities that can be solved by linear programming. The only problem is that
(Ia1 − Ia2) is not equivalent to (Ia) in general. However, if B is symmetric with
respect to the origin, i.e. bi ∈ [−Bi,Bi] for each bi of b, and I+ and I− have
a same sign, then the two formulas are equivalent by interval arithmetic. In an
actual implementation, it is easy to guarantee the above condition.

If the method succeeds, it proves that the parameters of the Taylor form will
eventually converge from anywhere in region A into region BA. This implies that
DDE (7) will converge into a corresponding region of its state space defined by
the range over t = [0, δ] of the Taylor polynomials with parameters in BA, when-
ever the DDE is started on initial conditions defined by the Taylor polynomials
with parameters in A. It thus constitutes a proof of local stability of the DDE.

4.3 Guaranteeing Safety

Now, we show how to compute the upper bound ks on steps potentially leaving
the safety region, as needed for unbounded verification of a given invariant S(x)
by means of bounded model checking (BMC). As computation of ks for linear
g has already been elaborated in the end of Sect. 3, the following discusses the
computation of such ks for polynomial g based on the above method.

When replacing the right-hand side constant 0 in (17) with a positive constant
dm, the above algorithm for computing relaxed Lyapunov functions will find a
relaxed Lyapunov function that decreases by at least dm for each step outside BA.
This can be used for unbounded safety verification, as it provides a computable
bound for convergence into BA, where for simplicity we here assume that BA is
such that the range over t = [0, δ] of the Taylor polynomials with parameters in
BA is a subset of our safety region S(x), i.e. the conjectured invariant.

Given such a minimum reduction dm outside BA, and thus outside the safety
region S(x), we use iSAT to compute the largest c such that V (A(n), ξn) ≤
c ∧ ¬S(fn(t)) ∧ t ∈ [0, δ] is not satisfiable, where S(x) is the invariant to be
verified. Clearly, the existence of such c implies that V (A(n), ξn) ≤ c → S(fn)
holds. Hence, after ks = V (x(0),ξ(0))−c

dm
steps S(fn) will necessarily hold, and

safety violations can only occur transiently during the first ks steps. Hence, using
bounded model-checking for ks steps yields an unbounded safety certificate in
case no violation is detected before that step bound. Note that BMC here again
requires polynomial SMT solving due to the Taylor forms. Again there is no need
to always unwind the BMC problem to depth ks, as checking the disjunctive goal
¬S(fn(t))∨V (A(n), ξn) ≤ c and disambiguating the outcome probably permits
early termination as in Sect. 3.
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5 Implementation

The algorithms exposed in the previous section have been implemented in Matlab
and C++, thereby taking advantage of the iSAT3 tool through its API. Given a
DDE and the parameters relevant to the analysis, Matlab’s symbolic computa-
tion is first employed for computing the Lie derivatives and thus identifying the
discrete time-invariant operator connecting segments of the Taylor approxima-
tion. For the linear case, stability analysis is then conducted by the Matlab LMI
solver, where actually synthesizing the pertinent Lyapunov function is done by
Matlab matrix functions, and the minimum descent dm outside the safety region
is calculated by Matlab function fmincon. Polynomial stability analysis is based
on Matlab and interval arithmetic packages b4m and Profil. Computation of
a barrier value characterizing the safety region in terms of Lyapunov ranges is
done by calling iSAT3. The same applies for bounded model checking.

6 Examples

In this section, we will introduce several examples to demonstrate how the app-
roach works in practice. All these examples have been processed fully automat-
ically by our prototype implementation.1

Example 1. Consider the linear DDE ẋ(t) = −x(t−1) from Eq. (3)) with initial
condition x([0, 1]) ≡ 1 and check its stability as well as the safety property
�(−1 ≤ x ≤ 1).

Using a Taylor model with degree 1, we calculate the operator relating the
parameters of successive Taylor forms to

A(n + 1) =

[
1 1

−1 −ξn

]
A(n) .

This operator cannot be shown stable by the method of Theorem 1.
The operator automatically obtained for degree 2 has already been presented

in Eq. (6). For this operator, stability verification by the method of Theorem 1
succeeds, as does (unbounded) safety verification for the property �(−1 ≤ x ≤ 1)
by bounded model checking.

Example 2. Consider the three-dimensional linear DDE

ẋ (t) =

⎡

⎣
−1 1

2
0

1
2

−1 1
4

0 1
4

−1

⎤

⎦ x (t − 1

100
) (18)

with initial condition x ([0, 1]) ≡ [− 125
11 ,− 360

11 ,− 90
11 ]. This system, which has been

inspired by [15, p. 585ff], models heat dissipation in a typical home with an

1 The prototype implementation of the verification tool as well as the examples are
available for download from https://github.com/liangdzou/isat-dde.

https://github.com/liangdzou/isat-dde
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insulated ground floor, topped by an attic without significant insulation and
supported by a basement surrounded by earth. Up to a coordinate shift intro-
duced in order to move the equilibrium point to (0, 0, 0), its three variables x1

to x3 model the temperatures in the basement, the ground floor, and the attic,
respectively. The standard model usually encountered in introductory textbooks
on modeling with differential equations takes the dissipation equations to be
ODEs; it is, however, reasonable to assume that the heat transfer through the
walls between the three compartments actually takes time (one could also add
delays for convective heat transport within the rooms). A DDE model thus seems
in place here. While the actual transport delays would be state dependent, any
reasonably sized constant delay will already make the model better. Not yet
being able to deal with state-dependent delays, we have set the delay to 1

100h
for the sake of demonstration.

For the resulting system, we have automatically checked stability as well as
safety with respect to the invariance property �(x2 ≤ 25

11 ), where x2 denotes the
(shifted) temperature in the ground floor.

Using Taylor models of degree 1, we compute the operator relating successive
parameters of the Taylor forms to

A(n + 1) =

⎡

⎢⎢
⎢
⎢
⎢⎢
⎣

1 1
100

0 0 0 0

−1 −ξ1
1
2

ξ1
2

0 0
0 0 1 1

100
0 0

1
2

ξ2
2

−1 −ξ2
1
4

ξ2
4

0 0 0 0 1 1
100

0 0 1
4

ξ3
4

−1 −ξ3

⎤

⎥⎥
⎥
⎥
⎥⎥
⎦

A(n) .

This operator has been shown stable by the method from Theorem 1 and the
unbounded safety property has been verified by BMC.

Example 3. This example is an adaption of Gustafson’s model of nutrient flow
in an aquarium [15, p. 589f]. It deals with using a radioactive tracer for the food
chain consisting of two aquatic plankton varieties drifting with the currents.
The variables in this three-dimensional system reflect the isotope concentrations
in the water, a phytoplankton species, and a zooplankton species, respectively.
The original model was an ODE model; a concise model would presumably have
to use PDE (partial differential equations) to model spacial variations and the
necessary drifts of species in the predator-prey part of the food chain; our DDE
model here is a compromise between these two extremes. Therefore consider the
three-dimensional linear DDE

ẋ (t) =

⎡

⎣
−3 6 5
2 −12 0
1 6 −5

⎤

⎦ x (t − 1

100
) (19)

with initial condition x ([0, 1]) ≡ [0, 0, 10] and the conjectured invariant �(x1 −
x2 − x3 ≥ 5).
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Beware that the eigenvalues of the matrix in this example are 0, −10−
√

6, −10+√
6, which implies that not even the corresponding ODE is asymptotically stable.

Hence, it comes as no surprise that we are not able to find an asymptotically
stable enclosure to the DDE. Using Taylor models of degree 1, we calculate the
operator relating successive parameter vectors to

A(n + 1) =

⎡

⎢⎢
⎢
⎢
⎢⎢
⎣

1 1
100

0 0 0 0
−3 −3ξ1 6 6ξ1 5 5ξ1
0 0 1 1

100
0 0

2 2ξ2 −12 −12ξ2 0 0
0 0 0 0 1 1

100

1 ξ3 6 6ξ3 −5 −5ξ3

⎤

⎥⎥
⎥
⎥
⎥⎥
⎦

A(n) ,

which cannot be proven stable by the method of Theorem 1. By translating above
system into the form required for Theorem 1, we get a set of Ti. After calculation,
we find out that the spectral radius of all the Ti is no more than 1, which at
least shows that A(n) does not grow too fast. Using bounded model-checking
on the Taylor approximation, we have been able to show the overapproximation
unsafe in step 12 (corresponding to t ∈ [0.12, 0.13]s), while Simulink simulation
confirms this for t = 0.1452s. Further exploiting iSAT3 for BMC on the Taylor-
based overapproximation, we actually found the safe set {x | x1 − x2 − xe ≥ 5}
itself (not its complement) being unreachable in step 18, i.e. for t = 0.18. This
constitutes a rigorous automatic proof that the system actually is unsafe.

Example 4. Consider the polynomial DDE ẋ(t) = −x(t − 1)3 with initial condi-
tion x([0, 1]) ≡ c, c ∈ [3, 6] arbitrary, and safety condition �(−3000 < x < 3000).

This system is unsafe and Taylor approximations of arbitrary degree will thus
eventually reach the complement of the safe set S = {x | −3000 < x < 3000}.
Using a Taylor approximation of degree 5, we are able to show by BMC that the
safe set S surely is left in the beginning of step 3, i.e., at t = 3, thus obtaining
a rigorous automatic proof that the system actually is unsafe.

Execution times for each evaluation step in each example above are stated in
Table 1, where the individual steps are calculating the Lyapunov function, the
barrier c characterizing the safe set wrt. Lyapunov values, the minimum per-step
reduction dm of the Lyapunov function outside the safe set, and verifying the
safety property, respectively. All benchmarks were performed on a 1.80GHz Intel
Core-i5 processor with 4GB RAM running 64-bit Ubuntu 14.04.

Table 1. Analysis times for the sample problems.

CLF(s) CBV(s) CSR(s) VSP(s)

Ex. 1 1.9869 10.514 20.012 0.0302

Ex. 2 12.732 52.892 78.258 22.121

Ex. 3 55.053 skipped skipped 0.0003

Ex. 4 timeout skipped skipped 0.0003

CLF = computing Lyapunov function
CBV = computing barrier value
CSR = computing per-step reduction
VSP = verifying/falsifying safety prop.
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7 Conclusions and Future Work

In this paper, we have exposed an automatic method for the stability and safety
verification of a simple class of delay differential equations (DDEs). The method
is based on using interval Taylor forms for safely enclosing segments of the solu-
tions of DDEs with point- or set-valued initial conditions. It thus complements
the established methods for enclosing reachable state sets of ordinary differen-
tial equations (ODEs), lifting their power to DDEs. It consequently covers the
situations actually encountered in many modern control applications, where the
feedback dynamics entails delays due to communication networks etc. and thus
can reasonably be described by DDEs. Relaxing these DDEs to ODEs in ver-
ification may yield misleading results due to the impact of delays on system
dynamics. To provide verification and reliable certificates for system properties,
e.g., stability and safety properties, we have thus established a safe enclosure
method for DDEs. Interval-based Taylor forms are used as a suitable data struc-
ture, facilitating to enclose a set of trajectories by parametric Taylor series with
parameters in interval form. This data structure is used to iterate bounded degree
interval-based Taylor overapproximations of the time-wise segments of the solu-
tion to a DDE. Given a DDE, we thereby identify the operator that computes the
parameters of the Taylor overapproximation for the next temporal segment from
the current one, and we employ constraint solving for automatically analyzing
its properties. Based on such analysis by numeric constraint solving as imple-
mented in the iSAT tool [11], we were able to obtain an automatic procedure
able to provide stability certificates for a simple class of DDE.

For this introductory exposition of the method, we assumed that the system
dynamics is represented as a DDE with a single, constant delay, i.e., is of the
restricted form given by Eq. (2). Several dynamical systems can be modeled by
DDE with a single constant delay as in biology [14,26], optics [17], economics
[38,39], ecology [10] . In control applications, one may however want to com-
bine delayed feedback, as imposed by communication networks, with immediate
state feedback as suggested by ODE models of the plant dynamics derived from,
e.g., Newtonian models. Such cases can be addressed by a layered combina-
tion of Taylor-model computation for ODEs, e.g. [28], with the ideas exposed
herein. The pertinent algorithms are currently under development and will be
exposed in future work. Beyond that, we want to extend the method to still more
general kinds of DDEs, like DDEs with multiple different discrete delays (cf.
Eq. (1)), DDEs with randomly distributed delay, or DDEs with time-dependent
or more generally state-dependent delay [21]. Likewise, this work can (and will)
be extended to facilitate the automatic verification and analysis for hybrid sys-
tems featuring delays, extending Egger’s method for integrating safe ODE enclo-
sures into a SAT modulo theory (SMT) solver [8,9] from ODE enclosures to DDE
enclosures. In this case, one will need to extend the enclosure methods for DDEs
to a constraint propagator mutually narrowing intervals of pre- and post-states
and integrate that propagator into the iSAT SMT solver as in [12].
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35. Rohn, J., Kreslová, J.: Linear interval inequalities. Linear Multilinear Algebra
38(1–2), 79–82 (1994)

36. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing invariants for hybrid
systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 539–
554. Springer, Heidelberg (2004)

37. Stauning, O.: Automatic Validation of Numerical Solutions. Ph.D .thesis, Technical
University of Denmark, Lyngby (1997)

38. Szyd�lowski, M., Krawiec, A.: The stability problem in the kaldor-kalecki business
cycle model. Chaos Solitons Fractals 25(2), 299–305 (2005)



Automatic Verification of Stability and Safety 355

39. Szyd�lowski, M., Krawiec, A., Tobo�la, J.: Nonlinear oscillations in business cycle
model with time lags. Chaos, Solitons Fractals 12(3), 505–517 (2001)

40. Tang, X., Zou, X.: Global attractivity in a predator-prey system with pure delays.
Proc. Edinburgh Math. Soc. 51, 495–508 (2008)

41. Zou, L., Lv, J., Wang, S., Zhan, N., Tang, T., Yuan, L., Liu, Y.: Verifying chinese
train control system under a combined scenario by theorem proving. In: Cohen,
E., Rybalchenko, A. (eds.) VSTTE 2013. LNCS, vol. 8164, pp. 262–280. Springer,
Heidelberg (2014)



Time Robustness in MTL and Expressivity
in Hybrid System Falsification

Takumi Akazaki1,2(B) and Ichiro Hasuo1

1 The University of Tokyo, Tokyo, Japan
ultraredrays@is.s.u-tokyo.ac.jp

2 JSPS Research Fellow, Tokyo, Japan

Abstract. Building on the work by Fainekos and Pappas and the one by
Donzé and Maler, we introduce AvSTL, an extension of metric interval
temporal logic by averaged temporal operators. Its expressivity in captur-
ing both space and time robustness helps solving falsification problems
(searching for a critical path in hybrid system models); it does so by
communicating a designer’s intention more faithfully to the stochastic
optimization engine employed in a falsification solver. We also intro-
duce a sliding window-like algorithm that keeps the cost of computing
truth/robustness values tractable.

1 Introduction

Model-Based Development of Hybrid Systems. The demand for quality assurance
of cyber-physical systems (CPS) is ever-rising, now that computer-controlled
artifacts—cars, aircrafts, and so on—serve diverse safety-critical tasks every-
where in our daily lives. In the industry practice of CPS design, deployment of
model-based development (MBD) has become a norm. In MBD, (physical and
costly) testing workbenches are replaced by (virtual and cheap) mathematical
models; and this reduces by a great deal the cost of running a development
cycle—design, implementation, evaluation, and redesign.

One of the distinctive features of CPS is that they are hybrid systems and
combine discrete and continuous dynamics. For MBD of such systems the soft-
ware Simulink has emerged as an industry standard. In Simulink a designer
models a system using block diagrams—a formalism strongly influenced by con-
trol theory—and runs simulation, that is, numerical solution of the system’s
dynamics.

Falsification. The models of most real-world hybrid systems are believed to be
beyond the reach of formal verification. While this is certainly the case with
systems as big as a whole car, a single component of it (like automatic transmis-
sion or an engine controller) overwhelms the scalability of the state-of-art formal
verification techniques, too.

What is worse, hybrid system models tend to have black-box components. An
example is fuel combustion in an engine. Such chemical reactions are not easy to

c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-21668-3 21



Time Robustness in MTL and Expressivity in Hybrid System Falsification 357

model with ODEs, and are therefore commonly represented in a Simulink model
by a look-up table—a big table of values obtained by physical measurements
[18,19]. The lack of structure in a look-up table poses a challenge to formal
verification: each entry of the table calls for separate treatment; and this easily
leads to state-space explosion.

Under such circumstances, falsification by stochastic optimization has proved
to be a viable approach to quality assurance [7,18,19]. The problem is formulated
as follows:

The falsification problem
Given: a model M (a function from an input signal

to an output signal), and
a specification ϕ (a temporal formula),

Answer: a critical path, that is, an input signal σin such
that the output M(σin) does not satisfy ϕ

Unlike testing or monitoring—where input σin is given and we check if M(σin) |=
ϕ—a falsification solver employs stochastic optimization techniques (like the
Monte-Carlo ones) and iteratively searches for a falsifying input signal σin.

Falsification is a versatile tool in MBD of hybrid systems. It is capable of
searching for counterexamples, hence revealing potential faults in the design.
One can also take, as a specification ϕ, the negation ¬ψ of a desirable property ψ;
then successful falsification amounts to synthesis of an input signal that satisfies
ψ. Stochastic optimization used in falsification typically does not rely on the
internal structure of models, therefore the methodology is suited for models
with black-box components. Falsification is fairly scalable, making it a realistic
option in the industrial MBD scenarios; see e.g. [18,19].

The current work aims at enhancing falsification solvers, notable among
which are S-TaLiRo [7] and BREACH [11]. An obvious way to do so is via
improvement of stochastic optimization; see e.g. [24,26]. Here we take a differ-
ent, logical approach.

Robustness in Metric Temporal Logics. Let us turn to a formalism in which a
specification ϕ is expressed. Metric interval temporal logic (MITL) [6], and its
adaptation signal temporal logic (STL) [23], are standard temporal logics for
(continuous-time) signals. However their conventional semantics—where satis-
faction is Boolean—is not suited for falsification by stochastic optimization. This
is because a formula ϕ, no matter if it is robustly satisfied and barely satisfied,
yields the same truth value (“true”), making it not amenable to hill climb-style
optimization.

It is the introduction of robust semantics of MITL [16] that set off the idea
of falsification by optimization. In robust semantics, a signal σ and a formula ϕ
are assigned a continuous truth value �σ, ϕ� ∈ R that designates how robustly
the formula is satisfied. Such “robustness values” constitute a sound basis for
stochastic optimization.
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The original robust semantics in [16] is concerned
with space robustness: for example, the truth values of�[0,10](v ≥ 80) (“the velocity reaches 80 km/h within
10 sec.”) are 20 and 0, for the green and red signals
on the right. Therefore space robustness is a “vertical
margin” between a signal and a specification. An effi-
cient algorithm is proposed in [12] for computing this
notion of robustness.

The notion of robustness is extended in [13] to take
time robustness also into account. Consider the same
specification �[0,10](v ≥ 80) against the green and red signals on the right. The
green one is more robust since it reaches 80 km/h much earlier than the deadline
(10 s), while the red one barely makes the deadline.

The current work continues this line of work, with the slogan that expressivity
of temporal logic should help falsification. With more expressivity, a designer’s
concerns that were previously ignored (much like time robustness was ignored
in [16]) come to be reflected in the continuous truth value. The latter will in
turn help stochastic optimization by giving additional “hints.” We however are
in a trade-off situation: the more expressive a logic is, the more expensive com-
putation of truth values is in general.

Contributions. We aim at: a good balance in the last trade-off between expressiv-
ity and computational cost; and thereby enhancing falsification solvers by giving
more “hints” to stochastic optimization procedures. Our technical contributions
are threefold.

The Logic AvSTL. We introduce averaged STL (AvSTL); it is an extension
of STL [23] by so-called averaged temporal operators like UI and �I . The (con-
tinuous) truth values of the new operators are defined by the average of truth
values in a suitable interval. We show that this simple extension of STL suc-
cessfully combines space and time robustness in [13,16]; and that its expressivity
covers many common specifications (expeditiousness, persistence, deadline, etc.)
encountered in the context of CPS.

An Algorithm for Computing AvSTL Robustness. It is natural to expect
that nonlocal temporal operators—like UI , �I and their averaged variants—
incur a big performance penalty in computing truth values. For STL (without
averaged modalities) an efficient algorithm is proposed in [12]; it employs the
idea of the sliding window minimum algorithm [22] and achieves complexity that
is linear with respect to the size of an input signal (measured by the number of
timestamps).

We show that, under mild and realistic assumptions, the same idea as in [12]
can be successfully employed to compute AvSTL truth values with linear
complexity.

Enhancing S-TaLiRo: Implementation and Experiments. We use
S-TaLiRo and demonstrate that our logic AvSTL indeed achieves a reasonable
balance between expressivity and computational cost. We present our proto-
type implementation: it takes S-TaLiRo and lets the above algorithm (called the
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AvSTL evaluator) replace TaLiRo, S-TaLiRo’s original engine for computing
STL truth values (see Fig. 7 in Sect. 4).

For its evaluation, we pick some benchmark models M and STL specifica-
tions ϕ—they are mostly automotive examples from [18]—and compare perfor-
mance between:

– our prototype, run for M and the original STL specification ϕ,1 and
– our prototype, run for M and a refinement of ϕ given as an AvSTL formula.

For benchmarks of a certain class we observe substantial performance improve-
ment: sometimes the latter is several times faster; and in some benchmarks we
even see the latter succeed in falsification while the former fails to do so.

Related Work. Besides those which are discussed in the above and the below, a
closely related work is [2] (its abstract appeared in [3]). There a notion of con-
formance between two models M1, M2 is defined; and it is much like (an arity-2
variation of) combination of space and time robustness. Its use in falsification
and comparison with the current approach is future work.

Organization of the Paper. In Sect. 2 we introduce the logic AvSTL: its syn-
tax, semantics, some basic properties and examples of temporal specifications
expressible in it. In Sect. 3, building on [12], an algorithm for computing AvSTL
truth values is introduced and its complexity is studied. The algorithm is imple-
mented and used to enhance a falsification solver S-TaLiRo, in Sect. 4, where
experiment results are presented and discussed.

We used colors in some figures for clarity. Consult the electronic edition in
case the colors are unavailable. Most of the proofs are deferred to an appendix
in the extended version [4], where the other appendices are found, too.

2 Averaged Signal Temporal Logic AvSTL

We introduce averaged STL (AvSTL). It is essentially an extension of MITL
[6] and STL [23] with so-called averaged temporal operators. We describe its
syntax and its semantics (that is inspired by robust semantics in [13,16]). We
also exemplify the expressivity of the logic, by encoding common temporal spec-
ifications like expeditiousness, persistence and deadline. Finally we will discuss
the relationship to the previous robustness notions [13,16] for STL.

2.1 Syntax

We let ≡ stand for the syntactic equality. We let R denote the set of real numbers,
with R≥0 and R≤0 denoting its obvious subsets. We also fix the set Var of
variables, each of which stands for a physical quantity (velocity, temperature,
etc.).
1 This is the control case of our experiments. We do not use S-TaLiRo itself, because

we would like to disregard the potential disadvantage caused by the communication
between the AvSTL evaluator (the additional component) and S-TaLiRo. We note
that the AvSTL evaluator is capable of evaluating STL formulas, too.
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Table 1. Definition of positive and negative robustness

Definition 2.1. (Syntax). In AvSTL, the set AP of atomic propositions and
the set Fml of formulas are defined as follows.

AP � l ::= x < r | x ≤ r | x ≥ r | x > r where x ∈ Var, r ∈ R

Fml � ϕ ::= � | ⊥ | l | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ UI ϕ | ϕ UI ϕ | ϕ RI ϕ | ϕ RI ϕ

Here I is a closed non-singular interval in R≥0, i.e. I = [a, b] or [a,∞) where
a < b. The overlined operator UI is called the averaged-until operator.

We introduce the following connectives as abbreviations, as usual: ϕ1 → ϕ2 ≡
(¬ϕ1)∨ϕ2, �Iϕ ≡ �UI ϕ, �Iϕ ≡ ⊥RI ϕ, �Iϕ ≡ �UI ϕ and �Iϕ ≡ ⊥RI ϕ. We
omit subscripts I for temporal operators if I = [0,∞). The operators RI , �I and
�I are called the averaged-release, averaged-eventually and averaged-henceforth
operators, respectively. We say a formula ϕ is averaging-free if it does not contain
any averaged temporal operators.

2.2 Robust Semantics

AvSTL formulas, much like STL formulas in [13,16], are interpreted over (real-
valued, continuous-time) signals. The latter stand for trajectories of hybrid
systems.

Definition 2.2 (Signal). A signal over Var is a function σ : R≥0 → (RVar);
it is therefore a bunch of physical quantities indexed by a continuous notion of
time.

For a signal σ and t ∈ R≥0, σt denotes the t-shift of σ, that is, σt(t′) �
σ(t + t′).
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The interpretation of a formula ϕ over a signal σ is
given by two different “truth values,” namely posi-
tive and negative robustness. They are denoted by
�σ, ϕ�

+ and �σ, ϕ�
−, respectively.

We will always have �σ, ϕ�
+ ≥ 0 and �σ, ϕ�

− ≤
0. We will also see that, for averaging-free ϕ, it is never the case that �σ, ϕ�

+
> 0

and �σ, ϕ�
−

< 0 hold at the same time. See the figure on the right for an example,
where a sine-like (black) curve is a signal σ. The blue and red curves stand for
the positive and negative robustness, of the formula x ≥ 0 over the (t-shifted)
signal σt, respectively.

Definition 2.3 (Positive/Negative Robustness). Let σ : R≥0 → RVar be a
signal and ϕ be an AvSTL formula. We define the positive robustness �σ, ϕ�

+ ∈
R≥0 ∪ {∞} and the negative robustness �σ, ϕ�

− ∈ R≤0 ∪ {−∞} by mutual
induction, as shown in Table 1. Here � and  denote infimums and supremums
of real numbers, respectively.

The definition in Table 1 is much like the one for STL [12,13],2 except for the
averaged modalities on which a detailed account follows shortly. Conjunctions
and disjunctions are interpreted by infimums and supremums, in a straightfor-
ward manner.

Figure 1 illustrates the semantics of averaged-temporal operators—the nov-
elty of our logic AvSTL. Specifically, the black line designates a signal σ
whose only variable is x; and we consider the “averaged-eventually” formula�[0,1](x ≥ 0). For this formula, the definition in Table 1 specializes to:

�σ, �[0,1](x ≥ 0)�+

=
∫ 1

0

( ⊔

τ ′∈[0,τ ]

0  σ(τ ′)(x)
)

dτ, and
�σ, �[0,1](x ≥ 0)�−

=
∫ 1

0

( ⊔

τ ′∈[0,τ ]

0 � σ(τ ′)(x)
)

dτ.

Fig. 1. The positive and negative
robustness of �[0,1](x ≥ 0) at t = 0.

These values obviously coincide with the
sizes of the blue and red areas in Fig. 1,
respectively. Through this “area” illustra-
tion of the averaged-eventually operator we
see that: the sooner ϕ is true, the more
(positively) robust �Iϕ is. It is also clear
from Fig. 1 that our semantics captures
space robustness too: the bigger a vertical
margin is, the bigger an area is.

Remark 2.4. Presence of averaged temporal operators forces separation of two
robustness measures (positive and negative). Assume otherwise, i.e. that we have
one robustness measure that can take both positive and negative values; then
2 There is no distinction between strict inequalities (<) and non-strict ones (≤). This

is inevitable in the current robustness framework. This is also the case with STL
in [12,13].
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robustness that floats between positive and negative values over time can “can-
cel out” after an average is taken. This leads to the failure of soundness (see
Propositions 2.9 and 2.10; also [13,16]), and then a positive robustness value no
longer witnesses the Boolean truth of (the qualitative variant of) the formula.
This is not convenient in the application to falsification.

2.3 Basic Properties of AvSTL

Lemma 2.5 (Temporal Monotonicity). Let 0 ≤ t0 < t ≤ t′. The following
hold.

�σ, ϕ1 U[t0,t] ϕ2�
+ ≤ �σ, ϕ1 U[t0,t′] ϕ2�

+ �σ, ϕ1 U[t0,t] ϕ2�
− ≤ �σ, ϕ1 U[t0,t′] ϕ2�

−

�σ, ϕ1 R[t0,t] ϕ2�
+ ≥ �σ, ϕ1 R[t0,t′] ϕ2�

+ �σ, ϕ1 R[t0,t] ϕ2�
− ≥ �σ, ϕ1 R[t0,t′] ϕ2�

−

The inequalities hold also for the averaged temporal operators. �

We can now see well-definedness of Definition 2.3: we need that the integrals are
defined; and the lemma shows that the integrated functions are monotone, hence
Riemann integrable.

In Definition 2.3, the definitions for averaged operators with an infinite end-
point (like U [0,∞)ϕ) are given in terms of non-averaged operators. This is so
that their well-definedness is immediate; the following lemma justifies those
definitions.

Lemma 2.6. For any t0 ∈ R≥0, �σ, ϕ1 U[t0,∞) ϕ2�
+ = lim

t→∞�σ, ϕ1 U [t0,t] ϕ2�
+
.

The same is true if we replace � �+ with � �−, and if we replace U with R. �

Fig. 2. Expeditiousness Fig. 3. Deadline Fig. 4. Persistence

2.4 Common Temporal Specifications Expressed in AvSTL

Here we shall exemplify the expressivity of AvSTL, by encoding typical tempo-
ral specifications encountered in the model-based development of cyber-physical
systems.

Remark 2.7. In what follows we sometimes use propositional variables such as
airbag and geari. For example, gear2 is a shorthand for the atomic formula
xgear2

≥ 0 in AvSTL, where the variable xgear2
is assumed to take a discrete

value (1 or −1).
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Expeditiousness (�Iϕ). Consider the following informal specification: after
heavy braking, the airbag must operate within 10ms. Its formalization in STL
is straightforward by the formula �(heavyBraking → �[0,10]airbag). However,
an airbag that operates after 1 ms. is naturally more desirable than one that
operates after 9.99 ms. The STL formula fails to discriminate between these two
airbags.

Such expeditiousness (“as soon as possible”) requirements are more ade-
quately modeled in AvSTL, using the averaged-eventually modality �I . See
Fig. 2, where the horizontal axis is for time t. The vertical axis in the figure
stands for the positive robustness value �σt, �[0,10]airbag�

+ of the formula�[0,10]airbag, where σt is a signal in which airbag operates (i.e. xairbag becomes
from −1 to 1) at time t. We see that the formula successfully distinguishes an
early-bird airbag from a lazy one.

Therefore the AvSTL formula �(heavyBraking → �[0,10]airbag) formal-
izes a (refined) informal specification that: after heavy braking, the airbag must
operate within 10 ms; but the sooner the better. It is not hard to expect that
the latter is more faithful to the designer’s intention than the original informal
specification.

Deadline (�[0,T ]ϕ∨�[T,T+δ]ϕ). The expeditiousness-type requirement that we
have discussed is sometimes too strict. Let us consider the following scenario:
there is a deadline set at time T and arrival by then is rewarded no matter how
late; and then there is a deadline extension by time δ and arrival between the
deadline and the extended one is rewarded too, but with certain deduction.

Such a deadline specification is expressed in AvSTL by the formula�[0,T ]ϕ ∨ �[T,T+δ]ϕ, combining non-averaged and averaged eventually modal-
ities. See Fig. 3, where the positive robustness of the formula (�[0,5]airbag) ∨
(�[5,5+5]airbag) is plotted, for the same signals σt as before (i.e. in σt the airbag
operates at time t).

Persistence (�[0,T ]ϕ ∧ �[T,T+δ]ϕ). Persistence (“for as long as possible”)
specifications are dual to deadline ones and expressed by a formula �[0,T ]ϕ ∧
�[T,T+δ]ϕ. An example is the following informal specification on automatic trans-
mission: when a gear shifts into first, it never shifts into any other gear for the
coming 50ms. A likely intention behind it is to prevent mechanical wear of gears
that is caused by frequent gear shifts. In this case the following specification
would be more faithful to the intention: when a gear shifts into first, it never
shifts into any other gear for the coming 50 ms., and preferably for longer. This is
formalized by the formula �(shiftIntoGear1 → �[0,50]gear1∧�[50,50+δ]gear1).

For illustration, Fig. 4 plots the positive robustness of �[0,50]gear1 ∧
�[50,60]gear1 for signals σ′

t, where gear1 is true in σ′
t from time 0 to t, and

is false afterwards.

Other Temporal Specifications. Expressivity of AvSTL goes beyond the
three examples that we have seen—especially after the extension of the language
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with time-reversed averaged temporal operators. The reversal of time here corre-
sponds to the symmetry between left and right time robustness in [13]. Such an
extension of AvSTL enables us to express specifications like punctuality (“no
sooner, no later”) and periodicity. The details will be reported in another venue.

2.5 Soundness of Refinements from STL to AvSTL

In Sect. 2.4 we have seen some scenarios where an STL specification is refined
into an AvSTL one so that it more faithfully reflects the designer’s intention.
The following two are prototypical:

– (�-refinement) the refinement of �Iϕ (“eventually ϕ, within I”) into �Iϕ
(“eventually ϕ within I, but as soon as possible”); and

– (�-refinement) the refinement of �[a,b]ϕ (“always ϕ throughout [a, b]”) into
�[a,b]ϕ∧�[b,b+δ]ϕ (“always ϕ throughout [a, b], and desirably also in [b, b+δ]”).

The following soundness results guarantee validity of the use of these refinements
in falsification problems. Completeness, in a suitable sense, holds too.

Definition 2.8. A positive context is an AvSTL formula with a hole [ ] at a
positive position. Formally, the set of positive contexts is defined as follows:

C ::= [ ] | C ∨ ϕ | ϕ ∨ C | C ∧ ϕ | ϕ ∧ C | C UI ϕ | ϕ UI C | C UI ϕ | ϕ UI C
| C RI ϕ | ϕ RI C | C RI ϕ | ϕ RI C where ϕ is an AvSTL formula.

For a positive context C and an AvSTL formula ψ, C[ψ] denotes the formula
obtained by substitution of ψ for the hole [ ] in C.

Proposition 2.9 (Soundness and Completeness of �-Refinement). Let C
be a positive context. Then �σ, C[�[a,b]ϕ]�+ > 0 implies �σ, C[�[a,b]ϕ]�+ > 0.
Moreover, for any b′ such that b′ < b, �σ, C[�[a,b′]ϕ]�+ > 0 implies
�σ, C[�[a,b]ϕ]�+ > 0. �

Proposition 2.10 (Soundness and Completeness of �-Refinement).
Let C be a positive context. Then �σ, C[�[a,b]ϕ ∧ �[b,b+δ]ϕ]�

+
> 0 implies

�σ, C[�[a,b]ϕ]�+ > 0. Moreover, for any b′ > b, �σ, C[�[a,b′]ϕ]�+ > 0 implies
�σ, C[�[a,b]ϕ ∧ �[b,b+δ]ϕ]�

+
> 0. �

2.6 Relationship to Previous Robustness Notions

Our logic AvSTL captures space robustness [16]—the first robustness notion
proposed for MITL/STL, see Sect. 1—because the averaging-free fragment of
AvSTL coincides with STL and its space robust semantics, modulo the sepa-
ration of positive and negative robustness (Remark 2.4).
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The relationship to space-time robustness pro-
posed in [13] is interesting. In [13] they combine time
and space robustness in the following way: for each
time t and each space robustness value c > 0, (right)
time robustness relative to c, denoted by θ+c (ϕ, σ, t),
is defined by “how long after time t the formula ϕ
maintains space robustness c.” See the figure on the
right, where the space-time robustness θ+c (x ≥ 0, σ, 0) is depicted.

After all, space-time robustness in [13] is a function from c to θ+c (ϕ, σ, t);
and one would like some real number as its characteristic. A natural choice of
such is the area surrounded by the graph of the function (the shaded area in
the figure), and it is computed in the same way as Lebesgue integration, as the
figure suggests.

What corresponds in our AvSTL framework to this “area” characteristic
value is the robustness of the formula �[0,∞)(x ≥ 0) computed by Riemann inte-
gration (here we have to ignore the normalizing factor 1

b−a in Table 1). Therefore,
very roughly speaking: our “averaged” robustness is a real-number characteris-
tic value of the space-time robustness in [13]; and the correspondence is via the
equivalence between Riemann and Lebesgue integration.

3 A Sliding-Window Algorithm for AvSTL Robustness

We shall present an algorithm for computing AvSTL robustness. It turns out
that the presence of averaged modalities like �I—with an apparent nonlocal
nature—does not incur severe computational overhead, at least for formulas in
which averaged modalities are not nested. The algorithm is an adaptation of the
one in [12] for STL robustness; the latter in turn relies on the sliding window
minimum algorithm [22]. The algorithm’s time complexity is linear with respect
to the number of timestamps in the input signal; it exhibits a practical speed,
too, as we will see later in Sect. 4.

Firstly we fix the class of signals to be considered.

Definition 3.1 (Finitely Piecewise-Constant/Piecewise-Linear Sig-
nal). A 1-dimensional signal σ : R≥0 → R is finitely piecewise-constant (FPC) if
it arises from a finite sequence

[
(t0, r0), (t1, r1), . . . , (tn, rn)

]
of timestamped val-

ues, via the correspondence σ(t) = ri (for t ∈ [ti, ti+1)). Here 0 = t0 < · · · < tn,
ri ∈ R, and tn+1 is deemed to be ∞.

Similarly, a 1-dimensional signal σ : R≥0 → R is finitely piecewise-linear
(FPL) if it is identified with a finite sequence

[
(t0, r0, q0), . . . , (tn, rn, qn)

]

of timestamped values, via the correspondence σ(t) = ri + qi(t − ti) (for
t ∈ [ti, ti+1)). Here qi ∈ R is the slope of σ in the interval [ti, ti+1).

The definitions obviously extend to many-dimensional signals σ : R≥0 →
RVar.
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We shall follow [12,13] and measure an algorithm’s complexity in terms of
the number of timestamps (n in the above); the latter is identified with the size
of a signal.

Definition 3.2 (Robustness Signal [ϕ]σ). Let σ : R≥0 → RVar be a signal,
and ϕ be an AvSTL formula. The positive robustness signal of ϕ over σ is
the signal [ϕ]+σ : R≥0 → R defined by: [ϕ]+σ (t) � �σt, ϕ�

+. Recall that σt(t′) =
σ(t + t′) is the t-shift of σ (Definition 2.2). The negative robustness signal [ϕ]−σ
is defined in the same way.

An averaged modality turns a piecewise-constant signal into a piecewise-linear
one.

Lemma 3.3

1. Let ϕ be an averaging-free AvSTL formula. If a signal σ is finitely piecewise-
constant (or piecewise-linear), then so is [ϕ]+σ .

2. Let ϕ be an AvSTL formula without nested averaged modalities. If a signal
σ is finitely piecewise-constant, then [ϕ]+σ is finitely piecewise-linear.

The above holds for the negative robustness signal [ϕ]−σ , too.

Proof. Straightforward by the induction on the construction of formulas. �

Our algorithm for computing AvSTL robustness �σ, ϕ� will be focused on:
(1) a finitely piecewise-constant input signal σ; and (2) an AvSTL formula ϕ
where averaged modalities are not nested. In what follows, for presentation, we
use the (non-averaged and averaged) eventually modalities �I ,�I in describing
algorithms. Adaptation to other modalities is not hard; for complex formulas,
we compute the robustness signal [ϕ]σ by induction on ϕ.

3.1 Donzé et al.’s Algorithm for STL Robustness

We start with reviewing the algorithm [12] for STL robustness. Our algorithm
for AvSTL robustness relies on it in two ways: 1) the procedures for averaged
modalities like �I derive from those for non-averaged modalities in [12]; and
(2) we use the algorithm in [12] itself for the non-averaged fragment of AvSTL.

Remark 3.4. The algorithm in [12] computes the STL robustness �σ, ϕ� for a
finitely piecewise-linear signal σ. We need this feature e.g. for computing robust-
ness of the formula �(heavyBraking → �[0,10]airbag): note that, by Lemma 3.3,
the robustness signal for �[0,10]airbag is piecewise-linear even if the input signal
is piecewise-constant.

Consider computing the robustness signal [�[a,b]ϕ]σ, assuming that the signal
[ϕ]σ is already given.3 The task calls for finding the supremum of [ϕ]σ(τ) over
3 In the rest of Sect. 3.1, for simplicity of presentation, we assume that [ϕ]σ is piecewise-

constant. We note that the algorithm in [12] nevertheless extends to piecewise-linear
[ϕ]σ.
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Fig. 5. A sliding window for computing [�[0,5](x ≥ 0)]+σ ; the black line is the signal σ

Fig. 6. Use of stackqueues and their operations, in the sliding window algorithm

τ ∈ [t + a, t + b]; and this must be done for each t. Naively doing so leads to
quadratic complexity.

Instead Donzé et al. in [12] employ a sliding window of size b−a and let it scan
the signal [ϕ]σ from right to left. The scan happens once for all, hence achieving
linear complexity. See Fig. 5, where we take [�[0,5](x ≥ 0)]+σ as an example, and
the blue shaded area designates the position of the sliding window. The window
slides from [3, 8] to the closest position to the left where its left-endpoint hits a
new timestamped value of [ϕ]σ, namely [1, 6].

It is enough to know the shape of the blue (partial)
signal in Fig. 5, at each position of the window. The
blue signal denotes the (black) signal σ’s local supre-
mum within the window; more precisely, it denotes
the value of the signal �σt, �[0,τ ](x ≥ 0)�+ at time t + τ , where τ ∈ [0, 5] and t
is the leftmost position of the window. We can immediately read off the signal
[�[0,5](x ≥ 0)]+σ from the blue signals: the former is the latter’s value at the
rightmost position of the window.

The keys in the algorithms in [12,22] lie in:

– use of the stackqueue data structure (depicted above on the right) for the
purpose of representing the blue (partial) signal in Fig. 5; and

– use of the operations push, pop and dequeue for updating the blue signal.

See Fig. 6, where each entry of a stackqueue is a timestamped value (t, r). We see
that the slide of the window, from top-left to top-right in Fig. 6, is expressed by
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Algorithm 1. An algorithm for computing [�[a,b]ϕ]σ
Require: An FPC signal [ϕ]σ given as a sequence (t0, r0), . . . , (tn, rn)
Ensure: The FPL signal [�[a,b]ϕ]σ

ttemp := tn − a;

F :=
[
(ttemp + a, [ϕ]σ(ttemp + a))

]
; � F is the FPC signal τ �→ �σt, �[a,τ ]ϕ�

s := (b − a) · [ϕ]σ(ttemp + a); � The area of F
G :=

[
(ttemp, s/(b − a), 0)

]
; � The FPC signal [�[a,b]ϕ]σ

while ttemp ≥ 0 do
told := ttemp;
ttemp := the greatest t such that t < told ∧ (∃ti. t + a = ti ∨ ∃(t′, r′) ∈ F. t + b = t′)

)
;

Deq := {(t, r) ∈ F | t > ttemp + b}; F := F \ Deq; � Dequeue old elements in F
Pop := {(t, r) ∈ F | r ≤ [ϕ]σ(ttemp + a)}; F := F \ Pop; � Pop small elements in F
tPop := min{t | (t, r) ∈ F or t = ttemp + b};
F :=

[
(ttemp + a, [ϕ]σ(ttemp + a))

] ∪ F � Push the left endpoint of the window to F
rleft := min{r | (t, r) ∈ F};
rright := max{r | (t, r) ∈ F};
s := s − (told − ttemp) · rright − area(Pop) + (tPop − (ttemp + a)) · rleft
G := {(ttemp, s/(b − a), rright − rleft)} ∪ G

end while

dequeue, pop and then push operations to stackqueues (in Fig. 6: from top-left
to bottom-left, bottom-right and then top-right). Pseudocode for the algorithm
can be found in [4, Appendix A.1].

3.2 An Algorithm for AvSTL Robustness

It turns out that the last algorithm is readily applicable to computing AvSTL
robustness. Consider an averaged-eventually formula �[a,b]ϕ as an example.
What we have to compute is the size of the shaded areas in Fig. 5 (see also
Fig. 1); and the shape of the blue signals in Fig. 5 carry just enough information
to do so.

Pseudocode for the adaptation of the previous algorithm (in Sect. 3.1) to�[a,b]ϕ is found in Algorithm1. Its complexity is linear with respect to the num-
ber n of the timestamp values that represent the signal [ϕ]σ.

An algorithm for the averaged-henceforth formula [�[a,b]ϕ]σ is similar. Exten-
sions to averaged-until and averaged-release operators are possible, too; they use
doubly-linked lists in place of stackqueues. See [4, Appendix A.2] for more details.
Combining with the algorithm in Sect. 3.1 to deal with non-averaged temporal
operators, we have the following complexity result. The complexity is the same
as for STL [12].

Theorem 3.5. Let ϕ be an AvSTL formula in which averaged modalities are
not nested. Let σ be a finitely piecewise-constant signal. Then there exists an
algorithm to compute �σ, ϕ�

+ with time-complexity in O(d|ϕ||ϕ||σ|) for some
constant d.

The same is true for the negative robustness �σ, ϕ�
−. �
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Remark 3.6. The reason for our restriction to finitely piecewise-constant input
signals is hinted in Remark 3.4; let us further elaborate on it. There the averaged
modality �[0,10] turns a piecewise-constant signal into a piecewise-linear one
(Lemma 3.3); and then the additional Boolean connectives and non-averaged
modalities (outside �[0,10]) are taken care of by the algorithm in [12], one that
is restricted to piecewise-linear input.

It is not methodologically hard to extend this workflow to piecewise-
polynomial input signals (hence to nested averaged modalities as well). Such
an extension however calls for computing local suprema of polynomials, as well
as their intersections—tasks that are drastically easier with affine functions. We
therefore expect the extension to piecewise-polynomial signals to be computa-
tionally much more expensive.

4 Enhanced Falsification: Implementation
and Experiments

Fig. 7. An overview of S-
TaLiRo (from [1]), with our
modification

We claim that our logic AvSTL achieves a
good balance between expressivity—that com-
municates a designer’s intention more faithfully
to a falsification solver—and computational cost,
thus contributing to the model-based develop-
ment of cyber-physical systems. In this section
we present our implementation that combines:
(1) S-TaLiRo [7], one of the state-of-art falsifica-
tion solvers that relies on robust MTL semantics
and stochastic optimization; and (2) the AvSTL
evaluator, an implementation of the algorithm
in Sect. 3.2. Our experiments are on automotive
examples of falsification problems; the results indi-
cate that (refinement of specifications by) AvSTL
brings considerable performance improvement.

Implementation. S-TaLiRo [7] is “a Matlab toolbox that searches for trajec-
tories of minimal robustness in Simulink/Stateflow” [1]. Recall the formalization
of a falsification problem (Sect. 1). S-TaLiRo’s input is: (1) a model M that is a
Simulink/Stateflow model; and (2) a specification ϕ that is an STL formula.

S-TaLiRo employs stochastic simulation in the following S-TaLiRo loop:

1. Choose an input signal σin randomly.
2. Compute the output signal M(σin) with Simulink.
3. Compute the robustness �M(σin), ϕ�.
4. If the robustness is ≤ 0 then return σin as a critical path. Otherwise choose a

new σin (hopefully with a smaller robustness) and go back to Step 2.

Our modification of S-TaLiRo consists of: 1) changing the specification formalism
from STL to AvSTL (with the hope that the robustness �M(σin), ϕ�

+ carries
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Table 2. Experiment results. Time is in seconds. The “Succ.” columns show how many
trials succeeded among the designated number of trials; the “Iter.” columns show the
average number of iterations of the S-TaLiRo loop, executed in each trial (max. 1000);
and the “Time” columns show the average time that each trial took. For the last two
we also show the average over successful trials.
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more information to be exploited in stochastic optimization); and 2) using, in
Step 3 of the above loop, the AvSTL evaluator based on the sliding-window
algorithm in Sect. 3. See Fig. 7.

Experiments. As a model M we used the automatic transmission model
from [18], where it is offered “as benchmarks for testing-based falsification” [18].
The same model has been used in several works [15,20,25]. The model has two
input ports (throttle and brake) and six output ports (the engine speed ω,
the vehicle speed v, and four mutually-exclusive Boolean ports gear1, . . . , gear4
for the current gear). See [4, Appendix C] for more details. As a specification ϕ
to falsify, we took six examples from [18], sometimes with minor modifications.
They constitute Problems 1–6 in Table 2.

Our goal is to examine the effect of our modification to S-TaLiRo. For the
model M (that is fixed) and each of the six specifications ϕ, experiments are
done with:

– M and the original STL formula ϕ, as a control experiment; and
– M and the AvSTL formula ϕ′ that is obtained from ϕ as a refinement.

The latter specifically involves �-refinement and �-refinement described in
Sect. 2.5.

Faster, or more frequent, falsification in the latter setting witnesses effectiveness
of our AvSTL approach. We note that falsifying ϕ′ indeed means falsifying ϕ,
because of the soundness of the refinement (Propositions 2.9 and 2.10).

A single falsification trial consists of at most 1000 iterations of the S-TaLiRo
loop. For each specification ϕ (i.e. for each problem in Table 2) we made 20–
100 falsification trials, sometimes with different parameter values T . We made
multiple trials because of the stochastic nature of S-TaLiRo.

Experiment Results and Discussion. The experiment results are in Table 2.
We used Matlab R2014b and S-TaLiRo ver.1.6 beta on ThinkPad T530 with Intel
Core i7-3520M 2.90GHz CPU with 3.7 GB memory. The OS is Ubuntu14.04 LTS
(64-bit).

Notable performance improvement is observed in Problems 3–5, especially
in their harder instances. For example, our AvSTL enrichment made 17 out
of 20 trials succeed in Problem 3 (T = 4), while no trials succeeded with the
original STL specification. A similar extreme performance gap is observed also
in Problem 5 (T = 0.8).

Such performance improvement in Problems 3–5 is not surprising. The speci-
fications for these problems are concerned solely with the propositional variables
geari (cf. Remark 2.7); and the space robustness semantics for STL assigns to
these specifications only 0 or 1 (but no values in-between) as their truth values.
We can imagine such “discrete” robustness values give few clues to stochastic
optimization algorithms.

Both of �- and �-refinement in Sect. 2.5 turn out to be helpful. The latter’s
effectiveness is observed in Problems 3–5; the former improves a success rate
from 32/100 to 81/100 in Problem 1 (T = 40).
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Overall, the experiment results seem to support our claim that the com-
plexity of (computing robustness values in) AvSTL is tractable. There is no
big difference in the time each iteration takes, between the STL case and the
AvSTL case.

5 Conclusions and Future Work

We introduced AvSTL, an extension of STL with averaged temporal operators.
It adequately captures both space and time robustness; and we presented an
algorithm for computing robustness that is linear-time with respect to the “size”
of an input signal. Its use in falsification of CPS is demonstrated by our prototype
that modifies S-TaLiRo.

As future work, we wish to compare our averaged temporal operators with
other quantitative temporal operators, among which are the discounting ones
[5,6]. The latter are closely related to mean-payoff conditions [10,14] as well as
to energy constraints [8,9], all of which are studied principally in the context of
automata theory.

Application of AvSTL to problems other than falsification is another impor-
tant direction. Among them is parameter synthesis, another task that S-TaLiRo
is capable of. We are now looking at application to sequence classification (see
e.g. [21]), too, whose significant role in model-based development of CPS is
widely acknowledged.
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Abstract. Program synthesis tools work by searching for an implemen-
tation that satisfies a given specification. Two popular search strategies
are symbolic search, which reduces synthesis to a formula passed to a
SAT solver, and explicit search, which uses brute force or random search
to find a solution. In this paper, we propose adaptive concretization, a
novel synthesis algorithm that combines the best of symbolic and explicit
search. Our algorithm works by partially concretizing a randomly chosen,
but likely highly influential, subset of the unknowns to be synthesized.
Adaptive concretization uses an online search process to find the opti-
mal size of the concretized subset using a combination of exponential
hill climbing and binary search, employing a statistical test to determine
when one degree of concretization is sufficiently better than another.
Moreover, our algorithm lends itself to a highly parallel implementation,
further speeding up search. We implemented adaptive concretization for
Sketch and evaluated it on a range of benchmarks. We found adaptive
concretization is very effective, outperforming Sketch in many cases,
sometimes significantly, and has good parallel scalability.

1 Introduction

Program synthesis aims to construct a program satisfying a given specification.
One popular style of program synthesis is syntax-guided synthesis, which starts
with a structural hypothesis describing the shape of possible programs, and then
searches through the space of candidates until it finds a solution. Recent years
have seen a number of successful applications of syntax-guided synthesis, ranging
from automated grading [18], to programming by example [8], to synthesis of
cache coherence protocols [22], among many others [6,14,20].

Despite their common conceptual framework, each of these systems relies on
different synthesis procedures. One key algorithmic distinction is that some use
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explicit search—either stochastically or systematically enumerating the candi-
date program space—and others use symbolic search—encoding the search space
as constraints that are solved using a SAT solver. The SyGuS competition has
recently revealed that neither approach is strictly better than the other [1].

In this paper, we propose adaptive concretization, a new approach to syn-
thesis that combines many of the benefits of explicit and symbolic search while
also parallelizing very naturally, allowing us to leverage large-scale, multi-core
machines. Adaptive concretization is based on the observation that in synthesis
via symbolic search, the unknowns that parameterize the search space are not all
equally important in terms of solving time. In Sect. 2, we show that while sym-
bolic methods can efficiently solve for some unknowns, others—which we call
highly influential unknowns—cause synthesis time to grow dramatically. Adap-
tive concretization uses explicit search to concretize influential unknowns with
randomly chosen values and searches symbolically for the remaining unknowns.
We have explored adaptive concretization in the context of the Sketch synthe-
sis system [19], although we believe the technique can be readily applied to other
symbolic synthesis systems such as Brahma [12] or Rosette [21].

Combining symbolic and explicit search requires solving two challenges. First,
there is no practical way to compute the precise influence of an unknown. Instead,
our algorithm estimates that an unknown is highly influential if concretizing it
will likely shrink the constraint representation of the problem. Second, because
influence computations are estimates, even the highest influence unknown may
not affect the solving time for some problems. Thus, our algorithm uses a series
of trials, each of which makes an independent decision of what to randomly
concretize. This decision is parameterized by a degree of concretization, which
adjusts the probability of concretizing a high influence unknown. At degree 1,
unknowns are concretized with high probability; at degree ∞, the probability
drops to zero. The degree of concretization poses its own challenge: a preliminary
experiment showed that across seven benchmarks and six degrees, there is a
different optimal degree for almost every benchmark. (Section 3 describes the
influence calculation, the degree of concretization, and this experiment.)

Since there is no fixed optimal degree, the crux of adaptive concretization
is to estimate the optimal degree online. Our algorithm begins with a very low
degree (i.e., a large amount of concretization), since trials are extremely fast. It
then exponentially increases the degree (i.e., reduces the amount of concretiza-
tion) until removing more concretization is estimated to no longer be worthwhile.
Since there is randomness across the trials, we use a statistical test to determine
when a difference is meaningful. Once the exponential climb stops, our algo-
rithm does binary search between the last two exponents to find the optimal
degree, and it finishes by running with that degree. At any time during this
process, the algorithm exits if it finds a solution. Adaptive concretization natu-
rally parallelizes by using different cores to run the many different trials of the
algorithm. Thus a key benefit of our technique is that, by exploiting parallelism
on big machines, it can solve otherwise intractable synthesis problems. (Section 4
discusses pseudocode for the adaptive concretization algorithm.)
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We implemented our algorithm for Sketch and evaluated it against 26
benchmarks from a number of synthesis applications including automated tutor-
ing [18], automated query synthesis [6], and high-performance computing, as well
as benchmarks from the Sketch performance benchmark suite [19] and from
the SyGuS’14 competition [1]. By running our algorithm over twelve thousand
times across all benchmarks, we are able to present a detailed assessment of its
performance characteristics. We found our algorithm outperforms Sketch on 23
of 26 benchmarks, sometimes achieving significant speedups of 3× up to 14×. In
one case, adaptive concretization succeeds where Sketch runs out of memory.
We also ran adaptive concretization on 1, 4, and 32 cores, and found it generally
has reasonable parallel scalability. Finally, we compared adaptive concretiza-
tion to the winner of the SyGuS’14 competition on a subset of the SyGuS’14
benchmarks and found that our approach is competitive with or outperforms
the winner. (Section 5 presents our results in detail.)

2 Combining Symbolic and Explicit Search

To illustrate the idea of influence, consider the following Sketch example:

bit [32] foo(bit [32] x) implements spec{
if (??){

return x & ??; // unknown m1

}else{
return x | ??; // unknown m2

} }

bit [32] spec(bit [32] x){
return minus(x, mod(x, 8));

}

Here the symbol ?? represents an unknown constant whose type is automatically
inferred. Thus, the ?? in the branch condition is a boolean, and the other ??’s,
labeled as unknowns m1 and m2, are 32-bit integers. The specification on the
right asserts that the synthesized code must compute (x − (x mod 8)).

The sketch above has 65 unknown bits and 233 unique solutions, which is too
large for a naive enumerative search. However, the problem is easy to solve with
symbolic search. Symbolic search works by symbolically executing the template
to generate constraints among those unknowns, and then generating a series of
SAT problems that solve the unknowns for well-chosen test inputs. Using this
approach, Sketch solves this problem in about 50 ms, which is certainly fast.

However, not all unknowns in this problem are equal. While the bit-vector
unknowns are well-suited to symbolic search, the unknown in the branch is much
better suited to explicit search. In fact, if we incorrectly concretize that unknown
to false, it takes only 2 ms to discover the problem is unsatisfiable. If we concretize
it correctly to true, it takes 30 ms to find a correct answer. Thus, enumerating
concrete values lets us solve the problem in 32 ms (or 30 ms if in parallel), which
is 35 % faster than pure symbolic search. For larger benchmarks this can make
the difference between solving a problem in seconds and not solving it at all.

The benefit of concretization may seem counterintuitive since SAT solvers also
make random guesses, using sophisticated heuristics to decide which variables to
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guess first. To understand why explicit search for this unknown is beneficial, we
need to first explain how Sketch solves for these unknowns. First, symbolic exe-
cution in Sketch produces a predicate of the form Q(x, c), where x is the 32-bit
input bit-vector and c is a 65-bit control bit-vector encoding the unknowns.Q(x, c)
is true if and only if foo(x) = x − (x mod 8) for the function foo described by c.
Thus, Sketch’s goal is to solve the formula ∃c.∀x.Q(x, c). This is a doubly quan-
tified problem, so it cannot be solved directly with SAT.

Sketch reduces this problem to a series of problems of the form ∧xi∈EQ(xi, c),
i.e., rather than solving for all x, Sketch solves for all xi in a carefully chosen
set E. After solving one of these problems, the candidate solution c is checked
symbolically against all possible inputs. If a counterexample input is discovered,
that counterexample is added to the set E and the process is repeated. This is
the Counter-Example Guided Inductive Synthesis (CEGIS) algorithm, and it is
used by most published synthesizers (e.g., [12,21,22]).

Sketch’s solver represents constraints as a graph, similar to SMT solvers,
and then iteratively solves SAT problems generated from this graph. The graph
is essentially an AST of the formula, where each node corresponds to an unknown
or an operation in the theory of booleans, integer arithmetic, or arrays, and where
common sub-trees are shared (see [19] for more details). For the simple example
above, the formula Q(x, c) has 488 nodes and CEGIS takes 12 iterations. On each
iteration, the algorithm concretizes xi and simplifies the formula to 195 nodes.
In contrast, when we concretize the condition, Q(x, c) shrinks from 488 to 391
nodes, which simplify to 82 nodes per CEGIS iteration. Over 12 iterations, this
factor of two in the size of the problem adds up. Moreover, when we concretize
the condition to the wrong value, Sketch discovers the problem is unsatisfiable
after only one counterexample, which is why that case takes only 2 ms to solve.

In short, unlike the random assignments the SAT solver uses for each individ-
ual sub-problem in the CEGIS loop, by assigning concrete values in the high-level
representation, our algorithm significantly reduces the sub-problem sizes across
all CEGIS loop iterations. It is worth emphasizing that the unknown controlling
the branch is special. For example, if we concretize one of the bits in m1, it
only reduces the formula from 488 to 486 nodes, and the solution time does not
improve. Worse, if we concretize incorrectly, it will take almost the full 50 ms to
discover the problem is unsatisfiable, and then we will have to flip to the correct
value and take another 50 ms to solve, thus doubling the solution time. Thus, it
is important to concretize only the most influential unknowns.

Putting this all together yields a simple, core algorithm for concretization.
Consider the original formula Q(x, c) produced by symbolic execution over the
sketch. The unknown c is actually a vector of unknowns ci, each corresponding
to a different hole in the sketch. First, rank-order the ci from most to least
influence, cj0, cj1, · · · . Then pick some threshold n smaller than the length of
c, and concretize cj0, · · · , cjn with randomly chosen values. Run the previously
described CEGIS algorithm over this partially concretized formula, and if a
solution cannot be found, repeat the process with a different random assignment.
Notice that this algorithm parallelizes trivially by running the same procedure
on different cores, stopping when one core finds a solution.
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This basic algorithm is straightforward, but three challenges remain: How to
estimate the influence of an unknown, how to estimate the threshold of influence
for concretization, and how to deal with uncertainty in those estimates. We
discuss these challenges in the next two sections.

3 Influence and Degree of Concretization

An ideal measure of an unknown’s influence would model its exact effect on
running time, but there is no practical way to compute this. As we saw in the
previous section, a reasonable alternative is to estimate how much we expect
the constraint graph to shrink if we concretize a given node. However, it is still
expensive to actually perform substitution and simplification.

Our solution is to use a more myopic measure of influence, focusing on the
immediate neighborhood of the unknown rather than the full graph. Following
the intuition from Sect. 2, our goal is to assign high influence to unknowns that
select among alternative program fragments (e.g., used as guards of conditions),
and to give low influence to unknowns in arithmetic operations. For an unknown
n, we define influence(n) =

∑
d∈children(n) benefit(d, n), where children(n) is the

set of all nodes that depend directly on n. Here benefit(d, n) is meant to be a
crude measure of how much the overall formula might shrink if we concretize
the parent node n of node d. The function is defined by case analysis on d:

– Choices. If d is an ite node,1 there are two possibilities. If n is d’s guard
(d = ite(n, a, b)) then benefit(d, n) = 1, since replacing a with a constant will
cause the formula to shrink by at least one node. On the other hand, if n
corresponds to one of the choices (d = ite(c, n, b) or d = ite(c, a, n)), then
benefit(d) = 0, since replacing n with a constant has no effect on the size of
the formula.

– Boolean nodes. If d is any boolean node except negation, it has benefit 0.5.
The intuition is that boolean nodes are often used in conditional guards, but
sometimes they are not, so they have a lower benefit contribution than ite
guards. If d = ¬(n), then benefit(d, n) equals influence(d), since the benefit in
terms of formula size of concretizing n and d is the same.

– Choices among constants. Sketch’s constraint graph includes nodes repre-
senting selection from a fixed sized array. If d corresponds to such a choice
that is among an array of constants, then benefit(d, n) = influence(d), i.e., the
benefit of concretizing the choice depends on how many nodes depend on d.

– Arithmetic nodes. If d is an arithmetic operation, benefit(d, n) = −∞. The
intuition is that these unknowns are best left to the solver. For example, given
??+in, replacing ?? with a constant will not affect the size of the formula.

Note that while the above definitions may involve recursive calls to influence, the
recursion depth will never be more than two due to prior simplifications. This
pass also eliminates nodes with no children, and thus any unknown not involved
in arithmetic will have at least one child and thus an influence of at least 0.5.
1 ite(a, b, c) corresponds to if (a) b else c, as in SMT-LIB.
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Before settling on this particular influence measure, we tried a simpler
approach that attempted to concretize holes that flow to conditional guards,
with a probability based on the degree of concretization. However, we found
that a small number of conditionals have a large impact on the size and com-
plexity of the formula. Thus, having more refined heuristics to identify high
influence holes is crucial to the success of the algorithm.

3.1 Degree of Concretization

The next step is to decide the threshold for concretization. We hypothesize the
best amount of concretization varies—we will test this hypothesis shortly. More-
over, since our influence computation is only an estimate, we opt to incorporate
some randomness, so that (estimated) highly influential unknowns might not be
concretized, and (estimated) non-influential unknowns might be.

Thus, we parameterize our algorithm by a degree of concretization (or just
degree). For each unknown n in the constraint graph, we calculate its estimated
influence N = influence(n). Then we concretize the node with probability

p =

⎧
⎨

⎩

0 if N < 0
1.0 if N > 1500
1/(max(2, degree/N)) otherwise

To understand this formula, ignore the first two cases, and consider what hap-
pens when degree is low, e.g., 10. Then any node for which N ≥ 5 will have a 1/2
chance of being concretized, and even if N is just 0.5—the minimum N for an
unknown not involved in arithmetic—there is still a 1/20 chance of concretiza-
tion. Thus, low degree means many nodes will be concretized. In the extreme,
if degree is 0 then all nodes have a 1/2 chance of concretization. On the other
hand, suppose degree is high, e.g., 2000. Then a node with N = 5 has just a
1/400 chance of concretization, and only nodes with N ≥ 1000 would have a 1/2
chance. Thus, a high degree means fewer nodes will be concretized, and at the
extreme of degree = ∞, no concretization will occur, just as in regular Sketch.

For nodes with influence above 1500, the effect on the size of the formula
is so large that we always find concretization profitable. Nodes with influence
below zero are those involved in arithmetic, which we never concretize.

Overall, there are four “magic numbers” in our algorithm so far: the degree
cutoff 1500 at which concretization stops being probabilistic, the ceiling of 0.5 on
the probability for all other nodes, and the benefit values of 1 and 0.5 for boolean
and choice unknowns, respectively. We determined these number in an ad hoc
way using a subset of our benchmarks. For example, the 0.5 probability ceiling
is the first thing we tried, and it worked well. On the other hand, we initially
tried probability 0 for boolean unknowns, but found that some booleans also
indirectly control choices; so we increased the benefit to 0.5, which seems to
work well. We leave a more systematic analysis to future work.
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Table 1. Expected running time (s) using empirical success rate. SIQR in small text.
Fastest time in dark grey, second-fastest in light grey.

3.2 Preliminary Experiment: Optimal Degree

We conducted a preliminary experiment to test whether the optimal degree
varies with subject program. We chose seven benchmarks across three different
synthesis domains. The left column of Table 1 lists the benchmarks, grouped by
domain. Section 5.1 describes the programs and experimental machine in more
detail. We ran each benchmark with degrees varying exponentially from 16 to
4096. For each degree, we ran each benchmark 256 times, with no timeout.

For each benchmark/degree pair, we wish to estimate the time to success if
we concretized the same benchmark many times at that degree. To form this
estimate, for each such pair we compute the fraction of runs p that succeeded;
this approximates the true probability of success. Then if a trial takes time t,
we compute the expected time to success as t/p. While this is a coarse estimate,
it provides a simple calculation we can also use in an algorithm (Sect. 4). If p is
0 (no trial succeeded), the expected time to success is ∞.

Results. Each cell in Table 1 contains the median expected run time in sec-
onds, as computed for each degree. Since variance is high, we also report the
semi-interquartile range (SIQR) of the running times, shown in small text. We
highlight the fastest and second-fastest times.

The table shows that the optimal degree varies across all benchmarks; indeed,
all degrees except 1024 were optimal for at least one benchmark. We also see a
lot of variance across runs. For example, for l min, degree 128, the SIQR is more
than 40× the median. Other benchmarks also have high SIQRs. Importantly, if
we visualize the median expected running times, they form a vee around the
fastest time—performance gets worse the farther away from optimal in either
direction. Thus, we can search for an optimal degree, as we discuss next.

4 Adaptive, Parallel Concretization

Figure 1 gives pseudocode for adaptive concretization. The core step of our algo-
rithm, encapsulated in the run trial function, is to run Sketch with the speci-
fied degree. If a solution is found, we exit the search. Otherwise, we return both
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run trial(degree)

run Sketch with specified degree

if solution found then

raise success

else

return (running time,

concretization space size )

compare(deg a, deg b)

dist a ← ∅
dist b ← ∅
while |dist a | ≤ Max dist ∧

wilcoxon(dist a, dist b ) > T do

dist a ∪ ← run trial(deg a)

dist b ∪ ← run trial(deg b)

if wilcoxon(dist a, dist b ) > T then

return tie

elsif avg(dist a ) < avg(dist b) then

return left

else

return right

climb()

low, high ← 0, 1

while high < Max exp do

case compare(2low, 2high) of

left : break

right:

low ← high

high ← high + 1

tie : high ← high + 1

return (low, high)

bin search(low, high)

mid ← (low + high) / 2

case compare(low, mid) of

left : return bin search(low, mid)

right: return bin search(mid, high)

tie : return mid

main()

(low, high) ← climb()

deg ← bin search(2low, 2high)

while (true) do run trial(deg)

Fig. 1. Search Algorithm using Wilcoxon Signed-Rank Test.

the time taken by that trial and the size of the concretization space, e.g., if we
concretized n bits, we return 2n. We will use this information to estimate the
time-to-solution of running at this degree.

Since Sketch solving has some randomness in it, a single trial is not enough
to provide a good estimate of time-to-solution, even under our heuristic assump-
tions. In Table 1 we used 256 trials at each degree, but for a practical algorithm,
we cannot fix a number of trials, lest we run either too many trials (which wastes
time) or too few (which may give a non-useful result).

To solve this issue, our algorithm uses the Wilcoxon Signed-Rank Test [24]
to determine when we have enough data to distinguish two degrees. We assume
we have a function wilcoxon(dist a, dist b) that takes two equal-length lists of
(time, concretization space size) pairs, converts them to distributions of esti-
mated times-to-solution, and implements the test, returning a p-value indicating
the probability that the means of the two distributions are different.

Recall that in our preliminary experiment in Sect. 3, we calculated the esti-
mated time to success of each trial as t/p, where t was the time of the trial and
p was the empirical probability of success. We use the same calculation in this
algorithm, except we need a different way to compute p, since the success rate
is always 0 until we find a solution, at which point we stop. Thus, we instead
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calculate p from the search space size. We assume there is only one solution, so
if the search space size is s, we calculate p = 1/s.2

Comparing Degrees. Next, compare takes two degrees as inputs and returns a
value indicating whether the left argument has lower expected running time,
the right argument does, or it is a tie. The function initially creates two empty
sets of trial results, dist a and dist b. Then it repeatedly calls run trial to add
a new trial to each of the two distributions (we write x ∪ ← y to mean adding y
to set x). Iteration stops when the number of elements in each set exceeds some
threshold Max dist, or the wilcoxon function returns a p-value below some
threshold T . Once the algorithm terminates, we return tie if the threshold was
never reached, or left or right depending on the means.

In our experiments, we use 3×max(8, |cores|) for Max dist. Thus, compare
runs at most three “rounds” of at least eight samples (or the number of cores, if
that is larger). This lets us cut off the compare function if it does not seem to
be finding any distinction. We use 0.2 for the threshold T . This is higher than
a typical p-value (which might be 0.05), but recall our algorithm is such that
returning an incorrect answer will only affect performance and not correctness.
We leave it to future work to tune Max dist and T further.

Searching for the Optimal Degree. Given the compare subroutine, we can imple-
ment the search algorithm. The entry point is main, shown in the lower-right
corner of Fig. 1. There are two algorithm phases: an exponential climbing phase
(function climb) in which we try to roughly bound the optimal degree, followed
by a binary search (function bin search) within those bounds.

We opted for an initial exponential climb because binary search across the
whole range could be extremely slow. Consider the first iteration of such a process,
which would compare full concretization against no concretization. While the for-
mer would complete almost instantaneously, the latter could potentially take a
long time (especially in situations when our algorithm is most useful).

The climb function aims to return a pair low, high such that the optimal
degree is between 2low and 2high. It begins with low and high as 0 and 1, respec-
tively. It then increases both variables until it finds values such that at degree
2high, search is estimated to take a longer time than at 2low, i.e., making things
more symbolic than low causes too much slowdown. Notice that the initial tri-
als of the climb will be extremely fast, because almost all variables will be
concretized.

To perform this search, climb repeatedly calls compare, passing in 2 to the
power of low and high as the degrees to compare. Then there are three cases.
If left is returned, 2low has better expected running time than 2high. Hence we
assume the true optimal degree is somewhere between the two, so we return them.
Otherwise, if right is returned, then 2high is better than 2low, so we shift up to
the next exponential range. Finally, if it is a tie, then the range is too narrow
to show a difference, so we widen it by leaving low alone and incrementing high.

2 Notice we can ignore the size of the symbolic space, since symbolic search will find
a solution if one exists for the particular concretization.
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We also terminate climbing if high exceeds some maximum exponent Max exp.
In our implementation, we choose Max exp as 14, since for our subject programs
this makes runs nearly all symbolic.

After finding rough bounds with climb, we then continue with a binary
search. Notice that in bin search, low and high are the actual degrees, whereas
in climb they are degree exponents. Binary search is straightforward, maintain-
ing the invariant that low has expected faster or equivalent solution time to high
(recall this is established by climb). Thus each iteration picks a midpoint mid
and determines whether low is better than mid, in which case mid becomes the
new high; or mid is better, in which case the range shifts to mid to high; or there
is no difference, in which case mid is returned as the optimal degree.

Finally, after the degree search has finished, we repeatedly run Sketch with
the given degree. The search exits when run trial finds a solution, which it
signals by raising an exception to exit the algorithm. (Note that run trial may
find a solution at any time, including during climb or bin search).

Parallelization. Our algorithm is easy to parallelize. The natural place to do this
is inside run trial: Rather than run a single trial at a time, we perform parallel
trials. More specifically, our implementation includes a worker pool of a user-
specified size. Each worker performs concretization randomly at the specified
degree, and thus they are highly likely to all be doing distinct work.

Timeouts. Like all synthesis tools, Sketch includes a timeout that kills a search
that seems to be taking too long. Timeouts are tricky to get right, because it is
hard to know whether a slightly longer run would have succeeded. Our algorithm
exacerbates this problem because it runs many trials. If those trials are killed
just short of the necessary time, it adds up to a lot of wasted work. At the other
extreme, we could have no timeout, but then the algorithm may also waste a lot
of time, e.g., searching for a solution with incorrectly concretized values.

To mitigate the disadvantages of both extremes, our implementation uses
an adaptive timeout. All worker threads share an initial timeout value of one
minute. When a worker thread hits a timeout, it stops, but it doubles the shared
timeout value. In this way, we avoid getting stuck rerunning with too short a
timeout. Note that we only increase the timeout during climb and bin search.
Once we fix the degree, we leave the timeout fixed.

5 Experimental Evaluation

We empirically evaluated adaptive concretization against a range of benchmarks
with various characteristics.3 Compared to regular Sketch (i.e., pure symbolic
search), we found our algorithm is substantially faster in many cases; compet-
itive in most of the others; and slower on a few benchmarks. We also com-
pared adaptive concretization with concretization fixed at the final degree chosen
by the adaption phase of our algorithm (i.e., to see what would happen if we
3 Our testing infrastructure, benchmarks, and raw experimental data are open-sourced

and explained at: http://plum-umd.github.io/adaptive-concretization/.

http://plum-umd.github.io/adaptive-concretization/
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could guess this in advance), and we found performance is reasonably close,
meaning the overhead for adaptation is not high. We measured parallel scala-
bility of adaptive concretization of 1, 4, and 32 cores, and found it generally
scales well. We also compared against the winner of the SyGuS’14 competition
on a subset of the benchmarks and found that adaptive concretization is bet-
ter than the winner on 6 of 9 benchmarks and competitive on the remaining
benchmarks.

Throughout this section, all performance reports are based on 13 runs on
a server equipped with forty 2.4 GHz Intel Xeon processors and 99 GB RAM,
running Ubuntu 14.04.1. LTS. (We used the same machine for the experiments
in Sect. 3.) For the pure Sketch runs only, performance is also on 13 runs with
a 2-hour timeout and 32 GB memory bound.

5.1 Benchmarks

The names of our benchmarks are listed in the left column of Table 2, with the
size in the next column. The benchmarks are grouped by the synthesis appli-
cation they are from. Each application domain’s sketches vary in complexity,
amount of symmetry, etc. We discuss the groups in order.

– Pasket. The first three benchmarks, beginning with p , come from the appli-
cation that inspired this work: Pasket, a tool that aims to construct exe-
cutable code that behaves the same as a framework such as Java Swing, but
is much simpler to statically analyze [11]. Pasket’s sketches are some of
the largest that have ever been tried, and we developed adaptive concretiza-
tion because they were initially intractable with Sketch. As benchmarks, we
selected three Pasket sketches that aim to synthesize parts of Java Swing
that include buttons, the color chooser, and menus.

– Data Structure Manipulation. The second set of benchmarks is from a project
aiming to synthesize provably correct data-structure manipulations [13]. Each
synthesis problem consists of a program template and logical specifications
describing the functional correctness of the expected program. There are two
benchmarks. l prepend accepts a sorted singly linked list L and prepends a
key k, which is smaller than any element in L. l min traverses a singly linked
list via a while loop and returns the smallest key in the list.

– Invariants for Stencils. The next sets of benchmarks, beginning with a mom ,
are from a system that synthesizes invariants and postconditions for scientific
computations involving stencils. In this case, the stencils come from a DOE
Miniapp called Cloverleaf [7]. These benchmarks involve primarily integer
arithmetic and large numbers of loops.

– SyGuS Competition. The next sets of benchmarks, beginning with ar and hd ,
are from the first Syntax-Guided Synthesis Competition [1], which compared
synthesizers using a common set of benchmarks. We selected nine benchmarks
that took at least 10 s for any of the solvers in the competition, but at least
one solver was able to solve it.
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Table 2. Comparing Sketch, adaptive, and non-adaptive concretization.

– Sketch. The last three groups of benchmarks, beginning with s , deriv,
and q , are from Sketch’s performance test suite, which is used to iden-
tify performance regressions in Sketch and measure potential benefits of
optimizations.

5.2 Performance Results

The right columns of Table 2 show our results. The columns that include running
time are greyed for easy comparison, with the semi-interquartile range (SIQR)
in a small font. (We only list the running times SIQR to save space.) The median
is ∞ if more than half the runs timed out, while the SIQR is ∞ if more than
one quarter of the runs timed out. The first grey column lists Sketch’s running
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time on one core. The next group of columns reports on adaptive concretization,
run on 32 cores. The first column in the group gives the median of the final
degrees chosen by adaptive concretization. The next column lists the median
number of calls to run trial. The last column lists the median running time.
Lastly, the right group of columns shows the performance of our algorithm on 32
cores, assuming we skip the adaptation step and jump straight to running with
the median degree shown in the table. For example, for p button, these columns
report results for running starting with degree 4,160 and never changing it. We
again report the number of trials and the running time.

Comparing Sketch and adaptive concretization, we find that adaptive con-
cretization typically performs better. In the figure, we boldface the fastest time
between those two columns. We see several significant speedups, ranging from
14× for l min, 12× for ar sum, and 11× for s logcnt to 4× for hd 15 d5 and
deriv3 and 3× for ar s 6 and s log2. For p button, regular Sketch reaches
the 2-hour timeout in 4 of 13 runs, while our algorithm succeeds, mostly within
one minute. In another case, p menu, Sketch reliably exceeds our 32 GB mem-
ory bound and then aborts. Overall, adaptive concretization performed better
in 23 of 26 benchmarks, and about the same on one benchmark.

On the remaining benchmarks (p color and a mom 2), adaptive concretiza-
tion’s performance was within about a factor of two. Comparing other similarly
short-running benchmarks, such as deriv4 and deriv5, where the final degree
(16) was chosen very early, the degree search process needed to spend more time
to reach bigger degree, resulting in the slowdown. Finally, a mom 2 is 1.5× slower.
In this case, Sketch’s synthesis phase is extremely fast, hence parallelization
has no benefit. Instead, the running time is dominated by the checking phase
(when the candidate solution is checked symbolically against all possible inputs),
and using adaptive concretization only adds overhead.

Next we compare adaptive concretization to non-adaptive concretization at
the final degree. In 7 cases, the adaptive algorithm is actually faster, due to
random chance. In the remaining cases, the adaptive algorithm is either about
the same as non-adaptive or is at worst within a factor of approximately three.

5.3 Parallel Scalability and Comparison to SyGuS Solvers

We next measured how adaptive concretization’s performance varies with the
number of cores, and compare it to the winner of the SyGuS competition. Table 3
shows the results. The first two columns are the same as Table 2. The next five
columns show the performance of adaptive concretization on 1, 4, and 32 cores.
Real time is wall-clock time for the parallel run (the 32-core real-time column is
the same as Table 2), and CPU time is the cumulative Sketch back-end time
summed over all cores. We discuss the rightmost column shortly. We boldface
the fastest real time among Sketch, 1, 4, and 32 cores.

The real-time results show that, in the one-core experiments, adaptive con-
cretization performs better than regular Sketch in 17 of 26 cases. Although
adaptive concretization is worse or times out in the other cases, its performance
improves with the number of cores. The 4-core runs are consistently close to
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Table 3. Parallel scalability of adaptive concretization.

or better than 1-core runs; in some cases, benchmarks that time out on 1 core
succeed on 4 cores. At 32 cores, we see the best performance in 20 of the 26
cases, with a speedup over 4-core runs ranging up to 7×. There is only one case
where 4 cores is faster than 32: a mom 2. However, as the close medians and large
SIQR indicate, this is noise due to randomness in Sketch.

Comparing real times and CPU time, we can see that our algorithm does
fully utilize all cores. Investigating further, we found one source of overhead is
that each trial re-loads its input file. We plan to eliminate this cost in the future
by only reading the input once and then sharing the resulting data structure.

Finally, the rightmost column of Table 3 shows the performance of the Enu-
merative CEGIS Solver, which won the SyGuS’14 Competition [1]. As the Enu-
merative Solver does not accept problems in Sketch format, we only compare
on benchmarks from the competition (which uses the SyGuS-IF format, which



Adaptive Concretization for Parallel Program Synthesis 391

is easily translated to a sketch). We should note that the enumerative solver is
not parallelized and may be difficult to parallelize.

Adaptive concretization is faster for 6 of 9 benchmarks from the competition.
It is also worth mentioning the Enumerative Solver actually won on the four
benchmarks beginning with hd . Our results show that adaptive concretization
outperforms it on one benchmark and is competitive on the others.

6 Related Work

There have been many recent successes in sampling-based synthesis techniques.
For example, Schkufza et al. use sampling-based synthesis for optimization
[14,15], and Sharma et al. use similar techniques to discover complex invari-
ants in programs [16]. These systems use Markov Chain Montecarlo (MCMC)
techniques, which use fitness functions to prioritize sampling over regions of
the solution space that are more promising. This is more sophisticated sampling
technique than what is used by our method. We leave it to future work to explore
MCMC methods in our context. Another alternative to constraint-based synthe-
sis is explicit enumeration of candidate solutions. Enumerative solvers often rely
on factoring the search space, aggressive pruning and lattice search. Factoring has
been very successful for programming by example [8,10,17], and lattice search
has been used in synchronization of concurrent data structures [23] and auto-
tuning [2]. However, both factoring and lattice search require significant domain
knowledge, so they are unsuitable for a general purpose system like Sketch.
Pruning techniques are more generally applicable, and are used aggressively by
the enumerative solver compared against in Sect. 5.

Recently, some researchers have explored ways to use symbolic reasoning to
improve sampling-based procedures. For example, Chaudhuri et al. have shown
how to use numerical search for synthesis by applying a symbolic smoothing
transformation [4,5]. In a similar vein, Chaganty et al. use symbolic reasoning to
limit the sampling space for probabilistic programs to exclude points that will
not satisfy a specification [3]. We leave exploring the tradeoffs between these
approaches as future work.

Finally, there has been significant interest in parallelizing SAT/SMT solvers.
The most successful of these combine a portfolio approach—solvers are run
in parallel with different heuristics—with clause sharing [9,25]. Interestingly,
these solvers are more efficient than solvers like PSATO [26] where every thread
explores a subset of the space. One advantage of our approach over solver par-
allelization approaches is that the concretization happens at a very high-level of
abstraction, so the solver can apply aggressive algebraic simplification based on
the concretization. This allows our approach to even help a problem like p menu
that ran out of memory on the sequential solver. The tradeoff is that our solver
loses the ability to tell if a problem is UNSAT because we cannot distinguish not
finding a solution from having made incorrect guesses during concretization.
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7 Conclusion

We introduced adaptive concretization, a program synthesis technique that com-
bines explicit and symbolic search. Our key insight is that not all unknowns are
equally important with respect to solving time. By concretizing high influence
unknowns, we can often speed up the overall synthesis algorithm, especially
when we add parallelism. Since the best degree of concretization is hard to com-
pute, we presented an online algorithm that uses exponential hill climbing and
binary search to find a suitable degree by running many trials. We implemented
our algorithm for Sketch and ran it on a suite of 26 benchmarks across sev-
eral different domains. We found that adaptive concretization often outperforms
Sketch, sometimes very significantly. We also found that the parallel scalability
of our algorithm is reasonable.
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Abstract. A distributed protocol is typically modeled as a set of com-
municating processes, where each process is described as an extended
state machine along with fairness assumptions. Correctness is specified
using safety and liveness requirements. Designing correct distributed pro-
tocols is a challenging task. Aimed at simplifying this task, we allow the
designer to leave some of the guards and updates to state variables in the
description of the protocol as unknown functions. The protocol comple-
tion problem then is to find interpretations for these unknown functions
while guaranteeing correctness. In many distributed protocols, process
behaviors are naturally symmetric, and thus, synthesized expressions
are further required to obey symmetry constraints. Our counterexample-
guided synthesis algorithm consists of repeatedly invoking two phases.
In the first phase, candidates for unknown expressions are generated
using the SMT solver Z3. This phase requires carefully orchestrating
constraints to enforce the desired symmetry constraints. In the second
phase, the resulting completed protocol is checked for correctness using
a custom-built model checker that handles fairness assumptions, safety
and liveness requirements, and exploits symmetry. When model check-
ing fails, our tool examines a set of counterexamples to safety/liveness
properties to generate constraints on unknown functions that must be
satisfied by subsequent completions. For evaluation, we show that our
prototype is able to automatically discover interesting missing details in
distributed protocols for mutual exclusion, self stabilization, and cache
coherence.

1 Introduction

Protocols for coordination among concurrent processes are an essential com-
ponent of modern multiprocessor and distributed systems. The multitude of
behaviors arising due to asynchrony and concurrency makes the design of such
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protocols difficult. Consequently, analyzing such protocols has been a central
theme of research in formal verification for decades. Now that verification tools
are mature enough to be applied to find bugs in real-world protocols, a promising
area of research is protocol synthesis, aimed at simplifying the design process via
more intuitive programming abstractions to specify the desired behavior.

Traditionally, a distributed protocol is modeled as a set of communicating
processes, where each process is described by an extended state machine. The
correctness is specified by both safety and liveness requirements. In reactive syn-
thesis [5,24,26], the goal is to automatically derive a protocol from its correctness
requirements specified in temporal logic. However, if we require the implementa-
tion to be distributed, then reactive synthesis is undecidable [13,20,25,31]. An
alternative, and potentially more feasible approach inspired by program sketch-
ing [28], is to ask the programmer to specify the protocol as a set of communicat-
ing state machines, but allow some of the guards and updates to state variables
to be unknown functions, to be completed by the synthesizer so as to satisfy all
the correctness requirements. This methodology for protocol specification can be
viewed as a fruitful collaboration between the designer and the synthesis tool:
the programmer has to describe the structure of the desired protocol, but some
details that the programmer is unsure about, for instance, regarding corner cases
and handling of unexpected messages, will be filled in automatically by the tool.

In our formalization of the synthesis problem, processes communicate using
input/output channels that carry typed messages. Each process is described
by a state machine with a set of typed state variables. Transitions consist of
(1) guards that test input messages and state variables and, (2) updates to
state variables and fields of messages to be sent. Such guards and updates can
involve unknown (typed) functions to be filled in by the synthesizer. In many
distributed protocols, such as cache coherence protocols, processes are expected
to behave in a symmetric manner. Thus, we allow variables to have symmetric
types that restrict the read/write accesses to obey symmetry constraints. To
specify safety and liveness requirements, the state machines can be augmented
with acceptance conditions that capture incorrect executions. Finally, fairness
assumptions are added to restrict incorrect executions to those that are fair.
It is worth noting that in verification one can get useful analysis results by
focusing solely on safety requirements. In synthesis, however, ignoring liveness
requirements and fairness assumptions, typically results in trivial solutions. The
protocol completion problem, then, is, given a set of extended state machines
with unknown guards and update functions, to find expressions for the unknown
functions so that the composition of the resulting machines does not have an
accepting fair execution.

Our synthesis algorithm relies on a counterexample-guided strategy with two
interacting phases: candidate interpretations for unknown functions are gener-
ated using the SMT solver Z3 and the resulting completed protocol is verified
using a model checker. We believe that our realization of this strategy leads
to the following contributions. First, while searching for candidate interpreta-
tions for unknown functions, we need to generate constraints that enforce sym-
metry in an accurate manner without choking current SMT solvers. Second,
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surprisingly there is no publicly available model checker that handles all the
features that we critically need, namely, symmetry, liveness requirements, and
fairness assumptions. So, we had to develop our own model checker, building on
the known theoretical foundations. Third, we develop an algorithm that exam-
ines the counterexamples to safety/liveness requirements when model checking
fails, and generates constraints on unknown functions that must be satisfied in
subsequent completions. Finally, the huge search space for candidate expressions
is a challenge for the scalability for any synthesis approach. As reported in Sect. 5,
we experimented with many alternative strategies for prioritizing the search for
candidate expressions, and this experience offers some insights regarding what
information a user can provide for getting useful results from the synthesis tool.
We evaluate our synthesis tool in completing a mutual exclusion protocol, a self
stabilization protocol and a non-trivial cache coherence protocol. Large parts
of the behavior of the protocol were left unspecified in the case of the mutual
exclusion protocol and the self stabilization protocol, whereas the cache coher-
ence protocol had quite a few tricky details left unspecified. Our tool synthesized
the correct completions for these protocols in a reasonable amount of time.

Related Work. Bounded synthesis [14] and genetic programming [18,19] are
other approaches for handling the undecidability of distributed reactive synthe-
sis. In the first, the size of the implementation is restricted, and in the second
the implementation space is sampled and candidates are mutated in a stochas-
tic process. The problem of inferring extended finite-state machines has been
studied in the context of active learning [6]. The problem of completing distrib-
uted protocols has been targeted by the works presented in [2,32] and program
repair [17] addresses a similar problem. Compared to [2], our algorithm can
handle extended state machines that include variables and transitions with sym-
bolic expressions as guards and updates. Compared to [32], our algorithm can
also handle liveness violations and, more importantly, can process counterex-
amples automatically. PSKETCH [29] is an extension of the program sketching
work for concurrent data structures but is limited to safety properties. The work
in [15] describes an approach based on QBF solvers for synthesizing a distrib-
uted self-stabilizing system, which also approximates liveness with safety and
uses templates for the synthesized functions. Also, compared to all works men-
tioned above, our algorithm can be used to enforce symmetry in the synthesized
processes.

2 An Illustrative Example

Consider Peterson’s mutual exclusion algorithm, described in Fig. 1a, which man-
ages two symmetric processes contending for access to a critical section. Each
process is parameterized by Pm and Po (for “my” process id and “other” process
id respectively), such that Pm �= Po. Both parameters Pm and Po are of type
processid and they are allowed to take on values P0 and P1. We therefore have
two instances: P0, where (Pm = P0, Po = P1), and P1, where (Pm = P1, Po = P0).
P0 and P1 communicate through the shared variables turn and flag. The variable
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Fig. 1. Peterson’s mutual exclusion algorithm. The non-trivial guards of the (L3, L3)
and (L3, L4) transitions in Fig. 1(a) have been replaced in Fig. 1(b) by “unknown”
functions gwait and gcrit respectively.

turn has type processid. The flag variable is an array of Boolean values, with
index type processid. The objective of the protocol is to control access to the crit-
ical section, represented by location L4, and ensure that both of the processes
P0 and P1 are never simultaneously in the critical section.

Fig. 2. Liveness monitor

The liveness monitor shown in Fig. 2 cap-
tures the requirement that a process does not
wait indefinitely to enter the critical section.
The monitor accepts all undesirable runs where
a process has requested access to the critical
section but never reaches state L4 after. The
messages request, waiting, and critical inform
the liveness monitor about the state of the
processes, and the synchronization model here is that of communicating I/O
automata [21]. Note that a run accepted by the monitor may be unfair with
respect to some processes. Enforcing weak process fairness on P0 and P1 is suf-
ficient to rule out unfair executions, but not necessary. Enforcing weak fairness
on the transitions between (L2, L3), (L3, L4) and (L4, L1) suffices.

Now, suppose the protocol developer has trouble figuring out the exact con-
dition under which a process is allowed to enter the critical section, but knows
the structure of the processes P0 and P1, and requires them to be symmetric.
Figure 1b describes what the developer knows about the protocol. The func-
tions gwait and gcrit represent unknown Boolean valued functions over the state
variables and the parameters of the process under consideration. Including the
parameters as part of the domain of gwait and gcrit indicates that the comple-
tions for processes P0 and P1 need to be symmetric. The objective is to assist the
developer by automatically discovering interpretations for these unknown func-
tions, such that the completed protocol satisfies the necessary mutual exclusion
property, and the requirements imposed by the liveness monitor. We formal-
ize this completion problem in Sect. 3, and present our completion algorithm
in Sect. 4.
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3 Formalization

3.1 Extended State Machine Sketches

We model processes using Extended State Machine Sketches (esm-s). Fix a
collection of types, such as the type bool of the Boolean values {true, false},
enumerated types such as {red, green, blue}, or finite subsets nat[x, y] of natural
numbers {i | x ≤ i ≤ y}. Other examples include symmetric types (described in
Sect. 3.2), array and record types. Note that each type is required to be finite.

The description of an esm-s will mention several function symbols. Some of
these have interpretations which are already known, while others have unknown
interpretations. Each function symbol, both known and unknown, is associated
with a signature, d1 × · · · × dn → r, where d1, . . . , dn are the types of its
arguments and r is the return type. Expressions may then be constructed using
these function symbols, state variables, and input channels. Formally, an esm-s
A is a tuple 〈L, l0, I, O, S, σ0, U, T,Fs,Fw〉 such that:

– L is a finite set of locations and l0 ∈ L is the initial location,
– I and O are finite sets of typed input and output channels, respectively,
– S is a finite set of typed state variables,
– σ0 maps each variable x ∈ S to its initial value σ0(x),
– U is a set of unknown function symbols,
– T is a set of transitions of the form 〈l, c, guard, updates, l′〉, where c ∈ I,

c ∈ O and c = ε for input, output and internal transitions respectively. The
transition is guarded by the expression guard and updates are the updates to
state variables,

– Fs,Fw ⊆ 2Tε∪TO , are sets of strong and weak fairnesses respectively. Here TO

and Tε are the sets of output and internal transitions respectively.

A guard description guard is a Boolean expression over the state variables S that
can use unknown functions from U . Similarly, an update description updates is
a sequence of assignments of the form lhs := rhs where lhs is one of the state
variables or an output channel in the case of an output transition, and rhs is
an expression over state variables or state variables and an input channel in the
case of an input transition, possibly using unknown functions from U .

Executions. To define the executions of an esm-s, we first pick an interpre-
tation R which maps each unknown function u ∈ U to an interpretation of u.
Given a set of variables V , a valuation σ is a function which maps each variable
x ∈ V to a value σ(x) of the corresponding type, and we write ΣV for the set
of all such valuations. Given a valuation σ ∈ ΣV , a variable x, and a value v of
appropriate type, we write σ[x 	→ v] ∈ ΣV ∪{x} for the valuation which maps all
variables y �= x to σ(y), and maps x to v.

The executions of A are defined by describing the updates to the state val-
uation σ ∈ ΣS during each transition. Note that each guard description guard
naturally defines a set �guard, R� of valuations σ ∈ ΣS which satisfy guard with
the unknown functions instantiated with R. Similarly, each update description
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updates defines a function �updates, R� of type ΣS∪{x} → ΣS for input transi-
tions on the channel x, ΣS → ΣS∪{y} for output transitions on the channel y,
and ΣS → ΣS for internal transitions respectively. A state of an esm-s A is a
pair (l, σ) where, l ∈ L and σ ∈ ΣS . We then write:

– (l, σ) x?v−−→ (l′, σ′) if A has an input transition from l to l′ on channel
x with guard guard and update updates such that σ ∈ �guard, R� and
�updates, R�(σ[x 	→ v]) = σ′;

– (l, σ) y!v−−→ (l′, σ′) if A has an output transition from l to l′ on chan-
nel y with guard guard and update updates such that σ ∈ �guard, R� and
�updates, R�(σ) = σ′[y 	→ v]; and

– (l, σ) ε−→ (l′, σ′) if A has an internal transition from l to l′ with guard guard
and update guard such that σ ∈ �guard, R� and �updates, R�(σ) = σ′.

We write (l, σ) → (l′, σ′) if either there are x, v such that (l, σ) x?v−−→ (l′, σ′),
there are y, v such that (l, σ) y!v−−→ (l′, σ′), or (l, σ) ε−→ (l′, σ′). A finite (infinite)
execution of the esm-s A under R is then a finite (resp. infinite) sequence:
(l0, σ0) → (l1, σ1) → (l2, σ2) → · · · where for every j ≥ 0, (lj , σj) is a state of
A, (l0, σ0) is an initial state of A, and for j ≥ 1, (lj , σj) → (lj+1, σj+1). A state
(l, σ) is reachable under R if there exists a finite execution that reaches that
state: (l0, σ0) → · · · → (l, σ). We say that a transition from l to l′ with guard
guard is enabled in state (l, σ) if σ ∈ �guard, R�. A state (l, σ) is called a deadlock
if no transition is enabled in (l, σ). The esm-s A is called deadlock-free under R
if no deadlock state is reachable under R. The esm-s A is called deterministic
under R if for every state (l, σ), if there are multiple transitions enabled at (l, σ),
then they must be input transitions on distinct input channels.

Consider a weak fairness requirement F ∈ Fw. An infinite execution of A
under R is called fair with respect to a weak fairness F if either: (a) for infinitely
many indices i, none of the transitions t ∈ F is enabled in (li, σi), or (b) for
infinitely many indices j one of the transitions in F is taken at step j. Thus,
for example, the necessary fairness assumptions for Peterson’s algorithm are
Fw = {{τ23}, {τ34}, {τ41}}, where τ23, τ34, and τ41 refer to the (L2, L3), (L3, L4)
and (L4, L1) transitions respectively. Similarly, an infinite execution of A under
R is fair with respect to a strong fairness F ∈ Fs if either: (a) there exists k
such that for every i ≥ k and every transition t ∈ F , t is not enabled in (li, σi),
or (b) for infinitely many indices j one of the transitions in F is taken at step j.
Finally, an infinite execution of A is fair if it is fair with respect to each strong
and weak fairness requirement in Fs and Fw respectively.

Composition of ESM Sketches. For lack of space, we only provide an infor-
mal definition of composition of esm-s here. A formal definition can be found
in the full version of this paper [3]. Informally, two esm-s A1 and A2 are com-
posed by synchronizing their output and input transitions on a given channel.
If A1 has an output transition on channel c from location l1 to l′1 with guard
and updates guard1 and updates1, and A2 has an input transition on the same
channel c from location l2 to l′2 with guard and updates guard2 and updates2
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then their product has an output transition from location (l1, l2) to (l′1, l
′
2) on

channel c with guard guard1 ∧ guard2 and updates updates1; updates2. Note that
by sequencing the updates, the value written to the channel c by A1 is then used
by subsequent updates of the variables of A2 in updates2.

Specifications. An esm-s can be equipped with error locations Le ⊆ L, accept-
ing locations La ⊆ L, or both. The composition of two esm-s A1, A2 “inherits”
the error and accepting locations of its components. A product location (l1, l2)
is an error (accepting) location if either l1 or l2 are error (accepting) locations.
An esm-s A is called safe under R if for all reachable states (l, σ), l is not an
error location. An infinite execution of A under R, (l0, σ0) → (l1, σ1) → · · · , is
called accepting if for infinitely many indices j, lj ∈ La. A is called live under R
if it has no infinite fair accepting executions.

3.2 Symmetry

It is often required that the processes of an esm-s completion problem have
some structurally similar behavior, as we saw in Sect. 2 in the case of Peterson’s
algorithm. To describe such requirements, we use symmetric types, which are
similar to scalarsets used in the Murϕ model checker [23].

A symmetric type T is characterized by: (a) its name, and (b) its cardinality
|T |, which is a finite number. Given a collection of processes parameterized by a
symmetric type T , such as P0 and P1 of Peterson’s algorithm, the idea is that the
system is invariant under permutations (i.e. renaming) of the parameter values.
Let perm(T ) be the set of all permutations πT : T → T over the symmetric type
T . For ease of notation, we define πT (v) = v, for values v whose type is not T .
Given the collection of all symmetric types T = {T1, T2, . . . , Tn} of the system,
we can then describe permutations over T as the composition of permutations
over the individual types, πT1 ◦ πT2 ◦ · · · ◦ πTn

. Let perm(T ) be the set of such
“system-wide” permutations over T .

ESM sketches and input and output channels may thus be parameterized by
symmetric values. The state variables and array variable indices of an esm-s may
also be of symmetric type. Given the symmetric types T and an interpretation
R of the unknown functions in an esm-s A, we say that A is symmetric with
respect to T if every execution (l0, σ0) → (l1, σ1) → · · · → (ln, σn) → · · · of A
under R also implies the existence of the permuted execution (π(l0), π(σ0)) →
(π(l1), π(σ0)) → · · · (π(ln), π(σn)) → · · · of A, where the channel identifiers
along transitions are also suitably permuted, for every permutation π ∈ perm(T ).

We therefore require that any interpretation R considered be such that the
completed esm-s A is symmetric with respect to T under R. For every unknown
function f in A, requiring that ∀d ∈ dom(f), π(f(d)) = f(π(d))), for each permu-
tation π ∈ perm(T ), ensures that the behavior of f is symmetric. In Sect. 4, we
will describe how these additional constraints are presented to the SMT solver.
Note that while we have only discussed full symmetry here, other notions of
symmetry such as ring symmetry and virtual symmetry [11] can also be accom-
modated in our formalization.
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3.3 Completion Problem

In many cases, the designer has some prior knowledge about the unknown func-
tions used in an esm-s. For example, the designer may know that the variable
turn is read-only during the (L3, L4) transition of Peterson’s algorithm. The
designer may also know that the unknown guard of a transition is independent
of some state variable. Many instances of such “prior knowledge” can already be
expressed using the formalism just described: the update expression of turn in
the unknown transition can be set to the identity function (in the first case), and
the designer can omit the irrelevant variable from the signature of the update
function (in the second case). We also allow the designer to specify additional
constraints on the unknown functions: she may know, as in the case of Peterson’s
algorithm for example, that gcrit(Pm, Po,flag, turn) ∨ gwait(Pm, Po,flag, turn), for
every valuation of the function arguments Pm, Po, flag, and turn. This additional
knowledge, which is helpful to guide the synthesizer, is encoded in the initial
constraints Φ0 imposed on candidate interpretations of U . Note that these con-
straints might refer to multiple unknown functions from the same or different
esm-s.

Formally, we can now state the completion problem as: Given a set of esm-s
A1, . . . AN with sets of unknown functions U1, . . . , UN , an environment esm-s
E with an empty set of unknown functions, and a set of constraints Φ0 on the
unknown functions U = U1 ∪ · · · ∪ UN , find an interpretation R of U , such that
(a) A1, . . . , AN are deterministic under R, (b) the completed system Π = A1 |
· · · | AN | E is symmetric with respect to T under R, where T is the set of
symmetric types in the system, (c) R satisfies the constraints in Φ0, and (d) the
product Π under R is deadlock-free, safe, and live.

Fig. 3. Completion algorithm.
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4 Solving the Completion Problem

The synthesis algorithm is outlined in Fig. 3. We maintain a set of constraints Φ
on possible completions, and repeatedly query Z3 [22] for candidate interpreta-
tions satisfying all constraints in Φ. If the interpretation is certified correct by the
model checker, we are done. Otherwise, counter-example executions returned by
the model checker are analyzed, and Φ is strengthened with further constraints
which eliminate all subsequent interpretations with similar erroneous executions.
If a symbolic expression is required, we can submit the correct interpretation to
a SyGuS solver [1]. A SyGuS solver takes a set of constraints C on an unknown
function f together with the search space for the body of f — expressed as a
grammar — and finds an expression in the grammar for f , such that it satisfies
the constraints C. In this section, we first describe the initial determinism and
symmetry constraints expected of all completions. Next, we briefly describe the
model checker used in our implementation, and then describe how to analyze
counterexamples returned by the model checker. Finally, we describe additional
heuristics to bias the SMT solver towards intuitively simpler completions first.

4.1 Initial Constraints

Determinism Constraints. Recall that an esm-s is deterministic under
an interpretation R if and only if for every state (l, σ) if there are multi-
ple transitions enabled at (l, σ), then they must be input transitions on dis-
tinct input channels. We constrain the interpretations chosen at every step
such that all esm-s in the protocol are deterministic. Consider the esm-s for
Peterson’s algorithm shown in Fig. 1b. We have two transitions from the location
L3, with guards gcrit(Pm, Po,flag, turn) and gwait(Pm, Po,flag, turn). We ensure
that these expressions never evaluate to true simultaneously with the constraint
¬∃v1v2v3v4 (gcrit(v1, v2, v3, v4) ∧ gwait(v1, v2, v3, v4)). Although this is a quanti-
fied expression, which can be difficult for SMT solvers to solve, note that we only
support finite types, whose domains are often quite small. So our tool unrolls
the quantifiers and presents only quantifier-free formulas to the SMT solver.

Symmetry Constraints. Suppose that the interpretation chosen for the
guard gcrit shown in Fig. 1b, was such that gcrit(P0, P1, 〈⊥,�〉, P0) = true.
Then for the esm-s to be symmetric under this interpretation, we require that
gcrit(P1, P0, 〈�,⊥〉, P1 = true as well, because the latter expression is obtained
by applying the permutation {P0 	→ P1, P1 	→ P0} on the former expression. Note
that the elements of the flag array in the preceding example were flipped, because
flag is an array indexed by the symmetric type processid. In general, given a
function f ∈ Ui, we enforce the constraint ∀π ∈ perm(T )∀d ∈ dom(f)(f(π(d)) ≡
π(f(d))), where T is the set of symmetric types that appear in Ai. As in the
case of determinism constraints, we unroll the quantifiers here as well.

4.2 Model Checker

To effectively and repeatedly generate constraints to drive the synthesis loop,
a model checker needs to: (a) support checking liveness properties, with
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algorithmic support for fine grained notions of strong and weak fairness, (b)
dynamically prioritize certain paths over others (cf. Sect. 4.4), and (c) exploit
symmetries inherent in the model. The fine grained notions of fairness over sets
of transitions, rather than bulk process fairness are crucial. For instance, in
the case of unordered channel processes, we often require that no message be
delayed indefinitely, which cannot be captured by enforcing fairness at the level
of the entire process. The ability to prioritize certain paths over others is also
crucial so that candidate interpretations are exercised to the extent possible in
one model checking run (cf. Sect. 4.4). Finally, support for symmetry-based state
space reductions, while not absolutely crucial, can greatly speed up each model
checking run.

Surprisingly, we found that none of the well-supported model checkers met
all of our requirements. Spin [16] only supports weak process fairness at an
algorithmic level and does not employ symmetry-based reductions. Support for
symmetry-based reductions is present in Murϕ [10,23], but it lacks support
for liveness checking. SMC [27] is a model checker with support for symmetry
reduction and strong and weak process fairness. Unfortunately, it is no longer
maintained, and has very rudimentary counterexample generation capabilities.
Finally, NuSMV [8] does not support symmetry reductions, but supports strong
and weak process level fairness. But bugs in the implementation of counterex-
ample generation, left us unable to obtain counterexamples in some cases.

We therefore implemented a model checker based on the ideas used in
Murϕ [10] for symmetry reduction, and an adaptation of the techniques pre-
sented in earlier literature [12] for checking liveness properties under fairness
assumptions. The model checking algorithm consists of the following steps: (1)
construct the symmetry-reduced state graph, (2) find accepting strongly con-
nected components (SCCs) in the reduced state graph, (3) delete unfair states
from each SCC; repeat steps (2) and (3) until either a fair SCC is found or no
more accepting SCCs remain. A more detailed description of the model checking
algorithm is presented in the full version of the paper [3].

4.3 Analysis of Counterexamples

We now describe our algorithms for analyzing counterexamples by way of exam-
ples. A more formal description of the algorithms can be found in the full version
of this paper [3].

Analyzing Deadlocks. In Fig. 1b, consider the candidate interpretation where
both gcrit, gwait are set to be universally false. Two deadlock states are then reach-
able: S1 = ((L3, L3), {flag 	→ 〈�,�〉, turn 	→ P1} and S2 = ((L3, L3), {flag 	→
〈�,�〉, turn 	→ P0}. We strengthen Φ by asserting that these deadlocks do not
occur in future interpretations: either S1 is unreachable, or the system can make
a transition from S1 (and similarly for S2). In this example, the reachabil-
ity of both deadlock states is not dependent on the interpretation, i.e., the
execution that leads to the states does not exercise any unknown function,
hence, we need to make sure that the states are not deadlocks. The possible
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transitions out of location (L3, L3) are the transitions from L3 to L3 (wait-
ing transition) and from L3 to L4 (critical transition) for each of the two
processes. In each deadlock state, at least one of the four guards has to be
true: gwait(P0, P1, 〈�,�〉, P1)∨gcrit(P0, P1, 〈�,�〉, P1)∨gwait(P1, P0, 〈�,�〉, P1)∨
gcrit(P1, P0, 〈�,�〉, P1) for S1, and gwait(P0, P1, 〈�,�〉, P0) ∨ gcrit(P0, P1, 〈�,�〉,
P0) ∨ gwait(P1, P0, 〈�,�〉, P0) ∨ gcrit(P1, P0, 〈�,�〉, P0) for S2. The two disjuncts
are added to the set of constraints, since any candidate interpretation has to
satisfy them in order for the resulting product to be deadlock-free.

Analyzing Safety Violations. Consider now an erroneous interpretation
where the critical transition guards are true for both processes when turn is
P0, that is: gcrit(P0, P1, 〈�,�〉, P0) and gcrit(P1, P0, 〈�,�〉, P0) are set to true.
Under this interpretation the product can reach the error location (L4, L4).
We perform a weakest precondition analysis on the corresponding execution to
obtain a necessary condition under which the safety violation is possible. In this
case, the execution crosses both critical transitions and the generated constraint
is ¬gcrit(P0, P1, 〈�,�〉, P0) ∨ ¬gcrit(P1, P0, 〈�,�〉, P0). Note that the conditions
obtained from this analysis are necessary; the product under any interpretation
that does not satisfy them will exhibit the same safety violation.

Analyzing Liveness Violations. An interpretation that satisfies the con-
straints gathered above is one that, when turn is P0, enables both waiting tran-
sitions and disables the critical ones. Intuitively, under this interpretation, the
two processes will not make progress if turn is P0 when they reach L3. The
executions in which the processes are at L3 and either P0 or P1 continuously
take the waiting transition is an accepting one. As with safety violations, we
eliminate liveness violations by adding constraints generated through weakest
precondition analysis of the accepting executions. In this case, this results in two
constraints: ¬gwait(P0, P1, 〈�,�〉, P0) and ¬gwait(P1, P0, 〈�,�〉, P0). However, in
the presence of fairness assumptions, these constraints are too strong. This is
because removing an execution that causes a fair liveness violation is not the
only way to resolve it: another way is to make it unfair. Given the weak fairness
assumption on the transitions on the criticalPi channels, the correct constraint
generated for the liveness violation of Process P0 is: ¬gwait(P0, P1, 〈�,�〉, P0) ∨
gcrit(P0, P1, 〈�,�〉, P0) ∨ gcrit(P1, P0, true, true, P0), where the last two disjuncts
render the accepting execution unfair.

4.4 Optimizations and Heuristics

We describe a few key optimizations and heuristics that improve the scalability
and predictability of our technique.

Not All Counterexamples are Created Equal. The constraint we get
from a single counter-example trace is weaker when it exercises a large num-
ber of unknown functions. Consider, for example, a candidate interpretation for
the incomplete Peterson’s algorithm which, when turn = P0, sets both wait-
ing transition guards gwait to true, and both critical transition guards gcrit to
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false. We have already seen that the product is not live under this interpreta-
tion. From the infinite execution leading up-to the location (L3, L3), and after
which P0 loops in L3, we obtain the constraint ¬gwait(P0, P1, 〈�,�〉, P0). On the
other hand, if we had considered the longer self-loop at (L3, L3), where P0 and
P1 alternate in making waiting transitions, we would have obtained the weaker
constraint ¬gwait(P0, P1, 〈�,�〉, P0) ∨ ¬gwait(P1, P0, 〈�,�〉, P0). In general, erro-
neous traces which exercise fewer unknown functions have the potential to prune
away a larger fraction of the search space and are therefore preferable over traces
exercising a larger number of unknown functions.

In each iteration, the model checker discovers several erroneous states. In
the event that the candidate interpretation chosen is blatantly incorrect, it is
infeasible to analyze paths to all error states. A näıve solution would be to ana-
lyze paths to the first n errors states discovered (where n is configurable). But
depending on the strategy used to explore the state space, a large fraction these
errors could be similar, and would only provide us with rather weak constraints.
On the other hand, exercising as many unknown functions as possible, along
different paths, has the potential to provide stronger constraints on future inter-
pretations. In summary, we bias the model checker to cover as many unknown
functions as possible, such that each path exercises as few unknown functions as
possible.

Heuristics/Prioritizations to Guide the SMT Solver. As mentioned ear-
lier, we use an SMT solver to obtain interpretations for unknown functions,
given a set of constraints. When this set is small, as is the case at the beginning
of the algorithm, there exist many satisfying interpretations. At this point the
interpretation chosen by the SMT solver can either lead the rest of the search
down a “good” path, or lead it down a futile path. Therefore the run time of the
synthesis algorithm can depend heavily on the interpretations returned by the
SMT solver, which we consider a non-deterministic black box in our approach.

To reduce the influence of non-determinism of the SMT solver on the run
time of our algorithm, we bias the solver towards specific forms of interpreta-
tions by asserting additional constraints. These constraints associate a cost with
interpretations and require an interpretation with a given bound on the cost,
which is relaxed whenever the SMT solver fails to find a solution.

We briefly describe the most important of the heuristics/prioritization tech-
niques: (1) We minimize the number of points in the domain of an unknown
guard function at which it evaluates to true. This results in minimally permis-
sive guards. (2) Based on the observation that most variables are unchanged
in a given transition, we prioritize interpretations where update functions leave
the value of the variable unchanged, as far as possible. (3) We can also try to
minimize the number of arguments on which the value of an unknown function
depends.
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5 Experiments

5.1 Peterson’s Mutual Exclusion Protocol

In addition to the missing guards ggrit and gwait, we also replace the update
expressions of flag[Pm] in the (L1, L2) and (L4, L1) transitions with unknown
functions that depend on all state variables. In the initial constraints we require
that gcrit(Pm, Po,flag, turn) ∨ gwait(Pm, Po,flag, turn). The synthesis algorithm
returns with an interpretation in less than a second. Upon submitting the inter-
pretation to a SyGuS solver, the synthesized expressions match the ones shown
in Fig. 1b.

5.2 Self-stabilizing Systems

Our next case study is the synthesis of self-stabilizing systems [9]. A distributed
system is self-stabilizing if, starting from an arbitrary initial state, in each execu-
tion, the system eventually reaches a global legitimate state, and only legitimate
states are ever visited after. We also require that every legitimate state be reach-
able from every other legitimate state. Consider N processes connected in a line.
Each process maintains two Boolean state variables x and up. The processes
are described using guarded commands of the form, “if guard then update”.
Whether a command is enabled is a function of the variable values x and up
of the process itself, and those of its neighbors. We attempted to synthesize
the guards and updates for the middle two processes of a four process system
P1, P2, P3, P4. Specifically, the esm-s for P2 and P3 have two transitions, each
with an unknown function as a guard and two unknown functions for updating
its state variables. The guard is a function of xi−1, xi, xi+1, upi−1, upi, upi+1, and
the updates of xi and upi are functions of xi and upi. We followed the definition
in [15] and defined a state as being legitimate if exactly one guarded command is
enabled globally. We also constrain the completions of P2 and P3 to be identical.

Due to the large number of unknown functions needed to be synthesized in
this experiment and, in particular, because there were a lot of input domain
points at which the guards had to be true, the heuristic that prefers minimally
permissive guards, described in Sect. 4, was not effective. However, the heuristic
that prioritizes interpretations in which the guards depend on fewer arguments
of their domain was effective. For state variable updates, we applied the heuristic
that prioritizes functions that leave the state unchanged or set it to a constant.
After passing the synthesized interpretation through a SyGuS solver, the expres-
sions we got were exactly the same as the ones found in [9].

5.3 Cache Coherence Protocol

A cache coherence protocol ensures that the copies of shared data in the private
caches of a multiprocessor system are kept up-to-date with the most recent
version. We describe the working of the German cache coherence protocol, which
is often used as a case study in model checking research [7,30]. The protocol
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consists of a Directory process, n symmetric Cache processes and n symmetric
Environment processes, one for each cache process. Each cache may be in the
E, S or I state, indicating read-write, read, and no permissions on the data
respectively. All communication between the caches and the directory is non-
blocking, and occurs over buffered, unordered communication channels.

The environment issues read and write commands to its cache. In response to
a read command, the cache C sends a RequestS command to the directory. The
directory, sends C the most up-to-date copy of the data, after coordinating with
other caches, and grants read access to C, and remembers C as a sharer of the
data. In response to a write request from the environment, the cache C sends a
RequestE command to the directory. The directory coordinates with every other
cache C ′ that has read or write permissions to revoke their permissions and then
grants C exclusive access to the data, and remembers C as the owner of the data.
The complete German/MSI protocol, modeled as communicating extended state
machines, is fairly complex, with a symmetry-reduced state space of about 20,000
states when instantiated with two cache processes and about 450,000 states when
instantiated with three cache processes.

We consider a more complex variant of the German cache coherence proto-
col to evaluate the techniques we have presented so far, which we refer to as
German/MSI. The main differences from the base German protocol are: (1)
Direct communication between caches is possible in some cases, (2) A cache in
the S state can silently relinquish its permissions, which can cause the directory
to have out-of-date information about the caches which are in the S state. (3) A
cache in the E state can coordinate with the directory to relinquish their permis-
sions. A complete list of scenarios typically used when describing this protocol
is presented in the full version of the paper [3]. These scenarios however, do not
describe the protocol’s behavior in several cases induced by concurrency.

Fig. 4. A racy scenario

Consider the scenario shown in Fig. 4,
where initially, cache C1 is in the I state,
in contrast, the directory records that C1 is
in state S and is a sharer, due to C1 having
silently relinquished its read permissions at
some point in the past. Now, both caches C1
and C2 receive write commands from their
respective environments. Cache C2 sends a
RequestE message to the directory, request-
ing exclusive write permissions. The direc-
tory, under the impression that C1 is in state
S, sends an Inv message to it, informing it that C2 has requested exclusive access
and C1 needs to acknowledge that it has relinquished permissions to C2. Con-
currently, cache C1 sends a RequestE message to the directory requesting write
permissions as well, which gets delayed. Subsequently, the cache C1 receives an
invalidation when it is in the state IM, which cannot happen in the base German
protocol. The correct behavior for the cache in this situation (shown by dashed
arrows), is to send an InvAck message to the cache C2. The guard, the state
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Table 1. Experimental results

Benchmark # UF Search
space

# States # Iters SMT
Time
(s)

Total
Time
(s)

Peterson 3 236 60 14 0.1 0.13

Dijkstra 6 2192 ˜2000 30 27 64

German/MSI-2 16 ˜24700 ˜20000 (symm. red.) 217 31 298

German/MSI-4 28 ˜27614 ˜20000 (symm. red.) 419 898 1545

German/MSI-5 34 ˜29000 ˜20000 (symm. red.) 525 2261 3410

variable updates, as well as the location update is what we have left unspecified
in the case of this particular scenario. As part of the evaluation, we successfully
synthesized the behavior of the German/MSI protocol in five such corner-case
scenarios arising from concurrency. A description of the other corner-case sce-
narios can be found in the full version of the paper [3].

5.4 Summary of Experimental Results

Table 1 summarizes our experimental findings. All experiments were performed
on a Linux desktop, with an Intel Core i7 CPU running at 3.4 GHz., with 8 GB of
memory. The columns show the name of the benchmark, the number of unknown
functions that were synthesized (# UF), the size of the search space for the
unknown functions, the number of states in the complete protocol (# States),
“symm. red.” denotes symmetry reduced state space. The “# Iters.” column
shows the number of algorithm iterations, while the last two columns show the
total amount of time spent in SMT solving and the end-to-end synthesis time.

The “German/MSI-n” rows correspond to the synthesizing the unknown
behavior for the German/MSI protocol, with n out of the five unknown transi-
tions left unspecified. In each case, we applied the heuristic to obtain minimally
permissive guards and biased the search towards updates which leave the values
of state variables unchanged as far as possible, except in the case of the Dijkstra
benchmark, as mentioned in Sect. 5.2. Also, note that we ran each benchmark
multiple times with different random seeds to the SMT solver, and report the
worst of the run times in Table 1.

Programmer Assistance. In all cases, the programmer specified the kinds of
messages to handle in the states where the behavior was unknown. For example,
in the case of the German/MSI protocol, the programmer indicated that in the
IM state on the cache, it needs to handle an invalidation from the directory (see
Fig. 4). In general, the programmer specified what needs to be handled, but not
the how. This was crucial to getting our approach to scale.

Overhead of Decision Procedures. We observe from Table 1 that for the
longer running benchmarks, the run time is dominated by SMT solving. In all of
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these cases, a very large fraction of the constraints asserted into the SMT solver
are constraints to implement heuristics which are specifically aimed at guiding
the SMT solver, and reducing the impact of non-deterministic choices made by
the solver. Specialized decision procedures that handle these constraints at an
algorithmic level [4] can greatly speed up the synthesis procedure.

Synthesizing Symbolic Expressions. The interpretations returned by the
SMT solver are in the form of tables, which specify the output of the unknown
function on specific inputs. We mentioned that if a symbolic expression is
required we can pass this output to a SyGuS solver, which will then return a
symbolic expression. We were able to synthesize compact expressions in all cases
using the enumerative SyGuS solver [1]. Further, although the interpretations are
only guaranteed to be correct for the finite instance of the protocol, the symbolic
expressions generated by the SyGuS solver were parametric. We found that they
were general enough to handle larger instances of protocol.

6 Conclusions

We have presented an algorithm to complete symmetric distributed protocols
specified as esm sketches, such that they satisfy the given safety and liveness
properties. A prototype implementation, which included a custom model checker,
successfully synthesized non-trivial portions of Peterson’s mutual exclusion pro-
tocol, Dijkstra’s self-stabilizing system, and the German/MSI cache coherence
protocol. We show that programmer assistance in the form of what needs to
be handled is crucial to the scalability of the approach. Scalability is currently
limited by the scalability of the SMT solver. As part of future work, we plan
to investigate algorithms that do not depend as heavily on SMT solvers as a
core decision procedure. We are hopeful that such an approach will improve the
scalability of our algorithms.
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Abstract. Formalizations of concurrent memory models often represent
memory behavior in terms of sequences of operations, where operations
are either reads, writes, or synchronizations. More concrete models of
(sequential) memory behavior may include allocation and free opera-
tions, but also include details of memory layout or data representation.
We present an abstract specification for sequential memory models with
allocation and free operations, in the form of a set of axioms that provide
enough information to reason about memory without overly constraining
the behavior of implementations. We characterize a set of “well-behaved”
programs that behave uniformly on all instances of the specification.
We show that the specification is both feasible—the CompCert mem-
ory model implements it—and usable—we can use the axioms to prove
the correctness of an optimization that changes the memory behavior of
programs in an LLVM-like language.

Keywords: Memory models · Optimizing compilers · Deep
specifications

1 Introduction

When reasoning about compilers and low-level code, it is not enough to treat
memory as an assignment of values to locations; memory management, concur-
rency behavior, and many other factors complicate the picture, and without
accounting for these factors our reasoning says nothing about the programs that
actually run on processors. Memory models provide the necessary abstraction,
separating the behavior of a program from the behavior of the memory it reads
and writes. There have been many formalizations of concurrent memory models,
beginning with sequential consistency [1] (in which memory must behave as if
it has received an ordered sequence of read and write operations) and extend-
ing to more relaxed memory models. Most of these models include a theorem
along the lines of “well-synchronized programs behave as if the memory model
is sequentially consistent,” characterizing a large class of programs that behave
the same regardless of the concurrent memory model [7].

What, then, is the behavior of a sequentially consistent memory model?
When the only memory operations are reads and writes (and possibly synchro-
nization operations), the answer is simple: each read of a location reads the
c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part II, LNCS 9207, pp. 413–428, 2015.
DOI: 10.1007/978-3-319-21668-3 24
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value that was last written to that location. In other words, the memory does in
fact act as an assignment of values to locations. If we try to model other mem-
ory operations, however, the picture becomes more complicated. C and many
related intermediate and low-level languages include at least allocation and free
operations, and we might also want to include casts, structured pointers, over-
lapping locations, etc. Even restricting ourselves to sequential memory models,
we can see that the space of possible models is much larger than “sequential
consistency” suggests.

Formalizing memory models is a crucial step in compiler verification. Projects
such as CompCert [4], CompCertTSO [9], Vellvm [11], and Compositional Comp-
Cert [8] specify memory models as part of the process of giving semantics to their
various source, target, and intermediate languages, and use their properties in
proving the correctness of optimizations and program transformations. The (in
most cases sequential) memory models in these works include some of the com-
plexity that more abstract formalisms lack, but they are also tightly tied to the
particular languages and formalisms used in the projects. Compiler verification
stands to benefit from memory model specifications that generalize away from
the details of particular memory models, specifications which encompass most
commonly used models and allow reasoning about programs without digging into
the details of particular models. Generic specifications of memory models have
the potential to lead to both simpler proofs—since all the reasoning about a par-
ticular model is encapsulated in a proof that it satisfies the specification—and
more general ones—since a proof using a specification is true for any instance of
that specification.

In this paper, we develop a specification for sequential memory models that
support allocation and free operations as well as reads and writes, and demon-
strate its use in reasoning about programs. We prove a sequential counterpart
to the “well-synchronized programs are sequentially consistent” theorem, char-
acterizing the set of programs that have the same behavior under any sequential
memory model that meets our specification. We also show that CompCert’s
memory model is an instance of our specification, and verify a dead code elimi-
nation optimization for an LLVM-like language using the specification, resulting
in a proof that is measurably simpler than the corresponding proof in Vellvm.
All definitions and proofs have been formalized in the Coq proof assistant, so
that our specification can be used for any application that requires mechanized
proofs about programs with memory; the Coq development can be found online
at http://www.seas.upenn.edu/∼wmansky/meminterface.

2 An Abstract Sequential Memory Model

A memory model is a description of the allowed behavior of a set of memory
operations over the course of a program. A memory model can be defined in
various ways: as a set of functions that can be called along with some guarantees
on their results, as a description of the set of valid traces of operations performed
by the execution of a program, or as an abstract machine that receives and

http://www.seas.upenn.edu/~wmansky/meminterface
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responds to messages. In each case, the memory model makes a set of operations
available to programs and provides some guarantees on their behavior. These
operations always include reading and writing, and in many models these are
the only operations; however, there are many other memory-related operations
used in real-world programs. The main question is one of where we draw the
line between program and memory. Is the runtime system that handles memory
allocation part of the memory, or a layer above it? Does a cast from a pointer to
an integer involve the memory, or is it a computation within the program? Does
the memory contain structured blocks in which different references may overlap,
or are structured pointers program objects that must be evaluated to references
to distinct locations before they are read or written?

Our goal is to formalize the interface that memory provides to a programming
language. We aim to give an abstract specification for memory models that can
be used to define the semantics of a language, and to prove useful properties of
programs in that language independently of the implementation details of any
particular memory model. Our specification should describe the assumptions
about memory that programmers can make when writing their programs and
verifiers can make while reasoning. Since from the program’s perspective the
runtime system and the memory model are not distinct, our specification should
include the operations provided by the runtime system. It should be easy to use in
defining operational semantics for programming languages, and it should provide
as many axioms as are needed to make the behavior of memory predictable
without overconstraining the set of possible implementations.

For our specification, we begin with four operations: read, write, alloc, and
free. These operations appear in code at almost every level. They are, for
instance, the operations supported by the CompCert memory model [5], which
has been used to verify a compiler from C to machine code. Although Com-
pCert’s model provides a realistic and usable formalization of the semantics of
these operations, it is not the only such formalization. Other choices, such as
CompCertTSO’s [9] or the quasi-concrete model [2], may allow more optimiza-
tions on memory operations or a cleaner formulation of some theorems. We may
want to store values in memory other than those included in CompCert, or
abstract away from the details of blocks and offsets.

Our aim is to give a simple specification of memory models such that:

– Most memory models that support read, write, alloc, and free can be seen as
instances of the specification.

– The specification provides the guarantees on these operations needed to reason
about programs.

Then we can use this specification to reason about programs independently of
the particular memory model being used, and by proving that particular models
(such as CompCert’s) meet the specification, be assured that our reasoning is
valid for those models.
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2.1 Memory Model Axioms

Previously, we mentioned three main approaches to specifying memory models.
In the functional approach (e.g. CompCert [5]), each operation is a function with
its own arguments and return type, and restrictions are placed on the results of
the functions. In the abstract-machine approach (e.g. CompCertTSO [9]), mem-
ory is a separate component from the program with its own transition system,
and steps of the system are produced by combining program steps and memory
steps. In the axiomatic approach (taken in most concurrent memory models),
a set of rules are given that allow some sequences of memory operations and
forbid others. A definition in one of these styles is often provably equivalent to a
definition in another style, although the axiomatic approach can be used to for-
malize some models that cannot be expressed in other ways (i.e. non-operational
models). Our axioms should be true for all (reasonable) memory models, and
also provide enough information to prove useful properties of a language that
uses the specification.

Our model begins with a set L of locations and a set V of values. Every
memory operation targets exactly one location, and locations are distinct : we
can check whether two locations are equal, and a change to one location should
not affect any other location. Locations may be thought of as unique addresses or
memory cells. Values are the data that are stored in the memory; for simplicity,
each location is assumed to be able to hold a single value of any size (in future
work, we intend to extend this model to account for the size of data).

Definition 1. Given a location � ∈ L and a value v ∈ V, a memory operation
is one of read(�, v), write(�, v), alloc(�), and free(�). The operations write(�, v),
alloc(�), and free(�) modify the location �. Over the course of execution, a pro-
gram produces a series of memory operations. A memory model can be given as
a predicate can do on a sequence of memory operations m = op1 ... opk (called
the history) and an operation op, such that can do(m, op) holds if and only if,
given that the operations in m have occured, the operation op can now be per-
formed. A sequence of operations op1 ... opk is consistent with a memory model
if can do(op1 ... opi−1, opi) for each i < k, i.e., each operation in the sequence
was allowable given the operations that had been performed so far.

The axioms shown in Fig. 1 restrict the possible behavior of a can do predicate.
(We write loc(op) for the location accessed by op.) The first two axioms state the
distinctness of locations, requiring that operations on one location do not affect
the operations possible on other locations. The remaining rules enforce (but
do not completely determine) the intended semantics of each kind of memory
operation: e.g., a write(�, v) operation must allow v to be read at �. We do
not completely constrain the semantics of the operations, but we attempt to
capture the expectations of a programmer about each operation: it should be
possible to allocate free memory and free allocated memory, write to allocated
memory and read the last value written, etc., and it should not be possible to
free memory that is already free, allocate memory that is already allocated, read
values that have not been written, etc. Note that, while the axioms are meant to
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loc-comm
loc(op) �= loc(op′)

can do(m op, op′) = can do(m op′, op)

loc-drop
loc(op) �= loc(op′) can do(m, op)

can do(m op, op′) = can do(m, op′)

read-noop
can do(m, read(�, v))

can do(m read(�, v), op) = can do(m, op)

read-written
can do(m,write(�, v))

can do(mwrite(�, v), read(�, v′)) = (v = v′)

write-not-read
can do(m,write(�, v)) ∀v′. op �= read(�, v′)

can do(mwrite(�, v), op) = can do(m, op)

not-mod-write
can do(m, op) op does not modify �

can do(m op,write(�, v)) = can do(m,write(�, v))

write-any-value
can do(m,write(�, v)) = can do(m,write(�, v′))

alloc-allows
can do(m, alloc(�))

can do(m alloc(�),write(�, v)) ∧ ¬can do(m alloc(�), alloc(�))∧
can do(m alloc(�), free(�))

free-allows
can do(m, free(�))

¬can do(m free(�), read(�, v))∧
can do(m free(�), alloc(�)) ∧ ¬can do(m free(�), free(�))

base-allows ¬can do(·, read(�, v)) ∧ can do(·, alloc(�))∧
¬can do(·, free(�))

Fig. 1. The axioms of the memory model specification

define the possible semantics of memory models, they also coincide with the sorts
of equivalences that are commonly used in compiler optimizations—reordering
unrelated operations, propagating stored values forward to later reads, etc.

If a behavior is “implementation-dependent”, or might vary across different
memory models, then the axioms leave it unspecified. Two major kinds of oper-
ation are left unspecified: reads from locations that have been allocated but not
written to (we call these locations “uninitialized”), and writes to locations that
have not been allocated. Because these operations are unspecified, the specifica-
tion admits instances in which they have a wide variety of interpretations: a write
to an allocated location may fail, write a value that can be read later, unpre-
dictably either allocate the location and write a value or do nothing at all, or any
other (possibly empty) subset of the conceivable behaviors of a write, depending
on the memory model. Parameterizing by the sets L and V also implicitly leaves
some aspects of the memory model unspecified. We do not constrain the kinds
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or sizes of data that can be stored (although we do require that any value can be
stored in any location and read back unchanged), and we do not specify whether
there is a finite or an infinite number of locations. If we instantiate the specifica-
tion with an infinite L, then for any m there is an � such that can do(m, alloc(�));
if we choose a finite L, then we may reach states in which there is no such �. The
effect of running out of memory on program executions is left to the language
semantics, as we will show in Sect. 4.1.

Although each axiom only specifies the interaction between the new operation
and the most recent operation performed, we can derive rules that connect each
new operation to “the last relevant operation”, e.g., the last alloc or free of a loca-
tion being written. For instance, we can prove that if m write(�, v) write(�′, v′) is
a consistent history for some m, then can do(m write(�, v) write(�′, v′), read(�, v))
holds:

can do(m write(�, v) write(�′, v′), read(�, v))
= can do(m write(�, v), read(�, v)) by loc-drop
= (v = v) by read-written
= true

In each step, the condition that can do holds on the operations in the history fol-
lows from the consistency assumption. In general, our rules only allow complex
reasoning about histories if those histories are consistent; an unspecified opera-
tion may have unpredictable effects on memory behavior (e.g., a write to an unal-
located location may or may not quietly cause that location to be allocated).

In the context of concurrent memory models, it is usually assumed or proved
that well-synchronized programs are sequentially consistent, regardless of the
relaxations allowed by the memory model. This allows the complexities of the
model to be hidden from the programmer, and means that verification of a
certain (large) class of programs can be done independently of the relaxed model.
Our axiomatization admits a similar property for sequential memory models.

Fig. 2. The transition system for locations in the simple memory machine
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Consider a simple abstract machine that associates each memory location with
one of three states: free, uninit, or stored(v), where v is a value. Upon receiving a
memory operation on a location, the machine’s state for the location transitions
as shown in the register automata of Fig. 2; any operation not shown leads to an
error state.

Definition 2. The simple machine corresponding to a history m, written
SM(m), is the machine reached by starting with each location in the Free
state and applying the operations in m to their corresponding locations, in
order. The can do predicate induced by the simple machine is the one such
that can doSM(m, op) when loc(op) has a transition labeled with op in SM(m).

Then we can prove the following theorems:

Theorem 1. The simple machine satisfies the memory model axioms.

Theorem 2. If a program never reads an uninitialized location and never
writes to a free location, then for any can do predicate that satisfies the axioms
and any consistent history m and operation op, can do(m, op) if and only if
can doSM(m, op).

This gives us a class of programs for which any model that satisfies the axioms
is equivalent. For the (large) set of programs that take a principled approach to
memory and avoid implementation-dependent behavior, we can reason using the
simple machine and derive results that are applicable to any memory model that
implements the specification; this has the potential to greatly simplify our proofs.
On the other hand, many interesting programs may not meet the requirements of
the theorem. In this case, we may still be able to reason using the specification:
while we cannot turn to the fully defined simple machine, we can still use the
axioms to draw conclusions about a program’s memory behavior. Finally, if we
expect that the correctness of our reasoning depends on a particular implementa-
tion, then we can go beneath the specification and work with the implementation
directly. Having a reasoning principle for “well-behaved” programs simplifies our
reasoning when it can be applied, but does not force us to give up on reasoning
about programs that are not well-behaved.

3 Instantiating the Specification

The CompCert verified C compiler includes a C-like memory model [5], which
is used to verify its transformations. In fact, it includes both a specification
of a memory model and an implementation of that specification. Memory is
modeled as a set of non-overlapping blocks, each of which behaves as an array
of bytes; an address is a pair (b, o) of a block and an offset into the array.
The specification defines four functions that can be called by programs (alloc,
free, load, and store) and states properties on them. Most of these properties
center around the permissions associated with each address, such as Readable,
Writeable, and Freeable, which indicate which operations can be performed on the
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Fig. 3. A few of CompCert’s store axioms

address. Figure 3 shows some of the properties for store; the other operations
have similar axioms. CompCert’s memory implementation manages the bounds,
allocation state, and content of each block in a way that is shown to satisfy the
axioms.

Although the CompCert memory specification abstracts away from some of
the details of the implementation, it has some limitations as a generic memory
model specification. It is tied to CompCert’s particular definition of values and
its notion of blocks. Furthermore, there is no uniformity across the different
memory operations; each function takes different arguments and has a different
result type, so that 44 axioms are used to express properties of the sort laid out
in our specification. The CompCert memory model specification does not include
an axiom that says “operations on different locations are independent”; indeed,
it is difficult to state such an axiom, since “operations” are not quantifiable
objects. Instead, we can look at the axioms stating that, e.g., a store to (b, o)
does not change the permissions of another block and a free succeeds as long as
the target address is Freeable, and conclude that a free can occur after a store
to a different location if and only if it could occur before the store.

Using this sort of reasoning, we can show that the CompCert memory model
specification satisfies our specification in turn. We “implement” each one of our
memory operations with a call to the corresponding CompCert function, with
one allocated block for each allocated memory location. Our specification does
not include details about the size of values, so we restrict ourselves to 32-bit
values (which includes most CompCert values).

Definition 3. Given CompCert memory states M and M ′, let M
op−→ M ′ if

the function call corresponding to op can be applied to M to yield M ′. Let
can doCC(m, op) be true when there exist CompCert memory states M1, M2

such that empty
m−→∗ M1 and M1

op−→ M2, where empty is the initial CompCert
memory state.

Theorem 3. can doCC satisfies the axioms of our specification.

Proof. The difficult axioms are loc-comm and loc-drop, since the other axioms
refer to the interaction of particular operations. For each of loc-comm and
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loc-drop, we must break the proof into 16 cases, one for each ordered pair of
memory operations. The cases involving load are straightforward, since it does
not change the memory state. In each other case, we must show that the first
operation does not change the permissions associated with the location of the sec-
ond operation and vice versa. This allows us to conclude that each operation can
still be performed after an operation to a different location is reordered/dropped.

This provides some evidence for the feasibility of our specification, since the
CompCert memory model (when used in this restricted way) satisfies its axioms.
By Theorem 2, we also know that on programs that do not read uninitialized
locations or write to free locations, the CompCert memory model has the same
behavior as the simple abstract machine. (The CompCert specification requires
that reads of uninitialized locations return a special undef value and writes to
free locations fail, which is just one point in the design space of memory models
allowed by our specification; reads of uninitialized locations could also fail or
return arbitrary values, for instance.)

Interestingly, while we choose the set of 32-bit CompCert values as our V
for this instance, we do not need to choose a particular L in order to prove the
above theorem. Each allocated location is mapped to a block, but the set of
locations need not be the set of blocks itself. In the CompCert memory model,
an alloc call always succeeds, implying that memory is infinite; however, the
proof of implementation still applies even if we choose a finite L. In this case,
while CompCert’s memory model is always willing to allocate more blocks, pro-
grams may still run out of distinct locations to request. Our specification’s view
of CompCert’s infinite-memory model gives us an interface that can be either
infinite-memory or finite-memory.

4 Using the Specification

From the perspective of a programming language, a memory model fills in the
gaps in the semantics and provides some guarantees about the observable behav-
ior of the memory. In this section, we show how our specification can be used
for these tasks, by defining the semantics of a language using the specification
and verifying an optimization against it.

4.1 MiniLLVM

Our example language is MiniLLVM, a language based on the LLVM intermedi-
ate representation [3]. The syntax of the language closely resembles LLVM, with
the slight variation that labels are implicit in the structure of the control flow
graph rather than explicitly present in the instructions.

expr : := %x | @x | c type : := int | type pointer
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instr : := %x = op type expr , expr | %x = icmp cmp type expr ,expr |
br expr | br | alloca %x type |
%x = load type∗ expr | store type expr , type∗ expr |
%x = cmpxchg type∗ expr , type expr , type expr |
%x = phi [node1, expr1], ..., [nodek, exprk] |
%x = call type expr(expr , ..., expr) | return expr | output expr

A MiniLLVM program P is a list of function definitions (f, �, params , G), where
f is the name of the function, � is its location in memory, params is the list of the
function’s formal parameters, and G is the function’s control-flow graph (CFG).
(For simplicity, we assume that each node in a CFG contains exactly one instruc-
tion.) A configuration is either an error state Error or a tuple (f, p0, p, env , st , al),
where f is the name of the currently executing function, p0 is the previously
executed program point, p is the current program point, env is the environment
giving values for thread-local variables, st is the call stack, and al is a record of
the memory locations allocated by the currently executing function (the alloca
instruction allocates space that is freed when the function returns). The seman-
tics of MiniLLVM are given by a transition relation P � c

a→ c′, where a is
either a list of memory operations performed in the step or a value output by
the output instruction. A few of the semantic rules for MiniLLVM instructions
are shown in Fig. 4, where Pf is the CFG for the function f in P , succ(p) is the
successor node of p in its CFG, Label extracts the instruction label for a node
from the CFG, and (e, env) ⇓ v means that the expression e evaluates to v in
the presence of the environment env . We make a point of allowing the store
instruction to fail into an Error state so that in our example optimization—a
dead store elimination—we can safely remove ill-formed stores.

Note that the interaction between the semantics of MiniLLVM and the mem-
ory model is restricted to the transition labels. We complete the semantics by
combining the transitions of the language with an instance of the memory model
specification, passing the memory operations to the can do predicate and retain-
ing the output values, if any:

mem − step
P � c

op1 ,...,opn ,v1,...,vk−−−−−−−−−−−−→ c′ can do(m, op1 ... opn)

P � (c,m)
v1,...,vk−−−−−→ (c′,m op1 ... opn)

So while, e.g., a load operation may produce read(�, v) for any v, the only v
that will be allowed by the can do predicate is the one stored at �. To obtain
MiniLLVM semantics for a particular memory model, we simply instantiate the
rule with the can do predicate for that model; we can also reason at the level of
the specification and derive results that hold for every instance.

Finite Memory Semantics. In Sect. 2.1, we noted that our specification
encompasses both infinite-memory and finite-memory models, and indeed our
semantics for MiniLLVM works in either case. However, it is interesting to con-
sider the way that finite memory is reflected in the semantics. If the set of
locations is finite, then we may reach a state (c,m) in which can do(m, alloc(�))
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Fig. 4. Part of the transition semantics of MiniLLVM

does not hold for any �. In this case, the mem-step rule cannot be applied, and
(c,m) is stuck. In terms of optimizations, this means that alloca instructions
may not be removed from programs, since this may enable behaviors that were
previously impossible due to the out-of-memory condition.

An alternative approach is to treat out-of-memory as an error state. We can
obtain this semantics by adding one more rule:

P � c
alloc(�)−−−−→ c′ ∀�. ¬can do(m, alloc(�))

P � (c,m) → (Error,m)

Now the language semantics catches the out-of-memory condition and transi-
tions to an error state rather than getting stuck. This new semantics allows
alloca instructions to be removed but not inserted, since optimizations should
not introduce new errors. (With a more sophisticated treatment of L, we may
be able to state a semantics that allows both adding and removing alloca.) We
can choose whichever semantics is appropriate to the language or the applica-
tion at hand; our specification implicitly makes the behavior of out-of-memory
programs a question of language design rather than a feature of the memory
model itself.

4.2 Verifying an Optimization

A good specification should allow us to abstract away from unnecessary details,
so that we can separate reasoning about programs from reasoning about mem-
ory models. In this section, we will use the semantics of MiniLLVM with the
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memory model specification to prove the correctness of a dead store elimina-
tion optimization (under any memory model that satisfies the specification). We
will assume that we have some analysis for finding dead stores, and prove that
removing dead stores does not change the behaviors of a MiniLLVM program.

To begin, we need to state our notion of correctness. A correct optimization
should refine the behaviors of a program; it may remove some behaviors (e.g.
by collapsing nondeterminism), but it should never introduce new behaviors.

Definition 4. A configuration is initial if it is a tuple (f, p0, p, env , st , al) such
that st and al are empty and p is the start node of Pf . A trace of a program P
is a sequence of values v1, ... vn for which there is some initial configuration c0
and some state (c′,m′) such that (c0, ·)

v1,...,vn−−−−−→∗ (c′,m′). A program P refines
a program Q if every trace of P is a trace of Q.

We can prove refinement through the well-established technique of simulation. In
particular, since dead store elimination removes an instruction from the program,
we will use right-option simulation, in which the original program may take some
externally unobservable steps that the transformed program omits.

Definition 5. A relation R on states is a right-option simulation between pro-
grams P and Q if the initial states of P and Q are in R and for any states
CP , CQ in P and Q respectively, if R(CP , CQ) and P � CP

k−→ C ′
P , then there is

a state C ′
Q such that R(C ′

P , C ′
Q) and either

– Q � CQ
k−→ C ′

Q, or

– ∃C ′′
Q. Q � CQ → C ′′

Q and Q � C ′′
Q

k−→ C ′
Q.

Theorem 4. If there is a right-option simulation between P and Q, then P
refines Q.

We conservatively approximate dead stores by defining them as stores to loca-
tions that will never be read again.

Definition 6. An instruction store ty1 e1, ty2 ∗ e2 in a program P is dead if in
all executions of P , if e2 is evaluated to a location � when the store is executed,
then � will not be the target of a read for the remainder of the execution.

The optimization itself, given a dead store, is simple: we remove the node con-
taining the dead store from its CFG. The simulation relation Rdse relates a state
(c′,m′) in the transformed program to a state (c,m) in the original program if
m′ can be obtained from m by dropping writes to locations that will not be read
again, and c′ can be obtained from c by replacing the removed node n with its
immediate successor.

Definition 7. Let P be a graph in which the function f contains a node n
whose successor is n′. The predicate skip node holds on a pair of configurations
(c, c′) if either both c and c′ are Error, or c′ can be obtained from c by replacing
all occurrences of n in the program point and the stack with n′. Let Rdse be the
relation such that Rdse((c′,m′), (c,m)) when either
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– c = Error, or
– m′ can be obtained from m by removing writes to locations that will not be

targeted by reads for the rest of the execution, and skip node(c, c′) holds.

The proof proceeds as follows. First, we show that any step in the transformed
graph can occur in the original graph.

Lemma 1. Let P ′ be the program obtained from P by removing a node n

from a function f , and n′ be the successor of n. If P ′ � (c′,m) k−→ (c′
2,m2),

skip node(c, c′), and c is not at n, then there exists c2 such that P � (c,m) k−→
(c2,m2) and skip node(c2, c′

2).

Proof. Because c is not at n, c and c′ execute the same instruction and produce
the same results, modulo the fact that n is present in P and absent in P ′ (giving
us skip node(c2, c′

2)).

Next, we show that dropping writes to unread locations from a history does not
change the operations it allows.

Lemma 2. Let m and m′ be consistent histories such that m is produced by a
partial execution of a program P and m′ can be obtained from m by removing
writes to locations that are not targeted by reads for the rest of the execution. If P
never reads uninitialized locations or writes to free locations, then can do(m, op)
if and only if can do(m′, op).

Proof. By Theorem 2, can do(m, op) iff can doSM(m, op) (and likewise for m′).
We can show by induction that for any location �, if SM(m) and SM(m′) differ,
then SM(m) is in the Stored state and SM(m′) is not in the Freed state (and � is
not read again in the execution). This is sufficient to guarantee that any non-read
operation has the same effect in SM(m) and SM(m′), and the conclusion follows
directly.

We can use this lemma to show that the relationship between memories is pre-
served by program steps.

Lemma 3. Let m and m′ be consistent histories such that m is produced by a
partial execution of a program P and m′ can be obtained from m by removing
writes to locations that are not targeted by reads for the rest of the execution. If P

never reads uninitialized locations or writes to free locations and P � (c,m′) k−→
(c2,m′

2), then there exists m2 such that P � (c,m) k−→ (c2,m2) and m′
2 can be

obtained from m2 by removing writes to locations that are not targeted by reads
for the rest of the execution.

Proof. Since we never observe the differences between m and m′, we can take
the same steps and produce the same operations under each history, preserving
the relationship between them.

Lemmas 1 and 3 taken together, with a little reasoning about the effects of the
dead store, allow us to conclude that Rdse is a simulation relation.
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Theorem 5. Let P ′ be the program obtained from P by removing a dead store,
and suppose that P ′ never reads an uninitialized location and P never writes to
a free location. Then Rdse is a right-option simulation between P ′ and P , and
so P ′ refines P .

Proof. The combination of Lemmas 1 and 3 give us all cases except the one in
which P executes the removed store. In that last case, we can show that the
effect of the store is to augment the history with a write to a location that is
not the target of a read for the rest of the execution, and after executing the
store, P is once again in lockstep with P ′.

Note that since P ′ has fewer writes than P , it may have more uninitialized
locations, and so the condition on reads must be checked on P ′ and the condition
on writes must be checked on P . We can conclude that, for this class of well-
behaved programs, the dead store elimination optimization is correct under any
memory model that meets the specification.

Comparison with Vellvm. Using a more abstract specification should lead to
simpler proofs, giving us a more concise formulation of the properties of the mem-
ory model and allowing us to avoid reasoning about details of the model. The
Vellvm project [11] also included a dead store elimination for an LLVM-based
language verified in Coq, using a variant of the CompCert memory model, and so
provides us a standard with which to compare our proofs. While it is difficult to
compare different proof efforts based on different formalizations, several metrics
suggest that our specification did indeed lead to significantly simpler proofs. Vel-
lvm’s DSE verification consists of about 1860 lines (65 k characters) of definitions
and proof scripts, while our verification is 890 lines (44 k characters). A separate
section of Vellvm’s code is devoted to lifting CompCert’s memory axioms for
use in the proofs—essentially the memory model specification for Vellvm—and
this section is 1200 lines (38 k characters), while our memory model specification
is 420 lines (17 k characters). To correct for the effects of different proof styles
on line and character counts, we also compared the gzipped sizes of the devel-
opments; Vellvm’s proof is 12.4 kb, our proof is 8.3 kb, Vellvm’s specification is
6.7 kb, and our specification is 3.3 kb.

Although Vellvm’s language is more featureful than MiniLLVM, this appears
to account for little of the difference in the proofs, since most of these features
are orthogonal to memory operations. Roughly speaking, our proof of correctness
is 2/3 the size of Vellvm’s and our specification is half the size, supporting the
assertion that our specification lends itself to simpler proofs. Furthermore, our
results hold not just for one model but for any instance of the specification.

5 Related Work

There have been many efforts to generically specify concurrent and relaxed mem-
ory models. The work of Higham et al. [1] is an early example of formalizing mem-
ory models in terms of sequences of read and write events; this approach is used
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to formalize models ranging from linearizability to TSO and PSO. Yang et al. [10]
gave axiomatic specifications of six memory models, and used constraint logic
programming and SMT solving to check whether specific executions adhered to
the models. Saraswat et al. [7] gave a simple specification for concurrent memory
models in terms of the “well-synchronized programs are sequentially consistent”
property, and demonstrated that their specification could be instantiated with
both models that prohibited thin-air reads and those that allowed them. In all
these works, reads, writes, and synchronizations were assumed to be the only
memory operations, and thus “sequential consistency” was taken to uniquely
define the single-threaded memory model.

Owens et al. [6] defined the x86-TSO memory model, and showed that their
axiomatic definition was equivalent to an abstract-machine model. This model
formed the basis for the memory model of CompCertTSO [9], the main inspira-
tion for our work. CompCertTSO’s model includes alloc and free operations,
and we follow its approach in giving semantics to our language by combining
language steps and memory steps. CompCertTSO does not seek to give a gen-
eral specification of a category of memory models, but rather a single instance
with TSO concurrency and CompCert-specific allocation and free behavior. We
know of no other work that attempts to give a generic, language-independent
specification of memory models with operations beyond read and write.

6 Conclusions and Future Work

While much work has gone into formalizing the range of possibilities for concur-
rent memory models, less attention has been devoted to a truly generic descrip-
tion of sequential memory models. Our specification is a first step towards such
an account, and we have highlighted the properties of generality, feasibility, and
usability that make it a reasonable specification for sequential memory models
with allocation and free operations. We have characterized the set of programs for
which all such models are equivalent, proved that CompCert’s memory model
is an instance of our specification, and used it to verify an optimization with
proofs demonstrably simpler than those written without such a specification.

Our memory model specification is currently based on the simplifying
assumption that the size of data does not matter. Reflecting the size of data
in the specification (e.g. by specifying the size of each allocation and allowing
reads/writes to offsets within blocks) would allow us to more faithfully model
CompCert’s and other C-like memory models, and give us an angle from which to
attack the problem of structured data. Another natural next step is to integrate
our specification into a framework for concurrent memory models, allowing us to
instantiate it with realistic models (such as CompCertTSO) that include alloca-
tion and free operations and verify optimizations with respect to those models.
Ultimately, we aim to construct a unified specification for memory models that
can be used to support and simplify any compiler verification effort.
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Abstract. Forms of synchrony can greatly simplify modeling, design,
and verification of distributed systems. Thus, recent advances in clock
synchronization protocols and their adoption hold promise for system
design. However, these protocols synchronize the distributed clocks only
within a certain tolerance, and there are transient phases while synchro-
nization is still being achieved. Abstractions used for modeling and ver-
ification of such systems should accurately capture these imperfections
that cause the system to only be “almost synchronized.” In this paper,
we present approximate synchrony, a sound and tunable abstraction
for verification of almost-synchronous systems. We show how approxi-
mate synchrony can be used for verification of both time synchroniza-
tion protocols and applications running on top of them. We provide an
algorithmic approach for constructing this abstraction for symmetric,
almost-synchronous systems, a subclass of almost-synchronous systems.
Moreover, we show how approximate synchrony also provides a useful
strategy to guide state-space exploration. We have implemented approx-
imate synchrony as a part of a model checker and used it to verify mod-
els of the Best Master Clock (BMC) algorithm, the core component of
the IEEE 1588 precision time protocol, as well as the time-synchronized
channel hopping protocol that is part of the IEEE 802.15.4e standard.

1 Introduction

Forms of synchrony can greatly simplify modeling, design, and verification of
distributed systems. Traditionally, a common sense of time is established using
time-synchronization (clock-synchronization) protocols or systems such as the
global positioning system (GPS), network time protocol (NTP), and the IEEE
1588 [20] precision time protocol (PTP). These protocols, however, synchronize
the distributed clocks only within a certain bound. In other words, at any time
point, clocks of different nodes can have differing values, but time synchroniza-
tion ensures that those values are within a specified offset of each other, i.e.,
they are almost synchronized.

Distributed protocols running on top of time-synchronized nodes are designed
under the assumption that while processes at different nodes make independent
c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part II, LNCS 9207, pp. 429–448, 2015.
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progress, no process falls very far behind any other. Figure 1 provides examples
of such real world systems. For example, Google Spanner [8] is a distributed
fault tolerant system that provides consistency guarantees when run on top of
nodes that are synchronized using GPS and atomic clocks, wireless sensor net-
works [27,28] use time synchronized channel hopping (TSCH) [1] as a standard
for time synchronization of sensor nodes in the network, and IEEE 1588 precision
time protocol (PTP) [20] has been adopted in industrial automation, scientific
measurement [22], and telecommunication networks. Correctness of these proto-
cols depends on having some synchrony between different processes or nodes.

Fig. 1. Almost-synchronous systems
comprise an application protocol running
on top of a time-synchronization layer.

When modeling and verifying sys-
tems that are almost-synchronous it
is important to compose them using
the right concurrency model. One
requires a model that lies somewhere
between completely synchronous (lock-
step progress) and completely asyn-
chronous (unbounded delay). Various
such concurrency models have been
proposed in the literature, including
quasi-synchrony [7,18] and bounded-
asynchrony [16]. However, we discuss in
Sect. 7, these models permit behaviors
that are typically disallowed in almost-synchronous systems. Alternatively, one
can use formalisms for hybrid or timed systems that explicitly model clocks
(e.g., [2,3]), but the associated methods (e.g., [17,21]) tend to be less efficient
for systems with a huge discrete state space, which is typical for distributed
software systems.

In this paper, we introduce symmetric, almost-synchronous (SAS) sys-
tems, a class of distributed systems in which processes have symmetric timing
behavior. In our experience, protocols at both the application layer and the
time-synchronization layer can be modeled as SAS systems. Additionally, we
introduce the notion of approximate synchrony (AS) as a concurrency model for
almost-synchronous systems, which also enables one to compute a sound discrete
abstraction of a SAS system. Intuitively, a system is approximately-synchronous
if the number of steps taken by any two processes do not differ by more than a
specified bound, denoted Δ. The presence of the parameter Δ makes approxi-
mate synchrony a tunable abstraction method. We demonstrate three different
uses of the approximate synchrony abstraction:

1. Verifying Time-Synchronized Systems: Suppose that the system to be
verified runs on top of a layer that guarantees time synchronization through-
out its execution. In this case, we show that there is a sound value of Δ which
can be computed using a closed form equation as described in Sect. 3.2.

2. Verifying Systems with Recurrent Logical Behavior: Suppose the sys-
tem to be verified does not rely on time synchronization, but its traces contain
recurrent logical conditions — a set of global states that are visited repeatedly
during the protocol’s operation. We show that an iterative approach based
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on model checking can identify such recurrent behavior and extract a value
of Δ that can be used to compute a sound discrete abstraction for model
checking (see Sect. 4). Protocols verifiable with this approach include some at
the time-synchronization layer, such as IEEE 1588 [20].

3. Prioritizing State-Space Exploration: The approximate synchrony abstr-
action can also be used as a search prioritization technique for model checking.
We show in Sect. 6 that in most cases it is more efficient to search behaviors
for smaller value of Δ (“more synchronous” behaviors) first for finding bugs.

We present two practical case studies: (i) a time-synchronized channel hop-
ping (TSCH) protocol that is part of the IEEE802.15.4e [1] standard, and (ii) the
best master clock (BMC) algorithm of the IEEE 1588 precision time protocol.
The former is system where the nodes are time-synchronized, while the latter
is the case of a system with recurrent logical behavior. Our results show that
approximate synchrony can reduce the state space to be explored by orders of
magnitude while modeling relevant timing semantics of these protocols, allowing
one to verify properties that cannot be verified otherwise. Moreover, we were able
to find a so-called “rogue frame” scenario that the IEEE 1588 standards com-
mittee had long debated without resolution (see our companion paper written
for the IEEE 1588 community [6] for details).

Our abstraction technique can be used with any finite-state model checker.
In this paper we implement it on top of the Zing model checker [4], due to its
ability to control the model checker’s search using an external scheduler that
enforces the approximate synchrony condition.

To summarize, this paper makes the following contributions:

– The formalism of symmetric, almost synchronous (SAS) systems and its use
in modeling an important class of distributed systems (Sect. 2);

– A tunable abstraction technique, termed approximate synchrony (Sects. 2
and 3);

– Automatic procedures to derive values of Δ for sound verification (Sects. 3
and 4);

– An implementation of approximate synchrony in an explicit-state model
checker (Sect. 5), and

– The use of approximate synchrony for verification and systematic testing of
two real-world protocols, the BMC algorithm (a key component of the IEEE
1588 standard), and the time synchronized channel hopping protocol (Sect. 6).

2 Formal Model and Approach

In this section, we define clock synchronization precisely and formalize the notion
of symmetric almost-synchronous (SAS) systems, the class of distributed systems
we are concerned with in this paper.

2.1 Clocks and Synchronization

Each node in the distributed system has an associated (local) physical clock χ,
which takes a non-negative real value. For purposes of modeling and analysis,
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we will also assume the presence of an ideal (global) reference clock, denoted t.
The notation χ(t) denotes the value of χ when the reference clock has value t.
Given this notation, we describe the following two basic concepts:

1. Clock Skew: The skew between two clocks χi and χj at time t (according to
the reference clock) is the difference in their values |χi(t) − χj(t)|.

2. Clock Drift: The drift in the rate of a clock χ is the difference per unit time
of the value of χ from the ideal reference clock t.

Time synchronization ensures that the skew between any two physical clocks in
the network is bounded. The formal definition is as below.

Definition 1. A distributed system is time-synchronized (or clock-synchronized)
if there exists a parameter β such that for every pair of nodes i and j and for
any t,

|χi(t) − χj(t)| ≤ β (1)

For ease of exposition, we will not explicitly model the details of dynamics
of physical clocks or the updates to them. We will instead abstract the clock
dynamics as comprising arbitrary updates to χi variables subject to additional
constraints on them such as Eq. 1 (wherever such assumptions are imposed).

Example 1. The IEEE 1588 precision time protocol [20] can be implemented so
as to bound the physical clock skew to the order of sub-nanoseconds [22], and
the typical clock drift to at most 10−4 [20].

2.2 Symmetric, Almost-Synchronous Systems

We model the distributed system as a collection of processes, where processes are
used to model both the behavior of nodes as well as of communication channels.
There can be one or more processes executing at a node.

Formally, the system is modeled as the tuple MC = (S, δ, I, id,χ, τ ) where

– S is the set of discrete states of the system,
– δ ⊆ S × S is the transition relation for the system,
– I ⊆ S is the set of initial states,
– id = {1, 2, . . . ,K} is the set of process identifiers,
– χ = (χ1, χ2, . . . , χK) is a vector of local clocks, and
– τ = (τ1, τ2, . . . , τK) is a vector of process timetables. The timetable of the ith

process, τi, is an infinite vector (τ1
i , τ2

i , τ3
i , . . .) specifying the time instants

according to local clock χi when process i executes (steps). In other words,
process i makes its jth step when χi = τ j

i .

For convenience, we will denote the ith process by Pi. Since in practice the
dynamics of physical clocks can be fairly intricate, we choose not to model these
details — instead, we assume that the value of a physical clock χi can vary
arbitarily subject to additional constraints (e.g., Eq. 1).
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The kth nominal step size of process Pi is the intended interval between the
(k − 1)th and kth steps of Pi, viz., τk

i − τk−1
i . The actual step size of the process

is the actual time elapsed between the (k − 1)th and kth step, according to the
ideal reference clock t. In general, the latter differs from the former due to clock
drift, scheduling jitter, etc.

Motivated by our case studies with the IEEE 1588 and 802.15.4e standards,
we impose two restrictions on the class of systems considered in this paper:

1. Common Timetable: For any two processes Pi and Pj , τi = τj . Note that this
does not mean that the process step synchronously, since their local clocks
may report different values at the same time t. However, if the system is time
synchronized, then the processes step “almost synchronously.”

2. Bounded Process Step Size: For any process Pi, its actual step size lies in an
interval [σl, σu]. This interval is the same for all processes. This restriction
arises in practice from the bounded drift of physical clocks.

A set of processes obeying the above restrictions is termed a symmetric, almost-
synchronous (SAS) system. The adjective “symmetric” refers only to the timing
behavior — note that the logical behavior of different processes can be very
different. Note also that SAS systems may or may not be running on top of a
time synchronization layer, i.e., SAS systems and time-synchronized systems are
orthogonal concepts.

Example 2. The IEEE 1588 protocol can be modeled as a SAS system. All
processes intend to step at regular intervals called the announce time interval.
The specification [20] states the nominal step size for all processess as 1 second;
thus the timetable is the sequence (0, 1, 2, 3, . . .). However, due to the drift of
clocks and other non-idealities such as jitter due to OS scheduling, the step size
in typical IEEE 1588 implementations can vary by ±10−3. From this, the actual
step size of processes can be derived to lie in the interval [0.999, 1.001].

Traces and Segments. A timed trace (or simply trace) of the SAS system MC

is a timestamped record of the execution of the system according to the global
(ideal) time reference t. Formally, a timed trace is a sequence h0, h1, h2, . . . where
each element hj is a triple (sj ,χj , tj) where sj ∈ S is a discrete (global) state
at time t = tj and χj = (χ1,j , χ2,j , . . . , χK,j) is the vector of clock values at
time tj . For all j, at least one process makes a step at time tj , so there exists
at least one i and a corresponding mi ∈ {0, 1, 2, . . .} such that χi,j(tj) = τmi

i .
Moreover, processes step according to their timetables; thus, if any Pi makes its
mith and lith steps at times tj and tk respectively, for mi < li, then χi,j(tj) =
τmi
i < τ li

i = χi,k(tk). Also, by the bounded process step size restriction, if any
Pi makes its mith and mi + 1th steps at times tj and tk respectively (for all
mi), |tk − tj | ∈ [σl, σu]. Finally, s0 ∈ I and δ(sj , sj+1) holds for all j ≥ 0 with
the transition into sj occuring at time t = tj .A trace segment is a (contiguous)
subsequence hj , hj+1, . . . , hl of a trace of MC .

2.3 Verification Problem and Approach

The central problem considered in this paper is as follows:
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Problem 1. Given an SAS system MC modeled as above, and a linear temporal
logic (LTL) property Φ with propositions over the discrete states of MC , verify
whether MC satisfies Φ.

One way to model MC would be as a hybrid system (due to the continuous
dynamics of physical clocks), but this approach does not scale well due to the
extremely large discrete state space. Instead, we provide a sound discrete abstrac-
tion MA of MC that preserves the relevant timing semantics of the ‘almost-
synchronous’ systems. (Soundness is formalized in Sect. 3).
There are two phases in our approach:

1. Compute Abstraction Parameter: Using parameters of MC (relating to clock
dynamics), we compute a parameter Δ characterizing the “approximate syn-
chrony” condition, and use Δ to generate a sound abstract model MA.

2. Model Checking: We verify the temporal logic property Φ on the abstract
model using finite-state model checking.

The key to this strategy is the first step, which is the focus of the following
sections.

3 Approximate Synchrony

We now formalize the concept of approximate synchrony (AS) and explain how it
can be used to generate a discrete abstraction of almost-synchronous distributed
systems. Approximate synchrony applies to both (segments of) traces and to
systems.

Definition 2. (Approximate Synchrony for Traces) A trace (segment) of a
SAS system MC is said to satisfy approximate synchrony (is approximately-
synchronous) with parameter Δ if, for any two processes Pi and Pj in MC , the
number of steps Ni and Nj taken by the two processes in that trace (segment)
satisfies the following condition:

|Ni − Nj | ≤ Δ

Although this definition is in terms of traces of SAS systems, we believe the
notion of approximate synchrony is more generally applicable to other distrib-
uted systems also. An early version of this definition appeared in [10].

The definition extends to a SAS system in the standard way:

Definition 3. (Approximate Synchrony for Systems) A SAS system MC sat-
isfies approximate synchrony (is approximately-synchronous) with parameter Δ
if all traces of that system satisfy approximate synchrony with parameter Δ.

We refer to the condition in Definition 3 above as the approximate synchrony
(AS) condition with parameter Δ, denoted AS(Δ). For example, in Fig. 2, exe-
cuting step 5 of process P1 before step 3 of process P2 violates the approximate
synchrony condition for Δ = 2. Note that Δ quantifies the “approximation”
in approximate synchrony. For example, for a (perfectly) synchronous system
Δ = 0, since processes step at the same time instants. For a fully asynchronous
system, Δ = ∞, since one process can get arbitrarily ahead of another.
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3.1 Discrete Approximate Synchrony Abstraction

We now present a discrete abstraction of a SAS system. The key modification
is to (i) remove the physical clocks and timetables, and (ii) include instead an
explicit scheduler that constrains execution of processes so as to satisfy the
approximate synchrony condition AS(Δ).

Fig. 2. AS(Δ) vio-
lated for Δ = 2

Formally, given a SAS system MC = (S, δ, I, id,χ, τ ),
we construct an Δ-abstract model MA as the tuple
(S, δa, I, id, ρΔ) where ρΔ is a scheduler process that
performs an asynchronous composition of the processes
P1,P2, . . . ,PK while enforcing AS(Δ). Conceptually, the
scheduler ρΔ maintains state counts Ni of the numbers of
steps taken by each process P̂i from the initial state.1 A con-
figuration of MA is a pair (s,N) where s ∈ S and N ∈ ZK

is the vector of step counts of the processes. The abstract
model MA changes its configuration according to its transi-
tion function δa where δa((s,N), (s′, N ′)) iff (i) δ(s, s′) and
(ii) N ′

i = Ni+1 if ρΔ permits Pi to make a step and N ′
i = Ni

otherwise.
In an initial state, all processes Pi are enabled to make a step. At each step

of δa, ρΔ enforces the approximate synchrony condition by only enabling Pi to
step iff that step does not violate AS(Δ). Behaviors of MA are untimed traces,
i.e., sequences of discrete (global) states s0, s1, s2, . . . where sj ∈ S, s0 is an
initial (global) state, and each transition from sj to sj+1 is consistent with δa

defined above.
Note that approximate synchrony is a tunable timing abstraction. Larger the

value of Δ, more conservative the abstraction. The key question is: for a given
system, what value of Δ constitutes a sound timing abstraction, and how do
we automatically compute it? Recall that one model is a sound abstraction of
another if and only if every execution trace of the latter (concrete model MC)
is also an execution trace of the former (abstract model MA). In our setting,
the Δ-abstract and concrete models both capture the protocol logic in an iden-
tical manner, and differ only in their timing semantics. The concrete model
explicitly models the physical clocks of each process as real-valued variables as
described in Sect. 2. The executions of this model can be represented as timed
traces (sequences of timestamped states). On the other hand, in the Δ-abstract
model, processes are interleaved asynchronously while respecting the approxi-
mate synchrony condition stated in Definition 3. An execution of the Δ-abstract
model is an untimed trace (sequences of states). We equate timed and untimed
traces using the “untiming” transformation proposed by Alur and Dill [3] — i.e.,
the traces must be identical with respect to the discrete states.

1 The inclusion of step counts may seem to make the model infinite-state. We will show
in Sect. 5 how the model checker can be implemented without explicitly including
the step counts in the state space.



436 A. Desai et al.

3.2 Computing Δ for Time-Synchronized Systems

We now address the question of computing a value of Δ such that the resulting
MA is a sound abstraction of the original SAS system MC . We consider here
the case when MC is a system running on a layer that guarantees time syn-
chronization (Eq. 1) from the initial state. A second case, when nodes are not
time-synchronized and approximate synchrony only holds for segments of the
traces of a system, is handled in Sect. 4.

Consider a SAS system in which the physical clocks are always synchronized
to within β, i.e., Eq. 1 holds for all time t and β is a tight bound computed based
on the system configuration. Intuitively, if β > 0, then Δ ≥ 1 since two processes
are not guaranteed to step at the same time instants, and so the number of steps
of two processes can be off by at least one. The main result of this section is that
SAS systems that are time-synchronized are also approximately-synchronous,
and the value of Δ is given by the following theorem.

Theorem 1. Any SAS systemMC satisfying Eq. 1 is approximately-synchronous
with parameter Δ =

⌈
β
σl

⌉
. (Proof in [12])

Suppose the abstract model MA is constructed as described in Sect. 3.1 with
Δ as given in Theorem 1 and σl is the lower bound of the step size defined in
Sect. 2.2. Then as a corollary, we can conclude that MA is a sound abstraction
of MC : every trace of MC satisfies AS(Δ) and hence is a trace of MA after
untiming.

Example 3. The Time-Synchronized Channel Hopping (TSCH) [1] protocol is
being adopted as a part of the low power Medium Access Control standard
IEEE802.15.4e. It can be modeled as a SAS system since it has a time-slotted
architecture where processes share the same timetable for making steps. The
TSCH protocol has two components: one that operates at the application layer,
and one that provides time synchronization, with the former relying upon the
latter. We verify the application layer of TSCH that assumes that nodes in the
system are always time-synchronized within a bound called the “guard time”
which corresponds to β. Moreover, in practice, β is much smaller than σl and
thus Δ is typically 1 for implementations of the TSCH.

4 Systems with Recurrent Logical Conditions

We now consider the case of a SAS system that does not execute on top of a
layer that guarantees time synchronization (i.e., Eq. 1 may not hold). We identify
behavior of certain SAS systems, called recurrent logical conditions, that can be
exploited for abstraction and verification. Specifically, even though AS(Δ) may
not hold for the system for any finite Δ, it may still hold for segments of every
trace of the system.

Definition 4. (Recurrent Logical Condition) For a SAS system MC , a recur-
rent logical condition is a predicate logicConv on the state of MC such that
MC satisfies the LTL property G F logicConv.
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Our verification approach is based on finding a finite Δ such that, for every
trace of MC , segments of the trace between states satisfying logicConv satisfy
AS(Δ). This property of system traces can then be exploited for efficient model
checking.

We begin with an example of a recurrent logical condition case in the context
of the IEEE 1588 protocol (Sect. 4.1). We then present our verification approach
based on inferring Δ for trace segments via iterative use of model checking
(Sect. 4.2).

4.1 Example: IEEE 1588 Protocol

The IEEE 1588 standard [20], also known as the precision time protocol (PTP),
enables precise synchronization of clocks over a network. The protocol consists
of two parts: the best master clock (BMC) algorithm and a time synchronization
phase. The BMC algorithm is a distributed algorithm whose purpose is two-fold:
(i) to elect a unique grandmaster clock that is the best clock in the network, and
(ii) to find a unique spanning tree in the network with the grandmaster clock
at the root of the tree. The combination of a grandmaster clock and a spanning
tree constitutes the global stable configuration known as logical convergence
that corresponds to the recurrent logical condition. The second phase, the time
synchronization phase, uses this stable configuration to synchronize or correct
the physical clocks (more details in [20]).

Fig. 3. Phases of the IEEE 1588 time-synchronization protocol

Figure 3 gives an overview of the phases of the IEEE 1588 protocol execution.
The distributed system starts executing the first phase (e.g., the BMC algorithm)
from an initial configuration. Initially, the clocks are not guaranteed to be syn-
chronized to within a bound β. However, once logical convergence occurs, the
clocks are synchronized shortly thereafter. Once the clocks have been synchro-
nized, it is possible for a failure at a node or link to break clock synchronization.
The BMC algorithm operates continually, with the goal of ensuring that, if time
synchronization is broken, the clocks will be re-synchronized. Thus, a typical
1588 protocol execution is structured as a (potentially infinite) repetition of the
two phases: logical convergence, followed by clock synchronization. We exploit
this recurrent structure to show in Sect. 4.2 that we can compute a value of
Δ obeyed by segments of any trace of the system. The approach operates by
iterative model checking of a specially-crafted temporal logic formula.
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Note that the time taken by the protocol to logically converge depends on
various factors including network topology and clock drift. In Sect. 6, we demon-
strate empirically that the value of Δ depends on the number of steps (length
of the segment) taken by BMCA to converge which in turn depends on factors
mentioned above.

4.2 Iterative Algorithm to Compute Δ-Abstraction for Verification

Given a SAS system MC whose traces have a recurrent structure, and an LTL
property Φ, we present the following approach to verify whether MC satisfies Φ:

1. Define recurrent condition: Guess a recurrent logical condition, logicConv, on
the global state of MC .

2. Compute Nmin: Guess an initial value of Δ, and compute, from parameters
σl, σu of the processes in MC , a number Nmin such that the AS(Δ) condition
is satisfied on all trace segments where no process makes Nmin or more steps.
We describe the computation of Nmin in more detail below.

3. Verify if Δ is sound: Verify using model checking on MA that, every trace
segment that starts in an initial state or a state satisfying logicConv and
ends in another state in logicConv satisfies AS(Δ). This is done by checking
that no process makes Nmin or more steps in any such segment. Note that
verifying MA in place of MC is sound as AS(Δ) is obeyed for up to Nmin

steps from any state. Further details, including the LTL property checked,
are provided below.

4. Verify MC using Δ: If the verification in the preceding step succeeds, then
a model checker can verify Φ on a discrete abstraction M̂A of MC , which,
similar to MA, is obtained by dropping physical clocks and timetables, and
enforcing the AS(Δ) condition to segments between visits to logicConv. For-
mally, M̂A = (S, δ̂a, I, id, ρΔ) where δ̂a differs from δa only in that for a
configuration (s,N), N ′

i = 0 for all i if s′ ∈ logicConv (otherwise it is identi-
cal to δa).

However, if the verification in Step 3 fails, we go back to Step 2 and incre-
ment Δ and repeat the process to compute a sound value of Δ.

Figure 4 depicts this iterative approach for the specific case of the BMC
algorithm. We now elaborate on Steps 2 and 3 of the approach.

Step 2: Computing Nmin for a Given Δ. Recall from Sect. 2.2 that the
actual step size of a process lies in the interval [σl, σu]. Let Pf be the fastest
process (the one that makes the most steps from the initial state) and Ps be
the slowest (the fewest steps). Denote the corresponding number of steps by Nf

and Ns respectively. Then the approximate synchrony condition in Definition 3
is always satisfied if Nf −Ns ≤ Δ. We wish to find the smallest number of steps
taken by the fastest process when AS(Δ) is violated. We denote this value as
Nmin, and obtain it by formulating and solving a linear program.

Suppose first that Ps and Pf begin stepping at the same time t. Then, since
the time between steps of Pf is at least σl and that between steps of Ps is at
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Fig. 4. Iterative algorithm for computing Δ exploiting logical convergence

most σu, the total elapsed must be at least σlNf and at most σuNs, yielding
the inequality σlNf ≤ σuNs.

However, processes need not begin making steps simultaneously. Since each
process must make its first step at least σu seconds into its execution, the max-
imum initial offset between processes is σu. The smallest value of Nf occurs
when the fast process starts σu time units after the slowest one, yielding the
inequality:

σlNf + σu ≤ σuNs

We can now set up the following integer linear program (ILP) to solve for
Nmin:

min Nf s.t.

Nf ≥ Ns, Nf − Ns > Δ, σlNf + σu ≤ σuNs, Nf , Ns ≥ 1

Nmin is the optimal value of this ILP. In effect, it gives the fewest steps any
process can take (smallest Nf ) to violate the approximate synchrony condition
AS(Δ).

Example 4. For the IEEE 1588 protocol, as described in Sect. 2.2, the actual
process step sizes lie in [0.999, 1.001]. Setting Δ = 1, solving the above ILP
yields Nmin = 1502.

Step 3: Temporal Logic Property. Once Nmin is computed, we verify on the
discrete abstraction MA whether, from any state satisfying I ∨ logicConv, the
model reaches a state satisfying logicConv in less than Nmin steps. This also
verifies that all traces in the BMC algorithm satisfy the recurrent logicConv
property and the segments between logicConv satisfy AS(Δ). We perform this by
invoking a model checker to verify the following LTL property, which references
the variables Ni recording the number of steps of process Pi:

(I ∨ logicConv) =⇒ F
[
logicConv ∧ (

∧

i

(0 < Ni < Nmin)
)]

(2)

We show in Sect. 5 how to implement the above check without explicitly includ-
ing the Ni variables in the system state. Note that it suffices to verify the
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above property on the discrete abstraction MA constrained by the scheduler
ρΔ because we explore no more than Nmin steps of any process and so MA is a
sound abstraction. The overall soundness result is formalized below.

Theorem 2. If the abstract model MA satisfies Property 2, then all traces of
the concrete model MC are traces of the model M̂A (after untiming) (Proof
in [12])
In Sect. 6, we report on our experiments verifying properties of the BMC algo-
rithm by model checking the discrete abstract model M̂A as described above.

5 Model Checking with Approximate Synchrony

We implemented approximate synchrony within zing [4], an explicit state model
checker. zing performs a “constrained” asynchronous composition of processes,
using an external scheduler to guide the interleaving. Approximate synchrony
is enforced by an external scheduler that explores only those traces satisfying
AS(Δ) by scheduling, in each state, only those processes whose steps will not
violate AS(Δ).

Section 4 described an iterative approach to verify whether a Δ-abstract
model of a protocol is sound. The soundness proof depends on verifying
Property 2. A näıve approach for checking this property would be to include
a local variable Ni in each process as part of the process state to keep track
of the number of steps executed by each process, causing state space explosion.
Instead, we store the values of Ni for each i external to the system state, as a
part of the model checker explorer.

var StateTable : Dictionary〈State, List〈int〉〉;
BoundedDFS(s : State) {

var i : int, s′ : State, steps′ : List〈int〉;
i := 0;
while (i <#Processes(s)){

steps′ :=IncElement(i, StateTable[s]);
if ¬ CheckASCond(steps′)

∨ steps′[i] > (Nmin + Δ)
∨ s |= logicConv then
continue ;

s′ :=NextState(s, i);
if steps′[i] = Nmin then

assert(s′ |= logicConv);
if s′ /∈ Domain(StateTable)

∨ ¬(steps′ ≥pt StateTable[s′]) then
StateTable[s′] := steps′;
BoundedDFS(s′);

i := i + 1; } }
Verify() {

StateTable[sinitial ] = newList〈int〉;
BoundedDFS(sinitial );}

Fig. 5. Algorithm for Verification of
Property 2

The algorithm in Fig. 5 performs
systematic bounded depth first search
for a state sinitial, belonging to the
set of all possible initial states. To
check whether all traces of length Nmin

satisfy eventual logical convergence
under AS(Δ) constraint, we enforce
two bounds: first, the final depth bound
is (Nmin +Δ) and second, in each state
a process is enabled only if executing
that process does not violate AS(Δ). If
a state satisfies logicConv then we ter-
minate the search along that path.

The BoundedDFS function is called
recursively on each successor state and
it explore only those traces that sat-
isfy AS(Δ). If the steps executed by
a process is Nmin then the logicConv
monitor is invoked to assert if s′ |= logicConv (i.e. we have reached logical con-
vergence state) and if the assertion fails we increment the value of Δ as described
in Sect. 4.2. Nmin and Δ values are derived as explained in Sect. 4.2.
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StateTable is a map from reachable state to the tuple of steps with which
it was last explored. steps′ is the vector of number of steps executed by each
process and is stored as a list of integers. #Processes(s) returns the number of
enabled processes in the state s. IncElement(i, t) increments the ith element of
tuple t and returns the updated tuple. CheckASCond(steps′) checks the following
condition that ∀s1, s2 ∈ steps′ |s1 − s2| ≤ Δ.

To avoid re-exploring a state which may not lead to new states, we do not
re-explore a state if it is revisited with steps′ greater than what it was last visited
with. The operator ≥pt does a pointwise comparison of the integer tuples. We
show in the following section that we are able to obtain significant state space
reduction using this implementation.

6 Evaluation

In this section, we present our empirical evaluation of the approximate synchrony
abstraction, guided by the following goals:

• Verify two real-world standards protocols: (1) the best master clock algorithm
in IEEE 1588 and (2) the time synchronized channel hopping protocol in IEEE
802.15.4e.

• Evaluate if we can verify properties that cannot be verified with full asyn-
chrony (either by reducing state space or by capturing relevant timing con-
straints).

• Evaluate approximate synchrony as an iterative bounding technique for find-
ing bugs efficiently in almost-synchronous systems.

6.1 Modeling and Experimental Setup

We model the system in P [11], a domain-specific language for writing event-
driven protocols. A protocol model in P is a collection of state machines inter-
acting with each other via asynchronous events or messages. The P compiler
generates a model for systematic exploration by Zing [4]. P also provides ways
of writing LTL properties as monitors that are synchronously composed with
the model. Both the case studies, the BMC algorithm and the TSCH protocol,
are modeled using P. Each node in the protocol is modeled as a separate P
state machine. Faults and message losses in the protocol are modeled as non-
deterministic choices.

All experiments were performed on a 64-bit Windows server with Intel Xeon
ES-2440, 2.40GHz (12 cores/24 threads) and 160 GB of memory. Zing can
exploit parallelism as its iterative depth-first search algorithm is completely par-
allelized. All timing results reported in this section are when Zing is run with
24 threads. We use the number of states explored and the time taken to explore
them as the comparison metric.
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Table 1. Temporal properties verified for the case studies

Protocol Temporal property Description

BMCA F G (logicConv) Eventually the BMC algorithm stabilizes with a
unique spanning tree having the grandmaster
at its root. The system is said to be in
logicConv state when the system has
converged to the expected spanning tree

TSCH
∧

i∈n G(¬desynchedi) A node in TSCH is said to be desynched - if it
fails to synchronize with its master within the
threshold period. The desired property of a
correct system is that the nodes are always
synchronized

6.2 Verification and Testing Using Approximate Synchrony

We applied approximate synchrony in three different contexts: (1) Time syn-
chronized Channel Hopping protocol (time synchronized system) (2) Best Mas-
ter Clock Algorithm in IEEE 1588 (exploiting recurrent logical condition)
(3) Approximate Synchrony as a bounding technique for finding bugs.

Verification of the TSCH Protocol . Time Synchronized Channel Hopping
(TSCH) is a Medium Access Control scheme that enables low power operations
in wireless sensor network using time-synchronization. It makes an assumptions
that the clocks are always time-synchronized within a bound, referred to as the
‘guard’ time in the standard. The low power operation of the system depends
on the sensor nodes being able to maintain synchronization (desynchroniza-
tion property in Table 1). A central server broadcasts the global schedule that
instructs each sensor node when to perform operations. Whether the system sat-
isfies the desynchronization property depends on this global schedule, and the
standard provides no recommendation on these schedules.

We modeled the TSCH as a SAS system and used Theorem 1 to calculate
the value of Δ2. We verified the desynchronization property (Table 1) in the
presence of failures like message loss, interference in wireless network, etc. For the
experiments we considered three schedules (1) round-robin: nodes are scheduled
in a round robin fashion, (2) shared with random back-off: all the schedule slots
are shared and conflict is resolved using random back-off (3) Priority Scheduler:
nodes are assigned fixed priority and conflict is resolved based on the priority.

We were able to verify if the property was satisfied for a given topology
under the global schedule, and generated a counterexample otherwise (Table 2)
which helped the TSCH system developers in choosing the right schedules for low
power operation. Using sound approximate synchrony abstraction (with Δ = 1),
we could accurately capture the “almost synchronous” behavior of the TSCH
system.
2 For system of nodes under consideration, the maximum clock skew, ε = 120μs and

nominal step size of 100ms, the value of Δ = 1.
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Table 2. Verification results using Approximate Synchrony.

Verification of BMC Algorithm

Network Safety Property Convergence Property

Topology Fully Asynchronous Model with Approximate Model with Approximate

(#Nodes) Model Synchrony Synchrony
States Time Property Δ States Time Property Δ States Time Property

Explored (h:mm) Proved Explored (h:mm) Proved Explored (hh:mm) Proved
Linear(5) 1.2 E+9 7:12 Yes 1 9.5 E+5 0:35 Yes 1 5.3 E+8 6:33 Yes
Star(5) 2.4 E+10 9:40 Yes 1 5.8 E+5 0:54 Yes 1 4.1 E+7 5:10 Yes

Random(5) 9.19 E+9 9:01 Yes 2 5.5 E+6 1:44 Yes 2 1.8 E+9 9:10 Yes
Ring(5) 7.1 E+12* * No 1 4.8 E+7 3:44 Yes 1 8 E+9 8:04 Yes
Linear(7) 1.4 E+13* * No 1 4.6 E+7 3:05 Yes 1 1.0 E+8 6:21 Yes
Star(7) 1.1 E+13* * No 2 3.7 E+8 5:06 Yes 2 3.3 E+10 13:34 Yes
Ring(7) 3.3 E+12* * No 2 6.8 E+8 8:04 Yes 2 2.1 E+10 11:11 Yes

Random(6) 1.1 E+13* * No 3 5.7 E+9 6:00 Yes 3 1.3 E+10 10:34 Yes
Random(7) 1.1 E+13* * No 3 8.1 E+8 7:11 Yes 3 9.9 E+10 10:11 Yes

Verification of TSCH Protocol
Network Round-Robin Scheduler Shared with CSMA Priority Scheduler
Topology States Time Property States Time Property States Time Property
(#Nodes) Explored (h:mm) Satisfied Explored (h:mm) Satisfied Explored (h:mm) Satisfied
Linear(5) 4.4 E+4 0:20 Yes 1.2 E+2# 0:03 No 2.4E +3# 0:09 No
Random(5) 3.6 E+2# 0:05 No 6.2 E+3# 0:12 No 1.9E +6 0:35 Yes
Mesh(5) 1.7 E+7 4:05 Yes 9.1 E+6 2:01 Yes 9.3 E+5 0:31 Yes

* denotes end of exploration as model checker ran out of memory, denotes property violated and counter example is reported

Verification of BMC Algorithm. The BMC algorithm is a core component of
the IEEE 1588 precision time protocol. It is a distributed fault tolerant protocol
where nodes in the system perform operations periodically to converge on a
unique hierarchical tree structure, referred to as the logical convergence state in
Sect. 4. Note that the convergence property for BMCA holds only in the presence
of almost synchrony — it does not guarantee convergence in the presence of
unbounded process delay or message delay. Hence, it is essential to verify BMC
using the right form of synchrony.

We generated various verification instances by changing the configuration
parameters such as number of nodes, clock characteristics, and the network
topology. The results in Table 2 for the BMC algorithm are for 5 and 7 nodes
in the network with linear, star, ring, and random topologies. The Δ value used
for verification of each of these configurations was derived by using the iterative
approach described in Sect. 4.2. The results demonstrate that the value of Δ
required to construct the sound abstraction varies depending on network topol-
ogy, and clock dynamics. Table 2 shows the total number of states explored and
time taken by the model checker for proving the safety and convergence property
(Table 1) using the sound Δ-abstract model. Approximate synchrony abstraction
is orders of magnitude faster as it explores the reduced state-space. BMCA algo-
rithm satisfies safety invariant even in the presence of complete asynchrony. For
demonstrating the efficiency of using approximate synchrony we also conducted
the experiments with complete asynchronous composition, exploring all possible
interleaving (for safety properties). The complete asynchronous model is simple
to implement but fails to prove the properties for most of the topologies.

An upshot of our approach is that we are the first to prove that the BMC algo-
rithm in IEEE 1588 achieves logical convergence to a unique stable state for some
interesting configurations. This was possible because of the sound and tunable
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approximate synchrony abstraction. Although experiments with 5/7 nodes may
seem small, networks of this size do occur in practice, e.g., in industrial automa-
tion where one has small teams of networked robots on a factory floor.

Endlessly Circulating (Rogue) Frames in IEEE 1588: The possibility
of an endlessly circulating frame in a 1588 network has been debated for a
while in the standards committee. Using formal model of BMC algorithm under
approximate synchrony, we were able to reproduce a scenario were rogue frame
could occur. Existence of a rogue frame can lead to network congestion or cause
the BMC algorithm to never converge. The counter example was cross-validated
using simulation and is described in detail in [6]. It was well received by the
IEEE 1588 standards committee.

Table 3. Iterative Approximate Synchrony with bound Δ for finding bugs faster.

Buggy models Iterative depth bounding Non-iterative AS Iterative AS

with random search

Depth States Time Δ States Time Δ States Time

Explored (h:mm) Δ Explored (h:mm) Δ Explored (h:mm)

BMCA Bug 1 51 1.4 E+3 0:05 2 1.1 E+3 0:04 0 2.1 E+2 0:02

BMCA Bug 2 64 5.9 E+5 0:15 2 6.1 E+4 0:14 0 1.6 E+3 0:04

BMCA Bug 3 101 9.4 E+7 0:45 3 3.3 E+5 0:17 1 9.1 E+2 0:05

ROGUE FRAME Bug 1 44 3.9 E+5 0:18 2 9.7 E+6 0:29 1 5.6 E+4 0:12

ROGUE FRAME Bug 2 87 4.4 E+4 0:09 2 2.1 E+3 0:05 1 1.1 E+3 0:03

SPT Bug 1 121 8.4 E+8 1:05 3 8.1 E+4 0:11 0 5.5 E+2 0:04

Approximate Synchrony as a Search Prioritization Technique. Approx-
imate synchrony can also be used as a bounding technique to prioritize search.
We collected buggy models during the process of modeling the BMC algorithm
and used them as benchmarks, along with buggy instance of the Perlman’s Span-
ning Tree Protocol [24] (SPT). We used AS as an iterative bounding technique,
starting with Δ = 0 and incrementing Δ after each iteration. For Δ = 0, the
model checker explores only synchronous system behaviors. Increasing the value
could be considered as adding bounded asynchronous behaviors incrementally.
Table 3 shows comparison between iterative AS, non-iterative AS with fixed value
of Δ taken from Table 2 and iterative depth bounding with random search. Num-
ber of states explored and the corresponding time taken for finding the bug is
used as the comparison metric. Results demonstrate that most of the bugs are
found at small values of Δ (hence iterative search is beneficial for finding bugs).
Some bugs like the rogue frame error, that occur only when there is asynchrony
were found with minimal asynchrony in the system (Δ = 1). These results con-
firm that prioritizing search based on approximate synchrony is beneficial in
finding bugs. Other bounding techniques such as delay bounding [15] and con-
text bounding [23] can be combined with approximate synchrony but this is left
for future work.
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7 Related Work

The concept of partial synchrony has been well-studied in the theory of dis-
tributed systems [13,14,25]. There are many ways to model partial synchrony
depending on the type of system and the end goal (e.g., formal verification).
Approximate synchrony is one such approach, which we contrast against the
most closely-related work below.

Hybrid/Timed Modeling: The choice of modeling formalism greatly influ-
ences the verification approach. A time-synchronized system can be modeled as
a hybrid system [2]. However, it is important to note that, unlike traditional
hybrid systems examples from the domain of control, the discrete part of the
state space for these protocols is very large. Due to this we observed that lead-
ing hybrid systems verification tools, such as SpaceEx [17], cannot explore the
entire state space.

There has been work on modeling timed protocols using real-time formalisms
such as timed automata [3], where the derivatives of all continuous-time variables
are equal to one. While tools based on the theory of timed automata do not
explicitly support modeling and verification of multi-rate timed systems [21],
there do exist techniques for approximating multirate clocks. For instance, Huang
et al. [19] propose the use of integer clocks on top of UPPAAL models. Daws
and Yovine [9] show how multirate timed systems can be over-approximated into
timed automata. Vaandrager and Groot [29] models a clock that can proceed
with different rate by defining a clock model consisting of one location and
one self transition. Such models only approximately represent multirate time
systems. By contrast, our approach algorithmically constructs abstractions that
can be refined to be more precise by tuning the value of Δ, and results in an sound
untimed model that can be directly checked by a finite-state model checker.

Synchrony and Asynchrony: There have been numerous efforts devoted
towards mixing synchronous and asynchronous modeling. Multiclock Esterel [26]
and communicating reactive processes (CRP) [5] extend the synchronous lan-
guage Esterel to support a mix of synchronous and asynchronous processes.
Bounded asynchrony is another such modeling technique with applications to
biological systems [16]. It can be used to model systems in which processes can
have different but constant rates, and can be interleaved asynchronously (with
possible stuttering) before they all synchronize at the end of a global “period.”
Approximate synchrony has no such synchronizing global period. The quasi-
synchronous (QS) [7,18] approach is designed for communicating processes that
are periodic and have almost the same period. QS [18] is defined as “Between
any two successive activations of one period process, the process on any other
process is activated either 0, 1, or at most 2 times”. As a consequence, in both
quasi-synchrony and bounded asynchrony, the difference of the absolute number
of activations of two different processes can grow unboundedly. In contrast, the
definition of AS does not allow this difference to grow unbounded.
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8 Conclusion

This paper has introduced two new concepts: a class of distributed systems
termed as symmetric, almost-synchronous (SAS) systems, and approximate syn-
chrony, an abstraction method for such systems. We evaluated applicability of
approximate synchrony for verification in two different contexts: (i) application-
layer protocols running on top of time-synchronized systems (TSCH), and
(ii) systems that do not rely on time synchronization but exhibit recurrent logical
behavior (BMC algorithm). We also described an interesting search prioritization
technique based on approximate synchrony with the key insight that, prioritizing
synchronous behaviors can help in finding bugs faster.

In this paper, we focus on verifying protocols that fit the SAS formalism
defined in Sect. 2.2. While other protocols whose behavior and correctness relies
on using values of timestamps do not natively fit into the SAS formalism, they
can be abstracted using the suitable methods (e.g., using a state variable to
model a local timer for a process whose value is incremented on each step of
that process — with approximate synchrony the timer values across different
processes will not differ by more than Δ). Evaluating such abstractions for proto-
cols like Google Spanner and others that use timestamps would be an interesting
next step.
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Abstract. We present civl, a language and verifier for concurrent
programs based on automated and modular refinement reasoning. civl
supports reasoning about a concurrent program at many levels of abstrac-
tion. Atomic actions in a high-level description are refined to fine-grain
and optimized lower-level implementations. A novel combination of auto-
mata theoretic and logic-based checks is used to verify refinement. Modu-
lar specifications and proof annotations, such as location invariants and
procedure pre- and post-conditions, are specified separately, indepen-
dently at each level in terms of the variables visible at that level. We have
implemented civl as an extension to the boogie language and verifier.
We have used civl to refine a realistic concurrent garbage collection algo-
rithm from a simple high-level specification down to a highly-concurrent
implementation described in terms of individual memory accesses.

1 Introduction

We present a technique for verifying a refinement relation between two concur-
rent, shared-memory multithreaded programs. Our work is inspired by stepwise
refinement [43], where a high-level description is systematically refined, poten-
tially via several intermediate descriptions, down to a detailed implementation.
Refinement checking is a classical problem in verification and has been inves-
tigated in many contexts, including hardware verification [11] and verification
of cache-coherence protocols and distributed algorithms [32]. In the realm of
sequential software, notable successes using the refinement approach include the
work of Abrial et al. [2] and the proof of full functional correctness of the seL4
microkernel [30]. This paper presents the first general and automated proof sys-
tem for refinement verification of shared-memory multithreaded software.

We present our verification approach in the context of civl, an idealized
concurrent programming language. In civl, a program is described as a collec-
tion of procedures whose implementation can use the standard features such as
assignment, conditionals, loops, procedure calls, and thread creation. Each proce-
dure accesses shared global variables only through invocations of atomic actions.
A subset of the atomic actions may be refined by new procedures and a new pro-
gram is obtained by replacing the invocation of an atomic action by a call to the
corresponding procedure refining the action. Several layers of refinement may
c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part II, LNCS 9207, pp. 449–465, 2015.
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be performed until all atomic actions in the final program are directly imple-
mentable primitives. Unlike classical program verifiers based on Floyd-Hoare
reasoning [20,28] that manipulate a program and annotations, the civl verifier
manipulates multiple operational descriptions of a program, i.e., several layers
of refinement are specified and verified at once.

To prove refinement in civl, a simulation relation between a program and
its abstraction is inferred from checks on each procedure, thus decomposing a
whole-program refinement problem into per-procedure verification obligations.
The computation inside each such procedure is partitioned into “steps” such
that one step behaves like the atomic specification and all other steps have no
effect on the visible state. This partitioning follows the syntactic structure of
the code in a way similar in spirit to Floyd-Hoare reasoning. To express the per-
procedure verification obligations in terms of a collection of per-step verification
tasks, the civl verifier needs to address two issues. First, the notion of a “step”
in the code implementing a procedure must be defined. The definition of a step
can deeply affect the number of checks that need to be performed and the number
of user annotations. Second, it is typically not possible to show the correctness
of a step from an arbitrary state. A precondition for the step in terms of shared
variables must be supplied by the programmer and mechanically checked by the
verifier.

To address the first problem, civl lets the programmer define the granularity
of a step, allowing the user to specify a semantics with larger atomic actions.
A cooperative semantics for the program is explicitly introduced by the pro-
grammer through the use of a new primitive yield statement; in this semantics a
thread can be scheduled out only when it is about to execute a yield statement.
The preemptive semantics of the program is sequentially consistent execution;
all threads are imagined to execute on a single processor and preemption, which
causes a thread to be scheduled out and a nondeterministically chosen thread
to be scheduled in, may occur before any instruction.1 Given a program P ,
civl verifies that the safety of the cooperative semantics of P implies the safety
of the preemptive semantics of P . This verification is done by computing an
automata-theoretic simulation check [24] on an abstraction of P in which each
atomic action of P is represented by only its mover type [17,35]. The mover
types themselves are verified separately and automatically using an automated
theorem prover [9].

To address the second problem that refinement verification for each step
requires invariants about the program execution, civl allows the programmer
to specify location invariants, attached either to a yield statement or to a proce-
dure as its pre- or post-condition. Each location invariant must be correct for all
executions and must continue to hold in spite of potential interference from con-
currently executing threads. We build upon classical work [29,38] on reasoning
about non-interference with two distinct innovations. First, we do not require the
annotations to be strong enough to prove program correctness but only strong
1 In this paper, we focus our attention on sequential consistency and leave considera-

tion of weak memory models to future work.
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enough to provide the context for refinement checking. Program correctness is
established via a sequence of refinement layers from an abstract program that
cannot fail. Second, to establish a postcondition of a procedure, we do not need
to propagate a precondition through all the yield annotations in the procedure
body. The correctness of an atomic action specification gives us a simple frame
rule—the precondition only needs to be propagated across the atomic action
specification. civl further simplifies the manual annotations required for logical
non-interference checking by providing a linear type system [42] that enables
logical encoding of thread identifiers, permissions [7], and disjoint memory [31].

Finally, civl provides a simple module system. Modules can be verified sep-
arately, in parallel or at different times, since the module system soundly does
away with checks that pertain to cross-module interactions. This feature is signif-
icant since commutativity checks and non-interference checks for location invari-
ants are quadratic, whole program checks involving all pairs of yield locations
and atomic blocks, or all pairs of actions from a program. Using the module
system, the number of checks is reduced; they become quadratic in the number
of yields and atomic blocks within each module rather than the entire program.

We have implemented civl as a conservative extension of the boogie verifier.
We have used it to verify a collection of microbenchmarks and benchmarks from
the literature [6,13–15,19,27]. The most challenging case study with civl was
carried out concurrently with civl’s development and served as a design driver.
We verified a concurrent garbage collector, through six layers of refinement,
down to atomic actions corresponding to individual memory accesses. The level
of granularity of the lowest-level implementation distinguishes this verification
effort, detailed in a technical report [23], from previous attempts in the literature.

In conclusion, civl is the first automated verifier for shared-memory mul-
tithreaded programs that provides the capability to establish a multi-layered
refinement proof. This novel capability is enabled by two important innovations
in core verification techniques for reducing the complexity of invariants supplied
by the programmer and the verification conditions solved by the prover.

– Reasoning about preemptive semantics is replaced by simpler reasoning about
cooperative operational semantics by exploiting automata-theoretic simula-
tion checking. This is a novel technique that combines automata-based and
logic-based reasoning.

– A linear type system establishes invariants about disjointness of permission
sets associated with values contained in program variables. These invariants,
communicated to the prover as free assumptions, significantly reduce the over-
head of program annotations. We are not aware of any other verifier that
combines type-based and logic-based reasoning in this style.

2 Overview

We present an overview of our approach to refinement on an example (Fig. 1)
inspired by the write barrier in our concurrent garbage collector (GC). In a con-
current GC, each object in the heap has a color: UNALLOC, WHITE, GRAY, or BLACK.
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The GC traverses reachable objects, marking the reached objects GRAY and then
BLACK. At the end of the traversal, reached objects are BLACK, unreached objects
are WHITE, and the GC deallocates the WHITE objects. The threads in the sys-
tem must cooperate with the GC to ensure that the collection creates no dangl-
ing pointers (i.e., if object A is reachable and A points to object B, then B should
var Color: int; // UNALLOC=0, WHITE=1,

// GRAY=2, BLACK=3

procedure WB(linear tid:Tid)
atomic [if (Color == WHITE) Color := GRAY];
requires Color >= WHITE;
ensures Color >= GRAY;
{

var cNoLock:int;
yield Color >= WHITE;
cNoLock := GetColorNoLock(tid);
yield Color >= cNoLock;
if (cNoLock <= WHITE)

call WBSlow(tid);
yield Color >= GRAY;

}

procedure WBSlow(linear tid:Tid)
atomic [if (Color <= WHITE) Color := GRAY];
{

var cLock:int;
call AcquireLock(tid);
cLock := GetColorLocked(tid);
if (cLock <= WHITE)

call SetColorLocked(tid, GRAY);
call ReleaseLock(tid);

}

procedure GetColorNoLock(linear tid:Tid)
returns (cl:int) atomic [...];

procedure AcquireLock(linear tid:Tid)
right [...];

procedure ReleaseLock(linear tid:Tid)
left [...];

procedure GetColorLocked(linear tid:Tid)
returns (cl:int) both [...];

procedure SetColorLocked(linear tid:Tid,
cl: int) atomic [...];

Fig. 1. Write barrier

not be deallocated). Therefore, before
a mutator thread mutates an object A
to point to an object B, the thread
executes a write barrier to check the
color of B. If B is WHITE, the write
barrier darkens B’s color to GRAY to
ensure that the GC does not deallo-
cate B. WB implements the write bar-
rier. The write barrier is only invoked
on allocated objects, thus, colors can-
not be UNALLOC when WB is called. To
simplify exposition, we consider a sin-
gle object whose color is stored in the
shared variable Color. WB first reads
Color without holding a lock, to avoid
when possible, the cost of acquiring
and releasing a lock for each object
encountered by a mutator. If Color <=
WHITE, WB calls the more expensive pro-
cedure WBSlow to re-examine and pos-
sibly update Color while holding the
lock. The annotation yield Color >=
cNoLock is a local invariant expected
to be preserved by the environment
of WB. civl simplifies reasoning about
WBSlow by allowing us to express its
specification as the following atomic
action:

[if (Color <= WHITE) Color := GRAY] This specification indicates that regard-
less of how the environment interferes with its execution, to its caller it appears
as if WBSlow atomically executes the code above.

Per-procedure Simulation, Non-interference via Invariants. The verifi-
cation of WB illustrates a combination of techniques. We first explain how WB’s
post-condition is verified. To see that this task is not trivial, consider a scenario
in which WB, not holding a lock, reads Color and sets cNoLock to GRAY and then
yields. Another thread sets Color to WHITE. WB resumes, but because the local
variable cNoLock is GRAY, does nothing and exits with Color being WHITE, vio-
lating WB’s postcondition. But, in the GC this scenario is not possible. The yield
predicate (location invariant) Color >= cNoLock expresses the fact that other
threads can only modify Color to a higher (darker) value. civl verifies the
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correctness of this location invariant and rules out this undesirable scenario.
Using this location invariant, WB’s pre-condition, and WBSlow’s atomic specifica-
tion, civl is able to verify WB’s post-condition.

In Fig. 1, we suppose for illustration’s sake that WB and WBSlow have slightly
different atomic specifications, one testing for Color == WHITE and the other for
Color <= WHITE. In this case, verifying that the implementation of WB refines
its atomic specification relies on Color not being UNALLOC. Otherwise, WBSlow
would set Color to GRAY whereas WB would leave it unmodified, leading to a
refinement violation. WB’s precondition Color >= WHITE and the location invari-
ant Color >= cNoLock imply that Color is never UNALLOC during the execution
of WB. Given this constraint, civl checks atomicity refinement for WB by verifying
the existence of a particular simulation-relation. Each control path through WB is
analyzed as a sequence of code fragments, from one yield statement to the next.
For each control path through a procedure, exactly one code fragment must be
simulated by the atomic action specification while others do not modify global
state. This refinement proof for WB makes use of (1) correct modeling of envi-
ronment interference by the pre- and post-conditions, and the yield predicate,
and (2) the atomic action specification for the called procedure WBSlow. The
civl verifier automatically computes a logical verification condition capturing
the proof obligations from the body and specification of WB.

Just as the verification of WB builds on the specification of WBSlow, the verifi-
cation of WBSlow builds on other refinement proofs (not shown) of the procedures
called in WBSlow; these procedures are shown at the bottom of the figure. This
example shows only one procedure at this layer. In programs with many proce-
dures with atomic specifications at each layer, civl combines the per-procedure
refinement proofs soundly into a whole-program refinement proof.

Preemptive vs Cooperative Semantics. The verification of WBSlow high-
lights another important feature in civl. Refinement checking is performed on
cooperative semantics in which a yield-to-yield execution fragment of code is
executed atomically. However, in a real execution, control can switch between
threads at any point in the code. A naive modeling of a real execution would
put a yield statement before every instruction in the code. The absence of a
yield statement before every instruction is justified by reasoning about mover
types [17]. The procedures called in WBSlow have the mover types claimed in their
declarations and verified by civl. For example, the mover type of AcquireLock
is right which indicates that it commutes later in time against concurrently
executing environment actions. These mover types are checked by constructing
verification conditions from each pair of atomic actions.

Fig. 2. Yield sufficiency automaton

Given verified mover types for
actions, civl verifies the correctness
of the placement of yield statements
using a novel approach. A yield suffi-
ciency automaton (Fig. 2) encodes all

sequences of atomic actions (of Right, Left, Both and Non-mover types)
and yields for which safety of cooperative semantics is sufficient for safety of
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preemptive semantics. Each “transaction” starts with a sequence of right movers
(or both movers) and ends with a sequence of left movers (or both movers). In
the middle, it can have at most one non mover. Transactions must be separated
by yield statements. civl then interprets the control-flow graph of each pro-
cedure as an automaton with mover types as edge labels. This abstraction for
WBSlow is shown in Fig. 3. civl verifies that this automaton is simulated by the
yield sufficiency automaton using an existing algorithm for computing simulation
relations [24].

The use of commutativity reasoning is optional in civl, but beneficial in
our experience. Commutativity reasoning may be avoided by annotating atomic
action specifications with the mover type atomic and inserting a yield statement

Fig. 3. Abstraction of WBSlow

before every invocation of an atomic action.
In our experience with civl, using more yield
statements, each with an accompanying loca-
tion invariant, can make proofs difficult in two
ways. First, the annotation burden goes up

because sophisticated ghost variables may need to be introduced in the program
semantics.2 Second, the computational cost of the pairwise mover reasoning is
replaced by the cost of pairwise non-interference checks between yield predicates
and concurrently executing atomic actions.

Linear Variables. In Fig. 1, thread identifier (tid) variables are declared linear
to indicate that two threads cannot possess the same thread identifier simultane-
ously. We now explain this feature of civl in more detail using the program in
Fig. 4. This example contains a shared global array a indexed by an uninterpreted
type Tid;
procedure Allocate()

returns (linear tid:Tid);

var a:[Tid]int;

procedure main()
{

while (true) {
var linear tid:Tid := Allocate();
async call P(tid);
yield true;

}
}
procedure P(linear tid: Tid)

ensures a[tid] == old(a)[tid] + 1;
{

var t:int := a[tid];
yield t == a[tid];
a[tid] := t + 1;

}

Fig. 4. Encoding thread identifiers

type Tid representing the set of thread iden-
tifiers. A collection of threads are executing
procedure P concurrently. The identifier of the
thread executing P is passed in as the para-
meter tid. A thread with identifier tid owns
a[tid] and can increment it without dan-
ger of interference. The yield predicate t ==
a[tid] in P indicates this expectation, yet it
is not possible to prove it unless the reason-
ing engine knows that the value of tid in one
thread is distinct from its value in a different
thread.

Instead of building a notion of thread iden-
tifiers into civl, we provide a more primitive
and general notion of linear variables. The
civl type system ensures that values con-
tained in linear variables cannot be dupli-

cated [42]. Consequently, the parameter tid of distinct concurrent calls to P
are known to be distinct; the civl verifier exploits this invariant while checking
2 Location invariants that cannot refer to the state of other threads are known to be

incomplete, both in theory and in practice.
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for non-interference and commutativity. Linearity is general enough to support
much more than just fixed thread identifiers: civl also uses it to express separa-
tion of memory (as is done commonly in separation logic proofs [39]; see [31]) and
to express permissions [7] that may be transferred but not duplicated between
threads. Our verified GC, for example, expresses mutual exclusion during initial-
ization and root scanning by temporarily transferring permissions from mutator
threads to the GC thread.

Variable Hiding. The atomic action specification of WBSlow makes no reference
to the lock variable, although its implementation involves a lock. When verifying
refinement for WBSlow, the lock variable has been hidden. civl allows the pro-
grammer to both introduce and hide variables in each refinement step, thereby
providing the capability to perform data refinement. The ability to introduce
and hide variables and write yield predicates specific to each refinement step
facilitates proofs spanning a large range of abstraction.

3 Verification

In this section, we present our verification method on a core concurrent program-
ming language called civl (Fig. 5). Due to lack of space, we can only provide
an overview of the design of the civl verifier. The full formalization of the lan-
guage and detailed rules for all verification judgments is available in a technical
report [23].

s ∈ Stmt ::= skip | yield e | call A |
call P | async P |
ablock {e} s | s; s |
if le then s else s |
while {e} le do s

F ∈ Frame ::= (P,L, s)

T ∈ Thread ::= (TL,
−→
F )

Prog ∈ Program ::= (ps, as, G,
−→
T )

Fig. 5. Syntax

A civl program Prog contains proce-
dures ps, atomic actions as, global state
G, and threads

−→
T . Each thread T in

−→
T

contains thread-local state TL and stack
frames

−→
F . Each stack frame F in

−→
F con-

tains a procedure name P , procedure-
local state L, and a statement s repre-
senting the code in P that remains to be
executed. Thus, Prog contains all infor-

mation to represent not only the static program written by the programmer
but also the entire state of the program as it executes. The statements in civl
contain the usual constructs such as sequencing, conditional control flow, and
looping. In addition, it contains invocation of procedures (call P ), execution
of atomic actions (call A), and thread creation (async P ). Each atomic action
has a single-state gate predicate and a two-state transition relation. If a thread
executes an atomic action in a state (disjoint union of global, thread-local, and
procedure-local state) where its gate predicate does not hold, the program fails;
otherwise, the state is modified according to its transition relation. The execution
of Prog is modeled as the usual preemptive semantics in which a nondetermin-
istically chosen thread may execute any number of steps. Prog is unsafe if some
execution fails the gate of an atomic action; otherwise, Prog is safe.

Suppose a program Proghi has been proved to be safe. However, it is imple-
mented using atomic actions that are too coarse to be directly implementable.
To carry over the safety of Proghi to a realizable implementation Prog lo , these
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coarse atomic actions must be refined down to lower-level actions. During refine-
ment, a high-level atomic action A is implemented by a procedure P , which is
itself implemented using lower-level atomic actions. In civl, the programmer can
simultaneously refine many atomic actions by specifying a partial function RS
from procedures to atomic actions; Proghi is obtained from Prog lo by replacing
each occurrence of call P for P ∈ dom(RS ) with call RS (P ). The main contri-
bution of this paper is a verification method that allows us to validate such a
refinement from Proghi to Prog lo (or abstraction from Prog lo to Proghi) so that
safety of Proghi implies the safety of Prog lo as well.

While abstracting Prog lo to Proghi , it is often inconvenient to reason about
Prog lo using its preemptive semantics, which allows potential interference at
every control location in a thread from concurrently-executing threads. To make
reasoning more convenient, civl provides the statement yield e, an annotation
used to specify a cooperative semantics for the program. In this semantics, a
thread executes continuously until it reaches a yield statement, at which point
a different thread may be scheduled. To ensure that any reasoning performed
on cooperative semantics is also sound for preemptive semantics, civl exploits
commutativity reasoning. It allows the programmer to specify the commuta-
tivity type of atomic actions in the program—B for both mover, R for right
mover, L for left mover, and N for non mover [17]. The civl verifier checks
the correctness of these commutativity types by verifying each atomic action
pairwise against every atomic action in the program. While it is sound to put
a yield statement before and after every atomic action, the programmer may
omit certain yield statements, e.g., a yield after a right mover or a yield before
a left mover. In general, the Yield Sufficiency Automaton from Fig. 2 encodes
all sequences of atomic actions and yield statements for which reasoning about
cooperative semantics is sound. Given the commutativity types of atomic actions
and the program code annotated with yield statements, the civl verifier checks
modularly for each procedure that its implementation is connected to the yield
sufficiency automaton via a simulation relation [24].

In addition to introducing a control location where interference is allowed
to occur, a yield statement yield e also provides an invariant e to constrain the
environment interference. The invariant e is similar to the location invariant
in the method of Owicki and Gries [38]. It is expected to hold when the exe-
cuting thread reaches the yield statement (sequential correctness) and also be
preserved by concurrently-executing threads (non-interference). Each procedure
is equipped with a precondition, a postcondition, and a set of (potentially) mod-
ified thread-local variables. civl uses these procedure annotations to verify the
sequential correctness of location invariants for each procedure separately. To
verify non-interference, it would suffice to check that each location invariant is
preserved by each atomic action in the program. civl increases the precision of
this check by allowing each location invariant to be preserved across an atomic
block, introduced as the statement ablock {e} s. The invariant e annotating the
atomic block is expected to hold when this statement begins execution and is
verified as part of sequential correctness. The civl type checker checks that the
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statement s inside this atomic block does not have any yield statement or other
atomic blocks inside it. Thus, non-interference of a location invariant e′ against
ablock {e} s is achieved by proving the Floyd-Hoare triple {e ∧ e′}s{e′}.

Having verified sequential correctness and non-interference for location invari-
ants, it remains to verify refinement, i.e., if RS (P ) = A, then the atomic action
A is correctly refined by the procedure P . This requirement means that any path
from entry to exit of P must contain exactly one atomic block that implements
the action A; all other atomic blocks on the path must leave global and thread-
local variables unchanged. To perform this check, the civl verifier introduces
the following fresh local variables in P : (1) a Boolean variable b initialized to
false to track whether an atomic block along the current execution has modified
a global or thread-local variable, (2) variables to capture snapshot of global and
thread-local variables at the beginning of each atomic block. By updating these
auxiliary variables appropriately, the refinement check is reduced to a collection
of assertions introduced into the body of P at the end of atomic blocks and at
the exit of P .

Often, commutativity and non-interference checks require knowledge about
distinctness of local program variables in different threads. For example, in Fig. 1,
to prove that AcquireLock commutes to the right of ReleaseLock, the verifier
must know that the input parameter tid to these atomic actions is different if
they are being executed by different threads. A similar situation arises in Fig. 4,
when attempting to prove that the location invariant t == a[tid] is preserved
by the atomic action a[tid] := t + 1. Information about distinctness of pro-
gram variables in different threads is difficult to provide as a location invariant
whose scope is local to the context of the unique executing thread. As an alter-
native, we exploit reasoning based on a linear type system [42]. The programmer
declares certain variables as linear at input and output interfaces of procedures
and actions. Using this interface information, the civl type system computes
a set of available linear variables at each control location in a procedure. The
availability of a variable may change at an assignment or a procedure call, e.g.,
if y is available just before x := y, then y is not available and x is available
just afterwards. The civl type checker guarantees that the values contained in
available linear variables, across all threads at their respective control locations,
are distinct from each other. This fact is introduced as a logical assumption by
the verifier when performing commutativity and non-interference checks.

The interaction between the linear type system and logical reasoning in civl
is more general than the description above. In civl, the programmer may specify
an arbitrary function Perm from a value to a set of values; the set Perm(v) is
the set of permissions associated with v. The example described in the previous
paragraph corresponds to the special case when Perm(v) = {v}. The civl type
checker enforces a generalization of the distinctness invariant that the permission
sets corresponding to the values in available variables across all threads are
mutually disjoint.
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3.1 Safety Guarantee

We can combine the verification techniques described above to verify the safety
of a program Prog lo . Specifically, we can guarantee that Prog lo is safe (i.e., all
atomic actions will satisfy their gates when run) if the following conditions hold:

1. Proghi is safe when executed with preemptive semantics.
2. Prog lo is a valid refinement of Proghi , according to the rules for refinement

in civl. Specifically, for any atomic action A in Proghi implemented by a
procedure P in Prog lo , any path from entry to exit of P must contain exactly
one atomic block that implements the action A; all other atomic blocks on the
path must leave the global and thread-local state unchanged. Furthermore,
all calls to A in Proghi are replaced by calls to P in Prog lo .

3. The invariants of Prog lo satisfy sequential correctness and non-interference
with respect to cooperative semantics.

4. Prog lo is well-typed with respect to linearity. Specifically, Prog lo does not try
to duplicate any linear variables, and linear variables passed to procedures
calls and atomic actions are available as expected by the type checker.

5. The atomic actions in Prog lo satisfy the pairwise commutativity checks.
6. The yield statements in Prog lo are sufficient, according to the yield sufficiency

automaton in Fig. 2.
7. Any infinite execution of Prog lo must visit a yield statement infinitely often.

By themselves, conditions 1-4 guarantee that Prog lo will be safe when exe-
cuted with cooperative semantics. Conditions 5-7 then additionally ensure that
Prog lo will be safe when executed with preemptive semantics. The technical
report [23], which includes formal definitions of all the conditions for an exten-
sion of the language in Fig. 5, formalizes this safety guarantee into a sound-
ness theorem by establishing a simulation relation between Prog lo and Proghi .
Since the theorem connects the safety of one program’s preemptive semantics to
another program’s preemptive semantics, multiple applications of the theorem
can be chained together to establish the safety of a low-level program: the low-
est level Prog0 is safe because Prog1 is safe, Prog1 is safe because Prog2 is safe,
and so on.

4 Modules

The technical report [23] describes a simple module system built on civl that
allows separate verification of modules, allowing programmers to check a large
program by breaking it into smaller pieces and checking the pieces indepen-
dently. A key challenge for modular verification in civl is the checking of non-
interference and commutativity. Naively, these are whole-program judgments,
quadratically checking all pairs of actions or all pairs of yields and atomic blocks
from an entire program. To check these judgments on a per-module basis rather
for a whole program, we observe that commutativity and non-interference are
trivially satisfied for operations that act on disjoint sets of global variables.
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If an atomic block modifies only variables g1 and g2, it will not interfere with
a location invariant that refers only to variables g3 and g4. More generally, let
each module M own a set of global variables, such that each global variable is
owned by exactly one module, and decree that only M ’s procedures and actions
can access M ’s global variables. Statements in M ’s procedures can only read
and write M ’s own global variables, and M ’s actions and location invariants can
only refer to M ’s own global variables. (On the other hand, procedure assertions
that are not checked for non-interference, such as the e in ablock {e} s, may
mention global variables from other modules, since these assertions can neither
interfere with other modules’ location invariants nor be interfered with by other
modules’ statements.)

Note that ownership can change across refinement layers. For example, a
library module implementing locks may define a variable to represent the abstract
state of a lock; after the lock module is verified at a low layer, another module can
take ownership of the lock variable in a higher layer (see [23] for a detailed exam-
ple of ownership transfer across three layers, from a lock module to a datatype
module to a client module).

5 Implementation

We have implemented the method described in this section as a conservative
extension of the Boogie [4] language and verifier. Our implementation pro-
vides new language primitives for linear variables, asynchronous and parallel
procedure calls, yields, atomic actions as procedure specifications, expressing
refinement layers, and hiding of global variables and procedures. At its core,
Boogie is an unstructured language comprising code blocks and goto statements.
Our implementation handles the complexity of unstructured control flow. To
simplify the exposition, our formalization uses Floyd-Hoare triples to present
sequential correctness and annotated atomic code blocks to present refinement
and non-interference checks. However, our implementation is considerably more
automated. All the annotations, except those at yields, loops, and procedure
boundaries, are automatically generated using the technique of verification con-
ditions [5]. Annotated atomic code blocks are also inferred automatically. Non-
interference checks are collected as inlined procedures invoked at appropriate
places within the code of a procedure for increased precision.

We automated the simulation relation check used for yield sufficiency in
Sect. 3 by adapting an algorithm by Henzinger et al. [24] for computing the
similarity relation of labeled graphs. The complexity of the algorithm is O(n∗m),
where n and m are the number of control-flow graph nodes and edges. In practice,
this part of the verification is fast.

A large proof usually comprises multiple layers of refinement chained together.
Our implementation allows the specification of multiple views of a program in
a single file by using the mechanism of layers. The programmer may attach a
positive layer number to each annotation and procedure; version i of the program
is constructed from annotations labeled i and procedures labeled at least i.
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We have implemented a type checker to make sure that layer numbers are used
appropriately, e.g., it is illegal for a procedure with layer i to call a procedure
with layer j greater than i.

6 Experience

The civl verifier has been under development for around two years. Over that
period, we have developed a collection of 32 benchmarks, ranging in size from
17 to 539 LOC, to illustrate various features of civl and for regression testing
as we evolved the verifier. In addition to microbenchmarks, this collection also
includes standard benchmarks from the literature such as a multiset implemen-
tation [14], the ticket algorithm [15], Treiber stack [27], work-stealing queue [6],
device cache [13], and lock-protected increment [19]. The civl verifier is fast; the
entire benchmark set verifies in 20 s on a standard 4-core Windows PC (2.8GHz,
8GB) with no benchmark requiring more than a few seconds.

6.1 Garbage Collector

We have used civl to design and verify a realistic concurrent mark-sweep garbage
collection (GC) algorithm (available at [22]). In particular, although our algo-
rithm is based on an earlier algorithm by Dijkstra et al. [10], it extends the ear-
lier algorithm with various modern optimizations and embellishments to improve
generality and performance. These extensions include lower write barrier over-
head, phase-based synchronization and handshaking, and coordination between
the GC and mutator threads during root scanning; our use of linearity aids the
proof of root scanning, while our rely-guarantee encoding aids management of
colors inside the write barrier (which is similar to the barrier in Sect. 2). Further-
more, our encoding of the algorithm in civl spans a wide range of abstraction,
from low-level memory operations all the way up to high-level specifications; we
used six layers of refinement to help hide low-level details from the high-level
portions of the verification.

We believe that civl’s combination of features makes practical, for the first
time, verification across such a wide range of abstraction:

– The GC’s lowest layers relied primarily on reduction to prove that operations
on concurrent data structures and synchronization operations appear atomic
to higher layers.

– The GC’s higher layers relied primarily on invariant-based non-interference
reasoning. This reasoning was simplified because reduction already made
lower-layer operations atomic, reducing the amount of interference between
higher-layer operations. In addition, the use of location invariants made cer-
tain layers of the proof more manageable compared to an earlier effort verifying
the same GC where we used rely-guarantee reasoning and auxiliary variables
to reason about non-interference.
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– Linear variables were used throughout the proof to model the distinct thread
identifiers for the garbage collector thread and mutator threads, but were
most instrumental in expressing mutual exclusion during initialization and
during root scanning. In initialization and root scanning, the mutator threads
temporarily donate a fraction of their linear permissions to the GC thread.
The distinctness invariant from Sect. 3 guarantees that the mutator threads
and GC threads cannot simultaneously possess the same linear permissions; we
leverage this guarantee to prove non-interference of mutator and GC actions
during initialization and root scanning.

civl’s support for refinement also enabled concise specifications of the GC’s
correctness: a correct GC must implement Allocate, ReadField, and WriteField
actions that appear to act atomically, even though the implementations of these
operations actually execute concurrently with the GC thread and with other
program threads. The specification states that Allocate atomically adds new
objects to the heap, while ReadField and WriteField read and write heap object
fields. Although the GC’s Mark and Sweep code constitutes most of the GC code,
they are hidden in the high-level specification; they have detailed correctness
specifications in the middle layers of the proof, but the most important point
at the high level is that their work not interfere with Allocate, ReadField, and
WriteField. In particular, Mark must coordinate with WriteField’s write barrier,
and Sweep must not remove objects reachable by ReadField and WriteField.

Overall, our GC implementation consists of about 2100 lines of Boogie code.
The verification takes 60 s on the same PC used for microbenchmarks. The bulk
of this time, 54 s, is taken by the verification of sequential correctness and non-
interference. The checks for linear variables, yield sufficiency, and commutativity
take the rest of the time and are insignificant in comparison.

7 Related Work

Our work is the first to provide a tool and theory to support automated, modu-
lar whole-program refinement through multiple layers, as distinct from existing
work on single-layer atomicity refinement between procedure implementations
and specifications. civl combines a number of techniques in a novel manner to
decompose the refinement task following the syntactic structure of a program.
Below, we first contrast civl with refinement verification techniques, and then
with tools and techniques for reasoning about concurrent programs in general.

7.1 Refinement-Oriented Verification

Atomic action specifications have been explored by the calvin [18,21] verifier.
civl carries out refinement verification on a procedure body with cooperative
semantics as enabled by movers types and reduction. calvin attempts to ver-
ify refinement directly on the preemptive semantics, making only limited use
of movers at the lowest-level representation. calvin, unlike civl, does not sup-
port location invariants and linear variables but incorporates rely-guarantee rea-
soning. civl supports both location invariants or rely-guarantee reasoning, and
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either technique can be used to prove non-interference. However, in certain cases,
rely-guarantee reasoning requires use of auxiliary (shared) variables and makes
interactive proofs difficult as was the case in our GC proof.

qed [13] is a simplifier for concurrent programs and is close in spirit to the
refinement-oriented approach of civl. A key distinction between civl and qed
is the fact that a proof step in qed is a small rewrite in the concurrent program
that must be justified by potentially expensive reduction and invariant reasoning.
In qed, procedures can be proven atomic only one procedure at a time, and only
by transforming their bodies by reduction to be yield free. The number of small
proof steps directly affect both programmer and computer effort. By contrast,
civl supports large proof steps, in each of which the bodies of several procedures
are automatically replaced by atomic actions, thereby lowering the cost of both
interaction and automation. The non-interference reasoning in qed is even more
limited than calvin. qed supports only global invariants and does not support
rely-guarantee reasoning or linear variables.

Liang et al. [34] present a method for verifying that procedure bodies refine
atomic specifications The key verification approach is rely-guarantee reasoning
and the refinement (simulation) relation between a procedure and its specifica-
tion is constrained so it is preserved under parallel composition. No tool support
is provided. Authors present a (paper) GC proof, which is limited in scope com-
pared to ours, as their proof corresponds to a few layers of our proof. In particu-
lar, the GC is not refined down to individual atomic memory accesses. Since this
work uses different languages to describe the high-level and low-level programs, it
is not immediately possible to carry out a multi-level stepwise refinement proof.

Turon and Wand [40] use ownership disciplines and separation logic to verify
refinement of atomic specifications by concurrent data structure implementa-
tions. Rely-guarantee reasoning is supported to provide compositionality and
non-interference arguments. This work targets a single refinement step between
atomic specifications for methods and their implementations. No tool support
for this verification method is provided.

Verifying linearizability of concurrent data structures (see, e.g., [12,25]) can
be viewed as an instance of one-level of refinement in our setting. civl can
be used for mechanical verification of linearizability, as we did for the Treiber
stack. Tools and techniques specific to verifying linearizability cannot be easily
generalized for stepwise refinement proofs through multiple levels.

Refinement proofs between implementations and specifications of protocols
have been investigated using the TLA+ [32] specification language. Composi-
tional refinement proofs [1] have also been investigated in this context. Modu-
lar refinement proofs for hardware systems have been investigated extensively
(e.g., [11,26]) using the SMV [36] and Mocha [3] model checking tools. To verify
a concurrent, shared-memory program using such tools, one must encode the
program semantics as a state-transition system and express verification goals
in terms of this system. For concurrent, shared-memory software, civl enables
reasoning on the structured, imperative multithreaded program text rather than
a logic description of the program’s state-transition relation.
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7.2 Reasoning About Concurrency

In this section, we discuss foundational techniques for combating the complexity
of concurrent program verification. civl and refinement techniques discussed in
the previous section have common ideas with tools and formalisms discussed in
this section, however, the latter primarily target verification of a single program
rather than refinement. Refinement in civl is orthogonal to these techniques,
which can be aided by civl’s ability to connect a complex concurrent program
to a simpler abstraction.

VCC [8] is a tool for verifying concurrent C programs. Chalice [33] is a lan-
guage and modular verification tool for concurrent programs. VCC does not
support refinement and Chalice does so only for sequential programs. VCC and
Chalice base their invariant reasoning on objects, object ownership, and type
invariants. Invariant reasoning in civl is more primitive and based on predi-
cates in yield statements. Although the approach in VCC and Chalice is more
convenient when applicable, civl’s approach is more flexible. VCC and Chal-
ice can reason sequentially about objects exclusively owned by a thread; civl
accomplishes the same using linear variables. Neither VCC nor Chalice support
movers and reduction reasoning.

Concurrent separation logic [37] reasons about concurrency without explic-
itly checking for non-interference between threads. Recently, tools based on this
logic that blend in explicit non-interference reasoning (but without support for
reduction and mover reasoning) have been developed [16,41]. civl’s combination
of interference checking and linear variables is an extreme example of this trend,
is very general and technique-agnostic. We supply very primitive abstractions
and let programmers mix and match these abstractions freely to encode the
non-interference reasoning style of their choice.
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