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Abstract Various shapes of rogue waves are discussed within the framework of the
mechanism of nonlinear focusing of transient frequency modulated wave groups. A
particular attention is paid to the formation of troughs in front of high crests. The
conditions of appearance of the “three sisters” are discussed too. It is important to
emphasize that this mechanism is not too sensitive to the variation of the shape of
transient frequency modulated wave groups. The variable-polarity shape of a rogue
wave is more probable than only one crest or one trough, because the generation of
the latter ones needs a specific phase relation between individual waves in the group.

1 Introduction

The interest in occurrence of abnormal huge waves on the sea surface has arisen a
long time ago and the physical mechanisms generating these giant water waves are
now well understood and documented (Kharif and Pelinovsky 2003; Slunyaev et al.
2013). Rogue waves are observed everywhere, both in deep and shallow waters and
sometimes even on beaches. The theoretical background for internal rogue waves
had been done in (Grimshaw et al. 2010a, b; Talipova et al. 2011). The shapes of
rogue waves are various. Sometimes they look like solitary waves, sometimes they
appear as a group of waves (the “three sisters”) or as a wall of water (Mallory 1974;
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Fig. 1 Rogue wave collision with the “Taganrorsky Zaliv” (from the book by Lavrenov 2003)

Fig. 2 The Draupner New
Year wave (from the paper
by Haver and Jan Andersen
2000)
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Torum and Gudmestad 1990; Olagnon and Athanassoulis 2001; Chien et al. 2002;
Rosenthal 2003). In some descriptions (see, Lavrenov 2003), a long shallow trough
occurs in front of a very high crest (Fig. 1), and such a wave can be very dangerous
for shipping.

Indeed, there is no unique representation of rogue wave shapes. In theory, until
now main attention has been paid to the possible values reached by the amplitude
or height of freak waves, but not to their shapes. One attempt to explain the shape
of the Draupner New Year wave (Fig. 2) from various nonlinear water wave theories
has been made in the paper by Walker et al. (2004).

Here, we discuss theoretical shapes of rogue waves in a basin of moderate depth
due to the focusing of transient wave groups. As it is discussed in a review paper
(Kharif and Pelinovsky 2003), various mechanisms of wave group focusing may be
suggested by using (i) water wave amplitude and frequency variations in space due
to wind action, (ii) nonlinear modulational instability, and (iii) sea current or sea
bottom inhomogeneity. The simplest explanation of rogue wave occurrence due to
transient group focusing may be described as follows (Kharif et al. 2001; Slunyaev
et al. 2002). If initially short wave groups are located in front of longer wave groups
having larger group velocities, then during the stage of evolution, longer waves will
overtake shorter waves. A huge wave can occur at some fixed time because of the
superposition ofwavesmerging at a given location. Afterwards, the longerwaveswill
be in front of the shorter waves and the amplitude of the highest wave will decrease.
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Such a mechanism has been reproduced in various laboratory tanks (Baldock and
Swan 1996; Johannessen and Swan 2001; Brown and Jensen 2001; Clauss 2002;
Shemer et al. 2006; Giovanangeli et al. 2005; Touboul et al. 2006; Kharif et al.
2008).

The elements of the nonlinear dispersive theory of wave focusing are given in
Sect. 2 and the results of the numerical model are described in Sect. 3.

2 Theoretical Model

The dynamics of nonlinear long surface water waves on constant depth may be
described by the Korteweg-de Vries equation (Dingemans 1996)
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where η is the water surface elevation, h is the undisturbed water depth, c = √
gh is

the linear speed of long surface wave and g is the gravity acceleration. Equation (1)
may be reduced to dimensionless form (3) by the following transformations (2)
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The effective process to generate transient wave group focusing into a rogue
wave was suggested in a recent paper (Pelinovsky et al. 2000). It is based on the
invariance of the Korteweg-de Vries equation (3) with respect to reversal of time
and abscissa. It means that we may choose the expected form of freak wave ζfr(x)

as the initial condition for Eq. (3) and solve it for any time t = T . Solutions found
analytically or numerically after reversal of abscissa ζ(−x) describes the wave train
which evolution may lead to the occurrence of waves of abnormal amplitude with
the chosen shape ζfr(x) and at time t = T . From Eq. (3) solved within the framework
of a deterministic approach, with zero boundary conditions when |x | goes to ∞ and
the shape of the abnormal wave described by positive pulse with amplitude A0 and
length L , we show that the process is controlled by the Ursell parameter (Kharif et al.
2000). Furthermore, it is shown in the paper by Pelinovsky et al. (2000) that for a
single rogue wave the Ursell parameter satisfies the following condition

Ur = A0L2 � 1 (4)

The very steep wave appears due to the focusing of a group of waves of moderate
amplitude. For the sake of simplicity, this wave may be approximated by the δ-
function
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ςf(y) = Qδ(y). (5)

The coefficient Q in (5) is equal to wave “mass”

Mf =
∞∫

−∞
ςf(y)dy = Q. (6)

The potential energy of this wave is infinite formally. Within the framework of
equation (3)whichmay be solved by using themethod of inverse scattering transform
(Drazin and Johnson 1993), the delta pulse (5) evolves into a solitary wave

ςs = Assech
2 [

γ (y − (1 + As/2)τ )
]
, (7)

with dimensionless amplitude As and inverse width γ
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4
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√
3

4
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4
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There is a dispersive tail spreading in space and damping in time. The solitary wave
mass Ms and its energy Es are conserved in time and equal accordingly to

Ms = As

γ

∞∫
−∞
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s
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s

3γ
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We emphasize that the solitary wave mass is larger than twice the rogue wave mass,
therefore incipient dispersive tail has negative mass

Mt = −Q. (11)

The energyof dispersive tail goes to infinity also as the energyof the initial delta pulse.
Hence, if the solitary wave is deleted from the wavefield, the energy of dispersive tail
is large enough to produce a wave of abnormal amplitude. Since dispersive tail mass
is negative, it is reasonable to assume that the deep negative trough prevails in the
rogue wave generation. Dispersive wave tail, especially with small amplitude, within
the framework of the Korteweg-de Vries equation, evolves like the Airy function,
and because its mass Mt , accordingly to (11), is proportional to the mass of expected
roguewave Q, thewaves in the dispersive tail contain the information about both time
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(or position) of rogue wave occurrence and rogue amplitude due to self-similarity of
the Airy function.

When the initial rogue wave disturbance has negative polarity, solitary waves are
not generated irrespective of the Ursell parameter value, and the whole energy goes
into damping dispersive wave train. Let us mention that within the framework of
an idealized problem, solitary waves prevent the formation of rogue waves whose
amplitude has to be higher not only than the amplitude of the dispersive tail but also
higher than solitary wave amplitudes, constant in time. Hence, it is reasonable to
suggest that without solitary waves into dispersive tail the formation of rogue wave
of variable-polarity is more probable. In this case the condition about the Ursell
parameter is satisfied.

3 Numerical Model

The numerical integration of the Korteweg-de Vries equation (3) is based on a fi-
nite difference scheme which satisfies the Courant criterion. The main goal of the
numerical simulations is to analyze the conditions of variable-polarity rogue wave
generation from transient wave groups without solitary waves.

FollowingPelinovsky et al. (2000),wegenerate numerically transientwavegroups
from a short Gaussian pulse given by Af exp(−y2/L2). The corresponding Ursell
parameter is sufficiently small. The transient group corresponds to a solitary wave
plus a damping dispersive wave train. After reverse of abscissa this transient wave
group focuses again into the rogue wave with the Gaussian pulse shape. This process
is shown in Fig. 3 for two values of the Gaussian pulse amplitude 0.2 and 0.4 and the
same width L = 0.55. In this case the rogue wave occurs at τ = 2000. Amplitudes
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Fig. 3 Transient wave groups (a), leading to the formation of a Gaussian pulse of positive polarity
(b) with amplitude values 0.2 (black) and 0.4 (red). The width is 0.55
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of generated rogue waves in both cases (Fig. 3b) are more than 4 times larger than
the amplitude of the corresponding solitary waves in initial wave transient groups
(Fig. 3a), and it is more than the criterion needed for the freak wave occurrence: the
amplitude of the freak wave has to be more than twice the amplitude of background
waves.

Note that amplitudes of generated solitary waves in both runs differ from one
to another by a factor 4 (0.025–0.092), whereas the amplitudes of dispersive tails
differ by a factor 2. So, this simple numerical experiment confirms our theoretical
conclusions that influence of amplitude of the dispersive tail on the amplitude of the
rogue wave is strong (practically linear when the Ursell parameter is very weak).

Additional numerical simulations were run, corresponding to truncated transient
wave groups: the solitary wave has been ignored. Hence, we consider the mechanism
of rogue wave formation directly from the dispersive tail only. Results of these runs
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Fig. 4 a Initial dispersive wave train; b rogue wave generated by dispersive focusing; c initial wave
train where one negative half-wave is deleted; d rogue wave generated by focusing of this wave
train
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are shown in Fig. 4. Due to dispersive focusing of the tail (Fig. 4a), the variable-
polarity high-amplitude wave is generated (Fig. 4b) and its height (from trough to
crest) is equal to 0.4 that is the same height than that of the rogue wave generated
from the full wave group including the solitary wave. The excess of wave height
above the initial height of dispersive tail is about 6.7, so such a wave satisfies the
amplitude criterion of rogue wave occurrence. It is evident that the negative trough of
the rogue wave is longer than the positive crest, and the negative total mass described
into Sect. 2 is conserved.

So the evolution of the dispersive tail allows us to explain the appearance of the
long trough (which has a specific shape within the framework of an idealized model)
ahead of the positive pulse as it is described in the book by Lavrenov (2003).

The amplitude of oscillations in the dispersive tail varies significantly with wave
position, and the mass distribution here is very nonuniform. So, if we delete the last
high-energy negative half-wave (Fig. 4c), themass of the tail ismodified significantly,
and the rogue wave which focuses from such a tail after reversing of abscissa consists
of one high peak and moderately deep troughs (Fig. 4d). It is interesting to note that
the wave shape in Fig. 4d is similar to the New Year wave (Fig. 2). Despite the fact
that the rogue wave height becomes smaller (0.33 against 0.4 in the previous case),
the excess of wave height above the initial height of the dispersive tail is about 6.7 as
in the previous case. Thus, the mass of dispersive wave train influences significantly
the shape of the rogue wave but in any case we obtain the variable-polarity rogue
wave. A second series of numerical simulations has been performed corresponding
to a Gaussian pulse of negative polarity. Its focusing leads to occurrence of abnormal
deep trough on the sea surface (Fig. 5). It is well known that during the evolution of
such a pulse, solitary waves do not occur and the shape of the transient wave group
is close to the Airy function profile, especially for small values of the amplitude.
The maximal wave height (from trough to crest) in the tail in Fig. 4a is 0.1, while the
pulse amplitude is 0.2. So, the amplitude criterion of rogue wave is satisfied in this
case too.
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Fig. 5 a Initial wave train, b its transformation into a Gaussian pulse of negative polarity
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Fig. 6 a Initial wave train, b transformation into “three sisters”

The removal of back long negative half-wave from the wave train is shown in
Fig. 5a (see Fig. 6a). The generation of a trough in front of the high positive pulse
is observed (Fig. 6b). However, in this situation the trough with larger amplitude is
behind the crest and following crests also. This is close to the wave packet often
called in the literature as “three sisters.” The decrease in elevation between the first
crest and following trough is equal to 0.33 that is more than three times the height
of the initial dispersive wave train, and the amplitude criterion is satisfied. Thus,
our assumption that any dispersive wave train without solitons may generate the
variable-polarity rogue wave is confirmed by the evolution of this class of transient
wave group also.

For the third series of numerical experiments, the rogue wave generation from a
transient wave group has been chosen as a wave with a shape close to that shown
in the book by Lavrenov (2003) (see Fig. 1). For this case, the solitary wave and
dispersive wave tail used are shown in Fig. 6a. The evolution of this wavefield is the
chosen “Lavrenov’s” rogue wave (Fig. 7b). We fixed its amplitude large enough to
obtain a decrease in the elevation of the initial wave packet (Fig. 7a) more than three
times.

The main characteristic feature observed in the wavefield of the dispersive train in
comparison with cases shown above, is a nonmonotonic modulation which may be
interpreted as an almost linear interference of both wave trains generated by positive
and negative parts of initial rogue wave in the direct simulation.

Amore realistic situation has been suggested for the fourth series of runs. This sit-
uation is closed to experimental results obtained in the Hannover tank and described
by Shemer et al. 2006. A dispersive wave tail shown in Fig. 8a, has been obtained
from the wave packet given in Fig. 4a multiplied by a Gaussian envelope Agexp
(–(y–b)2/L2), where Ag = 1, b = 800, L = 200. Evolution of this packet also leads
to the generation of the “three sisters” (Fig. 8b) and the maximal wave height of this
group is ten times larger than the maximal height of the initial wave packet.
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Fig. 7 a Initial wave packet, b transformation into “Lavrenov’s” wave
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Fig. 8 a Initial wavefield, b transformation into “three sisters”

4 Conclusions

Within the framework of nonlinear-dispersive mechanism, relevant variety of shapes
of rogue waves may be obtained, including the “Lavrenov’s” wave which consists
of a huge crest and a long trough in front of it. It is important to emphasize that
this mechanism is not too sensitive to the variation of the shape of transient wave
groups. The optimal focusing of transient wave groupswhich requires a special phase
relation gives the best conditions for rogue wave occurrence with huge amplitude.
Nevertheless, the amplitude criterion is satisfied for conditions of strongdeformations
of the wave group, initially leading to optimal focusing, as it is shown in this work. It
is clear from this simple theory that we can always get any natural form of abnormal
wave. Within the framework of this model, the generation of the “Lavrenov’s” wave
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and the “three sisters” is of equal probability. From our point of view, today in situ
data of abnormal waves does not mark out any preferable shapes of rogue waves.
The question about the more probable shapes of abnormal wave is an open question.
It seems that the shape of a rogue wave in the form of a crest and a through is more
probable than only one crest or only one trough, because the generation of the latter
ones needs a specific phase relation. In future, we will study the shapes of rogue
waves within the framework of direct numerical simulations of random wind wave
fields.
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