
Symbolic Computation for Nonlinear
Wave Resonances

E. Tobisch (Kartashova), C. Raab, Ch. Feurer, G. Mayrhofer and W. Schreiner

Abstract Extreme ocean waves are characterized by the energy concentration in
a few chosen waves/modes. Frequency modulation due to the nonlinear resonances
is one of the possible processes yielding the appearance of independent wave clus-
ters which keep their energy. Energetic behavior of these clusters is defined by (1)
integer solutions of the resonance conditions, and (2) coupling coefficients of the
dynamical system on the wave amplitudes. General computation algorithms are pre-
sented which can be used for arbitrary three-wave resonant system. Implementation
in Mathematica is given for planetary ocean waves. Short discussion concludes the
paper.

1 Introduction

Resonance is a common thread which runs through almost every branch of physics;
without resonance we would not have radio, television, music, etc. Resonance causes
an object to oscillate; sometimes the oscillation is easy to see (vibration in a guitar
string), but sometimes this is impossible without measuring instruments (electrons
in an electrical circuit). A well-known example with Tacoma Narrows Bridge (at the
time it opened for traffic in 1940, it was the third longest suspension bridge in the
world) shows how disastrous resonances can be: on the morning of 7 November,
1940, the four-month-old Tacoma Narrows Bridge began to oscillate dangerously up
and down, tore itself apart and collapsed. Although designed for winds of 120mph,
a wind of only 42mph caused it to collapse. The experts did agree that somehow

E. Tobisch (Kartashova) (B)

Institute for Analysis, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria
e-mail: Lena.Kartashova@risc.uni-linz.ac.at

C. Raab
Radon Institute for Computational and Applied Mathematics (RICAM), Johannes Kepler
University Linz, Altenbergerstr. 69, 4040 Linz, Austria

Ch. Feurer · G. Mayrhofer · W. Schreiner
Research Institute for Symbolic Computation (RISC), Johannes Kepler University Linz,
Altenbergerstr. 69, 4040 Linz, Austria

© Springer International Publishing Switzerland 2016
E. Pelinovsky and C. Kharif (eds.), Extreme Ocean Waves,
DOI 10.1007/978-3-319-21575-4_12

203

204 E. Tobisch (Kartashova) et al.

the wind caused the bridge to resonate, and nowadays, wind tunnel testing of bridge
designs is mandatory.

Another famous example is the experiments of Tesla who studied in 1898 experi-
mentally vibrations of an iron column and noticed that at certain frequencies specific
pieces of equipment in the room would start to jiggle. Playing with the frequency
he was able to move the jiggle to another part of the room. Completely fascinated
with these findings, he forgot that the column ran downward into the foundation
of the building, and the vibrations were being transmitted all over Manhattan. The
experiments had started sort of a small earthquake in his neighborhood with smashed
windows, swayed buildings, and panicky people in the streets. For Tesla, the first
hint of trouble came when the walls and floor began to heave (Cheney 1989). He
stopped the experiment as soon as he saw police rushing through the door.

The difference between resonances in a human made system and in some natural
phenomena is very simple. We can change the form of a bridge and stop the exper-
iment by switching off electricity but we can not change the direction of the wind,
the form of the Earth atmosphere, or the sizes of an ocean. What we can try to do
is to predict drastic behavior of a real physical system by computing its resonances.
While linear resonances in different physical systems are comparatively well studied,
to compute characteristics of nonlinear resonances and to predict their properties is
quite a nontrivial problem, even in the one-dimensional case. Thus, the notorious
Fermi-Pasta-Ulam numerical experiments with a nonlinear 1D-string (carried out
more then 50 years ago) are still not fully understood (Berman and Israilev 2005).
On the other hand, nonlinear wave resonances in continuous 2D-media like ocean,
space, atmosphere, plasma, etc. are well studied in the frame of wave turbulence the-
ory (Zakharov et al. 1992) and provide a sound basis for qualitative and sometimes
also quantitative analysis of corresponding physical systems. The notion of nonlinear
wave interactions is crucial in the wave turbulence theory (Zakharov et al. 2004).
Excluding resonances allows to describe a nonlinear wave system statistically, by
wave kinetic equations and power-law energy spectra of turbulence (Zakharov and
Filonenko 1967), and to observe this behavior in numerical experiments (Pushkarev
and Zakharov 2000). Direct computations with Euler equations (modified for gravity
water waves, Zakharov et al. 2005) show that the existence of resonances in a wave
system yields some additional effects which are not covered by the statistical descrip-
tion. The role of resonances in the evolution of water wave turbulent systems has
been studied profoundly by a great number of researchers. One of the most important
conclusions (for gravity water waves) made recently in Tanaka (2007) is the follow-
ing: The four-wave resonant interactions control the evolution of the spectrum at
every instant of time, whereas non-resonant interactions do not make any significant
contribution even in a short-term evolution.

The behavior of a resonant wave system can be briefly described (Kartashova
1998) as follows: (1) not all waves take part in resonant interactions, (2) resonantly
interacting waves form a few independent small wave clusters, such that there is no
energy flow between these clusters, (3) including some small but non-zero resonance
width into consideration does not destroy the clusters. A model of laminated wave
turbulence (Kartashova 2006a) allows to describe statistical and resonant regimes

Symbolic Computation for Nonlinear Wave Resonances 205

simultaneously while methods to compute resonances numerically are presented
in Kartashova (2006b) (idea) and in Kartashova and Kartashov (2006, 2007a, b)
(implementation). Our main purpose here is to study the possibilities of a sym-
bolic implementation of these general algorithms using the computer algebra system
Mathematica.

The implemented software canbe executedwith local installations ofMathematica
and the corresponding method libraries; however, we have also developed a Web
interface that allows to run the methods from any computer in the Internet via a
conventional Web browser. The implementation strategy is simple and based on
generally available technologies; it can serve as a blueprint for other mathematical
software with similar features.

We take as our principal example the barotropic vorticity equation in a rectangular
domain with zero boundary conditions which describes oceanic planetary waves,
and show how (a) to compute interaction coefficients of corresponding dynamical
systems, (b) to solve resonant conditions, (c) to construct the topological structure
of the solution set, and (d) to use the software via a Web interface over the Internet.
A short discussion concludes the paper.

2 Mathematical Background

Wave turbulence takes place in physical systems with nonlinear dispersive waves
that are described by evolutionary dispersive NPDEs. The role of the evolutionary
dispersive NPDEs in the theoretical physics is so important that the notion of disper-
sion is used for a physical classification of PDEs into dispersive and non-dispersive.
The well-known mathematical classification of PDEs into elliptic, parabolic, and
hyperbolic equations is based on the form of equations and can be applied to the
second-order PDEs on an arbitrary number of variables. On the other hand, the phys-
ical classification is based on the form of solutions and can be applied to PDEs of
arbitrary order and arbitrary number of variables. In order to construct the physical
classification of PDEs, two preliminary steps are to bemade (1) to divide all variables
into two groups—time- and space-like variables (t and x correspondingly); and (2)
to check that the linear part of the PDE under consideration has a wave-like solution
in the form of Fourier harmonic

ψ(x, t) = A exp i[kx − ωt],

with amplitude A, wavenumber k, and wave frequency ω. The direct substitution of
this solution into the linear PDE shows then that ω is an explicit function on k, for
instance,

ψt + ψx + ψxxx = 0 ⇒ ω(k) = k − 5k3.

206 E. Tobisch (Kartashova) et al.

If ω as a function on k is real-valued and such that d2ω/dk2 �= 0, it is called
a dispersion function and the corresponding PDE is called evolutionary dispersive
PDE. If the dimension of the space variable x is more that 1, i.e. �x = (x1, . . . , x p),

�k is called the wave-vector and the dispersion function ω = ω(�k) depends on
the coordinates of the wave-vector. This classification is not complementary to a
standard mathematical one. For instance, though hyperbolic PDEs normally do not
have dispersive wave solutions, the hyperbolic equation ψt t −α2ψxx −β2ψ = 0 has
them.

In the huge amount of application areas of NPDEs (classical and quantum physics,
chemistry, medicine, sociology, etc.) a nonlinear term of the corresponding NPDE
can be regarded as small. This is symbolically written as

L(ψ) = −εN (ψ) (1)

where L and N are linear and nonlinear parts of the equation correspondingly and ε is
a small parameter defined explicitly by the physical problem setting. It can be shown
that in this case the solution ψ of (1) can be constructed as a combination of the
Fourier harmonics with amplitudes A depending on the time variable and possessing
two properties formulated here for the case of quadratic nonlinearity:

• P1. The amplitudes of the Fourier harmonics satisfy the following system of non-
linear ordinary differential equations (ODEs) written for simplicity in the real
form

Ȧ1 = α1A2A3

Ȧ2 = α2A1A3 (2)

Ȧ3 = α3A1A2

with coefficients α j being functions on wavenumbers;
• P2. The dispersion function and wavenumbers satisfy the resonance conditions

{
ω(�k1) ± ω(�k2) ± ω(�k3) = 0,
�k1 ± �k2 ± �k3 = 0.

(3)

The transition from (1) to (2) can be performed by some standard methods (for
instance, multi-scale method Nayfeh 1981) which also yields the explicit form of
resonance conditions.

Keeping in the mind our main problem—to find a solution of (1)—one has to take
care of the initial and boundary conditions. This is done in the following way: the
case of periodic or zero boundary conditions yields integer wavenumbers, otherwise
they are real. Correspondingly, one has to find all integer (or real) solutions of (3),
substitute corresponding wavenumbers into the coefficients α j and then look for
the solutions of (2) with given initial conditions.

Symbolic Computation for Nonlinear Wave Resonances 207

One can see immediately a big problem which appears as soon as one has to solve
a NPDE with periodical or zero boundary conditions. Indeed, dispersion functions
take different forms, for instance,

ω2 = k3, ω2 = k3 + αk, ω2 = k, ω = α/k, ω = m/n(n + 1) · · · , etc.

with �k = (m, n), k = √
m2 + n2, and α being a constant. This means that (3)

corresponds to a system of Diophantine equations of many variables, normally 6–9,
with cumulative degrees 10–16. Those have to be solved usually for the integers of
the order ∼103, which means that computations have to be performed with integers
of order 1048 and more. Original algorithms to solve these systems of equations
have been developed based on some profound results of number theory (Kartashova
2006b) and implemented numerically Kartashova and Kartashov (2006, 2007a, b).

Further on, an evolutionary dispersive NPDE with periodic or zero boundary
conditions is called three-term mesoscopic system if it has a solution of the form

ψ̃ =
∞∑
j=1

A j exp i[�k j �x j − ωt]

and there exists at least one triple {A j1, A j2 , A j3} ∈ {A j } such that P1 and P2 keep
true with some nonzero coefficients α j , α j �= 0 ∀ j = 1, 2, 3.

3 Equations for Wave Amplitudes

3.1 Method Description

The barotropic vorticity equation describing ocean planetary waves has the form
(Kartashova and Reznik 1992)

∂
ψ

∂t
+ β

∂ψ

∂x
= −εJ (ψ,
ψ) (4)

with boundary conditions

ψ = 0 for x = 0, Lx ; y = 0, L y .

Here β is a constant called Rossby number, ε is a small parameter and the Jacobean
has the standard form

J (a, b) = ∂a

∂x

∂b

∂y
− ∂a

∂y

∂b

∂x
. (5)

208 E. Tobisch (Kartashova) et al.

First we give a basic introduction on how a PDE can be turned into a system of ODEs
by a multi-scale method. Using operator notation, our problem (4) is viewed as a
perturbed version of the linear PDE L(ψ) = 0. We pick a solution of this equation,
say ψ0, which is a superposition of several waves ϕ j , i.e. ψ0 = ∑s

j=1 A jϕ j , each
being a solution itself. To construct a solution of the original problem, we make the
amplitudes time-dependent. As the size of the nonlinearity in (1) is just of order ε,
the amplitudes will vary only on time-scales 1/ε times slower than the waves. Hence
we define an additional time-variable t1 := tε called “slow time” to handle this time
scale. So we look for approximate solutions of (1) that have the following form

ψ0(t, t1, �x) =
s∑

j=1

A j (t1)ϕ j (�x, t),

which for ε = 0 is an exact solution. The exact solution of the equation is written as
power series in ε aroundψ0, i.e.,ψ = ∑∞

k=0 ψkε
k . In our computation, it is truncated

up to maximal order m which in our case is m = 1, i.e.

ψ(t, t1, �x) = ψ0(t, t1, �x) + ψ1(t, t1, �x)ε.

Plugging ψ(t, t1, �x) one has to keep in mind that, since t1 = εt , we now have
d
dt = ∂

∂t + ε ∂
∂t1

due to the chain rule. Equations are formed by comparing the

coefficients of εk . For k = 0, this gives back the linear equation, but we keep the
equation for k = 1. In particular, for (4) we arrive at

∂
ψ0

∂t
+ β

∂ψ0

∂x
= 0,

∂
ψ0

∂t1
+ ∂
ψ1

∂t
+ β

∂ψ1

∂x
= −J (ψ0,
ψ0).

In order to (2), we have to get rid of all other variables. This is done by inte-
grating against the ϕ j ’s, i.e. 〈.,ϕ j 〉L2(�), and averaging over (fast) time, i.e.

limT →∞ 1
T

∫ T
0 dt .

3.2 The Implementation

This method was implemented in Mathematica with order m = 1 in mind only.
So it will not be immediately applicable to higher orders without some (minor)
adjustments. The ODEs are constructed done by the function

ODESystem[L(ψ), N(ψ), ψ,
{x1,..,xn}, t, domain, jacobian, m, s, A, linwav,
{λ1,..,λp}, paramvalues].

Symbolic Computation for Nonlinear Wave Resonances 209

Basically, this function takes the problem together with the solution of the linear
equation as input and computes the list of ODEs for the amplitudes as output. Its
arguments are in more detail:

• L(ψ), N(ψ): Linear and nonlinear part of equation (1), each applied to a sym-
bolic function parameter. Derivatives have to be specified with Dt instead of D
and the nonlinear part has to be a polynomial in the derivatives of the function.

• ψ: symbol used for function in L(ψ), N(ψ)
• {x1,...,xn }, t: list of symbols used for space-variables, and symbol for
time-variable.

• domain: The domain on which the equation is considered has to be specified
in the form {{x1,minx1,maxx1},..., {xn,minxn,maxxn}}, where the
bounds on xi may depend on x1,...,xi−1 only.

• jacobian: For integration the (determinant of the) Jacobian must also to be
passed to the function. This is needed in case the physical domain does not coincide
with the domain of the variables above; it can be set to 1 otherwise.

• m, s: maximal power of ε and number of waves considered
• A: symbol used for amplitudes
• linwav: General wave of the linear equation is assumed to have separated vari-
ables, i.e. ϕ(�x, t) = B1(x1) . . . Bn(xn) exp(iθ(x1, . . . , xn, t)), and has to be given
in the form {B1(x1),..., Bn(xn), θ(x1,...,xn,t)}.

• { λ1,...,λp}: list of symbols of parameters the functions in linwav depend
on

• paramvalues: For each of the s waves explicit values of the parameters
{λ1,…,λp} have to be passed as a list of s vectors of parameter values.

ODESystem[linearpart_,nonlinearpart_,fun_Symbol,vars_List,
t_Symbol,domain_List,jacobian_,ord_Integer,num_Integer,
A_Symbol,linwav_List,params_List,paramvalues_List] :=

Module[{B,theta,eq,k},
eq = PerturbationEqns[linearpart,nonlinearpart,

fun,vars,t,ord];
eq = PlugInGenericWaveTuple[eq,fun,vars,t,A,B,theta,num]

/. fun[1]->(0&);
eq = Table[Resonance2[eq,linwav,vars,t,params,A,B,theta,

num,paramvalues,k],
{k,num}];

Map[Integrate[Simplify[#,And@@(Function[B,B[[2]]<B[[1]]<
B[[3]]]/@domain)]*jacobian,

Sequence@@domain]&,
eq,{2}]

]

Internally this function is divided into three subroutines briefly described below.

3.2.1 Perturbation Equations, General Form

The first of the subroutines is

210 E. Tobisch (Kartashova) et al.

PerturbationEqns[L(ψ), N(ψ), ψ, {x1,...,xn}, t, m].
Asmentioned before,we approximate the solution of our problemby a polynomial

of degree m in ε. This subroutine works for arbitrary m. In the first step, we construct
equations by coefficient comparison. Additional time-variables will be created auto-
matically and labeled t[1],...,t[m]. The output is a list of m + 1 equations
corresponding to the powers ε0, . . . , εm . The implementation is quite straightfor-
ward. First set ψ = ∑m

k=0 ψk(t, t1, . . . , tm, x1, . . . , xn)εk in (1), where tk = εk t , i.e.
d
dt = ∂

∂t +∑m
k=1 εk ∂

∂tk
. Then extract the coefficients of ε0, . . . , εm on both sides and

assemble the equations. Finally replace εk t by tk again.

PerturbationEqns[linearpart_,nonlinearpart_,fun_Symbol,
vars_List,time_Symbol,ord_Integer] :=

Module[{i,j,e,eq},
eq = ((linearpart == -e*nonlinearpart)

/. {fun->Sum[eˆi*fun[i][time,Sequence@@Table[eˆj*
time,{j,ord}],Sequence@@
DeleteCases[vars,time]],

{i,0,ord}]});
eq = (eq /. ((Dt[#, __]->0)& /@ Join[vars,{time,e}]));
eq = (Equal@@#)& /@

Transpose[Take[CoefficientList[#,e],1+ord]& /@
(List@@eq)];

eq /. Table[eˆj*time->time[j],{j,ord}]
]

3.2.2 Perturbation Equations, Given Linear Mode

In step two, we set ψ0(t, t1, �x) = ∑s
j=1 A j (t1)ϕ j (�x, t) as described above. This is

done by the function
PlugInGenericWaveTuple[eq, ψ, {x1,...,xn}, t, A, B, θ ,

s] where the first argument is the output of the previous step. The symbols B and θ
have to be passed for labeling the shape and phase functions, respectively. The output
consists of two parts. The first part of the list formulates the assumption L(ϕ j) = 0
explicitly for each of the waves. This is not used in subsequent computations, but is
provided as a way to check the assumption. The second part of the list is the equation
corresponding to the coefficients of ε from the previous step, with ψ0 as above. As
the task of this step is so short the implementation does not need further explanation.

PlugInGenericWaveTuple[eq_List,fun_Symbol,vars_List,
t_Symbol,A_Symbol,B_Symbol,theta_Symbol,num_Integer] :=
Module[{i,j,waves,n=Length[DeleteCases[vars,t]]},
waves = Table[A[j][Slot[2]]*

Product[B[i][j][Slot[i+2]],{i,n}]*
Exp[I*theta[j][Sequence@@Table[Slot[i+2],

{i,n}],Slot[1]]],
{j,num}];

{Table[eq[[1]] /. fun[0]->Function[Evaluate[waves[[j]]]],
{j,num}],

Expand /@

Symbolic Computation for Nonlinear Wave Resonances 211

(eq[[2]] /. fun[0]->Function[Evaluate[Total[waves]]])
}]

3.2.3 Time and Scale Averaging

Step three is the most elaborate. Under the assumption that interchange of averaging
over time and inner product is justified, an integrand

h = lim
T →∞

1

T

∫ T

0
ψ0ϕk dt

is computed that when integrated over the domain yields

∫
�

h = lim
T →∞

1

T

∫ T

0
〈ψ0,ϕk〉L2(�) dt.

Resonance conditions posed on the phase functions are explicitly used by

Resonance[eq, linwav, {x1,..,xn}, t,
{λ1,..,λp}, A, B, θ, s, cond, k]

which receives the output from the previous step ineq. Herecond specifies the reso-
nance condition in terms of the θ j , which have to be entered as θ[j][x1,..,xn,t]
respectively. The last argument is the index of the wave ϕk in the integral above.
AlternativelyResonance2 uses explicit parameter settingsparamvalues for the
waves instead of cond. This has been necessary because the general Resonance
does not give useable results (see Sect. 3.3 for more details). The main work in this
step is to find out which terms do not contribute to the result. We exploit the fact
that oscillating terms vanish when averaged over time by simply omitting those sum-
mands of 〈ψ0,ϕk〉L2(�) that have a factor exp(iθ)with some time-dependent phase θ.
The code for Resonance is not shown here, but is quite similar to Resonance2.

Resonance2[eq_List,linwav_List,vars_List,t_Symbol,params_List,
A_Symbol,B_Symbol,theta_Symbol,num_Integer,
paramvalues_List,testwave_Integer] :=

Module[{e,i,j,n=Length[DeleteCases[vars,t]]},
e = Expand[(List@@Last[eq])*

Exp[-I*theta[testwave][Sequence@@
DeleteCases[vars,t],

t]]];
e = e /.

Table[
theta[j] ->
(Evaluate[(linwav[[n+1]] /.

(Rule@@#& /@
Transpose[{params,paramvalues[[j]]}]

)
) /. Append[Table[

212 E. Tobisch (Kartashova) et al.

DeleteCases[vars,t][[i]]
-> Slot[i],

{i,n}],
t -> Slot[n+1]]

]&
),

{j,num}];
e = MapAt[

(Function[theta,If[FreeQ[theta,t],theta,0]
]

[Simplify[#]]
)&,
e,
Position[e,Exp[_]]];

e = Equal@@
(e*Conjugate[A[testwave]][t[1]]*
Product[Conjugate[B[i]

[testwave]
[DeleteCases[vars,t][[i]]]

],
{i,n}]

) /.
Flatten[
Table[B[i][j] ->

Function[
Evaluate[DeleteCases[vars,t][[i]]],
Evaluate[linwav[[i]] /.

(Rule@@#& /@
Transpose[
{params,paramvalues[[j]]
}]

)]],
{i,n},{j,num}]]

]

The integration of h is done by Mathematica and can be quite time-consuming.
So ODESystem simplifies the integrand first to make integration faster. Still the
expressions involved can be quite complicated. This is the most time-consuming
part during construction of the ODEs.

3.3 Obstacles

Mathematica sometimes does not seem to take care of special cases and consequently
has problems with evaluating expressions depending on symbolic parameters. We
give two simple examples to illustrate this issue:

• Orthogonality of sine-functions.
Indeed, it holds that

Symbolic Computation for Nonlinear Wave Resonances 213

∀m, n ∈ N :
∫ 2π

0
sin(mx) sin(nx)dx = πδm,n .

Computing this in Mathematica by

Integrate[Sin[m*x]Sin[n*x], {x,0,2π},
Assumptions → m∈Integers && n∈Integers]

yields 0 independently of m, n instead.
• Computation of a limit.
Mathematica evaluates an expression

∀n ∈ Z : lim
x→n

sin(xπ)

x
= πδn,0

and similar expressions in two different ways getting two different answers. On
the one hand
Limit[Sin[(m-n)π]/(m-n), m→n,
Assumptions → m∈Integers && n∈Integers]
gives 0. On the other hand, however, when the condition m, n ∈ Z is not used for
computing, the result Mathematica yields the correct answer π, as with
Limit[Sin[(m-n)π]/(m-n), m→n].

Unfortunately, these issues prevented us from obtaining a nice formula for the coef-
ficients in symbolic form by Resonance. So we just compute results for explicit
parameter settings using Resonance2.

3.4 Results

3.4.1 Atmospheric Planetary Waves

For the validation of our program, we consider the barotropic vorticity equation on
the sphere first. Here numerical values of the coefficients αi are available (Table1,
Kartashova and L’vov 2007). The equation looks quite similar

∂
ψ

∂t
+ 2

∂ψ

∂λ
= −εJ (ψ,
ψ).

However in spherical coordinates (φ ∈ [−π
2 , π

2], λ ∈ [0, 2π]) the differential opera-
tors are different:

 = ∂2

∂φ2 + 1

cos(φ)2

∂2

∂λ2 − tan(φ)
∂

∂φ
,

J (a, b) = 1

cos(φ)

(
∂a

∂λ

∂b

∂φ
− ∂a

∂φ

∂b

∂λ

)
.

214 E. Tobisch (Kartashova) et al.

The linear modes have in this case the following form (Pedlosky 1987)

Pm
n (sin(φ)) exp

(
i(mλ + 2m

n(n + 1)
t)

)
, (6)

where Pm
n (μ) are the associated Legendre polynomials of degree n and order m ≤ n,

so again they depend on the two parameters m and n. Also resonance conditions on
the parameters look different in this case.

Now we compute the coefficient α3 in (2). In Kartashova and L’vov (2007), we
find the following equation for the amplitude A3

n3(n3 + 1)
∂ A3

∂t1
(t1) = 2i Z(n2(n2 + 1) − n1(n1 + 1))A1(t1)A2(t1),

so α3 = 2i Z n2(n2+1)−n1(n1+1)
n3(n3+1) . Parameter settings and corresponding numerical

values for Z were taken from the table below (see Kartashova and L’vov 2007). For
this equation and s = 3, results produced by our program have the form c1A3 Ȧ3 =
c2A1A2A3, so α3 = c2/c1.

Testing all resonant triads from the Table1 from Kartashova and L’vov (2007),
we see that the coefficients differ merely by a constant factor of ±√

8 which is
due to the different scalings of the Legendre polynomials. In our computation, they
were normalized s.t.

∫ 1
−1 Pm

n (μ)2dμ = 1. With three triads, however, results were
completely different. Interestingly, these were exactly those triads for which no ϕ0
appears in the table.

Furthermore, for the other coefficients in (2), our program computesα1 = α2 = 0
in all tested parameter settings. This fact can be easily understood in the following
way.We checked only resonance conditions but not the conditions for the interaction
coefficients to be non-zero which are elaborated enough:

mi ≤ ni , ni �= n j ∀i = 1, 2, 3, |n1 − n2| < n3 < n1 + n2,

and

n1 + n2 + n3 is odd.

Randomly taken parameter setting does not satisfy these conditions.

3.4.2 Ocean Planetary Waves

Returning to the original example on the domain [0, Lx] × [0, L y], we find explicit
formulae for the coefficients inKartashova andReznik (1992). According to Sect. 3.3
we can only verify special instances and not general formulae.

Linear modes have now the form (Kartashova and Reznik 1992)

Symbolic Computation for Nonlinear Wave Resonances 215

sin

(
π

mx

Lx

)
sin

(
π

ny

L y

)
exp

(
i(

β

2ω
x + ωt)

)
, (7)

with m, n ∈ N and ω = β

2π
√

(m
Lx

)2+(n
L y

)2
.

Parameter settings solving the resonance conditions were computed as in Sect. 4.
Unfortunately results do not match and we have no explanation for that. In particular
the condition α1

ω2
1

+ α2
ω2
2

+ α3
ω2
3

= 0 stated in Kartashova and Reznik (1992) does not

hold for the results of our program since we got α1 = α2 = 0 in all tested parameter
settings, just as in the spherical case.

For example, if we try the triad {{2,4},{4,2},{1,2}}where Lx = L y = 1

our programcomputesα3 = 32
√
5

11 π
(
sin(3

√
5π) − i(1 + cos(3

√
5π))

)
,whereas the

general formula yields α3 = 19+7
√
5

11 π sin(3
√
5π). However, if we use a triad with

q = 1, e.g. {{24,18},{9,12},{8,6}}, both agree on α1 = α2 = α3 = 0.

4 Resonance Conditions

The main equation to solve is

1√(
m1
Lx

)2 +
(

n1
L y

)2 + 1√(
m2
Lx

)2 +
(

n2
L y

)2 = 1√(
m3
Lx

)2 +
(

n3
L y

)2
for all possible mi , ni ∈ Z with the scales Lx and L y (also ∈ Z) and then to check
the condition n1 ± n2 = n3. In the following argumentation, it will be seen that Lx

and L y can be assumed to be free of common factors. Below we refer to Lx and L y

as to the scale coefficients.
The first step of the algorithm implemented in Mathematica is to rewrite the

equation to 1√
m̃1

2+ñ1
2

+ 1√
m̃2

2+ñ2
2

= 1√
m̃3

2+ñ3
2
and transform it in the following

way: we factorize the result of each m̃i
2 + ñi

2 and obtain with ρ1 · · · · · ρr being the
factors of m2

i + n2
i and α1 · · · · · αr their respective powers:

m2
i + n2

i = ρα1
1 · ρα2

2 · · · · · ραr
r .

We will now define a weight γi of the wave-vector (mi , ni) as the product of the
ρ j ’s to the quotient of their respective α j and 2. The weight qi will be the name of
the product of the ρ j ’s which have an odd exponent:

√
m2

i + n2
i = γi

√
qi .

216 E. Tobisch (Kartashova) et al.

Our equation then can be re-written as

1

γ1
√

q1
+ 1

γ2
√

q2
= 1

γ3
√

q3

and one easily sees that the only way for the equation to possibly hold is q1 =
q2 = q3 = q (see Kartashova 2006b for details). Further we call q an index of
the corresponding wave-vectors. The set of all wave-vectors with the same index is
called a class of index q and is denoted as Clq . Obviously, the solutions of the
resonance conditions are to be searched for with separate classes only.

At this point, one can also see that only such scales, Lx and L y , without common
factors are reasonable. If they had a common factor, it would cancel out in the
equation.

4.1 Method Description

The following five steps are the main steps of the algorithm:

• Step 1: Compute the list of all possible indexes q.
To compute the list of all indexes q, we use the fact that they have to be square-
free and each factor of q has to be different from 3 mod 4 (Lagrange theorem).
There exist 57 possible indexes in our computational domains q ≤ 300 :

{1, 2, 5, 10, 13, 17, 26, 29, 34, 37, 41, 53, 58, 61, 65, 73, 74, 82, 85, 89,
97, 101, 106, 109, 113, 122, 130, 137, 145, 146, 149, 157, 170, 173, 178,

181, 185, 193, 194, 197, 202, 205, 218, 221, 226, 229, 233, 241, 257,

265, 269, 274, 277, 281, 290, 293, 298}

• Step 2: Solve the weight equation 1
γ1

+ 1
γ2

= 1
γ3
.

For solving the weight equation, we transform it into the equivalent form:

γ3 = γ1 γ2

γ1 + γ2
(8)

The solution triples {γ1, γ2, γ3} can now be found by the two for-loops over γ1 and
γ2 up to a certain maximum parameter and γ3 is then being founded constructively
with formula (8).

• Step 3: Compute all possible pairs (mi , ni)—if there are any—that satisfy m2
i +

n2
i = γ2

i q.
To compute our initial variables mi , ni , we use the Mathematica standard func-
tion Sum Of Square Representation [d, x] which produces a list of all possible
representations of an integer x as a sum of d squares, i.e. we can find all possible

Symbolic Computation for Nonlinear Wave Resonances 217

pairs (a, b) with d = 2 such that they satisfy a2 +b2 = x . Therefore, checking
the condition m2

i + n2
i = γ2

i q is easy.
• Step 4: Sort out the solutions {m1, n1, m2, n2, m3, n3} that do not fulfill the con-
dition n1 ± n2 = n3.

• Step 5: Check if by dividing the mi by Lx and the ni by L y there are still exist
some solutions.
Last two steps are trivial.

4.2 The Implementation

Our implementation is quite straightforward and the main program is based on four
auxiliary functions shown in the following subsections.

4.2.1 List of Indexes

The function constructqs[max] produces the list of all possible indexes q up to the
parametermax . The first (obvious) q’s sol = {1} is given and the function checks the
conditions starting with n = 2. Every time n satisfies the conditions, it is appended
to the list sol. If one condition fails, the next n = n + 1 is considered and so on until
n reaches the parameter max . Then the list sol is returned:

Clear[constructqs];

constructqs[n_, sol_List, max_]; n>max := sol (*6*)
constructqs[n_?SquareFreeQ, sol_List, max_]
:= constructqs[n+1, Append[sol, n], max] (*5*)

constructqs[n_?SquareFreeQ, sol_List, max_];
MemberQ[Mod[PrimeFactorList[n], 4], 3]
:= constructqs[n+1, sol, max] (*4*)

constructqs[n_, sol_List, max_]; !SquareFreeQ[n]
:= constructqs[n+1, sol, max] (*3*)
constructqs[1] := {1} (*2*)

constructqs[max_] := constructqs[3, {1}, max] (*1*)

4.2.2 Weight Equation

The function findγs[γmax] solves the weight equation in the following way. For a
fixed γ1 and γ2 running between 1 and γmax , it is checked if γ3 is an integer. If
it is, the triple {γ1, γ2, γ3} is added to the list sol which is empty at the initial
moment. Once γ2 reaches γmax, it is set to 1 again and the search starts again

218 E. Tobisch (Kartashova) et al.

with γ1 = γ1 + 1. This is done as long as both γ1 and γ2 are lower than max .

Finally the list sol is returned:

findγs[γmax_, γ1_, γ2_, sol_List];

γ1 > γmax := (Clear[γ3],sol) (*6*)

findγs[γmax_, γ1_, γ2_, sol_List]; (γ1 ≤ γmax && γ2>γmax &&
IntegerQ[γ3=(γ1γ2)/(γ1+γ2)])
:= findγs[γmax, γ1+1, 1, Append[sol, {γ1, γ2, γ3}]] (*5*)

findγs[γmax_, γ1_, γ2_, sol_List];
(γ1 ≤ γmax && γ2>γmax &&
!IntegerQ[γ3=(γ1γ2)/(γ1+γ2)])
:= findγs[γmax, γ1 + 1, 1, sol] (*4*)

findγs[γmax_, γ1_, γ2_, sol_List];
(γ1 ≤ γmax && γ2 ≤ γmax && IntegerQ[γ3=(γ1γ2)/(γ1+γ2)])
:= findγs[γmax,γ1,γ2 + 1, Append[sol, {γ1,γ2,γ3}]] (*3*)

findγs[γmax_, γ1_, γ2_, sol_List];
(γ1 ≤ γmax && γ2 ≤ γmax && !IntegerQ[γ3=(γ1γ2)/(γ1+γ2)])
:= findγs[γmax, γ1, γ2 + 1, sol] (*2*)

findγs[γmax_] := findγs[γmax, 1, 1, {}]) (*1*)

For findγs[γmax] to be executable, the iteration depth of 212 is not sufficient and
it was set to ∞.

4.2.3 Linear Condition

The third auxiliary function makemns checks whether the linear condition n1 ±
n2 = n3 is fulfilled and structures the solution set into a list of pairs
{{m1, n1}, {m2, n2}, {m3, n3}} :
Clear[makemns];
makemns[m1_, n1_, m2_, n2_, m3_, n3_] := {} (*3*)
makemns[m1_, n1_, m2_, n2_, m3_, n3_];
(n1 + n2 == n3 ‖ n1 - n2 == n3) :=
{{m1, n1}, {m2, n2}, {m3, n3}} (*2*)

makemns[mn1_List, mn2_List, mn3_List] :=
Cases[Flatten[Table[makemns[mn1[[i,1]], mn1[[i,2]],

mn2[[j,1]], mn2[[j,2]], mn3[[k,1]], mn3[[k,2]]],
{i, 1, Length[mn1]}, {j, 1, Length[mn2]},
{k, 1, Length[mn3]}], 2],
{{x1_,x2_}, {x3_,x4_}, {x5_,x6_}}] (*1*)

The function makemns is called three times:
In (*1*) from three lists of arbitrarily many pairs {mi, ni}, a three-dimensional

array is made combining entries of the three lists with each other. Each entry calls

Symbolic Computation for Nonlinear Wave Resonances 219

the same program with the parameters of the current combination of {m1, n1, m2,
n2, m3, n3}.

In (*2*) and (*3*) it is decided whether the condition n1± n2 = n3 is fulfilled.
If it is, a solution {{m1, n1},{m2, n2},{m3, n3}} is written in the array. The table
is then flattened to the level 2 in order to have a list of solutions. In the end, all empty
lists have to be sorted out, done by the function Cases which keeps only those cases
that have the shape {{x1_,x2_},{x3_,x4_},{x5_,x6_}}.

4.2.4 Scale Coefficients

Finally, the function respectL[sol, Lx, Ly] divides each component of the solution
by the pair (Lx , L y) and sorts out the result if any of the six components does not
remain an integer:

respectL[sol_List, Lx_, Ly_] :=
Map[solution[#]&,

Cases[Map[#/{Lx, Ly}&,
Map[#[[1]]]&, sol], {2}], {{_Integer, _Integer},
{_Integer, _Integer}, {_Integer, _Integer}}]]

The function respectL[sol, Lx, Ly] gets as an input the list of the form {solu-
tion[{{m1,n1},{m2,n2},{m3,n3}}],...} and returns the list of the same form.

4.3 Results

All solutions in the computation domain m, n ≤ 300 have been found in a few
minutes. Notice that computations in the domain m, n ≤ 20 by direct search,
without introducing indexes q and classes Clq took about 30min. A direct search
in the domain m, n ≤ 30 has been interrupted after 2h, since no results were
produced.

The number of solutions depends drastically on the scales Lx and L y, some
data are given below (for the domain m, n ≤ 50 :)
(Lx = 1, L y = 1) : 76 solutions;
(Lx = 3, L y = 1) : 23 solutions;
(Lx = 6, L y = 16) : 2 solutions;
(Lx = 5, L y = 21) : 2 solutions;
(Lx = 11, L y = 29) : no solutions (search up to 300, for both qmax and γmax).

Interestingly enough, in all tried possibilities, only an odd q yield solutions.

220 E. Tobisch (Kartashova) et al.

5 Structure of the Solution Set

5.1 Method Description

The graphical way to present 2D-wave resonances suggested in Kartashova (1998)
for three-wave interactions is to regard each 2D-vector �k = (m, n) as a node (m, n)

of integer lattice in the spectral space and connect those nodes which construct one
solution (triad, quartet, etc.). Having computed already all the solutions of (3) in
Sect. 4, now we are interested in the structure of resonances in spectral space. To
each node (m, n) we can prescribe an amplitude A(m, n, t1) whose time evolution
can be computed from the dynamical equations obtained in Sect. 3. Thus, solution
set of resonance conditions (3) can be thought of as a collection of triangles, some
of them are isolated, some form small groups connected by one or two vertices.
Corresponding dynamical systems can be re-constructed from the structure of these
groups. For instance, a single isolated triangle corresponding to a solution with wave
vectors (m1, n1)(m2, n2)(m3, n3) and wave amplitudes {(A1, A2, A3)} corresponds
to the following dynamical system:

Ȧ1 = α1A2A3

Ȧ2 = α2A1A3

Ȧ3 = α3A1A2

with αi being functions of all mi , ni (see Sect. 3).
If that two triangles share one common vertex {(A1, A2, A3), (A3, A4, A5)}, the

corresponding dynamical system is

Ȧ1 = α1A2A3

Ȧ2 = α2A1A3

Ȧ3 = α3,1A1A2 + α3,2A4A5

Ȧ4 = α4A3A5

Ȧ5 = α5A3A4

If two triangles have two vertices in common {(A1, A2, A3), (A2, A3, A4)}, then
the dynamical system is quite different:

Ȧ1 = α1A2A3

Ȧ2 = α2,1A1A3 + α2,2A3A4

Ȧ3 = α3,1A1A2 + α3,2A2A4

Ȧ4 = α4A2A3 = α4

α1
Ȧ1

Using the fourth equation, the formulae for Ȧ2 and Ȧ3 can be simplified to

Symbolic Computation for Nonlinear Wave Resonances 221

Ȧ4 = α4

α1
Ȧ1 ⇒ A4 = α4

α1
A1 + β1

Ȧ2 = A1A3

(
α2,1 + α2,2α4

α1

)
+ α4β1

α1

Ȧ3 = A1A2

(
α3,1 + α3,2α4

α1

)
+ α4β1

α1
.

This means that qualitative dynamics of the three-term mesoscopic system
depends not on the geometrical structure of the solution set but on its topologi-
cal structure. Constructing the topological structure of the solution set, we do not
consider concrete values of the solution but only the way how triangles are con-
nected. In any finite spectral domain, we can compute all independent wave clusters
and write out corresponding dynamical systems thus obtaining complete information
about energy transfer through the spectrum. Of course, quantitative properties of the
dynamical systems depend on the specific values of mi , ni (for instance, values of
interaction coefficients αi , magnitudes of periods of the energy exchange among
the waves belonging to one cluster, etc.).

5.2 Implementation

To construct the topological structure of a given solution set we need first to find all
groups of connected triangles. This is done by the following procedure:

FindConnectedGroups[triangles_List] :=
Block[{groups = {}, tr = triangles, newgroup},
While[Length[tr] > 0,
{newgroup, tr} =

FindConnectedTriangles[{First[tr]}, Rest[tr]];
groups = Append[groups, newgroup];

];
groups

];

FindConnectedTriangles[grp_List,triangles_List]:=
Module[{points,newGrpMember,tr=triangles},
points=Flatten[Apply[List,grp,2],1];
newGrpMember=Cases[tr, _[___,#1,___]]&/@points;
(tr=DeleteCases[tr, _[___,#1,___]])&/@points;
newGrpMember=Union[Join@@newGrpMember];
If[Length[newGrpMember]==0,
{grp,tr},
newGrpMember=FindConnectedTriangles[newGrpMember,tr];
{Join[grp,First[newGrpMember]],
newGrpMember[[2]]}

]
];

222 E. Tobisch (Kartashova) et al.

The function FindConnectedGroups expects a list of triangles as input, and
three different types for data structure can be used. The first type is just a list
of three pairs, where each pair contains the coordinates of a node, for example
{{1,2},{3,4},{5,6}}. An alternative type is like the type before just with another
head symbol instead of list, e.g. Triangle[{1,2},{3,4},{5,6}].

The function also works for vertex numbers instead of coordinates, e.g.
Triangle[1, 2, 3]. In every case, the function returns a partition of the input list
where all elements of a list are connected and elements of different lists have no
connection to each other.

The function FindConnectedTriangles is an auxiliary function which has two
parameters. The first list contains allconnected triangles. The second list contains all
other triangles which are possibly connected to one of the triangles in the first list.
The function FindConnectedTriangles returns a pair of lists: the first list contains
all triangles which are connected to the selected triangles, the second list contains
all remaining.

The input list for FindConnectedTriangles is a list of 3-element lists. Before we
can use the results produced in Sect. 4 as an input we have to transform the data. This
can be easily done by

TransformSolution[sol_List]:=
Flatten[Rest/@sol]/.solution[trs:{___List}]->trs;

Some remarks on the implementation
The function FindConnectedGroups selects a triangle, which is not yet in a group
and calls the function FindConnectedTriangles. Since the returned first list always
contains at least one triangle, the length of the list tr decreases in every loop call,
hence the FindConnectedGroups terminates. The question left is how to find all
triangles connected with a certain triangle. This has been done in the following way.
First we search for all triangles which share at least one node with this triangle. Then
we restart the search with all triangles found. For efficiency reasons, it is better to
perform the search with all triangles we found in one step together. If in one step no
further triangles are found then we are ready and return the list of connected triangles
and the remaining list. In each step, we remove all triangles we found from the list of
triangles which are not declared as connected. This increases the speed because the
search is faster if there are less elements to compare. More importantly, this prevents
us to search in loops and finds some triangles more than once. In general, search in
a loop can be the reason for a termination problem but due to shrinking the list of
triangles to search for in every step the termination can be guaranteed.

5.3 Results

In Fig. 1 the geometrical structure of the solution set is shown, for the case mi , ni ≤
50 and Lx = L y = 1.

Below we show all the topological elements of this solution set.

Symbolic Computation for Nonlinear Wave Resonances 223

Fig. 1 The geometrical structure of the result in domain D = 50

1. Twenty-one groups contain only one triangle (obviously, they have isomorphic
dynamical systems):

{{3, 18}, {36, 6}, {2, 12}} {{4, 46}, {14, 44}, {23, 2}}
{{6, 44}, {36, 26}, {13, 18}} {{6, 48}, {42, 24}, {3, 24}}
{{8, 26}, {16, 22}, {13, 4}} {{9, 24}, {48, 18}, {16, 6}}
{{14, 28}, {28, 14}, {7, 14}} {{18, 36}, {36, 18}, {9, 18}}
{{22, 16}, {26, 8}, {11, 8}} {{22, 20}, {28, 10}, {11, 10}}
{{22, 44}, {44, 22}, {11, 22}} {{22, 48}, {42, 32}, {21, 16}}
{{24, 18}, {9, 12}, {8, 6}} {{26, 28}, {28, 26}, {19, 2}}
{{28, 42}, {42, 28}, {21, 14}} {{28, 46}, {50, 20}, {7, 26}}
{{36, 22}, {42, 4}, {11, 18}} {{36, 30}, {15, 18}, {10, 12}}
{{38, 24}, {42, 16}, {21, 8}} {{44, 18}, {46, 12}, {23, 6}}
{{48, 36}, {18, 24}, {16, 12}}

2. Further nine groups contain also one triangle, but in each triangle two points
coincide (again, they have isomorphic dynamical systems):

{{8, 2}, {8, 2}, {1, 4}} {{16, 2}, {16, 2}, {7, 4}}
{{16, 4}, {16, 4}, {2, 8}} {{24, 6}, {24, 6}, {3, 12}}
{{32, 8}, {32, 8}, {4, 16}} {{34, 8}, {34, 8}, {7, 16}}
{{46, 8}, {46, 8}, {17, 16}} {{48, 6}, {48, 6}, {21, 12}}
{{48, 12}, {48, 12}, {6, 24}}

3. There exist two groups with two triangles each (by observation of the geomet-
rical pictures it is easy to determine that both have isomorphic dynamical systems):

224 E. Tobisch (Kartashova) et al.

{ {{2, 24}, {18, 16}, {9, 8}}, {{4, 48}, {36, 32}, {18, 16}} }
{ {{12, 26}, {26, 12}, {3, 14}}, {{26, 12}, {28, 6}, {13, 6}} }

4. Two further groups consist of two triangles each, but the common point is
contained twice in one triangle (the dynamical systems are isomorphic, but different
from the two groups above):

{ {{24, 22}, {32, 6}, {3, 16}}, {{32, 6}, {32, 6}, {11, 12}} }
{ {{8, 38}, {32, 22}, {11, 16}}, {{38, 8}, {38, 8}, {11, 16}} }

5. As we can see by inspecting their geometrical structures, further seven groups
are not isomorphic to any group found above:

{ {{6, 12}, {12, 6}, {3, 6}}, {{12, 24}, {24, 12}, {6, 12}},
{{24, 48}, {48, 24}, {12, 24}} }

{ {{2, 16}, {14, 8}, {1, 8}}, {{4, 32}, {28, 16}, {2, 16}},
{{32, 4}, {32, 4}, {14, 8}} }

{ {{2, 4}, {4, 2}, {1, 2}}, {{4, 8}, {8, 4}, {2, 4}},
{{8, 16}, {16, 8}, {4, 8}}, {{16, 32}, {32, 16}, {8, 16}} }

{ {{4, 22}, {10, 20}, {11, 2}}, {{8, 44}, {20, 40}, {22, 4}},
{{10, 20}, {20, 10}, {5, 10}}, {{20, 40}, {40, 20}, {10, 20}} }

{ {{10, 40}, {26, 32}, {19, 8}}, {{26, 32}, {38, 16}, {13, 16}},
{{32, 26}, {40, 10}, {13, 16}}, {{40, 10}, {40, 10}, {5, 20}} }

{ {{4, 18}, {14, 12}, {7, 6}}, {{8, 36}, {28, 24}, {14, 12}},
{{12, 14}, {14, 12}, {9, 2}}, {{24, 28}, {28, 24}, {18, 4}},
{{36, 42}, {42, 36}, {27, 6}}, {{42, 36}, {21, 18}, {4, 18}} }

{ {{2, 36}, {20, 30}, {17, 6}}, {{4, 6}, {6, 4}, {3, 2}},
{{8, 12}, {12, 8}, {6, 4}}, {{12, 18}, {18, 12}, {9, 6}},
{{16, 24}, {24, 16}, {12, 8}}, {{18, 12}, {9, 6}, {4, 6}},
{{20, 30}, {30, 20}, {15, 10}}, {{20, 30}, {34, 12}, {1, 18}},
{{24, 36}, {36, 24}, {18, 12}}, {{30, 20}, {36, 2}, {1, 18}},
{{32, 48}, {48, 32}, {24, 16}}, {{34, 12}, {36, 2}, {15, 10}},
{{36, 24}, {18, 12}, {8, 12}}, {{45, 30}, {34, 12}, {12, 18}} }

Geometrical interpretation of all topological elements is given below. In cases
when there exist more than one element with given structure, wavenumbers are
written at the picture corresponding to the element chosen for presentation.

Symbolic Computation for Nonlinear Wave Resonances 225

42

36

30

24

18

12

6

0
6 12 18 24 30 36 42

48

42

36

30

24

18

12

6

0
0 6 12 18 24 30 36 42 48

5.4 Important Remark

Computing all non-isomorphic sub-graphs algorithmically is a nontrivial problem.
Indeed, all isomorphic graphs presented in previous section are described by similar
dynamical systems, only magnitudes of interaction coefficients αi vary. However, in
the general case graph structure thus defined does not present the dynamical system
unambiguously. Consider Fig. 2 below where two objects are isomorphic as graphs.
However, the first object represents four connected triads with dynamical system

(A1, A2, A3), (A1, A2, A5), (A1, A3, A4), (A2, A3, A6) (9)

226 E. Tobisch (Kartashova) et al.

A1 A2

A3A4

A5

A6

A1 A2

A3A4 A6

A5

Fig. 2 Example of isomorphic graphs and non-isomorphic dynamical systems. The left graph
corresponds to the dynamical system (9) and the graph on the right—to the dynamical system (10).
To discern between these two cases, we set a placeholder inside the triangle not representing a
resonance

while the second—three connected triads with dynamical system

(A1, A2, A5), (A1, A3, A4), (A2, A3, A6). (10)

This problem has been solved inKartashova andMayrhofer (2007) by introducing
hyper-graphs of a special structure; the standard graph isomorphism algorithm used
by Mathematica has been modified in order to suit hyper-graphs.

6 A Web Interface to the Software

The previous sections have presented implementations of various symbolic computa-
tion methods for the analysis of nonlinear wave resonances. These implementations
are written in the language of the computer algebra system Mathematica which pro-
vides an appealing graphical user interface (GUI) for executing computations and
presenting the results. For instance, the pictures shown in Sect. 4.3 were produced
by converting the computed hyper-graphs to Mathematica plot structures that can be
displayed by the GUI of the system.

However, to run these methods, the user needs an installation of Mathematica
on the local computer with the previously described methods installed in a local
directory. These requirements make access to the software difficult and hamper its
wide-spread usage. In order to overcome this problem, we have implemented a Web
interface such that the software can be executed from any computer connected to the
Internet via a Web browser without the need for a local installation of mathematical
software.

This implementation follows a general trend in computer science which turns
away from stand alone software (that is installed on local computers and can be only
executed on these computers via a graphical user interface) and proceeds towards
service-oriented software (Gold et al. 2004) (that is installed on remove server com-
puters and wraps each method into a service that can be invoked over the Internet
via standardized Web interfaces). Various projects in computer mathematics have

Symbolic Computation for Nonlinear Wave Resonances 227

pursued middleware for mathematical web services, see for instance MathBroker
(2007), MONET (2004), Baraka and Schreiner (2006). On the long term, it is thus
envisioned that mathematical methods generally become remote services that can be
invoked by humans (or other software) without requiring local software installations.

However, even without sophisticated middleware, it is nowadays relatively sim-
ple to provide (for restricted application scenarios) web interfaces to mathematical
software by generally available technologies. The web interface presented in the
following sections is deliberately kept as simple as possible and makes only use
of such technologies; thus it should be easy to take this solution as a blueprint for
other mathematical software with similar features. In particular, the web interface is
quite independent of Mathematica as the system underlying the implementation of
the mathematical methods; the same strategy can be applied to other mathematical
software systems such as Maple, MATLAB, etc.

6.1 The Interface

Figure3 shows the web interface to some of the methods presented in the previous
sections. Its functionality is as follows:

Fig. 3 Web interface to the implementation

228 E. Tobisch (Kartashova) et al.

Create Solution Set: The user may enter a parameter D in the first (small) text
field and then press the button “Create Solution Set.” This invokes the method
CreateSolutionSet which computes the set of all solutions whose values
are smaller than or equal to D. This set is written into the second (large) text field
in the form

{Solution[x1,y1,z1],...,Solution[xn ,yn ,zn]}.

Plot Topology: The user may enter into the second (large) text field a specific
solution set (or, as show above, compute one), and then press the button “Plot
Topology.” This first invokes the method Topology which computes the topo-
logical structure of the solution set as a list of hyper-graphs and then calls the
method PlotTopologywhich computes a plot of each hyper-graph. The results
are displayed in the right frame of the browser window.

The web interface is available at the URL

http://www.risc.uni-linz.ac.at/projects/alisa
(Button “Discrete Wave Turbulence”)

To run the computations, an account and a password are needed.

6.2 The Implementation

Theweb interface is implemented inPHP, a scripting language for producingdynamic
web pages (The PHP Group 2007). PHP scripts can be embedded into conventional
HTML pages within tags of form <php?...?>; when aWeb browser requests such
a page, theWeb server executes the scripts with the help of an embedded PHP engine,
replaces the tags by the generated output, and returns the resulting HTML page to the
browser. With the use of PHP, thus programs can be implemented that run on a web
server and deliver their results to a client computer which displays them in a web
browser. The web interface to the discrete wave turbulence package is implemented
in PHP as sketched in Fig. 4 and described below (the parenthesized numbers in the
text refer to the corresponding numbers in the figure).

Create Solution Set: The browser frame input on the left side contains essentially
the following HTML input form:

<form target="textarea"
action="https://apache2.../CreateSolutionSet.php"
method="post">

<input name="domain" size="3">
<input type="submit" value="Create Solution Set">

</form>

This form consists of an input fielddomain to receive a domain value and a button
to trigger the creation of the solution set. When the button is pressed, (1) a request
is sent to the web server which carries the value of domain; this request asks the

Symbolic Computation for Nonlinear Wave Resonances 229

resultinput

S

Mathematica

PHP Engine
Web Server/

Server Computer

Create Solution Set

Plot Topology

(1) D

Client Computer

D
CreateSolutionSet.php/

D (3)CreateSolutionSet[](2) S

textarea
<html>.. ..</html>(4) S

resultinput

Mathematica

PHP Engine
Web Server/

Server Computer

Create Solution Set

Plot Topology

Client Computer

textarea

(1)

S

PlotTopology.php/S

PlotTopology[... ...]S(2)

(3) Export["image-1.png",...]

(4)

<html>...

(6) GET image-1.png

N

(5)

Fig. 4 Implementation of the web interface

server to deliver the PHP-enhanced web page CreateSolutionSet.php into
the target frame textarea which is displayed internally to input.

The file CreateSolutionSet.php has essentially the content

<?php
$math="/.../math";
$cwd="/.../DiscreteWaveTurbulence";
$domain = $_POST[’domain’];
$mcmd =

"SetDirectory[\"". $cwd ."\"];" .
"Needs[\"DiscreteWaveTurbulence‘SolutionSet‘\"];" .

230 E. Tobisch (Kartashova) et al.

"sol=DiscreteWaveTurbulence‘SolutionSet‘CreateSolutionSet[" .
$domain . "];";

$command="$math -noprompt -run’" . $mcmd .
"Print[StandardForm[sol]]; Quit[];’";

$result = shell_exec("$command");
echo

...
"<textarea name=\"sol\"cols=\"60\"rows=\"20\">" .
htmlspecialchars($result) .
"</textarea>" .

...;
?>

After setting the paths $math of the Mathematica binary and $cwd of the direc-
tory where the DiscreteWaveTurbulence package is installed, the script sets
the local variable $domain to the value of the input field domain. Then the Math-
ematica command $mcmd is constructed in order to load the file SolutionSet.m
and execute the command CreateSolutionSet to compute the solution set.
Now the system command $command is constructed to (2) invoke Mathematica
which calls the previously constructed command and (3) prints its result to the stan-
dard output stream which is captured in the variable $result. From this, the script
constructs the HTML code of the result document which is (4) delivered to the Web
browser.

Plot Topology: The browser frame textarea contains essentially the following
HTML input form:

<form target="result"
action="https://apache2..../PlotTopology.php"
method="post">

<textarea name="sol" cols="60" rows="20">...</textarea>
<input type="submit" value="Plot Topology">
</center>

</form>

This form consists of the textarea field sol to receive the solution set and a button
to trigger the plotting of the topology of this set. When the button is pressed, (1) a
request is sent to the web server which carries the value of sol; this request asks
the server to deliver the PHP-enhanced web page PlotTopology.php into the
target frame result on the right side of the browser.

The file CreateSolutionSet.php has essentially the content

<?php
$math="/.../math";
$basedir ="/.../DiscreteWaveTurbulence";
$baseurl ="http://apache2/.../DiscreteWaveTurbulence";
$sol = $_POST[’sol’];
... // create under $basedir a unique subdirectory $dir
$mcmd =

"SetDirectory[\"$basedir/$dir\"];" .
"Needs[\"DiscreteWaveTurbulence‘Topology‘\"];" .
"Needs[\"DiscreteWaveTurbulence‘SolutionSet‘\"];" .
"top=DiscreteWaveTurbulence‘Topology‘Topology[$sol];" .

Symbolic Computation for Nonlinear Wave Resonances 231

"plots=DiscreteWaveTurbulence‘Topology‘PlotTopology1[top];";
$command="/usr/bin/Xvnc :20 & export DISPLAY=:20;" .

"export MATHEMATICA_USERBASE=$basedir/.Mathematica;" .
"$math -run’" . $mcmd .
"Print[ExportList[plots,\"$image\"]]; Quit[];’";

$result = shell_exec("$command | tail -n 1");
for ($i=0;$i<$result;$i++)

echo "";
?>

For holding the images to be generated later, the script creates a unique directory
$basedir/$dir which is served by the web server under the url $baseurl/
$dir. The script extracts the solution set $sol from the request and sets up the
Mathematica command to compute its topological structure and generate the plots
from which ultimately the image files will be produced.

For this purpose, however, Mathematica needs an X11 display server running;
since a Web server has not access to an X11 server, we start the virtual X11
server Xvnc (RealVNC Remote Control Software 2007) as a replacement and set
the environment variable DISPLAY to the display number on which the number
listens; Mathematica will subsequently send X11 requests to that display which
will be handled by the virtual server. Likewise, Mathematica needs access to a
.Mathematica configuration directory; the script sets the environment variable
MATHEMATICA_USERBASE correspondingly.

With these provisions, we can (2) invoke first the command to compute the plots
and then the (self-defined) command ExportList to generate for every plot an
image in the previously created directory. For this purpose, the command uses (3) the
Mathematica command EXPORT[file,plot,"PNG"]which converts plot to an
image in PNG format and writes the image to file. ExportList returns the number
of images generated which is (4) written to the standard output stream which in turn
is captured in the variable $result. From this information, the script generates
an HTML document which contains a sequence of img elements referencing these
images. After this document has been (5) returned to the client browser, the browser
(6) requests the referenced images with GET messages from the web server.

6.3 Extensions

As an alternative to the display of static images, the Web interface also provides an
option “Applet Viewer” with somewhat more flexibility. If this option is selected,
Mathematica is instructed to save all generated plots as files in the standard repre-
sentation. The generated HTML document then embeds (rather than img elements)
a sequence of applet elements that load instances of the “JavaView” applet (The
JavaView Project 2007). These applets run in the Java Virtual Machine of the Web
browser on the client computer, load the plot files from the web, and visualize them
in the browser. Rather than just displaying static images, the viewer allows to per-
form certain manipulations and transformations of the plots such as scaling, rotating,

232 E. Tobisch (Kartashova) et al.

etc. While this additional flexibility is not of particular importance for the presented
methods, they may in the future become useful for others.

To limit access to the software respectively to the computing power of the server
computer, it may be protected by authentication mechanisms. For example, on the
Apache Web server, it suffices to provide in the installation directory of the software
a file .htaccess with content

<Files"*.php">
SSLRequireSSL
AuthName "your account"
AuthType Basic
Require valid-user

</Files>

With this configuration, the user is asked for the data of a valid account on the
computer running the Web server; other authentication mechanisms based e.g. on
password files may be provided in a similar fashion.

7 Discussion

Summing up all the results obtained, we would like to make some concluding
remarks.

• In general, coefficients αi can be computed symbolically by hand and only numer-
ically byMathematica (see Sect. 3.3); at present we are not aware of the possibility
to overcome this problem.

• For the known case of spherical barotropic vorticity equation, values of coefficients
αi coincidewith known form the literature for all triads but three. These thee triads,
though satisfying resonant conditions, are known to be special from the physical
point of view in the following sense (see Kartashova and L’vov 2007 for details).
Although resonance conditions are fulfilled for the waves of these triads, they, so
to say, do not have a place in the physical space to interact and their influence
(if any) on the dynamics of the wave system has to be studied separately from
all other waves. Our results might indicate that also the coefficients αi of these
triads have to be defined in some other way compare to other resonant triads. For
instance, another way of space-averaging has to be chosen.

• The results of Sect. 3.4.2 show that analytical formulae given in Kartashova and
Reznik (1992) for α j are not correct.

• The results of Sect. 4.3 show a crucial dependence of the number of solutions on
the form of the boundary conditions. In particular, some boundary conditions (for
example, (Lx , L y) = (11, 29)) yield no solutions which is of most importance
for physical applications. From the mathematical point of view, an interesting
result has been observed: in all our computations (i.e. for m, n ≤ 300) indexes
corresponding to non-empty classes turned out to be odd. It would be interesting to
prove this fact analytically because if it keeps true,we can reduce the computational
time.

Symbolic Computation for Nonlinear Wave Resonances 233

• The algorithm presented in Sect. 4 has been implemented before numerically in
Visual Basic, and our purpose here was to show that it works fast enough also in
Mathematica. The algorithms presented in Sects. 3 and 5 have never been imple-
mented before, the whole work is usually done by hand and some mistakes as
in Kartashova and Reznik (1992) are almost unavoidable: it takes sometimes a
few weeks of skillful researchers to compute interaction coefficients of dynamical
systems for one specific wave system.

• All the algorithms presented above can easily be modified for the case of a four-
termmesoscopic system. The only problem left is a procedure to establish all non-
isomorphic topological elements for a quadruple graphs, similar to the procedure
given in Kartashova and Mayrhofer (2007) for a triangle graphs. The structure of
quadruple graphs is much more complicated while some mechanisms of energy
transfer in the spectral space do exist (Kartashova 2007) that are absent in three-
term mesoscopic systems. A complete classification of quadruple graphs is still
an open question but in a given spectral domain it can be done directly (a very
time-consuming operation).

• We have developed a Web interface for the presented methods, which turns the
implementations from only locally available software to Web-based services that
can be accessed from any computer in the Internet that is equipped with a Web
browser. The presented implementation strategy is simple and based on generally
available technologies; it can be applied as a blueprint for a large variety of mathe-
matical softwares. In particular, the results are not bound to the current Mathemat-
ica implementation but can be adapted to any other computer algebra system (e.g.
Maple) or numerical software system (e.g. MATLAB) of similar expressiveness.

• At present, an explicit form of eigen-modes (6), (7) is used as one of the input
parameters for our program package. Theoretically, at least for some classes of
linear partial differential operators and boundary conditions, computing eigen-
modes can also be performed symbolically basing on the results in Rosenkranz
(2005). If this were done, not an eigen-mode but boundary conditions would play
role of input parameter.

Acknowledgments Authors acknowledge the support of the Austrian Science Foundation (FWF)
under projects SFB F013/F1301 “Numerical and symbolical scientific computing,” P20164-N18
“Discrete resonances in nonlinear wave systems,” and P17643-NO4 “MathBroker II: Brokering
Distributed Mathematical Services.”

References

Baraka R, Schreiner W (2006) Semantic querying of mathematical web service descriptions. In:
Bravetti M et al. (eds) Third international workshop on web services and formal methods (WS-
FM 2006), Vienna, Austria, September 8–9, 2006. (Lecture Notes in Computer Science 4184,
pp. 73–87. Springer)

Berman GP, Israilev FM (2005) The Fermi-Pasta-Ulam problem: fifty years of progress. Chaos
15(1):015104–015104-18

234 E. Tobisch (Kartashova) et al.

Cheney M (1989) Tesla man out of time. Dorset Press, UK
Gold N, Mohan A, Knight C, Munro M (2004) Understanding service-oriented software. IEEE
Softw 21(2):71–77 March-April 2004

KartashovaEA (1998)Wave resonances in systemswith discrete spectra. In: ZakharovVE (ed)Non-
linear Waves and Weak Turbulence. pp 95–129 (Series: Advances in the Mathematical Sciences,
AMS, 1998)

Kartashova E (2006a) A model of laminated turbulence. JETP Lett 83(7):341–345
Kartashova E (2006b) Fast computation algorithm for discrete resonances among gravity waves.
Low Temp Phys 145(1–4):286–295

Kartashova E (2007) Exact and quasi-resonances in discrete water-wave turbulence. Phys Rev Lett
98(21):214502

Kartashova E, Kartashov A (2006) Laminated wave turbulence: generic algorithms I. Int J Mod
Phys C 17(11):1579–1596

Kartashova E, Kartashova A (2007a) Laminated wave turbulence: generic algorithms II. Commun
Comput Phys 2(4):783–794

Kartashova E, Kartashova A (2007b) Laminated wave turbulence: generic algorithms III. Physics
A: Stat Mech Appl 380:66–74

Kartashova E, L’vov VS (2007) A model of intra-seasonal oscillations in the Earth atmosphere.
Phys Rev Lett 98(19):198501, (featured in Nature Physics 3(6):368

Kartashova E,Mayrhofer G (2007) Cluster formation in mesoscopic systems. Physica A: Stat Mech
Appl 385:527–542

Kartashova EA, Reznik GM (1992) Interactions between Rossby waves in bounded regions.
Oceanology 31:385–389

MathBroker II (2007): Brokering distributed mathematical services reseach institute for symbolic
computation (RISC). http://www.risc.uni-linz.ac.at/projects/mathbroker2

MONET (2004) Mathematics on the web. The MONET Consortium, (April 2004). http://monet.
nag.co.uk

Nayfeh AN (1981) Introduction to perturbation techniques. Wiley-Interscience, NY
Pedlosky J (1987) Geophysical fluid dynamics. Springer, New York
Pushkarev AN, Zakharov VE (2000) Turbulence of capillary waves—theory and numerical simu-
lations. Physica D 135:98–116

RealVNC remote control software (2007).VNC free edition 4.1. http://www.realvnc.com/products/
free/4.1

RosenkranzM(2005)Anew symbolicmethod for solving linear two-point boundary value problems
on the level of operators. J Symb Comput 39:171–199

Tanaka M (2007) On the role of resonant interactions in the short-term evolution of deep-water
ocean spectra. J Phys Oceanogr 37:1022–1036

The Java view project (2007). Java view—interactive 3D geometry and visualization. http://www.
javaview.de

The PHP group (2007). PHP: hypertext preprocessor. http://www.php.net
Zakharov VE, L’vov VS, Falkovich G (1992) Kolmogorov spectra of turbulence. Series in nonlinear
dynamics, Springer, New York

Zakharov V, Dias F, Pushkarev A (2004) One-dimensional wave turbulence. Phys Rep 398:1–65
ZakharovVE,KorotkevichAO, PushkarevAN,DyachenkoAI (2005)Mesoscopicwave turbulence.
JETP Lett 82(8):491

Zakharov VE, Filonenko NN (1967) Weak turbulence of capillary waves. J Appl Mech Tech Phys
4:500–515

http://www.risc.uni-linz.ac.at/projects/mathbroker2
http://monet.nag.co.uk
http://monet.nag.co.uk
http://www.realvnc.com/products/free/4.1
http://www.realvnc.com/products/free/4.1
http://www.javaview.de
http://www.javaview.de
http://www.php.net

	Symbolic Computation for Nonlinear Wave Resonances
	1 Introduction
	2 Mathematical Background
	3 Equations for Wave Amplitudes
	3.1 Method Description
	3.2 The Implementation
	3.3 Obstacles
	3.4 Results

	4 Resonance Conditions
	4.1 Method Description
	4.2 The Implementation
	4.3 Results

	5 Structure of the Solution Set
	5.1 Method Description
	5.2 Implementation
	5.3 Results
	5.4 Important Remark

	6 A Web Interface to the Software
	6.1 The Interface
	6.2 The Implementation
	6.3 Extensions

	7 Discussion
	References

