Representing Flexible Role-Based Access
Control Policies Using Objects
and Defeasible Reasoning

Reza Basseda! ™) Tiantian Gao®, Michael Kifer!,
Steven Greenspan?, and Charley Chell?

1 Computer Science Department, Stony Brook University,
Stony Brook, NY 11794, USA
{rbasseda,tiagao,kifer}@cs.stonybrook.edu
2 CA, Inc., 520 Madison Avenue, New York, NY 10022, USA
{steven.greenspan,charley.chell}@ca.com

Abstract. Access control systems often use rule based frameworks to
express access policies. These frameworks not only simplify the represen-
tation of policies, but also provide reasoning capabilities that can be used
to verify the policies. In this work, we propose to use defeasible reason-
ing to simplify the specification of role-based access control policies and
make them modular and more robust. We use the Flora-2 rule-based
reasoner for representing a role-based access control policy. Our early
experiments show that the wide range of features provided by Flora-2
greatly simplifies the task of building the requisite ontologies and the
reasoning components for such access control systems.

Keywords: Access control policy - Object oriented logic programming -
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1 Introduction

Administering and maintaining access control systems is a challenging task,
especially when the environments are complex and the authorization require-
ments are subject to frequent change. Policy languages play an important role
in designing and implementing flexible access control systems. There are a num-
ber of role-based policy specification languages that can express access control
policies, including XACML [14], X-RBAC [8], Rei [9], Common Policy [18], and
Ponder [4]. These languages simplify management of access control by factor-
ing the authorization policy out of the hard-coded resource guard. For example,
XACML defines a general XML role-based policy language. X-RBAC is another
XML role-based access control language for specifying RBAC policies [8]. Com-
mon Policy provides a framework for authorization policies controlling access to
application-specific data. Although they have been applied to a broad domain of
enterprise environments, it is difficult to use them at the semantic level. To mit-
igate this problem, some approaches inject RDF [2] and OWL [6] into the mix.
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Rei [9] is an example of this approach, which uses OWL-Lite and RDF. Ponder is
a declarative policy language, which is designed based on object-oriented princi-
ples. It can be used to specify both security and management policies. Ontologies
are also used to develop hybrid distributed access control systems [19]. Another
access control policy specification language based on OWL and SWRL has been
proposed in [13].

Clearly, representation of domain classes and objects is a key component of
an access control system because such representation facilitates the development
and changing of policies. Although all of the above mentioned access control
policy specification languages are able to represent domain classes and objects,
none is a rule-based language and none is as expressive as a rule based policy
specification language can be.

One of the key challenges in role-based access control is that policies are
subject to frequent changes, which calls for hierarchical structure of policy com-
ponents and roles. However, none of the above mentioned languages can matches
the flexibility for defining such hierarchies that is provided by object-oriented
rule-based languages based on F-logic [11,12], such as Flora-2 [10,22]. The use
of such an expressive knowledge representation and reasoning language lets us
both to integrate hierarchies between policy components into policy rules and
encapsulate different components of rule based policies in different modules. This
gives us the necessary machinery to localize the changes initiated by the clients.
The reasoning capabilities that come with object-oriented rule languages like
Flora-2 also allows one to make policies more concise, clearer, easier to spec-
ify, analyze, and change. Modularity also helps with certain security issues. For
instance, in many applications, especially in distributed systems, rules and facts
used for access control decision making are ranked and grouped by their trust
levels. The reasoning mechanism that understands encapsulation can take into
account the different levels of trust when it responds to access requests.

In this paper, we show that by using an elegant defeasible reasoning system
we can build a rule based access control policy in terms of separate, encapsulated
modules based on the application semantics and security requirements. We use
Logic Programming with Defaults and Argumentation Theories (LPDA) [20] to
define different groups of rules and facts and use this logic to make our access
control decision. Together with the higher-order features of Hilog [3] and object-
oriented nature of F-Logic [12], great flexibility is provided to the access control
policy developers.

The rest of the paper is organized as follows. Section 2 provides a brief
overview of logic programming with defaults and argumentation theories. Section
3 illustrates our methodology for building a flexible access control system and its
corresponding architecture. Section 4 gives a practical example of defining differ-
ent components in the rule based access control policy, and Section 5 concludes
the paper.
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2 Overview of Defeasible Reasoning

Defeasible reasoning is a type of non-monotonic reasoning where conclusions may
have priorities and be defeated by other conclusion. Such theories are usually con-
ducive to specifying general defaults and conclusions can be easily, modularly,
and incrementally altered when new information becomes available. This con-
trasts with monotonic logic where any previously inferred information remains
valid with the addition of new knowledge. For example, given the access control
policy stating that typically, a student is authorized to use a device unless the
student has abused the device before, and the facts that John is a student and a
printer is a device, we might conclude that John is authorized to use the printer.
However, if later it becomes known that John has abused the printer, the previ-
ous conclusion can be defeated without making any modifications to the policy.
Defeasible reasoning is intended to model this kind of scenarios in modular and
natural fashion.

General non-monotonic resoning frameworks, such as circumscription, default
logic, and autoepistemic logic, can also model the above scenarios, but their
languages are not attuned to making changes modular and simple. In this work,
we use Logic programming with defaults and argumentation theories (LPDA), a
unifying defeasible reasoning framework that uses defaults and exceptions with
prioritized rules, and argumentation theories. LPDA is based on the three-valued
well-founded semantics [17]. Here we briefly review LPDA. Defails can be found
in [20].

A literal has one of the following forms:

— An atomic formula.

— neg A, where A is an atomic formula.

— not A, where A is an atom.

— notneg A, where A is an atom.

— notnot L and negneg L, where L is a literal.

Let A be an atom. A not-free literal refers to a literal that can be reduced
to A or neg A. A not-literal refers to a literal that can be reduced to not A
or not neg A. LPDA has two types of rules: strict and defeasible, where strict
rules generate non-defeasible conclusions and defeasible rules generate defeasible
conclusions that can be defeated by some exceptions. A strict rule is of the form:

L «— Body

where L is a not-free literal and Body is a conjunction of literals. A defeasible
rule is of the form:

@r L «— Body

where r is a term that denotes the label of the rule.
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Each LPAD program is accompanied by an argumentation theory that spec-
ifies when a defeasible rule is defeated. An argumentation theory is a set of def-
inite rules with four special predicates: \defeated, \opposes, \overrides,
and \cancel where \defeated denotes the defeatedness of a defeasible
rule, \opposes indicates the literals that are incompatible with each other,
\overrides denotes a binary relation between defeasible rules indicating pri-
ority, and \cancel cancels a defeasible rule. There can be several different
argumentation theories that can be used simultaneously for different modules.
Users can select one of the predefined ones and use it as is or modify it, as appro-
priate. A rule is defeated if it is refuted, rebutted, or disqualified. The meaning of
refuted, rebutted, and disqualified depends on the chosen argumentation theory.
Generally, a rule is refuted if there is another rule that draws an incompatible
conclusion with higher priority. A rule is rebutted if there is another rule that
draws an incompatible conclusion and there is no way to resolve the conflict based
on the relative priorities. A rule is disqualified if it is cancelled, self-defeated, etc.
An example is shown in Figure 1.

@{idl} authorized(?Principal, ?Dev) :- device(?Dev),
principal (?Principal) .

@{id2} \neg authorized(?Principal, ?Dev) :- abused(?Principal, ?Dev) .

\overrides (id2,idl) .
\opposes (authorized (?Principal, ?Dev), \neg authorized(?Principal, ?Dev)) .

principal (Mary) .
principal (John) .
device (printer) .
abuse (John, printer) .

Fig. 1. An example of a simple LPDA program

In the figure, rule idl says that if there is a person and a device, then
the person is authorized to use the device. Rule id2 says that if a per-
son has abused the device, then the person is not authorized to use the
device. The predicate \overrides (id2,idl) indicates that rule id2 has
higher priority than 1d1. The statement \opposes (authorized (?Persn,
?Dev), negauthorized(?Persn, ?Dev)) says that one can be either
authorized or not, but not both. Taking into account the facts person (Mary)
and device(priter), we can conclude authorized(Mary,printer)
from rule idl. From the facts person (John), device(printer), and
abuse (John,printer), rules 1dl and id2 derive contradictory conclusions
that both authorized(John,printer) and negauthorized(John,
printer) hold. Since rule id2 has a higher priority than rule idil,
authorized(John, printer) is defeated.
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Fig. 2. A typical architecture of an access control system

3 Methodology and Architecture

Although several architectures have been proposed for access control systems
[15,16], none of them has gained the status of a standard. To explain different
access control policy representation languages, we assume a simple architecture
in Figure 2, borrowed from [1]. However, the discussion below applies to more
complex architectures as well. To keep our technique as general as possible, we
also do not limit our framework to any specific classic access control model, such
as Role-Based Access Control [5] or Attribute-Based Access Control [7] Models.

As shown in Figure 2, the authorization policy is not hard-coded as a resource
guard but instead appears as a list of declarative rules. When a principal requests
access, the resource guard issues an authorization query to the policy evaluator.
Access is granted only if the policy evaluator succeeds in proving that the request
complies with the local policy and a set of facts describing the authorization state,
i.e., with a set of relevant facts, including the knowledge obtained from submitted
or fetched credentials. For instance, the history of locations of a principal can
be reflected in the authorization state and used by policy evaluator.

This approach greatly increases the maintainability of access control sys-
tems, as modifying the declarative policy rules is much simpler than rewriting
and recompilation of the code embedded in the resource guard. In fact, resource
guards are usually designed to take care of the low-level security considerations
while policies are expected to be high-level descriptions of security requirements.
Therefore, imperative programming languages (e.g. C or C++) are used to imple-
ment resource guard, while higher-level declarative languages are preferred for
security policies. There are several reasons why policies should be formally veri-
fiable. For one, the declarative nature of policy languages and the formal frame-
work required for query evaluation make logic programming languages the top
candidates for policy specification.

In accordance with this architecture, we assume that the policy evalua-
tor is completely separate from the resource guard. To issue an authorization
query to the policy evaluator, the resource guard uses a predicate of form
grantAccess(ty,...,t,) as a query. Given a set R of policy rules, the policy
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evaluator returns true or false answer, thereby allowing or disallowing the
access. Next, we will show how using an object oriented logic programming
and defeasible rules can make an access control system much simpler and more
flexible.

3.1 Resilience to Changes

Access control policies are not usually considered as a fixed component of an
access control system and they are often modified on the request of non-technical
policy makers. Therefore, it is very important to make policies as flexible as
possible and to minimize the cost of changes. The following features are therefore
very desirable:

— Prevention of introduction of bugs through modification via semantic con-
straints.
— A robust patching mechanism for expansion of policies.

We will now explain how object oriented features in Flora-2 [10,22] and defeasible
reasoning via LPDA [20,21] solve these issues.

Classes and Objects: We use a set of classes to represent different resources
and roles used by the policy. These classes serve both as semantic integrity
constraints and as a policy development guide. The classes are typically identified
by IRIs pointing to the actual resources, which is useful for standardization and
portability. Figure 3 shows two sample classes in a typical policy represented in
Flora-2.

Personl| |
firstName => string,
lastName => string |].

Employee: :Person| |
employmentYear => integer,

department => Department,
profession => gtring,
rank => Rank,

loc(?) => Location |].

Fig. 3. An example of ontology for access control systems in Flora-2

Modification via Patching: To provide a patching mechanism, we use defea-
sible reasoning to override default rules of a policy with new rules. Consider a
policy P consisting of n rules of the form Qr; L; « Body; where 1 < i < n.
Suppose that we need to change P to I’ such that for some 1 < 5 < n, a new
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rule of the form @r} L; « Body; derives L;, L; conflicts with L;, and the new
rule has higher priority if condition Cond holds. To obtain P’ out of IP, one needs
to simply add the following rules to P.

Qr} Lj « Body.
\overrides(r’;,r;) « Cond. (1)
\opposes(L;, L;).

We can also use a similar technique also to disable a rule under certain cir-
cumstances. Suppose that for some 1 < j < n, we need to disable the rule
Q@Qr; L; < Body; from P when condition C'ond is true. To this end, one can
simply add

\cancel(r;) «— Cond. (2)

Note that Body} may have literals that are defined by other rules in which case
those rules would be added as well. The following example illustrates how this
patching mechanism works.

Ezample 1 (Access Control Based on Time and Location). Consider the pol-
icy shown in Figure 4. A policy evaluator can use this policy to answer
queries of the form grantAccess(?E,7R,?T,?D) where the variables 7E, 7R,
?T, 7D range over the members of the classes Employee, Resource, TimeO-
fAccess, and DateOfAccess, respectively. The first rule defines the predicate
hasmoved(?E,?D1,7D2) which is true if the location of employee ?7FE is dif-
ferent on day ?D1 and day ?D2. The second and third rules define the predicate
moved(+?E,+?7D1,+?D2, —?M),! which binds ?M to 1 if the employee ?E has
moved between days ?D1 and ?7D2. The predicate locRisk(+7E,+?D,—7K)
specifies the security risk if employee ?F is known to have moved in each of
the four days preceding day ?D. Finally, the predicate grantAccess(+?E, +7R,
+7T,+7D), if true, indicates that the employee ?FE is allowed to access the
resource 7R at time 7T of day ?D. This rule just checks if the departments of
the employee 7FE and of resource 7R are the same and the risk assessment of the
employee is below the threshold.

Suppose that now it is required to use a new parameter called access time
risk, which computes the risk based on the access hour with respect to 13 : 00,
if the employee is away from the home department. To this end, we construct
a patch that enforces the new policy, as shown in Figure 5. The second rule
in the figure defines timeRisk(4+?R,+?T,—?TD) as the difference between the
access time and 13 : 00 (this number may indicate the risk of unauthorized
accesses). For example an access request at 14 : 00 is more reasonable than at at
21 : 00 or 03 : 00. The third rule says that access is prohibited if the employee is
traveling and timeRisk exceeds the threshold. The first fact in Figure 5 states
that atom grantAccess/4 resulted from rule locAccess is defeated by the same
atom resulted from rule timeAccess. Note that the rule locAccess is not
completely disabled: it still holds sway if the employee is not traveling.

! 1 indicates that the variable is used as input and must be bound before calling the
predicate; — means that the variable is an output and will be bound after calling
the predicate produces an answer.
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hasmoved (?E, ?D1, ?D2) :-
?E:Employee[loc (?D1l) -> ?L1],
?E[loc (?D2) -> ?L2],
?L1 = ?L2.

moved (?E, ?D1,?D2,1) :- hasmoved(?E:Employee, ?D1,?D2).

moved (?E, ?D1,?D2,0) :-
?E:Employee,
\naf hasmoved (?E, ?D1, ?D2) .

locRisk (?E, ?D, ?K) :-
?E:Employee,
moved (?E, ?D, ?D1, ?M1) ,
moved (?E, ?D1, ?D2, ?M2) ,
moved (?E, ?D2, ?D3, ?M3) ,
moved (?E, ?D3, ?D4, ?M4)
nextDay (?D4, ?D3) ,
nextDay (?D3, ?D2) ,
nextDay (?D2, ?D1),
nextDay (?D1, ?D),
?K \is ?M1 + ?M2 + °?M3 + ?M4.

’

@{locAccess}
grantAccess (?E, ?R,?,?D) :-
?E:Employee[department-> ?DE],
?R:Resource[owner-> ?DE],
locRisk (?E, ?D, ?K),
?K < 3.

Fig. 4. An example of a simple policy in Flora-2

\overrides (timeAccess, locAccess) .
timeRisk (?T,?TD) :- ?TD \is abs(?T - 13).

@{timeAccess}

\neg grantAccess (?E, ?R,?T,?D) :-
?E:Employee,
?R:Resource,
?E.department.location != ?E.loc(?D),
?E[timeWorked (?D) -> 2T],
timeRisk (?T, ?K),
?K > 5.

Fig. 5. The first modification of the policy

383
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Now suppose that policy makers suddenly realize that time is different
in different time zones, so they decide to calculate access times based on
employee’s local time rather than resource’s local time. This means that the rule
timeAccess will now be defeated by a new rule, flexAccess, if the locations
of the resource 7R and the employee 7E are different. Figure 6 shows the rules
of this patch. The third rule defines timeRisk(+?E,+?T,+7?D,—?TD), which
gets an employee 7E and a GMT time id 77T, computes the actual time in the
time zone of the employee, and then assesses the risk according to the employee’s
local time zone. The £lexAccess rule for grantAccess(+?7E,+7R,+7T,+7D)
now says that the employee 7FE can access resource 7R at time 7?7 on day 7D, if
the access happens within the local normal working hours. Other than that, the
conditions are the same as for locAccess. O

\overrides (flexAccess, timeAccess) .

timeRisk (?E, ?T, ?D, ?TD) :-
?E:Employee[loc (?D) -> ?LIJ,
?L[timeZone -> ?TZR],
?TD \is abs(?T + ?TzZR - 13).

@{flexAccess}

grantAccess (?E, ?R,?T,?D) :-
?E[department-> ?DE],
?R[owner-> ?DE],

?E.loc(?D) != ?R.location,
timeRisk (?E, ?T, ?D, ?TR),
?TR < 5.

Fig. 6. The second modification of the policy

As shown in in our example, defeasible reasoning can simplify the process
of changing policies. Figure 7 shows the difference between the architectures of
policies with and without using defeasible reasoning and object oriented logic
programming. The architecture shown in Figure 7(b) is more modular than the
one in Figure 7(a).

Policy Evaluator Policy Evaluator
R Policy > Policy
Classe: Rul
State State [Patch#1 ][ Patch#2 | ... [Patch#n |

(a) Without defeasible reasoning and (b) With defeasible reasoning and
object orientation. object orientation.

Fig. 7. Possible architectures of policies
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3.2 Virtual Hierarchies

In many cases, policy rules may conflict and be considered with regard to the
position of the policy makers in the organizational hierarchy. For instance, sup-
pose that policy makers x and y introduce policy rules Qr, L, <« Body, and
@ry L, < Body, whose conclusions may conflict in some cases. If the organiza-
tional position of = is higher than y’s, we can set the priority of rule r, higher
than that of r,. There are two choices to apply such organizational hierarchies to
policy rules: (1) the organizational hierarchy can be encoded in policy evaluator;
or (2) we can use defeasible reasoning to allow policy rules of a lower-ranked
actor to be defeated. Clearly, the second choice is more flexible than the first.

To represent organizational hierarchies of policy developers, we can assume
that every rule in a policy is of the form @r(z) L «— Body where x identifies the
maker of the rule. We can represent the institutional hierarchy as a transitively
closed set of facts of the form boss (X,Y) and then define the priorities of the
policy rules as follows:

\override(r(u;),r(uj)) : — boss(u;,u;). (3)

4 Conclusion

In this paper, we argue that the use of defeasible reasoning can yield significant
benefits in the area of role-based access control systems. As an illustration, we
show that complex modifications to access control policies can be naturally rep-
resented in a logic programming framework with defeasible reasoning and they
can be applied in modular fashion. The use of logic programming also easily sup-
ports various extensions such as institutional hierarchies. The same technique
can be used to capture even more advanced features, such as distributed access
control policies, Team-Based Access Control, and more.

There are several promising directions for future work. One is to investigate
other access control models and, hopefully, accrue similar benefits. Other possible
directions include incorporation of advanced features of object oriented logic
programming, such as inheritance.
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