
Nick Bassiliades · Georg Gottlob
Fariba Sadri · Adrian Paschke
Dumitru Roman (Eds.)

 123

LN
CS

 9
20

2

9th International Symposium, RuleML 2015
Berlin, Germany, August 2–5, 2015
Proceedings

Rule Technologies:
Foundations, Tools,
and Applications

Lecture Notes in Computer Science 9202

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Nick Bassiliades • Georg Gottlob
Fariba Sadri • Adrian Paschke
Dumitru Roman (Eds.)

Rule Technologies:
Foundations, Tools,
and Applications
9th International Symposium, RuleML 2015
Berlin, Germany, August 2–5, 2015
Proceedings

123

Editors
Nick Bassiliades
Aristotle University of Thessaloniki
Thessaloniki
Greece

Georg Gottlob
University of Oxford
Oxford
UK

Fariba Sadri
Imperial College London
London
UK

Adrian Paschke
Freie Universität Berlin
Berlin
Germany

Dumitru Roman
SINTEF/University of Oslo
Oslo
Norway

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-21541-9 ISBN 978-3-319-21542-6 (eBook)
DOI 10.1007/978-3-319-21542-6

Library of Congress Control Number: 2015943822

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

The annual International Web Rule Symposium (RuleML) is an international confer-
ence on research, applications, languages, and standards for rule technologies. It has
evolved from an annual series of international workshops since 2002, international
conferences in 2005 and 2006, and international symposia since 2007. RuleML 2015
was the ninth symposium of this series, collocated in Berlin, Germany, with the 25th
jubilee edition of the International Conference on Automated Deduction (CADE-25),
the 9th International Conference on Web Reasoning and Rule Systems (RR 2015), the
11th Reasoning Web Summer School (RW 2015), and the 7th Workshop on Formal
Ontologies Meet Industry (FOMI 2015).

RuleML is a leading conference aiming to build bridges between academia and
industry in the field of rules and their applications, especially as part of the semantic
technology stack. It is devoted to rule-based programming and rule-based systems
including production rule systems, logic programming rule engines, and business rule
engines and business rule management systems, Semantic Web rule languages and rule
standards (e.g., RuleML, SWRL, RIF, PRR, SBVR, DMN, CL, Prolog), rule-based
event processing languages (EPLs) and technologies, and research on inference rules,
transformation rules, decision rules, and ECA rules.

This annual symposium is the flagship event of the Rule Markup and Modeling
Initiative (RuleML). The RuleML Initiative (http://ruleml.org) is a nonprofit umbrella
organization of several technical groups from academia, industry, and government
working on rule technology and its applications. Its aim is to promote the study,
research, and application of rules in heterogeneous distributed environments such as the
Web. RuleML maintains effective links with other major international societies and acts
as intermediary between various specialized rule vendors, applications, industrial and
academic research groups, as well as standardization efforts from, e.g., W3C, OMG,
OASIS, and ISO. One of its major contributions is the Rule Markup Language, a
unifying family of XML-serialized rule languages spanning across all industrially
relevant kinds of Web rules.

The technical program of RuleML 2015 included presentations of novel rule-based
technologies, such as Semantic Web rule languages and standards, rule engines, formal
and operational semantics, and rule-based systems. Besides the regular research track,
RuleML 2015 included four special research tracks: a track on Complex Event Pro-
cessing, with the main theme of Uncertainty Handling in Complex Event Processing, a
track on Existential Rules and Datalog+/-, a track on Legal Rules and Reasoning, and a
track on Rule Learning. These tracks reflect the significant role of rules in several
research and application areas, which include: the relation between databases and rules,
reasoning over actions and events and developing reactive systems, aspects related to
using rules in legal applications, and automatically discovering rules from mining data.

A new feature of RuleML 2015 was the inclusion of an Industry track, describing
practical applications of rules and the state of the art of rule-based business cases.

Special highlights of this year’s symposium included two keynote talks:

• Michael Genesereth, from Stanford University, USA, presenting the Herbrand
Manifesto

• Thom Fruehwirth, from the University of Ulm, Germany, presenting an overview of
Constraint Handling Rules

There was also one invited talk:

• Avigdor Gal, from the Technion - Israel Institute of Technology, presenting a
framework for mining the rules that guide event creation.

In addition, the program included the 9th International Rule Challenge, dedicated to
practical experiences with rule-based applications, a special challenge (RecSysRules
2015) focusing on rule learning algorithms applied to recommender problems using the
linked open data cloud for feature set extension, the 5th RuleML 2015 Doctoral
Consortium, which focused on PhD research in the area of rules and markup languages,
and finally, a poster session.

The contributions in this volume include a set of invited papers, research track
papers, and industry track papers. Invited papers included two full papers for the
keynote talks, one full paper and one abstract for the invited talks, and two track papers.
The research papers included a selection of 22 full papers and one short research paper,
which were presented during the technical program of RuleML 2015. The research
papers were selected from 54 submissions through a peer-review process. Each paper
was reviewed by at least three members of the Program Committee and the Program
Committee chairs. For the papers submitted to one of the four special research tracks,
the track chairs were also involved in the reviewing phase. Industry track papers
included a selection of three papers (out of nine submissions, which underwent a
peer-review process).

Owing to the above efforts, RuleML 2015, like its predecessors, offered a
high-quality technical and applications program, which was the result of the joint effort
of the members of the RuleML 2015 Program Committee.

A special thanks is due to the track chairs, the excellent Program Committee, and the
additional reviewers for their hard work in reviewing the submitted papers. Their
criticisms and very useful comments were instrumental in achieving a high-quality
publication. We also thank the authors for submitting high-quality papers, responding
to the reviewers’ comments, and abiding by our production schedule. We further wish
to thank the keynote and invited speakers for their inspiring talks. We are very grateful
to the organizers of all the collocated events, CADE, RR, RW, and FOMI, for enabling
this fruitful collocation with RuleML 2015. RuleML 2015 was financially supported by
industrial companies and scientific journals and was technically supported by several
professional societies. We wish to thank our sponsors, whose financial support helped
us offer this event, and whose technical support allowed us to attract many high-quality

VI Preface

submissions. Last, but not least, we would like to thank the development team of the
EasyChair conference management system and our publisher, Springer, for their
support in the preparation and publication of this volume of proceedings.

May 2015 Nick Bassiliades
Georg Gottlob
Fariba Sadri

Adrian Paschke
Dumitru Roman

Preface VII

Organization

General Chair

Adrian Paschke Freie Universität Berlin, Germany

Scientific Program Co-chairs

Nick Bassiliades Aristotle University of Thessaloniki, Greece
Georg Gottlob University of Oxford, UK
Fariba Sadri Imperial College London, UK

Track Chairs

Rule Learning Track

Johannes Fürnkranz Technical University of Darmstadt, Germany
Tomas Kliegr University of Economics, Prague, Czech Republic

Existential Rules and Datalog+/- Track

Georg Gottlob University of Oxford, UK

Complex Event Processing Track

Alexander Artikis National Center for Scientific Research Demoktrios,
Athens, Greece

Mathias Weidlich Imperial College London, UK

Legal Rules and Reasoning Track

Monica Palmirani Università di Bologna, Italy
Ken Satoh NII (National Institute of Informatics), and Sokendai

(The Graduate University of Advanced Studies),
Japan

Industry Track

Marc Proctor Redhat, UK
Dumitru Roman SINTEF, Norway
Nenad Stojanovic Nissatech Innovation Centre, Serbia

Proceedings Chair

Dumitru Roman SINTEF, Norway

Doctoral Workshop Chairs

Grzegorz J. Nalepa AGH University of Science and Technology, Krakow,
Poland

Monica Palmirani Università di Bologna, Italy

9th International Rule Challenge Co-chairs

Paul Fodor Stony Brook University, USA
Adrian Giurca Brandenburg University of Technology

Cottbus–Senftenberg, Germany
Tomas Kliegr University of Economics, Prague, Czech Republic

RecSysRules 2015 Challenge Track Co-chairs:

Jaroslav Kuchař Czech Technical University, Prague, Czech Republic
Tommaso di Noia Politecnico di Bari, Italy
Heiko Paulheim University of Mannheim, Germany
Tomas Kliegr University of Economics, Prague

RuleML Rulebase Competition Co-chairs:

Paul Fodor Stony Brook University, USA
Adrian Giurca Brandenburg University of Technology

Cottbus–Senftenberg, Germany

Sponsoring, Publicity and Social Media Chair

Patrick Hung University of Ontario Institute of Technology, Canada

Local Organization Chair

Adrian Paschke Freie Universität Berlin, Germany

Financial Chair

Sebastian Fuß InfAI e.V., Germany

Web Chair

Shashishekar Ramakrishna Freie Universität Berlin, Germany

X Organization

Program Committee

Mario Alviano
Darko Anicic
Grigoris Antoniou
Marcelo Arenas
Alexander Artikis
Tara Athan
Martin Atzmueller
Ebrahim Bagheri
Nick Bassiliades
Meghyn Bienvenu
Antonis Bikakis
Henrik Bostrom
Pierre Bourhis
Lars Braubach
François Bry
Federico Chesani
Horatiu Cirstea
Claudia D'Amato
Célia Da Costa Pereira
Christian De Sainte Marie
Juergen Dix
Vadim Ermolayev
David Eyers
Wolfgang Faber
Jacob Feldman
Michael Fink
Sergio Flesca
Giorgos Flouris
Paul Fodor
Enrico Francesconi
Fred Freitas
Johannes Fürnkranz
Avigdor Gal
Aldo Gangemi
Adrian Giurca
Thomas F. Gordon

Georg Gottlob
Guido Governatori
Christophe Gravier
Ioannis Hatzilygeroudis
André Hernich
Stijn Heymans
Martin Hirzel
Aidan Hogan
Markus Krötzsch
Jaroslav Kuchař
Evelina Lamma
Florian Lemmerich
Francesca Alessandra Lisi
Michael Maher
Marco Manna
Alessandro Margara
Maria Vanina Martinez
Thorne Mccarty
Loizos Michael
Alessandra Mileo
Cristian Molinaro
Michael Morak
Grzegorz J. Nalepa
Giorgio Orsi
Monica Palmirani
Jose Ignacio Panach

Navarrete
Jeffrey Parsons
Adrian Paschke
Theodore Patkos
Heiko Paulheim
Andreas Pieris
Alexandra Poulovassilis
Cristian Prisacariu
Marc Proctor
Jan Rauch

Fabrizio Riguzzi
Dumitru Roman
Fariba Sadri
Ken Satoh
Vadim Savenkov
Erich Schweighofer
Gerardo Simari
Mantas Simkus
Davide Sottara
Ahmet Soylu
Giorgos Stamou
Giorgos Stoilos
Nenad Stojanovic
Umberto Straccia
Michaël Thomazo
Ioan Toma
Irina Trubitsyna
Martin Holena
Yuh-Jong Hu
Patrick Hung
Frederik Janssen
Tomas Kliegr
Boris Koldehofe
Roman Kontchakov
Efstratios Kontopoulos
Robert Kowalski
Wamberto Vasconcelos
George Vouros
Jian Wang
Renata Wassermann
Matthias Weidlich
Adam Wyner
Bernard Zenko
Albrecht Zimmermann
Thomas Ågotnes

Organization XI

External Reviewers

Mario Fusco
Nikos Katzouris
Cleyton Rodrigues

RuleML 2015 Sponsors

XII Organization

Organization XIII

When Processes Rule Events

Avigdor Gal

Technion – Israel Institute of Technology
avigal@ie.technion.ac.il

Abstract. Big data, with its four main characteristics (Volume, Velocity,
Variety, and Veracity) pose challenges to the gathering, management,
analytics, and visualization of events. These very same four character-
istics, however, also hold a great promise in unlocking the story behind
data. In this talk, we focus on the observation that event creation is
guided by processes. For example, GPS information, emitted by buses in
an urban setting follow the bus scheduled route. Also, RTLS information
about the whereabouts of patients and nurses in a hospital is guided by
the predefined schedule of work. With this observation at hand, we
thoroughly seek a method for mining, not the data, but rather the rules
that guide data creation and show how, by knowing such rules, big data
tasks become more efficient and more effective. In particular, we dem-
onstrate how, by knowing the rules that govern event creation, we can
detect complex events sooner and make use of historical data to predict
future behaviors.

Contents

Invited Papers

The Herbrand Manifesto: Thinking Inside the Box 3
Michael Genesereth and Eric Kao

Constraint Handling Rules - What Else? . 13
Thom Frühwirth

Consistency Checking of Re-Engineered UML Class Diagrams
via Datalog+/- . 35

Georg Gottlob, Giorgio Orsi, and Andreas Pieris

A Brief Overview of Rule Learning . 54
Johannes Fürnkranz and Tomáš Kliegr

Distribution and Uncertainty in Complex Event Recognition 70
Alexander Artikis and Matthias Weidlich

General RuleML Track

Compact Representation of Conditional Probability for Rule-Based Mobile
Context-Aware Systems. 83

Szymon Bobek and Grzegorz J. Nalepa

FOWLA, A Federated Architecture for Ontologies 97
Tarcisio M. Farias, Ana Roxin, and Christophe Nicolle

User Extensible System to Identify Problems in OWL Ontologies
and SWRL Rules . 112

João Paulo Orlando, Mark A. Musen, and Dilvan A. Moreira

Semantics of Notation3 Logic: A Solution for Implicit Quantification. 127
Dörthe Arndt, Ruben Verborgh, Jos De Roo, Hong Sun, Erik Mannens,
and Rik Van De Walle

API4KP Metamodel: A Meta-API for Heterogeneous Knowledge
Platforms . 144

Tara Athan, Roy Bell, Elisa Kendall, Adrian Paschke,
and Davide Sottara

Rule-Based Exploration of Structured Data in the Browser 161
Sudhir Agarwal, Abhijeet Mohapatra, Michael Genesereth,
and Harold Boley

PSOA2Prolog: Object-Relational Rule Interoperation and Implementation
by Translation from PSOA RuleML to ISO Prolog 176

Gen Zou and Harold Boley

Similarity-Based Strict Equality in a Fully Integrated Fuzzy Logic
Language . 193

Pascual Julián-Iranzo, Ginés Moreno, and Carlos Vázquez

Building a Hybrid Reactive Rule Engine for Relational and Graph
Reasoning . 208

Mario Fusco, Davide Sottara, István Ráth, and Mark Proctor

Complex Event Processing Track

Using PSL to Extend and Evaluate Event Ontologies 225
Megan Katsumi and Michael Grüninger

Probabilistic Event Pattern Discovery . 241
Ahmad Hasan, Kia Teymourian, and Adrian Paschke

How to Combine Event Stream Reasoning with Transactions
for the Semantic Web . 258

Ana Sofia Gomes and José Júlio Alferes

Existential Rules and Datalog+/- Track

Ontology-Based Multidimensional Contexts with Applications
to Quality Data Specification and Extraction . 277

Mostafa Milani and Leopoldo Bertossi

Existential Rules and Bayesian Networks for Probabilistic Ontological
Data Exchange . 294

Thomas Lukasiewicz, Maria Vanina Martinez, Livia Predoiu,
and Gerardo I. Simari

Binary Frontier-Guarded ASP with Function Symbols. 311
Mantas Šimkus

Graal: A Toolkit for Query Answering with Existential Rules 328
Jean-François Baget, Michel Leclère, Marie-Laure Mugnier,
Swan Rocher, and Clément Sipieter

Legal Rules and Reasoning Track

Input/Output STIT Logic for Normative Systems . 347
Xin Sun

XVIII Contents

Towards Formal Semantics for ODRL Policies . 360
Simon Steyskal and Axel Polleres

Representing Flexible Role-Based Access Control Policies Using Objects
and Defeasible Reasoning . 376

Reza Basseda, Tiantian Gao, Michael Kifer, Steven Greenspan,
and Charley Chell

Explanation of Proofs of Regulatory (Non-)Compliance Using Semantic
Vocabularies . 388

Sagar Sunkle, Deepali Kholkar, and Vinay Kulkarni

Rule Learning Track

Rule Generalization Strategies in Incremental Learning of Disjunctive
Concepts . 407

Stefano Ferilli, Andrea Pazienza, and Floriana Esposito

Using Substitutive Itemset Mining Framework for Finding Synonymous
Properties in Linked Data . 422

Mikołaj Morzy, Agnieszka Ławrynowicz, and Mateusz Zozuliński

Learning Characteristic Rules in Geographic Information Systems 431
Ansaf Salleb-Aouissi, Christel Vrain, and Daniel Cassard

Industry Track

Rule-Based Data Transformations in Electricity Smart Grids 447
Rafael Santodomingo, Mathias Uslar,
Jose Antonio Rodríguez-Mondéjar, and Miguel Angel Sanz-Bobi

Norwegian State of Estate: A Reporting Service for the State-Owned
Properties in Norway. 456

Ling Shi, Bjørg E. Pettersen, Ivar Østhassel, Nikolay Nikolov,
Arash Khorramhonarnama, Arne J. Berre, and Dumitru Roman

Ontology Reasoning Using Rules in an eHealth Context 465
Dörthe Arndt, Ben De Meester, Pieter Bonte, Jeroen Schaballie,
Jabran Bhatti, Wim Dereuddre, Ruben Verborgh, Femke Ongenae,
Filip De Turck, Rik Van de Walle, and Erik Mannens

Author Index . 473

Contents XIX

Invited Papers

The Herbrand Manifesto

Thinking Inside the Box

Michael Genesereth(B) and Eric Kao

Computer Science Department, Stanford University, Stanford, USA
genesereth@stanford.edu, erickao@cs.stanford.edu

Abstract. The traditional semantics for relational logic (sometimes
called Tarskian semantics) is based on the notion of interpretations of con-
stants in terms of objects external to the logic. Herbrand semantics is an
alternative that is based on truth assignments for ground sentences with-
out reference to external objects. Herbrand semantics is simpler and more
intuitive than Tarskian semantics; and, consequently, it is easier to teach
and learn. Moreover, it is stronger than Tarskian semantics. For exam-
ple, while it is not possible to finitely axiomatize integer arithmetic with
Tarskian semantics, this can be done easily with Herbrand semantics. The
downside is a loss of some common logical properties, such as compact-
ness and inferential completeness. However, there is no loss of inferential
power—anything that can be deduced according to Tarskian semantics
can also be deduced according to Herbrand semantics. Based on these
results, we argue that there is value in using Herbrand semantics for rela-
tional logic in place of Tarskian semantics. It alleviates many of the cur-
rent problems with relational logic and ultimately may foster a wider use
of relational logic in human reasoning and computer applications.

1 Introduction

One of the main strengths of relational logic is that it provides us with a well-
defined language for expressing complex information about objects and their
relationships. We can write negations, disjunctions, implications, quantified sen-
tences, and so forth. Logic also provides us with precise rules for deriving conclu-
sions from sentences expressed within this language while avoiding the derivation
of sentences that are not logical conclusions.

What makes it all work is that the language has a clearly defined semantics,
which gives meaning to logical connectives and quantifiers. This allows us to
know that we are using those connectives and quantifiers correctly; and it allows
us to know that, in our reasoning, we are deriving conclusions that follow from
our premises and avoiding those that do not.

The basis for almost all treatments of logical semantics is the notion of a
model. A model is a mathematical structure that tells us which sentences are
true and which are false. And this is the basis for logical entailment. We say that
a set of premises logically entails a conclusion if and only if every model that

c© Springer International Publishing Switzerland 2015
N. Bassiliades et al. (Eds.): RuleML 2015, LNCS 9202, pp. 3–12, 2015.
DOI: 10.1007/978-3-319-21542-6 1

4 M. Genesereth and E. Kao

satisfies the premises also satisfies the conclusion. In other words, the conclusion
must be true whenever the premises are true.

Tarskian semantics is the traditional approach to defining models in rela-
tional logic. In Tarskian semantics, a model consists of an arbitrary set of objects
(called the universe of discourse) and an interpretation function that (1) maps
object constants into elements of this set, (2) maps function constants into func-
tions on this set, and (3) maps relation constants into relations on this set.

As an example, consider the model defined below. Our language in this case
consists of the object constants a and b, the unary function constant f and
the binary function constant r. Our universe of discourse consists of the natural
numbers. Our interpretation maps a into 1 and b into 2; it maps f into a function
on these numbers; and it maps r into a set of 2-tuples.

Vocabulary:
{a, b, f, r}

Universe:
{1, 2, 3, 4, . . .}

Interpretation:
i(a) = 1
i(b) = 2
i(f) = {1 �→ 2, 2 �→ 4, . . . }
i(r) = 〈1, 2〉, 〈2, 3〉, 〈3, 4〉, . . .

A model of this sort completely determines the truth or falsity of all sentences
in the language. And it gives us a definition of logical entailment. Note, how-
ever, that there are unboundedly many interpretations for any language, and
entailment is defined over all conceivable universes—finite, countably infinite,
and beyond. It also requires an understanding of relations as set of tuples of
objects.

Herbrand semantics is simpler. We start out with the notion of a Herbrand
base, i.e. the set of ground atoms in our language. A model is simply a subset
of the Herbrand base, viz. the elements that are deemed to be true.

As an example, consider the model defined below. Our language here consists
of the object constants a and b, the unary relation constant p, and the binary
relation constant q. The Herbrand base corresponding to this vocabulary has
just six elements, as shown. Any subset of these elements is a model.

Vocabulary: {a, b, p, q}
Herbrand Base: {p(a), p(b), q(a, a), q(a, b), q(b, a), q(b, b)}
Herbrand Model: {p(a), q(a, b)}
As with Tarskian semantics, a Herbrand model completely determines the

truth or falsity of all sentences in the language, not just the ground atoms.
And it gives us a definition of logical entailment. One important difference from
Tarskian semantics is that Herbrand semantics is less open-ended. There is no
external universe, only symbols and sentences in the language. In a sense, it is
thinking inside the box.

The Herbrand Manifesto 5

In much of the literature, Herbrand semantics is treated (somewhat under-
standably) as a special case of Tarskian semantics—the case where we look at
so-called Herbrand interpretations [4]. One downside of this is that Herbrand
semantics has not been given as much theoretical attention as Tarskian seman-
tics. In this paper, we turn things upside down, focussing on Herbrand semantics
in its own right instead of treating it as a special case of Tarskian semantics. The
results are interesting. We no longer have many of the nice features of Tarskian
semantics—compactness, inferential completeness, and semidecidability. On the
other hand, there are some real benefits to doing things this way. Most impor-
tantly, Herbrand semantics is conceptually a lot simpler than Tarskian semantics;
and, as a result, Herbrand semantics is easier to teach and learn. It has equiva-
lent or greater inferential power. And more things are definable with Herbrand
semantics than with Tarskian semantics. In the remainder of this paper, we
demonstrate with examples some of the power and the properties of Herbrand
semantics; each point is explained in detail in a companion paper [3].

2 Nuts and Bolts

Let’s start with the basics. As mentioned earlier, a Herbrand base is the set of
ground atoms in our language; and a model is an arbitrary subset of this set.

Given a model Δ, we say that a ground atom ϕ is true iff ϕ is in Δ. Here, h
is the truth assignment corresponding to Δ. We use 1 to represent truth and 0
to represent falsity.

h(ϕ) = 1 iff ϕ ∈ Δ
The truth values of logical sentences are defined the same as with Tarskian

semantics. A negation is true iff the negated sentence is false. A conjunction is
true iff the conjuncts are both true. And so forth.

h(¬ϕ) = 1 iff h(ϕ) = 0
h(ϕ ∧ ψ) = 1 iff h(ϕ) = 1 and h(ψ) = 1
h(ϕ ∨ ψ) = 1 iff h(ϕ) = 1 or h(ψ) = 1
h(ϕ ⇒ ψ) = 1 iff h(ϕ) = 0 or h(ψ) = 1
h(ϕ ⇔ ψ) = 1 iff h(ϕ) = h(ψ)
Finally, a universally quantified sentence is true if and only all of the instances

are true.
h(∀x.ϕ(x)) = 1 iff h(ϕ(τ)) = 1 for every ground term τ
Despite many similarities, this definition does not produce the same results

as Tarskian semantics. To illustrate this point, let’s look at an example that
illustrates the difference.

Here is a popular question from Stanford ’s doctoral comprehensive exam.
Suppose we are given a set Δ of sentences in the language of relational logic such
that Δ logically entails ϕ(τ) for every ground term τ in the language. Is it the
case that Δ logically entails ∀x.ϕ(x)?

The question is not difficult if one understands Tarskian semantics, but
apparently not everyone does. The most common answer to this question is
’yes’; people seem to think that, if Δ logically entails every ground instance of

6 M. Genesereth and E. Kao

ϕ, it must entail the universally quantified version. Of course, under Tarskian
semantics, that answer is wrong. There can be some unnamed element of the
universe of discourse for which the sentence is false.

However, the popularity of the ”incorrect” answer suggests that perhaps our
semantics does not capture our intuitions about logic. Maybe it should. The
good news is that, with Herbrand semantics, the answer to this question is ’yes’.
(See the definition of satisfaction for universally quantified sentences above.)

As another example of a difference between Tarskian semantics and Her-
brand semantics, consider the problem of axiomatizing Peano Arithmetic. As we
know from Gödel, a finite axiomatization is not possible in relational logic with
Tarskian semantics. Interestingly, with Herbrand semantics there is such a finite
axiomatization.

Since there are infinitely many natural numbers, we need infinitely many
terms. A common approach is to represent numbers using a single object constant
(e.g. 0) and a single unary function constant (e.g. s). We can then represent
every number n by applying the function constant to 0 exactly n times. In this
encoding, s(0) represents 1; s(s(0)) represents 2; and so forth.

Unfortunately, even with this representation, axiomatizing Peano Arithmetic
is a bit challenging. We cannot just write out ground relational sentences to
characterize our relations, because there are infinitely many cases to consider.
For Peano Arithmetic, we must rely on logical sentences and quantified sentences,
not just because they are more economical but because they are necessary to
characterize our relations in finite space.

Let’s look at equality first. The axioms shown here define equality in terms
of 0 and the s function. For all x, equal(x, x). For all x, 0 is not equal to s(x)
and s(x) is not equal to 0. For all x and for all y, if x is not equal to y, then
s(x) is not equal to s(y).

∀x.equal(x, x)
∀x.(¬equal(0, s(x)) ∧ ¬equal(s(x), 0))
∀x.∀y.(¬equal(x, y) ⇒ ¬equal(s(x), s(y)))

It is easy to see that these axioms completely characterize equality. By the
first axiom, the equality relation holds of every term and itself. The other two
axioms tell us what is not true. The second axiom tells us that 0 is not equal
to any composite term. The same holds true with the arguments reversed. The
third axiom builds on these results to show that non-identical composite terms
of arbitrary complexity do not satisfy the equality relation. Viewed the other
way around, to see that two non-identical terms are not equal, we just strip
away occurrences of s from each term till one of the two terms becomes 0 and
the other one is not 0. By the second axiom, these are not equal, and so the
original terms are not equal.

Once we have the equal relation, we can define the other relations in our
arithmetic. The following axioms define the plus relation in terms of 0, s, and
equal. Adding 0 to any number results in that number. If adding a number x to
a number y produces a number z, then adding the successor of x to y produces
the successor of z. Finally, we have a functionality axiom for plus.

The Herbrand Manifesto 7

∀y.plus(0, y, y)
∀x.∀y.∀z.(plus(x, y, z) ⇒ plus(s(x), y, s(z)))
∀x.∀y.∀z.∀w.(plus(x, y, z) ∧ ¬same(z, w) ⇒ ¬plus(x, y, w))

The axiomatization of multiplication is analogous. Multiplying any number
by 0 produces 0. If a number z is the product of x and y and w is the sum of y
and z, then w is the product of the successor of x and y. As before, we have a
functionality axiom.

∀y.times(0, y, 0)
∀x.∀y.∀z.∀w.(times(x, y, z) ∧ plus(y, z, w) ⇒ times(s(x), y, w))
∀x.∀y.∀z.∀w.(times(x, y, z) ∧ ¬same(z, w) ⇒ ¬times(x, y, w))

Under Herbrand semantics, this axiomatization is complete since we have
defined truth for all ground atoms and thus all sentences. By contrast, Gödel’s
incompleteness theorem tells us that these axioms are not complete under
Tarskian semantics. Note that the Incompleteness Theorem assumes semi-
decidability of logical entailment. Relational logic with Tarskian semantics is
semi-decidable; with Herbrand semantics, it is not semi-decidable, as we shall
see shortly. So, there is no contradiction here.

3 No Free Lunch

Unfortunately, the additional expressive power of Herbrand semantics comes
with a price. We lose some nice features that we have with Tarskian semantics.

First of all, there is compactness. A logic is compact if and only if every
unsatisfiable set of sentences has a finite subset that is unsatisfiable.

Relational logic with Tarskian semantics turns out to be compact. The upshot
is that it is possible to demonstrate unsatisfiability in finite space; alternatively,
all proofs are finite.

By contrast, relational logic with Herbrand semantics is not compact—there
are infinite sets of sentences that are unsatisfiable while every finite subset is sat-
isfiable. Consider the set of sentences shown here. It is clearly unsatisfiable under
Herbrand semantics; but, if we remove any one sentence, it becomes satisfiable.

{p(0), p(s(0)), p(s(s(0))), ...,∃x.¬p(x)}
The upshot is that relational logic with Herbrand semantics is not compact.

Fortunately, this does not cause any practical difficulties, since in all cases of
practical interest we are working with finite sets of premises.

More disturbing is that there is no complete proof procedure for relational
logic with Herbrand semantics. Gödel’s incompleteness theorem tells us that the
set of all true sentences of Peano Arithmetic is not computably enumerable. Our
axiomatization is complete using Herbrand semantics. If Herbrand entailment
were semi-decidable, the set of all true sentences would be enumerable. Con-
sequently, there is no complete (semi-decidable) proof procedure for relational
logic with Herbrand semantics.

8 M. Genesereth and E. Kao

However, this is not as bad as it seems. It turns out that everything that
is true under Tarskian semantics is also true under Herbrand semantics, so we
can use the same rules of inference. The upshot here is that we lose nothing by
switching to Herbrand semantics. In fact, we can add some additional rules of
inference. It is not that relational logic with Herbrand semantics is weaker. In
fact, it is stronger. There are more things that are true. We cannot prove them
all, but we can prove everything we could prove before.

Some may be disturbed by the fact that Herbrand entailment is not semi-
decidable. However, Tarskian semantics is not perfect either. Although it is semi-
decidable, it is not decidable; a proof procedure might still run forever if a
proposed conclusion does not follow from a set of premises.

There is one other limitation that some may find even more disturbing. Since
Herbrand semantics is effectively limited to countable universes, it would appear
that we can no longer use the logic to axiomatize uncountable sets, such as the
real numbers. This is true. However, it is not that much of a limit. For one,
most CS applications involve finite or countably infinite domains. Remember
that there are at most countably many floating point numbers.

Arguably one might want to axiomatize the reals even without converting
to floating point numbers. However, even here, Tarskian semantics is limited
because of the Löwenheim-Skolem theorem. This theorem states that, under
Tarskian semantics, if a set of sentences has an infinite model of any cardinality,
then it has a countable model. In particular, any theory of the real numbers has
a countable model—everything one can say about the real numbers in relational
logic is also true of some countable model.

4 Curiouser and Curiouser

The power of Herbrand semantics is, in large part, due to the implicit property
of domain closure—there are no objects in the universe except for ground terms.
This allows us to give complete definitions to things that cannot be completely
defined with Tarskian semantics. We have already seen Peano Arithmetic. It
turns out that, under Herbrand semantics, we can also define some other useful
concepts that are not definable with Tarskian semantics, and we can do so with-
out resorting to more complex logical mechanisms, such as negation as failure.

Let’s look at transitive closure first1. Let’s say that we have a binary relation
p and we want to axiomatize its transitive closure q. The typical approach in
relational logic would be to write the definition shown here.

∀x.∀z.(q(x, z) ⇔ p(x, z) ∨ ∃y.(p(x, y) ∧ q(y, z)))

It is easy to see that q contains the transitive closure of p. The problem is that,
in general, it can contain additional elements as well, corresponding to various
non-standard models. For example, the universe of discourse might contain an

1 Uwe [5] offers a more detailed explanation of why transitive closure is not axioma-
tizable in (first-order) relational logic with Tarskian semantics.

The Herbrand Manifesto 9

object that does not have any p relationships at all. However, if we link all other
objects to this object via q, this satisfies our definition. The upshot is that we
have a model of our sentence that is a proper superset of the transitive closure
of p. Not good.

By contrast, we can define the transitive closure of a relation in relational
logic with Herbrand semantics. It is not as simple or intuitive as the definition
above, but it is theoretically possible. The trick is to exploit the enumerability
of the Herbrand universe. Suppose we have the object constant 0, an arbitrary
unary relation constant s; and suppose our job is to define q as the transitive
closure of p.

We start by defining a helper relation qh as shown below. The basic idea
here is that qh(x, z, n) is the (partial) transitive closure in which no intermediate
variable is bigger than n. Once we have qh, we can easily define q in terms of qh.
q is true of two elements if and only if there is a level at which qh becomes true
of those elements.

qh(x, z, 0) ⇔ p(x, z) ∨ p(x, 0) ∧ p(0, z)
qh(x, z, s(n)) ⇔ qh(x, z, n) ∨ (qh(x, s(n), n) ∧ qh(s(n), z, n))

It is easy to see that q is exactly the transitive closure of p. The only disad-
vantage of this axiomatization is that we need the helper relation qh. But that
causes no significant problems.

∀x.∀z.(q(x, z) ⇔ ∃n.qh(x, z, n))

But wait. There’s more! As we know, it is possible to encode some relations in
rule systems that cannot be encoded in relational logic with Tarskian semantics.
Rule systems get this power from the use of negation as failure to minimize those
relations. The cool thing is that, even without any form of negation as failure, it
is possible to encode those relations in relational logic with Herbrand semantics.
Moreover, various minimization policies can result from different axiomatiza-
tions.

Consider a logic program like the one shown here. There are two rules defining
p and one rule defining q.

p(0, 1)
p(X,Y) :- q(X, 0), p(Y,Z)
q(X,Y) :- p(X, 0), q(Y,Z)

The first step of our conversion is to normalize the program so that the head
of every rule consists of distinct variables. This is easy to do using equality
(defined as we did earlier in Peano Arithmetic). We then combine the bodies of
the resulting rules using the disjunction operator.

p(X,Y) :- X = 0, Y = 1
p(X,Y) :- q(X, 0), p(Y,Z)
q(X,Y) :- p(X, 0), q(Y,Z)

10 M. Genesereth and E. Kao

Next we transform the normalized program as follows. The first two sentences
here are the result of transforming the original axioms using our helper relations.
The other axioms are the additional axioms defining the helper relations and
defining the target relations in terms of these helper relations. For each rule
defining an n-ary relation in the normalized program, we define an (n + 1)-ary
auxiliary relation as shown here. ph is true of x and y and 0 iff x=0 and y = 1.
ph is true of x and y and s(n) iff there is a z that the definition holds of elements
on step n. Finally, if ph is true of x and y on step n, then it is also true on step
s(n). Ditto for qh.

ph(x, y, 0) ⇔ x = 0 ∧ y = 1
ph(x, y, s(n)) ⇔ ∃z.(qh(x, 0, n) ∧ ph(y, z, n))
ph(x, y, s(n)) ⇐ ph(x, y, n)

¬qh(x, y, 0)
qh(x, y, s(n)) ⇔ ∃z.(ph(x, 0, n) ∧ qh(y, z, n))
qh(x, y, s(n)) ⇐ qh(x, y, n)

Finally, we define p and q in terms of ph and qh, as we did in the transitive
closure example.

p(x, y) ⇔ ∃n.ph(x, y, n)
q(x, y) ⇔ ∃n.qh(x, y, n)

Now, the interesting thing is that it turns out that we can do this trans-
formation in general (for arbitrary logic programs so long as they are safe and
stratified). Let P be an arbitrary safe, stratified program over R. Let M be the
unique minimal model of P under stratified semantics [1,6]. Then, this transfor-
mation has a unique model M ′ under Herbrand semantics such that M ′ = M
over R. Voila—minimization without negation as failure.

One consequence of this result is that we can treat :- as syntactic sugar for
definitions requiring minimization. There is no need for a different logic. Which
does not mean that :- is useless. In fact, the oddity of our definitions makes
clear the value of :- in expressing definitions intuitively.

I think there is also another, more subtle benefit of this theorem. One possible
practical consequence of this work concerns the relationship between rule sys-
tems and ordinary logic. Rules and ordinary logic are often seen as alternatives.
Herbrand semantics has the potential to bring these two fields closer together
in a fruitful way. This upshot could be a possible re-prioritization of research in
these two areas.

The power and beauty of rule systems is their suitability for writing com-
plete definitions. We start with some completely specified base relations and
define other relations in terms of these base relations, working our way up the
definitional hierarchy. At every point in time we have a complete model of the
world.

Unfortunately, complete theories are not always possible; and in such situa-
tions we need to provide for expressing incomplete information. In an attempt

The Herbrand Manifesto 11

to deal with incomplete information, researchers have proposed various exten-
sions to rule systems, e.g. negations, disjunctions, and existentials in the heads
of rules, unstratified rules systems, and so forth. Unfortunately, extensions like
these mar the beauty of rule systems and ruin their computational properties.

The alternative is to switch to relational logic in such situations. Unfortu-
nately, relational logic with Tarskian semantics is more complex and fails to
provide minimization or negation as failure.

Our argument is that Herbrand semantics for ordinary logic gives us an ideal
middle ground between rules and relational logic, allowing us to combine rules
with relational logic without losing the benefits that each brings to the table. We
can use rules for definitions and ordinary logical operators for constraints. The
two can co-exist. In fact, as I have suggested, we can even formalize negation as
failure and various minimization policies within relational logic, so long as we
are using Herbrand semantics.

Now, I do not know whether this is practically possible or not. However, I
think it is an idea worthy of study, considering the lack of a unifying semantics
today.

5 Conclusion

In conclusion, let’s return to the theme of simplicity. The fact is that Tarskian
semantics is more difficult to understand than Herbrand semantics.

First of all, in Tarskian semantics, there are unboundedly many interpreta-
tions for any language, and entailment is defined over all conceivable universes—
finite, countably infinite, and beyond.

Second, Tarskian semantics requires an understanding of relations as sets
of tuples, which is a novel concept for many students. In Herbrand semantics,
everything is defined in terms of sentences, which are more concrete and which
students already understand.

Finally, in Tarskian semantics, there is also greater complexity in the defini-
tion of satisfaction. Here is the definition in Tarskian semantics. ”An interpreta-
tion i and a variable assignment s satisfy a universally quantified sentence if and
only if i and s satisfy the scope of the sentence for every version of the variable
assignment. A version s[v �→ x] of a variable assignment s is a variable assign-
ment that assigns v the value x and agrees with s on all other variables.” That’s
a mouthful. Now, compare the definition in Herbrand semantics. ”A model sat-
isfies a universally quantified sentence if an only if it satisfies every instance.”
That’s it. Shorter and easier to understand.

These ideas confuse students. As a result, they feel insecure and are all too
often turned off on logic. This is sad because we should be teaching more logic
and not turning people away. In Greek times, logic was one of the three basic
disciplines that students learned. Today, it is taught in only a very small per-
centage of schools. Instead, we are taught geometry. We are taught how to bisect
angles in high school, but we are not taught logic. Only few of us need to bisect
angles in our daily lives, but many of us use logic in our professional lives and

12 M. Genesereth and E. Kao

in our private live, e.g. to understand political arguments, court cases, and so
forth. Perhaps, if we could make logic more useful and easier to teach, this could
change.

To test the value of Herbrand semantics in this regard, we recently switched
Stanford’s introductory logic course from Tarskian semantics to Herbrand
semantics. The results have been gratifying. Students get semantics right away.
They do better on quizzes. And there are fewer complaints about feeling lost. It
is clear that many students come away from the course feeling empowered and
intent on using logic. More so than before anyway.

The logic course is now available as a MOOC 2 (and an associated book [2]).
It was one of the first MOOCs taught at Stanford. We teach it each year in the
Fall. Typical enrollment is now almost 100,000 students per session. To date,
more than 500,000 students have enrolled in all. As is typical with MOOCs,
only a fraction of these students finish. Even so, more students have seen this
than have graduated from Stanford’s math program in its entire history.

In a previous keynote address at RuleML, we talked about Logical Spread-
sheets. On that occasion, we mentioned the goal of popularizing logic and sug-
gested that what we need is a way to make logic more accessible and we need
tools that make it clear that logic is useful, not just as an intellectual tool but
as a practical technology as well.

This time, we have talked about a way to make logic more accessible—a way
to teach people enough logic so that they can use logical spreadsheets and other
logic-based technologies. If logic is easy to learn, our hope is that we can make
it more popular. Not just to promote our interests as researchers but also to
benefit society with the fruits of our research.

References

1. Chandra, A.K., Harel, D.: Horn clause queries and generalizations. The Journal of
Logic Programming 2(1), 1–15 (1985)

2. Genesereth, M., Kao, E.: Introduction to Logic, Synthesis Lectures on Computer
Science, vol. 4. Morgan & Claypool Publishers, 2 edn. January 2013. http://www.
morganclaypool.com/doi/abs/10.2200/S00432ED1V01Y201207CSL005

3. Genesereth, M., Kao, E.J.Y.: Herbrand semantics. Tech. Rep. LG-2015-01, Logic
Group, Computer Science Dept., Stanford University (2015). http://logic.stanford.
edu/herbrand/herbrand.html

4. Goubault-Larrecq, J., Mackie, I.: Proof theory and automated deduction. Applied
Logic Series, 1st edn. Springer, Netherlands (1997)

5. Keller, U.: Some remarks on the definability of transitive closure in first-order logic
and datalog. Tech. rep, Digital Enterprise Research Institute (DERI) (2004)

6. Van Emden, M.H., Kowalski, R.A.: The semantics of predicate logic as a program-
ming language. Journal of the ACM (JACM) 23(4), 733–742 (1976)

2 MOOC URL: http://online.stanford.edu/course/introduction-logic

http://www.morganclaypool.com/doi/abs/10.2200/S00432ED1V01Y201207CSL005
http://www.morganclaypool.com/doi/abs/10.2200/S00432ED1V01Y201207CSL005
http://logic.stanford.edu/herbrand/herbrand.html
http://logic.stanford.edu/herbrand/herbrand.html
http://online.stanford.edu/course/introduction-logic

Constraint Handling Rules - What Else?

Thom Frühwirth(B)

University of Ulm, Ulm, Germany
thom.fruehwirth@uni-ulm.de

http://www.constraint-handling-rules.org

Abstract. Constraint Handling Rules (CHR) is both an effective
concurrent declarative constraint-based programming language and a
versatile computational formalism. While conceptually simple, CHR is
distinguished by a remarkable combination of desirable features:

– a semantic foundation in classical and linear logic,
– an effective and efficient sequential and parallel execution model
– guaranteed properties like the anytime online algorithm properties
– powerful analysis methods for deciding essential program properties.

This overview of some CHR-related research and applications is by
no means meant to be complete. Essential introductory reading for
CHR provide the survey article [122] and the books [55,62]. Up-to-
date information on CHR can be found online at the CHR web-
page www.constraint-handling-rules.org, including the slides of the
keynote talk associated with this article. In addition, the CHR web-
site dtai.cs.kuleuven.be/CHR/ offers everything you want to know about
CHR, including online demo versions and free downloads of the language.

1 Executive Summary

Constraint Handling Rules (CHR) [55] tries to bridge the gap between theory and
practice, between logical specification and executable program by abstraction
through constraints and the concepts of computational logic. CHR has its roots
in constraint logic programming and concurrent constraint programming, but
also integrates ideas from multiset transformation and rewriting systems as well
as automated reasoning and theorem proving. It seamlessly blends multi-headed
rewriting and concurrent constraint logic programming into a compact user-
friendly rule-based programming language. CHR consists of guarded reactive
rules that transform multisets of relations called constraints until no more change
occurs. By the notion of constraint, CHR does not need to distinguish between
data and operations, and its rules are both descriptive and executable.

In CHR, one distinguishes two main kinds of rules: Simplification rules replace
constraints by simpler constraints while preserving logical equivalence, e.g.,
X≤Y∧Y≤X ⇔ X=Y.Propagation rules addnew constraints that are logically redun-
dant but may cause further simplification, e.g., X≤Y∧Y≤Z ⇒ X≤Z. Together with
X≤X ⇔ true, these rules encode the axioms of a partial order relation. The rules
compute its transitive closure and replace inequalities ≤ by equalities = whenever
possible. For example, A≤B∧B≤C∧C≤A becomes A=B∧B=C. More program exam-
ples can be found in Section 2. Semantics of CHR are discussed in Section 3.
c© Springer International Publishing Switzerland 2015
N. Bassiliades et al. (Eds.): RuleML 2015, LNCS 9202, pp. 13–34, 2015.
DOI: 10.1007/978-3-319-21542-6 2

www.constraint-handling-rules.org
http://www.dtai.cs.kuleuven.be/CHR/

14 T. Frühwirth

1.1 Powerful Program Analysis

One advantage of a declarative programming language is the ease of program
analysis. CHR programs have a number of desirable properties guaranteed and
can be analyzed for others. They will be discussed in Section 4.

Since CHR (and many of its fragments) are Turing-complete, termination is
undecidable, but often a ranking in the form a a well-founded termination order
can be found to prove termination. From the ranking, a crude upper bound for
the time complexity can automatically be derived. More precise bounds on the
complexity can also be found by inspecting the rules.

Confluence of a program guarantees that any computation starting from the
same initial state results in the same final state no matter which of the applicable
rules are applied. There is a decidable, sufficient and necessary condition for
confluence of terminating programs.

Any terminating and confluent CHR program has a consistent logical read-
ing. It will automatically implement a concurrent any-time (approximation) and
on-line (incremental) algorithm, where constraints can arrive during the compu-
tation that can be stopped and restarted at any time. It ensures that rules can
be applied in parallel to different parts of a state without any modification and
without harming correctness. This property is called declarative concurrency or
logical parallelism.

Surprisingly, there is also a decidable, sufficient and necessary syntactic con-
dition for operational equivalence of terminating and confluent programs (we do
not know of any other programming language in practical use with this prop-
erty). So one can check if two programs behave in the same way and if a program
has redundant parts.

1.2 Implementations and Applications

CHR is often used as a language extension to other programming languages, its
syntax can be easily adapted to that of the host language. In the host language,
CHR constraints can be posted and inspected; in the CHR rules, host language
statements can be included. CHR libraries are now available in almost all Prolog
implementations, but also in Haskell, Curry, Java and C as well as in hardware.

It has been proven that every algorithm can be implemented in CHR with best
known time and space complexity, something that is not known to be possible in
other pure declarative programming languages. The efficiency of the language is
empirically demonstrated by optimizing CHR compilers that compete well with
both academic and commercial rule-based systems and even classical program-
ming languages. The fastest implementations of CHR, e.g. in C, allow to apply
up to millions of rules per second.

Other rule- and logic-based approaches have been successfully and rather
straightforwardly embedded in CHR. For this reason, CHR is considered a
candidate for a lingua franca of such approaches with the potential for cross-
fertilization of research in computational systems and languages. Implementa-
tions and embeddings are discussed in Section 5.

Constraint Handling Rules - What Else? 15

CHR has been used for such diverse applications as type system design
for Haskell, time tabling, optimal sender placement, computational linguistics,
spatio-temporal reasoning, verification, semantic web reasoning, data mining and
computational linguistics. Successful commercial application include financial
services, network design, mould design, robot vehicle control, enterprise appli-
cations and software verification. Applications of CHR and research using CHR
are discussed in Section 6.

CHR is also available online for demos and experimentation at chrjs.net at
an introductory level and as WebCHR at chr.informatik.uni-ulm.de/∼webchr/
with more than 50 example programs. More than 200 academic and industrial
projects worldwide use CHR, and about 200 scientific books and 2000 research
papers reference it. The CHR community and other interested researchers and
practitioners gather at the yearly CHR workshops and the biannual CHR sum-
mer schools.

2 A Taste of CHR Programs

The following programs can be run with little modification in the online versions
of CHR just mentioned. Note that all programs have the anytime online algo-
rithm properties. So they can be stopped at any time for intermediate results,
constraints can be added while they already run (incrementality), and they can
be directly executed in parallel. These program examples are explained more in
[54] and discussed in detail in [55].

Some examples use a third kind of rule, a hybrid rule called simpagation rule.
It has the form H1\H2 ⇔ C|B. Basically, if H1 and H2 match constraints and
the guard C holds, then the constraints matching H1 are kept, the constraints
matching H2 are removed and the body C is added. For logical conjunction ∧
we will simply write a comma between constraints.

Multiset Transformation - One-Rule Algorithms

Compute minimum of a set of min candidates
min(I) \ min(J) ⇔ J>I | true.
Compare two numbers, keep smaller one.

Compute greatest common divisor of a set of numbers
gcd(I) \ gcd(J) ⇔ J>=I | gcd(J mod I).
Replace I and J by I and (J mod I) until all numbers are the same.

Compute primes, given prime(2),...,prime(MaxN)
prime(I) \ prime(J) ⇔ J mod I = 0 | true.
Keep removing multiples until only primes are left.

Sort array with elements a(Index,Value)
a(I,V), a(J,W) ⇔ I>J, V<W | a(I,W), a(J,V).
Keep swapping numbers that are out of order until sorted.

chrjs.net
chr.informatik.uni-ulm.de/~webchr/

16 T. Frühwirth

Merge Sort, given values as next(start,Value)
next(A,B) \ next(A,C) ⇔ A<B,B<C | next(B,C).
Turn common successors into direct successors until sorted chain results.

Newton’s Method for Square Root Approximation for N>1
eps(E) \ sqrt(X,R) ⇔ R*R/X-1>E | sqrt(X,(R+X/R)/2).
Start with sqrt(N,N). E is the required precision factor.

Fibonacci Variations - M is the Nth Fibonacci number

Top-down Evaluation
fib(0,M) ⇔ M=1.
fib(1,M) ⇔ M=1.
fib(N,M) ⇔ N>=2 | fib(N-1,M1), fib(N-2,M2), M=M1+M2.
Matching is used on left hand sides of rules.

Top-down Evaluation with Memorization (in first rule)
fib(N,M1) \ fib(N,M2) ⇔ M1=M2.
fib(0,M) ⇒ M=1.
fib(1,M) ⇒ M=1.
fib(N,M) ⇒ N>=2 | fib(N-1,M1), fib(N-2,M2), M=M1+M2.
Turned simplification into propagation rules.

Bottom-up Evaluation without Termination
fibstart ⇔ fib(0,1), fib(1,1).
fib(N1,M1), fib(N2,M2) ⇒ N2=N1+1 | fib(N2+1,M1+M2).
Basically, original simplification rules have been reversed.

Bottom-up Evaluation with Termination at Max
fib(Max) ⇒ fib(0,1), fib(1,1).
fib(Max), fib(N1,M1), fib(N2,M2) ⇒ Max>N1, N1=N2+1 |

fib(N2+1,M1+M2).
The auxiliary constraint fib(Max) is added. Computation stops when Max=N1.

All-Pair Shortest Paths

The distance from X to Y is D
path(X,Y,D1) \ path(X,Y,D2) ⇔ D1=<D2 | true.
arc(X,Y,D) ⇒ path(X,Y,D).
arc(X,Y,D), path(Y,Z,Dn) ⇒ path(X,Z,D+Dn).
Compute all paths with propagation rules, keep smaller ones.

Dynamic Programming - Bottom-up Parsing with CYK Algorithm

Grammar rules are in Chomsky normal form A->T or A->B*C.
A sequence of terminal symbols is encoded as a chain of arcs.
parse(X,Y,A) \ parse(X,Y,A) ⇔ true.

Constraint Handling Rules - What Else? 17

terminal @ A->T, arc(X,Y,T) ⇒ parse(X,Y,A).
non-term @ A->B*C, parse(X,Y,B), parse(Y,Z,C) ⇒ parse(X,Z,A).
Note the similarity with All-Pair Shortest Paths.

Boolean Conjunction as Constraint

The result of X∧Y is Z
and(X,Y,Z) ⇔ X=0 | Z=0. and(X,Y,Z) ⇔ Y=0 | Z=0.
and(X,Y,Z) ⇔ X=1 | Z=Y. and(X,Y,Z) ⇔ Y=1 | Z=X.
and(X,Y,Z) ⇔ X=Y | Y=Z. and(X,Y,Z) ⇔ Z=1 | X=1,Y=1.
Also computes with unknown input values and backwards. Such rules can
be automatically generated from specifications [8].

3 CHR Semantics

In this section we give an overview of the main semantics for CHR. More detailed
overviews can be found in [19,62]. As a declarative programming language and
formalism, CHR features both operational semantics that describe the execution
of a program and declarative semantics that interpret a program as a logical
theory. These semantics exist at various levels of refinement. They are related
by soundness and completeness results, showing their correspondence.

3.1 CHR Rules and Their Declarative Semantics

To simplify the presentation, we use a generic notation for all three kinds of CHR
rules. Built-in constraints are host language statements that can be used as tests
in the guard or auxiliary computations in the body of a rule. A generalized
simpagation rule is of the form

H1\H2 ⇔ C|B
where in the rule head (left-hand-side), H1 and H2 are conjunctions of user-
defined constraints, the optional guard C is a conjunction of built-in constraints
from the host language and the body (right-hand-side) B is a conjunction of
arbitrary constraints. If H1 and H2 are non-empty, the rule corresponds to a
simpagation rule. If H1 is empty, the rule corresponds to a simplification rule, if
H2 is empty, the rule corresponds to a propagation rule.

The declarative semantics is based on first-order predicate logic, where
constraints are viewed as predicates and rules as logical implications and
equivalences. A generalized simpagation rule basically corresponds to a logical
equivalence

H1 ∧ H2 ∧ C ↔ H1 ∧ C ∧ B.

An interesting refinement is the linear-logic semantics [19,20]. It is closer to the
operational semantics in that it captures the meaning of constraints as resources,
where multiplicities matter.

18 T. Frühwirth

3.2 Operational Semantics for CHR

The execution of CHR can be described by structural operational semantics,
which are given as state transition systems. Basically, states are conjunctions of
constraints. These semantics exist in various formulations and at various levels
of refinement, going from the abstract (analytical) to the concrete (pragmatic):

– The very abstract semantics [55] is close to modus ponens of predicate logic.
– The abstract (or theoretical) semantics [5] is often used for program analysis.
– The refined semantics [43] describes the behavior of CHR implementations.

Several alternative operational semantics for CHR have also been proposed,
among them [21,66,78,106].

The essential aspect of the operational semantics is the application of a rule:
Take a generalized simpagation rule from the program. If there are constraints
in the current state that match the head of the rule and if the guard holds under
this matching, then the constraints matching second part of the head H2 (if any)
are removed and the guard and body of the rule are added to the state.

There are alternative formulations for the above semantics. Chapter 8 in
the book [62] and [19,101] develop an axiomatic notion of state equivalence.
The equivalence relation ≡ on states treats built-in constraints semantically
and user-defined constraints syntactically. Basically, two states are equivalent if
they are logically equivalent while taking into account that - forming multisets -
multiplicities of user-defined constraints matter. For example, X=<Y ∧Y =<X∧
c(X,Y) ≡ X=Y ∧ c(X,X) which is different to X=Y ∧ c(X,X) ∧ c(X,X).

Using state equivalence, the presentation of the abstract semantics can be
simplified. It basically boils down to

S ≡ (H1 ∧ H2 ∧ C ∧ G) (H1\H2 ⇔ C|B) (H1 ∧ C ∧ B ∧ G) ≡ T
S �−→ T

where all upper-case letters stand for conjunctions of constraints. G is called
the context of the rule application, G is not affected by it. Note that the transi-
tion S �−→ T is only allowed if the built-in constraints in state S are consistent
and if the rule has not been applied before to the same constraints under the
same matching.

3.3 Operational Semantics for Parallel CHR

One of the main features of CHR is its inherent concurrency. Intuitively, in a par-
allel execution of CHR we can apply rules simultaneously to different parts of a
state. But we can do more than that: We can also apply rules to overlapping parts
of a state as long as the overlap is only removed by at most one rule. In Chapter
4 of [55], this parallelism in CHR is defined by an interleaving semantics as

A ∧ G �−→ C ∧ G B ∧ G �−→ D ∧ G
A ∧ B ∧ G �−→ C ∧ D ∧ G

Constraint Handling Rules - What Else? 19

This inference rule is justified by the monotonicity property of CHR
(explained below). If a program executed under the refined semantics makes
use of the order of constraints in a state and the order of rules in a program, this
kind of automatic parallelization may not work. Such programs are not conflu-
ent. On the other hand, confluent programs can be executed in parallel without
modification. As we will see, we can check CHR programs for confluence, and
we can even semi-automatically complete them to make them confluent. Thus,
using completion, we can turn non-confluent programs into parallel programs.
This method has been applied to the classical Union-Find algorithm which is
very hard to parallelize [51] (with [128] showing the effectiveness of the resulting
program) and to the Preflow-Push algorithm [92]. Alternative and more refined
semantics for parallel CHR are e.g. [62,85,86,103,113].

4 Properties of CHR and Their Analysis

We first introduce three essential types of monotonicity and the anytime online
algorithm properties that all come for free in CHR. We then discuss the analysis
of termination and time complexity as well as of confluence, completion and
operational equivalence of CHR programs.

4.1 CHR Monotonicity Properties

In the abstract operational semantics we can observe three essential types of
monotonicity.

First, adding rules to a program cannot inhibit the applicability of any rules
that were applicable. This aids incremental program development and rapid
prototyping. Already a program with a few first rules is executable, and we
can add rules to cover more and more cases, enabling more and more desired
computations. The confluence test (see next Section) can be used to discover
situations where old and new rules lead to different results.

Second, built-in constraints (that occur in the guard and body of a rule)
can only be added to a state, they are never removed. Hence they accumulate
monotonically. On the other hand, user-defined constraints are non-monotonic in
that they can be added and removed from a state. This means that an applicable
rule will remain applicable as long as the user-defined constraints it matches are
present in the state and as long as the state is consistent.

Third, during a rule application, the context G stays unchanged. We can
actually change it without influencing the rule application itself. So if a rule is
applicable in a state, it is also applicable in any larger state where constraints
have been added (as long as the state is consistent) [5]. This is an important
modularity property of CHR, it is usually called CHR’s monotonicity property.
Clearly such context-independence does not hold in traditional programming
languages, where the context may update as well, resulting in write conflicts.

On the other hand, if we have an empty context G, we get the minimal
transition for to the given rule:

(H1 ∧ H2 ∧ C) �−→ (H1 ∧ C ∧ B).

20 T. Frühwirth

The state (H1 ∧ H2 ∧ C) is called minimal state of the rule. Removing any
constraint from it would make its rule inapplicable. Adding constraints to it
cannot inhibit the applicability due to monotonicity. Since minimal states and
transitions capture the essence of a rule application, they will come handy later
when analyzing CHR programs for confluence and operational equivalence.

4.2 Anytime Online Algorithm Properties

Any algorithm expressed properly as a CHR program will enjoy several impor-
tant properties: It will be an anytime algorithm and it will be an online algorithm
and it can be run in parallel without modification.

The anytime (approximation) algorithm property means that we can inter-
rupt the execution of a program at any time, observe the current state as an
approximation to the result and restart from that intermediate result. This is
obvious from the operational semantics and the notion of states and transitions
used there.

The online (incremental) algorithm property means that we can add addi-
tional constraints while the program is running without the need to recompute
from scratch. This is an immediate consequence of the monotonicity property of
CHR. The program will behave as if the newly added constraints were present
from the beginning but had been ignored so far. Therefore only a minimal
amount of computation is performed to accommodate the new constraint. Incre-
mentality is useful for interactive, reactive and control systems, in particular for
agent and constraint programming.

In the refined semantics, the order of constraints in a state and the order
of rules in a program can be made to matter, and this may weaken the above
properties.

4.3 Termination and Time Complexity Analysis

One way to show termination is to prove that in each rule, if the guard holds,
the rule head is strictly larger than the rule body using some well-founded ter-
mination order called a ranking. For CHR programs that mainly use simplifi-
cation rules, simple rankings are often sufficient to prove termination [48,49].
More sophisticated methods are needed in the presence of propagation rules
[56,96,97]. An approximation of CHR programs by constraint logic programs
(CLP) has also been used to analyse the termination behavior of CHR [80].

The run-time of a CHR program not only depends on the number of rule
applications (derivation lengths), but also on the number of rule application
attempts. The meta-complexity theorem in [50] basically states that the com-
plexity is bounded by the derivation length taken to the power of the number of
heads in a rule. This only gives crude upper-bounds.

Actual CHR systems achieve much better complexity results since they imple-
ment the refined semantics and feature compiler optimizations such as indexing.
For CHR with and without priorities, there is a more realistic sophisticated meta-
complexity result derived from the Logical Algorithms (LA) formalism [33].

Constraint Handling Rules - What Else? 21

4.4 Confluence and Completion

Confluence means that it does not matter for the result which of the applicable
rules are applied in which order in a computation. The resulting states will
always be equivalent to each other. For terminating CHR programs, there is a
decidable, sufficient and necessary condition for confluence [5]. These papers also
have shown the many benefits of confluent programs:

– Confluent programs are always implement anytime online algorithms.
– Confluent programs can be run in parallel without modification.
– Confluence implies consistency of the logical reading of the program.
– Confluence improves the soundness and completeness results between the

operational and declarative semantics. These theorems are stronger than
those for other (concurrent) constraint programming languages.

– The least models of confluent CHR programs and its CLP approximation
coincide [80].

The idea of the confluence test is to construct a finite number of so-called
critical states by overlapping minimal states of rules in the program. An over-
lap equates some user-defined constraints and removes the resulting duplicate
occurrences. If these constraints are to be removed by more than one rule, we
have generated a conflict. One now checks if these conflicting rule applications
on its own can be continued with computations that lead to equivalent states.
If this holds for all critical states in the program, we have proven confluence.

In practice, this notion of confluence can be too strict. In [44] the notion
of observable confluence is introduced, where the states considered must satisfy
a user-defined invariant. Other related notions of confluence are considered in
[31,79]. Confluence for non-terminating programs is in general undecidable, it is
discussed in [104].

Completion is the process of adding rules to a non-confluent program until it
becomes confluent [2]. These rules are generated between the successor states of
critical states. In contrast to completion for term rewriting, in CHR we generally
need more than one rule to make a critical pair joinable: a simplification rule and
a propagation rule. Unfortunately, completion may not terminate. Completion
can be also used for program specialisation [2,4].

4.5 Operational Equivalence

Operational equivalence means that given two programs, for any given state, its
computations in both programs lead to the same final state. There is a decidable,
sufficient and necessary condition for operational equivalence of terminating and
confluent CHR programs [3]. We do not know of any other programming lan-
guage in practical use that admits such a test.

The test is straightforward: The minimal states of the rules in both programs
are each executed in both programs, and for each minimal state, the computa-
tions must reach equivalent states in both programs. This test can also be used
to discover redundant rules in a program.

22 T. Frühwirth

5 CHR Implementations and Embeddings in CHR

We discuss efficient implementations, variants and extensions of CHR and
embeddings of other rule- and graph-based approaches in CHR.

5.1 CHR Implementations and Their Efficiency

The first wide-spread implementations of CHR were based on [82]. Most available
CHR implementations today - be it in Prolog, Java or C - are based on the
expertise of the CHR team at Katholieke Universiteit Leuven [129,133,136].

State-of-the-art CHR libraries with mode and type declarations in Prolog
and C allow to implement any algorithm in a natural and high-level way, with
time and space consumption that is typically within an order of magnitude
from the best-known implementations in any other language [120,130]. Indeed,
[120] has proven that every algorithm can be implemented in CHR with the
best known time and space complexity. This has been exemplified by providing
elegant implementations with optimal time-complexity of the classical union-find
algorithm [111] and Fibonacci heaps [119]. CHR is the only known declarative
language where this results holds, it is unlikely to hold for other declarative
languages like Prolog or Haskell [120]. Actually, CHR cannot be embedded in
pure Prolog [64]. The fastest CHR implementations in CCHR [136] and hProlog
allow to up to apply millions of rules per second.

One reason for the effectiveness of CHR is that it uses a compiler and run-
time system that is a significant advancement over existing algorithms (such
as RETE, TREAT, LEAPS) for executing rule-based languages as has been
impressingly demonstrated in [130]. In addition to a superior rule-application
mechanism, CHR compilers use sophisticated optimizations (besides indexing
on constraint arguments taking into account mode and type information), such
as memory reuse, late storage, guard optimization and join ordering optimization
[62,83,130].

CLIPS (in C) and JESS (in Java)) are considered by many to be the most
efficient rule-based systems available. The benchmarks of [130] show that his
novel Java implementation of CHR as well as CHR in C (CCHR) [136] are
faster than CLIPS and JESS, sometimes by several orders of magnitude. In
benchmarks of [120], CHR with mode declarations achieves the optimal time
and space complexity (as do imperative languages). Prolog and strict Haskell
have a time complexity which is a polylogarithmic factor from optimal, and
their space complexity is not optimal. Lazy Haskell quickly gets into memory
problems.

As for concurrency, prototype parallel CHR implementations exist in software
using Haskell [85] and in hardware using Nvidia CUDA by transforming a subset
of CHR to C++ [137] and using FPGA’s [128]. These papers feature experiments
that show a potential for optimal linear speedup by parallelization of CHR pro-
grams (and super-linear speed-up e.g. in the case of the greatest-common-divisor
program).

Constraint Handling Rules - What Else? 23

5.2 CHR Language Variants and Extensions

We start with a remark on fragments of CHR, indicating the adequacy of the
overall language. We then discuss language extensions for CHR, program trans-
formation and new programming languages based on CHR.

While there are many Turing-complete language subsets of CHR [65,91,115]
(a single multi-headed simplification rule suffices), it has also been shown in [37,
64] that each of the following features of CHR can be considered essential, since
they increase the expressive power of CHR: constraints with arguments, built-
in constraints, function symbols to build complex terms, multi-headed rules,
introduction of new variables in the body of a rule.

Since CHR libraries in Prolog naturally allow to use backtracking search by
Prolog’s disjunction, most operational semantics can be extended to the resulting
language CHR∨ [10]. In [34] the authors extend the refined operational semantics
of CHR to support the implementation of different search strategies.

In adaptive CHR, constraints can be declaratively removed together with the
consequences they produced by getting involved in rule applications. This means
that any properly written algorithm becomes adaptive. An adaptive semantics is
defined in [135]. Adaptive CHR is used for realizing intelligent search strategies
in [134,135].

In [35] the authors extend CHR with user-defined rule priorities that can be
static or dynamic. This language extension reduces the level of non-determinism
that is inherent to the abstract operational semantics of CHR, and gives a more
high-level form of execution control compared to the refined operational seman-
tics. Priorities make CHR more expressive.

Other notable extensions of CHR include non-monotonic negation-as-absence
[132], aggregates such as sum, count, findall, and min [121], rules with probabil-
ities [29,60,118], Except for search, all above CHR extensions have been imple-
mented by simple effective source-to-source program transformation in CHR
itself, also see Chapter 6 in [55] and the online transformation tool at http://
pmx.informatik.uni-ulm.de/chr/stssemantics/. Program transformation in itself
has been studied in [1,61]. Partial evaluation is covered by [52], discussing spe-
cialisation of CHR rules, and by [67], which is concerned with unfolding of CHR
rules. Confluence completion can be used to great effect for program specialisa-
tion [2,4].

Notable new programming languages that are based on CHR are:

– HYPROLOG [30] as an extension of Prolog with assumptions and abduction.
– DatalogLB adds features of CHR to Datalog [77].
– CHRISM is CHR with probabilistic reasoning and statistical learning [118].
– CADMIUM is an implementation of ACD Term Rewriting, a generalization

of CHR and Term Rewriting (TRS) [42].
– SMCHR is an implementation of Satisfiability Modulo Theories (SMT) [39],

where the theory part can be implemented in CHR.
– Linear Meld (LM) is a linear logic language closely related to CHR [32].
– CoMingle is CHR for distributed logic programming (on Android) [87].

http://pmx.informatik.uni-ulm.de/chr/stssemantics/
http://pmx.informatik.uni-ulm.de/chr/stssemantics/

24 T. Frühwirth

5.3 Embedding Other Formalisms and Languages in CHR

The expressiveness, effectiveness and efficiency of CHR enables the embedding
of the characteristic features of other rule-based and graph-based formalisms,
systems and languages in CHR by simple source-to-source transformations:

– Prolog and Constraint Logic Programming (CLP) programs are translated
into CHR∨ in [10] using Clark’s completion.

– Logical Algorithms (LA) are mapped into CHR with and without rule prior-
ities in [84]. This are the only known implementations of LA. They achieve
the tight time complexity required for the LA meta-complexity theorem.

– Term Rewriting Systems (TRS) are translated to rules with equational con-
straints in CHR in [102].

– Graph Transformation Systems (GTS) are encoded in CHR in [99]. Sound-
ness and completeness of the encoding is proven. GTS joinability of critical
pairs can be mapped onto joinability of specific critical pairs in CHR.

– Petri Nets are translated to CHR in [18]. It is proven that there is a one-to-
one correspondence between Colored Petri Nets and positive ground range-
restricted CHR simplification rules over finite domains.

Chapter 6 and 9.3 of [55] and the CHR web-page also describe these embeddings:

– Production Rules and Business Rules,
– Event-Condition-Action (ECA) Rules,
– Functional Programming,
– General Abstract Model for Multiset Manipulation (GAMMA),
– Deductive databases languages like DATALOG,
– Description logic (DL) with OWL- and SWRL-style rules,
– Concurrent Constraint Programming (CC) language framework.

The online tool http://pmx.informatik.uni-ulm.de/chr/translator supports the
basic translation for some of these embeddings: term rewriting systems, func-
tional programming, multiset transformation, production rules with negation-
as-absence.

The embeddings are quite useful for comparing and for cross-fertilization
between different approaches. For example, in the CHR embedding, the close
relationship between colored Petri Nets and the GAMMA chemical abstract
machine (CHAM) can be immediately seen. On the other hand, it seems diffi-
cult to come up with an embedding of full CHR in one of the afore-mentioned
formalisms. Basically, other approaches either lack the notion of constraints and
logical variables or they lack multi-headed rules and propagation rules. Given
these embeddings and its power in general, CHR can be considered a candi-
date for a lingua franca for computational systems with the potential for cross-
fertilization of research.

http://pmx.informatik.uni-ulm.de/chr/translator

Constraint Handling Rules - What Else? 25

6 CHR in Research and Applications

Typical research applications of CHR can be found in areas of computational lin-
guistics, constraint solving, cognitive systems, spatio-temporal reasoning, agent-
based systems, bio-informatics, semantic web, type systems, verification and
testing and many more.

Commercial applications include financial services in stockbroking (Secu-
ritEase, New Zealand), vehicle control by robotic brains (Cognitive Systems,
Spain), injection mould design (Cornerstone Intelligent Software Corp, Canada),
optical network design (Mitre, USA), enterprise applications (LogicBlox, USA),
and software verification (BSSE, Germany). See Section 7 in [122] for details.

6.1 Language Design and Algorithm Design

One of the most successful research applications of CHR is in the design, pro-
totyping and analysis of advanced type systems for the functional programming
language Haskell [40,124,125]. Type reconstruction with CHR is performed for
functional and logic programs in [109]. A flow-based approach for a variant of
parametric polymorphism in Java is based on CHR in [27].

The union-find algorithm can be seen as solving simple equations between
variables or constants. By choosing the appropriate equational relations, one
can derive fast incremental algorithms for solving certain propositional logic
(SAT) problems and polynomial equations in two variables [53]. Almost-linear
tree equation solving algorithms are reconstructed with CHR in [93]. Paralleliz-
ing classical algorithms is discussed for Union-Find using confluence analysis [51]
and for Preflow-Push [92].

6.2 Software Verification and Testing

The authors of [73,74] present a new method for automatic test data genera-
tion (ATDG) applying to semantically annotated control-flow graphs (CFGs),
covering both ATDG based on source code and assembly or virtual machine
code. The method supports a generic set of test coverage criteria, including all
structural coverage criteria currently in use in industrial software test for safety
critical software. The work [11] gives test cases a denotational semantics by view-
ing them as specification predicates. The authors develop a testing theory and
implementation for fault-based mutation testing.

Other applications of CHR in testing include [36,76,98,107]. An an effective
methodology for verifying properties of imperative programs is their transfor-
mation to constraint-based programs [12,41,95]. Somewhat related is lightweight
string reasoning for OCL [25].

6.3 Constraints Solving and Reasoning

CHR was originally designed to write or even automatically generate constraint
solvers [7,8,100,123]. Solvers written in CHR and applications of CHR in con-
straint reasoning can be found in [58] and further references in [47,62,122]. For

26 T. Frühwirth

example, CHR-based spatio-temporal reasoning is applied to robot path plan-
ning in [45,89]. In the soft constraints framework [22–24], constraints and partial
assignments are given preference or importance levels, and constraints are com-
bined according to combinators which express the desired optimization criteria.

The goal of argumentation-based legal reasoning [117] is to determine the
chance of winning a court case, given the probabilities of the judge accepting
certain claimed facts and legal rules. In computer linguistics, CHR Grammars
(CHRG) [28] execute as robust bottom-up parsers with an inherent treatment of
ambiguity. Computational Cognitive Modeling is a research field at the interface
of computer science and psychology. It enables researchers to build detailed
cognitive models using a cognitive architecture. A popular cognitive architecture,
ACT-R, has been implemented in CHR and given a proper formal semantics for
the first time [68,69].

6.4 Multi-agent Systems and Abduction

The agent-based system FLUX is implemented in CHR [126,127]. Its application
FLUXPLAYER [108] won the General Game Playing competition at the AAAI
conference in 2006. SCIFF is a framework to specify and verify interaction in
open agent societies [13,15]. The SCIFF language is equipped with a semantics
based on abductive logic programming. Other applications in multi-agent sys-
tems and abductive reasoning are for example [14,71,94,114]. HYPROLOG [30]
extends Prolog with CHR rules for assumptions, abduction and integrity con-
straints. Probabilistic Abductive Logic Programs (PALPs) are introduced and
and implemented in CHR for solving abductive problems providing minimal
explanations together with their probabilities [29].

6.5 Semantic Web

In Chapter 9.3. of [55] a straightforward and effective implementation of descrip-
tion logic with OWL- and SWRL-style rules in CHR is given. For the Semantic
Web, the integration and combination of data from different information sources
is an important issue that can be handled with CHR [16,138]. In [17] a com-
position and verification framework for Semantic Web Services specified using
WSSL is proposed, a novel service specification language based on the fluent cal-
culus, that addresses issues related to the frame, ramification and qualification
problems. An earlier paper on web service composition using fluent calculus is
[105]. The paper [26] proposes a service modeling approach consisting of service
contracts and a process model. Service contracts are used as service advertise-
ment and service request in this approach. The Cuypers Multimedia Transforma-
tion Engine [75] supports the automatic generation of Web-based presentations
adapted to the user’s needs.

6.6 The Diversity of CHR Applications

Scheduling and timetabling are popular constraint-based applications, and this
also holds for CHR implementation of course scheduling and room planning for

Constraint Handling Rules - What Else? 27

the University of Munich [6,9], which has become an often-cited standard work
in the area.

The tool Popular [59] uses a path-loss model to describe radio-wave trans-
mission and constraint-based programming to optimize the placement of base
stations (transmitters) for local wireless communication at company sites.

The Munich Rent Advisor [57] allows the calculation of the estimated fair
rent for a flat based on statistical data using an online form. Simply by translat-
ing the calculation scheme into CHR-based arithmetic interval constraints, the
functionality is significantly extended: The user need not answer all questions,
and so an interval range for the possible rent is returned.

The papers [72,116] present a new system for automatic music generation,
in which music is modeled using very high level probabilistic rules in CHRISM
[118]. The probabilistic parameters can be learned from examples, resulting in a
system for personalized music generation.

The authors of [88] present an algorithm for long-term routing of autonomous
sailboats. It is based on the A*-algorithm and incorporates changing weather
conditions by dynamically adapting the underlying routing graph. The software
also takes individual parameters of the sailboat into account, and proved to be
faster than commercial systems. The system was successfully put to test during
an attempt to break the world record in long-distance robot sailing with the
ASV RoBoat of INNOC (Vienna).

7 Conclusions

Constraint Handling Rules - what else?

References

1. Fakhry, G., Sharaf, N., Abdennadher, S.: Towards the implementation of a source-
to-source transformation tool for CHR operational semantics. In: Gupta, G., Peña,
R. (eds.) LOPSTR 2013, LNCS 8901. LNCS, vol. 8901, pp. 145–163. Springer,
Heidelberg (2014)

2. Abdennadher, S., Frühwirth, T.: On completion of constraint handling rules. In:
Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 25–39. Springer,
Heidelberg (1998)

3. Abdennadher, S., Frühwirth, T.: Operational equivalence of CHR programs and
constraints. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 43–57. Springer,
Heidelberg (1999)

4. Abdennadher, S., Frühwirth, T.: Integration and optimization of rule-based
constraint solvers. In: Bruynooghe, M. (ed.) LOPSTR 2004. LNCS, vol. 3018,
pp. 198–213. Springer, Heidelberg (2004)

5. Abdennadher, S., Frühwirth, T., Meuss, H.: Confluence and Semantics of Con-
straint Simplification Rules. Constraints 4(2), 133–165 (1999)

6. Abdennadher, S., Marte, M.: University course timetabling using constraint han-
dling rules. In: Holzbaur, C., Frühwirth, T. (eds.) Special Issue on Constraint
Handling Rules, vol. 14(4), pp. 311–325. Taylor & Francis, London (2000). Jour-
nal of Applied Artificial Intelligence

28 T. Frühwirth

7. Abdennadher, S., Rigotti, C.: Automatic generation of rule-based constraint
solvers over finite domains. ACM TOCL 5(2), 177–205 (2004)

8. Abdennadher, S., Rigotti, C.: Automatic generation of chr constraint solvers.
Theory Pract. Log. Program. 5(4–5), 403–418 (2005)

9. Abdennadher, S., Saft, M., Will, S.: Classroom assignment using constraint logic
programming. In: Proc. 2nd Intl. Conf. and Exhibition on Practical Application
of Constraint Technologies and Logic Programming, PACLP 2000, April 2000

10. Abdennadher, S., Schütz, H.: CHR ∨: a flexible query language. In: Andreasen,
T., Christiansen, H., Larsen, H.L. (eds.) FQAS 1998. LNCS (LNAI), vol. 1495,
pp. 1–14. Springer, Heidelberg (1998)

11. Aichernig, B.K.: A systematic introduction to mutation testing in unifying the-
ories of programming. In: Borba, P., Cavalcanti, A., Sampaio, A., Woodcook, J.
(eds.) PSSE 2007. LNCS, vol. 6153, pp. 243–287. Springer, Heidelberg (2010)

12. Albert, E., Garćıa de la Banda, M.J., Gómez-Zamalloa, M., Rojas, J.M., Stuckey,
P.J.: A CLP heap solver for test case generation. TPLP 13(4–5), 721–735 (2013).
Cambridge University Press

13. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Verifi-
able agent interaction in abductive logic programming: the sciff framework. ACM
Transactions on Computational Logic (TOCL) 9(4), 29 (2008)

14. Alberti, M., Daolio, D., Torroni, P., Gavanelli, M., Lamma, E., Mello, P.: Specifi-
cation and verification of agent interaction protocols in a logic-based system. In:
2004 ACM Symposium on Applied Computing, pp. 72–78. ACM (2004)

15. Alberti, M., Gavanelli, M., Lamma, E.: The CHR-based implementation of the
sciff abductive system. Fundamenta Informaticae 124(4), 365–381 (2013)

16. Badea, L., Tilivea, D., Hotaran, A.: Semantic web reasoning for ontology-based
integration of resources. In: Ohlbach, H.J., Schaffert, S. (eds.) PPSWR 2004.
LNCS, vol. 3208, pp. 61–75. Springer, Heidelberg (2004)

17. Baryannis, G., Plexousakis, D.: Fluent calculus-based semantic web service com-
position and verification using WSSL. In: Lomuscio, A.R., Nepal, S., Patrizi, F.,
Benatallah, B., Brandić, I. (eds.) ICSOC 2013. LNCS, vol. 8377, pp. 256–270.
Springer, Heidelberg (2014)

18. Betz, H.: Relating coloured petri nets to constraint handling rules. In: Fourth
Workshop on Constraint Handling Rules, pp. 32–46 (2007)

19. Betz, H.: A Unified Analytical Foundation for Constraint Handling Rules. BoD-
Books on Demand (2014)

20. Betz, H., Frühwirth, T.: Linear-logic based analysis of Constraint Handling Rules
with disjunction. ACM Transactions on Computational Logic (TOCL) 14(1), 1
(2013)

21. Betz, H., Raiser, F., Frühwirth, T.: A complete and terminating execution model
for constraint handling rules. In: Hermenegildo and Schaub [81], pp. 597–610

22. Bistarelli, S., Frühwirth, T., Marte, M., Rossi, F.: Soft constraint propagation and
solving in Constraint Handling Rules. Computational Intelligence: Special Issue
on Preferences in AI and CP 20(2), 287–307 (2004)

23. Bistarelli, S., Martinelli, F., Santini, F.: A formal framework for trust policy
negotiation in autonomic systems: abduction with soft constraints. In: Xie, B.,
Branke, J., Sadjadi, S.M., Zhang, D., Zhou, X. (eds.) ATC 2010. LNCS, vol. 6407,
pp. 268–282. Springer, Heidelberg (2010)

24. Bistarelli, S., Martinelli, F., Santini, F.: A semiring-based framework for the
deduction/abduction reasoning in access control with weighted credentials. Com-
puters & Mathematics with Applications 64(4), 447–462 (2012)

Constraint Handling Rules - What Else? 29

25. Büttner, F., Cabot, J.: Lightweight string reasoning for OCL. In: Vallecillo, A.,
Tolvanen, J.-P., Kindler, E., Störrle, H., Kolovos, D. (eds.) ECMFA 2012. LNCS,
vol. 7349, pp. 244–258. Springer, Heidelberg (2012)

26. Chen, R., Liao, L., Fang, Z.: Contracting of web services with constraint han-
dling rules. In: 2012 IEEE Eighth World Congress on Services (SERVICES),
pp. 211–218 (2012)

27. Chin, W.-N., Craciun, F., Khoo, S.-C., Popeea, C.: A flow-based approach for
variant parametric types. In: 21st annual ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and Applications, pp. 273–290. ACM
(2006)

28. Christiansen, H.: Chr grammars. Theory and Practice of Logic Programming
5(4–5), 467–501 (2005)

29. Christiansen, H.: Implementing probabilistic abductive logic programming with
constraint handling rules. In: Schrijvers, T., Frühwirth, T. (eds.) Constraint Han-
dling Rules. LNCS, vol. 5388, pp. 85–118. Springer, Heidelberg (2008)

30. Christiansen, H., Dahl, V.: HYPROLOG: a new logic programming language with
assumptions andabduction. In: Gabbrielli and Gupta [63], pp. 159–173

31. Christiansen, H., Kirkeby, M.H.: Confluence modulo equivalence in Constraint
Handling Rules. [90]

32. Cruz, F., Rocha, R.: On compiling linear logic programs with comprehensions,
aggregates and rule priorities. In: Pontelli, E., Son, T.C. (eds.) PADL 2015. LNCS,
vol. 9131, pp. 34–49. Springer, Heidelberg (2015)

33. De Koninck, L.: Logical Algorithms meets CHR: A meta-complexity result for
Constraint Handling Rules with rule priorities. TPLP 9(2), 165–212 (2009)

34. De Koninck, L., Schrijvers, T., Demoen, B.: Search strategies in CHR(Prolog).
In: Schrijvers and Frühwirth [110], pp. 109–124

35. De Koninck, L., Schrijvers, T., Demoen, B.: Chrrp: Constraint Handling Rules
with rule priorties. Technical Report CW 479, K.U.Leuven, Dept. Comp. Sc.,
Leuven, Belgium, March 2007

36. Degrave, F., Schrijvers, T., Vanhoof, W.: Automatic generation of test inputs
for mercury. In: Hanus, M. (ed.) LOPSTR 2008. LNCS, vol. 5438, pp. 71–86.
Springer, Heidelberg (2009)

37. Di Giusto, C., Gabbrielli, M., Meo, M.C.: Expressiveness of multiple heads in
CHR. In: Nielsen, M., Kučera, A., Miltersen, P.B., Palamidessi, C., Tůma, P.,
Valencia, F. (eds.) SOFSEM 2009. LNCS, vol. 5404, pp. 205–216. Springer,
Heidelberg (2009)

38. Djelloul, K., Duck, G.J., Sulzmann, M. (eds.) Proc. 4th Workshop on Constraint
Handling Rules, CHR 2007, September 2007

39. Duck, G.J.: SMCHR: Satisfiability modulo Constraint Handling Rules. CoRR,
abs/1210.5307 (2012)

40. Duck, G.J., Haemmerlé, R., Sulzmann, M.: On termination, confluence and con-
sistent CHR-based type inference. TPLP 14(4–5), 619–632 (2014)

41. Duck, G.J., Jaffar, J., Koh, N.C.H.: Constraint-based program reasoning with
heaps and separation. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124,
pp. 282–298. Springer, Heidelberg (2013)

42. Duck, G.J., Koninck, L.D., Stuckey, P.J.: Cadmium: an implementation of ACD
term rewriting. In: Garćıa de la Banda and Pontelli [70], pp. 531–545

43. Duck, G.J., Stuckey, P.J., Garćıa de la Banda, M., Holzbaur, C.: The refined
operational semantics of constraint handling rules. In: Demoen, B., Lifschitz, V.
(eds.) ICLP 2004. LNCS, vol. 3132, pp. 90–104. Springer, Heidelberg (2004)

30 T. Frühwirth

44. Duck, G.J., Stuckey, P.J., Sulzmann, M.: Observable confluence for constraint
handling rules. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670,
pp. 224–239. Springer, Heidelberg (2007)

45. Escrig, M., Toledo, F.: Qualitative Spatial Reasoning: Theory and Practice. IOS
Press (1998)

46. Fink, M., Tompits, H., Woltran, S. (eds.) Proc. 20th Workshop on Logic Pro-
gramming, WLP 2006, T.U.Wien, Austria, INFSYS Research report 1843–06-02,
February 2006

47. Frühwirth, T.: Theory and practice of Constraint Handling Rules. J. Logic Pro-
gramming, Special Issue on Constraint Logic Programming 37(1–3), 95–138
(1998)

48. Frühwirth, T.: Proving termination of constraint solver programs. In: Apt, K.R.,
Kakas, A.C., Monfroy, E., Rossi, F. (eds.) Compulog Net WS 1999. LNCS (LNAI),
vol. 1865, pp. 298–317. Springer, Heidelberg (2000)

49. Frühwirth, T.: As time goes by: automatic complexity analysis of simplification
rules. In: Eighth International Conference on Principles of Knowledge Represen-
tation and Reasoning, San Francisco, CA, USA. Morgan Kaufmann (2002)

50. Frühwirth, T.: As Time Goes By II: More Automatic Complexity Analysis of
Concurrent Rule Programs. ENTCS 59(3), 185–206 (2002)

51. Frühwirth, T.: Parallelizing union-find in constraint handling rules using conflu-
ence. In: Gabbrielli and Gupta [63], pp. 113–127

52. Frühwirth, T.: Specialization of concurrent guarded multi-set transformation
rules. In: Etalle, S. (ed.) LOPSTR 2004. LNCS, vol. 3573, pp. 133–148. Springer,
Heidelberg (2005)

53. Frühwirth, T.: Quasi-linear-time algorithms by generalisation of union-find in
CHR. In: Fages, F., Rossi, F., Soliman, S. (eds.) CSCLP 2007. LNCS (LNAI),
vol. 5129, pp. 91–108. Springer, Heidelberg (2008)

54. Frühwirth, T.: Welcome to constraint handling rules. In: Schrijvers and Frühwirth
[112], pp. 1–15

55. Frühwirth, T.: Constraint Handling Rules. Cambridge University Press (2009)
56. Frühwirth, T.: A devil’s advocate against termination of direct recursion. In: 17th

International Symposium on Principles and Practice of Declarative Programming,
PPDP 2015, Siena, Italy, 2015. ACM (2015)

57. Frühwirth, T., Abdennadher, S.: The Munich rent advisor: A success for logic
programming on the internet. TPLP 1(3), 303–319 (2001)

58. Frühwirth, T., Abdennadher, S.: Essentials of Constraint Programming. Springer
(2003)

59. Frühwirth, T., Brisset, P.: Placing base stations in wireless indoor communication
networks. IEEE Intelligent Systems and Their Applications 15(1), 49–53 (2000)

60. Frühwirth, T., di Pierro, A., Wiklicky, H.: Probabilistic constraint handlingrules.
In: 11th International Workshop on Functional and (Constraint) Logic Program-
ming. ENTCS, vol. 76, pp. 115–130 (2002)

61. Frühwirth, T., Holzbaur, C.: Source-to-source transformation for a class of expres-
sive rules. In: Buccafurri, F. (ed.) Joint Conf. Declarative Programming APPIA-
GULP-PRODE, AGP 2003, pp. 386–397, September 2003

62. Frühwirth, T., Raiser, F. (eds.) Constraint Handling Rules: Compilation, Execu-
tion, and Analysis. BOD (2011)

63. Gabbrielli, M., Gupta, G. (eds.): ICLP 2005. LNCS, vol. 3668. Springer,
Heidelberg (2005)

64. Gabbrielli, M., Mauro, J., Meo, M.C.: The expressive power of CHR with priori-
ties. Inf. Comput. 228, 62–82 (2013)

Constraint Handling Rules - What Else? 31

65. Gabbrielli, M., Mauro, J., Meo, M.C., Sneyers, J.: Decidability properties for
fragments of CHR. In: Hermenegildo and Schaub [81], pp. 611–626

66. Gabbrielli, M., Meo, M.C.: A compositional semantics for CHR. ACM TOCL
10(2), 1–36 (2009)

67. Gabbrielli, M., Meo, M.C., Tacchella, P., Wiklicky, H.: Unfolding for CHR
programs. Theory and Practice of Logic Programming, 1–48 (2013)

68. Gall, D., Frühwirth, T.: A formal semantics for the cognitive architecture ACT-R.
[90]

69. Gall, D., Frühwirth, T.: A refined operational semantics for ACT-R. In: 17th
International Symposium on Principles and Practice of Declarative Programming,
PPDP 2015, Siena, Italy, 2015. ACM (2015)

70. Garcia de la Banda, M., Pontelli, E. (eds.): ICLP 2008. LNCS, vol. 5366. Springer,
Heidelberg (2008)

71. Gavanelli, M., Alberti, M., Lamma, E.: Integrating abduction and constraint opti-
mization in constraint handling rules. In: 18th European Conf. on Artif. Intell.,
ECAI 2008, pp. 903–904. IOS press, July 2008

72. Geiselhart, F., Raiser, F., Sneyers, J., Frühwirth, T.: MTSeq - multi-touch-enabled
music generation and manipulation based on CHR. In: Van Weert and De Koninck
[131]

73. Gerlich, R.: Generic and extensible automatic test data generation for safety
critical software with CHR. In: Van Weert and De Koninck [131]

74. Gerlich, R.: Automatic test data generation and model checking with CHR. arXiv
preprint arXiv:1406.2122 (2014)

75. Geurts, J., Ossenbruggen, J.V., Hardman, L.: Application-specific constraints for
multimedia presentation generation. In: 8th International Conference on Multi-
media Modeling, pp. 247–266 (2001)

76. Gouraud, S.-D., Gotlieb, A.: Using CHRs to generate functional test cases for the
Java card virtual machine. In: Van Hentenryck, P. (ed.) PADL 2006. LNCS, vol.
3819, pp. 1–15. Springer, Heidelberg (2005)

77. Green, T.J., Aref, M., Karvounarakis, G.: LogicBlox, platform and language: a
tutorial. In: Barceló, P., Pichler, R. (eds.) Datalog 2.0 2012. LNCS, vol. 7494,
pp. 1–8. Springer, Heidelberg (2012)

78. Haemmerlé, R.: (Co-)Inductive semantics for Constraint Handling Rules. TPLP
11(4–5), 593–609 (2011). Cambridge University Press

79. Haemmerlé, R.: Diagrammatic confluence for Constraint Handling Rules. Theory
Pract. Log. Program. 12(4–5), 737–753 (2012)

80. Haemmerlé, R., Lopez-Garcia, P., Hermenegildo, M.: CLP projection for con-
straint handling rules. In: Hanus, M. (ed.), PPDP 2011, pp. 137–148. ACM Press,
July 2011

81. Hermenegildo, M., Schaub, T. (eds.) Proc. 26th Intl. Conf. Logic Programming,
ICLP 2010. TPLP, vol. 10(4–6). Cambridge University Press, July 2010

82. Holzbaur, C., Frühwirth, T.: A Prolog Constraint Handling Rules compiler and
runtime system. Journal of Applied Artificial Intelligence 14(4), 369–388 (2000).
Taylor & Francis

83. Holzbaur, C., Garćıa de la Banda, M., Stuckey, P.J., Duck, G.J.: Optimizing
compilation of Constraint Handling Rules in HAL. Theory and Practice of Logic
Programming 5(4–5), 503–531 (2005). Cambridge University Press

84. De Koninck, L., Schrijvers, T., Demoen, B.: The correspondence between the
logical algorithms language and CHR. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007.
LNCS, vol. 4670, pp. 209–223. Springer, Heidelberg (2007)

http://arxiv.org/abs/1406.2122

32 T. Frühwirth

85. Lam, E., Sulzmann, M.: Parallel execution of multi-set constraint rewrite rules.
In: Tenth International ACM SIGPLAN Symposium on Principles and Practice
of Declarative Programming. ACM (2008)

86. Lam, E.S., Sulzmann, M.: Concurrent goal-based execution of Constraint Han-
dling Rules. TPLP 11, 841–879 (2009)

87. Lam, E.S.L., Cervesato, I., Fatima, N.: Comingle: distributed logic programming
for decentralized mobile ensembles. In: Holvoet, T., Viroli, M. (eds.) COORDI-
NATION 2015. LNCS, vol. 9037, pp. 51–66. Springer, Heidelberg (2015)

88. Langbein, J., Stelzer, R., Frühwirth, T.: A rule-based approach to long-term rout-
ing for autonomous sailboats. In: Schlaefer, A., Blaurock, O. (eds.) Robotic Sail-
ing. Non-series, vol. 79, pp. 195–204. Springer, Heidelberg (2011)

89. Martınez-Martın, E., Escrig, M.T., del Pobil, A.P.: A general qualitative spatio-
temporal model based on intervals. Journal of Universal Computer Science 18(10),
1343–1378 (2012)

90. Proietti, M., Seki, H. (eds.): LOPSTR 2014. LNCS, vol. 8981. Springer, Heidelberg
(2015)

91. Mauro, J.: Constraints Meet Concurrency. Springer (2014)
92. Meister, M.: Fine-grained parallel implementation of the preflow-push algorithm

in CHR. In: Fink et al. [46], pp. 172–181
93. Meister, M., Frühwirth, T.: Reconstructing almost-linear tree equation solving

algorithms in CHR. In: Proceedings of CSCLP 2007: Annual ERCIM Workshop
on Constraint Solving and Constraint Logic Programming, p. 123 (2007)

94. Montali, M., Torroni, P., Chesani, F., Mello, P., Alberti, M., Lamma, E.: Abduc-
tive logic programming as an effective technology for the static verification of
declarative business processes. Fundamenta Informaticae 102(3), 325–361 (2010)

95. Pettorossi, A., Fioravanti, F., Proietti, M., De Angelis, E.: Program verification
using constraint handling rules and array constraint generalizations. In: Second
International Workshop on Verification and Program Transformation, VPT 2014,
July 17–18, 2014, Vienna, Austria, vol. 28, pp. 3–18. EasyChair (2014)

96. Pilozzi, P., De Schreye, D.: Automating termination proofs for CHR. In: Hill,
P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 504–508. Springer,
Heidelberg (2009)

97. Pilozzi, P., De Schreye, D.: Improved termination analysis of CHR using self-
sustainability analysis. In: Vidal, G. (ed.) LOPSTR 2011. LNCS, vol. 7225,
pp. 189–204. Springer, Heidelberg (2012)

98. Pretschner, A., Lötzbeyer, H., Philipps, J.: Model based testing in incremental
system development. Journal of Systems and Software 70(3), 315–329 (2004)

99. Raiser, F.: Graph transformation systems in CHR. In: Dahl, V., Niemelä, I. (eds.)
ICLP 2007. LNCS, vol. 4670, pp. 240–254. Springer, Heidelberg (2007)

100. Raiser, F.: Semi-automatic generation of CHR solvers for global constraints. In:
Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 588–592. Springer, Heidelberg
(2008)

101. Raiser, F., Betz, H., Frühwirth, T.: Equivalence of CHR states revisited. In:
Raiser, F., Sneyers, J. (eds.), CHR 2009, pp. 33–48. K.U.Leuven, Dept. Comp.
Sc., Technical report CW 555, July 2009

102. Raiser, F., Frühwirth, T.: Towards term rewriting systems in constraint handling
rules. In: Schrijvers, T., Raiser, F., Frühwirth, T. (eds.) CHR 2008, pp. 19–34.
RISC Report Series 08–10, University of Linz, Austria (2008)

103. Raiser, F., Frühwirth, T.: Exhaustive parallel rewriting with multiple removals.
In: Abdennadher, S. (ed.) WLP 2010, September 2010

Constraint Handling Rules - What Else? 33

104. Raiser, F., Tacchella, P.: On confluence of non-terminating CHR programs.
In: Djelloul et al. [38], pp. 63–76

105. Salomie, I., Chifu, V., Harsa, I., Gherga, M.: Web service composition using flu-
ent calculus. International Journal of Metadata, Semantics and Ontologies 5(3),
238–250 (2010)

106. Sarna-Starosta, B., Ramakrishnan, C.R.: Compiling constraint handling rules for
efficient tabled evaluation. In: Hanus, M. (ed.) PADL 2007. LNCS, vol. 4354,
pp. 170–184. Springer, Heidelberg (2007)

107. Sarna-Starosta, B., Stirewalt, R.E.K., Dillon, L.K.: A model-based design-for-
verification approach to checking for deadlock in multi-threaded applications.
Intl. Journal of Softw. Engin. and Knowl. Engin. 17(2), 207–230 (2007)

108. Schiffel, S., Thielscher, M.: Fluxplayer: a successful general game player. In: 22nd
Conference on Artificial Intelligence, pp. 1191–1196. AAAI Press (2007)

109. Schrijvers, T., Bruynooghe, M.: Polymorphic algebraic data type reconstruction.
In: Eighth ACM SIGPLAN International Conference on Principles and Practice
of Declarative Programming, pp. 85–96. ACM (2006)

110. Schrijvers, T., Frühwirth, T. (eds.) Proc. 3rd Workshop on Constraint Handling
Rules, CHR 2006. K.U.Leuven, Dept. Comp. Sc., Technical report CW 452, July
2006

111. Schrijvers, T., Frühwirth, T.: Optimal union-find in Constraint Handling Rules.
TPLP 6(1–2), 213–224 (2006)

112. Schrijvers, T., Frühwirth, T. (eds.): Constraint Handling Rules. LNCS, vol. 5388.
Springer, Heidelberg (2008)

113. Schrijvers, T., Sulzmann, M.: Transactions in constraint handling rules. In: Garćıa
de la Banda and Pontelli [70], pp. 516–530

114. Seitz, C., Bauer, B., Berger, M.: Multi agent systems using constraint handling
rules for problem solving. In: International Conference on Artificial Intelligence,
pp. 295–301. CSREA Press (2002)

115. Sneyers, J.: Turing-complete subclasses of CHR. In: Garćıa de la Banda and
Pontelli [70], pp. 759–763

116. Sneyers, J., De Schreye, D.: APOPCALEAPS: automatic music generation with
CHRiSM. In: Danoy, G. et al., (eds.) 22nd Benelux Conference on Artificial Intel-
ligence (BNAIC 2010), Luxembourg, October 2010

117. Sneyers, J., De Schreye, D., Frühwirth, T.: Probabilistic legal reasoning in
CHRiSM. Theory and Practice of Logic Programming 13(4–5), 769–781 (2013)

118. Sneyers, J., Meert, W., Vennekens, J., Kameya, Y., Sato, T.: Chr (PRISM)-based
probabilistic logic learning. Theory and Practice of Logic Programming 10(4–6),
433–447 (2010)

119. Sneyers, J., Schrijvers, T., Demoen, B.: Dijkstra’s algorithm with Fibonacci heaps:
an executable description in CHR. In: Fink et al. [46], pp. 182–191

120. Sneyers, J., Schrijvers, T., Demoen, B.: The computational power and complexity
of Constraint Handling Rules. ACM TOPLAS 31(2), February 2009

121. Sneyers, J., Van Weert, P., Schrijvers, T.: Aggregates for constraint handling
rules. In: Djelloul et al. [38], pp. 91–105

122. Sneyers, J., Van Weert, P., Schrijvers, T., De Koninck, L.: As time goes by:
Constraint Handling Rules - A survey of CHR research between 1998 and 2007.
TPLP 10(1), 1–47 (2010)

123. Sobhi, I., Abdennadher, S., Betz, H.: Constructing rule-based solvers for
intentionally-defined constraints. In: Schrijvers and Frühwirth [112], pp. 70–84

124. Stuckey, P.J., Sulzmann, M.: A Theory of Overloading. ACM Transactions on
Programming Languages and Systems 27(6), 1216–1269 (2005)

34 T. Frühwirth

125. Sulzmann, M., Duck, G.J., Peyton-Jones, S., Stuckey, P.J.: Understanding func-
tional dependencies via Constraint Handling Rules. J. Functional Prog. 17(1),
83–129 (2007)

126. Thielscher, M.: FLUX: A Logic Programming Method for Reasoning Agents. The-
ory and Practice of Logic Programming 5, 533–565 (2005)

127. Thielscher, M.: Reasoning robots: the art and science of programming robotic
agents, vol. 33. Springer Science & Business Media (2006)

128. Triossi, A., Orlando, S., Raffaetà, A., Frühwirth, T.: Compiling chr to parallel
hardware. In: Proceedings of the 14th symposium on Principles and practice of
declarative programming, pp. 173–184. ACM (2012)

129. Van Weert, P.: Compiling Constraint Handling Rules to Java: A reconstruc-
tion. Technical Report CW 521, K.U.Leuven, Dept. Comp. Sc., Leuven, Belgium,
August 2008

130. Van Weert, P.: Efficient lazy evaluation of rule-based programs. IEEE Transac-
tions on Knowledge and Data Engineering 22(11), 1521–1534 (2010)

131. Van Weert, P., De Koninck, L. (eds.) Proc. 7th Workshop on Constraint Handling
Rules, CHR 2010. K.U.Leuven, Dept. Comp. Sc., Technical report CW 588, July
2010

132. Van Weert, P., Sneyers, J., Schrijvers, T., Demoen, B.: Extending CHR with
negation as absence. In: Schrijvers and Frühwirth [110], pp. 125–140

133. Van Weert, P., Wuille, P., Schrijvers, T., Demoen, B.: CHR for imperative host
languages. In: Schrijvers and Frühwirth [112], pp. 161–212

134. Wolf, A.: Intelligent search strategies based on adaptive Constraint Handling
Rules. Theory and Practice of Logic Programming 5(4–5), 567–594 (2005)

135. Wolf, A., Robin, J., Vitorino, J.: Adaptive CHR meets CHR∨: an extended
refined operational semantics for CHR∨ based on justifications. In: Schrijvers
and Frühwirth [112], pp. 48–69

136. Wuille, P., Schrijvers, T., Demoen, B.: CCHR: the fastest CHR implementation.
In: Djelloul, C. et al. [38], pp. 123–137

137. Zaki, A., Frühwirth, T., Geller, I.: Parallel execution of constraint handling rules
on a graphical processing unit. In: Sneyers, J., Frühwirth, T. (eds.) CHR 2012,
pp. 82–90. K.U.Leuven, Dept. Comp. Sc., Technical report CW 624, September
2012

138. Zhu, H., Madnick, S.E., Siegel, M.D.: Enabling global price comparison through
semantic integration of web data. IJEB 6(4), 319–341 (2008)

Consistency Checking of Re-engineered UML
Class Diagrams via Datalog+/-

Georg Gottlob1, Giorgio Orsi1, and Andreas Pieris2(B)

1 Department of Computer Science, University of Oxford, Oxford, UK
{georg.gottlob,giorgio.orsi}@cs.ox.ac.uk

2 Institute of Information Systems, Vienna University of Technology, Vienna, Austria
pieris@dbai.tuwien.ac.at

Abstract. UML class diagrams (UCDs) are a widely adopted formalism
for modeling the intensional structure of a software system. Although
UCDs are typically guiding the implementation of a system, it is common
in practice that developers need to recover the class diagram from an
implemented system. This process is known as reverse engineering. A
fundamental property of reverse engineered (or simply re-engineered)
UCDs is consistency, showing that the system is realizable in practice.
In this work, we investigate the consistency of re-engineered UCDs, and
we show is pspace-complete. The upper bound is obtained by exploiting
algorithmic techniques developed for conjunctive query answering under
guarded Datalog+/-, that is, a key member of the Datalog+/- family
of KR languages, while the lower bound is obtained by simulating the
behavior of a polynomial space Turing machine.

1 Introduction

Models play a central role in computer science by providing two fundamen-
tally different representational functions: they can be used to capture interesting
aspects of the real world, and they can also be employed to represent axioms of
abstract theories. System designers use models for representing the requirements
and the architecture of software systems. The urge for model construction, main-
tenance and manipulation becomes evident as soon as systems and data grow in
size and complexity.

1.1 UML Class Diagrams

UML class diagrams (UCDs) are a widely adopted formalism for modeling the
intensional structure of a software system, and are commonly employed in CASE
tools for system design, maintenance and analysis. In fact, UCDs are used to rep-
resent classes (entities) of a domain of interest with their attributes (fields) and
operations (methods). Classes can be related to each other by means of associ-
ations representing relationships among their instances. Due to their simplicity,
UCDs are frequently used also for data modeling, de-facto replacing traditional
c© Springer International Publishing Switzerland 2015
N. Bassiliades et al. (Eds.): RuleML 2015, LNCS 9202, pp. 35–53, 2015.
DOI: 10.1007/978-3-319-21542-6 3

36 G. Gottlob et al.

formalisms like the ER model. Although the usual procedure is to go from a
class diagram to a system, it is common that developers need to follow the
opposite route, i.e., to recover the class diagram from an implemented system.
This process is known as reverse engineering [14].

Apart from guiding the implementation of a software system, class diagrams
can be used to verify relevant properties so as to assess the quality of a specifica-
tion to objective criteria. The typical property of interest is consistency, proving
that the system is realizable in practice, namely its classes can be populated
without violating any of the imposed constraints.

1.2 Research Challenges

It is apparent that consistency checking is a key algorithmic task that is relevant
for re-engineered class diagrams. UCDs for complex systems usually become
very large, and the various constraints may interact in an arbitrary way. This
makes the study of the above task urgent, and at the same time very challenging.
While consistency checking has been heavily investigated in the past in different
scenarios (see, e.g., [3,4,8,12]), nothing is known in the case of re-engineered
class diagrams. It is the precise aim of this work to pinpoint the computational
complexity of this problem under re-engineered class diagrams.

Towards this direction, we first need to answer the following key question:
which fragment of UCDs can be recovered by existing reverse engineering tools?
To answer this question, we set up a simple experiment to determine which
constructs appear in re-engineered class diagrams. We observed that the con-
structs that can be recovered are: (1) classes with attributes and operations,
where different classes may have attributes/operations with the same name; (2)
generalization hierarchies but without completeness assertions; and (3) associa-
tions with mandatory or functional participation of classes. This led us to the
formalization of the syntax and the semantics of the fragment of UCDs, dubbed
RevEng, which can be re-engineered.

After formalizing RevEng diagrams, we proceed with the investigation of
the computational complexity of our problem. One may claim that the desired
complexity results can be immediately inherited from existing results on UML
class diagrams, for instance in [4] which shows that consistency of UCDs is
exptime-complete, or results on knowledge representation formalisms such as,
e.g., DL-Lite [9], EL [2] and Horn-FL− [13]. This is not true since always the
candidate formalism is either not expressive enough to capture RevEng class
diagrams, or gives an upper bound which is not optimal. Therefore, RevEng class
diagrams form a totally novel formalism w.r.t. complexity, and novel decision
procedures beyond the state of the art must be developed.

We exploit algorithmic techniques developed for conjunctive query answering
under guarded Datalog±, that is, a key member of the Datalog± family of KR
languages [5,6]. Given a RevEng class diagram C, the problem of deciding whether
C is consistent can be naturally reduced to conjunctive query answering under
a fragment of guarded Datalog±. In particular, we construct the following three
components: a database D, which stores a witness atom for each class of C; a

Consistency Checking of Re-engineered UML Class Diagrams 37

set of guarded Datalog± rules Σ, which represents C; and a union of conjunctive
queries Q that encodes the disjointness assertions among classes, which form
the only source of inconsistency occurring in C. The consistency problem of a
diagram is then tantamount to the problem of deciding whether D and Σ do
not entail the query Q, which in turn implies that there are no inconsistencies.
The latter is tackled by exploiting a classical algorithmic tool from the database
literature, in particular the chase algorithm (see, e.g., [11]), and a novel chase-like
decision procedure is proposed.

1.3 Summary of Contributions

Our contribution can be summarized as follows:

1. We set up a simple experiment in Section 2 with the aim of understanding
which UML constructs can be recovered by existing reverse engineering algo-
rithms. In particular, we collect a number of Java open-source software pack-
ages, mostly taken from the literature on the benchmarking of UML reverse
engineering tools. We then consider several prominent CASE tools for soft-
ware engineering, and we reverse engineer the packages in the benchmark
into UCDs. We observe that the UML constructs that can be recovered are:
classes with attributes and operations; generalization hierarchies but without
completeness assertions; and associations with multiplicities 0..1, 1..1, 0..∞
and 1..∞. Based on the above observation, we then provide a formalization
of the syntax and the semantics of the fragment of UCDs, called RevEng,
which can be recovered.

2. We consider the problem of deciding the consistency of RevEng diagrams
in Section 3. We reduce our problem to query answering under a fragment
of guarded Datalog±, which in turn is shown to be pspace-complete. The
upper bound is obtained via a novel nondeterministic chase-like algorithm,
while the lower bound is shown by simulating the behavior of a polynomial
space Turing machine by means of a RevEng diagram.

2 Reverse Engineering

We set up a simple experiment to determine which fragment of UCDs, called
RevEng, can be recovered via reverse engineering, and then we provide a formal-
ization of the syntax and the semantics of RevEng.

2.1 Our Experiment

We collected a number of Java open-source software packages, listed in Figure 1,
mostly taken from the DaCapo benchmark1 and the web. We then considered
a list of prominent CASE tools with reverse engineering capabilities, given in

1 http://www.dacapobench.org/

http://www.dacapobench.org/

38 G. Gottlob et al.

Fig. 1. Software packages and CASE tools

Figure 1. We re-engineered the packages in the benchmark into class diagrams
in XMI format for automated processing. Whenever multiple options for reverse
engineering were available, e.g., for fields, we used the option that would result
in the more general diagram. We observed, in fact, that interpreting fields as
attributes leads to simpler diagrams. We noticed that every single re-engineered
class diagram consists of the following: (1) Classes with attributes and oper-
ations, where different classes may have attributes/operations with the same
name; (2) Generalization hierarchies (is-a) but without completeness assertions;
and (3) Associations with multiplicities with one of the following forms: 0..1,
1..1, 0..∞ and 1..∞.

Interestingly, when recovering fields as associations, the tools are often unable
to recover the exact multiplicity of the association. A possible explanation for
this unexpected behavior is that tools tend not to constrain the upper multi-
plicity when collections and arrays are involved. This seems not to affect fields
referencing another class, where a simple check on the assignment of these fields
in either the class constructor or in the field declaration provides enough infor-
mation to determine the correct multiplicity. Another interesting observation is
on the lower bounds of the associations that are often recovered as 1 despite
having no evidence of that happening from the code.

2.2 Formalizing Reverse Engineered UCDs

Based on the above observations, we proceed to formalize the syntax of UCDs,
called RevEng, that can be obtained by reverse engineering, and also give their
formal semantics in terms of first-order logic.

Syntax. A class, possibly with attributes and operations, represents a set of
objects with common features, and is graphically represented as shown in
Figure 2(a); notice that both the middle and the bottom part are optional.

Consistency Checking of Re-engineered UML Class Diagrams 39

Fig. 2. RevEng UML class diagram constructs

An attribute assertion of the form a[i..j] : T , where i ∈ {0, 1} and j ∈ {1,∞},
states that the class C has an attribute a of type2 T , where the optional mul-
tiplicity [i..j] specifies that a associates to each instance of C at least i and at
most j instances of T . Notice that attributes are unique within a class. However,
different classes may have attributes with the same name, possibly with differ-
ent types. An operation of a class C is a function from the instances of C (and
possibly additional parameters) to objects and values. An operation assertion
of the form f(T1, . . . , Tn) : V asserts that the class C has an operation f with
n � 0 parameters, where its i-th parameter is of type Ti and its result is of
type V . Let us clarify that the class diagram represents only the signature, that
is, the name of the functions, the number and the types of their parameters,
and the type of their result. Notice that operations are unique within a class.
However, different classes may have operations with the same name, possibly
with different signature but the same number of parameters. One can use class
generalization to assert that each instance of a child class is also an instance of
the parent class. Several generalizations can be grouped together to form a class
hierarchy, as shown in Figure 2(b).

An association is a relation between the instances of two classes, that are said
to participate in the association. Names of associations are unique in the diagram.
An association A between two classes C1 and C2 is graphically represented as in
Figure 2(c). The multiplicity n�..nu, where n� ∈ {0, 1} and nu ∈ {1,∞}, specifies
that each instance of class C1 can participate at least n� times and at most nu

times to A; analogously we have m�..mu for C2.
Sometimes, in UML class diagrams, it is assumed that all classes not in the

same hierarchy are disjoint. In this work, we do not enforce this assumption, and
we allow two classes to have common instances. When needed, disjointness can
be enforced by means of assertions of the form {C1, . . . , Cn}, stating that the
classes C1, . . . , Cn do not have a common instance. Another standard assumption
in UML class diagrams is the most specific class assumption, stating that objects
in a hierarchy must belong to a single most specific class. We do not enforce this

2 For simplicity, data types, i.e., collections of values such as integers, are considered
as classes, i.e., as collections of objects.

40 G. Gottlob et al.

assumption, and two classes in a hierarchy may have common instances, even
though they may not have a common subclass. When needed, the existence of
the most specific class can be enforced by means of disjointness assertions and
most specific class assertions of the form ({C1, . . . , Cn}, Cn+1) stating that, if
C1, . . . , Cn have a common instance c, then c is also an instance of Cn+1, i.e.,
Cn+1 is a most specific class for C1, . . . , Cn.

Let class(C) be the set of classes occurring in the diagram C. A RevEng
specification is a triple (C,DISJ,MSC), where C is a RevEng UML class diagram,
DISJ ⊆ 2class(C) is a set of disjointness assertions, and MSC ⊆ 2class(C) ×class(C)
is a set of most specific class assertions. Notice that DISJ and MSC can be seen
as sets of constraints expressed using the object constraint language (OCL)3.
OCL is an expressive language that allows us to impose additional constraints
which are not diagrammatically expressible in a UCD. Although OCL has its
own syntax, for brevity, we consider the simpler syntax presented above.

Semantics. The formal semantics of RevEng specifications is given in terms of
first-order logic (FOL). Given a RevEng specification S = (C,DISJ,MSC), we
first define the translation τ of S into FOL. The semantics of S is defined as
certain models of the first-order theory τ(S). The formalization adopted here is
based on the one presented in [4,12]. For brevity, let [n] = {1, . . . , n}, for n > 0.

A class C occurring in C is represented by a unary predicate C, while an
attribute a for class C corresponds to a binary predicate a. The attribute asser-
tion a[i..j] : T is translated into:

∀X∀Y (C(X) ∧ a(X,Y) → T (Y)),
∀X (C(X) → ∃Y a(X,Y)), if i = 1,

∀X∀Y ∀Z (C(X) ∧ a(X,Y) ∧ a(X,Z) → Y = Z), if j = 1.

The first one asserts that for each instance c of C, an object c′ related to c by
the attribute a is an instance of T . The second and the third assertions state
that for each instance c of C, there exist at least one and at most one different
objects, respectively, related to c by a. An operation f , with m � 0 parameters,
for class C corresponds to an (m+2)-ary predicate f , and the operation assertion
f(T1, . . . , Tm) : T is translated into:

∀X∀Y1 . . . ∀Ym∀Z (C(X) ∧ f(X,Y1, . . . , Ym, Z) → Ti(Yi)), for each i ∈ [m],
∀X∀Y1 . . . ∀Ym∀Z (C(X) ∧ f(X,Y1, . . . , Ym, Z) → T (Z)),
∀X∀Y1 . . . ∀Ym∀Z∀W (C(X) ∧ f(X,Y1, . . . , Ym, Z)

∧f(X,Y1, . . . , Ym,W) → Z = W).

The first two impose the correct typing for the parameters and the result, and
the third one asserts that the operation f is a function from the instances of C
and the parameters to the result. A class hierarchy, as the one in Figure 2(b), is
translated into:

∀X (Ci(X) → C(X)), for each i ∈ [n],

3 http://www.omg.org/spec/OCL/

http://www.omg.org/spec/OCL/

Consistency Checking of Re-engineered UML Class Diagrams 41

which assert that each instance of Ci is an instance of C. An association A
occurring in C corresponds to a binary predicate A. If A is among classes C1 and
C2 with multiplicities m�..mu and n�..nu, then we have the FOL assertions:

∀X∀Y (A(X,Y) → C1(X)),
∀X∀Y (A(X,Y) → C2(Y)),
∀X (C1(X) → ∃Y A(X,Y)), if n� = 1,

∀X∀Y ∀Z (C1(X) ∧ A(X,Y) ∧ A(X,Z) → Y = Z), if nu = 1,

∀X (C2(X) → ∃Y A(Y,X)), if m� = 1,

∀X∀Y ∀Z (C2(X) ∧ A(Y,X) ∧ A(Z,X) → Y = Z), if mu = 1.

An assertion {C1, . . . , Cn} ∈ DISJ is translated into

∀X (C1(X) ∧ . . . ∧ Cn(X) → ⊥),

where ⊥ denotes the truth constant false, while an assertion ({C1, . . . , Cn},
Cn+1) ∈ MSC is translated into

∀X (C1(X) ∧ . . . ∧ Cn(X) → Cn+1(X)).

We are now ready to define the semantics of RevEng specifications via FOL.
We consider the following pairwise disjoint sets of symbols: a set C of constants
and a set N of labeled nulls (used as placeholders for unknown values, and thus
can be also seen as globally existentially quantified variables). Different constants
represent different values (unique name assumption), while different nulls may
represent the same value. An interpretation I = (Δ,μ) consists of a non-empty
interpretation domain Δ ⊆ C ∪ N, and an interpretation function μ for a first-
order language. Let S = (C,DISJ,MSC) be a RevEng specification. A UML-model
of S is an interpretation I = (Δ,μ) such that (i) I satisfies the first-order theory
τ(S), written I |= τ(S); and (ii) for each C ∈ class(C), μ(C) �= ∅. The first
condition above implies that I is a first-order model (or simply FO-model) of
the theory τ(S), while the second condition indicates that each class in I is
non-empty, i.e., an instance of each class exists without violating any of the
requirements imposed by the specification.

3 Consistency Check of Diagrams

The fact that RevEng specifications can be translated into FOL allows one to
formally check relevant properties so as to assess the quality of a specification
to objective quality criteria. The typical property of interest is consistency: a
RevEng specification S is consistent if there exists at least one UML-model of S.
We proceed to pinpoint the exact complexity of the problem of deciding whether
a RevEng specification is consistent.

Fix a RevEng specification S = (C,DISJ,MSC). To check the consistency
of S it suffices to add to the first-order theory τ(S) a witness for each class of

42 G. Gottlob et al.

class(C), and then check whether the obtained theory has at least one FO-model,
i.e., is satisfiable. In other words, we can reduce our problem to the satisfiability
problem of a first-order theory. Assuming that class(C) = {C1, . . . , Cn}, let WS
be the conjunction of atomic formulas (C1(c1) ∧ . . . ∧ Cn(cn)), where c1, . . . , cn

are arbitrary constants of C, and let ΦS be the sentence (WS ∧ τ(S)). It is not
difficult to show that:

Lemma 1. S is consistent iff ΦS is satisfiable.

In the following, we investigate the satisfiability of ΦS . Observe that, if ΦS is
satisfiable, then it has an FO-model I = (Δ,μ) where μ(f) = ∅, for each oper-
ation f in S, since the absence of an operation atom cannot lead to a violation
of ΦS . This implies that the conjuncts that appear in τ(S) because of an opera-
tion assertion are irrelevant for satisfiability purposes and can be safely ignored;
in the rest of this section, we exclude from τ(S) those formulas. By definition,
τ(S) can be equivalently rewritten (by simply reordering its conjuncts) as the
conjunction (XS ∧ ES ∧ FS), where:

– XS is a conjunction of formulas of the form ∀X (ϕ(X) → ∃Y α(X, Y)) (pos-
sibly without existentially quantified variables);

– ES is a conjunction of formulas of the form ∀X (ϕ(X) → Xi = Xj); and
– FS is a conjunction of formulas of the form ∀X (ϕ(X) → ⊥).

The following technical result follows immediately:

Lemma 2. ΦS is satisfiable iff the following hold:

1. (WS ∧ XS ∧ ES) is satisfiable; and
2. there exists an FO-model I of (WS ∧ XS ∧ ES) such that I |= FS .

3.1 A Database-Theoretic Approach

Interestingly, the two decision problems stated in Lemma 2 can be tackled fol-
lowing a database-theoretic approach:

– The conjunction WS = (α1 ∧ . . .∧αn) can be seen as the relational database
DS = {α1, . . . , αn};

– The conjunction XS = (σ1 ∧ . . . ∧ σm) can be conceived as the set TS =
{σ1, . . . , σm} of tuple-generating dependencies (TGDs);

– The conjunction ES = (η1∧ . . .∧ηk) can be seen as the set ES = {η1, . . . , ηk}
of equality-generating dependencies (EGDs); and

– The conjunction FS = (ν1 ∧ . . . ∧ ν�) can be conceived as the union of
conjunctive queries (UCQs) QS = (qν1 ∨ . . . ∨ qν�

), where, assuming that ν
is of the form ∀X (ϕ(X) → ⊥), qν is the conjunctive query ∃X (ϕ(X)).

Tuple- and equality-generating dependencies are well-known in the database
world as a unifying framework for classical database dependencies such as inclu-
sion and functional dependencies [1], and form the basis of the Datalog± family

Consistency Checking of Re-engineered UML Class Diagrams 43

of KR languages [7]. Conjunctive queries correspond to the select-project-join
fragment of relational algebra, and form one of the most natural and commonly
used languages for querying relational databases [1].

An FO-model of (WS ∧ XS ∧ ES) can be equivalently defined as a relational
instance I, called a model of DS w.r.t. TS ∪ ES , such that I ⊇ DS and I satis-
fies TS ∪ ES (written as I |= TS ∪ ES); I satisfies ∀X (ϕ(X) → ∃Y α(X, Y))
if, whenever there exists a homomorphism h such that h(ϕ(X)) ⊆ I, then
there exists an extension h′ of h such that h(α(X, Y)) ⊆ I, while I satisfies
∀X (ϕ(X) → Xi = Xj) if the existence of h such that h(ϕ(X)) ⊆ I implies
h(Xi) = h(Xj). Let mods(DS , TS ∪ES) be the set of models of DS w.r.t. TS ∪ES .
It is clear that (WS∧XS∧ES) is satisfiable iff mods(DS , TS∪ES) �= ∅. A conjunc-
tive query ∃X (ϕ(X)) is entailed by an instance I if there exists a homomorphism
h such that h(ϕ(X)) ⊆ I. QS is entailed by I, written I |= QS , if at least one of
its disjuncts is entailed by I. It is easy to show that there exists an FO-model
of (WS ∧ XS ∧ ES) that satisfies FS iff the following does not hold: for every
I ∈ mods(DS , TS ∪ ES), I |= QS .

In general, mods(DS , TS ∪ES) is infinite, and thus not explicitly computable.
To overcome this difficulty, we employ a classical algorithmic tool from the
database literature called the chase procedure, which repairs DS w.r.t. TS ∪ ES
so that the result, denoted chase(DS , TS ∪ES), satisfies TS ∪ES . It works on DS
through the ∃-chase step, which aims at satisfying TGDs by adding atoms, and
the =-chase step, which aims at satisfying EGDs by unifying terms; if constants
of C must be unified, then we have a hard violation of an EGD and the chase
fails; for details, see, e.g., [6]. It is implicit in [10] that mods(DS , TS ∪ ES) �= ∅

iff chase(DS , TS ∪ ES) does not fail. Moreover, if chase(DS , TS ∪ ES) does not
fail, then chase(DS , TS ∪ ES) is a universal model of DS w.r.t. TS ∪ ES , i.e.,
for each I ∈ mods(DS , TS ∪ ES), there exists a homomorphism h such that
h(chase(DS , TS ∪ ES)) ⊆ I. The next technical result can be established.

Lemma 3. It holds that:

1. (WS ∧ XS ∧ ES) is satisfiable iff chase(DS , TS ∪ ES) does not fail; and
2. there exists an FO-model I of (WS ∧ XS ∧ ES) such that I |= FS iff

chase(DS , TS ∪ ES) �|= QS .

Thus, the above lemma, combined with Lemmas 1 and 2, suggests the fol-
lowing:

Corollary 1. S is consistent iff the following hold:

1. chase(DS , TS ∪ ES) does not fail; and
2. chase(DS , TS ∪ ES) �|= QS .

3.2 Chase Failure

It can be shown that ES can be safely ignored and proceed only with TS . In par-
ticular, we can show that the initial segment of chase(DS , TS) obtained starting

44 G. Gottlob et al.

from DS and applying the ∃-chase step i times, satisfies ES , for each i � 0;
this can be established by induction on i. Therefore, during the construction of
chase(DS , TS ∪ES) the =-chase step is not applied, and the next lemma follows:

Lemma 4. chase(DS , TS ∪ ES) = chase(DS , TS).

As an immediate consequence we get that:

Proposition 1. chase(DS , TS ∪ ES) does not fail.

3.3 Query Entailment

Although the problem of deciding whether the chase fails is trivial, the problem of
deciding whether chase(DS , TS ∪ ES) �|= QS is rather challenging. By Lemma 4,
we can focus on the problem of deciding whether chase(DS , TS) �|= QS . It turned
out that it is more convenient to study the complement of the problem under con-
sideration. We present a novel nondeterministic algorithm which decides whether
chase(DS , TS) |= QS . Before we proceed further, let us give some auxiliary ter-
minology. We denote by I〈σ, h〉I ′ a single ∃-chase step, which means that during
the chase we apply the TGD σ of the form ∀X (ϕ(X) → ∃Y α(X, Y)) due to the
existence of a homomorphism h such that h(ϕ(X)) ⊆ I, and I ′ = I∪h′(α(X, Y)),
where h′ is an extension of h, and h′(Y) is a “fresh” null of N. Interestingly, the
TGDs of TS enjoy a crucial syntactic property: for each σ ∈ TS , the left-hand
side of σ, denoted body(σ), has a guard atom, denoted guard(σ), that contains
all the universally quantified variables of σ; such TGDs are known as guarded
TGDs [6]. The guarded chase forest is a tree-like representation of the instance
constructed by the chase; the formal definition follows:

Definition 1. The guarded chase forest of DS and TS , denoted gcf(DS , TS),
is a labeled directed forest (N,E, λ), where λ : N → chase(DS , TS), defined as
follows: (i) for each α ∈ DS , there exists exactly one v ∈ N with λ1(v) = α;
(ii) for each step I〈σ, h〉I ′ applied during the construction of chase(DS , TS): for
every atom α ∈ {h(guard(σ))}∪(I ′\I), there exists exactly one node v ∈ N such
that λ(v) = α, and for every α ∈ I ′ \ I, there exists an edge (v, u) ∈ E, where
λ(v) = h(guard(σ)) and λ(u) = α; and (iii) no other nodes and edges occur in
N and E, respectively. Let gcfk(DS , TS) be the initial part of gcf(DS , TS) up to
depth k � 0.

Based on gcf(DS , TS) we define the notion of the guarded chase of DS and
TS up to a certain depth:

Definition 2. The guarded chase of DS and TS of depth up to k � 0 is
the instance gchasek(DS , TS) = {λ(v)}v∈Nk assuming that gcfk(DS , TS) =
(Nk, E, λ).

Interestingly, for our purposes, we can focus on an initial part of the guarded
chase; the following is implicit in [6]:

Consistency Checking of Re-engineered UML Class Diagrams 45

Fig. 3. Proof of a disjunct of QS

Lemma 5. There exists γ(n) ∈ O(2n), where n is the number of predicates in
TS , such that chase(DS , TS) |= QS iff gchaseγ(n)(DS , TS) |= QS .

Therefore, one can simply build gchaseγ(n)(DS , TS), and then check whether
there exists a homomorphism that maps at least one disjunct of QS to it. This
naive approach shows that our problem is in 2exptime. However, this upper
bound is not optimal. A more clever procedure, which needs only polynomial
space, can be designed. Let us first give an informal description of this procedure.

An Informal Description. Assume that QS is entailed by chase(DS , TS). By
Lemma 5, there exists a disjunct q of QS that can be mapped via a homomor-
phism h to gchaseγ(n)(DS , TS). Let P be the subforest of gcfγ(n)(DS , TS) that
is obtained by keeping only the paths from the root nodes to the nodes which
are labeled by the atoms of h(q); in other words, P is the proof of q w.r.t. DS
and TS . Observe that, for each 0 � i � γ(n), the number of nodes occurring at
the i-th level of P is at most |q|, i.e., the number of conjuncts in q. An abstract
example is depicted in Figure 3 — the general shape of the subforest P is given
in (a), while its actual structure is shown in (b). It is clear that at each level of
P , at most |q| atoms may appear; e.g., in the third level (see shaded nodes) there
are exactly |q| atoms. The key idea underlying our algorithm is to nondetermin-
istically construct, in a level-by-level fashion, the atoms of each level of P until
we reach h(q). In other words, our intention is to generate, by applying some
∃-chase steps, the (i + 1)-th level of P from the i-th level of P , and thus we do
not need to store more than 2 · |q| atoms at each step. A crucial notion, necessary
for this construction, is the type of an atom which is defined as follows:

Definition 3. The type of an atom α ∈ chase(DS , TS), denoted type(α,DS , TS)
(or simply type(α)), is the set of atoms of the form C(t), where C ∈ class(S)4,
occurring in chase(DS , TS) such that t appears in α.
4 By abuse of notation, we refer to the set of classes occurring in the UCD of the spec-

ification S by class(S).

46 G. Gottlob et al.

Let us explain the importance of the notion of type. Consider a node v
occurring at the i-th level of P which is labeled by the atom α. Assume now that
there exists a TGD σ ∈ TS such that guard(σ) is mapped via a homomorphism μ
to α, and also μ maps the rest of the body of σ, denoted ϕσ, to chase(DS , TS).
This implies that v has a child node u at the (i + 1)-th level of P which is
labeled by the atom obtained after applying σ. Since the TGD σ is guarded, all
the variables occurring in guard(σ) appear also in ϕσ, and thus μ necessarily
maps ϕσ to type(α). From the above informal discussion, we conclude that the
level-by-level construction proposed above is feasible, providing that we are also
able to construct the type of the generated atoms. Notice that, at each step of
the procedure, apart from the 2 · |q| atoms, we also need to store their types.
However, the size of the type of an atom is at most the cardinality of class(S),
and thus overall we need only polynomial space. In what follows, we discuss in
depth how the type of an atom can be effectively computed, and we formalize
the level-by-level construction sketched above.

Computing the Type of an Atom. In general, the problem of comput-
ing the type of an atom is not easier than the problem of query entailment
itself. However, in our case, it is possible to construct the type of an atom
α ∈ chase(DS , TS) by exploiting α and the type of its parent in the guarded
chase forest. Let us first formally define what we mean by saying the type of the
parent of an atom in the guarded chase forest. To this end, we need the notion
of the parent-type function defined as follows:

Definition 4. The parent-type function pt from chase(DS , TS) to 2chase(DS ,TS)

is defined as follows:

pt(α) =

⎧
⎨

⎩

∅, α ∈ DS ,

type(h(guard(σ))), I〈σ, h〉(I ∪ {α}).

Let also pt+(α) = {α} ∪ pt(α).

We also need the notion of the distinguished term of an atom α ∈
chase(DS , TS), which is crucial for the computation of type(α). In fact, to com-
pute type(α), it suffices to add to the common part between the type of α and
the type of its parent the atoms of chase(DS , TS) which contain only the distin-
guished term of α.

Definition 5. The distinguished term of an atom α ∈ chase(DS , TS), denoted
d(α), is defined as follows: if α = C(t), where C ∈ class(S), then d(α) = t;
otherwise, d(α) is the null of N invented in α.

Finally, we define the so-called projection set of TS , which will allows us to
complete the common part between the type of α and the type of its parent, and
thus computing type(α), by starting from pt+(α). Let A[i], where i ∈ {1, 2}, be
an auxiliary predicate which is used to store the projection to the i-th argument
of the predicate A.

Consistency Checking of Re-engineered UML Class Diagrams 47

Input: An atom α, an instance I, a term t, a specification S.
Output: A finite instance.

1. J := ∅.
2. K := chase(({α} ∪ I)↓, T π

S).

3. For each C ∈ class(S): if C(t)↓ ∈ K, then J := J ∪ {C(t)}.
4. If α = C(t), where C ∈ class(S), then return J ; otherwise, return (I|t′ ∪ J), where t′ �= t

and t′ occurs in α.

Fig. 4. The Procedure Type

Definition 6. Consider a TGD σ ∈ TS of the form ϕ → α, and an atom β
occurring in σ. If β = A(X,Y), where A is an association class, and the variable
X (resp., Y) occurs in both ϕ and α, then τπ(β, σ) = A[1](X) (resp., A[2](Y));
otherwise, τπ(β, σ) = β. The projection set of TS , denoted Tπ

S , is obtained as
follows: for each σ ∈ TS of the form ϕ → α where the predicate of α is either a
class or an association, and for each atom β in σ, replace β by τπ(β, σ).

An example of a projection set follows:

Example 1. Let S = (C, ∅, ∅), where C is the diagram in Figure 2(c) with
n�..nu = m�..mu = 1..∞, expressing that there is an association A between
the classes C1 and C2, and each instance of C1 and C2 participates at least once
in A. Tπ

S is as follows:

∀X (C1(X) → ∃Y τπ(A(X,Y))) = ∀X (C1(X) → A[1](X)),
∀X (C2(X) → ∃Y τπ(A(Y,X))) = ∀X (C2(X) → A[2](X)),
∀X∀Y (τπ(A(X,Y)) → C1(X)) = ∀X (A[1](X) → C1(X)),
∀X∀Y (τπ(A(X,Y)) → C2(Y)) = ∀Y (A[2](Y) → C2(Y)).

For brevity, the second parameter of τπ is omitted.

We are now ready to give our key technical lemma. Henceforth, given an
atom α, we denote by α↓ the atom obtained by freezing α, i.e., replacing each
null z ∈ N occurring in α with a new constant cz ∈ C; this notation naturally
extends to sets of atoms.

Lemma 6. For each atom α ∈ chase(DS , TS), and for each class C ∈ class(S),
C(d(α)) ∈ chase(DS , TS) iff C(d(α))↓ ∈ chase(pt+(α)↓, Tπ

S).

The crucial observation in the proof of the above lemma is that in a
chase derivation from an atom α ∈ chase(DS , TS) to an atom C(d(α)) ∈
chase(DS , TS), it is not possible to lose and reintroduce the term d(α); this
is because of the fact that the TGDs of TS are guarded. Therefore, the TGDs
that are involved in such a chase derivation are neither of the form ∀X (C ′(X) →
∃Y a(X,Y)) nor of the form ∀X∀Y (C ′(X) ∧ a(X,Y) → T (Y)); otherwise, we

48 G. Gottlob et al.

immediately get a contradiction. Moreover, these TGDs are contributing in such
a chase derivation only by projecting out the term d(α); this justifies the def-
inition of Tπ

S . Based on Lemma 6, we design the procedure Type, depicted in
Figure 4, which computes the type of an atom α by adding to the part of pt(α)
that contains only the non-distinguished term t′ of α, denoted as pt(α)|t′ , the set
of atoms J = {C(d(α)) | C ∈ class(S) and C(d(α)) ∈ chase(DS , TS)}; clearly,
(pt|t′ ∪ J) = type(α). Since each TGD of Tπ

S does not contain an existentially
quantified variable, and also its size is fixed, chase(pt+(α)↓, Tπ

S) is finite and can
be constructed in polynomial time in the size of pt+(α)↓. The instance pt+(α)↓
is of polynomial size, and thus chase(pt+(α)↓, Tπ

S) can be constructed in poly-
nomial time; hence, the second step of Type terminates after polynomially steps.

Proposition 2. For each atom α ∈ chase(DS , TS),

1. Type(α, pt(α), d(α),S) = type(α); and
2. Type(α, pt(α), d(α),S) terminates after polynomially many steps.

The Level-by-level Construction. We have now all the necessary ingre-
dients in order to proceed with our novel algorithm for deciding whether
chase(DS , TS) |= QS . The main idea, as sketchily described above, is
to nondeterministically construct, in a level-by-level fashion, a segment of
gchaseγ(n)(DS , TS), which contains at most as many atoms as the biggest dis-
junct q of QS , and then check whether there exists a homomorphism that maps
q to it. During this procedure, we can compute the children of a node v by
exploiting the instance type(α), where α is the label of v, and then forget v
and its type. Moreover, the type of an atom α can be constructed by exploiting
pt+(α) and the procedure Type. The formal algorithm, called Ent (which stands
for entailment), is depicted in Figure 5. Note that D and D′ are vectors that hold
integer numbers and are used to store the depth of the generated atoms, while
P and P ′ are vectors that hold sets of atoms and are used to store the types of
the generated atoms. Moreover, γ(n) is the bound on the depth of gcf(DS , TS)
provided by Lemma 5. A simple example of the execution of Ent follows:

Example 2. Let S = (C, {T1, T3}, ∅), where C is the RevEng UCD in Figure 6.
The forest gcf(DS , TS) is depicted in Figure 6 (for brevity, the atoms
T1(c4), T2(c5) and T2(c6) are not shown). A possible execution of Ent(S), which
explores in a level-by-level fashion the shaded nodes of gcf(DS , TS), is as follows:

– We choose (S1,≺1) to be ({C3(c3)}, ∅), and the type of C3(c3) is stored in
P1;

– We construct (S2,≺2) = ({a(c3, z3)}, ∅) from C3(c3) by applying
∀X (C3(X) → ∃Y a(X,Y)), and the type of a(c3, z3) is stored in P ′

1;
– We assign (S2,≺2) to (S1,≺1) and P ′

1 to P1 — this means that we forget
the atom C3(c3) and its type;

– We construct (S2,≺2) = ({T1(z3), T3(z3)}, T1(z3) ≺2 T3(z3)) from the atom
a(c3, z3) by applying the TGDs ∀X∀Y (C1(X) ∧ a(X,Y) → T1(Y)) and
∀X∀Y (C3(X) ∧ a(X,Y) → T3(Y)) (notice that the crucial atoms C1(c3)

Consistency Checking of Re-engineered UML Class Diagrams 49

Input: A RevEng specification S.
Output: yes if chase(DS , TS) |= QS ; otherwise, no.

1. Guess a disjunct q of QS .
2. Image := ∅ and L := {z1, . . . , zk} ⊂ N, where k = 2 · |q|.
3. Guess a totally ordered set (S1, ≺1), where S1 ⊆ DS and |S1| ∈ {1, . . . , |q|}; assume that

α1 ≺1 . . . ≺1 αm.
4. For each i ∈ [|S1|]: D[i] := 0 and P [i] := Type(αi, ∅, c, S), where c is the constant in αi.
5. Guess a set of atoms I ⊆ S1; Image := Image ∪ I.

6. If |Image| = |q|, then goto 15.
7. Guess to proceed with the next step or goto 15.
8. Construct a totally ordered set (S2, ≺2) as follows:

a. (S2, ≺2) := (∅, ∅) and ctr := 1.
b. Guess σ = (ϕ → ∃Y α) ∈ TS for which there exists i ∈ [|S1|] and a homomorphism h

such that
– h(guard(σ)) = αi,
– D[i] < γ(n), and
– h(body(σ) \ {guard(σ)}) ⊆ Pi;
if there is no such σ, then σ := ε.

c. If σ �= ε, then do the following:
– βctr := h′(α), where h′ := h ∪ {Y → t | t ∈ L and t does not occur in S1 ∪ S2}.
– S2 := S2 ∪ {βctr}.
– If ctr > 1, then βctr−1 ≺2 βctr .
– D′[ctr] := D[i] + 1.
– P ′[ctr] := Type(βctr , P [i], h′(Y), S).
– ctr := ctr + 1.

d. If |S2| = |q| or σ = ε, then goto 9.
e. Guess to proceed to the next step or goto 8b.

9. Guess a set I ⊆ S2; Image := Image ∪ I.
10. If |Image| = |q|, then goto 15.
11. Guess to proceed to the next step or goto 15.
12. (S1, ≺1) := (S2, ≺2); assume that α1 ≺1 . . . ≺1 αm.
13. D := D′ and P := P ′.
14. Goto 8.
15. If there exists h such that h(q) ⊆ Image, then return yes; otherwise, return no.

Fig. 5. The Nondeterministic Algorithm Ent

and C3(c3) occur in type(a(c3, z3))), and the type of T1(z3) and T3(z3) are
stored in P ′

1 and P ′
2, respectively; and

– Finally, we choose to assign {T1(z3), T3(z3)} to Image, and then check
whether there exists a homomorphism that maps QS to Image.

Clearly, since such a homomorphism exists, the algorithm returns yes, which in
turn implies that chase(DS , TS) |= QS .

By construction, Ent(S) = yes iff gchaseγ(n)(DS , TS) |= QS , where γ(n) is
the bound provided by Lemma 5, which in turn is equivalent to chase(DS , TS) |=
QS . Let us now analyze the space complexity of our algorithm. During the
execution of Ent(S) we need to maintain the following:

50 G. Gottlob et al.

Fig. 6. Execution of the Algorithm Ent

1. The totally ordered sets (S1,≺1) and (S2,≺2);
2. The vectors D, D′, P and P ′; and
3. The set of atoms Image.

It is possible to show that the above structures need O(m3 · log m) space, where
m = |class(S)|. By Proposition 2, the computation of the types at steps 4 and 8
is feasible in polynomial time, and thus in polynomial space. Finally, since the
problem of deciding whether there exists a homomorphism from a query to an
instance is feasible in np (and thus a fortiori in pspace), we get that step 15 is
feasible in polynomial space. The next result follows:

Proposition 3. It holds that,

1. Ent(S) = yes iff chase(DS , TS) |= QS ; and
2. Each step of the computation of Ent(S) uses polynomial space.

3.4 Pinpointing the Complexity

By using the results established in the previous section, we can now pinpoint the
computational complexity of the problem of deciding whether S is consistent.

Upper Bound. By Corollary 1 and Proposition 1, we conclude that S is consis-
tent iff chase(DS , TS) �|= QS . Since Ent describes a nondeterministic algorithm,
Proposition 3 implies that the problem of deciding whether chase(DS , TS) |= QS ,
that is, the complement of the problem under consideration, is in npspace, and
thus in pspace since npspace = pspace. But pspace = copspace, and therefore:

Theorem 1. The problem of deciding whether S is consistent is in pspace.

Lower Bound. We show that the upper bound established above is tight. This
is done by simulating a polynomial space Turing machine (TM) by means of a
RevEng specification. Consider a TM M = (S,Λ, δ, s0, F), where S is the set of
states, Λ is the tape alphabet, δ : S \F ×Λ → S ×Λ×{−1, 0, 1} is the transition

Consistency Checking of Re-engineered UML Class Diagrams 51

Fig. 7. Simulating a polynomial space TM

function, s0 is the initial state, and F ⊆ S is the set of final or accepting
states. We assume w.l.o.g. that M has exactly one accepting state, denoted as
sacc . We also assume that Λ = {0, 1}, and that each input string has an 1 as the
rightmost bit. Consider the computation of M on an input string I = a1a2 . . . an,
and suppose that it halts using m = nk cells, where k > 0. We shall construct
a RevEng specification S = (C,DISJ,MSC) such that M accepts I iff S is not
consistent; this shows that the complement of our problem is pspace-hard, and
thus also our problem is pspace-hard.

The initial configuration of M is reflected by the class diagram Cinit/config

in Figure 7(a). Roughly, Initial(c) states that c is the initial configuration,
State[s](c) asserts that the state of the configuration c is s, and Cell [i, x, y](c)
says that in the configuration c the i-th cell contains x, and the cursor is on the
i-th cell iff y = 1.

The auxiliary classes Cell [s, i, x, y], where (s, i, x, y) ∈ S × {0, . . . , m − 1} ×
{0, 1} × {0, 1}, are needed in order to describe the configuration transition via a
RevEng class diagram. Roughly,

52 G. Gottlob et al.

Cell [i, x, y](c) ∧ State[s](c) → Cell [s, i, x, y](c),

which is formally defined using the set MSCstate of most specific class assertions
consisting of: for each (s, i, x, y) ∈ S × {0, . . . , m − 1} × {0, 1} × {0, 1},

({Cell [i, x, y],State[s]},Cell [s, i, x, y]).

The fact that each configuration has a valid configuration as a successor is
captured by the diagram Cinit/config , shown in Figure 7(a); Config(c) expresses
that c is a valid configuration, while succ(c, c′) states that c′ is derived from c.

We now show how the configuration transition can be simulated. Consider an
arbitrary pair (s, a) ∈ S \F ×{0, 1}, and assume that δ((s, a)) = (s′, a′, d′). The
state transition, as well as the updating of the tape, is reflected by the diagram
C(s,a), shown in Figure 7(b); notice that f(0) = 1 and f(−1) = f(1) = 0.
Eventually, the configuration transition is achieved by the diagram Ctrans , which
is obtained by merging the diagrams {C(s,a)}(s,a)∈S\F×{0,1}. It should not be
forgotten that those cells which are not changed during the transition keep their
old values. This can be ensured by a RevEng UCD, and a set of most specific
class constraints. Finally, with the diagram Cacc , shown in Figure 7(c), we say
that M accepts if it reaches the accepting state.

We define S to be the specification (C,DISJ,MSC), where C is the UCD
obtained by merging the diagrams introduced above, DISJ consists of the single
assertion {Initial ,Accept}, and MSC consists of the most specific class assertions
introduced above. It is easy to verify that S is a RevEng specification, and that
can be constructed in polynomial time. By providing an inductive argument, we
can show that M accepts I iff chase(DS , TS) |= QS iff S is inconsistent, and the
next result follows:

Theorem 2. The problem of deciding whether S is consistent is pspace-hard5.

The following complexity characterization follows from Theorems 1 and 2:

Corollary 2. The problem of deciding whether S is consistent is pspace-
complete.

4 Conclusions

In this work, we focus on the fragment of UML class diagrams that can be
recovered from an implemented system. We study the problem of consistency of
such diagrams, and we show that is pspace-complete. Interestingly, the upper
bound is obtained by exploiting algorithmic techniques developed for conjunctive
5 An alternative way to establish this result is by adapting the construction in the

proof of an analogous result for the description logic Horn-FL− [13]. However, the
resulting diagram is counterintuitive, and does not give any insights about the inher-
ent difficulty of RevEng UCDs. For this reason, and also for self-containedness, we
provide a new proof from first principles.

Consistency Checking of Re-engineered UML Class Diagrams 53

query answering under guarded Datalog±, that is, a key member of the Datalog±

family of KR languages. Although the proposed consistency algorithm is theoret-
ically interesting, and allows us to establish a worst-case optimal upper bound
for the problem under investigation, it is not very well-suited for a practical
implementation. It is unlikely that it will lead to procedures that guarantee the
required level of scalability, especially in the presence of very large diagrams. The
designing of a more practical consistency algorithm, which will exploit existing
database technology, will be the subject of future research.

Acknowledgements. This research has received funding from the EPSRC Pro-
gramme Grant EP/M025268/ “VADA”.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

2. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proc. of IJCAI,
pp. 364–369 (2005)

3. Balaban, M., Maraee, A.: Finite satisfiability of UML class diagrams with
constrained class hierarchy. ACM Trans. Softw. Eng. Methodol. 22(3) (2013)

4. Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams.
Artif. Intell. 168(1–2), 70–118 (2005)

5. Cal̀ı, A., Gottlob, G., Kifer, M.: Taming the infinite chase: Query answering under
expressive relational constraints. J. Artif. Intell. Res. 48, 115–174 (2013)

6. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: A general Datalog-based framework for
tractable query answering over ontologies. J. Web Sem. 14, 57–83 (2012)

7. Cal̀ı, A., Gottlob, G., Lukasiewicz, T., Marnette, B., Pieris, A.: Datalog+/-: a fam-
ily of logical knowledge representation and query languages for new applications.
In: Proc. of LICS, pp. 228–242 (2010)

8. Cal̀ı, A., Gottlob, G., Orsi, G., Pieris, A.: Querying UML class diagrams. In:
Birkedal, L. (ed.) FOSSACS 2012. LNCS, vol. 7213, pp. 1–25. Springer, Heidelberg
(2012)

9. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
J. Autom. Reasoning 39(3), 385–429 (2007)

10. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: Semantics and
query answering. Theor. Comput. Sci. 336(1), 89–124 (2005)

11. Johnson, D.S., Klug, A.C.: Testing containment of conjunctive queries under func-
tional and inclusion dependencies. J. Comput. Syst. Sci. 28(1), 167–189 (1984)

12. Kaneiwa, K., Satoh, K.: On the complexities of consistency checking for restricted
UML class diagrams. Theor. Comput. Sci. 411(2), 301–323 (2010)

13. Krötzsch, M., Rudolph, S., Hitzler, P.: Complexities of horn description logics.
ACM Trans. Comput. Log. 14(1), 2 (2013)

14. Müller, H.A., Jahnke, J.H., Smith, D.B., Storey, M., Tilley, S.R., Wong, K.: Reverse
engineering: a roadmap. In: Proc. of ICSE, pp. 47–60 (2000)

A Brief Overview of Rule Learning

Johannes Fürnkranz1 and Tomáš Kliegr2(B)

1 Department of Computer Science, TU Darmstadt, Hochschulstraße 10,
64289 Darmstadt, Germany

juffi@ke.informatik.tu-darmstadt.de
2 Department of Information and Knowledge Engineering, University of Economics,

Prague, nám. Winstona Churchilla 4, 13067 Prague, Czech Republic
tomas.kliegr@vse.cz

Abstract. In this paper, we provide a brief summary of elementary
research in rule learning. The two main research directions are descrip-
tive rule learning, with the goal of discovering regularities that hold in
parts of the given dataset, and predictive rule learning, which aims at
generalizing the given dataset so that predictions on new data can be
made. We briefly review key learning tasks such as association rule learn-
ing, subgroup discovery, and the covering learning algorithm, along with
their most important prototypes. The paper also highlights recent work
in rule learning on the Semantic Web and Linked Data as an important
application area.

1 Introduction

Rule-based methods are a popular class of techniques in machine learning and
data mining [19]. They share the goal of finding regularities in data that can be
expressed in the form of an IF-THEN rule. Depending on the type of rule that
should be found, we can discriminate between descriptive rule discovery, which
aims at describing significant patterns in the given dataset in terms of rules, and
predictive rule learning. In the latter case, one is often also interesting in learning
a collection of the rules that collectively cover the instance space in the sense
that they can make a prediction for every possible instance. In the following, we
will briefly introduce both tasks and point out some key works in this area.

While in some application areas rule learning algorithms are superseded by
statistical approaches such as Support Vector Machines (SVMs). An emerging
use case for rule learning is the Semantic Web, whose representation is built on
rule-based formalisms. We give a brief overview of recent papers in this domain,
focusing on algorithms for completing large linked open data knowledge bases,
such as DBpedia or YAGO.

This paper is organized as follows. Section 2 covers descriptive rule discov-
ery algorithms, with emphasis on subgroup discovery and association rule min-
ing. Section 3 discusses predictive rule discovery. This section includes the topic
of classification by association rules, providing a connection to descriptive rule
learning. The seminal algorithms of the rule learning field, including Ripper

c© Springer International Publishing Switzerland 2015
N. Bassiliades et al. (Eds.): RuleML 2015, LNCS 9202, pp. 54–69, 2015.
DOI: 10.1007/978-3-319-21542-6 4

A Brief Overview of Rule Learning 55

and CN2, are presented in Section 4. Section 5 focuses on recent work in rule
learning on the Semantic Web and Linked Data. The conclusion highlights some
advantages of rule learning compared to its arguably biggest rival – decision tree
learning, and points at emerging research in the linked data domain.

2 Descriptive Rule Discovery

In descriptive rule discovery, the key emphasis lies on finding rules that describe
patterns and regularities that can be observed in a given dataset. In contrast
to predictive rule learning (Section 3), the focus lies on finding individual rules.
Consequently, evaluation does typically not focus on predictive performance, but
on the statistical validity of the found rules. Predominant in the literature are
two main tasks, namely subgroup discovery, where a given property of interest is
analyzed (supervised learning), and association rule discovery, where arbitrary
dependencies between attributes can be considered (unsupervised learning).

2.1 Subgroup Discovery

The task of subgroup discovery was defined by Klösgen [29] and Wrobel [59]
as follows: Given a population of individuals and a property of those individuals
that we are interested in, find population subgroups that are statistically ‘most
interesting’, e.g., are as large as possible and have the most unusual statistical
(distributional) characteristics with respect to the property of interest.

Thus, a subgroup may be considered as an IF-THEN rule that relates a set
of independent variables to a target variable of interest. The condition of the
rule (the rule body or antecedent) typically consists of a conjunction of Boolean
terms, so-called features, each one constituting a constraint that needs to be
satisfied by an example. If all constraints are satisfied, the rule is said to fire,
and the example is said to be covered by the rule. The rule head (also called the
consequent or conclusion) consists of a single class value, which is predicted in
case the rule fires. In the simplest case, this is a binary target class c, and we
want to find one or more rules that are predictive for this class.

In the literature, one can also find several closely related tasks, where the head
of the rule does not only consist of a single binary attribute. Examples include
mining for subgroup discovery, contrast sets [4], correlated pattern mining [40],
mining for emerging patterns [11], exceptional model mining, and others. For
more information, we refer to Kralj Novak et al. [30] and Zimmermann and De
Raedt [64], who present unifying frameworks for these approaches.

The rule bodies typically consist of features that test for the presence of a
particular attribute value or, in the case of numerical attributes, of an inequal-
ity that requires that the observed value is above or below a threshold. More
expressive constraints include set-valued attributes (several values of the same
attribute can be observed in the training examples), internal disjunctions (only
one of several values of the same attribute needs to be present), hierarchical
attributes (certain values of the attributes subsume other values), etc. Conjunc-
tive combinations of features may be viewed as statements in propositional logic

56 J. Fürnkranz and T. Kliegr

function FindPredictiveRule (Examples)

Input: Examples, a set of positive and negative examples for a class c.

//initialize the rule body
rb ← ∅
// repeatedly find the best refinement
repeat

build refinements R ← {rb′ | rb′ = rb ∧ f , for some feature f}
evaluate all rb′ ∈ R according to some quality criterion
rb = the best refinement in R

until rb satisfies a stopping criterion
or covers no examples

Output: rule (c ← R)

Fig. 1. Greedy search for a predictive rule

(propositional rules). If relations between features can be considered (i.e., if
propositions can be formulated in first-order logic), we speak of first-order rules.

Top-Down Hill-Climbing Algorithm. Figure 1 shows a simple greedy hill-
climbing algorithm for finding a single predictive rule. It starts with an empty
rule body and successively adds new conditions. For adding a condition, it tries
all possible additions and evaluates them with a heuristic quality criterion, which
typically depends on the number of covered and uncovered examples that belong
to the class c (positive examples) or do not belong to c (negative examples). A
few important ones are (assume that p out of P positive examples and n out of
N negative examples are covered by the rule):

Laplace estimate (Lap = p+1
p+n+2) computes the fraction of positive examples

in all covered examples, where each class is initialized with 1 virtual example
in order to penalize rules with low coverage.

m-estimate (m = p+m·P/(P+N)
p+n+m) is a generalization of the Laplace estimate

which uses m examples for initialization, which are distributed according to
the class distribution in the training set [7].

information gain (ig = p · (log2
p

p+n − log2
p′

p′+n′), where p′ and n′ are the
number of positive and negative examples covered by the rule’s predecessor)
is Quinlan’s (1990) adaptation of the information gain heuristic used for
decision tree learning. The main difference is that this only focuses on a
single branch (a rule), whereas the decision tree version tries to optimize all
branches simultaneously.

A Brief Overview of Rule Learning 57

correlation and χ2 (corr = p(N−n)−(P−p)n√
PN(p+n)(P−p+N−n)

) computes the four-field cor-

relation of covered/uncovered positive/negative examples. It is equivalent to
a χ2 statistic (χ2 = (P + N) corr2).

An exhaustive overview and theoretical comparison of various search heuris-
tics in coverage space, a variant of ROC space, can be found in [18].

In the simplest case, conditions are added until the rule covers no more
negative examples. In practical applications, we may want to stop earlier in
order to avoid overfitting. In this case, a separate stopping criterion may be
used in order to stop the refinement process when a certain quality threshold for
the learned rule is satisfied, or the rule set may be optimized on an independent
pruning set [16].

A greedy hill-climbing search is quite likely to get stuck in a local optimum.
However, it is fairly straight-forward to generalize this algorithm so that different
search strategies can be employed (e.g., beam search [9] or best-first search) or
that not only one but multiple rules are returned (typically the top-k rules for
some value of k).

2.2 Association Rule Discovery

An association rule is a rule where certain properties of the data in the body of
the rule are related to other properties in the head of the rule.

A typical application example for association rules are product associations.
For example, the rule

bread, butter → milk, cheese

specifies that people who buy bread and butter also tend to buy milk and cheese.
The importance of an association rule is often characterized with two mea-

sures:

Support measures the fraction of all rows in the database that satisfy both,
body and head of the rule. Rules with higher support are more important.

Confidence measures the fraction of the rows that satisfy the body of the rule,
which also satisfy the head of the rule. Rules with high confidence have
a higher correlation between the properties described in the head and the
properties described in the body.

If the above rule has a support of 10% and a confidence of 80%, this means
that 10% of all people buy bread, butter, milk, and cheese together, and that
80% of all people who buy bread and butter also buy milk and cheese.

Apriori Algorithm. The discovery of association rules typically happens in two
phases, which were pioneered in the Apriori algorithm [2]. First, all frequent
itemsets (i.e., conditions that cover a certain minimum number of examples) are
found. In a second pass, these are then converted into association rules.

For finding all frequent itemsets, Apriori generates all rules with a certain
minimum frequency in parallel with a so-called level-wise search, as shown in

58 J. Fürnkranz and T. Kliegr

function FreqSet (Examples)

Input: Examples, described with a set of binary features, so-called Items.

// the first iteration consists of all single items k = 1
C1 = Items

//loop until no nor candidate items left while Ck �= ∅ do

// remove all infrequent items from Ck

// (requires check on database of Examples)
Sk = Ck \ { all infrequent itemsets in Ck}
// generate new candidates
Ck+1 = { all sets with k + 1 elements that

can be formed by uniting two itemsets in Sk}
Ck+1 = Ck+1 \ { all itemsets for which not all subsets of size k

are contained in Sk}
S = S ∪ Sk

k = k + 1
endwhile

Output: S, the set of all frequent itemsets

Fig. 2. Find all Frequent Itemsets

Figure 2. The level-wise search first generates all frequent itemsets of size one,
then all frequent itemsets of size two, and so on, thereby performing a breadth-
first search. However, from each iteration to the next, a large number of possible
extensions can be pruned because of the anti-monotonicity of the frequency
of the itemsets (their support). This essentially means that if a conjunction of
conditions is extended with a new condition, the resulting rule body will only
cover a subset of the examples covered by the original rule body. Thus, when
computing Ck+1, the set of candidate itemsets of size k + 1, we only need to
consider itemsets that result as a combination of two itemsets of size k which
overlap in k−1 items. For example, if the two itemsets {A,B,C} and {B,C,D}
are in S3, the itemset {A,B,C,D} will be in C4. It may be later removed if either
one of its subsets of size 3 is not frequent (if, e.g., {A,C,D} is not contained in
S3), or if the subsequent check on the dataset shows that it is itself not frequent.

The resulting frequent itemsets are then used for constructing rules in a
post-processing phase. The key idea here is to try all possible ways of using an
implication sign to separate a frequent itemset into items that are used in the
rule body and items that are used in the rule head, and keeping only those where
the resulting association rule has a certain minimum strength (confidence). This
can, again, be sped up considerably using a similar idea to the anti-monotonicity
of the support.

A Brief Overview of Rule Learning 59

Apriori Successors. While the second phase of Apriori remains almost
unchanged, a number of alternative algorithms, such as Eclat [62] or
FP-Growth [25], have been proposed for the frequent itemset discovery phase.
Mining for closed frequent itemsets proposed by Pasquier et al. [46] is another
optimization. A frequent itemset P is closed if P is included in no other itemset
that has the same support as P .

In recent years there was a growing interest in approaches that support par-
allel execution of frequent itemset mining in order to harness modern multi-core
architectures. PLCM [45] and MT-Closed [38] are parallel implementations of
two fastest algorithms LCMv2 [56] and DCI Closed [37] according to the
FIMI’04 workshop1, which provided a benchmark of submitted frequent itemset
mining implementations [44]. The recently proposed ParaMiner [44] algorithm
yields comparable execution times to PLCM and MT-Closed, while it allows
to mine not only for closed frequent itemsets, but also for additional types of
patterns such as connected relational graphs and gradual itemsets.

For surveys of frequent set mining and association rule discovery we refer
the reader to [22,63]. A freely accessible implementations of multiple frequent
itemset mining implementations can be found at http://borgelt.net/fpm.html,
ParaMiner is also made available by the authors under an open license.

Connections to Mathematical Logic and Statistics. The notion of asso-
ciation rules was introduced already in mid 1960’s by Petr Hájek in the frame
of development of the GUHA method (abbrev. of General Unary Hypothesis
Automaton) [23]. The purpose was to automatically generate large number of
(statistical) hypotheses which had the form of association rules. These hypothe-
ses are automatically verified using a number of criteria, including Chi-square
and Fisher statistical tests and what is now known as support and confidence.
The hypotheses that pass the criteria are represented as (true) logical formulas
of observational calculi, a theoretical framework for exploratory data analysis
combining logic and mathematical statistics. Example of such a formula is:

bread(brown) ∧ butter(yes) =⇒ B,p milk(skimmed) ∧ cheese(french)

This example features the founded implication quantifier =⇒ B,p, which
asserts that the support of the rule is at least B instances and the confidence is
at least p. Observational calculi are further studied by Rauch [54]. One practical
result is the introduction of deduction rules, which allow to identify redundant
hypotheses a to deal with domain knowledge.

A maintained implementation of GUHA method is LISp-Miner, which
is freely available from lispminer.vse.cz. This software supports the distinct
GUHA features such as negated literals, e.g. ¬bread(brown), and disjunc-
tions, e.g. bread(brown) ∨ butter(yes), or cheese(french ∨ dutch). The
higher expressiveness leads to a considerable increase in computational cost [28].
Kliegr et al. [28] suggested that GUHA may find use in business rule learning,
where a lower number of more expressive rules can be desirable.
1 http://fimi.ua.ac.be/fimi04/

http://borgelt.net/fpm.html
lispminer.vse.cz
http://fimi.ua.ac.be/fimi04/

60 J. Fürnkranz and T. Kliegr

3 Predictive Rule Learning

Whereas descriptive rule discovery aims at finding individual rules that capture
some regularities and patterns of the input data, the task of predictive rule
learning is to generalize the training data so that predictions for new examples
are possible. As individual rules will typically only cover part of the training
data, we will need to enforce completeness by learning an unordered rule set or
a decision list.

An unordered rule set is a collection of individual rules that collectively form
a classifier. In contrast to a decision list, the rules in the set do not have an
inherent order, and all rules in the set have to be tried for deriving a prediction
for an example. This may cause two types of problems that have to be resolved
with additional algorithms:

Multiple rules fire: More than one rule can fire on a single example, and these
rules can make contradicting predictions. This type of conflict is typically
resolved by preferring rules that cover a higher fraction of training examples
of their class (typically estimated with Laplace correction). This is equivalent
to converting the rule set into a decision list that is ordered according to this
evaluation heuristic. More elaborate tie breaking schemes, such as using the
Naive Bayes algorithm, or inducing a separate rule set for handling these
conflicts (double induction [32]) have also been tried.

No rules fire: It may also occur that no rule fires for a given example. Such
cases are typically handled via a so-called default rule, which typically pre-
dicts the majority class. Again, more complex algorithms, such as FURIA
[26] trying to find the closest rule (rule stretching [13]) have been proposed.

A rule set in which all rules predict the same class needs to be complemented
with an (implicit) default rule that predicts the other class in case none of the
previous rules fires (very much like the closed world semantics in PROLOG).
If all rules are conjunctive, such rule sets may be interpreted as a definition in
disjunctive normal form for this class.

In contrast to an unordered rule set, a decision list has an inherent order,
which makes classification quite straightforward. For classifying a new instance,
the rules are tried in order, and the class of the first rule that covers the instance
is predicted. If no induced rule fires, a default rule is invoked, which typically
predicts the majority class of the uncovered training examples. Decision lists are
particularly popular in inductive logic programming [10,12], because PROLOG
programs may be considered to be simple decision lists, where all rules predict
the same concept.

Both decision trees and rule sets are often learned with the same or very
similar strategies. The two most popular strategies for learning rule sets may be
viewed as extensions of the association rule and subgroup discovery algorithms
discussed in the previous section, and are discussed in the following.

A Brief Overview of Rule Learning 61

3.1 Classification by Association

A prototypical instantiation of this framework is associative classification, as
exemplified by the CBA rule learning algorithm [35,36]. This type of algo-
rithm typically uses a conventional association rule discovery algorithm, such
as Apriori [2], to discover a large number of patterns. From these, all patterns
that have the target class in the head are selected, and only those are sub-
sequently used for inducing a rule set. This is formed by sorting the patterns
according to some heuristic function and adding the best to the rule set.

A variety of successor systems have been proposed that follow the same
principal architecture [e.g., 5,27,31,43,60]. Sulzmann and Fürnkranz [55] com-
pare various approaches for combining association rules into a rule-based theory.
Azevedo and Jorge [3] propose to generate an ensemble of rule sets instead of a
single rule set.

CBA and its direct successors such as CMAR are restricted to nomi-
nal attributes. If the dataset contains numeric (quantitative) attributes, these
attributes need to be discretized e.g. using the minimum description length prin-
ciple [14]. This is a severe limitation compared to many other learning algorithms
which natively handle numerical attributes.

As in association rule discovery, there are approaches to associative classifica-
tion that employ fuzzy logic to alleviate this problem. A recent example of such
an approach is the FARC-HD algorithm [1]. Alcala-Fdez et al. [1] also provide
a benchmark comparing their algorithm against the C4.5 decision tree learner as
well as against multiple association rule classification algorithms including CBA,
CBA2, CPAR and CMAR. The results show that FARC-HD provides a slight
improvement in average accuracy across the basket of 25 datasets but at a sev-
eral orders of magnitude higher computational cost. The benchmark also reveals
large differences in the size of the rule set among classifiers. While CBA achieves
slightly smaller accuracy than its successor algorithms CPAR and CMAR, it
produces a notably smaller number of rules.

Free implementations of CBA, CMAR and CPAR are available at http://
cgi.csc.liv.ac.uk/∼frans/KDD/Software/. A good survey of associative classifica-
tion and related algorithms can be found in [6].

3.2 Covering Algorithm

An alternative approach, the so-called covering or separate-and-conquer algo-
rithm, relies on repeatedly learning a single rule (e.g., with a subgroup discovery
algorithm). After a new rule has been learned, all examples that are covered by
this rule are removed. This is repeated until all examples are covered or a given
stopping criterion fires. A simple version of this so-called covering algorithm is
shown in Figure 3, a survey of this family of algorithms can be found in [17].
The members of this family differ mostly in the way the FindPredictiveRule

method is implemented.

http://cgi.csc.liv.ac.uk/~frans/KDD/Software/
http://cgi.csc.liv.ac.uk/~frans/KDD/Software/

62 J. Fürnkranz and T. Kliegr

procedure Covering (Examples,Classifier)

Input: Examples, a set of positive and negative examples for a class c.

// initialize the rule set
R = ∅
//loop until no more positive examples are covered
while not all positive examples are covered do

// find the best rule for the current examples
r = FindPredictiveRule (Examples)

// check if we need more rules
if R ∪ r is good enough
then break while

// remove covered examples and add rule to rule set
Examples = Examples \ { examples covered by r}
R = R ∪ r

endwhile

Output: the learned rule set R

Fig. 3. The covering algorithm for finding a rule set

4 Well-Known Rule Learning Algorithms

AQ can be considered as the original covering algorithm. Its original version
was conceived by Ryszard Michalski in the sixties [39], and numerous versions
and variants of the algorithm appeared subsequently in the literature. AQ uses
a top-down beam search for finding the best rule. It does not search all possible
specializations of a rule, but only considers refinements that cover a particular
example, the so-called seed example. This idea is basically the same as the use
of a bottom clause in inductive logic programming [10,41,42].

CN2 [8,9] employs a beam search guided by the Laplace or m-estimates,
and the above-mentioned likelihood ratio significance test to fight overfitting.
It can operate in two modes, one for learning rule sets (by modeling each class
independently), and one for learning decision lists.

Foil [51] was the first relational learning algorithm that received attention
beyond the field of inductive logic programming. It learns a concept with the
covering loop and learns individual concepts with a top-down refinement opera-
tor, guided by information gain. The main difference to previous systems is that
Foil allowed the use of first-order background knowledge. Instead of only being
able to use tests on single attributes, Foil could employ tests that compute
relations between multiple attributes, and could also introduce new variables in
the body of a rule.

A Brief Overview of Rule Learning 63

Ripper was the first rule learning system that effectively countered the over-
fitting problem via incremental reduced error pruning [16]. It also added a post-
processing phase for optimizing a rule set in the context of other rules. The key
idea is to remove one rule out of a previously learned rule set and try to re-learn
it not only in the context of previous rules (as would be the case in the regular
covering rule), but also in the context of subsequent rules. Ripper is still state-
of-the-art in inductive rule learning. A freely accessible re-implementation can
be found in the Weka machine learning library [58] under the name of JRip.

Opus [57] was the first rule learning algorithm to demonstrate the feasibility
of a full exhaustive search through all possible rule bodies for finding a rule that
maximizes a given quality criterion (or heuristic function). The key idea is the
use of ordered search that prevents that a rule is generated multiple times. This
means that even though there are l! different orders of the conditions of a rule
of length l, only one of them can be taken by the learner for finding this rule. In
addition, OPUS uses several techniques that prune significant parts of the search
space, so that this search method becomes feasible. Follow-up work has shown
that this technique is also an efficient alternative for association rule discovery,
provided that the database to mine fits into the memory of the learning system.

5 Applications in Linked Data and Semantic Web

While research in machine learning currently tends to move away from learn-
ing logical concept representations towards statistical learning algorithms, rules
are still used in many application areas. A particularly important case is the
Semantic Web, whose representation is built on rule-based formalisms. As it is
difficult to manually write a complete set of rules for representing knowledge,
rule learning algorithms have great potential in supporting automation of this
process.

Inductive logic programming algorithms are one obvious candidate for this
purpose, because they allow to operate in more expressive, relational logical
frameworks such as RDF2 or OWL3, which form the backbone of the Seman-
tic Web [33,34]. However, their expressiveness has to be paid for with a high
computational complexity. Compared to approaches based on inductive logic
programming (ILP), Apriori and its successors are not only much more effi-
cient, but also they do not require counter examples [20], on which most ILP
approaches rely. This is important because semantic knowledge bases such as
DBpedia (http://dbpedia.org) do not contain negative statements. Additionally,
since they are built under the open world assumption4, the negative statements
cannot be directly inferred. It was observed that semantic reasoners may not
provide meaningful results on real open world knowledge bases yet for another
reason: these crowd-sourced resources contain errors. A single erroneous fact can
cause the RDFS reasoner to infer an incorrect statement [49].

2 http://www.w3.org/TR/rdf-primer/
3 http://www.w3.org/TR/owl2-primer/
4 A statement which is not present in the knowledge base is not necessarily false.

http://dbpedia.org
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/owl2-primer/

64 J. Fürnkranz and T. Kliegr

A current use case demonstrating advantages of association rule learning
in the linked data domain is the completion of the large DBpedia knowledge
base. Association rules were applied to infer missing types for entities in [48]
and to perform schema induction (infer new classes) in [61]. These approaches
for DBpedia completion directly use the Apriori algorithm, which implies lim-
itations stemming from the inherently relational setting of linked data. AMIE

[20] is a state-of-the-art algorithm that extends the association rule learning
principles allowing to mine Horn clauses such as

hasAdvisor(x, y) ∧ graduateFrom(x, z) =⇒ worksAt(y, z)

AMIE is reported to be highly computationally efficient, it processes entire
DBpedia in less than 3 minutes and the larger YAGO2 ontology (www.mpi-inf.
mpg.de/yago/) in 4 minutes. In contrast, the authors report that in their bench-
mark state-of-the-art ILP approaches did not finish within days.

Rule learning may not only support the construction of Semantic Web
resources, but, conversely, the Semantic Web may also serve as a source for
background knowledge in many data mining tasks. For example, Paulheim and
Fürnkranz [50] have shown that unsupervised feature generation from various
knowledge sources in the Linked Open Data (LOD) cloud may yield interest-
ing and useful features. One can even go as far as trying to mine databases
that have no inherent background knowledge. For example, Paulheim [47] used
LOD knowledge for trying to find explanation for common statistics such as the
quality-of-living index of cities.

This short survey shows that rule learning algorithms can be with success
directly applied to large linked datasets available on the “Semantic Web”. Apart
from the inference of new facts or identification of errors in semantic knowledge
bases, it was recently suggested that association rule learning can serve e.g.
for schema alignment between ontologies [21]. There is an ongoing research into
specialized approaches tailored for RDF datasets which opens new opportunities
as well as challenges.

6 Conclusion

This paper provided a brief introduction to rule learning, mainly focusing on the
best-known algorithms for descriptive and predictive rule learning. Whereas the
main goal of association rule and subgroup discovery is to discover single rules
that capture patterns in parts of the data, the main task of classification by
association and the covering strategy for learning predictive rule sets and decision
lists is to be able to generalize the training data so that predictions on new data
can be made. In comparison with other popular classification algorithms such as
Support Vector Machines, predictive rule learning together with decision trees
has the advantage of easy interpretability. The individual rules that comprise
the classifier can be explained to a human expert.

Obviously, this brief survey is far from complete. Other techniques for gen-
erating rule sets are possible. For example, rules can be generated from induced

www.mpi-inf.mpg.de/yago/
www.mpi-inf.mpg.de/yago/

A Brief Overview of Rule Learning 65

decision trees. Standard algorithms for learning decision trees (such as C4.5 [53])
are quite similar to the covering algorithm for learning decision lists in that the
aim of extending a decision tree with another split is to reduce the class impurity
in the leaves (usually measured by entropy or the Gini index). However, whereas
a decision tree split is chosen to optimize all successor branches simultaneously,
a rule learning heuristic only focuses on a single rule. As a result, rule sets are
often more compact than decision trees. Consequently, a rule set can be consid-
erably simplified during the conversion of a decision tree to a set of rules [52,53].
For example, Frank and Witten [15] suggested the Part algorithm, which tries
to integrate this simplification into the tree induction process by focusing only
on a single branch of a tree.

The Apriori algorithm [2], which provides means to discover association
rules in large datasets, is considered as one of the major advancements in data
mining technology in the seminal book of Hastie et al. [24]. Its recent successors,
such as the LCM group of algorithms provide further improvements in terms of
computational efficiency. Other algorithms, such as ParaMiner provide generic
framework allowing to discover not only frequent itemsets but also other types
of patterns. The performance of parallel implementations of association rule
learning stimulates novel applications on large datasets that are becoming freely
available as part of the linked open data initiative. Examples of such efforts
include completion of semantic knowledge bases with new facts.

Acknowledgment. Tomáš Kliegr was partly supported by the Faculty of Informatics
and Statistics, University of Economics, Prague within “long term institutional support
for research activities” scheme and grant IGA 20/2013.

References

1. Alcala-Fdez, J., Alcala, R., Herrera, F.: A fuzzy association rule-based classification
model for high-dimensional problems with genetic rule selection and lateral tuning.
IEEE Transactions on Fuzzy Systems 19(5), 857–872 (2011)

2. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets
of items in large databases. In: Buneman, P., Jajodia, S. (eds.) Proceedings of
the ACM International Conference on Management of Data (SIGMOD 1993),
Washington, D.C., pp. 207–216 (1993)

3. Azevedo, P.J., Jorge, A.J.: Ensembles of jittered association rule classifiers. Data
Mining and Knowledge Discovery 21(1), 91–129 (2010). Special Issue on Global
Modeling using Local Patterns

4. Bay, S.D., Pazzani, M.J.: Detecting group differences: Mining contrast sets. Data
Mining and Knowledge Discovery 5(3), 213–246 (2001)

5. Bayardo Jr., R.J.: Brute-force mining of high-confidence classification rules. In:
Proceedings of the 3rd International Conference on Knowledge Discovery and Data
Mining (KDD 1997), pp. 123–126 (1997)

6. Bringmann, B., Nijssen, S., Zimmermann, A.: Pattern-based classification: a
unifying perspective. In: Knobbe, A., Fürnkranz, J. (eds.) Proceedings of the
ECML/PKDD 1909 Workshop From Local Patterns to Global Models (LeGo
1909), Bled, Slovenia, pp. 36–50 (2009)

66 J. Fürnkranz and T. Kliegr

7. Cestnik, B.: Estimating probabilities: a crucial task in Machine Learning. In: Aiello,
L. (ed.) Proceedings of the 9th European Conference on Artificial Intelligence
(ECAI 1990), Pitman, Stockholm, Sweden, pp. 147–150 (1990)

8. Clark, P., Boswell, R.: Rule induction with CN2: Some recent improvements. In:
Kodratoff, Y. (ed.) Machine Learning – EWSL-91. LNCS, vol. 482, pp. 151–163.
Springer, Heidelberg (1991)

9. Clark, P., Niblett, T.: The CN2 induction algorithm. Machine Learning 3(4),
261–283 (1989)

10. De Raedt, L.: Logical and Relational Learning. Springer-Verlag (2008)
11. Dong, G., Li, J.: Efficient mining of emerging patterns: discovering trends and

differences. In: Proceedings of the 5th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD 1999), San Diego, CA, pp. 43–52
(1999)

12. Džeroski, S., Lavrač, N. (eds.): Relational Data Mining: Inductive Logic Program-
ming for Knowledge Discovery in Databases. Springer-Verlag (2001)

13. Eineborg, M., Boström, H.: Classifying uncovered examples by rule stretching. In:
Rouveirol, C., Sebag, M. (eds.) ILP 2001. LNCS (LNAI), vol. 2157, pp. 41–50.
Springer, Heidelberg (2001)

14. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued
attributes for classification learning. In: Proceedings of the 13th International Joint
Conference on Artificial Intelligence (IJCAI 1993), pp. 1022–1029 (1993)

15. Frank, E., Witten, I.H.: Generating accurate rule sets without global optimization.
In: Shavlik, J. (ed.) Proceedings of the 15th International Conference on Machine
Learning (ICML 1998), pp. 144–151. Morgan Kaufmann, Madison (1998)

16. Fürnkranz, J.: Pruning algorithms for rule learning. Machine Learning 27(2),
139–171 (1997)

17. Fürnkranz, J.: Separate-and-conquer rule learning. Artificial Intelligence Review
13(1), 3–54 (1999)

18. Fürnkranz, J., Flach, P.A.: ROC ’n’ rule learning - Towards a better understanding
of covering algorithms. Machine Learning 58(1), 39–77 (2005)

19. Fürnkranz, J., Gamberger, D., Lavrač, N.: Foundations of Rule Learning.
Springer-Verlag (2012)

20. Galárraga, L.A., Teflioudi, C., Hose, K., Suchanek, F.: AMIE: association rule
mining under incomplete evidence in ontological knowledge bases. In: Proceed-
ings of the 22nd International Conference on World Wide Web (WWW 2013),
Switzerland, pp. 413–422 (2013)

21. Galárraga, L.A., Preda, N., Suchanek, F.M.: Mining rules to align knowledge bases.
In: Proceedings of the 2013 Workshop on Automated Knowledge Base Construction
(AKBC 2013), pp. 43–48. ACM, New York (2013)

22. Goethals, B.: Frequent set mining. In: Maimon, O., Rokach, L. (eds.) The
Data Mining and Knowledge Discovery Handbook, 2nd edn., pp. 321–338.
Springer-Verlag (2010)

23. Hájek, P., Holena, M., Rauch, J.: The GUHA method and its meaning for data
mining. Journal of Computer and System Sciences 76(1), 34–48 (2010). Special
Issue on Intelligent Data Analysis

24. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning.
Springer Series in Statistics. Springer, New York (2001)

25. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate gen-
eration: A frequent-pattern tree approach. Data Mining and Knowledge Discovery
8(1), 53–87 (2004)

A Brief Overview of Rule Learning 67

26. Hhn, J., Hllermeier, E.: Furia: an algorithm for unordered fuzzy rule induction.
Data Mining and Knowledge Discovery 19(3), 293–319 (2009)

27. Jovanoski, V., Lavrač, N.: Classification rule learning with APRIORI-C. In:
Brazdil, P.B., Jorge, A.M. (eds.) EPIA 2001. LNCS (LNAI), vol. 2258,
pp. 44–51. Springer, Heidelberg (2001)

28. Kliegr, T., Kuchař, J., Sottara, D., Voj́ı̌r, S.: Learning business rules with associ-
ation rule classifiers. In: Bikakis, A., Fodor, P., Roman, D. (eds.) RuleML 2014.
LNCS, vol. 8620, pp. 236–250. Springer, Heidelberg (2014)

29. Klösgen, W.: Explora: a multipattern and multistrategy discovery assistant. In:
Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances
in Knowledge Discovery and Data Mining, chap. 10, pp. 249–271. AAAI Press
(1996)

30. Kralj Novak, P., Lavrač, N., Webb, G.I.: Supervised descriptive rule discovery: A
unifying survey of contrast set, emerging pattern and subgroup mining. Journal of
Machine Learning Research 10, 377–403 (2009)

31. Li, W., Han, J., Pei, J.: CMAR: accurate and efficient classification based on multi-
ple class-association rules. In: Proceedings of the IEEE Conference on Data Mining
(ICDM 2001), pp. 369–376 (2001)

32. Lindgren, T., Boström, H.: Resolving rule conflicts with double induction.
Intelligent Data Analysis 8(5), 457–468 (2004)

33. Lisi, F.: Building Rules on Top of Ontologies for the Semantic Web with Inductive
Logic Programming. Theory and Practice of Logic Programming 8(3), 271–300
(2008)

34. Lisi, F., Esposito, F.: An ilp perspective on the semantic web. In: Bouquet, P.,
Tummarello, G. (eds.) Semantic Web Applications and Perspectives - Proceedings
of the 2nd Italian Semantic Web Workshop (SWAP-05), pp. 14–16. University of
Trento, Trento (2005)

35. Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining.
In: Agrawal, R., Stolorz, P., Piatetsky-Shapiro, G. (eds.) Proceedings of the 4th
International Conference on Knowledge Discovery and Data Mining (KDD 1998),
pp. 80–86 (1998)

36. Liu, B., Ma, Y., Wong, C.K.: Improving an association rule based classifier. In:
Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI),
vol. 1910, pp. 504–509. Springer, Heidelberg (2000)

37. Lucchese, C.: DCI closed: a fast and memory efficient algorithm to mine frequent
closed itemsets. In: Proceedings of the IEEE ICDM 2004 Workshop on Frequent
Itemset Mining Implementations (FIMI 2004) (2004)

38. Lucchese, C., Orlando, S., Perego, R.: Parallel mining of frequent closed pat-
terns: harnessing modern computer architectures. In: Proceedings of the 7th IEEE
International Conference on Data Mining (ICDM 2007), pp. 242–251 (2007)

39. Michalski, R.S.: On the quasi-minimal solution of the covering problem. In: Pro-
ceedings of the 5th International Symposium on Information Processing (FCIP-69)
(Switching Circuits), vol. A3, Bled, Yugoslavia, pp. 125–128 (1969)

40. Morishita, S., Sese, J.: Traversing itemset lattice with statistical metric pruning. In:
Proceedings of the 19th ACM SIGMOD-SIGACT-SIGART Symposium on Princi-
ples of Database Systems (PODS 2000), pp. 226–236. ACM (2000)

41. Muggleton, S.H.: Inverse entailment and Progol. New Generation Computing
13(3,4), 245–286 (1995). Special Issue on Inductive Logic Programming

42. Muggleton, S.H., De Raedt, L.: Inductive Logic Programming: Theory and
methods. Journal of Logic Programming 19–20, 629–679 (1994)

68 J. Fürnkranz and T. Kliegr

43. Mutter, S., Hall, M., Frank, E.: Using classification to evaluate the output of
confidence-based association rule mining. In: Webb, G.I., Yu, X. (eds.) AI 2004.
LNCS (LNAI), vol. 3339, pp. 538–549. Springer, Heidelberg (2004)

44. Negrevergne, B., Termier, A., Rousset, M.C., Mhaut, J.F.: Para miner: a generic
pattern mining algorithm for multi-core architectures. Data Mining and Knowledge
Discovery 28(3), 593–633 (2014)

45. Negrevergne, B., Termier, A., Rousset, M.C., Mhaut, J.F., Uno, T.: Discovering
closed frequent itemsets on multicore: parallelizing computations and optimizing
memory accesses. In: Proceedings of the International Conference on High Perfor-
mance Computing and Simulation (HPCS 2010), pp. 521–528 (2010)

46. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed item-
sets for association rules. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS,
vol. 1540, pp. 398–416. Springer, Heidelberg (1998)

47. Paulheim, H.: Generating possible interpretations for statistics from linked open
data. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.)
ESWC 2012. LNCS, vol. 7295, pp. 560–574. Springer, Heidelberg (2012)

48. Paulheim, H., Browsing linked open data with auto complete. In: Proceedings
of the Semantic Web Challenge co-located with ISWC 2012. Univ., Mannheim,
Boston (2012)

49. Paulheim, H., Bizer, C.: Type inference on noisy rdf data. In: Alani, H., Kagal, L.,
Fokoue, A., Groth, P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C.,
Janowicz, K. (eds.) ISWC 2013, Part I. LNCS, vol. 8218, pp. 510–525. Springer,
Heidelberg (2013)

50. Paulheim, H., Fürnkranz, J.: Unsupervised feature construction from linked open
data. In: Proceedings of the ACM International Conference Web Intelligence,
Mining, and Semantics (WIMS 2012) (2012)

51. Quinlan, J.R.: Learning logical definitions from relations. Machine Learning 5,
239–266 (1990)

52. Quinlan, J.R.: Generating production rules from decision trees. In: Proceedings
of the 10th International Joint Conference on Artificial Intelligence (IJCAI 1987),
pp. 304–307. Morgan Kaufmann (1987)

53. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San
Mateo (1993)

54. Rauch, J.: Observational Calculi and Association Rules, Studies in Computational
Intelligence, vol. 469. Springer (2013)

55. Sulzmann, J.N., Fürnkranz, J.: A comparison of techniques for selecting and
combining class association rules. In: Knobbe, A.J. (ed.) Proceedings of the
ECML/PKDD 2008 Workshop From Local Patterns to Global Models (LeGo
2008), Antwerp, Belgium, pp. 154–168 (2008)

56. Uno, T., Kiyomi, M., Arimura, H.: LCM ver. 2: efficient mining algorithms for
frequent/closed/maximal itemsets. In: Proceedings of the IEEE ICDM 2004 Work-
shop on Frequent Itemset Mining Implementations (FIMI 2004) (2004)

57. Webb, G.I.: OPUS: An efficient admissible algorithm for unordered search. Journal
of Artificial Intelligence Research 5, 431–465 (1995)

58. Witten, I.H., Frank, E.: Data Mining - Practical Machine Learning Tools and
Techniques with Java Implementations, 2nd edn. Morgan Kaufmann Publishers
(2005)

59. Wrobel, S.: An algorithm for multi-relational discovery of subgroups. In:
Komorowski, J., Żytkow, J.M. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 78–87.
Springer, Heidelberg (1997)

A Brief Overview of Rule Learning 69

60. Yin, X., Han, J.: CPAR: classification based on predictive association rules. In:
Proceedings SIAM Conference on Data Mining (SDM 2003) (2003)

61. Völker, J., Niepert, M.: Statistical schema induction. In: Antoniou, G., Grobelnik,
M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC
2011, Part I. LNCS, vol. 6643, pp. 124–138. Springer, Heidelberg (2011)

62. Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W.: New algorithms for fast dis-
covery of association rules. In: Proceedings of the 3rd International Conference on
Knowledge Discovery and Data Mining (KDD 1997), Newport, CA, pp. 283–286
(1997)

63. Zhang, C., Zhang, S.: Association Rule Mining –Models and Algorithms. Springer
(2002)

64. Zimmermann, A., De Raedt, L.: Cluster grouping: From subgroup discovery to
clustering. Machine Learning 77(1), 125–159 (2009)

Distribution and Uncertainty
in Complex Event Recognition

Alexander Artikis1,2 and Matthias Weidlich3(B)

1 Department of Maritime Studies, University of Piraeus, Piraeus, Greece
a.artikis@unipi.gr

2 Institute of Informatics and Telecommunications, NCSR “Demokritos”,
Athens, Greece

3 Department of Computer Science, Humboldt-Universität zu Berlin,
Berlin, Germany

weidlima@informatik.hu-berlin.de

Abstract. Complex event recognition proved to be a valuable tool for a
wide range of applications, reaching from logistics over finance to health-
care. In this paper, we reflect on some of these application areas to outline
open research problems in event recognition. In particular, we focus on
the questions of (1) how to distribute event recognition and (2) how to
deal with the inherent uncertainty observed in many event recognition
scenarios. For both questions, we provide a brief overview of the state-
of-the-art and point out research gaps.

1 Introduction

Event processing has been established as a generic computational paradigm in a
wide range of applications, spanning data processing in Web environments, over
logistics and networking, to finance and the health sector [9]. Events, in general,
report on state changes of a system and its environment, thereby enabling reac-
tive and pro-active computing. At the very core of event processing systems is
an event recognition mechanism (also known as event pattern matching [21]).
It is the ability of a system to detect events that are considered relevant for
processing and, as such, is the basis of realizing situation awareness in a system.

Event recognition systems are a key technology in the ‘intelligent economy’
that, based on the omnipresent availability of data that characterizes the infor-
mation economy, provides means to analyze and act upon information. Detecting
and understanding situations in computational as well as cyber-physical systems
creates competitive advantage in commercial transactions, enables sustainable
management of urban communities, and promotes appropriate distribution of
social, healthcare and educational services [38]. By detecting relevant events
also in the presence of extremely large scale data that is spread over geograph-
ical locations, event recognition systems help to extract actionable knowledge
from Big Data.

The aim of this paper is to provide a brief overview of two open research
questions related to event recognition. Based on a reflection of applications, we
c© Springer International Publishing Switzerland 2015
N. Bassiliades et al. (Eds.): RuleML 2015, LNCS 9202, pp. 70–80, 2015.
DOI: 10.1007/978-3-319-21542-6 5

Distribution and Uncertainty in Complex Event Recognition 71

argue that distribution and uncertainty handling are of utmost importance for
effective and efficient use of event recognition. By briefly reviewing the state-
of-the-art with respect to these two aspects, we carve out directions for future
research in event recognition.

The rest of this paper is structured as follows. Section 2 illustrates the concept
of event recognition using real-world applications. Section 3 gives details on the
identified research challenges of event recognition related to distribution and
uncertainty handling. Finally, Section 4 summarizes the paper.

2 Applications

Credit card fraud management is one of the applications in which complex
event recognition plays a key role1. The goal is to detect fraud within 25 mil-
liseconds, and even forecast it, in order to prevent the financial loss. Example
fraud types include:

– ‘cloned card’ — a credit card is being used simultaneously in different coun-
tries;

– ‘brute force attack’ — multiple attempts to use a credit card per second;
– ‘spike usage’ — the 24-hour running sum is higher than the monthly average

of the last 6 months;
– ‘new high use’ — the card is being frequently used in merchants or countries

never used before;
– ‘potential batch fraud’ — many transactions from multiple cards are being

used in the same point-of-sale terminal in high amounts.

The event patterns expressing fraudulent activity are highly complex involving
hundreds of rules and performance indicators. They are also very diverse: fraud
patterns heavily depend on the country, merchant, amount and customer. Fraud
is continuously evolving — new fraud patterns appear on almost a weekly basis.
Moreover, fraud detection is a needle in the haystack problem as fraudulent
transactions constitute at most 0.1% of the total number of transactions. Per-
fect recall (finding all fraud cases) and perfect precision (never raise a false alarm)
are out of reach — the state-of-practice recall and precision rates are about 60%
and 10% respectively. At the same time, raising false alarms, that is, unneces-
sarily calling customers or blocking cards, is very costly in time and customer
relationships. Missing true alarms is also very costly in terms of lost money.

Credit card fraud recognition and forecasting requires the analysis of large
data streams storming from all over the world, as well as large amounts of histor-
ical data. For example, the SPEEDD project2 will recognize fraud using up to
10,000 transactions/sec streaming from all over the world, and about 700 million
events representing a 6 month history. Data streams are highly noisy: several of
the data fields of credit card transactions could be left empty or contain incorrect

1 https://www.feedzai.com/
2 http://speedd-project.eu/

https://www.feedzai.com/
http://speedd-project.eu/

72 A. Artikis and M. Weidlich

information due to terminal misconfiguration. Examples include incorrect times-
tamps and timezone information, incorrect merchant group codes, and missing
or incorrect location information.

Traffic management is another application in which complex event recognition
plays a crucial role. The goal here is to detect and forecast traffic congestions,
and make decisions in order to attenuate them. For example, the SPEEDD
project will forecast traffic congestions 5-20 minutes before they happen, and
make decisions within 30 seconds of the forecast about the adjustment of traffic
light settings and speed limits. Traffic management may be realized as follows:

– Detect traffic flow and density patterns as well as traffic incidents and safety
violations.

– Forecast flow, density and travel duration for different temporal horizons.
The carbon print and energy consumption can also be forecast.

– Decide which are the optimal variable speed limits and duty cycles for the
ramp metering lights.

– Act by automatically changing the values of the variable speed limit panels
and the operation of lights on the ramp metering course.

Traffic management requires the analysis of very large noisy data streams storm-
ing from various sensors, including fixed sensors installed in highways and city
streets measuring traffic flow and density, mobile sensors such as smartphones
and public transport vehicles reporting on traffic conditions [4], as well as large
amounts of historical data. Sensors are frequently out of order, not calibrated
appropriately and inaccurate. Data is often delayed and even completely lost
during transmission. The data volume is expected to grow significantly in the
following years as fixed sensors are installed on an increasing number of road
segments. Moreover, there is a high penetration of mobile sensors such as GPS
and accelerometers mounted on public transport vehicles, and smartphones used
by drivers and pedestrians.

Maritime surveillance has been attracting attention both for economic and
environmental reasons [26]. As an example, preventing accidents at sea by moni-
toring vessel activity results in substantial financial savings for shipping compa-
nies and averts maritime ecosystem damages. Complex event recognition allows
for the fusion of various streaming data expressing, among others, vessel activity,
with static geographical information, for the detection of suspicious or potentially
dangerous situations that may have a serious impact on the environment and on
safe navigation at sea.

Maritime navigation technology can automatically provide real-time infor-
mation from sailing vessels. For instance, the Automatic Identification System
(AIS)3 is a tracking system for identifying and locating vessels at sea through
data exchange. AIS information is continuously emitted from over 400,000 ships
worldwide4. AIS-equipped vessels report their position in different time scales
3 http://www.imo.org/OurWork/Safety/Navigation/Pages/AIS.aspx
4 http://www.marinetraffic.com

http://www.imo.org/ OurWork/Safety/Navigation/Pages/AIS.aspx
http://www.marinetraffic.com

Distribution and Uncertainty in Complex Event Recognition 73

(the frequency of AIS messages depends, for example, on the proximity to base
stations and the vessel type). Moreover, AIS messages are often noisy, offering con-
tradicting information. This data source alone then creates a Big Data problem
for event recognition. For effective vessel identification and tracking, additional
data sources should be taken into consideration, such as weather reports and fre-
quently updated satellite images of the surveillance areas. Furthermore, streaming
data must be continuously correlated with static geographical data for detecting,
among others, violations of protected areas and shipping in unsafe areas.

3 Research Challenges

To perform complex event recognition in applications such as those mentioned
above, one has to deal with a series of challenges [5]. For instance, complex
events may evolve over multiple scales of time and space [37]. The variety of
the event stream may be reflected by sources that report events ranging from
(milli-)seconds to days. Moreover, historical data spanning over long periods
of time need to be taken into consideration. Taking up the credit card fraud
management application from above, for instance, transaction events for a credit
card may be observed within milliseconds, but to detect fraud, their occurrence
needs to be related to common usage patterns ranging over weeks or even months.
To cope with multiple scales of time and space a recognition system should
be adaptable, computing dynamically the appropriate lengths of multi-granular
windows of varying levels of detail, being able to recognize complex events from
lower-level events of varying spatio-temporal granularity, without compromising
efficiency [20,22,25].

In what follows, we focus on two challenges of complex event recognition: (1)
how to distribute event recognition (Section 3.1) and (2) how to deal with the
inherent uncertainty observed in many event recognition scenarios (Section 3.2).
An answer to the first question is a prerequisite for coping with the continuously
growing volume and velocity of event streams. Computation as well as commu-
nication resources need to be used efficiently in order to allow for large-scale
event recognition. The second question is motivated by the different types of
uncertainty exhibited by event recognition applications. On the one hand, event
streams used as input may be incomplete, include inaccurate or even erroneous
information. On the other hand, the notion of an event that shall be recognized
may be imprecise, which renders any event recognition probabilistic. As such,
comprehensive handling of these types of uncertainty is a prerequisite for effec-
tive event recognition.

3.1 Distributed Event Recognition

Distributed deployment of event recognition enables scalability and allows for
reaching the throughput that is required by contemporary applications, such as
credit card fraud detection. Systems that exploit distribution and realise event

74 A. Artikis and M. Weidlich

recognition by independent processors, may be classified as clustered or net-
worked [9]. In a clustered system, the processors realising event recognition are
strongly connected (e.g. part of the same local area network), meaning that the
link between them is faster than the link between the system and the event
sources. In the case of credit card fraud detection, for instance, processing may
be shared in a large cluster of machines, connected by high-speed network connec-
tions, that receives the input event streams from remote sources. Examples for
clustered recognition systems include Borealis [1], NextCEP [30], or commercial
offerings such as IBM System S [41]. Networked systems, in turn, try to push com-
putation to the sources in order to reduce communication costs [3], e.g., based
on publish-subscribe middleware [19,27]. The advent of scalable infrastructures
for distributed event processing, such as Storm [35] or Spark Streaming [42] fur-
ther provides opportunities for scalable event recognition. That is, the detection
logic for a composite event may be encoded directly as a processor or instances
of wrapped engines for centralised event recognition can be used as processors
in these infrastructures.

Distribution strategies determine how the event recognition task is split up
among different processors, may they be clustered or networked. Many of these
techniques are query-driven, i.e., they apply distribution schemes that leverage
the syntax and semantics of the composite event that shall be recognised. Exam-
ples includes the row/column scaling and pipelining, see [8], to distribute the exe-
cution of automata expressing queries in the Cayuga event language [7]. Semantic
dependencies between composite events can be used to identify strata of inde-
pendent queries, which are then executed on different nodes of a distributed
system [18]. Other work showed how event recognition can be distributed to
nodes while reusing operators that are part of the detection of multiple com-
posite events [30]. Yet, distribution strategies may be even more fine-granular.
That is, instance-driven techniques are not guided by the definition of the com-
posite event, but focus on its partial materialisations (i.e., partial matches). For
instance, input events that belong to individual run instances of the finite state
machine of a composite event may be distributed to different nodes [6], thereby
providing fine-grained partitioned data parallelism [13].

Distribution strategies for networked systems particularly aim at reducing
the volume of data sent between the processors realising event recognition. Such
strategies are particular valuable in sensor networks, such as those mentioned
earlier in the context of traffic management. Methods proposed in this space
decompose the event recognition task into a set of local constraints that can
be verified at the event sources that generate the input data. The definition of
these constraints typically relates to the absence of a composite event, i.e., as
long as the local constraints are satisfied, it can be concluded that the composite
event of interest has not occurred. As such, the constraints avoid unnecessary
communication between the processor in situations where the composite event
cannot be detected. Existing techniques following this idea have been tailored
for events that are defined as a function over aggregate values derived at the
event sources. In traffic management, for instance, such an approach enables

Distribution and Uncertainty in Complex Event Recognition 75

to check whether the aggregated traffic flow in a certain neighbourhood stays
above a threshold, even though, most of the time, the sensed values are only
locally checked at each sensor. Specific methods to realise this approach include
sketching [24] and geometric reasoning [12,15,31].

Open Issues. Despite much work on the distribution of event recognition, there
are notable research gaps:

Distribution of probabilistic event recognition. As will be detailed below, event
recognition is inherently uncertain, e.g., because of manual data input
(credit card transactions) or noisy sensor data (traffic management, mar-
itime surveillance). One way of handling this uncertainty is to rely on prob-
abilistic instead of deterministic techniques. However, this renders the vast
majority of existing distribution techniques inapplicable and calls for new
deployment models and distribution strategies that are geared towards prob-
abilistic methods.

Networked distribution of complex composite events. Techniques that aim at
minimisation of communication in networked event recognition have focussed
on composite events that are defined as functions over aggregate values. Yet,
composite events that correlate events based on logical, temporal, and spatial
conditions cannot be addressed with existing methods. Broadening the set of
types of composite events that can be considered in the minimisation of com-
munication between event recognition processors is an important direction
for future research. For the above mentioned example of monitoring traffic
flow, for instance, it may be relevant to not only detect that a threshold is
exceeded, but to identify a sequence of spatially related violations of such a
threshold.

Semantic distribution. Most distribution approaches are guided by the defini-
tion of the composite event (query-driven) or its partial materialisations
(instance-driven). However, in many event processing scenarios, the input
event streams also exhibit characteristics that enable effective distribution
of event recognition tasks. Recently, it was shown how regularities in the
occurrences of events can be leveraged to rewrite composite event patterns,
see [10,40]. For instance, the knowledge that events of one type may only
be followed, but never preceded, by events of another type enables rewriting
of a conjunction pattern over these types into a sequence pattern. Similarly,
such knowledge about stream characteristics may be exploited to spread the
event recognition task among the nodes of a distributed system.

3.2 Event Recognition under Uncertainty

Event recognition applications exhibit various types of uncertainty. Sensor net-
works introduce uncertainty due to reasons that range from inaccurate measure-
ments through local network failures to unexpected interference of mediators.
As mentioned earlier, for example, several of the data fields of credit card trans-
actions could be left empty or contain incorrect information due to terminal
misconfiguration. Similarly, Automatic Identification System (AIS) messages in

76 A. Artikis and M. Weidlich

the maritime domain are often noisy with contradicting information. For all of
these reasons, input event streams lack veracity. Furthermore, in many applica-
tion domains, we only have imprecise knowledge about the pattern/definition of
a complex event, or the available events and context information are insufficient
for expressing a complex event.

Noisy input streams are handled, to various extents, by several approaches.
For instance, the Lahar system [28], which is based on Cayuga, has an inference
mechanism for answering queries over probabilistic data streams, that is, streams
whose events are tagged with a probability value. In [32], each input event is
defined as a set of alternatives, each with its occurrence probability, with all
alternatives summing to a probability value of 1, or less than 1 if non-occurrence
is possible. Tran and Davis [36] assume a computer vision setting where input
events are detected by visual information processing algorithms with some degree
of belief. This degree is propagated to a Markov Logic Network [11] expressing
the complex event patterns using weighted utility formulas. Syntactically, each
formula Fi in Markov logic is represented in first-order logic and it is associated
with a weight wi. The higher the value of the weight, the stronger the constraint
represented by Fi. Semantically, a set of Markov logic formulas (Fi, wi) repre-
sents a probability distribution over possible worlds. A world violating formulas
becomes less probable, but not impossible as in first-order logic. Skarlatidis et
al. [33] represent and reason over probabilistic data streams using the ProbLog
logic programming framework [16]. ProbLog allows for assigning probabilities
to events and can compute the ‘success’ probability of a query by summing the
probabilities of all the subprograms that entail it.

Imperfect event patterns are naturally handled by techniques based on
probabilistic graphical models. Morariu and Davis [23] use Markov Logic Net-
works in combination with Allen’s interval algebra [2] to determine the most
consistent sequence of complex events, based on the observations of low-level
classifiers. Sadilek and Kautz [29] propose a method based on hybrid-Markov
Logic Networks [39] in order to recognize (un)successful human interactions
using noisy GPS streams. Other work relies on a hierarchy of Markov Logic Net-
works where mid-level networks process the output of low-level computer vision
algorithms, and high-level networks fuse the output of mid-level networks to rec-
ognize complex events [14]. An attempt for generic event recognition in Markov
Logic Networks is presented in [34]. In this setting, a dialect of the Event Cal-
culus [17] is combined with probabilistic domain-dependent rules. Consequently,
the approach supports probabilistic inertia. In other words, in the absence of rel-
evant information the probability of a complex event may increase or decrease
over time. The inertia behaviour of a complex event may be customized by
appropriately adjusting the weight values of the corresponding rules.

Open Issues. Probabilistic event recognition has been recently attracting
attention. However, there are still open issues — below we discuss two of them.

Real-time event recognition under uncertainty. Although there is considerable
work on optimising probabilistic reasoning techniques, the imposed overhead
does not allow for real-time performance in a wide range of applications. To

Distribution and Uncertainty in Complex Event Recognition 77

deal with Big Data, the focus has to shift to distributed and parallelised
probabilistic reasoning. While we mentioned the challenge of distributing
probabilistic techniques in the previous section, this challenge also refers
to the creation of new reasoning models and algorithms that offer greater
potential for distribution than existing methods and which can exploit the
full potential of infrastructures for highly-parallel execution.

Machine learning. Estimating manually the confidence values of the complex
event patterns is a tedious and error-prone process. Using machine learning
techniques, it is possible, in Markov Logic Networks for instance, to estimate
the weights of the rules expressing a complex event pattern, given a set of
training data. Weight learning in Markov Logic Networks is performed by
optimising a likelihood function, which is a statistical measure of how well
the probabilistic model fits the training data. In addition to weight learning,
the structure of a Markov Logic Network, that is, the rules expressing com-
plex events, can be learned from training data. Currently, the structure of
a complex event is constructed first, and then weight learning is performed.
However, separating the two learning tasks in this way may lead to subopti-
mal results, as the first optimisation step needs to make assumptions about
the weight values, which have not been optimized yet. Better results can be
obtained by combining structure learning with weight learning in a single
stage.

4 Summary

In this paper, we took three applications for event recognition—credit card fraud
management, traffic management, and maritime surveillance—as a starting point
to motivate two research challenges: the distribution of event recognition and
uncertainty handling. For both challenges, we gave a brief overview of the state-
of-the-art and then identified research gaps. Those relate in particular to the dis-
tribution of probabilistic event recognition, networked distribution of composite
events, semantic distribution, real-time event recognition under uncertainty, and
machine learning in event recognition.

Acknowledgements. The authors have received financial support from the EU FP7
project SPEEDD (619435), the project “AMINESS: Analysis of Marine INformation
for Environmentally Safe Shipping” which is co-financed by the European Fund for
Regional Development and from Greek National funds through the operational pro-
grams “Competitiveness and Entrepreneurship” and “Regions in Transition” of the
National Strategic Reference Framework - Action: “COOPERATION 2011 – Partner-
ships of Production and Research Institutions in Focused Research and Technology
Sectors”, and the German Research Foundation (DFG) in the Emmy Noether Pro-
gramme (4891).

78 A. Artikis and M. Weidlich

References

1. Abadi, D.J., Ahmad, Y., Balazinska, M., Çetintemel, U., Cherniack, M., Hwang,
J., Lindner, W., Maskey, A., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., Zdonik,
S.B.: The design of the borealis stream processing engine. In: CIDR, pp. 277–289
(2005). http://www.cidrdb.org/cidr2005/papers/P23.pdf

2. Allen, J.: Maintaining knowledge about temporal intervals. Communications of the
ACM 26(11), 832–843 (1983)

3. Artikis, A., Baber, C., Bizarro, P., de Wit, C.C., Etzion, O., Fournier, F., Goulart,
P., Howes, A., Lygeros, J., Paliouras, G., Schuster, A., Sharfman, I.: Scalable proac-
tive event-driven decision-making. IEEE Technology and Society Magazine 33(3),
35–41 (2014)

4. Artikis, A., Weidlich, M., Schnitzler, F., Boutsis, I., Liebig, T., Piatkowski, N.,
Bockermann, C., Morik, K., Kalogeraki, V., Marecek, J., Gal, A., Mannor, S.,
Gunopulos, D., Kinane, D.: Heterogeneous stream processing and crowdsourcing
for urban traffic management. In: International Conference on Extending Database
Technology (EDBT), pp. 712–723 (2014)

5. Artikis, A., Gal, A., Kalogeraki, V., Weidlich, M.: Event recognition challenges
and techniques: Guest editors’ introduction. ACM Trans. Internet Techn. 14(1), 1
(2014). http://doi.acm.org/10.1145/2632220

6. Balkesen, C., Dindar, N., Wetter, M., Tatbul, N.: Rip: run-based intra-query par-
allelism for scalable complex event processing. In: DEBS, pp. 3–14 (2013)

7. Brenna, L., Demers, A.J., Gehrke, J., Hong, M., Ossher, J., Panda, B., Riedewald,
M., Thatte, M., White, W.M.: Cayuga: a high-performance event processing engine.
In: SIGMOD Conference, pp. 1100–1102 (2007)

8. Brenna, L., Gehrke, J., Hong, M., Johansen, D.: Distributed event stream process-
ing with non-deterministic finite automata. In: DEBS (2009)

9. Cugola, G., Margara, A.: Processing flows of information: From data stream to
complex event processing. ACM Computing Surveys 44(3), 15 (2012)

10. Ding, L., Works, K., Rundensteiner, E.A.: Semantic stream query optimization
exploiting dynamic metadata. In: Abiteboul, S., Böhm, K., Koch, C., Tan, K.
(eds.) Proceedings of the 27th International Conference on Data Engineering, ICDE
2011, April 11–16, 2011, Hannover, Germany, pp. 111–122. IEEE Computer Society
(2011). http://dx.doi.org/10.1109/ICDE.2011.5767840

11. Domingos, P., Lowd, D.: Markov Logic: An Interface Layer for Artificial Intelli-
gence. Morgan & Claypool Publishers (2009)

12. Giatrakos, N., Deligiannakis, A., Garofalakis, M., Sharfman, I., Schuster, A.: Dis-
tributed geometric query monitoring using prediction models. ACM TODS (2014)

13. Hirzel, M.: Partition and compose: parallel complex event processing. In: DEBS,
pp. 191–200 (2012)

14. Kanaujia, A., Choe, T.E., Deng, H.: Complex events recognition under uncertainty
in a sensor network. arXiv:1411.0085 [cs] (Nov 2014), arXiv:1411.0085

15. Keren, D., Sagy, G., Abboud, A., Ben-David, D., Schuster, A., Sharfman, I., Deli-
giannakis, A.: Geometric monitoring of heterogeneous streams. IEEE TKDE (2014)

16. Kimmig, A., Demoen, B., Raedt, L.D., Costa, V.S., Rocha, R.: On the implementa-
tion of the probabilistic logic programming language ProbLog. Theory and Practice
of Logic Programming 11, 235–262 (2011)

17. Kowalski, R., Sergot, M.: A logic-based calculus of events. New Generation
Computing 4(1), 67–96 (1986)

http://www.cidrdb.org/cidr2005/papers/P23.pdf
http://doi.acm.org/10.1145/2632220
http://dx.doi.org/10.1109/ICDE.2011.5767840
http://arxiv.org/abs/1411.0085
http://arxiv.org/abs/1411.0085

Distribution and Uncertainty in Complex Event Recognition 79

18. Lakshmanan, G.T., Rabinovich, Y.G., Etzion, O.: A stratified approach for sup-
porting high throughput event processing applications. In: Gokhale, A.S., Schmidt,
D.C. (eds.) DEBS. ACM (2009)

19. Li, G., Jacobsen, H.-A.: Composite subscriptions in content-based pub-
lish/subscribe systems. In: Alonso, G. (ed.) Middleware 2005. LNCS, vol. 3790,
pp. 249–269. Springer, Heidelberg (2005)

20. Lijffijt, J., Papapetrou, P., Puolamäki, K.: Size matters: finding the most informa-
tive set of window lengths. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML
PKDD 2012, Part II. LNCS, vol. 7524, pp. 451–466. Springer, Heidelberg (2012)

21. Luckham, D.: The Power of Events: An Introduction to Complex EventProcessing
in Distributed Enterprise Systems. Addison-Wesley (2002)

22. Maier, D., Grossniklaus, M., Moorthy, S., Tufte, K.: Capturing episodes: may the
frame be with you. In: DEBS, pp. 1–11 (2012)

23. Morariu, V.I., Davis, L.S.: Multi-agent event recognition in structured scenarios.
In: CVPR, pp. 3289–3296 (2011)

24. Papapetrou, O., Garofalakis, M.N., Deligiannakis, A.: Sketch-based querying of
distributed sliding-window data streams. PVLDB 5(10), 992–1003 (2012)

25. Patroumpas, K.: Multi-scale window specification over streaming trajectories. J.
Spatial Information Science 7(1), 45–75 (2013)

26. Patroumpas, K., Artikis, A., Katzouris, N., Vodas, M., Theodoridis, Y., Pelekis, N.:
Event recognition for maritime surveillance. In: Alonso, G., Geerts, F., Popa, L.,
Barceló, P., Teubner, J., Ugarte, M., den Bussche, J.V., Paredaens, J. (eds.) Pro-
ceedings of the 18th International Conference on Extending Database Technology,
EDBT 2015, Brussels, Belgium, March 23–27, 2015, pp. 629–640. OpenProceed-
ings.org (2015). http://dx.doi.org/10.5441/002/edbt.2015.63

27. Pietzuch, P.R., Bacon, J.: Peer-to-peer overlay broker networks in an event-based
middleware. In: Jacobsen, H. (ed.) Proceedings of the 2nd International Work-
shop on Distributed Event-Based Systems, DEBS 2003, Sunday, June 8th, 2003,
San Diego, California, USA (in conjunction with SIGMOD/PODS). ACM (2003).
http://doi.acm.org/10.1145/966618.966628

28. Ré, C., Letchner, J., Balazinksa, M., Suciu, D.: Event queries on correlated prob-
abilistic streams. In: Proceedings of the 2008 ACM SIGMOD International Con-
ference on Management of Data, pp. 715–728. SIGMOD 2008, ACM, New York
(2008). http://doi.acm.org/10.1145/1376616.1376688

29. Sadilek, A., Kautz, H.A.: Location-based reasoning about complex multi-agent
behavior. J. Artif. Intell. Res. (JAIR) 43, 87–133 (2012)

30. Schultz-Møller, N.P., Migliavacca, M., Pietzuch, P.R.: Distributed complex event
processing with query rewriting. In: DEBS (2009)

31. Sharfman, I., Schuster, A., Keren, D.: A geometric approach to monitoring thresh-
old functions over distributed data streams. In: SIGMOD Conference, pp. 301–312
(2006)

32. Shen, Z., Kawashima, H., Kitagawa, H.: Probabilistic event stream processing with
lineage. In: Proc. of Data Engineering Workshop (2008)

33. Skarlatidis, A., Artikis, A., Filippou, J., Paliouras, G.: A probabilistic logic pro-
gramming event calculus. Theory and Practice of Logic Programming 15(2),
213–245 (2015)

34. Skarlatidis, A., Paliouras, G., Artikis, A., Vouros, G.: Probabilistic event calculus
for event recognition. ACM Transactions on Computational Logic 16(2), 11:1–11:37
(2015)

http://dx.doi.org/10.5441/002/edbt.2015.63
http://doi.acm.org/10.1145/966618.966628
http://doi.acm.org/10.1145/1376616.1376688

80 A. Artikis and M. Weidlich

35. Toshniwal, A., Taneja, S., Shukla, A., Ramasamy, K., Patel, J.M., Kulkarni, S.,
Jackson, J., Gade, K., Fu, M., Donham, J., Bhagat, N., Mittal, S., Ryaboy, D.V.:
Storm@twitter. In: Dyreson, C.E., Li, F., Özsu, M.T. (eds.) International Confer-
ence on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22–27,
2014, pp. 147–156. ACM (2014). http://doi.acm.org/10.1145/2588555.2595641

36. Tran, S.D., Davis, L.S.: Event modeling and recognition using markov logic net-
works. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS,
vol. 5303, pp. 610–623. Springer, Heidelberg (2008)

37. Vespier, U., Nijssen, S., Knobbe, A.J.: Mining characteristic multi-scale motifs in
sensor-based time series. In: He, Q., Iyengar, A., Nejdl, W., Pei, J., Rastogi, R.
(eds.) 22nd ACM International Conference on Information and Knowledge Man-
agement, CIKM 2013, San Francisco, CA, USA, October 27 - November 1, 2013,
pp. 2393–2398. ACM (2013). http://doi.acm.org/10.1145/2505515.2505620

38. Vesset, D., Flemming, M., Shirer, M.: Worldwide decision management software
2010–2014 forecast: A fast-growing opportunity to drive the intelligent economy.
IDC report 226244 (2011)

39. Wang, J., Domingos, P.: Hybrid markov logic networks. In: AAAI, pp. 1106–1111
(2008)

40. Weidlich, M., Ziekow, H., Gal, A., Mendling, J., Weske, M.: Optimizing event
pattern matching using business process models. IEEE Trans. Knowl. Data Eng.
26(11), 2759–2773 (2014). http://doi.ieeecomputersociety.org/10.1109/TKDE.
2014.2302306

41. Wu, K., Yu, P.S., Gedik, B., Hildrum, K., Aggarwal, C.C., Bouillet, E., Fan, W.,
George, D., Gu, X., Luo, G., Wang, H.: Challenges and experience in prototyping a
multi-modal stream analytic and monitoring application on system S. In: Koch, C.,
Gehrke, J., Garofalakis, M.N., Srivastava, D., Aberer, K., Deshpande, A., Florescu,
D., Chan, C.Y., Ganti, V., Kanne, C., Klas, W., Neuhold, E.J. (eds.) Proceedings of
the 33rd International Conference on Very Large Data Bases, University of Vienna,
Austria, September 23–27, 2007, pp. 1185–1196. ACM (2007). http://www.vldb.
org/conf/2007/papers/industrial/p1185-wu.pdf

42. Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., Stoica, I.: Discretized streams:
fault-tolerant streaming computation at scale. In: Kaminsky, M., Dahlin, M. (eds.)
ACM SIGOPS 24th Symposium on Operating Systems Principles, SOSP 2013,
Farmington, PA, USA, November 3–6, 2013, pp. 423–438. ACM (2013). http://doi.
acm.org/10.1145/2517349.2522737

http://doi.acm.org/10.1145/2588555.2595641
http://doi.acm.org/10.1145/2505515.2505620
http://doi.ieeecomputersociety.org/10.1109/TKDE.2014.2302306
http://doi.ieeecomputersociety.org/10.1109/TKDE.2014.2302306
http://www.vldb.org/conf/2007/papers/industrial/p1185-wu.pdf
http://www.vldb.org/conf/2007/papers/industrial/p1185-wu.pdf
http://doi.acm.org/10.1145/2517349.2522737
http://doi.acm.org/10.1145/2517349.2522737

General RuleML Track

Compact Representation of Conditional
Probability for Rule-Based Mobile

Context-Aware Systems

Szymon Bobek(B) and Grzegorz J. Nalepa

AGH University of Science and Technology, al. Mickiewicza 30,
30-059 Krakow, Poland

{szymon.bobek,gjn}@agh.edu.pl

Abstract. Context-aware systems gained huge popularity in recent
years due to rapid evolution of personal mobile devices. Equipped with
variety of sensors, such devices are sources of a lot of valuable informa-
tion that allows the system to act in an intelligent way. However, the
certainty and presence of this information may depend on many fac-
tors like measurement accuracy or sensor availability. Such a dynamic
nature of information may cause the system not to work properly or
not to work at all. To allow for robustness of the context-aware system
an uncertainty handling mechanism should be provided with it. Sev-
eral approaches were developed to solve uncertainty in context knowl-
edge bases, including probabilistic reasoning, fuzzy logic, or certainty
factors. In this paper, we present a representation method that combines
strengths of rules based on the attributive logic and Bayesian networks.
Such a combination allows efficiently encode conditional probability dis-
tribution of random variables into a reasoning structure called XTT2.
This provides a method for building hybrid context-aware systems that
allows for robust inference in uncertain knowledge bases.

Keywords: Context-awareness · Mobile devices · Knowledge manage-
ment · Uncertainty · Probabilistic rules

1 Introduction

Context-aware systems make use of contextual information to adapt their func-
tionality to current environment state, or user needs and habits [3,26]. The
variety of sensors available on mobile devices allows for building more advanced
reliable context-aware systems. However, in many cases these systems are based
on the assumption that the information they require is always available and
certain. In mobile environments this assumption almost never holds.

Contextual data can be delivered to the mobile context-aware system in many
different ways: directly from the device sensors [13], from other devices’ sensors,

This work was funded by the National Science Centre, Poland as a part of the
KnowMe project (registration number 2014/13/N/ST6/01786).

c© Springer International Publishing Switzerland 2015
N. Bassiliades et al. (Eds.): RuleML 2015, LNCS 9202, pp. 83–96, 2015.
DOI: 10.1007/978-3-319-21542-6 6

84 S. Bobek and G.J. Nalepa

over peer-to-peer communication channels [2,10], from external data sources
like contextual servers [6], from reasoning engines [22]. In each of this cases,
the information may be temporarily unavailable, corrupted, or inaccurate. This
may cause the system to work improperly unless an appropriate uncertainty
handling mechanism is implemented to cope with such situations. The choice
of the mechanisms for modelling and resolving uncertainty is highly correlated
with a choice of the model of the system. As we have shown in our previous
work presented in [4], one of the most expressive ways of modelling knowledge
in user centric systems are rules. They provide high support for intelligibility,
which is understood as an ability of the system to being understood. It is one of
the most important features in the systems which aim at direct communication
with the user. It was proven that providing appropriate level of intelligibility
increases user trust in the system in environments characterised by high uncer-
tainty of data [18]. Choosing rules as a main knowledge modelling formalism
also has consequences on the choice of the uncertainty modelling method. Sev-
eral approaches were developed to solve uncertainty in context knowledge bases,
including probabilistic reasoning, fuzzy logic, or certainty factors [4].

In [4] we provided a comparison of these methods with respect to the type
of uncertainty they handle and an implementation effort required to integrate
them with the system. Based on that comparison, we chose the XTT2 rule rep-
resentation method together with modified certainty factors algebra for uncer-
tainty handling in mobile context-aware systems. In this paper, we present a
continuation of this research with primary objective of providing a probabilistic
interpretation of the XTT2 tables. This allows for compact encoding of con-
ditional probability using a human-readable rule format. Additionally, such an
interpretation gives the opportunity for building hybrid models that combines
efficiency of rule-based reasoning with uncertainty and learning capabilities of
Bayesian networks.

The rest of the paper is organised as follows. Section 2 presents the current
state of the art in the area of uncertainty handling in mobile context-aware sys-
tems. It discusses the main drawbacks of the available solutions and presents the
motivation for our work. The XTT2 rule-based knowledge representation is pre-
sented in Section 3. Probabilistic interpretation of the XTT2 models is sketched
in Section 4. This section also describes a hybrid algorithm for reasoning in the
XTT2 based probabilistic models. Summary and future work was presented in
Section 5.

2 Related Work and Motivation

Among many proposals of uncertainty handling mechanisms [25] like Hartley
Theory, Shannon Theory, Dempster-Shafer Theory, the following have been
found the most successful in the area of context-awareness:

– Probabilistic approaches, mostly based on Bayes theorem, that allows for
describing uncertainty caused by the lack of machine precision and lack of
knowledge [5,11].

Compact Representation of Conditional Probability 85

– Fuzzy logic, that provides mechanism for handling uncertainty caused by the
lack of human precision [8,30]. It ignores law of excluded middle allowing
for imprecise, ambiguous and vague descriptions of knowledge.

– Certainty factors (CF), that describe both uncertainties caused by the lack
of knowledge and lack of precision [1,9]. They are mostly used in expert
systems that rely on the rule-based knowledge representation.

– Machine learning approaches, that use data driven rather than model driven
approaches for reasoning [15]. They allow for handling both uncertainties
due to lack of knowledge and lack of precision.

Majority of modern context-aware systems use probabilistic methods for
modeling uncertainty, as they provide a very effective way of modelling and
reasoning on dynamic and incomplete information. However, the exact inference
in complex probabilistic models is an NP-hard task and is not always tractable.
Intractability of the system inference, on the other hand, violates intelligibility
feature, which is one of the fundamental requirements for the user-centric sys-
tems [19]. Intelligibility is defined as the capability of the system for being under-
stood. This feature is crucial in systems that require interaction with the user,
like mobile context-aware systems [22]. The ability to explain system decisions
to the user makes it possible to collect user feedback about system and hence
improve system adaptability capabilities. Therefore, to provide both intelligibil-
ity and effective uncertainty handling mechanism, rules have to be combined
with robust probabilistic approach.

There are several attempts made to bind rules and probabilistic reason-
ing. Problog is a probabilistic extension of Prolog programming language [29].
A ProbLog program defines a distribution over logic programs by specifying for
each logic clause the probability that it belongs to a randomly sampled program.
The semantics of ProbLog is then defined by the success probability of a query,
which corresponds to the probability that the query succeeds in a randomly
sampled program.

Simillar approach was implemented in AILog2 [28] (formerly CILog). It is
an open-source purely declarative representation and reasoning system, that
includes pure Prolog (including negation as failure) and allows for probabilistic
reasoning. The probability is based on the Independent Choice Logic [27] which
can represent Bayesian networks, Markov decision processes and complex mixes
of logic and probability.

Probabilistic inference as a continuous optimization task was proposed in
probabilistic soft logic (PSL) [12]. PSL is a framework for collective, probabilistic
reasoning in relational domains. PSL uses first order logic rules as a template
language for graphical models over random variables with soft truth values from
the interval [0; 1].

2.1 Motivation

Although the idea of incorporating probability into rules is not new, all of the
aforementioned approaches use unstructured knowledge model, and assumes that

86 S. Bobek and G.J. Nalepa

the reasoning will be done in a pure probabilistic manner. We do not make any
assumption on that.

In our previous research, we used modified certainty factors algebra and the
XTT2 rule representation to handle uncertainty in mobile context-aware sys-
tems [4]. The certainty factors for rules were assigned by an expert or were dis-
covered with data mining approaches (like associations rules mining algorithms).
One of the biggest problems of this approach was lack of proper handling for
uncertainty caused by unavailable context providers. In a case when the value
of an attribute from the conditional part of the rule was unknown, the certainty
of the entire rule was defined as zero. In such case every rule within a table was
considered as completely uncertain and no further reasoning was possible. This
was caused by the fact that certainty factors algebra do not take into consider-
ation historical data while evaluating. In contrary, probabilistic approaches are
strictly based on statistical analysis of historical data. The idea of exploiting this
strength, for the purpose of providing an efficient uncertainty handling mecha-
nism in rule based mobile context-aware systems, was the primary motivation
for the research presented in this paper.

The XTT2 decision tables allows to build structured probabilistic models in
a human-readable way. What is more, the idea of dividing rules into separate
tables allows building hybrid rule-based models, that uses probabilistic reasoning
only when needed. And finally, the XTT2 knowledge representation is used by
the HeaRTDroid inference engine which allows to implement the solutions on
a mobile platform easily.

3 XTT2 Knowledge Representation

The XTT2 representation is based on the Attribute Logic with Set Values over
Finite Domains [17,24] (ALSV(FD) for short). The basic elements of the lan-
guage of ALSV(FD) are attributes names and attributes values. There are two
attribute types: simple which allows the attribute to take a single value at a
time, and generalized that allows the attribute to take set values. The values
that every attribute can take are limited by their domains. For the purpose
of further discussion let’s assume that: Ai represents some arbitrarily chosen
attribute, Di is a domain of this attribute, and Vi represents a subset of values
from domain Di, where di ∈ Vi. Therefore we can define a valid ALSV(FD)
formula as Ai ∝ di for simple attributes, where ∝ is one of the operators from
the set =, �=,∈, �∈ and Ai ∝ Vi for generalized attributes, where ∝ is one of the
operators from the set =, �=,∼, �∼,⊂,⊃. ALSV(FD) formulae are basic parts of
the XTT2 rule, which can be represented as:

(Ai ∝ di) ∧ (Aj ∝ dj) ∧ . . . (An ∝ dn) −→ (Ak = dk) ∧ . . . ∧ (Az = dz)

Attributes from the conditional part of the rules and attributes from the rules
decision forms schemas. A schema is a tuple of the form (CONDi,DECi), where
CONDi is a set of attributes from the conditional part of the i-th rule, and

Compact Representation of Conditional Probability 87

(?) location (?) daytime (?) today (->) action

 = home

 = outside

 = work

 = work

 = outside

 = home

 = home

 = home

 = outside

 = outside

 = morning

 = morning

 = dayatime

 = afternoon

 = afternoon

 = evening

 = night

 = any

 = evening

 = night

 = workday

 = workday

 = workday

 = workday

 = workday

 = any

 = any

 = weekend

 = any

 = any

:= leaving_home

:= travelling_work

:= working

:= leaving_work

:= travelling_home

:= resting

:= sleeping

:= resting

:= entertaining

:= travelling_home

Table id: tab_4 - Actions

(?) action (?) transportation (->) {application}

 = leaving_home

 {leaving_work,leaving_home}

 {travelling_home,travelling_work}

 {travelling_home,travelling_work}

 {resting,entertaining}

 = working

 = sleeping

 {resting,entertaining}

 = idle

 {walking,running}

 {driving,cycling}

 {bus,train}

 {running,cycling}

 = any

 = idle

 {driving,bus,train}

:= {news,weather}

:= {clock,navigation}

:= navigation

:= {news,clock}

:= {sport_tracker,weather}

:= {calendar,mail}

:= clock

:= trip_advisor

Table id: tab_5 - Applications

(?) action (->) pro le

 {travelling_home,travelling_work,leaving_home,leaving_work}

 {working,resting,entertaining}

 = sleeping

:= loud

:= vibrations

:= o ine

Table id: tab_6 - Pro le

1
2
3
4
5
6
7
8

1
2
3

1
2
3
4
5
6
7
8
9

10

Fig. 1. Fragment of an XTT2 model for context-aware application recommendation
system

DECi is a set of attributes that values are set in the decision part of the i-
th rule. Rules that have the same schema are grouped within separated XTT2
tables, and the system is split into such tables linked by arrows representing
the inference control strategy [20]. An example of the XTT2 table is presented
in Figure 1. It describes a fragment of a mobile context-aware recommendation
system, that based on the user activity, location and time, suggests applications
for the user and switches profiles in the user mobile phone.

The inference in the XTT2 knowledge bases is performed by the HeaRT-

Droid engine. HeaRTDroid is a rule-based inference engine for Android mobile
devices, that is based on HeaRT inference engine1. The HeaRTDroid inference
engine consists of three main components depicted in the Figure 2. These com-
ponents are: XTT2 Model Manager, responsible for switching between XTT2
models; Reasoning mechanism, that performs inference based on one of four
inference modes [20], and Working Memory component – a common memory
for all the models, where current and historical states are stored. The state of
the system is defined as a set of all attributes and its values captured at some
point in time.

HeaRTDroid uses HMR notation which is a textual, human-readable rep-
resentation of the visual XTT2 models. The example of the rule written in HMR
notation is presented below. It corresponds to the first rule in the XTT2 table
Actions from Figure 1.

xrule ’Actions’/1:

[location eq home,

daytime eq morning,

today eq workday]

==>

[action set leaving_home]

The rule above should be read as: If a user is at home, it is morning, and today
is a workday, then the user will be leaving home soon. Rules covering different user
locations, days and times are located in the same XTT2 table, as they share the
1 See https://bitbucket.org/sbobek/heartdroid for details.

https://bitbucket.org/sbobek/heartdroid

88 S. Bobek and G.J. Nalepa

same schema. Different tables that represent different schemas are linked together
defining an inference control. The inference control determine sequence in which
the XTT2 tables should be processed. For instance, if the context-aware system
wants to know which applications should be suggested to the user, the inference
engine will have to process the table Actions at the first place, and later the table
Applications, as it depends on the output from the former.

Fig. 2. Architecture of XTT2 inference engine

In case when all of the data is available and certain, such a reasoning is done
with traditional forward-chaining approach. Alternatively, when there is data
available but uncertain, the inference based on certainty factors (CF) algebra is
performed [4]. However, certainty factors algebra does not handle situations when
some of the information from the conditional parts of the rules are missing. For
instance if the GPS sensor was turned off, and the location of the user could not
be established, the rule from the example above will not be fired, and therefore
no valid output for the context-aware system could be provided. It is because in
CF algebra the certainty of the rule is determined by the smallest certainty of its
conditions. Therefore, in case when some of the attributes values from conditional
parts are unknown the certainty of the entire rule equals zero. In such a situation
all the rules in the table will be equally uncertain and it will not be possible to
make a decision which rule choose to fire. However, such a decision can be made
with a probabilistic approach, which uses historical data to estimate the most
likely value of a random variable (or attribute in this case). In the HeaRTDroid

inference engine the Working Memory component is responsible for logging all
the system states, providing a valuable learning data for probabilistic models.
The next section discusses the probabilistic interpretation of XTT2 models in
details.

Compact Representation of Conditional Probability 89

4 Probabilistic Interpretation of XTT2 Models

In Section 3 the XTT2 knowledge representation was described. Although the
representation is based on rules, the structure of the XTT2 formalism allows
for its probabilistic interpretation. In such interpretation every attribute can be
considered a random variable, and every XTT2 table a deterministic conditional
distribution table. The connections between XTT2 tables can be further inter-
preted as dependencies between random variables, and the XTT2 model can
be easily transformed to a Bayesian network. Figure 3 represents a Bayesian
interpretation of the XTT2 model presented in Figure 1.

Fig. 3. Bayesian network representation of a model presented in Figure 1

In such an interpretation, every schema (COND,DEC) can be represented as
a conditional probability of a form:

P (DEC | COND) (1)

90 S. Bobek and G.J. Nalepa

Therefore, in the probabilistic interpretation of schema (COND,DEC), every
rule is represented by a pair 〈r, p〉, where r is an XTT2 rule defined in Section 3
and p ∈ [0; 1] is the conditional probability assigned to it. The probability p
defines a certainty of a rule given its preconditions. We will refer to p as to
certainty, not the probability in the further discussion. Therefore, in case where
all the attributes from the COND part of the rule are known, the conditional
probability distribution (CPD) is deterministic and traditional rule-based rea-
soning can be performed. In case when some of the attributes values from the
conditional part are unknown, the probabilistic reasoning is triggered.

The XTT2 representation allows generalized attributes to be present in both
COND and DEC. This may lead to serious problems in probabilistic interpre-
tation of the XTT2 rules, as the generalized attributes have to be treated as
random variables with multiple independent binary values allowed. This is a
serious departure from standard Bayesian understanding of a random variable.
Therefore, the following interpretation was proposed. Let assume that the XTT2
model contains a schema of a form ({Ai, Aj} , {Ag}), where Ag is a generalized
attributes. The rule that falls into this schema is given as follows:

r : (Ai ∝ di) ∧ (Aj ∝ dj) −→ Ag = {v1, v2, . . . vn}
Following the equation (1), the rule from above formula can be represented

〈r, p〉, where p is defined as follows:

p : P (Ag = {v1, v2, . . . vn} | Ai, Aj)

And further, assuming that the values of a random variable Ag are indepen-
dent, the p can be rewritten as:

P (Ag = {v1, v2, . . . vn} | Ai, Aj) =
P (v1 | Ai, Aj) · P (v2 | Ai, Aj) · . . . · P (vn | Ai, Aj)

(2)

The interpretation of the generalized attributes as a set of independent ran-
dom variables are extremely important in the inference process in special cases
when attributes from decision part of the rules are treated as evidences.

The other consequence of the fact that XTT2 knowledge representation is
based on the attributive logic, is that it has some advantages over the traditional
table distribution approaches in terms of notation compactness. One of the most
important advantages is that the ALSV(FD) logic introduces operators like =, �=,
∼, �∼,⊂,⊃. This allows to represent a probability distribution in a more efficient
way. For instance to encode the conditional probability distribution presented in
table Applications from Figure 1 using traditional conditional probability tables
(CPT), one will need 50 rows to cover all the combinations of attributes val-
ues presented in the Applications table. The complexity of the representation
is highly dependant on the nature of the problem, and in worst case even for
XTT2 it can be the same as for the standard CPT representation. However,
in most cases there will be an advantage of usage of the XTT2 notation over
the standard CPT as it presents probability distributions in human readable
rule-based form. What is more, the XTT2 representation allows explaining pro-
babilistic reasoning by exploiting rule-based system capabilities of intelligibility.

Compact Representation of Conditional Probability 91

4.1 Learning Probability Distribution in XTT2 Models

Probabilistic interpretation of the XTT2 models presented in this paper assumes
that the XTT2 tables and rules are given. They can be provided by an expert,
or mined with data mining algorithms. Although learning structure of the model
and automatic discovery of rules is a very important task in terms of adaptability
of the system, it is beyond the scope of this work. In this paper, we focus on
learning distribution of the random variables (attributes) for a given set of rules
and XTT2 schemas.

HeaRTDroid inference engine consists of a working memory component
that logs all the system states in a given time window. The state is defined
as a set of attributes and their values at a given point in time. Therefore, all
the states within a specified time window can be considered as a training set
for the probabilistic XTT2 tables. Below the sample of such a training set is
presented. This training set was used to learn distribution of random variables
in the Bayesian network presented in Figure 3.

Action,[Applications],Daytime,Location,Profile,Today,Transportation
sleeping,[no,no,no,no,yes,no,no,no],night,home,offline,workday,idle
sleeping,[no,no,no,no,yes,no,no,no],night,home,offline,workday,idle
working,[no,yes,yes,no,no,no,no,no],daytime,work,vibrations,workday,cycling
working,[no,yes,yes,no,no,no,no,no],daytime,work,vibrations,workday,bus
working,[no,yes,yes,no,no,no,no,no],daytime,work,vibrations,workday,idle
....

One of the biggest challenges in learning probabilistic XTT2 models is to
wisely choose time windows from which the training set will be generated.
The window cannot be too small, as the states logged within a short period
of time will not cover all the cases. It cannot be too large, as storing and pro-
cessing large amount of data may be an overload for a mobile device. The size
of the time window has to be adjusted experimentally for a specific model.

Because the learning of Bayesian network is not an incremental process, and
therefore it may be necessary to relearn the model. The relearning is very impor-
tant as the user habits may change over time and therefore affect the probabilities
of certain rules.

4.2 Inference in the Probabilistic XTT2 Models

There are three possibilities of performing reasoning in the probabilistic XTT2
models:

1. purely deterministic inference – in such an inference only tables that have
all values of attributes from their conditional parts known can be processed.
This may therefore end up in interrupted inference when some values are
missing;

2. purely probabilistic inference – in such an inference the XTT2 model is
queried as if it was Bayesian network. No deterministic reasoning is per-
formed;

92 S. Bobek and G.J. Nalepa

3. hybrid inference – in such an inference tables that can be processed in a
deterministic way are processed according to such paradigm, and the proba-
bilistic reasoning is triggered only in the other cases.

To exploit fast and efficient reassigning provided by the rule-based approach,
with probabilistic uncertainty handling, a hybrid inference model was proposed.
The procedure for processing the XTT2 tables in such an approach was presented
in Algorithm 1.

Algorithm 1. Algorithm for probabilistic inference in XTT2 models
Data: E – the set of all known attributes values

A – the set of attributes which values are to be found
Result: V – values for attributes from the set A

1 Create a stack of tables T that needs to be processed to obtain V ;
2 while not empty T do
3 t = pop(T);
4 Identify schema (COND,DEC) of table t;
5 if ∀c ∈ COND,Val(c) ∈ E then
6 Execute table t;
7 ∀a ∈ DEC ∩ A : add Val(a) to E and V ;
8 else
9 Run probabilistic reasoning to obtain P (a)∀a ∈ DEC;

10 Select rule 〈rmax, pmax〉 such that: ∀ 〈r, p〉 ∈ t : p ≤ pmax;
11 if pmax ≤ ε then
12 execute rule r;
13 ∀a ∈ DEC ∩ A : add Val(a) to E and V ;
14 else
15 ∀a ∈ DEC ∩ A : add P (a) to E and V ;
16 end
17 end
18 end
19 return V ;

The first step of the algorithm is the identification of a list of the XTT2 tables
T that have to be processed to obtain values of a given set of attributes A. This
is done according to one of the inference modes available [20]. For every table
t ∈ T popped from the list, a deterministic inference is performed if possible,
and the values of the attributes from the conclusion part of the executed rule are
added to evidence set E. When it is impossible to run deterministic inference
(e.g. some values of the attributes are missing), the probabilistic inference is
triggered. It uses all the evidences E to calculate probability of the attributes
values from the current schema. After that, a rule with the highest certainty (or
probability in this case) is selected and triggered, and the reasoning returns to

Compact Representation of Conditional Probability 93

be deterministic. In cases when the probability of a rule is very low, say less than
some value ε, no rule is executed. However, if the conclusion part of the schema
for currently processing table contains an attribute that belongs to a set A, the
most probable estimation of this attribute value is added to the result.

The evidences for the evidences set E are obtain from two types of sources:

– from the Working Memory component of the inference engine that stores all
the attributes values (see Figure 2), and

– from the reasoning process, when new values are inferred.

The XTT2 notation allows three types of attributes: comm, in, and out.
Attributes that are marked as out cannot be treated as evidences, even though
their value is known. For example if the value of the attribute Profile from the
model presented in Figure 3 was known, and marked as in or comm, it will be
included as evidence in the reasoning process. In other cases it will not be used
in the inference process. This is very important for the probabilistic reasoning
strategy, where every evidence can have an impact on the reasoning results.

4.3 Use Case Scenario

The inference procedure presented in Algorithm 1 can be shown in practice on
the model from Figure 1 and its probabilistic interpretation depicted in Figure 3.
It is a model for a mobile context-aware application that based on the user
context, suggests applications to be launched, and sets appropriate mobile phone
profile. The context in this model is defined as an information about values of
the attributes: today, daytime, location, action, transportation, application and
profile.

Let us assume that the values of the attributes today, daytime and transporta-
tion are given and are equal respectively to: weekend, morning and running. In
the contrary, the information about the user position is unknown (i.e. the GPS
module is turned off or user is underground). Because the value of the attribute
action is derived partially from the user location, this attribute value remains
unknown as well. In traditional reasoning mode, at this point the inference will
not continue, and no further conclusion could be made. However, in the hybrid
mode presented in this work, such an inference is possible. During the process-
ing of the table Actions, once the algorithm notices that there is a value of the
user location missing, the probabilistic inference is triggered. For this purpose
the Bayesian network presented in Figure 3 is used. The algorithm uses val-
ues of known attributes as evidences, and queries the probabilistic model for
unknown values. In this example, evidence attributes are today, daytime and
transportation. In a case when the value of the attribute profile was known, and
this attribute was marked as comm in XTT2 model, it will also be used as evi-
dence, despite the fact that it is not delivered by any of the context providers,
but inferred by the system. Filling the probabilistic model with evidences, it can
be calculated that the most probable value of the action attribute is resting.
This value is produced by two rules: by the rule number 6 and 8 from the Action

94 S. Bobek and G.J. Nalepa

table. In a hybrid reasoning, if the certainty of a rule is greater than the ε, the
rule is fired and inference is continued in a deterministic way. If the ε is grater
than the certainty of a rule, the algorithm moves to another table and process
it in a probabilistic way. For the purpose of this example, let assume, that the ε
from the Algorithm 1 equals 0.3. Such an assumption means that during a pro-
babilistic reasoning, rule with assigned certainty greater than 0.3 will be fired.
In the example that we discuss there are two rules which certainty greater than
epsilon. Hence, the conflict set resolution mechanism has to be used to select the
rule to fire [16]. For the sake of simplicity we can use order-based conflict set res-
olution and pick the rule which appears first in the XTT2 table. Therefore, the
rule number 6 from the table Actions will be fired and the value of the attribute
action will be set to resting, as if it was certain. After that, the inference will
be continued in a deterministic way, which will finally lead to execution of the
rule number 5 from the table Applications and the rule number 2 from the table
Profile.

5 Summary and Future Work

In this paper, we presented a new approach for modelling context-aware systems
with the usage of a compact representation of conditional probability which
is based on the XTT2 knowledge representation formalism. Such an approach
allows to encode conditional probability in a compact, structured and human-
readable format. It also allows for hybrid reasoning that exploits fast and efficient
reassigning provided by the rule-based approach, with probabilistic uncertainty
handling. The XTT2 knowledge representation is used by the HeaRTDroid

inference engine, which is a rule engine dedicated for mobile devices. This allows
to use the probabilistic XTT2 representation in modelling mobile context-aware
systems.

Future work will include practical implementation of the method presented
in the paper and their evaluation on real use-cases. Especially a comparison to
purely probabilistic and purely deterministic inference is planned, both in terms
of computational efficiency and the correctness of inference. another aspect of
the future plans is automation of the rule generation. At this point, the rule
based model has to be provided by an expert. In the future, it is planned to use
data mining techniques to learn the models automatically from the data, or to
generate the models based on the pre-prepared data [14]. The method presented
in this paper could also be extended by the mediation techniques [7]. It will
allow to collect feedback from users in an interactive way, and modify the XTT2
rules, so they can better fit user preferences. Furthermore, to provide integrity
of such on-the-fly modified knowledge, the HalVA verification tool [21] can be
used. Finally, although the approach presented in this paper was dedicated to
mobile context-aware systems, it can be easily integrated with other, non-mobile
systems that are based on rules [23].

Compact Representation of Conditional Probability 95

References

1. Almeida, A., Lopez-de Ipina, D.: Assessing ambiguity of context data in intelligent
environments: Towards a more reliable context managing systems. Sensors 12(4),
4934–4951 (2012). http://www.mdpi.com/1424-8220/12/4/4934

2. Benerecetti, M., Bouquet, P., Bonifacio, M., Italia, A.A.: Distributed context-aware
systems (2001)

3. Bobek, S., Nalepa, G.J., Ligȩza, A., Adrian, W.T., Kaczor, K.: Mobile context-
based framework for threat monitoring in urban environment with social threat
monitor. Multimedia Tools and Applications (2014). http://dx.doi.org/10.1007/
s11042-014-2060-9

4. Bobek, S., Nalepa, G.J.: Incomplete and uncertain data handling in context-aware
rule-based systems with modified certainty factors algebra. In: Bikakis, A., Fodor,
P., Roman, D. (eds.) RuleML 2014. LNCS, vol. 8620, pp. 157–167. Springer,
Heidelberg (2014). http://dx.doi.org/10.1007/978-3-319-09870-8 11

5. Bui, H.H., Venkatesh, S., West, G.: Tracking and surveillance in wide-area spatial
environments using the abstract hidden markov model. Intl. J. of Pattern Rec. and
AI 15 (2001)

6. Chen, H., Finin, T.W., Joshi, A.: Semantic web in the context broker architecture.
In: PerCom, pp. 277–286. IEEE Computer Society (2004)

7. Dey, A.K., Mankoff, J.: Designing mediation for context-aware applications. ACM
Trans. Comput.-Hum. Interact. 12(1), 53–80 (2005). http://doi.acm.org/10.1145/
1057237.1057241

8. Fenza, G., Furno, D., Loia, V.: Hybrid approach for context-aware service discovery
in healthcare domain. J. Comput. Syst. Sci. 78(4), 1232–1247 (2012)

9. Hao, Q., Lu, T.: Context modeling and reasoning based on certainty factor. In:
Asia-Pacific Conference on Computational Intelligence and Industrial Applications.
PACIIA 2009, vol. 2, pp. 38–41, November 2009

10. Hu, H.: ContextTorrent: A Context Provisioning Framewrok for Pervasive Appli-
cations. University of Hong Kong (2011)

11. van Kasteren, T., Kröse, B.: Bayesian activity recognition in residence for elders.
In: 3rd IET International Conference on Intelligent Environments. IE 2007,
pp. 209–212 (2007)

12. Kimmig, A., Bach, S.H., Broecheler, M., Huang, B., Getoor, L.: A short introduc-
tion to probabilistic soft logic. In: NIPS Workshop on Probabilistic Programming:
Foundations and Applications (2012)

13. Kjaer, K.E.: A survey of context-aware middleware. In: Proceedings of the 25th
conference on IASTED International Multi-Conference: Software Engineering. SE
2007, pp. 148–155. ACTA Press (2007)

14. Kluza, K., Nalepa, G.J.: Towards rule-oriented business process model generation.
In: Ganzha, M., Maciaszek, L.A., Paprzycki, M. (eds.) Proceedings of the Feder-
ated Conference on Computer Science and Information Systems - FedCSIS 2013,
Krakow, Poland, September 8–11, 2013, pp. 959–966. IEEE (2013)

15. Krause, A., Smailagic, A., Siewiorek, D.P.: Context-aware mobile computing:
Learning context-dependent personal preferences from a wearable sensor array.
IEEE Transactions on Mobile Computing 5(2), 113–127 (2006)

16. Ligȩza, A.: Logical Foundations for Rule-Based Systems. Springer-Verlag,
Heidelberg (2006)

17. Ligȩza, A., Nalepa, G.J.: A study of methodological issues in design and develop-
ment of rule-based systems: proposal of a new approach. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery 1(2), 117–137 (2011)

http://www.mdpi.com/1424-8220/12/4/4934
http://dx.doi.org/10.1007/s11042-014-2060-9
http://dx.doi.org/10.1007/s11042-014-2060-9
http://dx.doi.org/10.1007/978-3-319-09870-8_11
http://doi.acm.org/10.1145/1057237.1057241
http://doi.acm.org/10.1145/1057237.1057241

96 S. Bobek and G.J. Nalepa

18. Lim, B.Y., Dey, A.K.: Investigating intelligibility for uncertain context-aware appli-
cations. In: Proceedings of the 13th International Conference on Ubiquitous Com-
puting. UbiComp 2011, pp. 415–424. ACM, New York (2011). http://doi.acm.org/
10.1145/2030112.2030168

19. Lim, B.Y., Dey, A.K., Avrahami, D.: Why and why not explanations improve the
intelligibility of context-aware intelligent systems. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. CHI 2009, pp. 2119–2128.
ACM, New York (2009). http://doi.acm.org/10.1145/1518701.1519023

20. Nalepa, G.J., Bobek, S., Lig ↪eza, A., Kaczor, K.: Algorithms for rule inference in
modularized rule bases. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.)
RuleML 2011 - Europe. LNCS, vol. 6826, pp. 305–312. Springer, Heidelberg (2011)

21. Nalepa, G.J., Bobek, S., Lig ↪eza, A., Kaczor, K.: HalVA - rule analysis frame-
work for XTT2 rules. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.)
RuleML 2011 - Europe. LNCS, vol. 6826, pp. 337–344. Springer, Heidelberg (2011).
http://www.springerlink.com/content/c276374nh9682jm6/

22. Nalepa, G.J., Bobek, S.: Rule-based solution for context-aware reasoning on mobile
devices. Computer Science and Information Systems 11(1), 171–193 (2014)

23. Nalepa, G.J., Kluza, K., Kaczor, K.: Proposal of an inference engine architecture
for business rules and processes. In: Rutkowski, L., Korytkowski, M., Scherer, R.,
Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS,
vol. 7895, pp. 453–464. Springer, Heidelberg (2013). http://www.springer.com/
computer/ai/book/978-3-642-38609-1

24. Nalepa, G.J., Ligȩza, A., Kaczor, K.: Formalization and modeling of rules using
the XTT2 method. International Journal on Artificial Intelligence Tools 20(6),
1107–1125 (2011)

25. Parsons, S., Hunter, A.: A review of uncertainty handling formalisms. In: Hunter,
A., Parsons, S. (eds.) Applications of Uncertainty Formalisms. LNCS (LNAI),
vol. 1455, pp. 8–37. Springer, Heidelberg (1998). http://dx.doi.org/10.1007/
3-540-49426-X 2

26. Pascalau, E., Nalepa, G.J., Kluza, K.: Towards a better understanding of the
concept of context-aware business applications. In: Ganzha, M., Maciaszek, L.A.,
Paprzycki, M. (eds.) Proceedings of the Federated Conference on Computer Sci-
ence and Information Systems - FedCSIS 2013, Krakow, Poland, September 8–11,
2013, pp. 959–966. IEEE (2013)

27. Poole, D.: The independent choice logic and beyond. In: De Raedt, L., Frasconi,
P., Kersting, K., Muggleton, S.H. (eds.) Probabilistic Inductive Logic Program-
ming. LNCS (LNAI), vol. 4911, pp. 222–243. Springer, Heidelberg (2008). http://
dblp.uni-trier.de/db/conf/ilp/lncs4911.html#Poole08

28. Poole, D., Mackworth, A.K.: Artificial Intelligence - Foundations of Computa-
tional Agents. Cambridge University Press (2010). http://www.cambridge.org/uk/
catalogue/catalogue.asp?isbn=9780521519007

29. Raedt, L.D., Kimmig, A., Toivonen, H.: Problog: A probabilistic prolog and its
application in link discovery. In: Veloso, M.M. (ed.) IJCAI, pp. 2462–2467 (2007).
http://dblp.uni-trier.de/db/conf/ijcai/ijcai2007.html#RaedtKT07

30. Yuan, B., Herbert, J.: Fuzzy cara - a fuzzy-based context reasoning system for
pervasive healthcare. Procedia CS 10, 357–365 (2012)

http://doi.acm.org/10.1145/2030112.2030168
http://doi.acm.org/10.1145/2030112.2030168
http://doi.acm.org/10.1145/1518701.1519023
http://www.springerlink.com/content/c276374nh9682jm6/
http://www.springer.com/computer/ai/book/978-3-642-38609-1
http://www.springer.com/computer/ai/book/978-3-642-38609-1
http://dx.doi.org/10.1007/3-540-49426-X_2
http://dx.doi.org/10.1007/3-540-49426-X_2
http://dblp.uni-trier.de/db/conf/ilp/lncs4911.html#Poole08
http://dblp.uni-trier.de/db/conf/ilp/lncs4911.html#Poole08
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521519007
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521519007
http://dblp.uni-trier.de/db/conf/ijcai/ijcai2007.html#RaedtKT07

© Springer International Publishing Switzerland 2015
N. Bassiliades et al. (Eds.): RuleML 2015, LNCS 9202, pp. 97–111, 2015.
DOI: 10.1007/978-3-319-21542-6_7

FOWLA, A Federated Architecture for Ontologies

Tarcisio M. Farias1(), Ana Roxin2, and Christophe Nicolle2

1 Active3D, Dijon, France
t.mendesdefarias@active3D.net

2 Checksem, Laboratory LE2I (UMR CNRS 6306), University of Burgundy, Dijon, France
{ana-maria.roxin,cnicolle}@u-bourgogne.fr

Abstract. The progress of information and communication technologies has
greatly increased the quantity of data to process. Thus, managing data hetero-
geneity is a problem nowadays. In the 1980s, the concept of a Federated Data-
base Architecture (FDBA) was introduced as a collection of components to
unite loosely coupled federation. Semantic web technologies mitigate the data
heterogeneity problem, however due to the data structure heterogeneity the in-
tegration of several ontologies is still a complex task. For tackling this problem,
we propose a loosely coupled federated ontology architecture (FOWLA). Our
approach allows the coexistence of various ontologies sharing common data
dynamically at query execution through logical rules. We have illustrated the
advantages of adopting our approach through several examples and bench-
marks. We also compare our approach with other existing initiatives.

Keywords: SWRL · Horn-like rules · Federated ontology architecture · OWL ·
SPARQL · Backward-chaining reasoning · Semantic interoperability

1 Introduction

With advances of the information and communication technologies the amount of
data to process and share has exponentially increased. Consequently, there is a grow-
ing demand for information interoperability. Indeed, with the advent of the personal
computer in the 1980s, data interoperability first became an issue, then with the
advent of the Internet has risen the need for more principled mechanisms for interope-
rability. When considering enterprise information systems, three layers of interopera-
bility exist. Physical interoperability (first level) concerns the lower levels of the
ISO/OSI network hierarchy and has been solved through network protocols such as
Ethernet and TCP/IP. The second level concerns syntactic interoperability, namely the
form of the messages exchanged in the information system. This issue has been
solved through syntactic standards such as the Extensible Markup Language (XML)
[6]. Finally, the third level of interoperability addresses the meaning of the exchanged
messages and is called semantic interoperability. When implemented, semantic inte-
roperability allows automatic machine-processing of data. These advances are really
important in the context of enterprise information integration (EII) [1], building in-
formation models [2] and more in general in semantic web. Ontologies defined using

98 T.M. Farias et al.

standard ontology languages such as Web Ontology Language (OWL) [3] represent
the building bricks for achieving such semantic interoperability. Indeed, interoperabil-
ity at the data model level has been pointed out as a solution to information integra-
tion [4], and the usage of ontologies allows having data exchanges respecting the
same original schema meaning (i.e. semantics).

Nevertheless, semantic heterogeneity remains a problem when integrating data
from various ontologies which model the same information in different ways. Indeed,
even if an ontology is defined as an “explicit and shared specification of a conceptua-
lization of a given knowledge domain” [5] different ontologists (i.e. ontology
designers) can produce different ontologies for a same knowledge domain. Thus, just
adopting ontologies, like just using XML [6], does not eliminate heterogeneity for
good: it elevates heterogeneity problems at a higher level. As noted by Alon Y.
Halevy in [4], semantic heterogeneity exists whenever there is more than one way to
structure a body of data (i.e. schema).

Therefore, in order to address the problem of semantic interoperability by means of
ontologies, we propose a loosely coupled federated architecture for OWL ontologies.
This architecture is based on ontology alignments, logical rules and inference me-
chanisms. The article at hand is structured as follows: Section 2 gives the scientific
background for our work; Section 3 presents most important related work in the con-
sidered domain. Section 4 details our approach, notably the components and underly-
ing processes of the FOWLA architecture. Numerical results in terms of query time
execution improvement are illustrated in Section 5. Finally, we conclude this article
by identifying additional works that could be undertaken.

2 Background

Semantic Web technologies constitute one of the most promising trends for the future
Web, notably as they come with the potential of making existing data machine-
understandable. The architecture of Semantic Web comprises several layers and com-
ponents. The Resource Description Framework (RDF) [7] data model is the reference
component. On top of it, three components exist [8]:
• Components for ontologies: several standard languages for specifying ontologies

exist, from the most basic (RDF Schema [9]) to the most expressive OWL [3] and
its inheritor OWL 2 [10]. Ontology languages rely on Description Logics (DL)
formalisms. A knowledge base comprises a terminological model (i.e. TBox) and
an assertional model (i.e. ABox). In this work, we use the term ontology or know-
ledge base for referring to the whole TBox and ABox. Such knowledge box is
stored using triple store repositories.

• Components for queries: the equivalent of SQL for databases is the SPARQL [11]
language. SPARQL allows querying RDF graphs and OWL ontologies, along with
several possibilities for results processing (e.g. limit, order, offset). A SPARQL
query comes in the form of a triple pattern <Subject, Predicate, Object>.

• Components for reasoning: with the Open World Assumption, queries over the
data present in a knowledge base are often incompletely answered. Moreover,

 FOWLA, A Federated Architecture for Ontologies 99

when applying reasoning over such data, conclusions cannot be drawn. The Close
World Assumption states that knowledge that cannot be derived from existing data
is considered to be false. With this assumption, and by means of logical rules
(expressed using rule languages), one can perform rule inference on top of ontolo-
gy-based knowledge specifications. Rules are expressed with terms defined in
ontologies. Rule languages have been developed since 2000, with the RuleML in-
itiative [12], which is based on the Logic Programming paradigm and implements
a RDF syntax. The Semantic Web Rule Language (SWRL) [13] is based on Logic
Programming as well, but combines OWL and RuleML. SWRL allows defining
conjunctive rules over the concepts and relationships present in an OWL ontology.

Besides the above considerations and for a better understanding of the work presented
in this paper, we provide the following terms definition:

Definition 1. (Ontology matching) When determining if two ontologies have the
same meaning (addressing the issue of semantic interoperability), an ontology match-
ing process has to be implemented. Matching is the process of identifying correspon-
dences between entities of different ontologies [14].

Definition 2. (Ontology alignment) An alignment is a set of correspondences be-
tween one or more ontologies. The alignment is the output of the process of ontology
matching [14]. In this paper, we consider that such alignment is expressed by means
of Horn rules (rule axioms).

Definition 3. (Rule or rule axiom) A rule is composed of a rule head (also called
consequent) and a body (also called antecedent). If the body of a rule is true, then its
head is derived as a new assertion [23].

Definition 4. (Target and source ontology) The target ontology is the ontology that
we want to interoperate with. The source ontology is the ontology that contains the
data (ontology’s ABox) to be made interoperable.

3 Related Work

Many efforts were done since the 1980s to interoperate different database schemas,
for instance, Sheth and Larson in [15] classify the multi-database systems into two
types: non-federated and federated. An example of a non-federated database is a cen-
tralized database which means a single integrated database schema. The expression
Federated Database Architecture (FDBA) was first introduced by Heimbigner and
McLeod in 1985 as a “collection of components to unite loosely coupled federation in
order to share and exchange information” using “an organization model based on
equal, autonomous databases, with sharing controlled by explicit interfaces.” [16].
Despite of our work being inspired on such definition of federated architecture; we
define FOWLA as an architecture based on autonomous ontologies (including TBox
and ABox) with sharing described as a rule-based format controlled by inference
mechanisms (e.g. SWRL engine associated to OWL reasoner).

[17] presents a SPARQL query rewriting approach in the context of implementing
interoperability over various ontologies stored in federated RDF datasets. Queries are

100 T.M. Farias et al.

addressed to different SPARQL endpoints and are rewritten based on the alignments
defined among the ontologies. Alignments implement a specific alignment format, as
specified by the authors. Still, [17] authors do not clearly justify the need of this
alignment format. Their approach is further detailed in [18], notably by defining sev-
eral functions for graph pattern rewriting.

In [19], Correndo et al. present a similar approach. They perform query rewriting
for retrieving data from several different SPARQL endpoints. However, their algo-
rithm takes into account only information specified as a graph pattern. For example, it
ignores constructs such as constraints expressed within the SPARQL reserved word
FILTER.

When comparing both methods, [17] has the advantage of relying on Description
Logic, and consequently supporting different query types (SELECT, CONSTRUCT,
etc.) along with different SPARQL solution modifiers (LIMIT, ORDER BY, etc.).
In this approach, the query rewriting process does not modify graph pattern operators.
Still, both methods ignore the cases where several source and target ontologies can be
involved. Correndo et al. [19] provide an explanation for SPARQL query rewriting
implementation for ontology interoperation by stating that ontology alignments
defined on top of the logical layer imply reasoning over a considerable amount of data
thus compromising query execution time. Approaches presented in [17] [19] represent
successful optimizations of query execution times. Still, their main drawbacks con-
cern addressing the possibility for writing queries using terms from different ontolo-
gies, along with offering extended inference capabilities (e.g. through reasoners and
rule engines).

Despite the extensive studies, to the best of our knowledge, there is no work pro-
posing a federated architecture in the context of semantic interoperability of OWL
ontologies.

4 A Federated Architecture for Ontologies (FOWLA)

For addressing the issue of ontology interoperability, we have developed an approach
based on a federated architecture for ontologies, FOWLA. This architecture contains
two main components: the Federal Descriptor (FD) and the Federal Controller (FC).
The FD component is responsible for describing ontology alignments. The FC module
is executed at query time and allows exchanging data among ontologies according to
FD generated alignment. It is also at query time that we check the data access policy
for federated ontologies. The FOWLA architecture is illustrated in Fig. 1.

In order to describe ontology federation, we can rely on any alignment format
present in the literature [14]. However, as the FC is a rule-based controller, it is pre-
ferable to use alignment formats based on rule syntax, as, for instance, SWRL rules.
This avoids converting alignment formats later in the process.

As illustrated in Fig. 1, the FD module contains two sub-modules: Federal Logical
Schema (FLS) and Federal Concept Instantiation (FCI). The first sub-module is an
ensemble of logical rules describing the correspondences between ontologies. These
mappings are expressed as logical rules, such as SWRL. Nevertheless, such logical

rules are not capable of cre
problems when integrating
mented for regaining decid
inference, we propose inclu

Fig. 1. FO

Indeed, data can be mod
geneity, and consequently,
rability. A first step in mit
one formal language, such
several concepts from diffe
let us suppose we want to
and Onto2), for which we
simplicity, we consider that
tifying a predicate specifie
other words, onto1:q1(?x,
Onto1. We consider the al
SWRL rules listed in 4.1.

swrl1: onto1:D(?x) → onto

swrl2: onto2:C(?x) → onto

swrl3: onto1:D(?x) ∧ onto1
→ onto2:p2(?x, ?z)

swrl4: onto2:C(?x) ∧ onto2:
→ onto1:q2(?y,?z)

where onto1:q1 is an OWL
type properties. swrl1 and

FOWLA, A Federated Architecture for Ontologies

eating new concept instances. This is due to undecidabi
g OWL and SWRL. Therefore, DL-safe rules are imp
dability [20]. To overcome the drawback of new instanc
uding the FCI sub-module in our architecture.

OWLA, Federated Architecture for Ontologies

delled in various ways [4]. This implies semantic hete
increases the difficulty for establishing ontology intero

tigating this issue is to use only ontologies specified w
as OWL. Still, the same data can be encapsulated throu

erent and independent OWL ontologies. To illustrate t
achieve interoperability over two OWL ontologies (On
define an alignment through SWRL rules. For the sake
t the URI’s (Uniform Resource Identifier) namespace id
es the ontology containing the predicate’s definition.
?y) means that predicate q1 is defined in the ontolo
lignment between Onto1 and Onto2 is defined using

o2:C(?x)

1:D(?x)

1:q1(?x, ?y) ∧ onto1:A(?y) ∧ onto1:q2(?y, ?z)

:p2(?x,?z) ∧ onto1:A(?y) ∧ onto1:q1(?x, ?y)

(4

L object property; onto1:q2 and onto2:p2 are OWL d
d swrl2 state that onto1:D is equivalent to onto2

101

ility
ple-
ces’

ero-
ope-
with
ugh
this,
nto1
e of
den-
. In
ogy
the

4.1)

ata-
2:C.

102 T.M. Farias et al.

In OWL, owl:equivalentCl
lence. Still, in our approach
lence in order to separate o
we preserve the ontology s
that maps a graph pattern
swrl4 is another complex ali
a datatype property from On

In our approach, these r
swrl4, sharing the data val
instances for concept ont
represented (i.e. encapsulat
alignment rule such as “on
teInstances(?y, onto1:A) ∧
issues. This is because DL
defined in the knowledge ba

To tackle this limitation,
sary concepts from the targ
source ontology (Onto2). In
in the Knowledge Base (K
Doing so, the data values
Onto1 based on previously

For the rules listed in 4
and property assertion for p
of type onto2:C (which be
swrl2), one onto1:q1 proper
stance Ai of type onto1:A.
capable of inferring the va
what has been said, the valu
sub-module. This, howeve
process of class instantiatio
mented when sharing the v
swrl4.

Fig. 2. Class insta

lass is the predicate that allows specifying class equi
h, we define SWRL rules for asserting such class equi
ontology alignments from ontology schemas. By doing
schema definition. swrl3 exemplifies a complex alignm
from Onto1 to a datatype property from Onto2(i.e. p

ignment mapping a graph pattern from Onto1 and Onto2
nto1 (i.e. q2).
rules are part of the FLS sub-module. When consider
lues of onto2:p2 to Onto1 implies creating the necess
to1:A. This is the case because these data values
ted) in a different way by Onto1. Nevertheless, defining
to2:C(?x) ∧ onto2:p2(?x,?z) → onto1:q1(?x, ?y) ∧ cr∧ onto1:q2(?y,?z)” is not possible due to undecidabi

L-safe rules can only consider instances that are explic
ase.
 the FCI sub-module previously creates instances of nec

get ontology (Onto1) to encapsulate the data shared by
n other words, the FCI sub-module creates a graph patt

KB) by means of class instantiation and property asserti
for onto2:p2 are represented with vocabulary terms fr
defined alignment rules.

4.1, the FCI sub-module only considers class instantiat
predicates in swrl4’s body. Therefore, for each instance
ecomes also an instance of type onto1:D when apply
rty is asserted to Ci having as value one newly created
Once this assertion performed, the SWRL rule engin

alue of onto1:q2 for Ci by applying swrl4. In addition
ue of onto2:p2 is not materialized for onto1:q2 by the F
er, is inferred by the rule engine. Fig. 2 illustrates
on (in bold) and property assertion (underlined), as imp
value “data” of onto2:p2 to ontology Onto1, based on r

antiation (in bold) and property assertion (underlined)

iva-
iva-
so,

ment
p2).
2 to

ring
sary
are

g an
rea-
ility
citly

ces-
the

tern
ion.
rom

tion
e Ci
ying
d in-
e is
n to
FCI
the

ple-
rule

The FC module perform
from a system based on on
following sub-modules: a
OWL reasoner. These comp
the considered ontologies b
module) and some descripti

The Rule Selector (RS
chaining reasoning. Indeed
complex and numerous alig
execution time. The RS mo
ble of rules to answer a giv
inferences which would co
the functioning of the RS su

We motivate our choice
module by the fact that int
soner requires storing a con
ogy modification can imply

Our implementation of th
a pre-processing phase and

Fig. 3. FOW

The pre-processing phas
phase relies on the FC mod
two phases are detailed in s

FOWLA, A Federated Architecture for Ontologies

ms the bulk of necessary inferences to satisfy a data requ
ne or more federated ontologies. To do so, FC contains

Rule Selector (RS) and a Rule Engine associated to
ponents are responsible to control the interoperation amo
based on an ensemble of rules (contained in the FLS s
ion logic formalism (e.g.: OWL).
S) sub-module is responsible for improving backwa
d, when considering the context of executing queries o
gnments, the number of SWRL rules highly impacts qu
odule attempts to select the necessary and sufficient ense
ven query. This avoids the reasoner to perform unnecess
nsiderably slow down query processing. Further details
ub-module are presented in section 4.2.
e of a backward-chaining (or hybrid) reasoner for the
teroperating several ontologies with forward-chaining r
nsiderable amount of materialized data. Besides, any on
y a re-computation of all inferred data.
he FOWLA architecture comprises two phases (see Fig.
a query execution phase.

WLA: pre-processing and query execution phases

se is responsible for creating the FD. The query execut
ule for retrieving data from the federated ontologies. Th
ections 4.1 and 4.2, respectively.

103

uest
the

o an
ong
sub-

ard-
over
uery
em-
sary
s of

FC
rea-

ntol-

. 3):

tion
hese

104 T.M. Farias et al.

4.1 Pre-processing Phase

For a full ontology interoperation, several complex alignments can be necessary. The
ontology matching process is a fastidious and time consuming task. Because of this,
we recommend the use of automatic ontology matching tools such as ASMOV [21] to
support the alignments’ conception (i.e. matching results). Nevertheless, these auto-
matic matching solutions depend on the level of user involvement when verifying and
validating the output alignments. Moreover, such solutions are not able to output
complex alignments, such as the one listed in 4.2, where a sub-graph of Onto2 is
mapped to a sole Onto1 property. Therefore, the user involvement in the ontology
matching process is crucial as it was also noticed by Shvaiko and Euzenat in [21].

onto2:C21(?x1) ∧ onto2:C22(?x6) ∧ onto2:C23(?x3) ∧ onto2:C23(?x7) ∧
onto2:C24(?x5) ∧ onto2:C25(?x4) ∧ onto2:C26(?x2) ∧ onto2:p21(?x4, ?x5) ∧ onto2:p22(?x5, ?x6) ∧ onto2:p23(?x2, ?x4) ∧ onto2:p24(?x2, ?x1) ∧
onto2:p25(?x2, ?x3) ∧ onto2:p28(?x7, ?x8) ∧ onto2:p26(?x5, ?x7) ∧
onto2:p27(?x6; ‘‘Category”) ∧ onto2:p28(?x3; ‘‘ProductResource”) →
onto1:p11(?x1; ?x8)

(4.2)

Once we defined the rules forming ontology alignments, if the alignment format is
not a rule-based format such as SWRL, a conversion process is executed (as illu-
strated in Fig. 3). The resulting alignments in SWRL rules format are included in the
FLS sub-module. Afterwards, the Query Module (QM) identifies each alignment
presenting schema heterogeneity, and therefore needing class instantiations and prop-
erty assertions for modelling data from other ontologies. The QM retrieves instances
which do not have property assertions for mapping the data from a source ontology to
one target ontology. For doing so, it relies on SPARQL queries addressed over the
knowledge base (KB). Our choice of SPARQL is dictated by the triple store chosen
for the implementation (see section 5). Indeed, the Stardog triple store only supports
SPARQL as a query language (see http://docs.stardog.com/).

To exemplify this process, let us consider the rule swrl4 (see 4.1) as an input to
QM. If a triple onto2:C_1 onto2:p2 “data”^^xsd:string is inserted by an external
system into the knowledge base, QM materializes the triples onto1:A_1 rdf:type
onto1:q1 (i.e. class instantiation) and onto2:C_1 onto1:q1 onto1:A_1 (i.e. property
assertion). Besides, if Onto2 is already populated, QM executes the query Q (see 4.3)
over KB based on swrl4 to retrieve the instances of onto2:C (also onto1:D by apply-
ing swrl2) with missing property assertions.

SPARQL Query :
executed

Q : SELECT ?x WHERE { ?x rdf:type onto2:C.
FILTER NOT EXISTS {?x onto1:q1 ?y} } (4.3)

These properties block the data mapping between Onto2 and Onto1 created when
applying swrl4. Finally, the absent properties are materialized along with new in-
stances for each one (i.e. object property value).

The pre-processing phase materializes some property assertions if and only if ne-
cessary due to schema heterogeneity. This materialized data is deleted when the con-
tents of the FLS sub-module changes. Besides, if ontology alignments are modified,

 FOWLA, A Federated Architecture for Ontologies 105

the QM is re-executed. The pre-processing phase outputs an ensemble of SWRL rules
for the query execution phase that is described in the following section.

4.2 Query Execution Phase

Once federal description is accomplished, we select the specific rules necessary to
answer a given query addressed over the federated ontologies. For addressing this
task, we have developed a SPARQL Query Parser (QP). As shown in Fig. 3, the
SPARQL query is passed to the QP module which parses it and isolates the concepts
and properties it contains. Based on elements such as domain/range restrictions for
properties involved in the query, the RS sub-module selects SWRL rules that have to
be taken into account for answering the query. The first action performed by the RS
module is to filter rules in FLS sub-module selecting only those rules that can infer
data for the properties and/or concepts in the query (i.e. query graph patterns QGP
as illustrated in Fig. 3). Secondly, for further rule filtering, the RS sub-module identi-
fies the rules which have the same property in their head and selects only those res-
pecting the domain/range restriction defined in the query. To exemplify this, let us
suppose the query Q’ (see 4.4) and the same FLS described in (4.1).

Federal Logical
Schema

SPARQL
Query executed

swrl1: onto1:D(?x) → onto2:C(?x)

swrl2: onto2:C(?x) → onto1:D(?x)

swrl3: onto1:D(?x) ∧ onto1:q1(?x, ?y) ∧
onto1:A(?y) ∧ onto1:q2(?y, ?z) → onto2:p2(?x,
?z)

swrl4: onto2:C(?x) ∧ onto2:p2(?x,?z) ∧
onto1:A(?y) ∧ onto1:q1(?x, ?y) →
onto1:q2(?y,?z)

Q’ : SELECT ?x ?y WHERE{ ?x rdf:type onto2:C.
?x onto2:p2 ?y }

(4.4)

Considering query Q’, the RS sub-module selects only the rules swrl1 and swrl3 be-
cause they are the only ones capable of inferring data for onto2:C and for onto2:p2,
respectively. Besides, swrl3 is chosen because it satisfies the domain restriction de-
fined in the query Q’ (i.e. onto2:C). These rules represent the necessary and sufficient
subset of FLS for answering Q’. Moreover, access policy for interoperation (APIO) is
also used as an input for the RS sub-module (see Fig. 3). This input identifies which
rules are allowed to be considered by the FC module, with respect to data access
rights. For example, if we consider the case where one system is based uniquely on
Onto1, such system could choose not to share the data from onto1:q2. In this case,
and if query Q’ is addressed by another system uniquely based on Onto2, RS does not
select swrl3. This is justified by the fact that the system addressing query Q’ is not
allowed to have access to onto1:q2 data values. Finally, our system outputs the eligi-
ble set of rules for interoperate the federated ontologies. This is called the Activated
Rule Set (ARS). We therefore execute the initial query over the data contained in the
KB and considering only the rules present in the ARS set.

106 T.M. Farias et al.

Therefore, the data prese
ly restructured according to
with the OWL reasoner pro
to handle different schemas

5 Results and Disc

The implementation of the
interoperating numerous on
(2) it allows avoiding data r
through preserving the auto
ing with vocabulary terms
ing query execution time.

For demonstrating advan
and the alignments describ
strated in Fig. 4. FD(X, Y)
between ontologies X and Y
roperable Schema (IS) as
necessary for exchanging d
of correspondent classes an
note IS(X,Y) the interopera
inference of data from one
the number of alignments (
conception of the whole FD

Fig. 4. Case

For example, let us con
equivalent to the whole on
nent defined, all data of

ent in the KB, for the considered ontologies, is automatic
o the rules in the ARS set. The SWRL engine associa
ocesses these rules (see Fig. 3). This mechanism allows
s, thus addressing schema interoperability issue.

cussion

e FOWLA architecture comes with several advantages
ntologies: (1) it allows inferring new ontology alignme
redundancy; (3) it allows modularizing the maintainabil

onomy among ontology-based systems; (4) it allows que
issued from different ontologies and (5) it allows impr

ntage (1), let us suppose four ontologies (A, B, C and
ed as FD(A, B), FD(B, C), FD(C, D), FD(A, D) and i
represents the contents of the Federal Descriptor mod

Y. For each of the considered ontologies, we define an In
the sub-graph of this ontology that contains all schem

data with another ontology. The IS sub-graph is compo
nd properties between the two considered ontologies.
able schema of ontology X for ontology Y. Allowing
ontology to others (i.e. rule-based interoperability) redu
i.e. rules) that we need to conceive and, in some cases,

D(X,Y) component between two ontologies.

study of four ontologies implementing FOWLA

nsider that ontology C is already populated and IS(C,B
ntology C. Therefore, with the complete FD(B,C) com
C is accessible by querying ontology B. Moreover,

cal-
ated
s us

for
ents;
lity,
ery-
rov-

d D)
illu-
dule
nte-
mas
osed
We
the

uces
the

B) is
mpo-

the

 FOWLA, A Federated Architecture for Ontologies 107

definition of FD(A,B) allows retrieving data from the so populated ontology C by
querying A (more precisely the data modelled using IS(B,A) ∩ IS(B,C)). In this case,
we do not need to define FD(C,A) because A and C are indirectly aligned and totally
integrated by the FC using FD(A,B) and FD(B,C). For further explanation, let us
suppose that FD(A,B) and FD(B,C) respectively contain swrl5 and swrl6.

SWRL rules
swrl5 : ontoA:Aa(?x) → ontoB:Bb(?x)

swrl6 : ontoB:Bb(?x) → ontoC:Cc(?x)
(5.1)

SPARQL Query
executed

Q’’ : SELECT ?x WHERE { ?x rdf:type
ontoC:Cc. } (5.2)

Inferred fact(s) ontoA:Aa(?x) → ontoC:Cc(?x) (5.3)

Considering a rule engine for interpreting those rules and the SPARQL query Q’’
(5.2), the rule engine infers the transitive relation: ontoA:Aa(?x) → ontoC:Cc(?x)
(5.3). Then, the query Q’’ retrieves all instances which belong to ontoA:Aa, ontoB:Bb
and ontoC:Cc classes. Therefore, we do not need to define the alignment (5.3) in
FD(A,C), because it is inferred by the FC at query execution time.

The advantage (2) is justified with the use of backward-chaining techniques [22]
by the Federal Controller. They allow the federated ontologies to not replicate intero-
perable data. This is because rule inference is performed at query (i.e. goal) execution
and doesn’t need materializing the same data. Consequently, the data modelled with
one ontology is available (inferred) for the other ontologies by applying rule-based
alignments through backward reasoning (i.e. backward from the goal). Moreover,
once data changes in the source ontology, the FC infers the newly modified data to
the target ontologies at next query execution.

For exemplifying the advantage (3), let us suppose a modification in the ontology
schema A, more precisely in the sub-graph IS(A,D) – { IS(A,B) ∩ IS(A,D) } from our
previous case study represented in Fig. 4. In this case, the sole components which
have to evolve are FD(A,D) and IS(D,A). Doing so, we preserve the full interoperabil-
ity among A, D and the other ontologies. The other FDs and ontology schemas remain
unchanged. Note that only the system based on ontology A has to evolve which is not
the case for systems based on ontologies B, C and D. This is explained by the fact that
the underlying schemas for ontologies B, C and D have not been modified. Therefore,
besides implementing ontology interoperability, we also preserve each systems’
autonomy.

For evaluating FOWLA and justifying the advantage (4) and (5), we consider two
OWL ontologies (Onto1 and Onto2), for which we define the FD(Onto1,Onto2). Ta-
ble 1 lists some characteristics of these ontologies. The FLS (i.e. alignments) between
these two ontologies comprises 474 SWRL rules which were manually created (most
of them are complex alignments, involving numerous predicates). The number of
rules necessary for aligning Onto1 and Onto2 is justified by the fact that
IS(Onto1,Onto2) is almost equivalent to Onto1. Thus, it means that practically all data
described by using terms from Onto1 can be also described using terms from Onto2.

108 T.M. Farias et al.

For our experiments, we have used a 2.2.1 Stardog triple store (see
http://docs.stardog.com/) which played the role of the server and was
encapsulated in a virtual machine with the following configuration: one microproces-
sor Intel Xeon CPU E5-2430 at 2.2GHz with 2 cores out of 6, 8GB of DDR3 RAM
memory and the “Java Heap” size for the Java Virtual Machine set to 6GB.

Table 1. Characteristics of Onto1 and Onto2

OWL entities Onto1 Onto2
Classes 30 802
Object properties 32 1292
Data properties 125 247
Inverse properties 7 115
Triples in the TBox 2212 9978
DL expressivity ALCHIF(D) ALUIF(D)

We chose Stardog because it provides an OWL reasoner associated to a SWRL en-
gine and it is based on backward-chaining reasoning [22]. Indeed, our RS sub-module
only aims at hybrid or backward-chaining reasoning approaches (as in forward-
chaining reasoning [22] are materialized all facts entailed before query execution). So,
Stardog’s reasoner and the RS sub-module constitute the Federal Controller (FC)
module. The considered triple store contains 4 repositories. Each repository stores the
Onto1 and Onto2 knowledge base (Onto1’s TBox and ABox and Onto2’s TBox and
ABox). We name those repositories KB1, KB2, KB3 and KB4. For the considered
example, each repository’s ABox contains 1,146,294 triples. For testing purposes
and for each repository, we have implemented sets of rules for interoperability
with different cardinalities. Table 2 lists the considered set of rules along with their
characteristics.

Table 2. Rules implemented for each knowledge base (KB)

 Number of
rules

Characteristics

KB1 474 All the rules contained in the FLS (all the rules forming the alignment between
Onto1 and Onto2)

KB2 266 All subsumption rules along with all the rules that have elements from Onto1
in their head

KB3 178 All rules from KB2 minus some of the rules that have elements from Onto1 in
their head (we aimed at reducing the data inferred)

KB4 variable All the rules contained in the Activated Rule Set (ARS) conceived by the RS.

The client machine has the following configuration: one microprocessor Intel Core
CPU I7-4790 at 3.6GHz with 4 cores, 8GB of DDR3 RAM memory at 1600MHz and
the “Java Heap” size set to 1GB. The Rule Selector is executed on the client machine.

Table 3 shows the queries used in our experiments. For the sake of simplicity, we
note Cij the class Cj in ontology Ontoi, respectively pkl the pl property in ontology

 FOWLA, A Federated Architecture for Ontologies 109

Ontok, where i, j, k, l ∈ ℕ*. Each one was executed 30 times over the knowledge
bases KB1, KB2, KB3 and KB4. Table 4 shows the results we obtained. The capa-
bility of retrieving results for query Q2 and Q3 demonstrate that our approach allows
querying federated ontologies, considering them as one unique ontology. This is justi-
fied by the fact that we can write queries using, at same time, terms from Onto1 and
Onto2. So, this justifies the advantage (4).

Table 3. List of queries addressed over the considered knowledge bases

Query name SPARQL Query

Q1 SELECT ?x ?y WHERE { ?x onto1:p11 ?y . }
Q2 SELECT ?x ?y WHERE { ?x a onto2:C21 . ?x onto1:p11 ?y . }

Q3
SELECT ?x ?u WHERE { ?x a onto1:C11 . ?y a onto2:C22 .
?x onto1:p12 ?y . ?y onto1:p11 ?x . }

In Table 4, the “#RuleSet” column displays the number of rules as implemented

over the considered KB, at query execution time. The “#Results” column shows the
number of tuples that were retrieved as a result for the considered query (e.g. (?x,?y)
for Q1). In Table 4, “-” means that no results were retrieved for the considered query
after more than one minute waiting time. The reason relies in the fact that the memory
heap size (6GB) for the Java Virtual Machine is exceeded.

Table 4. Query Performance Evaluation

Query
Knowledge
base

Mean execu-
tion time
(in seconds)

Standard
Deviation
(σ)

#RuleSet #Results

Q1

KB1 - - 474 0

KB2 - - 266 0

KB3 9.25 12.21 178 1683

KB4 2.23 1.78 16 38318

Q2

KB1 - - 474 0

KB2 - - 266 0

KB3 32.99 0.75 178 74

KB4 0.16 0.04 2 74

Q3

KB1 - - 474 0

KB2 - - 266 0

KB3 71.62 0.95 178 0

KB4 0.88 0.43 5 9

When analyzing results, we can see that, for answering query Q1, our methodology

has selected 16 rules from the initial set of 474 rules (i.e. the FLS). The results also
indicate that without our approach no result is retrieved as long as the entire FLS is
considered, due to memory overload and after about 3 minutes of query execution
over KB1. When executed over KB2, Q1 evidences that reducing the cardinality of
the initial rule set to 266 does not prevent memory overload. When executing Q1 over
KB3 (which implements less than 40% of FLS rules), Q1 returns less than 5% of all

110 T.M. Farias et al.

expected results. This is explained by the fact that several of the relevant rules for Q1
were removed when conceiving our test knowledge bases. Moreover, when compared
to Q1 over KB4, Q1 over KB3 has a duration 4 times greater and retrieves 22 times
less results. Indeed, KB4 implements the only rules contained in the ARS, so the re-
sults of Q1 executed over KB4 represent the gain (in terms of query execution time
and results retrieved) achieved by implementing our approach. When applied to Q2,
the RS sub-module takes into account the domain restriction defined within Q2 (e.g.
?x a onto2:C21). It then creates an ARS set containing only 2 rules instead of 16, as it
was previously the case for Q1 (which did not had any domain information for the
property onto1:p11). For the above considered tests, the mean query execution times
have been considerably reduced. The standard deviation for the query response time is
much lower using our RS sub-module, meaning the query response time is more cen-
tralized onto the mean.

6 Conclusion and Future Work

In this paper, we have presented an approach for federating ontologies in order to
address the problem of semantic interoperability. When comparing our approach to
existing ones (i.e. [17] or [19]), we identify the following advantages:

• It allows composing queries using terms from different ontologies (be it source or
target);

• It takes advantage of existing inference mechanisms for deducing new knowledge.
This is useful as it allows writing less alignment rules when performing ontology
matching.

The FOWLA architecture is proven, through the above presented benchmarks,
as allowing reducing execution time for queries addressed over rule-based alignments
between the considered ontologies. Future work will concern defining the strategies
for ordering ontologies to be aligned in order to best exploit the existing inference
mechanisms. Another improvement may concern the integration of SWRL built-ins
(e.g. swrlb vocabulary [13]) at the level of the FLS sub-module. Furthermore, we
wish to investigate the use of query languages other than SPARQL for implementing
our approach.

Acknowledgements. This work has been financed by the French company ACTIVe3D (see
http://www.active3d.net/fr/) and supported by the Burgundy Regional Council
(see http://www.region-bourgogne.fr/).

References

1. Halevy, A.Y., Ashish, N., Bitton, D., Carey, M., Draper, D., Pollock, J., Rosenthal, A.,
Sikka, V.: Enterprise information integration: successes, challenges and controversies.
In: Proceedings of the 2005 ACM SIGMOD international conference on Management of
data, pp. 778–787 . ACM, New York, NY, USA (2005)

 FOWLA, A Federated Architecture for Ontologies 111

2. de Farias, T.M., Roxin, A., Nicolle, C.: A Rule based system for semantical enrichment
of building information exchange. In: CEUR Proceedings of RuleML (4th Doctoral
Consortium), Prague, Czech Republic. Vol. 1211, p. 2 (2014)

3. Dean, M., Schreiber, G. (Eds): OWL Web Ontology Language Reference, W3C
Recommendation (2004). www.w3.org/TR/2004/REC-owl-ref-20040210

4. Halevy, A.: Why Your Data Won’t Mix. Queue 3(8), 50–58 (2005)
5. Borst, P.: Construction of Engineering Ontologies for Knowledge Sharing and Reuse.

Ph.D. Dissertation, Tweente University (1997)
6. The World Wide Web Consortium (W3C). XML Technology, www.w3.org/standards/xml
7. Beckett, D. (Ed.): RDF/XML syntax specification (Revised), W3C Recommendation

(2004). www.w3.org/TR/REC-rdf-syntax/
8. Data Management and Query Processing in Semantic Web Databases, Sven Groppe, Insti-

tute of Information Systems, University of Lübeck,, Springer-Verlag Berlin Heidelberg
(2011). ISBN 978-3-642-19356-9

9. Brickley, D., Guha, D.V.: RDF vocabulary description language 1.0: RDF Schema, W3C
Recommendation (2004). www.w3.org/TR/rdf-schema/

10. Motik, B., Patel-Schneider, P.F., Parsia, B.: OWL 2 Web ontology language structural
specification and functional-style syntax (Second Edition). W3C Recommendation (2012).
www.w3.org/TR/owl2-syntax/

11. Clark, K.G., Feigenbaum, L., Torres, E. (ed): SPARQL protocol for RDF, W3C Recom-
mendation (2008). www.w3.org/TR/rdf-sparql-protocol/

12. RuleML, www.ruleml.org
13. The World Wide Web Consortium (W3C). SWRL: A Semantic Web Rule Language

Combining OWL and RuleML (2004). www.w3.org/Submission/SWRL/
14. Euzenat, J., Shvaiko, P.: Ontology Matching, 2nd edn. Springer-Verlag, Berlin Heidelberg,

Germany (2013)
15. Sheth, A.P., Larson, J.A.: Federated Database Systems for Managing Distributed,

Heterogeneous, and Autonomous Databases. ACM Computing Surveys 22(3) (1990)
16. Heimbigner, D., McLeod, D.: A Federated Architecture for Information Management.

ACM Trans. Off. Znf. Syst. 3(3), 253–278 (1985)
17. Makris, K., Gioldasis, N., Bikakis, N., Christodoulakis, S.: Ontology Mapping and

SPARQL Rewriting for Querying Federated RDF Data Sources. In: Meersman, R., Dillon,
T., Herrero, P. (eds.) OTM 2010. LNCS, vol. 6427, pp. 1108–1117. Springer, Heidelberg
(2010)

18. Makris, K., Gioldasis, N., Bikakis, N., Christodoulakis, S.: SPARQL Rewriting for Query
Mediation over Mapped Ontologies (2010). http://www.music.tuc.gr/reports/SPARQLRE
WRITING.PDF

19. Correndo, G., Salvadores, M., Millard, I., Glaser, H., Shadbolt, N.: Sparql query rewriting
for implementing data integration over linked data. In: Proceedings of the 2010
EDBT/ICDT Workshops, pp. 4:1–4:11, New York, NY, USA. ACM (2010)

20. Motik, B., Sattler, U., Studer, R.: Query Answering for OWL-DL with Rules. Journal of
Web Semantics 3(1), 41–60 (2005)

21. Shvaiko Pavel and Jerome Euzenat: Ontology matching: State of the art and future
challenges. IEEE Trans. on Knowl. and Data Eng. 25(1), 158–176 (2013)

22. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn (2009)
23. Horrocks, I., Patel-Schneider, P.F., Bechhofer, S., Tsarkov, D.: OWL rules: A proposal

and prototype implementation. Journal of Web Semantics 3(1), 23–40 (2005)

User Extensible System to Identify Problems
in OWL Ontologies and SWRL Rules

João Paulo Orlando1(B), Mark A. Musen2, and Dilvan A. Moreira1

1 SCC-ICMC University of São Paulo, São Paulo, Brazil
{orlando,dilvan}@icmc.usp.br

2 BMIR - Stanford University, Stanford, USA
musen@stanford.edu

Abstract. The Semantic Web uses ontologies to associate meaning to
Web content so machines can process it. One inherent problem to this
approach is that, as its popularity increases, there is an ever grow-
ing number of ontologies available to be used, leading to difficulties in
choosing appropriate ones. With that in mind, we created a system that
allows users to evaluate ontologies/rules. It is composed by the Metadata
description For Ontologies/Rules (MetaFOR), an ontology in OWL, and
a tool to convert any OWL ontology to MetaFOR. With the MetaFOR
version of an ontology, it is possible to use SWRL rules to identify anoma-
lies in it. These can be problems already documented in the literature or
user defined ones. SWRL is familiar to users, so it is easier to define new
project specific anomalies. We present a case study where the system
detects 9 problems, from the literature, and two user defined ones.

Keywords: Semantic web · Swrl rules · Detect problems · Detect
anomalies · Evaluate ontologies

1 Introduction

The Semantic Web is a technology that explores the association of meaning to
content present on the Web, so it can be processed by machines. To enable such
processing, it is necessary to have a structured collection of information (ontolo-
gies) and an inference rule set [2]. In addition, for the development of practical
semantic applications, ontologies may use rules to facilitate the definition of log-
ical deductions [1]. The Semantic Web has renewed and increased the interest
in rule-based systems and their development [14].

In order to define and instantiate ontologies on the Web, the W3C recom-
mended the OWL (Web Ontology Language). The OWL expressiveness may not
be sufficient to model all kinds of problems, as several problems need rules in
the Horn-like (IF-THEN) format. To represent this type of rules, in 2004 the
Semantic Web Rule Language (SWRL) was proposed to the W3C as a recom-
mendation. SWRL complements OWL because it includes a high-level abstract
syntax for Horn-like rules [9]. SWRL rules can be added to an OWL file as valid

c© Springer International Publishing Switzerland 2015
N. Bassiliades et al. (Eds.): RuleML 2015, LNCS 9202, pp. 112–126, 2015.
DOI: 10.1007/978-3-319-21542-6 8

User Extensible System to Identify Problems in OWL Ontologies 113

OWL. Even if SWRL is not a W3C recommendation (standard), it is a popular
language with support in many tools, such as Protégé, Pellet and Hermit1.

As the Semantic Web popularity increases there is an ever-growing number
of ontologies available to be used, leading to difficulties in choosing appropriate
ones [12]. In addition, other problems (circularity, redundancy, etc.) may occur
when the integration of these different ontologies is needed [1]. To help solve
these problems, inherent to the Semantic Web structure, techniques that help
users to analyze and evaluate ontologies and its rules are needed.

With that in mind, we created a system that helps in this evaluation scenario.
This system includes an OWL ontology, the METAdata description For Ontolo-
gies/Rules (MetaFOR), and a tool to convert any OWL ontology to MetaFOR.
It aims to help OWL/SWRL users in the process of analyzing and evaluating any
OWL ontology. In order to do so, the system converts ontologies to MetaFOR
and applies rules to the resulting metadata to find problems. The system pro-
vides default rules to detect a set of problems, known in the literature, but users
can also write their own rules using SWRL. These user rules can detect new or
unusual problems or enforce project-wide specific conventions in an ontology (or
ontologies).

This system offers two main advantages. The first one is to use rules in OWL
and SWRL to identify patterns/problems/anomalies in ontologies. These lan-
guages are well known among users, so that they will find no difficulties in using
them. The second advantage is that users can choose the patterns/problems/
anomalies that they wish to identify. With the ontology converted to MetaFOR,
users can create their own rules to identify the patterns/problems they are inter-
ested in. Moreover, one can also use other tools and libraries, already available
for OWL ontologies, to extract more information from the MetaFOR format.

For the examples used in this paper, we are going to use the Family Rela-
tionships Ontology (FRO)2 as the ontology being converted to MetaFOR.

2 Related Work

Before developing this system, the authors have conducted a survey in the lit-
erature for works describing systems that identify problems/patterns on OWL
ontologies with/without SWRL rules. This survey showed that such systems
have very limited functionality.

In the first system, the authors focus on the detection of anomalies that occur
when rules and ontological definitions are combined [1]. For instance, an anomaly
detected is the Circularity Between Rules and Taxonomy: it occurs when a head
atom implies some body atom of the same rule. This anomaly occurs because a
consequent predicate is subclass of antecedent predicate. Anomaly identification
is done using a language called DATALOG* with a system called DisLog Devel-
opers’ Kit. One drawback of this approach is that semantic web users must learn
the DATALOG* language, and the system that runs it. In addition, in our work,
1 http://clarkparsia.com/pellethttp://hermit-reasoner.com
2 http://protegewiki.stanford.edu/wiki/Protege Ontology Library

http://clarkparsia.com/pellet http://hermit-reasoner.com
http://protegewiki.stanford.edu/wiki/Protege_Ontology_Library

114 J.P. Orlando et al.

metadata is extracted from the ontology and then used by the rules detecting
anomalies that simplify the work of writing them.

Some systems use metrics, in the form of frameworks and guidelines [4,6,11],
to evaluate ontologies. These metrics have to be verified in the ontologies. They
allow the creation of more consistent ontologies. However, users still have the
need to perform extensive manual verification. On the other hand, our system
converts the target ontology to MetaFOR and then checks it automatically. It
even checks some of the guidelines in Gomez-Perez [6].

In Hassanpour et al. [7] and Orlando et al. [10], two different methods to
visualize SWRL rules are presented. Hassanpour et al. [7] shows a visualization
technique that creates a rule dependency graph. This method groups graph
nodes into layers, based on their dependencies, clustering nodes within a layer
if they have similar dependencies. Users can then examine patterns of logical
relationships in a rule set. In the other work, Orlando et al. [10] visualize rules
by their similarities (patterns). They use decision trees to group rule atoms
in nodes of the trees. Two methods to cluster SWRL rules are presented in
Orlando et al. [10] and Hassanpour et al. [8]. In the first one, the clustering is
based on the occurrence of common atoms [10]. In the second, the clustering
is based on syntactic structure techniques in which two rules are in the same
group if they have common features, such as having the same number of classes,
object properties, data properties, etc [8]. A limitation, of these visualization
and clustering techniques, is that they only use pre-defined similarity patterns;
users cannot add new patterns. In our work, users can build their own rule sets
to find patterns in OWL ontologies (and SWRL rules).

Some kinds of redundancy (a problem type in ontologies) may be detected
by the use of some specific tools [1,13]. But each tool detects only one kind of
problem and the detection is limited to pre-defined problems/patterns. Some
contradiction problems in ontologies can also be detect by a reasoner, but only
if the ontology has individuals instantiated. That is not always the case. Most
reasoners will also not work with big ontologies.

After analyzing these systems, we concluded that each has one or more of
this three deficiencies: (i) work only with a limited set of predefined patterns,
(not allowing users to create new ones), (ii) ontology evaluation is done manually
and (iii) use languages that are not familiar to most users in the semantic web
community. To solve these deficiencies, our system converts the target ontology
to the MetaFOR ontology (section 3) and then applies rules, written in SWRL,
to find problems/patterns in the ontology. Users can also extend these SWRL
rules with their own. To test this approach, a case study (section 4) was created
and analyzed.

3 The MetaFOR Ontology

The first step so that users can identify problems in an OWL ontology is to
perform the ontology conversion to the MetaFOR ontology. In this ontology,
all elements (from converted ontologies) considered important for analyses are

User Extensible System to Identify Problems in OWL Ontologies 115

represented. These elements will be discussed in the next sections. We believe
that the current MetaFOR format represents sufficient elements, from OWL
ontologies, to be used to identify the most useful patterns in them. At the same
time, it is simple enough to produce ontology representations that are simple
to use when writing pattern detection rules. That has been the case in our
tests writing rules to detect problems, documented in the literature or created
by us.

The MetaFOR ontology separates the OWL ontology elements in three types:
entities, entity relationships and data relationships.

3.1 Entities

Entities represent the ontology entities (classes, properties, datatypes and named
individuals) minus individuals that do not represent SWRL rules, annotation
properties and datatypes. Entities of the ontology being processed are converted
to MetaFOR individuals of the following classes:

– Class: class entities.
– ObjectProperty: object property entities. This class has tree subclasses:

• TransitiveObjectProperty: transitive property entities;
• SymmetricObjectProperty: symmetric property entities;
• FunctionalObjectProperty: functional property entities;

– Rule: rule instance entities.
– Atom: atom instance entities.
– Argument: argument instance entities.
– Cardinality: cardinality instance entities.

• MaxCardinality: cardinality instance entities of Maximum type.
• MinCardinality: cardinality instance entities of Minimum type.
• ExactCardinality: cardinality instance entities of Exact type.
• SomeValuesFromCardinality: cardinality instance entities of Some Values

From type.
• AllValuesFromCardinality: cardinality instance entities of All Values From

type.

For example, an object property entity (from FRO), called hasParent, that rep-
resents the relation between a child and his father in an ontology becomes an
individual of the class ObjectProperty in the MetaFOR. If in this same ontology
there is also a hasAncestor property (maybe a parent property of hasParent), it
becomes an individual of TransitiveObjectProperty.

3.2 Entity Relationships

Entity relationships represents the possible relations between entities in an ontol-
ogy, such as disjoint, equivalent, inverse, etc. They are converted to object prop-
erties in MetaFOR.

116 J.P. Orlando et al.

For instance, if the hasParent property entity (from last example) has a
cardinality limiting the number of parents to a maximum of two, the MetaFOR
individual representing it will have a hasCardinality property connecting it to an
anonymous individual of type MaxCardinality. This anonymous individual will
also have a hasCardinalityNumber data property of value 2. The object properties
in MetaFOR represent:

– hasCardinality: cardinality restrictions.
– isDisjoint: disjointness with another class or property.
– hasDomain: the relationship between a property and a domain class.
– hasRange: the relationship between a property and a range class.
– isEquivalent: equivalence with another class or property.
– hasInverse: the relationship between inverse properties.
– hasSuper: the relationship between a subclass and each of its parents, imme-

diate ones or on the hierarchy above.
– hasDirectSuper: the relationship between a subclass and each of its direct

parents.
– hasSub: the inverse of hasSuper.
– hasDirectSub: the inverse of hasDirectSuper.

There are also object properties to represent just relationships between rule
elements:

– hasAntecedentAtom, hasConsequentAtom: the relationship between a rule and
one of its atoms.

– hasPredicate: relationship between an atom and one of its predicates.
– hasArgument, hasFirstArgument, hasSecondArgument: relationship between

an atom and one of its arguments. hasFirstArgument and hasSecondArgument
are hasArgument sub properties. For example, in the atom hasParent(?X,
?Y), X is the first argument and Y is the second.

– sameAntecedent, sameConsequent: relationship between two rules stating that
they have, respectively, the same antecedents or consequents. It means that
each atom, in one rule antecedent (or consequent), is equal or equivalent to
another atom in the other rule antecedent (or consequent).

– subsumes: relationship between two rules where the antecedent of the first
subsumes the antecedent of the second. If rule A subsumes rule B, it means
that all atoms in B’s antecedent exist in A’s antecedent but A’s antecedent
has atoms not contained in B’s. The system also checks if they are used as
built-ins as greaterThanOrEqual, lessThanOrEqual, among others.

It is possible to implement the last three relationships as SWRL built-ins and
leave them to be defined as part of the rules detecting specific problems. However,
many reasoners (including Hermit) and rule engines do not work with built-ins,
so it was decided to define them as part of the ontology and as a relationship
that a converter program must generate.

User Extensible System to Identify Problems in OWL Ontologies 117

3.3 Data Relationships

Data relationships are just MetaFOR data properties used to save some key
information about the ontology being converted. For instance, in the previous
example, the anonymous individual (representing hasParent cardinality) had a
hasCardinalityNumber data property of value 2.

These data properties are added to individuals of the MetaFOR ontology to
inform:

– hasCardinalityNumber: numerical values of the cardinality (to Cardinality indi-
viduals).

– hasInstancesNumber: the number of individuals belonging to a class;
– isLeaf: that the represented entity does not have a sub entity (boolean). For

example, if a class has no subclasses;
– usedInRestrictions: that the represented entity is used in any restriction in

the ontology (boolean);
– usedInRules: that the represented entity is used in at least one rule (boolean);

3.4 Converter

The first step to identify problems in OWL ontologies (and/or SWRL rules) is
to perform the conversion of the ontology to MetaFOR format (sections 3.1, 3.2
and 3.3). We have created a program, in Java, for this conversion.

To show an example of conversion, the FRO ontology was converted to
MetaFOR. Figure 1 shows some individuals of the resulting conversion, using
the Protégé tool [5]. In it, the instance URI1 Child, which represents the class
Child of the original ontology, is selected. It is an instance of class Class. The URI
of URI1 Child is generated by the converter that has to manage name spaces to
avoid name collisions. Ontologies can use many base URIs (specially when mul-
tiple ontologies are integrated).

Figure 1 also shows the object properties of URI1 Child. This instance has
hasSuper relations with the instances URI1 Person, URI1 Relative and URI0
owl Thing (representing classes Person, Relative and owl:Thing), but a has-
DirectSuper relation only with URI1 Relative. The figure also shows the data
properties of the instance: they inform that the class Child, represented by this
instance, is not used in any rule or restriction, does not have any instances and
is not a leaf class.

In order to create the converter, we used the OWL API3 and Java. The
Protégé ontology editor4 is used to view the converted ontologies. After an ontol-
ogy is converted to MetaFOR, sets of rules can be used to find problems with
it. In the next section, we show a case study where rule sets are used to find
ontology problems.

3 The OWL API: http://owlapi.sourceforge.net/
4 Protégé: http://protege.stanford.edu/

http://owlapi.sourceforge.net/
http://protege.stanford.edu/

118 J.P. Orlando et al.

Fig. 1. Result of conversion

4 Case Study

In this section, we show a case study where we were able to detect 9 problems,
described in the literature [4,6,11], and two user defined ones in modified versions
of the FRO ontology. Each subsection presents a problem (using the FRO), a rule
(or rules) to find it and an explanation of the rule action. Normally, these types
of problems may occur during the integration of different ontologies. However,
to make the examples easy to understand, only the FRO ontology is used and
problematic axioms/rules are inserted into it. It is important to highlight that
some of the problems shown may seem straightforward (when using a simple
ontology, such as the FRO), but one has to keep in mind that they may occur
in a big ontology, where it is difficult to keep track of the many entities on it, or
involve problematic classes or properties distant in the hierarchy.

To identify the problems, SWRL rules are going to be used. But other rule
languages could have been used like, for instance, SPARQL 1.1. We preferred
SWRL because its syntax is more compact. To execute the SWRL rules, we used
Protégé 4.3 and the Hermit 1.3.8 and Pellet reasoners available in it.

This case study is divided in three problem types: circularity, contradictory
knowledge and redundant knowledge.

4.1 Circularity Problems

Circular problems occur when a class is defined as a specialization or general-
ization of itself [1,6]. Circular problems have a severe impact in reasoner per-
formance [1]. In this subsection, one circularity problem is presented, it occurs
between properties.

User Extensible System to Identify Problems in OWL Ontologies 119

Problems in Properties. The circular properties problem occurs in ontologies
in which there are two inverse properties that have the same or equivalent domain
and the same or equivalent range [1]. In order to identify this problem, we have
created the following SWRL rule:

hasInverse(?p1, ?p2), hasDomain(?p1, ?d1), hasDomain(?p2, ?d2),
isEquivalent(?d1, ?d2), hasRange(?p1, ?r1), hasRange(?p2, ?r2),

isEquivalent(?r1, ?r2) ->
Circular_Properties(?p1), Circular_Properties(?p2)

With this rule two properties were found in FRO: hasChild and hasParent,
represented by the URI1 hasChild and URI1 hasParent individuals (classified as
instances of the Circular Properties class). The properties have the range equal to
domain (Person) and this ontology does not have more specific classes that could
represent the domain and range. In this knowledge domain, these properties do
not represent a problem, but in other ontologies that could be a problem. Users
will have to decide if this is a problem or not. If a user wants to check only
the properties that have different ranges and domains, it is necessary to add
DifferentFrom(?d1, ?r1) to the rule antecedent. This is an important advantage
of this system; users can reconfigure its rules to identify what they need.

4.2 Problems with Contradictory Knowledge

Contradictory knowledge is another important type of problem regarding ontolo-
gies [1]. These kinds of problems can occur of two ways: the first situation creates
inconsistent assertions in the ontology and in the second, the assertions will never
be created because of the contradiction. In this subsection, five Contradictory
Knowledge problems are presented.

Contradicting Rules. Contradicting Rules problems occur when two rules
have the same or equivalent antecedent atoms and a two of their consequent
atoms (one in each rule) are disjoint. To test this case, we added this rule to
FRO: Person(?x), Woman(?y), hasChild(?x, ?y) -> hasSon(?x, ?y). It gener-
ates a contradiction with the rule: Person(?x), Woman(?y), hasChild(?x, ?y) ->
hasDaughter(?x, ?y). During the FRO conversion to MetaFOR, sameAntecedent
relations were created when appropriate. With this in mind, it is possible to
create a rule that identifies this problem, which is defined as follows.

sameAntecedents(?r1, ?r2), hasConsequentAtom(?r1, ?c1),
hasConsequentAtom(?r2, ?c2), hasPredicate(?c1, ?p1),

hasPredicate(?c2, ?p2), isDisjoint(?p1, ?p2) ->
Contradicting_Rules(?r1)

After this rule fires, the instances URI0 Rule 2 and URI0 Rule 7, which represent
the rules we added to FRO, are asserted as being instances of class Contradict-
ing Rules (subclass of Problems), as show in figure 2.

120 J.P. Orlando et al.

Fig. 2. Contradicting rules problem detected in the two rules

Figure 3 shows the structure of the URI0 Rule 2 instance. The instance has
four atoms, three in the antecedent and one in the consequent. One of this atoms,
URI0 Rule 2 Person ∼x, represents the atom Person(?x). To generate this unique
URI (to avoid name conflicts): The first part is the rule name URI0 Rule 2,
the second part is the predicate Person and the last part the argument ∼x
(the three parts are separated by underscore). The URI of the others three
atoms are generated in the same way.

Fig. 3. Rule structure in MetaFOR

Figure 4 shows the structure of the URI0 Rule 2 hasChild ∼x∼y individual.
It has a predicate URI1 hasChild and two argument ∼x and ∼y. The predicate
URI1 hasChild is an instance of ObjectProperty and represents the hasChild object
property (from FRO).

Fig. 4. Atom structure in MetaFOR

User Extensible System to Identify Problems in OWL Ontologies 121

Partition Error in Taxonomy. The Partition Error in Taxonomy occurs
when an incorrect combination of disjoint and derives relations happens. For
instance, when two disjoint classes have the same subclass. If the subclasses
are direct ones, the inconsistence is easier, but, if they happen to be down on
the hierarchy, it can be far more difficult to find. To create such an error on the
FRO, a FatherMother class was added to it as a subclass of Father and Mother
(which are disjoint). To identify this problem, we create the following SWRL
rule:

isDisjoint(?c1, ?c2), hasSub(?c1, ?cf), hasSub(?c2, ?cf) ->
Partition_Error_in_Taxonomy(?cf)

It is important to point out that DL reasoners can find this kind of error, but,
if the ontology is big, they do not work or take a long time to finish [3].

Incompatible Rule Antecedent. The Incompatible Rule Antecedent error
happens when there is an incompatibility among antecedent atoms [1]. A disjoint
in two predicate atoms that are from the same rule antecedent can be detected
as the cause for this problem, as long as the atoms use the same variables.
To test this kind of error, we added to FRO a rule with hasChild(?a, ?b) and
hasParent(?a, ?b) in the antecedent which is a disjoint combination (the two
properties have been declared disjoint). Therefore this rule will never fire, as
it is impossible to an individual to have a parent and a child corresponding to
the same instance. This is a very hard to find error as it may not affect the
final interference result. But this condition should be identified because nobody
defines rules with the intent that they never fire. In order to identify this problem,
it was necessary to create two different rules. The first one treats disjoint classes
and the second disjoint properties:

hasAntecedentAtom(?r, ?a1), hasAntecedentAtom(?r, ?a2),
hasPredicate(?a1, ?p1), hasPredicate(?a2, ?p2),

isDisjoint(?p1, ?p2), Class(?p1),
hasFirstArgument(?a1, ?var), hasFirstArgument(?a2, ?var) ->

Incompatible_Rule_Antecedent(?r)

hasAntecedentAtom(?r, ?a1), hasAntecedentAtom(?r, ?a2),
hasPredicate(?a1, ?p1), hasPredicate(?a2, ?p2),

isDisjoint(?p1, ?p2),
hasFirstArgument(?a1, ?var1), hasFirstArgument(?a2, ?var1),

hasSecondArgument(?a1, ?var2), hasSecondArgument(?a2, ?var2) ->
Incompatible_Rule_Antecedent(?r)

Self-Contradicting Rule. Similar to the last problem, in the Self-
Contradicting Rule problem there are is a disjointness incompatibility between
two atoms, but this time one is in the antecedent and the other in the conse-
quent. Differently from the previous one, this problem can generate inconsistent

122 J.P. Orlando et al.

results if not fixed. To test this kind of error, we added to FRO a rule with
hasChild(?a, ?b) and hasParent(?a, ?b), one in the antecedent and the other
in the consequent, which forms a disjoint combination (the two properties have
been declared disjoint). The rules, created to identify this problem, are also simi-
lar to the previous section. The only difference being that hasAntecedentAtom(?r,
?a2) was replaced to hasConsequentAtom(?r, ?a2):

hasAntecedentAtom(?r, ?a1), hasConsequentAtom(?r, ?a2),
hasPredicate(?a1, ?p1), hasPredicate(?a2, ?p2),

isDisjoint(?p1, ?p2), Class(?p1),
hasFirstArgument(?a1, ?var), hasFirstArgument(?a2, ?var) ->

Self_Contradicting_Rule(?r)

hasAntecedentAtom(?r, ?a1), hasConsequentAtom(?r, ?a2),
hasPredicate(?a1, ?p1), hasPredicate(?a2, ?p2),

isDisjoint(?p1, ?p2),
hasFirstArgument(?a1, ?var1), hasFirstArgument(?a2, ?var1),

hasSecondArgument(?a1, ?var2), hasSecondArgument(?a2, ?var2) ->
Self_Contradicting_Rule(?r)

Multiple Functional Properties. Multiple Functional Properties problems
happens because functional properties can only have one value for each instance
[1], but it is possible, for a user, to define a minimum or a maximum cardinality
restriction that is greater than 1. That generates contradictory knowledge. In this
case study, a functional object property was added to FRO called hasMarital-
Status with maximum cardinality restriction equal 2, in order to demonstrate
this problem. To perform the identification of this problem, the following SWRL
rule was created:

FunctionalObjectProperty(?x), hasCardinality(?x, ?c),
MaxCardinality(?c), hasCardinalityNumber(?c, 2) ->

Multiple_Functional_Properties(?x)

This rule identifies only functional object properties with maximum cardi-
nality restriction equal to 2. If users want to make the rule more generic,
they can replace hasCardinalityNumber(?c, 2) for hasCardinalityNumber(?c, ?cn),
greaterThan (?cn, 2). We have run this this example using a reasoner that sup-
ports SWRL built-ins (Pellet).

4.3 Redundant Knowledge

Redundant Knowledge is generated when adding an assertion that is already
defined or that can be inferred by another assertion. It is a problem hard to find
because it does not affect the firing of the rules. However, it does point out to
flaws in the knowledge base design that can become real problems as the base
changes over time. In this subsection, three redundant knowledge problems are
presented:

User Extensible System to Identify Problems in OWL Ontologies 123

Redundant Implication of Transitivity. When a transitive property P is
defined, P(x, y) and P(y, z) are sufficient for a reasoner to infer P(x, z). A
Redundant Implication of Transitivity happens when a rule has at least three
properties, nominated here as P1, P2 and P3, that are equivalent and transi-
tive and it uses P1 and P2 to assert P3: P1(?x, ?y), P2(?y, ?z), ... -> P3(?x,
?z). Although not incorrect, this rule is not necessary because the reasoner can
already infer P3.

In this case study, as hasSibling was already defined as transitive in FRO and
we just added to it the rule: hasSibling(?x, ?y), hasSibling(?y, ?z), DifferentFrom
(?x, ?z) -> hasSibling(?x, ?z). The SWRL rule to identify this problem is the
following:

hasAntecedentAtom(?r, ?a1), hasAntecedentAtom(?r, ?a2),
hasConsequentAtom(?r, ?c), hasPredicate(?a1, ?p1),

hasPredicate(?a2, ?p2), hasPredicate(?c, ?p3),
hasEquivalent(?p1, ?p2), hasEquivalent(?p1, ?p3),

hasFirstArgument(?a1, ?arg1), hasSecondArgument(?a1, ?arg2),
hasFirstArgument(?a2, ?arg2), hasSecondArgument(?a2, ?arg3),
hasFirstArgument(?c, ?arg1), hasSecondArgument(?c, ?arg3),

TransitiveObjectProperty(?p1)->
Redundant_Implication_of_Transitivity(?r)

We assume that all MetaFOR entities are equivalents to themselves. In other
words, all entities X have hasEquivalent(X, X).

Redundant Implication of Symmetry. A symmetry property P defines that
if there is P(x, y), the reasoner can infer P(y, x). A Redundant Implication
of Symmetry occurs when a rule uses two properties P1 and P2, which are
equivalent and symmetric, to assert: P1(?x, ?y), ... -> P2(?y, ?x). The reasoner
can already infer this consequent. To demonstrate this kind of problem, we add
a rule, to FRO, with hasSibling(?x, ?y) in the antecedent and hasSibling(?y, ?x)
in the consequent. To identify the problem, we create the SWRL rule:

hasAntecedentAtom(?r, ?a), hasConsequentAtom(?r, ?c),
hasPredicate(?a, ?p1), hasPredicate(?c, ?p2),

isEquivalent(?p1, ?p2),
hasFirstArgument(?a, ?arg2), hasSecondArgument(?a, ?arg1),
hasFirstArgument(?c, ?arg1), hasSecondArgument(?c, ?arg2),

SymmetricObjectProperty(?p1) ->
Redundant_Implication_of_Symmetry(?r)

Rule Subsumption. This problem occurs when a rule antecedent can be fully
mapped to another rule antecedent and their consequents are the same. To
demonstrate this, the following two rules were added to FRO:

– Person(?p), hasAge(?p, ?a), greaterThan(?a, 18) -> isAdult(?p, true)
– Person(?p), hasAge(?p, ?a), greaterThan(?a, 21) -> isAdult(?p, true)

124 J.P. Orlando et al.

To identify this problem, we create the following SWRL rule:

subsumes(?r1, ?r2), sameAntecedents(?r1, ?r2) ->
Rule_Subsumption(?r1), Rule_Subsumption(?r2)

4.4 Two Possible User Scenarios

Besides the 9 problems, documented in the literature, that we showed this tech-
nique could detect, we also include two anomalies that could have been added
by users. This class of anomalies does not have to be real errors or problems,
but constructs that users, for some reason, do not want in their ontology. For
instance, a project may have an agreed upon format to represent knowledge that
users want to enforce in the whole ontology.

As examples of use, we present two different scenarios that can be of interest
to users, along with the rules that can be applied in each case (in a way similar
to what was described in previous sections).

Useless Inheritance Scenario. In this scenario, a user found an ontology for
a domain he is interested. He evaluated this ontology, added all instances he
needed and created rules to classify its instances. After that, the user decides
to analyze the ontology and the inferences made. He wants to find classes or
properties that are not used in instances or in restriction and that are in a
subclass or sub property cascade. He wants to find these classes or properties
because he wants to analyze them and delete the ones that are not really useful
for his application.

In order to do that, this user converts the ontology to MetaFOR and writes a
rule that identifies this pattern. He decides to try using three classes/properties
in cascade and creates the rule:

hasDirectSuper(?a, ?b), hasDirectSuper(?b, ?c),
hasInstancesNumber(?b, 0), usedInRestrictions(?b, false) ->

ClassToEliminate(?b)

He then finds the entities he is looking for. The user should not have problems
writing those rules if he understands how to use SWRL and how the MetaFOR
map is done, for this reason we kept it simple.

Class with Low Use. In this scenario, a user built and evaluated his own
ontology, adding instances and creating rules to classify instances in different
classes. Afterwards, he wants to analyze the inference results. In this scenario,
the user wants to know which classes have less than 7 instances or more than 100
instances. He wants to have an idea of class usage so he can refine its model. The
classes the user is interested in are subclasses of Classifications. So, he converts
his ontology to MetaFOR and writes two rules that will identify this pattern:

User Extensible System to Identify Problems in OWL Ontologies 125

hasDirectSuper(?x, URI1_Classifications),
hasInstancesNumber(?x, ?xn), lessThan(?xn, 7) ->

ClassToAnalyze(?x)

hasDirectSuper(?x, URI1_Classifications),
hasInstancesNumber(?x, ?xn), greaterThan(?xn, 100) ->

ClassToAnalyze(?x)

After running the rules, he can use a tool, such as Protégé, and find all detected
classes classified as instances of ClassToAnalize. By converting his ontology to
MetaFOR and writing two simple rules, the process of pattern identification is
greatly facilitated.

The methodology being proposed here provides users with the possibility to
focus more their efforts on the understanding of the generated results, rather
than having to search manually the ontology.

5 Conclusions

This paper presents a technique to find problems that occur in ontologies and
rules. This technique relies in an ontology that represents information (metadata)
about OWL ontologies, called MetaFOR, to convert an ontology to instances of
MetaFOR using an automatic converter. Once an ontology is in this new format,
rules can be applied to it to find problems or usage patterns.

We demonstrated that using this technique it is possible to develop a pro-
totype and rules capable to detect 9 problems (documented in the literature)
related to ontologies and rules. We also showed two scenarios in which users could
write their own rules, in SWRL, to expand the system to work with new prob-
lems unique to their particular domain needs. Most ontology errors, of course,
are going to be problems in domain modeling that a set of domain-independent
rules are not going to detect. It is one of the main goals of this project that
users be able to write their own rule sets to identify patterns/problems in their
specific ontology domains.

As a limitation of this case study, we inserted the problems the system
detected. It would be more convincing to detect problems in real ontologies,
but it would be more difficult to explain them. As a future work, we are going
to test this system using a set of real world ontologies, such as the ones available
at Bioportal5

The two major advantages of this technique are (i) the use of OWL and
SWRL, two popular languages among ontologists, to identify patterns/problems
in ontologies, and (ii) the fact that users can expand the system themselves
creating new rules to identify patterns they are interested in. Also, SWRL is not
the only language that can be used. Once an ontology is converted to MetaFOR,
any rule language that works with OWL can be used, including SPARQL 1.1.
It means that even very big ontology, not supported by reasoners today, can be

5 http://bioportal.bioontology.org.

http://bioportal.bioontology.org

126 J.P. Orlando et al.

loaded in triple stores and tested. That will be tested in future research. Another
important direction will be to provide visualization, for the reported problems/
patterns, so users can more easily find solutions to them.

Acknowledgments. This work has been funded by grants from the Coordination for
the Improvement of Higher Education Personnel - CAPES, a Brazilian research agency.

References

1. Baumeister, J., Seipel, D.: Anomalies in ontologies with rules. Web Semantics:
Science, Services and Agents on the World Wide Web 8(1), 55–68 (2010)

2. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web, pp. 29–37. Scientific
American, May 2001

3. Dentler, K., Cornet, R., ten Teije, A., de Keizer, N.: Comparison of Reasoners for
Large Ontologies in the OWL 2 EL Profile. Semant. Web 2(2), 71–87 (2011)

4. Fahad, M., Qadir, M.A.: A Framework for Ontology Evaluation. ICCS Supplement
354, 149–158 (2008)

5. Gennari, J.H., Musen, M.A., Fergerson, R.W., Grosso, W.E., Crubezy, M.,
Eriksson, H., Noy, N.F., Tu, S.W.: The evolution of Protege: an environment for
knowledge-based systems development. International Journal of Human-Computer
Studies 58(1), 89–123 (2003)

6. Gomez-Perez, A.: Evaluation of ontologies. International Journal of Intelligent
Systems 16(3), 391–409 (2001)

7. Hassanpour, S., O’Connor, M.J., Das, A.K.: Visualizing logical dependencies in
SWRL rule bases. In: Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.) RuleML
2010. LNCS, vol. 6403, pp. 259–272. Springer, Heidelberg (2010)

8. Hassanpour, S., O’Connor, M.J., Das, A.K.: Clustering Rule Bases Using Ontology-
based Similarity Measures. Web Semantics: Science, Services and Agents on the
World Wide Web 25, June 2014

9. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.:
SWRL: A Semantic Web Rule Language Combining OWL and RuleML (May
2004). http://www.w3.org/Submission/SWRL/

10. Orlando, J.P., Rivolli, A., Hassanpour, S., O’Connor, M.J., Das, A., Moreira, D.A.:
SWRL Rule Editor - A Web Application as Rich as Desktop Business Rule Editors,
pp. 258–263. SciTePress - Science and and Technology Publications (2012)

11. Pak, J., Zhou, L.: A framework for ontology evaluation. In: Sharman, R., Rao, H.R.,
Raghu, T.S. (eds.) WEB 2009. LNBIP, vol. 52, pp. 10–18. Springer, Heidelberg
(2010)

12. Sugumaran, V., Gulla, J.A. (eds.): Applied Semantic Web Technologies, 1st edn.
Auerbach Publications, Boca Raton, August 2011

13. Sun, Y., Zhang, J., Bie, R., Wang, H.: Managing Rules in Semantic Web:
Redundancy Elimination and Consistency Check 5(2), 191–200, February 2011

14. Zacharias, V.: Development and verification of rule based systems — a survey of
developers. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML 2008.
LNCS, vol. 5321, pp. 6–16. Springer, Heidelberg (2008)

http://www.w3.org/Submission/SWRL/

Semantics of Notation3 Logic: A Solution
for Implicit Quantification

Dörthe Arndt1(B), Ruben Verborgh1, Jos De Roo2, Hong Sun2,
Erik Mannens1, and Rik Van De Walle1

1 Ghent University – iMinds – Multimedia Lab, Gaston Crommenlaan 8 bus 201,
9050 Ledeberg-Ghent, Belgium

{dorthe.arndt,ruben.verborgh,erik.mannens,vandewalle}@ugent.be
2 Agfa Healthcare, Moutstraat 100, 9000 Ghent, Belgium

hong.sun@agfa.com

Abstract. Since the development of Notation3 Logic, several years have
passed in which the theory has been refined and used in practice by differ-
ent reasoning engines such as cwm, FuXi or EYE. Nevertheless, a clear
model-theoretic definition of its semantics is still missing. This leaves
room for individual interpretations and renders it difficult to make clear
statements about its relation to other logics such as DL or FOL or even
about such basic concepts as correctness. In this paper we address one
of the main open challenges: the formalization of implicit quantification.
We point out how the interpretation of implicit quantifiers differs in
two of the above mentioned reasoning engines and how the specification,
proposed in the W3C team submission, could be formalized. Our formal-
ization is then put into context by integrating it into a model-theoretic
definition of the whole language. We finish our contribution by arguing
why universal quantification should be handled differently than currently
prescribed.

Keywords: Notation3 · Formal semantics · Quantification · Logic ·
Semantic web

1 Introduction

With the invention of Notation3 (N3) [7], about one decade ago, a new easily
understandable way of representing and interpreting logical data in the Semantic
Web was provided. Driven by the idea of defining one common language to
represent both data and logic the developers of N3 offered a new human-readable
serialization of Resource Description Framework (RDF) [9] models but they
also extended RDF by logical symbols and created a new Semantic Web logic,
Notation3 Logic (N3Logic). While the syntactical innovation on RDF is already
established—it resulted in a W3C-recommendation of its subset Turtle [2]—the
full description of N3Logic is still lagging behind: although it is used by different
semantic web reasoners such as cwm [3], FuXi [1] or EYE [10], there is no common
standard which fully defines the model-theoretic semantics of N3Logic. This has
c© Springer International Publishing Switzerland 2015
N. Bassiliades et al. (Eds.): RuleML 2015, LNCS 9202, pp. 127–143, 2015.
DOI: 10.1007/978-3-319-21542-6 9

128 D. Arndt et al.

consequences for the theoretical examination—the relation to first-order-logic or
description logic is not clear yet, the correctness of reasoning cannot be proven—
but in practice as well: developers of reasoning engines have to come up with
their own solutions when it comes to the interpretation of certain constructs.
This increases the risk that the results of different reasoning engines differ and
are not exchangeable. Especially given the background that N3Logic is designed
for the Semantic Web whose goal is interoperability—logical rules are expected
to be written and used by different independent parties—these uncertainties
form a barrier.

This paper focuses on one of the most important constructs mentioned above:
implicit quantification. In Notation3 it is possible to use quantified variables
without explicit quantifiers. The definition of the scope of those variables varies in
different reasoning engines. We will show how cwm and EYE solve this problem
and how we understand the current state of the W3C team submission [6]. We
give a formal definition of the latter and embed it into a semantic definition of
the logic. We especially focus on the difficulties we encounter. Our contribution
is concluded by a critical discussion of whether the current specification offers
the best option to interpret implicit quantification, which is, in our opinion, not
the case. We identify the development of an alternative solution as one of the
main goals for future work.

The structure of this paper is as follows: we start by discussing related work
(Section 2) and continue by introducing the syntax of N3 (Section 3). After
that we analyze different interpretations of implicit quantification in N3Logic
(Section 4). We then transfer our observations into a formal definition (Section
5) which we afterwards put into the context of the logic (Section 6). Further on
we briefly discuss the elements of N3 not included in our formalization (Section
7). We conclude our contribution and give an outlook to future work in Section 8.

2 Related Work

Our related work section is divided in three parts; we start by explaining relevant
material available about N3Logic, followed by an introduction to N3-reasoners
and finally a part explaining other logics supporting implicit quantification.

N3Logic was introduced in 2008 [7]. In their paper, Tim Berners-Lee et al.
explain the “informal semantics” of Notation3 by illustrating the ideas of special
properties such as quoting, rules or implicit quantification with examples. Being
a good introduction into the main concepts of N3, the paper leaves the model-
theoretic definition of the logic open1. Further on, the definitions were clarified
on the corresponding web pages, the W3C team submission [6], and a design
issues web page [4]. While certain details such as the dominance of universal
quantifiers over existentials are elucidated, the main model-theoretic definition,
and thereby also a formalization of implicit quantification, is skipped with the
remark that N3 is a superset of RDF plus the specific predicates and features
1 “As such, developing a formal model theory for N3Logic is quite challenging, and is

the focus of current work.” [7, p. 17].

Semantics of Notation3 Logic: A Solution for Implicit Quantification 129

defined. The definition of RDF-semantics was updated in 2014 [12] and includes
a model theory which solves, inter alia, the problem that for RDF, in opposition
to classical first order logic, predicates and constants are not clearly separated.
But as RDF is just a subset of N3, the theory is not able to cover universal
quantification, quoting or implication.

The reasoning engines which support N3Logic such as FuXi, cwm or EYE
do not give a model-theoretic definition of the semantics, but as they imple-
ment such a definition, they provide an important input when it comes to the
question of how uncertainties in the current informal definition can be resolved.
FuXi [1] is a forward-chaining production system for Notation3 whose reasoning
is based on the RETE algorithm. To ensure decidability, FuXi only supports a
subset of Notation3, N3-Datalog. The forward-chaining cwm [3] reasoner is a
general-purpose data processing tool which can be used for querying, checking,
transforming and filtering information. As the first of its kind, this N3 reasoner
was used to test the implementation of most of the language’s concepts. The
reasoner therefore supports a major part of the logic. EYE [10] is a high perfor-
mance reasoner enhanced with Euler path detection. It supports both backward
and forward reasoning. In its coverage of N3 it is comparable to cwm, but it
also supports additional concepts not mentioned in the language’s specification,
such as the option to use boolean variables as the consequence of a rule. As this
last aspect, the covered extent of the language—especially regarding implicit
quantification—is most important for this paper, we use the last two reasoners
mentioned for our observations.

Implicit quantification, in particular on universal variables, can also be found
in other contexts: in Prolog [8] variables are understood to be universally quan-
tified. The scope of this quantification is the clause in which the variable occurs.
But Prolog is only partly comparable to N3Logic, as it does not allow the con-
struction of nested rules, which are very challenging constructs for the deter-
mination of scoping in N3. SPARQL [15] does allow nesting of graph patterns
containing universal variables. The scope of a universal variable occurring in such
a pattern depends on the keyword, if existing, via which this pattern is connected
to other graph patterns as described by its formal semantics [14]. This makes
the evaluation of nested patterns in SPARQL easier than in N3Logic.

3 Syntax

Before coming to the main topic of this paper, implicit quantification, we start
by defining the general syntax of N3Logic. We exclude built-ins and explicit
quantification (for more information see section 7). The syntax-definition below
is oriented on the context-free grammar as provided at the team submission web
page [6].

Definition 1 (Basic N3 vocabulary). An N3 alphabet A consists of the fol-
lowing disjoint classes of symbols:

130 D. Arndt et al.

– A set U of URI symbols.
– A set V = VE ∪̇ VU of (quantified) variables, with VE being the set of exis-

tential variables and VU the set of universal variables.
– A set L of literals.
– Brackets {, }, (,)
– Logical implication =>
– Period .

We define the elements of U as in the corresponding specification [11]. As for
example in Turtle [2], N3 allows to abbreviate URLs by using prefixes. Literals
are strings beginning and ending with quotation marks ‘"’; existentials start with
‘_:’, universals with ‘?’. Unlike first order logic, N3 does not distinguish between
predicates and constants—a single URI symbol can stand for both at the same
time—so the first-order-concept of a term has a slightly different counterpart
in N3: an expression. Since the definition of expressions (Definition 2) is closely
related to the concept of a formula (Definition 3), the two following definitions
should be considered together.

Definition 2 (Expressions). Let A be an N3 alphabet. The set of expressions
E ⊂ A∗ is defined as follows:

1. Each URI is an expression.
2. Each variable is an expression.
3. Each literal is an expression.
4. If e1, . . . , en are expressions, (e1 . . . en) is an expression.
5. If f ∈ F is a formula, then {f} is an expression.

The expression defined by 4 is called a list. We call the expressions defined by 5
formula expressions and denote the set of all formula expressions by FE.

Note that point 5 of the definition above makes use of formulas, defined
below:

Definition 3 (N3 Formulas). The set F of N3 formulas over an alphabet A
is recursively defined as follows:

1. If e1, e2, e3 are expressions, e1 e2 e3. is a formula, an atomic formula.
2. If t1, t2 are formula expressions, t1=> t2. is a formula, an implication.
3. If f1 and f2 are formulas, f1f2 is a formula, a conjunction.

We will refer to a formula without any variables as a ground formula. Anal-
ogously, we call such kind of expressions ground expressions. We denote the
corresponding sets by Fg respectively Eg.
The definition explicitly allows all expressions in all positions of atomic formu-
las. Literals or even formula expressions can be subjects, objects or predicates.
In the examples in the remainder of this paper, we will use the common RDF
shortcuts:

Semantics of Notation3 Logic: A Solution for Implicit Quantification 131

Remark 1 (Syntactic variants).

– A formula consisting of two triple subformulas starting with the same ele-
ment <d> <p> <e>. <d> <q> <f>. can be abbreviated using a semicolon:
<d> <p> <e>; <q> <f>.

– Two triple formulas sharing the first two elements
<d> <p> <e>. <d> <p> <f>. can be abbreviated using a comma:
<d> <p> <e>, <f>.

– An expression of the form [<p> <o>] is a shortcut for a new existen-
tial variable _:x, which is subject to the statement _:x <p> <o>. So
<s> <p> [<q> <o>]. stands for <s> <p> _:x. _:x <q> <o>.

To emphasize the difference between brackets which form part of the N3
vocabulary, i.e. “(”, “)”, “{”, and “}”, and the brackets occurring in mathe-
matical language, we will underline the N3 brackets in all definitions where both
kinds of brackets occur.

4 Implicit Quantification

As in RDF, atomic formulas are triples consisting of subject, predicate
and object. They can be intuitively understood as first order formulas like
predicate(subject, object). It is also easy to get an idea of the meaning of conjunc-
tions or implications if no variables are involved. Including implicit quantification
is more difficult. Definition 1 distinguishes between two kinds of variables: uni-
versal and existential variables. As the names indicate, these variables are meant
to be implicitly quantified. But how do we have to understand this “implicit”
quantification? Some cases are quite simple. If we have the formulas

_:x :knows :Kurt. and ?x :knows :Kurt.

It is rather straight forward to understand them as “someone knows Kurt.” and
“everyone knows Kurt.” In first order logic:

∃x : knows(x,Kurt) and ∀x : knows(x,Kurt).

But the above grammar also enables us to construct more complicate statements.
Does the construct

?x :loves _:y. (1)

mean “everybody loves someone” or “there is someone who is loved by everyone”,
in first order formulas:

∀x∃y : loves(x, y) vs. ∃y∀x : loves(x, y) (1a, b)

In this case we know the answer, the team submission [6] clearly chooses (1a):

“If both universal and existential quantification are specified for
the same formula, then the scope of the universal quantification is
outside the scope of the existentials”.

(I)

132 D. Arndt et al.

1 @prefix : <http://example.org/test#>.
2
3 _:x_1 :says {_:x_2 :knows :Albert .}.

Listing 1. Reasoning result of EYE for formula (3)

1 @prefix : <http://example.org/test#>.
2
3 [:says { [:knows :Albert]. }].

Listing 2. Reasoning result of cwm for formula (3)

And also the reasoners we tested, EYE and cwm, have implemented the first
interpretation (1a).

Such clarity is lacking when it comes to nested formulas or co-occurring
formula expressions which contain variables. We will treat this in the following
sections, first for existential variables, then for universals.

4.1 Existentials

To test how both cwm and EYE understand existential quantification, we con-
fronted them with some examples. Both reasoners offer the option to output
all knowledge they are aware of, this includes all derived formulas and rules as
well as the input. In most cases, different variables sharing the same name are
renamed to be distinguishable. Therefore we can use the derived output of such
a reasoning process with a simple rule as input as indication of how the formula
is interpreted. As a first example we invoked both reasoners with a formula
containing nested existentials:

:x :says {:x :knows :Albert.}. (3)

Is there someone who says about himself that he knows Albert, or does this
someone just state that someone exists who knows Albert? In (enhanced) first
order logic

∃x : says(x, knows(x,Albert)) or ∃x1 : says(x1, (∃x2 : knows(x2,Albert)))
(3a,b)

Listing 1 shows the output of EYE given formula (3) as only input, Listing 2
the output of cwm. We clearly see2 that both reasoners favor option (3b).

We observe similar behavior using the same existential quantifier in two co-
occurring graphs. In an example formula such as

{ _:x :knows :Albert.} => { _:x :knows :Kurt.}. (4)

2 To see this evidence for cwm, recall that every new bracket “[. . .]” corresponds with
a new existential variable, see also Remark 1 or [2] for further information.

Semantics of Notation3 Logic: A Solution for Implicit Quantification 133

The two _:x are interpreted as different variables by both reasoners. In first
order logic this would be:

(∃x1 : knows(x1,Albert)) → (∃x2 : knows(x2,Kurt))

This interpretation is also in line with the official team submission [6]:

“When formulae are nested, : blank nodes syntax [is] used to
only identify blank node in the formula it occurs directly in. It is
an arbitrary temporary name for a symbol which is existentially
quantified within the current formula (not the whole file). They
can only be used within a single formula, and not within nested
formulae.”

(II)

This means, the scope of an existential quantifier is always only the formula-
expression “{. . .}” it occurs in, but not its nested dependency.

4.2 Universals

When it comes to the definition of the scope, universal quantifiers are more
complicated. To illustrate that, we consider the following example:

{{?x :p :a.} => {?x :q :b.}.} => {{?x :r :c.} => {?x :s :d.}.}. (5)

Are all ?x the same? If not, which ones do we have to understand as equal? Two
options seem to be most probable:

(∀x1 : p(x1, a) → q(x1, b)) → (∀x2 : r(x2, c) → s(x2, d)) (5a)

or

∀x : ((p(x, a) → q(x, b)) → (r(x, c) → s(x, d))) (5b)

As above, we gave formula (5) as input for both reasoners, cwm and EYE.
Lines 1-9 of Listing 3 show the result of EYE which seems to imply3 that EYE
supports the second interpretation (5b), but as it does not differ from the input,
we ran another test to verify that and added the formula

{:e :p :a.} => {:e :q :b.}. (6)

to the reasoning input in order to see whether the reasoner outputs

{:e :r :c.} => {:e :s :d.}. (7)

as it would be the case with interpretation (5b) but not with interpretation (5a).
The reasoning output of EYE shown in Listing 3 (all lines) verifies that EYE

3 Where applicable, EYE employs the “standardization apart” mechanism of its
programming language Prolog.

134 D. Arndt et al.

1 @prefix : <http://example.org/test#>.
2
3 {
4 {?U0 :p :a.} => {?U0 :q :b.}.
5 }
6 =>
7 {
8 {?U0 :r :c.} => {?U0 :s :d.}.
9 }.

10 {:e :p :a.} => {:e :q :b.}.
11 {:e :r :c.} => {:e :s :d.}.

Listing 3. Output of EYE for formula (5) and formula (6)

interprets all variables with the same name which occur in one single implication
equally regardless of how deeply nested they occur.

In contrast to this, Listing 4 shows the result cwm gives. Here, the keyword
“@forAll” can be understood as its first order counterpart “∀” (see Section 7).
Cwm understands formula (5) as stated in interpretation (5a). We see a clear
difference between the two reasoners.

After examining universals in co-ordinated expressions such as in the above
implication, we are also interested in how those variables are handled in sub-
ordinated formula expressions, similar to those in formula (3). We consider the
following formula:

{?x :p :o.} => {?x :pp {?x :ppp :ooo.}.}. (8)

To learn how the reasoners interpret this formula, we give the simple formula

:s :p :o. (9)

as additional input. Listings 5 and 6 show the reasoning results of EYE respec-
tively cwm. We clearly see that the two reasoners agree in their interpretation
and that this interpretation of formula (8) differs from the interpretation of the
existential counterpart formula (3).

Having considered the contrary behavior of the reasoners in the interpretation
of formula (5), the obvious question is: how is this interpretation meant to be
according to the official sources? The team submission [6] states the following:

“Apart from the set of statements, a formula also has a set of
URIs of symbols which are universally quantified, and a set of
URIs of symbols which are existentially quanitified. Variables are
then in general symbols which have been quantified. There is a
also a shorthand syntax ?x which is the same as :x except that it
implies that x is universally quantified not in the formula but in
its parent formula.”

(III)

This quote strengthens the position of cwm but makes the formalization and
implementation of Notation3 challenging, especially considering it together with

Semantics of Notation3 Logic: A Solution for Implicit Quantification 135

1 @prefix : <http://example.org/test#>.
2 @prefix ex: <#> .
3
4 {
5 @forAll ex:x. {ex:x :p :a.} => {ex:x :q :b.}.
6 }
7 =>
8 {
9 @forAll ex:x. {ex:x :r :c.} => {ex:x :s :d.}.

10 }.

Listing 4. Output of cwm for formula (5)

1 @prefix : <http://example.org/test#>.
2
3 :s :p :o.
4 :s :pp {:s :ppp :ooo}.
5 {?U0 :p :o} => {?U0 :pp {?U0 :ppp :ooo }}.

Listing 5. Output of EYE for formulas (8) and (9)

our observation on equations (8) and (9): If a universal variable occurs in a
deeply nested formula, the scope of this particular variable can either be its
direct parent, the parent of any predecessor containing a variable with the same
name or even the direct parent of a predecessor’s sibling containing the same
variable on highest level. Consider for example the formula

{?x :p :o.}=> { {{?x :p2 ?y.} => {?x :p3 ?y.}.}
=>{{?x :p4 ?y.} => {?x :p5 ?y.}.}.}. (10)

Which, according to (III), has to be interpreted as the first order formula

∀x : p(x, o) → ((∀y1 : p2(x, y1) → p3(x, y1)) → (∀y2 : p4(x, y2) → p5(x, y2)))

Note that in this example, there are two different scopes for ?y, but only one for
?x. One can easily think of more complicated cases.

5 Formalization of Quantification

After having discussed the characteristics of implicit quantification in Notation3
in the last section, we now formalize our observations. Where possible, we will
follow the team submission [6] as this is the most official source indicating how
the language is meant to be understood.

To enable us to distinguish between variables occurring directly in a formula
and variables only occurring in formula expressions which are dependent on a
formula—as it is necessary to interpret for example formula (3)—we give the
following definition:

136 D. Arndt et al.

1 @prefix : <http://example.org/test#>.
2 @prefix ex: <#> .
3
4 @forAll ex:x .
5 :s :p :o;
6 :pp {:s :ppp :ooo .}.
7 { ex:x :p :o .} => {ex:x :pp {ex:x :ppp :ooo .}.}.

Listing 6. Output of cwm for formulas (8) and (9)

Definition 4 (Components of a formula). Let f ∈ F be a formula and
c : E → 2E a function such that:

c(e) =

{
c(e1) ∪ . . . ∪ c(en) if e = (e1 . . . en) is a list,
{e} otherwise.

We define the set comp(f) ⊂ E of components of f as follows:

– If f is an atomic formula of the form e1 e2 e3., comp(f) = c(e1)∪c(e2)∪c(e3).
– If f is an implication of the form t1=> t2., then comp(f) = {t1, t2}.
– If f is a conjunction of the form f1f2, then comp(f) = comp(f1)∪comp(f2).

Likewise, for n ∈ N>0, we define the components of level n as:

compn(f) :={e ∈ E|∃f1, . . . , fn−1 ∈ F : e ∈ comp(f1) ∧ {f1} ∈ comp(f2) ∧ . . .

∧ {fn−1} ∈ comp(f)}

The definition allows us to distinguish between direct components and nested
components. As an example take the following N3 formula:

:John :says {:Kurt :knows :Albert.}. (11)

Direct components are :John, :says and {:Kurt :knows :Albert.} while
:Kurt, :knows and :Albert are nested components of level two.

For variables, we can now clarify the depth of a nesting:

Definition 5 (Nesting level). Let f ∈ F be an N3 formula and v ∈ V a
variable. The nesting level nf (v) of v in f is defined as follows:

nf (v) :=

{
min{n ∈ N|v ∈ compn(f)} if v ∈ compn(f) for some n.

0 otherwise.

As an illustration of the definition, consider the following formula:

f = _:x :says {_:y :says {_:x :knows ?z.}.}.

Here we have nf (_:x) = 1, nf (_:y) = 2, nf (?z) = 3 and nf (?v) = 0, as the
latter does not occur in the formula.

Semantics of Notation3 Logic: A Solution for Implicit Quantification 137

At first glance this definition might seem counter-intuitive as we count the
nesting level starting from the top of the formula and not, as one might expect,
from the bottom. The reason for our definition is the intended use: we want to
employ it to easily find the scope of a universal quantifier. Here, nesting level two
is of special importance. Starting from above, i.e. with the formula as a whole,
and then exploring subformulas, the scope of a universal quantified variable ?x
is always the first (sub-)formula where ?x occurs on a nesting level less or equal
than two. We illustrate this on example (5):

f = ({{?x :p :a.} => {?x :q :b.}.} => {{?x :r :c.} => {?x :s :d.}.}.)

Using the definition above, we get nf (?x) = 3. Our first order translation (5a)
contains no universal quantifier for the formula as a whole. Now, consider the
subformulas on the next level:

f1 = ({{?x :p :a.}=>{?x :q :b.}.) and f2 = ({{?x :r :c.}=>{?x :s :d.}.}.)

We get nf1(?x) = 2 and nf2(?x) = 2. If we, again, go back to the first order
translation of the formula (5a), we see that those two formulas are carrying
quantifiers for ?x:

{ {?x :p :a.} => {?x :q :b.}.
︸ ︷︷ ︸

} => { {?x :r :c.} => {?x :s :d.}.
︸ ︷︷ ︸

}
(∀x1 : (p(x1, a) → q(x1, b))) → (∀x2 : (r(x2, c) → s(x2, d)))

Motivated by this observation, we define the set of accessible variables in a
formula:

Definition 6 (Accessible Variables). Let f ∈ F be an N3 formula over an
alphabet A. We define the sets of accessible universals ACU (f) and the set of
accessible existentials ACE(f) of f as follows:

ACU (f) := {u ∈ VU |0 < nf (u) ≤ 2} and ACE(f) := {v ∈ VE |nf (v) = 1}

The set of all accessible variables of f as defined as AC(f) := ACE(f)∪ACU (f).

For any formula, accessible variables are those variables which are quantified
on its top level. For universal variables this definition becomes clear consid-
ering the above example, formula (5): we get ACU (f) = ∅, ACU (f1) = {?x}
and ACU (f2) = {?x}. To understand the definition of accessible existentials,
remember our previous study on formulas (3) and (4): the scope of an existen-
tial variable is always the formula it occurs in as a component, i.e. on nesting
level one.

Because of our observation on formulas (4) and (8) that universal quantifi-
cation effects subformulas while existential does not, we need to define two ways
to apply a substitution:

Definition 7 (Substitution). Let A be an N3 alphabet and f ∈ F an N3
formula over A.

138 D. Arndt et al.

– A substitution is a finite set of pairs of expressions {v1/e1, . . . , vn/en} where
each ei is an expression and each vi a variable such that vi �= ei and vi �= vj,
if i �= j.

– For a formula f and a substitution σ = {v1/e1, . . . , vn/en}, we obtain the
component application of σ to f , fσc, by simultaneously replacing each vi
which occurs as a direct component in f by the corresponding expression ei.

– For a formula f and a substitution σ = {v1/e1, . . . , vn/en}, we obtain the
total application of σ to f , fσt, by simultaneously replacing each vi which
occurs as a direct or nested component in f by the corresponding expres-
sion ei.

As the definition states, component application of a substitution only changes
the direct components of a formula. For a substitution σ = {?x/:Kurt} we
obtain:

(?x :says {?x :knows :Albert.}.)σc =
(:Kurt :says {?x :knows :Albert.}.)

A total application, in contrast, replaces each occurrence of a variable in a for-
mula:

(?x :says {?x :knows :Albert.}.)σt =
(:Kurt :says {:Kurt :knows :Albert.}.)

The ingredients defined in this section, accessible variables, and component-wise
and total substitution, enable us to define the semantics of N3. Before doing this
in the next chapter (Definition 10), we consider one more example:

f = ({?x :p _:y}=>{:s2 :p2 {?x :p3 _:y}.}.) (12)

Applied to the triple :s :p :o. the rule above leads to the result

:s2 :p2 {:x :p3 _:y}. (13)

How do we get there? First, we consider the whole formula f and identify its
accessible variables AC(f) = {?x}. Thus, the variable ?x is universally quantified
on the formula level. This means that the formula fσt is valid for all substitutions
σ : {?x} → Eg. We totally apply σ = {?x/:s} and get:

fσt = ({:s :p _:y}=>{:s2 :p2 {:s :p3 _:y}.}.)

Now, we consider the antecedence f1 = (:s :p _:y) of the implication. Acces-
sible variables are AC(f1) = {_:y}. As _:y is an existential variable, it is exis-
tentially quantified on the level of function f1. We know that the condition of
the antecedence of the rule is fulfilled as the triple :s :p :o. is true and there
exists a substitution μ = {_:y/:o} such that f1μ

c = (:s :p :o.). Thus, we can
derive (13).

Semantics of Notation3 Logic: A Solution for Implicit Quantification 139

6 Semantics of Notation3

In this section we are going to embed our concept for the evaluation of implicit
quantified variables into a definition for the semantics of Notation3. To do so, we
still have to overcome one obstacle: in this paper, and in N3 in general, the exact
meaning of a context is not fully defined. We have to decide how to handle ground
formula expressions such as {:Kurt :knows :Albert.} in example (11). We
will understand them as one single constant. For formula expressions containing
variables, this decision is more complicated: if we consider formula (3) and its
first order like translation (3b)

∃x1 : says(x1, (∃x2 : knows(x2,Albert)))

we have a clear understanding what the existential quantifier for x1 means, but
we do not know how to interpret the second existential quantifier for x2 nor
whether the expression (∃x2 : knows(x2,Albert)) in combination with the pred-
icate says refers to one or several elements in the domain of discourse. For our
definition, we will assume the former for all unknown predicates. Furthermore,
we expect that the sets of universal and existential variable names are infinite
and exchangeable within a formula, i.e. that :s :p _:y. has the same meaning
as :s :p _:x.

We encounter the problem explained above for every formula expression
whose formula contains an existential on any nesting level. For universals, the
situation is slightly more complicated. A universal as a direct component of
an expression’s formula is quantified outside, the same holds for universals also
occurring in a predecessor formula as a component (see for example the different
scopes in formula (10)). To identify this kind of ungrounded formula expressions,
we make the following definition:

Definition 8 (Formula expressions with unaccessible variables). Let A
be an N3 alphabet. For a formula g ∈ F over A we define the set of formula
expressions which contain for g unaccessible universals as follows:

FEU (g) := {{f} ∈ FE|∀v ∈ VU : nf (v) �= 1 and if nf (v) > 1 then ng(v) = 0}

By FEU :=
⋃

g∈F FEU (g) we denote the union of all formula expressions of that
kind. The set of formula expressions with unaccessible existentials is defined as:

FEE = {{f} ∈ FE|∃n ∈ N : compn(f) ∩ UE �= ∅}

By FEX := FEU ∪ FEE we denote the set of all formula expressions containing
unaccessible variables, by FEX(g) := FEU (g) ∪ FEE the corresponding set for
the formula g.

Definition 9 (Interpretation). An interpretation I of an alphabet A consists
of:

140 D. Arndt et al.

1. A set D called the domain of I.
2. A function a : Eg ∪ FEX → D called the object function.
3. A function p : D → 2D×D called the predicate function.

Note that in contrast to the classical definition of RDF-semantics [9] our
domain does not distinguish between properties (IP) and resources (IR). The
definitions are nevertheless compatible, as we assume p(p) = ∅ ∈ 2D×D for all
resources p which are not properties (i.e. p ∈ IR \ IP in the RDF-sense). By
extending given RDF ground interpretation functions to Notation 3 interpreta-
tion functions, the meaning of all valid RDF triples can be kept in Notation3
Logic. The main necessary extension would be a function which assigns domain
values to formula expressions.

The following definition combines this definition with the techniques
explained in the last section:

Definition 10 (Semantics of N3). Let I = (D , a, p) be an interpretation of
A. Let f be a formula over A. Then the following holds:

1. If AC(f) �= ∅ then I |= f iff for all substitutions σ : ACU (f) → Eg ∪FEX(f)
there exist a substitution μ : ACE(f) → Eg ∪ FEX(f) such that: I |= fσtμc

2. If AC(f) = ∅:
(a) If f is an atomic formula c1 p c2, then I |= c1 p c2. iff (a(c1), a(c2)) ∈

p(a(p)).
(b) If f is a conjunction f1f2, then I |= f1f2 iff I |= f1 and I |= f2.
(c) If f is an implication {f1}=>{f2}, then I |= {f1}=>{f2} iff I |= f2 if

I |= f1.

Number 1 of the definition respects the constraint explained at the begin-
ning of section 4 and illustrated by example (1). Note that in contrast to first
order logic or RDF, we make use of a substitution function which maps into
the set ground- and ungroundable expressions instead of a classical valuation
function mapping directly into the domain of discourse. We do this due to the
rather unusual nature of the implicit universal quantifier. If the object function
is surjective, both approaches are similar.

We finally define a model:

Definition 11 (Model). Let Φ be a set of N3 formulas. We call an interpre-
tation I = (D , a, p) a model of Φ iff I |= f for every formula f ∈ Φ.

7 Towards full N3Logic

For this paper we excluded explicit quantification and built-in predicates. After
having seen in the last sections that the formalization of implicit quantification
is rather difficult, one might wonder: why did we make this choice if full N3Logic
even provides explicit quantification? Notation3 offers in fact the opportunity of
using @forAll as a universal and @forSome as an existential quantifier. We chose

Semantics of Notation3 Logic: A Solution for Implicit Quantification 141

not to include them here because we consider their formalization even more
difficult. This has two main reasons:

Firstly, quote (I) is not limited to implicit quantification. Also for explicit
quantification the scope of universal quantification has always to be outside the
scope of the existential quantification. As a consequence the following formulas

@forAll <#x>. @forSome <#y>. <#x> <#loves> <#y> .

and @forSome <#y>. @forAll <#x>. <#x> <#loves> <#y> .

mean exactly the same, namely: ∀x∃y : loves(x, y). It is not difficult to imagine
that such kind of restriction can cause problems.

Secondly, the set of variables is not explicitly separated from the set of con-
stants. There is nothing which prevents us from using the same URI :x as
quantified variable and as constant at the same time. This can already cause
confusion on its own, combined with our first reason, the interpretation of for-
mulas becomes complicated. What does for example the formula

@forSome :y. :x :p :y. @forAll :x. :x :q :o.

mean? Is the first :x a variable or a constant?
Another interesting topic for formalization are built-in predicates. In the

first publication about Notation3 Logic [7] the most complex of those predicates
were, among others, log:includes, log:notIncludes and log:semantics. We
consider a careful examination of those predicates important.

The definition of different possibilities to apply substitutions in Section 5 of
this paper can also be used to formalize the semantics of explicit quantification.
The model theory in Section 6 will be helpful to specify the meaning of the
built-ins. We see this paper as the starting point to address those and other
topics.

8 Conclusion and Future Work

In this paper we described how implicit quantification is understood by the rea-
soning engines EYE and cwm. While there seems to be a consensus on the
interpretation of implicit existential quantifiers, the reasoners disagree on the
scope of implicitly quantified universal variables.

Cwm follows the W3C team submission. The scope of an implicitly quanti-
fied universal is always the parent of the least deeply nested formula the variable
occurs in. The main argument for this definition of scoping in N3Logic is the anal-
ogy to SPARQL [15], as for example expressed on the cwm mailing list [5]. If the
SPARQL keyword UNION is used between two graph patterns, the substitutions
applied to interpret those two patterns can be different, such as in our example
case (5). There we had different substitutions for the same variable, because
this variable occurred on nesting level 3 in two separated formula expressions
(graphs). But there are also differences between this special SPARQL construct

142 D. Arndt et al.

and N3’s way of scoping universals: in SPARQL the scoping does not depend
on the nesting; a UNION can be found and interpreted directly and it separates
all variables at the same time. Cases as presented in formula (10) where some
variables sharing the same name (?y in the example) have different scopes while
others, occurring next to them as a component in the same formula expression
(?x in the example), are interpreted equally, cannot occur in SPARQL. This
makes the connection between SPARQL and N3Logic rather loose. To the best
of our knowledge, there is also no other logic behaving similarly to N3 regarding
implicit universal quantification. Looking back on the cumbersome steps which
lead to Definition 10, it can be difficult to compare or translate N3Logic to other
logics.

EYE is oriented on classical logic programming [13]. The scope of a nested
variable is the outermost implication rule it occurs in, similar to the clause in
logic programming. This interpretation has practical advantages: it is easy to
implement and also easy to formalize as the nesting level of a variable has not
to be taken into account. Unaccessible universals as introduced by Definition 8
cannot be expressed using EYE’s implicit quantification. Although we would lose
expressivity by following the semantics of EYE, we consider this loss minimal,
as we expect the cases where an interpretation such as (5a) is needed to barely
occur in practice.

We see all these as reasons to propose a change in the specification: the
scope of a universally quantified variable should be the whole formula it occurs
in and not just a nested sub-formula. The formalization of the semantics for this
interpretation is therefore the next goal we are planning to achieve in future
work. By providing a solid formalization of our proposal we aim to raise a new
discussion about the topic and to improve the logic. We thereby will provide one
step further towards the full understanding of Notation3 Logic.

References

1. FuXi 1.4: A Python-based, bi-directional logical reasoning system for the semantic
web. http://code.google.com/p/fuxi/

2. Beckett, D., Berners-Lee, T., Prud’hommeaux, E., Carothers, G.: Turtle - Terse
RDF Triple Language. w3c Recommendation, February 2014. http://www.w3.org/
TR/turtle/

3. Berners-Lee, T.: cwm (2000–2009). http://www.w3.org/2000/10/swap/doc/cwm.
html

4. Berners-Lee, T.: Notation 3 logic (2005). http://www.w3.org/DesignIssues/
N3Logic

5. Berners Lee, T.: Re: Implicit quantification in n3. Public-cwm-talk (2015). http://
lists.w3.org/Archives/Public/public-cwm-talk/2015JanMar/0001.html

6. Berners-Lee, T., Connolly, D.: Notation3 (n3): A readable RDF syntax. w3c Team
Submission, March 2011. http://www.w3.org/TeamSubmission/n3/

7. Berners-Lee, T., Connolly, D., Kagal, L., Scharf, Y., Hendler, J.: nthreelogic:
A logical framework for the World Wide Web. Theory and Practice of Logic
Programming 8(3), 249–269 (2008)

8. Clocksin, W.F., Mellish, C.S.: Programming in PROLOG. Springer (1994)

http://code.google.com/p/fuxi/
http://www.w3.org/TR/turtle/
http://www.w3.org/TR/turtle/
http://www.w3.org/2000/10/swap/doc/cwm.html
http://www.w3.org/2000/10/swap/doc/cwm.html
http://www.w3.org/DesignIssues/N3Logic
http://www.w3.org/DesignIssues/N3Logic
http://lists.w3.org/Archives/Public/public-cwm-talk/2015JanMar/0001.html
http://lists.w3.org/Archives/Public/public-cwm-talk/2015JanMar/0001.html
http://www.w3.org/TeamSubmission/n3/

Semantics of Notation3 Logic: A Solution for Implicit Quantification 143

9. Cyganiak, R., Wood, D., Lanthaler, M.: rdf 1.1: Concepts and Abstract
Syntax. w3c Recommendation, February 2014. http://www.w3.org/TR/2014/
REC-rdf11-concepts-20140225/

10. De Roo, J.: Euler yet another proof engine, (1999–2014). http://eulersharp.
sourceforge.net/

11. Duerst, M., Suignard, M.: Internationalized Resource Identifiers (IRIs), January
2005. http://www.ietf.org/rfc/rfc3987.txt

12. Hayes, P.J., Patel-Schneider, P.F.: rdf 1.1 Semantics. w3c Recommendation,
February 2014. http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/

13. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer-Verlag
New York Inc., Secaucus (1987)

14. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of
SPARQL. ACM Trans. Database Syst. 34(3), 16:1–16:45 (2009).
http://doi.acm.org/10.1145/1567274.1567278

15. Prud’hommeaux, E., Seaborne, A.: sparql Query Language for rdf. w3c

Recommendation, January 2008. http://www.w3.org/TR/rdf-sparql-query/

http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://eulersharp.sourceforge.net/
http://eulersharp.sourceforge.net/
http://www.ietf.org/rfc/rfc3987.txt
http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/
http://doi.acm.org/10.1145/1567274.1567278
http://www.w3.org/TR/rdf-sparql-query/

API4KP Metamodel: A Meta-API
for Heterogeneous Knowledge Platforms

Tara Athan1, Roy Bell2, Elisa Kendall3, Adrian Paschke4(B),
and Davide Sottara5

1 Athan Services (athant.com), West Lafayette, IN, USA
taraathan@gmail.com

2 Raytheon, Fort Wayne, IN, USA
Roy M Bell@raytheon.com

3 Thematix Partners LLC, New York, NY, USA
ekendall@thematix.com

4 AG Corporate Semantic Web, Freie Universitaet Berlin, Berlin, Germany
paschke@inf.fu-berlin.de

5 Department of Biomedical Informatics, Arizona State University, Tempe, USA
davide.sottara@asu.edu

Abstract. API4KP (API for Knowledge Platforms) is a standard
development effort that targets the basic administration services as
well as the retrieval, modification and processing of expressions in
machine-readable languages, including but not limited to knowledge
representation and reasoning (KRR) languages, within heterogeneous
(multi-language, multi-nature) knowledge platforms. KRR languages of
concern in this paper include but are not limited to RDF(S), OWL,
RuleML and Common Logic, and the knowledge platforms may support
one or several of these. Additional languages are integrated using map-
pings into KRR languages. A general notion of structure for knowledge
sources is developed using monads. The presented API4KP metamodel,
in the form of an OWL ontology, provides the foundation of an abstract
syntax for communications about knowledge sources and environments,
including a classification of knowledge source by mutability, structure,
and an abstraction hierarchy as well as the use of performatives (inform,
query, ...), languages, logics, dialects, formats and lineage. Finally, the
metamodel provides a classification of operations on knowledge sources
and environments which may be used for requests (message-passing).

1 Introduction

The inherent complexity of many application domains - including but not limited
to finance, healthcare, law, telecom and enviromental protection - paired with the
fast pace of innovation, requires increasingly robust, scalable and maintainable
software solutions. Design patterns have shifted from monolithic applications
towards distribution and service-orientation. Standards have been published to
improve interoperability. Model driven architectures (MDA) have been adopted
to support declarative, platform-independent specifications of an application’s
c© Springer International Publishing Switzerland 2015
N. Bassiliades et al. (Eds.): RuleML 2015, LNCS 9202, pp. 144–160, 2015.
DOI: 10.1007/978-3-319-21542-6 10

API4KP Metamodel: A Meta-API for Heterogeneous Knowledge Platforms 145

business logic [7]. A special type of MDA, Knowledge Driven Architectures
(KDA) [13], rely on models such as ontologies that are not only standard, but
also have a formal grounding in KRR. KDA, while not yet ubiquitous, have a
variety of applications. We consider as a running example a scenario from the
healthcare domain.

A connected patient system gathers input from biomedical devices, part of a
publish-subscribe architecture, which post observations including physical quan-
tities, spatio-temporal coordinates and other context information. The data can
be represented in a device-specific format (e.g. using XMPP1) or as streams of
RDF graphs over time. The vocabularies referenced in the streams include units
of measure, time, geospatial and biomedical ontologies, expressed in RDF(S),
OWL or Common Logic (CL). Healthcare providers will submit SPARQL queries
and receive incremental streams as new data becomes available. A Clinical Deci-
sion Support System (CDS), implemented using event-condition-action (ECA)
rules, will also react to events simple (e.g. a vital parameter exceeding a thresh-
old) and complex (e.g. a decreasing trend in the average daily physical activ-
ity) and intervene with alerts and reminders. If an alert is not addressed in a
timely fashion, it will escalate to another designated recipient. Some patients will
qualify for clinical pathways and the system will maintain a stateful representa-
tion of their cases, allowing clinicians to check for compliance with the planned
orders (e.g. drug administrations, tests, procedures, . . .). This representation
will include an ontology-mediated abstraction of the patient’s electronic medical
record, extracted from the hospital’s database. As medical guidelines evolve, the
logic of the pathway may need revision: queries to the patient’s history should
be contextualized to whatever logic was valid at the time orders were placed.

From a systems-oriented perspective communicating entities in distributed
systems are processes (or simple nodes in primitive environments without further
abstractions) and from a programming perspective they are objects, components
or services/agents. They may be single-sorted or many-sorted, with sorts being
characterized by the kind of communications that may be initiated, forwarded
or received, and by the kind of entity that may be received or forwarded from or
sent to. Communication channels may in general be many-to-many and uni- or
bidirectional. Each communication has a unique source; multi-source commu-
nications are not modelled directly, but are emulated by knowledge sources
that publish streams that may be merged to give the appearance of multi-
ple sources. We will allow for failure, either in communication or in execu-
tion, but do not specify any particular failure recovery strategy. Various types
of communication paradigms are supported from strongly-coupled communica-
tion via low-level inter-process communication with ad-hoc network program-
ming, loosely coupled remote invocation in a two-way exchange via interfaces
(RPC/RMI/Component/Agent) between communicating entities, to decoupled
indirect communication, where sender and receiver are time and space uncou-
pled via an intermediary such as a publish-subscribe and event processing mid-
dleware. The communication entities fulfill different roles and responsibilities

1 http://xmpp.org/rfcs/rfc3920.html

http://xmpp.org/rfcs/rfc3920.html

146 T. Athan et al.

(client, server, peer, agent) in typical architectural styles such as client-server,
peer-to-peer and multi-agent systems. Their placement (mapping) on the phys-
ical distributed infrastructure allows many variations (partitioning, replication,
caching and proxing, mobile) such as deployment on multiple servers and caches
to increase performance and resilience, use of low cost computer resources with
limited hardware resources or adding/removing mobile computers/devices.

Given this variety of architectural requirements, an abstraction is required
to facilitate the interchange, deployment, revision and ultimately consumption
of formal, declarative pieces of knowledge within a knowledge-driven applica-
tion. In 2010 the Object Management Group (OMG) published the first for-
malized set of KDA requirements in an RFP titled “the API for Knowledge
Bases (API4KB)”. In 2014 the OMG published a second RFP titled “Ontology,
Model, and Specification Integration and Interoperability (OntoIOp)”[9]. This
second RFP contains the requirements for a substantial part of the API4KB,
and a submission, called DOL[1] is near completion. To address the remaining
aspects of the RFP, a working group is creating a standard meta-API, called
API4KP, for interaction with the Knowledge Platforms at the core of KDAs.

To provide a semantic foundation for the API4KP operations and their argu-
ments, we have created a metamodel of knowledge sources and expressed it as an
OWL ontology2. The primary concepts of the API4KP metamodel are described
in Sec. 2, with details for structured knowledge resources and their relationship
to nested functor structures in Sec. 3. In Sec. 4 we provide an application of the
metamodel to the healthcare scenario. Related work is discussed in Sec. 5, with
conclusions and future work described in Sec. 6.

2 Upper-Level Concepts and Basic Knowledge Resources

The current API4KP metamodel focuses on the notion of knowledge resources,
the environment where the resources are to be deployed and their related con-
cepts. The metamodel is hierarchical, with a few under-specified concepts at the
upper levels, and more precisely defined concepts as subclasses. These upper-
level concepts indicate, at a coarse level, the kinds of things that are in the
scope of API4KP. The main upper-level concepts in the API4KP metamodel are

Knowledge Source: source of machine-readable information with semantics.
Examples: a stream of RDF graphs providing data from biomedical devices,
a stateful representation of a patient’s history with OWL snapshots, or a
database with a mapping to an ontology.

Environment: mathematical structure of mappings and members, where the
domain and codomains of the mappings are members of the environment.
Example: a KRR language environment containing semantics-preserving
translations from RDF and OWL into CL, assisting in the integrated inter-
pretation of a stream of RDF graphs and OWL ontologies.

2 https://github.com/API4KBs/api4kbs

https://github.com/API4KBs/api4kbs

API4KP Metamodel: A Meta-API for Heterogeneous Knowledge Platforms 147

Knowledge Operation: function (possibly with side-effects. i.e. effects beyond
the output value returned) having a knowledge source, environment or oper-
ation type in its signature. Examples: publishing or subscribing to a stream
of RDF graphs; submitting a SPARQL query; initiating an ECA Rulebase;
checking for compliance with plans; revising an ontology of guidelines.

Knowledge Event: successful evaluation or execution of a knowledge opera-
tion by a particular application at a particular time3 Examples: when a nurse
activates a biomedical device, a stream of RDF graphs is “published” describ-
ing a patient’s vital signs; a specialist, like a cardiologist, taps the heartrate
symbol on a touchscreen that results in the submission of a SPARQL query
about a semantically-defined subset of a patient’s vital signs.

These definitions are intentionally vague so as to be adaptable to a vari-
ety of implementation paradigms. We have developed a hierarchy of knowledge
source level of abstraction that is a generalization of the FRBR [3] Work-
Expression-Manifestation-Item (WEMI) hierarchy of abstraction tailored for
machine-readable KRR languages. The fundamental building blocks of knowl-
edge sources are basic knowledge resources, which are immutable knowledge
sources without structure. Subclasses of basic knowledge resources are defined
according to their knowledge source level.

Basic Knowledge Expression: well-formed formula in the abstract syntax of
a machine-readable language.4 Example KE1: the instance of the OWL 2
DL abstract syntax for the latest version of a biomedical ontology from an
ontology series KA1 defining observable entities, such as the 2015 interna-
tional version of the SNOMED-CT knowledge base5 (see also the definition
of Basic Knowledge Asset below). This ontology differs from other versions
of the series only in the natural language definitions.

Basic Knowledge Manifestation: character-based embodiment of a basic
knowledge expression in a concrete dialect. Example KM1: the OWL/RDF
XML Document Object Model (DOM) document instance of example KE1.

Basic Knowledge Item: single exemplar of a basic knowledge manifestation
in a particular location. Example KI1: a file on a network server embodying
example KM1.

Basic Knowledge Asset: equivalence class of basic expressions determined by
the equivalence relation of an asset environment (see Sec. 2.2.) Example KA1:
an OWL2 DL series for a biomedical ontology, viewed as an equivalence
class of basic knowledge expressions, including example KE1, according to
a semantics-preserving environment for the OWL2 DL language where the

3 Some Knowledge Operations can be used as transition functions for a mutable knowl-
edge source, where their evaluation describes an event in the sense of [14], as a state
transition of a dynamic entity; we generalize this concept of events because not all
API4KP Knowledge Events correspond to state transitions.

4 The use of “basic” in API4KP differs from its usage in DOL - a DOL basic OMS
(ontologies, models and specifications) is a set, and corresponds to a Set-structured
knowledge asset in API4KP.

5 http://browser.ihtsdotools.org/

http://browser.ihtsdotools.org/

148 T. Athan et al.

mapping to the focus language strips the natural language definitions from
the axioms.

API4KP lifting/lowering operations (see 2.4) provide transformations from
one level to another complying with the following relations:

exemplify: to instantiate (a knowledge manifestation) in particular format(s)
and at particular location(s) (address in some virtual address space). Exam-
ple: KI1 exemplifies KM1, KM1 prototypes KI1. Inverse: prototype

embody: to represent (a knowledge expression) in concrete syntax(es) (dialects)
of particular KRR language(s). Example: KM1 embodies KE1, KE1 parses
KM1. Inverse: parse

express: to represent (a knowledge asset) in abstract syntax(es) of particular
KRR language(s). Example: KE1 expresses KA1, KA1 conceptualizes KE1.
Inverse: conceptualize

2.1 Mutability

Following RDF concepts6, knowledge sources are characterized as mutable or
immutable. Immutable knowledge sources are called knowledge resources. In this
context, immutable does not necessarily mean static; a stream of knowledge, e.g.
a feed from a biomedical device, may be considered an observable knowledge
resource that is revealed over time, as described further in Sec. 3. A mutable
knowledge source is a container that has, at any point in time, an explicit state
that is fully represented by a knowledge resource, e.g. the snapshot of a patient’s
current condition (with timestamp). The language, structure and content of a
mutable knowledge source may change over time, but the abstraction level is
unchanging. We distinguish between the implicit state that a mutable knowl-
edge source holds indirectly when operators such as actions, complex event pat-
terns or aggregations are computed, and the explicit state that evolves with time
and that can be managed explicitly by an additional state transformer compo-
nent responsible for explicit state management, concurrency control, reasoning
(specifically, inference of state deltas), and state updates. There are various
ways to manage explicit state, e.g. embedded inside the processors of the knowl-
edge source in global variables or state-accumulating variables or tuples that are
available either locally to an individual operator or across the operators as a
shared storage, or with explicit state and concurrency control which lies outside
of knowledge resource processors, e.g. by threading the variables holding state
through a functional state transformer and by using State monads (see 3), which
exist within the context of another computation or transformation, thus allowing
to attach state information to any kind of functional expression.

2.2 Environments

In DOL, a concept of heterogeneous logical environment is defined as “environ-
ment for the expression of homogeneous and heterogeneous OMS, comprising a
6 http://www.w3.org/TR/rdf11-concepts/

http://www.w3.org/TR/rdf11-concepts/

API4KP Metamodel: A Meta-API for Heterogeneous Knowledge Platforms 149

logic graph, an OMS language graph and a supports relation”. In API4KP, we
generalize this concept of environment as follows.

Categorical Environment: environment with an associative composition
operation for mappings, that is closed under composition and contains an
identity mapping for every member

Language Environment: environment whose members are languages
Focused Environment: nonempty environment which has a member F (called

the focus or focus member) such that for every other member A, there is a
mapping in the environment from A to F

Preserving Environment: environment where every mapping preserves a
specified property

Asset Environment: focused, categorical, preserving language environment
where the focus is a KRR language

The special case where all languages in an asset environment are KRR languages
supporting model-theoretic semantics without side-effects (logics), and the pre-
serving property is characterized by a logical graph reduces to a heterogeneous
logical environment as defined in DOL.

The Knowledge Query and Manipulation Language[2] introduced the concept
of performatives, which was later extended by FIPA-ACL7. The KRR Lan-
guages covered by API4KP include ontology languages (e.g. OWL), query lan-
guages (e.g. SPARQL), languages that describe the results of queries, events
and actions (e.g KR RuleML), and declarative executable languages (e.g. Pro-
log, ECA RuleML). In the latter case, the languages typically includes syntactic
constructs for performatives, e.g. inform, query, and the description of a knowl-
edge resource may include a list of the performatives that are used within it.
Performatives will be modelled as operations as defined in Sec. 2.4.

2.3 Descriptions

As stated above, we do not make assumptions regarding the drivers for com-
munications, e.g. an implementation may be message-driven, event-driven, or a
combination of both. However, our metamodel takes a message-centric perspec-
tive, with the message body typically being a description of a knowledge source
or a knowledge operation.

A knowledge source description is a knowledge resource whose subject matter
is another knowledge source, which may be expressed, e.g., as an OWL ontol-
ogy of individuals or an RDF graph. The properties and classes in the API4KP
namespace that may be employed in knowledge source descriptions are listed in
the following tables and formalized in the API4KP OWL ontologies. Further,
IRIs in other namespaces may be used to express metadata within a knowledge
source description. A description about the description itself may be referenced
through an IRI, or included within the description explicitly through the :has-
Description property, OWL annotations, or as an RDF dataset.
7 http://www.fipa.org/repository/aclspecs.html

http://www.fipa.org/repository/aclspecs.html

150 T. Athan et al.

Table 1. Legend

Key Value

Y exactly 1

Yor 1 or more

Y? 0 or 1

Y* 0 or more

N exactly 0

I[or?*] indirect

Table 2. Prefix Mappings

Prefix Expansion

: http://www.omg.org/spec/API4KP/API4KPTerminology/

ks: :KnowledgeSource/

kr: :KnowledgeResource/

ka: kr:Asset/

ke: kr:Expression/

km: kr:Manifestation/

ki: kr:Item/

lang: :Language/

map: :Mapping/

xsd: http://www.w3.org/2001/XMLSchema#

Table 3. Knowledge Resource Metamodel

Property Range ka: ke: km: ki:

:hasIdentifier :Identifier Y? Y? Y? Y?

:level ks:Level Y Y Y Y

:usesPerformative :Operation I* Y* I* I*

:hasLocator :Address Y? Y? Y? Y

:usesLanguage :Language I* Y* I* I*

:usesDialect km:Dialect N N Y* I*

:usesConfiguration ki:Configuration N N N Y*

:accordingTo lang:Environment Y N N N

:isBasic xsd:boolean Y Y Y Y

:isOutputOf ev: Y? Y? Y? Y?

:hasMetaData :KnowledgeResource Y* Y* Y* Y*

:hasDescription :KnowledgeResource Y* Y* Y* Y*

2.4 Operations and Events

In the API4KP metamodel, the building blocks for all knowledge operations are
actions – unary functions, possibly with side-effects and possibly of higher-order.
Actions are defined in terms of their possible events. To maintain a separation of
concerns, side-effectful actions are assumed to be void, with no significant return
value. Particular kinds of actions include:

Lifting Action: side-effect-free action whose output is at a higher knowledge
source level than the input

Lowering Action: side-effect-free action whose output is at a lower knowledge
source level than the input

Horizontal Action: side-effect-free action whose output is at the same knowl-
edge source level as the input

Idempotent Action: side-effect free action that is equal to its composition
with itself (A = A o A)

Higher-Order Action: side-effect-free action whose input or output (or both)
is an action

http://www.omg.org/spec/API4KP/API4KPTerminology/
http://www.w3.org/2001/XMLSchema#

API4KP Metamodel: A Meta-API for Heterogeneous Knowledge Platforms 151

Table 4. Knowledge Resource Elevation Properties

Property Domain Range Inverse

:exemplify (?) ki: km: :prototype (*)

:embody (?) km: ke: :parse (*)

:express (*) ke: ka: :conceptualize (*)

Table 5. Knowledge Resource Configuration Metamodel

Property Range ke:Language km:Dialect ki:Configuration

:hasIdentifier :Identifer Y Y Y

:hasLocator :Address N N Y?

:supports :Logic Y I I

:usesLanguage ke:Language N Y I

:usesDialect km:Dialect N N Y

:usesFormat ki:Format N N Y

:location :Address N N Y

Lifting and lowering are utility actions for changing the knowledge source level,
e.g. parsing and IO. Horizontal actions are useful e.g. for constructing struc-
tured knowledge sources, while higher-order actions are needed to specify more
complex operations e.g. querying.

In the metamodel, we define two void actions that have side-effects on the
state of mutable knowledge resources:

Put: void action whose input is a mutable knowledge source and has the side-
effect of setting the mutable knowledge source to a particular specified state

Update: void action whose input is a mutable knowledge source and has the
side-effect of setting the mutable knowledge to a new state that is the result
of applying a side-effect-free action to the current state

A side-effectful operation can be considered idempotent if its successful execu-
tion multiple times (synchronously) leads to no additional detectable side-effects
beyond that of the first execution. Note that this is a different, but related, con-
cept of idempotence than that for side-effect-free actions. An Update action
based on an idempotent side-effect-free action is idempotent in this sense, an
important factor in failure recovery.

3 Structured Knowledge Resources

We generalize the DOL concept for structured OMS to define a concept of struc-
tured knowledge resource for each level of abstraction. In DOL, a structured
OMS “results from other basic and structured OMS by import, union, combi-
nation, ... or other structuring operations”. In API4KP, A structured knowledge
resource is a collection whose components are knowledge resources of the same
level of abstraction; structuring knowledge operations are described in Sec. 2.4.

152 T. Athan et al.

Table 6. Generic Environment Metamodel. The generic prefix T: specifies the member
type. Specific environments include lang:Environment (a system of mappings between
the abstract syntax of languages) .

Property Range T:Environment

:hasIdentifier :Identifier Y?

:mapping T:Mapping Y*

:focus T: Y?

:preserves T:EquivalenceRelation Y*

:isOutputOf ev: Y?

Table 7. Generic Mapping Metamodel

Property Range T:Mapping

:hasIdentifier :Identifier Y?

:location :Address Y?

:start T: Y

:end T: Y

:preserves :EquivalenceRelation Y*

:usesLanguage map:Language Y*

:isBasic xsd:boolean Y

:components T:MappingList Y?

Structured Knowledge Expression: collection of knowledge expressions
(either structured or basic), which are not necessarily in the same language
and may themselves have structure. Example KE2: a heterogeneous collec-
tion of streaming data and RDF graphs, together with static OWL ontologies
and CL texts, and ECA rules describing actions of a CDS. Example KE3:
the OWL 2 DL ontology series KA1, viewed as a collection of expressions
rather than an equivalence class.

Structured Knowledge Manifestation: collection of knowledge manifesta-
tions (either structured or basic), which are not necessarily in the same
language or dialect and may themselves have structure. Example KM2: a
heterogeneous structure of RDF Turtle, OWL Manchester as sequences of
string tokens, and XMPP, OWL/XML, ECA RuleML and CL XCL2 (the
XML-based dialect of Common Logic Edition 2) as XML DOM documents
embodying example KE2.

Structured Knowledge Item: collection of knowledge items (either struc-
tured or basic), which are not necessarily in the same language, dialect,
format or location, and may themselves have structure. Example KI2: a het-
erogeneous structure of an RDF triple store, network connections to binary
input streams cached in a MySQL database, RuleML XML files on a local
hard drive and CL XCL2 files on a network server in a content management
system, exemplifying example KM2.

API4KP Metamodel: A Meta-API for Heterogeneous Knowledge Platforms 153

Table 8. Knowledge Resource Operation and Event Properties

Property Domain Range Inverse

:hasEvent (*) op: ev: :isEventOf (1)

:executes (*) :Application ev: :isExecutedBy (1)

:input (?) ev:ActionEvent : :isInputOf (*)

:output (?) ev: : :isOutputOf (?)

:atTime (1) ev: xsd:dateTime

Structured Knowledge Asset: collection of knowledge assets (either struc-
tured or basic), which are not necessarily according to the same environment,
but where there is a unique language that is the focus of the environment of
each component. Example KA2: a heterogeneous structure of assets concep-
tualized from the RDF, OWL and CL expressions of example KE2 according
to an environment that provides translations from RDF or OWL into CL,
and an ontology-based data access (OBDA) source schema providing a map-
ping from XMPP schemas to OWL.

To assist in defining operations on structured knowledge sources while
still maintaining generality, the collection structure of a structured knowledge
resource is required to arise from a monadic functor (monad). Collection struc-
tures that satisfy these requirement include sets, bags and sequences, but other
useful structures also meet these requirements.

3.1 Monads

In seminal work that established a theoretical foundation for proving the equiva-
lence of programs, Moggi[8] applied the notion of monad from category theory[5]
to computation. As defined in category theory, a monad is an endofunctor on a
category C (a kind of mapping from C into itself) which additionally satisfies
some requirements (the monad laws). In functional programming, monads on
the category with types as objects and programs as arrows are employed. For
example, the List[] typeclass is a monad, e.g. List[Int], a list of integers, is a
type that is a member of the List[] monad.

Each monad M has functor M and two natural transformations as follows
(exemplified for the List monad where lists are denoted with angle brackets)

– unit: A ⇒ M[A] lifts the input into the monad (e.g. unit(2) = 〈2〉)
– join: M[M[A]] ⇒ M[A] collapses recursive monad instances by one level (e.g.

join(〈〈1, 2〉, 〈3, 4〉〉) = 〈1, 2, 3, 4〉)
– M : (A ⇒ B) ⇒ (M[A] ⇒ M[B]) takes a function between two generic types

and returns a function relating the corresponding monadic types (e.g. List(s
⇒ 2*s)(〈1, 2〉) = 〈2, 4〉)

Note that we choose the category-theory-oriented unit and join transformations
[16] as fundamental in this development of the monad laws because it is useful for

154 T. Athan et al.

later discussion on structured expressions, whereas the functional-programming-
oriented treatment based on unit and bind :≡ join o M (aka flatmp), is more
concise. Monads of relevance to API4KP include, but are not limited to

Try: handles exceptions, has subclasses Success, which wraps a knowledge
resource, and Failure, which wraps a (non-fatal) exception

IO: handles IO side-effects, wraps a knowledge resource and an item configura-
tion

Task: handles general side-effects, wraps a knowledge resource and a description
of a side-effectful task

Stream: a.k.a. Observable handles concurrent streams, wraps a sequence of
knowledge resources that become available over time

State: handles state, wraps a knowledge resource (the state) and implements
state transitions

These monad functors may be composed; for example, given a basic knowledge
expression type E, the type (State o Try o List) [E] :≡ State[Try[List[E]]] may
be defined. In general, the composition of monads is not necessarily a monad.

3.2 Nested Monadic Structures

In DOL, the concept of structured expression using sets is introduced. For exam-
ple, let B be the category of (basic) CL text expressions, and OptionallyNested-
Set[B] :≡ B + NestedSet[B], where NestedSet[B] :≡ Set[OptionallyNestedSet[B]]
≡ Set[B + NestedSet[B]] is the recursive type definition of set-structured CL
expressions. An instance of type NestedSet[B] is a Set whose members are either
basic leaves (of type B) or structured branches (of type NestedSet[B]).

The Set monad is appropriate for defining structured expressions in mono-
tonic logics, like CL, because the order and multiplicity of expressions in a col-
lection has no effect on semantics. The semantics of CL is provided by the CL
interpretation structure that assigns a truth-value to each basic CL text expres-
sion. The truth-value of a set of CL text expressions is true in an interpretation J
if each member of the set maps to true in J . The truth value J(y) of a NestedSet-
structured CL expression y is defined to be J(flatten(y)), where flatten(y) is the
set of leaves of y.

We generalize this approach for defining the semantics of structured expres-
sions to an arbitrary language L with basic expressions E and NestedM struc-
tured expressions. We assume that

– M is a monad on the category of types,
– model-theoretic semantics is supplied through an interpretation structure J

defined for basic expressions in E and simply-structured expressions M[E +
0], where 0 is the empty type.

– a post-condition contract for side-effects is specified by a truth-valued func-
tion P(F, y) for all supported void knowledge actions F and all y in E +
M[E + 0].

API4KP Metamodel: A Meta-API for Heterogeneous Knowledge Platforms 155

Let N[] be the NestedM monad corresponding to the minimal (finite) fixed
point of N[E] :≡ M[E + N[E]], where A + B is the coproduct8 of types A
and B. We name the NestedM monad by prepending “Nested” to the name of
the underlying monad; thus, NestedSet[E] :≡ Set[E + NestedSet[E]].

If E is a type of basic knowledge resources, then the monad OptionallyNest-
edM[E] :≡ E + NestedM[E] ≡ E + M[OptionallyNestedM[E]] is the correspond-
ing type of knowledge resources that are either basic or structured. We note that
OptionallyNestedM[E] is a free monad9 of M; this property holds for a large class
of functors and does not depend on M being a monad.

NestedM is also a monad under an appropriate join transformation; this
property does depend on M being a monad. Further, we take advantage of the
monadic properties of M in order to “flatten” the nested structure for purposes
of interpretation and pragmatics. The unit, map and join functions for NestedM
are defined in terms of the unit, join, and map functions for monad M, and
the constructors, recursor and bimap function of the coproduct. The details and
proof10 that NestedM structures satisfy the monad laws depends on the use of
the coproduct to handle the union of types, so that the left or right intention is
indicated even in the case when the types are not disjoint.

For all y ∈ Q[E] :≡ OptionallyNestedM[E], we define a flatten transformation
flatten(y). Let I be the identity transformation, N[E] :≡ NestedM[E], joinN be
the join natural transformation of monad N, Q1 :≡ E + M[E + 0], and

joinN: N[N[E]] ⇒ N[E] � joinN :≡ joinM o M(I + unitM o inr o joinN)
level: Q[E] ⇒ N[E] � level :≡ unitM ◦ inl + I
flatten: Q[E] ⇒ Q1[E] � flatten(y) = y if y ∈ Q1[E],

flatten(y) = flatten(joinN ◦ M(inl ◦ level)(y)) otherwise

Then for all y ∈ Q[E], we may define the interpretation J(y) :≡ J(flatten(y)),
with entailments defined accordingly. Implementations that honor the semantics
must satisfy P(F)(y) = P(F)(flatten(y)), where P(F) is a function representing
the post-conditions after execution of side-effectful knowledge operation F on
the knowledge resource y.

The monad laws and the flatten transformation have been verified experimen-
tally for NestedSet and NestedList monads by implementation in Java8 together
with the Functional Java11 libraries, with the source available on Github12. Infor-
mal tests confirm that the map and join operations are linear in the size of the
collection, as expected.

8 The coproduct, a.k.a. disjoint union, A + B can be treated as the type (False x A) |
(True x B), with the first (Boolean) argument of the pair providing the intention of
left or right injection (inl and inr). The operation f + g on functions f and g means
(f+g)(inl(a)) :≡ f(a) and (f+g)(inr(b)) :≡ g(b).

9 http://ncatlab.org/nlab/show/free+monad
10 https://github.com/API4KBs/api4kbs/blob/currying/Monad Trees.pdf
11 http://www.functionaljava.org/
12 https://github.com/ag-csw/Java4CL

http://ncatlab.org/nlab/show/free+monad
https://github.com/API4KBs/api4kbs/blob/currying/Monad_Trees.pdf
http://www.functionaljava.org/
https://github.com/ag-csw/Java4CL

156 T. Athan et al.

3.3 Heterogeneous Structures

Suppose A and B are expression types of two languages where an environment
provides a semantics-preserving transformation T from B to A. Further suppose
that an interpretation mapping is defined on A + M[A + 0]. The coproduct E
:≡ A + B defines the basic knowledge expressions in this environment, while
structured expressions are N[E] :≡ NestedM[E], and the coproduct Q[E] :≡ E +
N[E] is the type for all expressions in this environment, basic or structured.

Using the transformation T from the environment, we may define the inter-
pretation J+ of structured expressions of type NestedM[A+B] in terms of the
interpretations J of basic expressions in A and structuring operations. In par-
ticular,

J+(x) :≡ J(NestedM(T + I)(flatten(x))) ≡ J(flatten(NestedM(T + I)(x)))

Notice that the expressions of type B are not required to be in a knowledge
representation language. They could be in a domain-specific data model based
on, e.g., XML, JSON or SQL. The semantics of expressions of type B are derived
from the transformation to type A, the focus knowledge representation language
of the environment. API4KP employs this feature to model OBDA and rule-
based data access (RBDA).

Structured expressions can always be constructed in a monad that has more
structure than necessary for compatibility with the semantics of a given language.
For example, List and Stream monads can be used for monotonic, effect-free
languages even though the Set monad has sufficient structure for these languages;
a forgetful functor is used to define the semantics in the monad with greater
structure in terms of the monad of lesser structure. A heterogeneous structure
of languages containing some languages with effects and others without effects
(e.g. an ECA rulebase supported by ontologies) could thus make primary use of
an NestedM monad that preserves order, such as NestedList or NestedStream,
while permitting some members of the collection to have a NestedSet structure.

While an immutable knowledge source (i.e. a knowledge resource) has a spe-
cific structure, as discussed above, a mutable knowledge source has structure only
indirectly through the structure of its state. In general, the structure of a mutable
knowledge source’s state changes arbitrarily over time, but could be restricted in
order to emulate common dynamic patterns. Simple examples include state as a
basic knowledge resource (linear history without caching), a key-value map with
values that are basic knowledge resources (branching history without caching),
or a sequence of basic knowledge resources (linear cached history).

4 Metamodel Appplied to the Scenario

In the connected patient scenario, an RDF stream from a biomedical device
can be modelled using a Stream monad. A query registered against this RDF
Stream will generate another Stream, with each Stream item containing addi-
tions (if any) to the query results due to the assertion of the newly-arrived

API4KP Metamodel: A Meta-API for Heterogeneous Knowledge Platforms 157

graph. Because RDF has monotonic semantics, the accumulated query results
will always be equivalent to the result of the query applied to the accumulated
graphs of the stream. Cumulative queries and other cumulative operations on
Streams may be implemented through fold operations, while windowing and
filtering are implemented through map. The connected-patient system uses a
heterogeneous language environment to map input XMPP data from biomed-
ical devices into a KRR language, e.g. RDF, employing terms from a vocabu-
lary defined in a common ontology. Thus streaming data may be transformed
into streaming knowledge which is queryable as discussed in the previous item.
The structure of this system may be modelled as a NestedSet of Streams, since
each device streams its output asynchronously. State, Task and IO monads are
appropriate to the use case of an active knowledge base where evaluation of an
operation leads to side-effects; the choice of monad depends on the nature of the
side-effects and the implementation. Equivalence of such knowledge resources
requires not only the same entailments, but also side-effects that are equiva-
lent. The CDS monitoring our connected patient may be modelled using a State
monad, where the sending of a message is a side-effect. The connected patient’s
case history may be modelled as a mutable knowledge asset because of the pos-
sibility of correction of the history without a change of case identifier. The mod-
ular nature of medical records is amenable to NestedSet (a set of laboratory
test results) or NestedList (a procedure performed) structures. Although some
aspects, such as the addition of new medical orders, would fit with the Stream
structure, queries of the case history are not expected to produce streaming
results, and so the mutable asset model is a better fit than a Stream-based
model. Failure recovery in the CDS alert system may be modelled using the Try
monad, so that results can be reported as Success or Failure. A Success response
is a wrapper around a result from the successful execution of a request. A Fail-
ure response includes information about the nature of the failure (e.g. timeout
exception) so that the system can recover appropriately, e.g. by escalating to
another recipient. A possible extension of the CDS which allows a streaming
model in combination with explicit state management and concurrency follows
an implementation[4] that was demonstrated for sports competitions using the
Prova rule engine13.

5 Related Work

While various APIs and interface languages for different knowledge platforms
and representation languages exist14, API4KP provides a unified abstract API
metamodel. Also, various ontologies and semantic extensions for Semantic Web
Service interfaces 15 as well as REST interfaces 16 exist. None of them is specific
13 https://prova.ws/
14 e.g., OWL API , JSR-94 , Linked Data Platform , RuleML Rule Responder IDL ,

OntoMaven and RuleMaven , FIPA ACL , CTS-2
15 e.g., OWL-S, WSDL-S, SAWSDL, SWWS / WSMF, WSMO / WSML, Meteor-S,

SWSI
16 Semantic URLs, RSDL, SA-Rest, Odata

https://prova.ws/

158 T. Athan et al.

to APIs for knowledge platforms and services in general. Some works present
operations on structured knowledge bases (e.g.[15]), but are not exposed using
APIs. General top-level ontologies and general model-driven architecture and
software engineering metamodels have certain overlaps with the concepts used in
API4KP, but fulfill a different purpose. They can be used for the representational
analysis of API4KP. [10]. From a conceptual point of view reference models and
reference architectures 17 for knowledge platforms are related and API4KB can
be used in such reference architectures for the description of functional interfaces
and component APIs.

So, DOL is the most closely related endeavor. The API4KP metamodel intro-
duces the following generalizations of DOL concepts:

– Knowledge sources can have different levels of abstraction. DOL’s OMS con-
cept correspond to knowledge expressions, while we consider also the levels
of asset, manifestation and item.

– Knowledge sources can be mutable or immutable. DOL’s OMS correspond
to immutable knowledge expressions.

– Each API4KP knowledge asset is conceptualized according to a customizable
environment, instead of assuming a single logical environment in which all
OMS are interpreted.

– Environment members can be any language with an abstract syntax, instead
of requiring each member to have a specific semantics. Only the focus of the
environment is required to have its own semantics.

– Semantics is generalized to include side-effects as well as logical entailment.
– Structured knowledge resources may have structures other than nested sets.

The variety of monad structures necessary to model the diversity of usecases
demonstrates that a high level of abstraction is needed to define operations for
modifying knowledge resources - adding, subtracting or modifying. Category
theory provides the tools for these abstractions, through applicative functors
(a generalization of monads having a binary operator allowing a structure of
functions to be applied to another structure), catamorphisms (generalization
of aggregation over a list to other monads) and anamorphisms (e.g. generation
of a list from a seed and recursion formula)[6].

6 Conclusion and Future Work

The primary contributions of this paper are two-fold: (i) a metamodel of het-
erogeneous knowledge sources, environments, operations and events, providing
an abstract syntax for interaction with the Knowledge Platforms at the core of
KDAs and (ii) a structure of nested monads, as the conceptual basis of struc-
tured knowledge resources in the metamodel, supporting modularity, state man-
agement, concurrency and exception handling. We have used a scenario from

17 e.g., the EPTS Event-Processing Reference Architecture [11] and the EPTS/RuleML
Event Processing Standards Reference Model [12]

API4KP Metamodel: A Meta-API for Heterogeneous Knowledge Platforms 159

healthcare to show the kinds of complexities that will be needed and that our
metamodel in combination with monads will meet this challenge. The healthcare
scenario brought up things such as input RDF streams, heterogeneous language
environments, and mutable persistent storage, and we have shown how they will
be accomplished. Future work on API4KP may include a generalization of the
approach to include structures based on applicative functors, and operations in
terms of catamorphisms and anamorphisms, as well as the population of the
ontology with specifications of additional operations, especially querying and
life-cycle management.

References

1. The distributed ontology, model, and specication language (dol). https://github.
com/tillmo/DOL/blob/master/Standard/ebnf-OMG OntoIOp current.pdf

2. Finin, T., Fritzson, R., McKay, D., McEntire, R.: KQML as an agent communi-
cation language. In: Proceedings of the Third International Conference on Infor-
mation and Knowledge Management, CIKM 1994, pp. 456–463. ACM, New York
(1994). http://doi.acm.org/10.1145/191246.191322

3. IFLA Study Group on the Functional Requirements for Bibliographic Records:
Functional requirements for bibliographic records : final report (1998). http://
www.ifla.org/publications/functional-requirements-for-bibliographic-records
(accessed: 2007–12-26)

4. Kozlenkov, A., Jeffery, D., Paschke, A.: State management and concurrency in
event processing. In: Proceedings of the Third ACM International Conference on
Distributed Event-Based Systems, DEBS 2009, Nashville, Tennessee, USA, July
6–9, 2009. http://doi.acm.org/10.1145/1619258.1619289

5. Mac Lane, S.: Categories for the Working Mathematician (Graduate Texts in
Mathematics). Springer (1998)

6. Meijer, E., Fokkinga, M., Paterson, R.: Functional Programming with Bananas,
Lenses, Envelopes and Barbed Wire, pp. 124–144. Springer-Verlag (1991)

7. Mellor, S.J., Kendall, S., Uhl, A., Weise, D.: MDA Distilled. Addison Wesley
Longman Publishing Co. Inc., Redwood City (2004)

8. Moggi, E.: Notions of computation and monads. Selections from 1989 IEEE Sympo-
sium on Logic in Computer Science 93(1), 55–92 (1991). http://www.sciencedirect.
com/science/article/pii/0890540191900524

9. Object Management Group (OMG): OntoIOp request for proposal. http://www.
omg.org/cgi-bin/doc?ad/2013-12-02

10. Paschke, A., Athan, T., Sottara, D., Kendall, E., Bell, R.: A representational anal-
ysis of the API4KB metamodel. In: Proceedings of the 7th Workshop on Formal
Ontologies meet Industry (FOMI 2015). Springer-Verlag (2015)

11. Paschke, A., Vincent, P., Alves, A., Moxey, C.: Tutorial on advanced design
patterns in event processing. In: Proceedings of the Sixth ACM International Con-
ference on Distributed Event-Based Systems, DEBS 2012, Berlin, Germany, July
16–20, 2012, pp. 324–334 (2012)

12. Paschke, A., Vincent, P., Springer, F.: Standards for Complex Event Processing and
Reaction Rules. In: Palmirani, M. (ed.) RuleML - America 2011. LNCS, vol. 7018,
pp. 128–139. Springer, Heidelberg (2011)

https://github.com/tillmo/DOL/blob/master/Standard/ebnf-OMG_OntoIOp_current.pdf
https://github.com/tillmo/DOL/blob/master/Standard/ebnf-OMG_OntoIOp_current.pdf
http://doi.acm.org/10.1145/191246.191322
http://www.ifla.org/publications/functional-requirements-for-bibliographic-records
http://www.ifla.org/publications/functional-requirements-for-bibliographic-records
http://doi.acm.org/10.1145/1619258.1619289
http://www.sciencedirect.com/science/article/pii/0890540191900524
http://www.sciencedirect.com/science/article/pii/0890540191900524
http://www.omg.org/cgi-bin/doc?ad/2013-12-02
http://www.omg.org/cgi-bin/doc?ad/2013-12-02

160 T. Athan et al.

13. Rector, A.: Knowledge driven software and “fractal tailoring”: ontologies in devel-
opment environments for clinical systems. In: Proceedings of the 2010 Conference
on Formal Ontology in Information Systems: Proceedings of the Sixth International
Conference (FOIS 2010), pp. 17–28. IOS Press, Amsterdam (2010)

14. Rosemann, M., Green, P.: Developing a Meta Model for the Bunge-Wand-
Weber Ontological Constructs. Inf. Syst. 27(2), 75–91 (2002). doi:10.1016/
S0306-4379(01)00048-5

15. Slota, M., Leite, J., Swift, T.: Splitting and updating hybrid knowledge bases.
Theory and Practice of Logic Programming 11(4–5), 801–819 (2011). 27th Int’l.
Conference on Logic Programming (ICLP 2011) Special Issue

16. Wadler, P.: Comprehending monads. In: Mathematical Structures in Computer
Science, pp. 61–78 (1992)

http://dx.doi.org/10.1016/S0306-4379(01)00048-5
http://dx.doi.org/10.1016/S0306-4379(01)00048-5

Rule-Based Exploration of Structured Data
in the Browser

Sudhir Agarwal1(B), Abhijeet Mohapatra1, Michael Genesereth1,
and Harold Boley2

1 Logic Group, Computer Science Department, Stanford University, Stanford, USA
{sudhir,abhijeet,genesereth}@cs.stanford.edu

2 Faculty of Computer Science, University of New Brunswick, Fredericton, Canada
harold.boley@unb.ca

Abstract. We present Dexter, a browser-based, domain-independent
structured-data explorer for users. Dexter enables users to explore data
from multiple local and Web-accessible heterogeneous data sources such
as files, Web pages, APIs and databases in the form of tables. Dex-
ter’s users can also compute tables from existing ones as well as validate
the tables (base or computed) through declarative rules. Dexter enables
users to perform ad hoc queries over their tables with higher expressivity
than that is supported by the underlying data sources. Dexter evaluates
a user’s query on the client side while evaluating sub-queries on remote
sources whenever possible. Dexter also allows users to visualize and share
tables, and export (e.g., in JSON, plain XML, and RuleML) tables along
with their computation rules. Dexter has been tested for a variety of data
sets from domains such as government and apparel manufacturing. Dex-
ter is available online at http://dexter.stanford.edu.

1 Introduction

Data is the fuel of innovation and decision support. Structured data is available
to users through different sources. Examples include local files, Web pages, APIs
and databases. Oftentimes, users need to quickly integrate and explore the data
in an ad hoc manner from multiple such sources to perform planning tasks, make
data-driven decisions, verify or falsify hypotheses, or gain entirely new insights.

Unfortunately, it can be very cumbersome, tedious or time consuming for
users to explore data in an ad hoc manner using the current state of the art
tools. This is because the current state of the art tools (a) provide limited or
no querying support over the underlying data (e.g. domain-specific Web appli-
cations, public sources), (b) cannot compile information from multiple sources
(e.g. search engines), or (c) require users’ private data to be shipped to a remote
server.

For example, consider the Govtrack website (https://www.govtrack.us)
which has information (e.g. age, role, gender) about members of the U.S.
Congress. Suppose, a user wishes to know “Which U.S. senators are 40 years
old?” or “Which senate committees are chaired by a woman?”. Even though
c© Springer International Publishing Switzerland 2015
N. Bassiliades et al. (Eds.): RuleML 2015, LNCS 9202, pp. 161–175, 2015.
DOI: 10.1007/978-3-319-21542-6 11

http://dexter.stanford.edu
https://www.govtrack.us

162 S. Agarwal et al.

Govtrack has the requisite data, it is very tedious to find answers to such elemen-
tary questions. This is because Govtrack’s UI and APIs present limited querying
capabilities to a user. It is even harder to query across data from multiple sources
e.g. “Which members of U.S. Congress were the Head of DARPA”.

To address these problems, we have developed Dexter, a domain-indepedent,
browser-based structured data explorer for users. Dexter enables users to cre-
ate and connect multiple Web-accessible structured data (e.g. from Web pages,
databases, APIs) as tables, and to explore these tables through Dexlog [14]
rules with higher expressivity than is supported by the underlying data sources.
Dexlog is a variant of Datalog [9] that is extended using negation and aggrega-
tion [15], and supports an extensive list of built-in arithmetic, string, as well as
tuple- and set-manipulation operators.

The fundamental novelty of Dexter is its client side evaluation of user queries.
To reduce query processing times, Dexter leverages two techniques. First, Dexter
follows a hybrid-shipping strategy [13] and fetches query answers, instead of base
data, from sources that offer support for queries. We note that, in such cases, a
user’s private data (e.g. locally stored data) is never shipped to a remote source.
Second, to overcome browsers’ memory limitations and to efficiently evaluate
a user’s query, Dexter horizontally partitions the tables and executes queries
over the partitions in parallel, subsequently compiling the answers in a manner
similar to the MapReduce [8] programming paradigm.

To enable users to effectively and conveniently explore structured data, Dex-
ter presents users with two interfaces: (a) an intuitive table editor to work with
data and (b) the Dexlog Rule Editor that is equipped with syntax highlighting
and auto-completion. In addition, Dexter allows users to visualize their tables
as charts and export their table along with their associated Dexlog rules in vari-
ous formats including RuleML [4,7]. Moreover, Dexter also allows users to share
their tables with other users through a publicly accessible server.

The rest of the paper is organized as follows. In Section 2, we present an
overview of the Dexlog language, which serves as the foundation of Dexter’s
data exploration capabilities. Then, in Section 3, we describe Dexter’s features
that enable users to plug-in structured data as tables and play with these tables
(e.g. explore, visualize, export and share). In Section 4, we describe how Dexter
efficiently evaluates a user’s queries on the client side. Dexter has been tested for
a variety of ad hoc queries over data sets from multiple domains. In Section 5,
we present some scenarios involving ad hoc exploration of data about the U.S.
government, apparel manufacturing, and restaurants. We compare and contrast
Dexter to related tools and technologies in Section 6.

2 Dexlog

Dexter presents to its users a unified notion of tables that transcends the tradi-
tional separation between base tables and views. In Dexter, a table can contain
tuples that are manually entered, computed using Dexlog rules, or both. We
note that manual entry of a tuple in a table can be emulated through a trivial

Rule-Based Exploration of Structured Data in the Browser 163

Dexlog rule where the tuple appears in the head and the body is a valid Dexlog
formula i.e. it evaluates to true in all possible interpretations. In this regard,
Dexlog rules serve as the foundation for data exploration in Dexter. Dexlog is a
variant of standard Datalog that is extended using negation (as failure), aggrega-
tion, and built-in operators over numbers, strings, tuples and sets. In this section,
we present an overview of Dexlog, highlighting its distinguishing features with
respect to standard Datalog and refer the reader to [15] for details regarding the
syntax and semantics of Dexlog.

The vocabulary of Dexlog consists of basic constants, relation constants, vari-
ables, tuples, sets, and reserved keywords (such as illegal, which are discussed
shortly). Basic constants are strings that are enclosed within double quotes e.g.
"1.23" and "Dexter". Relation constants and variables are strings of alphanu-
meric characters and underscore. However, relation constants must begin with a
lower-case letter, e.g. person, q_12, while variables must begin with an upper-
case letter, e.g. X1, Y_.

A key difference between standard Datalog and Dexlog is the introduction of
tuples and sets as first-class citizens. A tuple is a non-empty, ordered collection of
basic constants, variables, sets or other tuples which are separated using commas
and enclosed within square brackets, e.g. ["John", "2"]. Sets can be specified
in Dexlog as set constants, each being a possibly empty unordered collection
of basic constants, tuples or additional sets enclosed within braces, e.g. {} and
{{"1", "2"},{"3"}}. In addition, Dexlog supports a special operator, called
setof, for constructing sets.

Suppose that X̄ and Ȳ are two collections of Dexlog terms (i.e. constants
and variables) and suppose that φ(X̄, Ȳ) is a conjunction of Dexlog literals. The
setof atom setof(X̄ ,φ(X̄, Ȳ), S) computes a set SȲ = {X̄ | φ(X̄, Ȳ)} for
every binding of values in Ȳ .

Consider two relations: a unary relation continent and a binary relation
called located, and their respective instances1 as shown below.

continent
Asia

Africa
North America

located
India Asia
USA North America

Canada North America

Assuming that the located(X,Y) indicates that country X is geographically
located in continent Y, the following Dexlog rule computes the set of countries
for each continent.

v(X, S) :- continent(X) & setof(Y, located(Y, X), S)

The above Dexlog rule computes a set SX = {Y | located(Y,X)} for every
binding of X such that continent(X) is true. Evaluation of the above rule on
the instances of the tables continent and located results in the following tuples.

1 For the sake of better readability, we omit quotes when a table cell is a basic constant.

164 S. Agarwal et al.

v
Asia {"India"}

Africa {}
North America {"USA","Canada"}

Safe Dexlog Rules: To ensure the safety of Dexlog rules, all variables that
occur in a negated atom in a rule’s body must also occur in a positive atom. In
addition, all the variables that occur in the body of a setof atom (but not as an
aggregated argument) must be bound in some positive atom outside the setof
atom. For example, the following rule is unsafe because there are infinitely many
possible bindings of X such that q(X, {}) evaluates to true.

q(X, S) :- setof(Y, located(Y, X), S)

Constraints in Dexlog: In addition to the rules for computing new facts from
existing facts, Dexlog also allows users to validate a table’s base or computed
data by defining constraints over the table. Constraints have the general form
illegal :- φ, where illegal indicates constraint violation [10] and φ is a
Dexlog formula. Suppose that we wish to specify a constraint over the table
located such that the second argument of every tuple in the located table
must be contained in the continent table as well. We note that this constraint
is an example of a foreign-key constraint [9] which can be specified using the
following Dexlog rule involving negation.

illegal :- located(Y, X) & ∼ continent(X)

Dexlog also supports an extensive list of built-in operators. Such operators
include arithmetic operators (e.g. gt, plus, mod), string-manipulation operators
(e.g. length, substr, concat), set-based operators (e.g. sumOf, unionOf) and
tuple-based operators (e.g. attr). The complete listing of the built-in operators,
their arity, binding patterns and description, is provided in [14].

3 Dexter: Interface and Features

In this section, we walk the reader through Dexter’s interface and describe some
of its main features and their role in enabling ad hoc exploration of structured
data.

Dexter introduces a unified notion of tables that transcends the traditional
separation between base tables and computed tables. In Dexter, a table can have
manually entered data as well as rules that compute further data and constraints.
To accommodate this unified notion of a table, Dexter presents its users with two
interfaces to interact with tables. The first interface is a table editor that allows
a user to manually enter data into a table or to update the data and the schema
of a table. In addition, the user is also presented with an interface, called the
Dexlog Rule Editor, for computing and validating a table’s data through Dexlog
rules.

Rule-Based Exploration of Structured Data in the Browser 165

Fig. 1. Screenshot of Dexter’s User Interface

A screenshot of Dexter’s user interface depicting its different components
is shown in Figure 1. On the left hand side, a list of tables is shown with the
currently selected table highlighted with yellow background.

Creating and Managing Tables Through the Table Editor: When a user
creates a table or views a previously created table by selecting it in the list of
tables through Dexter’s UI, he/she is presented with a table editor as shown in
lower right area of Figure 1.

The simplest way to populate a table in Dexter is to manually fill in values
into the cells of the table editor. Dexter also allows a user to import data from
CSV, JSON, or XML files that are located in the user’s file system or accessible
through a URL by interacting with the Table menu in Dexter’s UI. Furthermore,
a user can also extract structured data from a Web page into a table in Dexter
by copying the relevant HTML DOM fragment and pasting it on to the table.
Dexter uses the extraction algorithm that is proposed in [2] to convert a copied
HTML DOM fragment into a table.

In addition to above methods, Dexter also allows users to create remote
tables by connecting to MySQL databases (by specifying the MySQL server’s
address, the database name and the authentication details) as well as to Web
APIs that support responses in JSON format. In contrast to Web applications
that typically hard-code the set of underlying sources, Dexter is based on a
generic source model that characterizes (a) the querying capability of a source,
(b) accessibility of the source from the client side (e.g. whether the source is
directly accessible or requires a proxy), and (c) the conversion of the data sent
from the source to a table in Dexter. We note that, unlike tables that are created
by manual data entry, importing files or extracting HTML DOM fragments, the
data in a remote table cannot be directly updated. Instead, users may duplicate
and edit a copy of a remote table in Dexter.

Users can manage the data and the schema of their tables through Dexter’s
table editor by updating the values in the table’s cells, by inserting or deleting

166 S. Agarwal et al.

rows or columns of a table respectively, or changing the column names. Users
can sort a table by choosing an appropriate column through the table editor.
Sometimes a user wishes to quickly see only a selected part of a large table.
Defining a query for selecting the relevant rows could be too cumbersome in
such a case. Therefore, Dexter’s UI allows users to define filters on columns and
shows only the matching table rows.

Validating and Computing Tables Using the Dexlog Rule Editor: Dex-
ter presents to its users an interface called the Dexlog Rule Editor where they
can specify Dexlog rules. The Dexlog Rule Editor supports auto-completion and
syntax highlighting to make it convenient for users to enter Dexlog rules. For
any table in Dexter, the Dexlog Rule Editor records all of the Dexlog rules that
are associated the table. These rules can either be used to validate or to compute
the tuples of the table.

Consider our example from Section 2 of a Dexlog constraint over the located
table.

illegal :- located(X, Y) & ∼ continent(Y)

As shown in Figure 1, a user can associate such a constraint with the located
table in Dexter by entering the constraint into the Dexlog Rule Editor.
Traditional database systems [9] enforce constraints on a table by preventing
violations. Since rejection of violating rows is only one of multiple possibilities
for resolving a violation, Dexter allows constraint violations to occur and employs
visual feedback to pinpoint violations to a user. Specifically, the rows of a table
that contribute to a constraint violation are colored red when the table’s data
is validated against the constraints. An example of such a violation pinpoint-
ing is shown in Figure 1. Since the tuple "North Africa" is not present in the
continent table, the tuple ("Egypt", "North Africa") violates the constraint
on the located table and is, therefore, colored red.

Similar to specifying Dexlog constraints and validating tables, a user can also
use the Dexlog rule editor to specify Dexlog rules and evaluate these rules to
compute a table’s data. When a user evaluates a computed table, the answers
are streamed into Dexter’s table editor as read-only rows. We discuss the process
of evaluating Dexlog Rules in Section 4.

Materializing Tables: Dexter allows users to materialize computed tables in
their browser’s local storage. Materializing a computed table can significantly
reduce the time taken to evaluate Dexlog rules over the table by using the mate-
rialization of the computed table instead of re-computing the table. We note
that, currently, Dexter does not automatically update the materialization of
computed tables when the data in the underlying sources is changed. Rather,
Dexter relies on users to re-evaluate and re-materialize the computed tables any
time they wish to do so.

Visualizing Tables: Charts are a great way to comprehend, analyze, and effec-
tively interact with a table’s data. In addition to allowing users to explore tables
through Dexlog rules, Dexter enables users to visualize their table’s data (includ-
ing computed tuples) as charts. In order to create a chart based on the data in

Rule-Based Exploration of Structured Data in the Browser 167

the currently selected table in Dexter’s UI, a user opens the chart creation win-
dow by clicking on the “Chart Visualization” button (see Figure 1). A user can
then select the columns to be plotted and the type of the chart and inspect the
chart. Dexter supports popular chart types such as line chart, area chart, bar
chart, column chart, scatter plot and pie chart. Dexter allows users to export
their charts as images in popular image formats.

Exporting and Sharing Tables: Dexter stores user’s tables locally inside their
respective browsers. Tables that are accessible through Dexter in one browser
are not accessible through a different browser (even within the same machine).
In order to support inter-application exchange of user’s data, Dexter allows its
users to export their tables in two different ways. First, users can export their
table’s data as CSV, XML or JSON files. Users can also export a table’s data
along with the associated validation and computation rules in Dexter’s native
file format, which uses the extension .dxt and in Naf Datalog RuleML / XML2,
which uses the extension ruleml.

Dexter makes it possible for users to share their data with other users and
use data shared by other users. With Dexter’s UI users can easily publish their
tables to Dexter’s sharing server to make their tables accessible through different
browsers or to other users. The shared tables are accessible to all Dexter users
by selecting the folder ”shared” in the upper left corner in Dexter’s UI.

4 Efficient Evaluation of Dexlog Rules

Dexter allows users to query their tables by specifying Dexlog rules over the
(relational) schemas of the involved sources. These queries are evaluated by
Dexter on the client side by employing a Hybrid-Shipping strategy [13]. Our
query evaluation strategy ensures acceptable query answering performance with-
out requiring users to compromise on their privacy or overloading the client
machines. We note that the naive approach of fetching all the required data to
the client machine and subsequently, evaluating the query answers, also referred
to as Data-Shipping [13], is not practical mainly because the client machines are
usually not high-performance machines.

Dexter evaluates a user’s query in the following steps. First, an input query
is decomposed into partial queries, such that each partial query can be answered
independently at a source. Next, the resulting sub-queries are filtered to remove
rules that would never be fired while evaluating the user’s query. After, remov-
ing irrelevant rules, the resulting partial queries are fragmented by horizontally
partitioning the data of the underlying sources. Finally, the fragmented queries
are executed in parallel and the resulting answers are compiled to construct the
answers to the input query.

2 http://wiki.ruleml.org/index.php/Dexter and RuleML

http://wiki.ruleml.org/index.php/Dexter_and_RuleML

168 S. Agarwal et al.

4.1 Query Decomposition

A query over the internal schema is decomposed into partial queries and rules
that assemble the answers to the partial queries. The hybrid-shipping strat-
egy [13] for query decomposition in Dexter depends on the sources that are
required to evaluate a query and on the querying capability of a source.

Suppose that senator(Name, Party, State) and party(Id, PartyName)
are two tables in Dexter that are created by connecting to Govtrack’s rela-
tional database. Furthermore, suppose that the table tweet(U, Tweet), which
represents the Twitter posts of a user U, is created by connected to the Twit-
ter API. Since databases support filtering of table on its attribute values,
the query q(T):-senator(U,P,S) & tweet(U,T) & party(P,"Rep") will be
decomposed into partial queries q1 and q2 as follows.

q(T) :- q1(U) & q2(U, T)

q1(U) :- senator(U, P, S) & party(P,"Rep")

q2(U, T) :- tweet(U, T)

In order to evaluate the query q, the partial queries q1(U) and q2(U,T) are sent
to Govtrack’s database and the Twitter API respectively.

However, if Govtrack does not allow the senator table to be filtered by
the attribute Party, then the whole table is shipped to the client side where
the filters are, subsequently, applied. In addition, if it is not known whether a
certain operation (say, join or negation) can be performed at a source, then the
relevant operation is performed on the client side after shipping the data from
the source. We note that, in Dexter, the queries over local data (such as CSV,
XML or JSON files) are always evaluated on the client side and never shipped
to a source. Thus, the privacy of a user’s local data is always preserved.

4.2 Removal of Irrelevant Rules

The collection of partial queries that results from the decomposition step is
filtered to remove any irrelevant rules from it. The irrelevant rules are filtered
using a simple procedure that, for a given input predicate, iterates through the
rules and recursively selects all the rules that the input predicate depends on.
Using this procedure for the query predicate as input gives us all the relevant
rules filtering out any irrelevant rules.

We note that Dexter supports stratified evaluation of queries with negation
or setof. In order to evaluate such queries, the strata of the predicates involved
in the query are computed using the technique presented in [1]. The evaluation
of the query starts by evaluating the predicates at strata 0.

4.3 Query Fragmentation

The straightforward evaluation of the partial queries resulting from the previous
steps can become a double bottleneck due to (a) the complexity of the query,

Rule-Based Exploration of Structured Data in the Browser 169

and (b) the size of the answers, especially when the size of the data shipped from
a source is too big to handle for a user’s browser. To resolve these bottlenecks,
partial queries are fragmented horizontally into chunks based on the the size of
the browser’s local store and the maximum number of answers to a query that can
be returned from a source. For example, suppose that the Twitter API allows
a maximum of 500 tweets to be returned per call. If the number of senators,
number of parties and the total number of tweets are, say, 500, 100 and 10000,
respectively, then the query q(T) is fragmented into 20 fragments (assuming the
chunk size to be 500). In order to be able to execute the fragments in parallel,
the corresponding offsets and limits are appended to the relation names in the
rules of a fragment. For our example, the rules for the first fragment will be as
follows (and analogous for the other 19 fragments):

q(T) :- q1(U) & q2(U,T)

q1(U) :- senator_0_500(U,P,S) & party_0_100(P,"Rep")

q2(U,T) :- tweet_0_500(U,T)

4.4 Parallel Evaluation of Queries

In general, the number of partitions obtained from the previous step can be so
large that it may not be feasible for a user’s machine to evaluate all of them
at the same time in parallel. Dexter allows users to set the maximum number
of parallel threads they want Dexter to use while evaluating queries. Dexter
schedules the execution of partitions such that at any time the number of query
fragments executed in parallel does not exceed this limit.

Source Invocation and Building the Cache. A partition first builds the
fact base required for answering the query. For this purpose, its rules are pro-
cessed and appropriate source-specific queries are constructed. The construction
of source-specific queries takes into consideration the source-connection informa-
tion as well as the information about offset and limit appended to the relation
names in the previous steps. Then, the source-specific queries are sent to the
sources and results are converted to relations by using the appropriate wrap-
pers, which could be located either on the client (e.g. local files, servers that
support JSONP requests) or on the server (e.g. Twitter API, databases such
as MySQL). To increase efficiency and relieve the sources, Dexter caches the
data of a source invocation as long as doing so does not exceed the maxi-
mum cache size. Dexter’s cache can be used by all partitions. In our example,
since party_0_100(P,"Rep") is present in every partition, not caching source
responses would lead to 20 Govtrack API invocations for the same data.

Answer Construction. In the answer construction stage, the answers of the
partial query fragments are assembled to compute the answer to the user’s input
query. Although one query fragment does not return one answer multiple times,

170 S. Agarwal et al.

the same tuple could be returned by different query fragments. Therefore, the
final answer is computed by taking the set-union of the answers of all query
fragments.

5 Demonstration Scenarios

In this section, we present some example scenarios for which Dexter has been
successfully evaluated. Note that Dexter is a domain-independent data browser
and the number of scenarios for which it can be used is potentially infinite.
The purpose of the scenarios described in this section is merely to demonstrate
Dexter’s features.

Table 1. Data Sources used in the Demonstration Scenarios

Nr. Format URL and Description

1 CSV http://www.fec.gov/data/AdminFine.do
Data about administrative fines

2 API https://www.govtrack.us/developers/api
Data about current U.S. senators and committees / sub-committees.

3 API http://www.yelp.com/developers/documentation/search api
Data about pizzerias in Downtown, Washington D.C.

4 CSV http://www.opendatadc.org/dataset/restaurant-inspection-data
Health inspection data in Washington D.C restaurants

5 Webpage https://www.eecs.mit.edu/people/faculty-advisors
Data about MIT faculty

6 JSON http://manufacturingmap.nikeinc.com/maps/export json
Data about manufacturers of Nike collegiate products.

S1: Which U.S. senator or representative has incurred the maximum admin-
istrative fine? What is the distribution of administrative fines across the U.S.
states?

For this scenario, a user imports the CSV file (Line 1 of Table 1) into a table
called fines, and sorts the table by column containing fines amounts (Finamo)
in descending order. The user, then, creates e.g. a chart such as the one shown
in Figure 2 with Dexter’s interactive interface for visualizing the distribution of
administrative fines across U.S. states.

S2: Which of the current U.S. senators have been fined by the Federal Election
Commission (FEC)? Do any of them chair a committee or a sub-committee?

For this scenario, a user creates two tables persons and committees in Dex-
ter and connects the tables to the Govtrack API (Line 2 in Table 1) to obtain
the data about members of the U.S. congress and the congressional committees,
respectively. Then, the user joins the persons table with the fines table (from
Scenario S1) to find the senators who have been fined by the FEC. By joining

http://www.fec.gov/data/AdminFine.do
https://www.govtrack.us/developers/api
http://www.yelp.com/developers/documentation/search_api
http://www.opendatadc.org/dataset/restaurant-inspection-data
https://www.eecs.mit.edu/people/faculty-advisors
http://manufacturingmap.nikeinc.com/maps/export_json

Rule-Based Exploration of Structured Data in the Browser 171

Fig. 2. Distribution of administrative fines across U.S. states

the result of the previous query with the committees table, the user can find
the current U.S. senators, who chair a committee or a sub-committee and have
been fined by the FEC.

S3: Which pizzerias in Downtown, Washington D.C. have health code viola-
tions?

For this scenario, a user creates a table called dcPizzerias and connects the
table to the Yelp API (see Line 3 in Table 1) to obtain the data about pizzerias
in Downtown, Washington D.C. Then, the user imports the data about health
code violations (see Line 4 in Table 1) into a table called healthViolation. By
evaluating a join over the two tables, the user can obtain the list of pizzerias in
Washington D.C. that violate the health code regulations.

S4: Which MIT CS faculty have not listed their contact details (phone number,
office)?

For this scenario, a user opens the MIT CS faculty Web page (Line 5 in
Table 1) in his/her browser, selects the fragment of the Web page that con-
tains the information on MIT CS faculty members, and pastes it in a table,
say mitCSFaculty in Dexter. Dexter converts the pasted Web page fragment
automatically into a table (for more details see [2]). Then, the user specifies the

172 S. Agarwal et al.

<?xml version="1.0" encoding="UTF-8"?>
<?xml-model href="http://deliberation.ruleml.org/1.01/xsd/nafdatalog.xsd"?>
<RuleML xmlns="http://ruleml.org/spec">

<Assert>
<Forall>

<Var>Name</Var><Var>Pos</Var><Var>Email</Var><Var>Off</Var><Var>Inst</Var>
<Implies>

<Atom><Rel>mitCSFaculty</Rel><Var>Name</Var><Var>Pos</Var><Var>Email</Var>
<Data></Data><Var>Off</Var><Var>Inst</Var></Atom>

<Atom><Rel>illegal</Rel></Atom></Implies></Forall>
<Forall>

<Var>Name</Var><Var>Pos</Var><Var>Email</Var><Var>Ph</Var><Var>Inst</Var>
<Implies>

<Atom><Rel>mitCSFaculty</Rel><Var>Name</Var><Var>Pos</Var><Var>Email</Var>
<Var>Ph</Var><Data></Data><Var>Inst</Var></Atom>

<Atom><Rel>illegal</Rel></Atom>
</Implies></Forall></Assert></RuleML>

Fig. 3. Validation Rules (Constraints)

<?xml version="1.0" encoding="UTF-8"?>
<?xml-model href="http://deliberation.ruleml.org/1.01/xsd/nafdatalog.xsd"?>
<RuleML xmlns="http://ruleml.org/spec">

<Assert>
<Forall>

<Var>A</Var><Var>B</Var><Var>C</Var><Var>D</Var><Var>E</Var><Var>F</Var><Var>I</Var>
<Implies>

<And>
<Atom><Rel>mitCSFaculty</Rel><Var>A</Var><Var>B</Var><Var>C</Var>

<Var>D</Var><Var>E</Var><Var>F</Var></Atom>
<Atom><Rel>indexOf</Rel><Var>F</Var><Data>CSAIL</Data><Var>I</Var></Atom>
<Atom><Rel>gt</Rel><Var>I</Var><Data>-1</Data></Atom>

</And>
<Atom><Rel>mitCSAIL</Rel><Var>A</Var><Var>B</Var><Var>C</Var>

<Var>D</Var><Var>E</Var><Var>F</Var>
</Atom>

</Implies></Forall></Assert></RuleML>

Fig. 4. Computation Rule

following constraints on the mitCSFaculty table.

illegal :- mitCSFaculty(Name,Pos,Email,"",Off,Inst)

illegal :- mitCSFaculty(Name,Pos,Email,Ph,"",Inst)

illegal :- mitCSFaculty(Name,Pos,Email,"","",Inst)

When the above constraints are evaluated, the rows corresponding to MIT CS
faculty members who have not listed a phone number or their office details are
colored red in Dexter’s UI to indicate a constraint violation.

Figure 3 shows the Naf Datalog RuleML/XML generated with Dexter for
the above two constraints. Dexter can also export computation rules in Naf
Datalog RuleML/XML syntax. Suppose, we have the following computation rule
to compute only those MIT CS faculty members that are members of CSAIL.

mitCSAIL(A,B,C,D,E,F) :-
mitCSFaculty(A,B,C,D,E,F) & indexOf(F,"CSAIL",I) & gt(I,"-1")

Rule-Based Exploration of Structured Data in the Browser 173

Figure 4 shows the Naf Datalog RuleML/XML generated with Dexter for the
above computation rule.

S5: For every Nike product type, what is the total number of immigrant workers
in the factories that supply the product?

For this scenario, a user imports the file containing data about manufac-
turers of Nike collegiate products (see Line 6 in Table 1) into a table called
nikeFactories. By evaluating the following rules, the user obtains the total
number of migrant workers per product type. Note that in the second rule we
use ‘*’ only for the sake of readability of the paper.

s5(PType,NumMigWrkrs) :- aux(PType,IdTemp,MwTemp) &

setof([Id,Mw],aux(PType,Id,Mw),MwSet) & sumOf(MwSet,2,NumMigWrkrs)

aux(PType,Id,MigWrkrs) :- nikeFactories(Id,*,Wrkrs,*,MwP,*,PType,*) &

replace(MwP,"%","",MwPer) & times(MwPer,.01,Wrkrs,MigWrkrs)

Table 2. Features of Dexter covered by the Demonstration Scenarios S1–S5

Feature\Scenario S1 S2 S3 S4 S5

Import � � � �
Export �
Web Extraction �
API/Database � �
Sorting �
Constraints �
Queries (Select / Project) � � � �
Queries (Join / Aggregates) � � �
Data Visualization �
Table Editing � � � �

We note that the scenarios described above cover most of the features of
Dexter. The features that are not covered in the demonstration scenarios S1–S5
are the exporting and sharing of tables. Table 2 summarizes the coverage of
Dexter’s features in the demonstration scenarios S1–S5.

6 Related Work and Concluding Remarks

We presented Dexter, a tool that empowers users to explore structured data from
various Web-accessible sources such as databases, local files (e.g. CSV, XML and
JSON), Web pages and Web-APIs expressively and in ad hoc fashion. To the
best of our knowledge, Dexter is the first system to provide such functionality
to users. Popular search engines do not support compilation of information from
multiple documents, a prerequisite to satisfy the overall information need of

174 S. Agarwal et al.

a user. Semantic Web [5] and Linked Data [6] rely on existence of semantic
annotations for websites or directly accessible semantic data respectively. Dexter
takes a bottom-up approach by supporting multiple widely used types of data
sources and data formats instead of only RDF.

Dexter stores user’s data locally inside his/her browser as opposed to typical
server-side systems that store user’s data on the server. This feature of Dexter
ensures that users can combine their private and confidential data with public
data without compromising on their privacy. Although popular spreadsheet soft-
ware such as Microsoft Excel support local storage and ad hoc analysis of user’s
data, they lack data capability of querying across multiple remote sources such as
joins across multiple sources. Google’s Fusion Tables [11] supports more expres-
sive queries than traditional spreadsheets. However, Google’s Fusion Tables is a
purely server-side system and requires all the data to be on the server.

DataWrangler is a browser-based interactive data cleaning and transforma-
tion tool [12]. While DataWrangler can suggest edits based on user’s interactions
and Dexter does not, Dexter supports complex validation rules incl. conditions
involving multiple tables whereas DataWrangler can check only for missing val-
ues. In addition to research prototypes, there is an ever increasing number of
commercial systems such as Trifacta, Microsoft Azure, Tamr, MindTagger, Infor-
matica, and Tableaux. While each of them has its own strengths and weaknesses,
they all are targeted primarily toward making organization-internal data easily
consumable for the employees of an organization. In contrast, Dexter is primarily
targeted toward making publicly available data easily consumable for users.

Apart from the lack of support for privacy, server-side systems targeted
toward users such as Wikidata [16] and Socrata (http://www.socrata.com/)
typically do not support expressive queries; scalability being one of the many
reasons for this choice. Dexter addresses the scalability problem with a novel
architecture combined with the hybrid shipping strategy [13], in which queries
are evaluated on the client side while exploiting the querying capabilities of
remote sources. Dexter-Client communicates directly with data sources when
possible, and through Dexter-Server (proxy) otherwise. Dexter query evaluation
technique respects a user’s privacy as it never ships a user’s local data to a
remote server. By enabling users to pose highly expressive queries over a source,
across sources (including local data), Dexter bridges the gap between the query-
ing capability of sources and the information need of a user. For detailed analysis
of the above mentioned and more Dexter-related tools and technologies we refer
to [3].

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995). http://www-cse.ucsd.edu/users/vianu/book.html

2. Agarwal, S., Genesereth, M.R.: Extraction and integration of web data by
end-users. In: He, Q., Iyengar, A., Nejdl, W., Pei, J., Rastogi, R. (eds.) CIKM,
pp. 2405–2410. ACM (2013)

http://www.socrata.com/
http://www-cse.ucsd.edu/users/vianu/book.html

Rule-Based Exploration of Structured Data in the Browser 175

3. Agarwal, S., Mohapatra, A., Genesereth, M.: Survey of dexter related tools and
techonologies (2014). http://dexter.stanford.edu/semcities/TR-DexterRelated
Work.pdf

4. Athan, T., Boley, H.: The MYNG 1.01 Suite for Deliberation RuleML 1.01: Taming
the language lattice. In: Patkos, T., Wyner, A., Giurca, A. (eds.) Proceedings of the
RuleML 2014 Challenge, at the 8th International Web Rule Symposium, CEUR,
vol. 1211, August 2014

5. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web: a new form of
Web content that is meaningful to computers will unleash a revolution of new
possibilities. Scientific American 5(284), 34–43 (2001)

6. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. International
Journal on Semantic Web and Information Systems 5(3), 1–22 (2009)

7. Boley, H., Paschke, A., Shafiq, O.: RuleML 1.0: the overarching specification of
web rules. In: Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.) RuleML 2010. LNCS,
vol. 6403, pp. 162–178. Springer, Heidelberg (2010)

8. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

9. Garcia-Molina, H., Ullman, J.D., Widom, J.: Database systems - the complete
book (2. ed.). Pearson Education (2009)

10. Genesereth, M.R.: Data Integration: The Relational Logic Approach. Synthesis
Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool
Publishers (2010)

11. Gonzalez, H., Halevy, A.Y., Jensen, C.S., Langen, A., Madhavan, J., Shapley, R.,
Shen, W.: Google fusion tables: data management, integration and collaboration in
the cloud. In: Hellerstein, J.M., Chaudhuri, S., Rosenblum, M. (eds.) Proceedings of
the 1st ACM Symposium on Cloud Computing, SoCC 2010, Indianapolis, Indiana,
USA, June 10–11, 2010. pp. 175–180. ACM (2010)

12. Kandel, S., Paepcke, A., Hellerstein, J., Heer, J.: Wrangler: interactive visual
specification of data transformation scripts. In: Tan, D.S., Amershi, S., Begole,
B., Kellogg, W.A., Tungare, M. (eds.) Proceedings of the International Conference
on Human Factors in Computing Systems, CHI 2011, Vancouver, BC, Canada,
May 7–12, 2011, pp. 3363–3372. ACM (2011)

13. Kossmann, D.: The state of the art in distributed query processing. ACM Comput.
Surv. 32(4), 422–469 (2000)

14. Mohapatra, A., Agarwal, S., Genesereth, M.: Dexlog: An overview (2014).
http://dexter.stanford.edu/main/dexlog.html

15. Mohapatra, A., Genesereth, M.R.: Reformulating aggregate queries using views.
In: Frisch, A.M., Gregory, P. (eds.) SARA. AAAI (2013)

16. Vrandecic, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase.
Commun. ACM 57(10), 78–85 (2014)

http://dexter.stanford.edu/semcities/TR-DexterRelatedWork.pdf
http://dexter.stanford.edu/semcities/TR-DexterRelatedWork.pdf
http://dexter.stanford.edu/main/dexlog.html

PSOA2Prolog: Object-Relational Rule
Interoperation and Implementation by

Translation from PSOA RuleML to ISO Prolog

Gen Zou(B) and Harold Boley

Faculty of Computer Science, University of New Brunswick, Fredericton, NB, Canada
{gen.zou,harold.boley}@unb.ca

Abstract. PSOA2Prolog consists of a multi-step source-to-source nor-
malizer followed by a mapper to a pure (Horn) subset of ISO Prolog. We
show the semantics preservation of the steps. Composing PSOA2Prolog
and XSB Prolog, a fast Prolog engine, we achieved a novel instantiation
of our PSOATransRun framework. We evaluated this interoperation and
implementation technique with a suite of 30 test cases using 90 queries,
and found a considerable speed-up compared to our earlier instantiation.

1 Introduction

In the Semantic Web and AI, the relational and object-centered modeling
paradigms have been widely used for representing knowledge. The relational
paradigm (e.g., classical logic and relational databases) models entity relation-
ships using predicates applied to positional arguments, while the object-centered
paradigm (e.g., RDF and N3) uses frames to model each entity using a globally
unique Object IDentifier (OID) typed by a class and described by an unordered
collection of slotted (attribute-value) arguments. To facilitate interoperation
between the two paradigms, e.g. for expressing the mapping between frames
and relational database schemas in rule-based data access, combined object-
relational paradigms have been studied. F-logic [1,2] and RIF-BLD [3] employ a
heterogeneous approach which allows the mixed use of both relations and frames.
In contrast, the Web rule language PSOA RuleML [4] employs a homogeneous
approach by generalizing relations and frames into positional-slotted object-
applicative terms, which permit a relation application to have an OID – typed
by the relation – and, orthogonally, to have positional or slotted arguments.

In order to reuse knowledge bases (KBs) and implementations of different rule
languages, translators among them have been developed, including one from an
F-logic-based language to Prolog [5,6], and one from the object-centered lan-
guage KM into answer set programs [7]. To create a major interoperation path
for the homogeneous object-relational PSOA RuleML, we developed a translator
PSOA2Prolog from PSOA RuleML to a subset of the relational ISO Prolog [8,9],
a logic programming standard with subsets supported by many fast engines.
The translator supports KBs and queries employing all major PSOA features
but restricting the use of equality to external-function evaluation. PSOA2Prolog
c© Springer International Publishing Switzerland 2015
N. Bassiliades et al. (Eds.): RuleML 2015, LNCS 9202, pp. 176–192, 2015.
DOI: 10.1007/978-3-319-21542-6 12

PSOA2Prolog: Object-Relational Rule Interoperation and Implementation 177

is composed of a source-to-source normalizer followed by a mapper to a pure
(Horn) subset of ISO Prolog. The normalizer is composed of five transformation
layers, namely objectification, Skolemization, slotribution/tupribution, flatten-
ing, as well as rule splitting. Each layer is a self-contained component that can
be reused for processing PSOA KBs in other applications. The mapper performs
a recursive transformation from the normalization result to Prolog clauses.

By composing PSOA2Prolog and XSB Prolog, a fast Prolog engine for an ISO
Prolog superset, we realized the PSOATransRun[PSOA2Prolog,XSBProlog]1

instantiation of our PSOATransRun framework. The implementation performs
query answering in PSOA RuleML by translating a user-provided PSOA pre-
sentation syntax (PSOA/PS) KB and queries into Prolog, executing the queries
in the Prolog engine, and translating the results back to PSOA/PS. Within its
realm of Horn logic, the new instantiation supports more PSOA features than
our earlier instantiation PSOATransRun[PSOA2TPTP,VampirePrime] [10], and
our empirical evaluation shows a considerable speed-up on large test cases.

The rest of the paper is organized as follows. Section 2 reviews the basics
of PSOA RuleML and ISO Prolog. Sections 3 and 4 explain the techniques
employed by the normalizer and the mapper components of PSOA2Prolog.
Section 5 explains the realization of PSOATransRun[PSOA2Prolog,XSBProlog],
and compares it with PSOATransRun[PSOA2TPTP,VampirePrime] through
test cases. Section 6 concludes the paper and discusses future work.

2 Background on the Source and Target Languages

In this section we introduce the basics of the source language PSOA RuleML
and the target language ISO Prolog, of the PSOA2Prolog translator.

2.1 PSOA RuleML

PSOA RuleML [4] is an object-relational Web rule language that integrates
relations and frames into positional-slotted, object-applicative (psoa)2 terms,
which have the general form

o # f([t1,1 ... t1,n1] ... [tm,1 ... tm,nm] p1->v1 ... pk->vk)

Here, an object is identified by an Object IDentifier (OID) o and described by
(1) a class membership o # f, (2) a set of tupled arguments [ti,1 ... ti,ni],
i = 1, . . . , m, each being a sequence of terms, and (3) a set of slotted arguments
pj->vj, j = 1, . . . , k representing attribute-value pairs. The OID as well as tuples
and, orthogonally, slots in a psoa term are all optional. A psoa term can express
untyped objects by treating them as being typed by the root class f=Top. For
an anonymous psoa term, without a ‘user’ OID, objectification will introduce a
‘system’ OID as explained in Section 3.1. For the most often used special case

1 http://psoa.ruleml.org/transrun/
2 We use the upper-cased “PSOA” as a qualifier for the language and the lower-cased

“psoa” for its terms.

http://psoa.ruleml.org/transrun/

178 G. Zou and H. Boley

of single-tuple psoa terms (m=1), the square brackets enclosing the tuple can be
omitted.

PSOA RuleML constants have the form "literal"ˆˆsymspace, where
literal is a sequence of Unicode characters and symspace is a symbol space
identifier. Six kinds of shortcuts for constants are defined in [11], including num-
bers, strings, Internationalized Resource Identifiers (IRIs), and ‘ ’-prefixed local
constants (e.g., a) whose symspace is specialized to rif:local. Top is a shortcut
for the root class. PSOA RuleML variables are ‘?’-prefixed sequences.

A base term can be a constant, a variable, an anonymous psoa term, or an
external term of the form External(t), where t is an anonymous psoa term. An
atomic formula is a psoa term with or without an OID, a subclass term c1 ## c2,
an equality term t1=t2, or an external term. Complex formulas are constructed
using the Horn-like subset of first-order logic (FOL), e.g. conjunctions and rule
implications.

The semantics of PSOA RuleML is defined through semantic structures [4].
A semantic structure I is a tuple <TV , DTS , D , D ind, D func, IC, IV, I psoa,
I sub, I=, I external, I truth>. Here D is a non-empty set called the domain of
I. D ind and D func are subsets of D for interpreting individuals and functions,
respectively. IC, IV, I psoa interpret constants, variables, and psoa terms. I sub,
I=, I external interpret subclass, equality and external terms. TV = {t, f} is
the set of truth values. I truth maps domain elements to TV , allowing HiLog-
like generality. Truth evaluation for well-formed formulas is determined by an
evaluation function TValI . A semantic structure I is called a model of a KB φ
if TValI(φ) = t, denoted by I |= φ. A PSOA KB φ is said to entail a formula
ψ, denoted by φ |= ψ, if for every model I of φ, I |= ψ holds.

A more detailed introduction, with many examples leading to the semantics,
can be found in [12].

Startup Example. The KB in Fig. 1 demonstrates key features of PSOA
RuleML via a startup company scenario, serving as the paper’s running example.

The example contains four facts, a rule, and a subclass (‘ ## ’) formula. The
rule derives an anonymous psoa term (in [12] called a “relpairship”) with class
startup from: (1) a cofounders relationship between the CEO and the CTO;
(2) a hire relationship between the CEO and an employee; (3) two equity
relationships describing the equity shares of the CEO and the CTO; (4) external
calls ensuring that the sum of the equity percentages of the CEO and the CTO
is not greater than 100. The startup term has one tuple for the ceo and
the cto, as well as one slot for one or more employees (PSOA slots can be
multi-valued). The ‘ ## ’ formula states that startup is a subclass of company.

Leaving the topic of normalization to Section 3, the rule can be applied
to the four facts, deriving the anonymous psoa term startup(Ernie Tony
employee-> Kate). Combined with the subclass formula, a company psoa term
company(Ernie Tony employee-> Kate) with the same tuple and slot can
be derived. This entails all psoa terms omitting the tuple or the slot, namely
company(employee-> Kate) and company(Ernie Tony).

PSOA2Prolog: Object-Relational Rule Interoperation and Implementation 179

Document (

Group (

Forall ?X ?Y ?Z ?EX ?EY (

_startup(?X ?Y _employee->?Z) :-

And(_cofounders(?X ?Y) _hire(?X ?Z)

_equity(?X ?EX) _equity(?Y ?EY)

External(

pred:numeric-less-than-or-equal(

External(func:numeric-add(?EX ?EY)) 100)))

)

_cofounders(_Ernie _Tony) _hire(_Ernie _Kate)

_equity(_Ernie 50) _equity(_Tony 30)

_startup##_company

)

)

Fig. 1. KB using psoa-term rule with implicit OID typed as startup company

Amongst the many possible queries over the KB in Fig. 1, our running query
will be

_company(?X ?Y)

It asks for the positional arguments ?X and ?Y of the company psoa term, omit-
ting the employee slot. The desired answer is ?X= Ernie ?Y= Tony.

2.2 ISO Prolog

Prolog is a widely used logic programming language. ISO Prolog [8] is the
international standard of Prolog. In this paper we focus on the Horn sub-
set of ISO Prolog, which excludes procedural features like negation-as-failure.
The syntax of ISO Prolog is built on top of terms: A term can be a vari-
able, a number, an atosym (atomic symbol)3, or a compound term of the form
p(t1, . . . , tn), where p is an atosym and t1, ..., tn are terms. A variable is basi-
cally a sequence of letters or digits starting with an upper-case letter, e.g. X1. An
atosym, for a predicate or a function (including a nullary function, i.e. an indi-
vidual), starts with a lower-case letter, e.g. a1, or is a single-quoted sequence
of arbitrary characters, e.g. ’http://abc’. An ISO Prolog predication is an
atosym (for a nullary predicate) or a compound term. A clause is either a fact
in the form of a predication or a rule of the form Head :- Body. The Head
is a predication, while the Body can be a predication, a conjunction of bodies
(Body , ... , Body), or a disjunction or bodies (Body ; ... ; Body). All
variables in a clause are considered to be in the scope of universal quantifiers
preceding the entire clause. A logic program consists of a set of clauses.

3 To avoid confusion with logical atoms, we use “atosym” to refer to symbols that ISO
Prolog calls “atoms”.

180 G. Zou and H. Boley

3 Normalization of the PSOA Source in Five Steps

The first translation phase is to transform the input PSOA KB and queries into a
normalized form such that all clauses are objectified, existential-free, and contain
only elementary formulas which cannot be split into equivalent subformulas. For
PSOA KBs, there are five steps applied in sequential order: (1) Objectification;
(2) Skolemization; (3) slotribution and tupribution; (4) flattening of external
function applications; (5) splitting of rules with conjunctive heads. For PSOA
queries, only steps (1), (3), and (4) are needed. The semantics preservation of
the normalization steps will be indicated in English for the easier steps (1), (3),
and (4), while detailed correctness proofs will be given for the more involved
steps (2) and (5).

3.1 Objectification

In PSOA RuleML, an atomic psoa formula without an OID is regarded as having
an implicit OID, which can be made explicit through objectification. We employ
a modified version of the objectification technique introduced in [4]. For an OID-
less psoa formula p(...) in a KB clause, we define three cases:

– If it is a ground fact, it is objectified into i # p(...), where i is a newly
generated local constant name in the KB.

– If it is a non-ground fact or an atomic formula in a rule conclusion, it is
objectified into Exists ?j (?j # p(...)).

– If it is an atomic formula in a rule premise, it is objectified into ?j # p(...),
where ?j is a new variable in the universal scope of the enclosing rule. In [4],
an anonymous variable ‘?’ is used as the OID in this case. However, the
next Skolemization step, which will be explained in Section 3.2, requires
all universally quantified variables in an existential rule to be named, since
they will become arguments of Skolem functions. Thus, we further parse the
stand-alone ‘?’s into explicitly named variables ?j quantified in the top-level
universal scope in our objectification step.

We define the objectification of an OID-less psoa formula in a (conjunctive)
query as Exists ?j (?j # p(...)). Here, the new variable ?j is not a free query
variable but encapsulated in an existential scope, so that the bindings of ?j will
not be returned in contrast to those of user-provided free query variables.

3.2 Skolemization

After objectification, existentially quantified formulas may occur in rule conclu-
sions. Since such conclusion existentials are not allowed in logic programming
languages such as Prolog, we employ a specialized FOL Skolemization [13] to
eliminate them. Our approach is adapted for PSOA RuleML clauses, whose
universals are already in prenex form and whose existentials are confined to
(conjunctive) conclusions, hence does not require preprocessing of formulas. We
replace each formula Exists ?X (σ) in a clause (specifically, in a rule conclu-
sion or a fact) with σ[?X/ skolemk(?v1 ... ?vm)], where each occurrence of ?X

PSOA2Prolog: Object-Relational Rule Interoperation and Implementation 181

in σ becomes a Skolem function skolemk applied to all universally quantified
variables ?v1 ... ?vm from the clause’s quantifier prefix. For each existentially
quantified variable in the KB, a fresh Skolem function name skolemk is chosen
from the first name in the sequence skolem1, skolem2, ... that has not yet
been used.

Skolemization Example. The following PSOA rule

Forall ?v (Exists ?1 (?1#_c1(?v)) :- _o#_c2(?v))

has an existentially quantified formula in the rule conclusion. Skolemiza-
tion removes the existential quantifier and replaces the variable ?1 with
skolem1(?v), which is a unary Skolem function skolem1 applied to the vari-
able ?v in the clause’s quantifier prefix, yielding

Forall ?v (_skolem1(?v)#_c1(?v) :- _o#_c2(?v))

Next we prove the correctness of our Skolemization. In the proof, we use
I[?v1 ... ?vm] to denote the set of semantic structures that coincide with I on
everything but the variables ?v1 ... ?vm, tI to denote the interpretation of a
base term t in I, and SK(ψ) to denote the Skolem form of a formula ψ.

Lemma 1. Let φ be a formula and I, I ′ be semantic structures. Then (1) if
I ′ |= SK(φ) then I ′ |= φ; (2) if I |= φ, there exists I ′ such that I ′ |= SK(φ)
and I ′ coincides with I on everything but the interpretation of Skolem functions.

Proof. If φ does not have an existential (not necessarily proper) subformula
then SK(φ) = φ and the lemma holds trivially. Next we prove (1) and (2) by
induction over every subformula σ of φ that contain an existential subformula.
Proof for (1):

– σ = Exists ?X (σ1)
If TValI′(SK(σ)) = t, there exists a semantic structure I∗ in I ′[?X] which
interprets ?X as skolemk(?v1 ... ?vm)

I′
, and

TValI∗(σ1) = TValI′(σ1[?X/ skolemk(?v1 ... ?vm)]) = TValI′(SK(σ)) = t.

Hence TValI′(σ) = t.
– σ = And(σ1 ... σn)

Since SK(σ) = And(SK(σ1) ... SK(σn)), if TValI′(SK(σ)) = t, then
TValI′(SK(σi)) = t, i = 1, . . . , n. If σi has an existential subformula,
then by induction hypothesis TValI′(σi) = t. Otherwise, TValI′(σi) =
TValI′(SK(σi)) = t. Thus, TValI′(σi) = t, i = 1, . . . , n, and TValI′(σ) = t.

– σ = σ1 :- σ2

Since existentials occur only in rule conclusions, SK(σ) = SK(σ1) :- σ2.
So

TValI′(SK(σ)) = t ⇒ TValI′(SK(σ1)) = t or TValI′(σ2) = f

⇒ TValI′(σ1) = t or TValI′(σ2) = f

⇒ TValI′(σ) = t

182 G. Zou and H. Boley

– σ = Forall ?v1 ... ?vm (σ1)
Since SK(σ) = Forall ?v1 ... ?vm (SK(σ1)), we have

TValI′(SK(σ)) = t ⇒ for all I∗ ∈ I ′[?v1 ... ?vm],TValI∗(SK(σ1)) = t

⇒ for all I∗ ∈ I ′[?v1 ... ?vm],TValI∗(σ1) = t

⇒ TValI′(σ) = t

– σ = Group(σ1 ... σn)
The semantics of a group formula is the same as a conjunction. So the same
proof can be applied.

Proof for (2): For each semantic structureI, we constructI ′ by adding the interpre-
tation for all Skolem functions in φ. Assume Exists ?X (σ1) is a subformula of φ,
and ?X is replacedwith skolemk(?v1 ... ?vm)during Skolemization. For elements
x1, . . . , xn in the domain of I, if there exists one I∗ such that TValI∗(σ1) = t and
?viI′

= xi, i = 1, . . . , n, then we define skolemkI′
(x1, . . . , xn) to be ?XI∗

. Next
we prove if TValI(σ) = t, then TValI′(SK(σ)) = t by induction over all σ that
contain an existential subformula.

– σ = Exists ?X (σ1)
In this case TValI′(SK(σ)) = t follows by the definition of I ′.

– σ = And(σ1 ... σn)
If TValI(σ) = t, then TValI(σi) = t for all i = 1, . . . , n. If σi has an
existential subformula, then by induction hypothesis TValI′(SK(σi)) = t.
Otherwise SK(σi) = σi, and TValI′(SK(σi)) = TValI(σi) = t. Hence
TValI′(SK(σi)) = t holds for all i = 1, . . . , n, and TValI′(SK(σ)) = t.

– σ = σ1 :- σ2

TValI(σ) = t ⇒ TValI(σ1) = t or TValI(σ2) = f

⇒ TValI′(SK(σ1)) = t or TValI′(σ2) = f

⇒ TValI′(SK(σ)) = t

– σ = Forall ?v1 ... ?vm (σ1)

TValI(σ) = t ⇒ for all J ∈ I[?v1 ... ?vm],TValJ (σ1) = t

⇒ for all J ′ ∈ I ′[?v1 ... ?vm],TValJ ′(SK(σ1)) = t

⇒ TValI′(σ) = t

– σ = Group(ψ1 ... ψn)
The proof for conjunction formulas can be reused.

Theorem 1. Let Γ be a PSOA KB, and τ be a clause that does not contain
Skolem functions used in SK(Γ). Then Γ |= τ if and only if SK(Γ) |= τ .

Proof. (Only if) If Γ |= τ , then by part (1) of Lemma 1, for every model I ′

of SK(Γ), TValI′(SK(Γ)) = TValI(Γ) = TValI(τ) = t. So SK(Γ) |= τ holds.

PSOA2Prolog: Object-Relational Rule Interoperation and Implementation 183

(If) We prove the contrapositive statement, i.e. if Γ �|= τ then SK(Γ) �|= τ .
If Γ �|= τ , there exists a semantic structure I such that TValI(Γ) = t
and TValI(τ) = f. By part (2) of Lemma 1, there exists I ′ such that
TValI′(SK(Γ)) = t and I ′ coincides with I ′ on everything but the Skolem
functions, which do not occur in τ . Hence, TValI′(τ) = TValI(τ) = f, making
I ′ a counter-model of SK(Γ) |= τ . Thus SK(Γ) �|= τ and the statement holds.

3.3 Slotribution/Tupribution

The truth value of a psoa formula is defined via slotribution and tupribution [4]:

– TValI(o # f([t1,1 ... t1,n1] ... [tm,1 ... tm,nm] p1->v1 ...pk->vk)) = t
if and only if
TValI(o # f) =
TValI(o#Top([t1,1 ... t1,n1]))=...=TValI(o#Top([tm,1 ... tm,nm])) =
TValI(o#Top(p1->v1)) = ... = TValI(o#Top(pk->vk)) = t.

According to the semantics of psoa formulas, we can rewrite each psoa for-
mula o # f([t1,1 ... t1,n1] ... [tm,1 ... tm,nm] p1->v1 ... pk->vk), containing
m tuples and k slots, into an equivalent conjunction of 1 + m + k subformulas,
including 1 class membership formula, m single-tuple formulas and k single-slot
formulas:

And(o#f

o#Top(t1,1 ... t1,n1) ... o#Top(tm,1 ... tm,nm)

o#Top(p1->v1) ... o#Top(pk->vk))

For the special case where f=Top but m + k > 0, we omit the tautological Top-
typed class membership of the form o # Top from the conjunction for efficiency.4

The correctness of this step follows directly from the definition. This step is
central to both PSOA2TPTP [14] and PSOA2Prolog.

3.4 Flattening Nested External Function Applications

A PSOA function application can use a constructor function with no definition, a
user-defined function specified by equalities in the KB, or an externally defined
function such as an arithmetic built-in. The latter two types of applications
evaluate an ‘interpreted’ function to a returned value. Flattening is employed
to create a conjunction extracting an embedded interpreted function application
as a separate equality. This version of PSOA2Prolog supports only the use of
equalities of the form ?X=External(f(...)), equating a variable and an external
function application for the evaluation of a function call, in preparation of the
mapping to the Prolog is-primitive in Section 4.2.

In the flattening step, each atomic formula ϕ (in a rule premise or a query)
that embeds an external function application ψ, which is not on the top level of
an equality, is replaced with And(?i=ψ ϕ[ψ/?i]), where ?i is the first variable in
?1, ?2, ... that does not occur in the enclosing rule. If ψ is in a KB rule, then the
variable ?i becomes a universal variable of the rule; otherwise ?i is encapsulated
4 For m+k = 0, the description-less o # Top does not undergo slotribution/tupribution.

184 G. Zou and H. Boley

in a top-level existential scope in a query. This step is repeated for every clause
in the KB until there are no more nested function applications. The correctness
of this step follows from back-substitution of the embedded application for the
variable ?i.

3.5 Splitting Rules with Conjunctive Conclusions

A rule with a conjunction in the conclusion

Forall ?v1 ... ?vm (And(ϕ1 ... ϕn) :- ϕ′)

can be split into n rules

Forall ?v1 ... ?vm (ϕ1 :- ϕ′),
...

Forall ?v1 ... ?vm (ϕn :- ϕ′)

with each conjunct becoming the conclusion of one rule, and with the premise
and the quantification copied unchanged.

Lemma 2. Let φ be the given rule, φ1, ..., φn be the split rules, and I be a
semantic structure, then I |= φ if and only if I |= φi, i = 1, . . . , n.

Proof. Let φ be of the form Forall ?v1 ... ?vm (And(ϕ1 ... ϕn) :- ϕ′).
If I |= φ, then for all I∗ ∈ I[?v1 ... ?vm], we have

TValI∗(And(ϕ1 ... ϕn) :- ϕ′
)) = t

⇐⇒ TValI∗(And(ϕ1 ... ϕn)) = t or TValI∗(ϕ′) = f

⇐⇒ (TValI∗(ϕ1) = ... = TValI∗(ϕn) = t) or TValI∗(ϕ′) = f

⇐⇒ (TValI∗(ϕ1) = t or TValI∗(ϕ′) = f) and ... and

(TValI∗(ϕn) = t or TValI∗(ϕ′) = f)

⇐⇒ TValI∗(ϕ1 :- ϕ′) = . . . = TValI∗(ϕn :- ϕ′) = t

Hence I |= φi, i = 1, . . . , n.

Theorem 2. If Γ is a PSOA KB and Γ ′ is the KB after performing rule split-
ting in Γ . Then for any formula τ , Γ |= τ if and only if Γ ′ |= τ .

Proof. By extending Lemma 2 for KBs, we have TValI(Γ) = TValI(Γ ′). If
Γ ′ |= τ , then for all I such that I |= Γ , TValI(Γ ′) = TValI(τ) = t, so Γ |= τ .
The “only if” part can be proved similarly.

3.6 Normalizing the Startup Example

In this subsection we demonstrate the normalization steps with the Startup
Example given in Section 2.1.

The objectification step introduces OIDs 1,..., 4 for the ground facts. It
also introduces an existentially quantified variable ?1 for the anonymous psoa
term in the rule conclusion while introducing four universally quantified variables
?2, ..., ?5 for the OID-less relations in the rule premise. Moreover, the query
is objectified using a variable ?1, which is encapsulated in an existential scope
to avoid being treated as a free query variable.

PSOA2Prolog: Object-Relational Rule Interoperation and Implementation 185

Objectified KB:
Document (

Group (

Forall ?X ?Y ?Z ?EX ?EY ?2 ?3 ?4 ?5 (

Exists ?1 (

?1#_startup(?X ?Y _employee->?Z)) :-

And(?2#_cofounders(?X ?Y) ?3#_hire(?X ?Z)

?4#_equity(?X ?EX) ?5#_equity(?Y ?EY)

External(

pred:numeric-less-than-or-equal(

External(func:numeric-add(?EX ?EY)) 100)))

)

_1#_cofounders(_Ernie _Tony) _2#_hire(_Ernie _Kate)

_3#_equity(_Ernie 50) _4#_equity(_Tony 30)

_startup##_company

)

)

Objectified Query:
Exists ?1 (?1#_company(?X ?Y))

After objectification, the Skolemization step eliminates the existential in
the rule conclusion and replaces the variable ?1 with a Skolem function appli-
cation, giving skolem1(?X ?Y ?Z ?EX ?EY ?2 ?3 ?4 ?5) # startup(?X ?Y
employee->?Z).5

Next, slotribution and tupribution transform each psoa formula into a con-
junction (possibly merged into a surrounding Group/And). The result, which is
shown on the next page, contains a rule with a conjunctive conclusion.

The application of the external predicate pred:numeric-less-than-or-equal

is then flattened with the argument External(func:numeric-add(...)) being
replaced by a fresh universal variable ?6, obtaining the conjunction

And(?6=External(func:numeric-add(?EX ?EY))

External(pred:numeric-less-than-or-equal(?6 100))

Finally, the conjunction in the rule conclusion is split to obtain the normalized
KB as shown on the next page. The four output rules have the same premise
and the same argument list for the Skolem function. The normalized query after
rule splitting is the same as the slotributed/tupributed version shown above.

The example can be easily refined, e.g. with additional conclusion slots such
as founderEquity, which would store the already computed sum of the equities
held by the CEO and the CTO.
5 Objectification generates an existential OID for each derived startup. Skolemiza-

tion then replaces that OID by a system function application dependent on all uni-
versal variables, including ?Z, thus denoting different OIDs for startups with the
same CEO/CTO pair and different employees. If a user wants all startups with
the same CEO and CTO to have the same OID, he/she can specify the OID of
the original rule conclusion explicitly via an application, startupid(?X ?Y), of a
fresh function name, startupid, to the CEO, ?X, and the CTO, ?Y, denoting the
OID dependent on them but not on any employee, ?Z.

186 G. Zou and H. Boley

Slotributed/Tupributed KB:

Document(

Group (

Forall ?X ?Y ?Z ?EX ?EY ?2 ?3 ?4 ?5 (

And(_skolem1(?X ?Y ?Z ?EX ?EY ?2 ?3 ?4 ?5)#_startup

_skolem1(...)#Top(?X ?Y)

_skolem1(...)#Top(_employee->?Z)) :-

And(?2#_cofounders ?2#Top(?X ?Y) ?3#_hire ?3#Top(?X ?Z)

?4#_equity ?4#Top(?X ?EX) ?5#_equity ?5#Top(?Y ?EY)

External(

pred:numeric-less-than-or-equal(

External(func:numeric-add(?EX ?EY)) 100)))

)

_1#_cofounders _1#Top(_Ernie _Tony) _2#_hire _2#Top(_Ernie _Kate)

_3#_equity _3#Top(_Ernie 50) _4#_equity _4#Top(_Tony 30)

_startup##_company

)

)

Slotributed/Tupributed Query:

Exists ?1 (And(?1#_company ?1#Top(?X ?Y)))

Rule-split KB:

Document(

Group (

Forall ?X ?Y ?Z ?EX ?EY ?2 ?3 ?4 ?5 ?6 (

_skolem1(?X ?Y ?Z ?EX ?EY ?2 ?3 ?4 ?5)#_startup :-

And(?2#_cofounders ?2#Top(?X ?Y) ?3#_hire ?3#Top(?X ?Z)

?4#_equity ?4#Top(?X ?EX) ?5#_equity ?5#Top(?Y ?EY)

And(?6=External(func:numeric-add(?EX ?EY))

External(pred:numeric-less-than-or-equal(?6 100)))

)

Forall ?X ?Y ?Z ?EX ?EY ?2 ?3 ?4 ?5 ?6 (

_skolem1(...)#Top(?X ?Y) :- And(...)

)

Forall ?X ?Y ?Z ?EX ?EY ?2 ?3 ?4 ?5 ?6 (

_skolem1(...)#Top(_employee->?Z) :- And(...)

)

_1#_cofounders _1#Top(_Ernie _Tony) _2#_hire _2#Top(_Ernie _Kate)

_3#_equity _3#Top(_Ernie 50) _4#_equity _4#Top(_Tony 30)

_startup##_company

)

)

PSOA2Prolog: Object-Relational Rule Interoperation and Implementation 187

4 Mapping the Normalized PSOA Source to Prolog

In this section, we explain the mapping from normalized PSOA constructs to
Prolog constructs. The mapping function is denoted by ρpsoa, which is applied
recursively in a top-down manner. The translation introduces three distinguished
predicates shown in Table 2, memterm, sloterm, and tupterm, defined by Prolog
clauses, to represent the three central constructs: membership terms, slot terms,
and tuple terms from PSOA RuleML. Section 4.1 discusses the translation of
constants and variables and Section 4.2 discusses the translation of central PSOA
constructs.

4.1 Constants and Variables

The translation ρpsoa(c) of a constant c is determined as follows:

– If c is a number, ρpsoa(c) is the corresponding Prolog number.
– If c is an arithmetic built-in adopted from RIF [11], ρpsoa(c) is the corre-

sponding Prolog built-in, as listed in Table 1.

Table 1. Mapping of PSOA built-ins to Prolog

PSOA/PS Built-in Prolog Built-in

func:numeric-add ’+’

func:numeric-subtract ’-’

func:numeric-multiply ’*’

func:numeric-divide ’/’

func:numeric-integer-divide ’//’

func:numeric-mod mod

pred:numeric-equal ’=:=’

pred:numeric-less-than ’<’

pred:numeric-less-than-or-equal ’=<’

pred:numeric-greater-than ’>’

pred:numeric-greater-than-or-equal ’>=’

pred:numeric-not-equal ’=\=’

– Otherwise, ρpsoa(c) is the single-quoted version of c.

The translation ρpsoa(v) of a ‘?’-prefixed variable v replaces ‘?’ with the
upper-case letter ‘Q’ (Question mark) to make it a valid Prolog variable. For
example, a PSOA variable ?x is mapped to a Prolog variable Qx.

4.2 Central PSOA Constructs

Table 2 gives mappings of all central PSOA constructs. The translation of tuple
terms of the form o # Top(t1...tk) and slot terms of the form o # Top(p -> v)
is adopted from PSOA2TPTP [14], using distinguished predicates tupterm and
sloterm respectively.

188 G. Zou and H. Boley

Table 2. Mapping from PSOA/PS constructs to Prolog constructs

PSOA/PS Constructs Prolog Constructs

o # Top(t1...tk) tupterm(ρpsoa(o), ρpsoa(t1) ... ρpsoa(tk))

o # Top(p -> v) sloterm(ρpsoa(o), ρpsoa(p), ρpsoa(v))

o # c() memterm(ρpsoa(o), ρpsoa(c))

f(t1...tk) ρpsoa(f)(ρpsoa(t1), ... ,ρpsoa(tk))

And(f1 ... fn) (ρpsoa(f1) , ... , ρpsoa(fn))

Or(f1 ... fn) (ρpsoa(f1) ; ... ; ρpsoa(fn))

Exists ?v1 ... ?vm (ϕ) ρpsoa(ϕ)

Forall ?v1 ... ?vm (ϕ) ρpsoa(ϕ)

ϕ :- ψ ρpsoa(ϕ) :- ρpsoa(ψ).

?v=External(f(t1...tk)) is(ρpsoa(?v), ρpsoa(f)(ρpsoa(t1), ... , ρpsoa(tk)))

c1 ## c2 memterm(X,ρpsoa(c2)) :- memterm(X,ρpsoa(c1)).

The translation of a membership term o # c() is a binary term using the
predicate memterm.6

The translation of a constructor function application f(t1...tk) results from
recursively mapping the function name and all arguments into Prolog. The trans-
lation of a conjunction And(...) is a parenthesized comma-separated Prolog
formula, which can be nested inside an outer formula. Similarly, the translation
of a disjunction Or(...) is a semicolon-separated Prolog formula.

The translation of an existential quantification, which can only occur in
queries after the normalization phase, is the translation of the quantified for-
mula. In the translation of queries, all existentially quantified variables become
free Prolog variables in the translated query, and the bindings for them are
discarded in the post-processing of query answers from the Prolog engine.

The translation of an universal quantification, which can only occur in KBs,
is the translation of the quantified formula, since all free variables in a Prolog
clause are treated as implicitly universally quantified.

The translation of an equality formula ?V=External(f(t1...tk)) that
equates a variable and an external function application, which evaluates the
function application, results in a binary is-primitive invocation in Prolog. The
first argument of is is the translated variable, which will be bound to the evalu-
ation result of the second argument, the translated external function application
in Prolog syntax, omitting the keyword External. The mapping of PSOA built-
ins to Prolog built-ins is listed in Table 1.

The translation of a subclass formula c1 ## c2 is the same as the translation
of the equivalent PSOA rule Forall ?X (?X # c2 :- ?X # c1), resulting in
memterm(X,ρpsoa(c2)) :- memterm(X,ρpsoa(c1)).

For each Prolog clause in the translated KB, a period ‘.’ is added to its end.

6 In our earlier translation from PSOA to the first-order TPTP, the predicate name
member was used. We changed the name in both PSOA2Prolog and PSOA2TPTP,
because member is a built-in predicate in some Prolog engines such as SWI Prolog.

PSOA2Prolog: Object-Relational Rule Interoperation and Implementation 189

4.3 Mapping the Startup Example

The Prolog KB and query mapped from the normalized Startup Example in
Section 3.6, as well as the query answer are shown in the following. The first
four rules share the same premise so we only expand the premise for the first
rule due to space limitation.

Translated KB:

memterm(’_skolem1’(QX,QY,QZ,QEX,QEY,Q2,Q3,Q4,Q5),’_startup’) :-

(((memterm(Q2,’_cofounders’),tupterm(Q2,QX,QY)),

(memterm(Q3,’_hire’),tupterm(Q3,QX,QZ)),

(memterm(Q4,’_equity’),tupterm(Q4,QX,QEX)),

(memterm(Q5,’_equity’),tupterm(Q5,QY,QEY)),

(is(Q0,’+’(QEX,QEY)),’=<’(Q0,100)))).

tupterm(’_skolem1’(...),QX,QY) :- (...).

sloterm(’_skolem1’(...),’_employee’,QX) :- (...).

memterm(’_1’,’_cofounders’). tupterm(’_1’,’_Ernie’,’_Tony’).

memterm(’_2’,’_hire’). tupterm(’_2’,’_Ernie’,’_Kate’).

memterm(’_3’,’_equity’). tupterm(’_3’,’_Ernie’,50).

memterm(’_4’,’_equity’). tupterm(’_4’,’_Tony’,30).

memterm(X,’_company’) :- memterm(X,’_startup’).

Translated Query:

(memterm(Q1,’_company’),tupterm(Q1,QX,QY)).

Query Answer in Prolog:

Q1=’_skolem1’(...), QX=’_Ernie’, QY=’_Tony’

Since the variable ?1 is existentially quantified in the normalized query, the
binding for its Prolog translation Q1 will be discarded, and the bindings for QX
and QY are translated back to PSOA, resulting ?X= Ernie ?Y= Tony.

5 Realization and Evaluation

We realized the PSOA2Prolog translator in Java,7 based on the ANTLR v3
software.8 It is composed of a lexer, a parser, and multiple tree walkers, generated
from ANTLR using the grammars we developed. The lexer and parser read the
input PSOA/PS KB or query and constructs an ANTLR abstract syntax tree
(AST), which is a condensed and structured internal representation of the input.
The AST is then processed by six tree walkers. Five of them implement the five
normalization steps explained in Section 3 by rewriting the AST. The other one
implements the mapping step in Section 4 by traversing the normalized AST
and generating the translated Prolog KB/query.

7 We chose Java for better reusability of components of the implementation in other
applications.

8 A language framework for constructing recognizers, interpreters, compilers and trans-
lators from grammatical descriptions. http://www.antlr3.org/

http://www.antlr3.org/

190 G. Zou and H. Boley

Composing PSOA2Prolog and XSB Prolog,9 a fast Prolog engine for an ISO
Prolog superset, we achieved the instantiation PSOATransRun[PSOA2Prolog,
XSBProlog]10 of our PSOATransRun framework [10]. XSB Prolog does tabling
of subgoals and their answers, which ensures termination and optimal efficiency
for queries to a large class of programs. This new PSOATransRun instantiation
provides query answering in PSOA RuleML by translating the input PSOA KB
and query into Prolog, executing them in XSB Prolog and obtaining all answers,
discarding bindings of existentially quantified variables in the original query, and
translating the results back to PSOA/PS. In our implementation, the InterProlog
Java API11 is employed for accessing XSB Prolog from Java.

We evaluated this Prolog instantiation of PSOATransRun by a comparison to
our previous TPTP instantiation PSOATransRun[PSOA2TPTP,VampirePrime].
The experiments were executed on a virtual machine with Intel Core i5-2410M
2.30GHz CPU and 4GB memory running Ubuntu 11. The first evaluation was
performed on a test suite12 of 30 test cases and 90 queries, which covers all
PSOA features that we have implemented. Each test case consists of one KB,
multiple queries and one user-provided answer to each query. The Prolog instan-
tiation passed all 30 test cases, while the TPTP instantiation failed on 10 test
cases which contain features that it currently does not support: external func-
tions, subclass formulas, and IRI constants. For the 20 test cases on which both
instantiations succeeded, the Prolog instantiation takes 78.6ms on average for
each query while the TPTP instantiation takes 12.6ms. Here, the Prolog instan-
tiation is slower largely due to the communication overhead between the Inter-
Prolog API and the engine, which takes constant time.

To compare the performance of the two instantiations on larger KBs, we
started developing size-parameterized test-case generators including chain(k)
in Python. Each call of chain(k) generates a KB consisting of one fact
r0(a1 a2 a3) and k rules of the form

Forall ?X ?Y ?Z (ri(?X ?Y ?Z) :- ri′(?X ?Y ?Z)), i = 1, . . . , k, i′ = i − 1.

The query is rk(?X ?Y ?Z), which has one answer ?X= a1 ?Y= a2 ?Z= a3. We
measured the average query execution time of the two instantiations on ten test
cases, starting with k = 20 and increasing in steps of 20 rules until reaching
k = 200. The results are shown in Fig. 2.

As seen in the chart, the Prolog instantiation is slower than the TPTP instan-
tiation when k = 20 and k = 40, due to communication overhead, breaks even
at k = 60, and becomes faster as k further increases. At k = 200, the Prolog
instantiation takes 38% of time used by the TPTP instantiation.

Besides being more efficient on larger test cases, the Prolog instantiation is
also more efficient when similar queries are posed to the engine, because XSB
Prolog can reuse the tabled solutions to subgoals of a query for future queries

9 http://xsb.sourceforge.net/
10 http://psoa.ruleml.org/transrun/0.8/local/
11 http://interprolog.com/
12 http://psoa2tptp.googlecode.com/svn/trunk/PSOATransRun/test/

http://xsb.sourceforge.net/
http://psoa.ruleml.org/transrun/0.8/local/
http://interprolog.com/
http://psoa2tptp.googlecode.com/svn/trunk/PSOATransRun/test/

PSOA2Prolog: Object-Relational Rule Interoperation and Implementation 191

Fig. 2. Performance of PSOATransRun instantiations on chain(k) test cases

that use the same subgoals. We tested a special case on the chain(200) KB
by posing the same query repeatedly. The initial query takes around 760ms
while later ones take only around 70ms, which comprise mostly communication
overhead.

6 Conclusions and Future Work

In this paper, we discussed the realization of PSOA2Prolog, a Java- and ANTLR-
based translator from a subset of the homogeneous object-relational Web rule
language PSOA RuleML (with restricted use of equality) to the relational ISO
Prolog, for the interoperation and implementation of PSOA rules. PSOA2Prolog
is composed of a multi-step source-to-source normalizer followed by a mapper
to a pure (Horn) subset of ISO Prolog. The normalizer transforms the KB in
five steps: Objectification, Skolemization, slotribution and tupribution, flatten-
ing, and rule splitting. We showed the semantics preservation of the steps. The
subsequent mapper transforms the normalized PSOA KB into Prolog syntax.
The PSOATransRun[PSOA2Prolog, XSBProlog] composition provides efficient
query answering for PSOA RuleML. It outperforms our earlier PSOATransRun
instantiation targeting TPTP on large test cases. The new interoperation and
implementation platform also supports more PSOA features than the TPTP
instantiation.

Future work includes versions of PSOA2Prolog that implement equality for
user-defined functions and translate to an expanded set of built-ins. Further,
detailed comparisons regarding the functionality and performance of compa-
rable subsets of PSOA RuleML and (1) ‘native’ (not mapped) ISO Prolog
and (2) F-logic, whose Flora-2 compiler also maps to XSB Prolog. Moreover,
(1) exploring further relational translation targets besides TPTP and Prolog;
(2) realizing translations between PSOA RuleML and object-centered languages
such as N3; (3) studying subsets with interesting properties, e.g. function-free
PSOA RuleML, and its connection to Datalog± [15].

192 G. Zou and H. Boley

References

1. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and
frame-based languages. Journal of the ACM 42(4), 741–843 (1995)

2. Yang, G., Kifer, M.: Reasoning about anonymous resources and meta statements
on the semantic web. In: Spaccapietra, S., March, S., Aberer, K. (eds.) Journal on
Data Semantics I. LNCS, vol. 2800, pp. 69–97. Springer, Heidelberg (2003)

3. Boley, H., Kifer, M.: RIF Basic Logic Dialect, 2nd edn (February 2013). W3C
Recommendation. http://www.w3.org/TR/rif-bld

4. Boley, H.: A RIF-style semantics for RuleML-integrated positional-slotted, object-
applicative rules. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML
2011 - Europe. LNCS, vol. 6826, pp. 194–211. Springer, Heidelberg (2011)

5. Yang, G., Kifer, M.: FLORA: implementing an efficient DOOD system using a
tabling logic engine. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl,
V., Furbach, U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000.
LNCS (LNAI), vol. 1861, pp. 1078–1093. Springer, Heidelberg (2000)

6. Kifer, M., Yang, G., Wan, H., Zhao, C.: Flora-2: User Manual. http://flora.
sourceforge.net/

7. Baral, C., Liang, S.: From knowledge represented in frame-based languages to
declarative representation and reasoning via ASP. In: Brewka, G., Eiter, T.,
McIlraith, S.A. (eds.) KR, AAAI Press (2012)

8. ISO/IEC 13211–1: Prolog - part 1: General core (1995)
9. Deransart, P., Ed-Dbali, A., Cervoni, L.: Prolog: The Standard. Springer (1996)

10. Zou, G., Peter-Paul, R., Boley, H., Riazanov, A.: PSOATransRun: Translating and
Running PSOA RuleML via the TPTP Interchange Language for Theorem Provers.
In: Ait-Kaci, H., Hu, Y.J., Nalepa, G.J., Palmirani, M., Roman, D. (eds.) Proceed-
ings of the RuleML2012@ECAI Challenge, at the 6th International Symposium on
Rules, CEUR-874, August 2012

11. Polleres, A., Boley, H., Kifer, M.: RIF Datatypes and Built-ins 1.0, 2nd
edn (February 2013). W3C Recommendation. http://www.w3.org/TR/2013/
REC-rif-dtb-20130205/

12. Boley, H.: PSOA RuleML: integrated object-relational data and rules. In: Reason-
ing Web. Springer (2015)

13. Chang, C.L., Lee, R.C.T.: Symbolic Logic and mechanical Theorem Proving.
Academic Press (1973)

14. Zou, G., Peter-Paul, R., Boley, H., Riazanov, A.: PSOA2TPTP: a reference transla-
tor for interoperating PSOA RuleML with TPTP reasoners. In: Bikakis, A., Giurca,
A. (eds.) RuleML 2012. LNCS, vol. 7438, pp. 264–279. Springer, Heidelberg (2012)

15. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: A general Datalog-based framework for
tractable query answering over ontologies. Journal of Web Semantics 14, 57–83
(2012)

http://www.w3.org/TR/rif-bld
http://flora.sourceforge.net/
http://flora.sourceforge.net/
http://www.w3.org/TR/2013/REC-rif-dtb-20130205/
http://www.w3.org/TR/2013/REC-rif-dtb-20130205/

Similarity-Based Strict Equality
in a Fully Integrated Fuzzy Logic Language

Pascual Julián-Iranzo1(B), Ginés Moreno2, and Carlos Vázquez2

1 Department of Technologies and Information Systems,
Castilla-La Mancha University, 13071 Ciudad Real, Spain

Pascual.Julian@uclm.es
2 Department of Computing Systems,

Castilla-La Mancha University,
02071 Albacete, Spain

{Gines.Moreno,Carlos.Vazquez}@uclm.es

Abstract. The extension of a given similarity relation R between pairs
of symbols of a particular alphabet to terms built with such symbols
can be implemented at a very high abstract level by a set of fuzzy pro-
gram rules defining a predicate called sse. This predicate is defined for
incorporating “Similarity-based Strict Equality” into the new fuzzy logic
language FASILL (acronym of “Fuzzy Aggregators and Similarity Into
a Logic Language”) that we have recently developed in our research
group. FASILL aims to cope with implicit/explicit truth degree anno-
tations, a great variety of connectives and unification by similarity. In
this paper we show the benefits of using this sophisticated notion of
equality which is somehow inspired by the so-called “Strict Equality”
of functional and functional-logic languages with lazy semantics (e.g.:
Haskell and Curry respectively) and the “Similarity-based Equality”
of fuzzy logic languages using weak unification (Bousi∼Prolog, Likelog),
a notion beyond classic syntactic unification.

Keywords: Fuzzy logic programming · Similarity relations · Equality

1 Introduction

Thanks to the high expressive power and the rule-based nature of declarative
languages, their influences are growing in the design of intelligent systems and
techniques related with artificial/computational intelligence, expert systems,
soft-computing and so on. In particular, Logic Programming (LP) [12] has been
widely used for problem solving and knowledge representation in the past. Nev-
ertheless, traditional logic programming languages are not able to deal with par-
tial truth. Fuzzy Logic Programming is an interesting and still growing research
area that agglutinates the efforts for introducing Fuzzy Logic into Logic Pro-
gramming, in order to provide these traditional languages with techniques or
constructs (coming up from the mathematical background of fuzzy logic [21]) to
deal with uncertainty in a natural way.

Work Supported by the EU (FEDER), and the Spanish MINECO Ministry (Minis-
terio de Economı́a y Competitividad) under grant TIN2013-45732-C4-2-P.

c© Springer International Publishing Switzerland 2015
N. Bassiliades et al. (Eds.): RuleML 2015, LNCS 9202, pp. 193–207, 2015.
DOI: 10.1007/978-3-319-21542-6 13

194 P. Julián-Iranzo et al.

In the last two decades, several fuzzy logic programming languages have
been developed where, in essence, the classical SLD resolution principle of Pro-
log [12] (based on syntactic unification) has been replaced by a fuzzy variant
of itself, with the aim of dealing with partial truth and reasoning with uncer-
tainty in a natural way. Fuzzy logic languages can be classified (among other
criteria) regarding the emphasis they assign when fuzzifying the original uni-
fication/resolution mechanisms of Prolog. So, whereas some approaches are
able to cope with similarity/proximity relations at unification time [1,3,22,23],
others extend their operational principles (maintaining syntactic unification) for
managing a wide variety of fuzzy connectives and truth degrees on rules/goals
beyond the simpler case of true or false [11,13,20].

Our research group has been involved both in the development of similarity-
based logic programming systems and those that extend the resolution prin-
ciple, as reveals the design of the Bousi∼Prolog language1 [9,10,22], where
clauses cohabit with similarity/proximity equations, and the development of the
FLOPER system2, which manages fuzzy programs composed by rules richer
than clauses [14–16,18]. In [6] we describe the embedding into FLOPER of the
weak unification algorithm of Bousi∼Prolog that brings to life the new fuzzy logic
language FASILL. Our unifying approach is somehow inspired by [2], but in our
framework we admit a wider set of connectives inside the body of program rules.

On the other hand, during the last three decades of investigation in the field
of the integration of declarative programming paradigms (functional, fuzzy and
logic), the scientific community of the area has produced important and advanced
contributions related to both theoretical and practical aspects. However, whereas
the functional and logic programming styles have been successfully integrated
in the past and, as said before, more recently fuzzy logic has also been intro-
duced into the logic programming paradigm, there is not precedent for a total
integration of all these frameworks, apart from our preliminary approach pre-
sented in [17], where we proposed method combining different equality models
traditionally supported by each one of these declarative paradigms. It is impor-
tant to take into account that an appropriate notion of equality has a crucial
importance when designing the repertoire of expressive resources for a particular
declarative language. In general, when we use the term “equality” in declarative
programming, there are several different meanings depending on the concrete
paradigm being considered. A representative (not exhaustive) list of some cases
could be:

– Syntactic equality. It is the simplest equality model used in the context
of classical pure logic programming (as occurs with Prolog, but also in
the fuzzy logic language MALP) which is simply concerned with syntactic
identity. In this sense, two element are considered “equal” if they have exactly
the same syntax.

1 Two different programming environments for Bousi∼Prolog are available at http://
dectau.uclm.es/bousi/.

2 The tool is freely accessible from the Web site http://dectau.uclm.es/floper/.

 http://dectau.uclm.es/bousi/
 http://dectau.uclm.es/bousi/
 http://dectau.uclm.es/floper/

Similarity-Based Strict Equality in a Fully Integrated Fuzzy Logic Language 195

– Strict equality. When considering lazy languages, both pure functional
(Haskell [4]) and integrated functional-logic (Curry [5]) languages, this
new equality notion is the only applicable in a lazy setting, mainly due to the
possible presence of non terminating functions. For instance, if the evaluation
of f(a) does not finish then we can not say that f(a) is strictly equal to itself.
And, on the contrary, two terms with different syntax, such as g(b) and h(c),
could be proved equal if they produce the same final value (for example 0)
after being evaluated by rewriting or narrowing.

– Similarity-based equality. This model emerges as a direct consequence of
several attempts for fuzzifying the original notion of syntactic equality, which
are appreciable in the design of fuzzy logic languages such as Likelog, and
Bousi∼Prolog or akin (non fuzzy logic) languages like SQLP. In this case, the
idea is to allow the presence of a set of what we called “similarity/proximity
equations” between symbols of the alphabet generated by a given program.
So, if we had a program with the equations a ∼ b = 0.5 and f ∼ g = 0.3,
which respectively state that a is similar to b with approximation degree 0.5
and f is similar to g with approximation degree 0.3, then it would be checked
that the expressions f(a) and g(b) are similar with a concrete truth degree
(for instance 0.15, the product of their approximation degrees).

Here, we recall from [17] our original definition of SSE (Similarity-based Strict
Equality) introduced to integrate fuzziness into a functional-logic programming
language. SSE was initially modeled by means of a set of rewriting rules which
fuses the last two equality versions above. The crucial idea of our method is to
simply add to a given functional-logic program (written in Curry, for instance)
a set of rewriting rules defining the new symbol ≈:≈ which captures similarities
and thus, is implemented at a very low cost by simply performing a syntactic
pre-process of programs.

In [19] we adapted such definition to the MALP framework, proving too
some interesting formal properties for it. In Section 4 we will see that SSE

admits a much more natural formulation by means of a set of MALP rules
instead of using rewriting rules. Moreover, although this fuzzy programming
style is based on pure syntactic unification, our method introduces a similarity-
based equality model without altering its core, which is useful not only for test-
ing if two ground data terms are comparable (as occurs with more complex
languages -Likelog, Bousi∼Prolog- with extended unification algorithms), but
also for producing complete lists of similar terms, not achievable by Likelog

or Bousi∼Prolog. This last effect is inherited by the FASILL language, which in
essence shares the syntax of MALP but uses weak unification instead of simple
syntactic unification which, among other benefits, allows to cope with similari-
ties between predicates (being this last feature forbidden in MALP even when
using SSE).

The structure of this paper is as follows. Firstly, in Sections 2 and 3 we for-
mally define and illustrate both the syntax and operational/declarative seman-
tics of the FASILL language, initially presented in [6,8]. Next, in Section 4
we study how to define the sse fuzzy predicate by means of FASILL rules as

196 P. Julián-Iranzo et al.

well as the advantages of using it for producing complete lists of similar terms
(instead of just a unique representative of such families) for a given goal. Finally,
in Section 5 we present our conclusions and future research lines.

2 The FASILL Language

FASILL is a first order language built upon a signature Σ, that contains the
elements of a countably infinite set of variables V, function symbols and predicate
symbols with an associated arity –usually expressed as pairs f/n or p/n where
n represents its arity–, the implication symbol (←) and a wide set of other
connectives. The language combines the elements of Σ as terms, atoms, rules
and formulas. A constant c is a function symbol with arity zero. A term is a
variable, a constant or a function symbol f/n applied to n terms t1, . . . , tn, and
is denoted as f(t1, . . . , tn). We allow values of a lattice L as part of the signature
Σ. Therefore, a well-formed formula can be either:

– r, if r ∈ L
– p(t1, . . . , tn), if t1, . . . , tn are terms and p/n is an n-ary predicate. This for-

mula is called atom. Particularly, atoms containing no variables are called
ground atoms, and atoms built from nullary predicates are called proposi-
tional variables

– ς(F1, . . . ,Fn), if F1, . . . ,Fn are well-formed formulas and ς is an n-ary con-
nective with truth function ς̇ : Ln → L

Definition 1 (Complete lattice). A complete lattice is a partially ordered set
(L,≤) such that every subset S of L has infimum and supremum elements. Then,
it is a bounded lattice, i.e., it has bottom and top elements, denoted by ⊥ and
	, respectively. L is said to be the carrier set of the lattice, and ≤ its ordering
relation.

The language is equipped with a set of connectives3 interpreted on the lattice,
including

– aggregators denoted by @, whose truth functions @̇ fulfill the boundary con-
dition:@̇(,) = 	, @̇(⊥,⊥) = ⊥, and monotonicity: (x1, y1) ≤ (x2, y2) ⇒
@̇(x1, y1) ≤ @̇(x2, y2).

– t-norms and t-conorms [21] (also named conjunctions and disjunctions, that
we denote by & and |, respectively) whose truth functions fulfill the following
properties:
· Commutative: &̇(x, y) = &̇(y, x) |̇(x, y) = |̇(y, x)
· Associative: &̇(x, &̇(y, z)) = &̇(&̇(x, y), z) |̇(x, |̇(y, z)) = |̇(|̇(x, y), z)
· Identity element: &̇(x,) = x |̇(x,⊥) = x
· Monotonicity in each argument:

z ≤ t ⇒
{

&̇(z, y) ≤ &̇(t, y) &̇(x, z) ≤ &̇(x, t)
|̇(z, y) ≤ |̇(t, y) |̇(x, z) ≤ |̇(x, t)

3 Here, the connectives are binary operations but we usually generalize them with an
arbitrary number of arguments.

Similarity-Based Strict Equality in a Fully Integrated Fuzzy Logic Language 197

&̇P(x, y) � x ∗ y |̇P(x, y) � x + y − xy Product

&̇G(x, y) � min(x, y) |̇G(x, y) � max(x, y) Gödel

&̇L(x, y) � max(0, x + y − 1) |̇L(x, y) � min(x + y, 1) �Lukasiewicz

Fig. 1. Conjunctions and disjunctions in [0, 1] for Product, �Lukasiewicz, and Gödel
fuzzy logics

Example 1. In this paper we use the lattice ([0, 1],≤), where ≤ is the usual
ordering relation on real numbers, and three sets of connectives corresponding
to the fuzzy logics of Gödel, �Lukasiewicz and Product, defined in Figure 1, where
labels L, G and P mean respectively �Lukasiewicz logic, Gödel logic and product
logic (with different capabilities for modeling pessimistic, optimistic and realistic
scenarios).

It is possible to include also other connectives. For instance, the arithmetical
average, defined by connective @aver (with truth function @̇aver(x, y) � x+y

2),
that is a stated, easy to understand connective that does not belong to a known
logic. Connectives with arities different from 2 can also be used, like the @very

aggregation, defined by @̇very(x) � x2, that is a unary connective.

Definition 2 (Similarity relation). Given a domain U and a lattice L with
a fixed t-norm ∧, a similarity relation R is a fuzzy binary relation on U , that is
a fuzzy subset on U × U (namely, a mapping R : U × U → L), such that fulfils
the following properties4:

– Reflexive: R(x, x) = 	,∀x ∈ U
– Symmetric: R(x, y) = R(y, x),∀x, y ∈ U
– Transitive: R(x, z) ≥ R(x, y) ∧ R(y, z),∀x, y, z ∈ U

Certainly, we are interested in fuzzy binary relations on a syntactic domain.
We primarily define similarities on the symbols of a signature, Σ, of a first order
language. This makes possible to treat as indistinguishable two syntactic symbols
which are related by a similarity relation R. Moreover, a similarity relation R
on the alphabet of a first order language can be extended to terms by structural
induction in the usual way [23]. That is, the extension, R̂, of a similarity relation
R is defined as:

1. let x be a variable, R̂(x, x) = R(x, x) = 1,
2. let f and g be two n-ary function symbols and let t1, . . . , tn, s1, . . . , sn be

terms,

R̂(f(t1, . . . , tn), g(s1, . . . , sn)) = R(f, g) ∧ (
∧n

i=1 R̂(ti, si))

4 For convenience, R(x, y), also denoted xRy, refers to both the syntactic expression
(that symbolizes that the elements x, y ∈ U are related by R) and the membership
degree µR(x, y), i.e., the affinity degree of the pair (x, y) ∈ U × U with the verbal
predicate R.

198 P. Julián-Iranzo et al.

3. otherwise, the approximation degree of two terms is zero.

Analogously for atomic formulas. In this work conditional formulas of the form
C ≡ A ← B, where A is an atom, have a special relevance (see below). For this
kind of formulas we use a different and more restrictive notion of similarity than
the one defined in [23]. The idea is that a conditional formula C is similar to
another conditional formula C′ if their heads are similar but maintain the same
body. Hence, given C ≡ A ← B and C′ ≡ A′ ← B′, R̂(C, C′) = R̂(A,A′) if B ≡ B′;
Otherwise R̂(C, C′) = 0.

Note that, in the sequel, we shall not make a notational distintion between
the relation R and its extension R̂.

Example 2. A similarity relation R on U = {vanguardist, elegant,metro, taxi,
bus} is defined by the following matrix:

R vanguardist elegant metro taxi bus

vanguardist 1 0.6 0 0 0

elegant 0.6 1 0 0 0

metro 0 0 1 0.4 0.5

taxi 0 0 0.4 1 0.4

bus 0 0 0.5 0.4 1

It is easy to check that
R fulfills the reflexive,
symmetric and transitive
properties. Particularly,
using the Gödel conjunc-
tion as the t-norm ∧, we
have that: R(taxi,metro) ≥
R(metro, bus)∧ R(bus, taxi)
= 0.5 ∧ 0.4.

Furthermore, the extension R̂ of R determines that the terms elegant(taxi) and
vanguardist(metro) are similar, since: R̂(elegant(taxi), vanguardist(metro)) =
R(elegant, vanguardist) ∧ R̂(taxi,metro) = 0.6 ∧ R(taxi,metro) = 0.6 ∧ 0.4 =
0.4.

Definition 3 (Rule). A rule has the form A ← B, where A is an atomic for-
mula called head and B, called body, is a well-formed formula (ultimately built
from atomic formulas B1, . . . , Bn, truth values of L and connectives). In partic-
ular, when the body of a rule is r ∈ L (an element of lattice L), this rule is called
fact and can be written as A ← r (or simply A if r =).

Definition 4 (Program). A FASILL program (or simply program) is a tuple
〈Π,R, L〉 where Π is a set of rules, R is a similarity relation between the ele-
ments of Σ, and L is a complete lattice.

Example 3. The set of rules Π given below, the similarity relation R of Example
2 and lattice L = ([0, 1],≤) of Example 1, form a program P = 〈Π,R, L〉.

Π =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

R1 : vanguardist(hydropolis) ← 0.9

R2 : elegant(ritz) ← 0.8

R3 : close(hydropolis, taxi) ← 0.7

R4 : good hotel(x) ← @aver(elegant(x),@very(close(x,metro)))

Similarity-Based Strict Equality in a Fully Integrated Fuzzy Logic Language 199

Fig. 2. An execution tree as shown by the FLOPER system

3 Operational Semantics of FASILL

Rules in a FASILL program have the same role as clauses in Prolog (or MALP

[7,13]) programs, that is, stating that a certain predicate relates some terms (the
head) if some conditions (the body) hold.

As a logic language, FASILL inherits the concepts of substitution, unifier and
most general unifier (mgu). Some of them are extended to cope with similarities.
Concretely, following the line of Bousi∼Prolog [9], the most general unifier is
replaced by the concept of weak most general unifier (w.m.g.u.) and a weak
unification algorithm is introduced to compute it. Roughly speaking, the weak
unification algorithm states that two expressions (i.e, terms or atomic formulas)
f(t1, . . . , tn) and g(s1, . . . , sn) weakly unify if the root symbols f and g are close
with a certain degree (i.e. R(f, g) = r > ⊥) and each of their arguments ti and
si weakly unify. Therefore, there is a weak unifier for two expressions even if the
symbols at their roots are not syntactically equal (f �≡ g).

More technically, the weak unification algorithm we are using is a reformula-
tion/extension of the one which appears in [23] for arbitrary complete lattices.
We formalize it as a transition system supported by a similarity-based unification

200 P. Julián-Iranzo et al.

relation “⇒”. The unification of the expressions E1 and E2 is obtained by
a state transformation sequence starting from an initial state 〈G ≡ {E1 ≈
E2}, id, α0〉, where id is the identity substitution and α0 = 	 is the supreme
of (L,≤): 〈G, id, α0〉 ⇒ 〈G1, θ1, α1〉 ⇒ · · · ⇒ 〈Gn, θn, αn〉. When the final state
〈Gn, θn, αn〉, with Gn = ∅, is reached (i.e., the equations in the initial state have
been solved), the expressions E1 and E2 are unifiable by similarity with w.m.g.u.
θn and unification degree αn. Therefore, the final state 〈∅, θn, αn〉 signals out
the unification success. On the other hand, when expressions E1 and E2 are not
unifiable, the state transformation sequence ends with failure (i.e., Gn = Fail).

The similarity-based unification relation, “ ⇒”, is defined as the smallest
relation derived by the following set of transition rules (where Var(t) denotes
the set of variables of a given term t)

〈{f(t1, . . . , tn) ≈ g(s1, . . . , sn)} ∪ E, θ, r1〉 R(f, g) = r2 > ⊥
〈{t1 ≈ s1, . . . , tn ≈ sn} ∪ E, θ, r1 ∧ r2〉

1

〈{X ≈ X} ∪ E, θ, r1〉
〈E, θ, r1〉

2

〈{X ≈ t} ∪ E, θ, r1〉 X /∈ Var(t)
〈(E){X/t}, θ{X/t}, r1〉

3

〈{t ≈ X} ∪ E, θ, r1〉
〈{X ≈ t} ∪ E, θ, r1〉

4

〈{X ≈ t} ∪ E, θ, r1〉 X ∈ Var(t)
〈Fail, θ, r1〉

5

〈{f(t1, . . . , tn) ≈ g(s1, . . . , sn)} ∪ E, θ, r1〉 R(f, g) = ⊥
〈Fail, θ, r1〉

6

Rule 1 decomposes two expressions and annotates the relation between the func-
tion (or predicate) symbols at their root. The second rule eliminates spurious
information and the fourth rule interchanges the position of the symbols to be
handled by other rules. The third and fifth rules perform an occur check of
variable X in a term t. In case of success, it generates a substitution {X/t}; oth-
erwise the algorithm ends with failure. It can also end with failure if the relation
between function (or predicate) symbols in R is ⊥, as stated by Rule 6.

Usually, given two expressions E1 and E2, if there is a successful transition
sequence, 〈{E1 ≈ E2}, id,	〉 ⇒� 〈∅, θ, r〉, then we write that wmgu(E1, E2) =
〈θ, r〉, being θ the weak most general unifier of E1 and E2, and r is their unification
degree.

Finally note that, in general, a w.m.g.u. of two expressions E1 and E2 is not
unique [23]. Certainly, the weak unification algorithm only computes a repre-
sentative of a w.m.g.u. class, in the sense that, if θ = {x1/t1, . . . , xn/tn} is a
w.m.g.u., with degree β, then, by definition, any substitution θ′ = {x1/s1, . . . ,
xn/sn}, satisfying R(si, ti) > ⊥, for any 1 ≤ i ≤ n, is also a w.m.g.u. with
approximation degree β′ = β ∧ (

∧n
1 R(si, ti)), where “∧” is a selected t-norm.

However, observe that, the w.m.g.u. representative computed by the weak unifi-
cation algorithm is one with an approximation degree equal or greater than any

Similarity-Based Strict Equality in a Fully Integrated Fuzzy Logic Language 201

other w.m.g.u. As in the case of the classical syntactic unification algorithm, our
algorithm always terminates returning a success or a failure.

Next, we illustrate the weak unification process in the following example.

Example 4. Consider the lattice L = ([0, 1],≤) of Example 1 and the relation R
of Example 2. Given terms elegant(taxi) and vanguardist(metro), it is possible
the following weak unification process:

〈{elegant(taxi) ≈ vanguardist(metro)}, id, 1〉 1⇒〈{taxi ≈ metro}, id, 0.6〉 1⇒
〈{}, id, 0.6 ∧ 0.4〉 = 〈{}, id, 0.4〉

Also it is possible unify the terms elegant(taxi) and vanguardist(x), since:

〈{elegant(taxi) ≈ vanguardist(x)}, id, 1〉 1⇒〈{taxi ≈ x}, id, 0.6〉 4⇒
〈{x ≈ taxi}, id, 0.6〉 3⇒〈{}, {x/taxi}, 0.6〉

and the substitution {x/taxi} is their w.m.g.u. with unification degree 0.6.

In order to describe the procedural semantics of the FASILL language, in the
following we denote by C[A] a formula where A is a sub-expression (usually an
atom) which occurs in the –possibly empty– context C[] whereas C[A/A′] means
the replacement of A by A′ in the context C[]. Moreover, Var(s) denotes the set
of distinct variables occurring in the syntactic object s and θ[Var(s)] refers to
the substitution obtained from θ by restricting its domain to Var(s). In the next
definition, we always consider that A is the selected atom in a goal Q and L is
the complete lattice associated to Π.

Definition 5 (Computational Step). Let Q be a goal and let σ be a substi-
tution. The pair 〈Q;σ〉 is a state. Given a program 〈Π,R, L〉 and a t-norm ∧
in L, a computation is formalized as a state transition system, whose transition
relation � is the smallest relation satisfying these rules:

1) Successful step (denoted as SS�):

〈Q[A], σ〉 A′ ← B ∈ Π wmgu(A,A′) = 〈θ, r〉
〈Q[A/B ∧ r]θ, σθ〉 SS

2) Failure step (denoted as FS�):

〈Q[A], σ〉 �A′ ← B ∈ Π : wmgu(A,A′) = 〈θ, r〉, r > ⊥
〈Q[A/⊥], σ〉 FS

3) Interpretive step (denoted as IS�):

〈Q[@(r1, . . . , rn)];σ〉 @̇(r1, . . . , rn) = rn+1

〈Q[@(r1, . . . , rn)/rn+1];σ〉 IS

202 P. Julián-Iranzo et al.

A derivation is a sequence of arbitrary length 〈Q; id〉 �∗〈Q′;σ〉. As usual, rules
are renamed apart. When Q′ = r ∈ L, the state 〈r;σ〉 is called a fuzzy computed
answer (f.c.a.) for that derivation.

Example 5. Let P = 〈Π,R, L〉 be the program from Example 3. It is possible to
perform this derivation with fuzzy computed answer 〈0, 4, {x/ritz}〉 for P and
goal Q = good hotel(x):

D1 : 〈good hotel(x), id〉 SS�
R4

〈@aver(elegant(x),@very(close(x,metro))), {x1/x}〉 SS�
R2

〈@aver(0.8,@very(close(ritz,metro))), {x1/ritz, x/ritz}〉 FS�
〈@aver(0.8,@very(0)), {x1/ritz, x/ritz}〉 IS�
〈@aver(0.8, 0), {x1/ritz, x/ritz}〉 IS�
〈0.4, {x1/ritz, x/ritz}〉

This derivation corresponds to the leftmost branch in the tree of Figure 3 where
we can also observe a second f.c.a. (that is, 〈0.38, {x/hydropolis}〉) for the same
goal in the rightmost branch of such tree.

IP
vanguardist(hydropolis) 0.9
vanguardist(ritz) 0.6
elegant(hydropolis) 0.6
elegant(ritz) 0.8
close(hydropolis, taxi) 0.7
close(hydropolis, metro) 0.4
close(hydropolis, bus) 0.5
good hotel(hydropolis) 0.38
good hotel(ritz) 0.4

Moreover, as we explain in a
detailed way in [8], the declar-
ative semantics of the pro-
gram in our running example
is defined as the least fuzzy
Herbrand model IP given
in the adjoint table (where
the interpretations for all
atoms not included on it are
assumed to be 0).

In the previous example, we can see in the rightmost branch of the tree in Figure
3 that for obtaining the second solution 〈0.38, {x/hydropolis}〉) it is necessary
to exploit the similarities between predicates vanguardist and elegant as well
as between constants taxi and metro. This effect is achieved by the weak unifi-
cation technique used in FASILL computations, but in other frameworks based
on syntactic unification, as occurs with the MALP language, some interesting
results in this sense can even be achieved by using a sophisticated notion of
equality as the one we are going to study in the next section.

4 Similarity-Based Strict Equality for MALP and FASILL

A classical, but even nowadays challenging research topic in declarative program-
ming, consists in the design of powerful notions of “equality”, as occurs with the
flexible (fuzzy) and efficient (lazy) framework that we have initially proposed in
[17] for hybrid declarative languages amalgamating fuzzy and functional-logic

Similarity-Based Strict Equality in a Fully Integrated Fuzzy Logic Language 203

sse(c, d) ← R(c, d)
sse(f(x1, .., xn), g(y1, .., yn)) ← R(f, g) & sse(x1, y1) & . . .& sse(xn, yn)

Fig. 3. Fuzzy Program Rules defining “Similarity-based Strict Equality”

features. The crucial idea is that, by extending at a very low cost the notion of
“strict equality” typically used in lazy functional (Haskell) and functional-logic
(Curry) languages, and by relaxing it to the more flexible one of similarity-based
equality used in modern fuzzy-logic programming languages (such as Likelog

and Bousi∼Prolog), similarity relations can be successfully treated while mathe-
matical functions are lazily evaluated at execution time. The adaptation of this
equality model to MALP was performed in [19], where we revisited our initial
notion of SSE (Similarity-based Strict Equality) in order to re-model it at a very
high abstraction level by means of a simple set of MALP rules. The resulting
technique served as a preliminary attempt for coping with a given similarity
relation R (in fact, the behavior of the new fuzzy predicate sse mirrors the
extended similarity relation on terms R̂) even when the operational semantics
of MALP relies on the purely syntactic unification method of Prolog.

We start by recasting, from [19], our initial MALP-based model of SSE which
is defined in Figure 3 for synthesizing a set of fuzzy program rules denoted by
ΠR

sse from a given similarity relation R. In the figure c and d are constants
symbols (i.e., functions with arity 0) and f and g are function symbols with
the same arity n. Note that the rules in Figure 3 are actually “rule schemes”
and there is a rule for each pair of constants or functions symbols (with the
same arity) related by the similarity relation R with an approximation degree
greater than ⊥. In order to illustrate our definition, we can consider again the
similarity relation provided in our running example for generating the following
nine rules (all they are simply facts since only constant symbols are compared)
which conforms ΠR

sse:

sse(taxi,taxi)<-1. sse(taxi,bus)<-0.4. sse(taxi,metro)<-0.4.
sse(bus,taxi)<-0.4. sse(bus,bus)<- 1. sse(bus,metro)<-0.5.
sse(metro,taxi)<- 0.4. sse(metro,bus)<-0.5. sse(metro,metro)<-1.

Observe that the second pattern of Figure 3 is not used in our case, since in
particular, the following four rules:

sse(elegant(X),elegant(Y)) <- 1 & sse(X,Y).
sse(elegant(X),vanguardist(Y)) <- 0.6 & sse(X,Y).
sse(vanguardist(X),elegant(Y)) <- 0.6 & sse(X,Y).
sse(vanguardist(X),vanguardist(Y)) <- 1 & sse(X,Y).

does not belong to ΠR
sse due to the fact that elegant and vanguardist are not

function symbols (useful for building data terms) but predicate symbols (used
for generating atoms).

204 P. Julián-Iranzo et al.

Fig. 4. The FLOPER system drawing a tree for a goal with sse

Now it is possible to execute with a MALP style (i.e., based on simple
syntactic unification) the goal sse(taxi,metro) which produces the obvious
fuzzy computed answer <0.4,{}>. Moreover, for goal sse(taxi,X) we obtain
the three desired f.c.a.’s <1,{X/taxi}>, <0.4,{X/bus}> and <0.4,{X/metro}>,
whereas for goal sse(X,Y) the system produces nine answers, each one of them
associated to the use of a different rule in ΠR

sse. This behavior is reflected by
the following results, which establish a set of interesting properties enjoyed by
our definition as formally proved in [19] (while the first claim reveals the ability
of our technique for testing similar terms, the second and third ones confirm its
capability for generating all pairs of similar ground terms).

Theorem 1. Let t and t′ be two ground terms, x and x′ two variables, L a
lattice of truth degrees, R a similarity relation and ΠR

ssethe set of MALP rules
defining predicate sse w.r.t. R. Then, the following claims hold:

1. R̂(t, t′) = s iff 〈s, id〉 is a f.c.a. for goal sse(t, t′) w.r.t. ΠR
sse.

2. R̂(t, t′) = s iff 〈s, {x/t′}〉 is a f.c.a. for goal sse(t, x) w.r.t. ΠR
sse.

3. R̂(t, t′) = s iff 〈s, {x/t, x′/t′}〉 is a f.c.a. for goal sse(x, x′) w.r.t. ΠR
sse.

Let us introduce the following notation that we use in the rest of this section. We
will denote a MALP program by the tuple 〈Π,L〉, where Π is a set of program
rules and L a lattice of truth degrees. Since, from a syntactic point of view, a
FASILL program is a MALP program extended with a similarity relation R, a
FASILL program will be denoted by the tuple 〈Π,R, L〉. Note that in a FASILL

program the similarity relation R is used during the weak unification process
(for computing weak most general unifiers), whereas MALP is simply based on
syntactic unification, which does not require an underlying similarity relation.
On the other hand, when we extend the set of rules of a program with the ones

Similarity-Based Strict Equality in a Fully Integrated Fuzzy Logic Language 205

appearing in ΠR
sse, we use 〈Π ∪ ΠR

sse, L〉 and 〈Π ∪ ΠR
sse,R, L〉 for representing

the corresponding MALP and FASILL programs.
Consider now the goal close(hydropolis,metro), whose execution (based

on weak unification) w.r.t. the FASILL program 〈Π,R, L〉 produces the desired
result <0.4,{}>, using the third rule close(hydropolis,taxi)<- 0.7 together
with the fact that the similarity relation has the entry R(taxi,metro)= 0.4.
However, this solution is not reached in the MALP program 〈Π,L〉 since this
last similarity is not used by the syntactic unification algorithm of MALP. For-
tunately, we can take profit of our set of rules ΠR

sse for executing the slightly
modified goal close(hydropolis,X) & sse(X,Y) w.r.t. the augmented MALP

program 〈Π∪ΠR
sse, L〉 which palliates our problem by answering the desired f.c.a.

<0.4,{X/taxi,Y/metro}>. However, it is important to note that the use of ΠR
sse

in MALP not always simulates the effects achieved by FASILL thanks to the use
of weak unification, since those computations involving similarities between pred-
icate symbols are avoided in MALP. As an example, goal vanguardist(ritz)
is solved in the FASILL program 〈Π,R, L〉 with f.c.a. <0.6,{}> (by exploiting
at weak unification time the entry R(vanguardist,elegant)= 0.6), but the
same goal fails in our two MALP programs 〈Π,L〉 and 〈Π ∪ ΠR

sse, L〉.
Our last example is intended to illustrate that the use of ΠR

sse rules is use-
ful not only in an augmented MALP program 〈Π ∪ ΠR

sse, L〉 but also in an
augmented FASILL program 〈Π ∪ ΠR

sse,R, L〉. So, let us consider now the
goal close(hydropolis,X), for which MALP computes the single solution
<0.7,X/taxi> w.r.t. 〈Π,L〉. In order to exploit the similarities between the three
constants in our program, we can use ΠR

sse with goal close(hydropolis,X) &
sse(X,Y) w.r.t. 〈Π ∪ ΠR

sse, L〉, for which we obtain the three desired answers
<0.7,{X/taxi}>, <0.4,{X/bus}> and <0.4,{X/metro}>. These answers could
not be achieved by the FASILL program 〈Π,R, L〉 when executing the orig-
inal goal close(hydropolis,X), since FASILL acts as MALP in this case,
thus returning again the single solution <0.7,X/taxi>. Fortunately, we can
run close(hydropolis,X) & sse(X,Y) w.r.t. the augmented FASILL program
〈Π ∪ΠR

sse,R, L〉 for obtaining the desired set of solutions, as shown in Figure 4,
where some answers are redundant because they are repeated or subsumed by
others (for instance, the f.c.a. <0.4,{Y/taxi,X/taxi}> occurs twice, and it is
also subsumed by the better f.c.a. <0.7,{Y/taxi,X/taxi}>). We are nowadays
improving the operational machinery of FASILL for introducing thresholding
techniques devoted to prune redundant solutions or directly avoiding the gener-
ation of answers with degraded truth degrees below a given threshold.

5 Conclusions and Future Work

FASILL (acronym of “Fuzzy Aggregators and Similarity Into a Logic Lan-
guage”) is a fuzzy logic programming language with implicit/explicit truth
degree annotations, a great variety of connectives and unification by similarity.
In [6,8] we have recently provided the syntax, operational/declarative semantics

206 P. Julián-Iranzo et al.

and implementation issues5 of this language which in essence integrates and
extends features coming from MALP (Multi-Adjoint Logic Programming, a fuzzy
logic language with explicitly annotated rules and based on syntactic unifica-
tion) and Bousi∼Prolog (which uses a weak unification algorithm and is well
suited for flexible query answering). Hence, it properly manages similarity and
truth degrees in a single framework combining the expressive benefits of both
languages. In this work we have focused on the integration into FASILL of a
notion of equality called SSE(Similarity-based Strict Equality) which is especially
well-suited for the new language.

Since MALP and FASILL program rules share the same syntax, the set
of rules defining the fuzzy predicate sse in both languages coincide, but the
benefits achieved in each language are rather different, mainly due to the fact
that the underlying unification algorithms used on their operational principles
are different too. The main advantage of using sse in FASILL goals and bod-
ies of program rules is that the system is able to produce a family of similar
answers instead of just a representative of them as the weak unification algo-
rithm usually do. In order to avoid the generation of redundant solutions that
often occurs when evaluating some kind of goals containing variable symbols,
we are nowadays implementing at a low level (directly on the core of the proce-
dural mechanism of FASILL) different thresholding techniques for dynamically
avoiding the generation of answers which are repeated, subsumed by others, or
directly are useless because their associated truth degrees fall down below a cut
value provided by users.

References

1. Arcelli, F.: Likelog for flexible query answering. Soft Computing 7(2), 107–114
(2002)

2. Caballero, R., Rodŕıguez-Artalejo, M., Romero-Dı́az, C.A.: A transformation-based
implementation for clp with qualification and proximity. Theory and Practice of
Logic Programming 14(1), 1–63 (2014)

3. Formato, F., Gerla, G., Sess, M.I.: Similarity-based unification. Fundamenta Infor-
maticae 41(4), 393–414 (2000)

4. Hall, C.V., Hammond, K., Partain, W., Peyton Jones, S.L., Wadler, P.: The glas-
gow haskell compiler: a retrospective. In: Launchbury, J., Sansom, P.M. (Eds.)
Functional Programming, Workshops in Computing, pp. 62–71. Springer (1992)

5. Hanus, M. (ed.): Curry: An Integrated Functional Logic Language (2003). http://
www.informatik.uni-kiedl.de/∼mh/curry/

6. Julián Iranzo, P., Moreno, G., Penabad, J., Vázquez, C.: A fuzzy logic programming
environment for managing similarity and truth degrees. In: Escobar, S. (Eds.)
Proc. of XIV Jornadas Sobre Programación y Lenguajes, PROLE 2015, vol. 173,
pp. 71–86. EPTCS, Cádiz (2015)

5 The last version of the FLOPER system which copes with similarity relations can
be freely downloaded from http://dectau.uclm.es/floper/?q=sim and it can be
tested on-line through http://dectau.uclm.es/floper/?q=sim/test.

http://www.informatik.uni-kiedl.de/~mh/curry/
http://www.informatik.uni-kiedl.de/~mh/curry/

Similarity-Based Strict Equality in a Fully Integrated Fuzzy Logic Language 207

7. Julián, P., Moreno, G., Penabad, J.: On the declarative semantics of multi-adjoint
logic programs. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.)
IWANN 2009, Part I. LNCS, vol. 5517, pp. 253–260. Springer, Heidelberg (2009)

8. Julián-Iranzo, P., Moreno, G., Penabad, J., Vázquez, C.: A declarative semantics
for a fuzzy logic language managing similarities and truth degrees. In: Submitted to
the 13th Int. Work-Conference on Artificial Neural Networks, IWANN 2015 (2015)

9. Julián-Iranzo, P., Rubio-Manzano, C.: A declarative semantics for Bousi∼Prolog.
In: Proc. of 11th Int. ACM SIGPLAN Conf. on Principles and Practice of Declar-
ative Programming, PPDP 2009, Coimbra, Portugal, pp. 149–160. ACM (2009)

10. Julián-Iranzo, P., Rubio-Manzano, C.: An efficient fuzzy unification method and
its implementation into the Bousi∼Prolog system. In: Proc. of the 2010 IEEE Int.
Conference on Fuzzy Systems, pp. 1–8 (2010)

11. Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic program-
ming and its applications. Journal of Logic Programming 12, 335–367 (1992)

12. Lloyd, J.W.: Foundations of Logic Programming. Springer-Verlag, Heidelberg
(1987)

13. Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Similarity-based Unification: a multi-
adjoint approach. Fuzzy Sets and Systems 146, 43–62 (2004)

14. Morcillo, P.J., Moreno, G., Penabad, J., Vázquez, C.: A practical management of
fuzzy truth-degrees using FLOPER. In: Dean, M., Hall, J., Rotolo, A., Tabet, S.
(eds.) RuleML 2010. LNCS, vol. 6403, pp. 20–34. Springer, Heidelberg (2010)

15. Morcillo, P.J., Moreno, G.: Programming with fuzzy logic rules by using the
FLOPER tool. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML
2008. LNCS, vol. 5321, pp. 119–126. Springer, Heidelberg (2008)

16. Morcillo, P.-J., Moreno, G., Penabad, J., Vázquez, C.: Declarative traces into fuzzy
computed answers. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML
2011 - Europe. LNCS, vol. 6826, pp. 170–185. Springer, Heidelberg (2011)

17. Moreno, G.: Similarity-based equality with lazy evaluation. In: Hüllermeier, E.,
Kruse, R., Hoffmann, F. (eds.) IPMU 2010. CCIS, vol. 80, pp. 108–117. Springer,
Heidelberg (2010)

18. Moreno, G., Vázquez, C.: Fuzzy logic programming in action with floper. Journal
of Software Engineering and Applications 7, 237–298 (2014)

19. Moreno, G., Penabad, J., Vázquez, C.: Fuzzy logic rules modeling similarity-based
strict equality. In: Proc. of the 2014 Federated Conference on Computer Science
and Information Systems, Warsaw, Poland, September 7–10, pp. 119–128 (2014)

20. Muñoz-Hernández, S., Ceruelo, V.P., Strass, H.: Rfuzzy: Syntax, semantics and
implementation details of a simple and expressive fuzzy tool over prolog. Informa-
tion Sciences 181(10), 1951–1970 (2011)

21. Nguyen, H.T., Walker, E.A.: A First Course in Fuzzy Logic. Chapman &
Hall/CRC, Boca Ratón (2000)

22. Rubio-Manzano, C., Julián-Iranzo, P.: A fuzzy linguistic prolog and its applica-
tions. Journal of Intelligent and Fuzzy Systems 26(3), 1503–1516 (2014)

23. Sessa, M.I.: Approximate reasoning by similarity-based sld resolution. Theoretical
Computer Science 275(1–2), 389–426 (2002)

Building a Hybrid Reactive Rule Engine
for Relational and Graph Reasoning

Mario Fusco1(B), Davide Sottara2(B), István Ráth3, and Mark Proctor1,4

1 A Division of Red Hat Inc., JBoss, Milan, Italy
mfusco@redhat.com

http://www.jboss.org
2 Department of Biomedical Informatics, Arizona State University, Tempe, AZ, USA

davide.sottara@asu.edu
3 Department of Measurement and Information Systems,

Budapest University of Technology and Economics, Budapest, Hungary
rath@mit.bme.hu

4 Department of Electrical and Electronic Engineering,
Imperial College London, London, UK

m.proctor13@imperial.ac.uk

Abstract. The relational syntax used by Rete rule engines is cumber-
some when traversing paths compared to hierarchical or Object-Oriented
languages like XPath or Java. Searching the join space for references
has performance implications. This paper proposes reactive rule engine
enhancements to support both relational and graph reasoning, with
improvements at both the language and the engine level.

The language will contain both relational and graph constructs that
can be used together, within the same rule. The implementation targets
Drools, a Java open-source Rete based rule engine, but could be applied
to any Rete engine and language of a similar class.

Examples are used to describe the language extensions and discuss
their behaviour. Benchmarking is used to compare the performance of
the two reasoning approaches in different scenarios and provide recom-
mendations on how to optimize a rule base.

Keywords: Production rule systems · Rule engine · Rete · Relational ·
Graph · Reasoning · Xpath · Drools · Java

1 Introduction

Rete [6] based Production Rule Systems used to build reactive systems that pro-
vide a relational view over a changing data set. Rete does not require a full recom-
putation when any of that data changes, because it uses state saving techniques
to process those changes incrementally. These systems use networks of joins for
relational reasoning over the data. This requires a flat data model, like tables in
a relational database. For Object-Oriented (OO) systems like Java, that rely on
graph-like data structures, the model must be flattened before the rule engine
is able to reason over it. Modern rule engines, like Drools’ Rete-OO, are able
to directly use Java objects as facts, filtering by polymorphic types,performing
c© Springer International Publishing Switzerland 2015
N. Bassiliades et al. (Eds.): RuleML 2015, LNCS 9202, pp. 208–222, 2015.
DOI: 10.1007/978-3-319-21542-6 14

Building a Hybrid Reactive Rule Engine for Relational and Graph Reasoning 209

relational joins across properties and reacting to changes on properties. How-
ever, Drools can only access direct properties of an inserted object: it cannot
traverse the object graph, nor can it react to nested property changes. Because
of this limitation, developers must use a flat data model, insert all objects of the
graph and use a relational syntax to search the candidate matches to navigate
a reference. This work is redundant if the object graph maintains the references
between edges (relationships) and nodes (objects) explicitly.

This paper addresses the gap between the relational and graph domains in
three ways. Firstly, additional syntactical constructs are proposed that provide
navigation and express constraints on the graph in a succinct way. The inspi-
ration for this notation comes from XPath and has been introduced to simplify
the dereferencing and navigation of one-to-many relationships. The syntax sup-
ports variable binding of path segments, for named back referencing as well as
the normal XPath relative back referencing syntax. This allows the graph state-
ments to be expressed in small chunks, where those chunks can be used inside of
existing rule constructs such as negation and aggregation functions. The variable
bindings can be used as arguments for existing query constructs, which already
support unification, recursion and transitive closures.

Secondly, a new Rete node, a From node, is proposed and purposed to nav-
igate references, iterate collections and propagate the results to the child Rete
node(s). Thirdly, a mechanism is introduced which allows the rule engine to
react to updates on any nested property that is accessed through this graph
syntax. The relational and graph syntactical constructs can be used together in
the same rule, creating a truly hybrid reasoning system for relational and graph
reasoning.

The implementation has been done as an extension in Drools - at both the
syntax and engine level. However it could be implemented in any Rete based
engine of a similar class - which has support for negation, recursive queries with
transitive closure support, aggregations and sub-networks. Benchmarks were cre-
ated to assess the performance impact on rules executed against a graph-based
business object model.

2 Background

The Rete Algorithm was created by Charles Forgy (1979) to efficiently and
incrementally match a set of rules against a set of facts. Rete eagerly materializes
all relational joins and eventually the rule instantiations for all rules and then
selects a rule instantiation for execution using a conflict resolution strategy. It
has a simple recognize and react cycle that is driven by data insertions, updates
or deletes. During the pattern matching stage data is inserted and propagated
through a discrimination network as “tokens”. The first part of the network
contains single input, multiple output alpha nodes, which apply literal constraint
filters. The second part of the network contains beta nodes, two input - multiple
output nodes, that perform joins. The left input of a beta node is another beta
node, the right input is an alpha node. When a token enters the right input from

210 M. Fusco et al.

the alpha network, it is added to the nodes memory and then it attempts to join
with each of the tokens in the right memory. For each successful join, a new
token is formed by combining the left and right token, which is then propagated
to the left input of each child beta node.

As the token enters each left input, it is added to the node’s memory. It then
attempts to join with each token stored in the right input memory. This produces
a recursive descent evaluation model of the nodes and their tokens. During the
execution phase, the engine will fire the first selected rule instantiation; if there
are additional data inserts, updates or deletes, they will result in an another
pattern matching cycle. Rules with the same constraints will share Rete nodes,
collapsing the matching space - this is the reason why alpha and beta nodes may
have more than one output.

3 Introducing OOPath

Due to the nature of the RETE algorithm, production rule languages are SQL-
like in nature, exposing constructs derived from relational algebra. A simple
example can be used to illustrate the issues of using such a language when
working with a graph-oriented model. Assume a domain model consisting of a
Student who has a Plan of study: a Plan can have zero or more Exams and
an Exam zero or more Grades. To reason over this domain model, a relational
language has to perform several joins on these properties. Consider the example
rule in Listing 1.1, which applies only to grades obtained for exams belonging
to the ”Big Data” course1.

Listing 1.1. Example Rule (relational)

rule R1 when
$student : Student ()
$plan : Plan (owner == $student . name)
$exam : Exam(plan == $plan . code , course == ”Big Data”)
$grade : Grade (exam == $exam . code)

then
// RHS

end

In this example, to materialize the rule instantiations, all objects must be
inserted and the engine must search the join space for each of the relations. To
achieve this, N being the number of items in the working memory and P the
number of patterns, the traditional Rete algorithm has to perform a number
of relational joins that grows as NP . Indexing, when supported, can help to
improve the performances of the join operations, but requires additional memory
occupation. If the model was not flattened and the graph representation retained,
it would be possible to directly traverse the references, instead of searching the
join space. This can be achieved by extending Rete with a new node, that is able
to use the references in the domain model. The is called a From node. The node,
1 Rules are written using Drools’ technical language DRL.

Building a Hybrid Reactive Rule Engine for Relational and Graph Reasoning 211

in general, evaluates a given expression and the pattern iterates over and filters
the returned results; here From means the pattern’s data source is From a data
source other than the working memory. Conceptually, a From node is a special
type of Beta node whose left parent is determined by the preceding pattern, while
its (virtual) right parent is the data source itself. The node embeds the “alpha”
constraints to be applied to the values returned by the source as well as the
usual “beta” constraints. The right source is evaluated, and its results joined,
whenever a token propagates from the left parent. Each item in the iteration
that is not blocked by the constraints in the node produces a new token that is
propagated to the child node(s) for further processing. This definition of From
is very general and can be used as an extension point for the engine. In this
paper, however, we will focus on the use of From to navigate the relationships in
an object graph, assuming the data source is a member of a previously matched
object. Listing 1.2 updates the first example given in Listing 1.1 to use the From
construct to traverse the reference between plan and exams, instead of searching
for it in the join space.

Listing 1.2. Example Rule (from version)

rule R2 when
$student : Student ($plan : plan)
$exam : Exam(course == ”Big Data”) from $plan . exams
$grade : Grade () from $exam . grades

then /∗ RHS ∗/ end

This change also has the advantage that only the Student needs to be inserted
into the working memory, while the Plan, Exam and Grade can remain outside of
it and be reached by simply browsing the references among them. Notice also that
the combination of bindings ($plan) and the using the expression ($plan.exams)
allows for the elimination of the Plan pattern. However, the implementation
of the From node is non-reactive: the engine will not respond to changes to
Plan, Exam or Grade even if those objects are updated explicitly. In fact, the
evaluation of the expression is driven by a left input propagation. Despite the
reduction in the number of patterns, the rule in Listing 1.2 is still fairly verbose.
By borrowing ideas from XPath, the syntax can be made even more succinct,
as XPath has a compact notation for navigating through related elements while
handling collections and filtering constraints. To this end, we propose a new
construct, called OOPath, which is based on five key aspects.

1. When OOPath is used on the inside of patterns it must have a syntax that
allows the parser to differentiate it from other constraints within the pattern.

2. When OOPath is used on the outside of patterns, it must use a syntax that
allows the parser to differentiate it other rule constructs.

3. It must support both the iteration and the direct access to the collection
property, when dealing with multiple cardinality relationships.

4. It must support inline constraints, allowing objects to be filtered in the
traversed collections.

5. It must support named back referencing, in addition to an XPath-like relative
back referencing.

212 M. Fusco et al.

Satisfying the first and fourth requirements is straightforward by following
standard XPath conventions. An OOPath expression starts with a / and uses
curly brackets (instead of the square ones used by XPath) to add constraints at
any step (also referred to as a segment) of the dereferencing chain. Conversely,
in OOPath notation square brackets are used to refer to the position of a spe-
cific item. The second requirement will need a ’;’ delimiter at the end - this use
case must have a variable name in the first segment, acting as the root. The
third requires an additional symbol, a ., that performs dereferencing instead of
iteration. The fifth borrows from existing Drools syntax for binding of fields,
where the field name is prefixed with a variable followed by a colon, ’var :’. That
named variable can then be used in any constraints that come after, either in
the same OOPath statement or in other rule constructs below. Shallow unifica-
tion of variables is also supported by combining the colon with an equals ”:=”.
Constraints can back referenced through these variables, or use the standard
XPath double dot and slash notation for relative back reference ’../../’. The rel-
ative back referencing only works within the same OOPath statement, where
as named variables can work across other OOPath statements, as well as other
standard rule constructs.

The OOPath syntax requires are summarised as:

1. It has to start with /.
2. It can dereference a property of an object with the . operator.
3. It can dereference a property of an object using the / operator. If a collection

is returned, it will iterate over the values in the collection;
4. While traversing referenced objects it can filter away those not satisfying

one or more constraints, expressed as predicate expressions between square
brackets.

5. Items can also be accessed by their index

Formally, the core grammar of an OOpath expression can be defined in EBNF
notation as Listing 1.3:

Listing 1.3. OOpath notation

OOPExpr = ”/” OOPSegment { (”/” | ” . ”) OOPSegment } ;
OOPSegment = [ID (” : ” | ”:=”)] ID [” [” Number ”] ”] [”{”
Const ra in t s ”}”] ;

The constraints follow the normal sub-grammar of the rule language such as
DRL. Using this new notation, it is now possible to rewrite the Rule in Listing
1.2 in a more concise way, presented in Listing 1.4:

Listing 1.4. Rule v3

rule R3 when
Student ($grade : / plan /exams{ course == ”Big Data”}/ grades)

then
// RHS. . .

end

Building a Hybrid Reactive Rule Engine for Relational and Graph Reasoning 213

The compilation of this OOPath expression uses a From node for each
OOPath segment, effectively making the RETE networks for Listings 1.2 and 1.4
equivalent, as shown in Figure 1. The terms shallow facts and deep facts can
now be used to differentiate between objects used for relational reasoning and
graphs. A deep fact, in particular, is an object in the graph accessed through
references further down than a “root”, shallow object in the working memory.

Fig. 1. RETE fragments for Listing 1.1 and Listing 1.2/1.4

OOPath syntax, like XPath, also supports indexed access. OOPath indexes
are 0-based to adhere to Java convention, compared to XPath 1-based. The
former pattern could be modified to only access the first Exam in each Plan, see
Listing 1.5:

Listing 1.5. Accessing an item by index

Student ($grade : / plan /exams [0] { course == ”Big Data”}/ grades)

Drools also supports polymorphic types with an inline match and cast con-
struct using ’#’. All collection access will infer types from Java generics, if they
exist. For instance it will be possible to modify the pattern used in Listing 1.4 to
accept only the Exams that are instances of the PracticalExam class and where
its lab property is ”hazard safe”, see Listing 1.6. Note that the lab property is
only available on the class PracticalExam and not on its superclass Exam. This
allows Drools and OOPath to be both polymorphic and type safe at all times.

Listing 1.6. Filtering items of a given type

Student ($grade : / plan /exams{ this#PracticalExam . lab == ”
hazard s a f e ” , course == ” Mater ia l Explos ions ”}/ grades)

214 M. Fusco et al.

3.1 Advanced Rule Constructs

Because OOPath is purely a syntactic feature, internally it is compiled into a
(sequence of) Rete nodes that propagates tokens. So, it can be used with all
of the existing constructs for more advanced rules. This section covers some of
these constructs, along with examples of them being used with graphs and the
OOPath graph notation. Note all of these constructs already exist in Drools, as
part of its existing relational rule language.

Drools already features queries that support shallow unification2, recursion
and transitive closures. As the OOPath bindings are treated like normal vari-
ables, they can be used in queries. So, graph-oriented rules can also leverage
unification, recursion and transitive closures. Drools patterns and queries sup-
port a syntax that provides functionality similar to that which is defined in
RuleML “Position-Slotted Language” POSL [2]. Arguments can be named or
positional. Positional arguments must come first and be delimited with a semi
colon at the end. Positional arguments are always unified, compared to named
arguments which can be bound ’:’ or unified ’:=’.

Negation in Drools creates a sub network [5] of nodes for the elements to be
checked for negation. The token is split, one side goes into the sub network and
the other into a negation node, called a not node in Drools. The sub network
feeds into the right input of the not node. If a left input token has a match, then
it’s blocked as content exists, if there is no match it propagates. Negation will
work with no additional changes when used with OOPath constructs, although it
is not possible to express negation within an OOPath statement itself. This lim-
itation is addressed by allowing OOPath statements outside of a pattern, which
means OOPath statements can be split up into chunks that can be negated. The
leaf segment must bound to a variable name, so that the variable name can be
used as the root of the next OOPath statement.

Accumulate nodes are beta nodes providing aggregation functions over data
flowing through sub-networks. Any type of function can be used, provided that it
is wrapped by a class implementing the Drools Accumulate interface. Internally,
accumulation nodes works like not nodes. Note that Accumulate in Drools is
fully incremental and supports both removal and update of data.

A graph of Things can be used to demonstrate some of the above constructs.
Each Thing has zero or more child Things, accessed by the children property.
Listing 1.7 is a classical transitive closure example, it will recursively iterate a
graph to check if $x is contained in $y. The $z is unbound and will always unify
to produce all the children of $y, which drives the recursion. Note that Drools
does not yet implement any cyclic recursion detection and control, so this must
either be guarded against in the logic of the query or avoided in the data the
query reasons over. As previously mentioned, the symbol ; is used to separate
the positional and named (slotted) parts of a pattern, with positional to the left
of the ;.

2 Objects are considered ground terms and unify by equality.

Building a Hybrid Reactive Rule Engine for Relational and Graph Reasoning 215

Listing 1.7. A trasitive closure

query i sConta inedIn (Thing $x , Thing $y)
/$y/$x := ch i l d r en ;
or
/$y/$z := ch i l d r en ; and i sConta inedIn ($x , $z ;))

end

The query in Listing 1.7 can be used inside of other rule constructs. Listing
1.8 provides another query that negates the results of the nested query. In this
example it will check if a Thing is not recursively contained in any other Thing:

Listing 1.8. Negation over a transitive closure

query i sNotContainedIn (Thing $x , Thing $y)
not (i sConta inedIn ($x , $y ;))

end

Accumulate rule constructs can be used to count the number of Things
recursively contained inside a Thing, see Listing 1.9. Note in this example $x is
unbound and will recursively unify and return all children which are applied to
the count function.

Listing 1.9. Accumulation

query countItems (Thing $y)
acc (i sConta inedIn ($x , $y ;) ;

count ($x) ;)
end

Structural constraints can be asserted by using index access on Lists. This
can be combined with queries to recursively assert on the structure of a List.
Listing 1.10 will check that the children are size ordered, where size is the number
of children out edges.

Listing 1.10. Structural Control

query childrenOrderedByEdgeCount (Parent $x , Child $c0 , i n t
index)

/$x/$c1 : c h i l d r en [index]{ ch i l d r en . s i z e <= $c0 . c h i l d r en .
s i z e } ;

childrenOrderedByEdgeCount ($x , $c1 , index + 1 ;)
end

Drools supports the idea of reactive and non-reactive queries. By default all
query, and nested query, invocations are incrementally reactive. Including all
their recursive calls, which allows for incrementally reactive transitive closures.
Reactive OOPath extensions are covered in section 4. If a query invocation is
prefixed with ’?’ symbol then it will be evaluated just once and not left open for
reactivity. This will be applied to all recursively called queries, as you cannot have
a reactive query inside of a non-reactive one - although the opposite is possible.
Internally non-reactive queries uses less references and also less memory.

The final example, in Listing 1.11, combines graph search with relational.
In this example for a given Thing all the children will be recursively visited.

216 M. Fusco et al.

For each child it will unify and then relationally search the working memory
to see if any other Things have the same number of children. Note that this
requires any Thing that is to be relational searched against to be inserted into
the working memory.

Listing 1.11. Combining graph search with relational

query f indChildrenWithMatchingEdgeCounts (Parent $x , Child $c ,
i n t index)

/$x/$c := ch i l d r en [index] ;
// re lat ional search
exists (Thing (ch i l d r en . s i z e == $c . c h i l d r en . s i z e))
findChildrenWithMatchingEdgeCounts ($x , $c1 , index + 1 ;)

end

4 Reactive OOPath

At this stage, the proposed framework still has an important limitation. The
engine will not be able to react to updates involving a deeply nested fact along
an OOPath. For example, the rule in Listing 1.1 will be reevaluated when changes
to Plan, Exam and Grade objects occur, but the rule in Listing 1.2 will not. A
further extension is required to allow for reactive OOPath statements, that will
track any visited objects during an OOPath evaluation. This tracking will allow
the engine to react, even if the objects are not inserted into the working memory.

Internally, as the engine evaluates an OOPath expression, tokens propagate
into the left input of the node for each segment. The expression is evaluated
for each left input token and an object or collection is returned. The left input
token is injected into the object or the collection. As each object or collection can
be referenced from multiple OOPath statements it supports a list of left input
parent tokens. In the case of a single object a single child token is created, for a
collection a child per element is created. The child token references both parents.
The node applies the constraint filters to the object and propagates the child
token to the child node if they match. Or it applies the filter to each element
in the collection, and propagates matching children. With this done reactivity
is now possible. When an object or collection is updated it can use this token
reference to notify the node to re-evaluate it’s OOPath segment.

Consider Rule in Listing 1.4 again. If an exam is moved to a different course,
the rule should be re-triggered and the list of grades matching the rule recom-
puted.

Listing 1.12. (Instrumented) Setter

public void setCourse (S t r ing course) {
th is . course = course ;
n o t i f yMod i f i c a t i on (th is) ;

}

Building a Hybrid Reactive Rule Engine for Relational and Graph Reasoning 217

For this to work, the classes in the users domain must be updated to sup-
port the described token injection and general notification handling. In our ini-
tial implementation, classes are expected to extend a provided abstract class,
AbstractReactiveObject, that encapsulates all the logic necessary to support
reactivity regardless of whether an object is inside or outside of the working
memory. Moreover, setters (see Listing 1.12) and methods changing the state of
an object need to trigger a method of AbstractReactiveObject. This method
makes a call-back to the engine, which will iterate the injected token list and
notify the node of changes. Collections must also extend or mix the (capabilities
of) AbstractReactiveObject if reactivity is expected when elements are added
or removed to a many-valued field.

Listing 1.13. Addition of a new item to a reactive list

public void add (Object obj) {
// add the object to this data structure
no t i f yMod i f i c a t i on (obj) ;

}
As a final note, all injected tokens are removed when OOPath statement that

selected them is no longer selecting them, ensuring that there are no memory
leaks. This is handled as part of the existing network delete propagation within
the engine.

5 Benchmark

Two benchmarks have been used to evaluate the performance differences between
a relational and graph reasoning. The first benchmark uses the examples from
the earlier listings to demonstrate the performance for typical business rules
using a Java class model. The second benchmark uses recursion over a large
graph to demonstrate performance differences for the more extreme end between
relational and graph based reasoning.

The first benchmark uses three rules for the same business logic on the same
Java class model. The relational rule in Listing 1.1, the From-based rule in Listing
1.2 and the reactive OOPath rule in Listing 1.4. A data set was created consisting
of 100, 000 instances of Student, each having a Plan with 2 Exams. Of these
Exams, one belongs to the Big Data course and has 2 Grades, the other belongs to
the Artificial Intelligence one and has one Grade. The data set is first evaluated
by the three rules, providing the batch execution time. The batch execution
is non-reactive. After this, the incremental update execution time is found by
moving the Exam belonging to the Artificial Intelligence course to the Big Data
course and then re-evaluating the rules. This execution was repeated ten times,
after a warm up phase consisting of three runs of the benchmark. The best
and worst results were discarded with the remaining eight results averaged for
the final result. These benchmarks have been executed on a i7-4600U CPU @
2.10GHz Machine, running a 1.7 version of the Oracle JVM on top of Ubuntu
14.10. The average results, expressed in milliseconds, are reported in Table 1.

218 M. Fusco et al.

Table 1. Benchmark results with 100,000 items (ms.)

Batch (ms) Incremental (ms) Total (ms)

Relational 1313 426 1739
From 613 697 1310
OOpath 752 328 1080

As expected the relational rule takes longer than the From or the OOPath
rules for the batch execution part. This is due to the time required for the
insertion of all the objects into the working memory. This insertion time consists
of propagation through the literal and join parts of the network, as well as the
indexing performed during this propagation.

Only the root object is inserted for both the From and the OOPath rules.
The engine then leverages the accessors for faster navigation. These two rules
have comparable performance times, with OOPath being slightly slower than
From. This is due to the reactivity maintenance costs from injecting the left
input tokens into the objects during evaluation of the OOPath expression.

Once the Relational model’s objects are inserted and evaluated it is able to
use the indexes (at the cost of a higher memory occupation) for better perfor-
mance, with incremental evaluation only slightly slower than OOPath.

The From rule is unable to work incrementally, so all data must be reevaluated
from the parent Student instances. The reason why it does not return the same
value as the batch iteration is that both Exam instances satisfy the constraint,
leading to more rule instantiations and thus more work.

When designing relational rule systems authors must take care to ensure that
indexing can be applied when ever possible, these problems are not evident for
graph reasoning. When non-indexed constraints are used in a rule the perfor-
mance will degrade considerable for relational reasoning. Indexing was disable
to demonstrate the differences between the two systems. Batch execution time
took more than 68 minutes for the relational rule, the incremental execution time
showed a similar performance degradation. OOPath does not rely on indexing
and there was no performance loss when indexing was disabled..

To check how the 3 techniques compared in this paper scale with the dimen-
sion of the data set, the same benchmark has been also repeated with 200, 000
and 400, 000 instances of Student leaving all other conditions of the former
experiment unchanged. The results of these further benchmarks are reported
respectively in Tables 2 and 4.

Table 2. Benchmark results with 200,000 items (ms.)

Batch (ms) Incremental (ms) Total (ms)

Relational 2769 897 3666
From 1285 1449 2734
OOpath 1610 705 2315

Building a Hybrid Reactive Rule Engine for Relational and Graph Reasoning 219

Table 3. Benchmark results with 400,000 items (ms.)

Batch (ms) Incremental (ms) Total (ms)

Relational 5596 1844 7440
From 2698 2912 5610
OOpath 3373 1368 4741

These results do not show scaling issues for any of the 3 examined strategies.
As each data set size is doubled the execution time has an almost linear increase,
doubling each time between the ranges of 2.03 and 2.14. The slightly larger than
linear increase is due to the bigger burden on the Java Virtual Machine garbage
collector, due to the double of the created objects.

A second benchmark was developed, using large object graphs, to more
strongly contrast the performance differences between relational and graph rea-
soning. It was executed on the same machine, using the same warm up and
number of execution cycles.

The benchmark uses a tree consisting of Nodes connected by Edges. Each
Node has a value. The query recursively iterates the Nodes in the tree, adding
each Node with a specific value into a List. Listing 1.14 shows two versions of the
same rule. One is relational the other is graph based using the From construct.

Listing 1.14. Visiting a tree with a relational strategy

query f indNodesWithValue (i n t $id , i n t $value , L i s t l i s t)
$n : Node (id == $id , $v : va lue)
eva l ($v != $value | | ($v == $value && l i s t . add ($n)))
Edge (fromId == $id , $toId : to Id)
findNodesWithValue ($toId , $value , l i s t ;)

end

Listing 1.15. Visiting a tree with a object-oriented strategy

query f indNodesWithValue (Node $from , i n t $value , L i s t l i s t)
Edge ($n : to , $v : to . va lue) from $from . outEdges
eva l ($v != $value | | ($v == $value && l i s t . add ($n)))
findNodesWithValue ($n , $value , l i s t ;)

end

This version of the benchmark is executing in batch more only, there is no
reactivity. The reactive version of this benchmark is delegated to future works.
The queries were run against increasingly more nodes. The results are shown
in table 4. As expected, when using graphs, the graph reasoning approach was
far superior. Although the degree of difference was unexpected. The relational
version did not scale linearly, while the the graph version did.

220 M. Fusco et al.

Table 4. Tree visit benchmark results (ms.)

1K nodes 2K nodes 4K nodes 8K nodes 16K nodes

Relational 45 143 580 2380 27446
From 2 3 5 11 21

6 Related Works

The work of extending Rete for reactive graph reasoning was first done by a
EMF-IncQuery [10]. EMF-IncQuery is a reactive query framework for a graph-
based domain model. This framework allows for the definition of declarative
queries over EMF models [4] using a graph pattern formalism as the query
specification language. EMF-IncQuery supports negation, recursion, transitive
closures and aggregate functions. This paper continues this work demonstrating
how these graph language and engine constructs can be combine with relational
ones, provide a reactive hybrid system.

The authors are not aware of any other system that, to date, can offer reac-
tive, object-oriented hybrid relational and graph reasoning at the same time.
However, aspects of the functionality can be found in some prominent pieces of
work.

SPARQL [3] is a powerful query language specification from W3C, aimed at
querying over RDF graphs. Its property path expression syntax shares several
features with with OOPath. The main difference is that SPARQL has a syntax
oriented towards RDF graphs whereas OOPath is object-oriented, so the distinc-
tion between a dereferencing (’.’) and a navigation (’/’) operator does not apply,
nor does the notion of inner constraints. Further, SPARQL does not distinguish
between reactive and non-reactive accessors.

Gremlin [9] is part of the Blueprints project and is a graph traversal language.
It was investigated as it has many concepts that overlap with OOPath. The main
difference in focus is that OOPath is defined at the level of the domain model
and has fully typed classes, while Gremlin is a general purpose language that
relies on (and exposes) the structure of the underlying graph. In fact, Gremlin
works generically with Nodes and Edges and on un-typed properties, whereas
OOPath works with domain classes and is type safe.

A language similar to OOPath has been implemented as part of the Apache
Project JXPath [1]. JXPath, however, is more closely modeled on XPath. Its
main purpose is navigation rather than the evaluation of logic expressions, so it
would not support all the required operators. Neither Gremlin nor JXPath are
able to work reactively.

7 Discussion

The proposed syntax and its underlying execution model can be discussed from
several perspectives.

Building a Hybrid Reactive Rule Engine for Relational and Graph Reasoning 221

Being based on Java, Drools was already able to navigate single valued
accessors within patterns using the canonical dot-notation. The decision to
introduce the additional ’/’ symbol in section 3, which like the ’.’ symbol also
traverses reference, was for two reasons. First, it provides a convenient way to
navigate collection-valued relationships, iterating over the members, rather than
just retrieving the collection as a whole. Second, the engine will consider paths
expressed using ’/’ reactive, re-evaluating rules when deep facts are updated,
while normal paths would not support such behavior.

The mechanism required to enable path reactivity is described in
Section 4. The proposed implementation is one of several possible alterna-
tives. The data structure of tokens can be externalized from the object using
PropertyChangeListeners to trigger update propagations. The extension app-
roach has been chosen as the initial implementation because it uses slightly less
memory and is slightly faster due to tighter coupling, compared to Property-
ChangeListeners. As a third option, the behavior can be built in if the domain
model is generated using a model driven approach, e.g. using XJC on an XSD
schema or using Drools’ native “declare” feature, which allows to define a busi-
ness object model directly within a rule base. Aspect-oriented programming
techniques such as code weaving or class instrumentation could also be used.

The nature of the paths impacts the topology of the underlying RETE net-
work. As shown in Figure 1, an OOPath rule is compiled into a chain of From
nodes whose right data source is the object extracted by the previous node. Com-
pared to a regular RETE, not requiring the join machinery affords for a simpler,
linear structure, which reflects the improvement in performance. The need for a
node for each OOPath segment is due to the reactivity requirement. As shown
by JXPath, a path expression could be compiled into a series of nested loops and
embedded in a single node. However, the individual nodes are needed to create
adequate tokens chains, so that updates of deep facts can result in propagations
which, starting at the most appropriate step, are correct and optimal at the
same time.

Aside from the succinct syntax and potential performance gains, another
major advantage to Java developers is the ability to work directly with their
own domain models, without requiring mappings to a flattened version. This
makes the solution an enticing option for java developers who want to keep their
models, but use a rule engine. This aspect becomes even more important when
object models are derived from more general models, such as OWL ontologies
[7] or complex XSD schemas, which are deeply nested by nature.

8 Conclusions and Future Works

This paper has compared two different ways of querying a domain model, one
based on the relational paradigm and the other on graph navigation, showing
that the two are equivalent in terms of expressiveness, but quite different in
terms of succinct syntax and execution performance. It was proven that using
relational joins to navigate properties on a connected domain model can be much

222 M. Fusco et al.

slow, especially when the constraints are not indexable. To address both these
problems, an XPath-like syntax called OOPath was presented, combined with a
new Rete From node, creating a truly hybrid system at both the language and
engine level. This syntax was shown to express path constraints in much more
succinct way and to be orthogonal in design. It can be used with existing rule
constructs, allowing for more advanced logic than OOPath on its own. Further,
it was shown that graph and relational constraints can be used in the same rule
and interact with each other. OOPath statements are also incrementally reactive,
provided a mechanism that allows objects, visited during a OOPath evaluation,
to notify the engine when they are updated. This is true even when the objects
are not inserted into the working memory.

Being an experimental feature, OOPath also needs further work in several
areas. Currently there is additional work on the users, as they have to add logic
to their domain models if they want reactive graphs. A number of the discussed
alternatives will be implemented to alleviate this problem. With property reac-
tivity [8] a pattern only reacts to properties it constrains on. This addresses both
recursion issues and to a lesser extent performance. While this is supported for
simple constraints, further work is required to ensure that OOPaths also sup-
port Property Reactivity. Finally, additional benchmarks and examples will be
implemented to provide better recommendations on when to use the different
syntax alternatives.

References

1. Apache commons jxpath. http://commons.apache.org/proper/commons-jxpath/
2. POSL: An integrated positional-slotted language for semantic web knowledge, draft

11. http://ruleml.org/submission/ruleml-shortation.html
3. Sparql 1.1 overview. http://www.w3.org/TR/sparql11-overview/
4. Eclipse modeling framework (emf) (2014). http://www.eclipse.org/modeling/emf/
5. Doorenbos, R.B.: Production Matching for Large Learning Systems. Ph.D. thesis,

Pittsburgh, PA, USA (1995). uMI Order No. GAX95-22942
6. Forgy, C.L.: Expert systems. In: Rete: A Fast Algorithm for the Many Pattern/

Many Object Pattern Match Problem (chap), pp. 324–341. IEEE Computer Society
Press, Los Alamitos (1990). http://dl.acm.org/citation.cfm?id=115710.115736

7. Meditskos, G., Bassiliades, N.: Clips-owl: A framework for providing object-
oriented extensional ontology queries in a production rule engine. Data Knowl.
Eng. 70(7), 661–681 (2011)

8. Proctor, Mark, Fusco, Mario, Sottara, Davide: Extending an object-oriented rete
network with fine-grained reactivity to property modifications. In: Morgenstern,
Leora, Stefaneas, Petros, Lévy, François, Wyner, Adam, Paschke, Adrian (eds.)
RuleML 2013. LNCS, vol. 8035, pp. 173–187. Springer, Heidelberg (2013)

9. Rodriguez, M.A., Mallette, S.: Gremlin - a graph traversal language (2014).
https://github.com/tinkerpop/gremlin/wiki

10. Zoltán, U., Bergmann, G., Ábel, H., Horváth, A., Benedek, I., Ráth, I., Zoltán, S.,
Varró, D.: Emf-incquery: an integrated development environment for live model
queries. In: Fifth issue of Experimental Software and Toolkits (EST): A Special
Issue on Academics Modelling with Eclipse (ACME2012), pp. 80–99 (2014)

http://commons.apache.org/proper/commons-jxpath/
http://ruleml.org/submission/ruleml-shortation.html
http://www.w3.org/TR/sparql11-overview/
http://www.eclipse.org/modeling/emf/
http://dl.acm.org/citation.cfm?id=115710.115736
https://github.com/tinkerpop/gremlin/wiki

Complex Event Processing Track

Using PSL to Extend and Evaluate
Event Ontologies

Megan Katsumi(B) and Michael Grüninger

Department of Mechanical and Industrial Engineering,
University of Toronto, ON M5S 3G8, Canada

katsumi@mie.utoronto.ca

Abstract. The representation of events plays a key role in a wide range
of Semantic Web applications, and several ontologies have been proposed
to support this task. However, a review of existing event ontologies on
the web reveals limited reasoning being done in their applications. To
investigate this, we designed a set of reasoning problems (competency
questions) aimed at providing a pragmatic assessment of the reasoning
capabilities of three well-known Semantic Web event ontologies – SEM,
The Event Ontology, and LODE. Using OWL and SWRL axiomatiza-
tions of the Process Specification Language (PSL) Ontology, we specify
maximal extensions of the existing event ontologies. We then evaluate the
resulting set of OWL and SWRL ontologies against our reasoning prob-
lems, using the results to both assess the abilities of existing Semantic
Web event ontologies, and to explore the potential gains that may be
achieved through additional axioms.

1 Introduction

The notion of events is pervasive, so it is natural to find that much existing work
on the Semantic Web in some way addresses the challenge of representing and
integrating event-related data. While integration is certainly a valuable appli-
cation, more complex reasoning can and should be performed with the event
information on the web. Given the strides that have been made for integration
and basic information retrieval for event-related information, it is logical to now
ask what can be done with this information. Many existing event ontologies tend
to take a rather simplistic approach in order to better facilitate use with many
diverse sources, resulting in a rather limited semantics. It is therefore unclear
to what extent these theories can support the non-trivial reasoning problems
that are required for applications such as complex event processing. The aim
of this work is to address the following questions: What reasoning problems can
be done with the status quo? What gains can we make by augmenting their
axiomatizations? What kinds of queries require more substantial changes to the
ontologies?

To investigate this, we identify a set of competency questions (CQs) in
Section 3, motivated by several potential application domains related to complex
event processing; these questions are representative of some of the more complex
c© Springer International Publishing Switzerland 2015
N. Bassiliades et al. (Eds.): RuleML 2015, LNCS 9202, pp. 225–240, 2015.
DOI: 10.1007/978-3-319-21542-6 15

226 M. Katsumi and M. Grüninger

reasoning tasks of interest. Using three well-known event ontologies, we extend
each one via the technique of grafting them with the Process Specification Lan-
guage (PSL) ontology1 in Section 4. The resulting set of event ontologies is then
evaluated against the competency questions.

The outcomes of the evaluation, presented in Section 5 demonstrate many
attainable opportunities to achieve substantial gains in the reasoning abilities of
these Semantic Web ontologies. In Section 5.2 we consider our results and reflect
on the possibilities for increased reasoning on the Semantic Web. In Section 6 we
review some of the issues and insights that we identified and discuss some general
directions for future work. We conclude with a summary of our contributions in
Section 7.

2 Background

As mentioned in the previous section, there currently exist numerous efforts
toward the development of ontologies for the representation of events on the
Semantic Web. Although perhaps contrary to some of the underlying principles
of ontologies (e.g. reuse), this is not entirely surprising given that the concept of
an event plays an important role in such a wide variety of contexts. A review of
existing event ontologies agrees with this observation as we have found the appli-
cation areas for existing work to be quite diverse, including domains such as
artefacts, historic events, and business processes. In the following sections we
present a more detailed review of three of the more prominent generic event
ontologies used for our investigation.

2.1 SEM

The Simple Event Model (SEM) ontology [8] was designed to represent event
information on the web. Formalized in RDF, it stresses minimal semantic com-
mitments, an approach that is intended to facilitate “maximal interoperability”
with the variety of event information on the web. SEM contains four “core”
classes: Event, Actor, Place, and Time, aimed at describing what occurred, who
(or what) participated in the occurrence, where it occurred, and when.

Each of these core classes has an associated Type class (i.e. EventType,
ActorType, etc) to allow for the specification of distinctions between the core
classes. A Constraint class is also defined (with subclasses View, Temporary, and
Role) to allow for some description of the properties of an event (e.g. to describe
the nature of an actor’s participation in an event).

Although there is some discussion of reasoning with the use of the SEM Pro-
log API, the demonstrated functionality is essentially limited to look-up queries;
the application focus appears to be on event information integration.

1 The axioms for all ontologies cited in this paper can be found online. First-order
ontologies are specified using Common Logic, SROIQ ontologies are specified using
OWL2, and rules are specified using SWRL.

Using PSL to Extend and Evaluate Event Ontologies 227

2.2 LODE

The ontology for Linking Open Descriptions of Events (LODE) [7] also
approaches the information integration problem – but in this case with the
broader goal of creating an ontology that can also serve as an interlingua for
existing event ontologies, thereby also (potentially) integrating their informa-
tion. The view of the event domain taken here is focused more on the subject
matter of journalists and historians – what might loosely be called world events.

Axiomatized in OWL, LODE aims to achieve this interoperability through
a set of what they refer to as mapping axioms, (although we must note that
the definition and use of such axioms differs from our perspective) between its
concepts, and those of some existing event ontologies. In an effort to ensure inter-
operability, LODE focuses on representing what they refer to as the “factual”
aspects of an event, core concepts which they believe are not subject to inter-
pretation. LODE provides an Event class along with the properties: atPlace,
atTime, circa, illustrate, inSpace, involved, and involvedAgent to describe an
event.

2.3 The Event Ontology

The Event Ontology 2 evolved out of the Music Ontology project [5], which was
developed to integrate music-related information from heterogeneous sources.
Perhaps most notably, the Event Ontology is referenced in the development of
the BBC Sports Ontology 3, which was implemented to facilitate automated
curation of the BBC’s world cup site.

Axiomatized in RDFS, the Event Ontology consists of the classes: Event, Fac-
tor, and Product; and the properties: agent, factor, literal factor, place, product,
sub event, and time. Similar to LODE, (but without the explicit aim of facil-
itating interoperability) the Event Ontology also includes concepts from other
ontologies, such as foaf 4 and the WGS84 Geo Positioning Ontology 5.

2.4 PSL

With its rich, rigorous axiomatization of such concepts, PSL was a natural choice
for the task of grafting our chosen Semantic Web ontologies onto a more expres-
sive ontology. PSL is an ontology designed to facilitate the correct and com-
plete exchange of process information among manufacturing systems [1]. These
applications include scheduling, process modelling, process planning, production
planning, simulation, and project management. The PSL ontology Tpsl

6 is orga-
nized into PSL-Core and a set of partially ordered extensions; the core ontology
consists of four disjoint classes: activities can have zero or more occurrences,
2 http://motools.sourceforge.net/event/event.html
3 http://www.bbc.co.uk/ontologies/sport/2011-02-17.shtml
4 http://www.foaf-project.org/
5 http://www.w3.org/2003/01/geo/
6 http://colore.oor.net/process specification language/psl outercore.clif

http://motools.sourceforge.net/event/event.html
http://www.bbc.co.uk/ontologies/sport/2011-02-17.shtml
http://www.foaf-project.org/
http://www.w3.org/2003/01/geo/
http://colore.oor.net/process_specification_language/psl_outercore.clif

228 M. Katsumi and M. Grüninger

activity occurrences begin and end at time points, time points constitute a lin-
ear ordered set with end points at infinity, and objects are elements that are
not activities, occurrences, or time points [1]. There are five additional mod-
ules within the PSL Ontology – Tocctree (which is closely related to situation
calculus), Tsubactivity (which axiomatizes the composition relation on activities),
Tatomic (which axiomatizes concurrent activities), Tcomplex (which axiomatizes
complex activities), and Tactocc (which axiomatizes the composition relation on
occurrences of complex activities).

More recently, the PSL Ontology has been extended to capture the relations
between activity occurrences, actors, locations, and time intervals. In particular,
Tpsl locations

7 merges Tpsl with a multidimensional mereotopology that repre-
sents containment relations among spatial entities. The ontology Tpsl actors

8 spe-
cializes the participates in relation from PSL-Core by introducing the relation
performed in between actors and the activity occurrences that they perform.

3 Generic Requirements

Up to this point, we have discussed the opportunities of reasoning about events
at a high level. In this section, we aim to further motivate our work by iden-
tifying practical application domains where reasoning about events would offer
significant value. The scenarios described below are quite diverse, yet the core of
their reasoning problems is relatively general. Based on the commonly adopted
scope of events as including the notion of participants and locations, we then
elicit a set of competency questions that could provide useful support in the
variety of the motivating scenarios described below.

3.1 Motivating Scenarios

We identify potential reasoning problems with applications for emergency
response centres, city services management, and context awareness. Some of
these scenarios are inspired by the application domains described by the var-
ious existing event ontologies. The following scenarios illustrate the different
sorts of problems where reasoning about events could be valuable. Essentially,
we are considering the following question – assuming that the existing ontolo-
gies have successfully integrated event information in their various application
domains, what can we do with it? Although these scenarios are among many
potential applications that include the notion of events, we speculate that cer-
tain patterns and types of questions are likely to arise repeatedly in many other,
unrelated applications. The scenarios, described below, were used to motivate
the set of general, event-oriented competency questions which are presented in
Section 3.2.

7 http://colore.oor.net/psl locations/psl locations.clif
8 http://colore.oor.net/psl actors/psl actors.clif

http://colore.oor.net/psl_locations/psl_locations.clif
http://colore.oor.net/psl_actors/psl_actors.clif

Using PSL to Extend and Evaluate Event Ontologies 229

Emergency Response Centre When responding to an incident report, any
additional information could be valuable to prepare the dispatched units
en route. Integrated event information could be leveraged to provide this
additional information to the dispatch centre, by allowing the dispatchers
to pose queries in order to identify information that might be relevant to a
particular incident.

City Services Management Knowledge of planned events as well as the abil-
ity to reason and analyse past events could serve to better (and more eas-
ily) inform city workers in the planning of various projects, as well as to
assist management in identifying potential issues or trends related to vari-
ous aspects of city maintenance.

Context-awareness Consider the variety of opportunities for context-aware
applications for personal use. Information about what events are occurring,
or can occur in a city could be leveraged to better inform an individual how
best to navigate to their destination, or complete a set of errands. Simi-
lar tools could also be applied to aid users in navigating or planning for
recreational events (festivals, etc).

3.2 Informal Competency Questions

The CQs are first presented informally here, in natural language; followed by
an overview of the test domain theory, necessary for the ontologies’ evaluation
with automated reasoners. For the subsequent evaluation, we opt to initially
formalize the competency questions in the vocabulary of PSL, since it has the
broadest scope of the event ontologies to be evaluated9. Further, since each of
the Semantic Web event ontologies will be extended by PSL as part of our
investigation, the translation of each of the CQs, (as well as the domain theory)
will be straightforward from the identified mappings.

The following set of generic CQs are essentially patterns that we see as being
applicable in any of the motivating scenarios described previously10:

CQ1 What actors may have participated in some activity occurrence?
CQ2 What can possibly occur next after an occurrence of some activity?
CQ3 Are occurrences of two activities possibly subactivity occurrences of the

same complex activity occurrence?
CQ4 Are any other activities possibly taking place at the same place and the

same time as a particular activity?
CQ5 Assuming that occurrences of two activities are part of the same overall

activity occurrence, what activities possibly occurred between them?
CQ6 What activity could have occurred before an occurrence of some other

observed activity?
9 For the complete set of formalized CQs, the reader is referred to: http://stl.mie.

utoronto.ca/ontologies/CQs.txt
10 We have written these questions generically, but the reader should notice that they

may easily be specialized to the motivating scenarios described previously. For exam-
ple, CQ1 might become “What contractors may have performed road repairs?”

http://stl.mie.utoronto.ca/ontologies/CQs.txt
http://stl.mie.utoronto.ca/ontologies/CQs.txt

230 M. Katsumi and M. Grüninger

CQ7 Is there an activity that will definitely occur after an occurrence of some
activity?

CQ8 What activities are scheduled to occur at a given time and location?
CQ9 During what time intervals are no events occurring at a given location?
CQ10 Do any occurrences of two activities overlap?
CQ11 What subactivities of some activity is a particular actor participating

in?
CQ12 Is an actor of interest possibly participating in an activity?
CQ13 Given observed occurrences of two activities, what might an actor of

interest participate in next?

4 Extensions of the Event Ontologies

One of the primary questions that we are addressing is whether existing event
ontologies on the Web can better support reasoning about events (as specified by
the competency questions) if they are extended by additional axioms. A key step
in this endeavor is to determine the relationships between the PSL Ontology and
the Semantic Web event ontologies. This will enable us to specify extensions of
the event ontologies; further, it provides the opportunity for a model-theoretic
evaluation of these ontologies, as well as the identification of any relationships
among the different event ontologies themselves. In this section, we will discuss
the axiomatization of subtheories of PSL which is definable in the description
logic SROIQ and in the Semantic Web Rule Language (SWRL), which is equiv-
alent to the extension of OWL with the Horn sublanguage of FOL. We then
introduce the notion of ontology grafting, which is a generalization of definable
interpretations of theories, and use this technique to specify maximal extensions
of the event ontologies with respect to the SROIQ and SWRL axiomatizations
of PSL. In the next section, these extensions will be evaluated with respect to
the competency questions presented earlier.

We are facing two challenges – the relationship between the axiomatizations
of different ontologies in the same logic, as well as the relationship between the
axiomatizations of a given ontology in different logics. We therefore introduce
the following notion:

Definition 1. Let T1 be a theory in a logic L1 and let T2 be a theory in a
logic L2.

T1 is language-equivalent to T2 iff T1 is logically equivalent to the translation
of T2 under the logic mapping from L1 to L2.

In this paper, we will use the logic mapping from SROIQ to FOL specified
in [4] when specifying the language-equivalence of SROIQ and FOL theories.

4.1 Ontology Grafting

The basic relationship between theories TA and TB is the notion of interpretation
[2], which is a mapping from the language of TA to the language of TB that

Using PSL to Extend and Evaluate Event Ontologies 231

preserves the theorems of TA. The interpretation is faithful if the mapping also
preserves the satisfiable sentences of TA. If there is an interpretation of TA in TB,
then there exists a set of sentences (referred to as translation definitions) in the
language LA ∪ LB of the form

(∀x) pi(x) ≡ ϕ(x)

where pi(x) is a relation symbol in LA and ϕ(x) is a formula in LB .
When applied with the Semantic Web event ontologies, we are faced with the

additional problem that the translation definitions used to specify interpretations
among theories are not definable either within SROIQ or SWRL. The approach
of ontology mapping needs to be modified so that we can use the notion of
faithful interpretation to first-order theories and then translate the resulting
theories into SROIQ and SWRL. We therefore introduce the notion of ontology
grafting, in which we extend one ontology via the translation definitions specified
using the first-order translations of a set of other ontologies.

Definition 2. An ontology T3 is the grafting of the ontology T2 onto the ontology
T1 iff there exists T ′

1, T
′
2, T

′
3 such that

1. T ′
3 is a nonconservative extension of T ′

2 such that both theories have the same
signature;

2. T ′
1 faithfully interprets T ′

3;
3. Ti is language-equivalent to T ′

i .

In the rest of this section, we graft the event ontologies Tsem, Tevent, and
Tlode onto Tpsl. In doing so, we specify maximal extensions of the event ontolo-
gies which are language-equivalent to subtheories of the PSL Ontology. In par-
ticular, we will be using Tpsl dl

11 which is language-equivalent to T sroiq
psl

12, and
Tpsl swrl

13 which is language-equivalent to T swrl
psl

14.

4.2 OWL Extensions of the Ontologies

SEM. Let Tsem
15 be the first-order theory which is language-equivalent to the

subtheory16 of the SROIQ theory T sroiq
sem that omits the axioms for the timestamp

datatype properties17.
11 http://colore.oor.net/extended psl/psl dl.clif
12 http://stl.mie.utoronto.ca/ontologies/process specification language/psl loc actors.

owl
13 http://colore.oor.net/extended psl/psl swrl.clif
14 http://stl.mie.utoronto.ca/ontologies/process specification language/

psl loc actors r.swrl
15 http://colore.oor.net/simple event model/sem.clif
16 stl.mie.utoronto.ca/ontologies/simple event model/sem.owl
17 The Simple Event Model is the only one of the event ontologies that uses its own

axiomatization of time, rather than reuse OWL-Time. The critique of the Simple
Event Model’s use of datatype properties rather than object properties for the rela-
tionships between timepoints and timeintervals is out of the scope of this paper.

http://colore.oor.net/extended_psl/psl_dl.clif
http://stl.mie.utoronto.ca/ontologies/process_specification_language/psl_loc_actors.owl
http://stl.mie.utoronto.ca/ontologies/process_specification_language/psl_loc_actors.owl
http://colore.oor.net/extended_psl/psl_swrl.clif
http://stl.mie.utoronto.ca/ontologies/process_specification_language/psl_loc_actors_r.swrl
http://stl.mie.utoronto.ca/ontologies/process_specification_language/psl_loc_actors_r.swrl
http://colore.oor.net/simple_event_model/sem.clif
stl.mie.utoronto.ca/ontologies/simple_event_model/sem.owl

232 M. Katsumi and M. Grüninger

sem.owl

sem-x.owl

psl.owlpsl_dl.clif

sem.clif

sem-x.clif

psl_swrl.clif psl.swrl

sem-r.swrlsem-r.clif

Fig. 1. Relationship between Tpsl and extensions of the event ontologies. Dashed lines
denote nonconservative extension, solid arrows denote faithful interpretation, double-
headed arrows indicate language-equivalence, and thick lines show ontology grafting.

Lemma 1. Tsem is interpreted by Tpsl dl.

Proof. Let Δ1 be the following set of translation definitions:

(∀x) sem:EventType(x) ≡ activity(x)

(∀x) sem:Event(x) ≡ activity occurrence(x)

(∀x) sem:Time(x) ≡ timepoint(x) ∨ timeinterval(x)

(∀x, y) sem:eventType(x,y) ≡ occurrence of(x,y)

(∀x, y) sem:hasSubEvent(x,y) ≡ subactivity occurrence(y,x)

(∀x, y) sem:hastime(x,y) ≡ (psl interval(x,y) ∨ begins(x,y) ∨ ends(x,y))

(∀x)sem:Actor(x) ≡ actor(x)

(∀x)sem:Place(x) ≡ location(x)

(∀x, y)sem:hasPlace(x,y) ≡ occurred at(x,y)

(∀x, y)sem:hasActor(x,y) ≡ performed in(y,x)

We can use Prover918 to show that Tpsl dl ∪ Δ1 |= Tsem.

It is important to realize that this interpretation is not faithful because there
are sentences in the signature of Tsem which are entailed by the interpretation
but which are not entailed by Tsem itself. The key idea is that we can use the
set of such sentences to extend Tsem until we find a theory which is faithfully
interpreted by Tpsl dl. We will refer to this extension as Tsem x

19 and the trans-
lation of the resulting theory to be T sroiq

sem−x
20 Since Tpsl dl ∪ Δ1 is a conservative

extension of Tsem x, Tsem x is faithfully interpreted by Tpsl dl.
18 https://www.cs.unm.edu/∼mccune/mace4/
19 http://colore.oor.net/simple event model/sem x.clif
20 stl.mie.utoronto.ca/ontologies/simple event model/sem x.owl

https://www.cs.unm.edu/~mccune/mace4/
http://colore.oor.net/simple_event_model/sem_x.clif
stl.mie.utoronto.ca/ontologies/simple_event_model/sem_x.owl

Using PSL to Extend and Evaluate Event Ontologies 233

Theorem 1. T sroiq
sem x is the grafting of T sroiq

sem onto T sroiq
psl .

Thus, T sroiq
sem x is a maximal extension of T sroiq

sem which has the same signature
as T sroiq

sem any stronger extension would require an expanded signature.
A summary of the results is shown in Figure 1.

Event Ontology. Let Tevent
21 be the first-order theory which is language-

equivalent to the SROIQ theory T sroiq
event

22 .

Lemma 2. Tevent is interpreted by Tpsl dl.

We can extend Tevent with the additional sentences which are entailed by
Tpsl dl∪Δ2; we will refer to this nonconservative extension as Tevent x

23. Each of
these sentences can also be axiomatized in SROIQ, and we refer to the resulting
theory as T sroiq

event−x
24. As we saw with the Simple Event Model, the ontology

Tevent x is a maximal extension of Tevent within its hierarchy.

Theorem 2. T sroiq
event x is the grafting of T sroiq

event onto T sroiq
psl .

In terms of the definition of ontology grafting, we can see that Tevent x

is a nonconservative extension of Tevent x and that Tpsl dl faithfully interprets
Tevent x.

LODE. Let Tlode
25 be the first-order theory which is language-equivalent to

T sroiq
lode

26.

Lemma 3. Tlode is interpreted by Tpsl dl.

As we saw with the other two event ontologies, we can extend Tlode with the
additional sentences which are entailed by Tpsl dl∪Δ3, giving us Tevent x

27. Each
of these sentences can also be axiomatized in SROIQ, and the resulting ontology
is T sroiq

lode x
28. As we saw with the other event ontologies, the extension of Tlode

is conservative, so that T sroiq
lode x is faithfully interpreted by Tpsl dl. We therefore

have

Theorem 3. T sroiq
lode x is the grafting of T sroiq

lode onto T sroiq
psl .

21 http://colore.oor.net/event ontology/event.clif
22 stl.mie.utoronto.ca/ontologies/event ontology/event.owl
23 http://colore.oor.net/event ontology/event x.clif
24 stl.mie.utoronto.ca/ontologies/event ontology/event x.owl
25 http://colore.oor.net/lode/lode.clif
26 stl.mie.utoronto.ca/ontologies/lode/lode.owl
27 http://colore.oor.net/lode/lode x.clif
28 stl.mie.utoronto.ca/ontologies/lode/lode x.owl

http://colore.oor.net/event_ontology/event.clif
stl.mie.utoronto.ca/ontologies/event_ontology/event.owl
http://colore.oor.net/event_ontology/event_x.clif
stl.mie.utoronto.ca/ontologies/event_ontology/event_x.owl
http://colore.oor.net/lode/lode.clif
stl.mie.utoronto.ca/ontologies/lode/lode.owl
http://colore.oor.net/lode/lode_x.clif
stl.mie.utoronto.ca/ontologies/lode/lode_x.owl

234 M. Katsumi and M. Grüninger

4.3 SWRL Extensions of the Ontologies

Looking at the axiomatizations of the event ontologies, it is clear that the restric-
tion to OWL omits axioms that may be required to support the competency
questions. We can now consider extensions of the event ontologies in which we
exploit the additional expressiveness of SWRL.

Theorem 4. T swrl
sem r is the grafting of T sroiq

sem onto T swrl
psl .

Proof. Let Tsem r.swrl
29 be the first-order ontology which is language-equivalent

to T swrl
sem r

30. Using the translation definitions from the proof of Theorem 1, we
have
Tpslswrl ∪ Δ1 |= Tsem r.swrl.

Theorem 5. T swrl
event r is the grafting of T sroiq

event onto T swrl
psl .

Proof. Let Tevent r.swrl
31 be the first-order ontology which is language-equivalent

to T swrl
event r

32. Using the same translation definitions as in the proof of Lemma 2,
we have

Tpslswrl ∪ Δ2 |= Tevent r.swrl

Theorem 6. T swrl
lode r is the grafting of T sroiq

lode onto T swrl
psl .

Proof. Let Tlode r.swrl
33 be the first-order ontology which is language-equivalent

to T swrl
lode r

34. Using the same translation definitions as in the proof of Lemma 3,
we have

Tpslswrl ∪ Δ3 |= Tlode r.swrl

5 Evaluation

In order to demonstrate the evaluation of these competency questions, we need
to specify a domain theory, i.e. a set of individuals of the classes of our ontology.
Note that the evaluation of these competency questions is meant to demon-
strate the scope (both in terms of lexicon and semantics) distinctions between
the event ontologies; given that the size and complexity of the domain theory has
no impact on the scope of the ontology, a toy scenario is sufficient for our pur-
poses. The generic domain theory we employ consists of two complex activities,
A1, A2, as well as five atomic activities (A21, A22, A3, A4, A5), each with vary-
ing possible occurrences and orderings. Additional information is also specified
regarding times and locations of occurrences and participating actors, as well as

29 http://colore.oor.net/simple event model/sem r.clif
30 stl.mie.utoronto.ca/ontologies/simple event model/sem r.swrl
31 http://colore.oor.net/event ontology/event r.clif
32 stl.mie.utoronto.ca/ontologies/event ontology/event r.swrl
33 http://colore.oor.net/lode/lode r.clif
34 stl.mie.utoronto.ca/ontologies/lode/lode r.swrl

http://colore.oor.net/simple_event_model/sem_r.clif
stl.mie.utoronto.ca/ontologies/simple_event_model/sem_r.swrl
http://colore.oor.net/event_ontology/event_r.clif
stl.mie.utoronto.ca/ontologies/event_ontology/event_r.swrl
http://colore.oor.net/lode/lode_r.clif
stl.mie.utoronto.ca/ontologies/lode/lode_r.swrl

Using PSL to Extend and Evaluate Event Ontologies 235

possible locations and participation for activities. The complete domain theory
specifications for each theory to be evaluated may be found either embedded in
the OWL ontologies, or in the related input files (in the case of first-order logic
proofs).

In transitioning from the informal set of competency questions to a formal
specification of queries, there are often a variety of subtle distinctions in the way
the queries could be interpreted. For example, CQ1, when made more specific,
can be interpreted in several ways:

CQ1-1 What actors participated in the occurrence, O21?
CQ1-2 What actors perform A2?
CQ1-3 What actors participated in some occurrences of A2?

Each such interpretation may result in a distinct query when formalized,
which may impact the ontologies’ ability to represent or answer it. For exam-
ple, notice that the first interpretation (CQ1-1) is expressible by all ontologies,
whereas none of the Semantic Web event ontologies are able to express the second
interpretation (CQ1-2). We have therefore opted to consider all such recognized
alternate interpretations in our evaluation to avoid excluding any potentially
interesting results.

CQ1-1 :
– first-order logic: (∃a)(actor(a) ∧ performed in(a,O21))
– psl.owl: Actor and performed in value O21
– The Event Ontology: Agent and agent value O21
– SEM:Actor and inverse (‘has Actor’) value O21
– LODE:Agent and ‘involved agent’ value O21

CQ1-2 :
– first-order logic:(∃a)(actor(a) ∧ performs(a,A2))
– psl.owl:Actor and performs value A2
– Query out of the scope of SEM, LODE, and the Event Ontology’s lexicon.

5.1 Results

Using the HermiT 1.3.8 plug-in provided by Protege version 4.3 35 we evaluated
each of the original event ontologies, their extensions via ontology grafting onto
T sroiq
psl and T swrl

psl , as well as T sroiq
psl and T swrl

psl against the formalized competency
questions.

In the case of certain queries we found we were unable to specify a formal-
ization in OWL. Here, we utilised the first-order logic translations of each of
the OWL theories (available online, as referenced in the previous section), and
attempted evaluation using the first-order automated theorem prover, Prover9.
The idea behind this was that a positive result would demonstrate that the
axioms specified in the ontology were in fact sufficient to answer the query; thus

35 http://protege.stanford.edu/

http://protege.stanford.edu/

236 M. Katsumi and M. Grüninger

we would avoid faulting the ontology for an issue of query language expressiv-
ity/tool support. Only in the case that a query was still not provable in the
first-order translation would we infer that the axioms were too weak.

The results of each ontology against our reasoning problems are summarized
in Table 1.

Table 1. A high-level summary of the evaluation results

CQ Entailed By Expressible By

1-1 psl.owl, psl dl.clif, psl.swrl, psl swrl.clif,
sem x.owl, sem x.clif, sem r.swrl,
sem r.clif,
event x.owl, event x.clif, event r.swrl,
event r.clif

psl.owl, psl dl.clif, psl.swrl, psl swrl.clif,
sem.owl, sem.clif, sem x.owl, sem x.clif, sem r.swrl,
sem r.clif,
event.owl, event.clif, event x.owl, event x.clif,
event r.swrl, event r.clif,
lode.owl, lode.clif, lode x.owl, lode x.clif, lode r.swrl,
lode r.clif

1-2 psl.owl, psl dl.clif, psl.swrl, psl swrl.clif psl.owl, psl dl.clif, psl.swrl, psl swrl.clif

1-3 psl.owl, psl dl.clif, psl.swrl, psl swrl.clif,
sem x.owl, sem x.clif, sem r.swrl,
sem r.clif

psl.owl, psl dl.clif, psl.swrl, psl swrl.clif,
sem.owl, sem.clif, sem x.owl, sem x.clif, sem r.swrl,
sem r.clif

2 - psl dl.clif, psl swrl.clif

3-1 psl.owl, psl dl.clif, psl.swrl, psl swrl.clif,
sem x.owl, sem x.clif, sem r.swrl,
sem r.clif

psl.owl, psl dl.clif, psl.swrl, psl swrl.clif,
sem.owl, sem.clif, sem x.owl, sem x.clif, sem r.swrl,
sem r.clif

3-2 psl.owl, psl dl.clif, psl.swrl, psl swrl.clif psl.owl, psl dl.clif, psl.swrl, psl swrl.clif

4 - psl.owl, psl dl.clif, psl.swrl, psl swrl.clif

5 - psl dl.clif, psl swrl.clif

6 psl.owl, psl dl.clif, psl.swrl, psl swrl.clif psl.owl, psl dl.clif, psl.swrl, psl swrl.clif

7 psl.owl, psl dl.clif, psl.swrl, psl swrl.clif psl.owl, psl dl.clif, psl.swrl, psl swrl.clif

8 - psl.owl, psl dl.clif, psl.swrl, psl swrl.clif

9 - psl.owl, psl dl.clif, psl.swrl, psl swrl.clif,
sem.owl, sem.clif, sem x.owl, sem x.clif, sem r.swrl,
sem r.clif,
event.owl, event.clif, event x.owl, event x.clif,
event r.swrl, event r.clif,
lode.owl, lode.clif, lode x.owl, lode x.clif, lode r.swrl,
lode r.clif

10 - psl dl.clif, psl swrl.clif

11 psl.owl, psl dl.clif, psl.swrl, psl swrl.clif psl.owl, psl dl.clif, psl.swrl, psl swrl.clif

12-1 psl.owl, psl dl.clif, psl.swrl, psl swrl.clif psl.owl, psl dl.clif, psl.swrl, psl swrl.clif

12-2 psl.owl, psl dl.clif, psl.swrl, psl swrl.clif,
sem x.owl, sem x.clif, sem r.swrl,
sem r.clif

psl.owl, psl dl.clif, psl.swrl, psl swrl.clif,
sem.owl, sem.clif, sem x.owl, sem x.clif, sem r.swrl,
sem r.clif

13 psl.owl, psl dl.clif, psl.swrl, psl swrl.clif psl.owl, psl dl.clif, psl.swrl, psl swrl.clif

A detailed summary of the evaluation results is available online 36. Note that
although all ontologies were capable of formalizing CQ9, none were able to return
a solution as the test domain theory did not include the use of closure axioms.

In OWL. Both the Event Ontology and LODE had major scope limitations
which prevented all but a single competency question from being expressible in
36 http://stl.mie.utoronto.ca/ontologies/results summary reformat.pdf

http://stl.mie.utoronto.ca/ontologies/results_summary_reformat.pdf

Using PSL to Extend and Evaluate Event Ontologies 237

their lexicon (CQ1-1). Further, neither ontology was able to return the answer to
this question as both lacked sufficient semantics to make the necessary inferences.
SEM fared comparably better as its lexicon was able to formalize a total of
four of the CQs (CQ1-1, CQ1-3, CQ3-1, and CQ12-2). However, similar to its
counterparts, SEM also lacked the necessary axioms to answer any of the four
CQs.

Not surprisingly, given its broad scope, the signature of T sroiq
psl supported

the specification of all but three of the CQs. In fact, the three CQs that were
not expressible (CQ2, CQ5, and CQ10) were hindered not by the scope of the
lexicon, but by the limitations of the OWL query language. In terms of reasoning
abilities, T sroiq

psl also fared better; the correct answer was returned for all of the
expressible CQs, apart from CQ4 and CQ8.

When grafted to T sroiq
psl , we achieved improvements in each of the resulting

event ontology extensions, with the exception of T sroiq
lode x; its were still insufficient

to answer the query. We found that the Event Ontology extension was sufficient
to return the answer to CQ1-1. Further, T sroiq

sem was capable of correctly solving
all four of the CQs that were in its scope.

In First-Order Logic. The queries CQ2, CQ5, and CQ10 were outside of
the expressive capabilities of the DL query tool, and therefore attempted in
Prover937. We were unable to attempt any evaluation of the queries for LODE,
the Event Ontology, or SEM (likewise with their extensions) as the necessary
concepts were outside of the ontologies’ lexicons. Using a translation of T sroiq

psl

(i.e., Tpsl dl, we were able to obtain a proof, yielding the correct answer to CQ238.
Neither a proof nor a counterexample was found by Prover9 for both CQ5 and
CQ10, although a manual counterexample can be found in both cases, showing
that the subtheory of the PSL Ontology which is definable in SROIQ is not
strong enough to entail solutions to the competency questions.

Since SWRL is an extension of OWL, any competency question entailed by an
OWL axiomatization is also entailed by the SWRL axiomatization. In evaluating
the adequacy of the SWRL extensions of the Semantic Web event ontologies, we
therefore only need to consider lode r.swrl against CQ1-1, as all of the other
competency questions not entailed by the Semantic Web event ontologies were
not expressible. We found that the extension lode r.swrl was still unable to infer
the correct answer to CQ1-1; its scope is too restricted to allow for the necessary
extension (specifically, the subactivity occurrence relation).

5.2 Troubleshooting Ontology Expressivity

The results of our evaluation are generally quite encouraging for the goal of
supporting more complex reasoning about events on the Semantic Web. We find
that T sroiq

psl serves as a particularly motivating example of the potential function-
ality that can be achieved. Further, and specifically with respect to the gains
37 http://stl.mie.utoronto.ca/ontologies/psl dl.owl.in
38 http://stl.mie.utoronto.ca/ontologies/psl cq2.proof

http://stl.mie.utoronto.ca/ontologies/psl_dl.owl.in
http://stl.mie.utoronto.ca/ontologies/psl_cq2.proof

238 M. Katsumi and M. Grüninger

illustrated with T sroiq
sem x, our results indicate the effectiveness of ontology graft-

ing. We should also note that the theories of actors and locations translated to
create T sroiq

psl were designed to be root theories in COLORE [2]. In other words
they are intentionally weak and make minimal commitments; we speculate that
there is further potential for increased reasoning abilities with the creation of
even stronger theories.

Where reasoning is limited, the cause is lack of expressivity in one or multiple
ways: insufficient scope of concepts (lexicon), insufficient axioms (semantics), or
limitations of the language itself (logic). Our results indicate that a key factor
in the reasoning limitations of existing ontologies is the scope of their lexicons.
This observation could be a cause of the lack of reasoning about events on the
Semantic Web, but it is more likely a symptom of the lack of focus on such appli-
cations. We speculate that this may be due to the fact that the integration and
search-oriented applications represent more low-hanging fruit for ontology devel-
opers, or perhaps the fact that the widely adopted approach of using lightweight
axiomatizations for integration is simply not conducive to creating ontologies
capable of supporting more sophisticated reasoning. While we do certainly agree
that it is logical for the task of information integration to be tackled prior to
reasoning tasks, we feel strongly that to fully benefit from these previous efforts,
the focus should now shift to potential reasoning applications.

In any case, analysis of our results highlights two commonly omitted con-
cepts that we find to be primary causes of the event ontologies’ inability to solve
our reasoning problems: the activity/occurrence distinction, and the notion of
an ordering over occurrences. It was SEM’s inclusion of the notion of an activ-
ity (“event type”) that provided the ability to represent multiple CQs, over
and above its peers. Although this may seem like a PSL-specific distinction, we
emphasize that it is one which is necessary to ask more interesting questions
about events. When limited to occurrences, we are restricted to simply asking
about particular instances. Without the activity/occurrence distinction we lose
the ability to pose queries regarding occurrences of a particular kind. Returning
to the motivating scenarios presented initially, this means that queries such as:
is there some sort of construction event occurring at a location? are not possible.

None of the selected event ontologies provided a definition for ordering over
occurrences. Instead, only some notion of time is associated with an event –
likely intended to be instantiated with, or otherwise attached to some form of
a timestamp. This over-reliance on datatype-oriented representations (in con-
junction with the lack of an activity/occurrence distinction) precludes the rea-
soning about potential, future orderings of possible events. If we are relying on
timestamps associated with particular occurrences, we are unable to ask ques-
tions such as – is it possible that flooding occurred prior to the reported power
outage?

6 Looking Forward

While our results demonstrate the potential abilities that could be achieved with
an ontology for events, we certainly make no claims regarding the suitability of

Using PSL to Extend and Evaluate Event Ontologies 239

T sroiq
psl as a definitive theory for such applications. However, we do claim that it

demonstrates the feasibility of our goal of performing valuable reasoning tasks
on the Semantic Web. Future work should extend this study of feasibility to
consider additional ontologies such as DOLCE [3], Event Model-F [6], and the
like. In contrast with the application-oriented ontologies included in this study,
these ontologies have a more foundational-style and it would be interesting to
examine how they fare against our reasoning problems with respect to both the
necessary concept scope and depth of semantics. Further, this study has focused
on illustrating the potential reasoning abilities, based on the semantic content.
This would be well-complimented with an examination of scalability. In other
words, can these abilities be preserved with larger datasets, or will the reasoning
problems become too difficult? Future work with real-world data will serve to
inform us of the necessary implementation paradigm.

The potential demonstrated here also encourages us to consider a broader vari-
ety of event-related reasoning applications. For example, the question of disagree-
ment could be tackled by attempting queries to ascertain whether two instances
are really describing the same event. The current issue of occurrence orderings and
timestamps could be resolved with a robust dates and durations ontology; such
concepts could also be used to account for things like hours of operation when
reasoning about events. Further, the addition of concepts to describe between-
ness and summation for locations would provide the ability to answer questions
related to routes, e.g. is some event occurring (or, not occurring) on my route to
some destination?

While two types of expressivity issues (lexicon and semantics) may be
addressed by extension, the issue of logic expressivity re-enforces the fact that
there is a limit to the types of reasoning that can be accomplished with con-
ventional Semantic Web technologies. In general, we were unable to use OWL
and SWRL to formalize and entail queries concerned with possible orderings
of several activity occurrences. These are certainly potentially useful questions,
and while we do acknowledge that there exist tools capable of formalizing such
queries for Semantic Web ontologies, such languages and tools are not yet stan-
dardized or widely available. This is not to say that first-order logic ontologies are
better suited for such questions, as our results have also highlighted the issues
of intractability that may be encountered when working in a more expressive
language. However, it does indicate a requirement for better tools or alternate
approaches in order to elicit the full benefit from existing and future efforts on
the Semantic Web.

7 Summary

Existing work with event ontologies has focused heavily on the task of represent-
ing event information for integration, leaving the task of automated reasoning
relatively untouched. We motivated our goal of increased reasoning about events
on the Semantic Web, and used this motivation as a source of pragmatic rea-
soning problems for our evaluation. Through our investigation, we have demon-
strated some of the reasoning abilities that Semantic Web ontologies are capable

240 M. Katsumi and M. Grüninger

of supporting. Further, we analysed our findings in order to offer explanations
for the current lack of such reasoning.

The notion of ontology grafting may serve as the basis for the reuse of first-
order logic ontologies to augment theories in less expressive languages. Although
these ontologies often have relatively weak axiomatizations, other ontologies
such as PSL have rich axiomatizations, albeit sometimes in a different language.
Our approach outlines the technique of grafting more expressive ontologies to
less-expressive, integration-oriented ontologies as a means of augmenting their
axiomatizations and consequently their reasoning power. The formal nature of
this approach also lays the groundwork for interoperability between the ontolo-
gies being extended. With the mappings created, we could potentially use the
signature of PSL to query information represented by any of the three ontolo-
gies. There is also the potential to perform model-theoretic verification of these
ontologies, as in [2]. We hope that this work may serve not only to motivate
continued efforts towards reasoning on the Semantic Web, but also as a guide
for those looking to reuse and reason with existing ontologies.

References

1. Grüninger, M.: Using the PSL ontology. In: Handbook on Ontologies, pp. 423–443.
Springer (2009)

2. Grüninger, M., Hahmann, T., Hashemi, A., Ong, D., Özgövde, A.: Modular first-
order ontologies via repositories. Applied Ontology 7(2), 169–209 (2012)

3. Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A., Oltramari, R.,
Schneider, L., Istc-cnr, L.P., Horrocks, I.: Wonderweb deliverable d17. The wonder-
web library of foundational ontologies and the dolce ontology (2002)

4. Mossakowski, T., Lange, C., Kutz, O.: Three semantics for the core of the dis-
tributed ontology language. In: Donnelly, M., Guizzardi, G. (eds) FOIS, volume
239 of Frontiers in Artificial Intelligence and Applications, pp. 337–352. IOS Press
(2012)

5. Raimond, Y., Abdallah, S., Sandler, M., Giasson, F.: The music ontology. In: ISMIR
2007: 8th International Conference on Music Information Retrieval, Vienna, Austria,
September 2007

6. Scherp, A., Franz, T., Saathoff, C., Staab, S.: F-a model of events based on the foun-
dational ontology dolce+ dns ultralight. In: Proceedings of the Fifth International
Conference on Knowledge Capture, pp. 137–144. ACM (2009)

7. Shaw, R., Troncy, R., Hardman, L.: LODE: linking open descriptions of events. In:
Gómez-Pérez, A., Yu, Y., Ding, Y. (eds.) ASWC 2009. LNCS, vol. 5926, pp. 153–167.
Springer, Heidelberg (2009)

8. van Hage, W.R., Malaisé, V., Segers, R., Hollink, L., Schreiber, G.: Design and use
of the simple event model (SEM). Web Semantics: Science, Services and Agents on
the World Wide Web 9(2), 128–136 (2011). Provenance in the Semantic Web

Probabilistic Event Pattern Discovery

Ahmad Hasan(B), Kia Teymourian, and Adrian Paschke

Corporate Semantic Web Research Group, Institute for Computer Science,
Freie Universität Berlin, Berlin, Germany

{ahmadhasan,kia,paschke}@inf.fu-berlin.de
http://www.mi.fu-berlin.de/en/inf/groups/ag-csw/

Abstract. Detecting occurrences of complex events in an event stream
requires designing queries that describe real-world situations. However,
specifying complex event patterns is a challenging task that requires
domain and system specific knowledge. Novel approaches are required
that automatically identify patterns of potential interest in a heavy flow
of events.

We present and evaluate a probability-based approach for discover-
ing frequent and infrequent sequences of events in an event stream. The
approach was tested on a real-world dataset as well as on synthetically
generated data with the task being the identification of the most frequent
event patterns of a given length. The results were evaluated by measur-
ing the values of Recall and Precision. Our experiments show that the
approach can be applied to efficiently retrieve patterns based on their
estimated frequencies.

Keywords: Complex event processing · Information retrieval · Pattern
detection · Pattern discovery · Conditional probability

1 Introduction

CEP engines are able to detect occurrences of complex events in a stream of
primitive ones. Domain experts usually design queries that correspond to inter-
esting patterns of events and feed those queries to a CEP engine whose task is
to send a proper notification when a relevant complex event occurs.

However, a wide range of event patterns can not be devised even by domain
experts. A domain expert can design a query that fires a notification when the
temperature increases beyond a given threshold, but she can not always tell
which series of user actions led to a system crash.

In such scenarios, the interest is focused on extreme cases, i.e., most frequent
and most infrequent sequences of events. Frequent sequences describe interesting
phenomena in the event source or specify a series of events that led to a specific
situation, while infrequent sequences might be warnings for unusual situations.

Deciding which are the most frequent patterns requires collecting information
about all patterns that occurred in the past. But in the context of event streams,
where the flow of events never stops and where the history of the stream can
c© Springer International Publishing Switzerland 2015
N. Bassiliades et al. (Eds.): RuleML 2015, LNCS 9202, pp. 241–257, 2015.
DOI: 10.1007/978-3-319-21542-6 16

242 A. Hasan et al.

not be entirely stored, remembering pattern history leads to a huge amount of
data that grows rapidly with the number of event types we are interested in as
well as the length of the sequences we want to trace. In other words, the longer
the patterns we want to detect, the more memory and CPU power we have
to provide, which makes detecting all occurring patterns with no restriction on
pattern length challenging or even impossible.

On the other hand, detecting short patterns is straightforward, especially
when considering only a handful of frequent event types. But such patterns do not
contain enough information to make a decision about an observed phenomenon
unless suitable heuristics were applied to extend them to longer patterns.

The probability-based approach for event pattern detection which we pro-
pose starts from a small set of previously detected short patterns (Section 4
and extends them based on stream properties to longer and more detailed pat-
terns (Section 5). We evaluated the approach by applying it on a real-world
dataset as well as on synthetic data. To quantitatively estimate the quality of
the resulted patterns, we applied measures of information retrieval on the sets of
most frequent and most infrequent event patterns (Section 6). We discuss rele-
vant approaches to pattern mining in event streams and show how our approach
relate to them (Section 7) and conclude with a discussion of the results.

2 Preliminaries

We start from a set E of primitive events. A primitive event is an event object
that records a real-world event. A set of primitive events can be summarized,
represented, or denoted by complex events [8]. Complex events can be expressed
in terms of primitive and complex ones using event algebra operators like SEQ,
AND and OR, defined for instance in [2]. In this paper, we will deal with the
sequence operator that binds two events that occur after one another.

We consider only discrete event types. An event can occur or not occur at
a specific point of time. Continuous events, like temperature readings, have to
be converted into some discrete space. In such cases, our approach could be
applied on a stream of events that summarize such raw events by inducing events.
Instead of handling raw temperature readings, events of increase or decrease in
temperature can be considered.

Moreover, we distinguish between an event type that provides a definition
or a schema for a class of events and an event instance that refers to an actual
occurrence of an event type at a specific point in time. The complex event type
(A;B) for example refers to the occurrences of an instance of the event type A
followed by an instance of the event type B. Multiple occurrences of an event
type are referred to collectively by a pattern. We use the notation {A;B}4 to
refer to a pattern of the former event type that occurred 4 times in the event
source.

Probabilistic Event Pattern Discovery 243

3 The Framework

Our probabilistic approach expects an initial set of event patterns with their
frequencies to be provided. The frequencies of longer patterns are then estimated
probabilistically. Figure 1 shows an example scenario in which our approach
could be applied.

On a stream of primitive events, a pattern detection algorithm (Section 4) is
first applied to determine the frequencies of patterns of a given initial length n0.

The resulting patterns are extended by estimating the frequencies of longer
patterns as we will describe in the following sections. Each extension we apply
to the available set of event patterns adds one additional event to each pattern
extending its length by one. The extension procedure can be repeated multiple
times extending available patterns by one event each time until we reach n, the
desired length of patterns.

Fig. 1. An example context in which probabilistic event pattern discovery can be
applied

An abstract example is shown in Table 1 where the first column contains a
sample of the patterns directly detected from the stream with their frequencies.
We use the notation {P}f where P is an event pattern and f is its frequency.

Table 1. Example of input patterns of length 2 and the resulted patterns after extend-
ing them to length 3

Detected patterns
(n = 2)

Extended patterns
(n = 3)

{A;B}3
{B;C}5 {A;B;C}1
{B;D}10 {A;B;D}2

The second column of the table shows the resulting patterns generated by
applying conditional probability calculations on the frequencies of the shorter
patterns from the initial set of patterns.

The table shows for example how the frequency of the complex event
{A;B;C} can be estimated if the frequencies of all subpatterns, i.e. the pat-
terns {A;B} and {B;C}, are provided. Frequencies of the initial set of patterns

244 A. Hasan et al.

of length 2 indicate that the event C occurs in one third of the times, i.e. 5
5+10 , in

which the event B occurs. For all patterns that end with the event B, we expect
the event C to follow in one third of the times which enables us to estimate the
frequencies of such patterns.

4 Pattern Detection

For keeping track of pattern frequencies, we maintain a tree structure whose
nodes represent sequential event patterns. Child nodes are events that occurred
after their parents. Each path in the tree represents a pattern and each node
on such path holds the frequency of the pattern that starts from the root of the
tree and ends at this node.

In Figure 2 a pattern tree for two event types is partially depicted. The figure
shows the branch of the tree that represent patterns that start with the event
A. The A node on level holds the frequency of the short pattern consisting of a
single event A, while the B node on level 2 under the A node holds the frequency
of the pattern {A;B}.

We always remember the last n − 1 events by pointing to the corresponding
pattern in the tree. The bold circles in the tree in Figure 2 marks the path of
the current pattern. After reading {A;A}, we point to the corresponding path
in the tree. When the event B occurs, we increment the frequency of the child
node B on level n, i.e. of the pattern {A;A;B}, and point to the new pattern
{A;B}.

Fig. 2. A pattern tree with the current pointer pointing at the pattern {A;A} (left)
then {A;B}(right). The doted arrows show where the current pattern will be after
reading the event referred to by the node.

Another feature of our pattern tree is that each leaf on level n refers to a node
on level n−1 that corresponds to a postfix of its pattern which will be the future
current pattern after an occurrence of the event referred to by the node. Those
relations are depicted in Figure 2 as doted arrows. The node corresponding to
the pattern {A;A;B} for example, refers to the pattern {A;B} which becomes
the current pattern if the event B occurs after the pattern {A;A}.

Reporting a new event using this structure requires looking for the corre-
sponding node under the children of the current node, which is an O(|E|) opera-
tion, then looking for the node representing the new current path. Since each leaf
already refers to the proper pattern to be the next, shifting the current pattern
has a constant cost of O(1).

Probabilistic Event Pattern Discovery 245

5 Probabilistic Pattern Extension

Starting with patterns of length n0 provided in the initial set, our aim is to esti-
mate the frequencies of all patterns of length n0 +1. Equation 1 shows how such
patterns can be split into two overlapping shorter pattern. The two subpatterns
have the length n0, i.e., they belong to the initial set with known frequencies.

P = {A1;A2;A3; . . . An0−1;An0 ;An0+1}
P0 = {A1;A2;A3; . . . An0−1;An0 }
Ṕ0 = { A2;A3; . . . An0−1;An0 ;An0+1}

(1)

where:

– P : The target pattern whose probability is to be calculated.
– P0: The known pattern of length n0 detected in a previous phase.
– Ṕ0: The second part of P that overlaps with P0 and contains the extension

event. We do have the frequency of this pattern too.
– Primitive events Ai ∈ E.

We now want to estimate the frequency of P based on the frequencies of its
sub-patterns. We know that this value is proportional to the frequency of P0 and
that it depends on the probability for An0+1 to occur after the P0.

P will occur each time An0+1 occurs after P0, so the frequency of P is calcu-
lated as follows:

Fr(P) = Fr(P0) × Pr(An0+1|P0) (2)

where:

– Fr: The frequency function that returns the frequency of a given pattern if
already available.

– Pr: The probability function.
– P , P0, Ṕ0 and Ai: as in Equation 1 above.

Since we do not have all the information required to calculate the exact
frequency of P , we propose to estimate it as follows:

Fr(P) ≈ Fr(P0) × Pr(Ṕ0) (3)

In other words, the probability for the new event An0+1 to follow P0 approx-
imately equals the probability for it to follow the longest postfix of P0.

246 A. Hasan et al.

6 Evaluation

In order to evaluate the results of our approach, the patterns resulting from
extension have to be compared to the real patterns in the event source. Those
actual patterns make our gold standard that serves as a control set.

The quality of pattern retrieval can be estimated based on the values of
Precision and Recall [13] by ordering the resulted patterns according to their
estimated frequencies and comparing the most frequent among them to the most
frequent patterns of the gold standard.

Measuring the quality of retrieval by examining the set of most frequent
patterns, we are no longer concerned about the exact value of the pattern’s fre-
quency, but about its ranking among other patterns of the same length. However,
we will evaluate the accuracy of the estimated frequencies before examining the
quality of information retrieval.

6.1 Experimental Dataset

For experiments on real-world data, we used the dataset provided by a Dutch
academic hospital 1. The event log contains data of treatments received by cancer
patients and was distributed in XES format with the history of each patient
listed within a trace. Each of those traces contains event tags that correspond to
treatments. Events are marked with timestamps that indicate the date on which
a treatment was performed.

For the purpose of our evaluation, we are particularly interested in temporal
relations between successive treatments received by each patient. A patient, as
the data suggests, usually visits the hospital regularly and receives multiple
treatments in one session. Sessions do not have dedicated structural elements in
XES format, but they can be recognized by the timestamps of the treatments
where a session consists of events that have the same timestamp and are logged
within the same trace.

The dataset contains 675 different activities corresponding to various treat-
ments, 134 of which were applied in more than 50 sessions. The total number
of distinct patients is 1143 as the number of traces indicates. We could iden-
tify a total of 19.981 sessions, i.e. about 17 sessions per patient. In average, 7.5
treatments were performed per session. In some sessions, the same treatment is
performed more than once.

6.2 Warm-Up Experiment

The first test is a simple one-step extension from binary patterns with two events
to patterns of length 3. In order to reach meaningful results, we applied the
procedure to the dataset of the Dutch academic hospital.
1 Real-life log of a Dutch academic hospital, originally intended for use in the first

Business Process Intelligence Contest (BPIC 2011) http://data.3tu.nl/repository/
uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54 published by Eindhoven University of
Technology.

http://data.3tu.nl/repository/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
http://data.3tu.nl/repository/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54

Probabilistic Event Pattern Discovery 247

Table 2 shows an excerpt of the results where the patterns of our gold stan-
dard are shown with their frequencies in addition to their estimated frequencies
calculated by an implementation of our procedure.

As the first line of Table 2 shows, the treatment 370000 appeared in 6782
session. In 4800 of those sessions, a treatment of the type 40014 followed in
the next session, which means 4800 occurrences of the pattern {370000;40014}.
The frequency of 4357 for the pattern {370000;40014;40014} indicates that the
treatment 40014 almost always follow the pattern {370000;40014}.

Lines in bold face correspond to extended patterns. The frequency of the pat-
tern {370000;40014;40014} for example is estimated to be 4148 while its actual
value is 4357, which means that the one-step-extension led to an error of 4%.

Table 2. A sample of the results of extending patterns from length 2 to 3

Pattern Detected Extended Error Rate

{370000} 6782 - -

{370000;40014} 4800 - -

{370000;40014;40014} 4357 4148 209(4%)

{370000;40014;370000} 2095 1921 174(8%)

{370000;40014;379999} 2095 1921 174(8%)

{370000;40014;613000} 4038 3807 231(5%)

{370000;40014;614400} 2695 2557 138(5%)

{370000;370000} 3782 - -

{370000;370000;40014} 2488 2677 189(7%)

{370000;370000;370000} 2394 2110 284(12%)

.

Table 2 presented only a sample of the results to demonstrate the feasibility of
the approach. More comprehensive evaluation will be presented in the following
sections.

6.3 Execution Time: Deterministic vs. Probabilistic Discovery

To estimate the gain in execution time that can be achieved by applying our
approach, we performed a test in which a detection algorithm was applied on
the dataset of the Dutch academic hospital to detect sequential event patterns
of lengths 1 to 10.

Each iteration i of the experiment consisted of two steps:

– Detection of i-long patterns by applying the detection algorithm described
in Section 4.

– Detection patterns of length 2 and extending them to length i.

Since the goal of this test is to compare the execution time, we do not reuse
any information from the first step. Instead, the second step repeats a part of
the first step to guarantee having the same overhead.

248 A. Hasan et al.

Furthermore, both steps are performed on the same machine, hence the con-
crete resources are irrelevant for the comparison. However, we present here the
results of a test performed on a machine with Intel Celeron Dual-core processor
and 3 GB of memory.

Fig. 3. Comparing execution time between deterministic (detection) and probabilistic
(extension) discovery of event patterns.

As Figure 3 shows, the two approaches hardly differ for short patterns, but
form a pattern length of 7, the probabilistic procedure begins to outperform the
detection algorithm.

Although both methods have the same IO overhead because both have to
read the entire content of the dataset for once, estimating frequencies instead of
calculating them still has the crucial advantage of dealing a whole pattern, i.e.
calculating the frequency for each pattern at once without having to report each
single notification of an occurrence of the pattern and processing it as done by
the detection algorithm we used and with any procedure that has to build the
pattern structure gradually while receiving event notifications.

6.4 Frequency Error Rates

To compute error rates in the results, we need to examine the deviation of the
estimated frequencies from the real frequencies of the gold standard.

Mean Absolute Percentage Error [11], or MAPE, is an error measure for
evaluating the quality of prediction by comparing the predicted value to the
actual one. Equation 5 gives the definition of MAPE:

MAPE =
1
N

×
N∑

i=1

|Ri

Fi
| (4)

Probabilistic Event Pattern Discovery 249

– Ri is the difference between the predicted value and the actual one for item
i.

– Fi is the actual frequency of the pattern i.
– N the total number of patterns.

We have already seen a part of this equation in Table 2 where the difference
between estimated and actual frequencies was calculated and given in percent.

For calculating the error rate of single value rather than a set of values, we
define the Absolute Percentage Error, or APE, as follows:

APE = |Ri

Fi
| (5)

Fig. 4. Absolute percentage error values in frequencies of patterns extended from length
2 to 3. The resulted mean (MAPE) was 8.5% for the whole dataset.

Figure 4 shows the distribution of this part of MAPE in the results of the last
experiment of one-step extension on patterns of length 2 of the 5 most frequent
events in the dataset of the Dutch academic hospital reaching patterns of length 3.

The horizontal axis in Figure 4 represents values of absolute percentage error
whereas the vertical values are the numbers of patterns whose estimation led to
these error values. The figure shows that the frequencies of 16 patterns could
be estimated correctly, i.e. with a zero error percentage, while the estimated
frequencies of 25 patterns out of 125 deviate from the actual frequency by 1%.

We see that most of the patterns that resulted from a one step extension had
an absolute error under 20%. Indeed, the value of MAPE for all the patterns in
the dataset was 8.5%.

6.5 Accumulated MAPE

For a more comprehensive evaluation of the estimated frequencies, we measured
the MAPE values under various configurations, each corresponding to a different
combination of the length of the patterns in the start set and the target length.

250 A. Hasan et al.

Fig. 5. MAPE values resulting from extension of patterns

In an iteration with a start length n0 and a target length n, all patterns
of length n0 are detected directly from the dataset and used as an initial set
for extension. The patterns of this set are then extended step by step and the
MAPE value is calculated for the whole set of patterns whose frequencies have
been estimated.

As the results in Figure 5 show, the error rate increases with each extension
step. We reach the worst estimations when the initial set of patterns does not
provide enough information about the patterns in the event source.

Indeed, the highest error rate results when we start with patterns of length
2. After extending such patterns 7 times to get patterns of length 9, the MAPE
value even exceeds one hundred percent.

However, when we start with longer patterns, the MAPE error rate starts
low and grows more slowly. When we are provided with the patterns of length 5
as initial set, we can even double the length of the given patterns with negligible
error rates of less than 15%.

6.6 Discovery of Frequent and Infrequent Patterns

In this experiment, we apply information retrieval measures to evaluate the
retrieval quality of our probability-based approach. We apply the same test strat-
egy as in the previous section to study the effect of the pattern length in the
initial set and the desired length of target patterns.

Probabilistic Event Pattern Discovery 251

The patterns come again from the dataset of the Dutch academic hospital
and are submitted to two experiments. In the first one, we evaluate the retrieval
of frequent event patterns, then we repeat the same test for infrequent patterns.

To estimate the quality of discovery of the most frequent patterns, we take
10% of the most frequent patterns of the length in question and compare them
to their parallels in the gold standard to calculate recall and precision.

Higher values of recall and precision are reached when the extended patterns
get the same order as in the gold standard. While recall is sensitive to false
negatives, i.e. to patterns that are incorrectly considered infrequent, precision is
sensitive to false positives, i.e. patterns that were falsely considered frequent.

We notice that recall and precision have the same value when the sets of
relevant and retrieved patterns have the same size, which is the case in our
experiment. When the pattern tree is saturated and all of its branches exist, the
number of patterns on each level of any given length reaches its maximum value
on the tree of the gold standard as well as on the tree returned by our procedure.
In this case, if we take 10% of the patterns from the same level on both trees,
both of the resulting sets will have the same size leading to equal values for recall
and precision.

Figure 6a shows the results of retrieving the top 10% of patterns of the eight
most frequent event types in the dataset of the Dutch academic hospital.

As the figure shows, all results start with 100% when no estimation is per-
formed. With each extension step, the recall/precision value drops about 5%
percent representing an increasing error rate. This loss in retrieval quality seems
to deaccelerate with each extension leading to less dramatic drop in recall and
precision.

(a) Evaluation of discovery results of the
most frequent patterns in the Dataset.

(b) Evaluation of discovery of the least fre-
quent patterns in the Dataset.

Fig. 6. Retrieval results for frequent and infrequent event patterns

252 A. Hasan et al.

Again, the more information we provide as the basis for frequency estimation,
the better the results that can be expected. The results of the tests that started
with patterns of length 5, as Figure 6a suggests, have retrieved almost 90% of
the most frequent patterns correctly.

We notice in the diagram that the retrieval quality sometimes gets better with
a further extension step, as when extending from length 4 to length 5 starting
from a pattern length of 3. We might intuitively expect that each extension leads
to worse results and that the error rates of previous levels accumulate and always
rise, which is true in most of the cases.

However, as we will see later, the quality of the results is determined by the
entropy of the event source and this value can differ from one level on the pattern
tree to another. Thus, if the entropy of the patterns on some level is lower than
that of the parent level, i.e., we can tell with more confidence what events will
follow the patterns of this level, the extension results will be better.

We can now take a look at the same results for infrequent patterns shown in
Figure 6b. In this test we compared the least frequent 10% of the patterns from
the gold standard with those retrieved based on the estimated frequencies.

As Figure 6b illustrates, the results in this category is less promising. Already
after the first extension we lose about 20-30% of the correct patterns. Multiple
extensions lead to unusable results where even less than 50% of the patterns
could be retrieved.

By examining the data, we noticed that frequent patterns in our example
dataset are more disperse than infrequent ones. Most of the patterns have low fre-
quency, while patterns with high frequencies are rare and show larger differences
in their frequencies. This phenomenon makes discovering infrequent patterns
sensitive to small errors that can not be avoided in a probabilistic configuration.

6.7 Pattern Discovery under Controlled Entropy

For observing the behaviour of our method under various grades of entropy,
we ran a test in which a synthetic event stream was generated using only two
event types. The probability distribution of the two event types was manipulated
leading to different values of entropy in the resulting stream that had a known
entropy of twenty values ranging from 0 to 1 bit.

With each of those levels of entropy, a randomizer generates event instances
for 30 seconds and sends them to a consumer. The later builds two pattern tree:

– Gold standard Tree containing patterns of length 12.
– Initial Patterns Tree with patterns of length 10 only.

When a generation burst is done, the consumer extends the patterns of the
second tree to length 12. Recall and precision are then measured by comparing
the 10% of the most frequent patterns from both trees.

Figure 7 shows how the recall and precision changed under various entropy
values. The obvious trend confirms that the retrieval quality worsen when the
entropy increases.

Probabilistic Event Pattern Discovery 253

Fig. 7. Evaluation results of the discovery of the most frequent patterns extended from
pattern length 10 to 12 under controlled stream entropy

When the entropy is zero, i.e. when there is only a single pattern occurring
in the stream, our approach achieves perfect recall and precision of 100%. The
greater the entropy, the worse the results become. Indeed, under a high entropy,
the results are simply useless and seem to be produced by accident.

The entropy is a measurable property of the stream, though some interpre-
tation might be necessary to calculate its value. The entropy of a stream might
also change over time, which requires special consideration. However, having an
estimation of the entropy would help make a realistic expectation about the
quality of retrieval in a probabilistic configuration as with our approach.

High entropy indicates that there are no particularly frequent events or pat-
terns to be discovered in the stream. Frequencies of patterns and events are so
close that the question of frequent patterns has no meaning. With such negligible
differences in frequency frequent patterns are only coincidentally frequent.

254 A. Hasan et al.

On the opposite, streams with low entropy have characteristic patterns whose
importance is manifested in their frequencies. Under such conditions, as out exper-
iment shows, the set of most frequent patterns can be identified with acceptable
error rates, with the tolerance against error rates being application dependent.

7 Related Work

Since we want to support event streams in addition to bounded event sources,
we can not apply methods that require accessing the history events of the
whole source more than once, like it is done in algorithms for mining sequential
databases, e.g. in [1,7,12,14,16]. But we can keep and analyze a limited portion
of the event history (in CEP and event streaming often called a window).

The goal of related algorithms for data streaming, like Lossy Counting [9] or
Moment [5], that handle streams and access the event source only once, keeping
only a portion of its data, is to minimize both processing time and the amount of
data that has to be kept for later analysis. None of those algorithms claims to be
able to detect all the patterns of the source. Lossy Counting [9] and FPDM [15]
take an approximate approach and accept an error margin, in order to keep the
data structure that contains information about the past at its minimum. Moment
concentrates on closed event patterns and maintains a compact data structure
to which only necessary changes has to be made minimizing the processing time
required when receiving event notifications. Enhancements of our work over these
approaches can be summarized as follows:

– Memory Size: The amount of data we can, or we have to, keep from the past.
Algorithms tend to keep only the necessary data either by restricting the set
of target patterns to frequent or recent patterns, or by summarizing data of
the past, like the approach of aggregation at multiple granularities taken in
[6].

– Realtime Processing : The processing required when an event notification
arrives. This depends particularly on the data structure being used, but we
always want to minimize the processing required at this phase in order to stay
realtime and keep our data up-to-date. The Moment [5] algorithm changes
its data structure only on the boundaries between frequent and infrequent
patterns.

– Error Tolerance: Because we know that we can not keep trace of all patterns
in the stream, we accept a controlled margin of error, like in Lossy Counting
[9], or we just accept less information about those patterns, like estDec [3]
that concentrates on recent patterns.

– Relevance: Algorithms attempt to answer the question of relevance. Decid-
ing which patterns are more important than the others is crucial since only
a part of the patterns can be traced. Lossy Counting [9] and FPDM [15]
target frequent patterns, while estDec [3] considers recent patterns to be rel-
evant. Furthermore, λ−HCount [4] and [6] merge both factors by regarding
frequent and recent patterns.

Probabilistic Event Pattern Discovery 255

In our work, we made a further step in the same direction and tested the
potential of those possibilities.

Probabilistic Event Patterns Discovery:

– Maintains an incomplete set of complex event patterns.
– Uses a data structure already prepared for receiving new patterns so that

the costs of reporting a new event stays minimal.
– Applies probability-based calculations to predict missing information.
– Depends on relative frequency to identify relevant patterns.

A further recent work that inspired our approach was the comprehensive
framework for automated rule generation suggested by Margara et al. in [10].
The aim of the framework was to identify rules of causality between events in
historical traces and a situation of interest. The method rely on Information
Gain Retrieval, which makes use of event distribution and probabilities of the
source events, which is the basis of our estimation of frequencies of event pat-
terns.

Comparison to Association Rule Learning
When mining association rules, we are interested in quantitatively expressing the
strength of association among different items. Association rule mining counts
simultaneous occurrences of observed items and applies metrics like support and
confidence to assess the detected associations.

An association rule within a set of items I = I1 . . . In has the following form:

X ⇒ Ij : X ⊂ I, Ij ∈ I (6)

If we compare rules of this form to formulations of conditional probabilities,
as in Equation 2, we find that the strength of an association rule depends on the
probability of the event to follow a pattern.

In the context of association rules, we can interpret the probability
Pr(An0+1|P0) in Equation 2 for example as the confidence in the rule P0 ⇒
An0+1.

However, the essential difference between association rules and our proba-
bilistic approach lies in the structure of information handled by each method.
While association rules depend on the relatively open structure of sets, which
suites the original problems addressed by this technique, we adopt a more strict
patterns structure in which the order of elements also counts.

Our probabilistic approach can be regarded as a vertical interpretation of
association rules. Instead of studying how items happen simultaneously, we are
here interested in the temporal order of events and how they occur successively
after one another.

Applying our approach for retrieving frequent patterns for basket analysis,
the classical application of association rules, would mean examining those items
appearing in successive purchases instead of those occurring together within the
same purchase.

256 A. Hasan et al.

8 Conclusion

Probability-based discovery of complex event patterns is an efficient way to esti-
mate the frequencies of long patterns that are otherwise uncomputable. The
method saves processing time by computing the frequencies of whole patterns
instead of processing single events.

The initial set of patterns that makes the basis for estimating frequencies
of unknown patterns is crucial to the retrieval quality. The more information
this set provides the better the results can be achieved in terms of recall and
precision.

Estimation of frequencies can be applied multiple times to reach longer pat-
terns. However, each iteration causes further errors to accumulate leading to
lower recall and precision.

Finally, the resulting quality of the proposed approach depends on the
entropy of the event source. The best results can be achieved under low entropy.
The higher the entropy the worse the results get. However, measuring the entropy
of the source helps estimate the reliability of the resulted ranking of patterns
and decide whether the approach can be applied at all.

There is still much to be done to benefit from the approach proposed in
this paper. The most urgent task would be to find more applications and to
investigate the feasibility of the procedure in domains like stock market or traffic
congestion detection. Including more event operators, like the AND and OR
operators, is a challenging, yet interesting, task.

References

1. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of
the Eleventh International Conference on Data Engineering, ICDE 1995,
pp. 3–14. IEEE Computer Society, Washington, DC, USA (1995). http://dl.acm.
org/citation.cfm?id=645480.655281

2. Chakravarthy, S., Krishnaprasad, V., Anwar, E., Kim, S.K.: Composite events
for active databases: semantics, contexts and detection. In: VLDB 1994.
pp. 606–617. Morgan Kaufmann Publishers Inc., San Francisco (1994). http://
dl.acm.org/citation.cfm?id=645920.672994

3. Chang, J.H., Lee, W.S.: Finding recent frequent itemsets adaptively over online
data streams. In: Proceedings of the Ninth ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, KDD 2003, pp. 487–492. ACM,
New York (2003). http://doi.acm.org/10.1145/956750.956807

4. Chen, L., Mei, Q.: Mining frequent items in data stream using time fading
model. Information Sciences 257, 54–69 (2014). http://www.sciencedirect.com/
science/article/pii/S0020025513006403

5. Chi, Y., Wang, H., Yu, P.S., Muntz, R.R.: Moment: maintaining closed frequent
itemsets over a stream sliding window. In: In ICDM, pp. 59–66 (2004)

6. Giannella, C., Han, J., Pei, J., Yan, X., Yu, P.: Mining frequent patterns in
data streams at multiple time granularities. Next Generation Data Mining 212,
191–212 (2003)

http://dl.acm.org/citation.cfm?id=645480.655281
http://dl.acm.org/citation.cfm?id=645480.655281
http://dl.acm.org/citation.cfm?id=645920.672994
http://dl.acm.org/citation.cfm?id=645920.672994
http://doi.acm.org/10.1145/956750.956807
http://www.sciencedirect.com/science/article/pii/S0020025513006403
http://www.sciencedirect.com/science/article/pii/S0020025513006403

Probabilistic Event Pattern Discovery 257

7. Gomariz, A., Campos, M., Marin, R., Goethals, B.: ClaSP: an efficient algorithm
for mining frequent closed sequences. In: Pei, J., Tseng, V.S., Cao, L., Motoda,
H., Xu, G. (eds.) PAKDD 2013, Part I. LNCS, vol. 7818, pp. 50–61. Springer,
Heidelberg (2013)

8. Luckham, D., Schulte, W.R.: Event processing glossary – version 2.0 (2011)
9. Manku, G.S., Motwani, R.: Approximate frequency counts over data streams. In:

Proceedings of VLDB 2002, pp. 346–357 (2002)
10. Margara, A., Cugola, G., Tamburrelli, G.: Learning from the past: automated

rule generation for complex event processing. In: Proceedings of the 8th ACM
International Conference on Distributed Event-Based Systems, DEBS 2014,
pp. 47–58. ACM, New York (2014). http://doi.acm.org/10.1145/2611286.2611289

11. Mitsa, T.: Temporal Data Mining, 1st edn. Chapman & Hall/CRC (2010)
12. Pei, J., Han, J., Mortazavi-asl, B., Pinto, H., Chen, Q., Dayal, U., chun Hsu, M.:

Prefixspan: mining sequential patterns efficiently by prefix-projected pattern
growth. In: ICDE 2001, p. 215. IEEE Computer Society, Washington, DC (2001).
http://dl.acm.org/citation.cfm?id=876881.879716

13. Rijsbergen, C.J.V.: Information Retrieval, 2nd edn. Butterworth-Heinemann,
Newton (1979)

14. Yan, X., Han, J., Afshar, R.: Clospan: mining closed sequential patterns in large
datasets. In. In SDM, pp. 166–177 (2003)

15. Yu, J.X., Chong, Z., Lu, H., Zhou, A.: False positive or false negative:
mining frequent itemsets from high speed transactional data streams. In: VLDB
2004, pp. 204–215. VLDB Endowment (2004). http://dl.acm.org/citation.cfm?
id=1316689.1316709

16. Zaki, M.J.: Spade: An efficient algorithm for mining frequent sequences. Mach.
Learn. 42(1–2), 31–60 (2001). http://dx.doi.org/10.1023/A:1007652502315

http://doi.acm.org/10.1145/2611286.2611289
http://dl.acm.org/citation.cfm?id=876881.879716
http://dl.acm.org/citation.cfm?id=1316689.1316709
http://dl.acm.org/citation.cfm?id=1316689.1316709
http://dx.doi.org/10.1023/A:1007652502315

How to Combine Event Stream Reasoning
with Transactions for the Semantic Web

Ana Sofia Gomes(B) and José Júlio Alferes

NOVA-LINCS - Department de Informática, Faculdade Ciências e Tecnologias,
Universidade NOVA de Lisboa, Lisbon, Portugal

sofia.gomes@campus.fct.unl.pt

Abstract. Semantic Sensor Web is a new trend of research integrating
Semantic Web technologies with sensor networks. It uses Semantic Web
standards to describe both the data produced by the sensors, but also
the sensors and their networks, which enables interoperability of sensor
networks, and provides a way to formally analyze and reason about these
networks. Since sensors produce data at a very high rate, they require
solutions to reason efficiently about what complex events occur based on
the data captured. In this paper we propose T Rev as a solution to com-
bine the detection of complex events with the execution of transactions
for these domains. T Rev is an abstract logic to model and execute reac-
tive transactions. The logic is parametric on a pair of oracles defining the
basic primitives of the domain, which makes it suitable for a wide range
of applications. In this paper we provide oracle instantiations combin-
ing RDF/OWL and relational database semantics for T Rev. Afterwards,
based on these oracles, we illustrate how T Rev can be useful for these
domains.

1 Introduction and Motivation

The future of the Internet-of-Things is filled with sensors, and with it, sensor data
and sensor networks. Nodes in these sensor networks use the internet to interact
and communicate with each other, but also with other services and applications,
helping with the detection of changes in the environment, and making daily
decisions based on these changes. Today, sensor networks are successfully used
in detecting emergency situations, monitoring agriculture conditions and animal
farming, industrial control, home automation, patient health surveillance, etc.

With the popularity increase of the Internet-of-Things and the widespread of
sensor networks, one important problem is how to deploy sensors’ data so it can
be accessible by a larger number of different applications and services. Sensors
produce data at an extremely high rate, with extremely heterogeneous schemas,
vocabularies and data formats, making it very hard to discover and reuse. Based
on the premise that it is a waste of resources to use sensors’ data for just one sin-
gle application, an important research effort has been made recently in Semantic

A.S. Gomes and J.J. Alferes—This work was supported by project ERRO
(PTDC/EIA-CCO/121823/2010).

c© Springer International Publishing Switzerland 2015
N. Bassiliades et al. (Eds.): RuleML 2015, LNCS 9202, pp. 258–273, 2015.
DOI: 10.1007/978-3-319-21542-6 17

How to Combine Event Stream Reasoning 259

Sensor Web (SSW) [8,20] with the goal to enable interoperability between sen-
sors, and reuse of sensors’ data. By using Semantic Web technologies, SSW solves
this problem by providing a way to semantically describe sensors capabilities,
sensors measurements and observations, deployments, etc. With interoperability
as one of the main flagships of the Semantic Web, Semantic Web technologies
allow one to integrate and reason about knowledge published across different
sources, by using RDF as a data model in combination with ontology languages
like OWL [16], and to use this knowledge to execute actions in several appli-
cation domains. In the this context, the Semantic Sensor Network Incubator
Group1 defines an ontology for sensors based on OWL and RDFS, and publishes
sensors’ data using RDF statements, enabling users to reuse and integrate data
from multiple sensors, but also to reason about such data in a powerful way.

In scenarios like sensor networks, where the production of data is high, the
fields of Event Processing (EP) and Stream Reasoning provide important solu-
tions to efficiently handle large volumes of data, and to detect complex changes
based on these. In these areas, an event is a first-class citizen, encoding some
change that may be relevant to the system, like e.g. a new sensor’s observation.
Then, based on the occurrence of a set of events (also called as a stream), EP
solutions handle the detection of meaningful event patterns (also known as com-
plex events), based on expressive operators and temporal relationship of events.
Stream Reasoning exceeds EP by combining streams with domain application
knowledge, allowing one to use this knowledge to reason about the events that
become true over time. While traditionally EP and Stream Reasoning solutions
were designed mostly for databases, the increase of popularity of the Semantic
Web and its technologies led to the development of several solutions that can
successfully handle and reason about RDF statements and RDFS/OWL mod-
els [1,15,19]. However, and by design, EP solutions are incomplete, as they do not
deal with the problem of acting upon the event patterns they detect. Detecting
these patterns is only meaningful if we can act upon this knowledge, and thus,
in general, we need more complete solutions that allow us to define what to do
when an event occurs.

In another context, Event-Condition-Action (ECA) languages solve this by
explicitly defining how should a system react whenever a given pattern is
detected. These languages support rules of the form: on event if condition do
action, where whenever an event occurs, the condition is checked to hold in the
current state and, if that is the case, the action is executed. Today a number of
ECA languages exist, providing a semantics for reactive systems in the context of
the Semantic Web [3,6,18], multi-agent systems [9,13,17], conflict resolution [7],
etc. However, even though ECA languages started in the database context, and
many solutions exist with rich languages for defining complex actions, most
ECA languages do not allow the action component to be defined as a transac-
tion. Moreover, when they do, they either lack from a declarative semantics (e.g.
[18]), or are only suitable for databases since they only detect atomic events
defined as primitive insertions/deletes on the database (e.g. [14,21]).

1 http://www.w3.org/2005/Incubator/ssn/

http://www.w3.org/2005/Incubator/ssn/

260 A.S. Gomes and J.J. Alferes

In this case we sustain that in many applications, and especially applications
dependent on sensor networks, it is important to guarantee transactional prop-
erties, like consistency or atomicity, over the execution of a set of actions issued
in response to events. As an application scenario, consider the case where the
police wants to monitor and detect traffic violations based on a sensor network
deployed in some road. A sensor in such a network can identify plates of vehicles
and distinguish between types of vehicles. Then, based on the information that
the sensor publishes in RDF, the application must reason about what vehicles
are indulging in traffic violations and, in these cases, issue fines for these viola-
tions and notify the corresponding drivers. Clearly, some transactional behavior
regarding these actions must be ensured, as it can never be the case that a fine
is issued and the driver is not notified, or vice-versa.

T R [4] is a general purpose logic to model and reason about the executional
behavior of transactions. It provides a general model theory that is parametric
on a pair of oracles defining the semantics of states and updates of the knowl-
edge base (KB) (e.g. relational databases, action languages, description logics,
etc.). With it, one can reason about the sequence of states (also denoted as a
path) where a transaction is executed, independently of the semantics of states
and primitive actions of the KB. Additionally, T R also provides a proof-theory
to execute a subclass of T R programs that can be formulated as the Horn-
like clauses of logic programming. However, T R fails to deal simultaneously
with complex events and transactions, and for that we have previously proposed
T Rev in [11]. T Rev is an extension of T R that can reason about the execu-
tion of transactions, but also about the complex events that become true in this
transaction execution. Just like in EP algebras, with T Rev one is able to define
complex events by combining atomic (or other complex) events with temporal
operators. In T Rev, atomic events can either be external events, which are sig-
nalled to the KB, primitive updates in the KB (similarly e.g. to the events “on
insert” in databases), or events that the oracle defines to occur in state transi-
tions. Moreover, as in active databases, transactions in T Rev are constrained by
the events that occur during their execution: a transaction can only successfully
commit when all events triggered during its execution are addressed. T Rev is
parameterized with a pair of oracles as in the original T R, but also takes an
additional choice function, which abstracts the semantics of a reactive language
from its response policies decisions. Of course, to be put to work in specific
domains, T Rev (and T R) require the instantiation of such oracle.

In this paper we propose T Rev as a solution to combine heterogeneous event
stream reasoning with the execution of transactions for sensor networks that
use Semantic Web technologies. This is done by providing an appropriate ora-
cle instantiation to reason about RDF/OWL semantics. With it, one can decide
what events become true in a given path, based on the occurrence of atomic events
and the knowledge inferred from the sensors’ ontology. After defining such an ora-
cle, we provide an elaborated example to illustrate what kind of event stream
reasoning can be done using T Rev, and how to combine more than one oracle

How to Combine Event Stream Reasoning 261

instantiation for a sensor based application that uses RDF/OWL to describe and
reason about events together with a relational database to perform transactions.

2 Background: T Rev

Transaction Logic [4], T R, is a logic to execute and reason about general changes
in a KB, when these changes need to follow a transactional behavior. In a nut-
shell2, T R syntax extends that of first order logic with the operators ⊗ and ♦,
where φ ⊗ ψ denotes the action composed by an execution of φ followed by an
execution of ψ, and ♦φ denotes the hypothetical execution of φ, i.e. a test to see
whether φ can be executed but leaving the current state unchanged. Moreover,
φ ∧ ψ denotes the simultaneous execution of φ and ψ; φ ∨ ψ the execution of φ
or ψ; and ¬φ an execution where φ is not executed.

In T R all formulas are read as transactions which are evaluated over
sequences of KB states known as paths, and satisfaction of formulas means exe-
cution. I.e., a formula (or transaction) φ is true over a path π iff the transaction
successfully executes over that sequence of states. A key feature of T R is the
separation of primitive operations from the logic of combining them. T R’s the-
ory is parametric on two different oracles allowing the incorporation of a wide
variety of KB semantics, from classical to non-monotonic to various other non-
standard logics. These oracles abstract the representation of KB states and how
to query them (by including the data oracle Od), and abstract the way states
change (defined by the transition oracle Ot). Consequently, the language of prim-
itive queries and actions is not fixed, and neither is the definition of what is a
state. To distinguish between states, T R works with a set of state identifiers to
uniquely identify a state. With this, the data oracle Od is a mapping from state
identifiers to sets of formulas where, given a state identifier i, Od(i) returns the
set of formulas true in state i. The state transition oracle Ot(i1, i2) is a function
that maps pairs of KB states into sets of ground atoms called elementary tran-
sitions, where given two state identifiers i1 and i2, Ot(i1, i2) returns the set of
elementary transitions that are true when the KB changes from state i1 into i2.

The logic provides the concept of a model of a T R theory, which allows one
to prove properties of transactions that hold for every possible path of execution;
and the notion of executional entailment, in which a transaction φ is entailed
by a theory given an initial state D0, and written P,D0– |= φ, if there is a path
D0,D1, . . . , Dn, which starts in that state D0, and on which the transaction,
as a whole, succeeds. Given a transaction and an initial state, the executional
entailment provides a means to determine what should be the evolution of states
of the KB, to succeed the transaction in a atomic way. Non-deterministic trans-
actions are possible, and in this case several successful paths exist. For a special
class of T R theories (known as serial-Horn programs) there is a proof procedure
and corresponding implementation [4,10].

2 For lack of space, and since T Rev is an extension of T R (cf. [11]) we do not make
a thorough overview of T R here. For complete details see e.g. [4,11]

262 A.S. Gomes and J.J. Alferes

T Rev extends T R in that, besides dealing with the execution of transaction,
it is also able to raise and detect complex events. For that, T Rev separates the
evaluation of events from the evaluation of transactions. This is reflected in its
syntax, and on the two different satisfaction relations – the event satisfaction
|=ev and the transaction satisfaction |=. T Rev’s alphabet contains an infinite
number of constants C, function symbols F , variables V and predicate symbols
P. Furthermore, predicates in T Rev are partitioned into transaction names (Pt),
event names (Pe), and oracle primitives (PO). Importantly, to support event
stream reasoning in the oracle side, for this paper, we also consider the case where
oracles primitives are partitioned into oracle actions POa

and oracle events POe
.

Finally, formulas in T Rev are partitioned into transaction formulas and event
formulas, and are evaluated differently: event formulas are meant to be detected
w.r.t. a path encoding the history of execution; while transaction formulas are
meant to be executed. One of the goals of T Rev’s theory is to find the paths
where a given reactive transaction formula φ successfully executes.

Event formulas, i.e. formulas that can be detected, are either an event occur-
rence, or an expression defined inductively as ¬φ, φ∧ψ, φ∨ψ, or φ⊗ψ, where φ
and ψ are event formulas. We further assume φ;ψ, which is syntactic sugar for
φ ⊗ path ⊗ ψ (where path is just any tautology, cf. [5]), with the meaning: “φ
followed by ψ, but where arbitrary events may be true between φ and ψ”. An
event occurrence is of the form o(ϕ) s.t. ϕ ∈ Pe or ϕ ∈ PO (the latter are events
signalling changes in the KB, needed to allow reactive rules similar to e.g. “on
insert” triggers in databases). Transaction formulas, i.e. formulas that can be
executed, as in T R are either a transaction atom, or an expression defined induc-
tively as ¬φ, ♦φ, φ ∧ ψ, φ ∨ ψ, or φ ⊗ ψ. In T Rev, a transaction atom is either
a transaction name (in Pt), an oracle defined primitive (in PO), the response
to an event (written r(ϕ) where ϕ ∈ PO ∪ Pe), or an event name (in Pe). The
latter corresponds to the (trans)action of explicitly triggering an event directly
in a transaction. Finally, rules have the form ϕ ← ψ and can be transaction or
(complex) event rules. In a transaction rule ϕ is a transaction atom and ψ a
transaction formula; in an event rule ϕ is an event occurrence and ψ is an event
formula. A program is a set of transaction and event rules.

Central to T Rev’s theory is the correspondence between o(ϕ) and r(ϕ). As a
transactional system, the occurrence of an event constrains the satisfaction path
of the transaction where the event occurs, and a transaction can only “commit”
if all the occurring events are answered. More precisely, a transaction is only
satisfied in a path, if all the events occurring in that path are responded to. This
behavior is achieved by evaluating event occurrences and transactions differently,
and by imposing r(ϕ) to be true in the paths where o(ϕ) holds. For dealing
with cases where more than one occurrence holds simultaneously, T Rev takes
as parameter, besides T R’s data and transition oracles, also a choice function
defining what event should be selected for being responded at a given time, in
case of conflict. This function abstracts the operational decisions from the logic,
and allows T Rev to be useful in a wide spectrum of applications.

How to Combine Event Stream Reasoning 263

As a reactive system, T Rev receives a series (or a stream) of external events
which may cause the execution of transactions in response. As in T R, T Rev’s
formulas are also evaluated over paths (sequence of states), and the theory allows
us to reason about how does the KB evolve in a transactional way, based on an
initial KB state. This is defined as P,D0– |= e1 ⊗ . . .⊗ek, where D0 is the initial
KB state and e1 ⊗ . . . ⊗ ek is the sequence of events that arrived. A path D0
O1→ . . .On→Dn that make P,D0– |= e1⊗ . . .⊗ek true, represents a KB evolution
responding to e1 ⊗ . . . ⊗ ek

As usual, satisfaction of formulas is based on interpretations which define
what atoms are true over what paths, by mapping paths to sets of atoms. If a
transaction (resp. event) atom φ belongs to M(π) then φ is said to execute (resp.
occur) over path π given interpretation M :

Definition 1 (Interpretation). An interpretation M is a mapping assigning
a set of atoms (or 	3) to every possible path, with the restrictions (where Dis
are states, and ϕ an atom):
1. ϕ ∈ M(〈D〉) if ϕ ∈ Od(D)
2. {ϕ,o(ϕ)} ⊆ M(〈D1

o(ϕ)→D2〉) if ϕ ∈ Ot(D1,D2) ∧ ϕ ∈ POa

3. o(ϕ) ∈ M(〈D1
o(ϕ)→D2〉) if o(ϕ) ∈ Ot(D1,D2) ∧ o(ϕ) ∈ POe

4. o(e) ∈ M(〈D o(e)→D〉)
Understanding this notion of interpretation, and its restrictions, is important

for understanding T Rev’s semantics. The first three points above, force all inter-
pretations to satisfy primitive formulas on the paths where the oracles satisfy
them, i.e., only the mappings that comply with the specified oracles are consid-
ered as interpretations. The second point also states that, whenever a primitive
action ϕ (e.g. the insertion of a fact in the KB) is made true by the oracle,
the occurrence associated with the primitive action o(ϕ) (e.g. “on insert” of
that fact) is also made true in every M , and in this case, the path is annotated
with ϕ’s occurrence. As such, this restriction guarantees compliance with the
oracles, viz. whenever the oracle satisfies a primitive action in a transition, all
Ms also satisfy both the primitive action, and the primitive occurrence in that
same transition. Similarly, the third point makes the correspondence between
the primitive events defined by the oracle, and the primitive events made true
by Ms. This allows the oracle to define primitive events different from primitive
actions, and make interpretations satisfy these events in these transitions.

Finally, the fourth point guarantees that, whenever an event is observed to
occur in a transition, then all interpretations necessarily satisfy this occurrence.
This point is an important technical detail to satisfy the action of explicitly
triggering an event. By forcing M to satisfy o(e) whenever it appears explicitly in
the history of the path, we impose compliance between the history of occurrences
on a path and the set of formulas that interpretations make true on that same
path. Note that making the occurrence of an event explicitly true does not
change the KB state per se and thus, these transitions only take place on paths

3 For not having to consider partial mappings, besides formulas, interpretations can
also return the special symbol �. The interested reader is referred to [4] for details.

264 A.S. Gomes and J.J. Alferes

where the current state does not evolve. However, as we shall see, T Rev theory
imposes that, whenever o(e) is true in some part of a path (or subpath), then
for a transaction to be satisfied, r(e) must also be true. Thus naturally, some
actions may need to be executed to satisfy r(e) as an implicit result of making
this occurrence true, which in turn, may cause changes in the KB.

Satisfaction of formulas requires the definition of operations on paths. E.g.,
φ ⊗ ψ is true on a path if φ is true up to some point in the path, and ψ is true
from that point onwards.

Definition 2 (Path Splits, Subpaths and Prefixes). Let π be a k-path, i.e.
a path of length k of the form 〈D1

O1→ . . . Ok−1→ Dk〉. A split of π is any pair
of subpaths, π1 and π2, s.t. π1 = 〈D1

O1→ . . . Oi−1→ Di〉 and π2 = 〈Di
Oi→ . . .

Ok−1→Dk〉 for some i (1 ≤ i ≤ k). In this case, we write π = π1 ◦ π2.
A subpath π′ of π is any subset of states of π where the order of the states is
preserved. A prefix π1 of π is any subpath of π sharing the initial state.

As mentioned above, satisfaction of complex formulas is different for event
formulas and transaction formulas. While the former concerns the detection of
an event, the latter concerns the execution of actions in a transactional way.
As such, when compared to the original T R, transactions in T Rev are further
required to execute all the responses of the events occurring in the original
execution path of that transaction. In other words, a transaction ϕ is satisfied
over a path π, if ϕ is executed in a prefix π1 of π (i.e. where π = π1 ◦ π2),
and all events occurring over π1 are responded to in π2. This requires a non-
monotonic behavior of the satisfaction relation of transaction formulas, making
them dependent on the satisfaction of events.

Definition 3 (Satisfaction of Event Formulas). Let M be an interpretation,
π a path and φ a formula. If M(π) = 	 then M,π |=ev φ; else:
1. Base Case: M,π |=ev φ iff φ ∈ M(π) for every event occurrence φ
2. Negation: M,π |=ev ¬φ iff it is not the case that M,π |=ev φ
3. Disjunction: M,π |=ev φ ∨ ψ iff M,π |=ev φ or M,π |=ev ψ.
4. Serial Conjunction: M,π |=ev φ ⊗ ψ iff there is a split π1 ◦ π2 of π s.t.

M,π1 |=ev φ and M,π2 |=ev ψ
5. Executional Possibility: M,π |=ev ♦φ iff π is a 1-path of the form 〈D〉

for some state D and M,π′ |=ev φ for some path π′ that begins at D.

Definition 4 (Satisfaction of Transaction Formulas). Let M be an inter-
pretation, π a path, φ transaction formula. If M(π) = 	 then M,π |= φ; else:
1. Base Case: M,π |= p iff there is a prefix π′ of π s.t. p ∈ M(π′) and π is

an expansion of path π′ w.r.t. M , for every transaction atom p s.t. p �∈ Pe.
2. Event Case: M,π |= e iff e ∈ Pe and there is a prefix π′ of π s.t. M,π′ |=ev

o(e) and π is an expansion of path π′ w.r.t. M .
3. Negation: M,π |= ¬φ iff it is not the case that M,π |= φ
4. Disjunction: M,π |= φ ∨ ψ iff M,π |= φ or M,π |= ψ.
5. Serial Conjunction: M,π |= φ ⊗ ψ iff there is a prefix π′ of π and a split

π1 ◦ π2 of π′ s.t. M,π1 |= φ and M,π2 |= ψ and π is an expansion of path
π′ w.r.t. M .

How to Combine Event Stream Reasoning 265

6. Executional Possibility: M,π |= ♦φ iff π is a 1-path of the form 〈D〉 for
some state D and M,π′ |= φ for some path π′ that begins at D.

The latter definition depends on the notion of expansion of a path. An expansion
of a path π1 w.r.t. to an interpretation M is an operation that returns a new
path π2 where all events occurring over π1 (and also over π2) are completely
answered. Formalizing this expansion requires the prior definition of what it
means to answer an event:

Definition 5 (Path response). For a path π1 and an interpretation M we say
that π is a response of π1 iff choice(M,π1) = e and we can split π into π1 ◦ π2

s.t. M,π2 |= r(e).

The choice function picks, at each moment, the next event unanswered event
to respond to. First it has to decide what events are unanswered in a path
π w.r.t. an interpretation M and, based on a given criteria, selects what event
among them should be responded to first. Just like T R is parametric to a pair of
oracles (Od and Ot), T Rev takes the choice function as an additional parameter.
Before defining this choice function, we first define what is an expansion of a
path. Nevertheless, an important notion here is that, if all events that occur on
a path π are answered on π w.r.t. M , then choice(M,π) = ε.

Definition 6 (Expansion of a path). A path π is completely answered w.r.t.
to an interpretation M iff choice(M,π) = ε. π is an expansion of the path π1

w.r.t. M iff π is completely answered w.r.t. M , and:
– either π = π1;
– or there is a sequence of paths π1, . . . , π, starting in π1 and ending in π, s.t.

each πi in the sequence is a response of πi−1 w.r.t. M .

The latter definition specifies how to expand a path π1 in order to obtain
another path π, where all events satisfied over subpaths of π are also answered
within π. This must perforce have some procedural nature: it must start by
detecting which are the unanswered events; pick one of them, according to some
criteria given by a choice function; and finally, expand the path with the response
of the chosen event. Each path πi of the sequence π1, π2, . . . , π is a prefix of the
path πi+1, and where at least one of the unanswered events on πi is now answered
on π′; otherwise, if all events occurring over πi are answered, then πi = π, and the
expansion is complete. Note that, since complex events are possible, in general
nothing prevents πi+1 to have more unanswered events than πi. In fact, it may
be impossible to address all events in a finite path, and in that case, such a
sequence of paths does not exists. In fact, non-termination is a known issue of
reactive rules, and is an undecidable problem in the general case [2].

These definitions leave open the choice function, that is taken as a further
parameter of T Rev, and specifies how to choose the next unanswered event to
respond to. For its instantiation one needs to decide: 1) in which order should
events be responded and 2) how should an event be responded. The former
defines the handling order of events in case of conflict, e.g. based on when events

266 A.S. Gomes and J.J. Alferes

have occurred (temporal order), on a priority list, or any other criteria. The lat-
ter defines the response policy of an ECA-language, i.e. when is an event con-
sidered to be responded. E.g., if an event occurs more than once before the
system can respond to it, this specifies if such response should be issued only
once or equally to the amount of occurrences. Choosing the appropriate opera-
tional semantics depends on the application in mind. For this paper, we fix an
instantiation of choice function, where events are responded in the (temporal)
order in which they occurred, and events for which there was already a response
are not responded to again:

Definition 7 (Temporal choice). Let M be an interpretation and π a path.
The temporal function is choice(M,π) = firstUnans(M,π, order(M,π)) where:
– order(M,π) = 〈e1, . . . , en〉 iff ∀ei 1 ≤ i ≤ n, ∃πi subpath of π where

M,π |=ev o(ei) and ∀ej s.t. i < j then ej occurs after ei

– e2 occurs after e1 w.r.t. π and M iff there exists π1, π2 subpaths of π such that
π1 = 〈Di

Oi→ . . . Oj−1→Dj〉, π2 = 〈Dn
On→ . . . Om−1→Dm〉, M,π1 |=ev o(e1),

M,π2 |=ev o(e2) and Dj ≤ Dm w.r.t. the ordering in π.
– firstUnans(M,π, 〈e1, . . . , en〉) = ei iff ei is the first event in 〈e1, . . . , en〉

where given π′ subpath of π and M,π′ |=ev o(e) then ¬∃π′′ s.t. π′′ is also a
subpath of π, π′′ is after π′ and M,π′′ |= r(e).

Afterwards, we define the notion of model of formulas and programs.

Definition 8 (Models and Minimal Models). An interpretation M is a
model of a transaction (resp. event) formula φ iff for every path π, M,π |= φ
(resp. M,π |=ev φ). M is a model of a program P (denoted M |= P) iff it is a
model of every rule in P .
Let M1, M2 be interpretations, M1 ≤ M2 if ∀π: M2(π) = 	 ∨ M1(π) ⊆ M2(π).
Let φ be a formula, and P a program. M is a minimal model of φ (resp. P) if
M is a model of φ (resp. P) and M ≤ M ′ for every model M ′ of φ (resp. P).

This notion of models can be used to reason about properties of transaction
and event formulas that hold for every possible path of execution. However, to
know whether a formula succeeds in a particular path, we need only to con-
sider the event occurrences supported by that path, either because they appear
as occurrences in the transition of states, or because they are a necessary con-
sequence of the program’s rules given that path. Because of this, executional
entailment in T Rev is defined w.r.t. minimal models.

Definition 9 (T Rev Executional Entailment). Let P be a program, φ a
transaction formula and D1

O0→ . . . On→ Dn a path. Then P, (D1
O0→ . . . On→

Dn) |= φ (�) iff for every minimal model M of P , M, 〈D1
O0→ . . . On→Dn〉 |= φ.

P,D1– |= φ is true, if there is a path D1
O0→ . . . On→Dn that makes (�) true.

3 Oracles for Stream Reasoning

T Rev provides a powerful theory to talk about executional properties of abstract
reactive transactions. With it, one is able to say what properties (or fluents) hold

How to Combine Event Stream Reasoning 267

for every possible path of execution, or express relations between transactions
and events, e.g. to say “event ψ occurs whenever transaction φ succeeds”. In
addition, with T Rev’s proof theory, one can also talk about a particular execu-
tion path, and say exactly how an abstract reactive transaction succeeds.

Of course, to use T Rev in applications one needs to instantiate the appropri-
ate oracles Od and Ot, on which T Rev is parametric, that describe the behavior
of the KBs in the domain at hands. As illustration of how this can be done,
consider the relational oracle proposed in [4]:

Definition 10 (Relational Oracle). In a relational oracle, states can be rep-
resented by sets of ground atomic formulas. The data oracle simply returns all
these formulas, i.e., Od(D) = D. Moreover, for each predicate symbol p in D,
the transition oracle defines two new predicates, p.ins and p.del representing
the insertion and deletion atoms, respectively. Formally, p.ins ∈ Ot(D1,D2) iff
D2 = D1 ∪ {p} and, p.del ∈ Ot(D1,D2) iff D2 = D1\{p}.
Example 1 (Financial Transactions - adapted from [4]). Consider a bank’s KB
defined by the relational database of Definition 10 and where the balance of a
bank account is given by the relation balance(Acnt, Amt). Using just .ins and
.del as primitive actions, we define the transactions: withdraw(Amt, Acnt) to

withdraw an amount from an account; deposit(Amt, Acnt) to deposit an amount
into an account; changeBalance(Acnt, Bal, Bal′) to change an account’s balance;
and, finally, transfer(Amt, Acnt, Acnt′) for transferring an amount from one
account to another. In T Rev (and also in T R) these can be defined in a logic
programming style by the following rules:

transfer(Amt, Acnt, Acnt′) ← withdraw(Amt, Acnt) ⊗ deposit(Amt, Acnt′)
withdraw(Amt, Acnt) ← balance(Acnt, B) ⊗ changeBalance(Acnt, B, B − Amt)
deposit(Amt, Acnt) ← balance(Acnt, B) ⊗ changeBalance(Acnt, B, B + Amt)

changeBalance(Acnt, B, B′) ← balance(Acnt, B).del ⊗ balance(Acnt, B′).ins

P, 〈d1, d2, d3, d4, d5〉 |= transfer(10, ac1, ac2) holds, if d1 is e.g. a state
where balance(ac1, 20) and balance(ac2, 30) are true, d2 is a state obtained
from d1 by deleting balance(ac1, 20); d3 is d2 plus balance(ac1, 10); d4 is
d3 minus balance(ac2, 30); and finally d5 is obtained from d4 by adding
balance(ac2, 40).

We can also define complex event rules and their associated responses.
E.g., the following event o(balanceViolation(Acnt)) occurs the first time the
account balance is updated into a negative value, and in that case, the bank
charges 5e to the customer for that violation. This is expressed in T Rev as
follows:

o(balanceViolation(Acnt)) ← (o(balance(Acnt, B).del) ⊗ o(balance(Acnt, B′).ins))
∧ (B′ < 0 ≤ B)

r(balanceViolation(Acnt)) ← balance(Acnt, B) ⊗ changeBalance(Acnt, B, B − 5)

Now imagine that we start on a state d′
1 where balance(ac1, 5) is true

instead of balance(ac1, 20). Then, transfer(10, ac1, ac2) to succeed from d′
1

needs an expanded path 〈d′
1, d

′
2, d

′
3, d

′
4, d

′
5, d

′
6, d

′
7〉, where d′

6, d
′
7 satisfy the action

268 A.S. Gomes and J.J. Alferes

changeBalance(ac1,−5,−10), changing the balance of the account a1 into
balance(ac1,−10). I.e., for the transaction to succeed, it needs to respond to
the event o(balanceViolation(Acnt)) that becomes true during its execution.

The later example shows how one can use T Rev to reason about what are the
paths that make a transaction succeed, given a set of basic primitives (actions
and queries) defined by a pair of relational oracles. Note that oracles have an
important role in T Rev, as one can only write transactions combining these
primitives after knowing exactly what oracle primitives are available. The logic
then takes care of the semantics of complex (trans)actions, defining over what
paths such a complex transaction can succeed.

Moreover, while the previous relational oracles are rather simple, nothing
prevent us from using more powerful and expressive oracles, or to combine of
several oracles into one, making T Rev useful in more sophisticated applications.
In the following, we provide a new oracle definition that, as we shall see, can be
used with T Rev to perform event stream reasoning. We start by defining a data
oracle based on RDF with an ontology model defined in OWL:

Definition 11 (RDF data Oracle). A state is an RDF graph G, i.e., a set
of RDF triples of the form (s p o) together with an OWL ontology. The data
oracle (Od) is defined such that Od(G) |= (s p o) iff (s p o) ∈ Closure(G), where
Closure(G) is the closure of the graph under the ontology.

Just like a state in the relational database oracle is represented by the set of
formulas that are in the database, a state in the latter oracle is simply a set of
instances defined in RDF triples, together with the ontology. This oracle also
assumes a function Closure(G) that computes the whole model of the RDF
instance graph under the ontology.

Based on this function, we now define the possible transitions for an
RDF/OWL graph, where the primitive actions are insertions and deletions of
graphs composed by RDF instances4. In this case, inserting (or deleting) an
RDF instance graph means to add (or remove) every individual triple to the
graph. Notice that insertion a triple is the special case where the graph is a set
of just one element. Similarly to the relational oracle, we assume the primitives
graph.ins and graph.del where graph is a set of RDF triples. Recall that the
syntactic choice of .ins and .del has no particular meaning in T Rev, and we could
have chosen any other representation as e.g., insert(graph) and delete(graph).

Definition 12 (RDF transition Oracle). Let g1 be an RDF graph, i.e., a set
of RDF triples of the form (s p o).
Ot(D1,D2) |= g1.ins iff both statements are true:
– D2 = D1 ∪ {(s p o) : (s p o) ∈ g1} and;
– Ot(D1,D2) = {g1.ins} ∪ {o((s p o).ins) : (s p o) ∈

Closure(D2)\Closure(D1)}
Ot(D1,D2) |= g1.del iff both statements are true:

4 To simplify, and since in most SSW applications this is not needed, we do not consider
the case of updating the OWL ontology.

How to Combine Event Stream Reasoning 269

– D2 = D1 ∩ {(s p o) : (s p o) ∈ g1} and;
– Ot(D1,D2) = {g1.del} ∪ {o((s p o).del) : (s p o) ∈

Closure(D1)\Closure(D2)}
Notice that in the latter definition, Ot explicitly defines a set of primitive events
true in a transition of states. This definition of Ot allows one to distinguish
between the primitive actions executed by T Rev, and the primitive events that
occurred as a result of this action. Namely, while in the insertion of an instance
graph g1, Ot only makes g1.ins true, it also satisfies the occurrences of primitive
actions executed as a consequence of g1.ins. This allows us to reason about what
action was really executed (g1.ins) in the transition by T Rev, but also about
what happened inside the oracle as a consequence of this action. As we shall see
next, this allows us to use application’s knowledge to reason about what events
hold, not only inside T Rev’s rules, but also at the oracle level.

4 An Example Combining Event Stream Reasoning
and Transaction Execution

After defining oracles to reason about RDF/OWL graphs, we can now show how
to use these oracles for SSW domains. Moreover, in these domains, it is often
useful to use more than one representation semantics of states and actions. In
fact, this is the case in the application example described in the introduction,
where we need to combine data produced by a sensor network (published in
RDF/OWL), with the government’s relational database comprising information
about drivers, fines, addresses, etc.

Although formally we can only have one oracle defining the primitives to
query (Od), and one oracle defining the primitives to execute actions (Ot), noth-
ing prevents these oracles from being instantiated with more than one semantics.
This is easily done by partitioning the oracle primitives (PO) into as many as
needed and, based on this partition, use Ot and Od as “meta-oracles” deciding
in which semantics a formula should be evaluated. Next we illustrate how to do
this, and how to perform stream reasoning using the previously defined oracles.

Example 2. Consider the situation from the introduction, where we have a gov-
ernment’s application to detect and issue fines for traffic violations. To detect
traffic violations, the government depends on a sensor network deployed on some
road. To model this network, its sensors, and sensors’ observations, we have a
Semantic Sensor Network based on OWL ontology, that publishes observations
data using RDF triples. Besides information about the sensors, this ontology
also describes information about the vehicles observed by the sensors. Such an
ontology can include e.g., that lightVehicle and heavyVehicle are subclasses
of motorVehicle5, and that sensor1 and sensor2 are instances of type Sensor:

5 Although, for this example, we chose to express the properties and knowledge about
vehicles in our local ontology, we could have alternatively used any other external
ontology to describe vehicles like, e.g., the Vehicular Sales Ontology [12].

270 A.S. Gomes and J.J. Alferes

ov : vehicle rdf : type owl : Class .
ov : motorVehicle rdfs : subClassOf ov : vehicle .
ov : lightVehicle rdfs : subClassOf ov : motorVehicle .
ov : heavyVehicle rdfs : subClassOf ov : vehicle .
ov : sensor rdf : type owl : Class .
ov : sensor1 rdf : type ov : sensor .
ov : sensor2 rdf : type ov : sensor .

where as usual rdf,rdfs and owl are the default namespaces for RDF, RDFS and
OWL, and ov is the application’s namespace where the objects and properties
of the vehicular ontology are defined, and which includes additional statements.

The information about drivers, fines and addresses is on a government’s rela-
tional database, and actions are performed w.r.t. this database. E.g., the follow-
ing T Rev rules define that processing a given violation V of a vehicle with plate P
at a date-time DT is done by identifying, in the government’s relational database,
the cost Cost of the violation and the driver D of the vehicle, to insert into the
database that the fine was issued for that driver, and to notify the driver:

processViolation(P, DT, V) ← fineCost(V, Cost) ⊗ isDriver(P, D)⊗
fineIssued(P, D, DT, Cost).ins ⊗ notifyFine(P, D, DT, Cost)

notifyFine(P, D, DT, Cost) ← hasAddress(D, Addr)⊗sendLetter(D, Addr, P, DT, Cost)

Then, we can write events of interest in T Rev. E.g., in the following (simplified)
rules we define the event o(passingSpeedA1(P, VType, S, DT)) which detects if a
vehicle with plate P and type VType has passed in area a1 at time DT with speed
S; or o(passingWrongWay(P, DT)) detecting any vehicle plate P passing the road
in the wrong way at time DT, as long as this vehicle has the type motorVehicle:

o(passingSpeedA1(P, VType, S, DT2, S2)) ←
([o((Obs1 ov:plateRead P).ins) ∧ o((Obs1 ov:vehicleDetected VType).ins)

∧ o((Obs1 ov:dateTime DT1).ins) ∧ o((Obs1 ov:readBy sensor1).ins)]

⊗ [o((Obs2 ov:plateRead P).ins) ∧ o((Obs2 ov:vehicleDetected VType).ins)

∧ o((Obs2 ov:dateTime DT2).ins)) ∧ o((Obs2 ov:readBy sensor2).ins)])

∧ ((DT2 > DT1) ∧ S = (10/DT1 − DT2))

o(passingWrongWay(P, DT1)) ←
(o((Obs1 ov:plateRead P).ins) ∧ o((Obs1 ov:vehicleDetected motorVehicle).ins)

∧ o((Obs1 ov:dateTime DT1).ins) ∧ o((Obs1 ov:readBy sensor2).ins))

⊗ (o((Obs2 ov:plateRead P).ins) ∧ o((Obs2 ov:vehicleDetected motorVehicle).ins)

∧ o((Obs2 ov:dateTime DT2).ins) ∧ o((Obs2 ov:readBy sensor1).ins)) ∧ (DT1 < DT2)

o(passingSpeed(P, VType, S, DT2, a1)) ← o(passingSpeedA1(P, VType, S, DT2))

r(passingSpeed(P, VType, S, DT, A)) ←
maxSpeed(VType, A, MS) ⊗ (MS ≤ S) ⊗ processViolation(P, DT, speed)

r(passingSpeed(, VType, S, , A)) ← maxSpeed(VType, A, MS) ⊗ (MS > S)

r(passingWrongWay(P, DT)) ← processViolation(P, DT, wrongWay)

In the rules above we also define what is executed whenever these events
occur. Namely, we say that processViolation is only executed for the event
passingSpeed if the vehicle’s detected speed exceeds the speed limit, and always
executed if passingWrongWay is detected.

How to Combine Event Stream Reasoning 271

With these rules, our system can prove statements of the form: P, S1– |=
obs1.ins ⊗ obs2.ins ⊗ . . . ⊗ obsn.ins where, based on given starting state S1,
T Rev computes the path 〈S1

O1→ . . . On−1→ Sn〉 satisfying the sequence of
observations obtained so far. I.e., it computes how the system should evolve in
order to respond to these observations, in a transactional way, and according to a
T Rev program P containing the rules above. Note that, since we are considering
two different KBs, each state Si in the path is a composed state (Gi,Di), where
Gi is the RDF graph describing vehicles and sensors’ observations, and Di is a
state of the government’s relational database. With this setting, let’s assume we
want to prove P, S1– |= (ov:obs1).ins ⊗ (ov:obs2).ins where:

ov : obs1 rdf : type ov : Observation ;
ov : plateRead "01-01-AA" ;
ov : dateTime 1426325213000 ;
ov : vehicleDetected ov : heavyVehicle ;
ov : readBy ov : sensor1 .

ov : obs2 rdf : type ov : Observation ;
ov : plateRead "01-01-AA" ;
ov : dateTime 1426325213516 ;
ov : vehicleDetected ov : heavyVehicle ;
ov : readBy ov : sensor2 .

Then, based on the ontology definition, we know that heavyVehicle � vehicle,
and thus o((ov:obs1 ov:vehicleDetected motorVehicle).ins) will hold at the
same time (i.e., transition) as o((ov:obs1).ins). In a similar way, the event
o((ov:obs2 ov:vehicleDetected motorVehicle).ins) will hold at the same as
o((ov:obs1).ins). From this, o(passingWrongWay("01-01-AA", 1426325213000)
holds for the same transition as where the actions (ov:obs1).ins ⊗ (ov:obs2).ins
occur, and thus the transaction (ov:obs1).ins ⊗ (ov:obs2).ins will only succeed
in an expanded path where the driver of vehicle "01-01-AA" is fined and notified,
for the infraction of passing the road in the wrong way.

5 Discussion and Final Remarks

In this paper we propose a set of oracle instantiations to make T Rev useful for
domains involving sensor networks and Semantic Web technologies. With it, one
can use T Rev to reason about what complex events occur, and what transactions
need to be executed to respond to these events. Moreover, like in EP/Stream
Reasoning solutions [1,15,19], T Rev can use the domain’s application knowledge
to reason about what complex events occur. This reasoning can be done either
inside the oracle, using the oracle’s domain knowledge to trigger primitive events,
but also inside T Rev rules, where we use this knowledge to decide what should
be the response of the system for a given event.

Since EP/Stream Reasoning only deal with detecting complex event pat-
terns, and not with executing actions, our work can be better compared with
ECA solutions. While several ECA languages exist for several domains like the

272 A.S. Gomes and J.J. Alferes

Semantic Web [3,6,18] they normally do not support the execution of transac-
tions. Some exceptions exist, but are either only procedural like [18], or can only
detect simple events based on database inserts and deletes [14,21].

This is, in fact, one thing that distinguishes T Rev from most solutions: com-
bining the ability to detect and reason about complex and sophisticated event
patterns, with the execution of complex transactions, and to do this in a way that
can be useful for a wide range of applications by plugging in different oracles.
The example presented in Section 4 uses a concrete oracle parametrization com-
bining RDF/OWL and relational database semantics, and which is interesting
for SSW applications. With it, one can use the sensor network ontology to help
reason about the events that occur in a given transition, while simultaneously
combining the execution of (trans)actions in the relational database.

References

1. Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: EP-SPARQL: a unified language
for event processing and stream reasoning. WWW 2011, 635–644 (2011)

2. Bailey, J., Dong, G., Ramamohanarao, K.: On the decidability of the termination
problem of active database systems. Theor. Comput. Sci. 311(1–3), 389–437 (2004)

3. Behrends, E., Fritzen, O., May, W., Schenk, F.: Embedding event algebras and
process for eca rules for the semantic web. Fundam. Inform. 82(3), 237–263 (2008)

4. Bonner, A.J., Kifer, M.: Transaction logic programming. In: ICLP, pp. 257–279
(1993)

5. Bonner, A.J., Kifer, M.: Results on reasoning about updates in transaction logic.
In: Kifer, M., Voronkov, A., Freitag, B., Decker, H. (eds.) Dagstuhl Seminar
1997, DYNAMICS 1997, and ILPS-WS 1997. LNCS, vol. 1472, p. 166. Springer,
Heidelberg (1998)

6. Bry, F., Eckert, M., Patranjan, P.-L.: Reactivity on the web: Paradigms and
applications of the language xchange. J. Web Eng. 5(1), 3–24 (2006)

7. Chomicki, J., Lobo, J., Naqvi, S.A.: Conflict resolution using logic programming.
IEEE Trans. Knowl. Data Eng. 15(1), 244–249 (2003)

8. Compton, M., Henson, C.A., Neuhaus, H., Lefort, L., Sheth, A.P.: A survey of the
semantic specification of sensors. In: SSN09, pp. 17–32 (2009)

9. Costantini, S., Gasperis, G.D.: Complex reactivity with preferences in rule-based
agents. In: RuleML, pp. 167–181 (2012)

10. Fodor, P., Kifer, M.: Tabling for transaction logic. In: ACMPPDP, pp. 199–208
(2010)

11. Gomes, A.S., Alferes, J.J.: Transaction Logic with (complex) events. Theory and
Practice of Logic Programming, On-line Supplement (2014) (to appear)

12. Hepp, M.: Vehicle Sales Ontology, March 18, 2015. http://www.heppnetz.de/
ontologies/vso/ns

13. Kowalski, R., Sadri, F.: A logic-based framework for reactive systems. In: Bikakis,
A., Giurca, A. (eds.) RuleML 2012. LNCS, vol. 7438, pp. 1–15. Springer, Heidelberg
(2012)

14. Lausen, G., Ludäscher, B., May, W.: On active deductive databases: the statelog
approach. In: Kifer, M., Voronkov, A., Freitag, B., Decker, H. (eds.) Dagstuhl
Seminar 1997, DYNAMICS 1997, and ILPS-WS 1997. LNCS, vol. 1472, p. 69.
Springer, Heidelberg (1998)

http://www.heppnetz.de/ontologies/vso/ns
http://www.heppnetz.de/ontologies/vso/ns

How to Combine Event Stream Reasoning 273

15. Margara, A., Urbani, J., van Harmelen, F., Bal, H.E.: Streaming the web:
Reasoning over dynamic data. J. Web Sem. 25, 24–44 (2014)

16. McGuinness, D.L., Van Harmelen, F., et al.: OWL web ontology language overview.
W3C recommendation 10(2004–03), 10 (2004)

17. Müller, R., Greiner, U., Rahm, E.: AgentWork: a workflow system supporting
rule-based workflow adaptation. Data Knowl. Eng. 51(2), 223–256 (2004)

18. Papamarkos, G., Poulovassilis, A., Wood, P.T.: Event-condition-action rules on
RDF metadata in P2P environments. Comp. Networks 50(10), 1513–1532 (2006)

19. Ren, Y., Pan, J.Z.: Optimising ontology stream reasoning with truth maintenance
system. In: ACM CIKM, pp. 831–836 (2011)

20. Sheth, A.P., Henson, C.A., Sahoo, S.S.: Semantic sensor web. IEEE Internet
Computing 12(4), 78–83 (2008)

21. Zaniolo, C.: Active database rules with transaction-conscious stable-model
semantics. In: DOOD, pp. 55–72 (1995)

Existential Rules and Datalog+/- Track

Ontology-Based Multidimensional Contexts
with Applications to Quality Data Specification

and Extraction

Mostafa Milani(B) and Leopoldo Bertossi(B)

School of Computer Science, Carleton University, Ottawa, Canada
{mmilani,bertossi}@scs.carleton.ca

Abstract. Data quality assessment and data cleaning are context
dependent activities. Starting from this observation, in previous work
a context model for the assessment of the quality of a database was
proposed. A context takes the form of a possibly virtual database or
a data integration system into which the database under assessment is
mapped, for additional analysis, processing, and quality data extraction.
In this work, we extend contexts with dimensions, and by doing so, mul-
tidimensional data quality assessment becomes possible. At the core of
multidimensional contexts we find ontologies written as Datalog± pro-
grams with provably good properties in terms of query answering. We
use this language to represent dimension hierarchies, dimensional con-
straints, dimensional rules, and specifying quality data. Query answering
relies on and triggers dimensional navigation, and becomes an important
tool for the extraction of quality data.

1 Introduction

Data quality assessment and data cleaning are context-dependent activities.
More precisely, the quality of data has to be assessed with some form of contex-
tual knowledge, in particular, about the production and the use of data, among
other possible dimensions of data quality. Data quality refers to the degree to
which data fits or fulfills a form of usage [1,20]. As expected, context-based data
quality assessment requires a formal model of context. Accordingly, we propose
a model of context that addresses quality concerns that are related to the pro-
duction and use of data.

Here we follow and extend the approach in [2] that provides a model of
context for data quality assessment. In that work, the assessment of a database
D is performed by putting D in context, more precisely, by mapping it into a
context C (Fig. 1, left), which is represented as another database, or as a database
schema with partial information, or, more generally, as a virtual data integration
system [22]. The latter may have some materialized data and access to external
data sources.

The quality of data in D is determined through additional processing, mate-
rial or virtual, of the data within the context. These contextual data may be
c© Springer International Publishing Switzerland 2015
N. Bassiliades et al. (Eds.): RuleML 2015, LNCS 9202, pp. 277–293, 2015.
DOI: 10.1007/978-3-319-21542-6 18

278 M. Milani and L. Bertossi

imported from D or may be already available at the context. The context may
also contain application-dependent knowledge associated to data quality, in the
form of rules or semantic constraints. Data processing in the context leads to
possibly several quality versions of D, forming a class Dq of intended, clean ver-
sions of D (Fig. 1, right). The quality of D is measured in terms of how much
D departs from (its quality versions in) Dq: dist(D,Dq). Of course, different
distance measures may be used for this purpose [2].

In some cases, we may want to assess the quality of answers to a query Q
posed to instance D or to obtain “quality answers” from D. This can be done
appealing to the class Dq of intended clean versions of D. For assessment, the
set of query answers to Q from D can be compared with the certain answers for
Q, i.e. the intersection of the sets of answers to Q from each of the instances in
Dq [19]. The certain answers become what we could call the clean answers to Q
from D [2]. So, if we want the clean answers to Q from D, instead of computing
the answers from D as usual, we compute the clean answers (cf. right-hand side
of Fig. 1).

Fig. 1. Clean instances and query answers

When computing clean
query answers, instead of
computing, materializing and
querying all the instances in
class Dq, a form of query
rewriting can be attempted: a
new query Qq is posed to D to
obtain the clean answers for
Q. Some cases of rewriting were investigated in [2]. In this work we continue
adopting this approach to data quality assessment and clean query answering.
However, as we will see, the contexts we consider in this work are more complex
than those considered in [2], and for good reasons.

An important contextual element was not considered in [2]: dimensions. They
were not considered as contextual elements for data quality analysis, but in prac-
tice, dimensions are naturally associated to contexts. Here, in order to capture
general dimensional aspects of data for inclusion in contexts, we take advantage
of and start from the Hurtado-Mendelzon (HM) multidimensional data model
[18], whose inception was mainly motivated by data warehouses (DWH) and
OLAP applications.

We extend the HM model by adding categorical relations associated to cat-
egories, at different levels of the dimension hierarchies, possibly to more than
one dimension (think of generalized fact tables as found in data warehouses).
It also includes dimensional constraints and dimensional rules, which could be
treated both as dimensional integrity constraints on categorical relations that
involve values from dimension categories. However, dimensional constraints are
intended to be used as denial constraints that forbid certain combinations of val-
ues, whereas the dimensional rules are intended to be used for data completion,
to generate data through their enforcement via dimensional navigation.

Ontology-Based Multidimensional Contexts 279

In this work we propose an ontological representation in Datalog± [6,7] of the
extended HM model, and also mechanisms for data quality assessment based on
query answering from the ontology via dimensional navigation. As already sug-
gested, the idea is that a query to the ontology triggers dimensional navigation
and the creation of missing data, in possible upward and downward directions,
and on multiple dimensions. Datalog± supports data generation through the
ontological rules. This is particularly useful, and also much in line with the way
we understand and use contexts in everyday life: Context allows us to extend or
expand information that, otherwise, without this extension, would be impossible
or difficult to understand or make sense of. Furthermore, this ontological app-
roach captures well our general philosophy according to which, contexts should be
represented as formal theories into which other objects, like database instances,
are mapped, for contextual analysis, assessment, interpretation, and additional
processing [2].

Datalog± is an extension of classical Datalog, mainly through the use of exis-
tentially quantified variables (a.k.a. value invention) in rule heads. It has been
successfully applied to the logical representations of data models and ontologies
[9,11]. Actually, a multidimensional (MD) context corresponding to the formal-
ization of the extension of HM becomes a Datalog± ontology, M, that belongs
to an interesting syntactic class of programs, for which some results are known.
This allows us to give a semantics to our ontologies, and apply some established
and new algorithms for query answering.

More precisely, the core MD ontology M is a weakly-sticky Datalog± pro-
gram [10], for which (conjunctive) query answering has polynomial-time data
complexity. In our case, weak-stickiness is due to the as we argue, natural
assumptions that: (a) dimension navigation (as captured by data generation)
happens through rules with body joins on categorical attributes (i.e. in categor-
ical relations), whose values come from dimension categories; and (b) there is
no value invention for categorical attributes. (We also discuss cases where these
assumptions do not hold.)

MD ontologies are used to support quality data specification and extraction.1

More precisely, and continuing with the above idea on this use of contexts, it
amounts to: (a) defining application-dependent quality predicates (they can be
seen as views capturing data quality concerns), (b) using them to define the
quality versions of the original predicates (relations) in the database D under
quality assessment, and (c) retrieving quality data by querying the (possibly
virtual extensions of the) latter predicates [2]. These predicate definitions may
be based on data quality guidelines that are captured as rules or semantic con-
straints, both of which may refer to categorical attributes of predicates in M,
without being part of M. Rather, this “quality part” of the context comes on top
of M. We establish that under reasonable conditions on these extra definitions,
the resulting extension of M still retains the tractability of query answering
(even when weak-stickiness may be compromised).

1 In this work we do not explicitly address the problem of assessing the quality of the
original data through a numerical comparison with the quality data [2].

280 M. Milani and L. Bertossi

About related work, in [4] dimensions become the basis for building con-
texts, or more precisely database instances that are tailored according to certain
dimensional elements. This is done through a process of selection of relevant
dimensional elements: the dimension leaves a footprint on the data. As a result,
the constructed database is implicitly dimensional, and the dimensions as such
may be lost as first-class objects in the generated context.

In [23,24] the authors consider the generation of data at different levels of a
category hierarchy, and at query answering time. This involves hierarchy navi-
gation and an extension of relational algebra that computes data by appealing
to data at other levels of the hierarchy. Actually, in our work we show how this
process can be captured via our Datalog± MD ontologies.

DWHs have been represented in expressive description logics (DL) [14]. Pre-
liminary research on extensions in DL of the HM model, also for data quality
purposes, can be found in [21].

Summarizing, in this work we make the following contributions:2
1. We extend the HM data model and represent the extension as a Datalog±

ontology that contains: (a) categorical relations, (b) tuple-generating-
dependencies, tgds (a rule incarnation of referential constraints), to connect
the original data to categorical relations, and the latter to dimensions; and
(c) dimensional constraints.

2. We establish that the MD ontology is a weakly-sticky Datalog± program [10].
As a consequence, query answering can be done in polynomial time.

3. We analyze the effect of dimensional constraints on query answering, specif-
ically the separability condition [10] between tgds and constraints that are
equality-generating-dependencies, egds. We show that by restricting variables
in equalities to appear categorical attributes, separability holds.

4. We propose a general approach for contextual data quality specification and
extraction that is based on MD ontologies, emphasizing the dimensional nav-
igation process that is triggered by queries about quality data. We illustrate
the application of this approach by means of an extended example.

2 An Extended, Motivating Example

This section illustrates the intuition behind categorical relations, dimensional
rules and constraints, and how they are used for data quality purposes. We
assume, according to the HM model (cf. Section 3), that a dimension consists of
a finite set of categories related to each other by a partial order.

Example 1. The relational table Measurements (Table 1) shows body tempera-
tures of patients in an institution. A doctor wants to know “The body tempera-
tures of Tom Waits for September 5 taken around noon with a thermometer of
brand B1” (as he expected). Possibly a nurse, unaware of this requirement, used

2 This work considerably extends [25], which contains basically the material of Section
2 here.

Ontology-Based Multidimensional Contexts 281

Fig. 2. An extended multidimensional model

a thermometer of brand B2, storing the data in Measurements. In this case, not
all the measurements in the table are up to the expected quality. However, table
Measurements alone does not discriminate between intended values (those taken
with brand B1) and the others.

For assessing the quality of the data in Measurements according to the doc-
tor’s quality requirement, extra contextual information about the thermometers
in use may help. In this case, the contextual information is in table PatientWard,
linked to the Ward category (Fig. 2, middle, bottom). This categorical relation
stores patient names for each ward of the institution.

Table 1. Measurements

Time Patient Value
1 Sep/5-12:10 Tom Waits 38.2
2 Sep/6-11:50 Tom Waits 37.1
3 Sep/7-12:15 Tom Waits 37.7
4 Sep/9-12:00 Tom Waits 37.0
5 Sep/6-11:05 Lou Reed 37.5
6 Sep/5-12:05 Lou Reed 38.0

Table 2. Measurementsq

Time Patient Value
7 Sep/5-12:10 Tom Waits 38.2
8 Sep/6-11:50 Tom Waits 37.1

Furthermore, the institution has
a guideline prescribing that: “Tem-
perature measurement for patients
in a standard care unit have to be
taken with thermometers of Brand
B1”. It can be used for data
quality assessment when combined
with categorical table PatientUnit
(Fig. 2, middle, top), which is
linked to the Unit category, and
whose data are (at least partially)
generated from PatientWard by
upward-navigation through dimen-
sion Hospital (Fig. 2, left), from cat-
egory Ward to category Unit.

According to the guideline, it is
now possible to conclude that, on
days when Tom Waits was in the
standard care unit, his temperature

282 M. Milani and L. Bertossi

Table 3. WorkingSchedules

Unit Day Nurse Type

1 Intensive Sep/5 Cathy cert.

2 Standard Sep/5 Helen cert.

3 Standard Sep/6 Helen cert.

4 Terminal Sep/5 Susan non-c.

5 Standard Sep/9 Mark non-c.

Table 4. Shifts

Ward Day Nurse Shift

1 W4 Sep/5 Cathy night

2 W1 Sep/6 Helen morning

3 W4 Sep/5 Susan evening

values were taken with the expected thermometer: for patients in wards W1 or
W2 a thermometer of brand B1 was used. These “clean data” in relation to the
doctor’s expectations appear in relation Measurementsq (Table 2).

Elaborating on this example, there could be a dimensional constraint: “No
patient in intensive care unit at any time during August 2005”. As stated,
this constraint could be represented as a “static” constraint on the categorical
relation PatientUnit. However, it could also be represented as one on the data
generation process via upward-navigation from PatientWard to PatientUnit, pre-
venting the use of the third tuple in table PatientWard. As such, this becomes
a navigational constraint that also involves dimensions Hospital and Time (Fig.
2, right). A third alternative is handling the constraint as a “static” constraint
on the join of PatientWard and PatientUnit via the patient name (Tom Waits
could not be both in ward W3 and intensive care on some dates). Our approach
will allow to handle the constraint in any of these three forms. �

Categorical relations may be incomplete, and new data can be generated for
them, which will be enabled through rules (tgds) of a Datalog± dimensional
ontology. The previous example shows data generation via upward navigation.
Our next example shows that downward navigation may also be useful. Our
approach to MD contexts will support both.

Example 2. (ex. 1 cont.) Consider two additional categorical relations, Work-
ingSchedules (Table 3) and Shifts (Table 4), linked to categories Unit and Ward,
resp. They store schedules of nurses in units and shifts of nurses in wards, resp.
A query to Shifts asks for dates when Mark was working in ward W2, which has
no answer with the data in Table 4. A new guideline states: “If a nurse works
in a unit on a specific day, he/she has shifts in every ward of that unit on the
same day”. It can be captured as a dimensional rule connecting WorkingSched-
ules to Shifts via the dimension hierarchy. Downward data generation using this
rule, tuple 5 in Table 3, and the dimensional connection of Standard to W1, W2,
makes Mark have shifts in both W1 and W2 on Sep/9. �

3 Preliminaries

Contextual Data Quality: We first briefly review previous work in [2] on
context-based data quality assessment. The starting point is that data quality is
context dependent. A context provides knowledge about the way data are interre-
lated, produced and used, which allows us to make sense of the data. In our view,

Ontology-Based Multidimensional Contexts 283

both the database under quality assessment and the context can be formalized
as logical theories. The former is then put in context by mapping it into the
latter, through logical mappings and possibly shared predicates.

Fig. 3. A context for data quality assessment

In Fig. 3, D is a
relational database (with
schema S) under quality
assessment. It can be rep-
resented as a logical the-
ory [28]. The context, C
in the middle, resembles a
virtual data integration
system, which can also be
represented as a logical the-
ory [22]. The context has a
relational schema (or signa-
ture), C, in particular pred-
icates with possibly partial extensions (incomplete relations). The mappings
between C and D are of the kind used in data integration or data exchange [16],
that can be expressed as logical formulas. In this paper, we are not concerned
with how such a context is created [2].

A subschema of C may have an instance I, but C has nicknames (copies) R′

for predicates R in S. Nicknames are used to map (via αi) the data in D into
C, for further logical processing. So, schema C can be seen as an expansion of S
through a subschema S ′. Some predicates in C are meant to be quality predicates
(in P), which are used to specify single quality requirements. There may be
semantic constraints on schema C, and also access (mappings) to external data
sources, in E , that could be used for data assessment or cleaning.

A clean version of D, obtained through the mapping into and process-
ing within context C, is a possibly virtual instance Dq (or a collection
thereof, as suggested in Fig. 1), for schema Sq (a “quality” copy of schema
S). The extension of every predicate in it, say Rq, is the “quality version”
of relation R in D, and is defined as a view (via the αq

i) in terms of
the nickname predicates in S ′, those in P, and other contextual predicates.

Fig. 4. A multidimensional context

The quality of (the data in)
instance D can be measured by
comparing D with the instance
Dq or the set, Dq, of them. This
latter set can also be used to
define and possibly compute the
quality answers to queries origi-
nally posed to D, as the certain
answers w.r.t. Dq. See [2] for
more details, and different cases
that may occur. In any case, the

284 M. Milani and L. Bertossi

main idea is that quality data can be extracted from D by querying the possibly
virtual class Dq.

In this paper, we extend the approach to data quality specification and
extraction we just described, by adding dimensions to contexts, for multidi-
mensional data quality specification and extraction. In this case, the context
contains a generic MD ontology, the shaded M in Fig. 4, a.k.a. “core ontology”
(and described in Section 4). This ontology can be extended, within the con-
text, with additional rules and constraints that depend on specific data quality
concerns (cf. Section 6).

The Hurtado-Mendelzon Data Model: According to the Hurtado-
Mendelzon (HM) multidimensional data model [18], a dimension schema, S =
〈K,↗〉, is a directed acyclic graph and lattice, with K a set of categories (repre-
sented as unary predicates), and ↗ the parent-child relation between categories.
↗∗ denotes the transitive and reflexive closure of ↗, and is a partial order with
a top category, All, which is reachable from every other category. There is a
unique base category, which does not have children. A dimension instance for
schema S is a tuple D = 〈N , <, σ〉, with N a set of elements, < is a parent-child
relation between elements, and σ : N → K, the membership function, is total
and injective. A dimension instance is shown in Fig. 2, left. The partial order
< parallels (is consistent with) ↗: a < b implies σ(a) ↗ σ(b). σ(e) = k is also
denoted as e ∈ k or k(e) (holds). <∗ is the transitive and reflexive closure of <,
and is used to define the roll-up relations for any pair of categories k and k′:
Lk′
k (D) = {(e, e′) | e ∈ k, e′ ∈ k′ and e <∗ e′}.

Datalog±: Datalog± [6,7] is a family of rule languages that properly extends
plain Datalog with: (a) rules (tgds) may have existential quantifiers in the heads;
(b) equality-generating dependencies (egds), i.e. rules with only equality in the
head; and (c) negative constraints (NCs), that are rules with ⊥, a false propo-
sitional atom, in the heads, indicating that the rule body cannot be true.
Example 3. This Datalog± program shows a tgd, an egd, and an NC, in this
order: ∃xAssist(d, x) ← Doctor(d); x = x′ ← Assist(d, x),Assist(d, x′);
⊥ ← Specialist(d, x, n),Nurse(d, n). �
Datalog± has been used to represent ontological knowledge and conceptual data
models [9,11]; and for ontology-based data access [13,15]. The underlying exten-
sional, relational database (the facts) I for a program may be incomplete, and
the chase is the standard procedure for completing the database, through the
enforcement of the program rules. When a tgd is applied, new atoms are created,
possibly including fresh nulls (for the existential variables), and the whole run of
the chase may be non-terminating, leading to an infinite complete database. The
enforcement of an egd equates nulls with nulls or nulls with constants or fails.
For a set Σ of tgds and egds, chase(I, Σ) denotes the possibly infinite instance
resulting from the non-failing chase of Σ on I.

Even with an infinite chase(I, Σ) it is possible that conjunctive query answer-
ing (QA) is decidable (or computable). The − in Datalog± stands for syntactic
restrictions on the interaction of tgds in Σ that ensure decidability of QA, and,

Ontology-Based Multidimensional Contexts 285

in some cases, also tractability (in data). Datalog± is a family of languages with
different degrees of expressivity and computational properties. Some of them
are: linear, guarded, weakly-guarded, sticky, and weakly-sticky Datalog± [6–10].
In this work (cf. [27, appendixA]), we are particularly interested in weakly-sticky
(WS) Datalog± [10], which extends sticky Datalog± [8].

4 Extending the HM Model with Datalog±

We extend the HM model introducing categorical relations, each of them having
a relational schema with a name, and attributes, some of which are categorical
and the other, non-categorical. The former take values that are members of a
dimension category. The latter take values from an arbitrary domain. Categorical
relations have to be logically connected to dimensions. For this we use a Datalog±
ontology M, which has a relational schema SM, an instance DM, and a set ΣM
of dimensional rules, and a set κM of constraints. Here, SM = K ∪ O ∪ R, with
K a set of unary category predicates, O a set of parent-child predicates, capturing
<-relationships for pairs of adjacent categories, and R a set of categorical predi-
cates, say R(C1, . . . ;N1, . . .), where, to highlight, categorical and non-categorical
attributes (Cis vs. Njs) are separated by “;”.
Example 4. Categorical relation PatientWard(Ward ,Day ;Patient) in Fig. 2 has
categorical attributes Ward and Day, connected to the Hospital and Time dimen-
sions, resp. Patient is non-categorical. Ward(·),Unit(·) ∈ K; O contains, e.g. a
binary predicate connecting Ward to Unit; and R contains, e.g. PatientWard. �

The (extensional) data, DM, associated to the ontology M’s schema are the
complete extensions for categories in K and predicates in O that come from
the dimension instances. The categorical relations (with predicates in R) may
contain partial data, i.e. they may be incomplete. They can belong to instance
I in Fig. 4. Dimensional rules in ΣM are those in (c) below; and constraints in
κM, those in (a) and (b).

(a) Referential constraints between categorical attributes and categories as neg-
ative constraint:3 (R ∈ R, K ∈ K; ē, ā are categorical, non-categorical,
resp.; e ∈ ē)

⊥ ← R(ē; ā),¬K(e). (1)

Notice that K, to which negation is applied, is a closed, extensional predicate.
(b) Additional dimensional constraints, as egds or NCs: (Ri ∈ R, Dj ∈ O, and

x, x′ stand both for either categorical or non-categorical attributes in the
body of (2))

x = x′ ← R1(ē1; ā1), ..., Rn(ēn; ān),D1(e1, e′
1), ...,Dm(em, e′

m). (2)
⊥ ← R1(ē1; ā1), ..., Rn(ēn; ān),D1(e1, e′

1), ...,Dm(em, e′
m). (3)

3 An alternative and more problematic approach, may use tgds between categorical
attributes and categories, making it possible to generate elements in categories or
categorical attributes.

286 M. Milani and L. Bertossi

(c) Dimensional rules as Datalog± tgds:

∃āz Rk(ēk; āk) ← R1(ē1; ā1), ..., Rn(ēn; ān),D1(e1, e′
1), ...,Dm(em, e′

m). (4)

Here, āz ⊆ āk, ēk ⊆ ē1 ∪ ...∪ ēn ∪{e1, ..., em, e′
1, ..., e

′
m}, āk�āz ⊆ ā1 ∪ ...∪ ān;

and repeated variables in bodies are only in positions of categorical attributes
(in the categorical relations Ri(ēi; āi)), and attributes in parent-child pred-
icates Dj(ej , e′

j)
4. Value invention is only on non-categorical attributes (we

will consider relaxing this later on).
Some of the lists in the bodies of (2)-(4) may be empty, i.e. n = 0 or m = 0.
This allows us to represent, in addition to properly “navigational” constraints,
also classical constraints on categorical relations, e.g. keys or FDs.
Example 5. (ex. 1 and 4 cont.) In relation PatientUnit, the categorical attribute
Unit takes values from the Unit category. We use a constraint of the form (1),
namely: ⊥ ← PatientUnit(u, d ; p),¬Unit(u). The constraint “No patient in
intensive care unit during August 2005” becomes a dimensional (navigational)
constraint of the form (3):

⊥ ← [PatientWard(w , d ; p),UnitWard(Intensive, w), (5)
MonthDay(August2005, d)].

Alternatively, we could apply a constraint directly on PatientUnit , without
explicit navigation in the Hospital dimension, but we still need to navigate
in the Time dimension: ⊥ ← PatientUnit(Intensive, d ; p),MonthDay
(August2005, d).

An egd of the form (2) says that “All thermometers in a unit are of the same
type”:

t = t′ ← Therm(w , t ;n),Therm(w ′, t ′;n ′),UnitWard(u,w),UnitWard(u,w ′) (6)

with Therm(Ward ,Thertype;Nurse) a categorical relation, and Ward, Thertype
categorical attributes (the latter for an Instrument dimension). This egd illus-
trates the flexibility of our approach. Even without having a categorical relation
at the Unit, we could still impose a condition at that level.5

The following tgds generate data from PatientWard to PatientUnit, and from
WorkingSchedules to Shifts, resp. They are of the form (4).

PatientUnit(u, d ; p) ← PatientWard(w , d ; p),UnitWard(u,w). (7)
∃z Shifts(w , d ;n, z) ← WorkingSchedules(u, d ;n, t),UnitWard(u,w). (8)

The existential variable in (8) makes up for the missing, non-categorical attribute
in the “parent” relation WorkingSchedules. This is not needed in (7). �
Remark 1. A general tgd of the form (4) enables upward- or downward-
navigation, depending on the body joins. The direction is determined by the
dimension levels of categorical attributes in the joins. For simplicity, assume that
4 This is a natural restriction since dimension navigation is captured by the joins only
between variables of these attributes

5 If we have that relation, as in Example 1, then (6) could be replaced by a “static”,
non-navigational FD. This issue is further discussed in [27, appendixB].

Ontology-Based Multidimensional Contexts 287

there is a single Dj ∈ O in the body (as in (7) and (8)). If the join is between
Ri(ēi; āi) and Dj(ej , e′

j) then: (a) (one-step) upward navigation is enabled, from
e′
j to ej , when e′

j ∈ ēi (i.e. e′
j appears in Ri(ēi; āi)) and ej ∈ ēk, i.e in the head),

(b) (one-step) downward navigation is enabled, from ej to e′
j , when ej occurs in

Ri and e′
j occurs in Rk. Several occurrences of parent-child predicates in a body

capture multi-step navigation. �

Example 6. (ex. 5 cont.) Rule (8) captures downward-navigation; and this is a
general behavior with tgds of the form (4). That is, when drilling-down via (8),
from a tuple, say WorkingSchedules(u, d;n, t) via the category member u (for
Unit), for each child w of u in the Ward category, a tuple for Shifts is generated,
as specified in the body of (8). For example, chasing (8) with the last tuple in
Table 3, generates the new tuple 〈W1, Sep/9, Mark,⊥〉 in Table 4, with a fresh
null for the shift (similarly for W2). This allows us to answer the query about
the dates Mark works in W1: Q′(d) : ∃sShifts(W1, d, Mark, s). We obtain Sep/9.

Instead, the join between PatientWard and UnitWard in (7) enables upward-
dimension navigation; and generates only one tuple for PatientUnit from each
tuple in PatientWard, because each Ward member has only one Unit parent. �

5 Properties of MD Datalog± Ontologies

Here, we first establish the membership of our MD ontologies, M (cf. Section 4)
of a class of the Datalog± family. Membership is determined by the set ΣM of
its tgds. Next, we analyze the role of the constraints in κM, in particular, of the
set εM of egds.

Proposition 1. MD ontologies are weakly-sticky Datalog± programs. �

The proof (as other proofs) and a review of weakly-sticky Datalog± [10] can be
found in the extended version [27, appendixA.]. A consequence of this result is
that conjunctive query answering (QA) from ΣM is in polynomial-time in data
complexity [10]. The complexity stays the same if we add negative constraints,
NCs, of the forms (1) and (3), because they can be checked through the conjunc-
tive queries in their bodies [10]. However, combining the egds in εM with ΣM
could change things, and, in principle, even lead to undecidability of QA [5].

Example 7. Consider I = {Surgery(W1, John)} and a weakly-sticky set ΣT

of tgds: σ1 : ∃z Surgeon(w, z) ← Surgery(w, p); σ2 : ∃y Assist(w, y) ←
Surgery(w, p); σ3 : ∃z Surgery(z, x) ← Assist(w, x),Surgeon(w′, x). Here,
chase(I,ΣT)={Surgery
(W1, John),Assist(W1,⊥1), Surgeon(W1,⊥2)}.

Now, if we add the egd ε : y = z ← Assist(w, z),Surgeon(w, y), the
chase is infinite: chase(I, ΣT ∪ {ε}) = {Surgery(W1, John), Assist(W1,
⊥1), Surgeon(W1,⊥1), Surgery(⊥2,⊥1), Assist(⊥2,⊥3), Surgeon(⊥2,⊥3),
Surgery(⊥4,⊥3), . . .}.

288 M. Milani and L. Bertossi

These non-failing chases give different answers to the Boolean conjunctive
query (BCQ) Q: ∃wxw′(Assist(w;x)∧Surgeon(w′;x)): chase(I, ΣT ∪{ε}) |= Q,
but chase(I, ΣT)
|= Q. �

This example shows a harmful interaction between the tgds and an egd. They
infinitely fire each other, making infinite an initially finite chase. The interaction
also has an effect on QA. A separability condition on the combination of egds
and tgds guarantees a harmless interaction w.r.t. QA.
Definition 1. [9,12] Let Σ be formed by a set ΣT of tgds and a set ΣE of egds.
ΣE and ΣT are separable if, for every instance I for which the chase of Σ on I
does not fail, and BCQ Q, chase(I, Σ) |= Q if and only if chase(I, ΣT) |= Q.�

Example 7 shows a case of non-separability. Separability tells us that we can
safely ignore ΣE for QA. More precisely, if separability holds and QA is decidable
under the tgds, then it is also decidable under the combination of tgds and egds
: (a) (combined) chase failure can be decided by posing conjunctive queries
associated to the bodies of the egds [12, theo.1]; (b) if it does not fail, QA can
be done with the tgds alone. Even more, under separability, the complexity of
QA on I ∪ Σ is the same as for I ∪ΣT [9,11,12].
Proposition 2. For an MD ontology M with a set ΣM of tgds as in (4) and
set εM of egds as in (2), separability holds if, for every egd in εM, the variables
in the equality (in the head) occur in categorical positions in the body. �
In combination with Proposition 1, we obtain:

Corollary 1. Under the hypothesis of Proposition 2, QA from an MD ontology
can be done in polynomial-time in data. �
Under the hypothesis of Proposition 2, our MD ontologies are separable and
enjoy the good properties we just mentioned. However, some good properties can
still be preserved with non-separable MD ontologies. The next example motivates
this result.
Example 8. (ex. 7 cont.) Let us modify our ontology. Now, Σ′

T = {σ1, σ2},
and the egd is still ε. Now, both chases are finite: chase(I, Σ′

T ∪ {ε})
= {Surgery(W1; John), Assist(W1;⊥1), Surgeon(W1;⊥1)}; and chase(I, Σ′

T) =
{Surgery(W1; John), Assist (W1;⊥1), Surgeon(W1;⊥2)}. (As before, we use “;” to
separate categorical from non-categorical attributes.) The egd is not separable
from the tgds. Actually, for the same query Q of Example 7, and the non-failing
chases, it holds: chase(I, Σ′

T ∪ {ε}) |= Q, but chase(I, Σ′
T)
|= Q. �

In this example, despite the lack of separability, the application of egds does not
trigger new tgds during the chase (as happens in Example 7). This is due (cf.
Lemma 1 below) to the fact that Σ′

T ∪ {ε} respects a condition imposed on our
MD ontologies: joins in tgd bodies only between categorical attributes. (The
ontology in Example 7 had σ3, which violates this condition.) Lemma 1 below
tells us that with MD ontologies, applying egd chase steps does not increase the
number of tgd chase steps.6
6 We assume the chase, after the enforcement of a (ground) tgd, applies all the egds.

Ontology-Based Multidimensional Contexts 289

Lemma 1. For an MD ontology M with a set ΣM of tgds as in (4) and a set εM
of egds as in (2), applying an egd chase step does not cause any new application
of a ground tgd, i.e. a tgd body ground instantiation that did not appear without
the egds. �

With weakly-sticky sets of tgds the chase may not terminate, due to an infinite
number of tgd chase steps. This is in particular the case for the set of tgds in our
MD ontologies. However, QA on weakly-sticky tgds can be done in polynomial-
time by querying an initial portion of the chase that has a polynomial depth [10].
By Lemma 1, if we add egds, QA can still be done by querying an initial portion
of the chase (including egds now) that has the same (polynomial) depth as that
for tgds alone. So, although egds in our MD ontologies may have an effect on
QA (the two initial portions can be different), the complexity does not change
w.r.t. to having only the tgds.

Proposition 3. For an MD ontology, QA is in polynomial-time in data com-
plexity. �

6 MD Contexts for Quality Data

We now show in general how to use a MD context, C, containing MD ontologies
for quality data specification and extraction w.r.t. a database instance D for
schema S. We will at the same time, for illustration and fixing ideas, revisit
the example in Section 2, putting it in terms of the MD context elements we
presented in Section 4. Context C, as shown in Fig. 4, contains:
1. Nickname predicates R′ ∈ S ′ for predicates R of original schema S. In this
case, the R′ have the same extensions as in D, producing a material or virtual
instance D′ within C.

For example, Measurements ′ ∈ S ′ is a nickname predicate for
Measurements ∈ S, whose initial contents (in D) is under quality assessment.
2. The core MD ontology, M, that includes a partial instance, DM, containing
dimensional, categorical data; and the Datalog± ontology with tgds ΣM, and
constraints κM, among them, the egds εM of Section 4. We assume that appli-
cation dependent guidelines and constraints are all represented as components
of M.

In our running example, PatientUnit , PatientWard , WorkingSchedules and
WorkingTimes are categorical relations. UnitWard , DayTime are parent-child
relations in the Hospital and Time dimensions, resp. The followings are dimen-
sional rules (tgds) of ΣM: (with (9) a new version of (7) allowing upward-
navigation in two dimensions)7

WorkingTimes(u, t;n, y) ← WorkingSchedules(u, d;n, y),DayTime(d, t).

PatientUnit(u, t; p) ← PatientWard(w, d; p),DayTime(d, t),UnitWard(u,w).(9)

7 A tgd may support multidimensional navigation and in multiple directions.

290 M. Milani and L. Bertossi

3. The set of quality predicates, P, with their definitions in, say non-recursive
Datalog8 (possibly with negation, not), in terms of categorical predicates in R
and built-in predicates. They may have partial or full extensions in the contex-
tual instance I (that includes DM). A quality predicate reflects an application
dependent specific quality concern.

Now, TakenByNurse and TakenWithTherm are quality predicates with def-
initions on top of M, addressing quality concerns about the nurses and the
thermometers:

TakenByNurse(t, p, n, y) ← WorkingTimes(u, t;n, y),PatientUnit(u, t; p). (10)
TakenWithTherm(t, p, b) ← PatientUnit(u, t; p), u = Standard, b = B1. (11)

Furthermore, and not strictly inside context C, there are predicates
Rq

1, ..., R
q
n ∈ Sq, the quality versions of R1, ..., Rn ∈ S. They are defined through

quality data extraction rules written in non-recursive Datalog, in terms of nick-
name predicates (in S ′), categorical predicates (in R), and the quality predicates
(in P), and built-in predicates. Their definitions (the αq

i in Fig. 4) impose con-
ditions corresponding to user’s data quality profiles, and their extensions form
the quality data (instance).

The quality version of Measurements is Measurementq ∈ Sq, with the follow-
ing definition, which captures the intended, clean contents of the former:

Measurementq(t, p, v) ← Measurement ′(t, p, v),TakenByNurse(t, p, n, y), (12)
TakenWithTherm(t, p, b), b = B1, y = certified.

Quality data can be obtained from the interaction between the original source
D and the context C, in particular using the MD ontology M. For that, queries
have to be posed to the context, in terms of predicates Sq, the quality versions
of those of D. A query could be as direct as asking, e.g. about the contents of
predicate Measurementq above, or a conjunctive query involving predicates Sq.

A naive user —not familiar with the exact interaction with the context—
who expects to obtain quality data from D will express a query Q in terms of
the original schema S. However, the information system will rewrite the query
into Qq, in terms of the predicates in Sq. Consequently, the quality answers to
Q, are defined as those that are certain through the context:

Definition 2. For D an instance for schema S, C the context containing MD
ontology M, and definitions ΣP , Σq of quality and quality version predicates,
resp., the set of clean answers to a conjunctive query Q(x̄) on schema S is:

QAnsCD(Q) = {c̄ | D ∪ M ∪ ΣP ∪ Σq |= Qq[c̄]}. �
For example, this is the initial query asking for (quality) values for Tom

Waits’ temperature: Q(t, v) : Measurements(t, Tom Waits, v) ∧ Sep5-11:45 ≤
t ≤ Sep5-12:15, which, in order to be answered, has to be first rewritten into:
Qq(t, v) : Measurementsq(t , Tom Waits, v) ∧ Sep5-11:45 ≤ t ≤ Sep5-12:15.
8 Actually, more general rules could be used if they do not increase the complexity of
query answering with the MD ontology.

Ontology-Based Multidimensional Contexts 291

To answer this query, first (12) can be used, obtaining a contextual query:

QC(t, v) : Measurement ′(t, p, v) ∧ TakenByNurse(t, p, n, certified) ∧
TakenWithTherm(t, p, B1) ∧ p = Tom Waits ∧
Sep/5-11:45 ≤ t ≤ Sep/5-12:15.

This query will in turn, use the contents for Measurement ′ coming from
D, and the quality predicate definitions (10) and (11), eventually leading to a
conjunctive query expressed in terms of Measurement ′ and MD predicates only,
namely:

QM(t, v) : Measurement ′(t, p, v) ∧ WorkingTimes(u, t;n, y) ∧
PatientUnit(u, t; p) ∧ u=Standard ∧ y=certified ∧
p = Tom Waits ∧ Sep/5-11:45 ≤ t ≤ Sep/5-12:15.

At this point, QA from a weakly-sticky ontology has to be performed. We
know that this can be done in polynomial time in data. However, there is still
a need for practical QA algorithms. Doing this goes beyond the scope of this
paper. In [26] we describe some ideas on the development and optimization of
such an algorithm.

7 Conclusions

Contexts, in particular, the multidimensional ones introduced in this work, allow
us to specify data quality conditions, and to retrieve quality data. This is done
by first mapping a data source, possibly with dirty data, into the context. The
quality data can be materialized (possibly generating more than one intended
clean instance) or be virtually defined. In both cases, it can be retrieved via
queries. This latter idea of cleaning data on-the-fly is reminiscent of consis-
tent query answering [3]. The main and important difference is that, instead of
having (possibly violated) integrity constraints, with contexts we have a much
more complex semantic framework for the definition of “repairs” (intended clean
instances in our case) and consistent answers (the certain clean answers here).

There is still much to do in terms of development and optimization of practi-
cal query answering algorithms for weakly-sticky ontologies. Some first steps are
reported in [26]. Implementation and experiments are matter of future work.

Several extensions of the current work have been or are being investigated.
Those extensions can be found in the extended version of this paper [27]. Some
of them are as follows:
1. Uncertain downward-navigation when tgds allow existentials on categorical
attributes. A parent in a category may have multiple children in the next lower
category. Under the assumption of complete categorical data, we know it is one
of them, but not which one.
2. Our MD ontologies fully capture the taxonomy-based data model [23,24] and
its taxonomy relational algebra (TRA) for query answering. Our appraoch goes

292 M. Milani and L. Bertossi

beyond [24] in the sense that, first, our categorical relations, by having non-
categorical attributes, generalize t-relations. Secondly, the dimensional rules in
our MD ontologies capture the TRA, and offer existential variables for handling
incomplete data. Finally, we also include and support ontological constraints,
such as NCs and egds for restricting dimension navigation.
3. The negative constraints (and egds, mainly in the separable case) can and are
checked on the result of the chase. We think a more natural and practical app-
roach would be to integrate constraint checking with data generation, restricting
the latter process. This would amount to compiling constraints into tgds, which
might lead to the use of negation in tgd bodies [11,17].
4. We may relax the assumption on complete categorical data. This brings
many new issues and problems that require investigation; from query answering
to the maintenance of structural semantic constraints, such as strictness and
homogeneity, on the HM model and our extension of it.

References

1. Batini, C., Scannapieco, M.: Data Quality: Concepts, Methodologies and
Techniques. Springer (2006)

2. Bertossi, Leopoldo, Rizzolo, Flavio, Jiang, Lei: Data quality is context depen-
dent. In: Löser, Alexander (ed.) BIRTE 2010. LNBIP, vol. 84, pp. 52–67. Springer,
Heidelberg (2011)

3. Bertossi, L.: Database Repairing and Consistent Query Answering. Morgan &
Claypool (2011)

4. Bolchini, C., Quintarelli, E., Tanca, L.: CARVE: Context-Aware Automatic View
Definition over Relational Databases. Information Systems 38, 45–67 (2013)

5. Cali, A., Lembo, D., Rosati, R.: On the decidability and complexity of
query answering over inconsistent and incomplete databases. In: Proc. PODS,
pp. 260–271 (2003)

6. Cali, A., Gottlob, G., Lukasiewicz, T.: Datalog±: a unified approach to ontologies
and integrity constraints. In: Proc. ICDT, pp. 14–30 (2009)

7. Cali, A., Gottlob, G., Lukasiewicz, T., Marnette, B., Pieris, A.: Datalog±: a family
of logical knowledge representation and query languages for new applications. In:
Proc. LICS, pp. 228–242 (2010)

8. Cali, A., Gottlob, G., Pieris, A.: Query answering under non-guarded rules in
datalog+/-. In: Proc. RR, pp. 1–17 (2010)

9. Cali, A., Gottlob, G., Pieris, A.: Ontological Query Answering under Expressive
Entity-Relationship Schemata. Information Systems 37(4), 320–335 (2012)

10. Cali, A., Gottlob, G., Pieris, A.: Towards More Expressive Ontology Languages:
The Query Answering Problem. Artificial Intelligence 193, 87–128 (2012)

11. Cali, A., Gottlob, G., Lukasiewicz, T.: A General Datalog-Based Framework for
Tractable Query Answering over Ontologies. Journal of Web Semantics 14, 57–83
(2012)

12. Cali, A., Console, M., Frosini, R.: On separability of ontological constraints. In:
Proc. AMW, pp. 48–61 (2012)

13. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-
Muro, M., Rosati, R., Ruzzi, M., Savo, D.F.: The MASTRO System for Ontology-
Based Data Access. Semantic Web 2(1), 43–53 (2011)

Ontology-Based Multidimensional Contexts 293

14. Franconi, E., Sattler, U.: A data warehouse conceptual data model for multidimen-
sional aggregation. In: Proc. DMDW, CEUR Proceedings, vol. 19 (1999)

15. Gottlob, G., Orsi, G., Pieris, A.: Query Rewriting and Optimization for Ontological
Databases. ACM Trans. Database Syst. 39(3), 25 (2014)

16. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data Exchange: Semantics and
Query Answering. Theoretical Computer Science 336, 89–124 (2005)

17. Hernich, A., Kupke, C., Lukasiewicz, T., Gottlob, G.: Well-Founded semantics for
extended datalog and ontological reasoning. In: Proc. PODS, pp. 225–236 (2013)

18. Hurtado, C., Mendelzon, A.: OLAP dimension constraints. In: Proc. PODS,
pp. 169–179 (2002)

19. Imielinski, T., Lipski, W.: Incomplete Information in Relational Databases. Journal
of the ACM 31(4), 761–791 (1984)

20. Jiang, L., Borgida, A., Mylopoulos, J.: Towards a compositional semantic account
of data quality attributes. In: Proc. ER, pp. 55–68 (2008)

21. Maleki, A., Bertossi, L., Rizzolo, F.: Multidimensional contexts for data quality
assessment. In: Proc. AMW, 2012, CEUR Proceedings, vol. 866, pp. 196–209

22. Lenzerini, M.: Data integration: a theoretical perspective. In: Proc. PODS,
pp. 233–246 (2002)

23. Martinenghi, D., Torlone, R.: Querying context-aware databases. In: Andreasen,
T., Yager, R.R., Bulskov, H., Christiansen, H., Larsen, H.L. (eds.) FQAS 2009.
LNCS, vol. 5822, pp. 76–87. Springer, Heidelberg (2009)

24. Martinenghi, D., Torlone, R.: Taxonomy-Based Relaxation of Query Answering in
Relational Databases. The VLDB Journal 23(5), 747–769 (2014)

25. Milani, M., Bertossi, L., Ariyan, S.: Extending contexts with ontologies for mul-
tidimensional data quality assessment. In: Proc. ICDEW (DESWeb), pp. 242–247
(2014)

26. Milani, M., Bertossi, L.: Tractable Query Answering and Optimization for Exten-
sions of Weakly-Sticky Datalog± (2015). Submitted, under review

27. Milani, M., Bertossi, L.: Ontology-Based Multidimensional Contexts with Applica-
tions to Quality Data Specification and Extraction. Extended version of this paper.
http://people.scs.carleton.ca/∼bertossi/papers/obmcExt.pdf

28. Reiter, R.: Towards a logical reconstruction of relational database theory. In:
Brodie, M.L., Mylopoulos, J., Schmidt, J.W. (eds.) On Conceptual Modelling,
pp. 191–233. Springer (1984)

http://people.scs.carleton.ca/~bertossi/papers/obmcExt.pdf

Existential Rules and Bayesian Networks
for Probabilistic Ontological Data Exchange

Thomas Lukasiewicz1, Maria Vanina Martinez2,
Livia Predoiu1(B), and Gerardo I. Simari2

1 Department of Computer Science, University of Oxford, Oxford, UK
livia.predoiu@cs.ox.ac.uk

2 Department of Computer Science and Engineering,
Universidad Nacional Del Sur and CONICET, Bah́ıa Blanca, Argentina

Abstract. We investigate the problem of exchanging probabilistic data
between ontology-based probabilistic databases. The probabilities of the
probabilistic source databases are compactly and flexibly encoded via
Bayesian networks, which are closely related to the management of prove-
nance. For the ontologies and the ontology mappings, we consider exis-
tential rules from the Datalog+/– family. We analyze the computational
complexity of the problem of deciding whether there exists a probabilistic
(universal) solution for a given probabilistic source database relative to
a (probabilistic) ontological data exchange problem. We provide a host
of complexity results for this problem for different classes of existential
rules. We also analyze the complexity of answering UCQs (unions of
conjunctive queries) in this framework.

1 Introduction

Uncertainty is prevalent in many areas such as information extraction, RFID,
scientific data management, data cleaning, web data integration, financial risk
assessment, and weather forecasts. Such applications produce large volumes of
uncertain data, which are best modeled, stored, and processed in probabilistic
databases [24]. Enriching databases with terminological knowledge encoded in
ontologies has recently gained increasing importance in the form of ontology-
based data access (OBDA) [22]. A crucial problem in OBDA is to integrate and
exchange knowledge.

Both in the context of OBDA and the Semantic Web in general, there are dis-
tributed ontologies that we may have to map and integrate in order to enable query
answering over them. Apart from the uncertainty attached to source databases,
the ontology mappings may also have associated uncertainty regarding the proper
correspondence between items in the source ontology and items in the target ontol-
ogy. This especially happens when the mappings are created automatically.

Data exchange [12] is an important theoretical framework used for study-
ing data-interoperability tasks that require data to be transferred from existing
databases to a target database that comes with its own (independently created)
schema and schema constraints. The expressivity of the data exchange framework
c© Springer International Publishing Switzerland 2015
N. Bassiliades et al. (Eds.): RuleML 2015, LNCS 9202, pp. 294–310, 2015.
DOI: 10.1007/978-3-319-21542-6 19

Existential Rules and Bayesian Networks 295

goes beyond the classical data integration framework [18]. Schema mappings are
used for the translation, which are declarative specifications that describe the
relationship between two database schemas. In classical data exchange, we have
a source database, a target database, a deterministic mapping, and deterministic
target dependencies. Recently, a framework for probabilistic data exchange was
proposed in [11], where the classical data exchange framework based on weakly
acyclic existential rules is extended to consider a probabilistic source database
and a probabilistic source-to-target mapping.

In this paper, we propose and study a more expressive extension of the prob-
abilistic data exchange framework of [11], in which the source and the target
are ontological knowledge bases each consisting of a probabilistic database and
a deterministic ontology describing terminological knowledge about the data
stored in the database. The two ontologies and the mapping between them are
expressed via existential rules. Our extension of the data exchange framework is
strongly related to exchanging data between incomplete databases, as proposed
in [3], which considers an incomplete deterministic source database in the data
exchange problem. However, in that work, the databases are deterministic, and
the mappings and the target database constraints are full existential rules only.
In this paper, our complexity analysis considers a host of different classes of
existential rules, including some subclasses of full existential rules. In addition,
our source is a probabilistic database relative to an underlying ontology.

Our work in this paper is also related to the recently proposed knowledge
base exchange framework [1,2], which allows knowledge to be exchanged between
deterministic DL-LiteRDFS and DL-LiteR ontologies. In this paper, besides con-
sidering probabilistic source databases, we are also using more expressive ontol-
ogy languages, since already linear existential rules from the Datalog+/– family
are strictly more expressive than the description logics (DLs) DL-LiteX of the
DL-Lite family [9] as well as their extensions with n-ary relations DLR-LiteX .
Guarded existential rules are sufficiently expressive to model the tractable DL
EL [4,5] (and ELIf [17]). Note that existential rules are also known as tuple-
generating dependencies (TGDs) and Datalog+/– rules [7].
The main contributions of this paper are summarized as follows.

– We introduce deterministic and probabilistic ontological data exchange prob-
lems, where probabilistic knowledge is exchanged between two Bayesian
network-based probabilistic databases relative to their underlying determin-
istic ontologies, and the deterministic and probabilistic mapping between
the two ontologies is defined via deterministic and probabilistic existential
mapping rules, respectively.

– We provide an in-depth analysis of the data and combined complexity of
deciding the existence of probabilistic (universal) solutions and obtain a
(fairly) complete picture of the data complexity, general combined complex-
ity, bounded-arity combined (ba-combined), and fixed-program combined
(fp-combined) complexity for the main sublanguages of the Datalog+/– fam-
ily. We also delineate some tractable special cases, and we provide some
complexity results for exact UCQ (union of conjunctive queries) answering.

296 T. Lukasiewicz et al.

– For the complexity analysis, we consider a compact encoding of probabilistic
source databases and mappings, which is used in the area of both incomplete
and probabilistic databases, and also known as data provenance or data
lineage [13–15,24]. Here, we consider data provenance for probabilistic data
that is structured according to an underlying Bayesian network.

The rest of this paper is organized as follows. In Section 2, we recall the
basics of Datalog+/–. Sections 3.1 and 3.2 introduce the framework of ontolog-
ical data exchange for deterministic and probabilistic existential mapping rules,
respectively. In Sections 3.3 and 3.4, we define a compact encoding of the prob-
abilistic source databases and the probabilistic mappings as well as the main
computational tasks in deterministic and probabilistic ontological data exchange,
respectively. Section 4 discusses the ontology and mapping languages used, and
presents our complexity results for deterministic and probabilistic ontological
data exchange for a host of Datalog+/– sublanguages. In Section 5, we summa-
rize the main results and give an outlook on future research.

2 Preliminaries

We assume infinite sets of constants C, (labeled) nulls N, and regular variables
V. A term t is a constant, null, or variable. An atom has the form p(t1, . . . , tn),
where p is an n-ary predicate, and t1, . . . , tn are terms. Conjunctions of atoms are
often identified with the sets of their atoms. An instance I is a (possibly infinite)
set of atoms p(t), where t is a tuple of constants and nulls. A database D is a
finite instance that contains only constants. A homomorphism is a substitution
h : C ∪ N ∪ V → C ∪ N ∪ V that is the identity on C. We assume familiarity
with conjunctive queries (CQs). The answer to a CQ q over an instance I is
denoted q(I). A Boolean CQ (BCQ) q evaluates to true over I, denoted I |= q,
if q(I) �= ∅.

A tuple-generating dependency (TGD) σ is a first-order formula ∀Xϕ(X) →
∃Y p(X,Y), where X∪Y ⊆ V, ϕ(X) is a conjunction of atoms, and p(X,Y) is
an atom. We call ϕ(X) the body of σ, denoted body(σ), and p(X,Y) the head of
σ, denoted head(σ). We consider only TGDs with a single atom in the head, but
our results can be extended to TGDs with a conjunction of atoms in the head.
An instance I satisfies σ, written I |= σ, if the following holds: whenever there
exists a homomorphism h such that h(ϕ(X)) ⊆ I, then there exists h′ ⊇ h|X,
where h|X is the restriction of h to X, such that h′(p(X,Y)) ∈ I. A negative
constraint (NC) ν is a first-order formula ∀Xϕ(X) → ⊥, where X ⊆ V, ϕ(X)
is a conjunction of atoms, called the body of ν, denoted body(ν), and ⊥ denotes
the truth constant false. An instance I satisfies ν, denoted I |= ν, if there is no
homomorphism h such that h(ϕ(X)) ⊆ I. Given a set Σ of TGDs and NCs, I
satisfies Σ, denoted I |= Σ, if I satisfies each TGD and NC of Σ. For brevity,
we omit the universal quantifiers in front of TGDs and NCs.

Given a database D and a set Σ of TGDs and NCs, the answers we consider
are those that are true in all models of D and Σ. Formally, the models of D
and Σ, denoted mods(D,Σ), is the set of instances {I | I ⊇ D and I |= Σ}.

Existential Rules and Bayesian Networks 297

The answer to a CQ q relative to D and Σ is defined as the set of tuples
ans(q,D,Σ) =

⋂
I∈mods(D,Σ){t | t ∈ q(I)}. The answer to a BCQ q is true,

denoted D∪Σ |= q, if ans(q,D,Σ) �= ∅. The problem of CQ answering is defined
as follows: given a database D, a set Σ of TGDs and NCs, a CQ q, and a tuple of
constants t, decide whether t ∈ ans(q,D,Σ). Following Vardi’s taxonomy [25],
the combined complexity of BCQ answering is calculated by considering all the
components, i.e., the database, the set of dependencies, and the query, as part
of the input. The bounded-arity combined complexity (or simply ba-combined
complexity) is calculated by assuming that the arity of the underlying schema is
bounded by an integer constant. Notice that in the context of description logics
(DLs), whenever we refer to the combined complexity in fact we refer to the
ba-combined complexity since, by definition, the arity of the underlying schema
is at most two. The fixed-program combined complexity (or simply fp-combined
complexity) is calculated by considering the set of TGDs and NCs as fixed.

3 Ontological Data Exchange

The source (resp., target) of the ontological data exchange problem that we
consider in this paper is a probabilistic database (resp., probabilistic instance),
each relative to a deterministic ontology. For clarity, in the following, we consider
only one source database, but note that all our results carry over to the case
where several source databases are at once mapped to a target instance. Note
that in the source database, as usual in databases, there are no nulls (but all
our results can be easily extended to source databases with nulls), while in the
target instance, we may also have nulls.

Definition 1 (Probabilistic Databases and Instances). A probabilistic
database (resp., probabilistic instance) over a schema S is a probability space
Pr = (I, μ) such that I is the set of all (possibly infinitely many) databases
(resp., instances) over S, and μ : I → [0, 1] is a function that satisfies∑

I∈I μ(I) = 1.

In Section 3.1, we introduce the deterministic ontological data exchange
problem with deterministic mappings, while in Section 3.2, we present the
probabilistic ontological data exchange problem with probabilistic mappings. In
Section 3.3, we then introduce an encoding of both the probabilistic source
databases and the probabilistic mappings. In this encoding, a common way
to represent probabilistic databases with probabilistic conditions or provenance
[13,14,24] is combined with a more flexible probabilistic model based on Bayesian
networks, which does not necessarily assume probabilistic independence between
all probabilistic events.

3.1 Deterministic Ontological Data Exchange

The deterministic ontological data exchange setting generalizes the classical log-
ical framework of data exchange and integration [12] and its probabilistic exten-
sion [11]. It is tailored as data exchange from a probabilistic source database Prs

298 T. Lukasiewicz et al.

relative to a source ontology Σs (consisting of TGDs and NCs) over a schema S
to a probabilistic target instance Prt relative to a target ontology Σt (consisting
of a set of TGDs and NCs) over a schema T via a (source-to-target) mapping
(also consisting of a set of TGDs and NCs). Formally, ontological data exchange
(ODE) problems are defined as follows.

Definition 2 (Ontological Data Exchange (ODE)). An ontological data
exchange (ODE) problem M = (S,T, Σs, Σt, Σst) consists of (i) a source schema
S, (ii) a target schema T disjoint from S, (iii) a finite set Σs of TGDs and NCs
over S (called source ontology), (iv) a finite set Σt of TGDs and NCs over T
(called target ontology), and (v) a finite set Σst of TGDs and NCs σ over S ∪T
(called (source-to-target) mapping) such that body(σ) and head(σ) are defined
over S ∪ T and T, respectively.

The semantics of ODE problems is defined by relating probabilistic source
databases Prs = (I, μs) and probabilistic target instances Prt = (J , μt) in a
meaningful way. We first describe the relationship in the deterministic case. A
deterministic target instance J over T is a solution for a deterministic source
database I over S relative to an ODE problem M = (S,T, Σs, Σt, Σst) iff
(I∪J) |= Σs∪Σt∪Σst. We denote by SolM the set of all such pairs (I, J). Among
the possible deterministic solutions J to a deterministic source database I rela-
tive to M in SolM, we prefer the most general ones carrying only the necessary
information for data exchange, i.e., those that transfer only the source database
along with the relevant implicit derivations via Σs to the target ontology. Such
solutions are called universal solutions. A universal solution can be homomor-
phically mapped to all other solutions leaving the constants unchanged. Hence,
a deterministic target instance J over T is a universal solution for a determin-
istic source database I over S relative to a schema mapping M iff (i) J is a
solution, and (ii) for each solution J ′ for I relative to M, there is a homomor-
phism h : J → J ′. We denote by USolM (⊆SolM) the set of all pairs (I, J) of
deterministic source databases I and target instances J such that J is a universal
solution for I relative to M.

In the probabilistic case, a joint probability space Pr over the solution relation
SolM and the universal solution relation USolM must exist. To this end, we define
a joint probability space over the (universal) solution relation(s) as follows.

Definition 3 (Probabilistic (Universal) Solution). A probabilistic target
instance Prt = (J , μt) is a probabilistic solution (resp., probabilistic universal
solution) for a probabilistic source database Prs = (I, μs) relative to an ODE
problem M = (S,T, Σs, Σt, Σst) iff there exists a probability space Pr = (I ×
J , μ) such that:

1. The left and right marginals of Pr are Prs and Prt, respectively. That is,
(a)

∑
J∈J (μ(I, J)) = μs(I) for all I ∈ I and

(b)
∑

I∈I(μ(I, J)) = μt(J) for all J ∈ J ;
2. μ(I, J) = 0 for all (I, J) �∈ SolM (resp., (I, J) �∈ USolM).

Existential Rules and Bayesian Networks 299

Fig. 1. Probabilistic source database and two probabilistic target instances for Exam-
ple 1 (N1, . . . , N6 are nulls), which are both probabilistic solutions, but only Prta is
universal

The above condition (2) intuitively says that all non-solutions (I, J) have
probability zero. Note that the existence of a solution does not exclude that some
source databases with probability zero have no corresponding target instance.

Example 1. An ontological data exchange (ODE) problem M = (S,T, Σs,
Σt, Σst) is given by the source schema S = {Researcher(name, univ),
ResearchArea(name, topic), Publication(auth name, topic, jour name)}, the tar-
get schema T = {UResearchArea(univ, dept, topic), Lecture(topic, term)}, the
source ontology Σs = {σs, νs}, the target ontology Σt = {σt, νt}, and the map-
ping Σst = {σst, νm}, where:

σs : Publication(X,Y,Z) → ResearchArea(X,Y),
νs : Researcher(X,Y) ∧ ResearchArea(X,Y) → ⊥,

σt : UResearchArea(U,D,T) → ∃ZLecture(T,Z),
νt : Lecture(X,Y) ∧ Lecture(Y,X) → ⊥,

σst : ResearchArea(N,T) ∧ Researcher(N,U) → ∃DUResearchArea(U,D,T),
νm : ResearchArea(N,T) ∧ UResearchArea(U,T,N) → ⊥.

Given the probabilistic source database in Fig. 1, two possible probabilistic
solution instances Prta = (Ja, μta) and Prtb = (Jb, μtb) are shown in Fig. 1:
Prta involves the following probability space over SolM: Pra = {(I1, J1), 0.3),
((I2, J2), 0.3), ((I3, J3), 0.2), ((I4, J4), 0.1), ((I5, J4), 0.1)}, while Prtb involves
the following probability space over SolM: Prb = {(I1, J5), 0.3), ((I2, J6), 0.1),
((I2, J7), 0.2), ((I3, J6), 0.45), ((I4, J5), 0.05), ((I4, J6), 0.05), ((I5, J6), 0.1)}.
Note that while both Prta and Prtb are probabilistic solutions, only Prta is
also a probabilistic universal solution. �

For a deterministic source database D relative to an ODE problem
M= (S,T, Σs, Σt, Σst) and a CQ q(X)= ∃YΦ(X,Y,C) over T, the set of
answers for q to D relative to M is defined as ans(q,D,Σs ∪ Σt ∪ Σst). We
now generalize this to probabilistic source databases relative to ODE problems
and unions of CQs (UCQs).

300 T. Lukasiewicz et al.

Definition 4 (UCQs). A union of conjunctive queries (or UCQ) has the
form q(X) =

∨k
i=1 ∃Yi Φi(X, Yi, Ci), where each ∃Yi Φi(X,Yi,Ci)

with i ∈ {1, . . . , k} is a CQ with exactly the variables X and
Yi, and the constants Ci. Given an ODE problem M= (S, T, Σs,
Σt, Σst), probabilistic source database Prs = (I, μs), UCQ q(X) =
∨k

i=1 ∃Yi Φi(X,Yi,Ci), and tuple t (a ground instance of X in q) over C, the
confidence of t relative to q, denoted conf q(t), in Prs relative to M is the infi-
mum of Prt(q(t)) subject to all probabilistic solutions Prt for Prs relative to
M. Here, Prt(q(t)) for Prt = (J , μt) is the sum of all μt(J) such that q(t)
evaluates to true in the instance J ∈ J (i.e., some BCQ ∃Yi Φi(t,Yi,Ci) with
i ∈ {1, . . . , k} evaluates to true in J).

Example 2. Consider again the setting of Example 1, and let q be a
UCQ of a student who wants to know whether she can study both
machine learning and databases at the University of Oxford: q() =
∃X,Y(∃Z(Lecture(DB,X)∧UResearchArea(UoO,Z, DB))∨∃Z(Lecture(ML,Y)∧
UResearchArea(UoO,Z,ML))). Then, q yields the probabilities 0.65 and 0.8 on
Prta and Prtb, respectively. �

3.2 Probabilistic Ontological Data Exchange

Probabilistic ontological data exchange extends deterministic ontological data
exchange by turning the deterministic source-to-target mapping into a proba-
bilistic source-to-target mapping, i.e., we now have a probability distribution
over the set of all subsets of Σst, which is formally expressed as follows.

Definition 5 (Probabilistic Ontological Data Exchange (PODE)).
A probabilistic ontological data exchange (PODE) problem
M = (S,T, Σs, Σt, Σst, μst) consists of (i) a source schema S, (ii) a target
schema T disjoint from S, (iii) a finite set Σs of TGDs and NCs over S (called
source ontology), (iv) a finite set Σt of TGDs and NCs over T (called target
ontology), (v) a finite set Σst of TGDs and NCs σ over S∪T, and (vi) a function
μst : 2Σst → [0, 1] such that

∑
Σ′⊆Σst

μst(Σ′) = 1 (called probabilistic (source-
to-target) mapping).

The following definition lifts also the notion of probabilistic (universal) solu-
tion from probabilistic source databases relative to deterministic ODE problems
to probabilistic source databases relative to PODE problems.

Definition 6 (Probabilistic (Universal) Solution). A probabilistic target
instance Prt = (J , μt) is a probabilistic solution (resp., probabilistic universal
solution) for a probabilistic source database Prs = (I, μs) relative to a PODE
problem M = (S,T, Σs, Σt, Σst, μst) iff there exists a probability space Pr =
(I × J × 2Σst , μ) such that:

1. The three marginals of μ are μs, μt, and μst, such that:
(a)

∑
J∈J , Σ′⊆Σst

μ(I, J,Σ′) = μs(I) for all I ∈ I,

Existential Rules and Bayesian Networks 301

(b)
∑

I∈I, Σ′⊆Σst
μ(I, J,Σ′) = μt(J) for all J ∈ J , and

(c)
∑

I∈I, J∈J μ(I, J,Σ′) = μst(Σ′) for all Σ′ ⊆ Σst;
2. μ(I, J,Σ′) = 0 for all (I, J,Σ′) ∈ I × J × 2Σst such that (I, J) �∈ Sol (S,T,Σ′)

(resp., (I, J) �∈ USol (S,T,Σ′)).

Using probabilistic (universal) solutions for probabilistic source databases
relative to PODE problems, the semantics of UCQs is lifted to PODE problems
as follows.

Definition 7 (UCQs). Given a PODE problem M= (S, T, Σs, Σt, Σst, μst),
a probabilistic source database Prs = (I, μs), a UCQ q(X) =

∨k
i=1 ∃Yi

Φi(X,Yi,Ci), and a tuple t (a ground instance of X in q) over C, the con-
fidence of t relative to q, denoted conf q(t), in Prs relative to M is the infimum
of Prt(q(t)) subject to all probabilistic solutions Prt for Prs relative to M. Here,
Prt(q(t)) for Prt = (J , μt) is the sum of all μt(J) such that q(t) evaluates to true
in the instance J ∈ J .

3.3 Compact Encoding

We use a compact encoding of both probabilistic databases and probabilistic
mappings, which is based on annotating facts, TGDs, and NCs by probabilis-
tic events in a Bayesian network, rather than explicitly specifying the whole
probability space. We first define annotations and annotated atoms.

Definition 8 (Annotations and Annotated Atoms). Let e1, . . . , en be n ≥
1 elementary events. A world w is a conjunction �1 ∧ · · · ∧ �n, where each �i,
i ∈ {1, . . . , n}, is either the elementary event ei or its negation ¬ei. An annotation
λ is any Boolean combination of elementary events (i.e., all elementary events
are annotations, and if λ1 and λ2 are annotations, then also ¬λ1 and λ1∧λ2). An
annotated atom has the form a : λ, where a is an atom, and λ is an annotation.

The compact encoding of probabilistic databases is then defined as follows;
note that this encoding also underlies our complexity analysis in Section 4.

Definition 9 (Compact Encoding of Probabilistic Databases). A set A
of annotated atoms along with a probability μ(w)∈ [0, 1] for every world w com-
pactly encodes a probabilistic database Pr = (I, μ) whenever:

1. the probability μ of every annotation λ is the sum of the probabilities of all
worlds in which λ is true, and

2. the probability μ of every subset-maximal database {a1, . . . , am} ∈ I 1 such
that {a1 : λ1, . . . , am : λm} ⊆ A for some annotations λ1, . . . , λm is the prob-
ability μ of λ1 ∧ · · · ∧ λm (and the probability μ of every other database in
I is 0).

1 That is, we do not consider subsets of the databases here.

302 T. Lukasiewicz et al.

Fig. 2. Annotation-based encoding of the probabilistic source database in Fig. 1 (left),
along with a Bayesian network defining the probabilities of the events (right)

We assume that the probability distributions for the underlying events are
given by a Bayesian network, which is a well-known tool for compactly specify-
ing a joint probability space, encoding also a certain causal structure between
the variables. Note that Bayesian networks also provide a convenient relation-
ship to provenance, as provenance is often used for explaining query results and
outcomes, exploit results of prior reasoning, and establish trust in data, which is
related to causal reasoning [20]. The following example illustrates the compact
encoding of probabilistic source databases via Boolean annotations relative to
an underlying Bayesian network.

Example 3. Fig. 2 shows an annotation-based encoding of the probabilistic
source database in Fig. 1, where four elementary events are involved, and a
Bayesian network defines the probabilities of the events and their underlying
worlds. �

If the mapping is probabilistic as well, then we use two disjoint sets of ele-
mentary events, one for encoding the probabilistic source database and the other
one for the mapping. In this way, the probabilistic source database is indepen-
dent from the probabilistic mapping. We now define the compact encoding of
probabilistic mappings.

Definition 10 (Compact Encoding of Probabilistic Mappings). An
annotated TGD (resp., NC) has the form σ : λ, where σ is a TGD (resp., NC),
and λ is an annotation. A set Σ of annotated TGDs and NCs σ : λ with σ ∈ Σst

along with a probability μ(w) ∈ [0, 1] for every world w compactly encodes a
probabilistic mapping μst : 2Σst → [0, 1] whenever:

1. the probability μ of every annotation λ is the sum of the probabilities of all
worlds in which λ is true, and

2. the probability μst of every subset-maximal {σ1, . . . , σk}⊆ Σst such that
{σ1 : λ1, . . . , σk : λk}⊆ Σ for some annotations λ1, . . . , λk is the probability
μ of λ1 ∧ · · · ∧ λk (and the probability μst of every other subset of Σst is 0).

Existential Rules and Bayesian Networks 303

3.4 Computational Problems

We consider the following computational problems:

Existence of a solution (resp., universal solution): Given an ODE or a
PODE problem M and a probabilistic source database Prs, decide whether
there exists a probabilistic (resp., probabilistic universal) solution for Prs

relative to M.

Answering UCQs: Given an ODE or a PODE problem M, a probabilistic
source database Prs, a UCQ q(X), and a tuple t over C, compute conf Q(t)
in Prs w.r.t. M.

4 Computational Complexity

We now analyze the computational complexity of deciding the existence of a
(universal) probabilistic solution for deterministic and probabilistic ontological
data exchange problems. We also delineate some tractable special cases, and we
provide some complexity results for exact UCQ answering for ODE and PODE
problems.

We assume some elementary background in complexity theory [16,21], but
briefly recall the complexity classes that we encounter in our complexity results.
The complexity classes pspace (resp., p, exp, 2exp) contain all decision prob-
lems that can be solved in polynomial space (resp., polynomial, exponential,
double exponential time) on a deterministic Turing machine, while the com-
plexity classes np and nexp contain all decision problems that can be solved in
polynomial and exponential time on a nondeterministic Turing machine, respec-
tively; conp and conexp are their complementary classes, where “Yes” and “No”
instances are interchanged. The complexity class ac0 is the class of all languages
that are decidable by uniform families of Boolean circuits of polynomial size and
constant depth. The inclusion relationships among the above (decision) com-
plexity classes (all currently believed to be strict) are as follows:

ac0 ⊆ p⊆ np, conp⊆ pspace⊆ exp⊆ nexp, conexp⊆ 2exp

The (function) complexity class #p is the set of all functions that are com-
putable by a polynomial-time nondeterministic Turing machine whose output
for a given input string I is the number of accepting computations for I.

4.1 Decidability Paradigms

The main (syntactic) conditions on TGDs that guarantee the decidability of CQ
answering are guardedness [6], stickiness [8], and acyclicity. Each one of these
conditions has its “weak” counterpart: weak guardedness [6], weak stickiness [8],
and weak acyclicity [12], respectively.

A TGD σ is guarded if there exists an atom in its body that contains (or
“guards”) all the body variables of σ. The class of guarded TGDs, denoted G,

304 T. Lukasiewicz et al.

is defined as the family of all possible sets of guarded TGDs. A key subclass of
guarded TGDs are the so-called linear TGDs with just one body atom (which is
automatically a guard), and the corresponding class is denoted L. Weakly guarded
TGDs extend guarded TGDs by requiring only “harmful” body variables to
appear in the guard, and the associated class is denoted WG. It is easy to verify
that L ⊂ G ⊂ WG.

Stickiness is inherently different from guardedness, and its central property
can be described as follows: variables that appear more than once in a body (i.e.,
join variables) are always propagated (or “stick”) to the inferred atoms. A set of
TGDs that enjoys the above property is called sticky, and the corresponding class
is denoted S. Weak stickiness is a relaxation of stickiness where only “harmful”
variables are taken into account. A set of TGDs which enjoys weak stickiness is
weakly sticky, and the associated class is denoted WS. Observe that S ⊂ WS.

A set Σ of TGDs is acyclic if its predicate graph is acyclic, and the underlying
class is denoted A. In fact, an acyclic set of TGDs can be seen as a nonrecursive
set of TGDs. We say Σ is weakly acyclic if its dependency graph enjoys a certain
acyclicity condition, which actually guarantees the existence of a finite canonical
model; the associated class is denoted WA. Clearly, A ⊂ WA.

Another key fragment of TGDs, which deserves our attention, are the so-
called full TGDs, i.e., TGDs without existentially quantified variables, and the
corresponding class is denoted F. If we further assume that full TGDs enjoy
linearity, guardedness, stickiness, or acyclicity, then we obtain the classes LF,
GF, SF, and AF, respectively.

4.2 Overview of Complexity Results

Our complexity results for deciding the existence of a probabilistic (universal)
solution for both ODE and PODE problems with annotations over events relative
to an underlying Bayesian network are summarized in Fig. 4 for all classes of
existential rules discussed above in the data, combined, ba-combined, and fp-
combined complexity (all entries are completeness results). For L, LF, AF, S,
SF, and A in the data complexity, we obtain tractability when the underlying
Bayesian network is a polytree. For all other cases, hardness holds even when the
underlying Bayesian network is a polytree. Finally, for all classes of existential
rules discussed above except for WG, answering UCQs for both ODE and PODE
problems is in #p in the data complexity.

4.3 Deterministic Ontological Data Exchange

The first result shows that deciding whether there exists a probabilistic (or prob-
abilistic universal) solution for a probabilistic source database relative to an ODE
problem is complete for C (resp., coC), if BCQ answering for the involved sets of
TGDs and NCs is complete for a deterministic (resp., nondeterministic) complex-
ity class C ⊇ pspace (resp., C ⊇ np), and hardness holds even for ground atomic
BCQs. As a corollary, by the complexity of BCQ answering with TGDs and NCs
in Figure 3 [19], we immediately obtain the complexity results shown in Figure 4

Existential Rules and Bayesian Networks 305

Data Comb. ba-comb. fp-comb.

L, LF, AF in AC 0 PSPACE NP NP
G P 2EXP EXP NP
WG EXP 2EXP EXP EXP

S, SF in AC 0 EXP NP NP
F, GF P EXP NP NP

A in AC 0 NEXP NEXP NP
WS, WA P 2EXP 2EXP NP

Fig. 3. Complexity of BCQ answering
[19]. All entries except for “in ac0” are
completeness ones, where hardness in
all cases holds even for ground atomic
BCQs.

Data Comb. ba-comb. fp-comb.

L, LF, AF coNP PSPACE coNP coNP
G coNP 2EXP EXP coNP
WG EXP 2EXP EXP EXP
S, SF coNP EXP coNP coNP
F, GF coNP EXP coNP coNP
A coNP coNEXP coNEXP coNP

WS, WA coNP 2EXP 2EXP coNP

Fig. 4. Complexity of existence of a
probabilistic (universal) solution (for
both deterministic and probabilistic
ODE). All entries are completeness
results.

for deciding the existence of a probabilistic (universal) solution (in determinis-
tic ontological data exchange) in the combined, ba-combined, and fp-combined
complexity, and for the class WG of TGDs and NCs in the data complexity. The
hardness results hold even when the underlying Bayesian network is a polytree.

Theorem 1. Given a probabilistic source database Prs relative to a source
ontology Σs and an ODE problem M = (S,T, Σs, Σt, Σst) such that Σs ∪Σt ∪
Σst belongs to a class of TGDs and NCs for which BCQ answering is complete
for a deterministic (resp., nondeterministic) complexity class C ⊇pspace (resp.,
C ⊇np), and hardness holds even for ground atomic BCQs, deciding the existence
of a probabilistic (universal) solution for Prs relative to Σs and M is complete
for C (resp., coC). Hardness holds even when the underlying Bayesian network
is a polytree.

Proof (sketch). It is not difficult to see that there exists a probabilistic universal
solution relative to a probabilistic source database iff there exists a probabilistic
solution. The latter is in turn equivalent to the existence of a deterministic solution
relative to every world’s deterministic database. For membership, we thus decide
the complementary problem by guessing a world, which is in np, and checking
that there exists no deterministic solution relative to its database, which is in C.
Overall, the complementary problem is thus in C; so, the problem itself is in coC = C
(resp., coC).

Hardness for coC = C (resp., coC) holds by a reduction from the complement of
the C-hard problem of answering ground atomic BCQs q from a database D and
a set Σ of TGDs and NCs. The probabilistic source database is defined relative
to Σ as ontology and contains all atoms in D with probability 1. The mapping
renames each predicate in Σ by a fresh predicate, and the target ontology consists
of the single NC q′ →⊥, obtained via the same renaming from q. Then, D ∪Σ �|=
q iff the defined deterministic ontological data exchange problem has a solution.
Since this reduction is independent from the underlying Bayesian network G,
hardness holds even when G is a polytree. �

The following result shows that deciding whether there exists a probabilis-
tic (universal) solution for a probabilistic source database relative to an ODE

306 T. Lukasiewicz et al.

problem is complete for conp in the data complexity, for all classes of sets of
TGDs and NCs considered in this paper, except for WG. Hardness for conp for
the classes G, F, GF, WS, and WA holds even when the underlying Bayesian
network is a polytree.

Theorem 2. Given a probabilistic source database Prs relative to a source
ontology Σs and an ODE problem M = (S,T, Σs, Σt, Σst) such that Σs ∪Σt ∪
Σst belongs to a class among L, LF, AF, G, S, SF, F, GF, A, WS, and WA,
deciding whether there exists a probabilistic (or probabilistic universal) solution
for Prs relative to Σs and M is conp-complete in the data complexity. Hardness
for conp for the classes G, F, GF, WS, and WA holds even when the underlying
Bayesian network is a polytree.

Proof (sketch). As argued in the proof of Theorem 1, there is a probabilistic
universal solution relative to a probabilistic source database iff there is a proba-
bilistic solution. The latter is in turn equivalent to the existence of a determin-
istic solution relative to every world’s deterministic database. For membership,
we thus decide the complementary problem by guessing a world, which is in np,
and checking that there exists no deterministic solution relative to its database,
which is in p. Overall, the complementary problem is thus in np; thus, the prob-
lem itself is in conp.

Hardness of the complementary problem for np follows from a reduction from
the problem of deciding whether the probability Pr(Xi = xi) of a variable assign-
ment Xi =xi in a Bayesian network G is greater than zero, which is complete for
np [10]. The ontological data exchange problem M= (S,T, Σs, Σt, Σst) consists
of the source schema S= {p}, the target schema T= {q}, the source ontology
Σs = ∅, the source-to-target mapping Σst = {p() → q()}, and the target ontol-
ogy Σt = {q() → ⊥}. The source database is given by {p() : Xi = xi} and G.
Then, Pr(Xi = xi) > 0 in G iff the ontological data exchange problem M has
no probabilistic solution.

Hardness for conp for the classes G, F, GF, WS, and WA when the underlying
Bayesian network is a polytree holds because of a polynomial reduction from the
conp-complete problem of deciding whether a CNF formula φ = c1 ∧ · · · ∧ cn is
unsatisfiable. Here, every ci is a disjunction of literals over m propositional vari-
ables x1, . . . , xm. We construct a fixed schema mapping and a source database
depending on φ, with x1, . . . , xm as elementary events. The source database has
a binary predicate ES and a unary predicate PS , and it consists of the atoms
ES(i − 1, i) for all i∈ {1, . . . , n}, annotated with ci, and the atom PS(0), anno-
tated with the true event �, while the probabilities of the variables xi are defined
as 0.5. Similarly to the source schema, the target schema T consists of a binary
predicate ET and a unary predicate PT . We then define the set Σst ∪ Σt in the
deterministic mapping as m1 : ES(X,Y) → ET (X,Y), m2 : PS(X) → PT (X),
m3 : PT (n) → ⊥, and m4 : PT (X)∧ET (X,Y) → PT (Y). Note that Σst ∪ Σt is in
G, F, GF, WS, and WA. It is then not difficult to see that the above probabilistic
database and ODE problem have a probabilistic solution iff φ is unsatisfiable. �

Existential Rules and Bayesian Networks 307

The following result shows that deciding whether there exists a probabilistic
(or probabilistic universal) solution for a probabilistic source database relative
to an ODE problem is in P in the data complexity, if BCQ answering for the
involved sets of TGDs and NCs is first-order rewritable as a Boolean UCQ, and
the underlying Bayesian network is a polytree. As a corollary, by the complexity
of BCQ answering with TGDs and NCs, deciding the existence of a solution is in
p for the classes L, LF, AF, S, SF, and A in the data complexity, if the underlying
Bayesian network is a polytree.

Theorem 3. Given a probabilistic source database Prs relative to a source
ontology Σs, with a polytree as Bayesian network, and an ODE problem
M=(S,T, Σs, Σt, Σst) such that Σs ∪ Σt ∪ Σst belongs to a class of TGDs and
NCs for which BCQ answering is first-order rewritable as a Boolean UCQ, decid-
ing whether there exists a probabilistic (universal) solution for Prs relative to Σs

and M is in p in the data complexity.

Proof (sketch). Since NCs are the only source of inconsistency, we can decide
inconsistency by evaluating BCQs, exactly one for each NC. Since BCQ answer-
ing is first-order rewritable as a Boolean UCQ, we can thus decide inconsistency
by evaluating a Boolean UCQ directly on the database. Since this Boolean UCQ
has a fixed size, independent from the database, we can thus identify a polyno-
mial number of conjunctions of database atoms that lead to inconsistencies. The
annotations associated with such conjunctions must either have probability 0 or
be inconsistent in order to yield a (probabilistic (universal)) solution. We first
check whether the probability of the annotation φi of an inconsistency is 0. If
φi’s probability is not 0, then we check whether φi is inconsistent. To check φi,
we first create φi as the conjunction of the single annotations λ1, . . . , λk. Note
that the annotations of the source database atoms are in DNF format, and we
thus have a conjunction of formulas in DNF. When we transform this conjunc-
tion φi of formulas in DNF into a formula φ′

i in DNF, we obtain a disjunction
of nk conjuncts with n being the maximum number of conjuncts in the annota-
tions of the k atoms of the current inconsistency. Hence, this transformation is
in polynomial time in the length of the annotations. We then check for each φ′

i

whether its probability is 0, i.e., whether the probability of each of the conjuncts
is 0. This can be done in polynomial time in polytrees. If the probability of a φ′

i

is not 0, we then check whether φ′
i is inconsistent which can be done in linear

time (in the length of the formula) as well because it is represented in DNF
format and, hence, we just have to check whether each conjunct contains e and
¬e, with e being an arbitrary event (possibly a different e in each conjunct). All
these checks are clearly in p. Overall, since all φ′

i have either probability 0 or
are consistent iff there exists a solution (and thus also a probabilistic (universal)
solution), this shows membership in p. �

Finally, the following theorem shows that answering UCQs for probabilistic
source databases relative to an ODE problem is complete for #p in the data
complexity for all above classes of existential rules except for WG.

308 T. Lukasiewicz et al.

Theorem 4. Given (i) an ODE problem M = (S,T, Σt, Σs, Σst) such that
Σs ∪ Σst ∪ Σt belongs to a class among L, LF, AF, G, S, SF, F, GF, A, WS, and
WA, and (ii) a probabilistic source database Prs relative to Σs such that there
exists a solution for Prs relative to M, (iii) a UCQ Q = q(X) over T, and (iv)
a tuple a, computing confQ(a) is #p-complete in the data complexity.

Proof. For membership in #p, w.l.o.g., for every variable X in the Bayesian
network, the rational numbers in all conditional probability distributions for X
have the same denominator dX . Let d = ΠXdX . Then, each world wi has a
probability ni/d. If ni/d > 0, we simply add ni − 1 many copies and assign wi

and each of its copies the probability 1/d. Then, we can guess in which worlds
the tuple a is true and count these worlds, which is in #p. The probability of a
follows by dividing this number by d.

Hardness for #p follows from a similar reduction as the one in the proof of
Theorem 1, this time from the problem of computing the probability Pr(Xi = xi)
of a variable assignment Xi = xi in a Bayesian network, which is #p-complete
[23]. The ontology mapping consists only of the TGD p() → q() and the source
database is given by {p() : Xi = xi}. Then, Pr(Xi = xi) = confQ(), where
Q = q(). �

4.4 Probabilistic Ontological Data Exchange

All the results of Section 4.3 in Theorems 1 and 4 carry over to the case of
probabilistic ontological data exchange. Clearly, the hardness results carry over
immediately, since deterministic ontological data exchange is a special case of
probabilistic ontological data exchange. As for the membership results, we addi-
tionally consider the worlds for the probabilistic mapping, which are iterated
through in the data complexity and guessed in the combined, the ba-combined,
and the fp-combined complexity.

5 Summary and Outlook

We have defined deterministic and probabilistic ontological data exchange prob-
lems, where probabilistic knowledge is exchanged between two ontologies. The
ontologies and the mapping between them are defined via existential rules, where
the rules for the mapping are deterministic and probabilistic, respectively. We
have given a precise analysis of the computational complexity of deciding the
existence of a probabilistic (universal) solution for different classes of existen-
tial rules in both deterministic and probabilistic ontological data exchange. We
also have delineated some tractable special cases, and we have provided some
complexity results for exact UCQ answering.

An interesting topic for future research is to further explore the tractable
cases of probabilistic solution existence and whether they can be extended, e.g.,
by generalizing the type of the mapping rules. Another issue for future work
is to further analyze the complexity of answering UCQs for different classes of
existential rules in deterministic and probabilistic ontological data exchange.

Existential Rules and Bayesian Networks 309

Acknowledgments. This work was supported by an EU (FP7/2007-2013) Marie-
Curie Intra-European Fellowship (“PRODIMA”), the UK EPSRC grant EP/J008346/1
(“PrOQAW”), the ERC grant 246858 (“DIADEM”), a Yahoo! Research Fellowship,
and funds provided by CONICET and Universidad Nacional del Sur.

References

1. Arenas, M., Botoeva, E., Calvanese, D., Ryzhikov, V.: Exchanging OWL2 QL
knowledge bases. In: Proc. IJCAI, pp. 703–710 (2013)

2. Arenas, M., Botoeva, E., Calvanese, D., Ryzhikov, V., Sherkhonov, E.: Exchanging
description logic knowledge bases. In: Proc. KR, pp. 563–567 (2012)

3. Arenas, M., Pérez, J., Reutter, J.L.: Data exchange beyond complete data. J. ACM
60(4), 28:1–28:59 (2013)

4. Baader, F.: Least common subsumers and most specific concepts in a descrip-
tion logic with existential restrictions and terminological cycles. In: Proc. IJCAI,
pp. 364–369 (2003)

5. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proc. IJCAI,
pp. 364–369 (2005)

6. Cal̀ı, A., Gottlob, G., Kifer, M.: Taming the infinite chase: Query answering under
expressive relational constraints. J. Artif. Intell. Res. 48, 115–174 (2013)

7. Cali, A., Gottlob, G., Lukasiewicz, T., Marnette, B., Pieris, A.: Datalog+/-: a fam-
ily of logical knowledge representation and query languages for new applications.
In: Proc. LICS, pp. 228–242 (2010)

8. Cal̀ı, A., Gottlob, G., Pieris, A.: Towards more expressive ontology languages: The
query answering problem. Artif. Intell. 193, 87–128 (2012)

9. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
J. Autom. Reasoning 39(3), 385–429 (2007)

10. Cooper, G.F.: The computational complexity of probabilistic inference using
Bayesian belief networks. Artif. Intell. 42(2–3) (1990)

11. Fagin, R., Kimelfeld, B., Kolaitis, P.G.: Probabilistic data exchange. J. ACM 58(4),
15:1–15:55 (2011)

12. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: Semantics and
query answering. Theor. Comput. Sci. 336(1), 89–124 (2005)

13. Fuhr, N., Rölleke, T.: A probabilistic relational algebra for the integration of
information retrieval and database systems. ACM Trans. Inf. Sys. 15(1), 32–66
(1997)

14. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: Proc.
PODS, pp. 31–40 (2007)

15. Imielinski, T.: Witold Lipski, J.: Incomplete information in relational databases.
J. ACM 31(4), 761–791 (1984)

16. Johnson, D.S.: A catalog of complexity classes. In: van Leeuwen, J. (ed.) Handbook
of Theoretical Computer Science, vol. A, chap. 2, pp. 67–161. MIT Press (1990)

17. Krisnadhi, A., Lutz, C.: Data complexity in the EL family of description logics.
In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790,
pp. 333–347. Springer, Heidelberg (2007)

18. Lenzerini, M.: Data integration: a theoretical perspective. In: Proc. PODS,
pp. 233–246 (2002)

310 T. Lukasiewicz et al.

19. Lukasiewicz, T., Martinez, M.V., Pieris, A., Simari, G.I.: From classical to con-
sistent query answering under existential rules. In: Proc. AAAI, pp. 1546–1552
(2015)

20. Meliou, A., Gatterbauer, W., Suciu, D.: Bringing provenance to its full potential
using causal reasoning. In: Proc. TAPP (2011)

21. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)
22. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.:

Linking data to ontologies. J. Data Sem. 10, 133–173 (2008)
23. Roth, D.: On the hardness of approximate reasoning. Artif. Intell. 82, 273–302

(1996)
24. Suciu, D., Olteanu, D., Ré, C., Koch, C.: Probabilistic Databases. M & C (2011)
25. Vardi, M.Y.: The complexity of relational query languages (extended abstract). In:

Proc. STOC, pp. 137–146 (1982)

Binary Frontier-Guarded ASP
with Function Symbols

Mantas Šimkus(B)

Institute of Information Systems, TU Wien, Vienna, Austria
simkus@dbai.tuwien.ac.at

Abstract. It has been acknowledged that emerging Web applications
require features that are not available in standard rule languages like
Datalog or Answer Set Programming (ASP), e.g., they are not powerful
enough to deal with anonymous values (objects that are not explicitly
mentioned in the data but whose existence is implied by the background
knowledge). In this paper, we introduce a new rule language based on
ASP extended with function symbols, which can be used to reason about
anonymous values. In particular, we define binary frontier-guarded pro-
grams (BFG programs) that allow for disjunction, function symbols, and
negation under the stable model semantics. In order to ensure decid-
ability, BFG programs are syntactically restricted by allowing at most
binary predicates and by requiring rules to be frontier-guarded. BFG pro-
grams are expressive enough to simulate ontologies expressed in popular
Description Logics (DLs), capture their recent non-monotonic extensions,
and can simulate conjunctive query answering over many standard DLs.
We provide an elegant automata-based algorithm to reason in BFG pro-
grams, which yields a 3ExpTime upper bound for reasoning tasks like
deciding consistency or cautious entailment. Due to existing results, these
problems are known to be 2ExpTime-hard.

1 Introduction

Rule-based languages are becoming a major tool to cope with the increasing
complexity of available data and knowledge. This is particularly true in applica-
tions that query and manage data on the Web. A prime example of a rule-based
language is Datalog, which was developed as a recursive query language for rela-
tional databases. However, it has been acknowledged that emerging applications
on the Web require features that are not available in plain Datalog. In particu-
lar, Datalog was designed for closed-world reasoning, i.e., each input database is
assumed to be a complete description of the application’s data. Unfortunately,
such assumption is often not appropriate for Web applications, where data is
likely to be incomplete, e.g., due to missing values or facts.

A significant extension of plain Datalog is Answer Set Programming (ASP),
which allows to partially deal with incompleteness. In particular, ASP features
disjunction and default negation under the stable model semantics, which enable
powerful case-based reasoning and inference based on the lack of information.
c© Springer International Publishing Switzerland 2015
N. Bassiliades et al. (Eds.): RuleML 2015, LNCS 9202, pp. 311–327, 2015.
DOI: 10.1007/978-3-319-21542-6 20

312 M. Šimkus

The presence of these features allows for intelligent management of domain
objects under incomplete information. However, plain Datalog and ASP are not
powerful enough to deal with missing values, i.e., objects that are not explicitly
mentioned in the data but whose existence is implied the background knowledge.

One of the possible approaches to deal with missing values is to allow some
form of existential quantification in rule heads. In the setting of databases and
Datalog, this can be formalized using tuple-generating dependencies, Datalog
with value invention (see, e.g., [1,21]), or Datalog±[9]. In ASP, missing values
are usually simulated using function symbols (see Section 7 for a discussion of
such examples and further related work). Allowing rules to create new values
causes a lot of difficulties; due to the presence of recursion, naive approaches
to allow value creation immediately lead to undecidability (this is true already
for Horn rules [2]). A prominent approach to regain decidability is to use spe-
cial atoms to “guard” variables in rule bodies. Examples of this approach are
Datalog± in [9] and the frontier-guarded rules in [4]. Importantly, these restric-
tions are not geared towards limiting recursion, but rather towards ensuring the
semantics of a given program can be finitely represented, e.g., by resorting to
tree decompositions of infinite structures.

In this paper we show how frontier-guardedness can be used to ensure decid-
ability of ASP with function symbols. Our contributions are as follows:

– We introduce a new fragment of ASP with function symbols, called binary
frontier-guarded programs (BFG programs). Such programs allow for disjunc-
tion, function symbols, and negation under the stable model semantics. The
programs are syntactically restricted by allowing at most binary predicates
and by requiring rules to be frontier-guarded.

– BFG programs generalize FNDC and core BD programs [13,14], and can
be used for common-sense reasoning in the presence of a possibly infinite
number of domain objects.

– BFG programs allow to simulate ontologies expressed in popular Description
Logics (DLs), capture some of their recent non-monotonic extensions, and
can simulate conjunctive query answering over many standard DLs.

– We show that BFG programs have the so-called forest-model property, also
enjoyed by many standard DLs.

– We provide an elegant automata based procedure for reasoning in BFG pro-
grams. In addition to the forest-model property, the algorithm employs a
two-world characterization of ASP, reminiscent to the here-and-there app-
roach in [26].

– The construction yields a 3ExpTime upper bound for reasoning tasks
like consistency or cautious entailment. These problems are known to be
2ExpTime-hard, e.g., already for positive normal programs [5].

The paper is organized as follows. In Section 2 we recall ASP with function
symbols together with the basic notions of automata over infinite trees, which
will be our main technical tool. In Section 3 we formally define BFG programs

Binary Frontier-Guarded ASP with Function Symbols 313

and discuss their features. In Section 4 we show how the stable models of a BFG
program can be seen as forests, and then present an encoding of such forests
into trees, on which tree automata can run. In Section 5 and 6 we present our
automata-based procedure for reasoning in BFG programs. We discuss related
work and conclude in Sections 7 and 8, respectively.

BFG programs were first studied in [27], where they were called GT programs.

2 Preliminaries

Answer Set Programming. We assume mutually disjoint sets of constants,
function symbols, relation (predicate) symbols and variables. Each function and
relation symbol σ is a associated with a positive integer arity(σ), called the arity
of σ. A term is either a constant, a variable, or an expression of the form f(t)
such that f is an n-ary function symbol and t is an n-tuple of terms. An atom
is an expression of the form R(t) where R is an n-ary relation symbol and t is
an n-tuple of terms. A (disjunctive) program P is any set of rules r of the form

A1 ∨ . . . ∨ An ← An+1, . . . , Am, not Am+1, . . . , not Ak, (1)

where each Aj is an atom. If r is of the form A ←, then r is a fact (often written
simply A). If n = 0, then r is a constraint. We let head(r) = {A1, . . . , An},
body+(r) = {An+1, . . . , Am}, and body−(r) = {Am+1, . . . , Ak}. If body−(r) = ∅,
then r is positive. A program P is positive, if all rules of P are positive. A term,
atom, rule or program is ground, if it contains no variables. Let HUP be the
Herbrand universe of P , i.e. the set of terms that can be built from constants
and function symbols occurring in a program P . Similarly, HBP is the Herbrand
base of P , i.e. the set of atoms that can be built from relation symbols of P
and terms in HUP . An interpretation I for P is any set I ⊆ HBP . We use
ground(P) to denote the grounding of P , i.e., the set of all ground rules that
can be obtained from rules in P by applying some substitution from variables
to terms in HUP . An interpretation I satisfies a ground positive rule r, denoted
I |= r, if body+(r) ⊆ I implies I∩head(r) �= ∅. An interpretation I is a model of a
ground positive program P , denoted I |= P , if I satisfies each rule r ∈ ground(P).
A model I of P is called minimal, if there is no J ⊆ I such that J is a model of
P . Assume an interpretation I for a program P . The GL-reduct P I (see [17]) is
the program obtained from ground(P) by

(i) removing all rules r such that body−(r) ∩ I �= ∅, and
(ii) deleting every expression of the form not A in the remaining rules.

If I is a minimal model of P I , then I is called a stable model (or answer set)
of P . A ground (atomic) query is any ground atom A. A program P bravely
(resp., cautiously) entails a ground query A, denoted P |=b A (resp., P |=c A),
if A ∈ I holds for some (resp., each) stable model I of P .

Automata over Infinite Trees. We recall here finite state automata over infi-
nite trees, which we will use as a tool to reason in BFG programs. In particular,
following [29] closely we define here 2-way alternating tree automata.

314 M. Šimkus

A (full infinite) tree T is any set T ⊆ N
∗ of words over the set N of positive

integers such that x · c ∈ T , where x ∈ N
∗ and c ∈ N, implies (i) x ∈ T and

(ii) x · c′ ∈ T for all 0 < c′ < c. Each element x ∈ T is a node of T , where ε
(the empty word) is the root of T . The nodes x · c ∈ T , where c ∈ N, are the
successors of x. By convention, x · 0 = x and (x · i) · (−1) = x (note that ε · (−1)
is undefined). T is k-ary if each node in T has k successors.

An infinite path in T is any set p ⊆ T of nodes such that (i) x · c ∈ p implies
x ∈ p, and (ii) for every i ≥ 0 there is a unique x ∈ p such that |x| = i. A labeled
tree over an alphabet Σ is a tuple (T,L), where L : T → Σ, i.e., a tree where
the nodes are labeled with symbols from Σ.

For a finite set V , let B(V) be the set of formulae that can be built from
V ∪{�,⊥} using ∨ and ∧ as connectives. We say that I ⊆ V satisfies ϕ ∈ B(V),
if I is a model of ϕ, when elements in V as seen as propositional variables and ϕ
as a propositional formula. Let [k] = {−1, 0, 1, . . . , k}. A two-way alternating tree
automaton (2ATA) over infinite k-ary trees is a tuple A = 〈Σ,Q, δ, q0, F 〉, where
Σ is an input alphabet, Q is a finite set of states, δ : Q× Σ → B([k]× Q) is a
transition function, q0 ∈ Q is an initial state, and F is an acceptance condition.

Assume a 2ATA A = 〈Σ,Q, δ, q0, F 〉 over k-ary trees. A run of A over a k-ary
labeled tree (T,L) is a labeled tree (Tr, r) over T × Q that satisfies the following:

(i) r(ε) = (ε, q0).
(ii) For each y ∈ Tr, with r(y) = (x, q) and δ(q,L(x)) = ϕ, there is a set

S = {(c1, q1), . . . , (cn, qn)} ⊆ [k]× Q

such that (i) S satisfies ϕ, and (ii) for all 1 ≤ i ≤ n, we have that y · i ∈ Tr,
x · ci is defined, and r(y · i) = (x · ci, qi).

The run (Tr, r) above is accepting, if every infinite path p ⊆ Tr satisfies the
acceptance condition F as follows. Let inf(p) be the set of states q ∈ Q that
occur infinitely often in p. A parity acceptance condition F is given by a tuple
F = (G1, G2, . . . , Gm) where G1 ⊆ G2 ⊆ . . . ⊆ Gm and Gm = Q. Then p satisfies
F , if an even i exists for which inf(p)∩Gi �= ∅ and inf(p)∩Gi−1 = ∅. A pairs or
a co-pairs acceptance condition is given by a set F = {(G1, R1), . . . , (Gn, Rn)} of
pairs with (Gi, Ri) ∈ 2Q ×2Q and Gi ∩Ri = ∅. Then p satisfies a pairs condition
F as above if there is (G,R) ∈ F such that inf(p) ∩ G = ∅ and inf(p) ∩ R �= ∅.
Dually, p satisfies a co-pairs condition F as above if for all (G,R) ∈ F we have
inf(p) ∩ G �= ∅ or inf(p) ∩ R = ∅. An automaton accepts a labeled tree, if there
is a run that accepts it. By L(A) we denote the set of trees that A accepts.
Unless stated otherwise, by default automata a parity automata, i.e., they have
a parity acceptance condition.

We say A is a nondeterministic one-way tree automaton (1NTA) if δ(q, σ) is
of the form δ(q, σ) =

(
(1, q10) ∧ . . . ∧ (k, qk

0)
) ∨ . . . ∨ (

(1, q1n) ∧ . . . ∧ (k, qk
n)

)
, for

every q ∈ Q and σ ∈ Σ. Intuitively, 1NTAs only move down the tree and with
each guess the automaton proceeds with exactly one state for each child node.

2ATAs can be translated into 1NTAs while preserving the language.

Binary Frontier-Guarded ASP with Function Symbols 315

KnownVenuePub(x) ← PublishedIn(x, y),Conference(y)

KnownVenuePub(x) ← PublishedIn(x, y), Journal(y)

PublishedIn(x, f(x)) ← hasISBN(x, y), not KnownVenuePub(x)

Published(x) ← PublishedIn(x, y)

IncompleteProfile(x) ← AuthorOf(x, y),PublishedIn(y, f(y))

EditorAuthorship(x, y) ← EditorOf(x, z),AuthorOf(x, y),PublishedIn(y, z)

Fig. 1. Example BFG program

Theorem 1 ([29]). Let A be a 2ATA with a parity acceptance condition. Then
there is a parity 1NTA An such that L(A) = L(An). The number of states in
An is exponential in the number of states in A, but the size of the acceptance
condition of An is linear in the size of the acceptance condition of A.

3 Binary Frontier-Guarded Programs

In this section we define binary frontier-guarded ASP programs with function
symbols (BFG programs). Intuitively, they only allow for at most binary relation
symbols and at most unary function symbols. In addition, to ensure decidability
we require that the rules are frontier-guarded. As we shall see, these restrictions
are not too severe; e.g., BFG programs allows to capture many standard DLs
and some of their recent non-monotonic extensions.

Definition 1. A BFG program P is a program satisfying the next restrictions.

(1) All ground rules are facts of the form A(c) ← and R(c, d) ←, where c, d are
constants. Constants occur in facts only.

(2) The rules with variables have the following properties:
(i) atoms have the form A(x), A(f(x)), R(x, y), R(x, f(x)) or R(f(x), x),

where x �= y;
(ii) (frontier-guardedness) if r ∈ P and H ∈ head(r), then there is B ∈

body+(r) that contains all the variables of H.

We first note that BFG programs subsume FDNC programs and core BD

programs, which allow for at most two variables in rules [13,14]. Note that the
body of a rule in a BFG program may have the shape of an arbitrary graph. This
allows, e.g., to pose a binary Boolean conjunctive query over the stable models
of a BFG program. Indeed, a constraint ← A1, . . . , An, where each Ai is as in
(2.i) above is frontier-guarded and thus in the syntax of BFG programs.

Example 1. In Figure 1 we present an example of a BFG program. In par-
ticular, we consider a publication database, which stores information about
publications, authors, editors and venues. The first two rules state that a doc-
ument x published in a venue y that is known to be a journal or conference

316 M. Šimkus

is a publication in a known venue. The third rule deals with a possibly miss-
ing information about publication venues that are known to exist; for a doc-
ument x that has an ISBN number but does not have a known publication
venue, the rule creates a fresh value for it. The 4th rule states that every
document that has a publication venue is a publication. Using the 5th rule
we state an author’s profile is incomplete if he/she has a publication in an
anonymous venue. Finaly, the 6th rule collects pairs x, y of authors and pub-
lications such that x is an editor of the venue in which y is published. Con-
sider the program P that consists of the rules in Figure 1 and includes the
set of facts F = {PublishedIn(p1, v), Journal(v), hasISBN(p2, n), EditorOf(a1, v),
AuthorOf(a1, p1), AuthorOf(a2, p2)}. It is not difficult to see that P has a single
stable model I = F∪{KnownVenuePub(p1), PublishedIn(p2, f(p2)), Published(p1),
Published(p2), IncompleteProfile(a2), EditorAuthorship(a1, p1)}.

Many standard DLs can be seen as fragment of first-order logic. Moreover,
DL knowledge bases can be transformed into theories that are syntactically very
close to BFG programs. For example, the DL ALCHI can be seen as a first
order theory consisting of only the following formulae:

(DL1) ∀x.(A1(x) ∧ · · · ∧ An(x) → A′
1(x) ∨ · · · ∨ A′

k(x)), where n ≥ 1 and k ≥ 0;
(DL2) ∀x.(A(x) ∧ R(x, y) → A′(y));
(DL3) ∀x, y.(R(x, y) → R′(x, y));
(DL4) ∀x, y.(R(x, y) → R′(y, x));
(DL5) ∀x.(A(x) → ∃y.(R(x, y) ∧ A′(y)));
(DL6) atomic formula of the form A(c) or R(c, d).

More precisely, a general ALCHI KB can be transformed into a theory of the
above shape while preserving satisfiability and answers to conjunctive queries.
The above rules (DL1-DL6) can almost immediately be stated as a BFG pro-
gram. e.g., (DL1) translates into a rule A′

1(x)∨· · ·∨A′
k(x) ← A1(x), · · · , An(x).

The formula in (DL5) requires skolemization, i.e., we capture it by the rules (i)
R′(x, f(x)) ← A(x), (ii) A′(y) ← R′(x, y), and (iii) R(x, y) ← R′(x, y), where f
is a fresh function symbol and R′ is a fresh binary relation symbol. The above
translation, which in fact does not employ stable negation, leads to a program
that has a model iff the input DL KB has a model. A (constant-free) Boolean
conjunctive query over K can now be expressed by adding a corresponding con-
straint to the program. In [18] the authors show how to extend DLs of the
DL-Lite and EL families with stable negation, where the semantics is given by a
translation into a normal guarded Datalog± program whose existential variables
are treated via skolemization. It is easy to see that the target programs used in
the translation are a fragment of BFG programs. The presence of disjunction in
BFG programs can be used to generalize the proposal of [18] to support DLs
that support disjunction, e.g., ALCHI.

In the remainder of this paper we show how consistency of BFG programs
can be decided by employing tree automata. We concentrate on the existence of
stable models because cautious and brave entailment of atomic queries can be

Binary Frontier-Guarded ASP with Function Symbols 317

reduced in linear time to checking (non)existence of a stable model. We also note
that, similarly as for FDNC and BD programs, decidability of BFG programs
can be inferred from the decidability of monadic second-order logic over trees
(see, e.g., [12] for an overview). However, we provide a direct automata-based
algorithm, that allows us to obtain a 3ExpTime upper bound. We build on
the method used in [11] for answering (extensions of) conjunctive queries over
expressive DLs, but require a non-trivial adaptation to handle frontier-guarded
rules and to perform minimality tests as required by the stable model semantics.

4 Forest-Model Property

We show here that stable models of a BFG program can be seen as forests
and describe their encoding into labeled trees, on which automata can run. We
assume for the rest of the paper an arbitrary BFG program P , and proceed with
the following observation:

Proposition 1. If I is a stable model of P , then every atom in I is of the form
A(t), R(c, d), R(t, f(t)) or R(f(t), t), where c, d are constants and t is a term.

Proof. Suppose there exists a stable model I of P that violates the above prop-
erty. Then we can simply remove from I all atoms W that are not of the men-
tioned forms. Since the rules of P I are frontier-guarded, removing such a W can
not cause a rule in P I to be violated, hence the resulting interpretation J is a
model of P I . This contradicts the assumption that I is a stable model of P .

If P has only one constant c, then each stable model of P can be seen as a tree,
where c is the root and each term f(t) is a child of the term t. If P has more than
one constant, then a stable model can be viewed as a forest, i.e., a set of trees,
where roots correspond to the constants and may be arbitrarily interconnected.

To obtain an automata-based algorithm, we must encode the above forests-
shaped interpretations into labeled trees. To this end, let a1, . . . , an, fn+1, . . . , fm

be an enumeration of constants and function symbols that appear in P , where
each ai is a constant and each fj is a function symbol. We let C = {1, . . . , n}
and F = {n + 1, . . . , m}. A word w ∈ C×F∗ is called a term node. For a term
node w = i · j1 · · · jk, we let term(w) = fjk(. . . fj1(ai) . . .). Let LP be the set of
unary relation symbols consisting of:

(T1) each unary A that appears in P ;
(T2) fresh unary Rf and R−

f for each binary R and function f occurring in P ;
(T3) a fresh unary Rc,d for each binary R and constants c, d occurring in P .

Intuitively, Rf and R−
f will encode atoms of the form R(t, f(t)) and R(f(t), t),

respectively, while unary symbols Rc,d will encode ground atoms R(c, d).
We let ΣP = 2LP , and call a tree T = (T,L) over ΣP proper, if the following

are true for every n ∈ T :

318 M. Šimkus

(P1) if L(n) contains some relation of type (T3), then n = ε;
(P2) if L(n) contains some relation of type (T1) or (T2), then n is a term node;
(P3) if L(n) �= ∅, then n = ε or n is a term node.

Note that the size of ΣP is exponential in the size of P . A proper tree T = (T,L)
over ΣP is a representation of an interpretation for P . Indeed, the root ε of T
stores the binary atoms of the form R(c, d). The nodes 1, . . . , n correspond to
constants of P , and the F+ descendants of such nodes correspond to functional
terms. The labeling of nodes provides the relations that are satisfied in the
interpretation. More formally, given a proper tree T = (T,L) over ΣP , we use
int(T) to denote the interpretation consisting of:

(i) R(c, d), for each Rc,d ∈ L(ε);
(ii) A(term(w)), for each term node w ∈ T and unary A ∈ L(w) of type (T1);
(iii) R(term(w), f(term(w))) for each term node w ∈ T with Rf ∈ L(w);
(iv) R(f(term(w)), term(w)) for each term node w ∈ T with R−

f ∈ L(w).

Observe that for any interpretation I with atoms of the forms given in Propo-
sition 1, we can find a proper T with int(T) = I. Due to Proposition 1, we then
know that for any stable model I of P there exists a proper T with int(T) = I.

5 Outline of the Algorithm

We present here our algorithm for checking the existence of a stable model
for P . To this end, we will build tree automata running on trees that encode
interpretations as well as pairs of interpretations.

We say an automaton A with alphabet ΣP is proper if every tree accepted
by A is proper. A proper A with alphabet ΣP accepts an interpretation I for
P if there is a proper T such that int(T) = I and A accepts T . We also use
trees that represent a pair of interpretations for P . Let T = (T,L) be a tree
over ΣP ×ΣP . We denote by T |1 = (T,L1) (resp., T |2 = (T,L2)) the tree over
ΣP such that, for each n ∈ T , L1(n) (resp., L2(n)) is the first (resp., second)
component of L(n). We say that T is proper if T |1 and T |2 are proper. We say
that an automaton A with alphabet ΣP ×ΣP is proper if it accepts proper trees
only. Such an A accepts an intepretation pair (I1, I2) if there is a proper T over
ΣP ×ΣP such that A accepts T , I1 = int(T |1) and I2 = int(T |2).

To check if P has a stable model, we build an automaton Asm
P that accepts

exactly the proper trees T such that int(T) is a stable model of P . In other
words, the program P has a stable model iff the automaton Asm

P is nonempty,
i.e., accepts some tree. We build Asm

P by manipulating the following simpler
automata.

Proposition 2. The following proper parity 1NTA can be constructed:

(a) A
�|=
P that accepts exactly the pairs (I, I ′) such that I �|= P I′

. The number of
states in A

�|=
P is exponential in the size of P , while the acceptance condition

is of polynomial size in the size of P .

Binary Frontier-Guarded ASP with Function Symbols 319

(b) A�⊂
P that accepts exactly the pairs (I, I ′) such that I �⊂ I ′. The automaton

A�⊂
P has a fixed number of states and an acceptance condition of fixed size.

(c) A=
P that accepts exactly the pairs (I, I ′) such that I = I ′. The automaton

A=
P has a fixed number of states and an acceptance condition of fixed size.

The precise construction of A
�|=
P , A�⊂

P and A=
P is presented in Section 6. By

manipulating these automata we can obtain the desired automaton Asm
P .

(1) We construct an automaton A1 by complementing A
�|=
P and intersecting the

resulting automaton with A=
P , i.e., L(A1) = L(A=

P)\L(A�|=
P). Then A1 accepts

pairs of interpretations (I, I ′) such that I = I ′ and I |= P I′
. We can use

the results in [25] for the complementation step. Measured in the size of P ,
the automaton A1 has at most double exponential number of states and a
co-pairs acceptance condition with exponentially many pairs.

(2) We let Amods
P be an automaton accepting trees obtained by projecting away

the first interpretation in the language of A1. That is, Amods
P accepts a tree

T ′ iff there exists a tree T over ΣP ×ΣP such that T |2 = T ′ and A1 accepts
T . Due to the construction of A1, we then get that Amods

P accepts an inter-
pretation I iff I |= P I . The construction of Amods

P is fairly standard. Assume
A1 = (ΣP × ΣP , Q, δ, q0, F). We simply define Amods

P = (ΣP , Q, δ′, q0, F),
where δ′ is as follows. For each N ′ ∈ ΣP and each state q ∈ Q, we have
δ′(N ′, q) =

∨
N ∈ ΣP

δ
(
(N,N ′), q

)
. Note that this construction does not mod-

ify the state set or the co-pairs acceptance condition of A1.

(3) We construct an automaton A2 that accepts the language L(A2) = L(A�|=
P)∪

L(A�⊂
P). In other words, A2 accepts a pair (I, I ′) iff I ⊂ I ′ implies I �|= P I′

.
The automaton A2 requires at most exponentially many states and a parity
condition that is of polynomial size in the size of P .

(4) We construct an automaton A3 that accepts a pair (I, I ′) iff I ⊂ I ′ and I |=
P I′

. This construction simply complements the automaton A2. Using the
results of [25] and measured in the size of P , the automaton A3 has at most
double exponential number of states and a co-pairs acceptance condition
with exponentially many pairs.

(5) We let A4 be an automaton accepting trees obtained by projecting away the
first interpretation in the language of A3. That is, A4 accepts a tree T ′ iff
there exists a tree T over ΣP ×ΣP such that T |2 = T ′ and A3 accepts T .
Due to the construction of A3, we then get that A4 accepts an interpretation
I ′ iff there exists I ⊂ I ′ such that I |= P I′

. The construction of A4 is identical
to the construction of Amods

P from A1 and does not modify the state set or
the co-pairs acceptance condition of A3.

(6) We construct an automaton Amin
P that accepts a tree T ′ over ΣP iff for all

trees T over ΣP × ΣP with T |2 = T ′ we have that A2 accepts T . In other
words, Amin

P accepts an interpretation I ′ iff I �|= P I′
holds for all I ⊂ I ′. The

automaton Amin
P is a 1NTA obtained by employing the complementation

of A3. Again, using the results of [25], Amin
P is a 1NTA with at most triple

320 M. Šimkus

exponential number of states and a pairs condition with doubly exponentially
many pairs, measured in the size of P .

(7) Finally, we construct an automaton Asm
P by intersecting Amin

P with the
automaton Amods

P . That is, the automaton Asm
P accepts the language

L(Asm
P) = L(Amin

P) ∩ L(Amods
P). We have that Asm

P accepts an interpre-
tation I ′ iff I ′ |= P I′

and there is no I ⊂ I ′ with I |= P I′
. The 1NTA Asm

P

requires at most triple exponential number of states and a pairs condition
with doubly exponentially many pairs, measured in the size of P .

Due to the above construction, consistency of P can be decided by checking
non-emptiness of Asm

P .

Theorem 2. P has a stable model iff the language of Asm
P is non-empty.

Overall, the automaton Asm
P has a triple exponential number of states and a

pairs acceptance condition with doubly exponentially many pairs in the size of
P . Due to [15], testing emptiness of Asm

P is feasible in triple exponential time in
the size of P .

Theorem 3. Checking consistency of BFG programs is in 3ExpTime.

We do not know whether the above upper bound is worst-case optimal, but
we know that the problem is 2ExpTime-hard. This is already true for core BD

programs, which is a fragment of BFG programs [27]. We note that 2ExpTime-
hardness already holds for positive normal BFG programs due to [5]. An yet
another way to see the lower bound is a straightfoward reduction from the con-
junctive query entailment problem in the DL ALCI, which was shown to be
2ExpTime-hard in [22] (the reduction only requires positive disjunctive BFG
programs).

6 Automata Constructions

In this section we prove Proposition 2, i.e., show how to build the automata A
�|=
P ,

A�⊂
P and A=

P . Before we begin, note that we can easily construct a 1NTA Aprop
P

that accepts a tree T over ΣP × ΣP iff T is proper. Such an automaton only
requires a constant number of states and an acceptance condition of fixed size.

The Automata A=
P and A�⊂

P . We now proceed with the construction of the
automata A=

P and A�⊂
P for checking the equality or a violation of strict con-

tainment between interpretations, respectively. We start by constructing two
alternating automata A=

0 and A�⊂
0 , and then we transform them into the desired

1NTAs. We let
A=

0 = (ΣP ×ΣP , {q=}, δ, q=, F),

where F = (∅, {q=}) is a parity acceptance condition, and δ is as follows. For
each (N,N ′) ∈ ΣP × ΣP , δ((N,N ′), q=) = [N = N ′] ∧ ∧

i∈C∪F(i, q=). Here
[cond] stands for � if cond is true and for ⊥ if cond is false. We let

A�⊆
0 = (ΣP × ΣP , {q �⊆}, δ, q �⊆, F),

Binary Frontier-Guarded ASP with Function Symbols 321

where F = ({q �⊆}) is a parity acceptance condition, and δ is as follows. For
each (N,N ′) ∈ ΣP × ΣP , δ((N,N ′), q �⊆) = [N �⊆ N ′] ∨ ∨

i∈C∪F(i, q �⊆). We
construct a union automaton A�⊂

0 = A�⊆
0 ∪A=

0 . The desired automata A=
P and A�⊂

P

are obtained by transforming A=
0 and A�⊂

0 , respectively, into proper 2ATAs (i.e.,
intersecting them with Aprop

P) and then into 1NTAs (in fact, it is not hard to see
that 2-wayness and alternation are not really needed in these automata). Both
automata A=

P and A�⊂
P have boundedly many states and a bounded acceptance

condition.

The Automaton A
�|=
P . The remainder of this section is devoted to constructing

the automaton A
�|=
P that accepts a pair (I, I ′) iff I �|= P I′

. This construction
is the most involved one. It requires some auxiliary automata and requires the
definition of another kind of trees. Let X be the set of variables occurring P . We
let Σ̂ = 2X ×ΣP ×ΣP . Intuitively, a tree T over Σ̂ represents a pair (I, I ′) of
interpretations where, additionally, the variables of P are assigned to some terms.
Our first step is to define an automaton AX

P that ensures that in a tree T = (T,L)
over Σ̂ every variable is assigned to exactly one node, i.e., the tree encodes a
function π from X to T . In the second step we define another automaton A that
verifies whether the given variable assignment witnesses I �|= P I′

. In the third
and final step, we use AX

P and A to obtain A
�|=
P .

Step 1. We define the automaton AX
P = (Σ̂,Q, δ, q0, F) to ensure that in a tree

T = (T,L) over Σ̂ every variable is assigned to exactly one node.
The state set Q of AX

P consists of an initial state q0 and the states qx, q′
x, q∈

x

and q �∈
x for each variable x of P . Intuitively, the automaton uses qx to verify that

some node is labeled with x, and uses the state q′
x to verify that x is neither in

the labeling of the current symbol, nor in the labeling of any descendant. The
states q∈

x are q �∈
x to verify the presence or absence of the variable x is in the

labeling of the current node, respectively.
The transition function δ is as follows. From the initial state the automaton

switches to states qx for each variable x ∈ X, i.e., for each σ ∈ Σ̂, we have
δ(σ, q0) =

∧
x∈X(0, qx).

When in state qx, the automaton either decides to place the variable in the
current node, or chooses a branch where it will be placed. After placing the
variable, it enters the state q′

x to ensure that a variable does not occur more
than once. This is implemented by the following transition for each σ ∈ Σ̂ and
variable x ∈ X:

δ(σ, qx) =
(
(0, q∈

x) ∧
∧

i∈C∪F

(i, q′
x)

)
∨

(∨

i∈C∪F

(
(i, qx) ∧

∧

j∈C∪F,j �=i

(j, q′
x)

))
,

δ(σ, q′
x) =

(
(0, q �∈

x) ∧
∧

i∈C∪F

(i, q′
x)

)
.

The transitions for q∈
x and q �∈

x are simple. We let δ(σ, q∈
x) = [x ∈ V] and

δ(σ, q �∈
x) = [x �∈ V] for each σ = (V,N,N ′) in Σ̂ and variable x ∈ X.

322 M. Šimkus

Finally, we need to ensure that each variable is eventually placed in the tree
by prohibiting the states qx from occurring infinitely often. For this, we simply
take the acceptance condition F = ({qx | x ∈ X}, Q).
Step 2. Now we build the automaton A that verifies whether a given variable
assignment π witnesses I �|= P I′

. More precisely, we assume a given tree T =
(T,L) over Σ̂ such that T represents an assignment π of variables to nodes of the
tree (i.e., each query variable x occurs in the label of exactly one node π(x) ∈ T)
together with a pair of interpretations (I, I ′). We construct an automaton A
such that A accepts T iff π witnesses I �|= P I′

, that is, if under the assignment
π the atoms of its positive body are true in I, the atoms of its negative body
are false in I ′, and the atoms in its head are false in I.

The automaton A = (Σ̂,Q, δ, q0, F) is defined as follows. The state set Q is
as follows.

Q = {qt
W , qf

W , qf ′
W , qt,↓

W , qf,↓
W , qf ′,↓

W | W is an atom occurring in P} ∪
{qt

A, qf
A, qf ′

A | A is a unary predicate name occurring in P} ∪
{qt

(R,x), q
t
(R,x,y), q

f
(R,x), q

f
(R,x,y), q

f ′

(R,x), q
f ′

(R,x,y) | R(x, y) is from P} ∪
{qx | x is a variable from P}.

We next explain how the transition function is defined.
(I) The state set Q contains qt

W , qf
W and qf ′

W for each atom W occurring in
P . Intuitively, A moves to qt

W , qf
W or qf ′

W , to verify that under the assignment π
the atom W is true in I, false in I, or false in I ′, respectively.
From the initial state q0, the automaton nondeterministically chooses a rule
r ∈ P and verifies that it is violated, by moving to qt

W for each positive body
atom W , to qf ′

W for each negative body atom W , and to qf
W for each head atom

W . Hence, for each σ ∈ Σ̂, we have:

δ(σ, q0) =
∨

r∈P

(∧

W∈body+(r)

(0, qt
W) ∧

∧

W∈body−(r)

(0, qf ′
W) ∧

∧

W∈head(r)

(0, qf
W)

)
.

It only remains to implement the transitions for qt
W , qf

W and qf ′
W .

(II) The transitions for qt
W use the states qt,↓

W to check that, at the current
position in the tree, the atom W is satisfied.
The transitions from the state qt

W depend on the form of the atom W . For ground
atoms they are simple. Recall that we store binary ground atoms Rc,d in the label
of the root, and that unary atoms A(c) are represented by the symbol A in the
label of the term node i with c = ai. Hence, to verify the satisfaction of R(c, d)
we simply look for the corresponding symbol at the root. If the atom is unary, we
use the auxiliary state qt

A to check that the labeling of the corresponding term
node contains A. For non-ground atoms the automaton non-deterministically
navigates to some node of the tree. Then it uses the state qt,↓

W to test there the
satisfaction of W .

Binary Frontier-Guarded ASP with Function Symbols 323

First, depending on the type of W , we let for each σ = (V,N,N ′) in
2X × ΣP ×ΣP :

δ(σ, qt
W) =

⎧
⎨

⎩

(0, qt,↓
W) ∨ ∨

i∈C∪F(i, qt
W) if W is not ground,

[Rc,d ∈ N] if W = R(c, d),
(i, qt

A) if W = A(c) and c = ai,

and for all (V,N,N ′) ∈ Σ̂ and unary A of P , we let δ(σ, qt
A) = [A ∈ N].

For the case where W is not ground, we also define transitions from the state
qt,↓
W , which again depend on the form of the atom W . In case W is unary, for

each σ = (V,N,N ′) in Σ̂, we let:

δ(σ, qt,↓
W) =

{
[A ∈ N and x ∈ V] if W = A(x),
[x ∈ V] ∧ (i, qt

A) if W = A(f(x)) and f = fi.

If W is binary with a function symbol (i.e., if W = R(x, f(x)) or W =
R(f(x), x)), we define, for each σ = (V,N,N ′) in Σ̂:

δ(σ, qt,↓
W) =

{
[Rf ∈ N and x ∈ V] if W = R(x, f(x))
[R−

f ∈ N and x ∈ V] if W = R(f(x), x).

For atoms R(x, y) it is a bit more complicated. For all (V,N,N ′) ∈ Σ̂ and
W = R(x, y), we have:

δ(σ, qt,↓
W) = (0, qt

(R,x,y)) ∨
(
[x ∈ V] ∧ (∨

i∈F([Rfi
∈ N] ∧ (i, qy))

)) ∨
(
[x ∈ V] ∧ (−1, qy) ∧ (−1, qt

(R,x))
)

Intuitively, the three disjuncts verify the three possible ways in which an atom
R(x, y) can be satisfied: (i) x and y are assigned to constants, (ii) y is mapped
to a functional successor of π(x), and (iii) x is mapped to a functional successor
of π(y). In the first disjunct, the automaton moves to the auxiliary state qt

(R,x,y)

to verify whether there is a pair of constants witnessing the satisfaction of the
atom R(x, y), i.e., whether there is a pair c, d such that x is assigned to c, y is
assigned to d, and R(c, d) holds; recall that the latter is stored at the label of
the root. Hence we have, for each σ = (V,N,N ′) in Σ̂:

δ(σ, qt
(R,x,y)) =

∨
{i,j}⊆C

(
[Rai,aj

∈ N] ∧ (i, qx) ∧ (j, qy)
)

Finally, for qx and qt
(R,x) we have δ(σ, qx) = [x ∈ V] and δ(σ, qt

(R,x)) =
∨

i∈F[R−
fi

�∈ N] ∧ (i, qx) for all σ = (V,N,N ′) in Σ̂.
(III) The transitions for qf

R are analogous, but tests [s ∈ N] for a symbol
s ∈ LP , is replaced by the test [s �∈ N], and we use the states super-indexed with
f instead of their t counterparts (qf

W instead of qt
W , qf,↓

W instead of qt,↓
W , etc.).

(IV) Similarly, in the transitions for qf ′
R we test for [s �∈ N ′] and use the

states super-indexed with f ′.

324 M. Šimkus

In the acceptance condition, we only need to prohibit the states qt
W , qf

W and
qf ′
W , which can postpone the tests for the truth or falsity of atoms, from occurring

infinitely often. Hence we set F = ({qt
W , qf

W , qf ′
W | W is an atom in P}, Q).

Step 3. We can finalize the construction of A
�|=
P . First we let B = (Σ̂,Q, δ, q0, F)

be the result of translating the intersection automaton A∩AX
P into a 1NTA. The

state set of B is exponential in P , and its parity condition is of polynomial size.
To obtain A

�|=
P , we first obtain B′ by projecting away the variable assignment in

the first component of the labels. That is, B′ = (ΣP × ΣP , Q, δ′, q0, F) where
for each (N,N ′) ∈ ΣP ×ΣP and each state q ∈ Q,

δ′((N,N ′), q) =
∨

V ∈2X

δ((V,N,N ′), q).

The automaton B′ accepts a tree T over ΣP ×ΣP iff T can be decorated with
variables in a way that the resulting tree T ′ over Σ̂ is accepted by B. Finally,
the automaton A

�|=
P is obtained by transforming B′ into a proper automaton, by

intersecting it with Aprop
P . This involves a linear increase in the number of states,

and hence the state set of A
�|=
P remains exponential and the parity condition of

polynomial size. The automaton A
�|=
P accepts exactly the pairs (I, I ′) such that

I �|= P I′
, as required.

7 Related Work

Since ASP with function symbols is highly undecidable, e.g., checking existence
of a stable model lies at the second level of the analytical hierarchy [24], many
authors have suggested ways to reduce the complexity of reasoning. To this
end, “mild” restrictions were considered in [6,7,10] to obtain fragments that
are very expressive and computationally better behaved (e.g., obtaining semi-
decidability). Unfortunately, reasoning in these fragments is either not decid-
able, or checking whether a program belongs to a given fragment is undecidable.
Another approach is to consider various acyclicity notions, with ω-restricted pro-
grams of [28] being one the first approaches. See, e.g., [8,20] and the references
therein for the recent works in this direction. They ensure decidability by guar-
anteeing finiteness (and a relatively small size) of stable models of a program.
In contrast, BFG programs may have infinite stable models and thus are in line
with [13,14,16], where efficiently verifiable restrictions are used to ensure that
the possibly infinite stable models are forest-shaped.

The presence of negation is not the only cause of undecidability: basic rea-
soning is undecidable already for Horn programs with existentially quantified
variables in rule heads [2]. Ensuring decidability by requiring rules to be guarded
was first proposed by Cal̀ı et at. [9]. Here “guarded” means that each rule is
required to have a positive body atom that contains all universal variables of a
given rule. The authors also relax this condition to “weak guardedness”, which
excludes from guarding the variables that can be safely assumed to range over

Binary Frontier-Guarded ASP with Function Symbols 325

constants. The notion of frontier-guarded rules, which generalizes guarded rules,
was proposed in [4]. Further generalization of guarded and frontier-guarded rules
were considered in [5]. The recent work in [18] adds to guarded rules negation
under the stable model semantics. Our BFG programs are incomparable to the
fragments of [18] as we consider predicates of arity at most 2, but allow for dis-
junction and non-guarded rules. Adding stable negation to existential rules in
combination with various acyclicity notions was recently considered in [3,23].

8 Discussion

In this paper we have introduced BFG programs, which is a new decidable
fragment of ASP with function symbols. Understanding whether the provided
3ExpTime upper bound is worst-case optimal is left for future work. We believe
that, using word automata instead of tree automata, the 3ExpTime upper bound
for general BFG programs can be recast to show a 2ExpSpace upper bound BFG
programs that allow for a single function symbol.

An important issue for future research is to characterize the data complexity
of BFG programs, i.e. the complexity measured in the size of program facts.
Unfortunately, automata based techniques, including the one used in this paper,
don’t seem to be adequate for characterizing data complexity as often too much
structure is lost when encoding desired structures into labeled trees. In the future
we also plan to investigate the possibility of rewriting BFG programs into ASP
programs without function symbols, similarly to the approach of [19] to rewrite
existential frontier-guarded rules into plain Datalog.

Acknowledgments. This work has been supported by the Austrian Science Fund
(FWF) grants P20840 and P25207, and the Vienna Science and Technology Fund
(WWTF) project ICT12-15. The author is grateful to Thomas Eiter for all the inspiring
discussions on the topic.

References

1. Abiteboul, S., Vianu, V.: Datalog extensions for database queries and updates.
Journal of Computer and System Sciences 43(1), 62–124 (1991)

2. Andréka, H., Németi, I.: The generalised completeness of Horn predicate logics as
programming language. Acta Cybernetica 4(1), 3–10 (1978)

3. Baget, J., Garreau, F., Mugnier, M., Rocher, S.: Revisiting chase termina-
tion for existential rules and their extension to nonmonotonic negation. CoRR
abs/1405.1071 (2014)

4. Baget, J., Leclère, M., Mugnier, M., Salvat, E.: On rules with existential variables:
Walking the decidability line. Artif. Intell. 175(9–10), 1620–1654 (2011)

5. Baget, J., Mugnier, M., Rudolph, S., Thomazo, M.: Walking the complexity lines
for generalized guarded existential rules. In: Proc. of IJCAI 2011. IJCAI/AAAI
(2011)

326 M. Šimkus

6. Baselice, S., Bonatti, P.A., Criscuolo, G.: On finitely recursive programs. Theory
and Practice of Logic Programming 9(2), 213–238 (2009)

7. Bonatti, P.A.: Reasoning with infinite stable models. Artificial Intelligence 156(1),
75–111 (2004)

8. Calautti, M., Greco, S., Molinaro, C., Trubitsyna, I.: Checking termination of
logic programs with function symbols through linear constraints. In: Bikakis, A.,
Fodor, P., Roman, D. (eds.) RuleML 2014. LNCS, vol. 8620, pp. 97–111. Springer,
Heidelberg (2014)

9. Cal̀ı, A., Gottlob, G., Kifer, M.: Taming the infinite chase: Query answering under
expressive relational constraints. J. Artif. Intell. Res. (JAIR) 48, 115–174 (2013)

10. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Computable functions in ASP: theory
and implementation. In: de la Banda, M.G., Pontelli, E. (eds.) ICLP 2008. LNCS,
vol. 5366, pp. 407–424. Springer, Heidelberg (2008)

11. Calvanese, D., Eiter, T., Ortiz, M.: Answering regular path queries in expressive
description logics via alternating tree-automata. Inf. Comput. 237, 12–55 (2014)

12. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic - A
Language-Theoretic Approach, Encyclopedia of mathematics and its applications,
vol. 138. Cambridge University Press (2012)

13. Eiter, T., Šimkus, M.: Bidirectional answer set programs with function symbols.
In: Boutilier, C. (ed.) Proc. of IJCAI 2009, pp. 765–771 (2009)

14. Eiter, T., Šimkus, M.: FDNC: decidable nonmonotonic disjunctive logic programs
with function symbols. ACM Trans. Comput. Log. 11(2) (2010)

15. Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of programs
(extended abstract). In: Proc. of FOCS 1988, pp. 328–337. IEEE (1988)

16. Feier, C., Heymans, S.: Reasoning with forest logic programs and f-hybrid knowl-
edge bases. TPLP 13(3), 395–463 (2013)

17. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9(3/4), 365–386 (1991)

18. Gottlob, G., Hernich, A., Kupke, C., Lukasiewicz, T.: Stable model semantics for
guarded existential rules and description logics. In: Proc. of KR 2014. AAAI Press
(2014)

19. Gottlob, G., Rudolph, S., Šimkus, M.: Expressiveness of guarded existential rule
languages. In: Proc. of PODS 2014, pp. 27–38. ACM (2014)

20. Greco, S., Molinaro, C., Trubitsyna, I.: Bounded programs: a new decidable class
of logic programs with function symbols. In: Proc. of IJCAI 2013. IJCAI/AAAI
(2013)

21. Hull, R., Yoshikawa, M.: Ilog: declarative creation and manipulation of object
identifiers. In: Proc. of VLDB 1990. Morgan Kaufmann Publishers Inc. (1990)

22. Lutz, C.: Inverse roles make conjunctive queries hard. In: Proc. of DL 2007. CEUR
Workshop Proceedings, vol. 250. CEUR-WS.org (2007)

23. Magka, D., Krötzsch, M., Horrocks, I.: Computing stable models for nonmonotonic
existential rules. In: Proc. of IJCAI 2013, pp. 1031–1038. AAAI Press/IJCAI (2013)

24. Marek, V.W., Nerode, A., Remmel, J.B.: How complicated is the set of stable
models of a recursive logic program? Ann. Pure Appl. Logic 56(1–3), 119–135
(1992)

25. Muller, D.E., Schupp, P.E.: Simulating alternating tree automata by nondetermin-
istic automata: New results and new proofs of the theorems of rabin, mcnaughton
and safra. Theor. Comput. Sci. 141(1&2), 69–107 (1995)

26. Pearce, D.: A new logical characterisation of stable models and answer sets. In:
Dix, J., Przymusinski, T.C., Moniz Pereira, L. (eds.) NMELP 1996. LNCS, vol.
1216, pp. 57–70. Springer, Heidelberg (1997)

Binary Frontier-Guarded ASP with Function Symbols 327

27. Šimkus, M.: Nonmonotonic Logic Programs with Function Symbols. Ph.D. thesis,
Vienna University of Technology (2010)

28. Syrjänen, T.: Omega-restricted logic programs. In: Eiter, T., Faber, W.,
Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 267–279.
Springer, Heidelberg (2001)

29. Vardi, M.Y.: Reasoning about the past with two-way automata. In: Larsen, K.G.,
Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 628–641. Springer,
Heidelberg (1998)

Graal: A Toolkit for Query Answering
with Existential Rules

Jean-François Baget, Michel Leclère, Marie-Laure Mugnier(B),
Swan Rocher, and Clément Sipieter

Inria – University of Montpellier, Montpellier, France
mugnier@lirmm.fr

Abstract. This paper presents Graal, a java toolkit dedicated to onto-
logical query answering in the framework of existential rules. We con-
sider knowledge bases composed of data and an ontology expressed by
existential rules. The main features of Graal are the following: a basic
layer that provides generic interfaces to store and query various kinds of
data, forward chaining and query rewriting algorithms, structural anal-
ysis of decidability properties of a rule set, a textual format and its
parser, and import of OWL 2 files. We describe in more detail the query
rewriting algorithms, which rely on original techniques, and report some
experiments.

1 Introduction

Existential rules, a.k.a. Datalog+, are increasingly raising interest in the knowl-
edge representation and database communities [CGL09,BLMS11]. Indeed, they
appear to be well suited for representing ontologies, particularly in the Ontology-
Based Data Access framework (OBDA) [PLC+08], which seeks to exploit onto-
logical knowledge when querying data. On the one hand, existential rules extend
(function-free) Horn rules, a.k.a. Datalog rules, by allowing existentially quanti-
fied variables in rule heads. This allows for asserting the existence of unknown
entities, a fundamental feature for reasoning on incomplete representations of
data. On the other hand, they generalize lightweight description logics used
in the context of OBDA, like those underpinning the tractable profiles of the
Semantic Web ontological language OWL 2.

While the issue of querying data via existential rule ontologies has been well-
studied from a theoretical viewpoint, there is still a lack of software tools that
would allow to improve and demonstrate the practical usability of the framework.
In this paper, we present such a software, named Graal.1 Graal comes in the
form of a java toolkit dedicated to existential rules and oriented toward query
answering tasks. The objective of Graal is to provide algorithms and utility
tools that can be used as basic blocks to develop applications and carry out
experimental evaluation of new solutions.

1 Graal and related tools are available at www.github.com/graphik-team/graal

c© Springer International Publishing Switzerland 2015
N. Bassiliades et al. (Eds.): RuleML 2015, LNCS 9202, pp. 328–344, 2015.
DOI: 10.1007/978-3-319-21542-6 21

www.github.com/graphik-team/graal

Graal: A Toolkit for Query Answering with Existential Rules 329

We consider knowledge bases composed of data and existential rules, as well
as conjunctive queries, all seen at a logical level. The main features of Graal are
the following:

1. a basic layer that provides generic interfaces to store and query heteroge-
neous data without considering the rules; these interfaces define mappings
between the logical level and data stored in various systems (currently: main
memory, relational databases, triple stores, graph databases);

2. ‘saturation’ algorithms, which apply rules on the data in a forward chaining
manner; the saturated data can then be queried using the basic layer;

3. ‘query rewriting’ algorithms, which reformulate a conjunctive query into a set
(or ‘union’) of conjunctive queries; the rewritten query can then be evaluated
over the data using the basic layer. Furthermore, the set of rules can be
partially compiled independently from any query and the rewriting process
exploits this compilation to compute compact rewritings, which have a small
size in practice;

4. utility tools: a format called dlgp (for ‘datalog+’) and its parser, decomposi-
tion of rules, structural analysis of decidability properties of a rule set, and
translation of OWL 2 files into dlgp.

Graal integrates improved versions of the query rewriting algorithm PURE
[KLMT15] and the rule base analyser Kiabora [LMR13]. To the best of our
knowledge, the only other tool dedicated to ontological query answering with
existential rules is IRIS± [GOP14], which builds on the query rewriting algorithm
Nyaya.

The paper is organized as follows. Section 2 is devoted to fundamental notions
on existential rules and the associated ontological query answering problem.
Sections 3 to 7 present the main features of Graal as enumerated above. Since our
query rewriting algorithms rely on original techniques, we present them in more
detail and report experiments that demonstrate the interest of the compilation-
based rewriting.

2 Fundamental Notions

We consider logical vocabularies without function symbols, hence a term is a
variable or a constant. An atom is of the form p(t1, . . . , tk) where p is a predicate
of arity k, and the ti are terms.

The Ontological Query-Answering Problem. A fact base is an existentially
closed conjunction of atoms. Note that variables may occur in the fact base.
This allows to encode in a natural way null values in databases or blank nodes
in RDF, moreover existential rules may produce new existential variables. A
conjunctive query (CQ) is an existentially quantified conjunction of atoms (and
its free variables are called answer variables). When it is a closed formula, it
is called a Boolean CQ (BCQ). Hence, fact bases and BCQs have the same
logical form. It is convenient to see them as sets of atoms. A union of CQs is a
disjunction of CQs with the same answer variables.

330 J.-F. Baget et al.

Given existentially closed conjunctions A and B seen as sets of atoms, a
homomorphism h from A to B is a substitution of the variables in A by terms
in B such that h(A) ⊆ B. It is well-known that B is logically entailed by A
(notation: A |= B) if and only if there is a homomorphism from B to A. Hence,
homomorphism is a core notion for reasoning. A fact base F is redundant if there
is a homomorphism from F to one of its strict subsets F ′ (then F and F ′ are
equivalent).

Given a fact base F and a BCQ Q, the answer to Q in F is positive if F |= Q.
If Q is a non-Boolean CQ with answer variables (x1 . . . xq), a tuple of constants
(a1 . . . aq) is an answer to Q in F if there is a homomorphism from Q to F that
maps xi to ai for each i. In other words, (a1 . . . aq) is an answer to Q in F if the
answer to the BCQ obtained from Q by substituting each xi with ai is positive.

An existential rule (hereafter abbreviated to rule) R is a formula
∀x∀y(B[x,y] → ∃z H[x,z]) where B and H are conjunctions of atoms, respec-
tively called the body and the head of R (as for facts and BCQs, it is convenient
to see the body and the head of a rule as sets of atoms). The variables z which
occur only in H are called existential variables. The variables x, which occur in
B and in H are called frontier variables. Since there is no ambiguity, we may
omit quantifiers in rules and simply denote a rule by B → H. For example,
p(x, y) → q(x, z) ∧ s(z) stands for ∀x∀y(p(x, y) → ∃z(q(x, z) ∧ s(z))).

A fact is a rule with an empty body, hence it is an existentially closed con-
junction of atoms (and not only a ground atom). It follows that a conjunction
of facts can be seen as a single fact, which explains the above definition of a fact
base.

A knowledge base (KB) K = (F ,R) consists of a fact base F and a finite
set of (existential) rules R. The answer to a BCQ Q in K is positive if K |= Q
(and the definition of the answer to a CQ in K follows). The (ontological) query
answering problem we consider takes as input a KB K = (F ,R) and a CQ Q, and
asks for all answers to Q in K. This problem has long been shown undecidable for
general existential rules. However, many decidable, and even tractable, classes
have been exhibited.

There are two main approaches to query answering in the presence of rules.
The first approach is related to forward chaining (a.k.a. chase in databases):
it triggers the rules to build a finite representation of inferred data such that
answers can be computed by evaluating the query against this representation.
The second approach, first proposed for the description logic DL-Lite [CDL+07],
is related to backward chaining: it rewrites the query such that answers can be
computed by evaluating the rewritten query against the data. We now define
fundamental notions related to these approaches.

Notions related to Forward Chaining. A rule R is applicable to a fact
base F if there is a homomorphism h from the body of R to F ; the result of the
application of R on F w.r.t. h is F ∪hsafe(head(R)) where hsafe is a substitution
of head(R), that replaces each x in the frontier of R with h(x), and each other
variable with a “fresh” variable.

Graal: A Toolkit for Query Answering with Existential Rules 331

Example 1. Let F = {p(a, b), r(b)} and R = p(x, y)∧ r(y) → q(x, z)∧ s(z). Note
that z is an existential variable. R is applicable to F with homomorphism {x �→
a, y �→ b}. This application produces the fact ∃z0(q(a, z0) ∧ s(z0)), where z0 is a
fresh variable. Hence, the resulting fact base is F1 = {p(a, b), r(b), q(a, z0), s(z0)}.

Given a BCQ Q, it holds that K |= Q if and only if there is a fact base F ′

obtained from F by a finite sequence of rule applications such that F ′ |= Q.
The saturation F∗ of F with R is obtained from F by repeatedly applying rules
from R until no new rule application can be performed. Note that F∗ can be
infinite. Given a BCQ Q, it holds that K |= Q if and only if F∗ |= Q. An answer
to a CQ Q in K can thus be seen as an answer to Q in F∗.

Notions related to Backward Chaining. Query rewriting relies on unifi-
cation between the query and a rule head. Care must be taken when handling
existential variables: if a term t of the query is unified with an existential variable
in a rule head, all atoms in which t occurs must also be part of the unification,
otherwise the result is unsound.

Example 2. Let Q = {q(u, v), r(v)}. Consider F and R from the previous exam-
ple. Note that Q cannot be mapped by homomorphism to F1 = F∗, hence Q has
no answer in (F , {R}). Assume we unify the atom q(u, v) from Q with the atom
q(x, z) in the head of R: then, Q is rewritten into Q1 = {r(v), p(u, y), r(y)},
which is unsound. Indeed, Q1 can be mapped to F by the homomorphism
{u �→ a, y �→ b, v �→ b}. Intuitively, the trouble is that the ‘connection’ between
variables u and v has been lost in Q1.

Hence, we unify a subset Q′ of the query with a subset H ′ of a rule head.
To define such a unifier, it is convenient to use a partition of the set of terms
of Q′ ∪ H ′. A partition π of a set of terms is said to be admissible if no class
of π contains two constants; then a substitution σ can be obtained from π by
selecting an element ei in each class Ci of π, with priority given to constants,
and setting σ(t) = ei for all t ∈ Ci. A piece-unifier of a BCQ Q with a rule
R = B → H is a triple μ = (Q′,H ′, πµ), where Q′ ⊆ Q, H ′ ⊆ H and πµ is an
admissible partition on the terms of Q′ ∪ H ′ such that:

1. σ(H ′) = σ(Q′), where σ is a substitution obtained from πµ;
2. if a class Ci in πµ contains an existential variable (from H), then the other

terms in Ci are variables from Q′ that do not occur in (Q \ Q′).

A piece P of Q with respect to μ is a non-empty inclusion-minimal subset
of atoms that have to be processed together, i.e., such that: for all a ∈ P and
a′ ∈ Q, if a and a′ share a variable unified with an existential variable of R by
μ, then a′ ∈ P . One can easily check that Q′ is composed of pieces of Q with
respect to μ (hence the name piece-unifier). The (direct) rewriting of Q with R
with respect to μ is σ(Q\Q′)∪σ(B) where σ is a substitution obtained from πµ.

Example 3. ConsideragainQ,RandF .There isnopiece-unifierofQwithR since,z
being an existential variable, q(u, v) cannot be unified with q(x, z) without extend-
ing the unifier to r(v), which is not possible. Let Q2 = {q(u, v), q(w, v), r(u), t(w)}.

332 J.-F. Baget et al.

A piece-unifier of Q2 with R is ({q(u, v), q(w, v)}, {q(x, z)}, {{u,w, x}, {v, z}}).
The corresponding rewriting is {r(u), t(u), p(u, y), r(y)}.

Given a BCQ Q, it holds that K |= Q if and only if there is a BCQ Q′

obtained from Q by a finite sequence of (direct) query rewriting steps such that
F |= Q′. When CQs (and not only BCQs) are involved, an answer variable cannot
be unified with an existential variable from a rule head. In practice, instead of
making the piece-unifier definition more complex, we simply transform a CQ Q
into a BCQ by adding an atom with a special predicate ans that contains all
answer variables, which ensures that answer variables are correctly handled, and
remove all atoms with predicate ans at the end of the rewriting process.

3 Basic Query Answering

The kernel of Graal deals with the following problems: store a fact base and
answer conjunctive queries without considering the rules yet. Graal’s interface
considers sets of atoms (built from predicates of any non-null arity, and whose
terms include variables). Answering a query is thus seen as finding homomor-
phisms from a set of atoms to another. However, Graal may rely upon different
storage systems as well as different querying algorithms to implement these basic
problems.

Storage. A set of atoms can be stored either in main memory or in secondary
memory when it is very large. In main memory, the two implementations pro-
posed are either a list of atoms (smallest memory usage, smallest cost for adding
atoms), or a graph-based data structure (a better access to the data required for
querying). In secondary memory, the storage systems supported by Graal can
be split into three families.

– Relational Databases Here, an atom p(t1, . . . , tk) is stored as a line (t1, . . . , tk)
in the table. Graal uses JDBC to implement relational database systems,
which allows to easily plug any RDBMS that provides a JDBC driver. Graal
is currently provided with a choice of MySQL, postgreSQL and SQLite.

– Triple Stores Here, a binary atom p(t1, t2) is stored as a triple (t1p t2). Graal
provides an implementation using Jena TDB and another using the SAIL
API that allows to use Sesame triple stores, as well as any storage that also
implements that API. Note that, to encode a set of arbitrary atoms into a
triple store, it is first necessary to binarize these atoms.

– Graph Databases Here, atoms, terms and predicates are represented by nodes
in a binary graph. An atom a = p(t1, . . . , tk) is represented by k + 1 labeled
edges: one edge labeled predicate between the node representing a and
the node representing p, and the others labeled term-i between the node
representing a and the node representing ti. Currently, Graal provides two
implementations of this representation. The first one uses Neo4j, the second
uses the Blueprints API through which it is possible to plug in several graph
database systems.

Graal: A Toolkit for Query Answering with Existential Rules 333

Querying. Graal comes with a generic backtrack algorithm that can compute
homomorphisms regardless of the storage system used, thanks to Graal’s core
API. Though this algorithm does not come (yet) with any particular optimiza-
tion, it allows for the quick deployment of any new storage system. Alternatively,
Graal provides translations from a conjunctive query to the native querying lan-
guages of the storage mechanisms it handles: SQL queries are used to access
RDBMS; SPARQL queries are used to access triple stores; and Cypher query
language is used to query data encoded in Neo4j. Note that all those transla-
tions, whatever the storage system used, ensure that the same set of answers is
obtained from a given CQ.

4 Saturation

Graal provides a forward chaining algorithm for existential rules, as well as sev-
eral optimizations of this algorithm. The algorithm performs breadth-first satu-
ration. The fact base is initialized with F = F0. Then, at each step, considering
the fact base Fi, we compute all homomorphisms from all rule bodies to Fi. The
fact base Fi+1 is obtained by applying the rules following these homomorphisms
on Fi. We illustrate the saturation mechanism on the following running example.

Example 4 (Running Example). We start from a quaternary relation project
(x, y, z, w), which intuitively links a project identifier x, an area y, a scientific
manager z and an administrative manager w. Rule R0 decomposes this relation
into binary relations hasArea, hasScManager and hasAdmManager. Rules R1

to R3 introduce specializations of the concept area, namely sensitiveArea, itself
specialized into security and innovation. Rules R4 and R5 state that relations
hasScManager and hasAdmManager are specializations of hasManager. Rules
R6a and R6b state that hasManager and isManagerOf are inverse relations. Rule
R7 states that ‘every manager manages something’. Rules R8a and R8b define the
concept criticalManager (‘a critical manager is someone who manages something
in a sensitive area, and reciprocally’). Finally, Rule R9 partially defines the concept
of accreditedManager: ‘an accredited manager is necessarily someone who man-
ages a project in a security area’.
R0=project(x, y, z, w)→hasArea(x, y)∧hasScManager(x, z)∧hasAdmManager(x,w)

R1 = sensitiveArea(x) → area(x)

R2 = security(x) → sensitiveArea(x)

R3 = innovation(x) → sensitiveArea(x)

R4 = hasScManager(x, y) → hasManager(x, y)

R5 = hasAdmManager(x, y) → hasManager(x, y)

R6a = isManagerOf(y, x) → hasManager(x, y)

R6b = hasManager(y, x) → isManagerOf(x, y)

R7 = manager(x) → isManagerOf(x, y)

R8a = isManagerOf(x, y)∧hasArea(y, z)∧ sensitiveArea(z) → criticalManager(x)

R8b = criticalManager(x) → isManagerOf(x, y) ∧hasArea(y, z) ∧ sensitiveArea(z)

R9 = accreditedManager(x) → isManagerOf(x, y) ∧ project(y, z, v, w) ∧ security(z)

334 J.-F. Baget et al.

Example 5. Let F = {accreditedManager(claire), woman(claire)}. The sat-
uration at Step 1 produces the atoms isManagerOf(claire, y0), project(y0, z0,
v0, w0), security(z0) (by application of rule). The saturation at Step 2 pro-
duces the atom hasManager(y0, claire) (by application of rule R6a), the atom
sensitiveArea(z0) (by application of rule R2), and the atoms hasArea(y0, z0),
hasScManager(y0, v0), hasAdmManager(y0, w0) (by application of rule R0).

The optimizations implemented in Graal on the saturation mechanism are
twofold. The first one is related to the way we detect that a rule application
added new information. The default behavior of Graal is the restricted chase
[FKMP05]: inferred atoms are not added at step i + 1 if there is a folding from
those atoms into Fi (i.e., a homomorphism from the head of the rule into Fi

that preserves frontier variables according to the homomorphism used to apply
the rule).

Example 6. Let F = {manager(tom), isManagerOf(tom, project7)}. The
application of R7 on F would produce the atom isManagerOf(tom, y0). Since
it folds into F , the restricted chase does not add this atom to F .

The second optimization is related to the selection of rules that have to be
checked to generate Fi+1. The default behavior is to check the applicability of
all rules at each step. We may also rely upon the graph of rule dependencies
(GRD). The nodes of this graph are the rules. There is an arc from a rule R to a
rule R′ if there is a piece-unifier of the body of R′ (hence, seen as a query) with
(the head of) R. Optionally, such an arc can be labeled with all piece-unifiers of
the body of R′ with R. The essential properties of the GRD are the following:

– R′ depends on R (i.e., an application of R may trigger a new application of
R′) iff there is an arc from R to R′;

– when the GRD contains no circuit (including self-loops), then the saturation
halts for any fact base.

The GRD can then be used as follows: without loss of completeness, the
dependency behavior checks for applicability at step i+1 solely rules that depend
on rules that were successfully applied at step i; the unifier behavior improves
the previous behavior by considering the (piece-)unifiers between a rule R1 and
a rule R2: if R1 was applied at step i according to a homomorphism h, and
μ1, . . . , μk are the unifiers of the body of R2 with R1, then any homomorphism
from the body of R2 at step i + 1 extends a partial homomorphism μi ◦ h that
can be computed in linear time. This latter improvement not only reduces the
number of rules to be checked for applicability, but also the search space for
homomorphisms.

Finally, let us point out that by combining different storage methods and
querying algorithms (see Section 3), different rule decompositions (see Section 6),
different redundancy elimination mechanisms (restricted, core, etc...) and differ-
ent rule triggering behaviors, we obtain different algorithms that can be more
or less efficient for a particular application. These choices not only impact the

Graal: A Toolkit for Query Answering with Existential Rules 335

efficiency of the saturation mechanism, but also the halting of that procedure. It
is well known, for instance, that the core chase (which removes all redundancies
by computing the smallest equivalent subset of atoms) halts for some instances
where the restricted chase does not. Note also that the choice of rule decompo-
sition into atomic heads may lead to the non-termination of the chase, as shown
in Section 6.2 (Example 17).

5 Query Rewriting

In this section, we present the ‘piece-based’ rewriting technique. Two other
rewriting techniques applicable to existential rules are known. The first one
skolemizes the rule heads, i.e., replaces existential variables by Skolem func-
tions (e.g., REQUIEM [Perez-Urbina et al. 2009]). The second one decomposes
the unification step into two steps: factorisation of the query, and unification
itself (e.g., PerfectRef [CDL+07] and IRIS [GOP14]). In both methods, some
intermediate queries that will not yield rewritings are generated. This is avoided
in piece-based rewriting.

Basic Algorithm (PURE). Given a query Q and a set of rules R, let Q be the
set of all rewritings that can be obtained by a sequence of direct rewritings from
Q. This set is (pre-)ordered by subsumption (Q1 subsumes Q2 if any answer to
Q2 is an answer to Q1; this can be decided by a homomorphism test). When Q
is finite, it can be seen as a UCQ. However, it is sufficient to consider Q′ ⊆ Q,
such that any element of Q is covered (i.e., subsumed) by an element of Q′ (we
say that Q′ is a cover of Q). All inclusion-minimal covers of Q have the same
cardinality.

The basic query rewriting algorithm in Graal (named PURE) takes as input
a CQ and a set of existential rules and outputs a minimal cover of the set
of rewritings, if the set of rewritings is finite (equivalently: if there exists a
UCQ-rewriting of Q). Otherwise, it may not terminate. Among the main classes
of rules ensuring the existence of a UCQ rewriting for any CQ, we can cite
linear rules, which generalize most DL-Lite dialects, the sticky family, and classes
satisfying conditions expressed on a graph of rule dependencies (see in particular
[CGL09,CGP10,BLMS11]).

The algorithm PURE starts from the set of rewritings QF = {Q} and pro-
ceeds in a breadth-first manner. At each step, queries from QF which have been
generated at the preceding step are explored; ‘exploring’ a query consists of
computing the set of direct rewritings of this query with all rules. Let Qt be
the obtained set of new queries. At the end of the step, only a minimal cover of
QF ∪ Qt is kept.

The computation of a minimal cover at each step may seem expensive, since
each comparison of two queries is a homomorphism check. The point is to ensure
the termination of the algorithm whenever a finite set of rewritings exists: since
a set of rewritings may be infinite and still have a finite cover, a cover has to be
maintained at each step (or computed after a finite number of steps). For some
classes of rules, such as linear and sticky rules, this problem does not occur, and

336 J.-F. Baget et al.

the minimal cover could be computed only once at the end of the algorithm.
For a detailed presentation of the rewriting algorithm, we refer the reader to
[KLMT15].

It is well known that the bottleneck of UCQ-rewriting is the size of the
produced UCQ, which can be prohibitively large in practice. Graal proposes an
optimized rewriting technique, presented next.

Compilation-Based Algorithm (PUREC). We can observe that some simple
rules are an obvious cause of combinatorial explosion. A typical example is that
of rules describing hierarchies of concepts (seen as unary predicates), as in the
following example.

Example 7. Let R1 . . . Rn be rules of the form Ri : bi(x) → bi−1(x). These rules
express that the concept b0 is specialized into concept b1, itself specialized into
b2, etc. Let Q = {b0(x1) . . . b0(xk)}. Each atom b0(xj) in Q is rewritten into
b1(xj), which in turn is rewritten into b2(xj), and so on. Thus, there are (n+1)k

rewritings of Q.

Now, assume that we compile the rules from the previous example into an
order on predicates bn < bn−1 < ... < b0 and embed this order in the homomor-
phism notion such that a predicate bi can be mapped to any predicate bj such
that j ≤ i. Then, the only rewriting of Q needed to compute the answers to Q
over any fact base is Q itself. We generalize this idea by compiling all rules with
an atomic body as long as they do not introduce existential variables. Since the
atoms in a rule may have predicates of different arity and arguments in different
positions, we compute a relation on atoms and not only predicates. Moreover,
this relation is not necessarily an order, but a preorder (i.e., a reflexive, transi-
tive, but not necessarily antisymmetric relation).

A rule is said to be compilable if it has a single body atom, no existential
variable and no constant. W.l.o.g. we also assume that a compilable rule has a
single head (indeed, if the rule has no existential variable, each atom in the head
forms a piece). Let Rc be the set of compilable rules. We compute the closure of
Rc, denoted by R∗

c , which is the set of all rules inferred from Rc
2, as illustrated

next on the running example.

Example 8 (Running example). The compilable rules are R0 (decomposed into
3 rules), R1 . . . R5, R6a, R6b. The inferred rules are the following:
project(x, y, z, w) → hasManager(x, z)

project(x, y, z, w) → hasManager(x,w)

security(x) → area(x)

innovation(x) → area(x)

hasScManager(x, y) → isManagerOf(y, x)

hasAdmManager(x, y) → isManagerOf(y, x)

2 Let R1 and R2 be compilable rules such that head(R1) and body(R2) are unifiable by
a (classical) most general unifier u. The rule inferred from (R1, R2) is u(body(R1)) →
u(head(R2)).

Graal: A Toolkit for Query Answering with Existential Rules 337

project(x, y, z, w) → isManagerOf(z, x)

project(x, y, z, w) → isManagerOf(w, x)

The preorder � on atoms associated with R∗
c is as follows: given two atoms

A and B, we have A � B if (i) A = B or (ii) there is a rule R ∈ R∗
c , with a

homomorphism h from body(R) to A such that h(head(R)) = B.

Example 9 (Runningexample). Itholds thatsecurity(u) � area(u)by the inferred
rule security(x) → area(x); and that project(u, b, a, a) � isManagerOf(a, u) by
the rule project(x, y, z, w) → isManagerOf(w, x) and the homomorphism h =
{x �→ u, y �→ b, z �→ a,w �→ a}.

Homomorphism is the fundamental notion to compute logical entailment on
sets of atoms. We extend it to embed the preorder: Given sets of atoms A and
B, a �-homomorphism from B to A is a substitution h from vars(B) to terms(A)
such that for all B ∈ B, there is A ∈ A with A � h(B). This allows to answer
CQs over a KB composed of a fact base and a set of compilable rules.

Example 10 (Running example). Let Q(x) = {hasManager(y, x), hasArea(y, z),
sensitiveArea(z)}, asking for managers of projects about sensitive areas. Let
F = {project(id1, a1,m1,m2), security(a1)}. The answers to Q are m1 and m2.
For m1, we have the �-homomorphism h1 = {x �→ m1, y �→ id1, z �→ a1}, with
project(id1, a1,m1,m2) � hasManager(id1,m1), project(id1, a1,m1,m2) �
hasArea(id1, a1) and security(a1) � sensitiveArea(a1); and similarly for m2.

Now, let R = Rc ∪ Re be a set of existential rules, where Rc is composed
of compilable rules. Rc is compiled into a preorder � and query rewriting is
performed with Re. The preorder has to be embedded into the rewriting process,
otherwise the rewriting process would not be complete, as shown in the next
example.

Example 11 (Running example). Consider again the query Q from the preceding
example. There is no rewriting of Q with the non-compilable rules, whereas
clearly, using the compilable Rules R6a, R0 and R2, Q could be rewritten into
{isManagerOf(x, y), project(y, z, z0, w0), security(z)}, which would then allow
to obtain the rewriting {accreditedManager(x)} with Rule R9.

Hence, the preorder is embedded into the piece-unifier operation as well.
Given a preorder � on atoms, a �-piece-unifier of Q with R is a triple
μ = (Q′,H ′, πu) defined similarly to a piece-unifier, with Condition 1 (σ(H ′) =
σ(Q′)) being replaced by: there is a surjective mapping f from σ(H ′) to σ(Q′)
such that, for all A ∈ σ(H ′), we have f(A) � A. The direct �-rewriting of Q
according to μ is u(body(R)) ∪ u(Q \ Q′).

Example 12 (Running example). Let Q = {criticalManager(x), woman(x)}.
The basic query rewriting algorithm outputs a set of 38 CQs (these CQs are
pairwise incomparable w.r.t. logical entailment, hence we cannot do better if the
output is a classical UCQ). The direct �-rewriting outputs only the 3 follow-
ing queries: Q1(x) = Q(x), Q2(x) = {isManagerOf(x, x1), hasArea(x1, x2),

338 J.-F. Baget et al.

sensitiveArea(x2), woman(x)} and Q3(x) = {accreditedManager(x), woman
(x)}. Q2 is a direct rewriting of Q with Rule R8a and Q3 is a direct �-rewriting
of Q2 with Rule R9.

The following theorem states that the process is sound and complete: given
a KB K = (F ,R), where R = Re ∪ Rc and Rc is a set of compilable rules
with associated preorder �, and a BCQ Q, it holds that K |= Q iff there is Q′

obtained by a sequence of direct �-rewritings from Q using rules from Re such
that F ,Rc |= Q′ (i.e., there is a �-homomorphism from Q′ to F). For more
details, the reader is referred to [KLM15].

Graal’s optimized rewriting algorithm (PUREC) is composed of two steps:
(1) it partitions the given rule set R into Re and Rc, computes R∗

c and encodes
it into a preorder �; (2) given Q, Re and �, it outputs a minimal cover of
the set of �-rewritings (with the notion of cover being defined with respect to
�-homomorphism instead of homomorphism). Since Step 1 is independent from
any query, it can be perfomed independently from Step 2. Hence, the algorithm
also accepts as input Re, R∗

c and Q.

Query Evaluation. Let Q be the result of the optimized rewriting algorithm: Q
can be seen as a ‘pivotal’ representation, in the sense that it can be transformed
into different kinds of queries, depending on the type of data storage and the
applicative context. Obviously, it can be directly evaluated with an adequate
implementation of �-homomorphism in the case the data can be loaded in main
memory.3

Otherwise, the set Q∪Rc can be straightforwardly translated into a Datalog
query, as illustrated in the next example, and passed to a Datalog engine.

Example 13 (Running example). From Q = {Q1(x), Q2(x), Q3(x)} (see the
preceding example), we build 3 Datalog rules with head ans(x) (where ans is
the answer predicate). E.g., from Q1(x), we obtain ans(x):-criticalManager(x),

woman(x). The Datalog query is composed of these 3 rules and compilable rules from
Rc.

A mixed approach can be adopted with Rc being used to saturate the data,
and Q being evaluated over the ‘semi-saturated’ data. One may even assume that
all information that could be inferred by compilable rules is already present in the
data, and delegate the encoding of this information to the database manager.
In particular, if Rc is composed solely of hierarchical rules and the data are
stored in a RDBMS, semantic index techniques allow to effectively avoid the
computation of saturation [RC12].

When partial saturation of the data is not feasible, Q may also be unfolded
into a set of CQs (i.e., a UCQ) Q′: Q′ is obtained from Q by adding, for each Q ∈
Q, all Q′ such that Q′ � Q (then computing a cover). We have experimentally
checked that it is more efficient to unfold Q than to directly compute Q′.

3 The �-homomorphism is not available yet as a standalone querying operation in the
current version of Graal.

Graal: A Toolkit for Query Answering with Existential Rules 339

Example 14 (Running example). Queries Q1 and Q3 are invariant by unfolding;
Q2 is unfolded into 6 × 2 × 3 = 36 queries. All queries are incomparable, hence
|Q′| = 38.

Experiments. We synthetize here experimental results that demonstrate the
interest of compilation-based rewriting. Due to space requirements, we cannot
provide the detailed results. Since benchmarks dedicated to existential rules
are not available yet, we considered rule bases obtained by translation from
description logics (DLs). We first carried out experiments about the query rewrit-
ing step itself. For these experiments, we considered a widely used benchmark,
introduced in [PHM09], composed of DL-LiteR ontologies, namely ADOLENA,
STOCKEXCHANGE, UNIVERSITY and VICODI. Additionally, we considered
very large DL-LiteR ontologies proposed in [TSCS13], which respectively con-
tain more than 53k and 34k rules, with 54% and 64% of compilable rules. Each
ontology is provided with 5 handcrafted queries. We first evaluated the impact
of rule compilation on the rewriting process, w.r.t. the rewriting size and run-
time respectively. We found a huge gap between the sizes of the output; the
pivotal UCQ is often restricted to a single CQ even when the classical UCQ
has thousands of CQs (up to more than 30000 CQs in a case where the pivotal
UCQ contains 1 CQ). Unsurprisingly, the results on the query rewriting runtimes
lead to similar observations. We found that PUREC (without or with unfolding)
scales well on the large ontologies. We also compared to other query rewriting
tools, namely Nyaya (which was the only other tool processing existential rules,
before the recent release of IRIS±), as well as some well-known DL tools. We
emphasize that these DL tools exploit the particularities of DL-Lite, specially
the most recent ones, namely tw-rewriting [RMKZ13] (part of the Ontop OBDA
system) and Rapid [CTS11], whereas Graal and Nyaya are designed for general
existential rules. Globally, PUREC behaves similarly to the fastest tools, Rapid
and tw-rewriting. If we restrict the comparaison to classical UCQ output, the
fastest tools are undeniably tw-rewriting and Rapid, followed by PUREC with
unfolding.

We carried out additional experiments to compare the evaluation of the
classical UCQ rewriting on data with the evaluation of the pivotal UCQ on
data semi-saturated by compilable rules. For these experiments, we used the DL
benchmark LUBM∃

20 proposed in [LSTW13], which comes with a data gener-
ator. This benchmark is a modification of the well-known benchmark LUBM
introduced in [GPH05] (and provided with 14 queries). In particular, it yields
more rules with existential variables and adds 6 challenging queries. We con-
sider two fact bases (stored in an RBDMS) of 151 MB (10 universities) and 3266
MB (200 universities). In both cases, the ratio between the initial base and the
semi-saturated base is rather small (approx. 1.22). Note that the semi-saturation
step is independent from any query, hence it can be computed only once as a
preprocessing step (for information, it took 41 seconds and 15 minutes respec-
tively). We rewrote the 20 queries associated with LUBM and LUBM∃

20. Results
about the rewriting step itself confirmed the conclusions of the first experiments.
Table 1 reports the evaluation runtime for each query (‘UCQ’: evaluation of the

340 J.-F. Baget et al.

classical UCQ on the initial database; ‘Pivotal’: evaluation of the pivotal query
on the semi-saturated database; ‘Rew TO’ and ‘Ans TO’: 30 minutes timeout in
the rewriting step and in the evaluation step resp.; ‘SQL Err.’: query too large
for the RDBMS). We can see that the pivotal UCQ is evaluated much more
efficiently than the classical UCQ (which could even not be produced or passed
to the RDBMS in several cases). Note that, despite the pivotal rewriting of q18
is a single CQ, it could not be evaluated, even on the smaller fact base, because
it requires a large number of joins.

Table 1. Evaluation time over LUBM∃
20 (in seconds)

univ. Rew. q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

10
UCQ 0.62 1.09 0.62 0.91 0.64 13.99 0.74 4.35 3.40 0.78

Pivotal 0.56 0.56 0.55 0.56 0.55 5.88 0.58 0.57 1.62 0.65

200
UCQ 0.63 1.74 0.66 1.00 0.64 229.23 0.76 4.68 23.37 0.75

Pivotal 0.58 0.82 0.56 0.58 0.57 85.00 0.58 0.58 6.56 0.66

univ. Rew. q11 q12 q13 q14 q15 q16 q17 q18 q19 q20

10
UCQ 0.65 0.86 0.648 11.27 Rew TO SQL Err. SQL Err. Rew TO 3.31 4.62

Pivotal 0.66 0.69 0.66 11.29 1.02 0.66 0.69 Ans TO 0.56 1.36

200
UCQ 0.60 0.82 0.68 173.51 Rew TO SQL Err. SQL Err. Rew TO 3.30 17.58

Pivotal 0.67 0.66 0.65 168.45 4.71 0.95 0.68 Ans TO 0.58 5.58

6 Utility Tools for Existential Rules

In this section, we present utility tools dedicated to existential rules, which allow
to exchange, decompose and analyze rule bases.

Datalog+ Format and OWL 2 Translator. We defined a textual format,
called dlgp (for Datalog+), which extends standard datalog notation. Example
15 shows part of the running example in dlgp format.

In addition to ‘pure’ existential rules, dlgp allows to encode negative con-
straints (existential rules with an empty head, interpreted as always false), equal-
ity atoms anywhere in the rule bodies and heads (which allows for instance to
encode functional dependencies), as well as conjunctive queries and facts. Note
that the tools currently implemented in Graal do not process negative constraints
and rules with equality in a specific way. For compatiblity with semantic web
languages, the use of URIs instead of standard predicates or term names is
allowed.

Graal is provided with a dlgp parser and writer. It comes also with a trans-
lator of OWL 2, built on the OWL API. This tool processes OWL 2 axioms that
can be translated into existential rules and ignores the others.

Example 15 (Rules R8a and R8b in dlgp format).
[R8a]criticalManager(X):-isManagerOf(X,Y),hasArea(Y,Z),sensitiveArea(Z).

[R8b]isManagerOf(X,Y),hasArea(Y,Z),sensitiveArea(Z):-criticalManager(X).

Graal: A Toolkit for Query Answering with Existential Rules 341

Decomposition Tools. As already explained, existential variables in rule heads
‘glue’ atoms into subsets (‘pieces’) that have to be processed as a whole. Formally,
a piece P in a rule head H is a non-empty and inclusion-minimal subset of H
such that: for all A ∈ P and A′ in H, if A and A′ share an existential variable,
then A′ ∈ P . A rule head is said to be single-piece (resp. atomic) if it is composed
of a single-piece (resp. a single atom).

A piece of a rule R can be seen as a ‘unit’ of knowledge brought by an
application of R. Indeed, R can be decomposed into an equivalent set of single-
piece-head rules with the same body; furthermore, a rule with a single-piece-
head cannot be decomposed into an equivalent set of atomic-head rules, except
by adding a new predicate.

Example 16 (Running example). Rule R0 has no existential variable, thus each
atom forms a piece. It can be decomposed into: {R0,1 = project(x, y, z, w)
→ hasArea(x, y), R0,2 = project(x, y, z, w) → hasScManager(x, z), R0,3 =
project(x, y, z, w) → hasAdmManager(x,w)}.

By adding a special predicate, one can always decompose an existential rule
into atomic-head rules. Hence, without loss of expressivity one could restrict
attention to such rules. However, breaking the rule pieces has several drawbacks.
First, it leads to a less accurate analysis of dependencies between rules. Second,
it leads to less efficient query rewriting (we refer the reader to the experiments
reported in [KLMT15]). Finally, it can even make the forward chaining infinite
because it prevents from detecting some redundancies in the saturated facts as
shows Example 17.

Example 17. Consider the rule R = p(x) → r(x, y)∧r(y, y)∧p(y) and its decom-
position into atomic-head rules: { R1 = p(x) → pR(x, y), R2 = pR(x, y) →
r(x, y), R3 = pR(x, y) → r(y, y), R4 = pR(x, y) → p(y) }. Let F = {p(a)}.
The restricted chase with R halts on this instance. The first application of R
generates F1 = {p(a), r(a, y0), r(y0, y0), p(y0)}. The next application generates
F2 = {p(a), r(a, y0), r(y0, y0), p(y0), r(y0, y1), r(y1, y1), p(y1)} that folds into
F1 (with both y0 and y1 being mapped to y0).

Graal provides these two transformations of rules for convenience, however
only the decomposition into single-piece heads is exploited in reasoning algo-
rithms, since the other one is always less efficient.

Analysis of a Rule Set. Graal also provides a rule base analyser, which was
first developed as Kiabora, available online.4 We briefly explain why such an
analysis may be useful. Since ontological query answering is undecidable for
general existential rules, neither forward nor backward chaining mechanisms

4 http://www.lirmm.fr/kiabora

http://www.lirmm.fr/kiabora

342 J.-F. Baget et al.

may halt. Therefore, some ‘abstract’ properties of rule sets have been defined,
in relation with the kind of algorithm that halts on rule sets satisfying these
properties. These properties are the following:

– FES. A rule set is a finite expansion set when, for any fact base F , F∗ is
equivalent to a finite fact base (hence, a forward chaining algorithm able to
detect equivalent fact bases halts).

– FUS. A rule set is a finite unification set when, for any CQ Q, the set of
all rewritings that can be obtained by a sequence of direct rewritings from
Q has a finite cover (hence, a breadth-first query rewriting algorithm that
maintains a minimal cover halts).

– BTS. A rule set is a bounded treewidth set when, for any fact base F , F∗

has bounded treewidth, even if it may be infinite (see [TBMR12] for an
algorithm).

Fig. 1. Decidable classes processed by the analyser

These abstract properties are not recognizable. However, many concrete
classes of rules have been exhibited, whose syntactic properties ensure the satis-
faction of one or several of the abstract properties. Figure 1 pictures the concrete
classes currently recognized by the rule analyser; for an overview of these classes,
see, e.g., [Mug11].

Furthermore, the analyser uses the graph of rule dependencies as a tool to
improve decidability recognition. Indeed, some global properties on this graph
allows one to combine FES, FUS or BTS behaviors to obtain a halting procedure.
For instance, if no rule from a subset processed as FES depends on a rule from a
subset processed as FUS, one can first saturate the fact base with the FES rules,
rewrite the query with the FUS rules, and finally query the partially saturated
fact base with the obtained rewritings. For more details on the decidability
recognition module, the reader is referred to [LMR13].

Graal: A Toolkit for Query Answering with Existential Rules 343

7 Conclusion

We presented the main features of Graal, a java toolkit devoted to existential
rules and oriented toward ontological query answering. Graal is a modular tool,
with minimal dependencies between modules, which allows to embed part of it
in another sofware. It is designed to be easily customized or extended. Its core is
a set of java interfaces that can be implemented to plug in other storage sytems,
input /output formats, or new algorithms. Future work includes processing neg-
ative constraints and equality in rules, providing other exchange formats, such
as the Datalog+ fragment of RuleML, and implementing other query answer-
ing algorithms as well as approaches allowing to combine them, as initiated in
Kiabora rule analyser.

References

BLMS11. Baget, J.-F., Leclère, M., Mugnier, M.-L., Salvat, E.: On Rules with Exis-
tential Variables: Walking the Decidability Line. Artif. Intell. 175(9–10),
1620–1654 (2011)

CDL+07. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.:
Tractable Reasoning and Efficient Query Answering in Description Logics:
The DL-Lite Family. J. Autom. Reasoning 39(3), 385–429 (2007)

CGL09. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework
for tractable query answering over ontologies. In: PODS pp. 77–86 (2009)

CGP10. Cal̀ı, A., Gottlob, G., Pieris, A.: Query answering under non-guarded rules
in datalog+/-. In: Hitzler, P., Lukasiewicz, T. (eds.) RR 2010. LNCS, vol.
6333, pp. 1–17. Springer, Heidelberg (2010)

CTS11. Chortaras, A., Trivela, D., Stamou, G.: Optimized query rewriting for OWL
2 QL. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS,
vol. 6803, pp. 192–206. Springer, Heidelberg (2011)

FKMP05. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics
and query answering. Theor. Comput. Sci. 336(1), 89–124 (2005)

GOP14. Gottlob, G., Orsi, G., Pieris, A.: Query Rewriting and Optimization for
Ontological Databases. ACM Trans. Database Syst. 39(3), 25 (2014)

GPH05. Guo, Y., Pan, Z., Heflin, J.: LUBM: A Benchmark for OWL Knowledge
Base Systems. J. Web Sem. 3(2–3), 158–182 (2005)

KLM15. König, M., Leclère, M., Mugnier, M.-L.: Query rewriting for existential rules
with compiled preorder. In: IJCAI (2015)

KLMT15. König, M., Leclère, M., Mugnier, M.-L., Thomazo, M.: Sound, Complete
and Minimal UCQ-Rewriting for Existential Rules. Sem. Web J. (2015, to
appear)

LMR13. Leclère, M., Mugnier, M.-L., Rocher, S.: Kiabora: an analyzer of existential
rule bases. In: Faber, W., Lembo, D. (eds.) RR 2013. LNCS, vol. 7994,
pp. 241–246. Springer, Heidelberg (2013)

LSTW13. Lutz, C., Seylan, I., Toman, D., Wolter, F.: The combined approach to
OBDA: taming role hierarchies using filters. In: Alani, H., et al. (eds.) ISWC
2013, Part I. LNCS, vol. 8218, pp. 314–330. Springer, Heidelberg (2013)

Mug11. Mugnier, M.-L.: Ontological query answering with existential rules. In:
Rudolph, S., Gutierrez, C. (eds.) RR 2011. LNCS, vol. 6902, pp. 2–23.
Springer, Heidelberg (2011)

344 J.-F. Baget et al.

PHM09. Pérez-Urbina, H., Horrocks, I., Motik, B.: Efficient query answering for
OWL 2. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., May-
nard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823,
pp. 489–504. Springer, Heidelberg (2009)

PLC+08. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati,
R.: Linking Data to Ontologies. J. Data Semantics 10, 133–173 (2008)

RC12. Rodriguez-Muro, M., Calvanese, D.: High performance query answering over
dl-lite ontologies. In: KR (2012)

RMKZ13. Rodriguez-Muro, M., Kontchakov, R., Zakharyaschev, M.: Query rewrit-
ing and optimisation with database dependencies in ontop. In: DL 2013,
pp. 917–929 (2013)

TBMR12. Thomazo, M., Baget, J.-F., Mugnier, M.-L., Rudolph, S.: A generic querying
algorithm for greedy sets of existential rules. In: KR (2012)

TSCS13. Trivela, D., Stoilos, G., Chortaras, A., Stamou, G.B.: Optimising resolution-
based rewriting algorithms for dl ontologies. In: DL 2013, pp. 464–476 (2013)

Legal Rules and Reasoning Track

Input/Output STIT Logic
for Normative Systems

Xin Sun(B)

Faculty of Science, Technology and Communication,
University of Luxembourg, Walferdange, Luxembourg

xin.sun@uni.lu

Abstract. In this paper we study input/output STIT logic. We intro-
duce the semantics, proof theory and prove the completeness theorem.
Input/output STIT logic has more expressive power than Makinson and
van der Torre’s input/output logic. We show that input/output STIT
logic is decidable and free from Ross’ paradox.

Keywords: Input/output logic · STIT · Norm

1 Introduction

In recent years, normative multi-agent system [2,7] arises as a new interdis-
ciplinary academic area bringing together researchers from multi-agent system
[22], deontic logic [9] and normative system [1,10]. Norms play an important role
in normative multi-agent system. They are heavily used in agent cooperation
and coordination, group decision making, multi-agent organizations, electronic
institutions, and so on.

In the first volume of the handbook of deontic logic and normative systems [9],
input/output logic [14–17] appears as one of the new achievement in deontic logic
in recent years. Input/output logic takes its origin in the study of conditional
norms. Unlike the modal logic framework, which usually uses possible world
semantics, input/output logic adopts mainly operational semantics: a normative
system is conceived in input/output logic as a deductive machine, like a black
box which produces normative statements as output, when we feed it descriptive
statements as input.

Boella and van der Torre [6] extends input/output logic to reasoning
about constitutive norms. Tosatto et al. [8] adapts it to represent and rea-
son about abstract normative systems. For a comprehensive introduction to
input/output logic, see Parent and van der Torre [17]. A technical toolbox to
build input/output logic is developed in Sun [21].

One limitation of Makinson and van der Torre’s input/output logic is that
it uses propositional logic as its base logic. Such treatment restricts its expres-
sive power. For example, concepts such as agent, action and ability which are
crucial for agent theory and multi-agent system, are unable to be expressed in

c© Springer International Publishing Switzerland 2015
N. Bassiliades et al. (Eds.): RuleML 2015, LNCS 9202, pp. 347–359, 2015.
DOI: 10.1007/978-3-319-21542-6 22

348 X. Sun

input/output logic. To overcome this limitation, we need a more expressive logic
to be the base of input/output logic.

STIT theory or STIT logic [5], is one of the most prominent accounts of
agency in philosophy of action. It is the logic of constructions of the form “agent
i sees to it that φ holds”. STIT logic has strong expressive power. Notions like
agent, action and ability can be expressed in STIT logic. Therefore STIT logic is
an ideal candidate to build new input/output logic. But there are various STIT
logic: individual STIT and group STIT, achieve STIT and deliberative STIT. In
this paper we choose individual deliberative STIT logic as the basis to develop
input/output logic. We make this choice for the following reasons:

1. Compared to Makinson and van der Torre’s input/output logic, this
input/output STIT logic has more expressive power.

2. Choosing individual STIT makes our logic decidable, while if we choose
group STIT we lose decidability.

3. By choosing deliberative STIT, our logic is free from a well known paradox,
Ross’ paradox, which is a challenge for lots of deontic logic, including Makin-
son and van der Torre’s input/output logic. If we choose achieve STIT, we
are not free from Ross’ paradox.

The structure of this paper is as follows: we recap some background knowl-
edge, including some basic concepts and results of STIT logic, in the Section 2.
Then in Section 3 and 4 we study the proof theory, semantics, completeness and
decidability of input/output STIT logic. We show that input/output STIT logic
solves Ross’ paradox in Section 5. We discuss research avenues for future work
and conclude this paper in Section 6.

2 Background

Given a countable set P of propositional letters and a finite set Agt of agents,
the language of individual STIT logic L is defined by the following BNF: for
every p ∈ P and i ∈ Agt,

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | [id]ϕ | �ϕ

Intuitively [id]ϕ is read as “agent i deliberately sees to it that ϕ” , �ϕ is read
as “necessary ϕ”. We use [i]ϕ, read as “agent i successfully sees to it that ϕ”,
as an abbreviation of [id]ϕ ∨ �ϕ. We use ♦ϕ to represent ¬�¬ϕ.

In the literature [id] is called “deliberative STIT” and [i] is called “achieve
STIT” (or Chellas’ STIT). Intuitively, [i]ϕ simply means i sees to it that ϕ
holds, while [id]ϕ means i not only sees to it that ϕ holds, but also ϕ can be
false without the action of i. Deliberative STIT and achieve STIT are inter-
definable because [i]φ is equivalent to [id]ϕ ∨ �ϕ, while [id]φ is equivalent to
[i]ϕ ∧ ¬�ϕ. We will introduce the semantics and axiomatic system via achieve
STIT, and build our input/output logic on deliberative STIT.

In STIT logic, actions are expressed as relations between agents and effects:
[i]φ is an action which means “agent i ensures the world is among those satisfying

Input/Output STIT Logic for Normative Systems 349

φ”. Agent’s ability is expressed by ♦[i]ϕ meaning that agent i has the ability to
ensure the world is among those satisfying φ.

The semantics of STIT logic is originally defined by the branching-time choice
structure. A simpler possible world semantics for group STIT is proposed by Kooi
and Tamminga [13]. Here we simplify it for individual STIT.

Definition 1 (Possible world semantics). A model is a tuple M = (W,
Choice, V), where

1. W is a nonempty set of possible worlds,
2. V : P �→ 2W is the valuation for propositional letters.
3. Choice is a choice function which satisfies the following conditions:

(a) for every i ∈ Agt it holds that Choice(i) is a partition of W ;
(b) for Agt = {1, ..., n}, for every x1 ∈ Choice(1), . . . , xn ∈ Choice(n),

x1 ∩ . . . ∩ xn �= ∅;
Let Ri be the equivalence relation induced by Choice(i). That is, (w,w′) ∈ Ri

iff there is K ∈ Choice(i) such that {w,w′} ⊆ K. Given a model M and a world
w ∈ M , formulas of L is evaluated as follows:

– M,w |= p iff w ∈ V (p) for all p ∈ P.
– M,w |= ¬ϕ iff not M,w |= ϕ.
– M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ.
– M,w |= �ϕ iff M,w′ |= ϕ for all w′ ∈ W .
– M,w |= [i]ϕ iff M,w′ |= ϕ for all w′ such that (w,w′) ∈ Ri.

A formula φ ∈ L is valid iff for all model M and all w ∈ M , if M,w |= φ. φ
is satisfiable iff there are some model M and some w ∈ M such that M,w |= φ.
φ is a logical consequence of a set of formulas Φ if for all model M and all
w ∈ M , if M,w |= ψ for all ψ ∈ Φ, then M,w |= φ. The individual STIT logic is
axiomatized by the following axioms [4,5]:

1. all instances of propositional tautologies
2. the axiom schemas of S5 for �
3. the axiom schemas of S5 for every [i]
4. �ϕ → [i]ϕ
5. (♦[0]ϕ0 ∧ . . . ∧ ♦[k]ϕk) → ♦([0]ϕ0 ∧ . . . ∧ [k]ϕk)

The derivation rules of STIT logic is modus ponens and necessitation for �. A
formula ϕ is a derivable (� ϕ) iff it is derivable via the above axiomatic system.
We use ψ � ϕ to represent � ψ → ϕ.

Theorem 1 ([5]). For every φ ∈ L, |= φ iff � φ.

The satisfiability problem of individual STIT logic is the following decision
problem: given a formula φ, is φ satisfiable? Balbiani et al [4] show that this
problem is solvable in exponential time by a non-deterministic Turing machine.

Theorem 2 ([4]). The complexity of the satisfiability problem of individual
STIT logic is in NEXPTIME.

350 X. Sun

3 Input/Output STIT Logic

Input/output logic adopts mainly operational semantics. The procedure of oper-
ational semantics is divided into three stages. In the first stage, we have in hand
a set of propositions (call it the input) as a description of the current state. We
then apply logical operators to this set, say close the set by logical consequence.
Then we pass this set to a deductive machine and we reach the second stage. In
the second stage, the machine accepts the input and produces a set of propo-
sitions as output. In the third stage, we accept the output and apply logical
operators to it. A more formal explanation relies on the following terminologies.

A normative system N ⊆ L × L is a set of ordered pairs of formulas. A pair
(φ, ψ) ∈ N , call it a norm, is read as “given φ, it ought to be ψ”. N is viewed as a
function (or a deductive machine) from 2L to 2L such that for a set Φ of formulas,
N(Φ) = {ψ | (φ, ψ) ∈ N for some φ ∈ Φ}. Let Cn(Φ) = {φ ∈ L : Φ |= φ}.

3.1 Simple-Minded

Definition 2 (Simple-minded output). Given a set of norms N ⊆ L × L
and a set of formulas Φ ⊆ L,

O1(N,Φ) = Cn(N(Cn(Φ))).

The idea behind simple-minded input/output STIT logic O1 is: we first take a
set of formulas representing facts, then we close it under logical consequence. We
further pass this closed set to the deductive machine (i.e. the normative system).
The deductive machine produces a set of formulas representing obligations. We
finally close obligations under logical consequence.

Example 1. Suppose a, b, x, y are propositional letters, i, j are agents. Let N =
{(a, [i]x), (a, [j]y), (b, x ∧ y)}. Then O1(N, {a}) = Cn(N(Cn({a}))) = Cn({[i]x,
[j]y}). �

On the proof-theoretical side, input/output STIT logics are characterized by
derivation rules about norms. Given a set of norms N , a derivation system is the
smallest set of norms which extends N and is closed under certain derivation
rules. The following are the rules we will use:

– SI (strengthening the input): from (φ1, ψ) to (φ2, ψ) whenever |= φ2 → φ1

– WO (weakening the output): from (φ, ψ1) to (φ, ψ2) whenever |= ψ1 → ψ2

– AND (conjunction of the output): from (φ, ψ1) and (φ, ψ2) to (φ, ψ1 ∧ ψ2)
– OR (disjunction of the input): from (φ1, ψ) and (φ2, ψ) to (φ1 ∨ φ2, ψ)
– CT (cumulative transitivity): from (φ, ψ1) and (φ ∧ ψ1, ψ2) to (φ, ψ2)

The derivation system of simple-minded input/output STIT logic, D1(N), is
decided by the rules SI, WO and AND. Adding OR to D1(N) gives D2(N), the
derivation system of basic input/output STIT logic. Adding CT to D1(N) gives
D3(N), the derivation system of simple-minded reusable input/output STIT
logic. All the five rules together gives the derivation system of basic reusable
input/output STIT logic.

Input/Output STIT Logic for Normative Systems 351

Example 2. Suppose a, b, x, y are propositional letters, i, j are agents. Let N =
{(a ∨ b, [j]x)}, then ([i]b, [j](x ∨ y)) ∈ D1(N) because we have the following
derivation

1. (a ∨ b, [j]x) Assumption
2. ([i]b, [j]x) 1, SI
3. ([i]b, [j](x ∨ y)) 2, WO

Theorem 3. Given N ⊆ L × L, ψ ∈ O1(N, {φ}) iff (φ, ψ) ∈ D1(N).

Proof. Using technics from Sun [20], the proof is routine and here we omit it. �

3.2 Basic

Simple-minded output O1 is unable to process disjunctive input intelligently:
from input Φ = {φ1 ∨ φ2} and normative system N = {(φ1, ψ), (φ2, ψ)} we
don’t have ψ ∈ O1(N,Φ). Basic output O2 strengthens O1 to make up for such
deficiency.

Definition 3 (Basic output). Given a set of norms N ⊆ L × L and a set of
formulas Φ ⊆ L,

O2(N,Φ) =
⋂

{Cn(N(Cn(Ψ))) : Φ ⊆ Ψ, Ψ is disjunctive}.

Here a set Ψ is disjunctive if for all φ ∨ ψ ∈ Ψ , either φ ∈ Ψ or ψ ∈ Ψ .

It can be verified that from input Φ = {φ1 ∨ φ2} and normative system
N = {(φ1, ψ), (φ2, ψ)} we have ψ ∈ O2(N,Φ). The following completeness the-
orem shows that O2 corresponds to the derivation system D2 where the rule
disjunction of the input is involved.

Theorem 4. Given N ⊆ L × L, ψ ∈ O2(N, {φ}) iff (φ, ψ) ∈ D2(N).

Proof. (⇒) Assume (φ, ψ) ∈ D2(N), we prove by induction on the length of
derivation.

Base step: assume (φ, ψ) ∈ N . Then ψ ∈ N({φ}) ⊆ N(Cn(φ)) ⊆⋂{N(Cn(Ψ)) : φ ∈ Ψ, Ψ is disjunctive} ⊆ ⋂{ Cn(N(Cn(Ψ))) : φ ∈
Ψ, Ψ is disjunctive} = O2(N, {φ}).

Inductive step: here we only prove the case (φ, ψ) is derived by the OR
rule in the last step of derivation. Other cases are easier. Assume there are
(φ1, ψ) ∈ D2(N), (φ2, ψ) ∈ D2(N) and φ is φ1 ∨ φ2. By induction hypothesis we
know ψ ∈ O2(N,φ1) and ψ ∈ O2(N,φ2). Now for every set of formulas E such
that φ ∈ E and E is disjunctive, we have φ1∨φ2 ∈ E since φ is φ1∨φ2. Note that
E is disjunctive, so we further have either φ1 ∈ E or φ2 ∈ E. If φ1 ∈ E, then E
is a disjunctive set contains φ1. So we have ψ ∈ O2(N,φ1) =

⋂{Cn(N(Cn(B)) :
φ1 ∈ B,B is disjunctive} ⊆ Cn(N(Cn(E))). Hence ψ ∈ Cn(N(Cn(E))). If
φ2 ∈ E, we can similarly deduce ψ ∈ Cn(N(Cn(E))). Therefore no matter
φ1 ∈ E or φ2 ∈ E, we have ψ ∈ Cn(N(Cn(E))). Therefore ψ ∈ O2(N,φ).

352 X. Sun

(⇐) Assume ψ ∈ O2(N,φ), then ψ ∈ ⋂{Cn(N(Cn(B)) : φ ∈ B,B is
disjunctive}. Let {B1, . . . , Bn} be the set of all minimal disjunctive extensions
of {φ}. Therefore we have ψ ∈ Cn(N(Cn(Bi))) for each i ∈ {1, . . . , n}.

Each Bi corresponds to a branch of the disjunctive parsing tree, defined in
Definition 4, of φ. Note that formulas in Bi can be strictly ordered by their
length. Let φi be the shortest formula of Bi. Then for each χ ∈ Bi, |= φi → χ.

Then we know ψ ∈ Cn(N(Cn(φi))). Hence there are ψi1, . . . , ψik ∈
N(Cn(φi)) such that ψi1 ∧ . . . ∧ ψik |= ψ. Then by SI we know
(φi, ψi1), . . . , (φi, ψik) ∈ D2(N). Then by AND and WO we know (φi, ψ) ∈
D2(N). Now by Lemma 2 we know (φ, ψ) ∈ D2(N). �
Definition 4 (disjunctive parsing tree). Given a formula φ ∈ L, the dis-
junctive parsing tree P (φ) is a tree such that:

(a) φ is the root of P (φ).
(b) Every node which is not a leaf has arity 2.
(c) A node ψ has daughters ψ1 and ψ2 iff ψ is ψ1 ∨ ψ2.
(d) We define the height for each node as follows: every leaf has height

0. If μ is a node with daughters ν1, ν2, then the height of μ is
max{height(ν1), height(ν2)} + 1.

Lemma 1. For every formula φ, every branch of P (φ) is a disjunctive set.

Proof. Let B be an arbitrary branch of P (φ). For every φ1 ∨ φ2 ∈ B, we know
φ1 and φ2 are the only daughters of φ1 ∨ φ2. Therefore B contains either φ1 or
φ2. Hence B is disjunctive. �
Lemma 2. Let (φ, ψ) be a norm and N a normative system. If for every Bi

which is a branch of P (φ), there exist φi ∈ Bi such that (φi, ψ) ∈ N , then
(φ, ψ) ∈ D2(N).

Proof. Since the length of φ is always finite, we know P (φ) is also finite. So we
assume {B1, . . . , Bn} is the set of all branches of P (φ).

Here we just consider the worst case, other cases are easier. In the worst case
we have for every Bi, the element φi ∈ Bi such that (φi, ψ) ∈ N is of height
0. Then by applying the OR rule finitely many times we know that for every
φ′

i ∈ Bi with height(φ′
i) = 1, (φ′

i, ψ) ∈ D2(N). Similarly we can deduce that
for every φ′′

i ∈ Bi with height(φ′′
i) = 2, (φ′′

i , ψ) ∈ D2(N). This progress can go
on and on and we will eventually have (φ, ψ) ∈ D2(N) since the height of φ is
finite. �

3.3 Simple-Minded Reusable

In certain situations, it may be appropriate for outputs to be available for recy-
cling as inputs. On the syntactic level, such a principle of reusability is expressed
by the rule CT. On the semantic level, we define simple-minded reusable output
O3 to implement reusability.

Input/Output STIT Logic for Normative Systems 353

Definition 5 (Simple-minded reusable output). Given a set of norms N ⊆
L×L and a set of formulas Φ ⊆ L, We define a function fN

Φ : 2L → 2L such that
fN

Φ (X) = Cn(Φ∪N(X)), for all X ∈ 2L. It can be proved that fN
Φ is monotonic

with respect to the set theoretical ⊆ relation, and (2L,⊆) is a complete lattice.
Then by Tarski’s fixed point theorem there exist a least fixed point of fN

Φ . Let
BN

Φ be the least fixed point of fN
Φ ,

O3(N,Φ) = Cn(N(BN
Φ)).

We use BN
φ as an abbreviation of BN

{φ}. The following theorem shows that
the syntactic approach D3 and the semantics approach O3 coincide.

Theorem 5. Given N ⊆ L × L, ψ ∈ O3(N, {φ}) iff (φ, ψ) ∈ D3(N).

Proof. The proof mainly uses technics from Sun [20].
(⇐) Assume (φ, ψ) ∈ D3(N), then we prove by induction on the length of
derivation.

– (Base step) Assume (φ, ψ) ∈ N , then by Lemma 4 we have φ ∈ BN
φ . Hence

ψ ∈ N(BN
φ) ⊆ Cn(N(BN

φ)).
– Assume (φ, ψ) ∈ D3(N) and it is derived by using SI from (χ, ψ) ∈ D3(N)

and |= φ → χ. Then by inductive hypothesis we have ψ ∈ Cn(N(BN
χ)). By

Lemma 6 we know BN
χ ⊆ BN

φ . Therefore we further have N(BN
χ) ⊆ N(BN

φ),
Cn(N(BN

χ)) ⊆ Cn(N(BN
φ)). Hence ψ ∈ Cn(N(BN

φ)).
– Assume (φ, ψ) ∈ D3(N), ψ is ψ1 ∧ ψ2 and it is derived by using AND from

(φ, ψ1) and (φ, ψ2). Then by inductive hypothesis we have ψ1 ∈ Cn(N(BN
φ))

and ψ2 ∈ Cn(N(BN
φ)). Therefore ψ1 ∧ ψ2 ∈ Cn(N(BN

φ)).
– Assume (φ, ψ) ∈ D3(N) and it is derived by using WO from (φ, ψ1) ∈ D3(N)

and |= ψ1 → ψ. Then by inductive hypothesis we have ψ1 ∈ Cn(N(BN
φ)).

Since |= ψ1 → ψ, we can prove that ψ ∈ Cn(N(BN
φ)).

– Assume (φ, ψ) ∈ D3(N) and it is derived by using CT form (φ, ψ1) ∈
D3(N) and (φ ∧ ψ1, ψ) ∈ D3(N). Then by inductive hypothesis we have
ψ1 ∈ Cn(N(BN

φ)) and ψ ∈ Cn(N(BN
φ∧ψ1

)). Then by Lemma 8 we have
BN

φ = BN
φ∧ψ1

. Therefore ψ ∈ Cn(N(BN
φ)).

(⇒) Assume ψ ∈ Cn(N(BN
φ)), then there exist ψ1, . . . , ψn ∈ N(BN

φ) such that
ψ1 ∧ . . . ∧ ψn |= ψ. For each i ∈ {1, . . . , n}, from ψi ∈ N(BN

φ) we know there
is φi ∈ BN

φ such that (φi, ψi) ∈ N . From φi ∈ BN
φ we know there exist k such

that φi ∈ BN
φ,k. Now by Lemma 9 we know (φ, ψi) ∈ D3(N). Then by applying

the AND rule we have (φ, ψ1 ∧ . . . ψn) ∈ D3(N). Then by the WO rule we have
(φ, ψ) ∈ D3(N). �
Lemma 3. BN

Φ =
⋃∞

i=0 BN
Φ,i, where BN

Φ,0 = Cn(Φ), BN
Φ,i+1 = Cn(Φ ∪ N(BN

Φ,i)).

Proof. We first prove that
⋃∞

i=0 BN
Φ,i is a fixed point of fN

Φ . We prove by showing
the following:

354 X. Sun

1. Φ ⊆ ⋃∞
i=0 BN

Φ,i: this is because Φ ⊆ Cn(Φ) = BN
Φ,0 ⊆ ⋃∞

i=0 BN
Φ,i.

2. N(
⋃∞

i=0 BN
Φ,i) ⊆ ⋃∞

i=0 BN
Φ,i: For every φ ∈ N(

⋃∞
i=0 BN

Φ,i), there exist k such
that φ ∈ N(BN

Φ,k) ⊆ BN
Φ,k+1 ⊆ ⋃∞

i=0 BN
Φ,i.

3. Cn(
⋃∞

i=0 BN
Φ,i) =

⋃∞
i=0 BN

Φ,i: the right-to-left direction is obvious; for the
other direction: assume φ ∈ Cn(

⋃∞
i=0 BN

Φ,i), then there exist φ1, . . . φn ∈
⋃∞

i=0 BN
Φ,i such that |= φ1 ∧ . . . ∧ φn → φ. Therefore there exist k such that

φ1, . . . φn ∈ BN
Φ,k. Hence φ ∈ BN

Φ,k+1 ⊆ ⋃∞
i=0 BN

Φ,i.

With the above items in hand, we can prove that fN
Φ (

⋃∞
i=0 BN

Φ,i) ⊆ ⋃∞
i=0 BN

Φ,i.
For the other direction, we prove by induction on i that for every i, BN

Φ,i ⊆
fN

Φ (
⋃∞

i=0 BN
Φ,i). Here we omit the details.

So we have proved that
⋃∞

i=0 BN
Φ,i is a fixed point of fN

Φ . To prove that it is the
least fixed point, we can again prove by induction that for every i, BN

Φ,i ⊆ fN
Φ (B),

where B is a fixed point of fN
Φ . Here we omit the details. �

Lemma 4. For every Φ ⊆ L, N ⊆ L × L, Φ ⊆ BN
Φ .

Proof. By Lemma 3, the proof is trivial. �
Lemma 5. For every φ ∈ L, N ⊆ L × L, BN

φ = Cn(BN
φ).

Proof. By Lemma 3, the proof is easy. �
Lemma 6. For every φ, ψ ∈ L, N ⊆ L × L, if |= φ → ψ then BN

ψ ⊆ BN
φ .

Proof. We will prove that for every i, BN
ψ,i ⊆ BN

φ,i. We prove by induction on i.
If i = 0, then BN

ψ,0 = Cn(ψ) ⊆ Cn(φ) ⊆ BN
φ,0. Assume i = k + 1

and BN
ψ,k ⊆ BN

φ,k. Then BN
ψ,k+1 = Cn({ψ} ∪ N(BN

ψ,k)). From BN
ψ,k ⊆ BN

φ,k

we deduce N(BN
ψ,k) ⊆ N(BN

φ,k). Now by the monotony of Cn(•) we know
Cn({ψ} ∪ N(BN

ψ,k)) ⊆ Cn({φ} ∪ N(BN
φ,k)). Hence BN

ψ,k+1 ⊆ BN
φ,k+1.

So we have proved for every i, BN
ψ,i ⊆ BN

φ,i. With this result in hand, we can
easily deduce that BN

ψ ⊆ BN
φ . �

Lemma 7. If ψ ∈ Cn(N(BN
φ)), then ψ ∈ BN

φ .

Proof. By Lemma 3, it is easy to verify that N(BN
φ) ⊆ BN

φ and Cn(BN
φ) ⊆ BN

φ .
The result then follows.

Lemma 8. If ψ ∈ Cn(N(BN
φ)), then BN

φ = BN
φ∧ψ.

Proof. It’s easy to prove that BN
φ ⊆ BN

φ∧ψ. For the other direction, we need to
prove that for every i, BN

φ∧ψ,i ⊆ BN
φ . We prove this by induction on i.

– Base step: Let i = 0, we then have BN
φ∧ψ,i = Cn(φ ∧ ψ). By Lemma 4 we

have φ ∈ BN
φ . By Lemma 7 we have ψ ∈ BN

φ . Then by Lemma 5 we have
φ ∧ ψ ∈ BN

φ .

Input/Output STIT Logic for Normative Systems 355

– Inductive step: Assume for i = k, BN
φ∧ψ,k ⊆ BN

φ . Then BN
φ∧ψ,k+1 = Cn({φ ∧

ψ} ∪ N(BN
φ∧ψ,k)). From BN

φ∧ψ,k ⊆ BN
φ we know there exist j such that

BN
φ∧ψ,k ⊆ ⋃j

i=0 BN
φ,i. Therefore N(BN

φ∧ψ,k)) ⊆ N(
⋃j

i=0 BN
φ,i) ⊆ ⋃j+1

i=0 BN
φ,i

⊆ BN
φ . So we have proved N(BN

φ∧ψ,k)) ⊆ BN
φ . By the base step we have

φ ∧ ψ ∈ BN
φ . Then by Lemma 5 we know Cn({φ ∧ ψ} ∪ N(BN

φ∧ψ,k)) ⊆ BN
φ .

That is, BN
φ∧ψ,k+1 ⊆ BN

φ .

Lemma 9. For all i, if χ ∈ BN
φ,i and (χ, ψ) ∈ N , then (φ, ψ) ∈ D3(N)

Proof. We prove by induction on i.

– Base step: Let i = 0. Then χ ∈ BN
φ,0 = Cn(φ). Hence |= φ → χ. Therefore

we can apply SI to |= φ → χ and (χ, ψ) to derive (φ, ψ).
– Inductive step: Assume for i = k, if χ ∈ BN

φ,k and (χ, ψ) ∈ N , then (φ, ψ) ∈
D3(N). Now let χ ∈ BN

φ,k+1. Then χ ∈ Cn({φ} ∪ N(BN
φ,k)), and there exist

χ1 . . . χn ∈ N(BN
φ,k) such that φ∧χ1∧. . .∧χn |= χ. Then apply SI to (χ, ψ) ∈

N and φ∧χ1∧ . . .∧χn |= χ we have (φ∧χ1∧ . . .∧χn, x) ∈ D3(N). Note that
for each i ∈ {1, . . . , n}, from χi ∈ N(BN

φ,k) we know there is φi ∈ BN
φ,k such

that (φi, χi) ∈ N . Now by inductive hypothesis we have (φ, χi) ∈ D3(N).
Then applying the AND rule we have (φ, χ1 ∧ . . . ∧ χn) ∈ D3(N). From
(φ, χ1 ∧ . . . ∧ χn) ∈ D3(N) and (φ ∧ χ1 ∧ . . . ∧ χn, ψ) ∈ D3(N) we can adopt
the CT rule to derive (φ, ψ) ∈ D3(N).

4 Decidability

Concerning the decidability of input/output STIT logic, we study on the follow-
ing problems:

– Compliance problem: given a finite set of norms N , a finite set of formulas
Φ and a formula ψ, is ψ ∈ O(N,Φ)?

– Violation problem: given a finite set of norms N , a finite set of formulas Φ
and a formula ψ, is ¬ψ ∈ O(N,Φ)?

– Compatibility problem: given a finite set of norms N , a finite set of formulas
Φ and a formula ψ, is ¬ψ �∈ O(N,Φ)?

Intuitively, the compliance problem asks whether certain proposition com-
plies the normative system. The violation problem asks whether certain proposi-
tion violates the normative system and the compatibility problem asks whether
the normative system is compatible with certain proposition. Both the viola-
tion problem and the compatibility problem can be reduced to the compliance
problem, therefore we only study the decidability of the compliance problem.

We prove that all the input/output STIT logic introduced in this paper is
decidable by showing that the compliance problem is solvable by oracle Turing
machines.

356 X. Sun

Definition 6 (oracle Turing machine [3]). An oracle for a language L is a
device that is capable of reporting whether any string w is a member of L. An
oracle Truing machine ML is a modified Turing machine that has the additional
capability of querying an oracle. Whenever ML writes a string on a special oracle
tape it is informed whether that string is a member of L, in a single computation
step.

4.1 Simple-Minded

Theorem 6. The compliance problem of simple-minded input/output STIT
logic is decidable.

Proof: We provide the following algorithm on an oracle Turing machine with
oracle STIT-SAT = {φ ∈ L : φ is satisfiable} to solve the compliance problem
of simple-minded input/output STIT logic.

Let N = {(φ1, ψ1), . . . , (φn, ψn)}, Φ be a finite set of formulas and ψ be a
formula.

1. for each φi ∈ {φ1, . . . , φn}, ask the oracle if ¬(
∧

Φ → φi) is satisfiable.
(a) If the oracle answer “no”, then mark ψi

(b) Otherwise do nothing.
2. Let ψi1 , . . . ψik be all those ψi which are marked in step 1.
3. Ask the oracle if ¬(ψi1 ∧ . . . ∧ ψik → ψ) is satisfiable.

(a) If the oracle answer “no”, then return “accept”
(b) Otherwise return “reject”.

It can be verified that ψ ∈ Cn(N(Cn(Φ))) iff the algorithm returns “accept”.
Therefore simple-minded input/output STIT logic is decidable. �
Remark 1. Here the decidability of individual STIT logic is crucial for the decid-
ability of input/output STIT logic. If we choose group STIT, of which the sat-
isfiability problem is undecidable [11], as our base logic, then our input/output
STIT logic will be undecidable because the satisfiability problem of the base
logic can be reduced to the compliance problem by making N = ∅.

Corollary 1. The violation problem and compatibility problem of simple-minded
input/output STIT logic is decidable.

4.2 Basic

Theorem 7. The compliance problem of basic input/output STIT logic is decid-
able.

Proof: We provide the following algorithm on an oracle Turing machine with
oracle STIT-SAT to solve the compliance problem.

Let N = {(φ1, ψ1), . . . , (φn, ψn)}, Φ = {χ1, . . . , χm} be a finite set of formulas
and ψ be a formula.

Input/Output STIT Logic for Normative Systems 357

1. Let B1, . . . , Bm be the sequence of all minimal disjunctive extension of Φ.
2. Let i = 1.
3. Let Φ = Bi.
4. for each φj ∈ {φ1, . . . , φn}, ask the oracle if ¬(

∧
Φ → φi) is satisfiable.

(a) If the oracle answer “no”, then mark ψj

(b) Otherwise do nothing.
5. Let ψj1 , . . . ψjk be all those ψj which are marked in step 4.
6. Ask the oracle if ¬(ψj1 ∧ . . . ∧ ψjk → ψ) is satisfiable.

(a) If the oracle answer “no”, then let i = i + 1.
i. if i ≤ m, then goto step 3.
ii. if i = m + 1, then return “accept”

(b) Otherwise return “reject”.

It can be verified that ψ ∈ O2(N,Φ) iff the algorithm returns “accept”.
Therefore simple-minded input/output STIT logic is decidable. �
Corollary 2. The violation problem and compatibility problem of basic
input/output STIT logic is decidable.

4.3 Simple-Minded Reusable

Theorem 8. The compliance problem of simple-minded reusable input/output
STIT logic is decidable.

Proof: We provide the following algorithm on an oracle Turing machine with
oracle STIT-SAT to solve the compliance problem of simple-minded reusable
input/output STIT logic. The case for simple-minded input/output STIT logic
is easier and left to the readers.

Let N = {(φ1, ψ1), . . . , (φn, ψn)}, Φ be a finite set of formulas and ψ be a
formula.

1. Let X = Φ, Y = Z = N , U = ∅.
2. for each (φi, ψi) ∈ Y , ask the oracle if ¬(

∧
X → φi) is satisfiable

(a) if “no”, then let X = X ∪ {ψi}, Z = Z − {(φi, ψi)}.
(b) Otherwise do nothing.

3. If Y equals to Z, goto 4. Otherwise let Y = Z, goto step 2
4. for each (φi, ψi) ∈ N , ask the oracle if ¬(

∧
X → φi) is satisfiable

(a) If “no”, then let U = U ∪ {ψi}.
(b) Otherwise do nothing

5. Ask the oracle if ¬(
∧

U → ψ) is satisfiable.
(a) If “no”, then return “accept”.
(b) Otherwise return “reject”.

The correctness of the above algorithm is routine to be proven and we left it
to the readers. Therefore simple-minded reusable input/output STIT logic is
decidable. �
Corollary 3. The violation problem and compatibility problem of simple-minded
reusable input/output STIT logic is decidable.

358 X. Sun

5 On Ross’ Paradox

Ross’ paradox [18] originate from the logic of imperatives, and is a well-known
puzzle in deontic logic. Ross’ paradox says that the inference rule WO cannot
be valid, since if it were, then from

(1) You ought to post the letter

we could conclude that

(2) You ought to post the letter or burn it

and we obviously cannot.
Both Makinson and van der Torre’s input/output logic and deontic STIT

logic [12,13,19] are not free from this paradox.
Ross’ paradox relies on the rule Ought(φ) → Ought(φ ∨ ψ) of deontic logic.

In our input/output STIT logic, we choose deliberative STIT as our base logic.
Therefore we don’t have |= [id]φ → [id](φ ∨ ψ) because it might be |= �(φ ∨ ψ).
Therefore (�, [id](φ ∨ ψ)) is not derivable from (�, [id]φ), which means Ross’
paradox is solved.

6 Conclusion

In this paper we study input/output STIT logic. We introduce the semantics,
proof theory and prove the completeness theorem. Input/output STIT logic has
stronger expressive power than Mankinson and van der Torre’s input/output
logic. We show that input/output STIT logic is decidable and free from Ross’
paradox.

Directions of future work are manifold. Two natural directions includes: (1)
What is the semantics for basic reusable input/output STIT logic? (2) What is
the complexity of input/output STIT logic?

References

1. Ågotnes, T., van der Hoek, W., Rodŕıguez-Aguilar, J.A., Sierra, C., Wooldridge,
M.: On the logic of normative systems. In: Veloso, M.M. (ed.) Proceedings of
the 20th International Joint Conference on Artificial Intelligence, IJCAI 2007,
Hyderabad, India, pp. 1175–1180, January 6–12, 2007

2. Andrighetto, G., Governatori, G., Noriega, P., van der Torre, L.W.N. (eds.): Nor-
mative Multi-Agent Systems. Dagstuhl Follow-Ups, vol. 4. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2013)

3. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge
University Press, New York (2009)

4. Balbiani, P., Herzig, A., Troquard, N.: Alternative axiomatics and complexity of
deliberative stit theories. Journal of Philosophical Logic 37(4), 387–406 (2008)

5. Belnap, N., Perloff, M., Xu, M.: Facing the future: agents anc choice in our indert-
erminist world. Oxford (2001)

Input/Output STIT Logic for Normative Systems 359

6. Boella, G., van der Torre, L.W.N.: A logical architecture of a normative system. In:
Goble, L., Meyer, J.-J.C. (eds.) DEON 2006. LNCS (LNAI), vol. 4048, pp. 24–35.
Springer, Heidelberg (2006)

7. Boella, G., van der Torre, L., Verhagen, H.: Introduction to the special issue on nor-
mative multiagent systems. Autonomous Agents and Multi-Agent Systems 17(1),
1–10 (2008)

8. Colombo, S., Guido, T., van der Torre, B.L., Villata, S.: Abstract normative sys-
tems: semantics and proof theory. In: Proceedings of the Thirteenth International
Conference on Principles of Knowledge Representation and Reasoning, pp. 358–368
(2012)

9. Gabbay, D., Horty, J., Parent, X., van der Meyden, R., van der Torre, L. (eds.):
Handbook of Deontic Logic and Normative Systems. College Publications (2014)

10. Herzig, A., Lorini, E., Moisan, F., Troquard, N.: A dynamic logic of normative
systems. In: Walsh, T. (ed.) Proceedings of the 22nd International Joint Conference
on Artificial Intelligence, IJCAI 2011, barcelona, Catalonia, Spain, July 16–22,
2011, pp. 228–233. IJCAI/AAAI (2011)

11. Herzig, A., Schwarzentruber, F.: Properties of logics of individual and group
agency. In: Areces, C., Goldblatt, R. (eds.) Advances in Modal Logic, pp. 133–149.
College Publications (2008)

12. Horty, J.: Agency and Deontic Logic. Oxford University Press, New York (2001)
13. Kooi, B., Tamminga, A.: Moral conflicts between groups of agents. Journal of

Philosophical Logic 37, 1–21 (2008)
14. Makinson, D., van der Torre, L.: Input-output logics. Journal of Philosophical

Logic 29, 383–408 (2000)
15. Makinson, D., van der Torre, L.: Constraints for input/output logics. Journal of

Philosophical Logic 30(2), 155–185 (2001)
16. Makinson, D., van der Torre, L.: Permission from an input/output perspective.

Journal of Philosophical Logic 32, 391–416 (2003)
17. Parent, X., van der Torre, L.: I/O logic. In: Horty, J., Gabbay, D., Parent, X., van

der Meyden, R., van der Torre, L. (eds.) Handbook of Deontic Logic and Normative
Systems. College Publications (2014)

18. Ross, A.: Imperatives and logic. Theoria, 7(5371) (1941)
19. Sun, X.: Conditional ought, a game theoretical perspective. In: van Ditmarsch,

H., Lang, J., Ju, S. (eds.) LORI 2011. LNCS, vol. 6953, pp. 356–369. Springer,
Heidelberg (2011)

20. Sun, X.: How to build input/output logic. In: Bulling, N., van der Torre, L.,
Villata, S., Jamroga, W., Vasconcelos, W. (eds.) CLIMA 2014. LNCS, vol. 8624,
pp. 123–137. Springer, Heidelberg (2014)

21. Sun, X., van der Torre, L.: Combining constitutive and regulative norms in
input/output logic. In: Cariani, F., Grossi, D., Meheus, J., Parent, X. (eds.) DEON
2014. LNCS, vol. 8554, pp. 241–257. Springer, Heidelberg (2014)

22. Wooldridge, M.J.: An Introduction to MultiAgent Systems. Wiley (2009)

Towards Formal Semantics for ODRL Policies

Simon Steyskal1,2(B) and Axel Polleres1

1 Vienna University of Economics and Business, Vienna, Austria
simon.steyskal@wu.ac.at, {simon.steyskal,axel.polleres}@siemens.com

2 Siemens AG, Vienna, Austria

Abstract. Most policy-based access control frameworks explicitly
model whether execution of certain actions (read, write, etc.) on cer-
tain assets should be permitted or denied and usually assume that such
actions are disjoint from each other, i.e. there does not exist any explicit
or implicit dependency between actions of the domain. This in turn
means, that conflicts among rules or policies can only occur if those
contradictory rules or policies constrain the same action. In the present
paper - motivated by the example of ODRL 2.1 as policy expression
language - we follow a different approach and shed light on possible
dependencies among actions of access control policies. We propose an
interpretation of the formal semantics of general ODRL policy expres-
sions and motivate rule-based reasoning over such policy expressions tak-
ing both explicit and implicit dependencies among actions into account.
Our main contributions are (i) an exploration of different kinds of ambi-
guities that might emerge based on explicit or implicit dependencies
among actions, and (ii) a formal interpretation of the semantics of gen-
eral ODRL policies based on a defined abstract syntax for ODRL which
shall eventually enable to perform rule-based reasoning over a set of such
policies.

1 Introduction

ODRL (Open Digital Rights Language) [7] is a comprehensive policy expression
language that aims to develop and promote an open international specification
for interchangeable policy expressions. As shown in [1,12], ODRL has proven
to be suitable to express fine-grained access restrictions, access policies, as well
as licensing information for Linked Data. It was recently published as version
2.1 and allows to not only model permission or prohibitions of actions over
assets, but also to define (optional) obligations for permission rules which need
to be fulfilled in order for associated permissions to become active.1 By using

Simon Steyskal has been partially funded by the Vienna Science and Technology
Fund (WWTF) through project ICT12-015 and by the Austrian Research Promotion
Agency (FFG) grant 845638 (SHAPE).

1 We note that the specification so far does not define obligations in the form of
contractual debts referring to the future upon using the permission, which may be
a potential extension.

c© Springer International Publishing Switzerland 2015
N. Bassiliades et al. (Eds.): RuleML 2015, LNCS 9202, pp. 360–375, 2015.
DOI: 10.1007/978-3-319-21542-6 23

Towards Formal Semantics for ODRL Policies 361

obligations, data owners would be able to define preconditions for using their
data, e.g. paying a certain amount of money, which might in turn serve as an
incentive to publish their data in the first place as well as duties to be fulfilled
when re-sharing the data. Obviously, if there is no possibility to protect or regain
some of the expenses made during creating and curating a dataset, data owners
might not see any benefit from publishing it.

In order to be able to use ODRL in an automated environment where requests
against a set of control policies can be automatically processed and inconsisten-
cies/conflicts among policies automatically detected, a formal specification of
the semantics of policies expressed in ODRL is necessary. Unfortunately, there
does not exist such an official formal specification, which is primarily caused by
the fact that ODRL claims to follow an open design approach which shall allow
applications using ODRL to each impose their own concrete interpretation of its
semantics [8]. This, however, leads to difficulties when trying to process and con-
sume ODRL policies automatically (i.e. perform reasoning over them), especially
because natural language definitions usually leave a margin for interpretation.

Another issue we want to address within the present paper came up during
our work on defining the formal semantics of ODRL policies. Most policy-based
access control frameworks (e.g. PROTUNE [2]) consider conflicts among policies
to only occur between ones that constrain the same action(s) contradictorily (e.g.
by prohibiting and permitting a specific action at the same time), but do not take
potential dependencies among different actions into account when checking for
conflicts. Such dependencies can occur in different manifestations (cf. Section 3)
and should be taken into account appropriately when processing requests.

In the present paper we aim to close those gaps of (i) a missing formal
specification of ODRL and (ii) resolving ambiguities when handling explicit or
implicit dependencies among actions. In particular, our contributions can be
summarized as follows:

1. Definition of an abstract syntax for expressing ODRL policies.
2. Formalization of a possible interpretation of ODRL policy semantics.
3. Discussion of a solution proposal for handling implicit dependencies between

ODRL actions.

The remainder of this paper is structured as follows: Section 2 provides a brief
introduction into ODRL and defines an abstract syntax for expressing ODRL
policies. Section 3 discusses the relationship between explicit and implicit depen-
dencies among ODRL actions, and their impact on processing potential query
requests, while Section 4 introduces a possible formal interpretation of ODRL
policy semantics and Section 5 discusses proposed extended semantics of ODRL
conflict resolution strategies. Finally, we discuss related work in Section 6 before
we conclude our paper in Section 7.

2 Abstract Syntax of ODRL

The Open Digital Rights Language (ODRL) was invented to provide an
open standard for defining policy expressions for digital content and media.

362 S. Steyskal and A. Polleres

Fig. 1. ODRL Core Model Version 2.1 taken from http://www.w3.org/community/
odrl/model/2.1/

The ODRL Core Model (cf. Figure 1) contains all major components of an
ODRL policy expression.

To the best of our knowledge, there exists no officially agreed on abstract
syntax of ODRL that covers all main concepts of the ODRL core model. In the
following, we will introduce such an abstract syntax of ODRL that covers its
main concepts and continue with utilizing this concise representation to propose
a potential interpretation of the formal semantics of ODRL.

Table 1 represents the abstract syntax of ODRL, which was inspired by an
approach to formalize XACML used in [9] and can be read as follows:

– text in bold represents non-terminal symbols
– text in typewriter represents terminal symbols
– text in italic represents functions and identifiers
– A∗ indicates zero or more occurrences of symbol A
– A+ indicates one or more occurrences of symbol A
– A? indicates zero or one occurrence of symbol A

A Policy contains at least one PermissionRule or ProhibitionRule and has
an associated ODRL ConflictResolutionStrategy which is either permit overrides
(perm), prohibition overrides (prohibit), or no conflicts allowed (invalid). A
Policy is applicable, if at least one of the Rules it contains matches with the
request.

A ProhibitionRule defines the prohibition of performing an Action on an asset
by a particular party which are both declared in the RuleMatch component of the
ProhibitionRule. When its RuleMatch and Action components match a particular

http://www.w3.org/community/odrl/model/2.1/
http://www.w3.org/community/odrl/model/2.1/

Towards Formal Semantics for ODRL Policies 363

Table 1. Abstract Syntax of ODRL

ODRL Policy Components

Policy P ::= Pid = [〈(PRRid|PERid)+〉,ALG]
ProhibitionRule PRR ::= PRRid = [RM, A, CONS]
PermissionRule PER ::= PERid = [RM, A, 〈DUR∗

id〉, CONS]
DutyRule DUR ::= DURid = [RM, A, CONS]
ConstraintSet CONS ::= CON Sid = 〈CON ∗

id〉
Constraint CON ::= CON id = fbool(status(a), operator(o), bound(a))
RuleMatch RM ::= RMid = 〈M+〉
Match M ::= Mid = φ(a)
Action A ::= Aid = action(a)

φ(a) ::= party(a) | asset(a)
a ::= value
o ::= eq | neq | lt | lteq | gt | gteq

ConflictRes.Strat. ALG ::= perm | prohibit | invalid
Query & Proof

QueryRequest Q ::= Qid = 〈party(a)?, action(a), asset(a)〉
DutyTarget DT ::= DT id = 〈party(a)?, action(a), asset(a)?〉
DutyProof DPF ::= DPF id = [DT ,CON id,status(a)]
Proof PF ::= PF id = [CON id,status(a)]
ProofSet PFS ::= 〈(DPF id|PF id)∗〉

request, the applicability of the ProhibitionRule can be further constrained by a
set of Constraints. Constraints are represented as boolean formulas that compare
a status according to an operator2 with a respective bound. The status of a
particular Constraint is provided by a respective Proof or DutyProof that serve
as input for the Constraint.

PermissionRules are similarly defined as ProhibitionRules, but instead of
prohibiting the execution of an Action they permit it. Furthermore, a sequence
of DutyRules can be associated with PermissionRules. All associated DutyRules
must be fulfilled in order for the respective PermissionRule to become valid.

A QueryRequest contains a particular access request that consists of an action
and the respective asset it should be performed on, as well as optional informa-
tion about the party which shall be performing the action.

3 Explicit and Implicit Dependencies among Actions in
ODRL

Policy-based access control frameworks allow to explicitly model whether the
execution of certain actions on certain assets should be permitted or prohibited
and usually consider those actions to be disjoint from each other, i.e. there does
2 Note, that we do not take set operators into account, but see them as a potential

extension for further work.

364 S. Steyskal and A. Polleres

not exist any explicit or implicit dependency between actions of the domain.
Which in turn means, that conflicts among rules or policies can only occur if
those contradictory rules or policies constrain the same action. However, in some
situations there might indeed be interferences between different actions which
have to be taken into account. Therefore, we have identified two different types of
dependencies among actions of ODRL policies, namely: (i) implicit dependencies,
and (ii) explicit dependencies.

In the following, we will discuss those dependencies in more detail.

3.1 Implicit Dependencies among ODRL Actions

The first dependency we discuss, defines a part-of relationship between actions
which is related to Aggregations in UML [3].

Definition 1. Let A1 and A2 be two arbitrary ODRL actions, then A1 requires
the permission of A2 for its execution, requires(A1,A2), if the execution of A1
involves the execution of A2.

That means, if the execution of an action A1 implies, that an action A2 must
be executable (i.e. execution of A2 is not denied), then requires(A1,A2) holds. To
illustrate this relationship, consider the definition of odrl:share given in Figure 2,
where its natural language semantics definition is taken from the official ODRL
2.0 specification [6].

odrl:share: The act
of the non-commercial
reproduction and dis-
tribution of the asset to
third-parties.

odrl:share

odrl:distribute odrl:copy odrl:reproduce

requires requires

equals

Fig. 2. Implicit dependencies of odrl:share (ODRL 2.0)

According to its semantics, odrl:share defines the non-commercial reproduc-
tion and distribution of an asset to third-parties. Which obviously would lead
to a conflict when considering a policy as defined in Listing 1 which gener-
ally permits to share dataset :dataset1 but at the same time denies Assignee
:alice to distribute it. A naive evaluation approach would allow :alice to share
:dataset1 because there does not exist any rule that prohibits her from performing
odrl:share on :dataset1. But since odrl:share defines the non-commercial reproduc-
tion (odrl:reproduce) and distribution (odrl:distribute) of an asset, it requires their
execution permission to become valid itself, i.e. requires(odrl:share,odrl:reproduce)
and requires(odrl:share,odrl:distribute) hold.

Towards Formal Semantics for ODRL Policies 365

@prefix odrl: <http://w3.org/ns/odrl/2/>.
@prefix : <http://www.example.com/>.

:sharePolicy a odrl:Set;
odrl:permission [

a odrl:Permission;
odrl:action odrl:share;
odrl:target :dataset1];

odrl:prohibition [
a odrl:Prohibition;
odrl:assignee :alice;
odrl:action odrl:distribute;
odrl:target :dataset1].

Listing 1. Prohibition of action odrl:distribute causes a conflict with permission of
odrl:share.

Furthermore, some actions are defined to be equal according to the ODRL
2.0 specification [6] which means that they can be used interchangeably3.

Definition 2. Let A1 and A2 be two arbitrary ODRL actions, then A1 is equal
to A2, equals(A1,A2), if A1 and A2 represent the same functionality according
to the official ODRL specification.

For the example of odrl:share given in Figure 2, this means that odrl:share
depends not only on the explicitly mentioned action odrl:reproduce but also
on its equivalent action odrl:copy, i.e. equals(odrl:reproduce,odrl:copy) and
requires(odrl:share,odrl:copy) hold both.

3.2 Explicit Dependencies among ODRL Actions

In contrast to the aforementioned implicit part-of dependencies among actions
in ODRL which are based on their natural language description, there also exist
explicit relationships which are indicated by a subsumption hierarchy in the
ODRL specification.

Definition 3. Let A1 and A2 be two arbitrary ODRL actions, then
broader(A1,A2) holds, if A1 represents a broader term for A2,

In contrast to the previous defined part-of dependency, this explicit depen-
dency imposes different semantics for the evaluation of ODRL policy expressions.
Whenever broader(A1,A2) holds and both A1 and A2 have different access rights
(i.e. permission or prohibition), then either A1 or A2 has to adapt its rights,
according to the respective conflict resolution strategy in place.

Consider the excerpt of the subsumption hierarchy between actions illus-
trated in Figure 3. Based on the chosen conflict resolution strategy, if e.g. action
3 Note that one of each pair of equivalent terms was defined as deprecated in ODRL

2.1.

366 S. Steyskal and A. Polleres

odrl:useodrl:distribute odrl:copy

odrl:presentodrl:display odrl:play

odrl:print

narrower narrower

narrower

narrower narrower

narrower

broader broader

broader

broader broader

broader

Fig. 3. Excerpt of explicit subsumption hierarchy between actions

odrl:use is prohibited then there cannot exist any other action that represents
a narrower term of odrl:use and is permitted (cf. Section 5 for a more detailed
discussion).

4 Basic Semantics of ODRL Policies

The following section proposes a possible interpretation of the formal semantics
of ODRL which differs from earlier approaches defined in [5,10]. Starting from a
potential request that was issued against a system, we first evaluate which rules
are triggered by the request, and then check whether those rules hold according
to potential duties or constraints they might have attached4. Eventually, all
policies that contain rules which have matched are evaluated by following one
of the three proposed ODRL conflict resolution strategies.

Match and RuleMatch. Let MRM be either a Match or a RuleMatch compo-
nent and let QDT either be a set of all possible QueryRequests or DutyTargets.
A match semantic function is a mapping [[MRM]] : QDT → {m, nm}, where
m and nm denote match and no match respectively.

A certain Match component M (i.e. the attribute value it represents)
matches, whenever it is part of a particular Query or DutyTarget.

[[M]](QDT) =
{
m if M ∈ QDT
nm if M /∈ QDT

(1)

A RuleMatch component RM (i.e. a set of Match components defined as
〈M1, . . . ,Mn〉) only matches, if all of its Match components are evaluated to
m.
4 For now, we assume to have evidence of the fulfillment or violation of con-

straints/obligations available denoted as proofs. Future work will tackle the issue
of actually generating or providing those evidences.

Towards Formal Semantics for ODRL Policies 367

[[RM]](QDT) =
{
m if ∀i : [[Mi]](QDT) = m
nm if ∃i : [[Mi]](QDT) = nm

(2)

Action. Let A be an Action component and let QDT either be a set of all pos-
sible QueryRequests or DutyTargets. An action semantic function is a mapping
[[A]] : QDT → {m, broadm, narm, reqm, partm, nm}, where m denotes match,
broadm match of broader action, narm match of narrower action, reqm match of
requiring action, partm match of required action, and nm denotes no match.

A certain Action component (i.e. the action it represents) matches, whenever
it is part of a particular QueryRequest or DutyTarget or if an equivalent action
is part of a particular QueryRequest or DutyTarget. Otherwise, it evaluates to
broadm if it is related to a broader action that is part of the QueryRequest or
DutyTarget, or to narm if it is related to a narrower action that is part of the
QueryRequest or DutyTarget, or to partm if it is related to an action that is part of
the QueryRequest or DutyTarget and this action requires the Action component
for its execution, or to reqm if it requires another action for its execution and this
required action is part of the QueryRequest or DutyTarget, or to nm otherwise.

[[A]](QDT) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m if A ∈ QDT or
∃i : equals(A,Ai) ∧ Ai ∈ QDT

narm if ∃i : broader(Ai,A) ∧ Ai ∈ QDT
broadm if ∃i : broader(A,Ai) ∧ Ai ∈ QDT
partm if ∃i : requires(Ai,A) ∧ Ai ∈ QDT
reqm if ∃i : requires(A,Ai) ∧ Ai ∈ QDT
nm otherwise

(3)

Constraint and ConstraintSet. Let CON be a Constraint component,
CON S = 〈CON 1, . . . , CONn〉 a ConstraintSet component, and let PFS =
〈DPF1, . . . ,DPFm,PF1, . . . ,PFn〉 represent all possible ProofSets. A con-
straint semantic function is a mapping [[CON]] : PFS → {t, f}, where t and f
indicate whether the boolean formula represented by CON holds, given a Proof-
Set PFS as input.

This boolean formula is evaluated, if the provided ProofSet PFS contains a
Proof PF that is associated with the respective Constraint of the formula. If no
associated Proof exists, it is evaluated to f.

[[CON]](PFS) =
{

fbool(PFi, operator(o), bound(a)) if ∃i : PF i ∧ i = id

f otherwise
(4)

A ConstraintSet component only evaluates to t, if all of its Constraint com-
ponents are evaluated to t or the ConstraintSet is empty, i.e. there do not exist
any associated Constraints at all.

368 S. Steyskal and A. Polleres

[[CON S]](PFS) =

⎧⎪⎨
⎪⎩
t if ∀i : [[CON i]](PFS) = t or

CON S = ∅
f if ∃i : [[CON i]](PFS) = f

(5)

DutyRule. Let DUR = [RM, CON S] be a DutyRule component and let
PFS = 〈DPF1, . . . ,DPFm,PF1, . . . ,PFn〉 represent all possible ProofSets.
A duty rule semantic function is a mapping [[DUR]] : PFS → {t, f}, where t
represents the fulfillment of DUR, and f the opposite.

DUR evaluates to t, if there exists at least one DutyProof DPF in the
provided ProofSet PFS whose DutyTarget DT ∈ DPF matches with the
RuleMatch component of DUR, and its ConstraintSet returns true. It evalu-
ates to f in any other case.

[[DUR]](PFS) =

⎧⎪⎨
⎪⎩
t if ∃i : DPF i ∈ PFS ∧ [[RM]](DT) = m ∧

[[A]](DT) = m ∧ [[CON S]](PFS) = t
f otherwise

(6)

PermissionRule. Let PER be a PermissionRule component of the form
PER = [RM,A,DUR, CON S] where DUR = 〈DUR1, . . . ,DURn〉, let Q
be a set of all possible QueryRequests, and let PFS denote all possible Proof-
Sets. A permission rule semantic function is a mapping [[PER]] : Q,PFS →
{permission, cper, cpro, na, nm}, where given PFS as input, permission repre-
sents permission of Q, cper denotes conditional permission of Q, cpro indicates
conditional prohibition of Q, and na, nap represent that PER is not active or
not applicable respectively.

PER evaluates to permission, if its RuleMatch component matches with pro-
vided QueryRequest Q, its ConstraintSet component returns true, and if it has
no associated duties. It evaluates to cpro if its RuleMatch component matches
with Q, its ConstraintSet component returns true, but it has at least one associ-
ated DutyRule component that evaluates to false given a specific ProofSet PFS
as input. It evaluates to cper if its RuleMatch component matches with Q, its
ConstraintSet component returns true, and all associated DutyRule components
evaluate to true given PFS as input. Finally, a PermissionRule component eval-
uates to na if its RuleMatch component matches with Q but its ConstraintSet
component returns false, and it evaluates to nap if its RuleMatch component
does not match with Q.

Towards Formal Semantics for ODRL Policies 369

[[PER]](Q, PFS) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

permission if [[RM]](Q) = m, [[A]](Q) �= nm,

[[CON S]](PFS) = t and DUR = ∅
cpro if [[RM]](Q) = m, [[A]](Q) �= nm,

[[CON S]](PFS) = t and ∃i : [[DURi]](PFS) = f
cper if [[RM]](Q) = m, [[A]](Q) �= nm,

[[CON S]](PFS) = t and ∀i : [[DURi]](PFS) = t
na if [[RM]](Q) = m, [[A]](Q) �= nm and

[[CON S]](PFS) = f
nap otherwise

(7)

ProhibitionRule. Let PRR be a ProhibitionRule component of the form PRR
= [RM,A, CON S], let Q be a set of all possible QueryRequests, and let PFS
denote all possible ProofSets. A prohibition rule semantic function is a mapping
[[PRR]] : Q,PFS → {prohibition, na, nm}, where given PFS as input, prohi-
bition represents the prohibition of Q, na denotes that PRR is not active, and
nap states that PRR is not applicable.

PRR evaluates to prohibition, if its RuleMatch component matches with the
QueryRequestQ and its ConstraintSet component returns true given a specific
ProofSet PFS as input. It evaluates to na if its RuleMatch component matches
with Q but its ConstraintSet component returns false, and it evaluates to nap if
its RuleMatch component does not match with Q (i.e. the rule is not applicable).

[[PRR]](Q,PFS) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

prohibition if [[RM]](Q) = m, [[A]](Q)
= nm and
[[CON S]](PFS) = t

na if [[RM]](Q) = m, [[A]](Q)
= nm and
[[CON S]](PFS) = f

nap otherwise

(8)

Policy. Let P be a Policy component of the form P = [R,ALG], where
R = 〈R1, . . . ,Rn〉 is the set of all Rules of P with Ri,Rj ∈ R representing
either a ProhibitionRule or a PermissionRule, and ALG is denoting the con-
flict resolution strategy of the Policy. Further, let Q be a set of all possible
QueryRequests, and let PFS denote all possible ProofSets. A policy semantic
function is a mapping [[P]] : Q,PFS → {permission, prohibition, cpro, na, nm},
where given PFS as input, permission represents permission of Q, prohibition
represents prohibition of Q, cpro indicates conditional prohibition of Q, and na,
nap represent that P is not active or not applicable respectively.

A Policy P is not active, if all R in P are evaluated to na. P is not applicable
(nap), if all R in P are evaluated to nap. If there is at least one R in P which

370 S. Steyskal and A. Polleres

is neither evaluated to na nor nap, P is evaluated to the result returned by
the respective conflict resolution strategy ALG that takes I = [R,Q,PFS] as
input.

[[P]](Q,PFS) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

na if ∀i : [[Ri]](Q,PFS) = na
na if ∃i : ¬([[Ri]](Q,PFS) = (permission|prohibition))

∧ ∃j : [[Rj]](Q,PFS) = na
nap if [[RM]](Q) = nm and [[A]](Q) = nm
⊗ALG(I) otherwise

(9)

5 Proposed Semantics of ODRL Conflict Resolution
Strategies

Sometimes, it may be the case that an unambiguous answer to a certain query
request cannot be computed. Which is usually the case, if two or more mutually
exclusive rules are triggered and thus produce multiple (possibly mutually exclu-
sive) answers. Such a potential conflict is illustrated in Listing 2 where execution
of action odrl:use on asset :dataset1 is both permitted and prohibited at the same
time.

@prefix odrl: <http://w3.org/ns/odrl/2/> .
@prefix : <http://www.example.com/> .

:policy1 a odrl:Set ;
odrl:permission [

a odrl:Permission ;
odrl:action odrl:use ;
odrl:target :dataset1] ;

odrl:prohibition [
a odrl:Prohibition ;
odrl:action odrl:use ;
odrl:target :dataset1] .

Listing 2. Two conflicting rules of a policy.

To deal with this issue, the official ODRL specification defines an optional
attribute for policies called conflict, that represents the conflict resolution strat-
egy a policy must adhere to. There are three different conflict resolution strate-
gies defined, namely:

perm: Permissions always take precedence over prohibitions.
prohibit: Prohibitions always take precedence over permissions.
invalid: Any conflicts cause invalidity of the policy.

Towards Formal Semantics for ODRL Policies 371

In case attribute conflict is omitted, the default conflict resolution strategy is set
to invalid.

Apart from their rather concise natural language description listed above,
there does not exist any detailed definition of the semantics of ODRL conflict
resolution strategies. Although, they all might seem quite straightforward to
realize, there are some specific scenarios where a more elaborate semantics def-
inition is necessary. For example, consider the policy illustrated in Listing 3,
where actions odrl:use and odrl:delete are prohibited and action odrl:give is per-
mitted to be performed on :dataset1.

@prefix odrl: <http://w3.org/ns/odrl/2/> .
@prefix : <http://www.example.com/> .

:policy2 a odrl:Set ;
odrl:prohibition [

a odrl:Prohibition ;
odrl:action odrl:use ;
odrl:target :dataset1] ;

odrl:permission [
a odrl:Permission ;
odrl:action odrl:give ;
odrl:target :dataset1] .

odrl:prohibition [
a odrl:Prohibition ;
odrl:action odrl:delete ;
odrl:target :dataset1] .

Listing 3. Two conflicting rules of a policy.

In the following, we will propose and explain suitable semantics for each
ODRL conflict resolution strategy.

Note, that we (i) value evaluation results obtained by duties, i.e. cper or cpro
higher than any conflict resolution strategy, and (ii) do not treat Rules assigned
to a specific party different from those having no associated party. Furthermore,
we abbreviate QueryRequests with Q, Rules with R, and Actions with A.

5.1 Permission Overrides (perm)

First conflict resolution strategy values permissions more than prohibitions thus,
whenever there are two Rules in conflict with each other, the one granting per-
mission to execute an action a on a particular asset cannot be overwritten.
Nevertheless, there are some exceptions:

1. If there exists a rule which constrains an action that is either (i) equal to
the one contained in the query request, (ii) a broader term for the action
contained in the query request, or (iii) an action which is required to be
executable in order to perform the one contained in the query request, and
this rule evaluates to cpro, return cpro.

372 S. Steyskal and A. Polleres

2. If 1. does not hold and there exists a rule which constrains an action that
is either (i) equal to the one contained in the query request, (ii) a broader
term for the action contained in the query request, or (iii) an action which
requires the one contained in the query request to be executable, and this
rule evaluates to cper or permission, return permission.

3. If all rules contain the same or equal actions to the ones queried and all rules
evaluate to the same result r, then return r.

4. Otherwise, return na.

⊗
perm

(I) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cpro if ∃i : [[Ai]](Q) = (m|broadm|partm) ∧ [[Ri]](Q,PFS) = cpro
permission if ∃i : [[Ai]](Q) = (m|broadm|reqm) ∧ [[Ri]](Q,PFS) = (permission|cper)

and ¬∃j : [[Aj]](Q) = (m|broadm|partm) ∧ [[Rj]](Q,PFS) = cpro
r if ∀i : [[Ai]](Q) = m ∧ [[Ri]](Q, PFS) = r

na otherwise

(10)

5.2 Prohibition Overrides (prohibit)

Second conflict resolution strategy values prohibitions more than permissions
thus, whenever there are two Rules in conflict with each other the one prohibiting
the execution of an action a on a particular asset cannot be overwritten. Again,
there are some exceptions:

1. If there exists a rule which constrains an action that is either (i) equal to
the one contained in the query request, (ii) a broader term for the action
contained in the query request, or (iii) an action which is required to be
executable in order to perform the one contained in the query request, and
this rule evaluates to cpro, return cpro.

2. If 1. does not hold and there exists a rule which constrains an action that
is either (i) equal to the one contained in the query request, (ii) a broader
term for the action contained in the query request, or (iii) an action which
requires the one contained in the query request to be executable, and this
rule evaluates to cper, return permission.

3. If 1. and 2. does not hold and there exists a rule which constrains an action
that is either (i) equal to the one contained in the query request, (ii) a
broader term for the action contained in the query request, or (iii) an action
which is required to be executable in order to perform the one contained in
the query request, and this rule evaluates to prohibition, return prohibition.

4. If all rules contain the same or equal actions to the ones queried and all rules
evaluate to the same result r, then return r.

5. Otherwise, return na.

Towards Formal Semantics for ODRL Policies 373

⊗
prohibit

(I) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cpro if ∃i : [[Ai]](Q) = (m|broadm|partm) ∧ [[Ri]](Q,PFS) = cpro
permission if ∃i : [[Ai]](Q) = (m|broadm|reqm) ∧ [[Ri]](Q,PFS) = cper

and ¬∃j : [[Aj]](Q) = (m|broadm|partm) ∧ [[Rj]](Q,PFS) = cpro
prohibition if ∃i : [[Ai]](Q) = (m|broadm|partm) ∧ [[Ri]](Q,PFS) = prohibition

and ¬∃j : [[Aj]](Q) = (m|broadm|reqm) ∧ [[Rj]](Q,PFS) = cper
and ¬∃k : [[Ak]](Q) = (m|broadm|partm) ∧ [[Rk]](Q,PFS) = cpro

r if ∀i : [[Ai]](Q) = m ∧ [[Ri]](Q,PFS) = r

na otherwise

(11)

5.3 No Conflicts Allowed (invalid)

Third conflict resolution strategy does not allow any conflicting Rules, therefore
whenever there are two Rules returning inconsistent answers, no results can be
provided.

1. All rules must evaluate to the same result. If two rules evaluate to different
results, those results must be one of cper or permission.

2. Otherwise, return an error.

⊗
invalid

(I) =

⎧⎨
⎩

ri ∀i∀j : ([[Ri]](Q,PFS) = ri ∧ [[Rj]](Q,PFS) = rj) → (ri = rj∨
ri �= rj → (ri = (cper|permission) ∧ rj = (cper|permission)))

error otherwise

(12)

6 Related Work

Over the last couple of years, very little research has been conducted into the
formal semantics for ODRL. While in [10] the authors propose formal semantics
to a fragment of ODRL based on First-Order Logic and limit themselves to a
very small subset of supported actions, the authors of [5] use finite-automata
like structures to model permissions and their respective actions they permit. In
contrast to both of those approaches, we defined an abstract syntax for all basic
concepts of ODRL and formalized their semantics together with the semantics
of conflict resolution strategies accordingly. Other approaches try to capture the
semantics of ODRL in terms of ontologies [4,8] which is very similar to the
semantics definition of our approach but differs in terms of treatment of implicit
dependencies between actions as well as the proposed abstract syntax. Comple-
mentary our work, there has been work to formalize licence compatibility [11],
which though was not embedded in the framework of ORDL, but might be an
interesting direction to look into for formally grounding our semantics likewise
into Deontic logic.

374 S. Steyskal and A. Polleres

7 Conclusion

In the present paper, we defined an abstract syntax for expressing ODRL policies
which served as a foundation for formalizing a possible interpretation of basic
ODRL policy semantics. We furthermore discussed the impact of explicit and
implicit dependencies among ODRL actions on the evaluation of policy expres-
sions. While the former is explicitly defined in the ODRL specification and mod-
eled as subsumption hierarchy between actions, the latter can only be implicitly
derived from the natural language semantics definition of actions and expressed
as part-of relationship among actions. Which we both took into account when
formalizing ODRL’s semantics.

First point to be addressed is to introduce the concept of PolicySets as con-
tainer for policies which allows to combine the evaluation results of policies
independently of their respective chosen conflict resolution strategy. Second, we
want to formalize and extend the mapping between ODRL policies and logic pro-
grams, which enables basic, rule-based reasoning tasks and was omitted in the
present paper because of page restrictions. Finally, we will address the elaborate
provision of proofs for constraints and duties which are currently assumed to
be provided by the requester itself. Especially addressing the latter point, offers
interesting new research directions and allows for possible collaborations with
other research fields like Business Process Management, where correct comple-
tion of a business process that was automatically generated based on a constraint
or duty serves as a proof of their fulfillment.

References

1. Cabrio, E., Palmero Aprosio, A., Villata, S.: These are your rights - a natural
language processing approach to automated RDF licenses generation. In: Presutti,
V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC
2014. LNCS, vol. 8465, pp. 255–269. Springer, Heidelberg (2014)

2. De Coi, J.L., Olmedilla, D., Bonatti, P.A., Sauro, L.: Protune: a framework for
semantic web policies. In: International Semantic Web Conference (Posters &
Demos), vol. 401, p. 128 (2008)

3. Fowler, M., Scott, K.: UML distilled - a brief guide to the Standard Object Mod-
eling Language, 2nd edn. Addison-Wesley-Longman (2000)

4. Garćıa, R., Gil, R., Gallego, I., Delgado, J.: Formalising ODRL semantics using
web ontologies. In: Proc. 2nd Intl. ODRL Workshop, pp. 1–10 (2005)

5. Holzer, M., Katzenbeisser, S., Schallhart, C.: Towards formal semantics for ODRL.
In: Proceedings of the First International Workshop on the Open Digital Rights
Language (ODRL), Vienna, Austria, April 22–23, pp. 137–148 (2004)

6. Iannella, R., Guth, S.: Odrl version 2.0 common vocabulary. W3C ODRL Com-
munity Group (2012). http://www.w3.org/community/odrl/two/vocab/

7. Iannella, R., Guth, S., Pähler, D., Kasten, A.: Odrl: Open digital rights language
2.1. W3C ODRL Community Group (2012). http://www.w3.org/community/odrl/

8. Kasten, A., Grimm, R.: Making the semantics of ODRL and URM explicit using
web ontologies. In: Virtual Goods, pp. 77–91 (2010)

http://www.w3.org/community/odrl/two/vocab/
http://www.w3.org/community/odrl/

Towards Formal Semantics for ODRL Policies 375

9. Kencana Ramli, C.D.P., Nielson, H.R., Nielson, F.: XACML 3.0 in answer set
programming. In: Albert, E. (ed.) LOPSTR 2012. LNCS, vol. 7844, pp. 89–105.
Springer, Heidelberg (2013)

10. Pucella, R., Weissman, V.: A Formal Foundation for ODRL. CoRR,
abs/cs/0601085 (2006)

11. Rotolo, A., Villata, S., Gandon, F.: A deontic logic semantics for licenses compo-
sition in the web of data. In: Int’l Conf. on Artificial Intelligence and Law ICAIL,
pp. 111–120 (2013)

12. Steyskal, S., Polleres, A.: Defining expressive access policies for linked data using
the ODRL ontology 2.0. In: Proceedings of the 10th International Conference
on Semantic Systems, SEMANTICS 2014, Leipzig, Germany, September 4–5,
pp. 20–23 (2014)

Representing Flexible Role-Based Access
Control Policies Using Objects

and Defeasible Reasoning

Reza Basseda1(B), Tiantian Gao1, Michael Kifer1,
Steven Greenspan2, and Charley Chell2

1 Computer Science Department, Stony Brook University,
Stony Brook, NY 11794, USA

{rbasseda,tiagao,kifer}@cs.stonybrook.edu
2 CA, Inc., 520 Madison Avenue, New York, NY 10022, USA

{steven.greenspan,charley.chell}@ca.com

Abstract. Access control systems often use rule based frameworks to
express access policies. These frameworks not only simplify the represen-
tation of policies, but also provide reasoning capabilities that can be used
to verify the policies. In this work, we propose to use defeasible reason-
ing to simplify the specification of role-based access control policies and
make them modular and more robust. We use the Flora-2 rule-based
reasoner for representing a role-based access control policy. Our early
experiments show that the wide range of features provided by Flora-2
greatly simplifies the task of building the requisite ontologies and the
reasoning components for such access control systems.

Keywords: Access control policy · Object oriented logic programming ·
Ontology

1 Introduction

Administering and maintaining access control systems is a challenging task,
especially when the environments are complex and the authorization require-
ments are subject to frequent change. Policy languages play an important role
in designing and implementing flexible access control systems. There are a num-
ber of role-based policy specification languages that can express access control
policies, including XACML [14], X-RBAC [8], Rei [9], Common Policy [18], and
Ponder [4]. These languages simplify management of access control by factor-
ing the authorization policy out of the hard-coded resource guard. For example,
XACML defines a general XML role-based policy language. X-RBAC is another
XML role-based access control language for specifying RBAC policies [8]. Com-
mon Policy provides a framework for authorization policies controlling access to
application-specific data. Although they have been applied to a broad domain of
enterprise environments, it is difficult to use them at the semantic level. To mit-
igate this problem, some approaches inject RDF [2] and OWL [6] into the mix.
c© Springer International Publishing Switzerland 2015
N. Bassiliades et al. (Eds.): RuleML 2015, LNCS 9202, pp. 376–387, 2015.
DOI: 10.1007/978-3-319-21542-6 24

Representing Flexible Role-Based Access Control Policies 377

Rei [9] is an example of this approach, which uses OWL-Lite and RDF. Ponder is
a declarative policy language, which is designed based on object-oriented princi-
ples. It can be used to specify both security and management policies. Ontologies
are also used to develop hybrid distributed access control systems [19]. Another
access control policy specification language based on OWL and SWRL has been
proposed in [13].

Clearly, representation of domain classes and objects is a key component of
an access control system because such representation facilitates the development
and changing of policies. Although all of the above mentioned access control
policy specification languages are able to represent domain classes and objects,
none is a rule-based language and none is as expressive as a rule based policy
specification language can be.

One of the key challenges in role-based access control is that policies are
subject to frequent changes, which calls for hierarchical structure of policy com-
ponents and roles. However, none of the above mentioned languages can matches
the flexibility for defining such hierarchies that is provided by object-oriented
rule-based languages based on F-logic [11,12], such as Flora-2 [10,22]. The use
of such an expressive knowledge representation and reasoning language lets us
both to integrate hierarchies between policy components into policy rules and
encapsulate different components of rule based policies in different modules. This
gives us the necessary machinery to localize the changes initiated by the clients.
The reasoning capabilities that come with object-oriented rule languages like
Flora-2 also allows one to make policies more concise, clearer, easier to spec-
ify, analyze, and change. Modularity also helps with certain security issues. For
instance, in many applications, especially in distributed systems, rules and facts
used for access control decision making are ranked and grouped by their trust
levels. The reasoning mechanism that understands encapsulation can take into
account the different levels of trust when it responds to access requests.

In this paper, we show that by using an elegant defeasible reasoning system
we can build a rule based access control policy in terms of separate, encapsulated
modules based on the application semantics and security requirements. We use
Logic Programming with Defaults and Argumentation Theories (LPDA) [20] to
define different groups of rules and facts and use this logic to make our access
control decision. Together with the higher-order features of Hilog [3] and object-
oriented nature of F-Logic [12], great flexibility is provided to the access control
policy developers.

The rest of the paper is organized as follows. Section 2 provides a brief
overview of logic programming with defaults and argumentation theories. Section
3 illustrates our methodology for building a flexible access control system and its
corresponding architecture. Section 4 gives a practical example of defining differ-
ent components in the rule based access control policy, and Section 5 concludes
the paper.

378 R. Basseda et al.

2 Overview of Defeasible Reasoning

Defeasible reasoning is a type of non-monotonic reasoning where conclusions may
have priorities and be defeated by other conclusion. Such theories are usually con-
ducive to specifying general defaults and conclusions can be easily, modularly,
and incrementally altered when new information becomes available. This con-
trasts with monotonic logic where any previously inferred information remains
valid with the addition of new knowledge. For example, given the access control
policy stating that typically, a student is authorized to use a device unless the
student has abused the device before, and the facts that John is a student and a
printer is a device, we might conclude that John is authorized to use the printer.
However, if later it becomes known that John has abused the printer, the previ-
ous conclusion can be defeated without making any modifications to the policy.
Defeasible reasoning is intended to model this kind of scenarios in modular and
natural fashion.

General non-monotonic resoning frameworks, such as circumscription, default
logic, and autoepistemic logic, can also model the above scenarios, but their
languages are not attuned to making changes modular and simple. In this work,
we use Logic programming with defaults and argumentation theories (LPDA), a
unifying defeasible reasoning framework that uses defaults and exceptions with
prioritized rules, and argumentation theories. LPDA is based on the three-valued
well-founded semantics [17]. Here we briefly review LPDA. Defails can be found
in [20].

A literal has one of the following forms:

– An atomic formula.
– neg A, where A is an atomic formula.
– notA, where A is an atom.
– not neg A, where A is an atom.
– not notL and neg neg L, where L is a literal.

Let A be an atom. A not-free literal refers to a literal that can be reduced
to A or neg A. A not-literal refers to a literal that can be reduced to not A
or not neg A. LPDA has two types of rules: strict and defeasible, where strict
rules generate non-defeasible conclusions and defeasible rules generate defeasible
conclusions that can be defeated by some exceptions. A strict rule is of the form:

L ← Body

where L is a not-free literal and Body is a conjunction of literals. A defeasible
rule is of the form:

@r L ← Body

where r is a term that denotes the label of the rule.

Representing Flexible Role-Based Access Control Policies 379

Each LPAD program is accompanied by an argumentation theory that spec-
ifies when a defeasible rule is defeated. An argumentation theory is a set of def-
inite rules with four special predicates: \defeated, \opposes, \overrides,
and \cancel where \defeated denotes the defeatedness of a defeasible
rule, \opposes indicates the literals that are incompatible with each other,
\overrides denotes a binary relation between defeasible rules indicating pri-
ority, and \cancel cancels a defeasible rule. There can be several different
argumentation theories that can be used simultaneously for different modules.
Users can select one of the predefined ones and use it as is or modify it, as appro-
priate. A rule is defeated if it is refuted, rebutted, or disqualified. The meaning of
refuted, rebutted, and disqualified depends on the chosen argumentation theory.
Generally, a rule is refuted if there is another rule that draws an incompatible
conclusion with higher priority. A rule is rebutted if there is another rule that
draws an incompatible conclusion and there is no way to resolve the conflict based
on the relative priorities. A rule is disqualified if it is cancelled, self-defeated, etc.
An example is shown in Figure 1.

@{id1} authorized(?Principal,?Dev) :- device(?Dev),
principal(?Principal).

@{id2} \neg authorized(?Principal,?Dev) :- abused(?Principal,?Dev).

\overrides(id2,id1).
\opposes(authorized(?Principal,?Dev), \neg authorized(?Principal,?Dev)).

principal(Mary).
principal(John).
device(printer).
abuse(John,printer).

Fig. 1. An example of a simple LPDA program

In the figure, rule id1 says that if there is a person and a device, then
the person is authorized to use the device. Rule id2 says that if a per-
son has abused the device, then the person is not authorized to use the
device. The predicate \overrides(id2,id1) indicates that rule id2 has
higher priority than id1. The statement \opposes(authorized (?Persn,
?Dev), neg authorized(?Persn,?Dev)) says that one can be either
authorized or not, but not both. Taking into account the facts person(Mary)
and device(priter), we can conclude authorized(Mary,printer)
from rule id1. From the facts person(John), device(printer), and
abuse(John,printer), rules id1 and id2 derive contradictory conclusions
that both authorized(John,printer) and neg authorized(John,
printer) hold. Since rule id2 has a higher priority than rule id1,
authorized(John,printer) is defeated.

380 R. Basseda et al.

Fig. 2. A typical architecture of an access control system

3 Methodology and Architecture

Although several architectures have been proposed for access control systems
[15,16], none of them has gained the status of a standard. To explain different
access control policy representation languages, we assume a simple architecture
in Figure 2, borrowed from [1]. However, the discussion below applies to more
complex architectures as well. To keep our technique as general as possible, we
also do not limit our framework to any specific classic access control model, such
as Role-Based Access Control [5] or Attribute-Based Access Control [7] Models.

As shown in Figure 2, the authorization policy is not hard-coded as a resource
guard but instead appears as a list of declarative rules. When a principal requests
access, the resource guard issues an authorization query to the policy evaluator.
Access is granted only if the policy evaluator succeeds in proving that the request
complies with the local policy and a set of facts describing the authorization state,
i.e., with a set of relevant facts, including the knowledge obtained from submitted
or fetched credentials. For instance, the history of locations of a principal can
be reflected in the authorization state and used by policy evaluator.

This approach greatly increases the maintainability of access control sys-
tems, as modifying the declarative policy rules is much simpler than rewriting
and recompilation of the code embedded in the resource guard. In fact, resource
guards are usually designed to take care of the low-level security considerations
while policies are expected to be high-level descriptions of security requirements.
Therefore, imperative programming languages (e.g. C or C++) are used to imple-
ment resource guard, while higher-level declarative languages are preferred for
security policies. There are several reasons why policies should be formally veri-
fiable. For one, the declarative nature of policy languages and the formal frame-
work required for query evaluation make logic programming languages the top
candidates for policy specification.

In accordance with this architecture, we assume that the policy evalua-
tor is completely separate from the resource guard. To issue an authorization
query to the policy evaluator, the resource guard uses a predicate of form
grantAccess(t1, . . . , tn) as a query. Given a set R of policy rules, the policy

Representing Flexible Role-Based Access Control Policies 381

evaluator returns true or false answer, thereby allowing or disallowing the
access. Next, we will show how using an object oriented logic programming
and defeasible rules can make an access control system much simpler and more
flexible.

3.1 Resilience to Changes

Access control policies are not usually considered as a fixed component of an
access control system and they are often modified on the request of non-technical
policy makers. Therefore, it is very important to make policies as flexible as
possible and to minimize the cost of changes. The following features are therefore
very desirable:

– Prevention of introduction of bugs through modification via semantic con-
straints.

– A robust patching mechanism for expansion of policies.

We will now explain how object oriented features in Flora-2 [10,22] and defeasible
reasoning via LPDA [20,21] solve these issues.

Classes and Objects: We use a set of classes to represent different resources
and roles used by the policy. These classes serve both as semantic integrity
constraints and as a policy development guide. The classes are typically identified
by IRIs pointing to the actual resources, which is useful for standardization and
portability. Figure 3 shows two sample classes in a typical policy represented in
Flora-2.

Person[|
firstName => string,
lastName => string |].

Employee::Person[|
employmentYear => integer,
department => Department,
profession => string,
rank => Rank,
loc(?) => Location |].

Fig. 3. An example of ontology for access control systems in Flora-2

Modification via Patching: To provide a patching mechanism, we use defea-
sible reasoning to override default rules of a policy with new rules. Consider a
policy P consisting of n rules of the form @ri Li ← Bodyi where 1 ≤ i ≤ n.
Suppose that we need to change P to P

′ such that for some 1 ≤ j ≤ n, a new

382 R. Basseda et al.

rule of the form @r′
j Lj ← Body′

j derives Lj , Lj conflicts with Li, and the new
rule has higher priority if condition Cond holds. To obtain P

′ out of P, one needs
to simply add the following rules to P.

@r′
j Lj ← Body′

j .
\overrides(r′

j , rj) ← Cond.
\opposes(Li, Lj).

(1)

We can also use a similar technique also to disable a rule under certain cir-
cumstances. Suppose that for some 1 ≤ j ≤ n, we need to disable the rule
@rj Lj ← Bodyj from P when condition Cond is true. To this end, one can
simply add

\cancel(rj) ← Cond. (2)

Note that Body′
j may have literals that are defined by other rules in which case

those rules would be added as well. The following example illustrates how this
patching mechanism works.

Example 1 (Access Control Based on Time and Location). Consider the pol-
icy shown in Figure 4. A policy evaluator can use this policy to answer
queries of the form grantAccess(?E, ?R, ?T, ?D) where the variables ?E, ?R,
?T , ?D range over the members of the classes Employee, Resource, TimeO-
fAccess, and DateOfAccess, respectively. The first rule defines the predicate
hasmoved(?E, ?D1, ?D2) which is true if the location of employee ?E is dif-
ferent on day ?D1 and day ?D2. The second and third rules define the predicate
moved(+?E,+?D1,+?D2,−?M),1 which binds ?M to 1 if the employee ?E has
moved between days ?D1 and ?D2. The predicate locRisk(+?E,+?D,−?K)
specifies the security risk if employee ?E is known to have moved in each of
the four days preceding day ?D. Finally, the predicate grantAccess(+?E,+?R,
+?T,+?D), if true, indicates that the employee ?E is allowed to access the
resource ?R at time ?T of day ?D. This rule just checks if the departments of
the employee ?E and of resource ?R are the same and the risk assessment of the
employee is below the threshold.

Suppose that now it is required to use a new parameter called access time
risk, which computes the risk based on the access hour with respect to 13 : 00,
if the employee is away from the home department. To this end, we construct
a patch that enforces the new policy, as shown in Figure 5. The second rule
in the figure defines timeRisk(+?R,+?T,−?TD) as the difference between the
access time and 13 : 00 (this number may indicate the risk of unauthorized
accesses). For example an access request at 14 : 00 is more reasonable than at at
21 : 00 or 03 : 00. The third rule says that access is prohibited if the employee is
traveling and timeRisk exceeds the threshold. The first fact in Figure 5 states
that atom grantAccess/4 resulted from rule locAccess is defeated by the same
atom resulted from rule timeAccess. Note that the rule locAccess is not
completely disabled: it still holds sway if the employee is not traveling.
1 + indicates that the variable is used as input and must be bound before calling the

predicate; − means that the variable is an output and will be bound after calling
the predicate produces an answer.

Representing Flexible Role-Based Access Control Policies 383

hasmoved(?E,?D1,?D2) :-
?E:Employee[loc(?D1) -> ?L1],
?E[loc(?D2) -> ?L2],
?L1 != ?L2.

moved(?E,?D1,?D2,1) :- hasmoved(?E:Employee,?D1,?D2).

moved(?E,?D1,?D2,0) :-
?E:Employee,
\naf hasmoved(?E,?D1,?D2).

locRisk(?E,?D,?K) :-
?E:Employee,
moved(?E,?D,?D1,?M1),
moved(?E,?D1,?D2,?M2),
moved(?E,?D2,?D3,?M3),
moved(?E,?D3,?D4,?M4),
nextDay(?D4,?D3),
nextDay(?D3,?D2),
nextDay(?D2,?D1),
nextDay(?D1,?D),
?K \is ?M1 + ?M2 + ?M3 + ?M4.

@{locAccess}
grantAccess(?E,?R,?,?D) :-

?E:Employee[department-> ?DE],
?R:Resource[owner-> ?DE],
locRisk(?E,?D,?K),
?K < 3.

Fig. 4. An example of a simple policy in Flora-2

\overrides(timeAccess,locAccess).

timeRisk(?T,?TD) :- ?TD \is abs(?T - 13).

@{timeAccess}
\neg grantAccess(?E,?R,?T,?D) :-

?E:Employee,
?R:Resource,
?E.department.location != ?E.loc(?D),
?E[timeWorked(?D) -> ?T],
timeRisk(?T,?K),
?K > 5.

Fig. 5. The first modification of the policy

384 R. Basseda et al.

Now suppose that policy makers suddenly realize that time is different
in different time zones, so they decide to calculate access times based on
employee’s local time rather than resource’s local time. This means that the rule
timeAccess will now be defeated by a new rule, flexAccess, if the locations
of the resource ?R and the employee ?E are different. Figure 6 shows the rules
of this patch. The third rule defines timeRisk(+?E,+?T,+?D,−?TD), which
gets an employee ?E and a GMT time id ?T , computes the actual time in the
time zone of the employee, and then assesses the risk according to the employee’s
local time zone. The flexAccess rule for grantAccess(+?E,+?R,+?T,+?D)
now says that the employee ?E can access resource ?R at time ?T on day ?D, if
the access happens within the local normal working hours. Other than that, the
conditions are the same as for locAccess. �

\overrides(flexAccess,timeAccess).

timeRisk(?E,?T,?D,?TD) :-
?E:Employee[loc(?D) -> ?L],
?L[timeZone -> ?TZR],
?TD \is abs(?T + ?TZR - 13).

@{flexAccess}
grantAccess(?E,?R,?T,?D) :-

?E[department-> ?DE],
?R[owner-> ?DE],
?E.loc(?D) != ?R.location,
timeRisk(?E,?T,?D,?TR),
?TR < 5.

Fig. 6. The second modification of the policy

As shown in in our example, defeasible reasoning can simplify the process
of changing policies. Figure 7 shows the difference between the architectures of
policies with and without using defeasible reasoning and object oriented logic
programming. The architecture shown in Figure 7(b) is more modular than the
one in Figure 7(a).

(a) Without defeasible reasoning and
object orientation.

(b) With defeasible reasoning and
object orientation.

Fig. 7. Possible architectures of policies

Representing Flexible Role-Based Access Control Policies 385

3.2 Virtual Hierarchies

In many cases, policy rules may conflict and be considered with regard to the
position of the policy makers in the organizational hierarchy. For instance, sup-
pose that policy makers x and y introduce policy rules @rx Lx ← Bodyx and
@ry Ly ← Bodyy whose conclusions may conflict in some cases. If the organiza-
tional position of x is higher than y’s, we can set the priority of rule rx higher
than that of ry. There are two choices to apply such organizational hierarchies to
policy rules: (1) the organizational hierarchy can be encoded in policy evaluator;
or (2) we can use defeasible reasoning to allow policy rules of a lower-ranked
actor to be defeated. Clearly, the second choice is more flexible than the first.

To represent organizational hierarchies of policy developers, we can assume
that every rule in a policy is of the form @r(x) L ← Body where x identifies the
maker of the rule. We can represent the institutional hierarchy as a transitively
closed set of facts of the form boss(X,Y) and then define the priorities of the
policy rules as follows:

\override(r(ui), r(uj)) : − boss(ui, uj). (3)

4 Conclusion

In this paper, we argue that the use of defeasible reasoning can yield significant
benefits in the area of role-based access control systems. As an illustration, we
show that complex modifications to access control policies can be naturally rep-
resented in a logic programming framework with defeasible reasoning and they
can be applied in modular fashion. The use of logic programming also easily sup-
ports various extensions such as institutional hierarchies. The same technique
can be used to capture even more advanced features, such as distributed access
control policies, Team-Based Access Control, and more.

There are several promising directions for future work. One is to investigate
other access control models and, hopefully, accrue similar benefits. Other possible
directions include incorporation of advanced features of object oriented logic
programming, such as inheritance.

Acknowledgments. This work was supported, in part, by the Center for Dynamic
Data Analysis (CDDA),2 and NSF grant 0964196. We also thank Paul Fodor for his
collaboration.

References

1. Becker, M.Y., Nanz, S.: A logic for state-modifying authorization policies. ACM
Trans. Inf. Syst. Secur. 13(3), 20:1–20:28 (2010).
http://doi.acm.org/10.1145/1805974.1805976

2 CDDA was supported by NSF award IIP1069147 and CA Technologies.

http://doi.acm.org/10.1145/1805974.1805976

386 R. Basseda et al.

2. Brickley, D., Guha, R.: Rdf schema 1.1. Tech. rep., W3C (2014)
3. Chen, W., Kifer, M., Warren, D.S.: Hilog: A foundation for higher-order logic

programming. The Journal of Logic Programming 15(3), 187–230 (1993).
http://www.sciencedirect.com/science/article/pii/074310669390039J

4. Damianou, N., Dulay, N., Lupu, E.C., Sloman, M.: The ponder policy specification
language. In: Sloman, M., Lobo, J., Lupu, E.C. (eds.) POLICY 2001. LNCS, vol.
1995, p. 18. Springer, Heidelberg (2001).
http://dl.acm.org/citation.cfm?id=646962.712108

5. Ferraiolo, D.F., Kuhn, R.D., Chandramouli, R.: Role-Based Access Control, 2nd
edn. Artech House Inc, Norwood (2007)

6. Hitzler, P., Krtzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S.: Owl 2 web
ontology language primer (second edition). Tech. rep., W3C (2012)

7. Jin, X., Krishnan, R., Sandhu, R.: A unified attribute-based access control model
covering DAC, MAC and RBAC. In: Cuppens-Boulahia, N., Cuppens, F., Garcia-
Alfaro, J. (eds.) DBSec 2012. LNCS, vol. 7371, pp. 41–55. Springer, Heidelberg
(2012). http://dx.doi.org/10.1007/978-3-642-31540-4 4

8. Joshi, J., Bhatti, R., Bertino, E., Ghafoor, A.: An access control language for
multi-domain environments. IEEE Internet Computing 8(6), 40–50 (2004)

9. Kagal, L.: Rei1: A policy language for the me-centric project. Tech. rep., HP Lab-
oratories (2002)

10. Kifer, M.: FLORA-2: An object-oriented knowledge base language. The FLORA-2
Web Site. http://flora.sourceforge.net

11. Kifer, M.: Rules and ontologies in F-logic. In: Eisinger, N., Ma�luszyński, J. (eds.)
Reasoning Web. LNCS, vol. 3564, pp. 22–34. Springer, Heidelberg (2005)

12. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-
based languages. J. ACM 42(4), 741–843 (1995).
http://doi.acm.org/10.1145/210332.210335

13. Li, H., Zhang, X., Wu, H., Qu, Y.: Design and application of rule based access
control policies. In: Proceedings of 7th Semantic Web and Policy Workshop (2005)

14. Parducci, B., Lockhart, H.: extensible access control markup language (xacml)
version 3.0. Tech. rep., OASIS Standard (2013)

15. Park, J.S., Ahn, G.J., Sandhu, R.: Role-based access control on the web using ldap.
In: Proceedings of the Fifteenth Annual Working Conference on Database and
Application Security, Das 2001, pp. 19–30 Kluwer Academic Publishers, Norwell
(2002). http://dl.acm.org/citation.cfm?id=863742.863745

16. Park, J.S., Sandhu, R., Ahn, G.J.: Role-based access control on the web. ACM
Trans. Inf. Syst. Secur. 4(1), 37–71 (2001).
http://doi.acm.org/10.1145/383775.383777

17. Przymusinski, T.: Well-founded and stationary models of logic programs. Annals
of Mathematics and Artificial Intelligence 12(3–4), 141–187 (1994)

18. Schulzrinne, H., Tschofenig, H., Morris, J.B., Cuellar, J.R., Polk, J., Rosenberg, J.:
Common policy: A document format for expressing privacy preferences. Internet
RFC 4745, February, 2007

19. Sun, Y., Pan, P., Leung, H., Shi, B.: Ontology based hybrid access control for
automatic interoperation. In: Xiao, B., Yang, L.T., Ma, J., Muller-Schloer, C.,
Hua, Y. (eds.) ATC 2007. LNCS, vol. 4610, pp. 323–332. Springer, Heidelberg
(2007). http://dl.acm.org/citation.cfm?id=2394798.2394840

http://www.sciencedirect.com/science/article/pii/074310669390039J
http://dl.acm.org/citation.cfm?id=646962.712108
http://dx.doi.org/10.1007/978-3-642-31540-4_4
http://flora.sourceforge.net
http://doi.acm.org/10.1145/210332.210335
http://dl.acm.org/citation.cfm?id=863742.863745
http://doi.acm.org/10.1145/383775.383777
http://dl.acm.org/citation.cfm?id=2394798.2394840

Representing Flexible Role-Based Access Control Policies 387

20. Wan, H., Grosof, B., Kifer, M., Fodor, P., Liang, S.: Logic programming with
defaults and argumentation theories. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009.
LNCS, vol. 5649, pp. 432–448. Springer, Heidelberg (2009)

21. Wan, H., Kifer, M., Grosof, B.: Defeasibility in answer set programs with defaults
and argumentation rules. Semantic Web Journal (2014)

22. Yang, G., Kifer, M., Zhao, C.: FLORA-2: a rule-based knowledge representation
and inference for the semantic web. In: Meersman, R., Schmidt, D.C. (eds.) CoopIS
2003, DOA 2003, and ODBASE 2003. LNCS, vol. 2888, pp. 671–688. Springer,
Heidelberg (2003)

Explanation of Proofs of Regulatory
(Non-)Compliance Using Semantic Vocabularies

Sagar Sunkle(B), Deepali Kholkar, and Vinay Kulkarni

Tata Research Development and Design Center, Tata Consultancy Services, 54B,
Industrial Estate, Hadapsar, Pune 411013, India

{sagar.sunkle,deepali.kholkar,vinay.vkulkarni}@tcs.com

Abstract. With recent regulatory advances, modern enterprises have
to not only comply with regulations but have to be prepared to provide
explanation of proof of (non-)compliance. On top of compliance checking,
this necessitates modeling concepts from regulations and enterprise oper-
ations so that stakeholder-specific and close to natural language expla-
nations could be generated. We take a step in this direction by using
Semantics of Business Vocabulary and Rules to model and map vocab-
ularies of regulations and operations of enterprise. Using these vocabu-
laries and leveraging proof generation abilities of an existing compliance
engine, we show how such explanations can be created. Basic natural
language explanations that we generate can be easily enriched by adding
requisite domain knowledge to the vocabularies.

Keywords: Regulatory compliance · Proof of compliance · Explanation
of proof · SBVR

1 Introduction

Regulatory compliance is a unique change driver that modern enterprises have
to face. Enterprises find complying to regulations in a cost effective manner
extremely difficult. This can be attributed to the fact that regulations and
changes therein tend to impact enterprises’ operational practices substantially.
With spend on compliance slated to rise to many billions of dollars in next 10
years, the need for improving the state of practice in regulatory compliance is
all the more evident [1,2].

With regards the state of the practice in compliance, one of the most sought
after features is the ability to prove and explain (non-)compliance, preferably in
a way tailored to specific stakeholders’ requirements [2,3]. It should be possible
to produce an explanation which compliance officers/internal auditors can use
in a legally defensible way. It should also be possible to produce an explanation
that business stakeholders may use to find out how (non-)compliance is affecting
business goals that are currently operationalized.

In spite of a number of formal techniques suggested for compliance check-
ing [4–8], proof explanation has received less attention in general [10,11]. While
c© Springer International Publishing Switzerland 2015
N. Bassiliades et al. (Eds.): RuleML 2015, LNCS 9202, pp. 388–403, 2015.
DOI: 10.1007/978-3-319-21542-6 25

Explanation of Proofs of Regulatory (Non-)Compliance 389

the diagnostic information available in given formal techniques can be lever-
aged, at least two additional functionalities need to be provided for creating
stakeholder-specific explanations that are purposive: a) concepts from legal and
operational practices from regulations and business processes need to be mod-
eled and mapped [12] and b) additional domain knowledge need to be modeled
other than knowledge expressed in compliance rules [11] to enrich explanations
and increase their value to the stakeholders.

We take a step in this direction by presenting an approach in which we use
Semantics of Business Vocabulary and Rules (SBVR) to model concepts from
regulations and enterprise operations. While we leverage proof generation ability
of a formal compliance engine [10], our specific contribution is generation of
close to natural language explanation of proof of (non-)compliance using SBVR
vocabularies. We also substantiate our approach with a work-in-progress case
study of banking regulations applicable to a bank’s account opening business
process. We believe that our approach shows how requirement a) can be satisfied
and also paves way for satisfying requirement b) stated above.

The paper is arranged as follows. In Section 2, we motivate the use of SBVR
vocabularies for modeling regulations and operations of enterprise and present
an outline of our approach. We elaborate our approach for proof explanation in
Section 3. Section 4 presents an ongoing case study where we implement our proof
explanation approach for a bank’s compliance to account opening regulations.
We discuss related and future work in Section 5. Section 6 concludes the paper.

2 Motivation and Outline

Industry compliance reporting trends reveal that auditors increasingly expect
consistent evidence of compliance whereas enterprise management expects an
accurate and succinct assessment of risks associated with compliance [2]. Fur-
thermore, explanations of proofs of (non-)compliance are increasingly expected
to include which regulations a given operational practice of enterprise is subject
to and what parts of a regulation does the practice depart from and why [3].
The latter functionality is especially relevant for shareholders since it forces an
enterprise to give business reasons for (non-)compliance.

Industry governance, risk, and compliance (GRC) solutions tend to take semi-
/in-formal approach to compliance checking. In comparison, formal logic-based
compliance techniques seem to be better positioned to produce more elaborate
explanation of proof of (non-) compliance than document-based evidence. As
stated in Section 1, this necessitates modeling and mapping of concepts in reg-
ulations and operational practices on top of proof generation abilities.

In our approach, we leverage the proof generation ability of a formal com-
pliance engine DR-Prolog [10]. We use SBVR to model and map vocabularies
of regulations and enterprises’ operations. While DR-Prolog provides a formal
model of regulatory rules and operational facts, SBVR provides a semantic model
for a formal terminology. SBVR provides a cohesive set of interconnected con-
cepts, with behavioral guidance in terms of policies and rules to govern the

390 S. Sunkle et al.

Fig. 1. Outline of Our Approach for Proof Explanations

actions of subject of the formal terminology. We first generate the proof of (non-
)compliance using DR-Prolog and then query the formal terminology for con-
cepts in the proof. The projection of results from queries to formal terminology
model achieves close to natural language explanation of the proof. This is illus-
trated in Figure 1.

We elaborate our approach in the next section. First, we show how proofs are
generated from DR-Prolog models of regulatory rules and operational facts. We
then show how SBVR can be used to model and map regulations and operations.
Finally, we show how concepts from proofs are queried and how results are
projected to obtain explanation.

3 Proof Generation and Explanation

Proof generation and explanation in DR-Prolog is based on a translation of a
defeasible theory into a logic metaprogram and describes a framework for defin-
ing different versions of defeasible logics, following different intuitions [10,14,15].
This approach uses tracing mechanism of XSB1 which is a logic programming
and deductive database system. Proof generation is tailored to preprocessing
XSB trace to obtain a defeasible logic search tree that is subsequently trans-
formed into a proof. It is clarified in [14], that since knowledge is represented
using defeasible reasoning, the explanation of a proof is at the level of defeasible
logics. An implication of choice to stay at the level of defeasible logics is that the
explanation takes the form of chain of predicates that led to success or failure.

3.1 Generating Proof of (Non-)Compliance

We differ from the proof generation approach in [10,14,15] in our choice of
arriving at the specific rules and facts that imply success or failure instead of
obtaining chain of defeasible predicates. Instead of XSB, we use trace producing
meta-interpreter from[16].

1 See http://xsb.sourceforge.net/

http://xsb.sourceforge.net/

Explanation of Proofs of Regulatory (Non-)Compliance 391

Algorithm 1. Get Success Rule and Facts from Success Trace

Input: Texts of success trace and theory
Output: Success rules and success facts

1 Trace trace ← read(successTrace.txt) ,Theory theory ← read(theory.txt)
2 procedure processTrace(Trace trace)
3 while trace.hasFail() do
4 depth ← computeMaxDepth(trace)
5 if depth �= 0 then
6 trace.tag(get CALL FAIL Pairs())

7 depth ← depth − 1
8 trace.remove(get CALL FAIL Pairs())

1010 processTrace(trace)

1212 return

13 procedure matchRules(Trace t, Theory theory)
14 if t.predicate.startsWith(“defeasible” or “strict”) then
15 for n = 0 to theory.length() do
16 th ← theory.line()
17 if match(t.ruleIdenfier(), th) then
18 successRules.add(th)

19 procedure matchFacts(Trace t, Theory theory)
20 if t.predicate.startsWith(“fact”) then
21 for n = 0 to theory.length do
22 th ← theory.line
23 if match(t, th) then
24 successFacts.add(th)

25 processTrace(trace)
// Only CALL EXIT pairs left in the trace.

26 for n = 0 to trace.length() − 1 do
27 t ← trace.line()
28 matchRules(trace, theory)
29 matchFacts(trace, theory)

30 return successRules,successFacts

This meta-interpreter produces trace that minimally contains three pieces of
information: depth of predicate invocation, the invocation type which is one of
CALL, EXIT, FAIL, and REDO, and the current predicate being processed. An
example of trace is shown below.

0’CALL ’defeasibly(client account data(17,open account),obligation)
1’CALL ’strictly(client account data(17,open account),obligation)
2’CALL ’fact(obligation(client account data(17,open account)))
2’FAIL ’fact(obligation(client account data(17,open account)))
. . .

392 S. Sunkle et al.

To arrive at specific successful or failed rules and facts, we exploit the pro-
cedure box abstraction [17] that is represented in the trace by the depth of
invocation. CALL, EXIT, FAIL, and REDO essentially indicate the time when
predicate is entered/invoked, successfully returned from, completely failed, or
failed but backtracked respectively. The meta-interpreter can be used to produce
trace that can be saved as a text file where each line indicates one invocation
with three pieces of information each.

Algorithm 1 shows how a success trace is processed to recursively remove
successive CALL and FAIL pairs. These pairs indicate failed invocations and
are not relevant for obtaining success rules and facts. These pairs may occur
at various depths bound by maximum depth that recursive invocations led to.
Algorithm 1 first tags the CALL FAIL pairs at the maximum current depth for
removal indicating innermost procedure box and then proceeds till the lowest
depth indicating outermost procedure box.

Fig. 2. Exploiting Procedure Box Representation for Proof Generation in Success (a)
and Failure (b).eps

Recursive calls in Algorithm 1 are needed to ensure that all CALL FAIL
pairs at various depths are removed as illustrated in Figure 2 (a). Once all CALL
FAIL pairs are removed, the successive CALL EXIT pairs in the remaining trace
indicate successful invocation of rules and facts.

In contrast, to find specific failed rules and facts, instead of removing suc-
cessive CALL FAIL pairs, we need to retain only these pairs while removing
rest of other kinds of invocations. Because we are interested only in successive
CALL FAIL pairs in case of failed rules and facts, we do not need to recurse as
in Algorithm 1. Figure 2 (b) illustrates this.

For Algorithm 1 used to obtain success rules and facts and a similar algorithm
to obtain failure rules and facts not shown here for the want of space, we take
as input the trace of successful query and failed query respectively. The calls to
match*() methods in both algorithms indicate that rules and facts are sought
to match with the theory of the problem which is stored line by line itself. Since
the trace contains intermediate substitutions by the inference engine, the strings
of invocations of rules and facts from trace are attempted to match partially
with the rules and facts from theory. The output of both algorithms is sets of
matched rules and facts from the theory rather than the trace.

Explanation of Proofs of Regulatory (Non-)Compliance 393

The successful or failed rules and facts are used to generate explanation
via vocabularies. In the next section, we present how vocabularies are modeled,
mapped, and used in generating the explanation.

3.2 Generating Explanation

Modeling and Mapping Regulations and Operations Vocabularies.
SBVR vocabularies for regulations and operations are defined in terms of four
sections. First, vocabulary to capture the business context is created, consist-
ing of the semantic community and sub-communities owning the regulation and
to which the regulation applies. Each semantic community is unified by shared
understanding of an area, i.e., body of shared meanings. This in turn can com-
prise smaller bodies of meanings, containing a body of shared concepts that
captures concepts and their relations, and a body of shared guidance contain-
ing business rules. These concepts are shown as Business Vocabulary in SBVR
metamodel in Figure 3.

Fig. 3. SBVR Metamodel For Creating and Mapping Regulations and Operations
Vocabularies

Second, the body of concepts is modeled by focusing on key terms in regula-
tory rules. Concepts referred in the rule are modeled as noun concepts. A general
concept is defined for an entity that denotes a category. Specific details about an
entity are captured as characteristics. Verb concepts capture behavior in which
noun concepts play a role. Binary verb concepts capture relations between two
concepts. Characteristics are unary verb concepts. The SBVR metamodel for
modeling regulation body of concepts are shown as Meaning and Representation
Vocabulary in Figure 3.

Third, we build the body of guidance using policies laid down in the regula-
tion. This includes logical formulation of each policy (an obligation formulation

394 S. Sunkle et al.

for obligatory rules) based on logical operations such as conjunctions, implica-
tions and negation. At the lowest level are atomic formulations based on verb
concepts from the body of concepts. This is shown in Business Rules Vocabulary
in Figure 3.

Fourth and lastly, we model the terminological dictionary that contains var-
ious representations used by a semantic community for its concepts and rules
defined above. These consist of designations or alternate names for various con-
cepts, definitions for concepts and natural language statements for policies stated
in the regulation. We also use the terminological dictionary to capture the vocab-
ulary used by the enterprise in its business processes. Each activity in the process
becomes a verb concept wording in the terminological dictionary. SBVR concepts
for modeling terminological variations are shown as Terminological Dictionary
in Figure 3.

SBVR defines verb concept wordings as representations of verb concepts in
their most general form. Every verb concept in the regulation body of concepts
is mapped to corresponding verb concept wording from the process terminological
dictionary. This mapping is used to look up consequent terms of rules and the
corresponding process entity is treated as a placeholder for compliance imple-
mentation of the rule.

Elaborating Proofs Using Vocabularies and Mapping. At this stage, on
the one hand we have success/failure rules and facts and on the other, the vocab-
ularies of regulations and operations. The mapping between concepts defined
using the Business Vocabulary, rules defined using the Business Rules Vocabu-
lary, and the terminological variations of concepts defined using the Termino-
logical Dictionary is used as the source of the proof explanation.

To obtain the explanation for a success or failure fact, each term/keyword
in the fact is looked up in the Business Vocabulary body of concepts and its
corresponding terminological representation in Terminological Dictionary. For
rules, logical formulation of rule is fetched from Business Rules Vocabulary and
it natural language representation is obtained from its corresponding mappings
in the Terminological Dictionary.

To substantiate our approach, we present a case study in the next section.
This case study concerns Reserve Bank of India’ (RBI) Know Your Customer
(KYC) regulations for Indian banks.

4 Case Study

RBI’s KYC regulations are aimed at identifying different types of customers,
accepting them as customers of given bank when they fulfill certain identity and
address documentation criteria laid out in various regulations and annexes in
the most recent RBI KYC master circular2, and categorizing them into various
risk profiles for periodic KYC reviews.

2 See RBI KYC 2014 Master Circular http://www.rbi.org.in/scripts/BS ViewMas
Circulardetails.aspx?id=9074#23.

http://www.rbi.org.in/scripts/BS_ViewMasCirculardetails.aspx?id=9074#23
http://www.rbi.org.in/scripts/BS_ViewMasCirculardetails.aspx?id=9074#23

Explanation of Proofs of Regulatory (Non-)Compliance 395

The following shows how KYC regulations characterize a salaried employee
working at a private company and which documents are acceptable for opening
a new account by such individual.

KYC Regulation for Salaried Employees [RBI KYC Customer
Identification 2014 §2.5 (vii)]

[... for opening bank accounts of salaried employees some banks rely on a cer-
tificate / letter issued by the employer as the only KYC document ..., banks
need to rely on such certification only from corporates and other entities of
repute and should be aware of the competent authority designated by the con-
cerned employer to issue such certificate/letter. Further, in addition to the
certificate from employer, banks should insist on at least one of the officially
valid documents as provided in the Prevention of Money Laundering Rules (viz.
passport, driving licence, PAN Card, Voters Identity card etc.) or utility bills for
KYC purposes for opening bank account of salaried employees of corporates and
other entities.]

The business process (BP) model of BankA where individuals of the kind
private salaried employee desire to open account is shown in Figure 4. A gen-
eral bank official interacts with a client while KYC documents are managed
by content management official. The compliance official is in charge of compli-
ance function. This BP model is traversed to generate BankA Terminological

Fig. 4. Business Process of BankA with PSE Regulation Annotation

396 S. Sunkle et al.

Dictionary which is in the form of a list of verb concept wordings correspond-
ing to a) each Task/ SubProcess from the process, e.g., Approach Bank, Process
New account Request and b) each object and condition label in the process, e.g.,
Client Risk Profile Database, Self, and Intermediary etc.

Vocabularies for the KYC regulations and specifically regulation §2.5 (vii),
and the account opening business process, are modeled and mapped as described
below.

Business vocabulary consists of the semantic community banking indus-
try, with sub-communities RBI and BankA. The RBI semantic community is
unified by body of shared meanings RBI Regulations. It contains the body
of meanings RBI KYCRegulation which comprises body of shared concepts
RBI KYCRegulationConcepts and body of shared guidance RBI KYCRules.
Process concepts such as ReviewDocuments are captured as verb concept word-
ings in Terminological Dictionary of BankA. Finally, Terminological Dictionary
RBI Terminological Reference contains natural language representation of vari-
ous KYC concepts.

Listing 1.1 shows a DR-Prolog formulation of a rule for private salaried
employee from KYC regulation stated above. Three different cases are captured
in Listing 1.1. The regulation is complied with for individual 17 whereas condi-
tions for individuals 18 and 19 result in non-compliance.

Listing 1.1. Case Theory in DR-Prolog

1 defeasible(r3,obligation,client_account_data(Client_ID,
2 open_account),[client_data(Client_ID,ind,pse),pse_data(
3 Client_ID, approvedCorporate),pse_KYC_document_data(
4 Client_ID,acceptApprovedCorpCertificate,pse_kyc_document_set)]).
5 /* Everything is OK, so account can be opened.*/
6 fact(client_data(17,ind,pse)).
7 fact(pse_data(17,approvedCorporate)).
8 fact(pse_KYC_document_data(17,acceptApprovedCorpCertificate,
9 pse_kyc_document_set)).

10 /* Corporate is not approved, account cannot be opened*/
11 fact(client_data(18,ind,pse)).
12 fact(pse_data(18,not(approvedCorporate))).
13 fact(pse_KYC_document_data(18,acceptApprovedCorpCertificate,
14 pse_kyc_document_set)).
15 /* Requisite documents not submitted, account cannot be opened*/
16 fact(client_data(19,ind,pse)).
17 fact(pse_data(19,approvedCorporate)).
18 fact(pse_KYC_document_data(19,acceptApprovedCorpCertificate,
19 not(pse_kyc_document_set))).

For the theory shown in Listing 1.1, queries such as shown in Listing 1.2
are executed. The traces are collected and input to the program implementing
Algorithm 1 and also to obtain failure rules and facts along with the theory for
generating proofs.

Listing 1.2. Queries about Private Salaried Employees in DR-Prolog

1 trace(defeasibly(client_account_data(17,open_account),obligation)).
2 trace(defeasibly(client_account_data(18,open_account),obligation)).
3 trace(defeasibly(client_account_data(19,open_account),obligation)).

Explanation of Proofs of Regulatory (Non-)Compliance 397

The success/failure rules and facts are then parsed to obtain terms. These
terms are then used in a manner illustrated in Figure 5.

Business Vocabulary with Characteristics on top left of Figure 5 shows regu-
lation body of concepts, containing the concept hierarchy with client at its root,
specialized by general concept individual, specialized by concept pse denoting pri-
vate salaried employee. Concept pse KYC document denotes the documents sub-
mitted by a private salaried employee. Characteristics of private salaried employee
are whether employer is an approvedCorporate or notApprovedCorporate. Verb con-
cepts client is ind, client is pse and pse has pse KYC document capture relations
between concepts.

Business Rules Vocabulary on the bottom left of Figure 5 is the body of
guidance containing a section of regulation policy denoted by rule r3 in Listing
1.1. Rule r3 is defined as an obligation formulation based on an implication, with
antecedent list client is ind, client is pse, approvedCorporate and acceptApproved-
CorpCertificate and consequent open account.

The Terminological Dictionary contains alternate names client data, pse data,
pse KYC document data for concepts client, pse and pse KYC document respec-
tively. It also contains the descriptions Customer, Private salaried employee
and KYC document details for private salaried employee and definitions such as
Employer is a corporate approved by the bank and Certificate from approved corpo-
rate can be accepted for characteristics approvedCorporate and acceptApproved-
CorpCertificate respectively.

Each concept is mapped to its corresponding representation in the Termino-
logical Dictionary. Similarly, each rule in Business Rules Vocabulary is mapped to
its natural language statement in the Terminological Dictionary. This mapping
leads to attaching the rule r3 in Listing 1.1 at the activity Review Documents
indicated by in the BP model shown earlier in Figure 4.

Various XML fragments shown in Figure 5 can be treated as tables with
mapping concepts as foreign keys. Upon querying specific terms from respective
tables/XML fragments, projecting the natural language expressions including
the rule statements, and performing textual processing including removing
underscore characters; for case in Figure 5 of success rules and facts we
obtain the following explanation:

As per rule r3, it is obligatory for bank to obtain requisite documents
including approved employer certificate and additionally at least one
valid document from individual who is a private salaried employee
in order to open account for this individual. For current individual
that is private salaried employee; Employer is a corporate approved by
the bank and KYC documents required for private salaried employee
submitted. Therefore compliance is achieved for current individual
with Client ID 17 .

Similarly for case of failure rules and facts, we obtain the following expla-
nation:

For current individual that is private salaried employee; Employer is
NOT a corporate approved by the bank and KYC documents required

398 S. Sunkle et al.

F
ig
.
5
.

G
en

er
a
ti

n
g

P
ro

o
f
E

x
p
la

n
a
ti

o
n

B
y

Q
u
er

y
in

g
V

o
ca

b
u
la

ri
es

a
n
d

P
ro

je
ct

in
g

R
es

u
lt

s

Explanation of Proofs of Regulatory (Non-)Compliance 399

for private salaried employee submitted. As per rule r3, it is obligatory
for bank to obtain requisite documents including approved employer
certificate and additionally at least one valid document from individual
who is a private salaried employee in order to open account for this
individual. Therefore compliance is NOT achieved for current
individual with Client ID 18 .

The underlined parts of the explanation are blanks in a textual template
filled in with the results of projection. Note that the explanations above can be
made to contain additional information such as regulation number (RBI KYC
Customer Identification 2014 §2.5 (vii)), risks identified by regulatory body for
given case (“... accepting documents from an unapproved corporate is fraught
with risk...”) by modeling this information in the Terminological Dictionary.

Implementation Details. To implement vocabulary artifacts, we imported
elements shown in Figure 3 from the consumable XMI of SBVR meta-model
available at OMG site3 into Eclipse Modeling Framework Ecore model. The BP
model is created and traversed using an in-house tool that we described in [18].
We implemented DR-Prolog programs using TuProlog.4 Algorithm 1 and also
similar algorithm for capturing failure rules and facts are implemented in Java.
For loading and querying XML fragments shown in Figure 5, and projecting
results into templates we used Apache Metamodel5 which takes as input the
XML representation of vocabularies modeled with standard Ecore editor. It pro-
vides SQL like query API to query XML data. Results of queries are substituted
into textual template(s) using FreeMarker6 Java template engine.

Implementation Evaluation. The case study presented here is an ongoing
case study with a private bank. RBI’s 2014 KYC regulations contains 11 main
categories of customers of which we have modeled 5 categories so far includ-
ing private salaried employees for which we have shown an exemplar in this
section. While we have not conducted an empirical evaluation of efforts involved
in building vocabularies, experiments so far have shown that this effort results in
reusable vocabulary artifacts such as KYC regulation vocabulary components.
Further scalability studies are part of our future work.

In the next section, we review related work and also describe future work.

5 Related and Future Work

Proof Explanation. A compliance checking approach presented in [21] uses
information in the event log and a labeling function that relates Petri net-based

3 See under Normative Machine Consumable Files at http://www.omg.org/spec/
SBVR/20130601/SBVR-XMI-Metamodel.xml

4 See http://apice.unibo.it/xwiki/bin/view/Tuprolog/
5 See http://metamodel.apache.org/
6 See http://freemarker.org/

http://www.omg.org/spec/SBVR/20130601/SBVR-XMI-Metamodel.xml
http://www.omg.org/spec/SBVR/20130601/SBVR-XMI-Metamodel.xml
http://apice.unibo.it/xwiki/bin/view/Tuprolog/
http://metamodel.apache.org/
http://freemarker.org/

400 S. Sunkle et al.

compliance patterns to the transitions of events to indicate violations. Simi-
lar to [10,14,15], we use inference trace as a diagnostic knowledge base, but in
comparison to [10,14,15] and [21], we model the vocabularies of regulatory and
operations domains which enables us to generate close to natural language expla-
nations. In another approach presented in [22], whenever a rule is violated by the
process model, temporal logic querying techniques along with BPMN-Q queries
extended with data aspects are used to visually explain violations in the process
model. Similarly, approach in [23] annotates BP models with predicates from reg-
ulations and uses them in creating status reports of violations. These approaches
lack an explicit modeling of domain concepts, which means that explanations in
these approaches are not expressive enough and they require knowledge of formal
technique to interpret the violations explained. The explanation we generate are
natural language statements which are easy to understand and can be extended
to include other stakeholder-specific information.

Explicit Mapping of Concepts. The need for an explicit mapping between
concepts of regulations and business processes has been identified in [12]. Formal
compliance checking approaches in contrast implicitly assume that a termino-
logical mapping already exists between regulations and the BP models. The
locations where regulations become applicable are then found by constructing
an execution trace as in [4], finding paths in process structure tree as in [11], or
placed manually on a business property specification language diagram as in [5].
Labels from business process in such traces, paths, or other representations are
often presumed to map to labels of formal models of regulations. In comparison
to approaches that assume same labels, we take similar stance as in [12,13] and
map concepts from regulations and business process as described in Section 3.2.

SBVR in Regulatory Compliance. SBVR has been used in the context
of regulatory compliance in [24–26]. These approaches use SBVR to describe
process rules, transform SBVR process vocabulary to a formal compliance lan-
guage, and represent legal rules using SBVR respectively. In comparison to these
approaches, our approach applies the vocabularies toward proof explanation.
The general mechanism we presented in this paper can accommodate purpo-
sive vocabularies that can be queried for stakeholder-specific interpretations and
explanations.

Future Work- Elaborating Business Reasons in Proof Explanation. In
order to explicate business reasons in proof explanation, business reasons must
be modeled. An approach is presented in [27] which extracts legal requirements
from regulations by mapping the latter to the Legal Profile for Goal-oriented
Requirements Language. This approach hints at creating models of legal goals
at the same level of abstraction as business goals. Similarly, business motivation
model by OMG [28] treats regulations as external directives which affect the
current courses of action being used to support business motivations. If business
objectives which the existing operational practices serve can be modeled using

Explanation of Proofs of Regulatory (Non-)Compliance 401

mechanisms as in [27,28], then they can be used in proof explanations with
models of operations/business processes as the common point of confluence.

In [29], we showed how to incorporate directives such as internal policies
and external regulations into enterprise to-be architecture. Our approach in [29]
enables querying directives given operational details such as business process
specifics and also querying business process specifics given directives. If the high
level motivations of enterprise were expressed in the Terminological Dictionary,
it might be possible to relate these to terms in the proof explanation. This is
part of our future work.

6 Conclusion

We presented an approach in which we use SBVR to model and map concepts
from regulation and operations and leverage proof generation ability of DR-
Prolog to generate elaborate explanation of proofs of (non-)compliance. Our
approach can accommodate additional information from domain under con-
sideration which can be included in the explanations. We are currently work-
ing on combining our approach for modeling business motivations presented
in [29] with our proof generation approach to include business reasons behind
(non-)compliance. We believe that with our current and ongoing work we take
a solid step toward purposive and stakeholder-specific explanations of proofs of
(non-)compliance.

References

1. French Caldwell, J.A.W.: Magic quadrant for enterprise governance, risk and com-
pliance platforms (Gartner) (2013)

2. English, S., Hammond, S.: Cost of compliance 2014 (Thomson Reuters Accelus)
(2014)

3. FRC: What constitutes an explanation under ‘comply or explain’? Report of dis-
cussions between companies and investors (February 2012)

4. Sadiq, W., Governatori, G., Namiri, K.: Modeling Control Objectives for Business
Process Compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007.
LNCS, vol. 4714, pp. 149–164. Springer, Heidelberg (2007)

5. Liu, Y., Müller, S., Xu, K.: A static compliance-checking framework for business
process models. IBM Systems Journal 46(2), 335–362 (2007)

6. El Kharbili, M., Stein, S., Markovic, I., Pulvermüller, E.: Towards a framework
for semantic business process compliance management. In: The Impact of Gover-
nance, Risk, and Compliance on Information Systems (GRCIS), June 17. CEUR
Workshop Proceedings, vol. 339, Montpellier, France, pp. 1–15 (2008)

7. Ly, L.T., Rinderle-Ma, S., Knuplesch, D., Dadam, P.: Monitoring business process
compliance using compliance rule graphs. In: Meersman, R. (ed.) OTM 2011, Part
I. LNCS, vol. 7044, pp. 82–99. Springer, Heidelberg (2011)

8. Hashmi, M., Governatori, G.: A methodological evaluation of business process
compliance management frameworks. In: Song, M., Wynn, M.T., Liu, J. (eds.)
AP-BPM 2013. LNBIP, vol. 159, pp. 106–115. Springer, Heidelberg (2013)

402 S. Sunkle et al.

9. Fellmann, M., Zasada, A.: State-of-the-art of business process compliance
approaches. In: Avital, M., Leimeister, J.M., Schultze, U. (eds.) 22st European
Conference on Information Systems, ECIS 2014, June 9–11, Tel Aviv, Israel (2014)

10. Bikakis, A., Papatheodorou, C., Antoniou, G.: The DR-Prolog tool suite for defeasi-
ble reasoning and proof explanation in the semantic web. In: Darzentas, J., Vouros,
G.A., Vosinakis, S., Arnellos, A. (eds.) SETN 2008. LNCS (LNAI), vol. 5138,
pp. 345–351. Springer, Heidelberg (2008)

11. Awad, A., Smirnov, S., Weske, M.: Resolution of compliance violation in business
process models: a planning-based approach. In: Meersman, R., Dillon, T., Herrero,
P. (eds.) OTM 2009, Part I. LNCS, vol. 5870, pp. 6–23. Springer, Heidelberg (2009)

12. Boella, G., Janssen, M., Hulstijn, J., Humphreys, L., van der Torre, L.: Managing
legal interpretation in regulatory compliance. In: Francesconi, E., Verheij, B. (eds.)
International Conference on Artificial Intelligence and Law, ICAIL 2013, pp. 23–32.
ACM. Rome (2013)

13. Becker, J., Delfmann, P., Eggert, M., Schwittay, S.: Generalizability and applica-
bility of modelbased business process compliance-checking approaches – a state-
of-the-art analysis and research roadmap. BuR – Business Research 5(2), 221–247
(2012); Publication status: Published

14. Antoniou, G., Bikakis, A., Dimaresis, N., Genetzakis, M., Georgalis, G., Gover-
natori, G., Karouzaki, E., Kazepis, N., Kosmadakis, D., Kritsotakis, M., Lilis,
G., Papadogiannakis, A., Pediaditis, P., Terzakis, C., Theodosaki, R., Zeginis, D.:
Proof explanation for a nonmonotonic semantic web rules language. Data & Knowl-
edge Engineering 64(3), 662–687 (2008)

15. Kontopoulos, E., Bassiliades, N., Antoniou, G.: Visualizing semantic web proofs
of defeasible logic in the DR-DEVICE system. Knowl.-Based Syst. 24(3), 406–419
(2011)

16. Bratko, I.: PROLOG Programming for Artificial Intelligence, 2nd edn. Addison-
Wesley Longman Publishing Co. Inc., Boston (1990)

17. Tobermann, G., Beckstein, C.: What’s in a trace: The box model revisited. In:
Fritzson, P.A. (ed.) AADEBUG 1993. LNCS, vol. 749, pp. 171–187. Springer,
Heidelberg (1993)

18. Kholkar, D., Yelure, P., Tiwari, H., Deshpande, A., Shetye, A.: Experience with
industrial adoption of business process models for user acceptance testing. In: Van
Gorp, P., Ritter, T., Rose, L.M. (eds.) ECMFA 2013. LNCS, vol. 7949, pp. 192–206.
Springer, Heidelberg (2013)

19. Antoniou, G., Dimaresis, N., Governatori, G.: A modal and deontic defeasible rea-
soning system for modelling policies and multi-agent systems. Expert Syst. Appl.
36(2), 4125–4134 (2009)

20. Antoniou, G., Dimaresis, N., Governatori, G.: A System for modal and deontic
defeasible reasoning. In: Orgun, M.A., Thornton, J. (eds.) AI 2007. LNCS (LNAI),
vol. 4830, pp. 609–613. Springer, Heidelberg (2007)

21. Ramezani, E., Fahland, D., van der Aalst, W.M.P.: Where did i misbehave? diag-
nostic information in compliance checking. In: Barros, A., Gal, A., Kindler, E.
(eds.) BPM 2012. LNCS, vol. 7481, pp. 262–278. Springer, Heidelberg (2012)

22. Awad, A., Weidlich, M., Weske, M.: Specification, verification and explanation
of violation for data aware compliance rules. In: Baresi, L., Chi, C.-H., Suzuki,
J. (eds.) ICSOC-ServiceWave 2009. LNCS, vol. 5900, pp. 500–515. Springer,
Heidelberg (2009)

Explanation of Proofs of Regulatory (Non-)Compliance 403

23. Governatori, G., Hoffmann, J., Sadiq, S., Weber, I.: Detecting regulatory compli-
ance for business process models through semantic annotations. In: Ardagna, D.,
Mecella, M., Yang, J. (eds.) Business Process Management Workshops. LNBIP,
vol. 17, pp. 5–17. Springer, Heidelberg (2009)

24. Goedertier, S., Mues, C., Vanthienen, J.: Specifying process-aware access control
rules in SBVR. In: Paschke, A., Biletskiy, Y. (eds.) RuleML 2007. LNCS, vol. 4824,
pp. 39–52. Springer, Heidelberg (2007)

25. Kamada, A., Governatori, G., Sadiq, S.: Transformation of SBVR compliant busi-
ness rules to executable FCL rules. In: Dean, M., Hall, J., Rotolo, A., Tabet, S.
(eds.) RuleML 2010. LNCS, vol. 6403, pp. 153–161. Springer, Heidelberg (2010)

26. Abi-Lahoud, E., Butler, T., Chapin, D., Hall, J.: Interpreting regulations with
SBVR. In: Fodor, P., Roman, D., Anicic, D., Wyner, A., Palmirani, M., Sottara,
D., Lévy, F. (eds.) Joint Proceedings of the 7th International Rule Challenge, the
Special Track on Human Language Technology and the 3rd RuleML Doctoral Con-
sortium. CEUR Workshop Proceedings, vol. 1004. CEUR-WS.org, Seattle (2013)

27. Ghanavati, S., Amyot, D., Rifaut, A.: Legal goal-oriented requirement language
(legal GRL) for modeling regulations. In: Proceedings of the 6th International
Workshop on Modeling in Software Engineering, MiSE 2014, pp. 1–6. ACM, New
York (2014)

28. OMG: Business Motivation Model - Version 1.2 (May 2014)
29. Sunkle, S., Kholkar, D., Rathod, H., Kulkarni, V.: Incorporating directives into

enterprise TO-BE architecture. In: Grossmann, G., Hallé, S., Karastoyanova, D.,
Reichert, M., Rinderle-Ma, S. (eds.) 18th IEEE International Enterprise Dis-
tributed Object Computing Conference Workshops and Demonstrations, EDOC
Workshops 2014, September 1–2, Ulm, Germany, pp. 57–66. IEEE (2014)

Rule Learning Track

Rule Generalization Strategies in Incremental
Learning of Disjunctive Concepts

Stefano Ferilli1,2(B), Andrea Pazienza1, and Floriana Esposito1,2

1 Dipartimento di Informatica, Università di Bari, Bari, Italy
{stefano.ferilli,andrea.pazienza,floriana.esposito}@uniba.it

2 Centro Interdipartimentale per la Logica e sue Applicazioni,
Università di Bari, Bari, Italy

Abstract. Symbolic Machine Learning systems and applications, espe-
cially when applied to real-world domains, must face the problem of
concepts that cannot be captured by a single definition, but require sev-
eral alternate definitions, each of which covers part of the full concept
extension. This problem is particularly relevant for incremental systems,
where progressive covering approaches are not applicable, and the learn-
ing and refinement of the various definitions is interleaved during the
learning phase. In these systems, not only the learned model depends
on the order in which the examples are provided, but it also depends on
the choice of the specific definition to be refined. This paper proposes
different strategies for determining the order in which the alternate def-
initions of a concept should be considered in a generalization step, and
evaluates their performance on a real-world domain dataset.

1 Introduction

The use of symbolic knowledge representations is mandatory for applications
that need to reproduce the human inferential behavior and/or that may be
required to explain their decisions in human-understandable terms. These repre-
sentations must embed suitable definitions for the concepts (entities or relation-
ships) that may come into play in the given application domain, in order to check
their occurrence and suitably combine them to carry out their reasoning task.
Concepts can be classified as conjunctive and disjunctive, depending on how
they are defined. The former allow a single definition to account for all possible
instances of the concept, while the latter require several alternate definitions,
each of which covers part of the full concept extension. Psychological studies
have established that capturing and dealing with the latter is much harder for
humans than it is with the former [4]. Unfortunately, the latter are pervasive
and fundamental in any sufficiently complex real-world domain.

A well-known problem in setting up automatic knowledge-based systems is
the so-called ‘knowledge acquisition bottleneck’, by which it is very hard and
costly to extract from human experts and/or formalize the knowledge they need
to carry out their task. The solution proposed by Artificial Intelligence relies on
the use of symbolic Machine Learning systems, that may acquire autonomously

c© Springer International Publishing Switzerland 2015
N. Bassiliades et al. (Eds.): RuleML 2015, LNCS 9202, pp. 407–421, 2015.
DOI: 10.1007/978-3-319-21542-6 26

408 S. Ferilli et al.

such knowledge. In the supervised setting, concept definitions are inferred start-
ing from descriptions of valid (positive) or invalid (negative) instances (exam-
ples) thereof. Of course, the problem of dealing with disjunctive concepts is still
present, and even harder to face, in Machine Learning (ML for short).

In turn, ML systems can be classified as batch or incremental, depending on
their learning concept definitions by having available the whole set of examples
when the learning task is started, or by allowing new examples to be provided
after a tentative definition has already been learned. In the former case, which
is the classical setting in ML, the definitions can be learned by considering all
the examples, and are immutable; if additional examples are provided later, the
learned definitions must be withdrawn and a new learning session must start
from scratch considering the whole (extended) set of examples now available.
Disjunctive definitions have been classically learned, in this setting, by adopting
progressive coverage strategies: a conjunctive definition is learned that accounts
for a subset of available examples, then these examples are removed and another
conjunctive definition is learned to account for a subset of the remaining exam-
ples, and so on until all the examples are covered by the learned conjunctive
definitions. We call a component each such conjunctive definition; a disjunctive
definition consists of the set of components referred to the same concept. In this
approach, the components automatically emerge and are fixed as long as they
are found.

The incremental approach, instead, assumes that at any given moment in
time a set of examples, and a (possibly disjunctive) definition that accounts for
them, are available, and that new examples may become available in the future.
If the available concept definition cannot properly account for them, it must
be ‘refined’ (i.e., revised, changed, modified) so that the new version properly
accounts for both the old and the new examples. In this setting the progres-
sive covering strategy is not applicable, and the issue of disjunctive definitions
becomes particularly relevant. Indeed, when the partial definition is disjunctive,
and many of its components can be refined so that the whole definition properly
accounts for the whole set of examples, there is no unique way for determining
which component is most profitably refined. However, refining different compo-
nents results in different updated definitions, that become implicit constraints
on how the definition itself may evolve when additional examples will become
available in the future. Thus, in incremental systems, not only the learned model
depends on the order in which the examples are provided, but it also depends
on the choice of the specific definition component to be refined at each step.

This paper proposes different strategies for determining the order in which
the alternate definition components of a disjunctive concept should be con-
sidered in a refinement step, and evaluates their performance on a real-world
domain dataset. The next Section recalls useful background information, includ-
ing related works and the specific system used in our study. Then, Section 3
introduces and motivates the proposed strategies. Section 4 evaluates and dis-
cusses the performance of the different strategies, and Section 5 concludes the
paper and outlines future work issues.

Rule Generalization Strategies in Incremental Learning 409

2 Background and Related Work

In the logic-based ML setting, the learned concept definitions are called theories.
Automatic revision of logic theories is a complex and computationally expen-
sive task. In fact, most systems for theory revision deal with propositional logic.
They can integrate different reasoning methods and learning strategies. Among
these systems we find RTLS [10], DUCE [14], DUCTOR [5]. The system pro-
posed in [12] and EITHER [13] explicitly use a deductive-inductive method for
modifying a given domain theory.

There are also systems that can revise first-order theories. Most of them
try to limit the search space by exploiting information and, generally, require a
wide, although incomplete, domain theory or a deep knowledge acquired (possi-
bly in an interactive manner) from the user. Some others, such as MIS [21] and
CLINT [7], strongly rely on the interaction with the user to reduce the search
space. Others, such as WHY [19], TRACEY [2] and KBR [3], do not require
any interaction with the user during the induction process and adopt sophisti-
cated search strategies or more informative search structures. Still others, such
as FORTE [18] and AUDREY [23], do not allow the use of negation in the theo-
ries because of computational complexity considerations. As a consequence, half
of the whole search space is not explored. Aleph [22] is a very flexible system:
its settings can be customized to modify the search strategy and allow random-
ized search, incremental learning and learning constraints, modes and features.
InTheLEx [8] is a noteworthy system in this landscape. While the generaliza-
tion strategy we will present is general, for reasons that will be explained in the
following we will use InTheLEx for implementing and testing it.

2.1 InTheLEx

InTheLEx (INcremental THEory Learner from EXamples) can learn hierarchical
(i.e., non-recursive) theories from positive and negative examples. It is particu-
larly suited for our purposes because it is fully incremental : it is able not only
to refine existing theories, but also to start learning from an empty theory and
from the first available example. This is necessary when incomplete information
is available at the time of initial theory generation, as in most real-world appli-
cation domains. Incrementality is obtained by means of a closed loop learning
behavior [1], according to which the validity of the learned theory is checked on
any new example and, in case of failure, a revision process is activated on it, in
order to restore completeness and consistency.

InTheLEx works on Datalog representations interpreted under the Object
Identity (OI) assumption1. Datalog [6] is a simplified version of General Logic
Programming [11], and from a syntactic viewpoint can be considered as a sub-
language of Prolog where terms can only be variables or constants (functions are

1 “Within a rule, terms denoted with different symbols must be distinct.” While there
is no loss in expressive power [20], this has interesting consequences, both from a
practical point of view (see next section) and from an intuitive one.

410 S. Ferilli et al.

not permitted). Accordingly, the concept definitions in the learned theory are
expressed as Horn clauses, i.e. rules whose conclusion represents the concept and
whose premise reports a conjunctive definition for it. Disjunctive concepts are
defined using several rules with the same predicate in the head. So, for instance:

ball(A) :- weight medium(A), air filled(A), has patches(A),

horizontal diameter(A,B), vertical diameter(A,C), equal(B,C).

ball(A) :- weight medium(A), air filled(A), has patches(A,B),

horizontal diameter(A,B), vertical diameter(A,C), larger(B,C).

ball(A) :- weight heavy(A), has holes(A),

horizontal diameter(A,B), vertical diameter(A,C), equal(B,C).

ball(A) :- weight light(A), regular shape(A),

horizontal diameter(A,B), vertical diameter(A,C), equal(B,C).

is a theory that defines the disjunctive concept ‘ball’ using 4 components. E.g.,
the ‘etrusco’ 1990 World Cup soccer ball, described as follows:

ball(e) :- weight medium(e), has patches(e), air filled(e), made of leather(e),

horizontal diameter(e,he), vertical diameter(e,ve), equal(he,ve).

fits the first component; conversely, negative examples such as a snowball and a
spitball are not recognized by any component:

neg(ball(s1)) :- weight light(s1), made of snow(s1), irregular shape(s1),

horizontal diameter(s1,hs1), vertical diameter(s1,vs1), smaller(hs1,vs1).

neg(ball(s2)) :- weight light(s2), made of paper(s2),

horizontal diameter(s2,hs2), vertical diameter(s2,vs2), larger(hs2,vs2).

InTheLEx adopts a full memory storage strategy [17] —i.e., it retains all
the available examples— and guarantees the learned theories to be valid on all
of them. It incorporates two refinement operators, one for generalizing defini-
tions that reject positive examples, and the other for specializing definitions
that explain negative examples. To carry out the process of logic theory revi-
sion, InTheLEx exploits a previous theory (optional), and a historical memory
of all the past (positive and negative) examples that led to the current theory.
Whenever a new example is taken into account, it is recorded in the processed
examples list and the ‘Tuning’ phase, in charge of the possible revision of the
current theory, is started. It has no effect on the theory if the new example is
negative and not covered (i.e., it is not predicted by the theory to belong to the
concept) or positive and covered (i.e., it is predicted by the theory to belong
to the concept); in all the other cases, the theory needs to be revised. When a
positive example is not covered, a generalization of the theory is needed. When,
on the other hand, a negative example is covered, a specialization of the theory
must be performed. The candidate refinements (generalizations or specializa-
tions) of the definitions are required to preserve correctness with respect to the
entire set of currently available examples. If no candidate refinement fulfills this
requirement, the specific problematic example is stored as an exception.

Rule Generalization Strategies in Incremental Learning 411

The process of identifying the part of the theory that causes the wrong classi-
fication of the example, and that needs to be refined, is called abstract diagnosis.
For conjunctive definitions this process is quite trivial, because the only available
definition is obviously in charge of the faulty classification. The question becomes
more tricky in the case of disjunctive concepts, for which several alternate con-
junctive definitions are available in the theory. Indeed, in this case, if a negative
example is covered, the system knows exactly which components of the definition
erroneously accounts for it (it is a case of commission error). Those components
must necessarily be refined (specialized), so that the overall definition does no
more account for that example (while still accounting for all the known positive
examples —a property known as ‘completeness’). Conversely, when a positive
example is not covered, this means that no component of the current definition
accounts for it, and several such components might be refined (generalized) so
that they will account for that example (while still not accounting for any known
negative example —a property known as ‘consistency’).

Thus, abstract diagnosis of an incorrect theory is performed at different lev-
els of granularity, according to the type of error found: while for commission
errors it identifies specific faulty conjunctive components to be specialized, for
omission errors the scope of the diagnosis process is limited to the coarser level
of the disjunctive definition, i.e. of several conjunctive components that are can-
didate to generalization. Specifically, for our current purposes we are interested
in the generalization procedure. Clearly, one might generalize all the candidate
components so that they are able to correctly classify the positive example. This
contrasts with the general assumption, made in incremental learning, that the
learned theories must represent as tight as possible a coverage of the available
positive examples. Indeed, over-generalization would make the theory more prone
to covering forthcoming negative examples. This problem is not present in batch
learning, since the set of examples is assumed to be immutable, and thus any
definition whose coverage boundary is able to account for all positive examples
and no negative example is considered as equally good in principle (of course,
other quality parameters than simple coverage may determine a more detailed
ranking). Taking to the extreme the approach of generalizing many components
of the definition, one might generalize all components, but then each conjunctive
component would account alone for all positive examples, yielding the contra-
diction that the concept is conjunctive (while we are assuming that it is not).

2.2 Generalization and Disjunctive Concepts

So, a single component is to be generalized, and a strategy is needed to decide
which is to be tried first. If the selected component cannot be generalized (in
principle, or within the available computational cost allowed to the refinement
operator) so that completeness is restored while still preserving consistency, gen-
eralization of the next best component can be attempted, and so on, until either
a generalization is found that ensures correctness of the theory, or all attempts
fail. The latter case requires the application of different kinds of refinements

412 S. Ferilli et al.

Algorithm 1. Generalization in InTheLEx
Procedure Generalize

(E: positive example, T: theory, M: negative examples);

L := list of the rules in the definition of E’s concept

while not generalized and L �= ∅ do

Select from L a rule C for generalization

L′ := generalize(C,E) (* list of generalizations *)

while not generalized and L′ �= ∅ do

Select next best generalization C′ from L′

if (T \ {C} ∪ {C′} is consistent wrt M then

Implement C′ in T
Remove C from L

if not generalized then

C′ := E with constants turned into variables

if (T \ {C} ∪ {C′} is consistent wrt M then

Implement C′ in T
else

Implement E in T as an exception

than generalization of a conjunctive component. While some incremental sys-
tems do not provide such additional kinds of refinement, the solution adopted
by InTheLEx to deal with these cases consists in introducing in the theory a
new alternate conjunctive definition of the concept. In fact, it is this very step
that yields disjunctive definitions in the theory.

Algorithm 1 describes the generalization strategy in InTheLEx. Starting from
the current theory, the misclassified example and the set of processed examples,
it ends with a revised theory. First of all, the system chooses a rule to be gener-
alized among those that define the example concept (the purpose of this paper is
exactly to propose and compare useful strategies for performing this step). Then,
the system tries to compute the generalization of this rule and the example.
Due to the theoretical and implementation details of the generalization oper-
ator used, several incomparable generalizations might be obtained [20]. If one
of such generalizations is consistent with all the past negative examples, then it
replaces the chosen rule in the theory, or else a new rule is chosen to compute the
generalization. Moreover, an implementation of the theoretical definition of the
generalization operator would be clearly infeasible, since the system would run
out of the available resources even for relatively small rules. Thus, an approx-
imation of the theoretical operator is computed, exploiting a similarity-based
strategy. Experiments have shown that such an approximation comes very close,
and often catches, least general generalizations [9].

If all generalization attempts fail on all available rules (i.e., no rule in the
theory can be generalized so that the resulting theory is consistent), the system
checks if a new rule, obtained by reproducing exactly the same pattern of the
example, but with its constants properly turned into variables, is consistent with
the past negative examples. If so, such a rule is added to the theory, extending

Rule Generalization Strategies in Incremental Learning 413

the disjunctive definition so that other examples, having the same shape as the
current problematic one, can be recognized by the theory. When starting from
an empty theory, this is the only available option, that introduces the initial
tentative conjunctive definition of the concept. The second time this option is
executed, the conjunctive definition turns out to be insufficient and, by adding a
second rule, the concept becomes disjunctive. All subsequent executions of this
option extend the ‘disjunctiveness’ of the concept. When even the new definition
cannot be added, because it covers a previous negative example, the specific new
example is added as an exception. Such an exception does not concur to the
definition of the concept, but just contributes to make up a list of specific cases
that must be checked in addition to the normal definition application.

3 Clause Selection Strategy for Generalization

Let us now focus on the case in which a disjunctive concept definition is available
in the current theory, and a new positive example becomes available that is not
covered by such a definition. As said, the problem with this situation is that
none of the definition components is specifically guilty for not covering the new
example, and still one of them must be generalized. The issue is relevant because
in incremental learning each refinement introduces implicit constraints on how
it will be possible to further refine the theory in the future. Thus, the learned
theory depends not only on the order in which examples are provided to the
system, but also on the choice of the elements to be refined. For this reason,
incremental learning systems should be careful in determining the order in which
the various components are to be considered for generalization. So, although a
random strategy might well be exploited as long as the formal correctness of
the refined definition is guaranteed, guided solutions may improve the overall
outcome as regards effectiveness and efficiency.

We will try in the following to answer some questions that arise in this con-
text: what sensible strategies can be defined for determining the order in which
disjunctive concept definition elements are to be considered for generalization?
what are their expected pros and cons? what is the effect of different order-
ing strategies on the quality of the theory? what about their consequences on
the effectiveness and efficiency of the learning process? InTheLEx is a suitable
candidate for experimentation because it is fully incremental, it is able to learn
disjunctive concept definitions, and its refinement strategy can be tuned to suit-
ably adapt its behavior. We propose the following five strategies for determining
the order in which the components of a disjunctive concept definition are to be
considered for generalization. A discussion follows of the motivations for each of
these options, of its features and expected impact on the learned theory. Note
that lower components in the ranking are considered only after generalization
attempts have failed on all higher-ranking components. So, higher-ranked com-
ponents will be tried first, and will have more chances to be generalized than
lower-ranked ones. Also note that there is no direct connection between the age
and length of a rule, except that older rules might have had more chances of

414 S. Ferilli et al.

refinement. Whether this means that they are also shorter (i.e., more general)
mainly depends on the ranking strategy, and on the specific examples that are
encountered and on their order (which is not controllable in a real-world setting).

Older elements first. The components are considered in the same order as they
were added to the theory. This can be considered as the most straightforward
way of considering the components: each new component is appended to the
definition, and the definition is processed by scanning top-down its elements.
In this sense, this is a sort of baseline for our study. This is a static ordering,
because the position of each component in the processing order is fixed once
and for all when that component is created and added to the definition. Since
each generalization refines a component, making it converge toward its ideal
final form (generalizations are monotonic, because they progressively remove
constraints from a component), we expect this strategy to yield very refined
(i.e., short) components toward the top of the rank, and very raw (i.e., long)
ones toward the bottom. This means that the components at the top will be
more human-readable and understandable. After several refinements, it is likely
that the components at the top have reached a nearly final and quite stable
form, for which reason all attempts to further refine them will be likely to fail,
leading to inconsistent solutions. The computational time spent in these useless
attempts, albeit presumably not huge (because the rules to be generalized are
short, and generalizing shorter rules requires less time) will just be wasted, and
thus runtimes for this option are expected to grow as long as the life of the
theory proceeds.

Newer elements first. The components are considered in the reverse order as
they were added to the theory. Also this option can be considered quite straight-
forward. Each new component is simply stacked ontop of the others, pushing
them down the ranking. Again this is a static ordering, but in this case it is not
so obvious to foresee what will be the shape and evolution of the components.
Immediately after the addition of a new component, one can be sure that it will
undergo a generalization attempt as soon as the first non-covered positive exam-
ple will be processed. So, compared to the previous option, there should be no
completely raw components in the definition, but the ‘average’ level of generality
in the definition is expected to be less than in the previous option. Also, there
are many chances that a newly added component can be generalized successfully
at the first attempt against any example, but the resulting generalization might
leverage strange and unreliable features that might be not very related to the
correct concept definition.

Longer elements first. The components are considered in descending order of
the number of conjuncts of which they are made up. This strategy specifically
addresses the level-of-refinement issue of the various definition components. This
strategy can be considered as an evolution of the previous one, in which not just
the most recently added component is favored for generalization. Intuitively, the
more conjuncts that make up a component of the disjunctive definition, the more

Rule Generalization Strategies in Incremental Learning 415

specialized the component. This intuition is backed under Object Identity, where
a strict subset of conjuncts necessarily yields a more general definition. This is
another reason why InTheLEx is particularly suited for our research. So, trying
to generalize longer elements first should ensure that the level of generalization
of the different components is somehow comparable. The components on which
generalization is tried first are those that, being longer, provide more room for
generalization, which should avoid waste of time trying to generalize very refined
rules that would hardly yield consistent generalizations. On the other hand,
generalizing a longer rule is expected to take more time than generalizing shorter
ones. Experiments will allow to discover whether the time gained in avoiding
unpromising generalization is comparable to, significantly more or significantly
less than the time spent on computing harder single generalizations.

Shorter elements first. The components are considered in ascending order of
the number of conjuncts of which they are made up. This strategy adopts the
opposite behavior compared to the previous one, trying to generalize first the
components that are already more refined. Accordingly, it can be considered as
an evolution of the first one. As a consequence, compared to all other strategies
the resulting disjunctive definition is expected to show the largest variance in
degree of refinement (i.e., of number of conjuncts in the rule premise) among its
components. This opposite perspective may provide confirmation of the possible
advantage of spending time in trying harder but most promising generalization
versus spending time in trying easier but less promising ones first.

More similar elements first. The components are considered in descending order
of similarity with the new uncovered example. Differently from all the previ-
ous options, that were based on purely syntactic/structural features, this is a
content-based strategy. It is motivated by the consideration that the length or
age of a definition component are not directly, nor necessarily, related to their
aptitude for generalization against a specific example. In fact, if the concept is
inherently disjunctive, its components should capture very different actualiza-
tions thereof. In turn, each instance of the concept (i.e., each example) should
in principle belong to one of these actualizations, and not belong to the other.
Each example may be covered by different components, but it is intuitively fair
to expect that the sets of examples covered by different components have a very
small intersection in practice. In this perspective, generalizing a component with
an example that refers to the concept actualization ideally captured by another
component, while possibly succeeding, might result in a refined component that
is odd, and may pose coverage and generalization problems in the future, caus-
ing bad theory and inefficient refinements. Thus, it would be desirable that the
generalization strategy is able to identify which is the appropriate component
for a given example. One way in which this can be obtained is ranking the
candidate components to be refined by similarity to the given example. While
widespread for attribute-value representations, similarity measures for first-order
logic descriptions are rare and hard to define. Here we will use the approach pro-
posed in [9], which is the same exploited in the generalization operator used by

416 S. Ferilli et al.

InTheLEx. As a consequence of this choice, one might expect that the general-
ized components maintain some specificity, and that the generalization operator
is likely to find a solution that is also consistent with negative examples, because
over-generalization is avoided. However, if the generalization is more easily com-
puted, this strategy involves an overhead to compute the similarity of the given
example with respect to all the definition components, which is not required
in all the previous options. It will be interesting to see if the improvement is
sufficiently significant as to compensate this increase in runtime.

4 Evaluation

An experiment was run to check how using the proposed strategies in the gen-
eralization process affects the performance of the learning system. We focused
on a real-world dataset2 that includes 353 layout descriptions of first pages of
scientific papers belonging to 4 classes: Elsevier journals, Springer-Verlag Lec-
ture Notes series (SVLN), Journal of Machine Learning Research (JMLR) and
Machine Learning Journal (MLJ). Each paper provides examples to learn def-
initions for these classes (a task known as classification) and and for the sig-
nificant components in the papers (a task known as understanding), such as
Title, Author and Abstract. The page descriptions express several kinds of spa-
tial relationships among the page components, thus requiring a first-order logic
representation formalism, and a learning system that can deal with this kind of
representations.

This dataset is complex for several reasons, which prevents us from giving
short samples. First, some layout styles are quite similar, so that it is not easy to
grasp the difference when trying to group them in distinct classes. 67920 atoms
are used to describe the documents, with an average description length of more
than 192 atoms and some descriptions made up of more than 400 atoms. Last, the
description language is heavily based on a membership relation (of layout com-
ponents to pages) that increases indeterminacy and thus the complexity of the
task. In the experiments, the layout description of each document is considered
as a positive example for the class it belongs and as a negative example for all
other classes. Different qualitative and quantitative evaluation parameters were
used to assess both the quality of the learned theories and the computational
cost spent to obtain them:

– number of components in the disjunctive concept definition (# comp): indi-
cates how compact is a theory (less components yield a more compact theory,
which does not necessarily provide for greater accuracy).

– average number of conjuncts per component (avg length): this is an indica-
tor of the degree of refinement that the concept definition has reached (the
more conjuncts, the more specific —and thus the less refined— the concept).

– number of negative exceptions (# exc): this is a quality indicator because
exceptions highlight weaknesses of the theory rather than contributing to its
formation and refinement; the more exceptions, the worse the theory.

2 Available at http://lacam.di.uniba.it/∼ferilli/ufficiale/ferilli.html

http://lacam.di.uniba.it/~{}ferilli/ufficiale/ferilli.html

Rule Generalization Strategies in Incremental Learning 417

– accuracy (acc): indicates the prediction capabilities of the theory on test
examples.

– runtime needed to carry out the learning task (time): this is a measure of
efficiency for the different ranking strategies.

The incremental approach is justified in this domain because in many real-world
document collections new instances of documents are continuously available in
time. We compare all strategies: older (O), newer (N), longer (L), shorter (S),
and similarity (∼). Random is not tried because O or N are somehow random
(they just append definitions as long as they are generated, without any insight).
We ran a 10-fold cross-validation procedure. The classification task was used to
check in detail the behavior of the different strategies, while the understanding
task was used to assess the statistical significance of the difference in performance
between different strategies.

On the classification task, InTheLEx always returned single-rule definitions
for Elsevier and JMLR, to which the ranking approach is not applicable. So,
Tables 1 and 2 show the results only for the other classes, MLJ and SVLN.
However, examples for Elsevier and JMLR still played a role as negative exam-

Table 1. Results for SVLN class

Fold 1 2 3 4 5 6 7 8 9 10 Avg Rank Overall

comp 3 3 3 2 4 3 3 3 2 3 2.9 1
avg length 27 60 35 31 30 29 29 41 37 67 38.6 1

O # exc 3 0 1 4 1 3 1 0 1 0 1.4 2 8
acc (%) 100 97 97 94 97 97 94 100 94 100 97 2
time (sec.) 58 20 27 67 50 68 22 30 28 27 39.7 2

comp 3 3 3 2 4 3 3 3 2 3 2.9 1
avg length 27 60 35 31 30 29 28 42 37 67 38.6 1

N # exc 3 0 1 4 1 3 1 0 1 0 1.4 2 6
acc (%) 100 97 97 94 97 97 97 100 94 100 97.3 1
time (sec.) 56 20 27 66 48 67 23 34 28 27 39.6 1

comp 3 3 3 2 4 3 3 3 2 3 2.9 1
avg length 27 59 35 31 30 29 29 42 37 67 38.6 1

L # exc 3 0 1 4 1 3 1 0 1 0 1.4 2 10
acc (%) 100 97 97 94 97 97 94 100 94 100 97 2
time (sec.) 57 27 26 69 43 64 46 32 28 28 42 4

comp 3 3 3 2 4 3 3 3 2 3 2.9 1
avg length 27 60 35 31 30 29 29 41 37 67 38.6 1

S # exc 3 0 1 4 1 3 1 0 1 0 1.4 2 9
acc (%) 100 97 97 94 97 97 94 100 94 100 97 2
time (sec.) 58 20 26 67 51 69 23 30 28 27 39.9 3

comp 3 3 3 2 4 3 3 3 2 3 2.9 1
avg length 29 60 35 31 30 29 29 42 37 67 38.9 2

∼ # exc 1 0 1 4 1 3 1 0 1 0 1.2 1 11
acc (%) 100 97 97 94 97 97 94 100 94 100 97 2
time (sec.) 46 38 35 74 59 71 52 49 36 38 49.8 5

418 S. Ferilli et al.

Table 2. Results for MLJ class

Fold 1 2 3 4 5 6 7 8 9 10 Avg Rank Overall

comp 3 7 6 4 6 7 4 5 5 4 5.1 2
avg length 26 45 56 37 51 46 65 37 50 39 45.2 2

O # exc 3 1 7 0 0 1 10 10 0 9 4.1 4 13
acc (%) 97 97 91 94 97 94 88 82 97 94 93.1 1
time (sec.) 178 355 1236 260 349 291 236 303 221 351 378 4

comp 3 7 5 4 6 7 4 5 6 4 5.1 2
avg length 25 44 42 36 43 71 65 46 54 33 45.9 3

N # exc 3 1 2 0 0 0 10 10 0 9 3.5 3 12
acc (%) 97 97 97 94 97 97 88 82 97 94 94 3
time (sec.) 176 316 197 247 301 436 220 277 196 353 271.9 1

comp 3 7 6 4 6 8 4 6 6 4 5.4 5
avg length 25 41 57 36 42 56 237 43 47 33 61.7 5

L # exc 3 1 1 0 0 0 10 9 0 8 3.2 1 19
acc (%) 97 97 97 94 97 97 88 94 97 94 95.2 5
time (sec.) 172 472 223 241 526 446 246 435 221 635 361.7 3

comp 3 7 6 4 6 6 4 5 5 4 5 1
avg length 25 44 56 36 43 83 65 72 50 39 51.3 4

S # exc 3 1 7 0 0 1 10 10 0 9 4.1 4 13
acc (%) 97 97 91 94 97 97 88 82 97 94 93.4 2
time (sec.) 178 339 1207 254 337 211 232 294 219 343 361.4 2

comp 3 7 5 4 6 8 4 6 6 4 5.3 4
avg length 25 41 39 36 42 55 37 43 47 33 39.8 1

∼ # exc 3 1 1 0 0 0 10 9 0 8 3.2 1 15
acc (%) 97 97 97 94 97 94 88 94 97 94 94.9 4
time (sec.) 288 588 256 320 628 650 354 479 283 711 455.7 5

ples for the other classes, which is why they were not dropped from the dataset.
Some expectations are confirmed: for runtime, in both classes the ‘newer’ app-
roach yields the best runtime (because often the first generalization attempt
succeeds), and the ‘similarity’ approach yields the worst (due to the need for
computing the similarity of each component and the example). However, the
‘similarity’ approach always yields the least number of exceptions, due to the
improved selection of components for generalization, and also the ‘shorter’ app-
roach performs good on this parameter. Considering an aggregated indicator
that assigns to each approach the sum of ranking positions for the different
parameters (so that the smaller, the better), the ‘newer’ wins for both classes.

For the rest, the behavior is somehow mixed for the two classes. In SVLN
there is much less variance than in MLJ, possibly indicating that the definition
of this class is quite clear and that the examples are quite significant for it.
The impact of the different ranking strategies is much clearer in MLJ. Here we
can see a substantial agreement between the quality-related indicators (average
component length, accuracy and, partly, number of components), so that, for
each approach, either they all tend to be good (as in ‘similarity’) or they all tend

Rule Generalization Strategies in Incremental Learning 419

Table 3. Statistical significance of the difference between strategies

MLJ Abstract Author Keywords Title
N L S ∼ N L S ∼ N L S ∼ N L S ∼ N L S ∼

L + L + L - L - L -
acc S - - S + - S + + S + + S - -

∼ + - + ∼ - - - ∼ + + - ∼ + + - ∼ + + +
O - - - - O = - - + O + + - + O - + - - O - + + -

L + L - L - L - L -
avg S - - S - + S - + S - - S - +

length ∼ - - - ∼ - + + ∼ - + + ∼ + + + ∼ - + -
O - - - + O + + + + O - + - - O + + + + O - - - -

L + L + L + L = L +
S - - S - - S - - S - - S - -

comp ∼ + - + ∼ + + + ∼ + - + ∼ + + + ∼ + + +
O = - + - O - - + - O - - - - O - - + - O - - + -

L - L + L - L + L =
S + + S + + S + + S + + S - -
exc ∼ - = - ∼ + + + ∼ + + + ∼ + - - ∼ + + +

O + + = + O - - - - O + + + + O + - - - O - - - -

L + L + L + L + L -
time S + - S - - S + - S + + S - +

∼ + + + ∼ + + + ∼ + + + ∼ + + + ∼ - + -
O + + + - O - - + - O - - - - O + + - - O - + + +

to be bad (as in ‘shorter’ and ‘older’). Also the figures of single folds provide
interesting indications. Fold 3 shows a peak in runtime and number of exceptions
for ‘shorter’ and ‘older’ (the runtime being a consequence of the unsuccessful
search for specialization, that in turn may have some connection with the quality
of the theory). Indeed, we had already pointed out that ‘shorter’ is in some sense
an evolution of ‘older’. In fold 8 shows accuracy increases from 82% to 94% for
‘similarity’ and ‘longer’, which shows how in difficult situations the quality of
the theory is improved by the content-based approach.

The understanding task, albeit run on the same data, is quite different. We
assessed the statistical significance of the difference in performance between dif-
ferent strategies using Friedman’s nonparametric test, that compares three or
more matched or paired groups. It first ranks the values in each matched set
(each row) from low to high. Each row is ranked separately. It then sums the
ranks in each group (column). If the sums are very different, the null hypoth-
esis can be rejected, and the conclusion can be drawn that at least one of the
treatments (columns) differs from the rest. When this happened, the Nemenyi
post-hoc test was applied to decide which groups are significantly different from
each other, based upon the mean rank differences of the groups, obtaining a
grade of similarity between each ordering strategy expressed in percentage. Due
to space constraints, here we report only the results of learning definitions for
Abstract, Authors, Keywords and Title blocks in papers of class MLJ, along

420 S. Ferilli et al.

with those of the classification task. Table 3 specifies whether the strategy on
the row is equal (=), better (+) or worse (–) than the one on the column.
The best strategy is in bold. When the difference is significant, the behavior of
‘longer’ and ‘similarity’ is in general analogous for degree of accuracy (which is
greater), number of disjunctive definitions and number of negative exceptions.
As expected, the latter requires longer runtime. Also ‘older’ and ‘shorter’ have
in general an analogous behavior, but do not reach as good results as the previ-
ous ones. Finally, ‘newer’ is not outstanding for good performance, but is better
than ‘older’ (the standard strategy) for all parameters except runtime. Note
that, on the classification task, the average length of the disjunctive definition
components using ‘longer’ is significantly larger than all the others (due to the
fact that this strategy returns more balanced components), but ensures more
accuracy and less negative exceptions.

5 Conclusions

Disjunctive concept definitions are necessary when a single conjunctive definition
is insufficient to characterize all available positive examples and discriminate
them from all negative ones. Each component of the disjunctive definition covers
a subset of positive examples for the concept, while ensuring consistency with all
negative examples [15]. In incremental learning, when a new positive example
is not recognized by the current theory, one component must be generalized.
Since this is an omission error, there is no specific element of the disjunctive
definition that is responsible for the omission. So, the system must decide the
order in which the elements are to be considered for trying a generalization.
This paper proposed five strategies for determining such an order, and evaluates
their impact on the learning system’s effectiveness and efficiency using a real-
world dataset concerning document classification. The outcomes confirm some of
the expectations for the various strategies, but more extensive experimentation
must be carried out to have confirmations and additional details. This will be the
subject of our future work, in addition to the identification of further strategies
and the refinement of the proposed ones.

Acknowledgments. The authors would like to thank Immacolata Incantalupo for
her help in running the experiments. This work was partially funded by the Italian
PON 2007-2013 project PON02 00563 3489339 ‘Puglia@Service’.

References

1. Becker, J.M.: Inductive learning of decision rules with exceptions: Methodology
and experimentation. B.s. diss., Dept. of Computer Science, University of Illinois
at Urbana-Champaign, Urbana. UIUCDCS-F-85-945 (1985)

2. Bergadano, F., Gunetti, D.: Learning clauses by tracing derivations. In: Wrobel, S.
(ed.) Proceedings of the 4th International Workshop on Inductive Logic Program-
ming, pp. 1–29 (1994)

Rule Generalization Strategies in Incremental Learning 421

3. Botta, M.: Learning first order theories. In: Raś, Z.W., Zemankova, M. (eds.) ISMIS
1994. LNCS, vol. 869, pp. 356–365. Springer, Heidelberg (1994)

4. Bruner, J.S., Goodnow, J.J., Austin, G.A.: A Study of Thinking. John Wiley &
Sons (1956)

5. Cain, T.: The ductor: a theory revision system for propositional domains. In: Pro-
ceedings of the 8th International Workshop on Machine Learning [16], pp. 485–489

6. Ceri, S., Gottlöb, G., Tanca, L.: Logic Programming and Databases. Springer-
Verlag, Heidelberg (1990)

7. de Raedt, L.: Interactive Theory Revision - An Inductive Logic Programming App-
roach. Academic Press (1992)

8. Esposito, F., Semeraro, G., Fanizzi, N., Ferilli, S.: Multistrategy theory revision:
Induction and abduction in inthelex. Machine Learning Journal 38(1/2), 133–156
(2000)

9. Ferilli, S., Basile, T.M.A., Biba, M., Di Mauro, N., Esposito, F.: A general similarity
framework for horn clause logic. Fundamenta Informaticae Journal 90(1–2), 43–66
(2009)

10. Ginsberg, A.: Theory reduction, theory revision, and retranslation. In: Proceedings
of the 8th National Conference on Artificial Intelligence, pp. 777–782 (1990)

11. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer-Verlag, Berlin
(1987)

12. Matwin, S., Plante, B.: A deductive-inductive method for theory revision. In: Pro-
ceedings of the International Workshop on Multistrategy Learning, pp. 160–174.
Harper’s Ferry (1991)

13. Mooney, R.J., Ourston, D.: A multistrategy approach to theory refinement. In:
Michalski, R.S., Tecuci, G. (eds.) Machine Learning: A Multistrategy Approach,
vol. 4, pp. 141–164. Morgan Kaufman, San Mateo (1994)

14. Muggleton, S.: Duce, an oracle based approach to constructive induction. In: Pro-
ceedings of the 5th International Joint Conference on Artificial Intelligence, pp.
287–292 (1987)

15. Murray, K.S.: Multiple convergence: an approach to disjunctive concept acquisi-
tion. In: Proceedings of the 10th international joint conference on Artificial intel-
ligence (IJCAI 1987), vol. 1, pp. 297–300. Morgan Kaufmann (1987)

16. Proceedings of the 8th International Workshop on Machine Learning. Morgan
Kaufmann, San Mateo (1991)

17. Reinke, R.E., Michalski, R.S.: Incremental learning of concept descriptions: a
method and experimental results. In: Michie, D. (ed.) Machine Intelligence, vol.
11. Edinburgh University Press (1985)

18. Richards, B.L., Mooney, R.J.: Refinement of first-order horn-clause domain theo-
ries. Machine Learning Journal 19(2), 95–131 (1995)

19. Saitta, L., Botta, M., Neri, F.: Multistrategy learning and theory revision. Machine
Learning Journal 11, 153–172 (1993)

20. Semeraro, G., Esposito, F., Malerba, D., Fanizzi, N., Ferilli, S.: A logic framework
for the incremental inductive synthesis of datalog theories. In: Fuchs, N.E. (ed.)
LOPSTR 1997. LNCS, vol. 1463, pp. 300–321. Springer, Heidelberg (1998)

21. Shapiro, E.Y.: Algorithmic Program Debugging. MIT Press (1983)
22. Srinivasan, A.: The aleph manual. Technical report (2001)
23. Wogulis, J.: Revising relational domain theories. In: Proceedings of the 8th Inter-

national Workshop on Machine Learning [16], pp. 462–466

Using Substitutive Itemset Mining Framework
for Finding Synonymous Properties

in Linked Data

Miko�laj Morzy, Agnieszka �Lawrynowicz(B), and Mateusz Zozuliński

Institute of Computing Science, Poznan University of Technology, Poznan, Poland
{Mikolaj.Morzy,Agnieszka.Lawrynowicz}@put.poznan.pl

Abstract. Over the last two decades frequent itemset and association
rule mining has attracted huge attention from the scientific community
which resulted in numerous publications, models, algorithms, and opti-
mizations of basic frameworks. In this paper we introduce an extension
of the frequent itemset framework, called substitutive itemsets. Substi-
tutive itemsets allow to discover equivalences between items, i.e., they
represent pairs of items that can be used interchangeably in many con-
texts. In the paper we present basic notions pertaining to substitutive
itemsets, describe the implementation of the proposed method available
as a RapidMiner plugin, and illustrate the use of the framework for min-
ing substitutive object properties in the Linked Data.

1 Introduction

With the proliferation of knowledge bases and knowledge graphs, especially those
published within the Linked Open Data cloud1, the number of available datasets
represented in RDF [1] has grown rapidly over last years. At the same time, the
problem of improving the quality of Linked Data has become a major issue.
One aspect of the quality deals with inherent redundancy in the Linked Data.
It is common to find overlaps between ontologies, to find identical real-world
objects described using different vocabulary, or to employ many synonyms when
designing and populating RDF stores. Thus the task of finding links between
similar or matching ontological terms is one of the major topics in the field [2]
of semantic technologies.

In this paper we present substitutive itemsets, an extension of the frequent
itemset framework, which allows to discover pairs of items that are mutually
exchangeable. When searching for such pairs we make sure that substitutive
items can be used interchangeably, which means that the items must appear
in similar contexts. In order to model the context we analyze the relationships
between meta-data (patterns discovered in the RDF triple store) and we discover
pairs of items which appear within the same frequent itemsets, yet the pairs
almost never appear themselves in the data store.

The rest of the paper is structured as follows. We begin by showing
recentpapers that are relevant to our work in Section 2. In Section 3 we present
1 http://linkeddata.org

c© Springer International Publishing Switzerland 2015
N. Bassiliades et al. (Eds.): RuleML 2015, LNCS 9202, pp. 422–430, 2015.
DOI: 10.1007/978-3-319-21542-6 27

http://linkeddata.org

Using Substitutive Itemset Mining Framework 423

basic definitions used throughout the paper. Section 4 introduces substitutive
itemsets. Section 4 describes the use case in DBpedia. We conclude in Section 6
with a brief summary and a future work agenda.

2 Related Work

Since its introduction in [3] association rule mining has attracted huge attention
from the scientific community. Many extensions of the basic association rule
mining have been proposed in the literature (cf. [4–6]). Specialized models of
correlated association rules, class association rules, maximal association rules,
dissociation rules, (onto-)relational association rules (cf. [7–11]) are just a few
examples. The work that is most similar to our approach has been presented in
[12], although there are very significant differences. Tang et al. base their method
on the correlation analysis and they generate substitution rules if a negative
association between items exists. We, on the other hand, consider primarily the
context in which items forming a substitutive itemset appear. To model the
context we explore the set of frequent patterns discovered in the database and
we measure the amount of overlap between patterns which contain items.

Though various approaches for ontology classes and property matching have
been researched in the past mining exchangeable (object) properties has not
received focus. The related approaches were concentrated on instance matching
[2], class mappings [13], matching of RDF data properties [14] and largely on
the task of matching two input ontologies [15,16].

To summarize, the difference between previous works and our approach is
the fact that we ground our method on the analysis and mining of the meta-
data represented as frequent patterns appearing in the dataset. Importantly,
ontology matching methods mostly concentrate on the task of matching (two)
different ontologies, and not on the deduplication of terms within one ontology.
Our method works on the level of the schema rather than the level of individual
instances that also differentiates it from approaches in the field of entity resolu-
tion (deduplication from a database perspective). From this perspective, we are
not trying to recognize all instances of a particular entity, but we are discovering
pairs of attributes which share the same semantics.

3 Preliminaries

3.1 Frequent Itemset Mining

Given a set of elements I = {i1, i2, . . . , im}, where each element ik is referred
to as an item. Given a database of transactions DT = {t1, t2, . . . , tn}, where
∀i ti ⊆ I. The support of an item i is the percentage of database transactions
that contain the item i:

support(i) =
|{t ∈ DT : i ∈ t}|

|DT |

424 M. Morzy et al.

The support of an itemset X is the percentage of database transactions that
contain all elements of X:

support(X) =
|{t ∈ DT : X ⊆ t}|

|DT |
Given a user-defined threshold of minimum support, called minsup. An item-

set X is said to be a frequent itemset if the support of the itemset X exceeds the
minimum support threshold. Let Lk denote the collection of all frequent item-
sets of the size k discovered in the database DT for a given value of the minsup
parameter.

Lk = {X ⊆ I : support(X) � minsup ∧ |X| = k}
Let L =

⋃
k Lk denote the collection of all frequent itemsets discovered in the

database DT for a given value of the minsup parameter. For any frequent item
i the covering set of the item is the collection of all frequent itemsets discovered
in the database DT , with which the given item i forms a frequent itemset. In
other words, a frequent itemset X belongs to the covering set of i if {X ∪ {i}}
is frequent:

CS (i|L) = {X ∈ L : {i} ∪ X ∈ L}
We will refer to the size of the covering set of the item i as its coverage.

3.2 RDF

Resource Description Framework (RDF) is a framework that can be used to
represent information on any resources (e.g., documents, people, objects). RDF
data model is based on graphs. It allows to represent statements on resources
on the Web in the form of subject–predicate–object triples. An RDF triple is a
tuple τ = (s, p, o) ∈ (U ∪ B ∪ L) × U × (U ∪ B ∪ L), where s is the subject, p
is the predicate, and o is the object of the tuple, and U, B, and L are pairwise
disjoint infinite sets that denote, respectively, URI references, blank nodes and
literals. An RDF dataset is a set of RDF triples.

4 Substitutive Sets

The method for generating substitutive itemsets uses, as its starting point, the
collection L of frequent itemsets discovered in the transactional database DT .
A two-element itemset {x, y} is a substitutive itemset, if:

– x ∈ L1, y ∈ L1,
– support({x} ∪ {y}) < ε, where ε is a user-defined threshold representing the

highest amount of noise in the data allowed,
– |CS(x|L)∩CS(y|L)|

max{|CS(x|L)|,|CS(y|L)|} � mincommon, where mincommon is a user-defined
threshold of context similarity between items x and y.

Using Substitutive Itemset Mining Framework 425

The above definition requires a brief explanation. A substitutive itemset con-
sists of two interchangeable items, i.e., items, which appear in the collection of
frequent itemsets in very similar contexts. The context in which an item appears
is simply the collection of its covering sets. We are interested in finding pairs of
items which share a large proportion of their covering sets, and yet almost never
appear together in database transactions. By definition, the necessary condition
for an item x to have a covering set is that the item x itself is frequent. In order
to capture the fact that items from the substitutive itemset should almost never
appear together, we have introduced an additional frequency threshold ε, which
prunes pairs of items which appear together too often. Such situation might arise
for example in case of pairs of items which are partially functionally dependent
(the item x induces the purchase of the item y). Here we use an analogy from
the database theory where the existence of a functional dependency between
attributes X and Y represents the fact that a given value of the attribute X in a
tuple t determines the value of the attribute Y in the tuple t (or makes it highly
probable in case of partial functional dependency). Similarly, the appearance
of a particular item x might increase the probability of the the item y in the
same transaction. In data mining parlance this would be tantamount to high
confidence of an association rule x → y. On the other hand, for items {x, y} to
form a substitutive set we require that these items share common contexts, i.e.,
that their covering sets are similar. One simple way to measure the similarity
of contexts of two items is to measure the overlap of their coverage sets using
a slightly modified Jaccard’s coefficient of set similarity. The second frequency
threshold of mincommon guarantees that the overlap of contexts of both items
is significant enough to consider the two items to be mutually substitutive.

Let us consider a real-world example of a retail database and customer trans-
actions, where each transaction represents grocery purchases made by a cus-
tomer during a single visit to the supermarket. Furthermore, let us assume that
the pair of items {nachos,salsa} was found to be frequent, i.e., that these two
items appear in more than minsup percentage of transactions. Although both
individual items are frequent and the overlap of their covering sets is signifi-
cant (probably these items appear in very similar contexts), since this itemset
is itself frequent this means that nachos and salsa are not mutually substitu-
tive. A closer inspection would reveal that salsa is a popular supplement for
nachos, not a replacement for nachos. On the other hand, consider the rela-
tionship between coca-cola and pepsi. These two items are frequent, and they
appear in very similar contexts in the customer database. However, there is a
very tiny fraction of customers who purchase coca-cola and pepsi together. Since
most probably the itemset {coca-cola,pepsi} satisfies the mincommon threshold
of maximal support, these two items can be regarded as mutually substitutive.

Finally, let us discuss the usability of the substitutive itemsets framework for
the Linked Data. In case of the Linked Data the database of customer transac-
tions is replaced with the RDF triple store. Thus, all transactions consist of three
items, namely, the subject, the predicate, and the object of the triple. Each such
transaction supports three individual items, three two-element itemsets, and a

426 M. Morzy et al.

single three-element itemset. Suppose that a certain pair of items is found to be
a substitutive itemset. What this means in the context of the RDF data model is
that both items are frequent in the database, often occur with the same concepts
in triples, yet almost never appear in a single tuple. From these properties we
may conclude that the items comprising a substitutive itemset in an RDF data
store are simply synonymous terms.

The method for generating substitutive itemsets has the following input and
output:

– input data
• the collection L of frequent itemsets in the database DT

– input parameters
• ε: floating point number in the range [0, 1]
• mincommon: floating point number in the range [0, 1]

– output result
• the collection LS of all substitutive itemsets in the database DT

Of course, there is no single rule for setting the values of parameters such as
minsup, mincommon or ε, because the values strongly depend on the character-
istics of the dataset being mined. However, a general rule of thumb is that the ε
parameter should be an order of magnitude smaller than minsup, and mincom-
mon should probably exceed 75% in order to capture a true overlap of covering
sets of itemsets regarded as mutually substitutive. Setting a too low value of
ε results in excessive pruning of substitutive itemsets, in particular, in pruning
substitutive itemsets for which its constituent items may appear together by
chance. Also, it is possible that an item y is a true substitute for an item x,
but at the same time the item y may have a very specific use independent of
x. Such scenario would artificially increase the support of the itemset {x, y}.
A similar argument can be formulated with respect to the mincommon parame-
ter. If this threshold is set too low, the method may produce substitutive itemsets
consisting of items that are actually not related to each other. Setting of the min-
common parameter too high will perform a very strong pruning and will produce
very little results.

5 Use Case: DBpedia

In this section, we demonstrate the use of substitutive itemsets for deduplica-
tion (matching) of object properties in Linked Data. Many large Linked Data
use relatively lightweight schemas with a high number of object properties. For
instance, the DBpedia 2014 ontology2 has 1310 object and 1725 data properties.
The DBpedia ontology is manually created by a community effort, based on
the most often used infoboxes in Wikipedia. The infobox extraction method is
available that is based on these manual mappings of Wikipedia infoboxes to the
DBpedia ontology. A public wiki is also available 3 for editing infobox mappings,
2 http://wiki.dbpedia.org/Ontology2014
3 http://mappings.dbpedia.org/index.php/How to edit the DBpedia Ontology

http://wiki.dbpedia.org/Ontology2014
http://mappings.dbpedia.org/index.php/How_to_edit_the_DBpedia_Ontology

Using Substitutive Itemset Mining Framework 427

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX dbo: <http://dbpedia.org/ontology/>

SELECT ?c1 ?p ?c2
WHERE {
?s rdf:type dbo:$name_of_the_class$.
?s ?p ?o .
?s rdf:type ?c1 .
?o rdf:type ?c2 .
FILTER(?p != dbo:wikiPageWikiLink) .
FILTER(?p != rdf:type) .
FILTER(?p != dbo:wikiPageExternalLink) .
FILTER(?p != dbo:wikiPageID) .
FILTER(?p != dbo:wikiPageInterLanguageLink) .
FILTER(?p != dbo:wikiPageLength) .
FILTER(?p != dbo:wikiPageOutDegree) .
FILTER(?p != dbo:wikiPageRedirects) .
FILTER(?p != dbo:wikiPageRevisionID) }

Fig. 1. SPARQL query for generating transactions

as well as editing the DBpedia ontology. In this way, external contributors may
define mappings for the infoboxes that are interesting from their point of view
and they may extend the DBpedia ontology by adding new classes and prop-
erties. A problem may arise, for instance, when a contributor adds new classes
and/or properties, without carefully checking the existing ones for possibly re-
using them. This may lead to the existence of redundant properties.

5.1 Experimental Setup

We used the DBpedia knowledge base version 2014 that describes 4.58 million
things (4.22 million out of them are classified in the DBpedia ontology), and 583
million facts [17]. We generated sets of three–item transactions for the classes,
using the SPARQL query presented in Fig. 1. Thus each transaction has the form
of a set {c1, p, c2}, where c1 and c2 denote items being the classes of, respectively,
a subject and an object of an RDF triple from the DBpedia dataset, and p being
a property connecting s and o. Additionally, we appended to the URIs of the
classes a prefix indicating whether it is a class describing the object or a class
describing the subject in the resulting transactions. Subsequently, we selected a
sample of 100K results per each query.

For the computation of the substitutive itemsets we used our Market Basket
Analysis plugin4 for the popular data mining environment RapidMiner5 (com-
munity edition). The plugin has been published using the AGPL licence, it can be
easily downloaded from the website and installed as an extension inside Rapid-
Miner. The parameter values for the RapidMiner operators were as follows. Fre-
quent itemsets were discovered using the FP-Growth algorithm [18] with the
minimum number of itemsets set to 500 and the minsup threshold set to 0.001.

4 http://www.e-lico.eu/marketbasket.html
5 https://rapidminer.com

http://www.e-lico.eu/marketbasket.html
https://rapidminer.com

428 M. Morzy et al.

Table 1. Sample substitutive properties generated for the class Organisation

item x item y common

dbpprop:parentOrganization dbo:parentOrganisation 1.000
dbpprop:owner dbo:owner 1.000
dbpprop:origin dbo:hometown 1.000
dbpprop:headquarters dbpprop:parentOrganization 1.000
dbpprop:formerAffiliations dbo:formerBroadcastNetwork 1.000
dbo:product dbpprop:products 1.000
dbpprop:keyPeople dbo:keyPerson 0.910
dbpprop:commandStructure dbpprop:branch 0.857
dbo:schoolPatron dbo:foundedBy 0.835
dbpprop:notableCommanders dbo:notableCommander 0.824
dbo:recordLabel dbpprop:label 0.803
dbo:headquarter dbo:locationCountry 0.803
dbpprop:country dbo:state 0.753

Our method is independent of a particular frequent itemset mining algorithm,
we could have used the popular Apriori algorithm [19]

For the Create Substitutive Sets operator we set mincommon = 0.7
and ε = 0.0001. We performed computation for the classes from the first level of
the DBpedia ontology (from the DBpedia namespace) and the remaining notable
DBpedia classes (listed at http://wiki.dbpedia.org/Datasets/DatasetStatistics).
The computations were performed on the desktop computer with 12GB RAM
and CPU Intel(R) Core(TM) i5-4570 3.20GHz. A single run of mining substitu-
tive sets (for one class and 100k transactions) took several seconds on average
(ranging from 2s to 12s).

5.2 Results

For the classes from the first level of the DBpedia ontology, we have obtained 31
non-empty result sets by running the query from Figure 1. We have used trans-
actions associated with these classes to mine substitutive itemsets. For the com-
puted sample of transactions (query results limited to maximum 100K results),
no substitutive itemsets containing properties were discovered for many classes.
From among 31 of the above-mentioned transaction sets, we have obtained sub-
stitutive itemsets for each, but only 4 of them contained pairs of properties within
substitutive sets. These resulting sets for the first level of DBpedia ontology are
published at http://www.cs.put.poznan.pl/alawrynowicz/substitutive together
with a description of a preliminary user study.

We discuss the selected results below. Table 1 presents sample substitutive
properties generated for the class Organisation. We present both properties
constituting a substitutive itemset and the overlap of their covering sets (col-
umn Common). The result includes frequent cases where the substitutes are
adequate properties from property (dbpprop:) and ontology (dbo:) names-

http://wiki.dbpedia.org/Datasets/DatasetStatistics
http://www.cs.put.poznan.pl/alawrynowicz/substitutive

Using Substitutive Itemset Mining Framework 429

paces6. Sometimes, in these discovered cases, different naming scheme is used
(e.g., dbpprop:keyPeople and dbo:keyPerson), different spelling (e.g.,
dbpprop:parentOrganization and dbo:parentOrganisation) or sin-
gular vs. plural form (e.g., dbo:product and dbpprop:products). There are
also pairs of truly substitutive properties, for instancedbpprop:headquarters
and dbpprop:parentOrganization (common=1.0). Such information might
be useful to track and resolve redundancies from the DBpedia ontology. Other
pairs, such as dbpprop:country and dbo:state or dbo:recordLabel and
dbpprop:label might indicate inconsistent usage of the properties for indicat-
ing similar relations in particular context.

6 Conclusions

In this paper, we have introduced a model for substitutive itemset mining, that is
itemsets that can be used interchangeably as substitutes since they appear in the
transactional database in very similar contexts. We have performed preliminary
tests of this model within the task of deduplication of object properties in RDF
datasets. The preliminary experiment provides promising results. In future work,
we plan to conduct an extended experimental evaluation.

Acknowledgments. This work was partially supported by the EC 7th framework
ICT-2007.4.4 (No 231519) e-LICO. Agnieszka �Lawrynowicz acknowledges the support
from the PARENT-BRIDGE program of Foundation for Polish Science, co-financed
from European Union, Regional Development Fund (Grant No POMOST/2013-7/8).
We thank Ewa Kowalczuk for debbuging the plugin.

References

1. Manola, F., Miller, E.: RDF primer. W3C recommendation, W3C (February 2004).
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/

2. Ngomo, A.C.N., Auer, S.: Limes: a time-efficient approach for large-scale link dis-
covery on the web of data. In: Proceedings of the Twenty-Second International
Joint Conference on Artificial Intelligence. IJCAI 2011, vol. 3, pp. 2312–2317. AAAI
Press (2011)

3. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. SIGMOD Rec. 22(2), 207–216 (1993)

4. Rauch, J.: Classes of association rules: an overview. In: Lin, T., Xie, Y., Wasilewska,
A., Liau, C.J. (eds.) Data Mining: Foundations and Practice, pp. 315–337. Springer,
Heidelberg (2008)

5. Fürnkranz, J., Gamberger, D., Lavrac, N.: Foundations of Rule Learning. Cognitive
Technologies. Springer (2012)

6. Aggarwal, C.C., Han, J., eds.: Frequent Pattern Mining. Springer (2014)
7. Zimmermann, A., De Raedt, L.: CorClass: correlated association rule mining for

classification. In: Suzuki, E., Arikawa, S. (eds.) DS 2004. LNCS (LNAI), vol. 3245,
pp. 60–72. Springer, Heidelberg (2004)

6 http://dbpedia.org/property/ and http://dbpedia.org/ontology/

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://dbpedia.org/property/
http://dbpedia.org/ontology/

430 M. Morzy et al.

8. Kliegr, T., Kuchař, J., Sottara, D., Voj́ı̌r, S.: Learning business rules with associ-
ation rule classifiers. In: Bikakis, A., Fodor, P., Roman, D. (eds.) RuleML 2014.
LNCS, vol. 8620, pp. 236–250. Springer, Heidelberg (2014)

9. Morzy, M.: Efficient mining of dissociation rules. In: Tjoa, A.M., Trujillo, J. (eds.)
DaWaK 2006. LNCS, vol. 4081, pp. 228–237. Springer, Heidelberg (2006)

10. Józefowska, J., �Lawrynowicz, A., �Lukaszewski, T.: On reducing redundancy in
mining relational association rules from the semantic web. In: Calvanese, D.,
Lausen, G. (eds.) RR 2008. LNCS, vol. 5341, pp. 205–213. Springer, Heidelberg
(2008)

11. Lisi, F.A.: Building rules on top of ontologies for the semantic web with inductive
logic programming. TPLP 8(3), 271–300 (2008)

12. Teng, W.G., Hsieh, M.J., Chen, M.S.: On the mining of substitution rules for statis-
tically dependent items. In: Proceedings of the 2002 IEEE International Conference
on Data Mining, 2002. ICDM 2003, pp. 442–449. IEEE (2002)

13. Janssen, F., Fallahi, F., Noessner, J., Paulheim, H.: Towards rule learning
approaches to instance-based ontology matching. In: Proc. of the First Interna-
tional Workshop on Knowledge Discovery and Data Mining Meets Linked Open
Data, pp. 13–18 (2012)

14. Nunes, B.P., Caraballo, A.A.M., Casanova, M.A., Fetahu, B., Leme, L.A.P.P.,
Dietze, S.: Complex matching of RDF datatype properties. In: Proceedings of
the 24th International Conference on Database and Expert Systems Applications,
DEXA 2013, Part I, pp. 195–208 (2013)

15. Zapilko, B., Mathiak, B.: Object property matching utilizing the overlap between
imported ontologies. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M.,
Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 737–751. Springer,
Heidelberg (2014)

16. Pavel, S., Euzenat, J.: Ontology matching: State of the art and future challenges.
IEEE Trans. on Knowl. and Data Eng. 25(1), 158–176 (2013)

17. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N.,
Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: Dbpedia - A large-
scale, multilingual knowledge base extracted from wikipedia. Semantic Web 6(2),
167–195 (2015)

18. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate
generation: A frequent-pattern tree approach. Data Min. Knowl. Discov. 8(1),
53–87 (2004)

19. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proceedings of the 20th International Conference on Very Large
Data Bases, pp. 487–499. Morgan Kaufmann Publishers Inc., San Francisco (1994)

Learning Characteristic Rules in Geographic
Information Systems

Ansaf Salleb-Aouissi1(B), Christel Vrain2, and Daniel Cassard3

1 Center for Computational Learning Systems (CCLS), Columbia University,
475 Riverside Drive, New York, NY 10115, USA

ansafsalleb@columbia.edu
2 Laboratoire D’Informatique Fondamentale D’Orléans (LIFO),
Université D’Orléans, BP 6759, 45067 Orléans Cedex 2, France

Christel.Vrain@univ-orleans.fr
3 French Geological Survey (BRGM) 3, Avenue Claude Guillemin, BP 6009,

Orleéans Cedex 2, France
d.cassard@brgm.fr

Abstract. We provide a general framework for learning characterization
rules of a set of objects in Geographic Information Systems (GIS) relying
on the definition of distance quantified paths. Such expressions specify
how to navigate between the different layers of the GIS starting from
the target set of objects to characterize. We have defined a generality
relation between quantified paths and proved that it is monotonous with
respect to the notion of coverage, thus allowing to develop an interactive
and effective algorithm to explore the search space of possible rules. We
describe GISMiner, an interactive system that we have developed based
on our framework. Finally, we present our experimental results from a
real GIS about mineral exploration.

1 Introduction

Characterization is a descriptive learning task which aims at extracting concise
and compact descriptions of a set of objects, called the target set. It consists in
discovering properties that characterize these objects, taking into account their
own properties but also properties of the objects linked to them. In comparison to
classification and discrimination, characterization is interesting since it does not
require negative examples. This is an important feature for many applications
where it is difficult to collect negative examples.

We are interested in the task of characterization in the context of geographic
databases. Geographic Knowledge Discovery (GKD) has been recognized as one
of the most important applications of Knowledge Discovery in Databases [20].
Recent years have witnessed the extension of a number of Knowledge Discovery
tasks to spatial and geographic databases. These tasks include association rule
analysis [2,14,24], subgroup discovery [13], classification [15], clustering [21]. Few
prototypes such as GeoMiner [11], have been implemented and usually include
basic data mining tasks extended to geographic data.
c© Springer International Publishing Switzerland 2015
N. Bassiliades et al. (Eds.): RuleML 2015, LNCS 9202, pp. 431–444, 2015.
DOI: 10.1007/978-3-319-21542-6 28

432 A. Salleb-Aouissi et al.

Although the number of potential applications is very high, this application
domain is more challenging to the Data Mining community, because of the com-
plexity of the task, which must manage spatial data and spatial relations between
objects: either the data mining system must be embedded in the Geographic
Information System (GIS), as [11,13], or spatial data and spatial relations must
be preprocessed [2,24]. In this last case, either data is flattened into a single
table and aggregation operators are applied to summarize the links with other
objects or data is still represented by several tables (usually a table by type
of objects) and relations such as intersect between objects are computed. The
authors in [3,17,18] propose a web-based system named INGENS that integrates
a multi-hierarchy association rule mining and an inductive logic programming
approach to a GIS [20]. For a review of the state of progress of GKD, we refer
the reader to [20]. Important differences exist between the forms of the learned
rule: attribute-value pairs, possibly extended by some link relations as in [13] or
multi-relational languages inspired by works in Inductive Logic Programming.

In this paper, we propose an intermediate language, which is less expressive
than full first order logic, but more expressive than traditional multi-relational
languages. Usually multi-relational languages are restricted to the existential
quantifier, thus being able to model that a spatial object is spatially linked to
another object satisfying some property. But they are not able to express the fact
that several (e.g. more than one) or all the objects linked by this relation satisfy
this property. In [25] we have introduced a representation language allowing
universal and existential quantifiers.

We introduce here a representation language allowing flexible universal and
existential quantifiers: ∃e (∃e p is true when p is satisfied by at least e objects)
and ∀f p (∀f is true when p is satisfied by at least f% of the objects).

We introduce a generalization relation in our language and we show that
the ∃e quantifier has a much more interesting behavior than the ∀f from the
viewpoint of generality. Moreover, quantifiers are parameterized by a distance
parameter, thus allowing to handle the notion of distance between objects.

Finally, characterization rules are mined with an interactive approach, involv-
ing the user in the building of rules of interest. The user in this case is asked to con-
struct the rules by selecting first a target set of geographic objects in a given layer,
and then by choosing a quantifier, selecting its parameters (namely the buffer dis-
tance and the number or percentage of objects associated with the quantifier ∃ or
∀ respectively), selecting another layer and so on. At each step, the set of proper-
ties that fulfill the minimum coverage requirement and that are interesting using
other statistical measures are mined and presented to the user. To be interesting,
a characteristic rule must at least be true for a number of target examples, higher
than a given threshold. Other criteria can also be introduced.

The outline of this paper is as follows: in Section 2, we provide a brief descrip-
tion of Geographic Information Systems (GIS) illustrated by a GIS on mineral
deposits. Section 3 provides the details of our framework and describes the GIS-
Miner algorithm. Section 4 contains experimental results. In Section 5, we discuss
the related work and finally we conclude in Section 6.

Learning Characteristic Rules in Geographic Information Systems 433

2 Geographic Information Systems

A Geographic Information System (GIS) is a system designed to handle geo-
graphic, spatially referenced data, i.e. data having a position and a shape in the
space. Practically, such kind of data is most often organized into thematic layers
linked by geography. Along with geographical information, a GIS handles other
kinds of information such as the descriptions of the geographical objects, often
maintained in attribute-value tables. In addition of being a mean for visualizing
and storing geographical data, a GIS offers a set of tools for an efficient data
exploration and querying on the objects and their descriptions.

One can distinguish two kinds of thematic layers: vector and raster. In
the vector representation, each geographical object is a set of point coordi-
nates (x, y). Thus a point object, such as a town or a mineral deposit, is
a simple point in the geographical layer. A linear object, as for instance a
river or a geological fault, is a succession of coordinates while a polygonal
object, such as a lake, is represented by a succession of coordinates consti-
tuting the boundary of a closed area. In the raster representation, a layer
is a grid or a matrix of cells, where each cell is a numerical value. This
kind of representation is useful to model continuous data such as elevation
or heat maps. We will focus in the following on the vector representation.

Fig. 1. USGS-GTOPO30
Numerical Model Terrain
of the Andes Cordillera

Example 1. Our approach is illustrated throughout
this paper with a real-life Geographic Information Sys-
tem about mineral exploration in South America [5]. It
is a homogeneous GIS covering an area of 3.83 million
km and extending for some 8,500 km long, from the
Guajira Peninsula (northern Colombia) to Cape Horn
(Tierra del Fuego). Conceived as a tool for mineral
exploration and development, this GIS handles many
kinds of layers including geographic, geologic, seismic,
volcanic, mineralogy, gravimetric layers. These lay-
ers store more than 70 thousands geographic objects.
We aim at finding characterization rules of a given
set of geographic objects as for example mineral ore
deposits using geological information, faults, volcanos
and nearby objects.

We consider that we have knowledge about geo-
graphic objects that are typed and relationships
between them. We consider also a subset of objects
with the same type, called in the following the target

set. We aim at learning characteristic rules describing this target set, taking into
account the properties of the target objects but also the properties of the objects
in relations with them. We first define the notion of characteristic rules to han-
dle distance along objects and relaxing the quantifiers to have a more flexible
representation language.

434 A. Salleb-Aouissi et al.

More formally, let E be a set of geographic objects on a same thematic layer,
E = E1 ∪ E2 · · · ∪ En, where each Ei represents a set of objects with the same
type Ti. A set of attributes is defined for each type of objects, and objects are
described by attribute-value pairs. Let R be a set of binary relations. We can
have two kinds of relations between objects, classical relations such as intersect
and distance-based relations expressing that two objects are at a distance less
than a given parameter. In the following, rij denotes a binary relation on Ei ×Ej .
In order to take into account the notion of distance between objects, which is
fundamental in GIS, we introduce a parameter λ and a new relation rλ

ij for each
type of objects Ei and Ej . The relation rλ

ij is true for each pair (oi, oj) of objects,
oi ∈ Ei and oj ∈ Ej such that d(oi, oj) ≤ λ.

Example 2. For instance, if E1 represents mineral deposits and E3 represent vol-
canoes, the relation r100km

1,3 represents a binary relation between mineral deposits
and volcanoes at a distance less or equal than 100 kilometers.

In the case of geographic objects, this parameter denotes the distance between
objects, but it could also be used in other applications, as for instance in temporal
data to represent time between two events.

3 Framework

3.1 Distance Quantified Path and Geographic Characteristic Rule

We define the notion of Distance Quantified Path, considering the parameter
λ used in binary relations. Moreover, in order to make the quantifiers used in
our previous framework more flexible, we associate with the universal quantifier
a percentage that can be less than 100%. Likewise, the existential quantifier is
associated with a number that can exceed 1.

Definition 1. A Distance Quantified Path (denoted in the following by QP) on
X0 is a formula:

X0 − Q1 X1 . . . Qn Xn

where

– n ≥ 0
– X0 represents the target set of objects to characterize,
– for each i �= 0, Xi is a type of objects,
– for each i �= 0, Qi can take one of the 4 following forms: ∀f

rij
, ∃e

rij
, ∀f

λ or ∃e
λ,

where f is a percentage with f �= 0, and e is a natural number with e �= 0: in
the case where the quantifiers are indexed by λ, the binary relation between
objects Xi−1 and objects Xi is the distance relation rλ

(i−1)i. Note that ∀100%

(resp. ∃1) stands for ∀λ (resp. ∃λ).

Learning Characteristic Rules in Geographic Information Systems 435

A QP has a length n that is the number of its quantifiers. It is denoted by
length(QP). The final type of the quantified path, denoted by ftype(QP), is
defined as the type of Xn. The initial type of the quantified path, denoted by
itype(QP), is defined as the type of X0.

Example 3. For instance, Mines − ∀10kmFaults∀5kmV olcanos is a distance
quantified path where the target set of objects to characterize is mines, and
where the path denotes all the volcanoes that are at less than 5 kilometers than
faults that are at less than 10 kilometers than mines.
Mines − ∀75%

10km Faults ∃3
5km V olcanoes denotes the existence of at least 3 vol-

canoes that are at less than 5 kilometers than 75% of all faults that are at less
than 10 kilometers than mines. The length of these paths is equal to 2, their
initial type is mine and their final type is volcano.

Let Ti be a type of objects and let Aj be the attributes used to describe the
objects of type Ti. Many kinds of properties can be considered such as: A = v,
A ∈ {v1, . . . , vn}, A ≥ V , etc. To remain as general as possible in this framework,
we suppose that for each type Ti we have a language Li specifying the properties
that can be built. We also assume that there exists a boolean function V, such
that for each object o of type T and for each property p in Li Vp(o) = true or
Vp(o) = false, expressing whether the property is satisfied by o or not.

We define two basic properties True and False such that for any object o,
VTrue(o) = true and VFalse(o) = false.

Definition 2. We define a geographic characteristic rule on a target set X0 as
the conjunction of a distance quantified path δ and a property p , denoted by:
X0 − δ → p.

Example 4. The rule Mines − ∃3
5km Faults → True expresses that there exist

at least 3 Faults within 5km of the target (mineral deposits).
The rule Mines − ∃1

1km V olcano → (active=yes) expresses that there exist
at least one active volcano within 1km of the target (mineral deposits).

3.2 Generality Order

Definition 3. We define a generality order between quantified path as follows:
We say that a distance quantified path δ1 is more general than a distance quanti-
fied path δ2 (denoted by δ1
 δ2) iff length(δ1) = length(δ2)), 1 ≤ i ≤ length(δ1),
either:

– Q1
i ≡ Q2

i , or
– Q1

i = ∃rij
and Q2

i = ∀rij

– Q1
i = ∃λ and Q2

i = ∀λ

– Q1
i = ∃e

rij
and Q2

i = ∃e′
rij

, with e ≤ e′

– Q1
i = ∃e

λ and Q2
i = ∃e′

λ′ , with λ ≥ λ′ and e ≤ e′

436 A. Salleb-Aouissi et al.

We say that a geographic characteristic rule r1 (δ1 → p1) is more general than
a rule r2 (δ2 → p2) (denoted by r1
 r2) iff

– either δ1
 δ2 and p1
 p2,
– or length(δ1) < length(δ2), δ1 is more general than the prefix of δ2 with

length equal to length(δ1) and p1 = True.

It is worth noting that the parameterized universal quantifiers (Q1
i = ∀f

λ and
Q2

i = ∀f ′
λ′ , with λ ≤ λ′ and f ≥ f ′) do not satisfy an interesting generality

relation, in the sense that a property satisfied by f% of the objects in a buffer
of size λ may not be satisfied by f ′% of the objects in a buffer of size λ′, and
vice versa.

The second case in the definition of the generality of a geographic character-
istic rule expresses that the property True satisfied by all the objects is more
general than a property expressed in terms of a quantified path and a property.
For instance True is more general than ∃2

10KmF .

Example 5. ∃2
10KmFaults
 ∃2

5KmFaults
 ∃3
3KmFaults

Intuitively, this means that if there exist three faults at less than 3km from a
mine with a given property, than there exists 2 faults at less than 5km and at
less than 10km with the same property.

∀3KmFaults
 ∀5KmFaults
 ∀10KmFaults
Vice-versa, if a property holds for all faults at a distance less than 10km from a
mine, then this property also holds for all faults at less than 5km and 3km from
this mine.
On the other hand, we have no relation between ∀40%

5KmFaults and ∀20%
10KmFaults.

3.3 Evaluation Measures

The notion of coverage is defined for a property p relatively to a quantified path
δ. It measures the number of objects that have this property.
For a rule r = X0 - δ → p and an object o ∈ X0, we define Vδ→p(o) recursively
as follows:
Let o1, . . . on be the objects of type X at a distance less than λ from o.

– If n = 0 (i.e., there are no objects of X at a distance less than λ from o)
V∀f

λX.δ′→p(o) = V∃Xe
λ.δ′→p(o) = False

– V∀λX.δ′→p(o) = Vδ′→p(o1) ∧ · · · ∧ Vδ′→p(on)
– V∀f

λX.δ′→p(o) = True if |{oi|Vδ′→p(oi)=True}|
n ≥ f , False otherwise

– V∃λX.δ′→p(o) = Vδ′→p(o1) ∨ · · · ∨ Vδ′→p(on)
– V∃Xe

λ.δ′→p(o) = True if |{oi|Vδ′→p(oi) = True}| ≥ e, False otherwise.

The same definition easily extends to a relation rij by considering the objects
o1, . . . on linked to o by the relation rij .

Learning Characteristic Rules in Geographic Information Systems 437

Definition 4. For a given target set of objects Etarget, coverage is given by the
following:

coverage(r, Etarget) =
|{o|o ∈ Etarget, Vr(o) = true}|

|Etarget|

Proposition. Let r1 (δ1 → p1) and r2 (δ2 → p2) be two geographic rules then

r1
 r2 ⇒ coverage(r1, Etarget) ≥ coverage(r2, Etarget)

Definition 5. We define the notion link-coverage of a rule r, denoted by L-
coverage, as follows:

L − coverage(Etarget − δ → p, Etarget) = coverage(Etarget − open(δ) → True, Etarget)

where open(δ) is obtained by setting all the quantifiers of δ to ∃ (with no con-
straint on the number of elements).

Intuitively, link coverage measures the number of target objects for which
there exists at least an object linked to them through δ, and we have the following
relation:

coverage(Etarget − δ → p, Etarget) ≥ ε ⇒ L − coverage(Etarget − δ → p, Etarget) ≥ ε

For a rule Etarget − δ → p, coverage measures the number of objects in the
target set having the property p. We would like to estimate whether this property
is really characteristic of Etarget or not. This can be achieved by verifying if the
property covers enough objects in the target set, while covering few objects
outside the target set.

In [16], the authors analyze some rule evaluation measures used in Machine
Learning and Knowledge Discovery. They propose the novelty measure, which
can be considered as a measure of novelty, precision, accuracy, negative reliabil-
ity, or sensitivity. It is defined by: (P represents a probability)

novelty(H ←− B) = P (HB) − P (H) ∗ P (B)

where H and B represent the head and the body of the rule respectively. For
a characteristic rule r, for each object o ∈ E , we can consider the objects o
belonging to Etarget and the objects satisfying Vr(o) = true. We are looking for
a strong association between these two facts, which can be estimated by the
novelty measure. In our framework, it is defined by:

novelty(r) =
|{o|o ∈ Etarget, Vr(o) = true}|

|E|

−|Etarget|
|E| · |{o|o ∈ E , Vr(o) = true}|

|E|
According to [16], we have −0.25 ≤novelty(r)≤ 0.25. A strongly positive

value indicates a strong association between the two facts.

438 A. Salleb-Aouissi et al.

We can also use other measures such as entropy, purity, or Laplace estimate.
See [9] for more details about evaluation measures. In our framework, we define
a function Interesting that can filter the rules relying on such heuristics in order
to keep only characteristic ones. An example of such a function relying on the
novelty metric is given below. A minimum novelty threshold min novelty is
chosen by the user.

Function Interesting (r): boolean
If |novelty(r)| ≥ min novelty then return True
else return False

Algorithm 1. GISMiner
Input:
- Etarget

- Ei, Pi, i ∈ {1..n}
- Rij set of binary relations between Ei and Ej , i, j ∈ {1..n}
- MinCov.
Output:
- Set of characterization rules R
- A tree representing the rules.

1 QP =empty string
2 response=T
3 while response=T do
4 Choose a quantifier q ∈ {∀, ∃}
5 Choose a buffer λ or a relation ri,j

6 Choose a parameter k for the quantifier
7 Choose a set of objects Ej ∈ {Ei, i ∈ {1..n}}
8 QP = QP.Qk

λ Ej

9 if L-coverage(Etarget − QP → True) ≥ MinCov then
10 foreach property p ∈ Pj do
11 if coverage(Etarget − QP → p, Etarget) ≥ MinCov then
12 if interesting(Etarget − QP → p) then
13 R=R ∪ {Etarget − QP → p}

14 if user wishes no longer to extend QP then
15 response=F

16 return R

3.4 Algorithm

In [25], we have proposed CaracteriX, a general framework for mining characteris-
tic rules relying on the notion of quantified paths, and we have given a level-wise
algorithm to explore the space of all possible characterization rules. Here we pro-
pose an interactive algorithm for mining such rules in geographic information

Learning Characteristic Rules in Geographic Information Systems 439

systems without exploring the space of all possible rules. The pseudo-code of our
interactive algorithm named GISMiner is given in Algorithm 1. The algorithm
has as input (1) a target set of objects Etarget belonging to a given thematic
layer chosen by the user, (2) the GIS itself, that is all the layers Ei that are avail-
able along with their properties Pi built from their attribute tables, (3) a set
of binary relations between Ei and Ej , i, j ∈ {1..n}, (4) a user-defined minimum
coverage threshold MinCov.

Starting from the target set, the user chooses a quantifier (∀ or ∃), its param-
eter k (a percentage for ∀ and a number of objects for ∃) and a buffer λ. The
user selects also a thematic layer Ej . The quantified path QP initially empty is
thus extended by the chosen quantifier and set of objects. Using the L-coverage,
the algorithm checks the number of target objects for which there exists at least
an object linked to them through QP. If there are enough target objects w.r.t.
the minimum coverage, then the algorithm will check the coverage of the rules
with all the possible properties of the related objects Ej and keeps the ones with
enough coverage that are interesting w.r.t. statistical measures chosen by the
user.

Table 1. Some examples of interesting rules extracted by GISMiner for GIS Andes.
Only rules with |novelty| ≥ 0.05 are kept by GISMiner.

Rule Coverage

Mines → Mines.Era ∈ {Mesozoic, Cretacious} 4%
Mines → Mines.Era ∈ {Mesozoic, Jurassic, Cretacious} 6%
Mines → Mines.Lithology = sedimentary deposits 5%
Mines → Mines.Lithology = volcanic deposits 64%
Mines → Mines.Distance Benioff ∈ [170..175] 67%
Minesgold → substance = Gold/Copper 12%
Minesgold → Country = Peru 31%
Minesgold → Country = Chile 16%
Minesgold → Country = Argentina 22%
Minesgold → Morphology = Present − dayorrecentplacers 16%
Minesgold → Morphology = Discordantlodeorvein(thickness > 50cm), · · · 30%
Minesgold → Gitology = Alluvial − eluvialplacers 14%
Minesgold − ∃1

10kmGeology → True 95%
Minesgold − ∃1

10kmGeology → Geology.Age ∈ {Cenozoic, Tertiary} 58%

Minesgold − ∀75%
10kmGeology∃1

20kmFault → True 58%
Minesgold − ∃1

10kmGeology → Geology.Age ∈ {Cenozoic, Quaternary} 40%
Minesgold − ∃1

10kmGeology → Geology.Age ∈ {Mesozoic, Cretacious} 42%
Minesgold − ∃1

10kmGeology → Geology.Age = Paleozoic 38%
Minesgold − ∃1

10kmGeology → Geology.System = Neogene 41%
Minesgold − ∃1

10kmGeology → Geology.GeolType = Sedimentary 35%
Minesgold − ∃1

15kmFaults → True 63%
Minesgold − ∃2

15kmFaults → True 51%
Minesgold − ∃3

15kmFaults → True 43%

440 A. Salleb-Aouissi et al.

4 Experiments

We have implemented GISMiner in Java. In addition to the geographical layers
in the GIS, we pre-compute the relation tables that link the thematic layers by
pairs. Given two layers, each entry in a relation table linking those two layers
contains three fields: the identifier of a geographic object in the first layer, the
identifier of a geographic object in the second layer and the distance between
them. In order to do this pre-processing just once, we choose a large distance
between the objects to allow the user to choose big buffers around the objects.
Note that relation tables between objects in a same thematic layer are also
computed.

Fig. 2. Database schema of GIS Andes. Links represent an “is distant” relationship.

Example 6. The model that we have proposed and the system GISMiner have
been experimented on a real geographic database. Consider the three thematic
layers: Mines, Geology and Faults. The relations computed between the layers
are represented in Figure 2.

A tree is constructed during the interactive process of learning characteri-
zation rules. The process allows to select a target set of examples from a given
table, such as gold mines and explore the GIS through a graph constructed by
the user. Figure 3 (a) gives the tree as built in GISMiner. Starting from the tar-
get set of gold mines (614 objects selected among 2923 mines), four quantified
paths are created by the user:

1. ∀75%
10kmGeol,

2. ∀75%
10kmGeol∃1

20kmFaults,
3. ∃1

10kmFaults and
4. ∀25%

10kmMines.

Note that quantified path 2 is an extension of quantified path 1. At each node
including the target set node, the system extracts the set of properties thus
completing the characterization rule built so far. Also at each node, the user can
add additional nodes by extending the quantified path. At each node a set of
rules is then discovered. Figure 3 (b) explains the content of the nodes. Figure 3

Learning Characteristic Rules in Geographic Information Systems 441

Fig. 3. Example of tree exploration in GISMiner

(c) details the quantifiers present on the edges of the tree, the example shown
represents ∀75%

10km.
Depending on the length of the quantified paths in a tree and the size of the

database, the time needed to build a complete tree can vary from seconds to
several minutes. However, a tree built by the user can be saved and recovered
any time.

Some examples of rules are given in Table 1. The rules that have been learned
have been evaluated by a geologist expert. All these rules were consistent with
previous knowledge regarding this GIS. Our tool can be seen as an exploratory
data analysis tool that can help navigate into large and complex GIS data.

5 Related Work

The work that we present here belongs to a family of problems, called descriptive
induction that aims at discovering patterns satisfied by data. Although the most
studied tasks are certainly mining frequent patterns and mining association rules,

442 A. Salleb-Aouissi et al.

there has been a growing interest for new tasks, such as subgroup discovery
[12,26,27], mining contrast set [4], mining emergent patterns [7,8]. It has been
shown in [23] that these three tasks, although formulated differently are quite
comparable. In all the approaches, a population Π described by data is given.
The settings differ according that the target objects are the whole population
Π (frequent pattern mining), a subset Π1 of the population the behavior of
which is compared to the whole population (subgroup discovery), a subset of
the population Π1 the behavior of which is compared to another subset Π2

(contrast set, emerging pattern, subgroup discovery).
We can also consider that characterization is close to the task of mining

frequent properties on the target set. This task has already long been studied
[1,10,19], since in many systems, it is the first step for mining association rules.
Nevertheless, most works suppose that data is stored in a single table, and
few algorithms [6,22] really handle multi-relational databases. Moreover, the
frequency (also called the support) is not sufficient to characterize the objects of
the target set, because it is also important to determine whether a property is
truly a characteristic feature by considering also the frequency of that property
outside the target set.

6 Conclusion

In this paper we have addressed the problem of learning rules from Geographic
Information Systems. We have focused on characterization rules, viewed as an
exploratory task. Therefore instead of automatically mining all the interesting
characteristic rules, which is time-consuming and which leads to too many rules,
we have developed GISMiner an interactive tool for mining Geographic Infor-
mation Systems: in such a system, the user iteratively builds the quantified
paths, specifying the relations and the properties. We propose a language for
characteristic rules, which allows taking into account the structure of the GIS.
Moreover, in this language, we can specify properties like “for the object o, a
given proportion of objects oi at a distance less than λ from o satisfy a property
p”.

This work has proven to be useful in a real-life application and we plan
on testing it on other GIS. In the future we would like to study whether our
approach could be useful for other kinds of data such as temporal and social
media data.

Knowledge discovery in geographic databases is still an open research area
for which new scalable, efficient and interactive algorithms that can deal with
large numbers of geo-referenced objects yet need to be developed. One of the
main frontiers of GKD is to see ultimately intelligent methods and discoveries
integrated to Geographic Information Systems [20].

Learning Characteristic Rules in Geographic Information Systems 443

References

1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of
items in large databases. In: Proc. of the ACM SIGMOD International Conference
on Management of Data, pp. 207–213 (1993)

2. Appice, A., Ceci, M., Lanza, A., Lisi, F.A., Malerba, D.: Discovery of spatial
association rules in geo-referenced census data: A relational mining approach.
Intell. Data Anal. 7(6), 541–566 (2003)

3. Appice, A., Ciampi, A., Lanza, A., Malerba, D., Rapolla, A., Vetturi, L.:
Geographic knowledge discovery in INGENS: an inductive database perspective.
In: ICDM Workshops, pp. 326–331 (2008)

4. Bay, S.D., Pazzani, M.J.: Detecting group differences: Mining contrast sets. Data
Min. Knowl. Discov. 5(3), 213–246 (2001)

5. Cassard, D.: GIS andes: a metallogenic GIS of the andes cordillera. In: 4th Int.
Symp. on Andean Geodynamics, pp. 147–150. IRD Paris, October 1999

6. Dehaspe, L., De Raedt, L.: Mining association rules in multiple relations. In:
Džeroski, S., Lavrač, N. (eds.) ILP 1997. LNCS, vol. 1297, pp. 125–132. Springer,
Heidelberg (1997)

7. Dong, G., Li, J.: Efficient mining of emerging patterns: discovering trends and
differences. In: KDD, pp. 43–52 (1999)

8. Fan, H.: Efficiently mining interesting emerging patterns. In: Dong, G., Tang, C.,
Wang, W. (eds.) WAIM 2003. LNCS, vol. 2762, pp. 189–201. Springer, Heidelberg
(2003)

9. Furnkranz, J.: Separate-and-conquer rule learning. Technical Report
OEFAI-TR-96-25, Austrian Research Institute for Artificial Intelligence Schotten-
gasse (1996)

10. Gouda, K., Zaki, M.J.: Efficiently mining maximal frequent itemsets. In: 1st IEEE
International Conference on Data Mining, November 2001

11. Han, J., Koperski, K., Stefanovic, N.: Geominer: a system prototype for spatial data
mining. In: SIGMOD 1997: Proceedings of the 1997 ACM SIGMOD International
Conference on Management of Data, pp. 553–556. ACM, New York (1997)

12. Klösgen, W.: Explora: a multipattern and multistrategy discovery assistant. In:
Advances in Knowledge Discovery and Data Mining, pp. 249–271 (1996)

13. Klösgen, W., May, M.J.: Spatial subgroup mining integrated in an object-relational
spatial database. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002.
LNCS (LNAI), vol. 2431, pp. 275–286. Springer, Heidelberg (2002)

14. Koperski, K., Han, J.: Discovery of spatial association rules in geographic informa-
tion databases. In: Egenhofer, M., Herring, J.R. (eds.) SSD 1995. LNCS, vol. 951,
pp. 47–66. Springer, Heidelberg (1995)

15. Koperski, K., Han, J., Stefanovic, N.: An efficient two-step method for classification
of spatial data. In: Proc. International Symposium on Spatial Data Handling SDH
1998, pp. 45–54 (1998)

16. Lavrač, N., Flach, P.A., Zupan, B.: Rule evaluation measures: a unifying view. In:
Džeroski, S., Flach, P.A. (eds.) ILP 1999. LNCS (LNAI), vol. 1634, pp. 174–185.
Springer, Heidelberg (1999)

17. Malerba, D., Esposito, F., Lanza, A., Lisi, F.A.: Discovering geographic knowledge:
the INGENS system. In: Ohsuga, S., Raś, Z.W. (eds.) ISMIS 2000. LNCS (LNAI),
vol. 1932, pp. 40–48. Springer, Heidelberg (2000)

18. Malerba, D., Esposito, F., Lanza, A., Lisi, F.A., Appice, A.: Empowering a GIS
with inductive learning capabilities: the case of INGENS. Computers, Environment
and Urban Systems 27(3), 265–281 (2003)

444 A. Salleb-Aouissi et al.

19. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge
discovery. Data Mining and Knowledge Discovery 1(3), 241–258 (1997)

20. Miller, H.J., Han, J.: Geographic Data Mining and Knowledge Discovery. Taylor
& Francis Inc., Bristol (2001)

21. Raymond, T.Ng., Han, J.: Efficient and effective clustering methods for spatial
data mining. In: VLDB 1994: Proceedings of the 20th International Conference
on Very Large Data Bases, pp. 144–155. Morgan Kaufmann Publishers Inc., San
Francisco (1994)

22. Nijssen, S., Kok, J.N.: Efficient frequent query discovery in Farmer. In: Lavrač,
N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS (LNAI),
vol. 2838, pp. 350–362. Springer, Heidelberg (2003)

23. Novak, P.K., Lavrac, N., Webb, G.I.: Supervised descriptive rule discovery: A
unifying survey of contrast set, emerging pattern and subgroup mining. Journal of
Machine Learning Research 10, 377–403 (2009)

24. Salleb, A., Vrain, C.: An application of association rules discovery to geographic
information systems. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD
2000. LNCS (LNAI), vol. 1910, pp. 613–618. Springer, Heidelberg (2000)

25. Turmeaux, T., Salleb, A., Vrain, C., Cassard, D.: Learning characteristic rules
relying on quantified paths. In: Lavrač, N., Gamberger, D., Todorovski, L., Bloc-
keel, H. (eds.) PKDD 2003. LNCS (LNAI), vol. 2838, pp. 471–482. Springer,
Heidelberg (2003)

26. Wrobel, S.: An algorithm for multi-relational discovery of subgroups. In:
Komorowski, J., Żytkow, J.M. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 78–87.
Springer, Heidelberg (1997)

27. Zelezný, F., Lavrac, N.: Propositionalization-based relational subgroup discovery
with rsd. Machine Learning 62(1–2), 33–63 (2006)

Industry Track

© Springer International Publishing Switzerland 2015
N. Bassiliades et al. (Eds.): RuleML 2015, LNCS 9202, pp. 447–455, 2015.
DOI: 10.1007/978-3-319-21542-6_29

Rule-Based Data Transformations in Electricity
Smart Grids

Rafael Santodomingo1(), Mathias Uslar1, Jose Antonio Rodríguez-Mondéjar2,
and Miguel Angel Sanz-Bobi2

1 OFFIS – Institute for Information Technology, Oldenburg, Germany
{santodomingo,uslar}@offis.de

2 Comillas Pontifical University, Madrid, Spain
{mondejar,masanz}@iit.upcomillas.es

Abstract. The systems that will control future electricity networks (also referred
to as Smart Grids) will be based on heterogeneous data models. Expressing trans-
formation rules between different Smart Grid data models in well-known rule
languages – such as Semantic Web Rule Language (SWRL) and Jena Rule Lan-
guage (JRL) – will improve interoperability in this domain. Rules expressed in
these languages can be easily reused in different applications, since they can be
processed by freely available Semantic Web reasoners. In this way, it is possi-
ble to integrate heterogeneous Smart Grid systems without using costly ad-hoc
converters. This paper presents a solution that leverages SWRL and JRL trans-
formation rules to resolve existing mismatches between two of the most widely
accepted standard data models in the Smart Grids.

Keywords: Interoperability · Rule languages · Rule-based data transformations ·
Semantic web · Smart Grids · SWRL · Jena

1 Business Case

The term “Smart Grid” refers to a modernization of the electricity delivery system so
it monitors, protects and automatically optimises the operation of its interconnected
elements [1]. Numerous Smart Grid systems will have to co-operate over complex
control tasks in order to make this modernisation possible. For instance, substation
automated systems, which locally control electric facilities, will exchange data (e.g.
voltage and current measurements) with energy management systems, which manage
transmission networks from remote control centres [2]. Smart metering systems, for
its part, will exchange data about customer consumptions with the distribution man-
agement systems that operate distribution networks [3]. Therefore, interoperability is
seen as a key enabler of future electricity Smart Grids.

Standardisation is an established approach adopted to address interoperability is-
sues [4]. Initially, standardisation activities in electricity networks were focussed on
the definition of protocols for transporting data [5]. More recently, the focus of stan-
dardisation efforts has shifted to interoperability at semantic level [6]. This means that

448 R. Santodomingo et al.

Smart Grid systems do not only have to exchange data, but they must also be able to
correctly “understand” and use the data they receive.

The main standardisation body in the electricity sector, the International Electro-
technical Commission (IEC), has created standard data models defining the semantics
of the data that is exchanged within this domain. Given the numerous vendors, appli-
cations and benefits associated with different approaches, in practice it is not possible
to define one single standard data model which is valid for all Smart Grid systems [7].
Consequently, it is mandatory to carry out transformations between heterogeneous
data models in order to achieve interoperability in Smart Grids [8].

Expressing transformation rules in well-known rule languages improves their reus-
ability. Rule languages defined within the Semantic Web initiative [9], such as Se-
mantic Web Rule Language (SWRL) [10] and Jena Rule Language (JRL) [11], are
particularly interesting for the sake of reusability, since they can be processed by
inference engines (reasoners) freely available in the Web. This paper presents a con-
verter based on SWRL and JRL reasoners that performs translations between IEC
data models. It enables utilities (e.g. transmission or distribution system operators) to
manage data about their own electricity power networks without carrying out time-
consuming manually transformations and without using costly ad-hoc converters.

2 Technological Challenges

The Common Information Model (CIM) and the Substation Configuration Language
(SCL) are highlighted in the literature as two of the most relevant standard data mod-
els within the scope of electricity Smart Grids [5]. This study focuses on the need for
communicating applications based on these two data models.

2.1 Heterogeneous Data Models in Smart Grids: CIM and SCL

The CIM is defined in the IEC 61970/61968/62325 standard series. It standardises the
semantics to achieve interoperability in a broad range of energy management func-
tionalities, such as: network operations, asset management and electricity markets
[12]. Several extensions have been proposed in order to adopt the CIM for further
applications, such as the operation of electrified railway systems [13].

Hundreds of classes organised in packages are included in this data model. Among
all the CIM packages, Core, Wires and Topology packages contain classes to repre-
sent electricity networks. For instance, cim:Substation, cim:Breaker, and
cim:Disconnector are the CIM classes to represent substations, circuit breakers,
and disconnectors, respectively. Electrical connections are represented in CIM with
the classes cim:Terminal and cim:ConnectivityNode. As shown in Fig. 1,
each piece of conducting equipment has one or more terminals, which are linked to
each other by connectivity nodes within the facility.

 Rule-Based Data Transformations in Electricity Smart Grids 449

The SCL is defined in the IEC 61850 standard series. It includes the concepts
required for configuring the automation systems that locally control electricity net-
works. The SCL defines terms to represent automation systems and electric facilities.
For instance, scl:tSubstation is the SCL class for representing substations.
Meanwhile, pieces of conducting equipment are represented in SCL as instances of
the class scl:tConductingEquipment. The specific type of conducting equip-
ment is determined by the attribute scl:type. For example, the values “CBR” and
“DIS” are used to represent circuit breakers and disconnectors, respectively. As in the
CIM, electrical connections between pieces of conducting equipment are represented
in SCL by means of terminals (instances of the class scl:tTerminal) and connec-
tivity nodes (instances of the class scl:tConnectivityNode) (Fig. 1).

Fig. 1. Electrical connections in SCL and in CIM

2.2 CIM-SCL Communication with Traditional Technologies

Previous studies identified several use cases of information exchanges between CIM-
based and SCL-based applications [14]. However, the working groups of experts that
created these data models had different objectives and requirements, which resulted in
heterogeneities or mismatches between the data models hindering CIM-SCL commu-
nications [5, 15].

Traditionally, utilities address mismatches between heterogeneous data models by
carrying out time-consuming and inaccurate manual transformations or by means of
costly ad-hoc converters [16], which are only valid for a specific case and cannot be
easily upgraded for working with new versions of the evolving data models.

Therefore, with the aim of enabling a seamless integration among Smart Grid sys-
tems, it is necessary to express the transformation rules between the standard data
models in formal languages that can be processed by freely available reasoners. This
will enable utilities to directly reuse previously tested transformation rules among
several applications and will make it possible to perform automatic data transforma-
tions without investing in costly ad-hoc converters.

450 R. Santodomingo et al.

3 Rule-Based Solution

This work presents a rule-based converter to carry out bi-directional translations
between CIM and SCL automatically. The converter is based on SWRL and JRL trans-
formation rules (Fig. 2).

Fig. 2. Rule-based data transformation from SCL into CIM

The Semantic Web Rule Language (SWRL) combines the OWL ontology language
with the Unary/Binary Datalog RuleML sublanguages of the Rule Markup Language
[10]. As explained in [17], SWRL rules are Description Logic (DL)-safe rules when
they are applied to only named individuals in the ontology. SWRL DL-safe rules can
be processed by DL reasoners, such as Pellet [18], which guarantee the completeness
and soundness of the inferences carried out from the rules.

The Jena Rule Language (JRL) enables to express inference rules within the Jena
Semantic Web programming framework and can be processed by the Jena Generic
Rule Reasoner [11]. The inference process in this reasoner does not guarantee com-
pleteness and soundness. However, given its expressiveness and level of maturity,
JRL was utilised in this work for representing complex transformation rules that can-
not be expressed as SWRL DL-safe rules. By using the makeInstance built-in term,
JRL can represent transformation rules that infer new instances in the consequent that
are not defined in the antecedent. In this way, JRL rules, unlike SWRL DL-safe rules,
enable to express one-to-many transformations between two data models.

What follows describes by means of illustrative examples how SWRL and JRL
transformation rules resolve mismatches between CIM and SCL data models. The
complete list of the transformation rules developed in this study is available in [19].

3.1 Resolving Naming Mismatches

Naming mismatches occur when the same real entity is represented in two data mod-
els with two modelling elements (classes, properties, attributes) that have different

 Rule-Based Data Transformations in Electricity Smart Grids 451

names. For example, substations are represented in SCL as instances of the class
scl:tSubstation and in CIM as instances of the class cim:Substation.
Fig. 3 shows how these mismatches can be resolved with SWRL transformation rules.

Fig. 3. Resolving naming mismatches with SWRL rules

3.2 Resolving Multilateral Correspondences

Multilateral correspondences occur when an element of a model is represented in the
other model with multiple modelling elements. For instance, CIM represents circuit
breakers with a single element (an instance of the class cim:Breaker), whereas in
SCL, these entities are represented with the combination of two modelling elements:
an instance of the class scl:tConductingEquipment and the enumerated value
“CBR” in the attribute scl:type. Fig. 4 shows the SWRL rules that were created in
this study to overcome this mismatch.

Fig. 4. Resolving multilateral correspondences with SWRL rules

3.3 Resolving Covering Mismatches

Covering mismatches occur when two models describe different regions of a domain.
This means that these mismatches stand for the fact that one model cannot represent
an entity that can be represented in the other model. For example, bus bar sections can
be represented in CIM with the class cim:BusbarSection. However, SCL does
not include specific modelling elements to represent these entities. Fig. 5 shows the
JRL transformation rule created in this work to resolve this mismatch.

452 R. Santodomingo et al.

Fig. 5. Resolving coverage mismatches with JRL rules

4 Results

Three case studies were taken to evaluate the rule-based converter presented in this
work. The objective of these case studies was to prove that the converter is able to
enable interoperability between two applications belonging to different systems
within a utility: a SCL-based control application at the substation automation system
and a CIM-based supervisory application located at the remote energy management
system (Fig. 6). In each case study, the converter was supposed to perform bi-
directional translations between CIM and SCL files describing the power system
model of a particular electricity substation. The three representative substations used
in the cases studies are those defined by the main Spanish electricity companies in
reference [20].

The case studies were evaluated for three key performance indicators: Runtime,
Cost, and Accuracy. Runtime refers to the runtime in seconds required to perform the
data transformations. Cost indicates the costs associated with the data transforma-
tions. Finally, Accuracy is a function of Recall and Precision (1); with Recall being
the ratio of correct instances that were translated (true positives) to the total number
of instances that had to be translated, and with Precision being the ratio of true posi-
tives to the total number of instances that were translated. An Accuracy greater than 0
means that the automatic data transformation is useful, that is, it is easier for users to
correct the incorrect transformations obtained by the system than to manually trans-
form all the instances from scratch.

1

2 -Accuracy = Recall ×
Precision

 
 
 

 (1)

 Rule-Based Data Transformations in Electricity Smart Grids 453

Given that the rule-based solution performed the data transformations without any
false or missing translation, the Accuracy was 1 for both the three case studies. This
therefore proves that the proposed rule-based solution is better in terms of accuracy
than the manual process and, at least, as good as an ad-hoc converter specifically
designed for that purpose.

Fig. 6. Case studies: exchanging power system models between SCL-based and CIM-based
systems within a utility

In order to measure the Runtime of the data transformations, the tests were carried
out on a 2.70 GHz Intel Core Duo CPU with 8.00 GB of RAM, running Windows 7.
The average Runtime obtained for the three case studies with the rule-based solution
presented in this work was 1.472 seconds, which is considerably less than the time
required for the manual transformations.

As explained previously, one of the main advantages of the data transformations
based on SWRL and JRL is that they can be processed by freely available inference
engines. Therefore, on the contrary to what happens in the ad-hoc converters tradi-
tionally used within energy management systems, the data transformations performed
by the rule-based solution presented in this study are not associated with any direct
costs. That is, the rule-based solution improves also the Cost indicator compared with
traditional technologies. In addition to this, it should be noted that the SWRL and JRL

454 R. Santodomingo et al.

transformation rules can be easily reused in other applications, since they are written
in external files, instead of hardcoded within a converter.

5 Importance and Impact

In order to achieve interoperability in Smart Grids it is mandatory to facilitate infor-
mation exchanges between systems based on heterogeneous data models. This paper
showed how SWRL and JRL rule languages enable these information exchanges by
overcoming existing mismatches between Smart Grid data models. These rule lan-
guages can be processed by freely available reasoners developed within the Semantic
Web initiative. Hence, expressing the transformation rules between data models in
SWRL and JRL makes it possible for utilities to manage data about their own electric-
ity power networks without using costly ad-hoc converters.

Our approach was evaluated in this work with three representative case studies
based on one of the main interoperability issues within this domain: the interactions
between CIM-based and SCL-based systems. The tests showed that the proposed rule-
based solution improves Runtime, Accuracy, and Cost indicators compared with tradi-
tional technologies commonly used in energy management systems.

In future work, the proposed approach will be assessed in new case studies involv-
ing additional Smart Grid data models, such as DLMS/COSEM [21] or OpenADR
[22]. Moreover, we will analyse how to adopt this approach in the context of semantic
enabled Smart Grid middleware platforms based on OPC UA and Sematic Web Ser-
vices [2], [23] in order to enable run-time interactions between heterogeneous Smart
Grid systems. In addition to this, we will enhance ontology matching techniques to
automatically find the transformation rules between two data models [24], [25].

References

1. Report to NIST on the Smart Grid Interoperability Standards Roadmap. Electronic Power
Research Institute. Technical report (2009)

2. Sučić, S., Dragicevic, T., Havelka, J.: A Device-Level Service-Oriented Middleware
Platform for Self-Manageable DC Microgrid Applications Utilizing Semantic-Enabled
Distributed Energy Resources. International Journal of Electrical Power & Energy Systems
54, 576–588 (2014)

3. Rodriguez-Mondejar, J.A., Santodomingo, R., Brown, C.: The ADDRESS energy box:
design and implementation. In: IEEE International Energy Conference and Exhibition
(ENERGYCON), pp.629-634 (2012)

4. Uslar, M., Specht, M., Dänekas, C., Trefke, J., Rohjans, S., González, J.M., Rosinger, C.,
Bleiker, R.: Standardization in Smart Grids - Introduction to IT-Related Methodologies,
Architectures and Standards. Springer-Verlag, Berlin Heidelberg (2013)

5. IEC TC 57 Architecture – Part 1: Reference Architecture for TC 57, Draft IEC TC 57 WG
19. Technical Report (2009)

6. Uslar, M.: Semantic interoperability within the power systems domain. In: Proc. ACM
first international workshop on Interoperability of heterogeneous information systems,
pp. 39–46 (2005)

7. Haslhofer, B., Klas, W.: A survey of techniques for achieving metadata interoperability.
ACM Comput. Surv 42(2), 71–737 (2010)

 Rule-Based Data Transformations in Electricity Smart Grids 455

8. Uslar, M.: Ontologiebasierte Integration heterogener Standards in der Energiewirtschaft.
Ph.D. Thesis, Oldenburger Verlag für Wirtschaft, Informatik und Recht (2010)

9. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American 284(5),
34–43 (2001)

10. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A
Semantic Web Rule Language Combining OWL and RuleML. World Wide Web Consor-
tium; National Research Council of Canada, Network Inference, and Stanford University
(2004). URL: http://www.w3.org/Submission/SWRL/

11. Jena Programming Framework for the Semantic Web – the general purpose engine. URL:
http://jena.apache.org/documentation/inference/index.html#rules

12. Uslar, M., Specht, M., Rohjans, S., Trefke, J., Gonzalez, J.M.V.: The Common
Information Model CIM IEC 61968/61970 and 62325 - A practical introduction to the
CIM (Power Systems). Springer-Verlag, Berlin, Heidelberg (2012)

13. Santodomingo, R., Pilo, E., Rodríguez-Mondéjar, J.A., Garcia-Vaquero, M.A.: Adapting
the CIM model to describe electrified railway systems. In: Eleventh International Confe-
rence on Computer System Design and Operation in the Railway and Other Transit Sys-
tems (COMPRAIL) (2008)

14. Falk, H., Saxton, T.: Harmonizing the International Electrotechnical Commission
Common Information Model (CIM) and 61850 Standards via a Unified Model: Key to
Achieve Smart Grid Interoperability Objectives. EPRI, Palo Alto, CA. 1020098 (2010)

15. Preiss, O., Kostic, T.: Unified information models in support of location transparency for
future utility applications. In: Proc. 39th Hawaii Int. Conf. System Sciences (HICSS), 2006,
pp. 242–251 (2006)

16. IEEE P2030™ - Guide for Smart Grid Interoperability of Energy Technology and Infor-
mation Technology Operation with the Electric Power System (EPS), and End-Use Appli-
cations and Loads, IEEE Standards Association Department (2011)

17. Motik, B., Sattler, U., Studer, R.: Query Answering for OWL-DL with Rules. In: McI-
lraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp.
549–563. Springer, Heidelberg (2004)

18. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL rea-
soner. Web Semantics 5(2), 51–53 (2007)

19. SWRL & JRL alignments between CIM and SCL data models, May 2015. URL:
http://www.iit.upcomillas.es/santodomingo/Thesis.html

20. Minimum common specification for substation protection and control equipment in
accordance with the IEC 61850 standard. E3 Group of Spanish Electricity Companies for
Studies on IEC 61850 (2010)

21. Berganza, I., Sendin, A., Arzuaga, A., Sharma, M., Varadarajan, B.: PRIME on-field
deployment - First summary of results and discussion. In: IEEE International Conference
on Smart Grid Communications (SmartGridComm), pp. 297–302 (2011)

22. Kim, J.J., Yin, R., Kiliccote, S.: Automated Demand Response Technologies and Demon-
stration in New York City using OpenADR. Ernest Orlando Lawrence Berkeley National
Laboratory (2013)

23. Rohjans, S., Uslar, M., Appelrath, H.J.: OPC UA and CIM: Semantics for the smart grid.
In: IEEE PES Transmission and Distribution Conference and Exposition (2010)

24. Santodomingo, R., Rohjans, S., Uslar, M., Rodríguez-Mondéjar, J.A., Sanz-Bobi, M.A.:
Facilitating the automatic mapping of IEC 61850 signals and CIM measurements. IEEE
Transactions on Power Systems 28(4), 4348–4355 (2014)

25. Santodomingo, R., Rohjans, S., Uslar, M., Rodríguez-Mondéjar, J.A., Sanz-Bobi, M.A.:
Ontology matching system for future energy smart grids. Eng. Appl. Artif. Intel. (2014).
http://dx.doi.org/10.1016/j.engappai.2014.02.005

© Springer International Publishing Switzerland 2015
N. Bassiliades et al. (Eds.): RuleML 2015, LNCS 9202, pp. 456–464, 2015.
DOI: 10.1007/978-3-319-21542-6_30

Norwegian State of Estate: A Reporting Service
for the State-Owned Properties in Norway

Ling Shi1(), Bjørg E. Pettersen1, Ivar Østhassel1, Nikolay Nikolov2,
Arash Khorramhonarnama3, Arne J. Berre2, and Dumitru Roman2

1 Statsbygg, Pb. 8106 Dep 0032, Oslo, Norway
{ling.shi,bjorg.pettersen,ivar.osthassel}@statsbygg.no

2 SINTEF, Pb. 124 Blindern 0314, Oslo, Norway
{nikolay.nikolov,arne.j.berre,dumitru.roman}@sintef.no

3 University of Oslo, Pb. 1072 Blindern 0316, Oslo, Norway
arashk@ifi.uio.no

Abstract. Statsbygg is the public sector administration company responsible for
reporting the state-owned property data in Norway. Traditionally the reporting
process has been resource-demanding and error-prone. The State of Estate
(SoE) business case presented in this paper is creating a new reporting service
by sharing, integrating and utilizing cross-sectorial property data, aiming to in-
crease the transparency and accessibility of property data from public sectors
enabling downstream innovation. This paper explains the ambitions of the SoE
business case, highlights the technical challenges related to data integration and
data quality, data sharing and analysis, discusses the current solution and poten-
tial use of rules technologies.

Keywords: Property data · Data integration · Data quality · Data sharing · Rules

1 Business Case

The public sector owns a significant amount of property data. Re-use of public sector
information is required by both the EU and the Norwegian government. EU’s
DIRECTIVE 2013/37/EU OF THE EUROPEAN PARLIAMENT AND OF THE
COUNCIL of 26 June 2013 amending Directive 2003/98/EC on the re-use of public
sector information [1] establishes a set of rules on the re-use of the public information
to meet the challenges caused by increasing data volumes, varying data formats and
technological advancements in the last decades. The Norwegian government follows
closely this EU-directive. One of the demands and regulations from the Norwegian
government requires that “The agencies shall make appropriate and existing raw data
available in machine-readable formats. This applies to information that has value to
society, which can be further used, which is not confidential and where the costs of
publication are believed to be modest (loss of income from the sale of data considered
an expense).1” The Norwegian public sector is obliged to follow the government

1 https://www.regjeringen.no/nb/dokumenter/fellesforinger-2012/id665965/

 Norwegian State of Estate 457

regulation. For example, Statistics Norway2 shares the statistical data through an
online service – StatBank Norway. 3 The Norwegian Agency for Public Management
and eGovernment (Difi)4 provides a data sharing portal5 for Open Data in Norway.
Though many government agencies began to use the Difi platform, further efforts are
needed to enlist more government agencies and improve the platform.

Statsbygg6 is a public sector administration company responsible to the Ministry of
Local Government and Modernisation7 (KMD). It is the Norwegian government's key
advisor in construction and property affairs, building commissioner, property manager
and property developer. Statsbygg has been responsible for reporting real estate prop-
erties owned by the public sector in Norway. The latest report is distributed both as a
hard copy of 314 pages and as a PDF file. 8 It takes in average 6 Person-Months of
Statsbygg to create the report, excluding the time spent on answering surveys by the
involved organizations. The data has been collected and aggregated predominantly by
using spreadsheet software. Quality assurance is implemented through e-mails and
phone correspondence. Evidently, the current manual data collection process is re-
source-demanding and error-prone. Furthermore, there are other property related data
that have not been covered by the earlier surveys and reports, although the data can
provide valuable analysis results (for example, accessibility of buildings (BFA)9 and
statistical market price of real estates from Statistics Norway (SSB)10).

Statsbygg is in the process of creating and exploiting a new SoE reporting service
based on integrated cross-sectorial property data. Fig. 1 below shows a high-level
view of an integrated open property dataset accessible as Web services – the “State of
the Estate (SoE)” Service. The datasets used as input to the service include national
cadastral data, buildings’ universal design data, statistical data, data from the Norwe-
gian register for legal entities and business enterprises (BR11). BR gathers organiza-
tional information of the public sector, such as the organization’s identification num-
ber, name, address and its registered sub-units. The national cadastral dataset includes
owner information of properties and the owner is identified by the organization’s
identification number if properties are owned by organizations. Thus, a complete
state-owned properties list can be generated if the cadastral data and the legal entity
register are shared and integrated based on identification numbers of the organizations
in public sector. Data such as addresses and areas of the buildings are already in-
cluded in the list since the data are part of the cadastral dataset. The Statsbygg’s prop-
erty dataset adds additional information such as administrative grouping of buildings

2 https://www.ssb.no/
3 https://www.ssb.no/en/statistikkbanken
4 http://www.difi.no/
5 http://data.norge.no/
6 http://www.statsbygg.no
7 https://www.regjeringen.no/en/dep/kmd/id504/
8 https://www.regjeringen.no/contentassets/f4346335264c4f8495bc559482428908/no/sved/state

igedom.pdf
9 https://byggforalle.no/
10http://www.ssb.no
11http://www.brreg.no/english/

458 L. Shi et al.

and other administrative information of the buildings. Any data mismatch, deviation,
or conflicts are identified by comparing Statsbygg’s datasets with the cadastral data.
In that way, the survey can be redesigned as a checklist for the involved organizations
to confirm their portfolio of real properties, rather than a manual data gathering job.
As a result, also data quality will be improved, since data from the respective owners
are made visible, accessible and comparable. In summary, the new SoE service will
significantly reduce the workload of data collection and later processing and analysis
by following the approach as described in this section.

Fig. 1. Data Value Chain of the SoE Business Case

SoE has been designed to support scenarios such as:

• Reporting the state-owned properties in Norway
• Analysis of accessibility of office locations in the public sectors (by integrating

property data with accessibility data of buildings).
• Risk and vulnerability analysis of real estate properties (by integrating property

data with geographical datasets such as flooding zones, landslide zones, soil con-
tamination areas, etc). This is meant to support a better regime of planning and
maintenance of the buildings within the area by foreseeing and reducing the risks.

• Analysis of leasing prices against statistical market leasing price in the same area
(by integrating property data with statistical market leasing prices).

• 3rd party services by integrating property data with other relevant 3rd party property
datasets

The impact of the approach described above will affect several groups of stake-
holders. Firstly, users from the public sectors will both benefit from, and contribute to
this new service. The public administration offices are providing data on their portfo-
lios of owned or leased properties. When property-related data from other domains

 Norwegian State of Estate 459

and sectors are added, the report and support will be enriched with new possibilities to
analyze and present the data. For example, some government agencies own or lease
real estate properties abroad, e.g. embassies. Thus, corresponding datasets from other
countries can be used to further append and enrich the service. Moreover, the result of
analysis will present the status of the estates and help identify any unnecessary spend-
ing of resources, which can be reallocated where they are needed most. At the same
time this will help reduce the cost of the government’s estates which aligns well with
the government’s efficiency and reform agenda.

The new SoE service is meant to be open to the public and the integrated dataset
will be shared under specified conditions. Therefore, another beneficiary group is
private persons and users from the private sector. One example use of the SoE service
is as an overview of the state-owned properties in a given city or area. In such an
example, the SoE service will provide detailed information such as the accessibility of
a state-owned building, which is important information for visitors with impairments.
Additionally, real estate broker companies can reuse the service to enrich their portfo-
lio databases. Finally, architects or the real estate development and management com-
panies can take advantage of the risk and vulnerability analysis result in the design
and construction phases of their building projects.

Value Proposition. The focus of the SoE business case is on integrating property data
from several sources into a multi-sectorial property dataset which is the key to estab-
lish a service to support and enhance the whole data collection, analysis and reporting
lifecycle of the State of the Estate service. The goal is to increase efficiency and
optimize the resource allocation of government estate data management.

2 Technological Challenges

One of the main challenges related to integrating data in the context of SoE is data
distribution. Property data reside in different source systems owned both by public
and private sectors. For example, the Norwegian Mapping Authority12 administrates
and stores land register and cadaster including ownership of estates. On the other
hand, Statsbygg administrates 2350 state-owned buildings making a total of around
2.8 million square meter area. The Norwegian government requires the public sector
to open and share data to increase the transparency of government administration.13
This applies also to the property data.

Another challenge related to implementing the SoE service is the complexity of
property data. The property data are rich in attributes and relations and also are loca-
tion-based. A real estate property is associated with horizontal and vertical dimen-
sions such as ground, land, road, air and neighborhood. Apart from spatial aspects,
this type of data has also a time dimension that records the changes of a property
throughout the years. Therefore, sharing of property data requires much more effort in
aggregating and association than simply publishing a static tabular list of values.

12 http://www.kartverket.no/en/About-The-Norwegian-Mapping-Authority/
13 http://www.difi.no/sites/difino/files/veileder-i-tilgjengeliggjoring-av-offentlig-data-web.pdf

460 L. Shi et al.

Challenges in Data Integration and Data Quality
Since property data are managed by several cross-sectorial organizations and compa-
nies, they are stored and provisioned in different formats. Data are often shared in the
original format, for example, the cadastral data in Norway are open and shared in a
searchable map-based web application.14 It is difficult to integrate data from a map-
based web application with other property data provided in different formats, and,
thus difficult to achieve automated analysis covering multiple properties. On the other
hand, when the data are exported and shared in alternative formats (i.e., other than the
original format), some of the essential characteristics may be lost in the transition. In
this context, rule-based validation techniques are appealing, as they enable a more
automated process for integrity checking and thus reduce the possible data loss after
conversion to a new data format.

There are exceptions and mismatches in the different registers because each regis-
ter has its own domain focus and scope. For example, as described in [2], the national
cadastral system does not register buildings less than 15 square meters, whereas
Statsbygg’s property management system does. There is also often no unique identifi-
er to connect the datasets since the unique identifier in one dataset may be missing or
incomplete in the other dataset. In these cases rule-based techniques could be applied
in enabling filtering out any known exceptions during integration, and through sup-
porting conditional integration, whereby the integration action turns on or off depend-
ing on certain conditions [3].

Ensuring data consistency is also a significant challenge of integrating property da-
ta. Firstly, some attributes, such as the building’s name, area and address information,
are stored across several different systems with deviations or even conflicts. Further-
more, property data evolve and may not be updated in all the systems at the same
time. For example, a building can be extended during renovation, which would alter
its original area. It is up to the data owner to report the changes to the Norwegian
Mapping Authority office. However, if the change is not reported the data become
inconsistent. In this context, rules can be used to automatically identify inconsisten-
cies between different data sources and thereby make suggestions for improving data
quality in the respective source systems and, subsequently, of the SoE service.

Challenges in Data Sharing and Data Security
Data security, which data to share and with whom are some of the key aspects in this
business case. Firstly, some of the cadastral data involves personal identifiable infor-
mation such as owner name and national ID, which is subject to the EU Data Protec-
tion Directive (Directive 95/46/EC)15 and the Norwegian personal information law.16
Secondly, some data providers such as Statsbygg have special restrictions on the in-
formation and data security of some types of properties (for example, prison facilities
and King’s properties). In this context, data sharing rules can be applied to ensure
appropriate access control to sensitive information. Such data sharing rules are a useful
input to form the access rights and security policy in the business case requirements.

14 http://www.seeiendom.no/
15 http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:31995L0046
16 https://lovdata.no/dokument/NL/lov/2000-04-14-31

 Norwegian State of Estate 461

Challenges in Data Analysis
Data analysis (for example, the risk and vulnerability analysis of properties owned by
public sector) based on the integrated data is a demanding task when data come from
different sources with different quality, especially when data from both authorized
and non-authorized sources are integrated. To address this, it is important to set up a
trustworthiness scale mechanism for data sources for the purposes of data analysis.
Using the scale as an input we can thus set up rules on how the integrated data shall
be used or manipulated in the analysis process.

3 Rule-Based Solution

As already pointed out in the previous section, rule technologies can be used to meet
the challenges of the SoE business case by assisting the processes of property data
integration, quality control, data sharing and analysis in the business case. In order to
achieve that, first, a set of business rules need to be collected. However, business
rules cannot be easily applied for data processing directly, and therefore machine-
readable rules need to be created in order to automate rule processing. RuleML,
SWRL [4], R2ML (Reverse Rule Markup Language) and F-logic (Frame Logic) [5]
are examples of rule languages with different expressiveness and features relevant for
encoding rules in this business case.

Rules for Data Integration and Data Quality
To meet the challenges in the data integration process, a collection of definitions,
vocabularies, ontology models and business rules from different sectors are needed.
Definitions, vocabularies and ontology models describe how the data should be inte-
grated, whereas the rules describe under what conditions. In particular, rules must
check the possible data loss after conversion to other data formats, filter out the
known exceptions and support conditional integration.

Another application of rules in this business case is for creating flexible data quali-
ty validation processes [6]. Machine-readable rules can be formed based on the busi-
ness rules to automatically identify the deviations and conflicts among different data
sources.

Rules for Data Sharing and Data Security
The work in [7] proposes an approach for integrating data from diverse sources, for
gathering user preferences for what data to share and when to share it, and a policy
management infrastructure in the network for enforcing those preferences. Following
that approach, for each dataset in the SoE business case, we are collecting the laws,
regulations and business restrictions that apply to the data ownership and data securi-
ty. Thereafter rules will be defined on what to share, whom to share with and how and
what to share. Those rules will be applied to the access and security control of the
integrated data to achieve the desired security and privacy levels.

Rules for Data Analysis
To help data consumers justify their respective output analyses, a trustworthiness
scale of the data is needed. The integrated property data from the SoE service are

462 L. Shi et al.

based on authorized sources in the public sector where the trustworthiness is relative-
ly high. Another application of such rules in this context is related to controlling the
manipulation of the integrated data in order to avoid misuse by other stakeholders.
For example, let's assume that an external company plans to develop a new service
based on the integrated property data from the SoE service and data gathered through
crowdsourcing. In this case, even though it is based on SoE, the new service would
have a relatively low trustworthiness as the final result should be presented with
trustworthiness, which is not higher than the lowest of the data sources.

4 Results

Statsbygg has developed a software procedure for integrating data from its internal
property management system and the Norwegian national cadastral system. The pro-
cedure is executed on input data on a nightly basis, and the result is connected to the
internal GIS portal, shown as a map layer for visualization and analysis of the real
estate properties owned by Statsbygg.

Several integration challenges were identified and analyzed, and concrete integra-
tion rule-based solutions were suggested and implemented in the software procedure.
Integration rules have been extracted, for example, based on the heterogeneity analy-
sis in an SBVR integration hub as reported in [2].

An example of business rule for data integration is “the address of a building in
different source systems should be identical or with known spell variations”. Thus,
buildings are firstly integrated by the national cadastral building number, and after
that the building’s addresses from different source systems are compared to generate a
mismatch-list. The above rule is used as a quality control of the first step. The mis-
match-list is used both as a reference for address updates in the Statsbygg’s property
management system, and to identify possible errors in the registered national cadastral
building numbers. The national cadastral building identification ID is missing for
around 15% of the buildings in the Statsbygg’s property management system due to
e.g. buildings being situated abroad or being less than 15 square meters. In a third and
final step, an address search is executed on the buildings missing cadastral numbers
against the national cadastral system in order to discover a possible cadastral building
number based on the address. During this process, normal address variations are taken
into consideration to increase the address matching percent. This implemented three-
step method has improved the integration quality and numbers of matched buildings
have been increased by more than 7%.

Nevertheless, the goal of the SoE business case is to extend the existing procedure
into an interactive reporting service for properties data. The end product of this busi-
ness case is expected to be an authoritative portal of state-owned properties, consist-
ing of comprehensive, accurate, and timely updated data about state-owned properties
in Norway. Statsbygg and other government agencies (in the role of data providers)
are meant to submit and control their own property data online and easily generate the
national SoE reports or region- and sector-based reports. The portal will be freely
accessible and will be available to the public and other user groups such as property
development companies, the media and property service providers.

 Norwegian State of Estate 463

The SoE business case is developed as part of the H2020 European funded innova-
tion action project proDataMarket,17 which aims to create a data marketplace for
property-related data and disrupt the property-related data market across Europe. It
focuses on innovation across sectors, where property-related data value chains are
relevant, and leverages and transfers technologies from the emerging Data-as-a-
Service and Linked Data domains (see for example [8] and the DaPaaS project18
which provides cost-effective technologies for publishing and consuming Open Data).

5 Importance and Impact

Collecting ownership of real estate property data from the government agencies has
been a resource-demanding and error-prone survey process. The SoE business case
described in this paper is evolving the data collection process and reducing the scope
of data collection by providing a prefilled checklist, instead of manually collecting
already available data from source systems. This is expected to improve the data qual-
ity significantly and make it more cost-effective, since it will help identify a uniform
"master" dataset from data that currently are being duplicated in several systems. For
example, buildings’ addresses are duplicated in several systems, but the cadastral
system has been identified as the "master" dataset of address information.

The SoE service makes the property data from the public sector in Norway easily
accessible and usable for analysis thereby providing opportunities for downstream
innovation related to property data. The SoE service is expected to have following
impacts and outcomes:

• Sharing of Statsbygg’s internal property datasets in novel ways
• Exploitation of cadastral data and other cross-sectorial data
• A pilot SoE web service using Statsbygg’s data and the integrated cross-sectorial

data
• Data collection survey for ownership and, possibly, leasing of property data from

government agencies
• Sharing the survey data results in novel ways
• An extended pilot to include survey result, i.e., the public sector’s owned and, pos-

sibly, leased properties
• Reporting function based on SoE web service
• Internationalization process

The main customer group for this improved service is the current Statsbygg’s client
base: KMD and other governmental agencies. These users from the public sector will
continue to be an important group. Nonetheless, private individuals, companies and
3rd-party organisations will also benefit from the service. These could be public me-
dia, building architects, property development and management companies, leasing
companies, and even tourists.

17 http://prodatamarket.eu/
18 http://dapaas.eu/

464 L. Shi et al.

The opportunities to internationalize this service will also make it possible to cover
the Norwegian government property abroad. SoE capabilities are commonly needed
by the governments in other countries, such as the U.K. which has already started
publishing the report19 in the last few years but has not connected it to the open
property data, as suggested in this business case.

Acknowledgements. The work on the State of Estate (SoE) business case is partly supported
by the EC funded project proDataMarket (Grant number: 644497).

References

1. Schultz, M., Shatter, A.: Directive 2013/37/EU of the European Parliament and of the
Council of 26 June 2013 amending Directive 2003/98/EC on the re-use of public sector
information. Official Journal of the European Union, Brussels (2013)

2. Shi, L., Roman, D., Berre, A.J.:SBVR as a Semantic Hub for Integration of Heterogeneous
Systems. RuleML2013@ Challenge, Human Language Technology and Doctoral Consor-
tium, 7 (2013)

3. Bohn, C., Atherton, D.P.: An analysis package comparing PID anti-windup strategies. IEEE
Control Systems 15(2), 34–40 (1995)

4. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A
semantic web rule language combining OWL and RuleML. W3C Member submission 21,
79 (2004)

5. Kifer, M., Lausen, G.: F-logic: a higher-order language for reasoning about objects,
inheritance, and scheme. ACM SIGMOD Record 18(2), 134–146 (1989)

6. Scheppers, J.: Creating flexible data quality validation processes using Business Rules
(2009). http://purl.utwente.nl/essays/60714

7. Hull, R., Kumar, B., Lieuwen, D., Patel-Schneider, P.F., Sahuguet, A., Varadarajan, S.,
Vyas, A.: Enabling context-aware and privacy-conscious user data sharing. In: 2004
Proceedings, IEEE International Conference on Mobile Data Management, pp. 187–198.
IEEE (2004)

8. Roman, D., Pop, C.D., Roman, R.I., Mathisen, B.M., Wienhofen, L., Elvesæter, B., Berre,
A.J.: The Linked Data AppStore. In: Prasath, R., O’Reilly, P., Kathirvalavakumar, T. (eds.)
MIKE 2014. LNCS, vol. 8891, pp. 382–396. Springer, Heidelberg (2014)

19 https://www.gov.uk/government/collections/state-of-the-estate

Ontology Reasoning Using Rules
in an eHealth Context

Dörthe Arndt1(B), Ben De Meester1, Pieter Bonte2, Jeroen Schaballie2,
Jabran Bhatti3, Wim Dereuddre3, Ruben Verborgh1, Femke Ongenae2,

Filip De Turck2, Rik Van de Walle1, and Erik Mannens1

1 Ghent University – IMinds – Multimedia Lab, Ghent, Belgium
{doerthe.arndt,ben.demeester}@ugent.be

2 IBCN Research Group, INTEC, Ghent University – IMinds, Ghent, Belgium
3 Televic Healthcare, Izegem, Belgium

Abstract. Traditionally, nurse call systems in hospitals are rather sim-
ple: patients have a button next to their bed to call a nurse. Which spe-
cific nurse is called cannot be controlled, as there is no extra information
available. This is different for solutions based on semantic knowledge:
if the state of care givers (busy or free), their current position, and for
example their skills are known, a system can always choose the best
suitable nurse for a call. In this paper we describe such a semantic nurse
call system implemented using the EYE reasoner and Notation3 rules.
The system is able to perform OWL-RL reasoning. Additionally, we use
rules to implement complex decision trees. We compare our solution to
an implementation using OWL-DL, the Pellet reasoner, and SPARQL
queries. We show that our purely rule-based approach gives promising
results. Further improvements will lead to a mature product which will
significantly change the organization of modern hospitals.

Keywords: Notation3 · eHealth · OWL 2 RL

1 Business Case

Our business case is a nurse call system in a hospital. The system is aware
of certain details about personnel and patients. Such information can include:
personal skills of a staff member, staff competences, patient information, spe-
cial patient needs, and/or the personal relationship between staff members and
patients. Furthermore, there is dynamic information available, as for example
the current location of staff members and their status (busy or free). When a
call is made, the nurse call system should be able to assign the best staff member
to answer that call. The definition of this “best” person varies between hospitals
and can be quite complex. Our system should thus be easily adjustable, but also
very fast in taking a decision. The system additionally controls different devices.
If for example staff members enter a room with a patient, a decent light should
be switched on; if they log into the room’s terminal, they should have access to
the medical lockers in the room. Especially hospitals are interested in that kind
of system as it enables them to organize their work in a more efficient way:
c© Springer International Publishing Switzerland 2015
N. Bassiliades et al. (Eds.): RuleML 2015, LNCS 9202, pp. 465–472, 2015.
DOI: 10.1007/978-3-319-21542-6 31

466 D. Arndt et al.

– Busy nurses get distracted less. They only receive a call if everyone else is
also occupied or if the new task is more important than the task they are
currently performing.

– The system allows giving preference to staff members who are close to the
caller. This prevents nurses from covering unnecessary big distances in their
anyhow stressful and physically exhausting daily work.

– If the system is aware of the reason for a call, it can immediately assign
nurses with the required skills. Thus, no time is lost by first calling other
staff members who then would have to ask for additional help.

– The system can prefer staff members who already know the patient and have
a trust relationship with him. This increases the satisfaction of the patient.
At the same time, it also saves time for the caregiver, who is in such cases
already familiar with the patient’s needs and condition.

– The system is universal, i.e., electronic devices in the hospital can be con-
trolled as well.

– The system is adaptable, i.e., hospitals can add their own requirements and
priorities.

2 Technological Challenges

An event-driven system as described above has to fulfill certain requirements.
The system should:

Scalability cope with data sets ranging from 1000 to 100 000 relevant triple
(i.e., triples necessary to be included for the reasoning to be correct);

Semantics be able to draw conclusions based on the information it is aware of;
Functional complexity implement deterministic decision trees with varying

complexities;
Configuration have the ability to change these decision trees at configuration

time; and
Real-time return a response within 5 seconds to any given event.

There are several options to implement a nurse call system as described
above. Following a more classical approach, the system could be written in an
object-oriented programming language such as Java or C++. An implementation
like this can easily fulfill the real-time and scalability constraints. But such sys-
tems are traditionally hard-coded: they are implemented for a specific use case,
and even though they might be able to support the required functional complex-
ity, this implementation would be static. The possibility to configure complex
decision trees as postulated by the complexity requirement is rather hard to ful-
fill using traditional programming. Even more difficult to satisfy is the semantic
requirement: most object oriented languages do not support enough logic to
“understand” the available information. Knowledge must be stated explicitly, as
even simple connections between statements such as “nurse x has location y”
and “y is location of nurse x” cannot be found easily.

Ontology Reasoning Using Rules in an eHealth Context 467

Especially the last argument motivates us to solve the described problem
using semantic web technologies as they natively fulfill the semantics require-
ment. Knowledge can be represented in an OWL ontology which is understood
by OWL-DL reasoners such as for example Pellet [6]. Complex decision trees can
be handled by subsequent SPARQL queries. It is easy to add new queries or to
change the order of existing queries and to thereby accommodate for the config-
uration constraint. But our tests have shown that such systems inherently are
not fast and reliable enough to fulfill the scalability and real-time requirements.
For bigger amounts of data or too complex decision trees, the reasoning times
of traditional OWL-DL reasoners grow exponentially, which is not scalable.

To keep the benefits of an OWL-DL based implementation in a scalable and
real-time way, we propose a rule-based solution. By using OWL 2 RL rules and
resolution instead of classical tableaux reasoning, we can significantly decrease
reasoning times and still cover a major subset of OWL 2. This approach benefits
from the high performance of rule based reasoners. Even for bigger datasets the
reasoning times are still faster than with the OWL-DL based approach. Also,
complex decision trees can directly be implemented in rules. As rules are the
most natural representations of such trees, it is easy for a user to understand
and change certain priorities or to configure new rules. A further advantage of
our approach is that all logic is represented in one single way. Instead of OWL
plus SPARQL, we can implement the business case by only employing Nota-
tion3 Logic (N3). With the aforementioned system, we can meet all necessary
requirements.

3 Rule-Based Solution

In this section, we further explain our solution in three parts. First, we focus
on the technical background and the technologies used. In the second part we
describe how we could improve reasoning times for our use case by employing
OWL 2 RL rules written in N3. In the third part we show example rules from
our decision trees and discuss options to change these rules.

3.1 Background

Our solution improves on a more classical implementation which employs the
OWL 2 reasoner Pellet [6], and where the decision tree was implemented via
SPARQL queries. All knowledge was represented using the ACCIO ontology,
which is described by Ongenae et al. [5]. Knowledge could either be fixed or
dynamic, and updated via an event. Fixed knowledge is, for example, information
about skills of staff members, or patients’ preferences. Dynamic knowledge is,
for example, the movement of a nurse to a certain location, or a new call which
is made by a patient.

Our new implementation keeps the knowledge representation of the first
attempt but replaces SPARQL and OWL by Notation3 Logic (N3) [1]. This logic
forms a superset of RDF and extends the RDF data model by formulas (graphs),

468 D. Arndt et al.

1 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
2 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
3
4 {?C rdfs:subClassOf ?D. ?X a ?C} => {?X a ?D}.

Listing 1. OWL-RL rule for rdfs:subClassOf class axiom in N3.

functional predicates, universal variables and logical operators, in particular the
implication operator. These last two features enable the user to express rules.
As reasoner we use EYE [7], a semibackward reasoning engine enhanced with
Euler path detection. The main reason for our choice is the high performance of
the reasoner. Existing benchmarks and results are listed on the EYE website [3].

3.2 OWL 2 RL in N3

To be able to support OWL 2 RL reasoning in N3 we used the OWL 2 RL/RDF
rules as listed on the corresponding website [2]. Where possible, we made use of
existing N3-translations of these rules as provided by EYE [4]. Missing concepts
were added. Although the ACCIO ontology is designed for OWL-DL reasoning,
the limitation to OWL RL had no impact for our specific use case.

To illustrate the idea of using rules for OWL reasoning, we give a small
example: Listing 1 shows the class axiom rule1 which is needed to deal with the
rdfs concept subclassOf. For convenience we omit the prefixes in the formulas
below. The empty prefix refers to the ACCIO ontology, rdf and rdfs have the
same meaning as in Listing 1. Consider that we have the following T-Box triple
stating that the class :Call is a subclass of the class :Task:

:Call rdfs:subClassOf :Task. (1)

If the A-Box contains an individual which is member of the class :Call

:call1 a :Call. (2)

an OWL DL reasoner would make the conclusion that the individual also belongs
to the class Task

:call1 a :Task. (3)

Our rule in Listing 1 does exactly the same: as Formula 1 and Formula 2 can
be unified with the antecedence of the rule, a reasoner derives the triple in
Formula 3. Other concepts can be handled similarly.

3.3 Decision Trees

The ACCIO ontology [5] provides the user with a huge variety of concepts which
can, e.g., be used to describe patients (social background, needs, disease), staff
1 The rule is the N3 version of the cax-sco rule in Table 7 on the OWL 2 Profiles

website [2].

Ontology Reasoning Using Rules in an eHealth Context 469

1 @prefix : <http://ontology/Accio.owl#>.
2 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
3
4 {
5 ?c rdf:type :Call.
6 ?c :hasStatus :Active.
7 ?c :madeAtLocation ?loc.
8 ?p :hasRole [rdf:type :StaffMember].
9 ?p :hasStatus :Free.

10 ?p :closeTo ?loc.
11 }
12 =>
13 {
14 (?p ?c) :assigned 200.
15 }.

Listing 2. Rule assigning a preference value to a staff member with status ”free”
who is close to the call-location.

members (skills, relationships to patients), and situations (locations of persons,
states of devices). If all this information is actually available, decision trees can
use all of it and be therefore quite complex. In this section we provide two simple
rules which could be part of such a tree and we explain how these rules can be
modified depending on the needs of an individual hospital.

Listing 2 shows a rule which, given an active call, assigns a staff member
with a certain preference to that call. The EYE reasoner works with filter rules
(queries), it is easy to search for the assignment of a staff member with the lowest
or highest number. In our example, lower numbers mean higher preferences. The
antecedence of the given rule contains certain constraints: the active call is made
on a certain location and there is a staff member, who is currently free and
close to that location. In such a case, our rule assigns the number 200 to the
combination of call and staff member.

Listing 3 displays another rule: here, the reason of the active call is known.
We have a staff member who has the required skills to answer that kind of calls,
but this staff member is currently busy. Our rule assigns the number 100 to this
combination of call and staff member. This means, in our current decision tree,
we prefer this assignment to the one described by Listing 2.

Now, it could be, that another hospital has different priorities. Imagine for
example that in this new hospital, no busy staff should be called if there is still a
free staff member available, regardless of the reason of the call. We could easily
adapt our decision tree by simply changing the assignment number of one of the
rules. If we replace the triple

(?p ?c) :assigned 100.

in line 16 of Listing 3 by the triple

(?p ?c) :assigned 300.

470 D. Arndt et al.

1 @prefix : <http://ontology/Accio.owl#>.
2 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
3
4 {
5 ?c rdf:type :Call.
6 ?c :hasStatus :Active.
7 ?c :hasReason [rdf:type :CareReason].
8 ?p rdf:type :Person.
9 ?p :hasStatus :Busy.

10 ?p :hasRole [rdf:type :StaffMember].
11 ?p :hasCompetence [rdf:type :AnswerCareCallCompetence].
12 }
13 =>
14 {
15 (?p ?c) :assigned 100.
16 }.

Listing 3. Rule assigning a preference value to a busy staff member who has the
needed skills to answer the call.

the reasoner would prefer the assignment expressed by Listings 2 to 3.
Similarly, we can add extra conditions to the rules. Currently, the rule in

listing 3 does not take the location of the staff member into account. We can
change that by only adding the triples

?c :madeAtLocation ?loc. ?p :closeTo ?loc.

to the antecedence of the rule. To give this new rule a higher priority than the
existing one, we would again only have to change the assigned number in the
consequence. Rules with the same number are treated equally.

4 Results

We compared the reasoning times of our implementation with the results of
our former implementation using the Pellet reasoner and subsequent SPARQL-
queries. As a joint test set up we ran a sequence of events, which we list below,
the expected reasoning result is indicated in brackets.

1. A patient launches a call (assign nurse and update call status)
2. The assigned nurse indicates that she is busy (assign other nurse)
3. The newly assigned nurse accepts the call task (update call status)
4. The nurse moves to the corridor (update location)
5. The nurse arrives at the patients’ room (update location, turn on lights and

update nurse status)
6. The nurse logs into the room’s terminal (update status call and nurse, open

lockers)
7. The nurse logs out again (update status call and nurse, close lockers)
8. The nurse leaves the room (update location and call status and turn off lights)

Ontology Reasoning Using Rules in an eHealth Context 471

We tested this set-up for two datasets, one dataset consisting of the nurses,
hospital rooms and patients of one single ward, the other one for 10 wards.
Figure 1a shows the difference in reasoning times of this use case on the same
hardware settings2, using two different technology stacks: the Pellet+SPARQL
installation vs. the EYE installation3. The timings shown are the sum of all
reasoning cycles.

As the figure shows, the reasoning times of EYE are almost one order of
magnitude better than the reasoning times of Pellet+SPARQL. When we review
the reasoning times per call for one ward (Figure 1b), we see that the EYE
installation has far more predictable reasoning times, as it is more robust against
more complex decision trees (e.g., the decision trees of the first two events are
notably more complex than the other events’ decision trees). Pellet+SPARQL
is much faster than EYE in the third event, because this event does not trigger
any reasoning for Pellet+SPARQL, however, a full reasoning cycle is performed
by EYE. With an average reasoning time of about 2 seconds, the real-time
constraint is achieved within small-scale datasets.

No. of Time in sec.
wards EYE Pellet

1 18 79
10 288 2 124

(a) Sum of reasoning times. (b) 1 ward, reasoning time per event.

Fig. 1. Comparison of reasoning times. EYE is generally faster, and more predictable.

5 Importance and Impact

By using rule based reasoning instead of description logic based reasoning, we
create a more performant system that is more easily configurable. The evaluation
shows that the current version does not meet the performance requirements to
be applied for larger datasets, however, it can already meet the constraints in a
small-scaled setting, it is on average faster than more traditional approaches such
as Pellet+SPARQL, and it has more robust and predictable reasoning times.
2 Debian “’Wheezy”, Intel(R) Xeon(R) CPU E5620@2.40GHz, 12GB RAM.
3 Pellet 3.0 and OWL-API 3.4.5 vs. EYE 7995 and SWI-Prolog 6.6.6.

472 D. Arndt et al.

The analysis of converting a decision tree into rules shows how a rule based
reasoning method is more suited to implement decision trees, and how it is as
such easier configurable to make changes to the implemented decision trees.
The described analysis, being generic, can be used as a guideline for converting
decision trees into rules for other use cases as well.

The results of this research are being supervised by Televic Healthcare, the
leading eHealth electronics company in Belgium. This way, the chances that
the findings of this research will be commercialized are quite high, and as such,
potentially improve the workload of the nurses in a hospital significantly, as
elaborated on in 1.

Further research will involve improving the automatic selection of relevant
OWL-RL concepts. This way, reasoning over unused concepts is avoided, which,
as we believe, will drastically improve average reasoning times, and more impor-
tantly, will make sure that the system will scale a lot better than it does now.

Acknowledgments. The research activities described in this paper were funded by
Ghent University, iMinds, the IWT Flanders, the FWO-Flanders, and the European
Union, in the context of the project “ORCA”, which is a collaboration of Televic Health-
care, Internet-Based Communication Networks and Services (IBCN), and Multimedia
Lab (MMLab).

References

1. Berners-Lee, T., Connolly, D., Kagal, L., Scharf, Y., Hendler, J.: N3Logic: A logical
framework for the World Wide Web. Theory and Practice of Logic Programming
8(3), 249–269 (2008)

2. Calvanese, D., Carroll, J., Di Giacomo, G., Hendler, J., Herman, I., Parsia, B.,
Patel-Schneider, P.F., Ruttenberg, A., Sattler, U., Schneider, M.: owl 2 Web
Ontology Language Profiles. w3c Recommendation, December 2012. www.w3.org/
TR/owl2-profiles/

3. De Roo, J.: Euler yet another proof engine (1999–2015). http://eulersharp.
sourceforge.net/

4. De Roo, J.: EYE and OWL 2 (1999–2015). http://eulersharp.sourceforge.net/2003/
03swap/eye-owl2.html

5. Ongenae, F., Bleumers, L., Sulmon, N., Verstraete, M., Van Gils, M., Jacobs, A.,
De Zutter, S., Verhoeve, P., Ackaert, A., De Turck, F.: Participatory design of a
continuous care ontology (2011)

6. Parsia, B., Sirin, E.: Pellet: An OWL DL reasoner. In: Proceedings of the Third
International Semantic Web Conference (2004)

7. Verborgh, R., De Roo, J.: Drawing conclusions from linked data on the web. IEEE
Software 32(5), May 2015. http://online.qmags.com/ISW0515?cid=3244717&
eid=19361&pg=25

www.w3.org/TR/owl2-profiles/
www.w3.org/TR/owl2-profiles/
http://eulersharp.sourceforge.net/
http://eulersharp.sourceforge.net/
http://eulersharp.sourceforge.net/2003/03swap/eye-owl2.html
http://eulersharp.sourceforge.net/2003/03swap/eye-owl2.html
http://online.qmags.com/ISW0515?cid=3244717&eid=19361&pg=25
http://online.qmags.com/ISW0515?cid=3244717&eid=19361&pg=25

Author Index

Agarwal, Sudhir 161
Alferes, José Júlio 258
Arndt, Dörthe 127, 465
Artikis, Alexander 70
Athan, Tara 144

Baget, Jean-François 328
Basseda, Reza 376
Bell, Roy 144
Berre, Arne J. 456
Bertossi, Leopoldo 277
Bhatti, Jabran 465
Bobek, Szymon 83
Boley, Harold 161, 176
Bonte, Pieter 465

Cassard, Daniel 431
Chell, Charley 376

De Meester, Ben 465
De Roo, Jos 127
De Turck, Filip 465
Dereuddre, Wim 465

Esposito, Floriana 407

Farias, Tarcisio M. 97
Ferilli, Stefano 407
Frühwirth, Thom 13
Fürnkranz, Johannes 54
Fusco, Mario 208

Gao, Tiantian 376
Genesereth, Michael 3, 161
Gomes, Ana Sofia 258
Gottlob, Georg 35
Greenspan, Steven 376
Grüninger, Michael 225

Hasan, Ahmad 241

Julián-Iranzo, Pascual 193

Kao, Eric 3
Katsumi, Megan 225
Kendall, Elisa 144
Kholkar, Deepali 388
Khorramhonarnama, Arash 456
Kifer, Michael 376
Kliegr, Tomáš 54
Kulkarni, Vinay 388

Ławrynowicz, Agnieszka 422
Leclère, Michel 328
Lukasiewicz, Thomas 294

Mannens, Erik 127, 465
Martinez, Maria Vanina 294
Milani, Mostafa 277
Mohapatra, Abhijeet 161
Moreira, Dilvan A. 112
Moreno, Ginés 193
Morzy, Mikołaj 422
Mugnier, Marie-Laure 328
Musen, Mark A. 112

Nalepa, Grzegorz J. 83
Nicolle, Christophe 97
Nikolov, Nikolay 456

Ongenae, Femke 465
Orlando, João Paulo 112
Orsi, Giorgio 35
Østhassel, Ivar 456

Paschke, Adrian 144, 241
Pazienza, Andrea 407
Pettersen, Bjørg E. 456
Pieris, Andreas 35
Polleres, Axel 360
Predoiu, Livia 294
Proctor, Mark 208

Ráth, István 208
Rocher, Swan 328

Rodríguez-Mondéjar, Jose Antonio 447
Roman, Dumitru 456
Roxin, Ana 97

Salleb-Aouissi, Ansaf 431
Santodomingo, Rafael 447
Sanz-Bobi, Miguel Angel 447
Schaballie, Jeroen 465
Shi, Ling 456
Simari, Gerardo I. 294
Šimkus, Mantas 311
Sipieter, Clément 328
Sottara, Davide 144, 208
Steyskal, Simon 360
Sun, Hong 127

Sun, Xin 347
Sunkle, Sagar 388

Teymourian, Kia 241

Uslar, Mathias 447

Van De Walle, Rik 127
Van de Walle, Rik 465
Vázquez, Carlos 193
Verborgh, Ruben 127, 465
Vrain, Christel 431

Weidlich, Matthias 70

Zou, Gen 176
Zozuliński, Mateusz 422

474 Author Index

	Preface
	Organization
	When Processes Rule Events
	Contents
	Invited Papers
	The Herbrand Manifesto
	1 Introduction
	2 Nuts and Bolts
	3 No Free Lunch
	4 Curiouser and Curiouser
	5 Conclusion
	References

	Constraint Handling Rules - What Else?
	1 Executive Summary
	1.1 Powerful Program Analysis
	1.2 Implementations and Applications

	2 A Taste of CHR Programs
	3 CHR Semantics
	3.1 CHR Rules and Their Declarative Semantics
	3.2 Operational Semantics for CHR
	3.3 Operational Semantics for Parallel CHR

	4 Properties of CHR and Their Analysis
	4.1 CHR Monotonicity Properties
	4.2 Anytime Online Algorithm Properties
	4.3 Termination and Time Complexity Analysis
	4.4 Confluence and Completion
	4.5 Operational Equivalence

	5 CHR Implementations and Embeddings in CHR
	5.1 CHR Implementations and Their Efficiency
	5.2 CHR Language Variants and Extensions
	5.3 Embedding Other Formalisms and Languages in CHR

	6 CHR in Research and Applications
	6.1 Language Design and Algorithm Design
	6.2 Software Verification and Testing
	6.3 Constraints Solving and Reasoning
	6.4 Multi-agent Systems and Abduction
	6.5 Semantic Web
	6.6 The Diversity of CHR Applications

	7 Conclusions
	References

	Consistency Checking of Re-engineered UML Class Diagrams via Datalog+/-
	1 Introduction
	1.1 UML Class Diagrams
	1.2 Research Challenges
	1.3 Summary of Contributions

	2 Reverse Engineering
	2.1 Our Experiment
	2.2 Formalizing Reverse Engineered UCDs

	3 Consistency Check of Diagrams
	3.1 A Database-Theoretic Approach
	3.2 Chase Failure
	3.3 Query Entailment
	3.4 Pinpointing the Complexity

	4 Conclusions
	References

	A Brief Overview of Rule Learning
	1 Introduction
	2 Descriptive Rule Discovery
	2.1 Subgroup Discovery
	2.2 Association Rule Discovery

	3 Predictive Rule Learning
	3.1 Classification by Association
	3.2 Covering Algorithm

	4 Well-Known Rule Learning Algorithms
	5 Applications in Linked Data and Semantic Web
	6 Conclusion
	References

	Distribution and Uncertainty in Complex Event Recognition
	1 Introduction
	2 Applications
	3 Research Challenges
	3.1 Distributed Event Recognition
	3.2 Event Recognition under Uncertainty

	4 Summary
	References

	General RuleML Track
	Compact Representation of Conditional Probability for Rule-Based Mobile Context-Aware Systems
	1 Introduction
	2 Related Work and Motivation
	2.1 Motivation

	3 XTT2 Knowledge Representation
	4 Probabilistic Interpretation of XTT2 Models
	4.1 Learning Probability Distribution in XTT2 Models
	4.2 Inference in the Probabilistic XTT2 Models
	4.3 Use Case Scenario

	5 Summary and Future Work
	References

	FOWLA, A Federated Architecture for Ontologies
	1 Introduction
	2 Background
	3 Related Work
	4 A Federated Architecture for Ontologies (FOWLA)
	4.1 Pre-processing Phase
	4.2 Query Execution Phase

	5 Results and Disc cussion
	6 Conclusion and Future Work
	References

	User Extensible System to Identify Problems in OWL Ontologies and SWRL Rules
	1 Introduction
	2 Related Work
	3 The MetaFOR Ontology
	3.1 Entities
	3.2 Entity Relationships
	3.3 Data Relationships
	3.4 Converter

	4 Case Study
	4.1 Circularity Problems
	4.2 Problems with Contradictory Knowledge
	4.3 Redundant Knowledge
	4.4 Two Possible User Scenarios

	5 Conclusions
	References

	Semantics of Notation3 Logic: A Solution for Implicit Quantification
	1 Introduction
	2 Related Work
	3 Syntax
	4 Implicit Quantification
	4.1 Existentials
	4.2 Universals

	5 Formalization of Quantification
	6 Semantics of Notation3
	7 Towards full N3Logic
	8 Conclusion and Future Work
	References

	API4KP Metamodel: A Meta-API for Heterogeneous Knowledge Platforms
	1 Introduction
	2 Upper-Level Concepts and Basic Knowledge Resources
	2.1 Mutability
	2.2 Environments
	2.3 Descriptions
	2.4 Operations and Events

	3 Structured Knowledge Resources
	3.1 Monads
	3.2 Nested Monadic Structures
	3.3 Heterogeneous Structures

	4 Metamodel Appplied to the Scenario
	5 Related Work
	6 Conclusion and Future Work
	References

	Rule-Based Exploration of Structured Data in the Browser
	1 Introduction
	2 Dexlog
	3 Dexter: Interface and Features
	4 Efficient Evaluation of Dexlog Rules
	4.1 Query Decomposition
	4.2 Removal of Irrelevant Rules
	4.3 Query Fragmentation
	4.4 Parallel Evaluation of Queries

	5 Demonstration Scenarios
	6 Related Work and Concluding Remarks
	References

	PSOA2Prolog: Object-Relational Rule Interoperation and Implementation by Translation from PSOA RuleML to ISO Prolog
	1 Introduction
	2 Background on the Source and Target Languages
	2.1 PSOA RuleML
	2.2 ISO Prolog

	3 Normalization of the PSOA Source in Five Steps
	3.1 Objectification
	3.2 Skolemization
	3.3 Slotribution/Tupribution
	3.4 Flattening Nested External Function Applications
	3.5 Splitting Rules with Conjunctive Conclusions
	3.6 Normalizing the Startup Example

	4 Mapping the Normalized PSOA Source to Prolog
	4.1 Constants and Variables
	4.2 Central PSOA Constructs
	4.3 Mapping the Startup Example

	5 Realization and Evaluation
	6 Conclusions and Future Work
	References

	Similarity-Based Strict Equality in a Fully Integrated Fuzzy Logic Language
	1 Introduction
	2 The FASILL Language
	3 Operational Semantics of FASILL
	4 Similarity-Based Strict Equality for MALP and FASILL
	5 Conclusions and Future Work
	References

	Building a Hybrid Reactive Rule Engine for Relational and Graph Reasoning
	1 Introduction
	2 Background
	3 Introducing OOPath
	3.1 Advanced Rule Constructs

	4 Reactive OOPath
	5 Benchmark
	6 Related Works
	7 Discussion
	8 Conclusions and Future Works
	References

	Complex Event Processing Track
	Using PSL to Extend and Evaluate Event Ontologies
	1 Introduction
	2 Background
	2.1 SEM
	2.2 LODE
	2.3 The Event Ontology
	2.4 PSL

	3 Generic Requirements
	3.1 Motivating Scenarios
	3.2 Informal Competency Questions

	4 Extensions of the Event Ontologies
	4.1 Ontology Grafting
	4.2 OWL Extensions of the Ontologies
	4.3 SWRL Extensions of the Ontologies

	5 Evaluation
	5.1 Results
	5.2 Troubleshooting Ontology Expressivity

	6 Looking Forward
	7 Summary
	References

	Probabilistic Event Pattern Discovery
	1 Introduction
	2 Preliminaries
	3 The Framework
	4 Pattern Detection
	5 Probabilistic Pattern Extension
	6 Evaluation
	6.1 Experimental Dataset
	6.2 Warm-Up Experiment
	6.3 Execution Time: Deterministic vs. Probabilistic Discovery
	6.4 Frequency Error Rates
	6.5 Accumulated MAPE
	6.6 Discovery of Frequent and Infrequent Patterns
	6.7 Pattern Discovery under Controlled Entropy

	7 Related Work
	8 Conclusion
	References

	How to Combine Event Stream Reasoning with Transactions for the Semantic Web
	1 Introduction and Motivation
	2 Background: TRev
	3 Oracles for Stream Reasoning
	4 An Example Combining Event Stream Reasoning and Transaction Execution
	5 Discussion and Final Remarks
	References

	Existential Rules and Datalog+/- Track
	Ontology-Based Multidimensional Contexts with Applications to Quality Data Specification and Extraction
	1 Introduction
	2 An Extended, Motivating Example
	3 Preliminaries
	4 Extending the HM Model with Datalog
	5 Properties of MD Datalog Ontologies
	6 MD Contexts for Quality Data
	7 Conclusions
	References

	Existential Rules and Bayesian Networks for Probabilistic Ontological Data Exchange
	1 Introduction
	2 Preliminaries
	3 Ontological Data Exchange
	3.1 Deterministic Ontological Data Exchange
	3.2 Probabilistic Ontological Data Exchange
	3.3 Compact Encoding
	3.4 Computational Problems

	4 Computational Complexity
	4.1 Decidability Paradigms
	4.2 Overview of Complexity Results
	4.3 Deterministic Ontological Data Exchange
	4.4 Probabilistic Ontological Data Exchange

	5 Summary and Outlook
	References

	Binary Frontier-Guarded ASP with Function Symbols
	1 Introduction
	2 Preliminaries
	3 Binary Frontier-Guarded Programs
	4 Forest-Model Property
	5 Outline of the Algorithm
	6 Automata Constructions
	7 Related Work
	8 Discussion
	References

	Graal: A Toolkit for Query Answering with Existential Rules
	1 Introduction
	2 Fundamental Notions
	3 Basic Query Answering
	4 Saturation
	5 Query Rewriting
	6 Utility Tools for Existential Rules
	7 Conclusion
	References

	Legal Rules and Reasoning Track
	Input/Output STIT Logic for Normative Systems
	1 Introduction
	2 Background
	3 Input/Output STIT Logic
	3.1 Simple-Minded
	3.2 Basic
	3.3 Simple-Minded Reusable

	4 Decidability
	4.1 Simple-Minded
	4.2 Basic
	4.3 Simple-Minded Reusable

	5 On Ross' Paradox
	6 Conclusion
	References

	Towards Formal Semantics for ODRL Policies
	1 Introduction
	2 Abstract Syntax of ODRL
	3 Explicit and Implicit Dependencies among Actions in ODRL
	3.1 Implicit Dependencies among ODRL Actions
	3.2 Explicit Dependencies among ODRL Actions

	4 Basic Semantics of ODRL Policies
	5 Proposed Semantics of ODRL Conflict Resolution Strategies
	5.1 Permission Overrides (perm)
	5.2 Prohibition Overrides (prohibit)
	5.3 No Conflicts Allowed (invalid)

	6 Related Work
	7 Conclusion
	References

	Representing Flexible Role-Based Access Control Policies Using Objects and Defeasible Reasoning
	1 Introduction
	2 Overview of Defeasible Reasoning
	3 Methodology and Architecture
	3.1 Resilience to Changes
	Classes and Objects:
	Modification via Patching:

	3.2 Virtual Hierarchies

	4 Conclusion
	References

	Explanation of Proofs of Regulatory (Non-)Compliance Using Semantic Vocabularies
	1 Introduction
	2 Motivation and Outline
	3 Proof Generation and Explanation
	3.1 Generating Proof of (Non-)Compliance
	3.2 Generating Explanation
	Elaborating Proofs Using Vocabularies and Mapping.

	4 Case Study
	5 Related and Future Work
	6 Conclusion
	References

	Rule Learning Track
	Rule Generalization Strategies in Incremental Learning of Disjunctive Concepts
	1 Introduction
	2 Background and Related Work
	2.1 InTheLEx
	2.2 Generalization and Disjunctive Concepts

	3 Clause Selection Strategy for Generalization
	4 Evaluation
	5 Conclusions
	References

	Using Substitutive Itemset Mining Framework for Finding Synonymous Properties in Linked Data
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Frequent Itemset Mining
	3.2 RDF

	4 Substitutive Sets
	5 Use Case: DBpedia
	5.1 Experimental Setup
	5.2 Results

	6 Conclusions
	References

	Learning Characteristic Rules in Geographic Information Systems
	1 Introduction
	2 Geographic Information Systems
	3 Framework
	3.1 Distance Quantified Path and Geographic Characteristic Rule
	3.2 Generality Order
	3.3 Evaluation Measures
	3.4 Algorithm

	4 Experiments
	5 Related Work
	6 Conclusion
	References

	Industry Track
	Rule-Based Data Transformations in Electricity Smart Grids
	1 Business Case
	2 Technological Challenges
	2.1 Heterogeneous Data Models in Smart Grids: CIM and SCL
	2.2 CIM-SCL Communication with Traditional Technologies

	3 Rule-Based Solution
	3.1 Resolving Naming Mismatches
	3.2 Resolving Multilateral Correspondences
	3.3 Resolving Covering Mismatches

	4 Results
	5 Importance and Impact
	References

	Norwegian State of Estate: A Reporting Service for the State-Owned Properties in Norway
	1 Business Case
	2 Technological Challenges
	3 Rule-Based Solution
	4 Results
	5 Importance and Impact
	References

	Ontology Reasoning Using Rules in an eHealth Context
	1 Business Case
	2 Technological Challenges
	3 Rule-Based Solution
	3.1 Background
	3.2 OWL 2 RL in N3
	3.3 Decision Trees

	4 Results
	5 Importance and Impact
	References

	Author Index

