
Chapter 1

Introduction to Statistics and Data
Visualisation

Ει$ κὸς γὰρ γίνεσθαι πoλλὰ καὶ παρὰ τὸ ει$ κ�oς.
It is likely that unlikely things should happen.

Aristotle, Poetics, 1456a, 24

Although it is a common perception that statistics seeks to quantify and categorise

uncertainty and unlikely events, it is actually a much broader and more general

field. In fact, statistics is the science of collecting, analysing, interpreting, and

displaying data in an objective manner. Built on a strong foundation in probability,

the application of statistics has expanded to consider such topics as curve fitting,

game theory, and forecasting. Its results are applied in many different fields,

including biology, market research, polling, economics, cryptography, chemistry,

and process engineering.

Basic statistical methods have been traced back to the earliest times in such

forms as the collection of data regarding a farmer’s livestock; the amount, quality,

and type of grain in the city granaries; or the phases of the moon by early

astronomers. With these simple data sets, graphs could be created, summary values

could be computed, and patterns could be detected and used. Greek philosophers,

such as Aristotle (384–322 B.C), pontificated on the meaning of probability and its

different realisations. Meanwhile, ancient astronomers, such as Ptolemy (c.
A.D. 90–168) and Al-Biruni (973–1048), were developing methods to deal with

the randomness and inherent errors in their astronomical measurements. By the start

of the late Middle Ages around 1,300, rudimentary probability was being developed

and applied to break codes. With the start of the seventeenth century and spurned by

a general interest in games of chance, the foundations of statistics probability were

developed by Abraham de Moivre (1667–1754), Blaise Pascal (1623–1662), and

Jacob Bernoulli (1655–1705). These scientists sought to resolve and determine

optimal strategies for such games of chance. The nascent nation states also took a

strong interest in the collection and interpretation of economic and demographic

information. In fact, the word statistics, first used by the German philosopher

Gottfried Achenwall (1719–1772) in 1749, is derived from the Neolatinate term

statisticum collegium, meaning council of the state, referring to the fact that even

then the primary use of the collected information was to provide insight (council)
about the nation state (Varberg 1963). In the early nineteenth century, work by
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amongst others Johann Carl Friedrich Gauss (1777–1855), Pierre-Simon Laplace

(1749–1827), and Thomas Bayes (1701–1761) led to the development of new

theoretical and practical ideas. Theoretically, the grounding of statistics in proba-

bility theory, especially the development of the Gaussian distribution, allowed for

many practical applications, including curve fitting and linear regression. Subse-

quent work, by such researchers as Andrei Kolmogorov (1903–1987) and Andrei

Markov (1856–1922), solidified the theoretical underpinning and developed new

ways of understanding randomness and methods for quantifying its behaviour.

From these foundations, Karl Pearson (1857–1936) and Ronald Fisher (1890–

1962) developed hypothesis testing, the χ2-distribution, principal component anal-

ysis, design of experiments, analysis of variance, and method of maximum likeli-

hood, which continue to be used today. Subsequently, these ideas were used by

George Box (1919–2013), Gwilym Jenkins (1932–1982), and Lenart Ljung

(1946�) to develop stochastic modelling and advanced probabilistic models with

applications in economics, biology, and process control. With the advent of com-

puters, many of the previously developed methods can now be realised efficiently

and quickly to analyse enormous amounts of data. Furthermore, the increasing

availability of computers has led to the use of new methods, such as Monte Carlo

simulations and bootstrapping.

Even though statistics still remains solidly applied to the study of economics and

demographics, it has broadened its scope to cover almost every human endeavour.

Some of the earliest modern applications were to the design and analysis of

agricultural experiments to show which fertilisers and watering methods were

better despite uncontrollable environmental differences, for example, amount of

sunlight received or local soil conditions. Later these methods were extended to

analyse various genetic experiments. Currently, with the use of powerful com-

puters, it is possible to process and unearth unexpected statistical relationships in a

data set given many thousands of variables. For example, advertisers can now

accurately predict changes in consumer behaviour based on their purchases over a

period of time.

Another area where statistics is used greatly is the chemical process industry,

which seeks to understand and interpret large amounts of industrial data obtained

from a given (often, chemical) process in order to achieve a safer, more environ-

mentally friendly, and more profitable plant. The process industry uses a wide range

of statistics, ranging from simple descriptive methods through to linear regression

and on to complex topics such as system identification and data mining. In order to

appreciate the more advanced methods, there is a need to thoroughly understand the

fundamentals of statistics. Therefore, this chapter will start the exploration with

some fundamental results in statistical analysis of data sets coupled with a thorough

analysis of the different methods for visualising or displaying data. Subsequent

chapters will provide a more theoretical approach and cover more complex methods

that will always come back to use the methods presented here. Finally, as a side

note, it should be noted that the focus of this book is on presenting methods that can

be used with modern computers. For these reasons, heavy emphasis will be made on

matrices and generalised approaches to solving the problems. However, except for
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the last two chapters dedicated to MATLAB® and Excel®, little to no emphasis will

be placed on any specific software as a computational tool; instead the theoretical

and implementation aspects will be examined in depth.

1.1 Basic Descriptive Statistics

The most basic step in statistical analysis of a data set is to describe it descriptively,

that is, to compute properties associated with the data set and to display the data set

in an informative manner. A data set consists of a finite number of samples or data
points. In this book, a data set will be denoted using either set notation, that is, {x1,
x2,. . ., xn} or vector notation, that is, as ~x ¼ x1; x2; . . . ; xnh i. Set notation is useful

for describing and listing the elements of a data set, while vector notation is useful

for mathematical manipulation. The size of the data set is equal to n. The most

common descriptive statistics include measures of central tendency and dispersion.

1.1.1 Measures of Central Tendency

Measures of central tendency provide some information about the most common

value in the data set. The basic measures of central tendency include the mean,
mode, and median. Since the most common such measure is the mean, which is

often colloquially called the average, all of these measures are often referred to as

averages. A summary of the basic properties of these measures is provided in

Table 1.1.

The mean is a measure of the central value of the set of numbers. It is often

denoted as an overbar (◌) over a variable, for example, the mean of ~x would be

written as x. The most commonmean is simply the sum of all the values divided by

the total number of data points, n, that is,

x ¼
Xn

i¼ 1
xi

n
ð1:1Þ

Alternatively, a weighted mean can be computed, where for each value a weight

w is assigned, that is,

x ¼
Xn

i¼ 1
wixiX n

i¼ 1
wi

ð1:2Þ
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The weighted mean can be used when the accuracy of some of the values is

suspected to be less than that of others. Although the mean is a commonly used

measure of central tendency and hence widely reported when describing data, it is

not necessarily a robust measure, that is, the mean can be heavily skewed by one or

two numbers that are significantly different from the others. For example, if we

have the data set of three numbers, {2, 3, 4}, whose mean is x¼ 3, and replace the

4 by 10, the mean becomes x¼ 5, which is larger than two of the other numbers.

The mode represents the most common entry in a given data set. Multiple entries

can be tied for the mode, in which case, the data set is said to bemultimodal.1 For the
following set of numbers, {2, 4, 5, 5, 5, 6, 7, 10, 10, 10, 11}, there are two modes:

5 and 10, as both occur exactly 3 times. Although, in general, the mode is less

sensitive to minor changes in the data set, it is still relatively easy to skew the results

by adding too many identical values to create a new modal value. Furthermore, the

most common entry need not be in any way descriptive of the overall properties of the

data set. This can especially be the case if one of the extreme values occurs slightly

more often than the other numbers and hence becomes the modal value.

The median represents the middle value of an ordered data set. If the number of

data points is odd, then the median will represent the middle value. On the other

hand, if the number of data points is even, then the median will be the mean value of

the two middle values. Although it can happen that the median value is equal to a

value in the data set, this is not necessarily always true. For the set given as {2, 4, 5,

10, 14, 14, 16, 17}, the median value would be 12 (¼ ½(10 + 14)). The main

advantage of the median value is that it represents the middle value of a given set

and is robust to single extreme values.

1.1.2 Measures of Dispersion

Measures of dispersion seek to provide some information about how the values in a

given data set are distributed, that is, are all the values clustered about one number

Table 1.1 Summary of the main properties of the measures of central tendency

Measure Formula Advantages Disadvantages

Mean
x ¼

Xn

i¼ 1
xi

n

Easy to compute and

interpret

Can easily be influenced by

extreme values

Mode Most common entries in

the data set

Easy to interpret Many not accurately represent

the data set

Median Middle entry of the

ordered data set

Robust and easy to

interpret

Not necessarily easy to

compute

1 If the specific number of tied entries is known, then the data set can be referred to by that number,

for example, bimodal for a data set with 2 modes or trimodal for three modes.
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or are they spread out across a large range of numbers. The basic measures of

dispersion include range, standard deviation or variance, skew, and median abso-
lute deviation (MAD). A summary of the basic properties of these measures is

provided in Table 1.2.

The range of a data set is simply defined as the difference between the largest

and smallest values within the data set. It is also possible to report the range as the

two numbers representing the extreme data set values. It provides a simple, but not

very meaningful, interpretation of the spread of the values. The larger the range, the

more spread out the values are. Clearly, the range is affected adversely by large

extreme values, since they would be directly used in its computation.

The standard deviation, σ, and variance, σ2, are two related measures of the

spread of the data set. The variance is always equal to the second power of the

standard deviation. The larger the standard deviation, the more spread out the data

set is. The variance can be computed as

σ̂2 ¼
Xn

i¼ 1
xi � xð Þ2

n� 1
ð1:3Þ

The standard deviation can then be computed by taking the square root of the value

obtained using Eq. (1.3). In statistics, the circumflex (◌̂) over a value shows that it is
estimated or computed from a data set, rather than some theoretical value, for

example, in Eq. (1.3), σ̂2 is the estimated value of the true variance, σ2, given the

data set. Even if the variance for the data set were the same, taking different data

points will lead to some variation in the computed value. It can be noted that the

Table 1.2 Summary of the main properties of the measures of dispersion

Measure Formula Advantages Disadvantages Comment

Range Max – min or [min, max] Easy to

compute

Can easily be

influenced by

extreme

values

Standard

deviation σ̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼ 1
xi � xð Þ2

n� 1

s
Commonly

used, can be

easy to

interpret

Can easily be

influenced by

extreme

values

Squaring it gives

the variance

Median

absolute

difference

σ̂MAD ¼ median xi � xmedianj jð Þ Robust

estimate

Can be

converted to an

estimate of the

standard

deviation

Skew
γ̂ ¼

n�1
Xn

i¼ 1
xi � xð Þ3

n�1
Xn

i¼ 1
xi � xð Þ2

� �1:5 Measures

the spread of

the extreme

values

Rarely used in

practice
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variance is sensitive to extreme values. Occasionally, the variance can be denoted

as the function var, for example, var(x) is the variance of x.
A method to avoid the sensitivity of the standard deviation to extreme values is

to compute the median absolute deviation (MAD), denoted by σMAD, which

replaces the mean by the robust median. It can be computed as follows:

σ̂MAD ¼ median xi � xmedianj jð Þ ð1:4Þ

where median is the function that determines the median value given a data set and

xmedian is the median value for the data set. It is possible to convert σ̂MAD to a robust

estimate of the standard deviation. However, it requires knowing the underlying

distribution in order to compute the conversion factor. For a normal distribution, the

robust estimate of the standard deviation can be written as

σ̂ ¼ 1:4826σ̂MAD ð1:5Þ

The skew, denoted by γ, measures the amount of asymmetry in the distribution.

Skewness is determined by examining the relationship in the clustering of extreme

values, that is, the tails. If more of the data set is clustered towards the smaller

extreme values, then it is said that the system has positive or right skewness. On the
other hand, if the data set is clustered towards the larger extreme values, then it is

said that the system has negative or left skewness. The skew of a data set can be

computed as

γ̂ ¼
n�1
Xn

i¼ 1
xi � xð Þ3

n�1
Xn

i¼ 1
xi � xð Þ2

� �1:5 ð1:6Þ

Graphically, the skewness can be seen from a histogram, which plots the frequency

of a value against the value. Examples of left and right skewness are shown in

Fig. 1.1.

1.1.3 Other Statistical Measures

In addition to the measures of central tendency and dispersion, there exist other

ways of quantifying a particular data set. This section will briefly review the two

most common such methods: quantiles and outliers.

1.1.3.1 Quantiles

A quantile is a way of dividing the data set into segments based on the ordered rank

of the data set. Common quantiles are the median (2 segments with the split at
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50%), quartiles (4 segments at 25, 50, and 75%), quintiles (5 segments at 20, 40,

60, and 80%), and percentiles (100 segments). In order to obtain a meaningful

division, there should be at least as many different data points as there are segments.

Partitioning a data set into quantiles can be accomplished using the following

steps:

1. Order the data set from smallest to largest.

2. Obtain an estimate of the boundaries for each of the segments using the

following formula (Hyndman and Fan 1996)

h ¼ n� 1ð Þ pþ 1

Qp ¼ x hb c þ h� hb cð Þ x hb c þ 1 � x hb c
� � ð1:7Þ

where n is the number of data points, p¼ k/q, k, and q are defined as the kth q-tile, xi
is the ith data point of the ordered data set, and b·c is the floor function, that is, round
down any number to its nearest integer. When p¼ 1, then Qp¼ xn.

Different formulae for computing the sample quantile can be obtained by

changing the equation for h. Two other common formulations are:

1. Exclusive Formulation: h¼ (n + 1)p+ 1 with both p and Qp computed the same

way as before.

2. Linear Interpolation Formulation: h¼ np +½ with both p and Qp computed the

same way as before.

The differences in the estimated values are in most cases quite minimal. A

comparison of the above methods is given in Table 1.6 in the context of an example

(see Sect. 1.3.3, p. 28).

It can be noted that in all versions of Excel®, the method defined by Eq. (1.7) is

available (as either the function quartile or quartile.inc). Newer versions
of Excel® (2010 or newer) also support option 1 (as quartile.exc). All

versions of MATLAB® implement option 2.
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Fig. 1.1 (Left) Right-skewed and (right) left-skewed data set
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1.1.3.2 Outliers

Outliers are data points that seem to be quite different from surrounding values and

expected behaviour. Outliers can be caused by many different factors, including

data entry or data collection errors or caused by randomness inherent in the system.

Whenever a point is suspected to be an outlier, it is always useful to check that it has

been correctly recorded and collected. Determining whether a point is an outlier is

ultimately subjective and relies on intuition. Common rules for determining outliers

include (Lin et al. 2007):

1. Visual Tests: visual inspection to determine which values are located far from

the bulk of the data, for example, in the set {1, 2, 1, 2, 3, 0, 2, �10}, �10 could

be considered to be an outlier. Displaying the data using graphs can be a very

useful approach. Graphs, such as the box-and-whisker plot, line charts, and

scatter plots, can be useful for determining outliers.

2. 3σ Edit Rule: data points whose Z-score are large (>3), where the Z-score is

given as

Zi ¼ xi � x

σ
ð1:8Þ

xi is the data point of interest, Zi is the corresponding Z-score, x is the mean value

of the data set, and σ is the standard deviation of the data set. This approach only

works if it can be assumed that the data set comes from a normal distribution and

is not very robust.

3. Hampel identifier (Davies and Gather 1993): the Hampel identifier assumes that

points which lie outside the band xmedian� 3σmad, where σmad is defined as

σmad ¼ 1:4826median xi � xmedianj jð Þ ð1:9Þ

and median is the function that determines the median value of the given data

set. This equation represents the median absolute difference and is a robust

manner of estimating the spread of the data. The constant is selected such that

σmad is equal to σ for a normal distribution. In fact, for a normal distribution, the

Hampel identifier and the 3σ edit rules will produce the same results.

1.2 Data Visualisation

Data visualisation is the science and art of displaying information in a visual

manner that not only displays the relevant information accurately but is also

visually appealing. There exist many different methods for visualising a given

data set, including graphs and tables. Each method has its advantages and disad-

vantages when it comes to displaying the data. In general, the following principles

can be followed to determine which method is best to display the data:
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1. Density of Information: how much information is to be presented? Are there only

a few points that need to be summarised, or are there multiple points that need to

be shown?

2. Comparison: what is the point of showing the values? What types of relation-

ships between the data are to be highlighted?

3. Efficiency: which method shows the desired relationships the best? How well is

the information displayed? Are the desired relationships visible clearly?

4. Display Scheme: what kind of display scheme will be required? Will you need to

use different colours? If so, how many? Will you need to use multiple different

symbols? If so, which ones? Can they all be distinguished easily in the figure?

What if the figure is printed in black and white? What type of scale will be used:

normal or logarithmic?

Irrespective of the method selected, it is important that the following informa-

tion, as appropriate, be included:

1. Titles/Captions: each figure or group of figures should have a clear title or

caption that briefly explains the information in the figure.

2. Labels: appropriate labels should be included. This should include, as appropri-

ate, the full name of what is being shown, abbreviations, and units. All axes and

legend headings should be considered. For axes, an acceptable and very useful

approach would be to use the following label “full name, abbreviation (units)”,

for example, “temperature, T (�C)”. A legend should be provided if multiple

types of information are plotted on the same graph.

3. Display: are the different symbols used clearly distinguishable? Consider the

fact that many figures will end up in black-and-white publications. This implies

that relying solely on colour to distinguish different aspects on a figure can be

difficult. Furthermore, data points should not be connected by lines unless there

is a reason for connecting the points. This implies that experimental data in many

cases should be entered as single points, while theoretical values should be

connected with a single continuous line.

A good discussion of the art of data visualisation, as well as some ideas on how

to implement it, can be found in the books by Edward Tufte (Tufte 2001; Tufte

1997).

1.2.1 Bar Charts and Histograms

A bar chart is a graph that contains vertical or horizontal bars whose length is

proportional to the value. Bar charts compare by their nature discrete information.

One axis will contain the category or discrete item, while the other axis will contain

the value axis. Typical bar charts are shown in Fig. 1.2. Although 3-D bar charts are

possible, they do not provide any advantage for displaying the information accu-

rately or efficiently.
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A histogram, similar to a bar chart, shows the frequency of a given range of

values that occur in the data set. Thus, a histogram records continuous data but

presents it in a similar manner. A histogram is constructed by first creating bins or

ranges of numbers. Next, the number of times a value from the data set falls within

each of the ranges is determined and noted. Once this has been completed, a vertical

bar chart is plotted using the bins as the category and the occurrences as the value. It

should be noted that the bins are normally assigned so that they are of equal size

(except for the two end points) and are continuous, that is, two adjacent bins share

the same end point. A 4-bin example could be x< 3, 3� x< 5, 5� x< 7, and x� 7.

A typical histogram is shown in Fig. 1.3. Not all software provides methods for

directly creating a histogram. In some cases, it is necessary to manually bin the data

and then create the corresponding bar graph.

1.2.2 Pie Charts

A pie chart is a circle whose arc length has been divided up into different pro-

portions. It is named after how a pie is cut. Pie charts can be used to display the

relationships of parts to a whole, for example, components of a budget. However,

too many different items in a pie chart can lead to difficulties with representing the

items effectively, as the number of available colours and amount of space can be

limited. Also, a pie chart tends to require more space than would ideally be needed

to display the information. A typical pie chart is shown in Fig. 1.4.

1.2.3 Line Charts

A line chart is a graph that contains individual data points connected by a line.

Very often, the horizontal, or x-axis, will represent time and the vertical, or
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y-axis, will represent the value of some variable over time. For this reason, a line

chart is often called a time series plot. A line chart is very effective in showing

how a variable(s) changes over time. However, too many competing lines can

make the figure difficult to read and understand. A typical line chart is shown in

Fig. 1.5.
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1.2.4 Box-and-Whisker Plots

A box-and-whisker plot, or more simply a boxplot, is a complex graph that is based

on quartiles to conveniently display multiple different properties of the data set. It

can conveniently be used to compare different data sets. A box-and-whisker plot

consists of two parts: the box and the whiskers. The box is formed by the 25th

(Q1) and 75th (Q3) percentile boundaries with the middle line invariably being the

median (Q2). The whisker limits are defined using any of the following rules:

1. Maximum and minimum of the data set.

2. Lowest data point located within 1.5 of the interquartile range from the lower

quartile and the largest data point located within 1.5 of the interquartile range

above the upper quartile. The interquartile range is defined as the difference

between Q3 and Q1. Such a plot is often called a Tukey boxplot.
3. The 9th and 91st percentiles.

4. The 2nd and 98th percentiles.

In all cases, data points lying outside the whisker limits are conventionally denoted

by crosses or dots, often in another colour. Such points can be labelled as outliers.
Of the available definitions, the most commonly encountered box-and-whisker

plots use whisker bounds defined by the first two rules. Typical box-and-whisker

plots are shown in Fig. 1.6. These box-and-whisker plots were created using the

interquartile range for the data points.
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1.2.5 Scatter Plots

A scatter plot shows the values obtained using some mark. These marks are not

connected and hence it looks like all the values are scattered around. A scatter plot

is useful when it is desired to show the relationship between two variables, but the

values vary quite a bit between each sample. Often, the true or predicted values can

be superimposed using a line. The selection of the appropriate mark can be

important, especially when there are many data points to show. Ideally, each data

point should be clearly visible. In some cases, it may be useful to show data from

multiple experiments or runs together on a single plot. Again, the various marks

need not only to be individually distinguishable, but also they need to be distin-

guishable from each other. A typical scatter plot is shown in Fig. 1.7.

1.2.6 Probability Plots

A probability plot is a graph that compares the data set against some expected

statistical distribution by comparing the actual quantiles against the theoretical

quantiles. Such probability plots are also often called Q�Q or P�P plots. The

most common statistical distribution for comparison is the normal distribution. The

exact values plotted on each of the axes depend on the desired graph and software

used. In general, the theoretical values are plotted on the x-axis, while the actual

values are plotted on the y-axis. Occasionally, the actual values are modified in
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order to emphasise certain properties. A generalised probability plot can be

constructed using the following steps:

1. For each data point, compute its rank, denoted by Ri.

2. Compute an approximation of the quantile position using the following formula:

URi ¼
1� 0:5

1
n i ¼ 1

i� 0:3175

nþ 0:365
i ¼ 2, 3, . . . , n� 1

0:5
1
n i ¼ n

8>>><
>>>: : ð1:10Þ

It can be noted that any of many different formulae can be used here. The

simplest formula is given as

URi ¼ i� 0:5

n
: ð1:11Þ

The final results will be very similar, irrespective of the actual formula used.
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3. Compute the N-score for each rank, NRi, using the following formula:

NRi ¼ icdf URið Þ ð1:12Þ

where icdf is the inverse of the cumulative distribution function of the desired

distribution (further information about distribution functions can be found in

Sect. 2.3).

4. If desired, transform the actual data. Two common transformations are:

(a) Z-Score: if the theoretical distribution is assumed to be normal, then it can

be convenient to transform the data into the corresponding Z-score. This
will minimise the need to know the true mean and standard deviation of the

data set. The formula for the Z-score is

Zi ¼ xi � x

σ̂
: ð1:13Þ

(b) Quantiles: another option is to plot the quantiles corresponding to the data

set on the y-axes rather than the actual values. Any of the formulae for

computing the quantile can be used. The most common one in this case is

Eq. (1.11). This will give a cumulative distribution feel to the data set.

Some software, such as MATLAB®, uses this approach to produce its

probability plots.

5. Plot NRi on the x-axis and xi on the y-axis to construct the normal

probability plot.

The interpretation of this probability plot is based on the following theoretical

observations:

1. The data should lie on a straight line, which, in the ideal case, is y¼ x.
2. If the straight line given by the data is shifted vertically by a fixed amount, then

this represents the difference in the mean between the assumed distribution and

the actual data distribution.

3. If the straight line given by the data has a different slope ( 6¼1), then the standard

deviation of the data set is different from the assumed distribution’s standard
deviation.

This is shown graphically in Fig. 1.8, for the case of a normal distribution with

different means and variances compared against a normal distribution with a mean

of zero and a variance of 1. It can be seen that the straight line’s slope and y-
intercept match well the theoretical values. Therefore, based on these observations,

it can be useful to include a straight line (line of best fit) to give an estimate of the

true mean and standard deviation.

From these theoretical observations, this means that the points in the probability

plot should all lie along a straight line. The exact slope and y-intercept are not all

that important. Deviations from a straight line are indications that the data may not

come from the proposed theoretical distribution. The most common deviations are:

1.2 Data Visualisation 15
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1. Outliers or extreme values at the end points.

2. Tails at the end points, or curvature, that is, one tail is below the straight line and

the other is above the straight line. This implies that the true distribution of the

data set has a different distribution than the target distribution. Practically, if the

left tail is below and the right tail is above, then the distribution in the tails is

larger than in the target distribution. On the other hand, if the left tail is above

and the right tail is below the straight line, then the data distribution in the tails is

smaller than in the target distribution.

3. Convex or concave curvature in the centre, that is, the given data set is not

symmetric compared with the target distribution.

4. Plateaus, gaps, or horizontal data, that is, the data seems to fall only within

certain values. This is most likely to be the result of rounding errors introduced

during measurement, storage, or data manipulation.

Figure 1.9 shows examples of how these kinds of problems can appear on a

probability plot. Figure 1.9a shows a normal probability distribution with mean

0 and variance 1 with 2 outliers (circled). Notice how the outliers can cause some of

the adjacent points to also be skewed from the ideal location. Figure 1.9b shows the

case where the tails of the distribution do not match. In this case, a 2-degree-of-

freedom Student’s t-distribution was compared against the normal distribution. The

t-distribution has larger tails than the normal distribution. This can clearly be seen

by the deviations on both sides from the central line. Figure 1.9c shows the case
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where there is convex curvature in the centre. In this case, the asymmetric

F-distribution was compared with the normal distribution. In such a case, drawing

the desired straight line can be quite difficult since there can potentially be two or

more “best” regions. Figure 1.9 shows the case where there are horizontal plateaus

combined with gaps. In this case, the normal distribution with mean of 5 and

variance of 4 was rounded down to 3 decimal places. This clearly shows the gaps

and plateaus that rounding can induce in the results. Furthermore, it should be noted

that drawing the straight line for comparison can be difficult when the data set does

not match the underlying distribution. Finally, when dealing with small samples

(say less than about 30 points), then less ideal behaviour in the extreme regions

(tails) can be tolerated. The extent and amount of tolerated deviations will depend

on where the normal probability plot is being used. Figure 1.10 shows the normal

probability plot for nine different realisations of eight data points drawn from the

standard normal distribution. It can be seen that all samples show varying amounts

of curvature and tails. Detailed comparisons of the effect of data size on normal

probability plots can be found in (Daniel and Wood 1980).
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1.2.7 Tables

A table is a textual way of displaying information that consists of rows and

columns. A table is useful to present a small amount of data whose exact values

are important. It can be used to give information about summary statistics, such as

the mean, mode, and standard deviation. Every table should have headers for its

columns and rows. This can be formatted similarly to graph axes, by including the

name of the variable, its symbol, and its units. A well designed table will contain all

the relevant information within it and be self-explanatory. Numbers should be

properly formatted and not taken straight from the software used. There is no

need to display more than about 3 or 4 digits (unless special circumstances warrant)

with spacing between groups of 3 digits (on both sides of the decimal place).

Scientific notation should be used as appropriate, for example, the number obtained

from a calculator as 1.25896321532e3 could be written as either 1.259� 103

(using scientific notation) or 1,259. A typical table is shown in Table 1.3.
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1.2.8 Sparkplots

Sparkplots or profile plot are various ways of summarising information so that only

the trends and comparison between different data sets are compactly shown.

Sparkplots often do not have explicit axes or category markings. Sparkplots can

be either line graphs (known as sparklines) or bar graphs (known as spark bar

graphs). It is common to use sparklines to show the behaviour of multiple process

variables in order to understand which variables could be influencing others. Spark

bar graphs are often used as histograms to show the distribution of variables and at

the same time show the individual values. Typical examples are shown in Fig. 1.11.

1.2.9 Other Data Visualisation Methods

The above sections have presented the most common data visualisation methods for

a given data set. More complex forms can be created by combining different simple

data visualisation methods into a final integrated plot. Alternatively, the data could

be transformed (changed in some manner) before being plotted. The different

techniques that are available to accomplish this depend strongly on the intended

application and will be introduced in the relevant sections in later chapters. Often

such plots are created when there is multiple information that needs to be displayed,

Table 1.3 Typical table formatting

Treatment

Mean thickness Variance Range

δ (μm) σ2 (μm2) [lower, upper] (μm)

A 1.25 0.25 [0.25, 5.00]

B 1.50 0.10 [0.50, 2.25]

C 2.25 0.50 [0.50, 10.0]

Fig. 1.11 (Left) Spark bar graph showing the number of times a given fault occurs over the course

of many days and (right) sparkline showing the hourly process value for six different variables

from a single unit over the course of a day
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for example, one is interested in determining which of 20 variables are important

for your analysis.

Two typical integrated data visualisation methods are presented in Figs. 1.12 and

1.13. In Fig. 1.12, the linear relationship between 100 different variables is plotted

to determine which variables are most related with each other. This plot involves

taking the data, transforming it, and then computing the correlation between each

pair of the transformed data. A strong linear relationship is denoted by 1 (or a red

colour), while a weak linear correlation is denoted by 0 (or a dark blue colour).

Obviously, the variables themselves are strongly related with each other and so the

diagonal is always equal to 1 in such plots. More information on creating and

plotting such figures can be found in Chap. 5. In Fig. 1.13, two variables are plotted

against each other as a scatter plot with histograms to show the distribution of the

individual variables. These plots can be useful for seeing and understanding

complex interactions between different variables and how best to interpret them

later. In this particular example, it can be seen that both variables are skewed to the

left, with a rather large right tail.
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1.3 Friction Factor Example

In this section, experimental data from a friction factor experiment will be consid-

ered. This data set consists of four separate runs performed on different pipe

diameters collected on different days (often with a large separation in time).

1.3.1 Explanation of the Data Set

In the friction factor experiment, the flow of water through a pipe is changed to

determine the pressure drop across a length of pipe for pipes with different

diameters. In order to compare the results across multiple different diameters, the

data are converted into two dimensionless numbers: the Reynolds number (Re),

which represents the flow and is defined as

Re ¼ ρvD

μ
ð1:14Þ
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Fig. 1.13 Complex data visualisation example: combining multiple plot types
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where ρ is the density of the fluid, v is the velocity, D is the pipe diameter, and μ is

the dynamic viscosity of the fluid, and the friction factor ( f ), which represents the

pressure drop in the pipe and is defined as

f ¼ 2DΔP
ρv2L

ð1:15Þ

where L is the length of the pipe and ΔP is the pressure drop.

The relationship between the friction factor and Reynolds number can be written

as (Gerhart et al. 1992):

f ¼ KReβ ð1:16Þ

where K and β are parameters to be fit. For turbulent flow, where

4,000<Re< 100,000, the Blasius equation predicts that K¼ 0.316 and

β¼�0.25 (Gerhart et al. 1992).

The experiment consisted of data collected on multiple days for different

pipe diameters and flow rates using water as the fluid. Sample data are presented

in Table 1.4. Runs 1 and 2 were performed on the same day, but with different pipe

diameters: 4.9 mm for Run 1 and 6.1 mm for Run 2. Run 3 was performed on

another day with a pipe diameter of 7.8 mm. Finally, Run 4 was some historical data

obtained 6 years previously using the same equipment and a pipe diameter of

4.9 mm. The data are presented sequentially in the order in which the experiments

were run, that is, for example, in Run 1, the experiment with a Re¼ 6,478 was run

Table 1.4 Data from friction factor experiments

Run 1 Run 2 Run 3 Run 4

Re f Re f Re f Re f

6,478 0.0355 19,476 0.0268 20,701 0.0251 11,529 0.0308

11,785 0.0303 13,439 0.0293 13,248 0.0286 9,993 0.0318

5,485 0.0369 15,844 0.0281 18,409 0.0266 9,340 0.0329

9,075 0.0321 5,251 0.0369 5,602 0.0351 3,187 0.0420

11,815 0.0302 11,980 0.0303 14,251 0.0281 6,248 0.0362

7,246 0.0343 17,732 0.0272 18,978 0.0261 4,838 0.0387

10,403 0.0309 6,366 0.0352 9,787 0.0309 4,427 0.0394

13,364 0.0292 15,115 0.0283 6,638 0.0339 9,567 0.0327

10,811 0.0310 7,461 0.0345 10,748 0.0302 7,141 0.0351

7,730 0.0334 10,227 0.0314 16,813 0.0270 5,750 0.0371

9,938 0.0316 13,240 0.0296 12,730 0.0290 11,187 0.0312

11,581 0.0305 13,987 0.0291 8,794 0.0319 3,925 0.0405

8,432 0.0327 16,606 0.0277 15,041 0.0278

12,546 0.0297 11,152 0.0307 12,060 0.0292

9,051 0.0325 5,226 0.0377 6,937 0.0337

9,470 0.0317 4,895 0.0364
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first, followed by the experiment with Re¼ 117,785. Replicates were performed at

some of the values, for example, in Run 1, there are two cases with a Re� 11,800.

1.3.2 Summary Statistics

The mean, median, standard deviation, range, and median absolute difference will

be determined for all four runs. Sample computations will be shown for Run 4 using

the Reynolds number values. The results are summarised in Table 1.5.

For Run 4 and the Re values, the mean would be computed using Eq. (1.1) to

give

Re ¼
Xn

i¼ 1
xi

n
¼

11;529þ 9;993þ 9;340þ 3;187þ 6;248þ 4;838
þ 4;427þ 9;567þ 7;141þ 5;750þ 11;187þ 3;925

12

¼ 7;261 ð1:17Þ

Similarly, the median would be computed by first ordering the data set from

smallest to largest and then finding the average of the two midpoint values (since

there is an even number of values present), that is,

3;187; 3;925; 4;427; 4;838; 5;750; 6;248; 7;141|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
median ¼ 6;248þ 7;141

2

¼ 6;694:5

; 9;340; 9;567; 9;993; 11;187; 11;529

ð1:18Þ

The standard deviation can be computed using a modified form of Eq. (1.3)

commonly used for manual computations to give

Table 1.5 Summary statistics for the friction factor data set

Summary statistic

Run 1 Run 2 Run 3 Run 4

Re f Re f Re f Re f

Mean 9,700 0.0320 12,200 0.0309 12,200 0.0300 7,260 0.0357

Median 9,700 0.0317 13,200 0.0296 12,400 0.0291 6,700 0.0357

σ 2,300 0.0021 4,500 0.0036 4,900 0.0034 2,900 0.0039

Range 7,880 0.0077 14,300 0.0109 15,800 0.0113 8,340 0.0112

σMAD 1,900 0.0012 3,000 0.0018 4,000 0.0023 2,700 0.0034
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σRe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼ 1
x2i �

1

n

Xn

i¼ 1
xi

� �2
n� 1

vuut
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼ 1
x2i

� �
� nx2

n� 1

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11;5292 þ 9;9932 þ 9;3402 þ 3;1872 þ 6;2482 þ 4;8382

þ 4;4272 þ 9;5672 þ 7;1412 þ 5;7502 þ 11;1872 þ 3;9252

 !
� 12 7; 261ð Þ2

12� 1

vuuut
¼ 2;900

ð1:19Þ

The range can be found by determining the largest and smallest values and

subtracting them. Thus, the maximum value is 11,529 and the minimum value is

3,187. Therefore, the range is 11,529� 3,187¼ 8,340.

The median absolute difference can be computed by first ordering the absolute

value of the difference between the data point and the median to give

3;507:5; 2;769:5; 2;267:5; 1;856:5; 944:5; 446:5; 446:5; 2;645:5; 2;872:5; 3;298:5; 4;492:5; 4;834:5

ð1:20Þ

The ordered list then becomes

446:5; 446:5; 944:5; 1;856:5; 2;267:5; 2;645:5; 2;769:5|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
median ¼ 2;707:5

; 2;872:5; 3;298:5; 3;507:5; 4;492:5; 4;834:5

ð1:21Þ

The median of the residuals is therefore 2,707.5.

It should be noted that all of the values have been rounded to three decimal

places, except for the standard deviation, which has been rounded to two decimal

places, in order to improve the presentation. It should be noted that the original

mass flow rates and pressure drops used to compute the Reynolds number and

friction factor were recorded to only three decimal places.

1.3.3 Data Visualisation

In this particular case, a scatter plot showing all the 4 runs together and a box-and-

whisker plot of each run separately will be plotted. Detailed code for creating these

graphs is given in Chap. 7 for MATLAB® and Chap. 8 for Microsoft Excel®.

Figure 1.14 shows a scatter plot of the data showing each of the runs separately,

while Fig. 1.15 gives the box-and-whisker plots for both the Reynolds number and

the friction factor. The theoretical values using the Blasius equation have also been

included in Fig. 1.14 to provide some reference point against which to compare the

data set.

In order to illustrate the procedure for constructing a box-and-whisker plot by

hand and determining the appropriate quartile boundaries, the Reynolds numbers
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from Run 4 will be used. For a box-and-whisker plot, it is necessary to determine

the values located at Q0.25, Q0.5 (¼ median) and Q0.75. Equation (1.7) gives a

general formula for computing these values. For Q0.25, the first quartile, setting

n¼ 12 and p¼ 0.25¼¼ in the formula gives:

h ¼ 12� 1ð Þ0:25þ 1 ¼ 15

4
¼ 3:75

Q0:25 ¼ x 3:75b c þ 3:75� 3:75b cð Þ x 3:75b cþ1 � x 3:75b c
� �

¼ x3 þ 3:75� 3ð Þ x4 � x3ð Þ
¼ 4;427þ 0:75 4;838� 4;427ð Þ
¼ 4;735

ð1:22Þ
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Similarly, Q0.5 can be computed as

h ¼ 12� 1ð Þ0:5þ 1 ¼ 13

2
¼ 6:5

Q0:5 ¼ x 6:5b c þ 6:5� 6:5b cð Þ x 6:5b c þ 1 � x 6:5b c
� �

¼ x6 þ 0:5ð Þ x7 � x6ð Þ
¼ 6;248þ 0:5 7;141� 6;248ð Þ
¼ 6;695

ð1:23Þ

It can be noted that, after rounding, this value is identical to that previously

computed for the median. This should be always the case.

Similarly, Q0.75 can be computed as

h ¼ 12� 1ð Þ0:75þ 1 ¼ 37

4
¼ 9:25

Q0:75 ¼ x 9:25b c þ 9:25� 9:25b cð Þ x 9:25b c þ 1 � x 9:25b c
� �

¼ x9 þ 0:25ð Þ x10 � x9ð Þ
¼ 9;567þ 0:25 9;993� 9;567ð Þ
¼ 9;674

ð1:24Þ

For comparison, the values computed above are compared with the values obtained

using different software in Table 1.6. It can be seen that each software package can

compute the same value differently. In all cases, the median will be computed the

same way, since it is a fixed value. As was previously mentioned, this verifies that

quartile.inc function in Excel is equivalent to the values obtained manually

based on Eq. (1.7), while quartile.exc function in Excel is based on option 1 for

Eq. (1.7). Finally, MATLAB uses option 2 for Eq. (1.7). Nevertheless, all values are

relatively close to each other and would not impact too greatly the overall results.

1.3.4 Some Observations on the Data Set

First, consider the results in Table 1.5, which presents the summary statistics for the

data set. It can be noted that for Runs 2 and 3, which both have a similar mean

Reynolds Number, the median is quite different for each. This suggests that the

distribution is different. Looking at Fig. 1.15 for these two runs, it can be seen that

Run 3 has more extreme values (in both directions) than Run 2, which will balance

out both the mean and median values. On the other hand, Fig. 1.15 shows that for

Run 2, the size of the Q2–Q3 area is much smaller than for Run 3, suggesting that

25% of the data are compactly located in a small area. On the other hand, for Run

1, the mean and median are more closely aligned, which suggests that the data are

more evenly distributed. This is confirmed by looking at Fig. 1.15 for Run 1, where

the size of the two boxes is almost equal. Run 4 for the friction factor has a similar

even distribution. In all cases, Table 1.5 shows that a larger range implies that the

standard deviation will also be larger.
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Next, consider the scatter plot shown in Fig. 1.14, where a scatter plot of the data

by run and the theoretical values are presented. Note that each run is denoted by a

symbol that appears distinct even if there is no colour. From here, it can be observed

that Run 3 is consistently below the theoretical value. This suggests that this run

could potentially be some sort of outlier. Furthermore, Run 4 seems to have been

performed at much lower Reynolds numbers than the rest of the experiments. This

difference is even evident from the summary statistics.

1.4 Further Reading

The following are references that provide additional information about the topic:

1. History of Statistics:

(a) Hald A (2003) A history of probability and statistics and their application

before 1750. Wiley, Hoboken

(b) Sheynin O (2004) History of the theory of probability to the beginning of

the 20th century. NG Verlag, Berlin

(c) Varberg DE (1963) The development of modern statistics. Math Teach 56

(4):252–257

2. Data Analysis:

(a) Barnett V, Lewis T (1994) Outliers in statistical data, 3rd edn. Wiley,

Chichester

(b) Daniel C, Wood FS (1980) Fitting equations to data, 2nd edn. Wiley,

New York

(c) Davies L, Gather U (1993) The identification of multiple outliers. J Am Stat

Assoc 88(423):782–792

(d) Hawkins DM (1980) Identification of outliers. Chapman and Hall, London

(e) Hodge VJ, Austin J (2004) A survey of outlier detection methodologies.

Artif Intell Rev 22:85–126

(f) Hyndman RJ, Fan Y (1996) Sample quantiles in statistical packages. Am

Stat 50(4):361–365

(g) Lin B, Recke B, Knudsen JK, Jørgensen SB (2007) A systematic approach

for soft sensor development. Comput Chem Eng 31:419–425

Table 1.6 Computing quartiles with different software packages

Quartile Manual

Excel® 2010 Excel® 2010

MATLAB® 2014(quartile.inc) (quartile.exc)

1 4,735 4,735 4,530 4,633

2 6,695 6,695 6,695 6,695

3 9,674 9,674 9,887 9,780
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3. Data Visualisation:

(a) Tufte ER (1997) Visual and statistical thinking: displays of evidence for

making decisions. Graphics Press LLC, Cheshire

(b) Tufte ER (2001) The visual display of quantitative information. Graphics

Press LLC, Cheshire

1.5 Chapter Problems

Problems at the end of the chapter consist of three different types: (a) Basic
Concepts (True/False), which seek to test the reader’s comprehension of the key
concepts in the chapter; (b) Short Exercises, which seek to test the reader’s ability
to compute the required parameters for a simple data set using simple or no
technological aids, and this section also includes proofs of theorems; and
(c) Computational Exercises, which require not only a solid comprehension of the
basic material but also the use of appropriate software to easily manipulate the
given data sets.

1.5.1 Basic Concepts

Determine if the following statements are true or false and state why this is the case.

1. The mean is a robust measure of central tendency.

2. A trimodal data set has four modes.

3. The median measures the middle value of a data set.

4. The median and the mean will always be the same.

5. The variance is equal to the standard deviation squared.

6. The range is a useful measure of the spread of the data.

7. The median absolute difference is a robust measure of dispersion.

8. A left-skewed data set has many values in the left tail.

9. The skewness of a data set measures how symmetric the data set is.

10. Sextiles partition a data set into six parts.

11. Outliers are data points whose values are abnormal.

12. A graph should have clearly labelled axes and an appropriate legend.

13. Graphs containing many different symbols distinguished solely by colour are

well designed.

14. Pie charts are the foundation upon which histograms are constructed.

15. Sparkplots are useful for describing trends and general behaviour of a data set.

16. Tables are useful for summarising important information, such as mean and

variance, of a data set.

17. Taking a numeric value directly from software and placing it unformatted into a

table is a good idea.
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18. A probability plot is useful for comparing the data set against some theoretical

distribution.

19. Transforming a data set can lead to a more meaningful graph.

20. Combining different types of graphs together can create a graph with more

information.

1.5.2 Short Exercises

These questions should be solved using only a simple, nonprogrammable,
nongraphical calculator combined with pen and paper.

21. For the data set {1, 3, 5, 2, 5, 7, 5, 2, 8, 5},

(a) Compute the mean, mode, and median.

(b) Compute the variance, median absolute difference, and range.

(c) Compute the first, second, and third quartiles.

(d) Plot a box-and-whisker plot.

(e) Plot a histogram with bins x< 2, 2� x< 4, 4� x< 6, 6� x< 8, and x� 8.

22. For the data set {2.3, 1.2, 3.4, 4.5, 3.4, 1.2, 3.4, 4.0, 1.1},

(a) Compute the mean, mode, and median.

(b) Compute the variance, median absolute difference, and range.

(c) Compute the first, second, third, and fourth quintiles.

(d) Plot a box-and-whisker plot.

(e) Plot a histogram with bins x< 2, 2� x< 3, 3� x< 4, and x� 4.

1.5.3 Computational Exercises

The following problems should be solved with the help of a computer and appro-
priate software packages, such as MATLAB® or Excel®.

23. Consider the data in Table 1.7 that shows the different faults (problems)

associated with running a reactor over a 30-day period. A fault can occur

multiple times in a given time frame. Compute appropriate summary statistics

and create appropriate graphs to summarise the data. (Hint: there is no one
single correct solution.)

24. Consider the data in Table 1.8 that shows the flow rate of steam in kg/h through

a pipe. Due to the presence of stiction and other nonlinearities in the control

valve, a new control algorithm is being proposed. The engineer in charge of

making the change has to evaluate whether the new algorithm is better. A better

algorithm is defined as one that reduces the variance of the steam flow rate and

can keep the process closer to the desired set point of 8.5 kg/h. The original and

new control methods are both tested for 2 h and the data are collected every
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5 min. Plot the available data and analyse it. Without using any formal

statistical tests, suggest whether the proposed control algorithm is better than

the original, base case.

25. Take any large data set that is of interest to you and analyse it using the methods

presented in this chapter. The data set should have at least 1,000 data points and

two variables. You can then use this data set in subsequent chapters to perform

additional analysis.

Table 1.7 Reactor fault types by shift (for Question 23)

Fault type

Number of faults by shift

Night (midnight

to 6:00 a.m.)

Morning

(6:00 a.m. to

noon)

Afternoon (noon

to 6:00 p.m.)

Evening (6:00 p.m.

to midnight)

High reac-

tor level

5 6 2 6

Abnormal

pressure

10 2 2 5

Explosion 2 0 0 0

Low

temperature

5 2 10 5

High

temperature

5 8 0 10

Others 2 10 5 0

Table 1.8 Steam control data with two different methods (for Question 24)

Time (min) 5 10 15 20 25 30 35 40 45 50 55 60

Base 1 h 8.5 8.7 8.4 8.6 8.2 8.7 8.9 8.5 8.5 8.4 8.3 8.6

2 h 8.2 8.4 8.3 8.2 8.4 8.5 8.8 8.3 8.6 8.7 8.5 8.3

New 1 h 8.4 8.5 8.4 8.5 8.6 8.3 8.6 8.7 8.2 8.3 8.4 8.5

2 h 8.5 8.6 8.4 8.3 8.4 8.6 8.7 8.5 8.5 8.5 8.3 8.4
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