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Foreword

The need for the development and understanding of large, complex data sets in a

wide range of different fields, including economics, chemistry, chemical engineer-

ing, and control engineering is very important. In all these fields, the common

thread is using these data sets for the development of models to forecast or predict

future behaviour. Furthermore, the availability of fast computers has meant that

many of the techniques can now be used and tested even on one’s own computer.

Although there exist a wealth of textbooks available on statistics, they are often

lacking in two key respects: application to the chemical and process industry and

their emphasis on computationally relevant methods. Many textbooks still contain

detailed explanations of how to manually solve a problem. Therefore, the goal of

this textbook is to provide a thorough mathematical and statistical background the

regression analysis through the use of examples drawn from the chemical and

process industries. The majority of the textbook presents the required information

using matrices without linking to any particular software. In fact, the goal here is to

allow the reader to implement the methods on any appropriate computational

device irrespective of their specific availability. Thus, detailed examples, that is,

base cases, and solution steps are provided to ease this task. Nevertheless, the

textbook contains two chapters devoted to using MATLAB® and Excel®, as these

are the most commonly used tools both in industry and in academics. Finally, the

textbook contains at the end of each chapter a series of questions divided into three

parts: conceptual questions to test the reader’s understanding of the material; simple

exercise problems that can be solved using pen, paper, and a simple, handheld

calculator to provide straightforward examples to test the mechanics and under-

standing of the material; and computational questions that require modern

computational software that challenge and advance the reader’s understanding of

the material.

This textbook assumes that the reader has completed a basic first-year university

course, including univariate calculus and linear algebra. Multivariate calculus, set

theory, and numerical methods are useful for understanding some of the concepts,
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but knowledge is not required. Basic chemical engineering, including mass and

energy balances, may be required to solve some of the examples.

The textbook is written so that the chapters flow from the basic to the most

advanced material with minimal assumptions about the background of the reader.

Nevertheless, multiple different courses can be organised based on the material

presented here depending on the time and focus of the course. Assuming a single

semester course of 39 h, the following would be some options:

1. Introductory Course to Statistics and Data Analysis: The foundations of statis-
tics and regression are introduced and examined. The main focus would be on

Chap. 1: Introduction to Statistics and Data Visualisation, Chap. 2: Theoretical

Foundation for Statistical Analysis, and parts of Chap. 3: Regression, including

all of linear regression. This course would prepare the student to take the

Fundamentals of Engineering Exam in the United States of America, a prereq-

uisite for becoming an engineer there.

2. Deterministic Modelling and Design of Experiments: In-depth analysis and

interpretation of deterministic models, including design of experiments, is intro-

duced. The main focus would be on Chap. 3: Regression and Chap. 4: Design of

Experiments. Parts of Chap. 2: Theoretical Foundation for Statistical Analysis

may be included if there is a need to refresh the student’s knowledge of

background information.

3. Stochastic Modelling of Dynamic Processes: In-depth analysis and interpretation
of stochastic models, including both time series and prediction error methods, is

examined. The main focus would be on Chap. 5: Modelling Stochastic Processes

with Time Series Analysis and Chap. 6: Modelling Dynamic Processes. As

necessary, information from Chap. 2: Theoretical Foundation for Statistical

Analysis and Chap. 3: Regression could be used. The depth in which these

concepts would be considered would depend on the orientation of the course:

either a theoretical emphasis can be made, by focusing on the theory and proofs,

or an application emphasis can be made, by focusing on the practical use of the

different results.

As appropriate, material from Chap. 7: Using MATLAB® for Statistical Anal-

ysis and Chap. 8: Using Excel® to do Statistical Analysis could be introduced to

show and explain how the students can implement the proposed methods. It should

be emphasised that this material should not overwhelm the students nor should it

become the main emphasis and hence avoid thoughtful and insightful analysis of

the resulting data.

The author would like to thank all those who read and commented on previous

versions of this textbook, especially the members of the process control group at the

University of Alberta, the students who attended the author’s course on process data
analysis in the Spring/Summer 2012 semester, and members of the Institute of

Automation and Complex Systems (Institute für Automatisierungstechnik und

komplexe Systeme) at the University of Duisburg-Essen. The author would specif-

ically wish to thank Profs. Steven X. Ding and Biao Huang for their support,
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Oliver Jackson from Springer for his assistance and support, and the Alexander von

Humboldt Foundation for the monetary support.

Downloading the data: The data sets, MATLAB® files, and Excel® templates

can be downloaded from http://extras.springer.com/. Enter the ISBN of the book,

ISBN 978-3-319-21508-2, and you will get the requested information.
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Chapter 1

Introduction to Statistics and Data
Visualisation

Ει$ κὸς γὰρ γίνεσθαι πoλλὰ καὶ παρὰ τὸ ει$ κ�oς.
It is likely that unlikely things should happen.

Aristotle, Poetics, 1456a, 24

Although it is a common perception that statistics seeks to quantify and categorise

uncertainty and unlikely events, it is actually a much broader and more general

field. In fact, statistics is the science of collecting, analysing, interpreting, and

displaying data in an objective manner. Built on a strong foundation in probability,

the application of statistics has expanded to consider such topics as curve fitting,

game theory, and forecasting. Its results are applied in many different fields,

including biology, market research, polling, economics, cryptography, chemistry,

and process engineering.

Basic statistical methods have been traced back to the earliest times in such

forms as the collection of data regarding a farmer’s livestock; the amount, quality,

and type of grain in the city granaries; or the phases of the moon by early

astronomers. With these simple data sets, graphs could be created, summary values

could be computed, and patterns could be detected and used. Greek philosophers,

such as Aristotle (384–322 B.C), pontificated on the meaning of probability and its

different realisations. Meanwhile, ancient astronomers, such as Ptolemy (c.
A.D. 90–168) and Al-Biruni (973–1048), were developing methods to deal with

the randomness and inherent errors in their astronomical measurements. By the start

of the late Middle Ages around 1,300, rudimentary probability was being developed

and applied to break codes. With the start of the seventeenth century and spurned by

a general interest in games of chance, the foundations of statistics probability were

developed by Abraham de Moivre (1667–1754), Blaise Pascal (1623–1662), and

Jacob Bernoulli (1655–1705). These scientists sought to resolve and determine

optimal strategies for such games of chance. The nascent nation states also took a

strong interest in the collection and interpretation of economic and demographic

information. In fact, the word statistics, first used by the German philosopher

Gottfried Achenwall (1719–1772) in 1749, is derived from the Neolatinate term

statisticum collegium, meaning council of the state, referring to the fact that even

then the primary use of the collected information was to provide insight (council)
about the nation state (Varberg 1963). In the early nineteenth century, work by

© Springer International Publishing Switzerland 2015

Y.A.W. Shardt, Statistics for Chemical and Process Engineers,
DOI 10.1007/978-3-319-21509-9_1

1



amongst others Johann Carl Friedrich Gauss (1777–1855), Pierre-Simon Laplace

(1749–1827), and Thomas Bayes (1701–1761) led to the development of new

theoretical and practical ideas. Theoretically, the grounding of statistics in proba-

bility theory, especially the development of the Gaussian distribution, allowed for

many practical applications, including curve fitting and linear regression. Subse-

quent work, by such researchers as Andrei Kolmogorov (1903–1987) and Andrei

Markov (1856–1922), solidified the theoretical underpinning and developed new

ways of understanding randomness and methods for quantifying its behaviour.

From these foundations, Karl Pearson (1857–1936) and Ronald Fisher (1890–

1962) developed hypothesis testing, the χ2-distribution, principal component anal-

ysis, design of experiments, analysis of variance, and method of maximum likeli-

hood, which continue to be used today. Subsequently, these ideas were used by

George Box (1919–2013), Gwilym Jenkins (1932–1982), and Lenart Ljung

(1946�) to develop stochastic modelling and advanced probabilistic models with

applications in economics, biology, and process control. With the advent of com-

puters, many of the previously developed methods can now be realised efficiently

and quickly to analyse enormous amounts of data. Furthermore, the increasing

availability of computers has led to the use of new methods, such as Monte Carlo

simulations and bootstrapping.

Even though statistics still remains solidly applied to the study of economics and

demographics, it has broadened its scope to cover almost every human endeavour.

Some of the earliest modern applications were to the design and analysis of

agricultural experiments to show which fertilisers and watering methods were

better despite uncontrollable environmental differences, for example, amount of

sunlight received or local soil conditions. Later these methods were extended to

analyse various genetic experiments. Currently, with the use of powerful com-

puters, it is possible to process and unearth unexpected statistical relationships in a

data set given many thousands of variables. For example, advertisers can now

accurately predict changes in consumer behaviour based on their purchases over a

period of time.

Another area where statistics is used greatly is the chemical process industry,

which seeks to understand and interpret large amounts of industrial data obtained

from a given (often, chemical) process in order to achieve a safer, more environ-

mentally friendly, and more profitable plant. The process industry uses a wide range

of statistics, ranging from simple descriptive methods through to linear regression

and on to complex topics such as system identification and data mining. In order to

appreciate the more advanced methods, there is a need to thoroughly understand the

fundamentals of statistics. Therefore, this chapter will start the exploration with

some fundamental results in statistical analysis of data sets coupled with a thorough

analysis of the different methods for visualising or displaying data. Subsequent

chapters will provide a more theoretical approach and cover more complex methods

that will always come back to use the methods presented here. Finally, as a side

note, it should be noted that the focus of this book is on presenting methods that can

be used with modern computers. For these reasons, heavy emphasis will be made on

matrices and generalised approaches to solving the problems. However, except for
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the last two chapters dedicated to MATLAB® and Excel®, little to no emphasis will

be placed on any specific software as a computational tool; instead the theoretical

and implementation aspects will be examined in depth.

1.1 Basic Descriptive Statistics

The most basic step in statistical analysis of a data set is to describe it descriptively,

that is, to compute properties associated with the data set and to display the data set

in an informative manner. A data set consists of a finite number of samples or data
points. In this book, a data set will be denoted using either set notation, that is, {x1,
x2,. . ., xn} or vector notation, that is, as ~x ¼ x1; x2; . . . ; xnh i. Set notation is useful

for describing and listing the elements of a data set, while vector notation is useful

for mathematical manipulation. The size of the data set is equal to n. The most

common descriptive statistics include measures of central tendency and dispersion.

1.1.1 Measures of Central Tendency

Measures of central tendency provide some information about the most common

value in the data set. The basic measures of central tendency include the mean,
mode, and median. Since the most common such measure is the mean, which is

often colloquially called the average, all of these measures are often referred to as

averages. A summary of the basic properties of these measures is provided in

Table 1.1.

The mean is a measure of the central value of the set of numbers. It is often

denoted as an overbar (◌) over a variable, for example, the mean of ~x would be

written as x. The most commonmean is simply the sum of all the values divided by

the total number of data points, n, that is,

x ¼
Xn

i¼ 1
xi

n
ð1:1Þ

Alternatively, a weighted mean can be computed, where for each value a weight

w is assigned, that is,

x ¼
Xn

i¼ 1
wixiX n

i¼ 1
wi

ð1:2Þ
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The weighted mean can be used when the accuracy of some of the values is

suspected to be less than that of others. Although the mean is a commonly used

measure of central tendency and hence widely reported when describing data, it is

not necessarily a robust measure, that is, the mean can be heavily skewed by one or

two numbers that are significantly different from the others. For example, if we

have the data set of three numbers, {2, 3, 4}, whose mean is x¼ 3, and replace the

4 by 10, the mean becomes x¼ 5, which is larger than two of the other numbers.

The mode represents the most common entry in a given data set. Multiple entries

can be tied for the mode, in which case, the data set is said to bemultimodal.1 For the
following set of numbers, {2, 4, 5, 5, 5, 6, 7, 10, 10, 10, 11}, there are two modes:

5 and 10, as both occur exactly 3 times. Although, in general, the mode is less

sensitive to minor changes in the data set, it is still relatively easy to skew the results

by adding too many identical values to create a new modal value. Furthermore, the

most common entry need not be in any way descriptive of the overall properties of the

data set. This can especially be the case if one of the extreme values occurs slightly

more often than the other numbers and hence becomes the modal value.

The median represents the middle value of an ordered data set. If the number of

data points is odd, then the median will represent the middle value. On the other

hand, if the number of data points is even, then the median will be the mean value of

the two middle values. Although it can happen that the median value is equal to a

value in the data set, this is not necessarily always true. For the set given as {2, 4, 5,

10, 14, 14, 16, 17}, the median value would be 12 (¼ ½(10 + 14)). The main

advantage of the median value is that it represents the middle value of a given set

and is robust to single extreme values.

1.1.2 Measures of Dispersion

Measures of dispersion seek to provide some information about how the values in a

given data set are distributed, that is, are all the values clustered about one number

Table 1.1 Summary of the main properties of the measures of central tendency

Measure Formula Advantages Disadvantages

Mean
x ¼

Xn

i¼ 1
xi

n

Easy to compute and

interpret

Can easily be influenced by

extreme values

Mode Most common entries in

the data set

Easy to interpret Many not accurately represent

the data set

Median Middle entry of the

ordered data set

Robust and easy to

interpret

Not necessarily easy to

compute

1 If the specific number of tied entries is known, then the data set can be referred to by that number,

for example, bimodal for a data set with 2 modes or trimodal for three modes.
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or are they spread out across a large range of numbers. The basic measures of

dispersion include range, standard deviation or variance, skew, and median abso-
lute deviation (MAD). A summary of the basic properties of these measures is

provided in Table 1.2.

The range of a data set is simply defined as the difference between the largest

and smallest values within the data set. It is also possible to report the range as the

two numbers representing the extreme data set values. It provides a simple, but not

very meaningful, interpretation of the spread of the values. The larger the range, the

more spread out the values are. Clearly, the range is affected adversely by large

extreme values, since they would be directly used in its computation.

The standard deviation, σ, and variance, σ2, are two related measures of the

spread of the data set. The variance is always equal to the second power of the

standard deviation. The larger the standard deviation, the more spread out the data

set is. The variance can be computed as

σ̂2 ¼
Xn

i¼ 1
xi � xð Þ2

n� 1
ð1:3Þ

The standard deviation can then be computed by taking the square root of the value

obtained using Eq. (1.3). In statistics, the circumflex (◌̂) over a value shows that it is
estimated or computed from a data set, rather than some theoretical value, for

example, in Eq. (1.3), σ̂2 is the estimated value of the true variance, σ2, given the

data set. Even if the variance for the data set were the same, taking different data

points will lead to some variation in the computed value. It can be noted that the

Table 1.2 Summary of the main properties of the measures of dispersion

Measure Formula Advantages Disadvantages Comment

Range Max – min or [min, max] Easy to

compute

Can easily be

influenced by

extreme

values

Standard

deviation σ̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼ 1
xi � xð Þ2

n� 1

s
Commonly

used, can be

easy to

interpret

Can easily be

influenced by

extreme

values

Squaring it gives

the variance

Median

absolute

difference

σ̂MAD ¼ median xi � xmedianj jð Þ Robust

estimate

Can be

converted to an

estimate of the

standard

deviation

Skew
γ̂ ¼

n�1
Xn

i¼ 1
xi � xð Þ3

n�1
Xn

i¼ 1
xi � xð Þ2

� �1:5 Measures

the spread of

the extreme

values

Rarely used in

practice
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variance is sensitive to extreme values. Occasionally, the variance can be denoted

as the function var, for example, var(x) is the variance of x.
A method to avoid the sensitivity of the standard deviation to extreme values is

to compute the median absolute deviation (MAD), denoted by σMAD, which

replaces the mean by the robust median. It can be computed as follows:

σ̂MAD ¼ median xi � xmedianj jð Þ ð1:4Þ

where median is the function that determines the median value given a data set and

xmedian is the median value for the data set. It is possible to convert σ̂MAD to a robust

estimate of the standard deviation. However, it requires knowing the underlying

distribution in order to compute the conversion factor. For a normal distribution, the

robust estimate of the standard deviation can be written as

σ̂ ¼ 1:4826σ̂MAD ð1:5Þ

The skew, denoted by γ, measures the amount of asymmetry in the distribution.

Skewness is determined by examining the relationship in the clustering of extreme

values, that is, the tails. If more of the data set is clustered towards the smaller

extreme values, then it is said that the system has positive or right skewness. On the
other hand, if the data set is clustered towards the larger extreme values, then it is

said that the system has negative or left skewness. The skew of a data set can be

computed as

γ̂ ¼
n�1
Xn

i¼ 1
xi � xð Þ3

n�1
Xn

i¼ 1
xi � xð Þ2

� �1:5 ð1:6Þ

Graphically, the skewness can be seen from a histogram, which plots the frequency

of a value against the value. Examples of left and right skewness are shown in

Fig. 1.1.

1.1.3 Other Statistical Measures

In addition to the measures of central tendency and dispersion, there exist other

ways of quantifying a particular data set. This section will briefly review the two

most common such methods: quantiles and outliers.

1.1.3.1 Quantiles

A quantile is a way of dividing the data set into segments based on the ordered rank

of the data set. Common quantiles are the median (2 segments with the split at
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50%), quartiles (4 segments at 25, 50, and 75%), quintiles (5 segments at 20, 40,

60, and 80%), and percentiles (100 segments). In order to obtain a meaningful

division, there should be at least as many different data points as there are segments.

Partitioning a data set into quantiles can be accomplished using the following

steps:

1. Order the data set from smallest to largest.

2. Obtain an estimate of the boundaries for each of the segments using the

following formula (Hyndman and Fan 1996)

h ¼ n� 1ð Þ pþ 1

Qp ¼ x hb c þ h� hb cð Þ x hb c þ 1 � x hb c
� � ð1:7Þ

where n is the number of data points, p¼ k/q, k, and q are defined as the kth q-tile, xi
is the ith data point of the ordered data set, and b·c is the floor function, that is, round
down any number to its nearest integer. When p¼ 1, then Qp¼ xn.

Different formulae for computing the sample quantile can be obtained by

changing the equation for h. Two other common formulations are:

1. Exclusive Formulation: h¼ (n + 1)p+ 1 with both p and Qp computed the same

way as before.

2. Linear Interpolation Formulation: h¼ np +½ with both p and Qp computed the

same way as before.

The differences in the estimated values are in most cases quite minimal. A

comparison of the above methods is given in Table 1.6 in the context of an example

(see Sect. 1.3.3, p. 28).

It can be noted that in all versions of Excel®, the method defined by Eq. (1.7) is

available (as either the function quartile or quartile.inc). Newer versions
of Excel® (2010 or newer) also support option 1 (as quartile.exc). All

versions of MATLAB® implement option 2.
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Fig. 1.1 (Left) Right-skewed and (right) left-skewed data set

1.1 Basic Descriptive Statistics 7



1.1.3.2 Outliers

Outliers are data points that seem to be quite different from surrounding values and

expected behaviour. Outliers can be caused by many different factors, including

data entry or data collection errors or caused by randomness inherent in the system.

Whenever a point is suspected to be an outlier, it is always useful to check that it has

been correctly recorded and collected. Determining whether a point is an outlier is

ultimately subjective and relies on intuition. Common rules for determining outliers

include (Lin et al. 2007):

1. Visual Tests: visual inspection to determine which values are located far from

the bulk of the data, for example, in the set {1, 2, 1, 2, 3, 0, 2, �10}, �10 could

be considered to be an outlier. Displaying the data using graphs can be a very

useful approach. Graphs, such as the box-and-whisker plot, line charts, and

scatter plots, can be useful for determining outliers.

2. 3σ Edit Rule: data points whose Z-score are large (>3), where the Z-score is

given as

Zi ¼ xi � x

σ
ð1:8Þ

xi is the data point of interest, Zi is the corresponding Z-score, x is the mean value

of the data set, and σ is the standard deviation of the data set. This approach only

works if it can be assumed that the data set comes from a normal distribution and

is not very robust.

3. Hampel identifier (Davies and Gather 1993): the Hampel identifier assumes that

points which lie outside the band xmedian� 3σmad, where σmad is defined as

σmad ¼ 1:4826median xi � xmedianj jð Þ ð1:9Þ

and median is the function that determines the median value of the given data

set. This equation represents the median absolute difference and is a robust

manner of estimating the spread of the data. The constant is selected such that

σmad is equal to σ for a normal distribution. In fact, for a normal distribution, the

Hampel identifier and the 3σ edit rules will produce the same results.

1.2 Data Visualisation

Data visualisation is the science and art of displaying information in a visual

manner that not only displays the relevant information accurately but is also

visually appealing. There exist many different methods for visualising a given

data set, including graphs and tables. Each method has its advantages and disad-

vantages when it comes to displaying the data. In general, the following principles

can be followed to determine which method is best to display the data:
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1. Density of Information: how much information is to be presented? Are there only

a few points that need to be summarised, or are there multiple points that need to

be shown?

2. Comparison: what is the point of showing the values? What types of relation-

ships between the data are to be highlighted?

3. Efficiency: which method shows the desired relationships the best? How well is

the information displayed? Are the desired relationships visible clearly?

4. Display Scheme: what kind of display scheme will be required? Will you need to

use different colours? If so, how many? Will you need to use multiple different

symbols? If so, which ones? Can they all be distinguished easily in the figure?

What if the figure is printed in black and white? What type of scale will be used:

normal or logarithmic?

Irrespective of the method selected, it is important that the following informa-

tion, as appropriate, be included:

1. Titles/Captions: each figure or group of figures should have a clear title or

caption that briefly explains the information in the figure.

2. Labels: appropriate labels should be included. This should include, as appropri-

ate, the full name of what is being shown, abbreviations, and units. All axes and

legend headings should be considered. For axes, an acceptable and very useful

approach would be to use the following label “full name, abbreviation (units)”,

for example, “temperature, T (�C)”. A legend should be provided if multiple

types of information are plotted on the same graph.

3. Display: are the different symbols used clearly distinguishable? Consider the

fact that many figures will end up in black-and-white publications. This implies

that relying solely on colour to distinguish different aspects on a figure can be

difficult. Furthermore, data points should not be connected by lines unless there

is a reason for connecting the points. This implies that experimental data in many

cases should be entered as single points, while theoretical values should be

connected with a single continuous line.

A good discussion of the art of data visualisation, as well as some ideas on how

to implement it, can be found in the books by Edward Tufte (Tufte 2001; Tufte

1997).

1.2.1 Bar Charts and Histograms

A bar chart is a graph that contains vertical or horizontal bars whose length is

proportional to the value. Bar charts compare by their nature discrete information.

One axis will contain the category or discrete item, while the other axis will contain

the value axis. Typical bar charts are shown in Fig. 1.2. Although 3-D bar charts are

possible, they do not provide any advantage for displaying the information accu-

rately or efficiently.

1.2 Data Visualisation 9



A histogram, similar to a bar chart, shows the frequency of a given range of

values that occur in the data set. Thus, a histogram records continuous data but

presents it in a similar manner. A histogram is constructed by first creating bins or

ranges of numbers. Next, the number of times a value from the data set falls within

each of the ranges is determined and noted. Once this has been completed, a vertical

bar chart is plotted using the bins as the category and the occurrences as the value. It

should be noted that the bins are normally assigned so that they are of equal size

(except for the two end points) and are continuous, that is, two adjacent bins share

the same end point. A 4-bin example could be x< 3, 3� x< 5, 5� x< 7, and x� 7.

A typical histogram is shown in Fig. 1.3. Not all software provides methods for

directly creating a histogram. In some cases, it is necessary to manually bin the data

and then create the corresponding bar graph.

1.2.2 Pie Charts

A pie chart is a circle whose arc length has been divided up into different pro-

portions. It is named after how a pie is cut. Pie charts can be used to display the

relationships of parts to a whole, for example, components of a budget. However,

too many different items in a pie chart can lead to difficulties with representing the

items effectively, as the number of available colours and amount of space can be

limited. Also, a pie chart tends to require more space than would ideally be needed

to display the information. A typical pie chart is shown in Fig. 1.4.

1.2.3 Line Charts

A line chart is a graph that contains individual data points connected by a line.

Very often, the horizontal, or x-axis, will represent time and the vertical, or
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y-axis, will represent the value of some variable over time. For this reason, a line

chart is often called a time series plot. A line chart is very effective in showing

how a variable(s) changes over time. However, too many competing lines can

make the figure difficult to read and understand. A typical line chart is shown in

Fig. 1.5.
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1.2.4 Box-and-Whisker Plots

A box-and-whisker plot, or more simply a boxplot, is a complex graph that is based

on quartiles to conveniently display multiple different properties of the data set. It

can conveniently be used to compare different data sets. A box-and-whisker plot

consists of two parts: the box and the whiskers. The box is formed by the 25th

(Q1) and 75th (Q3) percentile boundaries with the middle line invariably being the

median (Q2). The whisker limits are defined using any of the following rules:

1. Maximum and minimum of the data set.

2. Lowest data point located within 1.5 of the interquartile range from the lower

quartile and the largest data point located within 1.5 of the interquartile range

above the upper quartile. The interquartile range is defined as the difference

between Q3 and Q1. Such a plot is often called a Tukey boxplot.
3. The 9th and 91st percentiles.

4. The 2nd and 98th percentiles.

In all cases, data points lying outside the whisker limits are conventionally denoted

by crosses or dots, often in another colour. Such points can be labelled as outliers.
Of the available definitions, the most commonly encountered box-and-whisker

plots use whisker bounds defined by the first two rules. Typical box-and-whisker

plots are shown in Fig. 1.6. These box-and-whisker plots were created using the

interquartile range for the data points.
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1.2.5 Scatter Plots

A scatter plot shows the values obtained using some mark. These marks are not

connected and hence it looks like all the values are scattered around. A scatter plot

is useful when it is desired to show the relationship between two variables, but the

values vary quite a bit between each sample. Often, the true or predicted values can

be superimposed using a line. The selection of the appropriate mark can be

important, especially when there are many data points to show. Ideally, each data

point should be clearly visible. In some cases, it may be useful to show data from

multiple experiments or runs together on a single plot. Again, the various marks

need not only to be individually distinguishable, but also they need to be distin-

guishable from each other. A typical scatter plot is shown in Fig. 1.7.

1.2.6 Probability Plots

A probability plot is a graph that compares the data set against some expected

statistical distribution by comparing the actual quantiles against the theoretical

quantiles. Such probability plots are also often called Q�Q or P�P plots. The

most common statistical distribution for comparison is the normal distribution. The

exact values plotted on each of the axes depend on the desired graph and software

used. In general, the theoretical values are plotted on the x-axis, while the actual

values are plotted on the y-axis. Occasionally, the actual values are modified in

−3

−2

−1

0

1

2

3

Catalyst 1 Catalyst 2

Median

Q3

Q1

Lower 
Limit

Upper 
Limit

N
or

m
al

is
ed

 C
on

ve
rs

io
n 

R
at

es
, C

r 
(k

g/
s)

Fig. 1.6 Typical box-and-whisker plots
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order to emphasise certain properties. A generalised probability plot can be

constructed using the following steps:

1. For each data point, compute its rank, denoted by Ri.

2. Compute an approximation of the quantile position using the following formula:

URi ¼
1� 0:5

1
n i ¼ 1

i� 0:3175

nþ 0:365
i ¼ 2, 3, . . . , n� 1

0:5
1
n i ¼ n

8>>><
>>>: : ð1:10Þ

It can be noted that any of many different formulae can be used here. The

simplest formula is given as

URi ¼ i� 0:5

n
: ð1:11Þ

The final results will be very similar, irrespective of the actual formula used.

270 280 290 300 310 320 330 340 350
1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

Temperature, T (K)

Density as a Function of Temperature for Two Runs

Run 1

Run 2

Theoretical

D
en

si
ty

, 
ρ 

(k
g/

m
3 )

Fig. 1.7 Typical scatter plot

14 1 Introduction to Statistics and Data Visualisation



3. Compute the N-score for each rank, NRi, using the following formula:

NRi ¼ icdf URið Þ ð1:12Þ

where icdf is the inverse of the cumulative distribution function of the desired

distribution (further information about distribution functions can be found in

Sect. 2.3).

4. If desired, transform the actual data. Two common transformations are:

(a) Z-Score: if the theoretical distribution is assumed to be normal, then it can

be convenient to transform the data into the corresponding Z-score. This
will minimise the need to know the true mean and standard deviation of the

data set. The formula for the Z-score is

Zi ¼ xi � x

σ̂
: ð1:13Þ

(b) Quantiles: another option is to plot the quantiles corresponding to the data

set on the y-axes rather than the actual values. Any of the formulae for

computing the quantile can be used. The most common one in this case is

Eq. (1.11). This will give a cumulative distribution feel to the data set.

Some software, such as MATLAB®, uses this approach to produce its

probability plots.

5. Plot NRi on the x-axis and xi on the y-axis to construct the normal

probability plot.

The interpretation of this probability plot is based on the following theoretical

observations:

1. The data should lie on a straight line, which, in the ideal case, is y¼ x.
2. If the straight line given by the data is shifted vertically by a fixed amount, then

this represents the difference in the mean between the assumed distribution and

the actual data distribution.

3. If the straight line given by the data has a different slope ( 6¼1), then the standard

deviation of the data set is different from the assumed distribution’s standard
deviation.

This is shown graphically in Fig. 1.8, for the case of a normal distribution with

different means and variances compared against a normal distribution with a mean

of zero and a variance of 1. It can be seen that the straight line’s slope and y-
intercept match well the theoretical values. Therefore, based on these observations,

it can be useful to include a straight line (line of best fit) to give an estimate of the

true mean and standard deviation.

From these theoretical observations, this means that the points in the probability

plot should all lie along a straight line. The exact slope and y-intercept are not all

that important. Deviations from a straight line are indications that the data may not

come from the proposed theoretical distribution. The most common deviations are:
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http://dx.doi.org/10.1007/978-3-319-21509-9_2


1. Outliers or extreme values at the end points.

2. Tails at the end points, or curvature, that is, one tail is below the straight line and

the other is above the straight line. This implies that the true distribution of the

data set has a different distribution than the target distribution. Practically, if the

left tail is below and the right tail is above, then the distribution in the tails is

larger than in the target distribution. On the other hand, if the left tail is above

and the right tail is below the straight line, then the data distribution in the tails is

smaller than in the target distribution.

3. Convex or concave curvature in the centre, that is, the given data set is not

symmetric compared with the target distribution.

4. Plateaus, gaps, or horizontal data, that is, the data seems to fall only within

certain values. This is most likely to be the result of rounding errors introduced

during measurement, storage, or data manipulation.

Figure 1.9 shows examples of how these kinds of problems can appear on a

probability plot. Figure 1.9a shows a normal probability distribution with mean

0 and variance 1 with 2 outliers (circled). Notice how the outliers can cause some of

the adjacent points to also be skewed from the ideal location. Figure 1.9b shows the

case where the tails of the distribution do not match. In this case, a 2-degree-of-

freedom Student’s t-distribution was compared against the normal distribution. The

t-distribution has larger tails than the normal distribution. This can clearly be seen

by the deviations on both sides from the central line. Figure 1.9c shows the case
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Fig. 1.8 Probability plots and the effect of the location parameters (μ and σ2)
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where there is convex curvature in the centre. In this case, the asymmetric

F-distribution was compared with the normal distribution. In such a case, drawing

the desired straight line can be quite difficult since there can potentially be two or

more “best” regions. Figure 1.9 shows the case where there are horizontal plateaus

combined with gaps. In this case, the normal distribution with mean of 5 and

variance of 4 was rounded down to 3 decimal places. This clearly shows the gaps

and plateaus that rounding can induce in the results. Furthermore, it should be noted

that drawing the straight line for comparison can be difficult when the data set does

not match the underlying distribution. Finally, when dealing with small samples

(say less than about 30 points), then less ideal behaviour in the extreme regions

(tails) can be tolerated. The extent and amount of tolerated deviations will depend

on where the normal probability plot is being used. Figure 1.10 shows the normal

probability plot for nine different realisations of eight data points drawn from the

standard normal distribution. It can be seen that all samples show varying amounts

of curvature and tails. Detailed comparisons of the effect of data size on normal

probability plots can be found in (Daniel and Wood 1980).
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Fig. 1.9 Issues with probability plots. (a) Outliers. (b) Tails. (c) Concave behaviour. (d) Rounded
to 3 decimal places
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1.2.7 Tables

A table is a textual way of displaying information that consists of rows and

columns. A table is useful to present a small amount of data whose exact values

are important. It can be used to give information about summary statistics, such as

the mean, mode, and standard deviation. Every table should have headers for its

columns and rows. This can be formatted similarly to graph axes, by including the

name of the variable, its symbol, and its units. A well designed table will contain all

the relevant information within it and be self-explanatory. Numbers should be

properly formatted and not taken straight from the software used. There is no

need to display more than about 3 or 4 digits (unless special circumstances warrant)

with spacing between groups of 3 digits (on both sides of the decimal place).

Scientific notation should be used as appropriate, for example, the number obtained

from a calculator as 1.25896321532e3 could be written as either 1.259� 103

(using scientific notation) or 1,259. A typical table is shown in Table 1.3.
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Fig. 1.10 Nine probability plots of eight samples drawn from a standard normal distribution
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1.2.8 Sparkplots

Sparkplots or profile plot are various ways of summarising information so that only

the trends and comparison between different data sets are compactly shown.

Sparkplots often do not have explicit axes or category markings. Sparkplots can

be either line graphs (known as sparklines) or bar graphs (known as spark bar

graphs). It is common to use sparklines to show the behaviour of multiple process

variables in order to understand which variables could be influencing others. Spark

bar graphs are often used as histograms to show the distribution of variables and at

the same time show the individual values. Typical examples are shown in Fig. 1.11.

1.2.9 Other Data Visualisation Methods

The above sections have presented the most common data visualisation methods for

a given data set. More complex forms can be created by combining different simple

data visualisation methods into a final integrated plot. Alternatively, the data could

be transformed (changed in some manner) before being plotted. The different

techniques that are available to accomplish this depend strongly on the intended

application and will be introduced in the relevant sections in later chapters. Often

such plots are created when there is multiple information that needs to be displayed,

Table 1.3 Typical table formatting

Treatment

Mean thickness Variance Range

δ (μm) σ2 (μm2) [lower, upper] (μm)

A 1.25 0.25 [0.25, 5.00]

B 1.50 0.10 [0.50, 2.25]

C 2.25 0.50 [0.50, 10.0]

Fig. 1.11 (Left) Spark bar graph showing the number of times a given fault occurs over the course

of many days and (right) sparkline showing the hourly process value for six different variables

from a single unit over the course of a day
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for example, one is interested in determining which of 20 variables are important

for your analysis.

Two typical integrated data visualisation methods are presented in Figs. 1.12 and

1.13. In Fig. 1.12, the linear relationship between 100 different variables is plotted

to determine which variables are most related with each other. This plot involves

taking the data, transforming it, and then computing the correlation between each

pair of the transformed data. A strong linear relationship is denoted by 1 (or a red

colour), while a weak linear correlation is denoted by 0 (or a dark blue colour).

Obviously, the variables themselves are strongly related with each other and so the

diagonal is always equal to 1 in such plots. More information on creating and

plotting such figures can be found in Chap. 5. In Fig. 1.13, two variables are plotted

against each other as a scatter plot with histograms to show the distribution of the

individual variables. These plots can be useful for seeing and understanding

complex interactions between different variables and how best to interpret them

later. In this particular example, it can be seen that both variables are skewed to the

left, with a rather large right tail.
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Fig. 1.12 Complex data visualisation example: a cross-correlation plot
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1.3 Friction Factor Example

In this section, experimental data from a friction factor experiment will be consid-

ered. This data set consists of four separate runs performed on different pipe

diameters collected on different days (often with a large separation in time).

1.3.1 Explanation of the Data Set

In the friction factor experiment, the flow of water through a pipe is changed to

determine the pressure drop across a length of pipe for pipes with different

diameters. In order to compare the results across multiple different diameters, the

data are converted into two dimensionless numbers: the Reynolds number (Re),

which represents the flow and is defined as

Re ¼ ρvD

μ
ð1:14Þ
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Fig. 1.13 Complex data visualisation example: combining multiple plot types
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where ρ is the density of the fluid, v is the velocity, D is the pipe diameter, and μ is

the dynamic viscosity of the fluid, and the friction factor ( f ), which represents the

pressure drop in the pipe and is defined as

f ¼ 2DΔP
ρv2L

ð1:15Þ

where L is the length of the pipe and ΔP is the pressure drop.

The relationship between the friction factor and Reynolds number can be written

as (Gerhart et al. 1992):

f ¼ KReβ ð1:16Þ

where K and β are parameters to be fit. For turbulent flow, where

4,000<Re< 100,000, the Blasius equation predicts that K¼ 0.316 and

β¼�0.25 (Gerhart et al. 1992).

The experiment consisted of data collected on multiple days for different

pipe diameters and flow rates using water as the fluid. Sample data are presented

in Table 1.4. Runs 1 and 2 were performed on the same day, but with different pipe

diameters: 4.9 mm for Run 1 and 6.1 mm for Run 2. Run 3 was performed on

another day with a pipe diameter of 7.8 mm. Finally, Run 4 was some historical data

obtained 6 years previously using the same equipment and a pipe diameter of

4.9 mm. The data are presented sequentially in the order in which the experiments

were run, that is, for example, in Run 1, the experiment with a Re¼ 6,478 was run

Table 1.4 Data from friction factor experiments

Run 1 Run 2 Run 3 Run 4

Re f Re f Re f Re f

6,478 0.0355 19,476 0.0268 20,701 0.0251 11,529 0.0308

11,785 0.0303 13,439 0.0293 13,248 0.0286 9,993 0.0318

5,485 0.0369 15,844 0.0281 18,409 0.0266 9,340 0.0329

9,075 0.0321 5,251 0.0369 5,602 0.0351 3,187 0.0420

11,815 0.0302 11,980 0.0303 14,251 0.0281 6,248 0.0362

7,246 0.0343 17,732 0.0272 18,978 0.0261 4,838 0.0387

10,403 0.0309 6,366 0.0352 9,787 0.0309 4,427 0.0394

13,364 0.0292 15,115 0.0283 6,638 0.0339 9,567 0.0327

10,811 0.0310 7,461 0.0345 10,748 0.0302 7,141 0.0351

7,730 0.0334 10,227 0.0314 16,813 0.0270 5,750 0.0371

9,938 0.0316 13,240 0.0296 12,730 0.0290 11,187 0.0312

11,581 0.0305 13,987 0.0291 8,794 0.0319 3,925 0.0405

8,432 0.0327 16,606 0.0277 15,041 0.0278

12,546 0.0297 11,152 0.0307 12,060 0.0292

9,051 0.0325 5,226 0.0377 6,937 0.0337

9,470 0.0317 4,895 0.0364
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first, followed by the experiment with Re¼ 117,785. Replicates were performed at

some of the values, for example, in Run 1, there are two cases with a Re� 11,800.

1.3.2 Summary Statistics

The mean, median, standard deviation, range, and median absolute difference will

be determined for all four runs. Sample computations will be shown for Run 4 using

the Reynolds number values. The results are summarised in Table 1.5.

For Run 4 and the Re values, the mean would be computed using Eq. (1.1) to

give

Re ¼
Xn

i¼ 1
xi

n
¼

11;529þ 9;993þ 9;340þ 3;187þ 6;248þ 4;838
þ 4;427þ 9;567þ 7;141þ 5;750þ 11;187þ 3;925

12

¼ 7;261 ð1:17Þ

Similarly, the median would be computed by first ordering the data set from

smallest to largest and then finding the average of the two midpoint values (since

there is an even number of values present), that is,

3;187; 3;925; 4;427; 4;838; 5;750; 6;248; 7;141|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
median ¼ 6;248þ 7;141

2

¼ 6;694:5

; 9;340; 9;567; 9;993; 11;187; 11;529

ð1:18Þ

The standard deviation can be computed using a modified form of Eq. (1.3)

commonly used for manual computations to give

Table 1.5 Summary statistics for the friction factor data set

Summary statistic

Run 1 Run 2 Run 3 Run 4

Re f Re f Re f Re f

Mean 9,700 0.0320 12,200 0.0309 12,200 0.0300 7,260 0.0357

Median 9,700 0.0317 13,200 0.0296 12,400 0.0291 6,700 0.0357

σ 2,300 0.0021 4,500 0.0036 4,900 0.0034 2,900 0.0039

Range 7,880 0.0077 14,300 0.0109 15,800 0.0113 8,340 0.0112

σMAD 1,900 0.0012 3,000 0.0018 4,000 0.0023 2,700 0.0034
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σRe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼ 1
x2i �

1

n

Xn

i¼ 1
xi

� �2
n� 1

vuut
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼ 1
x2i

� �
� nx2

n� 1

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11;5292 þ 9;9932 þ 9;3402 þ 3;1872 þ 6;2482 þ 4;8382

þ 4;4272 þ 9;5672 þ 7;1412 þ 5;7502 þ 11;1872 þ 3;9252

 !
� 12 7; 261ð Þ2

12� 1

vuuut
¼ 2;900

ð1:19Þ

The range can be found by determining the largest and smallest values and

subtracting them. Thus, the maximum value is 11,529 and the minimum value is

3,187. Therefore, the range is 11,529� 3,187¼ 8,340.

The median absolute difference can be computed by first ordering the absolute

value of the difference between the data point and the median to give

3;507:5; 2;769:5; 2;267:5; 1;856:5; 944:5; 446:5; 446:5; 2;645:5; 2;872:5; 3;298:5; 4;492:5; 4;834:5

ð1:20Þ

The ordered list then becomes

446:5; 446:5; 944:5; 1;856:5; 2;267:5; 2;645:5; 2;769:5|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
median ¼ 2;707:5

; 2;872:5; 3;298:5; 3;507:5; 4;492:5; 4;834:5

ð1:21Þ

The median of the residuals is therefore 2,707.5.

It should be noted that all of the values have been rounded to three decimal

places, except for the standard deviation, which has been rounded to two decimal

places, in order to improve the presentation. It should be noted that the original

mass flow rates and pressure drops used to compute the Reynolds number and

friction factor were recorded to only three decimal places.

1.3.3 Data Visualisation

In this particular case, a scatter plot showing all the 4 runs together and a box-and-

whisker plot of each run separately will be plotted. Detailed code for creating these

graphs is given in Chap. 7 for MATLAB® and Chap. 8 for Microsoft Excel®.

Figure 1.14 shows a scatter plot of the data showing each of the runs separately,

while Fig. 1.15 gives the box-and-whisker plots for both the Reynolds number and

the friction factor. The theoretical values using the Blasius equation have also been

included in Fig. 1.14 to provide some reference point against which to compare the

data set.

In order to illustrate the procedure for constructing a box-and-whisker plot by

hand and determining the appropriate quartile boundaries, the Reynolds numbers
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from Run 4 will be used. For a box-and-whisker plot, it is necessary to determine

the values located at Q0.25, Q0.5 (¼ median) and Q0.75. Equation (1.7) gives a

general formula for computing these values. For Q0.25, the first quartile, setting

n¼ 12 and p¼ 0.25¼¼ in the formula gives:

h ¼ 12� 1ð Þ0:25þ 1 ¼ 15

4
¼ 3:75

Q0:25 ¼ x 3:75b c þ 3:75� 3:75b cð Þ x 3:75b cþ1 � x 3:75b c
� �

¼ x3 þ 3:75� 3ð Þ x4 � x3ð Þ
¼ 4;427þ 0:75 4;838� 4;427ð Þ
¼ 4;735

ð1:22Þ
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Similarly, Q0.5 can be computed as

h ¼ 12� 1ð Þ0:5þ 1 ¼ 13

2
¼ 6:5

Q0:5 ¼ x 6:5b c þ 6:5� 6:5b cð Þ x 6:5b c þ 1 � x 6:5b c
� �

¼ x6 þ 0:5ð Þ x7 � x6ð Þ
¼ 6;248þ 0:5 7;141� 6;248ð Þ
¼ 6;695

ð1:23Þ

It can be noted that, after rounding, this value is identical to that previously

computed for the median. This should be always the case.

Similarly, Q0.75 can be computed as

h ¼ 12� 1ð Þ0:75þ 1 ¼ 37

4
¼ 9:25

Q0:75 ¼ x 9:25b c þ 9:25� 9:25b cð Þ x 9:25b c þ 1 � x 9:25b c
� �

¼ x9 þ 0:25ð Þ x10 � x9ð Þ
¼ 9;567þ 0:25 9;993� 9;567ð Þ
¼ 9;674

ð1:24Þ

For comparison, the values computed above are compared with the values obtained

using different software in Table 1.6. It can be seen that each software package can

compute the same value differently. In all cases, the median will be computed the

same way, since it is a fixed value. As was previously mentioned, this verifies that

quartile.inc function in Excel is equivalent to the values obtained manually

based on Eq. (1.7), while quartile.exc function in Excel is based on option 1 for

Eq. (1.7). Finally, MATLAB uses option 2 for Eq. (1.7). Nevertheless, all values are

relatively close to each other and would not impact too greatly the overall results.

1.3.4 Some Observations on the Data Set

First, consider the results in Table 1.5, which presents the summary statistics for the

data set. It can be noted that for Runs 2 and 3, which both have a similar mean

Reynolds Number, the median is quite different for each. This suggests that the

distribution is different. Looking at Fig. 1.15 for these two runs, it can be seen that

Run 3 has more extreme values (in both directions) than Run 2, which will balance

out both the mean and median values. On the other hand, Fig. 1.15 shows that for

Run 2, the size of the Q2–Q3 area is much smaller than for Run 3, suggesting that

25% of the data are compactly located in a small area. On the other hand, for Run

1, the mean and median are more closely aligned, which suggests that the data are

more evenly distributed. This is confirmed by looking at Fig. 1.15 for Run 1, where

the size of the two boxes is almost equal. Run 4 for the friction factor has a similar

even distribution. In all cases, Table 1.5 shows that a larger range implies that the

standard deviation will also be larger.
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Next, consider the scatter plot shown in Fig. 1.14, where a scatter plot of the data

by run and the theoretical values are presented. Note that each run is denoted by a

symbol that appears distinct even if there is no colour. From here, it can be observed

that Run 3 is consistently below the theoretical value. This suggests that this run

could potentially be some sort of outlier. Furthermore, Run 4 seems to have been

performed at much lower Reynolds numbers than the rest of the experiments. This

difference is even evident from the summary statistics.

1.4 Further Reading

The following are references that provide additional information about the topic:

1. History of Statistics:

(a) Hald A (2003) A history of probability and statistics and their application

before 1750. Wiley, Hoboken

(b) Sheynin O (2004) History of the theory of probability to the beginning of

the 20th century. NG Verlag, Berlin

(c) Varberg DE (1963) The development of modern statistics. Math Teach 56

(4):252–257

2. Data Analysis:

(a) Barnett V, Lewis T (1994) Outliers in statistical data, 3rd edn. Wiley,

Chichester

(b) Daniel C, Wood FS (1980) Fitting equations to data, 2nd edn. Wiley,

New York

(c) Davies L, Gather U (1993) The identification of multiple outliers. J Am Stat

Assoc 88(423):782–792

(d) Hawkins DM (1980) Identification of outliers. Chapman and Hall, London

(e) Hodge VJ, Austin J (2004) A survey of outlier detection methodologies.

Artif Intell Rev 22:85–126

(f) Hyndman RJ, Fan Y (1996) Sample quantiles in statistical packages. Am

Stat 50(4):361–365

(g) Lin B, Recke B, Knudsen JK, Jørgensen SB (2007) A systematic approach

for soft sensor development. Comput Chem Eng 31:419–425

Table 1.6 Computing quartiles with different software packages

Quartile Manual

Excel® 2010 Excel® 2010

MATLAB® 2014(quartile.inc) (quartile.exc)

1 4,735 4,735 4,530 4,633

2 6,695 6,695 6,695 6,695

3 9,674 9,674 9,887 9,780
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3. Data Visualisation:

(a) Tufte ER (1997) Visual and statistical thinking: displays of evidence for

making decisions. Graphics Press LLC, Cheshire

(b) Tufte ER (2001) The visual display of quantitative information. Graphics

Press LLC, Cheshire

1.5 Chapter Problems

Problems at the end of the chapter consist of three different types: (a) Basic
Concepts (True/False), which seek to test the reader’s comprehension of the key
concepts in the chapter; (b) Short Exercises, which seek to test the reader’s ability
to compute the required parameters for a simple data set using simple or no
technological aids, and this section also includes proofs of theorems; and
(c) Computational Exercises, which require not only a solid comprehension of the
basic material but also the use of appropriate software to easily manipulate the
given data sets.

1.5.1 Basic Concepts

Determine if the following statements are true or false and state why this is the case.

1. The mean is a robust measure of central tendency.

2. A trimodal data set has four modes.

3. The median measures the middle value of a data set.

4. The median and the mean will always be the same.

5. The variance is equal to the standard deviation squared.

6. The range is a useful measure of the spread of the data.

7. The median absolute difference is a robust measure of dispersion.

8. A left-skewed data set has many values in the left tail.

9. The skewness of a data set measures how symmetric the data set is.

10. Sextiles partition a data set into six parts.

11. Outliers are data points whose values are abnormal.

12. A graph should have clearly labelled axes and an appropriate legend.

13. Graphs containing many different symbols distinguished solely by colour are

well designed.

14. Pie charts are the foundation upon which histograms are constructed.

15. Sparkplots are useful for describing trends and general behaviour of a data set.

16. Tables are useful for summarising important information, such as mean and

variance, of a data set.

17. Taking a numeric value directly from software and placing it unformatted into a

table is a good idea.
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18. A probability plot is useful for comparing the data set against some theoretical

distribution.

19. Transforming a data set can lead to a more meaningful graph.

20. Combining different types of graphs together can create a graph with more

information.

1.5.2 Short Exercises

These questions should be solved using only a simple, nonprogrammable,
nongraphical calculator combined with pen and paper.

21. For the data set {1, 3, 5, 2, 5, 7, 5, 2, 8, 5},

(a) Compute the mean, mode, and median.

(b) Compute the variance, median absolute difference, and range.

(c) Compute the first, second, and third quartiles.

(d) Plot a box-and-whisker plot.

(e) Plot a histogram with bins x< 2, 2� x< 4, 4� x< 6, 6� x< 8, and x� 8.

22. For the data set {2.3, 1.2, 3.4, 4.5, 3.4, 1.2, 3.4, 4.0, 1.1},

(a) Compute the mean, mode, and median.

(b) Compute the variance, median absolute difference, and range.

(c) Compute the first, second, third, and fourth quintiles.

(d) Plot a box-and-whisker plot.

(e) Plot a histogram with bins x< 2, 2� x< 3, 3� x< 4, and x� 4.

1.5.3 Computational Exercises

The following problems should be solved with the help of a computer and appro-
priate software packages, such as MATLAB® or Excel®.

23. Consider the data in Table 1.7 that shows the different faults (problems)

associated with running a reactor over a 30-day period. A fault can occur

multiple times in a given time frame. Compute appropriate summary statistics

and create appropriate graphs to summarise the data. (Hint: there is no one
single correct solution.)

24. Consider the data in Table 1.8 that shows the flow rate of steam in kg/h through

a pipe. Due to the presence of stiction and other nonlinearities in the control

valve, a new control algorithm is being proposed. The engineer in charge of

making the change has to evaluate whether the new algorithm is better. A better

algorithm is defined as one that reduces the variance of the steam flow rate and

can keep the process closer to the desired set point of 8.5 kg/h. The original and

new control methods are both tested for 2 h and the data are collected every
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5 min. Plot the available data and analyse it. Without using any formal

statistical tests, suggest whether the proposed control algorithm is better than

the original, base case.

25. Take any large data set that is of interest to you and analyse it using the methods

presented in this chapter. The data set should have at least 1,000 data points and

two variables. You can then use this data set in subsequent chapters to perform

additional analysis.

Table 1.7 Reactor fault types by shift (for Question 23)

Fault type

Number of faults by shift

Night (midnight

to 6:00 a.m.)

Morning

(6:00 a.m. to

noon)

Afternoon (noon

to 6:00 p.m.)

Evening (6:00 p.m.

to midnight)

High reac-

tor level

5 6 2 6

Abnormal

pressure

10 2 2 5

Explosion 2 0 0 0

Low

temperature

5 2 10 5

High

temperature

5 8 0 10

Others 2 10 5 0

Table 1.8 Steam control data with two different methods (for Question 24)

Time (min) 5 10 15 20 25 30 35 40 45 50 55 60

Base 1 h 8.5 8.7 8.4 8.6 8.2 8.7 8.9 8.5 8.5 8.4 8.3 8.6

2 h 8.2 8.4 8.3 8.2 8.4 8.5 8.8 8.3 8.6 8.7 8.5 8.3

New 1 h 8.4 8.5 8.4 8.5 8.6 8.3 8.6 8.7 8.2 8.3 8.4 8.5

2 h 8.5 8.6 8.4 8.3 8.4 8.6 8.7 8.5 8.5 8.5 8.3 8.4
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Chapter 2

Theoretical Foundation for Statistical
Analysis

Having examined briefly the application of statistics to describe and visualise a

given data set, it is now necessary to examine and understand the theoretical

foundation underpinning most statistical methods. With such a theoretical founda-

tion, it is then possible to apply statistics to solving such problems as regression and

design of experiments.

2.1 Statistical Axioms and Definitions

Consider a measurable probability space, Ω, defined by three variables, , , and P,
which is denoted as Ω (, , P) which define a complete σ-algebra for statistical

manipulation. Let  be defined as the sample space, which includes all possible
outcomes. Let  be defined as the σ-algebra that contains all possible events for a
given situation. It is most often a power set of .  must satisfy the following

properties1:

1. It contains the null set {} or ∅;

2. It is closed under complementation, that is, if an event  is an element in , or
2, then the set of  excluding  is also an element of , or  \ 2.

3. It is closed under union, that is, the union of countable many subsets of  is in .

Finally, let P be the measure function, called the probability function, that
assigns a real number to all the members of . In most cases, it provides the

likelihood that a given event will occur. The measure function must satisfy

Kolmogorov’s axioms: for any event, 2,

1. P()� 0

2. P()¼ 1

1A review of set theory is provided in Appendix A2, at the end of this chapter.
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3. P 1 [ 2 [ 3 [ � � � [ nð Þ ¼
Xn
i ¼ 1

P ið Þ, where each eventi is pairwise disjoint
(i.e. mutually exclusive).

Example 2.1: Determining the Probability Space

Determine the probability space, Ω(, , P), for tossing a fair coin.

Solution: Tossing a coin has two outcomes: either the coin lands heads or it
lands tails. Thus, the sample space  is defined as  ¼ {heads, tails}.

The event set, , is defined as the power set of . A power set is simply a

new set created from all possible combinations of the original set, that is, it

contains all combinations of the elements ofdrawn singly, doubly, in threes,
etc. If there are n elements in the original set, then there will be 2n elements in

the power set. Since  has 2 elements, this implies that  will have 22¼ 4

elements. Irrespective of the situation,  will always contain the null set, {},

and . This is a consequence of the requirements on . Therefore, in this

example,  would be defined as  ¼ {{}, {heads}, {tails}, {heads, tails}}.

For each of the four events in , the following values would be assigned:

P({})¼ 0

P({heads})¼½
P({tails})¼½
P({heads, tails})¼ 1.

It can be noted that when tossing a coin, one of two options must occur.2

Therefore, it is impossible for none of the options to occur, that is, the

probability of the null set is zero! This is the case in all situations. Similarly,

the likelihood that either heads or tails occurs is certain, as the coin will land

on one of these two options. Therefore, P({heads, tails})¼P()¼ 1. This

once again will always hold.

Let X be a random variable that assigns or determines the observed outcome for

a particular case, that is, what outcome or event, X � , is obtained at some given

observation Xi. The process of obtaining an observation is called sampling. In the

simplest case, this can be viewed as flipping a coin and noting whether it landed

heads or tails. Thus, the random variable takes one from the domain of the

probability sample space to the observational space,. A collection of observations

taken from the same underlying probability space is called a sample.
For a continuous probability function, P(x), the cumulative distribution function,

FX(x), (cdf) is defined as

FX xð Þ ¼ P X � xð Þ ð2:1Þ

2 At least under normal circumstances!
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where P(X� x) is the probability that the outcome X is less than some

predetermined value x. If P(x) is discrete, like, for example, tossing a coin, then

the cumulative distribution function can be written as

FX xð Þ ¼ P X � xð Þ ¼
X
xi � x

P X ¼ xið Þ ð2:2Þ

where the sum is taken over all realisation less than or equal to x. It should be noted
that if the events are not numerical values, then it is difficult to define a cumulative

distribution function.

The probability density function, f(x), ( pdf ) is then defined as

f xð Þ ¼ dFX xð Þ
dx

ð2:3Þ

By Kolmogorov’s axiom that P()¼ 1, the probability density function has the

following property:

ð1
�1

f xð Þdx ¼ 1 ð2:4Þ

Furthermore, by Kolmogorov’s axiom that P ()� 0,

f xð Þ � 0 for all x ð2:5Þ

The properties given by Eqs. (2.4) and (2.5) are useful for determining if a given

candidate function is in fact a probability density function or if the result obtained is

indeed correct.

In order to describe the probability space, it is useful to consider two terms

previously introduced that will now be formally defined: mean and variance. For a
discrete function, the mean, μ, is defined as

μ ¼
X
x 2 

xP X ¼ xð Þ ð2:6Þ

The variance, σ2, is defined as

σ2 ¼
X
x 2 

x� μð Þ2P X ¼ xð Þ ð2:7Þ

The standard deviation would be defined as the square root of the variance.

For continuous functions, it is more convenient to work with the probability

density function and dispense almost entirely with both  and . In such cases, the

mean would be computed as
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μ ¼
ð1

�1
x f xð Þdx ð2:8Þ

while the variance would be computed as

var xð Þ ¼ σ2 ¼
ð1

�1
x� μð Þ2 f xð Þdx

¼
ð1

�1
x2 f xð Þdx� μ2

ð2:9Þ

The variance can either be denoted by σ2 or by var. It is common to use var when it
is desired to treat the variance as an operator and perform additional manipulations

with it. The cumulative distribution function or the probability that X is less than

some value a would then be obtained from

P X � að Þ ¼
ða

�1
f xð Þdx ð2:10Þ

Finally, the ith uncentred moment of the probability density function f(x), written as
mn, is

mi ¼
ð1

�1
xi f xð Þdx ð2:11Þ

It can be noted that the first moment is equivalent to the mean. In certain cases,

centred moments are preferred. In such cases, the ith centred moment for the

probability density function f(x), written as mi, is

mi ¼
ð1

�1
x� μð Þi f xð Þdx ð2:12Þ

The second centred moment, m2, is equivalent to the variance.

Example 2.2: Determining Acceptable Probability Density Functions

Determine if the following functions can be used as probability density

functions:

1. f (x)¼ x2 for 0� x� 2, zero otherwise

2. f (x)¼N�1 for 0� x�N, zero otherwise; N a positive number.

(continued)
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Example 2.2 (continued)

If a candidate function cannot be used, suggest how to make it a valid

probability density function.

Solution

Graph of the function given by f(x)¼ x2 for 0� x� 2, zero otherwise, is

shown in Fig. 2.1. From Fig. 2.1, it can be seen that the function satisfies

the condition f (x)� 0 for all x (Eq. (2.5)). In order to determine if the other

constraint given by Eq. (2.4) is satisfied, it is necessary to integrate the given

function, that is,

ð1
�1

f xð Þdx ¼
ð0

�1
0dxþ

ð2
0

x2dxþ
ð1
2

0dx

¼ 1

3
x3
����
2

0

¼ 1

3
23 � 03
� � ¼ 8

3
6¼ 1

Since the integral does not equal 1, the given function is not a probability

density function. In order to make it one, it is necessary to divide the function

by the inverse of what was obtained above, that is,

f xð Þ ¼ 3

8
x3 for 0 � x � 2, zero otherwise

is a probability density function. In general, if the value of the integral is

K for a candidate function f, then K�1f will be a probability density function

(continued)
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Fig. 2.1 Plot of the probability density function 1 in Example 2.2
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Example 2.2 (continued)

assuming that Eq. (2.5) is satisfied. The procedure is commonly used and is

called normalisation.
For the function given by f(x)¼N�1 for 0� x�N, zero otherwise, with

N a positive number, it is easy to verify that Eq. (2.5) holds. To verify

Eq. (2.4), integration gives

ð1
�1

f xð Þdx¼
ð0

�1
0dxþ

ðN
0

N�1dxþ
ð1
N

0dx

¼ 1

N
x

����
N

0

¼ 1

Since the integral equal 1, this implies that Eq. (2.4) is satisfied. Since both

conditions are satisfied, this is a candidate probability density function.

Example 2.3: Computing Mean and Variance from the Probability

Density Function

For the corrected probability density function from Example 2.2, compute the

mean, standard deviation, and variance.

Solution

Since we have that f(x)¼ 3x2/8 for 0� x� 2, the mean can be found as

follows:

μ ¼
ð1

�1
x f xð Þdx ¼ 3

8

ð2
0

xx2dx ¼ 3

8ð Þ4x
4

����
2

0

¼ 3

8ð Þ42
4 ¼ 1:5

The variance can be found as

σ2 ¼
ð1

�1
x2 f xð Þdx� μ2 ¼ 3

8

ð2
0

x2x2dx� 1:52 ¼ 3

8ð Þ5x
5

����
2

0

� 1:52

¼ 3

8ð Þ52
5 � 1:52 ¼ 0:15

The standard deviation can be written as σ ¼ ffiffiffiffiffiffiffiffiffi
0:15

p
.

Therefore, for the given probability density function, the mean is 1.5, the

variance is 0.15, and the standard deviation is
ffiffiffiffiffiffiffiffiffi
0:15

p
.
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2.2 Expectation Operator

In order to simplify some of the mathematical operations that are required in

manipulating statistical properties, the concept of the expectation operator, E,
needs to be introduced. The expectation operator determines the mean, or expected,

value of a distribution and is defined as

E xð Þ ¼
ð1

�1
x f xð Þdx ¼ μ ð2:13Þ

For any two random variable X and Y, and c 2 , the expectation operator has the

following properties:

1. E(X + c)¼E(X) + c;
2. E(cX)¼ cE(X);
3. E(X + Y )¼E(X) +E(Y);

4. E(g(X)) ¼
ð1

�1
g xð Þ f xð Þdx;

5. E(XY)¼E(X)E(Y ) + cov(X, Y ), where cov is the covariance (or the degree of

relationship between) of X and Y. Note that if two variables are independent of
each other, then their covariance is zero. The covariance of the same variable,

that is, cov(X, X) or the autocovariance, is by definition equal to the variance of

the variable, that is, σ2X.

Properties 1, 2, and 3 show that the expectation operator is a linear operator.

Example 2.4: Using the Expectation Operator

Consider two variables X (μ¼ 5 and σ2¼ 4) and Y (μ¼ 2 and σ2¼ 2), with

covariance, cov(X, Y )¼ 2, and compute the following values:

1. E(2X – 5)

2. E(3XY)

Solution

For part 1, we have that

E(2X – 5)¼ 2E(X) – 5¼ 2 (5) – 5¼ 5

and for part 2, we have that

E(3XY)¼ 3E(XY)¼ 3 (E(X)E(Y ) + cov(X, Y ))¼ 3 ((5)(2)� 2)¼ 24.

Both results are obtained by a straightforward application of the rules for

the expectation operator.
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2.3 Multivariate Statistics

So far it has been assumed that there is only a single variable that governs the

behaviour of the probability space. However, in many cases, it is useful to deal with

multivariate probability spaces where multiple variables determine the outcome. In

general, all of the univariate results generalise straightforwardly to the multivariate

case. In order to simplify the presentation, all results will be derived first for the

bivariate (n¼ 2) situation. The extension to an arbitrary n simply requires adding

additional integrations.

Assume that ~X ¼ X1;X2h i and ~x is similarly defined. Let the joint probability

density function, f ~X ~xð Þ, be defined over the region2. The joint probability density

function satisfies the following three properties:

1. f ~X ~xð Þ � 0, for all ~x 2 ~X;

2.

ð1
�1

ð1
�1

f ~X ~xð Þd~x ¼ 1; and

3. P ~X 2 
� � ¼ ðx1

�1

ðx2
�1

f ~X ~xð Þd~x, where  is some subspace (region) of the 2

space.

The marginal probability density function represents the probability for a subset
of random variables in the original joint probability density function. The subset

considered is used as the subscript for the function, for example, fX(x), would be the
marginal probability density function for X. The marginal probability density

function is obtained by integrating out all the remaining variables, that is,

f X1
x1ð Þ ¼

ð1
�1

f ~X ~xð Þdx2 ð2:14Þ

The process of removing some subset of random variables is called marginalisation
and the removed variables (x2 in this case) are said to be marginalised out.

The conditional probability represents the probability, given information

about some of the other variables, for example, if there are two variables X and Y,
then once the value of X is determined, what is the probability of obtaining a

given Y. Using probability notation, the conditional probability of Y given X is

defined as

P YjXð Þ ¼ P X \ Yð Þ
P Xð Þ ð2:15Þ

38 2 Theoretical Foundation for Statistical Analysis



The conditional probability density function for Y given X¼ x is written as

f Yjx yð Þ ¼ f ~X ~xð Þ
f X xð Þ ð2:16Þ

Since this is a probability density function, it will satisfy all the usual properties.

The mean value of X1 can be obtained as

μX1
¼ E X1ð Þ ¼

ð1
�1

x1 f X1
x1ð Þdx1 ð2:17Þ

Similarly, the conditional mean of X2 given X1¼ x1 can be written as

μX2jx1 ¼ E X2

��x1� � ¼ ð1
�1

x2 f X2jx1 x2ð Þdx2 ð2:18Þ

The variance of each variable would be defined similarly to the means. The

covariance, σXY or cov(X, Y), represents the degree of linear relationship between

two variables and is defined as

σX1X2
¼
ð1

�1

ð1
�1

x1x2 f X1X2
x1; x2ð Þdx1dx2 � μX1

μX2
ð2:19Þ

The covariance matrix, Σ, is defined as the n� n matrix whose elements are

the covariances of the given variables, that is, Σij¼ cov(Xi, Xj). It should be

noted that σXX is equal to the variance of X. Formally, the covariance matrix is

defined as

Σ ¼ E ~XT~X
� �� E ~XT

� �
E ~X
� � ð2:20Þ

where ~X is the 1� n vector of random variables. The correlation is the normalised

covariance and is defined as

corr X1;X2ð Þ ¼ ρX1X2
¼ σX1X2

σX1
σX2

¼ σX1X2ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2X1

σ2X2

q ð2:21Þ

The correlation is bounded between �1 and 1.
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Two (or more) variables are said to be independent if the following hold:

1. f ~X ~xð Þ ¼
Yn
i¼ 1

f Xi
xið Þ for all xi;

2. f Xjjxi xj
� � ¼ f Xj

xj
� �

for all xi and xj with f Xj
xj
� �

> 0; and

3. P X1 2 1,X2 2 2, . . . ,XN 2 Nð Þ ¼
YN
i¼ 1

P Xi 2 ið Þ for any sets i in the range

of xi:

When dealing with a multivariate distribution, the computation of the marginal

and conditional probabilities is more complex. Let ~D ¼ D1;D2; . . . ;Dmh i be an

m-dimensional subset of the n-dimensional vector ~X, and let~d be defined similarly.

Let ~Xr be defined such that it contains all the variables in ~X that are not in ~D and let

~xr be defined similarly. Let  be the subset of N for the ~D vector. The marginal

probability density function can then be written as

f ~D
~d
� �

¼
ð
N \

f ~X ~xð Þd~xr ð2:22Þ

where the integration is performed on the interval]�1,1[for all the variables not

in ~D.

The conditional probability for ~D given ~D0, such that there are no variables in

common with both vectors, is defined as

f
~D
��~d0 ~d
� �

¼
f ~D~D0 ~d; ~d0

� �
f ~D0 ~d0
� � ð2:23Þ

Equations (2.22) and (2.23) reduce to the bivariate examples provided previously.

Example 2.5: Dealing with a Multivariate Distribution

Consider the following multivariate distribution:

f XYZ x; y; zð Þ ¼ 40e�5x�2y�4z x > 0, y > 0, z > 0

and compute the following information:

1. fX(x)
2. fYZ(y, z)
3. fYZjx(y, z). Does the value depend on x?

4. Compute the covariance between Y and Z.
5. Determine if the variables are independent.

(continued)
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Example 2.5 (continued)

Solution
For (1), let ~D ¼ Xh i, ~d ¼ xh i, ~Xr ¼ Y; Zh i, and ~xr ¼ y; zh i.will be

]0, 1[. Equation (2.22) can then be rewritten as

f X xð Þ ¼
ð1
0

ð1
0

f XYZ x; y; zð Þdydz ¼
ð1
0

ð1
0

40e�5x�2y�4zdydz

¼ 40e�5x

ð1
0

e�2ydy

ð1
0

e�4zdz ¼ 40e�5x 0:5ð Þ 0:25ð Þ

¼ 5e�5x

It should be noted that

ð1
0

e�czdz ¼ c�1.

For (2), let ~D ¼ Y; Zh i,~d ¼ y; zh i, ~Xr ¼ Xh i, and ~xr ¼ xh i.  will be ]0,

1[� ]0, 1[. Equation (2.22) can then be rewritten as

f YZ y; zð Þ ¼
ð1
0

f XYZ x; y; zð Þdx ¼
ð1
0

40e�5x�2y�4zdx

¼ 8e�2y�4z

For (3), let ~D0 ¼ Xh i, ~d0 ¼ xh i, ~D ¼ Y; Zh i, and ~d ¼ y; zh i.
Equation (2.23) can then be rewritten as

f YZjx y; zð Þ ¼ f XYZ x; y; zð Þ
f X xð Þ ¼ 40e�5x�2y�4z

5e�5x
¼ 8e�2y�4z

It can be seen that the conditional probability does not depend on x.
For (4), first compute the mean value of both Y and Z:

μY ¼
ð1
0

y f Y yð Þdy ¼
ð1
0

2ye�2ydy ¼ 2� 1

4
¼ 0:5

μZ ¼
ð1
0

z f Z zð Þdy ¼
ð1
0

4ze�4zdy ¼ 4� 1

16
¼ 0:25

(continued)
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Example 2.5 (continued)

Note that

ð1
0

ze�czdz ¼ c�2. Then, the covariance between Y and Z can be

determined as

σ2YZ ¼
ð1
0

ð1
0

yz f YZ y; zð Þdydz� 0:5ð Þ 0:25ð Þ ¼
ð1
0

ð1
0

yz 8e�2y�4z
� �

dydz� 0:125

¼ 8

ð1
0

ye�2ydy

ð1
0

ze�4zdz� 0:125 ¼ 8� 1

4
� 1

16
� 0:125

¼ 0

For (5), note that fXYZ¼ fXfYfZ, which corresponds to the first statement for

independence. Since it is satisfied, we can conclude that all three variables are

independent of each other. Note that fYZ and f YZ j x are the same, which should

be the case if the variables are independent.

When computing the variance and covariance matrices using vectors, there can

be some confusion about the order in which the transposes are placed (on the first or

second member). Part of the confusion stems from the fact that depending on the

particular application, the same vector can be used to obtain two different values:

either a scalar variance value or a matrix covariance value. The following rules can

be used to resolve any potential issues:

1. Scalar column vector rule: Consider ~X to be a 1� n vector of random variables,

for which it is desired to compute the second moment, m2. In such a case, the

correct formula is given asm2 ¼ E ~X~XT
� �

, where T is the transpose operator. It is

easy to verify that this will give a scalar value.

2. Scalar row vector rule: Consider ~X to be an n� 1 vector of random variables, for

which it is desired to compute the second moment, m2. In such a case, the correct

formula is given asm2 ¼ E ~XT~X
� �

, where T is the transpose operator. It is easy to

verify that this will give a scalar value.

3. Matrix column vector rule: Consider ~X to be a 1� n vector of random variables,

for which it is desired to compute the covariance matrix, Σ. In such a case, the

correct formula is given as Σ ¼ E ~XT~X
� �

, where T is the transpose operator. It is

easy to verify that this will give a matrix value.

4. Matrix row vector rule: Consider ~X to be a n� 1 vector of random variables, for

which it is desired to compute the covariance matrix, Σ. In such a case, the

correct formula is given as Σ ¼ E ~X~XT
� �

, where T is the transpose operator. It is

easy to verify that this will give a matrix value.
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5. Product of vector rule: Consider two vectors ~X1 and ~X2 that are multiplied

together. It is desired to determine the second moment for the product of these two

vectors~X1
~X2. In such a case, the first vector in the product will determine which of

the two rules apply. For example, if~X1 is a column vector and~X2 the corresponding

row vector, then the second moment would be computed as follows:

m2 ¼ E ~X~XT
� � ¼ E ~X1

~X2
~X1

~X2

� �
T

� � ¼ E ~X1
~X2

~XT
2
~XT
1

� �
, where the last manipu-

lation results from the property of transpose and inverse for matrices, that is,

ABð ÞT ¼ BTAT ð2:24Þ

where A and B are two appropriately sized matrices.Mutatis mutandis for the inverse.

2.4 Common Statistical Distributions

In statistics, a commonly encountered generalised probability space, given by either

actual probabilities or a probability density function, is called a distribution. Such
distributions show how a variable is distributed among all possible available values.

In this section, the following common distributions will be considered: normal,
Student’s t-, χ2-, F-, binomial, and Poisson distributions. Except for the last three

distributions which are discrete, all the other distributions are continuous.

The swing dash (~) is used to denote that a random variable follows a given

distribution, for example, y ~ N(0, σ2) means that the random variable y follows a
normal distribution with mean zero and variance σ2. In general, a capital Fraktur

letter will be used to refer to a specific distribution. Occasionally, due to historical

precedent, a different symbol may be used. In many applications, it is desired to find

the x-value corresponding to a specific probability for the given distribution. In

general, this will be denoted using the same symbol as before, but with the addition

of a subscript probability value, that is, N p,μ,σ2 would represent the x-value of the

normal probability density function with parameters μ and σ2, such that the area

under the curve equals p, that is, finding the x-value for the cumulative probability

function for the normal distribution with parameters μ and σ2 given a probability of
p. In general, this problem does not have a closed-form solution.

2.4.1 Normal Distribution

The normal (or Gaussian) distribution, denoted by N μ; σ2ð Þ, is the most common

distribution in statistics. It can be fully described by the mean, μ, and standard

deviation, σ. It is a symmetric distribution centred on the mean. The spread of

values is determined by the standard deviation. The larger the standard deviation,
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the more spread out the values are. The following are some useful rules of thumb

regarding a normal distribution:

1. 68% of all values drawn from a normal distribution lie within the interval μ� σ.
2. 95% of all values drawn from a normal distribution lie within the interval μ� 2σ.
3. 99.7% of all values drawn from a normal distribution lie within the interval μ� 3σ.
4. 999,999 out of one million values drawn from a normal distribution lie within

the interval μ� 6σ. This observation is the origin for 6σ process control and

analysis.

Common properties of the normal distribution are summarised in Table 2.1,

while Fig. 2.2 gives a probability plot of the normal distribution.

The standard normal distribution, denoted by Z, is defined as a normal

distribution with μ¼ 0 and σ¼ 1. A variable following any normal distribution

can be standardised as follows:

Z ¼ x� μ

σ
ð2:25Þ

where Z is often called the Z-score for the given variable. This normalisation allows

for easier comparison between variables drawn from different distributions. The

cumulative distribution function for the standard normal distribution, denoted

by Φ(z), is

Φ zð Þ ¼ P X � zð Þ ¼
ðz

�1

1

σ
ffiffiffiffiffi
2π

p e
� x � μð Þ2

2σ2 dx ð2:26Þ

The normal distribution is commonly encountered when performing regression

analysis, system identification, or analysing systems in process control. As well,

Table 2.1 Useful properties of the normal distribution

Property Value

Notation N(μ, σ2)
N(0, 1) is denoted by Z.

Probability density function
f xð Þ ¼ 1

σ
ffiffiffiffi
2π

p e
� x � μð Þ2

2σ2

Mean μ

Variance σ2

Probability density function MATLAB normpdf (x, μ, σ)

Excel 2010/13 norm.dist (x, μ, σ,
false)

Excel 2003/7 normdist (x, μ, σ,
false)

Generate Numbers Drawn From Given

Distribution

MATLAB normrnd (n, p, Size)

Inverse cumulative distribution function MATLAB, Excel

2003/7

norminv (p, μ, σ)

Excel 2010/2013 norm.inv (p, μ, σ)
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due to the behaviour of large numbers and means, it is used to describe the

distribution of many common parameters, including heights and weights of people,

grades, and machine errors.

In some cases, the multivariate normal distribution is useful. For a vector of

random variables, ~X, with a mean vector ~μ and a covariance matrix Σ, then the

multivariate normal distribution is

f ~xð Þ ¼ 2πð Þ�n
2 Σj j�0:5

e�
1
2
~x� ~μð ÞTΣ ~x� ~μð Þ ð2:27Þ

where j·j is the determinant function. The shape and behaviour of the multivariate

normal distribution is the same as the univariate normal distribution.

2.4.2 Student’s t-Distribution

The Student’s t-distribution, denoted as t(ν) or more commonly as tν, is a statistical
distribution that is used for dealing with the estimation of the mean of a normal

distribution when the sample size is small and the population standard deviation is

unknown. It approaches the normal distribution as the number of degrees of

freedom, ν, approaches infinity. In general, the Student’s t-distribution has larger

tails than the normal distribution. Useful properties of the Student’s t-distribution
are summarised in Table 2.2, while Fig. 2.3 compares the Student’s t-distribution
with the normal distribution.
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Fig. 2.2 Probability density function for the normal distribution where μ¼ 0 and σ¼ 4
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2.4.3 χ2-Distribution

The χ2-distribution, denoted as χ2(ν) or χ2ν, is a distribution that can be used to

model the distribution of standard deviations. It depends on the number of degrees

of freedom, ν, for the given set of observations. Useful properties of the

χ2-distribution are summarised in Table 2.3, while Fig. 2.4 gives a plot of the

probability density function for the χ2-distribution for different values of ν.

Table 2.2 Useful properties of the Student’s t-distribution

Property Value

Notation t(ν) or tν
Probability density function

f xð Þ ¼ Γ ν þ 1
2ð Þ

Γ ν
2ð Þ ffiffiffiffiνπp 1þ x2

ν

� ��ν þ 1
2

where Γ is the gamma function.

Mean 0 for ν> 1

Variance ν/(ν – 2) for ν> 2

Probability density function MATLAB tpdf (x, ν)

Excel 2010/2013 t.dist (x, ν, false)

Generate Numbers Drawn From Given

Distribution

MATLAB trnd (ν, Size)

Inverse cumulative distribution function MATLAB tinv (p, ν)

Excel 2010/2013 t.inv (p, ν)

Excel 2003/2007 tinv (2�2p, ν)

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

f(
x)

t-distribution

Normal distribution

Fig. 2.3 Comparison between the t-distribution with 2 degrees of freedom and the standardised

normal distribution
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2.4.4 F-Distribution

The F-distribution, denoted asF ν1; ν2ð ÞorFν1,ν2 , is a distribution that can be used to

model the distribution of ratios. Its shape depends on the number of degrees of

freedom for both the numerator, ν1, and denominator, ν2, of the ratio. Useful

properties of the F-distribution are summarised in Table 2.4, while Fig. 2.5 gives

a plot of the probability density function for the F-distribution.

Table 2.3 Useful properties of the χ2-distribution

Property Value

Notation χ2(ν) or χ2ν
Probability density function f xð Þ ¼ 1

Γ ν
2ð Þ2ν2 x

ν
2
� 1e�

x
2

where Γ is the gamma function.

Mean ν

Variance 2ν

Probability density function MATLAB chi2pdf (x, ν)

Excel 2013 chisq.pdf (x, ν)

Generate Numbers Drawn From Given

Distribution

MATLAB chi2rnd (ν, Size)

Inverse cumulative distribution function MATLAB chi2inv (p, ν)

Excel 2010/2013 chisq.inv (p, ν)

Excel 2003/2007 chiinv (1�p, ν)
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Fig. 2.4 Probability density function for the χ2-distribution as a function of the degrees of

freedom
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2.4.5 Binomial Distribution

The binomial distribution, denoted byB n; qð Þ, is a discrete distribution used to model

the outcome of a series of binary (0 and 1 or yes or no) events. For each trial or

realisation, the value 1 can occur with probability q and the value 0 with probability

1 – q. It is assumed that there are k trials and the number of 1s is s. The order in which
the events occur is not important, only their total number, for example, {1, 0, 0, 1}

Table 2.4 Useful properties of the F-distribution

Property Value

Notation F(ν1, ν2) or Fν1,ν2

Probability density function

f xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν1xð Þν1 νν2

2

ν1x þ ν2ð Þν1 þ ν2

r
xB ν1

2
; ν2
2

� �
where B is the beta function.

Mean ν2 / (ν2 – 2) for ν2> 2

Variance 2ν22 ν1 þ ν2 � 2ð Þ
ν1 ν2 � 2ð Þ2 ν2 � 4ð Þ for ν2> 4

Probability density function MATLAB fpdf (x, ν1, ν2)

Excel 2010/2013 f.dist (x, ν1, ν2, false)

Generate Numbers Drawn From Given

Distribution

MATLAB frnd (ν1, ν2, Size)

Inverse cumulative distribution function MATLAB finv (p, ν1, ν2)

Excel 2010/2013 f.inv (p, ν1, ν2)

Excel 2003/2007 finv (1 – p, ν1, ν2)
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Fig. 2.5 Probability density function for the F-distribution for ν1¼ 8 and ν2¼ 10
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and {1, 1, 0, 0}, would be equivalent, since each has 2 cases of 1 and 2 cases of 0. The

meaning assigned to 1 and 0 can be arbitrary as long as the outcome is binary. For

example, 1 could represent success and 0 failure or 1 heads and 0 tails. Useful

properties of the binomial distribution are summarised in Table 2.5.

Setting n¼ 1, that is, only a single trial occurs, we get the Bernoulli distribution.
It models the probability of a single trial given two possibilities. Historically, this

distribution was first proposed and then generalised to the binomial distribution.

Finally, it should be noted that it is possible to approximate the binomial

distribution using the standard normal distribution if np> 5 and n(1 – p)> 5. In

this case,

Z ¼ X � n pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np 1� pð Þp ð2:28Þ

is approximately a standard normal variable. When computing probabilities, it is

normal to add a correction factor to deal with the fact that the binomial distribution is

discrete while the normal distribution is continuous. The correction can be written as

P X < xð Þ 	 P Z <
xþ 0:5� npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

np 1� pð Þp
 !

P X > xð Þ 	 P Z >
x� 0:5� npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

np 1� pð Þp
 ! ð2:29Þ

It can be noted that in both cases the final probability will be larger than if no

correction factor had been used.

Table 2.5 Useful properties of the binomial distribution

Property Value

Notation B(n, q)

Probability function
P (X¼ k) ¼ n

k

� 	
qk 1� qð Þn� k

where n is the total number of trials and k is the number

of trials with outcome 1.

Mean nq

Variance nq (1 – q)

Probability function MATLAB binopdf (k,n,q)

Excel 2010/2013 binom.dist (k, n, q, false)

Excel 2003/2007 binomdist (k, n, q, false)

Generate Numbers Drawn From

Given Distribution

MATLAB binornd (n, q, Size)

Inverse MATLAB binoinv (p, n, q)

Excel 2010/2013 binom.inv (n, q, p)
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2.4.6 Poisson Distribution

The Poisson distribution, denoted by p λð Þ,3 is a discrete distribution used to model

the occurrence of independent events in a given time interval or space. It is the

result of taking the binomial distribution and extending the number of trials to

infinity. The Poisson distribution is encountered in reliability engineering to model

the time occurrences of failure and used in queuing theory to model the behaviour

of a queue. Useful properties of the Poisson distribution are summarised in

Table 2.6.

It should be noted that, as for the binomial distribution from which it is derived,

it is possible to approximate the Poisson distribution using the standard normal

distribution if λ> 5. In this case,

Z ¼ X � λffiffiffi
λ

p ð2:30Þ

is approximately a standard normal variable.

2.5 Parameter Estimation

Parameter estimation is the name given to the procedure used to estimate, or

approximate, the true population parameters, based on a sample of the population.

This is commonly encountered when, after running some experiment or other data

Table 2.6 Useful properties of the Poisson distribution

Property Value

Notation p(λ)

Probability function P (X¼ k) ¼ λk

k! e
�λ

where k� 0 is an integer.

Mean λ

Variance λ

Probability function MATLAB poisspdf (k, λ)

Excel 2010/

2013

poisson.dist (k, λ,
false)

Excel 2003/

2007

poissondist (k, λ,
false)

Generate Numbers Drawn From Given

Distribution

MATLAB poissrnd (λ, Size)

Inverse MATLAB poissinv (p, λ)

3 Note a lowercase Fraktur p is used as the symbol here.
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collection method, it is necessary to obtain estimated values for the parameters.

Since the true parameter values are not known, a method needs to be developed for

estimating the values so that they are as close to the true values as possible.

In general, the estimated parameter is denoted by placing a circumflex (̂◌) over
the theoretical or population parameter, for example, μ̂ is the estimated value for the

mean μ. Very often, an arbitrary parameter is denoted by θ and its estimated value is

given as θ̂ .

2.5.1 Considerations for Parameter Estimation

When estimating the value of a parameter, the following points should be borne in

mind:

1. Bias: A good estimate of a parameter should be unbiased, that is, E(θ̂ )¼ θ. The
bias, δ, in a parameter estimate is defined as:

δ ¼ E θ̂
� �� θ ð2:31Þ

2. Variance: The variance of the parameter should be as small as possible. A

parameter estimate with the smallest variance over all possible parameter esti-

mates is called the minimum variance estimator (MVE) for that parameter.

3. Mean square error (MSE): The mean square error of a parameter is defined as

MSE θ̂
� � ¼ E θ̂ � E θ̂

� �� �2� �
¼ σ2

θ̂
þ δ2 ð2:32Þ

where σ2
θ̂
is the variance of the parameter estimate. If the estimate is unbiased,

then the mean square error is equal to the variance. A minimum mean square

error estimate for a parameter need not be equal to its minimum variance

estimator.

4. Consistency: This says that as the number of samples used to estimate the

parameter goes to infinity, then the estimate of the parameter goes to the true

value of the parameter with probability one, that is,

plim
n!1

θ̂n ¼ θ ð2:33Þ

where θ̂n is the parameter estimate using n data points and plim denotes conver-

gence in a probabilistic manner, that is, given a sequence {Xn}, it is said to

converge in a probabilistic manner to the random variable X, if for any ε,

lim
n!1P Xn � Xj j � εð Þ ¼ 0 ð2:34Þ
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The Cramér–Rao lower bound for a parameter estimate provides a bound on

how low the variance of the estimated parameters can be. Achieving the lower

bound implies that we have a minimum variance estimate. The Cramér–Rao lower

bound is defined as

σ2
θ̂
� F θð Þ�1 ð2:35Þ

where F is the Fisher information matrix defined as

F θð Þ ¼ �E
∂2

log LðθjxÞð Þ
∂θ2

 !
ð2:36Þ

and L θjxð Þ is the likelihood function for the parameter estimates. The Cramér–Rao

lower bound can be used to define the efficiency of a parameter estimate, that is,

how close does the parameter estimate come to the lower bound. Let the efficiency

of a parameter estimate, gθ̂ , be defined as

gθ̂ ¼ F θð Þ�1

σ2
θ̂

� 1 ð2:37Þ

A parameter estimator achieving the Cramér–Rao lower bound will have an

efficiency of 1.

2.5.2 Methods of Parameter Estimation

In general, there are three different methods that can be used to estimate a

parameter:

1. Method of moments, where the parameter estimates are obtained by calculating

the moments of the sample and comparing them with the theoretical moments.

2. Maximum likelihood method, where the likelihood function given the data set is

optimised to determine the optimal parameter values.

3. Regression, where the error between the estimated and actual data points is

minimised to determine the parameter estimates. Since this method is so com-

monly used, the following chapter (Chap. 3) is devoted to examining this

concept further.

2.5.2.1 Method of Moments

In the method of moments approach, theoretical expressions for the moments of the

distribution are determined. Using the sample obtained, the sample moments are
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then computed and compared with the theoretical expressions. Solving the resulting

system of equations for the unknown parameters will give the method of moments

parameter estimates. If there are m parameters that describe a given distribution,

then at least the first m moments will need to be computed. The sample moments

can be computed as follows:

m̂ k ¼ 1

n

Xn
i¼ 1

xki ð2:38Þ

The method of moments can provide easy-to-obtain parameter estimates for a

distribution. However, the parameter estimates may be biased. As well, solving

the system of equations can be difficult.

Example 2.6: Method of Moments for a Normal Distribution

Consider estimating the mean and standard deviation for a normal distribu-

tion using the method of moments. Are the parameter estimates biased?

Solution

The theoretical expressions for the two moments are

m1 ¼ μ,m2 ¼ σ2 þ μ2

Let the sample moments be given as

m̂1 ¼ 1

n

Xn
i ¼ 1

xi, m̂2 ¼ 1

n

Xn
i ¼ 1

x2i

Equating the corresponding moments gives

m̂1 ¼ 1

n

Xn
i ¼ 1

xi ¼ μ ) μ̂ ¼ 1

n

Xn
i ¼ 1

xi

m̂2 ¼ 1

n

Xn
i ¼ 1

x2i ¼ σ2 þ μ2 ) σ̂ 2 ¼ 1

n

Xn
i ¼ 1

x2i �
1

n

Xn
i ¼ 1

xi

 !2

To determine bias of the parameter estimates, take the expected value of the

equations obtained above, namely,

E μ̂ð Þ ¼ E
1

n

Xn
i ¼ 1

xi

 !
¼ 1

n

Xn
i ¼ 1

E xið Þ ¼ 1

n

Xn
i ¼ 1

μ ¼ μ unbiased!ð Þ

(continued)
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Example 2.6 (continued)

E σ̂ 2ð Þ ¼ E
1

n

Xn
i ¼ 1

x2i �
1

n

Xn
i ¼ 1

xi

 !2
0
@

1
A ¼ 1

n
E

Xn
i ¼ 1

x2i �
1

n

Xn
i ¼ 1

xi

 !2
0
@

1
A

¼ 1

n

Xn
i ¼ 1

E x2i �
2

n
xi
Xn
j ¼ 1

xj þ 1

n2

Xn
j ¼ 1

xj
Xn
k ¼ 1

xk

 !

¼ 1

n

Xn
i ¼ 1

n� 2

n
E x2i
� �� 2

n

Xn
j 6¼ i

E xixj
� �þ 1

n2

Xn
j ¼ 1

Xn
k 6¼ j

E xjxk
� �þ 1

n2

Xn
j ¼ 1

E x2j

� �

¼ 1

n

Xn
i ¼ 1

n� 2

n
σ2 þ μ2
� �� 2 n� 1ð Þ

n
μ2 þ n� 1

n
μ2 þ 1

n
σ2 þ μ2
� �

¼ 1

n

Xn
i ¼ 1

n� 2

n
σ2
� �þ 1

n
σ2
� �

¼ n� 1

n
σ2 biased!ð Þ

Therefore, the estimate for the mean is unbiased, while for the variance, the

estimate is biased.

2.5.2.2 Maximum Likelihood Method

The maximum likelihood method seeks to maximise the likelihood function for the

parameters given the data set. The likelihood function for the parameters θ given the
data set ~x, L(θj~x), can be written as4

L θ
��~x� � ¼ f ~x; θð Þ ð2:39Þ

where f(~x, θ) is the assumed probability density function from which the data set

came. If it can be assumed that the individual data points are independent of each

other, and then Eq. (2.39) reduces to

L θ
��~x� � ¼ Yn

i ¼ 1

f xi; θð Þ ð2:40Þ

where f(x, θ) is the corresponding univariate probability density function and n is

the number of samples or data points. Since it is difficult to deal with a product, the

4 The likelihood function is similar in form to a probability density function, but the relationship

between the parameters and data points is reversed, that is, the probability density function

assumes the parameters and seeks the data points, while the likelihood function assumes the

data points and seeks the parameters.
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logarithm of the likelihood function is most often used for optimisation. The log-
likelihood function, ‘(θj~x), is defined as

‘ θ
��~x� � ¼ log L θ

��~x� � ¼ Xn
i ¼ 1

f xi; θð Þ ð2:41Þ

Maximisation is performed by setting the derivatives of ‘ with respect to the

parameters to zero and solving the resulting system of equations, that is,

θ̂ MLE ¼ argmax
θ

‘ θ
��~x� � ð2:42Þ

The maximum likelihood method has the following asymptotic properties:

1. E(θ̂ )	 θ;
2. The variance of the estimate attains the Cramér–Rao lower bound;

3. The estimate is consistent;

4. The estimate is efficient; and

5. θ̂ is approximately normally distributed.

Asymptotic means that these properties are attained as the number of samples

approaches infinity (n!1). Furthermore, the maximum likelihood estimate has

the advantage that a function of a parameter estimate is also a maximum likelihood

estimate of the function of the true values, that is, if θ̂ is the maximum likelihood

estimate for θ, then g(θ̂ ) is the corresponding estimate for g(θ). This is called the

transformative property.

The main problem with the maximum likelihood method is that a closed-form

solution cannot always be obtained for the parameter estimates. Solving such a

system numerically may not always be easy.

Example 2.7: Maximum Likelihood Estimates for a Normal

Distribution

Consider the problem of finding the maximum likelihood estimates given X1,

X2,. . ., Xn random, independent samples drawn from a normal distribution.

Determine the maximum likelihood parameter estimates.

Solution

The probability density function of interest can be written as

f x; μ; σ2
� � ¼ 1

σ
ffiffiffiffiffi
2π

p e
� x � μð Þ2

2σ2

(continued)
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Example 2.7 (continued)

Therefore, given n samples, the log-likelihood function can be written as

‘ θ
��~x� �¼ Xn

i ¼ 1

log
1

σ
ffiffiffiffiffi
2π

p e
� xi � μð Þ2

2σ2

� 	
¼
Xn
i ¼ 1

log
1

σ
ffiffiffiffiffi
2π

p
� 	

� xi � μð Þ2
2σ2

¼ �n

2
log 2π � nlog σ �

Xn

i ¼ 1
xi � μð Þ2

2σ2

Taking the derivative of the log-likelihood function with respect to μ gives

∂‘
∂μ

¼
∂ �n

2
log 2π � nlog σ �

Xn

i ¼ 1
xi � μð Þ2

2σ2

 !

∂μ
¼ �

Xn

i ¼ 1
xi � μð Þ

σ2

Equating to zero and solving for μ gives

�
Xn

i ¼ 1
xi � nμ

σ2
¼ 0 ) μ̂ ¼

Xn

i ¼ 1
xi

n

Taking the derivative with respect to σ, equating to zero, and solving the

resulting equation for σ give

∂‘
∂σ

¼
∂ �n

2
log 2π � nlog σ �

Xn

i ¼ 1
xi � μð Þ2

2σ2

 !

∂σ
¼ �n

σ
þ
Xn

i ¼ 1
xi � μð Þ2

σ3

¼ 0 ) σ̂ 2 ¼
Xn

i ¼ 1
xi � μ̂ð Þ2
n

It can be noted that both parameter estimates are equivalent to the method of

moment estimator. This is not necessarily true in general. Finally, note that

the estimate for the variance is biased. An exploration of the meaning of this

is given in Sect. 2.5.3.
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2.5.3 Remarks on Estimating the Mean, Variance,
and Standard Deviation

As can be seen from the above results for the normal distribution, the estimate of the

mean is unbiased irrespective of the method selected.

Unfortunately, the same cannot be said about the variance, which is biased. The

bias in the variance is

δ ¼ E θ̂
� �� θ ¼ n� 1

n
σ2 � σ2 ¼ � σ2

n
ð2:43Þ

It can thus be seen that the variance will be underestimated using the maximum

likelihood or method of moment values. Furthermore, note that as n!1, n�1! 0,

so that the bias will decrease to zero. This clearly shows that the estimate is an

asymptotically unbiased estimator. In order to obtain an unbiased estimator, the

formula needs to be changed using Bessel’s correction. The unbiased estimate of

the variance is then

σ2 ¼
Xn

i ¼ 1
xi � μ̂ð Þ2

n� 1
ð2:44Þ

where the n in the original denominator is replaced by n – 1. One way to explain this
change is to note that since the true mean is not known, one degree of freedom is

used to compute its value. Therefore, the variance does not have n, but rather n – 1

degrees of freedom. This correction should only be used if both the population

mean and variance are being estimated from the same data set. If the population

mean is known, then there is no need to use the correction.

Since the standard deviation is equal to the square root of the variance, it follows

that the corrected standard deviation would be

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i ¼ 1
xi � μ̂ð Þ2

n� 1

s
ð2:45Þ

However, unlike the variance, this estimate will be biased. In fact, since the

standard deviation is equal to the square root of the variance, the bias will only

be corrected by using a different estimator for standard deviation. It can be noted

that asymptotically the bias will go to zero as given by the transformation property

of the maximum likelihood method.

2.5 Parameter Estimation 57



2.6 Central Limit Theorem

The central limit theorem is an important result concerning the behaviour of the

mean of any distribution computed from multiple different samplings of the

original distribution.

Theorem 2.1 Given {X1, X2,. . ., Xn}, a set of random variables that are indepen-
dent and identical, with mean μ and finite variance σ2 6¼ 0. Let Sn¼X1+X2 + . . .
+Xn, then

lim
n!1P

Sn � nμ

σ
ffiffiffi
n

p � z

� 	
¼ Φ zð Þ ð2:46Þ

that is, the probability density function of Sn converges to the standard normal
distribution.

The result of the central limit theorem explains why many observations can be

treated as coming from a normal distribution. Specifically, for the mean, which is

computed as the sum of all observations divided by the number, n, we get

lim
n!1P

μ̂ � μ

σ=
ffiffiffi
n

p � z

� 	
¼ Φ zð Þ ð2:47Þ

This can be obtained from Eq. (2.46) by dividing both the numerator and denom-

inator by n and noting that Sn/n ¼ μ̂ . This implies that the estimated mean comes

from a normal distribution with μ ¼ μ̂ and σ2 ¼ σ̂2/n.

2.7 Hypothesis Testing and Confidence Intervals

One of the most common applications of statistics is to test different “questions”

about the relationship between the true (or assumed) value and the estimated value

obtained after sampling some population. Hypothesis testing always consists of two

parts: the null hypothesis, H0, which represents the default position and the alter-
native hypothesis, H1, which represents the other option. If it is assumed that the

true parameter is θ and the corresponding estimated parameter value is θ̂ , then the

null hypothesis can be written as

H0 : θ̂ ¼ θ ð2:48Þ

There are three different possibilities for the alternative hypothesis:

Case 1: H1 : θ̂ 6¼ θ;

Case 2: H1 : θ̂ < θ; and

Case 3: H1 : θ̂ > θ.
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Case 1 is often referred to as a two-sided or two-tailed test, while Cases 2 and

3 are often called single-sided or single-tailed tests. The hypothesis test is

performed at some confidence level 100(1 – α)%, where α is the α-error, Type I
error, or false positive rate, which is the fraction of times with which the null

hypothesis will be rejected even though the estimated parameter value did indeed

come from the sample space. The opposite situation of accepting the null hypoth-

esis, even though the alternative hypothesis is correct, is called a Type II error,
β-error, or false negative rate. The confidence level typically determines what

critical value should be used to determine which hypothesis better describes the

obtained estimate. It should be noted that if the alternative hypothesis is rejected
based on the test statistic and the critical value, then the null hypothesis is more

likely, and it is said that the null hypothesis may be correct, since some other

untested hypothesis may be an even better fit with the relationship between the true

and estimated parameters. On the other hand, if the null hypothesis is rejected, then
it is said that the alternative hypothesis is accepted.

Consider the probability density functions shown in Fig. 2.6, where the solid,

black curve is the probability density function for the null hypothesis and the

dashed, green curve is the probability density function for the alternative hypoth-

esis. The black line represents the selected critical value (rcritical). The area to the

right of this line and under the solid, black curve represents the likelihood of

rejecting the null hypothesis even if it is true. This region is called the α-error
(or Type I error) region. On the other hand, the area to the left of this line and under

the dashed, green curve represents the likelihood of rejecting the alternative

hypothesis even if it is true. This region is called the β-error (or Type II error)
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Fig. 2.6 Probability densities for the two hypotheses

2.7 Hypothesis Testing and Confidence Intervals 59



region. Ideally, it would be nice to reduce the size of both regions simultaneously.

However, this is not practical, as decreasing the α-error, by shifting the critical

value (denoted by the black line) to the right, will lead to an increase in the β-error.
Therefore, there is a trade-off between the two objectives.

To illustrate this trade-off, Fig. 2.7 shows three different distributions and how

they overlap with each other. From this figure, it can be seen that if we take the solid

curve as the basis (or null hypothesis) and compare it with the dashed curves, we see

that only the dash–dot curve with μ¼ 10 is substantially different from the null

hypothesis. This shows the importance of the variance and mean on the tests. If the

mean changes substantially, then, even if the variance is large, the difference will be

clearer. On the other hand, to detect small changes in the process requires that the

parameter variance also be small. One way in which the parameter variance can be

decreased is to increase the number of data points used to estimate the given value.

The general procedure for hypothesis testing can be written as:

1. Determine an appropriate test statistic for the problem at hand. The test statistic

is some transformation of the available data that leads to a parameter that follows

a known distribution.

2. Compute the value of the test statistic using the available data.

3. Determine the critical value based on the value of α, the number of data points,

and any other relevant criteria.

4. Compare the test statistic with the critical value.

5. Draw the appropriate conclusion given the relationship between the test statistic,

the critical value, and the hypotheses being considered.

A 100(1�α)% confidence interval for a parameter represents the region in which

it would be expected to find the true parameter value. Confidence intervals exist for
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Fig. 2.7 Three different distributions and their overlap
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all three cases, of which the confidence interval obtained from the first case is the

most common. For case 1, the corresponding confidence interval is

θ̂ � r lower σθ � θ � θ̂ þ r upper σθ ð2:49Þ

where rlower is the lower bound critical value, rupper is the upper bound critical

value, and σθ is the standard deviation of the parameter estimate. For case 2, the

corresponding confidence interval is

θ̂ � r lower σθ � θ ð2:50Þ

For case 3, the corresponding confidence interval is

θ � θ̂ þ r upper σθ ð2:51Þ

A confidence interval is said to cover a value at the given confidence value α, if the
given value lies within the given confidence bounds. Consider the confidence

interval shown in Fig. 2.8. Points b and c are inside the confidence interval, and

hence it would be said that the confidence interval covers the given values. On the

other hand, points a and d are outside the confidence interval, which implies that the

points are not covered by the confidence interval. A point inside the confidence

interval can be considered to be equal to the value expressed by the confidence

interval. For example, if the true value is 5 and the estimated value is 6� 3 (95%

confidence interval), then it can be concluded that the estimated value covers the

true value, and hence it is likely that the values are the same. On the other hand, if

we had 10� 2 (95% confidence interval) and the same true value, then we can

conclude that the true value and the estimated value are different.

2.7.1 Computing the Critical Value

In order to compute the critical values for the test statistic, there is a need to

understand the difference between left and right probabilities. Define the left
probability, pl, to be

µ

Confidence Interval

ba c dµ − ME µ + ME

Fig. 2.8 Confidence intervals and covering a value
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pl ¼
ðrcritical

�1
f xð Þdx ð2:52Þ

where rcritical is the desired critical value. Define the right probability, pr, to be

pr ¼
ð1

rcritical

f xð Þdx ð2:53Þ

In all cases, the following relationship holds:

pl þ pr ¼ 1 ð2:54Þ

Figure 2.9 shows the difference between left and right probabilities.

The need to distinguish between left and right probabilities arises from the way

different software and books tabulate the relationship between α (a probability) and

the critical value. Table 2.7 summarises the different software and the location

returned. It should be noted that this textbook strives to consistently use left

probabilities in defining all relationships.

2.7.2 Converting Confidence Intervals

It can happen that the variable for which the confidence intervals have been computed

is not the variable that is actually desired. This can happen often when there is a need

to transform one variable (or set of variables) into another in order to obtain a better

statistical result. Such transformations are often encountered in regression analysis.

Consider the case where the parameter for which the confidence interval

has been computed, β, is some function of the desired parameter, α, for example,
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β¼ f(α). If the confidence interval is obtained as βL� β� βU, then the following

3 different cases can be distinguished for converting the given confidence interval

into the desired confidence interval:

1. If f(α) is a one-to-one, monotonic function, then the desired confidence interval can
be given as f�1(βL)� α� f�1(βU), where f

�1(β) is the inverse function for f(α). In
this context, a one-to-one function is simply a function that contains a unique

inverse. For example, y¼ x2 is not one-to-one, while y¼ x is. Amonotonic function
is a function that on a given interval is either constant and increasing or constant

and decreasing. For example, y¼ x is monotonic everywhere, while y¼ x2 is

monotonic over the regions [0, +1[ and ]�1, 0], but not over]�1, +1[.

2. If f(α) is a one-to-one function, but not necessarily monotonic, then the maxi-

mum and minimum values of the function need to be determined over the given

region, that is, the following 3 steps need to be performed:

(a) Find the values of f�1(βL) and f�1(βU).

(b) Determine whether
d f�1 βið Þ

dβi
¼ 0 over the interval βL� β� βU and determine

the value of the function at these points.

(c) Take the maximum and minimum of the values for α obtained in the above

steps to be the confidence intervals for the parameter, α.

3. If none of the above holds, then the following method can be used to obtain an

estimate for the converted confidence interval for a small initial confidence

intervals. This method can also be used if the function depends on more than

one of the parameters. The general formula is given as

σ2α ¼
Xl
i ¼ 1

d f�1 α; ~β
� �
dβi

������
������σ̂2i

0
@

1
A ð2:55Þ

where σ̂2
i is the variance associated with the ith parameter and σ2α is the variance

associated with the parameter of interest.

Table 2.7 Different software and the probability values they return

Software Left probability Right probability

MATLAB finv, tinv, chi2inv, norminv —

Excel 2007 or older norminv finv, chiinva, tinvb

Excel 2010 or newer t.inv, f.inv, norm.inv, chi2.inv —

Statistical tables — Always give right

probabilities
aThis function has issues with computing values for large degrees of freedom and probabilities

around 0.5
bGiven Microsoft’s aversion to things scientific, it should come as no surprise that Excel’s tinv
function is not only a right probability, but it is for the two-tailed situation, that is, it returns the

critical value corresponding to a p-value half that which it is given
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2.7.3 Testing the Mean

For testing hypotheses involving the mean, the test statistic is

tcomputed ¼ μ̂ � μ

σ̂
.ffiffiffi
n

p

ð2:56Þ

where n is the number of data points. Invariably, the correct critical value can be

obtained from the Student’s t-distribution. If the true population standard deviation is
known or n> 30, then the normal distribution can be used instead. Strictly speaking,

this test only applies to samples drawn from a normal distribution. However, by the

central limit theorem, this result can be used even for nonnormal distributions

provided that a relatively large number of samples is available (say n> 30).

Table 2.8 summarises the appropriate probabilities, critical values, testing

conditions, and corresponding confidence intervals for the different hypothesis

cases. In all cases, the t-score can be replaced by the Z-score if the true population
variance is known (in which it should be used in lieu of σ̂ ) or n> 30.

Example 2.8: Testing the Mean—Computing a Confidence Interval

Consider the following data that are claimed to come from a normal distri-

bution with mean 1 and standard deviation 1. Compute a 95% confidence

interval and determine if it covers the true mean.

 ¼ {2.16, 2.71, 1.09, 0.40, 1.47, 1.13, 1.97}

Solution

The mean is

μ̂ ¼ 2:16þ 2:71þ 1:09þ 0:40þ 1:47þ 1:13þ 1:97

7

¼ 10:93

7
¼ 1:56

(continued)

Table 2.8 Summary of the required critical values, bounds, and confidence intervals for testing

hypotheses about the mean

Case H1

Probability ( p)

Test to reject H0 Confidence intervalsLeft Right

1 μ̂ 6¼ μ 1 – α/2 α/2 jtcomputedj> tp, n – 1 μ̂ � tp, n � 1
σ̂ffiffi
n

p

2 μ̂ < μ α 1 – α tcomputed< tp, n – 1 μ̂ � tp, n � 1
σ̂ffiffi
n

p

3 μ̂ > μ 1 – α α tcomputed> tp, n – 1 μ̂ þ tp, n � 1
σ̂ffiffi
n

p
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Example 2.8 (continued)

Since the population standard deviation is known, Z1 � α/2 will be used, which

in this case is 1.96 (useful number to memorise). Therefore, the confidence

interval is

μ̂ � Z p
σffiffiffi
n

p

1:56� 1:96
1ffiffiffi
7

p
1:56� 0:741

Since the confidence interval includes the true value of 1, it can be concluded

that the true value is covered by the mean.

Example 2.9: Testing the Mean—Hypothesis Testing

Consider the same data and set-up as in Example 2.8, but now perform the

following hypothesis test:

H0: μ̂ ¼ μ
H1: μ̂ 6¼ μ

Solution

Since we are dealing with case 1, a two-tailed test will be performed. Since

the population standard deviation is known, the Z-test will be used. The

computed statistic can be written as

Zcomputed ¼ 1:56� 1
1ffiffi
7

p ¼ 1:48

The critical value of Zcrit is 1.96. Since Zcomputed

�� �� < Zcrit, the null hypothesis

cannot be rejected. Note that the same conclusion was reached with the

confidence interval.

Example 2.10: Testing the Mean—Unknown Variances

Consider the same data and set-up as in Example 2.8, but now assume that the

standard deviation is unknown. Perform the following hypothesis test:

H0: μ̂ ¼ μ
H1: μ̂ 6¼ μ

(continued)
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Example 2.10 (continued)

Solution

Since we are dealing with case 1, a two-tailed test will be performed. Since

the sample space standard deviation is unknown, the t-test will be used. The
estimated standard deviation is 0.78. The computed statistic can be written as

tcomputed ¼ 1:56� 1
0:77ffiffi

7
p ¼ 1:92

The critical value of tcrit with 7� 1¼ 6 degrees of freedom is 2.97. Since

tcomputed

�� �� < tcrit, the null hypothesis cannot be rejected. Note that the value of

the t-score is much larger than the corresponding Z-score, since we are

dealing with a very small sample.

Example 2.11: Testing the Mean—Detailed Example

As plant engineer of a bitumen processing plant, you have specified in the

supplier’s contract that the delivered processed bitumen must have a purity of

at least 99.0% at a 95% confidence level. You obtain a shipment of bitumen

which you test. With 200 samples, you obtain a mean purity of 98.6% with a

standard deviation of 0.5%. The company claims that this is sufficiently close

that the shipment should be accepted. Should the shipment be rejected at the

95% confidence level?

Solution

The statistical set-up is:

H0: μ̂ ¼ μ
H1: μ̂ < μ

which implies that we are dealing with Case 2. Since there are more than

30 samples (precisely 200 samples), the Z-score can be used. The computed

value is given as

Zcomputed ¼ 98:6� 99:0
0:5ffiffiffiffiffiffi
200

p ¼ �11:3

Since the value of Zcritical is �1.64 (single-tail, left probability with a p-value
of 0.05) and Zcomputed< Zcritical, it can be concluded that the mean is indeed

less than the specified value and the shipment should be rejected.
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2.7.4 Testing the Variance

For testing hypotheses involving the variance, the test statistic is

χ2computed ¼
n� 1ð Þσ̂2

σ2
ð2:57Þ

where n is the number of data points. Invariably, the correct critical value can be

obtained from the χ2-distribution. It should be noted that this assumes that the

underlying distribution is normal.

Table 2.9 summarises the appropriate probabilities, critical values, testing con-

ditions, and corresponding confidence intervals for the different hypothesis cases.

Example 2.12: Testing the Variance

You have been hired to design a new control scheme for a temperature controller.

In order to show that your controller is better, you need to show that the variance

of the new control scheme has been decreased. Historically speaking, the

previous controller had a variance of 2 K2. Upon implementing the new control

scheme for 100 samples, the variance is 1.2 K2. At an α¼ 0.05, has the control

scheme decreased the variance of the temperature controller?

Solution

The statistical set-up is:

H0: σ̂
2¼ σ2

H1: σ̂
2< σ2

which implies that we are dealing with Case 2. The correct test statistic is the

χ2-test. The computed value is

χ2computed ¼
n� 1ð Þσ̂2

σ2

¼ 100� 1ð Þ 1:2ð Þ
2

¼ 59:4

(continued)

Table 2.9 Summary of the required critical values, bounds, and confidence intervals for testing

hypotheses about the variance

Case H1

Probability ( p)

Test to reject H0 Confidence intervalLeft Right

1 σ̂2 6¼ σ2 p1¼ 1 – α/2
p2¼ α/2

p1¼ α/2
p2¼ 1 – α/2

χ2computed > χ2p1, n� 1

OR

χ2computed < χ2p2, n� 1

n� 1ð Þσ̂2
χ2p1, n � 1

� σ2 � n� 1ð Þσ̂2
χ2p2, n � 1

2 σ̂2 < σ2 α 1 – α χ2computed < χ2p, n� 1
n� 1ð Þσ̂2
χ2

p, n � 1

3 σ̂2 > σ2 1 – α α χ2computed > χ2p, n� 1
n� 1ð Þσ̂2
χ2

p, n � 1
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Example 2.12 (continued)

The critical value of the χ2-test with 100� 1¼ 99 degrees of freedom at a

p-value of 0.05 is 77.0. Comparing the critical value with the computed value,

it can be seen that 59.4< 77.0, which implies that the null hypothesis should

be rejected and the alternative hypothesis accepted. Thus, it can be concluded

that the variance of the process has improved (decreased).

2.7.5 Testing a Ratio or Proportion

For testing hypotheses involving binomial proportions, r, then the appropriate test

statistic is

Zcomputed ¼ x� nrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nr 1� rð Þp ¼ r̂ � rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n�1r 1� rð Þp ð2:58Þ

where n is the number of data points and x is the number of successes. In order to

apply the normal approximation to the binomial distribution, nr� 5 and n (1 – r)� 5

should hold.

Table 2.10 summarises the appropriate probabilities, critical values, testing con-

ditions, and corresponding confidence intervals for the different hypothesis cases.

Example 2.13: Testing a Ratio
As the plant engineer, you have been monitoring the incidences of faults in

your plant. Historically, you have observed that the hourly rate of faults is 30%.

After implementing a new process management technique, you noticed that the

hourly rate of faults has decreased to 25% over a period of 200 h, that is, there

were some type of faults during 40 h of operation. You have been asked by

your boss to determine if the rate of incidence of faults has decreased.

Solution

The statistical set-up is:

H0: r̂ ¼ r
H1: r̂ < r

which implies that we are dealing with Case 2. The correct test statistic is the

Z-test. The computed value is

Zcomputed ¼ r̂ � rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�1r 1� rð Þp

¼ 0:25� 0:30ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
200�1 0:3ð Þ 1� 0:3ð Þ

q
¼�1:54

(continued)

68 2 Theoretical Foundation for Statistical Analysis



Example 2.13 (continued)

The critical value the Z-test at a p-value of 0.05 is �1.64. Comparing the

critical value with the computed value, it can be seen that �1.64<�1.54,

which implies that the null hypothesis cannot be rejected. Thus, it can be

concluded that the new process management software has not necessarily

improved the hourly fault rate.

2.7.6 Testing Two Samples

So far all the examples considered have examined testing some value against some

reference or known benchmark value. However, in many cases, it is interesting to

compare two estimated values against each other to determine if they are different.

This section will consider the tests required to obtain such conclusions.

2.7.6.1 Testing the Mean

When comparing two sample means, there is a need to carefully consider not only

the available information but also the experimental set-up. It all cases, it is assumed

that the underlying distribution is normal for both samples and that the two samples

are distinct and mutually independent of each other. Five different cases can be

distinguished:

1. The true (population) variances for both samples are known.

2. The two variances are unknown, but a large number of data points was used for

both samples (n1 and n2 both greater than about 30). This case can be treated as if
the variances were known for both samples and analysed using the first

approach.

3. The two variances are unknown but can be assumed to be equal.

4. The two variances are unknown and cannot be assumed to be equal.

5. The mean has been obtained by taking the difference between two samples, that

is, paired data are being used.

Table 2.10 Summary of the required critical values, bounds, and confidence intervals for testing

hypotheses about a ratio

Case H1

Probability ( p)

Test to reject H0 Confidence intervalLeft Right

1 r̂ 6¼ r 1 – α/2 α/2 Zcomputed

�� �� > Zp r̂ � Zp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂ 1� r̂ð Þ

n

q
2 r̂ < r α 1 – α Zcomputed< Zp r̂ � Zp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂ 1� r̂ð Þ

n

q
3 r̂ > r 1 – α α Zcomputed> Zp r̂ þ Zp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂ 1� r̂ð Þ

n

q
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The null hypothesis for cases I to IV can be stated as H0: μ1 – μ2¼Δ, while for
case V, it can be stated as H0: μD¼ 0, where μD is the mean value of all the

differences. Paired tests are useful when the individual characteristics of an object

may vary from sample to sample and it is desired to determine the overall effect on

the system.

For case I, where the true variances are known, or case II, where the variances

are unknown, but the sample sizes are large, the test statistic can be written as

Zcomputed ¼ μ̂1 � μ̂2 � Δffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
1

n1
þ σ2

2

n2

q ð2:59Þ

where the subscripts refer to the two data sets being compared. The required critical

values and testing conditions are shown in Table 2.11.

For case III, where the true variances are unknown but equal, the test statistic can

be written as

tcomputed ¼ μ̂1 � μ̂2 � Δ

σ̂ p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n1
þ 1

n2

q ð2:60Þ

where the subscripts refer to the two data sets being compared and σ̂ p is the pooled

standard deviation computed from

σ̂2p ¼
n1 � 1ð Þσ̂ 2

1 þ n2 � 1ð Þσ̂ 2
2

n1 þ n2 � 2
ð2:61Þ

The degrees of freedom (ν) for this test are equal to n1 + n2� 2. The required critical

values and testing conditions are shown in Table 2.12.

Table 2.12 Summary of the

required critical values and

bounds for testing hypotheses

about a difference when the

true variances are unknown,

but assumed equal

Case H1

Probability ( p) Test to reject H0

ν¼ n1 + n2 – 2Left Right

1 Δ̂ 6¼ Δ 1 – α/2 α/2 tcomputed

�� �� > tp, ν

2 Δ̂ < Δ α 1 – α tcomputed< tp, ν

3 Δ̂ > Δ 1 – α α tcomputed> tp, ν

Table 2.11 Summary of the

required critical values and

bounds for testing hypotheses

about a difference when the

true variances are known

Case H1

Probability ( p)

Test to reject H0Left Right

1 Δ̂ 6¼ Δ 1 – α/2 α/2 Zcomputed

�� �� > Zp

2 Δ̂ < Δ α 1 – α Zcomputed< Zp

3 Δ̂ > Δ 1 – α α Zcomputed> Zp
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For case IV, where the true variances are unknown and cannot be assumed equal,

the test statistic can be written as

tcomputed ¼ μ̂1 � μ̂2 � Δffiffiffiffiffiffiffiffiffiffiffiffiffi
σ̂2
1

n1
þ σ̂2

2

n2

q ð2:62Þ

where the subscripts refer to the two data sets being compared. The degrees of

freedom (ν) for this test are computed from

ν ¼
σ̂2
1

n1
þ σ̂2

2

n2

� �2
σ̂4
1

n2
1
n1�1ð Þ þ

σ̂4
2

n2
2
n2�1ð Þ

66664
77775 ð2:63Þ

where b·c is the floor or round down function, that is, b�1.23c would be �2 and

b1.86c would be 1. The required critical values and testing conditions are the same

as those shown in Table 2.12, except that ν would be computed using Eq. (2.63).

Finally, for case V, where a paired difference is being considered, the test

statistic can be written as

tcomputed ¼ μ̂D � μD
σ̂D

.ffiffiffi
n

p

ð2:64Þ

where σ̂D is the standard deviation of the differences and n is the number of

differences available. In most cases, μD¼ 0, since we are testing whether the pair

differences are significant. The required critical values, testing conditions, and

corresponding confidence intervals are shown in Table 2.13.

Table 2.13 Summary of the required critical values, bounds, and confidence intervals for testing

hypotheses about a paired mean value

Case H1

Probability ( p)

Test to reject H0 Confidence intervalLeft Right

1 μ̂D 6¼ μD 1 – α/2 α/2 tcomputed

�� �� > tp, n � 1 μ̂D � tp, n � 1
σ̂ Dffiffi
n

p

2 μ̂D< μD α 1 – α tcomputed < tp, n � 1 μ̂D � tp, n � 1
σ̂ Dffiffi
n

p

3 μ̂D> μD 1 – α α tcomputed > tp, n � 1 μ̂D þ tp, n � 1
σ̂ Dffiffi
n

p
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Example 2.14: Testing Differences in Means—Variances Known

Two separate samples from the same batch were taken and tested by two

different operators. As the plant engineer, you are interested in knowing if the

two operators provide similar test results. Historically, it has been determined

that the variability of the test results is 4.0. It can be assumed that the

variability will be the same for both operators as the samples are drawn

from the same batch. The first operator performed 10 tests and obtained the

following values: 9.6, 9.9, 8.9, 12.0, 10.4, 13.8, 10.8, 10.3, 9.2, and 9.3. The

second operator performed 10 tests and obtained 10.8, 11.0, 11.1, 11.2, 7.6,

9.8, 14.0, 7.8, 8.6, and 8.4. Are the two operators similar? Assume α¼ 0.05.

Solution

In order to answer the question, we will need to compute the mean value for

the two operators:

μ̂1 ¼
9:6þ 9:9þ 8:9þ 12:0þ 10:4þ 13:8þ 10:8þ 10:3þ 9:2þ 9:3

10

¼ 10:4:

μ̂2 ¼
10:8þ 11:0þ 11:1þ 11:2þ 7:6þ 9:8þ 14:0þ 7:8þ 8:6þ 8:4

10

¼ 10:0:

Since we are testing to determine if there is a difference between the two

operators, Δ¼ 0. The statistical set-up is:

H0: Δ̂ ¼ Δ.
H1: Δ̂ 6¼ Δ.
Since the variance is known, this is case I and the test statistic can be

computed as

Zcomputed ¼ 10:4� 10:0� 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4:0
10

þ 4:0
10

q ¼ 0:4602

The critical value is Zcrit¼ 1.96. Comparing the critical and computed values

gives Zcomputed

�� �� < Zcrit, which suggests that the null hypothesis cannot be

rejected. Therefore, it can be concluded that the two operators give similar

results.
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Example 2.15: Testing the Difference in Means—Unknown,

Common Mean

As a plant engineer, you are testing a new drying procedure for the plant. Two

options exist: A and B. Option A is currently in place, while option B is a

faster new method. It is desired to determine whether option B should be

implemented. The criterion for implementation is that the quality of the

material being dried should not decrease by more than 0.1 at an α¼ 0.05.

This value has been determined based on a cost-benefit analysis of the costs of

drying compared with the costs of production. It will be assumed that the

variance for both options is the same.

Option A gave the following product quality: 95.6, 97.3, 95.6, 95.4, 99.4,

97.2, 92.2, 92.8, 94.3, and 92.6. Option B gave the following product quality:

89.2, 94.2, 93.9, 93.2, 94.7, 91.7, 93.2, 92.4, 91.8, and 91.5.

Solution

Before performing the tests, compute the mean and variance for both options:

μ̂A ¼ 95:6þ 97:3þ 95:6þ 95:4þ 99:4þ 97:2þ 92:2þ 92:8þ 94:3þ 92:6

10
¼ 95:24

σ̂2A ¼ 90, 755:3� 10ð Þ95:242
10� 1

¼ 5:41

μ̂B ¼ 89:2þ 94:2þ 93:9þ 93:2þ 94:7þ 91:7þ 93:2þ 92:4þ 91:8þ 91:5

10
¼ 92:58

σ̂2B ¼ 85, 734:2� 10ð Þ92:582
10� 1

¼ 2:626

Since we are testing to determine if the observed difference is significant to

warrant a change in operating conditions, μA – μB¼Δ¼ 0.1. The statistical

set-up is:

H0: Δ̂ ¼ Δ.
H1: Δ̂ > Δ.
This is a single-sided test since we only care about degradation in process

quality. Should Option B increase product quality, then it is another reason to

implement it. Note that it is very important to carefully state all the definitions

at this point as there are multiple equivalent approaches that one can take. In

this particular example, it has been assumed that the difference is defined as

μA – μB, which implies that if this difference is greater than 0.1, then it can be

assumed that the new drying option is not good. If the difference had been

defined as μB – μA, then the alternative hypothesis would have been defined as

H1: Δ̂ < Δ, with Δ¼�0.1.

(continued)
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Example 2.15 (continued)

Since the true variances are not known, this is case III of the options for

testing sample means. Thus, we need to compute the pooled standard devi-

ation. The formula gives

σ̂2p ¼ nA � 1ð Þσ̂ 2
A þ nB � 1ð Þσ̂ 2

B

nA þ nB � 2
¼ 10� 1ð Þ 5:41ð Þ þ 10� 1ð Þ 2:626ð Þ

10þ 10� 2
¼ 4:018

The test statistic can be computed as

tcomputed ¼ 95:24� 92:58� 0:1ffiffiffiffiffiffiffiffiffiffiffi
4:015

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
10
þ 1

10

q ¼ 2:857

The degrees of freedom are 10+ 10 – 2¼ 18. The critical value is tcrit, 18¼ 1.73.

Comparing the critical and computed values gives tcomputed> tcrit, which sug-

gests that the null hypothesis can be rejected. Therefore, option B decreases

product quality and hence should not be implemented.

Example 2.16: Testing Two Means—Unknown Variance

Consider the same data as in Example 2.15. This time assume that the

variances cannot be assumed to be equal. Determine if option B should be

implemented.

Solution

Since the required mean and variance have already been computed, we

can proceed to the next step. The statistical set-up will be identical to before,

that is,

H0: Δ̂ ¼ Δ.
H1: Δ̂ > Δ.
This is a single-sided test for case IV. The test statistic can be written as

tcomputed ¼ 95:24� 92:58� 0:1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5:41
10

þ 2:626
10

q ¼ 2:56ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:08036

p ¼ 2:856

(continued)
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Example 2.16 (continued)

The degrees of freedom can be computed as

ν ¼
5:41
10

þ 2:626
10

� �2
5:41ð Þ2

10ð Þ2 10�1ð Þ þ
2:626ð Þ2

102 10�1ð Þ

66664
77775 ¼ 0:64577

0:04018


 �
¼ 16:071b c ¼ 16

The critical value tcrit, 16¼ 1.75. Comparing the critical and computed values

gives tcomputed> tcrit, which suggests that the null hypothesis can be rejected.

Therefore, option B decreases product quality and hence should not be

implemented. Notice that the same conclusion has been reached irrespective

of whether the variances were assumed to be equal. In practice, the equality of

the two sample variances could be tested using the method presented in

Sect. 2.7.6.2 below.

Example 2.17: Testing a Paired Mean

You have been asked to test whether two different approaches to testing a

sample of wood to determine heat capacity are the same. Each wood sample is

divided in two and tested with each approach. Since the sample is burnt

afterwards, a new sample is required to repeat the procedure. However, the

individual properties of each sample could be sufficiently different that the

values of the heat capacity obtained are different. Therefore, it is desired to

use the difference between each sample to determine whether the methods are

the same at a level of α¼ 0.05. The data are provided below.

(continued)

Sample

Approach 1

(J · g�1 · K�1)

Approach 2

(J · g�1 · K�1)

Difference

(J · g�1 · K�1)

1 1.75 1.73 0.02

2 1.65 1.64 0.01

3 1.67 1.67 0.00

4 1.53 1.51 0.02

5 1.76 1.74 0.02

6 1.72 1.70 0.02

7 1.78 1.77 0.01

8 1.68 1.65 0.03
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Example 2.17 (continued)

Solution

In order to solve the question, it is first necessary to compute the mean and

variance of the differences. Doing so, gives

μ̂ ¼ 0:02þ 0:01þ 0:00þ 0:02þ 0:02þ 0:02þ 0:01þ 0:03

8
¼ 0:01625

σ̂2 ¼ 0:0027� 8ð Þ0:016252
8� 1

¼ 8:39� 10�5

Since we are testing a paired difference, this is case V. The statistical set-up

will be:

H0: μ̂D¼ μD¼ 0.

H1: μ̂D 6¼ μD.
This is a two-sided test for case V. The test statistic can be written as

tcomputed ¼ 0:01625� 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8:39� 10�5

p �ffiffiffi
8

p
¼ 5:017

The degrees of freedom, ν, is 8 – 1¼ 7. The corresponding critical

value is tcrit, 7¼ 2.36 (at p¼ 0.975, since this is a two-sided test). Since

tcomputed

�� �� > tcrit, it can be concluded that the null hypothesis should be

rejected and the alternative hypothesis accepted. Therefore, it can be con-

cluded that there is a (statistical) difference between the two approaches to

determining the heat capacity of the wood samples.

2.7.6.2 Testing Two Variances

In order to compare the variance of two normally distributed samples, it is useful to

form a ratio of the two variances and compare them against 1. If the ratio is close to

1, then it can be concluded that the two variances are the same; otherwise, there is a

difference. The null hypothesis in this case is

H0 : σ
2
1 ¼ σ22

The test statistic can be written as

Fcomputed ¼ σ̂21
σ̂22

ð2:65Þ
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Table 2.14 summarises the appropriate probabilities, critical values, and testing

conditions for the different hypothesis cases. Testing two sample variances forms

the foundation for various methods that can be used to compare different data

subsets to determine their significance.

Example 2.18: Testing Two Sample Variances

Consider the same data as in Example 2.15 and test to determine if the

variances could be assumed to be the same.

Solution

The statistical set-up will be:

H0: σ1¼ σ2.
H1: σ1 6¼ σ2.
This is a two-sided test. The test statistic can be written as

Fcomputed ¼ σ̂21
σ̂22

¼ 5:41

2:626
¼ 2:06

The two required degrees of freedom are ν1¼ 10 – 1¼ 9 and ν2¼ 9. The critical

values are F1, 9, 9¼ 4.026 and F2, 9, 9¼ 0.2484. Since F2<Fcomputed<F1, the

null hypothesis cannot be rejected. This suggests that the two variances are

actually the same. This result agrees with the previously observed results that

showed that assuming that the variances were the same gave very similar results

to assuming that they were not.

2.7.6.3 Testing Two Proportions

In order to test two sample proportions, assume that a large number of samples has

been taken, so that the normal approximation to the binomial distribution can be

used. The null hypothesis can be written as

H0: r1¼ r2.

Table 2.14 Summary of the required critical values and bounds for testing hypotheses about the

two variances

Case H1

Probability ( p)

Test to reject H0Left Right

1 σ21 6¼ σ22 p1¼ 1 – α/2
p2¼ α/2

p1¼ α/2
p2¼ 1 – α/2

Fcomputed > Fp1, n1 � 1,n2 � 1

OR

Fcomputed < Fp2, n1 � 1,n2 � 1

2 σ21 > σ22 1 – α α Fcomputed > Fp, n1�1,n2 � 1
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The appropriate test statistic can then be written as

Zcomputed ¼ r̂1 � r̂2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂ p 1� r̂ p
� �

n�1
1 þ n�1

2

� �q ð2:66Þ

where r̂p is the common or pooled proportion computed as follows:

r̂ p ¼ n1r̂1 þ n2r̂2
n1 þ n2

ð2:67Þ

Table 2.15 summarises the appropriate probabilities, critical values, and testing

conditions for the different hypothesis cases.

Example 2.19: Testing Two Proportions

A test for defects was performed on two different batches of drugs. In the first

batch, out of 50 samples, there were 20 defects. In the second batch, out of

40 samples, there were 15 defects. Is the proportion of defects in the two

batches different? Assume α¼ 0.10.

Solution

The statistical set-up for this problem can be written as:

H0: r1¼ r2.
H1: r1 6¼ r2.
The pooled proportion is

r̂p ¼ n1r̂1 þ n2r̂2
n1 þ n2

¼ 20þ 15

50þ 40
¼ 7

18
	 0:389

The respective proportions are r̂1¼ 20/50¼ 0.40 and r̂2¼ 15/40¼ 0.375. The

test statistic can be written as

Zcomputed ¼ 0:40� 0:375ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7
18

1� 7
18

� �
50�1 þ 40�1
� �q ¼ 0:025ffiffiffiffiffiffiffi

77
7200

q ¼ 0:2417

The two-tailed critical value is Zcrit, 0.95¼ 1.65. Since Zcomputed

�� �� < Zcrit, we

cannot reject the null hypothesis and conclude that the defects in the two

batches are indeed the same.

Table 2.15 Summary of the

required critical values and

bounds for testing hypotheses

about two proportions

Case H1

Probability ( p)

Test to reject H0Left Right

1 r1 6¼ r2 1 – α/2 α/2 Zcomputed

�� �� > Zp

2 r1< r2 α 1 – α Zcomputed< Zp
3 r1> r2 1 – α α Zcomputed> Zp
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2.8 Further Reading

The following are references that provide additional information about the topic:

1. Statistical theory:

(a) Varberg DE (1963) The development of modern statistics. Math Teacher

56(4):252–257

(b) Kallenberg O (2002) Foundations of modern probability. Springer,

New York

(c) Ogunnaike BA (2010) Random phenomena: fundamentals of probability

and statistics for engineers. CRC Press, Boca Raton

2. Introduction to statistics:

(a) Box GE, Hunter WG, Hunter JS (1978) Statistics for experimenters: an

introduction to design, data analysis, and model building.Wiley, New York

(b) Johnson RA, Wichern DW (2007) Applied multivariate statistical analysis,

6th edn. Prentice Hall, Upper Saddle River

(c) Montgomery DC, Runger GC (2007) Applied statistics and probability for

engineers, 4th edn. Wiley, Hoboken

(d) Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statis-

tics in biological research, 3rd edn. W. H. Freeman and Company,

New York

(e) Steel RG, Torrie JH (1980) Principles and procedures of statistics: a

biometrical approach, 2nd edn. McGraw-Hill Kogakusha, Ltd, Tokyo

2.9 Chapter Problems

Problems at the end of the chapter consist of three different types: (a) Basic
Concepts (True/False), which seek to test the reader’s comprehension of the key
concepts in the chapter; (b) Short Exercises, which seek to test the reader’s ability
to compute the required parameters for a simple data set using simple or no
technological aids, including proofs of theorems; and (c) Computational Exercises,
which require not only a solid comprehension of the basic material but also the use
of appropriate software to easily manipulate the given data sets.

2.9.1 Basic Concepts

Determine if the following statements are true or false and state why this is the case.

1. If the covariance of two variables X and Y is zero, then they are independent.

2. The function f(x)¼ sin(x) is a probability density function.
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3. The function f(x)¼ 2x, 0� x� 1, zero otherwise, is a probability density

function.

4. The function f(x)¼ 0.25jcos(x)j for 0� x� 2π, zero otherwise, is a probability

density function.

5. If X has a mean value of 5, then E(2X)¼ 10.

6. If E(X)¼ 1 and E(X2)¼ 2, then the variance is 2.

7. If two variables are independent, then their joint probability density function is

equal to the product of their individual probability density functions.

8. If f XY j z¼ fXY for all z, then it can be concluded that variables X and Y are

independent of Z.
9. A two-tailed test is necessary when testing the following alternative hypothe-

sis: H1: μ � μ̂ .
10. If E(â)¼ a + 1, then it can be said that the parameter estimate of a is unbiased.

11. If E(ĝ)¼ g, then it is said that the parameter estimator for g is unbiased.

12. If ten samples were taken and a mean calculated, then the appropriate test

statistic is the t-test with 9 degrees of freedom.

13. An unbiased, minimum variance estimator is also a minimum mean square

error estimator.

14. In order to compute the confidence intervals for variance, the χ2-distribution is

required.

15. When testing the hypothesis H1: μ̂> 0 with 10 samples at a 90% confidence

level, the appropriate test statistic is the t-score with 9 degrees of freedom at a

value of 0.05.

16. If the 95% confidence interval is [0.95, 4], then at a 95% confidence level, it can

be concluded that the data set comes from a population with a mean of 3.

17. If a parameter and its 95% confidence interval can be written as 5� 6.2 m, then

this parameter does not equal zero at a 95% confidence level.

2.9.2 Short Exercises

These questions should be solved using only a simple, nonprogrammable,

nongraphical calculator combined with pen and paper.

18. Consider a game of Three Card Monte, where three cards, Q♥, Q♠, and Q♣,
are shown and it is desired to select, after shuffling, the Queen of Hearts (Q♥).
Answer the following questions:

(a) What are , , and P?
(b) What is the probability of winning?

(c) If each win is worth $2 and each loss is worth� $1 (you lose money),

what is the expected (or mean) payout? What is the variance of this

payout?

80 2 Theoretical Foundation for Statistical Analysis



19. Consider the case of flipping a single biased coin where heads will turn up

70% of the time. Answer the following questions for this case:

(a) What are , , and P?
(b) If heads are worth $1 and tails are worth� $2 (you lose money), what is

the expected (or mean) payout? Will you make money in the long run?

(c) What is the breakeven point, that is, the point at which the expected value

is zero?

20. Consider the case of flipping two coins A and B. Coin A is biased and will turn

up heads 60% of the time, while Coin B is unbiased and will turn up heads

50% of the time. Answer the following questions for this case:

(a) What are , , and P?
(b) If heads are worth $2 and tails are worth $1, what is the expected

(or mean) payout?

Hint: The possible outcomes can be denoted as HH (for heads A, heads B),

HT (for heads A, tails B), and so on.

21. Consider the following potential probability density functions. Determine if

they can be used as probability density functions and if so compute the mean,

variance, and EðjxjÞÞ:
(a) f(x)¼ cos(x) for �π� x� π, zero otherwise.

(b) f(x)¼ sin(x) for 0� x� π, zero otherwise.

(c) f(x)¼N�1 for 0� x�N, zero otherwise.

22. Consider a variable Y whose probability density function is

f yð Þ ¼
ffiffiffi
2

p

σ
ffiffiffi
π

p exp � y2

2σ2

� 	
, x � 0 ð2:68Þ

Answer the following questions:

(a) Compute μ¼E(Y ).
(b) Compute the variance.

(c) Consider a normal variable X drawn from a zero-mean normal distribu-

tion and compute EðjXjÞÞ. (Hint: Split the integral into two parts, one
from�1 to 0 and the other from 0 to+1. Note that jxj can be written as
–x if x� 0 and x if x� 0.)

(d) Explain how the result from (c) compares with that from (a).

23. Consider two independent variables X (μ¼ 1 and σ2¼ 2) and Y (μ¼ 2 and

σ2¼ 1); compute the following values: E(2X – 4Y), E(3XY), and E(X2).

24. Consider the gamma distribution

f xð Þ ¼ xα� 1e�x=β

βαΓ αð Þ , x > 0 ð2:69Þ
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with the following moments:

E Xð Þ ¼ αβ

E X2
� � ¼ β2α 1þ αð Þ ð2:70Þ

Derive the method of moment estimators for α and β.
25. Devise a method for estimating the mean of n samples drawn from an arbitrary

distribution so that the parameter estimate:

(a) Is biased but consistent.

(b) Is unbiased but not consistent.

26. Consider the production of glass sheets in a plant. Every day 20 samples of

these sheets are randomly taken and tested for quality. Based on historical

considerations, the distribution of quality is normally distributed with a mean

0.85 and a variance of 0.2. Assume that the sample is an independent random

variable.

(a) What is the probability that quality is below 0.75 for 5 samples in a row?

(b) What is the probability that the quality is above 0.90 for all

20 samples?

27. Consider estimating the mean of a variable drawn from a population with mean

μ and standard deviation σ, using the following formulae:

μ̂1 ¼ x1:

μ̂2 ¼
x1 þ x2

2
:

μ̂3 ¼
x1 þ 2x2

2
:

μ̂4 ¼
x1 þ x2

3
:

μ̂5 ¼
Xn

i ¼ 1
xi

n
:

Assume that in all cases the individual estimates xi are independent of each
other. Determine the bias, variance, and mean square error for each of the

estimators. Which ones are biased?

28. You are an engineer working in the process control department of a petro-

chemical plant. You have hired George, a postdoctoral fellow, to improve the

performance of your control system. George has proposed a new control

algorithm that involves the use of soft sensors. It gives a mean of 0.9855 for

the purity with a standard deviation of 0.005 on a test of 1,000 samples.
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Historically, the process has been run at 0.985 with a standard deviation of

0.01. Answer the following questions:

(a) Has the performance of the process been degraded by introducing this new

control algorithm? Performance would be degraded if the mean value is

less than the historical one. Formulate an appropriate hypothesis and test it

with an α¼ 0.95.

(b) Has the performance of the process improved? Formulate appropriate

hypotheses and test them with an α¼ 0.05.

(c) Is the new variance significantly different from historical one? Compute

the 95% confidence interval for the sample variance.

(d) Would you implement the new control algorithm?

29. For the following experiments, compute the 95% confidence intervals and

determine whether the data comes from the stated population:

(a)  ¼ {3, 2.3, 4.5, 1.2, 5.6, 2.3, 4.5}, μ¼ 3.

(b) μ̂ ¼ 4.2, σ̂ ¼ 1.2, n¼ 100, μ¼ 3.

(c) μ̂ ¼ 0.2, σ̂ ¼ 5, n¼ 10, μ¼ 3.

(d) σ̂ ¼ 1.5, n¼ 10, σ¼ 5.

30. Given the data, resolve the following hypotheses with α¼ 0.05:

(a) H1: μ > μ̂ , for μ̂ ¼ �5, σ̂ ¼ 1.2, μ¼ 2, n¼ 100.

(b) H1: μ 6¼ μ̂ , for μ̂ ¼ �5, σ̂ ¼ 1.2, μ¼ 2, n¼ 100.

2.9.3 Computational Exercises

The following problems should be solved with the help of a computer and appro-
priate software packages, such as MATLAB® or Excel®.

31. Consider the following distributions and their key parameters. Plot each distri-

bution on a single plot and compare how the distribution changes, when the

given parameter is changed.

(a) Normal distribution: Change the standard deviation from 0.5 to 5 in

increments of at least 0.5.

(b) Student’s t-distribution: Change the value of ν from 2 to 50 in increments

of 2. Compare against each other as well as the standard normal distribu-

tion. How do the two distributions compare as ν!1?

(c) χ2-distribution: Change the value of ν from 3 to 20 in increments of at

least 2.

(d) F-distribution: Change of the value of ν1 from 1 to 20, keeping ν2 fixed at
5. Repeat with ν2 between 1 and 20 and ν1 fixed at 5. Compare the results.

What happens to the two graphs?
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32. Verify the central limit theorem for the following distributions: normal, χ2-,
and F-distributions. Compute the mean value for multiple samplings of these

distributions. Do they converge to the normal distribution?

33. Compute the maximum likelihood estimators for the gamma distribution (see

Question 24, Eq. (2.69) for the probability density function). Using a numerical

solver, obtain parameter estimates for the following data set: 8.1864, 8.7553,

18.0286, 22.4389, 8.0564, 2.1472, 9.1224, 4.1870, 8.3551, 12.4235, 6.9026,

11.3712, 9.4377, 8.8809, 5.3927, 9.9001, 6.5891, 6.8874, 6.5011, and 7.3799.

Compute the 95% confidence interval for the parameters. Are they close to the

true values of α¼ 3 and β¼ 3? (Hint: The confidence intervals can be com-
puted by making use of the fact that the parameters are almost normally
distributed.)

34. Consider the following probability density function:

f xð Þ ¼ 0:5sin xð Þ 0 � x � π
0 otherwise




and address the following questions:

(a) Show that f(x) is indeed a probability density function.

(b) Compute the mean value of this distribution.

(c) If a parameter ψ is well described by this distribution, compute the 95%

confidence interval for ψ given ψ̂ ¼ 6 and σ̂ψ̂¼ 1.0. Could the true value of

ψ be 5.5?

(d) After sampling the above distribution 200 times, the mean value was

obtained to be 1.1 with a variance of 0.5. Formally, test at the 95% level

(α¼ 0.05) whether this result equals the true value obtained in (b). Note

that you should clearly state what the null and alternative hypotheses are

and what test needs to be performed.

(e) Compute P(0.25< x< 0.5) for this probability density function.

Appendix A2: A Brief Review of Set Theory and Notation

In mathematics, sets are defined as a collection of objects that share some type of

property. A set is delimited using curly brackets “{}” and often denoted using

double struck letters (, , ℂ,. . .). Common sets include:

1.  (U + 211D),5 which is the set of all real numbers;

2. ℕ (U + 2215), which is the set of all natural numbers and defined as ℕ¼ {0,

1, 2,. . .};

5 The values in brackets are the Unicode code points that will allow the given character to be easily

entered on the keyboard.
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3. ℤ (U + 2124), which is the set of all integers;

4. ℂ (U + 2102), the set of complex numbers; and

5. {} or ∅ (U + 2205), the null or empty set. This is used to represent a set that

contains no members or elements.

The element operator 2 (U + 2208) states that a given variable is a member or

element of the set, for example, 1 2 ℕ, states that 1 belongs to (or is an element of)

the set of natural numbers. The exclusion operator \ states that some given set is to

be excluded, for example, ℕ\{0} is the set of natural numbers excluding zero.

There are two common set operations: union and intersection. The union of

two sets, denoted as [ (U + 222A), is the set that contains all elements found in

both sets, while the intersection of two sets, denoted as \ (U + 2229), is the set

that contains only those elements that are common (found) in both sets. For

example, if  ¼ {1, 2, 3, 4} and  ¼ {4, 5, 6, 7}, then  [  ¼ {1, 2, 3, 4, 5, 6, 7},

while  \  ¼ {4}.
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Chapter 3

Regression

Regression is the method by which a set of data is fitted to a relationship with

unknown parameter values by minimising some criterion. The most common

criterion is least squares, where the sum of the square of the residuals, that is, the

difference between the measured and predicted values, is minimised. Regression

can be subdivided into two broad categories: linear regression, where the model of

interest can be written as the sum of linear functions, and nonlinear regression,
where this is not the case. In turn, there are two main methods to deal with

regression: ordinary least-squares and weighted least-squares analysis.

3.1 Regression Analysis Framework

The regression analysis framework, shown in Fig. 3.1, is an iterative procedure that

seeks to determine the best model for the data. Before the procedure can be started,

three things must be determined:

1. Data: What information is available about the system of interest and which

variables can be measured? If no data sets are readily available, then it may be

necessary to perform experiments to obtain the required data (see Chap. 4:

Design of Experiments for further information).

2. Model: What model (relationship) will be fit? How many parameters will be

considered? The selection of an appropriate model is neither a trivial nor an easy

task. Luckily in many processes applications, there may be some idea of what the

model should be based on a theoretical analysis of the system.

3. Regression Method: Which method will be used to determine the model param-

eters? The selection of the correct method will impact the validity of the model

obtained and what type of analysis can be performed.
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Once these three aspects have been determined, the regression framework consists

of three steps:

1. Parameter Determination: In this step, the model parameters are determined

using an appropriate regression method. Values required for further analysis can

also be computed at this point.

2. Model Validation: In this step, the adequacy of the model is determined by

considering two different aspects: the assumptions of the regression model and

the overall fit. It is important to verify that the resulting regression satisfies the

assumptions. Failure to satisfy the assumptions means that subsequent analysis

may be incorrect. Assessing the overall fit seeks to determine how well the

model fits the data.

3. Decision: Based on the desired use of the model, the time available, and any

other relevant factors, a decision needs to be made whether to accept the model

as it currently is or to improve the model. Improving the model considers

changing any of the three initial inputs: data, model, and regression method.

For example, additional experiments could be performed to provide more data

and help make a better decision, or a more complex model could be selected in

order to improve model performance.

3.2 Regression Models

Consider the following generalised representation of the regression problem

Model

Regression
Method

Model 
Parameter 
Estimates

Model
Adequacy,
Analysis

Model
Good?

YesNo

Good Data?

Model Correct?

Valid Method?

New Experiment

New Model

Different
Method

Start

Stop

Data (y, x)

Fig. 3.1 Flow chart for regression analysis
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y ¼ g ~β;~x; ε
� �

ð3:1Þ

where

1. y is the output (or dependent) variable. This is the variable that we seek to model

or describe. Often in process engineering, it will be a variable of importance such

as concentration or quality.

2. ~x is an l� 1 vector containing the regressor (or independent) variables. These are
the variables that can be used to describe how the output will behave. In many

cases, irrelevant variables may be considered in order to be certain that a

complete model has been obtained. The regressors need not have any physical

relationship with the output; rather, they may solely be correlated with the output

variable. If they are correlated, then the quality of the model may suffer once the

correlation no longer holds.

3. ~β is an n� 1 vector containing the parameters, which are model constants whose

values will be determined during regression. The parameters will most often be

treated as statistical variables coming from a normal distribution, so that the

significance of the results can be obtained.

4. ε is the error. In practical situations, the output values obtained are subject to

variability, that is, under the same conditions, it is unlikely that the same output

values will be obtained due to measurement error, analysis errors, or the like.

These errors mean that the predicted value given by g will be different from the

measured values. The error is often assumed to be a stochastic, that is, random,

variable whose values follow the normal distribution.

5. g is the complete model that describes the relationship between the regressors,

parameters, errors, and output. The form of the model determines what type of

analysis can be performed.

In order to simplify calculation, the complete model, g, is often split into two

components. The first component, denoted as f ~βx;~x
� �

, and called the regression

model, deals solely with the relationship between the inputs and outputs. For this

reason, it is often called the deterministic component of the model. The second

component, denoted as k ~βε; ε
� �

and called the error structure or model, deals

solely with the relationship between the error and output. For this reason, it is often

called the stochastic component of the model. There are two main ways to relate

these two components to the complete model:

1. Additive Approach: In the additive approach, it is assumed that g¼ f+ k. This
implies that the error is added solely to the output. In regression analysis, this is

the only acceptable model.

2. Multiplicative Approach: In the multiplicative approach, it is assumed that

g¼ fk. This implies that the magnitude of the error depends on the value of the
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deterministic component. In regression analysis, this type of model must be

re-arranged into an additive model in order to obtain a solution.

Although the stochastic component is important for analysing the results obtained

using regression, it is useless from the perspective of using the model, as the exact

value of the stochastic component can never be known. Therefore, although

specifying the stochastic component is important for obtaining and analysing

model parameters, it is often ignored when using the model to predict future or

new values. In many applications, the two components can be modelled separately.

The methods for modelling the stochastic component using the residuals will be

presented in Chap. 5: Modelling Stochastic Processes. An application to the iden-

tification of a process for application in process control will be presented in Chap. 6:

Modelling Dynamic Process. Also, some cases where both components need to be

simultaneously modelled will be considered in that chapter.

Finally, assume that m� n experiments were performed. Thus, there are m data

points to be fitted with n unknown parameter values. Once again, estimated values

will be denoted using a circumflex (◌̂).

3.2.1 Linear and Nonlinear Regression Functions

A model is said to be linear if the first derivative of the regression model with

respect to the parameters ~β is not a function of any of the parameters. A regression

model whose first derivatives with respect to the parameters depend on the param-

eters is called a nonlinear model. For example, y¼ β0 + β1x + β2x
2 is a linear model

in terms of the parameters, since none of the derivatives with respect to the

parameters depend on the parameters. On the other hand, y¼ β0e
�βx is nonlinear

since the derivatives with respect to the parameters depend on the parameter

estimates (e.g. ∂y=∂β0 ¼ e�βx).

A nonlinear model can occasionally be converted into a linear model by

transforming the model to obtain a linear model. However, it should be noted that

transforming the model introduces problems into the model by changing the error

structure, which may imply that the assumptions of linear regression are not

satisfied. In this case, the parameter estimates obtained from a linearised model

can then be used as the initial guess for the nonlinear regression case.

Example 3.1: Linearising Nonlinear Models

Consider the following nonlinear models. Linearise them so that linear regres-

sion methods can be applied. Explain in which cases the error structure will be

that of the standard, linear model (additive error) and where it will not be.

1. Arrhenius’s Equation I: K ¼ Aeεe�
Ea
RT , where K is the reaction rate, A the

reaction constant, Ea the activation energy, R the universal gas constant,

and T the temperature.

(continued)
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Example 3.1 (continued)

2. Arrhenius’s Equation II:K ¼ Ae�
Ea
RT þ ε, where K is the reaction rate, A the

reaction constant, Ea the activation energy, R the universal gas constant,

and T the temperature.

3. Michaelis–Menten Equation: K ¼ KmaxS
Km þ S þ ε, where Kmax is the maximum

reaction rate, S the substrate concentration, and Km a reaction constant.

4. Power Equation: y¼Aεxb, where y is the output, A a constant, and b the

exponent. Show that this is a nonlinear equation.

Solution

1. Arrhenius’s Equation I: For the first equation, taking the natural logarithm
of this equation will give

ln K ¼ ln Aeεe�
Ea
RT

� �
¼ ln Aþ ln eε þ ln e�

Ea
RT ¼ ln A� Ea

RT
þ ε

which by defining

~y ¼ ln Kh i,~β ¼ ln A� Ea

R

� �T
,~x ¼ 1 T�1

� �
can be written in the standard linear regression format. Therefore, if we

assume that the original error structure is lognormal, as in this example,

then the system will be linearisable, and the linear regression methods will

completely apply.

2. Arrhenius’s Equation II: The second equation, which is the same as the

first equation, except that the error structure is different now: it is additive

rather than multiplicative. Therefore, when the logarithm is taken, the

error term will remain inside the logarithm, namely,

ln K ¼ ln Ae�
Ea
RT þ ε

� �
and the complete sum cannot be simplified in order to obtain a solution that

includes the error. In such cases, it is common to simply ignore the error

structure and proceed to linearise the equation. The final result will be the

same as was obtained for 1).

3. Michaelis–Menten Equation: Since this is a very common equation in

biochemical engineering, different forms of linearisation have been

devised. In this example, two different linearisation will be considered.

(continued)
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Example 3.1 (continued)

Form 1: The following steps can be taken to linearise the equation:

K ¼ KmaxS

Km þ S
þ ε

KS ¼ Kmax � KKm þ Km þ Sð Þε
Let

~y ¼ KSh i,~β ¼ Kmax Kmh iT ,~x ¼ 1 �Kh i
Note that the error structure, although additive, has a variance that depends on

the value of the unknown parameter Km.

Form 2: Take the following steps to linearise the equation:

1

K
¼ Km þ S

KmaxSþ Km þ Sð Þε
1

K
¼ Km

KmaxSþ Km þ Sð Þεþ
1

Kmax þ Km þ Sð Þ
S

ε

If we ignore the fact that the error is in the denominator and proceed by

dropping it, we can see that

~y ¼ K�1
� �

,~β ¼ K�1
max KmK

�1
max

� �T
,~x ¼ 1 S�1

� �
This approach is called the Lineweaver–Burk plot. It can be seen that the error

structure is not additive and there is a need to take the inverse of potentially small

numberswhichcan introduce furthererrors. Ingeneral,noneof themethods isvery

good at obtaining accurate parameter values, and nonlinear regression is better.

4. Power Equation: For this equation, take the following steps to linearise it

log y ¼ log Aþ log εþ log xb

¼ log Aþ log εþ blog x

Let

~y ¼ log yh i,~β ¼ log A bh iT ,~x ¼ 1 log xh i
Note that the error structure, although additive, has a different form. It is no

longer a normal distribution. Also, there can be issues with negative numbers, as

although the original equation can deal with them, the linearised version cannot.

To show that the given equation is nonlinear, compute the derivatives of

the function with respect to the parameters, that is,

(continued)

92 3 Regression



Example 3.1 (continued)

∂y
∂A

¼ εxb

∂y
∂b

¼ Abεxb� 1

From these two equations, it is obvious that the derivatives depend on the

parameters, and so the resulting system is nonlinear.

3.3 Linear Regression

In linear regression, it is assumed that the function of interest can be written as:

y ¼
Xn
i¼ 1

βi f i ~xð Þ þ ε ¼ ~a~β þ ε ð3:2Þ

where the individual functions fi are all known, and ~a is the vector containing the

values of the functions, that is, ~a ¼ f 1 ~xð Þ, f 2 ~xð Þ, . . . , f n ~xð Þh i. Assume that there

are m� n data points that are to be fitted to the model given by Eq. (3.2). The data

points are given as xi, where i¼ 1, 2, 3, . . ., m, and the individual parameters are

given as βj, where j¼ 1, 2, 3, . . ., n.

3.3.1 Ordinary, Least-Squares Regression

This is the most common type of linear regression. In ordinary, least-squares

regression, the objective function to be optimised is given as

min
~β

~y�A~β
� �T

~y�A~β
� �� �

ð3:3Þ

where A, denoted as the regression matrix, is defined as

A ¼

f 1 ~x1ð Þ f 2 ~x1ð Þ � � � f n ~x1ð Þ
f 1 ~x2ð Þ f 2 ~x2ð Þ � � � f n ~x2ð Þ
⋮ ⋱ ⋮

f 1 ~xmð Þ f 2 ~xmð Þ � � � f n ~xmð Þ

266664
377775 ð3:4Þ

and
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~β ¼ β1, β2, . . . , βnh iT ð3:5Þ
~y ¼ y1, y2, . . . , ymh iT ð3:6Þ

Theorem 3.1 The solution for Eq. (3.3) is

~̂β ¼ ATA� 	�1AT~y ð3:7Þ

Proof In order to find the solution to the optimisation problem given by Eq. (3.3), it

is necessary to determine the points at which the derivative of the objective function

are zero and then solve for the desired unknown values.

Therefore, taking the derivative of Eq. (3.3) with respect to the unknown

parameters, ~β gives

∂

∂~β
~y�A~β

� �T
~y�A~β

� �
¼ ∂

∂~β
~yT~y� ~yTA~β � ~β

TAT~yþ ~β
TATA~β

� �
¼ �2AT~yþ 2ATA~β ð3:8Þ

Setting Eq. (3.8) equal to zero and assuming thatATA is full rank, that is, invertible,

give

�2AT~yþ 2ATA~β ¼ 0

ATA~β ¼AT~y
~β ¼ ATA� 	�1AT~y

ð3:9Þ

which is equivalent to Eq. (3.7).

Q.E.D.

In order to analyse the resulting parameter estimates, it is necessary to make four

assumptions about the underlying error structure:

1. The errors have a mean of zero.

2. The errors are independent.

3. The errors are homoscedastic, that is, they have the same variance.

4. The errors are normally distributed.

The first three assumptions are required to obtain an understanding of the

properties of the least-squares estimate, while the last assumption allows for

hypothesis testing to be performed on the estimates, as well as making the regres-

sion estimates equal to the maximum-likelihood parameter estimates.
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Theorem 3.2 Under the assumptions stated above, the regression parameter
estimates are unbiased.

Proof To show that the parameter estimates are unbiased, E( θ̂ )¼ θ must be

satisfied. Substituting the parameter estimates given by Eq. (3.7) into this equation

gives

E ATA� 	�1AT~y
� �

ð3:10Þ

Substituting the true model ~y ¼ A~β þ ε into Eq. (3.10) and simplifying give

E ATA� 	�1AT A~β þ ε
� �� �

¼ E ATA� 	�1ATA~β þ ATA� 	�1ATε
� �

¼~β þ E ATA� 	�1ATε
� � ð3:11Þ

Since it has been assumed that E(ε)¼ 0, Eq. (3.11) becomes ~β, which is the true

parameter value. This shows that the parameter estimates are unbiased.

Q.E.D.

Theorem 3.2 Under the assumptions stated above, the covariance matrix of the
regression parameter estimates is

σ2
~̂β
¼ σ2 ATA� 	�1 ð3:12Þ

where σ2 is the variance of the error.

Proof The variance of the parameters can be written as

σ2
~̂β
¼ E ~̂β ~̂β

T
� �

� E ~̂β
� �

E ~̂β
� �

T ð3:13Þ

Making the same substitutions as in Theorem 3.2 for ~̂β and noting that from that

theorem we have the value for E ~̂β
� �

gives

σ2
~̂β
¼ E ATA� 	�1AT A~β þ ε

� �
ATA� 	�1AT A~β þ ε

� �� �
T

� �
� ~β~β

T ð3:14Þ

Multiplying out and simplifying give

σ2
~̂β
¼ E ATA� 	�1AT A~β þ ε

� �
A~β þ ε

� �
TA ATA� 	�1

� �
T

� �
� ~β~β

T
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σ2
~̂β
¼ E

~β~β
T þ ~βεTA ATA� 	�1

þ ATA� 	�1ATε~β
T

þ ATA� 	�1ATεεTA ATA� 	�1

0BB@
1CCA� ~β~β

T ð3:15Þ

Applying the linearity of the expectation operator gives

σ~̂β

2 ¼ E ~β~β
T

� �
þ E ~βεTA ATA� 	�1

� �
þ E ATA� 	�1ATε~β

T
� �

þ E ATA� 	�1ATεεTA ATA� 	�1
� �

� ~β~β
T ð3:16Þ

Since E(ε)¼ 0, the above equation simplifies to

σ2
~̂β
¼ E ATA� 	�1ATεεTA ATA� 	�1

� �
ð3:17Þ

Since it is assumed that the individual errors (residuals) are independent, have a

mean of zero, and have the same error covariance, the error covariance can be

rewritten as

σ2
~̂β
¼ E εεT

� 	 ¼ σ2 I ð3:18Þ

Therefore, the covariance of the parameters can be rewritten as

σ ~̂β

2 ¼ σ2ε ATA� 	�1ATA ATA� 	�1 ¼ σ2 ATA� 	�1 ð3:19Þ

Q.E.D.

Further, if it is assumed that the errors follow a normal distribution, Theorem 3.3

allows the confidence intervals for the parameter estimates to be established, that is,

β̂i � tn�m, 1� α
2
σ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ATA� 	�1

ii

q
ð3:20Þ

where i refers to the ith parameter estimate, ATA� 	�1

ii
represents the entry in the ith

column and row of the ATA� 	�1
matrix, and σ̂ is the estimated value of the error

standard deviation.

Having established the properties of the parameter estimates, it will now be

useful to look at the predictive properties of the overall model: what are the values

and confidence intervals for a given prediction. Given a new data point,~xd, there are
two different measures for answering this question: the mean response and the

predicted response confidence intervals. The mean response represents the average
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value at a given point given the available data, that is, E(y
��~xd ). Essentially, this

represents the value that would be obtained if multiple experiments are repeated at

similar conditions with the same input values. The predicted response represents the

value obtainable from a single new experiment. In all cases, the confidence interval

for a predicted response will be larger than that of the mean response, since there is

additional uncertainty in the predicted value.

Theorem 3.3 Under the assumptions stated above, the mean response and its
confidence interval for the point ~xd are given as

~a~xd
~̂β � t1� α

2
,m� n σ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~a~xd ATA� 	�1

~aT
~xd

q
ð3:21Þ

where ~a~xd ¼ f1 ~xdð Þ, f 2 ~xdð Þ, . . . , fn ~xdð Þh i.
Proof This requires showing two things: the mean response value and its associ-

ated confidence interval. First, consider the mean response value given by E(yj~xd)¼
μYj~xd . The best estimate for this value is the mean value obtained from the regression

equation, that is,

E yj~a~xdð Þ ¼ ~a~xd
~̂β ð3:22Þ

This is an unbiased estimate for the mean response since from Theorem 3.2 we have

that ~̂β is an unbiased estimate of ~β. This establishes the best estimate of the mean

response.

Next, consider the confidence interval. In order to do this, we need to determine

the variance of the mean response estimate, that is, σ2μYj~xd ,

σ2μYj~xd ¼ E ~a~xd
~̂β ~a~xd

~̂β
� �

T
� �

� E ~a~xd
~̂β

� �
E ~a~xd

~̂β
� �

T ð3:23Þ

Simplifying Eq. (3.23) by noting that ~a~xd is a constant gives

σ2μYj~xd ¼ ~a~xdE
~̂β ~̂β

T
� �

~a T
~xd
� ~a~xdE

~̂β
� �

E ~̂β
� �

T
~a T
~xd

ð3:24Þ

Rewriting Eq. (3.24) by noting that the variance of the parameters can be written as

σ2
~̂β
¼ E ~̂β ~̂β

T
� �

� E ~̂β
� �

E ~̂β
� �

T
gives

σ2μYj~xd ¼ ~a~xdσ
2

~̂β
~a T
~xd

ð3:25Þ
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Theorem 3.3, which gives the parameter variance in terms of the variance of the

errors, allows Eq. (3.25) to be rewritten as

σ2μYj~xd ¼ σ2~a~xd ATA� 	�1
~a T
~xd

ð3:26Þ

This establishes the variance of the mean response. In practice, σ2 is not known and
must be replaced by its estimated value, σ̂2. It can be noted that since the parameter

estimates themselves are normally distributed (under the assumption that the errors

themselves are normally distributed), then the confidence interval can be written as

~a~xd
~̂β � t1� α

2
,m� nσ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~a~xd ATA� 	�1

~a T
~xd

q
ð3:27Þ

Q.E.D.

Theorem 3.4 Under the assumptions stated above, the predicted response and its
confidence interval for the point ~xd is given as

~a~xd
~̂β � t1� α

2
,m� n σ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~a~xd ATA� 	�1

~a T
~xd

q
ð3:28Þ

where ~a~xd ¼ f 1 ~xdð Þ, f 2 ~xdð Þ, . . . , fn ~xdð Þh i.
Proof This requires showing two things: the predicted response value and its

associated confidence interval. First, the predicted response value will be the

same as for the mean response value and so will be unbiased.

For the confidence interval, consider the difference between the true value, y,
and the predicted value, ŷ, at the point, that is,

εp ¼ y� ŷ ð3:29Þ

The variance of εp will determine the variance of the predicted value estimate. The

required variance can be obtained as follows:

σ2εp ¼ E y� ŷð Þ y� ŷð ÞT
� �

� E y� ŷð ÞE y� ŷð ÞT
¼ σ2y þ σ2ŷ

ð3:30Þ

From Theorem 3.4, the value of σ2ŷ will be equal to that given by Eq. (3.26). The

only remaining term will be the variance due to the true value given by σ2y . This can

be computed as follows:

σ2y ¼ E yyTð Þ � E yð ÞE yð ÞT

¼ E ~a~β þ ε
� �

~a~β þ ε
� �T

� �
� E ~a~β þ ε

� �
E ~a~β þ ε
� �T

¼ E ~a~β~β
T
~aT þ ε~β

T
~aT þ ~a~βεT þ εεT

� �
� E ~a~β þ ε

� �
E ~a~β þ ε
� �T

ð3:31Þ
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It can be noted that the terms that do not contain ε are all constant. Furthermore, by

assumption, ε has a mean value of 0. Therefore, Eq. (3.31) can be rewritten as

σ2y ¼~a~β~β
T
~aT þ εεT � ~a~β~β

T
~aT

¼ εεT ¼ σ2
ð3:32Þ

Thus, the variance of the predicted response value can be written as

σ2εp ¼ σ2 þ σ2~a~xd ATA� 	�1
~aT
~xd

¼ σ2 1þ ~a~xd ATA� 	�1
~aT
~xd

� �
ð3:33Þ

In practice, σ2 is not known and must be replaced by its estimated value, σ̂2. Similar

to the mean response, noting that both the parameter estimates and the errors are

normally distributed, the confidence interval can be written as

~a~xd
~̂β � t1� α

2
,m� n σ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~a~xd ATA� 	�1

~aT
~xd

q
ð3:34Þ

Q.E.D.

The residual is defined as the difference between the predicted and measured

values, that is,

~ε ¼ ~y� ~̂y ¼ ~y�A~̂β ¼ ~y�A ATA� 	�1AT~y

¼ I �A ATA� 	�1AT
� �

~y ð3:35Þ

where I is the appropriately sized identity matrix.

3.3.2 Analysis of Variance of the Regression Model

Analysis of variance is an approach to determining the significance and validity of

a regression model using variances obtained from the data and model. The goal is

to simultaneously test multiple means in order to determine the overall signifi-

cance. Unfortunately, the naı̈ve approach of simply comparing pairwise each

mean can easily lead to too large an overall α-error. For this reason, the analysis
of variance approach seeks to decompose the total variability in the data into

various orthogonal components that can then be independently analysed. For the

purposes of analysing the regression, let the total sum of squares, denoted by TSS,
be defined as

TSS ¼
X

yi � yð Þ2 ¼ ~y� y~1
�� ��2 ð3:36Þ
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where ~1 is the unit column vector, that is, ~1 ¼ 1; 1; 1; . . . ; 1h iT , and k · k is the

standard, vector 2-norm. Let the sum of squares due to regression, SSR, be defined as

SSR ¼
X

ŷi � yð Þ2 ¼ ~̂y � y~1
��� ���2 ð3:37Þ

Let the sum of squares due to the error, SSE, be defined as

SSE ¼
X

yi � ŷið Þ2 ¼ ~εk k2 ¼ ~y� ~̂y
��� ���2 ð3:38Þ

Theorem 3.5 SSR and SSE are an orthogonal decomposition of TSS.

Proof In order to simplify the computations, the proof will be performed using

suitable vector manipulations. By definition, we can rewrite the total sum of

squares as

TSS ¼ ~y� y~1
�� ��2 ¼ ~y� y~1 þ ~̂y � ~̂y

��� ���2 ¼ ~y� ~̂y
� �

þ ~̂y � y~1
� ���� ���2 ð3:39Þ

By the polarisation identity between norms and dot products ka + bk2¼kak2 +
kbk2 + 2bTa,1 Eq. (3.39) can be rewritten as

TSS ¼ ~y� ~̂y
� ���� ���2 þ ~̂y � y~1

� ���� ���2 þ 2 ~y� ~̂y
� �T

~̂y � y~1
� �

ð3:40Þ

It is now necessary to show that the last term in Eq. (3.40) equals zero. This can be

accomplished by writing the last term as

~y� ~̂y
� �T

~̂y � y~1
� �

¼ ~y� ~̂y
� �T

~̂y þ ~y� ~̂y
� �T

y~1 ð3:41Þ

Since ~̂y ¼ A~̂β , the first part of the last term simplifies to

~y� ~̂y
� �T

A~̂β ¼ I � ATA� 	�1AT
� �

~y
� �T

A~̂β

¼ ~yT I �A ATA� 	�1
� �

A~̂β

¼ ~yT A�A ATA� 	�1ATA
� �

~̂β ¼ ~yT A�Að Þ~̂β ¼ 0 ð3:42Þ

1 For two column vectors a and b, the dot product a · b can be defined as the matrix multiplication

aTb or bTa.
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For the second part of the last term, it can be noted that
X

εi ¼ ~y� ~̂y
� �T

~1 ¼ 0,

by the assumptions of linear regression. This shows that the second part is also

equal to zero. Thus, the last term in Eq. (3.39) is equal to zero. This shows that

TSS ¼ ~y� ~̂y
� ���� ���2 þ ~̂y � y~1

� ���� ���2 ¼ SSEþ SSR ð3:43Þ

Q.E.D.

It can be noted that the sum of squares due to regression can be further

partitioned if an orthogonal basis is used to define the regression parameters. This

will be explored in greater detail in Chap. 4, including how to define an orthogonal

basis for regression.

In the analysis of variance approach, the F-statistic can be calculated as

follows:

F ¼
SSR



k

SSE


m�n

ð3:44Þ

where k is defined as follows. If there is a function, such that fi(x)¼ 1 for all values

of x, then k¼ n – 1; otherwise, k¼ n. This value should be compared to the critical

F-value computed as F1 � α, k, m – n, where α is the alpha error. The F-statistic
computed using Eq. (138) should be greater than the critical value to conclude that

the parameter estimates are significant compared to the noise in the system.

Basically, the analysis of variance seeks to determine which of the two components,

the regression model or the noise variance, is greater. A good regression model

should give a larger SSR value than a bad regression model.

Another useful measure of the regression model is Pearson’s coefficient of
regression, R2. It can be calculated as follows:

R2 ¼ SSR

TSS
¼ 1� SSE

TSS
ð3:45Þ

The closer the value is to one, the better the regression model is. Furthermore, R2

measures the fraction of the total variance in the model explained by the regression

with the given variables. The value of R2 lies between [0, 1]. Unfortunately, this

parameter has the tendency that, as the number of parameters is increased, the value

of R2 approaches 1. This would suggest that the model is improved by an increase in

the number of parameters. However, if there are exactly n data points, then any n-
parameter model will fit the data quite closely. A possible approach to fix this

problem is to calculate the adjusted R2, which is given as
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R2
adj ¼ 1�

SSE=m� n
TSS=m� 1

¼ 1� 1� R2
� 	 m� 1

m� n

� �
ð3:46Þ

It should be noted that the adjusted R2 is not constrained to lie in the interval [0, 1].

Thus, negative values can be expected using this measure.

3.3.3 Useful Formulae for Ordinary, Least-Squares
Regression

This section provides a convenient summary of all the equations required for

ordinary, least-squares regression.

For the regression model given by

y ¼
Xn
i¼ 1

βi f i ~xð Þ þ ε ¼ ~a~β þ ε ð3:47Þ

the solution can be obtained by solving the following equation for the unknown,

estimated coefficients, ~̂β :

ATA~̂β ¼ AT~y ð3:48Þ

where

A ¼

f 1 ~x1ð Þ f 2 ~x1ð Þ � � � f n ~x1ð Þ
f 1 ~x2ð Þ f 2 ~x2ð Þ � � � f n ~x2ð Þ
⋮ ⋱ ⋮

f 1 ~xmð Þ f 2 ~xmð Þ � � � f n ~xmð Þ

266664
377775 ð3:49Þ

~̂β ¼ h β1, β2, . . . , βniT ð3:50Þ
~y ¼ hy1, y2, . . . , ymiT ð3:51Þ

The standard deviation for this model is given by

σ̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~yT~y� ~̂β

TAT~y

m� n

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
~εT~ε

m� n

s
ð3:52Þ
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where ~ε are the residuals given as

~ε ¼ ~y� ~̂y ¼ ~y�A~̂β ¼ ~y�A ATA� 	�1AT~y

¼ I �A ATA� 	�1AT
� �

~y ð3:53Þ

The 100(1�α)% confidence interval for βi is given by

β̂ i � t1� α
2
,m� n σ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ATA� 	�1

ii

q
ð3:54Þ

where ATA� 	�1

ii
represents the value located at (i, i) in the matrix ATA� 	�1

.

The 100(1�α)% mean response confidence intervals, that is, the region within

which the mean value of repeated measurements will lie 100(1�α)% of the time,

for the point ~xd is given by

~a~xd
~̂β � t1� α

2
,m� n σ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~a~xd ATA� 	�1

~aT
~xd

q
ð3:55Þ

where ~a~xd ¼ h f 1 ~xdð Þ, f 2 ~xdð Þ, . . . , f n ~xdð Þi. It can be noted that if the parameter

estimates are obtained using some transformed equation, then the mean response

confidence interval cannot be converted into the original units.

The 100(1�α)% predictive confidence intervals, that is, the region within which
the actual value will lie 100(1�α)% of the time, for the point ~xd is given by

~a~xd
~̂β � t1� α

2
,m� n σ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~a~xd ATA� 	�1

~aT
~xd

q
ð3:56Þ

The sum of squares due to regression, SSR, can be calculated as follows:

SSR ¼
X

ŷi � yð Þ2 ¼ ~̂y � y~1
��� ���2¼ ~̂β

TAT~y� 1

m
~yT~1~1T~y

� �
ð3:57Þ

where ~1 is the unit column vector of size m� 1, that is, ~1 ¼ 1; 1; 1; . . . ; 1h iT
The sum of squares due to the errors, SSE, can be calculated as follows:

SSE ¼
X

yi � ŷið Þ2 ¼ ~y� ~̂y
��� ���2 ¼ ~yT~y� ~̂β

TAT~y ð3:58Þ
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The total sum of squares, TSS, can be calculated as follows:

TSS ¼
X

yi � yð Þ2 ¼ ~y� y~1
�� ��2 ¼ ~yT~y� 1

m
~yT~1~1T~y

� �
ð3:59Þ

Appendix A3 presents a traditional, nonmatrix, approach to performing univariate

(one variable), linear, least-squares regression.

3.3.4 Computational Example Part I: Determining the Model
Parameters

Consider the problem of trying to estimate the resistance coefficient for the orifice

flow out of a tank. For the particular flow rates and orifice size, the relationship is

assumed to be

_m ¼ R
ffiffiffi
h

p
ð3:60Þ

where ṁ is the mass flow rate, R the resistance coefficient, and h the height in the

tank. The data are provided in Table 3.1. Using these data, determine the parameter

estimates and their confidence intervals and the standard deviation of the model; for

the point, x¼ 0.225 m, determine the mean and predictive confidence intervals for

the flow rate out of the tank; obtain SSR, TSS, SSE, R2, and the F-statistic; and
provide the model significance at α¼ 0.05.

Solution

Before obtaining the actual parameter estimates, it is instructive to set up the

problem in the proper framework. Converting from the parameters given in the

problem statement to the standard regression parameters gives

y ¼ _m
~β ¼ R
A ¼ ffiffiffi

h
p ð3:61Þ

Table 3.1 Height and flow

rate data
Height, h (m) Flow rate, ṁ (kg/min)

0.35 16.4

0.30 15.4

0.25 14.3

0.20 12.7

0.15 11.0

0.10 9.6

0.05 6.4
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Therefore, writing the matrices for the seven data points gives

~y ¼ 16:4 15:4 14:3 12:7 11:0 9:6 6:4½ �T
A ¼ ffiffiffiffiffiffiffiffiffi

0:35
p ffiffiffiffiffiffiffiffiffi

0:30
p ffiffiffiffiffiffiffiffiffi

0:25
p ffiffiffiffiffiffiffiffiffi

0:20
p ffiffiffiffiffiffiffiffiffi

0:15
p ffiffiffiffiffiffiffiffiffi

0:10
p ffiffiffiffiffiffiffiffiffi

0:05
p� �T ð3:62Þ

The value of m is seven (as there are seven data points) and n is one (as there is only
one parameter of interest).

The least-squares parameter estimates are given by

~̂β ¼ ATA� 	�1AT~y ¼

ffiffiffiffiffiffiffiffiffi
0:35

pffiffiffiffiffiffiffiffiffi
0:30

pffiffiffiffiffiffiffiffiffi
0:25

pffiffiffiffiffiffiffiffiffi
0:20

pffiffiffiffiffiffiffiffiffi
0:15

pffiffiffiffiffiffiffiffiffi
0:10

pffiffiffiffiffiffiffiffiffi
0:05

p

2666666664

3777777775

T ffiffiffiffiffiffiffiffiffi
0:35

pffiffiffiffiffiffiffiffiffi
0:30

pffiffiffiffiffiffiffiffiffi
0:25

pffiffiffiffiffiffiffiffiffi
0:20

pffiffiffiffiffiffiffiffiffi
0:15

pffiffiffiffiffiffiffiffiffi
0:10

pffiffiffiffiffiffiffiffiffi
0:05

p

2666666664

3777777775

0BBBBBBBBB@

1CCCCCCCCCA

�1 ffiffiffiffiffiffiffiffiffi
0:35

pffiffiffiffiffiffiffiffiffi
0:30

pffiffiffiffiffiffiffiffiffi
0:25

pffiffiffiffiffiffiffiffiffi
0:20

pffiffiffiffiffiffiffiffiffi
0:15

pffiffiffiffiffiffiffiffiffi
0:10

pffiffiffiffiffiffiffiffiffi
0:05

p

2666666664

3777777775

T
16:4
15:4
14:3
12:7
11:0
9:6
6:4

2666666664

3777777775
¼ 1:4�1 39:69ð Þ ¼ 28:3529

kg

min �m0:5
ð3:63Þ

Units should always be included in the final answer. It is rare that a parameter in

engineering does not have some physical units attached. The number of decimals to

display is determined by the confidence interval. Intermediate results should contain a

reasonable amount of digits. All digits should be used to perform the calculations.

The standard deviation of the model can be obtained from

σ̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~yT~y� ~̂β

TAT~y
m� n

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16:4
15:4
14:3
12:7
11:0
9:6
6:4

2666666664

3777777775

T
16:4
15:4
14:3
12:7
11:0
9:6
6:4

2666666664

3777777775
� 28:3529T

ffiffiffiffiffiffiffiffiffi
0:35

pffiffiffiffiffiffiffiffiffi
0:30

pffiffiffiffiffiffiffiffiffi
0:25

pffiffiffiffiffiffiffi
0:2

p
0ffiffiffiffiffiffiffiffiffi

0:15
pffiffiffiffiffiffiffi
0:1

p
0ffiffiffiffiffiffiffiffiffi

0:05
p

2666666664

3777777775

T
16:4
15:4
14:3
12:7
11:0
9:6
6:4

2666666664

3777777775
7� 1

vuuuuuuuuuuuuut
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1126:02� 28:3529� 39:694 062 63

7� 1

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1126:02� 1125:441 788

7� 1

r
¼ 0:310 43

ð3:64Þ
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The standard deviation of the model, σ̂, is 0.3104 kg ·min�1 · m�0.5. The 95%

confidence intervals for R can be obtained as follows:

β̂i � t1� α
2
,m� n σ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ATA� 	�1

ii

q
ð3:65Þ

where t0.975, 7 – 1¼ 2.967. This gives

28:3529� 2:9687 0:310 43ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:714 28

p

28:3529� 0:7789
kg

min �m0:5

ð3:66Þ

The standard deviation and confidence bound should be reported to one or two

digits. Based on the magnitude of the standard deviation/confidence bound, the

mean value should be rounded to the same value. In this example, the confidence

bound could be written as 0.8, which implies that the mean is accurate to about three

digits. Therefore, the value of R should be reported as 28.4� 0.8 kg ·min�1 · m�0.5.

For the point, x¼ 0.225 m, the mean response confidence interval for the flow

rate out of the tank is given as

~x0~̂β � t1� α
2,m� n σ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x0 ATA� 	�1

~xT0

q
ffiffiffiffiffiffiffiffiffiffiffi
0:225

p
28:3529ð Þ � 2:9687 0:310 43ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:225

p
0:714 28ð Þ ffiffiffiffiffiffiffiffiffiffiffi

0:225
pq

13:448 96� 0:3694
kg

min

ð3:67Þ

Therefore, the mean response confidence interval is 13.5� 0.4 kg ·min�1. (Same

rounding rules as for the parameter estimates apply here.) The predictive confidence

interval is given as

~x0~̂β � t1� α
2
,m� n σ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ~x0 ATA� 	�1

~xT0

q
ffiffiffiffiffiffiffiffiffiffiffi
0:225

p
28:3529ð Þ � 2:9687 0:310 43ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ffiffiffiffiffiffiffiffiffiffiffi

0:225
p

0:714 28ð Þ ffiffiffiffiffiffiffiffiffiffiffi
0:225

pq
13:448 96� 0:9929

kg

min

ð3:68Þ

Therefore, the predictive confidence interval is 14� 1 kg ·min�1. (Same rounding

rules as for the parameter estimates apply here.) Note the change in rounding and

the larger confidence interval value.

Since SSE ¼ σ̂2(m – n), it is easy to find SSE from the data, namely,

SSE ¼ σ̂2 m� nð Þ ¼ 0:31041ð Þ2 7� 1ð Þ ¼ 0:5781 ð3:69Þ
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TSS can be found as follows:

TSS¼
X

yi � yð Þ2 ¼ ~yT~y� 1

m

�
~yT~1~1T~yÞ

¼

16:4
15:4
14:3
12:7
11

9:6
6:4

2666666664

3777777775

T
16:4
15:4
14:3
12:7
11

9:6
6:4

2666666664

3777777775
� 1

7

16:4
15:4
14:3
12:7
11

9:6
6:4

2666666664

3777777775

T
1

1

1

1

1

1

1

2666666664

3777777775

1

1

1

1

1

1

1

2666666664

3777777775

T
16:4
15:4
14:3
12:7
11

9:6
6:4

2666666664

3777777775

0BBBBBBBB@

1CCCCCCCCA
¼ 1126:02� 1

7
85:8ð Þ2 ¼ 74:357 ð3:70Þ

Since TSS¼ SSE + SSR, SSR can be found by subtraction, that is,

74:357 ¼ 0:5781þ SSR
SSR ¼ 73:78

ð3:71Þ

Since R2¼ SSR/TSS, for which we have both values, it gives that

R2¼ 73.78/74.357¼ 0.9922. Since the F-statistic is defined as

F ¼
SSR=k

SSE=m� n

ð3:72Þ

where k is defined as the number of nonconstant functions (which in this case is 1),

the value of the F-statistic is

F ¼
73:78=1

0:5781=7 � 1

¼ 765:7 ð3:73Þ

The critical F-value has 1 degree of freedom in the numerator and 6 in the

denominator, which gives F0.95,1,6¼ 5.99. Since it is much smaller than the calcu-

lated F-value, it can be concluded that the model is significant.

3.3.5 Model Validation

Model validation is the process by which the least-squares model is examined to

determine whether it is sufficiently good. Although many aspects can be formalised

mathematically, some amount of intuition and experience is required in order to
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analyse the results. The intuition and experience can only be gained by examining

and analysing many different regression cases, in order to understand the impact

different factors have on the model.

Model validation consists of three parts: (1) testing the residuals, (2) testing the

adequacy of the model, and (3) taking corrective action. Each of these three parts

will now be examined in greater detail.

3.3.5.1 Residual Testing

It has been shown that for ordinary, least-squares analysis to hold, four assumptions

are required about the distribution of the errors. These assumptions must be verified in

order to determine the validity of the method. To refresh, the four key assumptions are:

1. The errors have a mean of zero.

2. The errors are independent.

3. The errors are homoscedastic, that is, they have the same variance.

4. The errors are normally distributed.

Since the true errors cannot be known, the residuals obtained from regression

analysis are used instead. The following tests can be performed to determine the

validity of the assumptions:

1. Test for Zero Mean: The easiest test is to compute the mean value of the

residuals. If desired a formal hypothesis test can be performed.

2. Tests for Normal Distribution: The most common method to test normality is to

plot a normal probability plot of the residuals. The points should lie along a

straight line. Examples of good and bad normal probability plots are shown in

Table 3.2. Alternatively, more advanced methods that consider the correlation

properties of normally distributed errors can be used.

3. Tests for Independence and Homoscedasticity: These two aspects are most

commonly tested together using various types of scatter plots. The most com-

mon scatter plots to examine are:

(a) Plotting a time series plot of the residuals, that is, plotting the residuals as a

function of time or sample.

(b) Plotting the residuals as a function of the variables, ~x.
(c) Plotting the residuals against the fitted values, ŷ.
(d) Plotting the residuals against the measured values, y.
(e) Plotting the residuals against the previous residual.

In cases (a) to (e), there should not be any discernible patterns in the plots.

Common scatter plots are shown in Table 3.3. In this case, the bad scatter plots

reveal the potential issues with the data and may suggest how to correct the situation.

Graph (a) shows that there is a single outlier (point much further from the other

points). Graph (b) shows that the residuals are increasing in value with respect to the

x-axis value. If the x-axis is a regressor, then it can be suggested that the error model

depends on the given regressor and weighted, least-squares may need to be used.
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Table 3.2 Sample, normal probability plots

Ideal (large) sample Small sample

Good normal probability plot

A tail at the ends
is acceptable.

Bad normal probability plots for

all cases (for large samples, the

small sample example would

count as well)

Outlier Concavity

Proununced Tails

Table 3.3 Sample scatter plots

Ideal (large) sample Small sample

Good scatter plots

Multivariate Case

Bad scatter plots for all cases (for

large samples, the small sample

example would count as well)

a

c

e

b

d

f
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Similarly, if the x-axis represents time, then it can be concluded that the variance of

the residuals depends on time. Graph (c) shows a sinusoidal pattern that suggests that

a sinusoidal behaviour was missed when fitting the data. Graph (d) shows that the

residuals are drifting as the x value increases. This suggests that either there were

process issues or that the x value should be included in the analysis. Graph (e) shows a
U-shaped (or quadratic) curve that potentially a quadratic term may be missing from

the analysis. Finally, Graph (f) shows the results for a multivariate case, where

multiple values were obtained at a single point. It can be seen here that the residuals

at each of the points do not cluster about zero. Rather there seem to be points where

they are smaller and points where they are larger.

3.3.5.2 Testing for Model Adequacy

Having determined that the residuals are well-behaved, it is now necessary to

examine the quality of the model. The following methods can be used to achieve

this.

1. Using the Confidence Interval for Each of the Parameters, βi: If the confidence
interval includes 0, then the parameter can be removed from the model. Ideally, a

new regression analysis excluding that parameter would need to be performed

and continued until there are no more parameters to remove.

2. Calculating Pearson’s Coefficient of Regression: The closer the value is to one,

the better the regression is. This coefficient gives what fraction of the observed

behaviour can be explained by the given variables.

3. Examining the Observational and Prediction Confidence Intervals: The smaller

they are the better. Note that if few samples or replicates are available, then the

confidence intervals may be large purely due to the small sample size.

4. Computing the F-Statistic: The F-test or analysis of variance (ANOVA) test

considers which component, the variance in the error or the variance explained

by the regression, is more prominent. If the error term is more significant, then

the regression is likely to be spurious or unimportant.

5. Examining Outliers: Outliers are defined as points that have residuals whose

values differ greatly from surrounding values. Possible causes for outliers

include typos when entering the data into the computer or errors in obtaining

the data. Outliers tend to increase the confidence intervals producing “worse”

results. Outliers can be spotted from any of the above plots that are used to check

the model assumptions as points that are far from the expected behaviour. If a

point is suspected to be an outlier, it should be removed and the regression

redone.

6. Examining Influential Points: Some of the data points may strongly influence the

regression model. Often this is a result of the fact that the given data points lie

much further from the rest of the data. If the estimated model parameters change

dramatically when such points are removed, then it can be stated that these
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points are influential. Formally, this can be determined using Cook’s distance,
Di, which is defined as

Di ¼
β̂i � ~β

� �
TATA β̂i � ~β

� �
nσ̂2

ð3:74Þ

where β̂ i is the model parameters estimated by removing the ith data point.

Practically, Cook’s distance can be calculated as follows:

Di ¼ ε2i hii

nσ̂2 1� hiið Þ2 ð3:75Þ

where hii is the (i, i) entry in the H-matrix, which is defined as

H ¼ A ATA� 	�1AT ð3:76Þ

If Di> 1, then the given point can be considered to be influential, and the

appropriateness of the model should be reconsidered.

7. Examining the Plots of the Predicted and Actual Values: Plotting the predicted

values as a function of y (the true values) can be very useful for dealing with

large data sets. It can reveal which predicted values differ greatly from the

measured values. Theoretically speaking, all the data should lie on the

y¼ x axis. Practically, due to noise, data points will lie in an ellipse or oval

around the line. Table 3.4 shows some typical predicted as a function of

measured value plots. Common problems include (the letters correspond to the

graphs shown in Table 3.4 as problem graphs):

(a) Outlier: The presence of an outlier is easy to spot, as it will be located far

from the y¼ x line.
(b) Cluster: A cluster of points that lie far from the y¼ x line is common when

dealing with historical industrial data that does not contain any planned

experiments. Such a cluster suggests that the operating conditions are

different from the main set of data. This could be due to plant shutdown,

changes in process conditions, or other factors that should be investigated

before removing the points from the data set.

(c) Calibration: In this case, the slope of the points is not one. This suggests

that either terms are missing from the model or that different models apply

for different values of the measured values, since some of the values are

overpredicted, while others are underpredicted.

(d) Bias: This suggests that the values obtained differ by some constant from

the expected values. In linear regression, such a problem should not occur.

However, it can happen with other more complex methods.
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3.3.5.3 Taking Corrective Action

If the above tests fail or give inconclusive results or the assumptions in the model

are not verified, then the analyst is left with the following options:

1. Changing the model by additional parameters suggested by the analysis of the

residual plots, using a completely different model, or changing the error

structure.

(a) Regressor Selection: Selecting appropriate regressors based on the data set

provided is a complex subject that involves combining intuition or previous

knowledge with various data mining methods. There are two main

approaches to regressor selection:

(i) Forward Selection: In forward selection, the parameter estimates for

the simplest model are first determined. If the resulting model analysis

suggests that the model is sufficient for the required application, then it

is adopted. Otherwise, additional regressors are added to the model

until the model fit is adequate. The benefit of this approach is that a

simple model is likely to be found. However, an important regressor

could have been missed if it was not selected in the initial or subse-

quent steps.

(ii) Backward Selection: In backward selection, the full set of regressors is
used to estimate the model. Regressors are then removed until the

model is simplified to the smallest available model. The advantage of

Table 3.4 Sample, predicted as a function of true value plots

Examples

Good plot

y

y

y

y

Problem plots

a

 

y 

y

b 
y 

y

c 

 

y 

y

d 

 

y 

y
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this approach is that all relevant regressors are likely to be in the

model. However, the model could be larger than required for good fit.

(b) Error Structure: In least-squares analysis, it is assumed that the error

structure is additive and only applies to the measured output variable (y).
In many engineering applications, both the regressor and output variables

are measured and can contain errors. Furthermore, the error may be pro-

portional to some percentage of the measured value, which means that the

error is not additive but rather multiplicative. One way to correct for this

error is to use weighted, least squares.

2. Changing the regression method by using either weighted, least-squares analy-

sis, if the variance is not homoscedastic, or nonlinear, least-squares analysis to

determine the parameter values.

3. Obtaining more data by running additional experiments, which can be useful if

few experiments were performed and the results are ambiguous. Obtaining

additional data helps resolve two potential issues:

(a) Sample Size: Small sample size can lead to large confidence intervals,

especially if there is some noise in the original data. Increasing sample

size can improve the accuracy of the parameter estimates. This helps to

minimise Type II errors, which seeks to minimise the probability of

rejecting the alternative hypothesis, even if it is true.

(b) Replicates or Reproducibility: Repeating an experiment at the same con-

ditions allows a more accurate determination of the variance associated

with the given point. Also, replicates can show how reproducible the results

are at any one given point and if any additional factors could affect the

results. Often, in practical cases, it may not be possible to obtain exactly the

same conditions. However, if the conditions are similar, then the results can

be treated as replicates.

One area that needs to be considered when obtaining additional data is experi-
mental design, that is, how the procedure for obtaining the data is defined. Given the

importance of this concept, a separate chapter, Chap. 4, is devoted to this topic. One

area of concern is multicollinearity. Multicollinearity is defined as a relationship

between the columns of the A matrix. This multicollinearity can detract from

finding the desired relationship between the regressors and the output and lead to a

poor estimate of the individual parameters. It can be noted that the overall model

may still be useful. Often multicollinearity may not be suspected by the experi-

menter or it can hold approximately. Multicollinearity is common in experiments

were the variables cannot all be independently varied, for example, mixture exper-

iments where the total sum of component fractions must total one.

A further area of concern is data scaling. This is an important issue, especially in

nonlinear, least-squares analysis, where the orders of magnitude of the different

regressors may be quite different. Since the optimisation routines will seek to

minimise the absolute error, the parameter estimates corresponding to the larger

order of magnitude regressors will be less accurate than those corresponding to

smaller order of magnitude regressors, as their contribution to the overall error will
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be less. Consider the case where temperature ranges from 270 to 400 K and level

ranges from 0.01 to 0.40 m are used. In this case, the levels are at least 103 times

smaller than the temperatures. Furthermore, poorly scaled data may lead to issues

with inverting the matrix in order to obtain the parameter estimates. There are two

main methods by which scaling can be performed:

1. Normalisation: A common method is to introduce scaling with the following

formula

ex ¼ x� x

σ
ð3:77Þ

where ~x is the scaled variable, x is the mean value of x, and σ is the standard

deviation of x. The mean and standard deviation can be determined based on all

the values of x available for the regression.
2. Centring the Data: The following formula, commonly encountered in analysis of

variance (ANOVA), centres the data so that it lies between �1 and 1:

ex ¼ x� 0:5 xmax þ xminð Þ
0:5 xmax � xminð Þ ð3:78Þ

3.3.6 Computational Example Part II: Model Validation

Continuing with the orifice flow example from Sect. 3.3.4, model validation will

now be performed by examining the residuals and the model quality and taking

appropriate corrective action.

Figure 3.2 shows the residuals as a function of √h, flow rate, and the previous

residual. In all cases, there seems to be a single outlier that is located far from the

other points. Otherwise, given the rather small sample size, it is hard to see whether

the residuals have any pattern.

The normal probability plot of the residuals is shown in Fig. 3.3. There seem to

be some mild deviations from normality in the central region. Overall, given the

small sample, there is not much that can be concluded with this particular sample.

In order to determine model adequacy, all the previous computed data will be

collected and then examined. The values are:

R̂ ¼ 28:4� 0:8
kg

min �m0:5

F ¼ 765:7 > 5:99

R2 ¼ 0:9922

There seems to be a single outlier at the point h¼ 0.10 m. Influential analysis, using

Cook’s distance is given below. Cook’s distance for each of the points is given in

Table 3.5. It can be seen that none of the points is individually influential as all the

values are less than one.
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It can be noted that repeating the analysis by removing the identified outlier does

not improve the fit or parameter estimates. Since the value of R2 is high, the F-test is
passed, and the confidence interval is small, it can be concluded that the model

adequately describes the data and that the value of the resistance coefficient is

approximately 28.4 kg ·min�1 · m�0.5.

3.3.7 Weighted, Least-Squares Regression

In weighted, least-squares analysis, it is assumed that the variance of the individual

data points may be variable. In order to reduce this problem to the standard linear

regression framework, a weight, wi, is introduced for each observation that reflects

how “good” the data point is. Thus, the regressionmodel for weighted, least-squares is

y ¼
Xn
i¼ 1

βi f i ~xð Þ þ w�0:5ε ¼ ~a~β þ w�0:5ε ð3:79Þ

This implies that the objective function to be optimised in weighted, least squares is

given as

min
~β

W 1=2~y�W 1=2A~β
� �

T W 1=2~y�W 1=2A~β
� �� �

ð3:80Þ

Following a similar procedure as for the ordinary, least-squares case, Eq. (3.80)

can be solved to obtain the unknown, estimated coefficients, ~̂β :

ATWA~̂β ¼ ATW~y ð3:81Þ

Table 3.5 Calculating Cook’s distance. The potential outlier is shown in bold

ṁ (kg ·min�1) h0.5 (m0.5) _̂m (kg ·min�1) Residual Residual2 Influence

16 0.5916 16.774 �0.374 0.140 0.645

15 0.5477 15.530 �0.130 0.017 0.060

14 0.5000 14.176 0.124 0.015 0.042

13 0.4472 12.680 0.020 0.000 8.23� 10�4

11 0.3873 10.981 0.019 0.000 5.72� 10�4

10 0.3162 8.966 0.634 0.402 0.346

6 0.2236 6.340 0.060 0.004 1.44� 10�3
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where

A ¼
f 1 ~x1ð Þ f 2 ~x1ð Þ � � � f n ~x1ð Þ
f 1 ~x2ð Þ f 2 ~x2ð Þ � � � f n ~x2ð Þ
⋮ ⋱ ⋮

f 1 ~xmð Þ f 2 ~xmð Þ � � � f n ~xmð Þ

2664
3775 ð3:82Þ

~̂β ¼ hβ1, β2, . . . , βniT ð3:83Þ
~y ¼ hy1, y2, . . . , ymiT ð3:84Þ

W ¼
w1 0 � � � 0

0 w2 0 0

0 0 ⋱ 0

0 � � � 0 wm

2664
3775 ð3:85Þ

The weighted residual is defined as the difference between the predicted and

measured values, that is,

~ε ¼W 1=2 ~y�W 1=2~̂y ¼ W 1=2~y�W 1=2A~̂β

¼ W 1=2~y�W 1=2A ATWA� 	�1ATW~y

¼ W 1=2 I �A ATWA� 	�1ATW
� �

~y ð3:86Þ

where I is the appropriately sized identity matrix.

The standard deviation for this model is given by

σ̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~yTW~y� ~̂β

TATW~y

m� n

s
ð3:87Þ

The 100(1�α)% confidence interval for βi is given by

β̂ i � t1� α
2
,m� nσ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ATWA� 	�1

ii

q
ð3:88Þ

where ATWA� 	�1

ii
represents the value located at (i, i) in the matrix ATWA� 	�1

.

The 100(1�α)% mean response confidence intervals, that is, the region within

which the mean value of repeated measurements will lie 100(1�α)% of the time,

for the point ~xd is given by

~a~xd
~̂β � t1� α

2
,m� n σ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~a~xd ATWA� 	�1

~aT
~xd

q
ð3:89Þ

where ~a~xd ¼ h f 1 ~xdð Þ, f 2 ~xdð Þ, . . . , f n ~xdð Þi.
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The 100(1�α)% predictive confidence intervals, that is, the region within which
the actual value will lie 100(1�α)% of the time, for the point ~xd is given by

~a~xd
~̂β � t1� α

2
,m� n� nσ σ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

w0

þ ~a~xd ATWA� 	�1
~aT
~xd

r
ð3:90Þ

where w0 is the predicted weight at~xd found based on the model with nσ parameters

(see Sect. 3.3.7.1 for additional information about creating models for the weights).

The sum of squares due to regression, SSR, can be calculated as follows:

SSR ¼
X

wi ŷi � yð Þ2 ¼ ~̂β
TATW~y� 1

m
~yTW 1=2~1~1TW 1=2~y

� �
ð3:91Þ

where ~1 is the unit column vector with size m� 1.

The error sum of squares, SSE, can be calculated as follows:

SSE ¼
X

wi yi � ŷið Þ2 ¼ ~yTW~y� ~̂β
TATW~y ð3:92Þ

The total sum of squares, TSS, can be calculated as follows:

TSS ¼
X

wi yi � yð Þ2 ¼ ~yTW~y� 1

m
~yTW 1=2~1~1TW 1=2~y

� �
ð3:93Þ

Pearson’s coefficient of regression, R2, and the adjusted R2 are calculated the same

way as in ordinary, least-squares analysis. The same can be said of the F-statistic.
Model validation is performed the same way as for ordinary, least-squares

analysis, replacing the residuals by their weighted residual values.

3.3.7.1 Determining the Weights

One of the hardest things in weighted, least-squares analysis is to determine the

appropriate weights. There are two principle ways in which this can be achieved:

1. Replicates: If for the same conditions, two or more values of y are obtained, then
it is possible to calculate the variance of the values at the given point. The

variance would be determined using Eq. (3.68). The weight would then be given

as wi¼ 1/var(yi).
2. A Priori Model: If the model for the variance is known ahead of time, then it can

be used to determine the appropriate weight. The weight would then be given as

wi¼ 1/var(x, y). If no suitable model can be determined, then an arbitrary model

can be assumed, for example, wi¼ 1/x or wi¼ 1/x2.

In predicting the actual response at xi using Eq. (3.89), a model is required for the

weights. If an a priori model has been used, then it is relatively easy to calculate the
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“predicted” future weight value. If for this model, the value of the parameters is

known ahead of time and is not estimated from the data obtained, then nσ¼ 0. On the

other hand, if the data or variances are used to estimate the a priorimodel parameters

using regression, then nσ will equal the number of parameters in that model. If

replicates are used, then a model needs to be fit to the variances or weights to obtain

an appropriate model. The number of parameters in this model would equal nσ.

Example 3.2: Determining the Weights for Weighted, Least-Squares

Regression

Consider the following situations and determine appropriate weights for the

given data sets:

1. The experiment with replicates shown in Table 3.6.

2. Assume that the standard deviation of the error is proportional to the

square root of the height. What would be the appropriate weightings for

each data point?

Solution

For the data shown in Table 3.6, calculate the mean of each run and then

determine the variance of each point using the following formula:

var yið Þ ¼ yi � yð Þ2

The weights for each point would then be 1/var(yi). The results are

summarised in Table 3.7. It can be seen that those points which are located

far from the mean have very small weights (consider replicates 2 and 3 of run

2), while cases with generally large variability have small weights as well

(consider Run 2, as an example).

Therefore, the weighting matrix would be written as

~y ¼ y11; y12; y13; y21; y22; y23; y31; y32; y33h iT
W ¼ diag 12:20, 1111, 17:24, 0:826, 2:04, 0:305, 71:43, 1:83, 1:38h ið Þ

For the second example, the weights would be w¼ 1/h, since the variance
would be proportional to h (as variance is standard deviations squared).

Therefore, the weighting matrix would be diagonal with the entry 1/h eval-

uated for the corresponding value of the height.

(continued)

Table 3.6 Replicated data

for determining the weights
Run h Replicate 1 Replicate 2 Replicate 3

1 2 10.54 10.22 10.01

2 4 28.65 28.25 25.74

3 6 46.74 46.12 47.71
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Example 3.2 (continued)

3.4 Nonlinear Regression

In many cases, it may not be possible to obtain a valid linear regression model, and

it may be necessary to perform nonlinear regression. In general, since nonlinear

regression can handle an arbitrarily complex function, there is really no need to

make any simplifications about the form of the regression model. Therefore, the

model to be identified can be written as

y ¼ g ~β;~x; ε
� �

ð3:94Þ

This ability to deal with general models means that much of the linear regression

analysis cannot be performed exactly, since the underlying assumptions are not

valid any more. Nevertheless, most of the linear regression results hold if the

number of data points is much larger than the number of parameters to be estimated.

The optimisation algorithm can be written as

min
~β

Xm
i¼ 1

wi yi � g ~β;~xi; εi
� �� �

2 ð3:95Þ

where wi is the weight. In most cases, wi¼ 1 and the weights can be ignored.

All nonlinear regression approaches use numerical methods, such as the Gauss–

Newton or Levenberg–Marquardt algorithm optimisation algorithms, to search for

the optimal point.

The derivative matrix of this problem, called the grand Jacobian matrix,J , plays

a role similar to that of the A matrix in linear regression. The Jacobian, J 0, for the
system can be calculated as

J 0 ¼ ∂g ~β;~x; ε
� �
∂β1

∂g ~β;~x; ε
� �
∂β2

� � �
∂g ~β;~x; ε

� �
∂βn

" #
ð3:96Þ

Table 3.7 Weights for the example

Run Mean Variance of point Weights

1 10.25 0.082 9� 10�4 0.058 12.20 1,111 17.24

2 27.55 1.21 0.49 3.28 0.826 2.04 0.305

3 46.86 0.014 0.546 0.723 71.43 1.83 1.38
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The value ofJ0 is determined for each of the data points present to obtain the grand

Jacobian matrix, J . Thus, J can be written as

J ¼
J 0

1

J 0
2

⋮
J 0

m

2664
3775¼

∂g ~β;~x1; ε
� �
∂β1

∂g ~β;~x1; ε
� �
∂β2

� � �
∂g ~β;~x1; ε

� �
∂βn

∂g ~β;~x2; ε
� �
∂β1

∂g ~β;~x2; ε
� �
∂β2

� � �
∂g ~β;~x2; ε

� �
∂βn

⋮ ⋮ ⋮
∂g ~β;~xm; ε

� �
∂β1

∂g ~β;~xm; ε
� �
∂β2

� � �
∂g ~β;~xm; ε

� �
∂βn

2666666666664

3777777777775
ð3:97Þ

3.4.1 Gauss–Newton Solution for Nonlinear Regression

In order to show the numerical approach and understand some of the issues

involved with solving nonlinear regression problems, the Gauss–Newton numerical

solution will be examined. The Gauss–Newton method presented here is the

generalisation to the multivariate case of the standard Newton method for finding

roots of univariate functions. Using the grand Jacobian matrix, the values of the

parameters are determined as follows:

1. Using the initial guess for the parameters, ~β
0ð Þ
, the grand Jacobian matrix is

evaluated, and the predicted values are determined,

~̂y ¼

f ~β
0ð Þ
;~x1

� �
f ~β

0ð Þ
;~x2

� �
⋮

f ~β
0ð Þ
;~xm

� �

266666664

377777775
ð3:98Þ

2. Next, the difference between the predicted values, ~̂y , and the actual, measured

values is determined, that is,

Δ~y ¼~y� ~̂y ð3:99Þ

3. Using an appropriate numerical method, the following system of equation is

solved for Δ~β,

J TJΔ~β ¼ J TΔ~y ð3:100Þ
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4. Finally, the new estimated value for the parameters is determined as

~β
k þ 1ð Þ ¼ ~β

kð Þ þ Δ~β ð3:101Þ

5. The newvalue of the parameters,~β
k þ 1ð Þ

, then becomes the newguess, and the above

procedure is repeated from Step 1. This procedure continues until the difference in

values between the parameters from two consecutive steps is less than some

predetermined accuracy, or a certain number of iterations has been reached.

As with many numerical methods, the following are some common issues:

1. Initial Guess: Determining the initial guess can have a large impact on how

quickly and accurately the values are obtained. If the function can be linearised,

then a suitable initial guess can be the linearised parameter estimates. On the

other hand, if the function cannot be linearised, then knowledge about the range

of possible parameter values given the problem at hand can be used to provide

reasonable initial estimates. The final option is to use multiple initial guesses and

select the one providing the smallest objective value.

2. Determining the Minimal Value: As with any numerical method, the Gauss–

Newton method only finds those points at which the derivative is zero. However, a

derivative of zero does not necessarily imply that the point is the global minimum;

instead it could be a local minimum. Therefore, one way around this problem is to

use multiple initial guesses and then select the point that provides the lowest value.

3.4.2 Useful Formulae for Nonlinear Regression

Unlike in linear regression where exact results can be obtained under the stated

assumptions, in nonlinear regression the results are only approximate. Furthermore,

there do not exist nice matrix-based solutions for the various parameters. This

section provides a convenient summary of the useful equations for nonlinear

regression. In general, to compute the approximate confidence intervals for a

nonlinear regression problem, the final grand Jacobian matrix, J , can be used in

place of A and J 0 in place of ~a~xd in the linear regression formulae.

The model residuals can be computed as

εi ¼ yi � ŷi ¼ yi � f ~xi; ~̂β
� �

ð3:102Þ

The standard deviation, σ̂, can be obtained as follows:

σ̂ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i¼ 1

yi � ŷið Þ2

m� n

vuuut
ð3:103Þ
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The approximate 100(1�α)% confidence interval for βi is given by

β̂ i � t1� α
2
,m� n σ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J TJ� 	�1

ii

q
ð3:104Þ

where J TJ� 	�1

ii
represents the value located at (i, i) in the grand Jacobian matrix

J TJ� 	�1
.

The approximate 100(1�α)% mean response confidence intervals, that is, the
region within which the mean value of repeated measurements will lie 100(1�α)%
of the time, for the point ~xd is given by

f ~xd, ~̂β
� �

� t1� α
2
,m� n σ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J 0 J TJ� 	�1 J 0� 	Tq

ð3:105Þ

where J 0 is the value of the Jacobian evaluated at the point ~xd and ~̂β .
The approximate 100(1�α)% predictive confidence intervals, that is, the region

within which the actual value will lie 100(1�α)% of the time, for the point ~xd is

given by

f ~xd, ~̂β
� �

� t1� α
2
,m� n σ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ J 0 J TJ� 	�1 J 0� 	Tq

ð3:106Þ

The sum of squares due to regression, SSR, and the sum of squares due to the
error, SSE, are calculated using the definitions given by Eqs. (3.36) and (3.37). The
total sum of squares, TSS, can be calculated as follows:

TSS ¼
X

yi � yð Þ2 ¼ ~yT~y� 1

m
~yT~1~1T~yÞ

�
ð3:107Þ

Model validation would be performed in the similar manner as that for ordinary,

least-squares analysis bearing in mind that the computed confidence intervals are only

approximate. R2 cannot be used as a measure of performance in nonlinear regression,

since the relationship between the sums of squares is no longer orthogonal.

3.4.3 Computational Example of Nonlinear Regression

In the development of a new drug, you are investigating the previously unknown

reaction between two compounds X and Y to produce a valuable intermediary Z.
One of the important tasks is to characterise the reaction properties. Luckily, X and
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Y are relatively easy to produce and so that multiple runs and trials could be

performed. At each of the temperatures, three separate runs were performed. The

results obtained are shown in Table 3.8. It is desired to fit Arrhenius’s equation to

this data set and determine the reaction constant and activation energy. Perform

both linear and nonlinear regressions and compare the results using α¼ 0.05.

Solution

The results will be presented without showing all the detailed calculations as they

are relatively straightforward. From Example 3.1, we have that Arrhenius’s reaction
can be linearised as

ln K ¼ ln A� Ea

RT
ð3:108Þ

where R¼ 8.314 J · mol�1 · K�1. Using Eq. (3.108), the linearised parameters are

ln A¼ 5.700 84� 0.007 62 and�EaR
�1¼�178.84� 2.208 78. In order to obtain

the original parameter estimates, there is a need to convert the values. Since both

functions are monotonic, the conversion is relatively simple.

For A, the mean value can be computed as Â¼ e5.70084¼ 299.12. The confidence

interval can be computed by converting each of the bounds using the same formula.

This gives Âlower¼ e5.700 84 – 0.007 62¼ 296.8 and Âlower¼ e5.700 84 + 0.007 62¼ 301.41.

Therefore, the confidence for A can be written as [297, 301] cm3 · s�1. It should be

mentioned that the confidence interval is not symmetric about the mean value. This is

because the exponential function does not preserve distance.

For Ea, the mean value can be computed as Êa¼�8.314��178.84¼ 1,486.91.

The confidence interval becomes 2.208 78��8.314¼ (�)18.36. Therefore, the

confidence interval for Ea is 1,490� 18 J ·mol�1. Notice that, in this case, the

confidence interval remains symmetric about the mean value. Model validation

graphs will be shown combined with the nonlinear regression results.

For the nonlinear regression, the required derivatives are:

∂K
∂A

¼ e�
Ea

RT

∂K
∂Ea

¼�Ae�
Ea

RT

RT

ð3:109Þ

Table 3.8 Reaction rate data

Temperature (K)

Reaction rate (K, cm3 · s�1)

Run 1 Run 2 Run 3

200 122.9 122.5 121.9

250 145.5 146.6 146.0

300 163.9 165.5 164.5

350 180.4 179.4 179.3

400 191.9 191.5 191.4

450 201.4 199.8 201.0
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After setting up the problem,2 the following values are obtained:

Â ¼ 299� 2 cm3 � s�1 and Êa¼ 1,490� 21 J · mol�1. Approximate confidence

intervals were computed based on the linearised formulae. The value of J TJ is

J TJ� 	 ¼ 2:483 498 21:198 8

21:198 824 194:414

� �
ð3:110Þ

First, it can be seen that, in this case, the results are quite similar both in the estimated

value and the confidence intervals. Secondly, Fig. 3.4 shows normal probability plots

and the residuals as a function of the temperature for both cases. From the normal

probability plots, it would seem that the residuals for both models are quite similar.

On the other hand, there do seem to be more abnormal points in the linearised model

case, suggesting that the residuals may violate the assumption of normality. Exam-

ining the residual as a function of temperature plots shows some interesting results.

Firstly, for the linearised model, Run 3 forms the largest residuals in all but one case.

Secondly, there are few, if any, large negative deviations compared with the large

number of positive deviations. Based solely on the linearised model, one would have

to conclude that Run 3 was abnormal, and the collection of the data would warrant

2A detailed example on solving the nonlinear regression problem is given in Sect. 7.8.2, Nonlinear

Regression Example for MATLAB®, and Sect. 8.7.2, Nonlinear Regression Example for Excel®.
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Fig. 3.4 (Top) Normal probability plots of the residuals and (bottom) residuals as a function of

temperature for (left) linearised and (right) nonlinear models
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additional scrutiny. On the other hand, when the nonlinear case is used, the results are

quite different and a different pattern emerges. First, Run 3 is no longer the leader in

residual magnitude, and there are now both positive and negative residuals in equal

magnitude. Second, it would seem that the residuals depend on the temperature with a

lower value around 350–400 K and higher values at the extremes. Since Arrhenius’s
equation is an accepted model for the observed behaviour, this feature could poten-

tially be attributed to issues in experimental design, that is, the conditions and

methods by which the data were obtained, for example, faulty measurements or an

incomplete procedure.

It is interesting to note that, although both the linear and nonlinearmethods provided

similar parameter estimates and confidence intervals, the residual analysis is quite

different. In the linear case, it would be concluded that Run 3 had some abnormal

residuals and would require additional analysis. In the nonlinear case, it would be

concluded that there seems to be some temperature dependency of the residuals. This

shows the importance of selecting an appropriate method for the given problem.

3.5 Models and Their Use

Once regression analysis has been performed, it is often desired to use the model for

predicting the behaviour of the system at other conditions. However, the validity of

the results needs to be carefully examined. Firstly, the model should be used for

interpolation, that is, to predict values that lie within the original region. The

opposite term, extrapolation, denotes using the model outside the original region.

However, determining whether or not extrapolation is an issue is not necessarily

easy, especially in the multivariate case. Consider, for example, the two variables

shown in Fig. 3.5. The model was fit based on the data denoted as black circles in

Fig. 3.5, which gives a range of [10�C, 40�C] for the temperature (T ) and [10 m,

20 m] for the height (h). It can be seen that, for whatever reason, the temperatures

and heights were not randomly selected across the range; rather they seem to fall in

a certain region. If the resulting model was then used to predict the value for the

green triangle, the results could be erroneous, as the point is located far outside the

original region of the data. However, it can be noted that the point selected lies

inside both of the ranges and would often be assumed to be okay. This means that it

is necessary to check whether the selected data point lies within the original

regression space.

3.6 Summative Regression Example

In order to apply all that has been considered in this chapter, a single summative

example will be examined.
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3.6.1 Data and Problem Statement

For the efficient and profitable operation, especially during the summer months, of

electrical generating plants, there is a need to forecast the expected peak power load

(P*) as accurately as possible given the anticipated peak temperature. The data set

in Table 3.9 is a random sample of 30 daily high temperatures (T, �F) and the peak

power demand (P*, MW). Perform the following analysis:

1. Fit a linear (P*¼ aT+ b) model to the data. Is the data set well described by this

model?

2. Fit a quadratic model (P*¼ aT2 + bT + c). Is the data set well described by this

model?

3. Using the best model, predict the peak power at T¼ 50�F and T¼ 105�F.
Compute the 95% mean response confidence intervals, which value you do

trust more? Why?

3.6.2 Solution

3.6.2.1 Simple Linear Model

First, consider the simple linear model P*¼ aT+ b. The parameter estimates are

obtained using ordinary, least-squares regression. The parameter estimates with

95% confidence intervals are:

a ¼ 1:941� 0:303
b ¼�44:54� 26:3

10

40

10 20 h, cm

T, °C

Fig. 3.5 Extrapolation in multivariate analysis
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R2 is 0.8612 and the F-statistic is 173 (Fcritical¼ 4.195). The residuals as a function

of the temperature are shown in Fig. 3.6, while the normal probability plot of the

residuals is shown in Fig. 3.7.

From Fig. 3.6, a quadratic pattern to the residuals is quite evident. This strongly

suggests that a quadratic term is missing from the model and should be added.

Notice how the confidence intervals are also quite large, especially for the intercept.

Table 3.9 Peak power and

temperature
Temperature,

T (�F)
Peak power, P*
(MW)

95 140.7

88 116.4

84 113.4

106 178.2

94 136.0

108 189.3

90 132.0

100 151.9

71 92.5

96 131.7

67 96.5

98 150.1

97 153.2

67 101.6

89 118.5

79 106.2

76 100.2

87 114.7

92 135.1

68 96.3

85 111.4

100 143.6

74 103.9

89 116.5

86 105.1

75 99.6

70 97.7

69 97.6

82 107.3

101 157.6

Data and inspiration taken from

Random Phenomena, Fundamen-
tals of Probability and Statistics
for Engineers, Babutnde

A. Ogunnaike, CRC Press, 2010
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3.6.2.2 Quadratic Model

For the quadratic model P*¼ aT2 + bT+ c, the parameter estimates with 95%

confidence intervals are:

a ¼ 0:0598� 0:0133
b ¼�8:295� 2:27
c ¼ 385:1� 96:2

R2 is 0.9667 and the F-statistic is 392.2 (Fcritical¼ 4.21). The residuals as a function

of the temperature are shown in Fig. 3.8, while the normal probability plot of the

residuals is shown in Fig. 3.9.
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Fig. 3.6 Residuals as a function of temperature
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It can be noted that adding a quadratic term has improved the size of the

parameter estimate confidence intervals, as well as increasing R2. Furthermore,

the normal probability plot of the results seems to suggest that there could be some

problems due to the clustering of values. The residuals as a function of temperature

plot does not show any real issues. There does seem to be a small increase in

variability of the values as the temperature increases. There are no discernible

parameters that would improve the fit.

3.6.2.3 Mean Response Intervals

For T¼ 50�F, the predicted peak power and its 95% confidence interval is

120� 15 MW;
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Fig. 3.8 Residuals as a function of the regressor for the quadratic case
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while for T¼ 105�F, the predicted peak power and its 95% confidence interval is

173:9� 4:6 MW:

The confidence interval for T¼ 105�F is more reliable, since it has a smaller

confidence interval and there is no extrapolation. On the other hand, for T¼ 50�F,
there is extrapolation and the confidence interval is larger.

3.7 Further Reading

The following are references that provide additional information about the topic:

1. General Modelling and Linear Regression:

(a) Montgomery DC, Peck EA (1982) Introduction to linear regression analy-

sis, 1st edn. Wiley, New York

(b) Ogunnaike BA (2010) Random phenomena: fundamentals of probability

and statistics for engineers. CRC Press, Boca Raton

2. Weighted Regression:

(a) Zorn ME, Gibbons RD, Sonzogni WC (1997) Weighted least-squares

approach to calculating limits of detection and quantification by modeling

variability as a function of concentration. Analy Chem 69(15):3069–3075

3. Nonlinear Regression:

(a) Seber GA, Wild CJ (1989) Nonlinear regression. Wiley, New York

3.8 Chapter Problems

Problems at the end of the chapter consist of three different types: (a) Basic Concepts
(True/False), which seek to test the reader’s comprehension of the key concepts in the
chapter; (b) Short Exercises, which seek to test the reader’s ability to compute the
required parameters for a simple data set using simple or no technological aids, and
this section also includes proofs of theorems; and (c) Computational Exercises, which
require not only a solid comprehension of the basic material but also the use of
appropriate software to easily manipulate the given data sets.

3.8.1 Basic Concepts

Determine if the following statements are true or false and state why this is the case.

1. If the residuals are distributed so that they are increasing in magnitude as the

x value increases, then it can be concluded that the model is adequate.

2. Weighted, least squares can correct for the error structure.
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3. If R2	 0, then it can be concluded that there is no relationship between the

parameters of interest.

4. If the residuals are normally distributed, then the calculated confidence inter-

vals are valid.

5. If the current residual depends on the past value of the residuals, then the

regression analysis is valid.

6. In order to analyse statistically the least-squares estimates, the residuals must

be normally distributed.

7. If the residuals as a function of the regressors have a quadratic pattern, then it

can be concluded that a quadratic term should be added to the model.

8. If the mean of the residuals is seven, then it can be concluded that the

parameters are unbiased.

9. If b̂¼ 1.25� 10.5 m, then it can be concluded that this parameter should be

included in the model.

10. If there are more parameters than data points, then an estimate of the parameters

cannot be obtained.

11. Linearising a nonlinear equation will always provide worse parameter estimates

than performing nonlinear regression.

12. With nonlinear regression, exact confidence intervals can be found for the

parameters.

13. When solving nonlinear regression using the Gauss–Newton method, the final

parameter estimates are sensitive to the initial guesses.

14. In nonlinear regression, a good initial guess for the parameters is to use those

obtained from a linear solution of the linearised model.

15. In nonlinear regression, all the regular tests apply, but they need not be satisfied

for the model to be acceptable.

16. Especially in nonlinear regression, scaling can improve the results.

17. Decreasing the sample size will provide smaller confidence intervals.

18. Replicates allow for detecting outliers and potential issues with the error

structure.

19. Multicollinearity implies that there are hidden relationships in the data that

could impact on the invertibility of the information matrix (ATA)�1.

20. If the error structure is incorrect, then the least-squares parameters estimates

are biased.

3.8.2 Short Exercises

These questions should be solved using only a simple, nonprogrammable,
nongraphical calculator combined with pen and paper.

21. Derive the traditional, least-squares formulae shown in Appendix A3.1 for the

two parameter case.

22. Derive the traditional, weighted, least-squares formulae shown in Appen-

dix A3.2 for the two parameter case.
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23. Consider the problem of trying to fit data to the following model

yt þ α1yt� 1 þ α2yt� 2 ¼ β1ut� 1 þ β2ut� 2 þ et ð3:111Þ

where α and β are coefficients to be determined; t is a subscript representing the
time of measurement, that is, t represents the current time; and t – 1 represents

the time one sampling unit in the past. Show how this model can be set up in the

standard least-squares system in order to estimate a sample of data (yt, ut) starting
at t¼ 1 and going up until t¼ 100. (Note that not every entry need be listed).

24. Consider trying to verify the resistance of a resistor by measuring the voltage at

different currents. The model of interest is based on Ohm’s Law and can be

written as

V ¼ IRþ ε ð3:112Þ

where V is the voltage in volts (V), I the current in amperes (Amp), and R the

resistance in ohms (Ω). The data you obtained from the experiment is given in

Table 3.10.

Answer the following questions using this data set:

(a) Set this problem up in the standard matrix-based, ordinary, linear regres-

sion format for an arbitrary number of data points.

(b) Show that for the given model, the ordinary, least-squares estimate of the

resistance (R̂) is R̂ ¼

Xm
i¼ 1

IiViXm
i¼ 1

I2i

and σ̂ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i¼ 1

V2
i � R̂

Xm
i¼ 1

IiVi

m� n

vuuut
.

(c) Calculate R̂ and σ̂ using the derived equations.

(d) Obtain the 95% confidence interval for the parameter estimate.

(e) The stated resistance is 2 Ω. Does the experimental value obtained

confirm the stated resistance?

(f) You fitted the model and obtained the residuals shown in Fig. 3.10. Is the

fit good? If not, what could be the cause of the observed pattern?

25. Continuing with the data in Table 3.10 but now considering the case where the

variance of the errors is proportional to the current squared (var(ε) / I2),
answer the following questions.

(a) What is the weighting matrix? Set this problem up in the standard matrix-

based weighted, least-squares, linear regression format for an arbitrary

number of data points.

(b) Show that, in this case, the estimate of the resistance can be calculated as

R̂ ¼ 1
m

Xm
i¼ 1

Vi

Ii
. Calculate R̂ using the derived equation.
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(c) How would you determine whether the provided data set is better

described by the ordinary, least-squares estimate (Question 24) or the

result obtained using weighted, least squares?

(d) When would this weighted, least-squares model be appropriate? Suggest

why when computing the resistance, it is so common to simply take the

average of all the available values.

26. Using the data from Sect. 3.4.3, perform a more detailed analysis of the effect

of linearisation on the model. Consider how linearisation changes the distribu-

tion of the original data points and how this could impact the parameter

estimates obtained. What kind of transformations will cause this behaviour?

3.8.3 Computational Exercises

The following problems should be solved with the help of a computer and appro-
priate software packages, such as MATLAB® or Excel®.

27. Consider fitting a cubic (third-order) polynomial to determine the relationship

between the freezing point of ethylene glycol and the weight percent of

ethylene glycol in a water solution shown in Table 3.11.

(a) Determine the coefficients of the cubic polynomial using linear

regression.

Table 3.10 Current and

voltage for an unknown

resistor (for Question 24)

Current (I ) (amp) Voltage (V ) (V)

1 1.95

2 3.78

3 6.21

7 13.98

8 16.61

10 22.83
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function of current for
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(b) Determine the 95% confidence intervals for the parameters.

(c) When we have 33.3 wt% of ethylene glycol in a solution, what is the freezing

point? Calculate the 95% mean and predictive confidence intervals for the

estimate. In general, why are the predictive confidence intervals larger?

(d) Plot the residuals as a function of weight percent and as a function of the

freezing point. Include a normal probability plot of the residuals. Are there

any issues with the model assumptions?

(e) Compute the R2 and F-score for the model. Is the model good? Are there any

physical explanations that could be provided for the observed behaviour?

28. Consider trying to determine the calibration curve for gas chromatography

based on some sample measurements with known ratios. Assume that the

variance is proportional to x2. Use the provided data to fit a linear model to

the data. Analyse the residuals and model adequacy to determine how good the

fit is (Table 3.12).

29. Consider the data shown in Table 3.13, which seeks to determine the relation-

ship between the time constant (residence time) in a tank and the properties of

the system. Fit the following model to the data

τ ¼ Khb ð3:113Þ

where τ is the time constant, K a parameter of interest, h the height, and b the

unknown power. Theoretically, the value of b should be 0.5 and K¼ 2ρA/R,

Table 3.11 Freezing point

of different ethylene

glycol�water mixtures

(for Question 27)

Mole percent

ethylene glycol Freezing point (K)

0.00 273.15

5.09 267.46

11.30 258.50

15.47 251.72

20.94 241.58

30.97 225.28

31.22 225.49

36.62 228.03

42.76 229.89

48.00 230.50

49.34 230.54

51.36 230.37

56.36 232.12

59.05 234.62

Data taken with permission from

J. Bevan Ott, J. Rex Goates, and Hohn

D. Lamb (1972). “Solid–liquid phase

equilibria in water + ethylene glycol”,

Journal of Chemical Thermodynamics,
4, pp. 123–126
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where ρ is the density, A the cross-sectional area of the tank, and R is the

resistance coefficient.

(a) Linearise the model given by Eq. (3.113) (ignore any error structure issues).

(b) Fit the data to the linearised model to obtain the linearised parameter

estimates.

(c) Determine the confidence intervals of the linearised parameters.

(d) Convert the linearised parameters into the true values. Can you obtain a

confidence interval for the true value of K?
(e) Compute R2 and σ̂ .
(f) Plot the time series plot of the residuals and a normal probability plot of

the residuals.

(g) Is the value of b̂ equal to 0.5?

(h) If ρ¼ 1,000 kg/m3 and A¼ 0.0469 m2, compute R.
(i) Repeat the above exercise for the original, nonlinear model. Obtain

parameter estimates and confidence intervals for the nonlinear parameters.

Compute R2 and σ̂ . Plot the time series plot of the residuals and a normal

probability plot of the residuals.

(j) Using the nonlinear model, determine if the value of b̂ is equal to 0.5?

Compute R using the nonlinear model if ρ¼ 1,000 kg/m3 and

A¼ 0.0469 m2.

(k) Compare the linearised results with the nonlinear ones. What are the main

differences between the two fits. Plot both fits with the original data on the

same plot and compare the results. Which fit is better?

30. Using the friction factor data presented in Sect. 1.3, fit the nonlinear model and

assess the quality of the result model. Pay special attention to the results of the

different runs.

31. Consider fitting the Antoine equation to some vapour pressure as a function of

temperature data that was obtained using toluene given in Table 3.14. The

general form of the Antoine equation can be written as

Table 3.12 Gas

chromatography calibration

data (for Question 28)

Measured ratio ( y) Known ratio (x)

1.000 0.2

0.987 0.3

1.347 0.6

2.856 1.3

4.476 2.6

5.148 4.0

Table 3.13 Time constant

(τ) as a function of the tank

height (h) (for Question 29)

Time constant, τ (s) Height, h (m)

51.7 0.1

82.8 0.15

91 0.2

97.2 0.25

101.4 0.3

107.6 0.35
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Pvap ¼ 10Aþ B
C þ T ð3:114Þ

where A, B, and C are parameters, T is the temperature in �C, and Pvap is the

vapour pressure of toluene in mm Hg. Two separate runs were performed using

two different makes of measurement devices. By fitting a linearised model, a

nonlinear model, obtained by taking log10 of Eq. (3.114), and a nonlinear

model, obtained using Eq. (3.114) to the data and analysing the residuals,

answer the following questions:

(a) Are the errors for the two runs the same? How can this be determined?

(b) Obtain separate parameter estimates for each of the runs and models.

Which model best describes the data for the given run? What does this

suggest about the appropriate error structure for each run?

(c) Using the best parameter estimates for A, B, and C, compare them against

the theoretical values of A¼ 6.954 64, B¼ 1,344.8�C, and C¼ 219.482�C
(Dean 1999). Are the experimental values close to the accepted values?

Hint: For the nonlinear models, it is suggested that the estimates obtained using
the linearised model be used as the initial guess for the nonlinear method.

Appendix A3: Nonmatrix Solutions to the Linear,
Least-Squares Regression Problem

A.1 Nonmatrix Solution for the Ordinary, Least-Squares Case

The nonmatrix solution only applies to the case of solving a simple model that can

be written as

y ¼ aþ bx ð3:A1Þ

Note that x can be replaced by f(x) here and in all the following equations.

Table 3.14 Partial pressures

of toluene at different

temperatures (for

Question 31)

Temperature,

T (�C)
Vapour pressure, Pvap (mmHg)

Run 1 Run 2

�4.4 5.05 5.15

6.4 10.0 9.89

18.4 20.1 21.9

31.8 39.9 40.8

40.3 59.8 62.5

51.9 99.9 97.8

69.5 200 206

89.5 400 415

110.6 760 747

136.5 1,502 1,512
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The ordinary, least-squares problem can be solved by first computing the

following two quantities:

s2x ¼
m
X

x2 �
X

x
� �2

m

s2y ¼
m
X

y2 �
X

y
� �2

m

ð3:A2Þ

Then, the linear regression coefficients can be calculated as follows:

b̂ ¼m
X

xy�
X

x
X

y

m
X

x2 �
X

x
� �2

â ¼
X

y� b̂
X

x

m

ð3:A3Þ

The correlation coefficient is calculated using

R2 ¼
m
X

xy�
X

x
� � X

y
� �h i2

m
X

x2 �
X

x
� �2� �

m
X

y2 �
X

y
� �2� � ð3:A4Þ

The standard deviation of the model is given as

σ̂ ¼ 1

m� 2
s2y � b̂2s2x

� �
ð3:A5Þ

The standard deviation for coefficient b is given as

σ̂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ATA� 	�1

22

q
¼ sb ¼ σ̂

sx
ð3:A6Þ

The standard deviation of coefficient a is given as

σ̂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ATA� 	�1

11

q
¼ sa ¼ σ̂

sx

ffiffiffiffiffiffiffiffiffiffiffiffiX
x2

m

s
ð3:A7Þ

The confidence interval for the mean response at a value of xd is given by

ŷ � t1� α
2
,m� 2 σ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m
þ

xd � 1
m

X
xi

� �
s2x

vuut ð3:A8Þ
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The confidence interval for the prediction at a value of xd is given by

ŷ � t1� α
2
,m� 2 σ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

m
þ

xd � 1
m

X
xi

� �
s2x

vuut ð3:A9Þ

The total sum of squares would then be calculated using

TSS ¼
Xm
i¼ 1

yi � yð Þ2 ¼
X

y2 � 1

m

X
y

� �2
ð3:A10Þ

A.2 Nonmatrix Solution for the Weighted, Least-Squares Case

The nonmatrix solution only applies to the case of solving a simple model that can

be written as

y ¼ aw þ bwx ð3:A11Þ

Note that x can be replaced by f(x) here and in all the following equations.

The ordinary, least-squares problem can be solved by first computing the

following two quantities:

s2xw ¼
X

w
X

wx2 �
X

wx
� �2

X
w

� �
s2yw ¼

X
w
X

wy2 �
X

wy
� �2

X
w

� �
ð3:A12Þ

Then, the linear regression coefficients can be calculated as follows:

b̂w ¼
X

w
� �X

wxy�
X

wx
X

wyX
w

� �X
wx2 �

X
wx

� �2
âw ¼

X
wy� b̂w

X
wxX

w
� � ð3:A13Þ

The correlation coefficient is calculated using

R2 ¼
X

w
� �X

wxy�
X

wx
� � X

wy
� �h i2

X
w

� �X
wx2 �

X
wx

� �2� � X
w

� �X
wy2 �

X
wy

� �2� � ð3:A14Þ
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The standard deviation of the model is given as

σ̂w ¼ 1

m� 2
s2yw � b̂ 2

ws
2
xw

� �
ð3:A15Þ

The standard deviation of coefficient bw is given as

σ̂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ATWA� 	�1

22

q
¼ sbw ¼ σ̂w

sxw
ð3:A16Þ

The standard deviation of coefficient a is given as

σ̂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ATWA� 	�1

11

q
¼ sa ¼ σ̂w

sxw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
wx2X
w

vuut ð3:A17Þ

The confidence interval for the mean response at a value of xd is given by

ŷ � t1� α
2
,m� 2 σ̂w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1X
wi

� �þ
xd � 1X

wi

� �Xwixi

0@ 1A
s2xw

vuuuuuut ð3:A18Þ

The confidence interval for the prediction at a value of xd is given by

ŷ � t1� α
2
,m� 2� nσ σ̂w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

wd
þ 1X

wi

� �þ
xd � 1X

wi

� �Xwixi

0@ 1A
s2x

vuuuuuut ð3:A19Þ

It should be noted that the predicted weight at the given point, wd, should be

determined from a model with nσ unknown parameters.

The total sum of squares would then be calculated using

TSS ¼
Xm
i¼ 1

wi yi � yð Þ2 ¼
X

wy2 � 1X
wi

� � X
wy

� �2
ð3:A20Þ
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Chapter 4

Design of Experiments

Given the power of regression analysis, it would be great to design experiments or

ways of obtaining the process information so that as much useful information is

obtained with the smallest number of experiments. In any real system, running

experiments costs money and wastes resources, since the process will not neces-

sarily be producing at its optimal levels. The question is how to design experiments

so that the maximal amount of information can be extracted and used in regression

analysis. Basically, this problem reduces to developing various designs for the

regression matrix A. When the designed regression matrix contains certain desir-

able properties, then the computation and analysis of the parameters can be

performed faster and better.

4.1 Fundamentals of Design of Experiments

In order to understand the methods by which optimal experiments may be

designed, it is necessary to understand some of the factors that affect the results.

The most important topics are sensitivity, confounding and correlation between
parameters, blocking and randomisation. In general, the question in the design of

experiments reduces to determining whether ATA is invertible and well condi-

tioned. A well-conditioned matrix is required when performing computations on a

computer, since there will always be inevitable round-off errors. In a well-

conditioned matrix, such round-off errors do not have a disproportionate impact

on the final result.

© Springer International Publishing Switzerland 2015
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4.1.1 Sensitivity

The sensitivity, S, is a measure of how easy it is to estimate a given parameter. The

sensitivity of the process with respect to a given parameter βi is

Sβi ¼
∂~f ~x; ~β
� �
∂βi

ð4:1Þ

where ~f ~x; ~β
� �

is the regression function. The larger the value, the easier it is to

estimate the parameters. Basically, if the sensitivity is small, then a large change is

required in the regressors to obtain a statistically significant result. On the other

hand, if the sensitivity is large, then a smaller change in the regressors is required to

obtain a statistically significant result. This implies that the information matrix will

be well conditioned.

Sensitivity is also important because there will always be noise (or unwanted

changes) in the system that cannot be accounted for. In these cases, if the change in

the system is not noticeable given the input, then it will be difficult to identify the

system effectively, that is, the signal-to-noise ratio needs to be larger for insensitive
systems. Large (input or regressor) signals can have practical issues, in that they

may not be feasible due to safety or process constraints, for example, a tank cannot

be filled to more than its capacity or a valve cannot be opened to more than 100%

(or fully open).

4.1.2 Confounding and Correlation Between Parameters

Correlation between parameters represents the degree to which two separate param-

eters can be identified independently of each other. Issues with correlation often arise

when fitting theoretical models. For example, consider the following relationship

y ¼ e�
a
bT ð4:2Þ

where it is desired to estimate both a and b. In this example, one cannot estimate

both parameters separately as they are completely correlated with one another. In

such a situation, it is said that the two parameters are confounded with each other.

On the other hand, the situation where there is no correlation between the

different parameters is referred to as orthogonality. The benefits of orthogonality

are that it allows for easy analysis of the resulting models, including the effects of

adding or removing parameters. In many experimental designs, orthogonality is a

much sought after quality of a model.
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The correlation between parameters can be determined by an analysis of the

(ATA) matrix. If the off-diagonal entries of a given parameter are nonzero, then

the variable is correlated with this other parameter. For example, for the

matrix given as

ATA� � ¼ 2 0 1

0 3 0

1 0 1

2
4

3
5 ð4:3Þ

The first parameter is correlated with the third parameter, while the second param-

eter is not correlated with any of the other two. If two or more columns are a linear

combination of each other, then the parameters are said to be confounded with

each other. In most cases, this will be seen as two columns that are multiples of

each other.

4.1.3 Blocking

Blocking seeks to minimise the effect of known but uncontrollable variables that

could obscure the desired relationships. The effect of these variables depends on the

type of experiment being performed. In chemical engineering, uncontrollable vari-

ables can include changes in the daily feed composition, ambient conditions

(changes in the seasons), and differences between different analysis methods.

Depending on the type of experiment designed, the importance of and ways to

implement blocking will be different.

A block is a single group of experiments that is run under nearly identical

conditions, with separate blocks having potentially different conditions. The impor-

tance of blocking can be illustrated by the following examples.

4.1.3.1 Rabbit Weight Experiment

Consider an experiment designed to determine the effects of diets A and B on

rabbits. There are eight cages arranged as shown in Fig. 4.1. There are a total of

8 rabbits of the same species of which 4 are male and 4 female. Based on previous

experiments, it is known that the sex of the rabbits and the location of the rabbit

in the room will influence the weight of the rabbit. The question is how to design

an experiment that will minimise the effect of the undesired variables (location

and sex) and maximise the effect of the desired variables (diet) on the rabbits’
weights.

If a diet regime is assigned randomly to each rabbit, which is then randomly

assigned to the cages, it can easily be seen that it is possible that most of the females
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get Diet A and the males get Diet B. Since males gain more weight than females, the

effect of the diets could be confounded with the effect of sex. A similar situation

could apply to the partitioning of the rabbits in the different cages.

Another approach to take is to assign a pair of identical rabbits (same sex) to each

station and then give one of the rabbits Diet A and the other Diet B. The analysis

would then be performed by considering the difference between the two rabbits at

each station. Since it can be assumed that each station has two, nearly identical

rabbits with very similar environmental factors, the effect of these environmental

variables on the two rabbits should be the same (or similar). Therefore, any difference

between the pair can be attributed to the difference between the diets.

It should be noted that blocking has reduced the number of data points from

8 (in the naı̈ve implementation) to 4 (in the blocked version). This reduction of

available samples is often the result of implementing blocking. However, blocking

can lead to an improvement in uncovering the relationship.

4.1.3.2 Shoe Wear Example

Consider the case of trying to determine whether a new material for the sole of a

shoe is better than the previous material (Box et al. 1978). In this case, it is obvious

that the amount of wear a shoe experiences depends on the person. Therefore,

giving one person either a shoe with the new material or the old material will not

account for this problem. An ingenious solution to the problem is to give each

person a pair of shoes where one sole is made of the new material and the other sole

is of the old material, and then analyse the difference in wear between the two soles.

Furthermore, randomising on which foot (left or right) the new material will be used

will allow for an even better analysis of the results.

W
in

do
w

Door

Door

1

2

3

4

Fig. 4.1 Layout of the cages
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4.1.4 Randomisation

Randomisation is the procedure by which the order of the runs in the experiment is

determined randomly. This allows the effect of any nuisance or uncontrollable

factors on the experiment to be minimised. This is especially true with replicates, as

running a set of replicates one after another can often eliminate the benefit of having

performed replication, since the conditions will often remain the same.

4.2 Types of Models

In the chemical and process industry, there exist three broad categories of models

that can be used:

1. White-box or first-principle models, which are developed based on a theoretical

analysis of the system using mass and energy balances, as well as known physical

constants. These models have the advantage that they are very general and can be

applied to a wide range of similar system. Their main disadvantage is that often

various limiting assumptions need to be taken in order to obtain a useful solution.

As well, obtaining exact values for the parameters may be difficult.

2. Black-box models, which are developed solely from experimental data. These

models can accurately describe the given operating point, but cannot be applied

to new conditions or operating points of the system.

3. Grey-box models, which combine the first-principle models with experimental

data. In these types of models, the general form of the model is obtained using a

first-principle approach, and then experimental data are used to obtain the values

of the different constants. The advantage of this approach is that it combines the

advantages of the other approaches. It is a very common approach in chemical

engineering.

4.2.1 Model Use

The models that are developed can be used for two different goals: analysing (past)
performance or forecasting future performance. Depending on the goal, the

methods used to validate the model, that is, show that it is sufficient, will be

different. For the first goal of analysing performance, the method previously

presented will be sufficient. However, when developing models for forecasting

future performance, it is necessary to show that the model can accurately forecast

future values using data that were not originally part of the model creation step. In

many cases, a model that is sufficient for analysing performance may not give good

forecasting performance. This topic is explored in greater detail in Chap. 6, where

the development of black-box models for process control is considered.
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4.3 Framework for the Analysis of Experiments

Irrespective of the type of experiment being analysed, the following procedure can

be followed:

1. Pre-analysis, which lays the groundwork for the following parts. In many ways,

this is both the most difficult and the most important step in the whole frame-

work. It consists of the following steps:

(a) Determine the type of experiment that was performed and relevant infor-

mation about the model.

(b) Write down the model that will be estimated given the above information.

(c) If desired, determine an appropriate orthogonal or orthonormal basis for the

model.

2. Calculating the values, using appropriate formulae compute the parameter

estimates, the normal probability plot of the parameters, and if appropriate, the

SSRi and F-value for each of the parameters.

3. Model reduction, which seeks to remove all unnecessary parameters from the

model. Three main methods can be used:

(a) Normal probability plot of the parameters, which seeks to determine which

parameters are most significant based on their deviation from normality.

This approach works as long as an orthonormal basis has been selected for

the model.

(b) Fi-test for the parameters, which seeks to determine which parameters are

most significant based on an analysis of variance method. This approach

works as long as an orthogonal basis has been selected for the model and

there are replicates with which to compute an estimate of the model variance.

(c) Confidence intervals for the parameters, which seek to determine which

confidence intervals of the parameters cover zero and hence should be

rejected. This approach works as long as there are replicates with which

to compute an estimate of the model variance.

4. Residual analysis, using the reduced model, the resulting residuals should be

analysed to determine whether the assumptions underlying regression have been

satisfied. If the residuals suggest problems, then further experiments or analysis

may need to be performed to resolve the issue.

5. Conclusions, which seek to answer based on the reduced model whatever

questions the objectives of the exercise gave, for example, determining the

optimal operating point.
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4.4 Factorial Design

Factorial design seeks to determine a black-box model of the system that can

accurately describe the behaviour of the system in the region studied that also

includes interactions or combinations of the different variables (e.g. x1x2). Factorial
designs have the advantage that changes in the variables are not made sequentially,

but following some type of pattern, so that interactions between the different

variables can also be measured.

The basic factorial design consists of k factors or independent variables and l
different levels or points at which the system will be tested. A factorial experiment

with l levels and k factors is called an lk factorial experiment. For the purposes of

this discussion, it will be assumed that all factors have the same number of levels.

The complete experimental design will be repeated nR times, which is referred to as

the number of replicates. A treatment refers to a single run of the factorial design

with given values for each factor.

Traditionally, the factors are encoded using the centring formula presented as

Eq. (3.77), so that the largest value of a factor has an encoded value of +1 and the

smallest value of the factor has an encoded value of �1. Discrete or qualitative

variables can be encoded by arbitrarily assigning a given value with a specific

encoded value, for example, cast iron could be given a value of +1 and stainless
steel a value of �1. For a 2-level factorial design, it is traditional to denote the two

levels as �1 and +1, which provides an orthonormal basis for regression analysis.

For a 3-level factorial design, it is traditional to denote the three levels as�1, 0, and

+1. Unfortunately, such a coding is not orthogonal.

4.4.1 Factorial Design Models

The model that will be fit in factorial designs can be written abstractly as

yi ¼ μþ
Xk
j¼ 1

τij þ
X

γig þ ei ð4:4Þ

where μ is the mean response, τij is the main effect of the jth factor at the ith
treatment level, γig is the gth interaction, yi the observed output at the ith treatment

level, and e is the error. Practically, the abstract model given by Eq. (4.4) can be

rewritten as
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yi ¼ β0 þ
Xk
j¼ 1

Xl� 1

d ¼ 1

βjd x
d
j þ

Y
in twos,
threes,
...,
groups of l

β::
Xk
j¼ 1

Xl� 1

d ¼ 1

xdj

 !
þ ei ð4:5Þ

where β are the parameters to be estimated,βjd is shorthand for writingβj���j|{z}
d�times

, and the

product term represents the main effects taken in groups of two, three, and so on

until a single group of all l parameters is taken. For an lk experiment, there should be

a total of lk parameters to be estimated. For a 2-level experiment, the model fit is

given as

y ¼ β0 þ
Xn
i¼ 1

βixi þ
Xn
j¼ 1

Xn
p¼ jþ 1

βjpxjx p þ . . .þ βYk
i¼ 1

i

Yk
i¼ 1

xi ð4:6Þ

The order of an interaction is defined as the sum of the powers of the variables that

multiply together to give the particular interaction. Thus, for example, the interac-

tion given by x1 has order 1, or is a first-order interaction, while the interaction

given by x1x2x3 has order 3, or is a third-order interaction. Likewise, x
2
1x2 has order

3, since x1 is raised to the second power and x2 is raised to the first power, which

totals 3. First-order interactions are often referred to as the main effects. The zero-
order interaction is commonly referred as the mean response. The coefficients for

each interaction are denoted as follows: β1 is the coefficient multiplying the

interaction given by x1, while β123 is the coefficient multiplying the interaction

given by x1x2x3. Note that the order of an interaction has nothing to do with the

order of a model. The order of a model is defined as the highest power of a factor

present in the model.

Therefore, based on the above discussion of the model to be determined, for a

23-factorial design, the model can be written as

y ¼ β0 þ β1x1 þ β2x2 þ β3x3 þ β12x1x2 þ β13x1x3 þ β23x2x3 þ β123x1x2x3 ð4:7Þ

This implies that a single row of the A-matrix can be written as

A¼ 1 k factors groupsof 2 groupsof 3 � � � allk factors½ �
¼ 1 x1 x2 x3 x1x2 x1x3 x2x3 x1x2x3½ � ð4:8Þ

The values to the factors are assigned so that all possible combinations of levels and

factors are obtained. For a 23 factorial experiment (i.e. there are 2 levels with

3 factors), the regression matrix (A) would look like this
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1

1 1 1 1 1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

C AC BC ABCA B AB

−1 −1 −1 −1

−1 −1−1

−1 −1 −1
=

−1

−1

−1

−1

−1

−1

−1

−1

−1 −1 −1

−1 −1 −1

−1 −1

−1 −1

A

where +1 refers to one level (normally high) and �1 refers to the other level

(normally low). Only the columns with the individual factors need to be entered

separately. The rest can be calculated.

The output can be stored as follows. Define

ŷ ¼
y11 � � � y1nR
⋮ ⋮
ylk1 � � � ylknR

2
64

3
75 ð4:9Þ

where yij are the individual replicate results corresponding to treatments given inA.

Furthermore, define

~y ¼ 1

nR

XnR
i¼ 1

y1i

⋮XnR
i¼ 1

ylki

2
6666664

3
7777775 ð4:10Þ

Example 4.1: Full Factorial Design

Consider a 22 full factorial experiment with two replicates and answer the

following questions:

1. How many levels and factors are there in this example?

2. What model will be fit to the data?

3. Which parameter(s) represents the mean response, the first-order interac-

tions, and the second-order interactions?

(continued)
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Example 4.1 (continued)

4. How many experiments will be run in this example?

5. What is the regression matrix (A) for this example?

Solution

1. There are 2 levels and 2 factors. Traditionally, the factors are denoted

using uppercase Latin letters in sequential order, that is, A represents the

first factor, B the second, C the third, and so on.

2. The following model will be fit to the data:

yt ¼ β0 þ β1x1 þ β2x2 þ β12x1x2:

3. The mean response is denoted by β0, the first-order interactions by β1 and
β2, and the second-order interaction by β12.

4. A total of 22¼ 4 experiments will be run in each replicate. Since there are

two replicates, a grand total of 8 experiments will be run.

5. The regression matrix for this example is

A ¼
1

1

1

1

z}|{1

1

1

�1

�1

z}|{A

1

�1

1

�1

z}|{B

1

�1

�1

1

z}|{AB
2
666664

3
777775

4.4.2 Factorial Analysis

It is possible to analyse the model based on an F-test analysis and matrices. A

nonmatrix approach is presented in Appendix A4: Nonmatrix Approach to the

Analysis of 2k-Factorial Design. Let

A ¼

A
⋮

nR times

A

2
66664

3
77775 ð4:11Þ

150 4 Design of Experiments



~Y ¼

ŷ 1st columnð Þ
ŷ 2nd column
� �

⋮
ŷ nth

R
column

� �

2
66664

3
77775 ð4:12Þ

β̂ ¼ ATA� ��1AT~Y ð4:13Þ

Then the standard deviation is defined as follows:

σ̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~YT~Y � β̂ TAT~Y

lk nR � 1ð Þ

s
ð4:14Þ

The sum of squares due to errors, SSE, is given by

SSE ¼ ~YT~Y � β̂ TAT~Y ð4:15Þ

If an orthogonal basis is used for the levels, then the sum of squares due to each

regressor, SSRi, is given by

SSRi ¼ ATA� �
ii
β̂2i ð4:16Þ

where ATA� �
ii
is the (i, i) (diagonal) entry in the ATA� �

matrix. If an orthonormal

basis is used to encode the variables and their levels, then1

ATA� � ¼ lknRI ð4:17Þ

When l¼ 2 and the proposed �1 encoding is used, then, by definition, the basis is

orthonormal, and Eq. (3.17) reduces to

ATA� � ¼ 2knRI ð4:18Þ

1 Determining an orthogonal or orthonormal basis for an arbitrary level is explained fully in

Sect. 4.7.
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The total sum of squares, TSS, is given by

TSS ¼ SSEþ
Xlk
i¼ 1

ATA� �
ii
β̂2i ð4:19Þ

To determine whether a given regressor should be in the model, calculate for each

regressor the F-statistic as follows:

Fi ¼ SSRi

SSE

lk nR � 1ð Þ
ð4:20Þ

The value obtained from Eq. (4.20) is compared with the critical F-value denoted as
F(0.95, 1, lk(nR – 1)). If Fi is greater than F-critical, then the regressor should be

kept in the model. Otherwise, the given regressor can be eliminated from the model.

The effect due to an interaction is equal to twice the corresponding calculated

regression parameter.

4.4.3 Selecting Influential Parameters (Effects)

Since factorial designs are orthogonal designs, it is possible to analyse the signif-

icance of the individual parameters by examining their distribution. The easiest

approach is to plot the parameters on a normal probability plot. Those parameters

that are far from being normal (i.e. they are “outliers”) are most likely to be

significant and should be retained in the final model, while those parameters that

are close to being normal should not be retained in the final model. For example,

consider the estimated parameters for a 24 factorial experiment shown in Fig. 4.2.

Those points that have been circled and labelled are significant, in that they lie far

from the main central cluster of points that define a line. Therefore, it can be seen

that there are only five significant parameters (effects) that should be considered in

the final model.

4.4.4 Projection

The property of projection states that if one of the factors is removed from a

factorial experiment (due to whatever reasons), then the remaining experiment is

still a factorial experiment. Formally, this can be stated that, if the original
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experiment is lk and p< k factors are removed, then the design becomes an lk – p

experiment with p + 1 (¼ nR) replicates. Consider the following 23 experiment

where the first factor (x1) is removed. Initially, the regression matrix can be

written as

A ¼

1

1

1

1

1

1

1

1

z}|{1

1

1

1

1

�1

�1

�1

�1

z}|{A

1

1

�1

�1

1

1

�1

�1

z}|{B

1

�1

1

�1

1

�1

1

�1

z}|{C

1

1

�1

�1

�1

�1

1

1

z}|{AB

1

�1

1

�1

�1

1

�1

1

z}|{AC

1

�1

�1

1

1

�1

�1

1

z}|{BC

1

�1

�1

1

�1

1

1

�1

z}|{ABC
2
66666666666664

3
77777777777775

Removing the columns that contain the A factor gives
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Fig. 4.2 Normal probability plot of parameters (effects) for a 24 experiment with significant

points highlighted and labelled
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1

1 1
A

=

−1

−1

−1

−1
A

1 1 1

1

1

CB AB

−1

−1

−1

−1

1 1

1 1

1 1

1
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1 1

−1 −1

−1 −1

−1

−1
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1

1

1

1

1

1

1

1
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−

−
−

−

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

BC ABC

− −
− −

−
−
−

−

1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

C BCB

− −
− −
− −

⇒

− −
− −
− −

where there are now two replicates of the new experiment. This feature is

extremely useful because it means that removing an unnecessary factor does not

mean that the experiment was wasted. In fact, the remaining factors can be

analysed as if they had been taken from an original full factorial designed

experiment with replicates.

Example 4.2: Analysis of a Full Factorial Experiment

A series of experiments have been performed on a plant distillation column to

determine the effects of different parameters on the overall purity of the

overhead product. The variables of interest are reboiler duty (A), feed tem-

perature (B), reflux ratio (C), and feed location (D). The purity of the product

is expressed in a proprietary scale where 150 is absolutely pure and 50 is 70%

pure. The data obtained from this 24-factorial experiment with no replicates

are shown in Table 4.1. Perform the following analysis of the data set:

1. What is the full model being fit?

2. Plot a normal probability plot of the effects. Which effects are significant?

Which factor does not seem to influence the results at all?

3. What simplified model could be fit?

4. Analyse the simplified model and determine if it is sufficient?

Solution

1. The model for the 24-factorial experiment can be written as

y ¼ β0 þ β1x1 þ β2x2 þ β3x3 þ β4x4 þ β12x1x2 þ β13x1x2 þ β14x1x4

þ β23x2x3 þ β24x2x4 þ β34x3x4 þ β123x1x2x3 þ β124x1x2x4

þ β134x1x3x4 þ β234x2x3x4 þ β1234x1x2x3x4

Since 24¼ 16, there should be 16 parameters in the model. The regression

matrix can be written as

(continued)
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Example 4.2 (continued)

The parameter estimates can be obtained by noting that ATA¼ 24I and

that ATy can be computed by taking the sign from the appropriate column in

the above table and placing it in front of the y matrix. This gives

(continued)

Table 4.1 Factorial design

data for a plant distillation

column

y A (x1) B (x2) C (x3) D (x4)

45 �1 �1 �1 �1

71 1 �1 �1 �1

48 �1 1 �1 �1

65 1 1 �1 �1

68 �1 �1 1 �1

60 1 �1 1 �1

80 �1 1 1 �1

65 1 1 1 �1

43 �1 �1 �1 1

100 1 �1 �1 1

45 �1 1 �1 1

104 1 1 �1 1

75 �1 �1 1 1

86 1 �1 1 1

70 �1 1 1 1

96 1 1 1 1

(1) A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD

1 �1 �1 �1 �1 1 1 1 1 1 1 �1 �1 �1 �1 1

1 1 �1 �1 �1 �1 �1 �1 1 1 1 1 1 1 �1 �1

1 �1 1 �1 �1 �1 1 1 �1 �1 1 1 1 �1 1 �1

1 1 1 �1 �1 1 �1 �1 �1 �1 1 �1 �1 1 1 1

1 �1 �1 1 �1 1 �1 1 �1 1 �1 1 �1 1 1 �1

1 1 �1 1 �1 �1 1 �1 �1 1 �1 �1 1 �1 1 1

1 �1 1 1 �1 �1 �1 1 1 �1 �1 �1 1 1 �1 1

1 1 1 1 �1 1 1 �1 1 �1 �1 1 �1 �1 �1 �1

1 �1 �1 �1 1 1 1 �1 1 �1 �1 �1 1 1 1 �1

1 1 �1 �1 1 �1 �1 1 1 �1 �1 1 �1 �1 1 1

1 �1 1 �1 1 �1 1 �1 �1 1 �1 1 �1 1 �1 1

1 1 1 �1 1 1 �1 1 �1 1 �1 �1 1 �1 �1 �1

1 �1 �1 1 1 1 �1 �1 �1 �1 1 1 1 �1 �1 1

1 1 �1 1 1 �1 1 1 �1 �1 1 �1 �1 1 �1 �1

1 �1 1 1 1 �1 �1 �1 1 1 1 �1 �1 �1 1 �1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4.4 Factorial Design 155



Example 4.2 (continued)

~̂β ¼ 2�4AT~y

¼ 101 5:19 � 0:813 � 2:19 3:06 � 0:0625 � 7:69 � 0:438 0:813 0:813 . . .
. . . � 0:313 0:313 � 0:188 � 0:0625 0:188 � 0:313

� �T

2. A normal probability plot of the effects is shown in Fig. 4.3. The effects

that lie far from the expected normal distribution values are those that are

significant because they are not chance values. The most significant effects

have been circled and labelled. It should be noted that in this particular

example, some of the effects have the same value and so will appear at the

same location in the plot, for example, both AD and BD are denoted by the

same point. Furthermore, the circled point representing the two values AD

and BD is borderline. It could be included or not. In this analysis, since the

point lies much closer the straight line than any of the other points, it will

not be considered in the final analysis. Therefore, the significant effects are

those denoted as A, C, D, and AC. The effect due to B is negligible.

3. Dropping the B factor will produce a 23-factorial experiment with 2 repli-

cates. In addition to dropping the terms associated with the B factor, all

other terms will also be dropped. Since the design is orthogonal, we can

(continued)
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Fig. 4.3 Normal probability plot of the effects
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Example 4.2 (continued)

drop the terms, without needing to recalculate anything. Therefore, the

simplified model is given as

y ¼ 101þ 5:19x1 � 2:19x3 þ 3:06x4 � 7:69x1x3

4. The residuals for this case are shown in Fig. 4.4. It can be seen that they are

more or less normally distributed. Furthermore, since the reduced model

has an R2¼ 0.970 with all significant parameter values, it can be con-

cluded that the results are probably good.

The solution to this problem using Excel® is presented in Sect. 8.7.3:

Factorial Design Examples.

4.5 Fractional Factorial Design

For a large number of factors, it may be inconvenient to perform all the necessary

experiments to determine a full fractional experiment, for example, for a 10-factor

experiment, a total of 210¼ 1,024 experiments need to be run. Since in many cases,

a single experiment can take a few hours to run, then it could easily take more than

two months to complete the experiment. At the same time, it may be known that

many of the higher-order interactions may be negligible and can, thus, be ignored.

This assumption is necessary, since by performing fewer experiments, some of the
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Fig. 4.4 Normal probability plot of the residuals for the reduced model
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effects will be confounded, or aliased, with other measured effects. If the con-

founded interactions are small, then they will not affect the values obtained for the

main effects. Therefore, the goal of this section is to determine the confounding

pattern so that only the most important parameters are included in the model and the

confounded parameters are kept to a minimum.

4.5.1 Notation for Fractional Factorial Experiments

Given l levels, k factors, and p fractions, then lk – p interactions of the original lk

interactions can be estimated. For example, an experiment where l¼ 2, k¼ 5, and

p¼ 1 is often called a half-fraction experiment, since half as many experiments will

be performed.

4.5.2 Resolution of Fractional Factorial Experiments

The resolution of an experiment shows the manner in which the confounding in a

given experiment occurs. The resolution is denoted using a subscripted Roman

numeral, for example, 26�2
IV is a quarter fraction of a 26-factorial experiment with a

resolution of IV. There are three common resolutions:

1. Resolution III: In these experiments, no main effects are confounded with each

other. However, some main effects may be confounded with second-order interac-

tions. Finally, some second-order interactions may be confounded with each other.

2. Resolution IV: In these experiments, no main effects are confounded with each

other or second-order interactions. However, some second-order interactions are

confounded with each other.

3. Resolution V: In these experiments, no main effects or second-order interactions

are confounded with each other. However, second-order interactions are con-

founded with third-order interactions.

Determining the resolution requires looking at the complete confounding pattern

for the given fractional factorial experiment and determining the term with the

smallest number of variables multiplied together.

4.5.3 Confounding in Fractional Factorial Experiments

One of the most important concepts in fractional factorial design is confounding or

aliasing. Confounding occurs when two or more interactions share the same column

space, that is, the column entries for the interactions are the same. Only a full factorial

experiment does not have confounding. By reducing the number of experiments

performed, not all of the parameters can be estimated. In a p-fractional experiment,
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lk – p(lp – 1) of the interactions will be confounded. Confounding implies that the

estimate of a given parameter is actually the estimate of 2 ormore unbiased (unaliased)

parameters. However, if it is assumed that higher-order interactions are negligible,

then the effect of the higher interactions on the lower interactions’ estimates will be

small, and the parameter that will be estimated will be close to the true lower-

interaction value. This assumption can be made due to Occam’s razor or the sparsity-
of-effects principle, which states that the smaller the number of interactions, the more

likely the model is to be a good description of the system.

4.5.3.1 Background Information

In order to determine the manner in which the different variables are confounded, it

is first necessary to consider two mathematical concepts: identity vector and

modular arithmetic.

For an orthogonal basis, let I be the defined as a vector of 1’s. The vector I forms

the basis for the constant term, β0, in the factorial experiment. Irrespective of the

factorial design, the vector I can be treated as representing the identity vector for the
system under pointwise multiplication denoted by

J
.2

Modular arithmetic denoted as x mod y, where x is the divisor and y is the

dividend (or base), seeks to determine the remainder when x is divided by y, for
example, 7 mod 2 will be equal to 1, since the remainder when 7 is divided by 2 is

1 (7¼ 3� 2 + 1). When seeking to determine the confounding pattern in fractional

factorial experiments and higher-order terms are encountered, then reduction of

these terms is performed using l-base modular arithmetic, where l, as before, is the
number of levels in the design.

Example 4.3: Modular Arithmetic

Consider a 3-level design with the term x31x2x
4
3. Determine the reduced form.

Solution

Since this is a 3-level experiment, all reductions will be performed using

modular arithmetic with a base of 3. Therefore, the following reductions will

be performed:

x1: 3 mod 3¼ 0) x1¼ I
x2: 1 mod 3¼ 1) x2 remains as is

x3: 4 mod 3¼ 1 ) x43 becomes x3

Therefore, the reduced form for x31x2x
4
3 is x2x3.

2 Pointwise multiplication of two vectors, also called the Schur or Hadamard product, and denoted in

this work by
J

(U+2299), is defined as the multiplication of two vectors by taking each entry of the

two vectors and multiplying them together, that is, zk ¼ xkyk , where k are the index locations.
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4.5.3.2 Generators for Fractional Factorial Experiments

A generator is defined as a set of variables which when multiplied together will

yield I. Ideally, it is desired that only the variable multiplied by itself will yield I.
However, this can only occur in the case where a full factorial design is used. If a

fractional factorial design is used, then some subset of the variables will yield I. The
relationship showing this subset is called the defining relationship. The defining

relationship can be determined from the method presented to create a fractional

factorial experiment, by multiplying each generator by the new variable to yield I,
for example, if the generator is x4¼ x1x2x3, then, for l¼ 2, the defining relationship

would be obtained as follows:

x4 ¼ x1x2x3 ) x4x4 ¼ x1x2x3x4 ) I ¼ x1x2x3x4

The term “x1x2x3x4” is called a word. The resolution of the design is equal to the

number of terms (letters) in the smallest word that is used as a generator. Further

note that each of the generators used must be independent generators. In any

fractional factorial experiment, p independent generators will be required.
Although most experiments assume that the defining relationship is positive

(as above), it is also possible to define it as a negative value, that is, I¼�x1x2x3x4.
Such a design is less commonly seen.

Example 4.4: Generators and Defining Relationships for a Fractional

Factorial Design
Determine a suitable defining relationship and generator for an experiment

where l¼ 2, p¼ 1, and k¼ 5.

Solution

For this experiment, since p¼ 1, there will be a need to determine a single

generator. Although there are many different options, the best generator

would be x5¼ x1x2x3x4, since it combines the largest number of variables

together. This generator implies that the signs/levels for x5 will be determined

as the product of the signs of the other 4 variables.

The defining relationship would then be obtained by multiplying the

generator by x5 and reducing all powers by modulo 2 arithmetic. Therefore,

x5x5¼ x1x2x3x4x5) I¼ x1x2x3x4x5

Note that x5x5 has a power of 2, which becomes 0 and hence drops out.

Since the length of the word is 5, the resolution is V. It is always true that

the resolution of a fractional factorial design is equal to the length of the

smallest word in the defining relationship.
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4.5.3.3 Complete Defining Relationship for Fractional Factorial

Experiments

The complete defining relationship presents the confounding pattern for (or gives

those variables that are confounded with) the mean response. It can be determined

as follows. Since each defining relationship is equal to I, all the defining relation-

ships can be equated (as they are confounded with the same parameter—the mean

response). However, this does not determine all the possible defining relationships

that are equal to I, since multiplying any two defining relationships will produce

another defining relationship that equals I. Thus, if there are n defining relation-

ships, then the complete defining relationship can be determined by taking all

possible products of 2 generators taken together, 3 generators taken together, and

continuing until all n generators have been taken together. The equality as it stands

will give one of the confounding patterns, stating that the mean response will be

confounded with the given interactions.

4.5.3.4 Complete Confounding Pattern for Fractional Factorial

Experiments

To determine the complete confounding pattern, the complete defining relationship

is then multiplied by each of the variables singly and is reduced according to the

rules. This will give the confounding between the first-order interactions and

higher-order interactions. Next multiply the complete defining relationship by

each of the variables taken in groups of 2 and simplify. If any group of

m variables occurs in a word of length m+ 1, then it can be ignored. This is repeated

until, if n is even, (n/2) variables are being multiplied or, if n is odd, [(n – 1)/2]

variables are being multiplied.

It should be strongly emphasised that the parameters that are equated in the

complete confounding pattern cannot be estimated independently. In practice, the

lowest-order interaction is assumed to be the most significant and fitted, while the

higher-order interactions are assumed to be negligible (or zero). However, this

lower-order interaction will be influenced by the value of the other interactions with

which it is confounded, especially if they are not zero.

Example 4.5: Complete Defining Relationship and Confounding Pattern

for a Half-Fractional Factorial Example

Continuing with the same fractional factorial experiment as in Example 4.4,

determine the complete defining relationship and the complete confounding

pattern for the experiment. The defining relationship is given as

I ¼ x1x2x3x4x5;

(continued)
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Example 4.5 (continued)

which happens to also be equal to the complete defining relationship. This

states that the zero-order interaction, constant term, β0, is confounded with

the highest-order interaction, β12345. Multiplying by each of the variables

singly gives

x1I ¼ x1 x1x2x3x4x5ð Þ ) x1 ¼ x2x3x4x5

x2I ¼ x2 x1x2x3x4x5ð Þ ) x2 ¼ x1x3x4x5

x3I ¼ x3 x1x2x3x4x5ð Þ ) x3 ¼ x1x2x4x5

x4I ¼ x4 x1x2x3x4x5ð Þ ) x4 ¼ x1x2x3x5

x5I ¼ x5 x1x2x3x4x5ð Þ ) x5 ¼ x1x2x3x4

This states that β1, a first-order interaction, is confounded with the fourth-

order interaction, β2345. Furthermore, β2, which is also a first-order interac-

tion, is confounded with the (different) fourth-order interaction, β1345.
A similar analysis can be performed with the remaining cases.

Multiplying the identity by each of the variables taken in pairs will give

x1x2I ¼ x1x2 x1x2x3x4x5ð Þ ) x1x2 ¼ x3x4x5

x1x3I ¼ x1x3 x1x2x3x4x5ð Þ ) x1x3 ¼ x2x4x5

x1x4I ¼ x1x4 x1x2x3x4x5ð Þ ) x1x4 ¼ x2x3x5

x1x5I ¼ x1x5 x1x2x3x4x5ð Þ ) x1x5 ¼ x2x3x4

x2x3I ¼ x2x3 x1x2x3x4x5ð Þ ) x2x3 ¼ x1x4x5

x2x4I ¼ x2x4 x1x2x3x4x5ð Þ ) x2x4 ¼ x1x3x5

x2x5I ¼ x2x5 x1x2x3x4x5ð Þ ) x2x5 ¼ x1x3x4

x3x4I ¼ x3x4 x1x2x3x4x5ð Þ ) x3x4 ¼ x1x2x5

x3x5I ¼ x3x5 x1x2x3x4x5ð Þ ) x3x5 ¼ x1x2x4

x4x5I ¼ x4x5 x1x2x3x4x5ð Þ ) x4x5 ¼ x1x2x3

This states that the β12, a second-order interaction, is confounded with the

third-order interaction, β345. Likewise, β13 is confounded with β245.
Since n is odd, all the possible confounded variables have been found.

Thus, the resolution of this method is V, since no second-order terms are

confounded with each other. As well, note that the length of the smallest word

in the complete defining relationship is 5, which is equal to the resolution.

Such a relationship between the resolution and the smallest word in the

complete defining relationship always holds.
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Example 4.6: Confounding Pattern for a Quarter-Fractional Factorial

Example

Determine the confounding pattern for a quarter-fractional factorial experi-

ment, where l¼ 2, p¼ 2, and k¼ 5. Select a suitable set of generators.

Solution

Since p¼ 2, more than one generator is required. A suitable choice would be

the following set of generators:

x4 ¼ x1x3 and x5 ¼ x1x2

which give the defining relationship to be

I ¼ x1x3x4 and I ¼ x1x2x5

Setting the two defining relationships equal to each other will give the

following equality:

I ¼ x1x3x4 ¼ x1x2x5

In order to obtain the complete defining relation, the two generators can be

multiplied together to give the complete defining relationship as

I ¼ x1x3x4 ¼ x1x2x5 ¼ x2x3x4x5

This implies that the zero-order interaction is confounded with 2 third-order

interactions, β134 and β125, and 1 fourth-order interaction, β2345. It also

implies that the resolution of this experiment is III, since this is the length

of the shortest word.

Multiplying the complete defining relationship by each of the variables

singly gives

x1I ¼ x1 x1x3x4ð Þ ¼ x1 x1x2x5ð Þ ¼ x1 x2x3x4x5ð Þ ) x1 ¼ x3x4 ¼ x2x5 ¼ x1x2x3x4x5
x2I ¼ x2 x1x3x4ð Þ ¼ x2 x1x2x5ð Þ ¼ x2 x2x3x4x5ð Þ ) x2 ¼ x1x2x3x4 ¼ x1x5 ¼ x3x4x5
x3I ¼ x3 x1x3x4ð Þ ¼ x3 x1x2x5ð Þ ¼ x3 x2x3x4x5ð Þ ) x3 ¼ x1x4 ¼ x1x2x3x5 ¼ x2x4x5
x4I ¼ x4 x1x3x4ð Þ ¼ x4 x1x2x5ð Þ ¼ x4 x2x3x4x5ð Þ ) x4 ¼ x1x3 ¼ x1x2x4x5 ¼ x2x3x5
x5I ¼ x5 x1x3x4ð Þ ¼ x5 x1x2x5ð Þ ¼ x5 x2x3x4x5ð Þ ) x5 ¼ x1x3x4x5 ¼ x1x2 ¼ x2x3x4

This implies that the first-order interactions are confounded with both

second-, fourth-, or fifth-order interactions. For example, β3 is confounded
with β14, β245, and β1235.

(continued)

4.5 Fractional Factorial Design 163



Example 4.6 (continued)

Multiplying by pairs of the variables will give, after ignoring terms x1x2,
x1x3, x1x4, x1x5, x2x5, and x3x4, which all can be found in the smallest words

x2x3I¼ x2x3 x1x3x4ð Þ¼ x2x3 x1x2x5ð Þ¼ x2x3 x2x3x4x5ð Þ) x2x3¼ x1x2x4¼ x1x3x5¼ x4x5
x2x4I¼ x2x4 x1x3x4ð Þ¼ x2x4 x1x2x5ð Þ¼ x2x4 x2x3x4x5ð Þ) x2x4¼ x1x2x3¼ x1x4x5¼ x3x5
x3x5I¼ x3x5 x1x3x4ð Þ¼ x3x5 x1x2x5ð Þ¼ x2x4 x2x3x4x5ð Þ) x3x5¼ x1x4x5¼ x1x2x3¼ x3x5

	
1

x4x5I¼ x4x5 x1x3x4ð Þ¼ x4x5 x1x2x5ð Þ¼ x4x5 x2x3x4x5ð Þ) x4x5¼ x1x3x5¼ x1x2x4¼ x2x3
i 2

It should be noted that the first and last lines are the same, as are the 2 middle

lines. Thus, the complete confounding pattern can be given as

1 3 4 1 2 5 2 3 4 5

1 3 4 2 5 1 2 3 4 5

2 1 2 3 4 1 5 3 4 5

3 1 4 1 2 3 5 2 4 5

4 1 3 1 2 4 5 2 3 5

5 1 3 4 5 1 2 2 3 4

2 3 1 2 4 1 3 5 4 5

2 4 1 2

Pattern Number of Terms
3
3
3
3
3
3
3

I x x x x x x x x x x
x x x x x x x x x x
x x x x x x x x x x
x x x x x x x x x x
x x x x x x x x x x
x x x x x x x x x x
x x x x x x x x x x
x x x x

= = =
= = =
= = =
= = =
= = =
= = =
= = =
= 3 1 4 5 3 5 3

Total 24
x x x x x x= =

It should be noted that the number of terms confounded will always be equal

to lk – p(lp – 1), which in this case is 25 – 2(22 – 1)¼ 8� 3¼ 24. This is an easy

way to check that all the confounded terms have been considered.

4.5.3.5 Higher-Level Designs

When dealing with higher-level designs, some of the rules and observations need to

be changed slightly. The two biggest changes are as follows:

1. Modulo l arithmetic must be used.

2. The complete defining relationship is obtained by following the above procedure

and adding the following step: once the defining relationship has been created as

above, it must be augmented by all the powers of itself up to l – 1. Thus, the

complete defining relationship would be I¼ I¼ I2¼ I3 . . .¼ Il – 1.
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Example 4.7: Complete Confounding Pattern for a 3-Level Experiment

Consider the following 33 – 1 factorial experiment with a generator given as

x23 ¼ x1x
2
2:

Determine the complete defining relationship, the complete confounding

pattern, and the model that can be fit given the confounding pattern.

Solution

The complete defining relationship for this experiment can be found as

follows. First, the given generator has to be converted to give

x3 x23 ¼ x1x
2
2

� �) I ¼ x1x
2
2x3

If this were a 2-level experiment, then one would stop at this point. However,

for higher-level experiments, powers of the above equation must be taken and

reduced with modulo l arithmetic. Therefore, squaring this defining relation-

ship and reducing everything modulo 3 gives

I2 ¼ x1x
2
2x3x1x

2
2x3

¼ x21x2x
2
3

Therefore, the complete defining relationship is

I ¼ x1x
2
2x3 ¼ x21x2x

2
3

The complete confounding pattern can be found as follows (note that all

reductions are modulo 3):

x1 I ¼ x1x
2
2x3 ¼ x21x2x

2
3

� �
x2 I ¼ x1x

2
2x3 ¼ x21x2x

2
3

� �
x1 ¼ x21x

2
2x3 ¼ x2x

2
3 2ð Þ x2 ¼ x1x3 ¼ x21x

2
2x

2
3 2ð Þ

x3 I ¼ x1x
2
2x3 ¼ x21x2x

2
3

� �
x21 I ¼ x1x

2
2x3 ¼ x21x2x

2
3

� �
x3 ¼ x1x

2
2x

2
3 ¼ x21x2 2ð Þ x21 ¼ x22x3 ¼ x1x2x

2
3 2ð Þ

x22 I ¼ x1x
2
2x3 ¼ x21x2x

2
3

� �
x23 I ¼ x1x

2
2x3 ¼ x21x2x

2
3

� �
x22 ¼ x1x2x3 ¼ x21x

2
3 2ð Þ x23 ¼ x1x

2
2 ¼ x21x2x3 2ð Þ

x1x2 I ¼ x1x
2
2x3 ¼ x21x2x

2
3

� �
x2x3 I ¼ x1x

2
2x3 ¼ x21x2x

2
3

� �
x1x2 ¼ x21x3 ¼ x22x

2
3 2ð Þ x2x3 ¼ x1x

2
3 ¼ x21x

2
2 2ð Þ

x1x
2
2x3 I ¼ x1x

2
2x3 ¼ x21x2x

2
3

� �
x1x

2
2x3 ¼ x21x2x

2
3 ¼ I 2ð Þ

(continued)
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Example 4.7 (continued)

Therefore, a total of 18 terms are confounded with the last entry being equal

to the original confounding pattern. It can be noted that lk – p(lp – 1)¼
33 – 1(31 – 1)¼ 9� 2¼ 18, which is as expected.

A second-order model can be fit with the given experiment. Ignoring any

higher-order terms that are confounded, the fitted model will have the form

y ¼ β0 þ β1x1 þ β2x2 þ β3x3 þ β11x
2
1 þ β22x

2
2 þ β33x

2
3 þ β12x1x2 þ β23x2x3

It can be noted that not all of the second-order interaction terms can be

estimated (namely, x1x3 is confounded with x2). This shows that the design

is of Resolution III. This can be confirmed by noting that the smallest word

has length 3.

4.5.4 Design Procedure for Fractional Factorial
Experiments

The following steps will allow the design of a fractional factorial experiment:

1. Design a full lk � p factorial experiment for the k – p variables. These k – p variables
are called the independent or basic variables.

2. Create p new variables, which are independent combinations of some or all of

the k � p factors. The combinations should be determined using the above

information on confounding, resolution, confounding pattern, and any additional

information known about the process.

3. Add p columns to the table created in Step 1, each containing one of the

combinations determined above. Set each of the p variables equal to one of the

new columns. Determine the appropriate level for each new column by consid-

ering the combination chosen for that row. It should be noted that there are many

different methods to accomplish this creation of the table.

4. Thus, the actual experiment will consist of lk – p runs (or treatments), where each row

corresponds to a single run. For each run, the values of the factors are determined

based on the corresponding column values in the table obtained in step 3.

Example 4.8: Analysing the Structure of a Fractional Factorial
Experiment

Consider the factorial design shown in Table 4.2. What are the independent

factors, the dependent factors, the generators, the complete defining relation-

ship, the resolution, and the aliases for A and for AB? What type of factorial

design is it?

(continued)
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Example 4.8 (continued)

Solution

Independent and Dependent Factors: Looking at the way the data is

presented, it can be seen that one of the factors depends on the others.

Since the first three factors have the form of the classical full factorial

experiment, it will be assumed that factor D depends on the other factors.

Therefore, the basic factors are A, B and C, while the dependent factor is D.

Generator: The generator is D¼ABC. Once it has been determined that D

is the dependent factor, all that is required is to try different combinations of

the other factors to determine the appropriate generator.

Complete Defining Relationship: The complete defining relationship is

obtained as follows:

D� D ¼ D� ABC ) I ¼ ABCD:

Resolution: Since the smallest word in the complete defining relationship is

4 letters (factors) long, the resolution is IV, that is, the second-order interac-

tions are confounded with each other.

Aliases for A: They can be obtained by multiplying the defining relation by

A and reducing everything modulus 2, that is,

A � I ¼ A � ABCD ) A ¼ A2BCD ) A ¼ BCD

Aliases for AB: Similar to the aliases for A, the results are

AB � I ¼ AB � ABCD ) AB ¼ A2B2CD ) AB ¼ CD:

This is expected because it was determined that second-order interactions can

be confounded with each other. This implies that both AB and CD cannot be

estimated simultaneously.

(continued)

Table 4.2 Design for the

fractional factorial

experiment

Run A B C D Value

1 � � � � 219

2 + � � + 214

3 � + � + 154

4 + + � � 150

5 � � + + 124

6 + � + � 132

7 � + + � 114

8 + + + + 134
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Example 4.8 (continued)

Complete Description: This is a 24�1
IV factorial experiment with the

complete defining relationship I¼ABCD. Note that a complete description

requires that all the necessary parameters (l, p, resolution, and complete

defining relationship) be provided.

4.5.5 Analysis of Fractional Factorial Experiments

Define, as before,

A ¼

A
⋮

nR times

A

2
6664

3
7775 ð4:21Þ

~Y ¼

ŷ 1st columnð Þ
ŷ 2nd column
� �

⋮
ŷ nthR column
� �

2
66664

3
77775 ð4:22Þ

β̂ ¼ ATA� ��1AT~Y ð4:23Þ

Then the standard deviation is defined as follows:

σ̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~YT~Y � β̂ TAT~Y
lk � p nR � 1ð Þ

s
ð4:24Þ

The sum of squares due to errors, SSE, is given by

SSE ¼ ~YT~Y � β̂ TAT~Y ð4:25Þ

If an orthogonal basis is used for the levels, then the sum of squares due to each

regressor, SSRi, is given by3

SSRi ¼ ATA� �
ii
β̂2i ð4:26Þ

3 Determining an orthogonal basis for an arbitrary level is explained fully in Sect. 4.7.
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where ATA� �
ii
is the (i, i) (diagonal) entry in the ATA� �

matrix. If an orthonormal

basis is used to encode the variables and their levels, then

ATA� �
ii
¼ lk � pnR ð4:27Þ

When l¼ 2 and the proposed �1 encoding is used, then, by definition, the basis is

orthonormal, and Equation (4.27) reduces to

ATA� �
ii
¼ 2k � pnR ð4:28Þ

The total sum of squares, TSS, is given by

TSS ¼ SSEþ
Xlk � p

i¼ 1

ATA� �
ii
β̂ 2
i ð4:29Þ

To determine whether a given regressor should be in the model, calculate for each

regressor the F-statistic as follows:

Fi ¼ SSRi

SSE

lk � p nR � 1ð Þ
ð4:30Þ

The value obtained from Eq. (4.30) is compared with the critical F-value denoted as
F(0.95, 1, lk – p(nR – 1)). If Fi is greater than F-critical, then the regressor should be
kept in the model. Otherwise, the given regressor can be eliminated from the model.

The effect due to an interaction is equal to twice the corresponding calculated

regression parameter.

4.5.6 Framework for the Analysis of Factorial Designs

The analysis of a factorial experiment can be summarised as follows:

1. Pre-analysis, which characterises the experiment and determines the appropriate

method to be followed.

(a) Determine the number of factors, k, the number of levels, l, and the number

of replicates, nR.
(b) Determine the number of dependent variables, p.
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(c) If p 6¼ 0, determine the generators, the complete defining relationship and

the complete confounding pattern.

(d) Write down the model that will be estimated given the above information.

(e) Determine an appropriate orthogonal or orthonormal basis for the model.

2. Calculating the values, using appropriate formulae compute the parameter

estimates, the normal probability plot of the parameters, and if appropriate, the

SSRi and F-value for each of the parameters.

3. Model reduction, which seeks to remove all unnecessary parameters from the

model. Three main methods can be used:

(a) Normal probability plot of the parameters, which seeks to determine which

parameters are most significant based on their deviation from normality.

This approach works as long as an orthonormal basis has been selected for

the model.

(b) Fi-test for the parameters, which seeks to determine which parameters are

most significant based on an analysis of variance method. This approach

works as long as an orthogonal basis has been selected for the model and

there are replicates with which to compute an estimate of the model

variance.

(c) Confidence intervals for the parameters, which seek to determine which

confidence intervals of the parameters cover zero and hence should be

rejected. This approach works as long as there are replicates with which

to compute an estimate of the model variance.

4. Residual analysis, using the reduced model, the resulting residuals should be

analysed to determine whether the assumptions underlying regression have been

satisfied. If the residuals suggest problems, then further experiments may need to

be performed to resolve the issue.

5. Conclusions, which seek to answer based on the reduced model whatever

questions the objectives of the exercise had, for example, determining the

optimal operating point.

Example 4.9: Detailed Analysis of a Fractional Factorial Experiment

Consider the following experiment to obtain the best beef stew rations. Note

that the company does not care about the taste, but cares solely on how well

the product can be cooked, and hence the focus will be on the Heating Index.

The following 5 factors will be considered: A¼ sauce viscosity, B¼ residual

gas, C¼ solid/liquid ratio, D¼ net weight, and E¼ rotation speed. Given the

large number of factors and limited number of available samples, a fractional

factorial experiment has been conducted with a single replicate. The data are

shown in Table 4.3. Answer the following questions:

(continued)
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Example 4.9 (continued)

1. Using this data set, determine the generators, the complete defining

relationship, and the type of experiment.

2. Using a normal probability plot of the estimated model parameters,

determine the significant parameters. Analyse this reduced model.

3. Using the F-test approach to determining the significant parameters, find a

reduced model and analyse its residuals. Compare with the results from

part 2. Which method is better and when can each be used?

Solutions

Question 1

After some experimentation, it can be determined that the basic factors

are A, B, C, and D, while the dependent factor is E. The generator for this

experiment can be written as E¼ABCD. The complete defining relationship

is then I¼ABCDE. Based on the above analysis, it can be concluded that this

is a ½-fractional factorial experiment with a resolution of V, that is, 25�1
V . It

should be noted here that not all of the parameters can be estimated since they

will be confounded with others. Without going into the details here, all of the

zero-, first-, and second-order interactions are estimable. They will be con-

founded with various higher-order interactions.

(continued)

Table 4.3 Preparing

beef stew ration data
Heating index

A B C D EReplicate I Replicate II

8.46 9.61 �1 �1 �1 �1 1

15.68 14.68 1 �1 �1 �1 �1

14.94 13.09 �1 1 �1 �1 �1

12.52 12.71 1 1 �1 �1 1

17.00 16.36 �1 �1 1 �1 �1

11.44 11.83 1 �1 1 �1 1

10.45 9.22 �1 1 1 �1 1

19.73 16.94 1 1 1 �1 �1

17.7 16.36 �1 �1 �1 1 �1

14.98 11.93 1 �1 �1 1 1

8.40 8.16 �1 1 �1 1 1

19.08 15.40 1 1 �1 1 �1

13.07 10.55 �1 �1 1 1 1

18.57 20.53 1 �1 1 1 �1

20.59 21.19 �1 1 1 1 �1

14.03 11.31 1 1 1 1 1

Data taken from “A Comparison of Multiresponse

Optimization Sensitivity to Parameter Selection” in Quality
Engineering, Copyright © 1999 Taylor & Francis
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Example 4.9 (continued)

Question 2

Without going into the details of the calculation of all of the values, as an

Excel® spreadsheet was used to obtain the values, the summary results are

presented here. The normal probability plot of the parameters is shown in

Fig. 4.5. From this figure, it can be seen that there are 2 really significant

values (which could well not be white noise), β0 and β5, which imply that the

only significant factor is E. This suggests that the model can be written as

y ¼ 14:7� 3:1x5

The analysis of the reduced model is shown in Fig. 4.6 and Table 4.4.

Based on these figures, it can be seen that it does not look like the model

captures all of the variation present in the data. Specifically, the residuals do

not seem to be normally distributed because there is a significant tail espe-

cially at the top end. Furthermore, the residuals seem to be decreasing in

value as the runs increase (i.e. run 16 has consistently smaller variance than

(continued)
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Fig. 4.5 Normal probability plot of the parameters
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Example 4.9 (continued)

(continued)
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Fig. 4.6 (Top) Normal probability plot of the residuals and (bottom) time series plot of the

residuals with the different replicates clearly shown

Table 4.4 Reduced model

statistics for beef stew ration

example

Statistic Value Statistic Value

Σε2 148 σ̂model 3.05

SSE 148 TSS 455

R2 0.67 SSR 307

F-critical, model 4.17 F-test 62
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Example 4.9 (continued)

run 1). This could suggest that additional variables may need to be consid-

ered. On the other hand, the coefficient of regression is 0.67, and the F-test for
the model suggests that the model is significant (as F-test>F-critical). If we
desire a very simple model, this is it (one parameter to explain 63% of the

variability in the data is quite good). On the other hand, there do seem to be

some issues with the underlying model, since the residuals are not normally

distributed.

Question 3

Repeating the analysis but using the F-test method gives the following

results. The required values are given in Table 4.5. The critical value of the

F-test is 4.49. Any Fi greater than this is a significant parameter. It can be seen

that a much larger number of parameters is now significant. However,

examining the “discarded” parameters, it can be seen that factor B is

completely irrelevant to the experiment, as all its interactions are zero.

Model analysis for this reduced model is shown in Fig. 4.7. It can be seen

that the residuals are now more normally distributed and that there is no tail.

(continued)

Table 4.5 Model parameters

and statistical scores for the

beef stew ration model

reduced using the F-test

Parameters Value SSRi Fi

β0 14.3 6,610 3,580

β1 0.819 21.5 11.8

β2 �0.031 0.03 0.02

β3 0.910 26.5 14.5

β4 0.850 23.1 12.7

β5 �3.10 307 168

β12 0.161 0.83 0.46

β13 �0.447 6.40 3.51

β14 �0.206 1.36 0.75

β15 0.608 11.8 6.49

β23 0.288 2.65 1.46

β24 �0.315 3.17 1.74

β25 �0.286 2.62 1.44

β34 0.205 1.34 0.74

β35 �0.589 11.1 6.10

β45 �0.463 6.85 3.76

Statistic Value Statistic Value

Σε2 39.8 σ̂model 1.34

SSE 39.7 TSS 455

R2 0.913 SSR 416

F-critical, model 2.34 F-test 25.5
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Example 4.9 (continued)

On the other hand, the time series plot of the residuals still seems to show

some weird behaviour between the two different replicates. Now it seems to

suggest that one replicate is different from the other. On the other hand, the

coefficient of regression is now 0.91, and the model is significant given the

F-test. On the whole, it would suggest that the model obtained by reducing

(continued)

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−2.50

−2.00

−1.50

−1.00

−0.50

0.00

0.50

1.00

1.50

2.00

2.50

0 2 4 6 8 10 12 14 16 18

Replicate I Replicate II

Fig. 4.7 (Top) Normal probability plot of the residuals and (bottom) time series plot of the

residuals with the different replicates clearly shown for the model reduced using the F-test
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Example 4.9 (continued)

the parameters using the F-test is better. However, it can be noted that the

number of parameters selected is much more than in the normal probability

plot method.

Finally, some brief comments regarding the different methods are needed.

Firstly, it can be noted that the normal probability plot method can be used

irrespective of whether replicates were performed. In this particular case, the

method underestimates the number of significant parameters in the model. On

the other hand, the F-test method produces a larger model, and it would seem

a more accurate model, but it does require that replicates be available.

4.6 Blocking and Factorial Design

When blocking has to be implemented due to either a very large number of runs that

need to be run over multiple days or equipment limitations that could make each

individual run not be identical, it is necessary to develop an appropriate structure to

minimise these effects on the overall design.

The easiest approach is to treat the blocking variable (day or run) as an additional

factor in the experiment and then design a l(k + 1) – p � 1 fractional factorial

experiment, where the blocking factor will be the treated as the dependent factor.

The runs would then be segregated based on the values of the parameters, for

example, +1 would represent all runs done on one day, and �1 would represent all

runs done on another day.

When analysing the results, the blocking factor can be ignored. Including the

blocking factor in the model will allow a determination of the effect of blocking on

the overall system. The principles from fractional factorial design can be used to

design the optimal blocking pattern.

Example 4.10: Blocking and Full Factorial Design

Consider the case where we have a full 24 factorial experiment that must be

run in 2 blocks of 8 runs (two days). Assume that it is known that the AB

interaction is zero. Design an appropriate experiment that maximises the

information that can be extracted.

Solution

In general, whenever one is faced with a blocking issue with known variables,

then the problem can be reduced and analysed as if it were a fractional

factorial design with additional dummy variables. In this particular example,

let the original factors be A, B, C, and D and let the blocking variable be an

additional fifth factor, E. Since we have been told that the AB interaction is

zero, in order to minimise the confounding, let E¼AB. All runs

(continued)
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Example 4.10 (continued)

where E is positive (+) would be run on one day, and all runs where E is

negative (�) would run on the other day. The analysis would be performed

based on using the original factors. The factor AB that would be fit would

basically represent the contribution of blocking to the design (and should

hopefully be close to zero). Practically, this can be written as shown in

Table 4.6.

Example 4.11: Blocking and Fractional Factorial Design

Consider a 24 – 1 factorial experiment with the complete defining relationship

I¼ABCD. Determine an appropriate blocking pattern for this experiment

given that AB is known to be zero, and determine the new complete defining

relationship.

Solution

Given the information, let the blocking variable be E. The generator will then

be E¼AB with the defining relationship being I¼ABE. The new complete

defining relationship can be obtained using the same procedure as before.

First, setting the given defining relationships equal to each other,

I¼ABCD¼ABE.

(continued)

Table 4.6 Design for a blocked, full factorial experiment

Run A B C D
E = AB 

(blocking factor)
1 − − − − +
2 + − − − −
3 − + − − −
4 + + − − +
5 − − + − +
6 + − + − −
7 − + + − −
8 + + + − +
9 − − − + +
10 + − − + −
11 − + − + −
12 + + − + +
13 − − + + +
14 + − + + −
15 − + + + −
16 + + + + +

All experiments with (+) in the final column and in light grey would be run on 1 day and

those with a (�) in the final column and in dark grey would be run on another day
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Example 4.11 (continued)

Second, multiplying together the last two members gives

ABCD�ABE¼A2B2CDE¼CDE.

Therefore, the complete defining relationship is

I¼ABCD¼ABE¼CDE.

It can be noted that the resolution of the experiment has decreased from IV

to III by the introduction of a blocking variable. This is expected given the

general nature of blocking.

4.7 Generalised Factorial Design

In order to effectively apply the proposed methods to solving higher-level exper-

iments, there is a need to develop the tools for the creation of orthogonal bases for

arbitrary polynomial functions. Such an approach has the benefit that the previously

obtained results from linear regression can be applied to solving such problems.

Therefore, this section will provide the methods for obtaining such a solution.

Consider an l-level experiment with a single factor x, which has been scaled so

that its values lie between [�1, 1]. Furthermore, assume that the spacing between

each of the treatment points is equal. The spacing between successive treatment

points, δl, can be determined as follows:

δl ¼ 2

l� 1
ð4:31Þ

Finally, if there are replicates, assume that all treatments/runs have been replicated,

so that nRl experiments have been performed, where nR is the number of replicates.

The model for such an experiment can be written as

y ¼ β0 þ β1xþ β11x
2 þ β111x

3 þ � � � þ β1l � 1xl� 1 ð4:32Þ

If the A-matrix is created for the problem as it is currently written, it is easy to see

that the resulting A TA matrix will not be orthogonal. In order to obtain an

orthogonal matrix, it is necessary to obtain an appropriate orthogonal basis for

the set of polynomials given as {1, x, x2, x3,. . ., xl � 1}. For example, for a three-

level, single factor experiment, equally spaced treatment points would be�1, 0, and

1, and the model fit would be

y ¼ β0 þ β1xþ β11x
2 ð4:33Þ
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Therefore, there is a need to rearrange Eq. (4.32) so that the individual terms are

orthogonal to each other, that is,

y ¼ β0L0 xð Þ þ β1L1 xð Þ þ β11L2 xð Þ ð4:34Þ

where L0, L1, and L2 are some orthogonal functions on [�1, 1] that depend on the

original parameter x. In general, L0 is always assumed to be the unit function, that

is, L0¼ 1. The exact form of the remaining functions will now be determined.

4.7.1 Obtaining an Orthogonal Basis

In order for the basis to be orthogonal, it is necessary that the following two

conditions hold:

Xl
i¼ 1

Lj xið Þ ¼ 0, 8j > 0 ð4:35Þ

Xl
i¼ 1

Lj xið ÞLk xið Þ ¼ 0 j 6¼ k
d j ¼ k



ð4:36Þ

where xi is the coded value of the treatment point and d is any arbitrary value greater
than zero. The first condition expresses the orthogonality of the zero-order, constant

polynomial from all the other terms. Although it can be obtained from the second

condition, it is useful to keep it separate. A polynomial basis, where d¼ l, has
computational and theoretical advantages. Such a basis, where d¼ l, is called an

orthonormal basis. The values of the basis at the given treatment point will be

referred to as the experimental coefficient, γ, that is,

γji ¼ Lj xið Þ ð4:37Þ

and the subscript on the polynomial basis refers to which power the polynomial is a

basis. The general form of the polynomial can be written as4

Lj xð Þ ¼

Xj � 1ð Þ
2

þ1

i¼ 1

βjix
2i� 1 j odd

Xj
2

i¼ 0

βjix
2i j even

8>>>>><
>>>>>:

ð4:38Þ

4 The form of the polynomials is similar to the standard, discrete Gram polynomials.

4.7 Generalised Factorial Design 179



Combining Eqs. (4.37) and (4.38) gives that for the case of an even power the

individual experimental coefficients can be written as

γji ¼
Xj

2

k ¼ 0

βjkx
k
i ð4:39Þ

The case for an odd power is similar, mutatis mutandis.

4.7.2 Orthogonal Bases for Different Levels

In general, if an l-level factorial design is of interest, then the orthogonal basis for

this factorial design will be formed by the set of polynomials from 0 to l – 1, evaluated
at each of the treatment levels. The zeroth-order polynomial, L0, will be used for the
zero-order interaction (β0). The first-order polynomial, L1, will be used for the factors
whose powers are 1. Similarly, the second-order polynomials, L2, will be used for the
factors whose powers are 2. The results can be obtained by solving Eqs. (4.35) and

(4.36). In the following sections, the results for l¼ 2, 3, and 4 will be provided, as

well as generalised orthonormal polynomials for l¼ 2 and 3. Examples will be

provided as appropriate.

4.7.2.1 Case l¼ 2

Consider first the situation of determining the orthogonal basis for the simplest

factorial design with two levels. Since the two treatment points are �1 and 1, and

the basis function has the form

L1 xð Þ ¼ β11x ð4:40Þ

the treatment coefficients can be written as

γ11 ¼ β11x1 ¼ β11 �1ð Þ
γ12 ¼ β11x2 ¼ β11 1ð Þ ð4:41Þ

Note that, by condition (4.35), γ11 + γ12¼ 0. This gives that Eq. (4.41) can be

written as

γ11 ¼ β11 �1ð Þ
�γ11 ¼ β11 1ð Þ ð4:42Þ
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for which there is an infinite number of valid solutions. Taking the simplest solution

γ11¼�1 and γ12¼ 1 gives that β11¼ 1. This is clearly the same result as before.

Condition (4.36), which can be written as

Xl
i¼ 1

γ2ji ¼ d ð4:43Þ

gives that with this basis, d¼ 2¼ l, which is good. Thus, for l¼ 2, the basis

polynomial is orthonormal and can be written as

L1 xð Þ ¼ x ð4:44Þ
4.7.2.2 Case l¼ 3

Now, consider the case of determining the orthogonal basis for the factorial design

with three levels. The three equispaced coded treatment points are �1, 0, and

1(δl¼ 1). Ignoring the zero-power basis function, there will be two additional

basis functions of general form:

L1 xð Þ ¼ β11x
L2 xð Þ ¼ β21x

2 þ β20
ð4:45Þ

For the factors raised to the first power, the treatment coefficients can be written as

γ11 ¼ β11x1 ¼ β11 �1ð Þ
γ12 ¼ β11x2 ¼ β11 0ð Þ
γ13 ¼ β11x3 ¼ β11 1ð Þ

ð4:46Þ

Since the situation is similar to that previously obtained for the two-level case, the

following values can be obtained5:

γ11 ¼ �1, γ12 ¼ 0, γ13 ¼ 1, β11 ¼ 1 ð4:47Þ
However, note that d¼ 2, which means that this basis is not orthonormal. An

orthonormal basis can be determined by solving the following system of equations:

γ211 þ γ213 ¼ 3

γ11 þ γ13 ¼ 0



ð4:48Þ

which gives after substitution of the second equation into the first

γ11 ¼ �
ffiffiffi
3

2

r
, γ13 ¼

ffiffiffi
3

2

r
ð4:49Þ

This implies that β11¼ 1.50.5.

5 Note that γ12 must always equal zero given the set-up of the problem.
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L2, which forms the basis for the second-power terms, can be obtained by first

noting that the treatment coefficients can be written as

γ21 ¼ β21x
2
1 þ β20 ¼ β21 �1ð Þ2 þ β20

γ22 ¼ β21x
2
2 þ β20 ¼ β21 0ð Þ2 þ β20

γ23 ¼ β21x
2
3 þ β20 ¼ β21 1ð Þ2 þ β20

ð4:50Þ

which can be rewritten as the following system of equations

γ21 ¼ β21 þ β20
γ22 ¼ β20
γ23 ¼ β21 þ β20

ð4:51Þ

subject to the usual constraint of γ11 + γ12 + γ13¼ 0. It can be noted that this is an

indeterminate system with one degree of freedom (6 unknowns, but 5 equations).

Arbitrarily setting γ13¼ γ11¼ 1, gives the following solution:

γ21 ¼ γ23 ¼ 1, γ22 ¼ �2,

β21 ¼ 3, β20 ¼ �2
ð4:52Þ

Therefore, the factors raised to the first power will be encoded by L1, while the

factors raised to the second power will be encoded by L2. Thus, for l¼ 3, the basis

polynomial is orthogonal and can be written as

L1 xð Þ ¼ x
L2 xð Þ ¼ 3x2 � 2

ð4:53Þ

Example 4.12: Orthogonal Basis for a Mixed-Level Factorial

Experiment
Consider the following 2-factor experiment where the first factor (x1) has
3 levels and the second factor (x2) has 2 levels. Assume that a total of

6 (¼ 3� 2) experiments has been performed and the following model will

be fit:

yt ¼ β0 þ β1x1 þ β2x2 þ β12x1x2 þ β11x
2
1 þ β112x

2
1x2

Assume that the treatment points for x1 are �1, 0, and 1, while for x2 they are
�1 and 1. It should be noted that for x1 the encoding provided by L1 will be

used, while for x21 the encoding provided by L2 will be used. As well, unless
an orthonormal basis is desired, then the same L1 can be used to encode those

(continued)
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Example 4.12 (continued)

factors containing the factors x1 and x2 at the first power. Otherwise, different
first-order polynomials will be used. This implies that the actual model being

fit is

yt ¼ β0 þ β1L1 x1ð Þ þ β2L1 x2ð Þ þ β12L1 x1ð ÞL1 x2ð Þ þ β11L2 x1ð Þ
þ β112L2 x1ð ÞL1 x2ð Þ

Based on this discussion, the regression matrix can be given as

A ¼
1

1

1

1

1

1

z}|{β0

�1

0

1

�1

0

1

z}|{β1

�1

1

�1

1

�1

1

z}|{β2

1

0

�1

�1

0

1

z}|{β12

1

�2

1

1

�2

1

z}|{β11

�1

�2

�1

1

2

1

z}|{β112
2
6666666664

3
7777777775

The column headed by β0 is encoded using L0. The column headed by β1 is
encoded using L1 evaluated at the three treatment points (�1, 0, 1), while the

column headed by β2 is encoded using L1 evaluated at the two treatment

points (�1, 1). The column headed by β12 is encoded by multiplying the

corresponding rows in β1 and β2, for example, the first row would be

�1��1¼ 1. The column headed by β11 is encoded by evaluating L2 at the
three treatment points (�1, 0, 1). Finally, the column headed by β112 is

encoded by multiplying the corresponding rows in β11 and β2, for example,

the first row would be 1��1¼�1. The inverse of the information matrix

can be written as

ATA ¼

6

4

6

4

12

12

2
6666664

3
7777775

Notice how the diagonal values are all different. This is a result of the fact that

a nonnormal basis was used to encode the values.
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4.7.2.3 Case l¼ 4

Now, consider the case of determining the orthogonal basis for the factorial design

with four levels. The four equispaced treatment points are�1,�⅓,⅓, and 1 (δl¼⅔).
Ignoring the zero-order basis function, there will be three additional basis functions of

general form:

L1 xð Þ ¼ β11x

L2 xð Þ ¼ β21x
2 þ β20

L3 xð Þ ¼ β32x
3 þ β31x

ð4:54Þ

For the factors raised to the first power, the treatment coefficients can be written as

γ11 ¼ β11x1 ¼ β11 �1ð Þ
γ12 ¼ β11x2 ¼ β11 �1=

3
ð Þ

γ13 ¼ β11x3 ¼ β11
1=
3

ð Þ
γ13 ¼ β11x3 ¼ β11 1ð Þ

ð4:55Þ

Since the solution the situation is similar to that previously obtained for the two-

and three-level cases, the following values can be obtained:

γ11 ¼ �1, γ12 ¼ �1=
3
, γ12 ¼ 1=

3
, γ13 ¼ 1

β11 ¼ 1
ð4:56Þ

However, note that d¼ 7/3, which means that this basis is not orthonormal. In

general, for factors to the first power, it is possible to use the same basis irrespective

of the number of levels. However, this is not generally true, especially for higher-

order basis functions.

An orthonormal basis can be determined by solving the following system of

equations:

γ211 þ γ212 þ γ213 þ γ214 ¼ 4

γ11 þ γ12 þ γ13 þ γ14 ¼ 0



ð4:57Þ

with the relationships obtained from Eq. (4.55), that is,

γ11 ¼ �β11, γ12 ¼ �β11
3
, γ13 ¼

β11
3
, γ13 ¼ β11 ð4:58Þ

Since the second part of Eq. (4.57) is always satisfied with the given combination of

parameters, the first part of Eq. (4.57) gives

β11 ¼
ffiffiffiffiffi
36

20

r
¼ 3ffiffiffi

5
p ð4:59Þ
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This gives that

γ11 ¼ � 3ffiffiffi
5

p , γ12 ¼ � 1ffiffiffi
5

p , γ13 ¼
1ffiffiffi
5

p , γ13 ¼
3ffiffiffi
5

p ð4:60Þ

which is indeed an orthonormal basis.

L2, which forms the basis for the second-power terms, can be obtained by first

noting that the treatment coefficients can be written as

γ21 ¼ β21x
2
1 þ β20 ¼ β21 �1ð Þ2 þ β20 ¼ β21 þ β20

γ22 ¼ β21x
2
2 þ β20 ¼ β21 �1=

3

� �2
þ β20 ¼

1

9
β21 þ β20

γ23 ¼ β21x
2
3 þ β20 ¼ β21

1=
3

� �2
þ β20 ¼

1

9
β21 þ β20

γ24 ¼ β21x
2
4 þ β20 ¼ β21 1ð Þ2 þ β20 ¼ β21 þ β20

ð4:61Þ

subject to the usual constraint of γ11 + γ12 + γ13 + γ14¼ 0. It can be noted that this is

an indeterminate system with one degree of freedom (6 unknowns, but 5 equations).

Firstly, it can be noted that γ13¼ γ12 and γ14¼ γ11. Arbitrarily setting

γ13¼ γ12¼�1 gives the following solution:

γ22 ¼ γ23 ¼ �1, γ21 ¼ γ24 ¼ 1

β21 ¼ 2:25, β20 ¼ �1:25
ð4:62Þ

L3, which forms the basis for the factors raised to the third power, can be

obtained by first noting that the treatment coefficients can be written as

γ31 ¼ β32x
3
1 þ β31x1 ¼ β32 �1ð Þ3 þ β31 �1ð Þ ¼ �β32 � β31

γ32 ¼ β32x
3
2 þ β31x2 ¼ β32 �1=

3

� �3
þ β31 �1=

3

� �
¼ � 1

27
β32 �

1

3
β31

γ33 ¼ β32x
3
3 þ β31x3 ¼ β32

1=
3

� �3
þ β31

1=
3

� �
¼ 1

27
β32 þ

1

3
β31

γ34 ¼ β32x
3
4 þ β31x3 ¼ β32 1ð Þ3 þ β31 1ð Þ ¼ β32 þ β31

ð4:63Þ

subject to the usual constraint of γ11 + γ12 + γ13 + γ14¼ 0. It can be noted that this is

an indeterminate system with 2 degrees of freedom (6 unknowns, but only 4 inde-

pendent equations). First, it can be noted that γ13¼�γ12 and γ14¼�γ11, which
implies that the constraint is immediately satisfied given the values. Arbitrarily

setting γ11¼�1, which implies that γ14¼ 1, and γ12¼ 1, which implies that

γ13¼�1, gives the following solution:

γ31 ¼ �1, γ34 ¼ 1, γ32 ¼ 1, γ33 ¼ �1

β32 ¼ 4:5, β31 ¼ �3:5
ð4:64Þ
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Therefore, the factors raised to first power will be encoded by L1, the factors

raised to the second power by L2, and the factors raised to the third power by L3.
Thus, for l¼ 4, the basis polynomial is orthogonal and can be written as

L1 xð Þ ¼ x

L2 xð Þ ¼ 2:25x2 � 1:25

L3 xð Þ ¼ 4:5x3 � 3:5x

ð4:65Þ

4.7.2.4 Generalised Orthonormal Basis Functions for First-

and Second-Order Terms

Deriving the required forms for the orthonormal basis functions can be quite

challenging in the general case. This section will present generalised orthonormal

basis functions for first- and second-order terms for an arbitrary number of levels.

The derivation of these results follows the same pattern as for the specific examples.

The generalised orthonormal L1(x) function can be written as

L1 xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3l� 3

lþ 1

r
x ð4:66Þ

The generalised orthonormal L2(x) function can be written as

L2 xð Þ ¼ 3 l� 1ð Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 l� 1ð Þ

lþ 1ð Þ l� 2ð Þ lþ 2ð Þ

s
x2 � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 l� 1ð Þ lþ 1ð Þ
l� 2ð Þ lþ 2ð Þ

s
ð4:67Þ

The generalised orthonormal L3(x) function can be written as

L3 xð Þ ¼ l� 1ð Þ2:5
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
201

2l� 1ð Þ lþ 1ð Þ l� 2ð Þ 11l2 � 11l� 10
� �s

x3

� l l� 1ð Þ1:5
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
201

2l� 1ð Þ lþ 1ð Þ l� 2ð Þ 11l2 � 11l� 10
� �s

x

ð4:68Þ

Higher-order generalised functions can be derived using a similar pattern.

4.7.3 Sum of Squares in Generalised Factorial Designs

When fitting a model that contains factors raised to powers higher than 1, it is

common practice to combine the terms into a single term. The basic rule for

combining the terms is to ignore any powers on the factors and see what the

corresponding interaction is, for example, if we have the following set of
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interactions {A, B, AB, A2, A2B}, then both A and A2 would be represented by the

sum of squares due to A (SSA), while AB and A2B would be represented by the sum

of squares due to AB (SSAB). These terms would be found by combining the

appropriate individual terms, that is,

SSA ¼ SSAL
þ SSAQ

ð4:69Þ

where SSAL
is obtained using the standard formula for the SSR of β1, while SSAQ

is

obtained using the standard formula for the SSR of β11. The number of terms that are

combined would equal the degrees of freedom for the given component, for

example, SSA in the above example would have 2 degrees of freedom.

4.7.4 Detailed Mixed-Level Example

A soft drink bottler is interested in obtaining more uniform fill heights in the bottles

produced by the manufacturing process. The process engineer can control three

variables: the percent carbonation (x1), the operating pressure in the filler (x2), and
the bottles produced per minute or the line speed (x3). Due to various control issues,
the percent carbonation was selected at three different levels (10, 12, and 14%),

while the pressure (25 and 30 psi) and line speed (200 and 250 rpm) were selected at

two different levels. Two replicates will be performed and the deviation from the

correct fill height noted. The results are shown in Table 4.7. Based on the provided

results, analyse the model using the methods provided in the above discussion to

determine the best model for the process. Be certain to analyse the residuals to

Table 4.7 Optimising the performance of a bottling process

Run Percent carbonation (x1) Line speed (x3) Operating pressure (x2)

Deviation from

expected height

(inches)

I II

1 10 200 25 �3 �1

2 10 250 25 �1 0

3 10 200 30 �1 0

4 10 250 30 1 1

5 12 200 25 0 1

6 12 250 25 2 1

7 12 200 30 2 3

8 12 250 30 6 5

9 14 200 25 5 4

10 14 250 25 7 6

11 14 200 30 7 9

12 14 250 30 10 11
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determine the adequacy of the model (Data taken from Montgomery, Design and

Analysis of Experiments, 6th edn.).

4.7.4.1 Analysis

In order to solve this problem, the procedure will be split into the following steps:

1. Preprocessing the given data, that is, converting it into the desired format.

2. Determining the general form of the model.

3. Obtaining an appropriate basis for each of the factors.

4. Performing linear regression to obtain the parameter estimates.

5. Analysing the results using the F-test to determine an appropriate model.

6. Analysing the residuals and if necessary revise the model.

An explanation of how to implement this problem in Excel® is presented in

Sect. 8.7.3: Factorial Design Examples.

4.7.4.2 Preprocessing the Data

Before the data can be analysed, it must be converted into the format required for

analysis, that is, it must vary between �1 and 1 (inclusive). Using the formula for

centring the data (Eq. (3.77)) gives the following formulae:

~x1 ¼ x1 � 0:5 14þ 10ð Þ
0:5 14� 10ð Þ ¼ 0:5x1 � 6

~x2 ¼ x3 � 0:5 25þ 30ð Þ
0:5 30� 25ð Þ ¼ 0:4x2 � 11

~x3 ¼ x2 � 0:5 200þ 250ð Þ
0:5 250� 200ð Þ ¼ 0:04x3 � 9

ð4:70Þ

Using this encoding will place all of the variables in the [�1, 1] range.

4.7.4.3 Determining the General Model Form

The general model can be written as

y ¼ β0 þ β1~x1 þ β2~x2 þ β3~x3 þ β12~x1~x2 þ β13~x1~x3 þ β23~x2~x3 þ β123~x1~x2~x3

þ β11~x
2
1 þ β112~x

2
1~x2 þ β113~x

2
1~x3 þ β1123~x

2
1~x2~x3

ð4:71Þ
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It can be noted that since x1 has three levels, terms raised to the second power can be

included in the model. Note that there are 3� 2� 2¼ 12 terms, which is equal to

the product of the individual number of levels for each factor.

4.7.4.4 Obtaining a Basis

Using the previously developed methods, the first factor will be transformed using

the l¼ 3 results, while the other two factors will be transformed using the standard

l¼ 2 results (as has been done previously). Therefore, for l¼ 3, the basis functions

will be L1(~x1) ¼ ~x1 and L2(~x1)¼ 3~x1 – 2, while for l¼ 2, the basis function will

be L1(~x2) ¼ ~x2 (or ~x3).

4.7.4.5 Defining the Linear Regression Problem

Based on the above results, the following matrices will be defined

Apart ¼

1 �1 �1 �1 1 1 1 �1 1 �1 �1 1

1 �1 �1 1 1 �1 �1 1 1 �1 1 �1

1 �1 1 �1 �1 1 �1 1 1 1 �1 �1

1 �1 1 1 �1 �1 1 �1 1 1 1 �2

1 0 �1 �1 0 0 1 0 �2 2 2 2

1 0 �1 1 0 0 �1 0 �2 2 �2 2

1 0 1 �1 0 0 �1 0 �2 �2 2 �2

1 0 1 1 0 0 1 0 �2 �2 �2 1

1 1 �1 �1 �1 �1 1 1 1 �1 �1 �1

1 1 �1 1 �1 1 �1 �1 1 �1 1 �1

1 1 1 �1 1 �1 �1 �1 1 1 �1 1

1 1 1 1 1 1 1 1 1 1 1 1

2
6666666666666666664

3
7777777777777777775

ð4:72Þ

A ¼ Apart

Apart

� �
ð4:73Þ

~y ¼ �3 �1 �1 1 0 2 2 6 5 7 7 10 �1 0 0 1 1 3 1 5 4 9 6 11½ �T

ð4:74Þ

Solving the linear regression problem will give

~̂β ¼ 3:125 3:938 1:375 0:958 0:563 0:188 0:208 0:063 0:313½
�0:063 �0:208 �0:146 �T

ð4:75Þ
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The diagonal entries of the (ATA) matrix can be written as

diag ATA� �� � ¼ 24 16 24 24 16 16 24 16 48 48 48 48½ �
ð4:76Þ

It can be noted that the values are not the same. This is expected since an

orthonormal basis was not used.

4.7.4.6 Determining the Model

From Eq. (4.164.16), the sum of squares due to regression can be written as

SSRi ¼ ATA� �
ii
β̂2i ð4:77Þ

and the F-test will have the following form:

Fi ¼ SSRi

SSE

3 2ð Þ2 nR � 1ð Þ
¼ SSRi

SSE

24� 12

ð4:78Þ

where SSE is equal to 8.50 (from sum of residuals). The results are summarised in

Table 4.8. The critical value of F at 95% with 1 and 12 degrees of freedom is 4.75.

Based on the values in Table 4.8, and comparing the final column with the

critical value, gives that the values in bold are significant (Fi>Fcritical). Therefore,

the reduced model can be written as

y ¼ 3:13þ 3:94~x1 þ 1:38~x2 þ 0:958~x3 þ 0:563~x1~x2 þ 0:313L2 ~x21
� � ð4:79Þ

Table 4.8 F-test values—
values in bold are significant

at the 95% level

Parameters Value SSRi Fi

β0 3.125 234 331

β1 3.938 248 350

β2 1.375 45.4 64.1

β3 0.958 22.0 31.1

β12 0.563 5.063 7.147

β13 0.188 0.563 0.794

β23 0.208 1.042 1.471

β123 0.063 0.063 0.088

β11 0.313 4.688 6.618

β112 �0.063 0.188 0.265

β113 �0.021 0.021 0.029

β1123 �0.146 1.021 1.441
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Replacing the basis function by its actual value gives the following model:

y¼ 3:13þ 3:94~x1 þ 1:38~x2 þ 0:958~x3 þ 0:563~x1~x2 þ 0:313 3~x21 � 2
� �

y¼ 2:50þ 3:94~x1 þ 1:38~x2 þ 0:958~x3 þ 0:563~x1~x2 þ 0:939~x21
ð4:80Þ

If model reduction were to be performed using a normal probability plot of the

parameter values, the results would be a bit more ambiguous. Figure 4.8 shows the

normal probability plot of the parameters. In such cases, an orthonormal basis is

preferred as it would weigh each of the points equally.

4.7.4.7 Analysing the Residuals

For the reduced model, R2¼ 0.966, and the F-statistic for the reduced model is

103 (>2.77 at the 95% confidence level). The residual plots are shown in Figs. 4.9,

4.10, and 4.11. It would seem that the residuals are normally distributed without any

significant trends. Therefore, it can be concluded that the reduced-order model

accurately describes the given data.
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4.8 2k Factorial Designs with Centre Point Replicates

Although higher-order factorial designs are useful for fitting higher-order models, it

is easy to see that the number of experiments required can quickly become too large

to handle effectively given various constraints, such as available time and cost.

Therefore, methods have been developed that can fit higher-order models without

necessarily dealing with a full factorial experiment. One simple approach is to add
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centre points, that is, runs where all the coded variables are equal to zero, to the

design of the experiment. This approach has two advantages. First, it allows for the

computation of a variance for the model, which implies that the F-test can be used

even with a full factorial experiment with no replicates. Second, it can provide a

measure of the amount of curvature in the model. The model for this design consists

of two parts: the standard l¼ 2 factorial design model combined with a curvature

term denoted as βcx
2, that is,

y ¼ β0 þ
Xk
i¼ 1

βixi þ . . .þ|fflfflfflffl{zfflfflfflffl}
remaining

factorial

terms

βcx
2 ð4:81Þ

It can be noted that it is impossible to determine the individual contributions to the

curvature as all the second-order terms are confounded with each other, for exam-

ples, both x21 and x22 will have a column of 2k ones followed by as many zeroes as

there are centre point replicates.

As well, multiple replicates at the centre point are performed, so that an estimate

of the variance can be obtained. Clearly, if there is only a single centre point

replicate, then no estimate of the model variance can be obtained.

4.8.1 Orthogonal Basis for 2k Factorial Designs with Centre
Point Replicates

Assuming that the model is coded as usual for an l¼ 2 design, it is easy to show that

the curvature term is not orthogonal with the rest of the factorial design, since the

curvature term is correlated with the first-order responses (β1, β2,. . .). Furthermore,
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Fig. 4.11 Time series plot of the residuals
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there is an uneven number of experiments performed. Therefore, let L1(x) represent
an orthogonal basis for the curvature term, that is, Eq. (4.81) can be rewritten as

y ¼ β0 þ
X2k
i¼ 1

βixi þ . . .þ|fflfflfflffl{zfflfflfflffl}
remaining

factorial

terms

βcL1 xð Þ ð4:82Þ

In order to obtain an orthogonal basis in this case, it is necessary to note that the

results from Sect. 4.7 need to be modified to take into consideration the fact that an

arbitrary number of experiments will be performed. In this case, the key constraint

can be written as

X2knR þ nC

i¼ 1

L1 xið Þ ¼ 0 ð4:83Þ

where nC is the number of centre point replicates. It is easy to show that the factorial

component will satisfy this constraint as the factorial component must sum to zero

and the centre points are all encoded as 0, so that the sum remains 0. On the other

hand, the curvature term will not be orthogonal as it will contain 2knR ones and nC
zeroes, which will not equal zero. Note that for the curvature basis there are only

two independent values γ1 and γ2, and Eq. (4.83) can be rewritten as

2knRγ1 þ nCγ2 ¼ 0 ð4:84Þ

Since this equation has 2 unknowns and only 1 equation, we are free to arbitrary

assign any value to one of the two parameters. For the sake of consistency,6 let

γ1¼ 1, which implies that

γ2 ¼ � 2knR
nC

ð4:85Þ

The basis function can be written as

L1 xð Þ ¼ β1x
2 þ β2 ð4:86Þ

6 This will leave the factorial component unchanged.
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which given the two treatment values gives

L1 0ð Þ ¼ β2 ¼ γ2 ¼ � 2knR
nC

L1 �1ð Þ ¼ β1 þ β2 ¼ 1 ) β1 ¼ 1þ 2knR
nC

¼ nC þ 2knR
nC

ð4:87Þ

Therefore, the basis function for the curvature can be written as

L1 xð Þ ¼ nC þ 2knR
nC

� 

x2 � 2knR

nC
ð4:88Þ

4.8.2 Factorial Design with Centre Point Example

Consider a chemical engineer who is studying the yield of a chemical process.

There are 2 variables of interest: reaction time and reaction temperature. Since there

is some uncertainty regarding the appropriateness of a linear model, a single

unreplicated 22-factorial experiment was performed with 5 centre point replicates.

The results of the experiment are shown in Table 4.9. Based on the provided results,

analyse the model using the methods provided in the above discussion to determine

the best model for the process. Be certain to analyse the residuals to determine the

adequacy of the model (Data taken from Montgomery, Applied Statistics and

Probability for Engineers, 4th edn.).
An Excel®-based solution to this problem is presented in Sect. 8.7.3.

A similar procedure to that used to analyse the results in Sect. 4.7.4.1 will be

used in this example.

4.8.2.1 Determining the General Model

The model that will be analysed can be written as

y ¼ β0 þ β1x1 þ β2x2 þ β12x12 þ βcx
2 ð4:89Þ

Table 4.9 Improving

chemical plant yield data set
Run Reaction time (min) Temperature (�C) Yield (%)

1 �1 �1 39.3

2 �1 1 40.0

3 1 �1 40.9

4 1 1 41.5

5 0 0 40.3

6 0 0 40.5

7 0 0 40.7

8 0 0 40.2

9 0 0 40.6
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4.8.2.2 Selecting the Orthogonal Basis

Since nC¼ 5 and k¼ 2, an appropriate basis function for the curvature tern can be

written as

L1 xð Þ ¼ 5þ 22 1ð Þ
5

� 

x2 � 22 1ð Þ

5

¼ 1:8x2 � 0:8

ð4:90Þ

which gives that the model in terms of the orthogonal basis functions can be written

as

y ¼ β0 þ β1x1 þ β2x2 þ β12x12 þ βc 1:8x2 � 0:8
� � ð4:91Þ

4.8.2.3 Defining the Linear Regression Problem

Based on the above results, the following matrices will be defined

A ¼

1 �1 �1 1 1

1 �1 1 �1 1

1 1 �1 �1 1

1 1 1 1 1

1 0 0 0 �0:8
1 0 0 0 �0:8
1 0 0 0 �0:8
1 0 0 0 �0:8
1 0 0 0 �0:8

2
6666666666664

3
7777777777775

ð4:92Þ

~y ¼ 39:3 40:0 40:9 41:5 40:3 40:5 40:7 40:2 40:6½ �T ð4:93Þ

Solving the linear regression problem will give

~̂β ¼ 40:44 0:775 0:325 �0:025 �0:019½ �T ð4:94Þ

The diagonal entries of the (ATA) matrix can be written as

diag ATA� �� � ¼ 9 4 4 4 7:2½ � ð4:95Þ

It can be noted that the values are not the same. This is expected since an

orthonormal basis was not used. An explanation of how to implement this problem

in Excel® is presented in Sect. 8.7.3: Factorial Design Examples.
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4.8.2.4 Determining the Model

From Eq. (4.16), the sum of squares due to regression can be written as

SSRi ¼ ATA� �
ii
β̂2i ð4:96Þ

and the F-test will have the following form

Fi ¼ SSRi

SSE

m � n

¼ SSRi

SSE

2k þ nC � 2k � 1

¼ SSRi

SSE

nC � 1

¼ SSRi

SSE

4

ð4:97Þ

where SSE is equal to 0.172 (from sum of residuals). The results are summarised in

Table 4.10. The critical value of F at 95% with 1 and 4 degrees of freedom is 7.71.

Based on the values in Table 4.10 and comparing the final column with the

critical value gives that the values in bold are significant (Fi>Fcritical). Therefore,

the reduced model can be written as

y ¼ 40:4þ 0:775x1 þ 0:325x2 ð4:98Þ

Furthermore, it can be concluded that the effect of curvature is minimal in this

system as βc is not significant.
With so few parameters, using a normal probability plot of the parameters will

not give meaningful results.

4.8.2.5 Analysing the Residuals

For the reduced model, R2¼ 0.941 and the F-statistic is 15.9 (> 6.4 at the 95%

confidence level). The residual plots are shown in Figs. 4.12, 4.13, 4.14, and 4.15. It

would seem that the residuals are normally distributed without any significant

trends. Therefore, it can be concluded that the reduced-order model accurately

describes the given data.

Table 4.10 F-test values—
values in bold are significant

at the 95% level

Parameters Value SSRi Fi

β0 40.44 14,700 342,000

β1 0.775 2.40 55.9

β2 0.325 0.423 9.83

β12 �0.025 0.0025 0.058

βc �0.019 0.00272 0.063
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4.9 Response Surface Design

Another approach for designing second-order models to be used for process opti-

misation, without using higher-order factorial design for optimisation, is response
surface design. Many different approaches have been developed, many of which

require the use of specialised computer software to obtain a tractable solution.
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Fig. 4.12 Normal probability plot of the residuals for the reduced model
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4.9.1 Central Composite Design

The central composite design avoids the problem of higher-order factorial designs,

by judiciously selecting additional parameter points. The generic regression matrix,

A, for k factors consists of three different parts:

1. The regression matrix obtained from the 2k factorial experiment. This will be

denoted by F .

2. The central point of the system denoted by (0, 0, . . ., 0, 0), where there are

k zeroes. This part can be repeated as often as is desired or required. This part

will be denoted by C.
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Fig. 4.14 Residuals for the reduced model as a function of x1
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3. A matrix which consists of each factor at some value� α, where α is a value

determined by the designer. Thus, this part, denoted by E, will have the follow-
ing form:

E ¼

α 0 0 � � � � � � 0

�α 0 0 � � � � � � 0

0 α 0 � � � � � � 0

0 �α 0 � � � � � � 0

⋮ ⋮
0 0 0 � � � � � � α
0 0 0 � � � � � � �α

2
666666664

3
777777775

ð4:99Þ

Thus, the regression matrix A will have the following form:

A ¼
F
C
E

2
4

3
5 ð4:100Þ

The model that can be fit to this type of experiment is given as

y ¼ β0 þ
Xk
i¼ 1

βixi þ . . .þ|fflfflfflffl{zfflfflfflffl}
remaining

factorial

terms

Xk
i¼ 1

βiix
2
i ð4:101Þ

which is basically the standard 2k factorial experiment with the addition of the pure

quadratic terms due to each of the factors themselves.

4.9.1.1 Determining the Value of α

There are many different methods to determine the value of α. Let F¼ 2k, the

number of points due to the factorial design, and T¼ 2k+ nC, the number of

additional points, where nC is the number of central points in the design. Common

values are as follows (Myers 1971):

1. Rotatable design: α¼F0.25, which is the design implemented by the

ccdesign(k) function in MATLAB®. Rotatability implies that the variance

for points equidistant from the centre is equal. This is useful if the region of

interest is spherical.

2. Face-centred cubical design: α¼ 1, which is useful if the region of interest is a

cube. This approach will place the values in the centre of the plane defined by the

factorial experiment.

3. Orthogonal design: α¼ (0.25QF)0.25, where Q ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
Fþ T

p � ffiffiffi
F

p� �2
, which

minimises the correlation between the different parameter estimates.
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4.9.2 Optimal Design

Optimal design is the process of designing an experiment so that it is optimal with

respect to some criteria. All such designs are computer generated in that some

complex formula must be used in order to perform the relevant optimisation. The

most common forms of optimal design are:

1. A-optimal design, which seeks to minimise the trace of (ATA)�1. This can be

interpreted as the minimisation of the average value of the variance of the

regression coefficients.

2. D-optimal design, which seeks to minimise the determinant of (ATA)�1. This can

be interpreted as the minimisation of the volume of the joint confidence region of

the regression coefficients.

3. E-optimal design, which seeks to minimise the largest eigenvalue of (ATA)�1.

4. G-optimal design, which seeks to minimise the largest value of Nvar(ŷ )/σ2. This
can be interpreted as the minimisation of the scaled prediction variance. This

approach is useful if the goal of the model is to use it for future predictions.

5. V-optimal design, which seeks to minimise the average prediction variance for a

set of prediction points. This approach is useful if the goal of the model is to use

it for future predictions over multiple different points.

4.9.3 Response Surface Procedure

The response surface method is an iterative procedure for determining the optimal

point of a process. Starting from an initial large set of variables, a screening
experiment can be performed to determine which of the variables have the largest

influence on the desired variable. The number of variables selected at this stage can

be a factor of the time available to perform the detailed experiments and the

influence that the given variables have on the system. Once the screening experi-

ment has been completed, then a factorial or response surface method experiment

can be designed to obtain an initial estimate of the optimal point. Based on this

estimate of the optimal point, a new experiment could be designed to determine a

new optimal point. This procedure can be repeated until either the procedure

stabilises about a fixed point or after a fixed number of experiments. It can be

noted that the above procedure does not guarantee that the true optimal point will be

reached.

In seeking the optimal point, it is common to use the method of steepest ascent
or the gradient method. In this approach, based on the resulting relationship, the

new process operating point will be determined based on the direction with the

steepest gradient. This approach ensures that the optimal point can be reached the

fastest.
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4.10 Further Reading

The following are references that provide additional information about the topic:

1. General Design and Analysis of Experiments: Most of these references contain

information about factorial and fractional factorial design.

(a) Box GE, Hunter WG, Hunter JS (1978) Statistics for experimenters: an

introduction to design, data analysis, and model building. Wiley, New York

(b) Hinkelmann K, Kempthorne O (2007) Design and analysis of experiments,

vols I, II, III. Wiley, Hoboken

(c) Montgomery DC (1991) Design and analysis of experiments, 3rd

edn. Wiley, New York

2. Response Surface Methodology:

(a) Myers RH (1971) Response surface methodology. Allyn and Bacon, Inc.,

Boston

4.11 Chapter Problems

Problems at the end of the chapter consist of three different types: (a) Basic
Concepts (True/False), which seek to test the reader’s comprehension of the key
concepts in the chapter; (b) Short Exercises, which seek to test the reader’s ability
to compute the required parameters for a simple data set using simple or no
technological aids; this section also includes proofs of theorems; and
(c) Computational Exercises, which require not only a solid comprehension of the
basic material, but also the use of appropriate software to easily manipulate the
given data sets.

4.11.1 Basic Concepts

Determine if the following statements are true or false and state why this is the case.

1. Confounding of variables implies that (ATA) is uninvertible.

2. Randomisation is important, since it can minimise the effect of unknown

variables on the regression results.

3. Blocking seeks to minimise the effect of unknown variables on the regression

results.

4. A model defined based on an energy balance over the system is a black-box

model of the system.

5. A model developed for analysing the performance of the system can always be

used to predict the future behaviour of the system under new conditions.

6. A 34 full factorial experiment has 4 levels and 3 factors.

7. For a factorial experiment with no replicates, the variance can be determined.
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8. If the design is orthogonal, after a parameter is removed, then the remaining

parameters need to be recalculated.

9. The factor x1x3x4 is a third-order interaction.
10. Factorial design experiments with large number of levels and factors can be

expensive to run.

11. For fractional factorial experiment, it is useful if higher-order interactions are

known to be unimportant.

12. If the complete defining relationship is I¼ABCD¼ADE¼ABF, then the

resolution of this design is IV.

13. The more letters (factors) in a defining relationship, the larger the potential

resolution of the design.

14. Two interactions that are confounded can be individually estimated.

15. If the generator is F¼ABD, then the defining relationship for this generator is

I¼ABDF.

16. Adding central points to a factorial design experiment allows for the testing of

curvature (or second-order terms, such as A2 in the design).

17. If it is desired to use a model for future prediction, then an A-optimal design

is best.

18. If there are only a few factors to consider, then designing a screening experi-

ment is profitable.

19. The response surface methodology is an iterative procedure that requires

multiple experiments and modelling exercises.

20. A rotatable central composite design is useful if it is desired to have a common

variance for points equidistant from the centre.

4.11.2 Short Exercises

These questions should be solved using only a simple, nonprogrammable,
nongraphical calculator combined with pen and paper.

21. Consider the problem of trying to fit data to the following model:

yt ¼ �α1yt � 1 þ β1ut � 1 þ et ð4:102Þ

where α and β are coefficients to be determined and t is a subscript representing
the time of measurement, that is, t represents the current time and t – 1 repre-

sents the time one sampling unit in the past. For this model, it can be shown that

(Ljung 1999)

ATA ¼ E ytytð Þ �E ytutð Þ
�E ytutð Þ E ututð Þ
� �

ð4:103Þ
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In order to obtain parameter estimates, the matrix given by Eq. (4.103) must

be invertible for all nonzero values of α and β. If the input signal is of the

following form, under what conditions can the process be identified:

(a) ut¼�Kyt.
(b) ut¼�Kyt – 2.

(Further information about fitting such processes can be found in Chapter 6.)
22. Consider the following factorial design whose regression matrix is shown in

Table 4.11. Determine:

(a) What are the independent (or basic) factors and what are the dependent

factors?

(b) What are the generators?

(c) What is the complete defining relationship?

(d) What are the aliases of C (or what is the confounding relationship for C)

and for AF?

(e) What is the resolution?

(f) What type of factorial design it is?

23. You have to run a fractional factorial experiment where there are 6 (A, B,

C, D, E, and F) factors each at two different levels. You have decided that

a 26 – 2 fractional factorial experiment will be performed with the follow-

ing two generators:

D¼AC

F¼CD

Answer the following questions:

(a) What is the complete defining relation?

(b) What is the confounding pattern for all the first-order interactions?

(c) What is the resolution of this experiment?

(d) If a resolution of IV is desired, how could the above generators be changed

to achieve this? Give the complete defining relation to prove that the

design is indeed resolution IV.

Table 4.11 Design for the

fractional factorial

experiment (for Question 22)

Run A B C D E F

1 � � + + � +

2 + � + � � �
3 � + � + � �
4 + + � � � +

5 � � � � + +

6 + � � + + �
7 � + + � + �
8 + + + + + +
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24. You ran a 42 full factorial experiment. Not wanting to go through the hassle of

developing an orthogonal basis for such an experiment, you decided to analyse

this experiment as a 2-level factorial experiment. Answer the following

questions:

(a) What model can you fit with the original 42 experiment?

(b) Clearly explain how you could analyse this experiment as a 2-level

factorial experiment.

(c) Can you fit the original model using this type of analysis?

25. As the plant engineer, you have been asked to optimise the performance of a

chemical reactor. Using the information below, suggest a potential experimen-

tal design (including all defining relationships, generators, resolution, and the

regression matrix in terms of the factors). Clearly justify your choices based on

the requirements. The situation is as follows:

(a) There are five factors (A, B, C, D, and E).

(b) You have managed to obtain 2 days (48 hours) to do the complete

experiment.

(c) Each run takes 2 h, that is, you have enough time to complete 24 runs.

(d) All third-order and higher interactions are known to be minimal.

(e) It is expected that only some of the five factors are significant.

(f) It is desired to run some of the runs at the centre point in order to test for

curvature and variability in the results.

26. Consider the following 33 – 1 factorial experiment with the generator given as

x23 ¼ x1x
2
2

Answer the following questions:

(a) What is the complete defining relationship for this experiment?

(b) Determine the complete confounding pattern? (Hint: You will need to
confound 18 variables.)

(c) What type of model could be estimated using this type of experiment?

Give all estimable terms.

27. Propose a 26 – 2 factorial experiment so that it has resolution IV.

28. Determine a suitable design for a 34 – 1 factorial experiment.

4.11.3 Computational Exercises

The following problems should be solved with the help of a computer and appro-
priate software packages, such as MATLAB® or Excel®.
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29. In the article “In the Soup: A Case Study to Identify Contributors to Filling

Variability”, Hare (1988) considers the problem of trying to determine the

variables which affect the filling variability of dry soup mix. Five different

variables where considered: (A) number of filling ports being used in the

mixer, (B) the operating temperature, (C) the mixing time in seconds, (D) the

batch weight in pounds (lbs.), and (E) the delay between mixing and pack-

aging. The operating temperature was maintained using a cooling jacket:

either the cooling jacket was on (denoted by C) or the process was

operated at ambient conditions (denoted by A). The results are shown in

Table 4.12. Run 7 is the normal operating conditions. The results are

presented in the order in which they were run. Perform the following

analysis of this data set:

(a) Determine an appropriate coding for this experiment.

(b) What is the generator for this design?

(c) What is the resolution of this design?

(d) Estimate the factors? Which ones are significant?

(e) Using the reduced-order model, analyse the residuals and determine if the

design assumptions are met?

Table 4.12 Dry soup

variability data

(for Question 29)

Run σ̂p (lbs.) A B C (s) D (lbs.) E (days)

1 0.78 1 C 60 2,000 7

2 1.10 3 C 80 2,000 7

3 1.70 3 A 60 1,500 1

4 1.28 3 C 80 1,500 1

5 0.97 1 A 60 1,500 7

6 1.47 1 C 80 1,500 7

7 1.85 1 A 60 2,000 1

8 2.10 3 A 80 2,000 1

9 0.76 1 A 80 2,000 7

10 0.62 3 A 60 2,000 7

11 1.09 1 C 80 2,000 1

12 1.13 1 C 60 1,500 1

13 1.25 3 C 60 1,500 7

14 0.98 3 A 80 1,500 7

15 1.36 3 C 60 2,000 1

16 1.18 1 A 80 1,500 1

Reprinted with permission from the Journal of Quality Tech-

nology ©1988 ASQ, http://asq.org
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30. Consider the problem of trying to determine which conditions impact the life

(in hours) of a machine tool. The variables of interested have been selected as

cutting speed (A), tool geometry (B), and cutting angle (C). Consider the

following full factorial design whose regression matrix and results are shown

in Table 4.13. Perform all analysis at the 95% level. Answer the following

questions:

(a) Determine the model for the full factorial experiment.

(b) Fit the model and obtain confidence intervals for the parameter estimates.

Determine which parameter estimates should be kept.

(c) Calculate the F-score for each parameter estimate. Determine which

parameters should be kept.

(d) Are the results from (b) and (c) the same? Do you think that this is a

coincidence, or will this always be the case?

(e) Based on your results from (b) and (c), what model would you suggest for

the data? Which interactions are significant? Why?

(f) Examine the residuals for the full model, and determine if there are any

issues with the distribution of the residuals. (Hint: Plot the residuals for
each replicate in a different colour or on separate graphs.)

31. Consider the data shown in Table 4.14, which is for the optimisation of crystal

growth. In crystal growth optimisation, it is desired to produce the heaviest

crystal. Using the concepts presented in this and previous chapters, analyse the

provided data to answer the following questions:

(a) What is the best model for the data provided?

(b) At what optimal point should the process be operated?

(c) Criticise the experimental design and suggest ways to improve it.

Table 4.13 Tool life data

(for Question 30)
Run A B C

Replicate

y1 y2 y3

1 � � � 22 31 25

2 + � � 32 43 29

3 � + � 35 34 50

4 + + � 55 47 46

5 � � + 44 45 38

6 + � + 40 37 36

7 � + + 60 50 54

8 + + + 39 41 47

Data taken from D. Montgomery, Design and

Analysis of Experiments, 6th edn., Wiley & Sons
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Appendix A4: Nonmatrix Approach to the Analysis
of 2k-Factorial Design Experiments

It will be assumed that a 2k-factorial experiment has been designed with nR full

replicates. Furthermore, it will be assumed that all the factors have been coded

so that �1 and 1 represent the upper and lower levels in the experiment. The

same notation as presented in Chap. 4 will be used. Thus, instead of calculating

inverses and transposes, the following simplifications work for a 2k-factorial

experiment:

ATA ¼ 2kI k; ð4:104Þ

where I k is the k� k identity matrix,

ATA� ��1 ¼ 2�kI k ð4:105Þ
~̂β ¼ 2�kAT~y ð4:106Þ

Table 4.14 Crystal

optimisation data

(for Question 31)

y (grammes) A B C

66 �1 �1 �1

80 1 �1 �1

78 �1 1 �1

90 1 1 �1

75 �1 �1 1

70 1 �1 1

60 �1 1 1

75 1 1 1

90 �1.682 0 0

86 1.682 0 0

68 0 �1.682 0

63 0 1.682 0

75 0 0 �1.682

75 0 0 1.682

105 0 0 0

100 0 0 0

103 0 0 0

95 0 0 0

100 0 0 0

96 0 0 0

Data taken from D. Montgomery, Design and

Analysis of Experiments, 6th edn., Wiley & Sons
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If A is used, then the results are

ATA ¼ 2knRI k ð4:107Þ
ATA� ��1 ¼ 2�k nRð Þ�1I k ð4:108Þ

The sum of squares due to errors, SSE, can be computed using the following

formula:

SSE ¼ nR � 1ð Þ
X2k
i¼ 1

s2i ; ð4:109Þ

where si is the standard deviation for the replicates for treatment i. Thus the

standard deviation, σ̂ , can be determined as

σ̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SSE

lk nR � 1ð Þ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiX2k
i¼ 1

s2i

lk

vuuuut ð4:110Þ

The effect due to each variable can be determined from

Effect ¼ 2β̂ ð4:111Þ
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Chapter 5

Modelling Stochastic Processes with Time
Series Analysis

So far with a few minor exceptions, the data used for regression analysis has been

assumed to be independent of time, that is, the same values would be obtained

irrespective of the time or sequence of events. In many process engineering

examples, such an assumption is not necessarily true. The process values change

from sampling point to sampling point and the individual values strongly depend on

adjacent process values, for example, the growth of a crystal is a time-dependent

process. In such cases, analysing the data set using standard regression analysis may

not be appropriate. A data set where the time element is important is often called a

time series. Time series are found in many different fields including economics,

business, social sciences, and of course, science and engineering. The development

of time series analysis methods has often been done in parallel in many different

fields. Three different approaches to the analysis of time series can be considered

(Shumway and Stoffer 2011). The first approach, which will be referred to here as

the transfer function-based approach, seeks to develop a class of suitable models

that describe the observable system using the available information. The internal

dynamics of the system are not considered in this approach. The transfer function-

based approach finds wide application in process engineering, as it forms one of the

main forms of modelling in process control applications. The foundations of this

approach were laid by Box and Jenkins (Box and Jenkins 1970) in the middle part of

the twentieth century. The second approach, which will be referred to here as the

state-space-based approach, seeks to develop an understanding of the internal

process dynamics that can be used to predict the future behaviour of the system.

This approach incorporates the Kalman filter into developing appropriate parameter

estimates. This approach although relatively new is finding more widespread

implementation in process engineering due to its ability to handle complex process

dynamics. The approach is based on the work of Kalman in developing a new

method for dealing with time series data (Kalman 1960; Kalman and Bucy 1961).

Applications of this approach to time series analysis are detailed in Harvey (1991).

The third and final approach, which will be referred to here as the frequency-
domain-based approach, seeks to develop methods for understanding the process

© Springer International Publishing Switzerland 2015
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in the frequency domain, that is, what kind of periodic signals are present in the

given data set. In chemical and process engineering, transfer function and

frequency-domain-based approaches are the most common ways of examining

time series. Frequency-domain analysis often uses a Fourier transformation of the

data set to highlight the key frequencies present. A good overview of these methods

can be found in (Bloomfield 2000 and Priestley 1981).

Given the pre-eminence of the transfer function and frequency-domain-based

approaches in process and chemical engineering, these two approaches will be

discussed in greatest detail in this chapter. Nevertheless, information about the

state-space-based approach will also be considered. This chapter will present the

basic, univariate approach to time series analysis, which will be extended in Chap. 6

to consider the multivariate case containing both stochastic and deterministic

components in order to model complex processes for process control, economic

analysis, and simulation development.

5.1 Fundamentals of Time Series Analysis

A time series is a data set whose individual entries are ordered chronologically, that

is, let the time series Y be defined as follows:

Y ¼ y0; y1; y2; . . . ; ymf g ð5:1Þ

where y0 represents the data sample at the initial sampling point, y1 the data sample

at the first sampling point, and m the total number of samples taken. It should be

noted that the time interval between each of the samples is constant, that is, each

sample is obtained every S seconds or other appropriate time units.

For a time series, it is possible to compute such statistical properties as mean and

standard deviation. However, these values can easily depend on time, that is,

different subsets will have completely different means, for example, a growing

crystal will initially have a small mean value, which will increase as the crystal

grows. Since dealing with changing values can be difficult in many statistical

applications, some assumptions are made about the properties of the time series.

A time series is said to be strictly stationary if the probabilistic behaviour of

every subset of values, {xt, xt + 1,. . .xt + j} is identical to the time shifted set {xt + k,

xt + k + 1,. . .xt + k + j}, that is,

P xt < c1, . . . , xtþ j < cj
� � ¼ P xtþ k < c1, . . . , xtþ k þ j < cj

� � ð5:2Þ

for all j¼ 1, 2,. . .; all time points t¼ t1, t2,. . .; all constants c1, c2. . .,cj; and all shifts,
k¼ 0, 1, 2,. . .. Strict stationarity implies that the distribution of variables is the

same at every time instant and that all statistical properties are constant. In practice,

it can be difficult to determine if a single data set satisfies this strict stationary
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condition. Therefore, a weaker version that only constrains the first two moments

has been developed.

A time series is said to be weakly stationary, if:

1. The time series has a finite variance.

2. The mean of the time series is constant and independent of time, that is, μ¼
E(xt).

3. The autocovariance function, defined by Eq. (5.3), is independent of time.

Unless otherwise specified, references to a stationary signal will imply that we are

dealing with the weakly stationary definition.

In order to compute various properties, it is useful to treat each entry in a time

series as a random variable. Therefore, the autocovariance of the time series, γ(t, τ),
at time t and lag τ can be given as:

γ t; τð Þ ¼ E
�ðyt � EðytÞÞðytþ τ � Eðytþ τÞÞT

� ð5:3Þ

The autocovariance of a signal shows the degree of correlation between the signal at

different time periods. It can be noted that the autocovariance at a lag of 0 is always

equal to the covariance of the time series. However, since the values of the

autocovariance are not normalised, comparing different time series can be difficult.

Instead, the normalised autocovariance, or the autocorrelation, ρ(t, τ), is more

useful. Autocorrelation is defined as

ρ t; τð Þ ¼ γ t; τð Þ
γ t; 0ð Þ ¼

γ t; τð Þ
σ2t

ð5:4Þ

The autocorrelation, unlike the autocovariance, varies only between �1 and 1.

From the definition of a weakly stationary signal, the autocovariance and autocor-

relation will not depend on t. Therefore, the t can be dropped from the computation

to give

γ τð Þ ¼ E
�
yt � μYð Þðytþ τ � μYÞT

� ð5:5Þ

ρ τð Þ ¼ γ τð Þ
γ 0ð Þ ¼

γ τð Þ
σ2y

ð5:6Þ

where μy is the mean value of the given time series. For a stationary signal, both the

autocovariance and autocorrelation functions are even functions, that is,

ρ τð Þ ¼ ρ �τð Þ ð5:7Þ

For two stationary time series, X and Y, the cross-covariance, γXY(τ), is defined as

γXY t; τð Þ ¼ E
�
xt � μXð Þðytþ τ � μYÞT

� ð5:8Þ
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Similar to the autocovariance, this measure is not very useful as it is not bounded.

Instead, the cross-correlation, ρXY(τ), which is a measure of the correlation between

the two signals, is more useful. The cross-correlation is defined as

ρXY t; τð Þ ¼ E
�
xt � μXð Þðytþ τ � μYÞT

�
ffiffiffiffiffiffiffiffiffiffi
σ2Xσ

2
Y

p ð5:9Þ

Two time series are said to be jointly stationary if

1. Both series are stationary.

2. The cross-covariance function for the two time series does not depend on t.

Joint stationarity implies that the cross-correlation function can be written as

ρXY τð Þ ¼ E
�
xt � μXð Þðytþ τ � μYÞT

�
ffiffiffiffiffiffiffiffiffiffi
σ2Xσ

2
Y

p ð5:10Þ

In such cases, the cross-correlation function is an odd function, that is,

ρXY τð Þ ¼ ρYX �τð Þ ð5:11Þ

The final useful type of correlation is the partial correlation, which represents

the amount of correlation between two variables after accounting for any mutual

variables, that is, it is a conditional correlation defined as

ρXYjZ ¼ cov x; yjzð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cov xjzð Þcov yjzð Þp ð5:12Þ

where Z represents the variables on which conditioning is performed (Franke

et al. 2011). In time series analysis, the most common form of partial correlation

is the partial autocorrelation defined as

ρXjZ τð Þ ¼ cov xt; xtþ τjxtþ 1, . . . , xtþ τ � 1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cov xtjxtþ 1, . . . , xtþ τ � 1ð Þcov xtþ τjxtþ 1, . . . , xtþ τ � 1ð Þp ð5:13Þ

In partial autocorrelation, the conditioning is performed on all values located

between the two variables of interest. This implies that the effect of the intermediate

variables is removed from the computed autocorrelation between the two variables.

In order to compute this function, it is first necessary to develop the appropriate

models for time series analysis. Further information about computing the values are

provided in Sect. 5.4.1.2.

214 5 Modelling Stochastic Processes with Time Series Analysis



5.1.1 Estimating the Autocovariance and Cross-Covariance
and Correlation Functions

The autocovariance and cross-covariance can be estimated using the following

formulae:

γ̂ τð Þ ¼ 1

m

Xm� τ

t¼ 1

yty
T
tþ τ

γ̂XY τð Þ ¼ 1

m

Xm� τ

t¼ 1

xty
T
tþ τ

ð5:14Þ

The parameter estimates given above are biased but more useful. On the other hand,

to obtain unbiased estimates, m can be replaced by m – τ.
The estimated autocorrelation function is defined as

ρ̂ τð Þ ¼ γ̂ τð Þ
γ̂ 0ð Þ ; ð5:15Þ

while the estimated cross-correlation function is defined as

ρ̂XY τð Þ ¼ γ̂XY τð Þ
γ̂XY 0ð Þ ð5:16Þ

The large sample properties for both the estimated autocorrelation and the

estimated cross-correlation functions are similar. The large sample distribution of

ρ̂ τð Þ is normal with zero mean and a standard deviation given as

σρ̂ ¼ 1ffiffiffiffi
m

p ð5:17Þ

where m is the number of data points used to estimate the correlation function. This

relationship applies both for the auto- and cross-correlation functions. The confi-

dence interval for the estimated correlation values can then be written as

CIρ̂ ¼ t1� α=2,mffiffiffiffi
m

p ð5:18Þ

In practice, since we have assumed that m is large, then t1� α=2,m
� Z1� α=2

¼
1:96 � 2. This confidence interval is useful in determining which correlation values

are significant and which ones could be equal to zero.
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5.1.2 Obtaining a Stationary Time Series

Since the results presented in this chapter require that a series be stationary, it is

necessary to consider the procedure for obtaining a stationary series. A

nonstationary signal can be made stationary by taking the difference between

two adjacent values. This procedure is called differencing. If the differences them-

selves are not stationary, then they can be differenced until a stationary differenced

signal is obtained. However, it should be noted that differencing will lead to a loss of

information in the signal and can introduce correlations where there are none.

There are two types of differencing: true and periodic. In true differencing, the
difference between adjacent values is taken, that is,

Δyt ¼ yt � yt � 1 ð5:19Þ

where Δ represents the difference operator. The value is an approximation to the

derivative at this point. Therefore, to obtain the final model, it will be necessary to

integrate the differenced model.

On the other hand, in periodic differencing, the difference is computed between

values that are some constant distance apart, that is,

Δ pyt ¼ yt � yt� p ð5:20Þ

where p is the period for differencing and Δp is the periodic difference operator.

Such differencing can be useful if the data set shows cyclic or periodic behaviour.

This is especially common in econometric or meteorological data series, where a

period of 1 year or 12 months (depending on the sampling) is commonly observed.

5.1.3 Edmonton Weather Data Series Example

Consider the case of a chemical engineer who is involved in the optimisation of a

plastics plant on Refinery Row in Edmonton, Alberta, Canada. After analysing the

available data, it was determined that the summer temperature had an overall effect

on profitability of the plant. For this reason, it was desired to model the mean

summer temperature so as to be able to predict the temperature in the future.

After examining all the available weather data, the data set presented in Table 5.3

for Edmonton was compiled using original data from Environment Canada. Further

information regarding this data set, including all the original data points, can be

found in Appendix A5. The challenge is to use this data set to develop a model of

the mean summer temperature.

A time series plot of the mean summer temperature is shown in Fig. 5.1. In this

example, the autocorrelation of the mean summer temperature will be determined.

Also, the cross-correlation between the mean summer temperature and the mean

spring temperature will be examined. The methods used to compute these plots can

be found in either Chap. 7 for MATLAB® or Chap. 8 for Excel®.
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The autocorrelation plot is shown in Fig. 5.2, the partial autocorrelation plot in

Fig. 5.3, and the cross-correlation between the mean summer and spring tempera-

tures in Edmonton in Fig. 5.4. For the autocorrelation plot shown in Fig. 5.2, there

are some salient features that need to be considered. Firstly, it can be noted that at a

lag of zero, the autocorrelation is, as expected, 1. Secondly, it can be seen that all of

the autocorrelations are located above the 95% confidence interval for significance.

Note that the confidence intervals are equal to 2/√121¼ 0.18. This suggests that all

of the observed correlations are significant. Finally, there seems to be a weak, but

noticeable, 8-lag oscillation.

The partial autocorrelation plot for the mean summer temperature in Edmonton,

shown in Fig. 5.3, has the same format as the autocorrelation plot. Unlike in the

autocorrelation plot, here, there are values located both inside and outside of the

confidence region. A similar pattern to that previously observed can be seen here,

that is, the values are significant at multiples of some constant. In this case, the

significant partial autocorrelation values are located at lags of 1, 2, 3, and 8. This

suggests a potential 2-year seasonal component (with values at 2, 4, 6, and 8).

The cross-correlation plot shown in Fig. 5.4 between the mean summer and

spring temperatures has a similar format to the previously considered autocorrela-

tion plot. The confidence interval is, as was previously noted, the same as for the

autocorrelation plot. The salient feature is the 4 largest lags at �20, �16, 3, and 4.

At this point, it would be useful to comment briefly about the meaning of these

values. Since the formula for computing the cross-covariance can be written as

yt + τ¼ xt or equivalently yt¼ xt – τ, we can see that positive values correspond to a

relationship between past values of x (or in our case, the mean spring temperature)
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Fig. 5.1 Time series plot of the mean summer temperature in Edmonton
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Fig. 5.2 Autocorrelation plot for the mean summer temperature in Edmonton. The thick dashed

lines show the 95% confidence intervals for the given data set

0 2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

0.4

0.6

0.8

1

Lag (sample)

P
ar

tia
l A

ut
oc

or
re

la
tio

n,
 ρ

Fig. 5.3 Partial autocorrelation plot for the mean summer temperature in Edmonton. The thick

dashed lines show the 95% confidence intervals for the given data set
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and current values of y (the mean summer temperature). Negative lags correspond

to future values of x impacting a current value of y. Since we are interested in

developing a model for y, a future lag relationship is not too useful, as it would

imply that we will need to know values about the mean spring temperature in years

that have not yet occurred. Since this requires either a good crystal ball or another

model with its own inherent imperfections, the negative lag correlations are not

terribly useful for the stated purpose. Therefore, the only two lags of interest are the

positive ones at 3 and 4 years.

5.2 Common Time Series Models

In order to describe different time series models compactly, it is necessary to

introduce the z- or forward shift operator.1 It is defined as

yt þ 1 ¼ zyt; ð5:21Þ
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Fig. 5.4 Cross-correlation between the mean summer temperature ( y) and the mean spring

temperature (x) in Edmonton. The thick dashed lines show the 95% confidence intervals for the

given data set

1 In the literature, different definitions can be found leading to slightly different overall forms,

especially when it comes to the analysis of the model properties. The approach taken here is the

most common, especially in the process control field.
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that is, the forward shift operator shifts the time forwards by one sample. Similarly,

z�1 or the backshift operator performs the opposite job of the forward shift

operator, that is,

yt � 1 ¼ z�1yt ð5:22Þ

or a backward shift of one sample.

This implies that the differencing formulae can be rewritten as

Δyt ¼ yt � z�1yt ¼ 1� z�1
� �

yt ð5:23Þ

and

Δ pyt ¼ yt � z� pyt ¼ 1� z� pð Þyt ð5:24Þ

The most general, time series model called a seasonal, autoregressive, inte-
grated, moving-average (SARIMA) model of order ( p, d, q)� (P, D, Q)s has the
form

AP z�sð ÞA p z�1
� �

1� z�sð ÞD 1� z�1
� �d

yt ¼ BQ z�sð ÞBq z�1
� �

et ð5:25Þ

where Ap(z
�1) and Bq(z

�1) are polynomials in z�1 of the form

A p z�1ð Þ ¼ 1þ
Xp
i¼ 1

αiz
�i

Bq z�1ð Þ ¼ 1þ
Xq
i¼ 1

βiz
�i

ð5:26Þ

αi and βi are the parameters of the corresponding polynomial, and AP(z
�s) and

BQ(z
�s) are defined as

AQ z�sð Þ ¼ 1þ
XP
i¼ 1

αsiz
�si

BP z�sð Þ ¼ 1þ
XQ
i¼ 1

βsiz
�si

ð5:27Þ

The process to be modelled is denoted by y, and e represents an independent,

random variable drawn from a Gaussian distribution at each time instance, t. The
model can be split into two components: the seasonal component and the conven-
tional component. The seasonal component concerns those polynomials that
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contain an s in their power representation and have orders given by capital letters,

that is, polynomials AP, BQ, and (1 – z�s)D. The remaining terms (Ap, Bq, and

(1 – z�1)d) are called the conventional component. In practice, various simplifica-

tions are made to this model. The following are the most common simplified

models:

1. Autoregressive Model: in this model, all polynomials except the Ap(z
�1)-

polynomial are assumed to have zero order. This gives a model of the form

yt ¼
1

A p z�1ð Þ et ¼
1

A z�1ð Þ et ð5:28Þ

It is called an autoregressive model because the model solely depends on the

past values of the process itself, that is, Eq. (5.28) can be written as

yt ¼ α1yt� 1 þ α2yt� 2 þ . . .þ α pyt� p þ et ð5:29Þ

The pure seasonal autoregressive model is similarly defined but solely con-

siders the seasonal component given by AP(z
�s).

2. Moving-Average Model: in this model, all polynomials except the Bq(z
�1)-

polynomial are assumed to have zero order. This gives a model of the form

yt ¼ Bq z�1
� �

et ¼ B z�1
� �

et ð5:30Þ

It is called a moving-average model, since it computes the (weighted) average

of the past random values. Eq. (5.30) can be written as

yt ¼ et þ β1et� 1 þ β2et� 2 þ . . .þ βqet� q ð5:31Þ

The pure seasonal autoregressive model is similarly defined but solely con-

siders the seasonal component given by BQ(z
�s).

yt ¼ BQ z�sð Þet ð5:32Þ

3. Integrating Model: in this model, all polynomials, except (1 – z�1)d, are assumed

to have zero order. This gives a model of the form

yt ¼
1

1� z�1ð Þd et ð5:33Þ

It is called an integrating model because the error is continually added to the

previous values, that is, for the case, d¼ 1, Eq. (5.33) can be written as

yt ¼ yt� 1 þ et ð5:34Þ

The integrating model is often also called the random-walk model, since the

time series plot of the data can resemble a person walking randomly along the
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xy-plane. The pure seasonal integrating model is similarly defined but solely

considers the seasonal component given by (1 – z�s)D.

4. Autoregressive, Moving-Average Model (ARMA): this model combines the

autoregressive and moving-average models but ignores the seasonal and inte-

grating components to give a model of the form

yt ¼
Bq z�1ð Þ
A p z�1ð Þ et ¼

B z1ð Þ
A z�1ð Þ et ð5:35Þ

Another type of model that can be used to describe a time series is the infinite-
order moving-average, also known as the causal form of the model, which is

defined as

yt ¼
X1
j¼ 0

hjet� j ð5:36Þ

where h is the impulse response coefficient that can be obtained by performing long

division with the polynomials in the general model. The first term of the error impulse

response model, h0, is traditionally equal to 1. This model is commonly encountered

in many theoretical applications. The corresponding form in terms of the noise term is

called the invertible form of the model and is defined as

et ¼
X1
j¼ 0

kjyt� j ð5:37Þ

where k is defined analogously to h in the causal form.

In order to understand the different properties of these models, the next section

will examine the theoretical behaviour of the different models. This will provide

insight into methods that can be used to estimate some of the required parameters.

5.3 Theoretical Examination of Time Series Models

The theoretical examination of time series models considers the computation of

theoretical properties and their interpretation. These results will allow us to develop

different methods for modelling and understanding time series.

For the analysis of time series models, two concepts need to be introduced:

causality and invertibility. A process is said to be causal, if and only if, the current

value of the process can be determined solely using past or current values of the

process. This means that no unavailable, future values of the process are required. A

process is said to be causal if and only if all roots of the denominator (i.e. the A-
polynomials) lie inside the unit circle in the complex domain, that is, jzj< 1. Under

such circumstances, a causal process is also stationary. Furthermore, for a causal

process, the infinite-order moving-average model will converge to a finite value.
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A time series process is said to be invertible if and only if the inverse process is

also causal, that is, if yt¼ Let and then if et¼ L�1yt is causal, it is said that the

original process is invertible. Furthermore, this implies that an invertible form of

the model converges to a defined value. Clearly, if the denominator of the model

determines causality, then invertibility will be determined by roots of the numerator

of the original process (i.e. the B-polynomials) lying inside the complex unit circle,

that is, jzj< 1. Invertibility arises in the analysis of moving-average processes,

since it can be impossible to distinguish between two different moving-average

processes by solely examining their output, that is, yt.

5.3.1 Properties of a White Noise Process

Before considering the different types of models mentioned above, it is instructive

to first examine a white noise signal. A white noise signal is defined as

yt ¼ et ð5:38Þ

where et ~ N (0, σ2). Furthermore, it is assumed that the individual values are

identical (same distribution) and independent. The mean of this signal is

μy ¼ E ytð Þ ¼ E etð Þ ¼ 0 ð5:39Þ

The autocovariance is

γ y τð Þ ¼ E ytyt� τð Þ ¼ E etet� τð Þ ¼ σ2 τ ¼ 0

0 otherwise

�
ð5:40Þ

The result follows from the fact that the signal values are independent of each other.

This implies that for two values et and et – τ, τ 6¼ 0, the expected value will be zero.

This is a very useful property of a white noise signal. The autocorrelation will then

be 0 for all jτ j> 0 and 1 for τ¼ 0. This implies that a white noise signal will have a

single peak on a autocorrelation plot at τ¼ 0. All other values will be zero. A pure,

white noise signal is always invertible and causal.

5.3.2 Properties of a Moving-Average Process

This section will examine the properties of a moving-average process, MA(q),
defined as

yt ¼ et þ β1et� 1 þ β2et� 2 þ . . .þ βqet� q ¼
Xq
i¼ 0

βiet� i ð5:41Þ
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where, as before, et ~ N (0, σ2) and the individual values are identical (same

distribution) and independent. It should be noted that, by convention, β0¼ 1. The

mean of the process is easy to compute as being equal to 0.

Theorem 5.1 Autocovariance of a Moving-Average Process. The autocovariance
of a moving-average process can be written as

γ τð Þ ¼
Xq� τ

i¼ 0

βiβiþ τσ
2 τ � q

0 otherwise

8<
: ð5:42Þ

Proof Substituting the definition of a moving-average series (Eq. 5.41) into the

definition of the autocovariance (Eq. 5.3) gives

γ τð Þ ¼ E
Xq
i¼ 0

βiet� i

Xq
j¼ 0

βjet� jþ q

 !
ð5:43Þ

Multiplying through Eq. (5.43) gives

γ τð Þ ¼
Xq
i¼ 0

βiE et� i

Xq
j¼ 0

βjet� jþ τ

 ! !

¼
Xq
i¼ 0

βiE β0et� ietþ τ þ β1et� ietþ τ � 1 þ � � � þ βqet� iet� qþ τ

� � ! ð5:44Þ

From the definition of a white noise signal, the autocovariance will be nonzero if

and only if the two white noise realisations have the same subscripts. Therefore,

solving for the subscripts gives

t� i ¼ t� jþ τ
j ¼ iþ τ

ð5:45Þ

Thus, the only nonzero terms inside the expectation sign will be the terms such that

j¼ i + τ. This implies that Eq. (5.44) can be rewritten as

γ τð Þ ¼
Xq
i¼ 0

βiβiþ τσ
2

 !
ð5:46Þ

Now, it should be noted that the values of βj for j> qwill be equal to zero. Therefore,
setting j¼ q in the subscript equation gives that i� q – τ. Furthermore, for lags τ> q
there will not be any nonzero parameters (at least one of the two parameters will be

zero), and so the sum will be zero. Therefore, Eq. (5.42) is obtained. Q.E.D.
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Corollary 5.1 Variance of a Moving-Average Process. The variance of a moving-
average process can be written as

γ 0ð Þ ¼
Xq
i¼ 0

β2i σ
2 ð5:47Þ

Proof Setting τ¼ 0 into Eq. (5.42) will quickly give the above solution. Q.E.D.

Corollary 5.2 Autocorrelation of a Moving-Average Process. The autocorrelation
of a moving-average process can be written as

ρ τð Þ ¼

Xq� τ

i¼ 0

βiβiþ τ

Xq
i¼ 0

β2i

τ � q

0 otherwise

8>>>>><
>>>>>:

ð5:48Þ

Proof From Eq. (5.42) and the definition of autocorrelation. Q.E.D.

For a moving-average process, it can be seen that the autocorrelation will

decrease from 1 at a lag of zero to a value of 0 for all lags greater than q. This
suggests that plotting the (estimated) autocorrelation function of an unknown

moving-average process can reveal the underlying order q.

Example 5.1: Example of a Moving-Average Process

Consider the following moving-average process:

yt ¼ et þ 0:5et � 1 þ 0:1et � 2

where et ~ N(0, 4) is a Gaussian, white noise process. Compute the mean,

variance, and general autocorrelation function for the process. Compare with

the results from Corollary 5.2.

Solution

The mean value can be computed as follows:

μy ¼ E ytð Þ ¼ E et þ 0:5et� 1 þ 0:1et� 2ð Þ
¼ E etð Þ þ 0:5E et� 1ð Þ þ 0:1E et� 2ð Þ
¼ 0

(continued)
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Example 5.1 (continued)

since E(et)¼E(et � 1)¼E(et � 2)¼ 0. The variance can be computed as follows

σ2y ¼ E ytytð Þ ¼ E et þ 0:5et� 1 þ 0:1et� 2ð Þ et þ 0:5et� 1 þ 0:1et� 2ð Þð Þ
¼ E etetð Þ þ 0:5E et� 1etð Þ þ 0:1E et� 2etð Þ þ 0:5E et� 1etð Þ
þ 0:52E et� 1et� 1ð Þ þ 0:1 0:5ð ÞE et� 2et� 1ð Þ þ 0:1E et� 2etð Þ
þ 0:5 0:1ð ÞE et� 1et� 2ð Þ þ 0:12E et� 2et� 2ð Þ

¼ σ2 þ 0:52σ2 þ 0:1σ2 ¼ 1:26 4ð Þ ¼ 5:04

Note that only the terms where the subscripts are equal have a nonzero value.

All other values are zero. The autocovariance function for τ> 0 can be

computed as follows

γ τð Þ ¼ E ytytþ τ

� � ¼ E et þ 0:5et� 1 þ 0:1et� 2ð Þ etþ τ þ 0:5et� 1þ τ þ 0:1et� 2þ τð Þð Þ
¼ E etetþ τð Þ þ 0:5E et� 1etþ τð Þ þ 0:1E et� 2etþ τð Þþ

0:5E et� 1þ τetð Þ þ 0:52E et� 1þ τet� 1ð Þ þ 0:1 0:5ð ÞE et� 2et� 1þ τð Þþ
0:1E et� 2þ τetð Þ þ 0:5 0:1ð ÞE et� 1et� 2þ τð Þ þ 0:12E et� 2þ τet� 2ð Þ

Again, the only significant terms will be for those whose subscripts are equal

at the given lag. For τ¼ 1, we get

γ 1ð Þ ¼ 0:5E etetð Þ þ 0:5 0:1ð ÞE et� 1et� 1ð Þ ¼ 0:55σ2 ¼ 0:55 4ð Þ
¼ 2:2

Similarly, for τ¼ 2, we get

γ 2ð Þ ¼ 0:1E etetð Þ ¼ 0:1σ2 ¼ 0:1 4ð Þ
¼ 0:4

For τ� 3, the autocovariance will be zero. Since ρ(τ)¼ γ(τ)/γ(0), the auto-

correlation function becomes

ρ τð Þ ¼
1 τ ¼ 0

55=
126

τ ¼ 1
5=
63

τ ¼ 2

0 otherwise

8>><
>>:

This is identical to the results obtained using the formula in Corollary 5.2.
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Example 5.2: Simulation of a Moving-Average Process

Consider the same moving-average process as in Example 5.1, which has

been simulated for 2,000 samples. Examine the provided autocorrelation plot

and compare it with the values obtained previously. The results are shown in

Fig. 5.5.

Solution

As expected, the autocorrelation plot has only three significant peaks

(at τ¼ 0, 1, and 2). The estimated values are close to the theoretical values.

Notice that even though the values for τ� 3 should be zero, we see some of

them being on the boundary or slightly over. This will always be the case with

estimated values, which makes the exact determination of the order slightly

more complicated. Nevertheless, for a moving-average process, the autocor-

relation plot does allow for the process order to be estimated.

Since a moving-average process does not contain a denominator, it is always

causal. However, it may not always be invertible. Consider a simple MA(1) process

where β01 ¼ 2 and β001 ¼ 2�1 ¼ 0:5. It is easy to see that both will have the same

autocorrelation function. In fact, this is true for any pair of values, β1 and β�1
1 .

Furthermore, the autocovariance function for both β01 ¼ 2 with σ2¼ 1 and β001 ¼ 0:5
with σ2¼ 4 will be the same. This implies that it will be impossible to distinguish

these two pairs solely by examining yt. Unfortunately, since yt is the only informa-

tion about the process that we have, it is necessary to break the tie somehow. In this

case, the best choice is to take the one that is invertible, that is, its inverse process is

causal. Invertibility can be useful when dealing with process analysis.
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Fig. 5.5 (Left) Time series plot of the given moving-average process and (right) auto-
correlation plot for the same process

5.3 Theoretical Examination of Time Series Models 227



5.3.3 Properties of an Autoregressive Process

This section will examine the properties of an autoregressive process, AR( p),
defined as

yt ¼ et � α1yt� 1 � α2yt� 2 � . . .� α pyt� p ¼ et �
Xp
i¼ 0

αi yt� i

¼ 1

1þ α1z�1 þ α2z�2 þ � � � þ α pz� p
et ð5:49Þ

where, as before, et ~N (0, σ2) and the individual values are identical (same

distribution) and independent. In order to simplify the computation of the various

properties of an autoregressive process, it is useful to recast the process into its

equivalent infinite moving-average form, that is,

yt ¼ et �
Xp
i¼ 0

αi yt� i ¼
X1
i¼ 0

hiet� i ð5:50Þ

The coefficients hi can be obtained by performing long division on the original

polynomial expression given in Eq. (5.49).

The mean value of the autoregressive process can be computed using Eq. (5.50),

that is,

μy ¼ E ytð Þ ¼
X1
i¼ 0

hiE et� ið Þ ¼ 0, if the series converges ð5:51Þ

Clearly, if the series does not converge, then the mean value cannot exist.

Theorem 5.2 Autocovariance of an Autoregressive Process. The autocovariance
of an autoregressive process can be written as2

γ τð Þ ¼
Xp
i¼ 1

Xp
j¼ 1

�θj
� �τ

ϕiϕj

1� θiθj
σ2 ð5:52Þ

where θ are the distinct, possibly complex, roots of the A-polynomial and ϕ are the
partial fraction coefficients, that is,

2 The presented formula assumes that there are no repeated roots in the decomposition of the

function. If there are repeated roots, then the value can be obtained by either taking the limit of the

above equation as two of the roots approach each other or looking at Appendix A3 of (Shardt

2012a), which presents a detailed method for the symbolic computation of the cross-covariance for

two arbitrary time series.
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yt ¼
1

1þ α1z�1 þ α2z�2 þ � � � þ α pz� p
et ¼

Xp
i¼ 1

ϕi

1þ θi
et ð5:53Þ

Proof Consider a causal, autoregressive process that can be written as follows:

yt ¼
1Yp

i¼ 1

1þ θiz
�1

� � et ð5:54Þ

where θi are the distinct, possibly complex, roots of the A-polynomial. By partial

fractioning, Eq. (5.54) can be rewritten as

yt ¼
Xp
i¼ 1

ϕi

1þ θiz�1
et ð5:55Þ

Noting that, for any causal autoregressive process where jθj< 1,

1

1þ θiz�1
¼
X1
i¼ 1

�θið Þiz�i ð5:56Þ

Equation (5.55) can be rewritten as

yt ¼
Xp
i¼ 1

ϕi

X1
j¼ 1

�θið Þjet� j ð5:57Þ

Since we are interested in the autocovariance, we can write the autocovariance as

γ τð Þ ¼ E
Xp
i¼ 1

ϕi

X1
j¼ 1

�θið Þjet� j

 ! Xp
i¼ 1

ϕi

X1
k ¼ 1

�θið Þket� k þ τ

 ! !
ð5:58Þ

Similar to the solution for the moving-average process, the only terms that are

significant are those whose subscripts are the same, that is,

t� j ¼ t� k þ τ
k ¼ jþ τ

ð5:59Þ

Noting and keeping only those terms that are feasible as defined by the subscripts

and substituting this into Eq. (5.58) gives

γ τð Þ ¼
Xp
l¼ 1

Xp
i¼ 1

ϕiϕlet� j

X1
j¼ 1

�θið Þj �θlð Þjþ τE et� jet� j

� � ð5:60Þ
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Using Eq. (5.56) in reverse and relabelling the indices gives

γ τð Þ ¼
Xp
i¼ 1

Xp
j¼ 1

�θj
� �τ

ϕiϕj

1� θiθj
σ2 ð5:61Þ

Q.E.D.

Corollary 5.3 Variance of an Autoregressive Process. The variance of an
autoregressive process can be written as

σ2y ¼ γ 0ð Þ ¼
Xp
i¼ 1

Xp
j¼ 1

ϕiϕj

1� θiθj
σ2 ð5:62Þ

Proof Setting τ¼ 0 into Eq. (5.52) will quickly give the above solution. Q.E.D.

Corollary 5.4 Autocorrelation of an Autoregressive Process. The autocorrelation
of an autoregressive process can be written as

ρ τð Þ ¼

Xp
i¼ 1

Xp
j¼ 1

�θj
� �τ

ϕiϕj

1� θiθjXp
i¼ 1

Xp
j¼ 1

ϕiϕj

1� θiθj

ð5:63Þ

Proof From Eq. (5.52) and the definition of autocorrelation. Q.E.D.

For an autoregressive process, it can be seen that the autocorrelation does not

have an abrupt end point; rather, it continues to decay and slowly approach 0. This

means that it is not possible to determine the order of an autoregressive process

from the autocorrelation plot. Instead, we need to consider the partial autocorre-
lation function (PACF). It can be shown (see Sect. 5.4.1.2 for the details) that the

PACF of an autoregressive process stops after q lags. This makes the PACF

analogous to the ACF for a moving-average process. In fact, for a moving-average

process, the PACF will decay for all lags.
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Example 5.3: Example of an Autoregressive Process

Consider the following autoregressive process

yt ¼ 0:5yt�1 þ et

where et ~ N(0, 4) is a Gaussian, white noise process. Compute the mean,

variance, and general autocorrelation function for the process.

Solution

Before computing any of the required values, let us first rewrite this into the

infinite moving-average form. Rewriting the process into the transfer function

form gives

yt ¼
1

1� 0:5z�1
et

From the derivation for the autocovariance, Eq. (5.56) gives that the infinite

moving-average form will be

yt ¼
X1
i¼ 0

0:5iet� i

The mean value can be computed as follows:

μy ¼ E ytð Þ ¼ E
X1
i¼ 0

0:5iet� i

 !

¼
X1
i¼ 0

0:5iE et� ið Þ
¼ 0

since E(et� i)¼ 0 8i. The variance can be computed using Corollary 5.3

σ2y ¼
Xp
i¼ 1

Xp
j¼ 1

ϕiϕj

1� θiθj
σ2 ¼

X1
i¼ 1

X1
j¼ 1

ϕiϕj

1� θiθj
σ2

¼ 1

1� 0:5ð Þ2 4ð Þ
¼ 51=

3

Note that only the terms where the subscripts are equal have a nonzero value.

All other values are zero. The autocorrelation function for τ> 0 can be

computed using Corollary 5.4 to give

(continued)
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Example 5.3 (continued)

ρ τð Þ ¼

Xp
i¼ 1

Xp
j¼ 1

�θj
� �τ

ϕiϕj

1� θiθjXp
i¼ 1

Xp
j¼ 1

ϕiϕj

1� θiθj

¼

X1
i¼ 1

X1
j¼ 1

�θj
� �τ

ϕiϕj

1� θiθj

X1
i¼ 1

X1
j¼ 1

ϕiϕj

1� θiθj

¼
0:5τ

1� 0:52

1

1� 0:52

¼ 0:5τ

This result clearly shows the behaviour of the autocorrelation function for an

autoregressive process and its difference from the moving-average process.

Example 5.4: Simulation of an Autoregressive Process

Consider the same autoregressive process as in Example 5.3, which has been

simulated for 2,000 samples. Examine the provided autocorrelation plot and

compare it with the values obtained previously. The results are shown in

Fig. 5.6.

Solution

As expected, the autocorrelation plot decays slowly to zero. The first three

values are close to the theoretical values of 0.5, 0.25, and 0.125. As well, note

that the estimated autocorrelation values for large lags are relatively impre-

cise, since in reality the value could easily be close to zero. For comparison

purposes, the partial correlation plot is shown in Fig. 5.7 for both the AR(1)

process considered in this example and the MA(1) process considered in

Example 5.1. Here it is quite obvious that the autoregressive process has a

single spike at a lag of 1, while the moving-average process has at least

(continued)
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Fig. 5.6 (Left) Time series plot of the given autoregressive process and (right) autocorre-
lation plot for the same process
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Example 5.4 (continued)

two significant points. The difference between the expected and observed

behaviours can be attributed to the fact that these are simulation examples, for

which there will be a wide range of possible outcomes.

5.3.4 Properties of an Integrating Process

The integrating process, also known as the random walk, is defined as

yt ¼ et þ yt� 1 ¼
1

1� z�1
et ð5:64Þ

It is easy to see that an integrating process is unstable, since z¼ 1. Therefore, the

mean value for this process is undefined. The theoretical autocorrelation will be a

uniform 1 for all lags. Practically, when estimating the autocorrelation, it will very

slowly decrease as a function of the lags (Wichern 1973; Hassler 1994). This makes

it difficult to distinguish from a true autoregressive model with α� 1. In practice, if

the data do not look stationary, then it is quite likely that the process contains an

integrator rather than a slowly varying autoregressive component.

Example 5.5: Simulation of an Integrating Process
Simulate an integrating process for 2,000 samples and compare it with an AR

(1) process with α1¼�0.98. Compute the sample autocorrelation and partial

autocorrelation functions. Compare and suggest ways to distinguish the two

cases. The simulation results are shown in Fig. 5.6. The Gaussian noise for

both processes is the same (Fig. 5.8).
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Fig. 5.7 Partial autocorrelation plot for (left) AR(1) and (right) MA(2) processes
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Example 5.5 (continued)

Solution

First, it can be noted that the integrating process has a much larger deviation

from the mean value than the causal autoregressive process with uneven

distribution about the mean. The autocorrelation plot shows that the value

for both decays slowly. However, for the autoregressive process, it is much

(continued)
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Fig. 5.8 (Top) Time series plot, (middle) autocorrelation plot, and (bottom) partial auto-
correlation plot for (left) integrating and (right) AR(1) with α¼�0.98 processes

234 5 Modelling Stochastic Processes with Time Series Analysis



Example 5.5 (continued)

faster than for the integrating process. On the other hand, for the partial

autocorrelation plot, the overall behaviour is quite similar. Both have two

peaks (at zero and one), but the values of the peaks are quite different. For the

integrating process, the value is exactly one for both peaks, while for the

autoregressive process, the value is, as expected, less than one (� 0.9856).

This suggests that in addition to identifying the order of the autoregressive

component, the partial autocorrelation plot can be useful in separating inte-

grating processes from other types of autoregressive processes based on the

value of the lag 1 term.

5.3.5 Properties of ARMA and ARIMA Processes

The autoregressive, moving-average process denoted as ARMA( p, q) is one of the
most common times series models that can be used. It has the general form given as

yt ¼
B z�1ð Þ
A z�1ð Þ et ¼

1þ β1z
�1 þ � � � þ βqz

�q

1þ α1z�1 þ � � � þ α pz� p
et ð5:65Þ

This model combines the properties and behaviour of both the moving-average and

autoregressive processes. Therefore, it will be causal if its AR component, denoted

by the A-polynomial, has roots inside the unit circle. It will be invertible if its

MA component, denoted by the B-polynomial, has roots inside the unit circle.

Similarly, the autoregressive, integrating, moving-average process, denoted as

ARIMA(p, d, q), has the general form given as

yt ¼
B z�1ð Þ

A z�1ð Þ 1� z�1ð Þd et ¼
1þ β1z

�1 þ � � � þ βqz
�q

1þ α1z�1 þ � � � þ α pz� p
� �

1� z�1ð Þd et ð5:66Þ

The autocorrelation function for an ARMA process can be computed exactly (for

details, see Appendix A3 of Shardt 2012a). In general, the determination of the

orders can be estimated by examining the autocorrelation and partial autocorrela-

tion plots. In most cases, it is desired to obtain an approximate value for these

parameters to be used as an initial estimate for the identification procedure.
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Example 5.6: Simulation of an ARMA Process

Consider the following ARMA(2, 2) process:

yt ¼
1þ 0:2z�1 � 0:5z�2

1� 0:4z�1 þ 0:5z�2
et

Determine the causality and invertibility of this process. Simulate it for 2,000

samples and obtain estimates for the autocorrelation and partial autocorrela-

tion functions. Can the true orders be determined?

Solution
The causality of this process is determined by considering the roots of the

denominator, that is, 1 – 0.4z�1 + 0.5z�2. Using the quadratic formula, gives

two roots, z¼ 0.2 � 0.678i. Computing the absolute value (or modulus) of the

roots gives jzj ¼ 0.7071< 1. Since this value is less than 1, it can be concluded

that the process is causal. Likewise, for invertibility, considering the numerator of

the process, we get that the roots are z¼ 0.61414 and �0.81414. Since the

absolute value of both roots is less than 1, it can be concluded that the process

is invertible.

The simulation results are shown in Figs. 5.9 and 5.10. First, it can be

noted that both the autocorrelation and partial autocorrelation plots do not

show any clear behaviour or cutoff points. The autocorrelation plot does not

decay exponentially to zero; rather around a lag of 4, there is some unex-

pected behaviour. Furthermore, both plots show values that alternate in sign.

(continued)
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Fig. 5.9 Time series plot of the ARMA process
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Example 5.6 (continued)

This behaviour is common if any of the roots are complex numbers. Since we

are dealing with a real process, this observation implies that there must be at

least 2 (or a similar even number of) such complex roots, that is, the order is at

least 2. For both plots, the largest peaks occur at a lag of 2. This reflects well

on what we know about the process.

5.3.6 Properties of the Seasonal Component of a Time Series
Model

There are three seasonal components: the seasonal autoregressive component defined as

yt ¼
1

AP z�sð Þ et ¼
1

1þ α1z�s þ � � � þ αPz�sP
et; ð5:67Þ

the seasonal moving-average component defined as

yt ¼ BQ z�sð Þet ¼ 1þ β1z
�s þ � � � þ βQz

�Qs
� �

et; ð5:68Þ

and, finally, the seasonal integrating process defined as

yt ¼
1

1� z�sð ÞD et ð5:69Þ

The properties of the seasonal components are similar to those of the corresponding

base components after taking into consideration the seasonal component. This can be

accomplished by replacing the z�1 in the base polynomials by z�s to yield the seasonal

0 2 4 6 8 10 12 14 16 18 20
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Lag (samples)

0 2 4 6 8 10 12 14 16 18 20

Lag (samples)

A
ut

oc
or

re
la

tio
n,

 ρ

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

P
ar

tia
l A

ut
oc

or
re

la
tio

n,
 ρ

Fig. 5.10 (Left) Autocorrelation plot and (right) partial autocorrelation plot for the ARMA

process
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forms. The mean and variance will stay the same. The autocovariance and autocorre-

lation can be computed by replacing τ in the base formulae by τs. At all other points,
the valueswill be zero. A similar transformation applies for the partial autocorrelation.

This implies that the seasonal component can be identified by noting consistent gaps in

the process between significant values. For example, the autocorrelation for the

seasonal autoregressive component can be computed as follows:

ρ τð Þ ¼

Xp
i¼ 1

Xp
j¼ 1

�θj
� �ks

ϕiϕj

1� θiθjXp
i¼ 1

Xp
j¼ 1

ϕiϕj

1� θiθj

τ ¼ ks 8k 2 ℕ

0 otherwise

8>>>>>>><
>>>>>>>:

ð5:70Þ

Example 5.7: Simulation of the Seasonal Component

Simulate the following seasonal processes for 2,000 samples and comment on

their autocorrelation and partial autocorrelation plots:

y1 ¼
1

1� 0:6z�4
et, y2 ¼ 1þ 0:5z�3 � 0:2z�6

� �
et, y3 ¼

1

1� z�5
et

Solution
The simulation results are shown in Figs. 5.11, 5.12, and 5.13. In all cases, the

autocorrelation and partial autocorrelation functions show only significant

values at multiples of a seasonal component. In all other cases, the results are

very similar to those previously considered with the autocorrelation function

being useful to show the moving-average values and the partial autocorrela-

tion function useful for the autoregressive and integrating processes.

(continued)

0 2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

0.4

0.6

0.8

1

Lag (samples)

0 2 4 6 8 10 12 14 16 18 20

Lag (samples)

A
ut

oc
or

re
la

tio
n,

 ρ

−0.2

0

0.2

0.4

0.6

0.8

1

P
ar

tia
l A

ut
oc

or
re

la
tio

n,
  ρ

Fig. 5.11 (Left) Autocorrelation plot and (right) partial autocorrelation plot for the

seasonal autoregressive process
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Example 5.7 (continued)

5.3.7 Summary of the Theoretical Properties for Different
Time Series Models

A useful summary of the different properties of the common time series models is

shown in Table 5.1. This summary is very useful when trying to determine the

initial orders for the data set.
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Fig. 5.12 (Left) Autocorrelation plot and (right) partial autocorrelation plot for the

seasonal moving-average process
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Fig. 5.13 (Left) Autocorrelation plot and (right) partial autocorrelation plot for the

seasonal integrating process
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5.4 Time Series Modelling

Having examined the different theoretical properties of time series models in the

previous sections, it is now possible to consider the modelling of the time series

given some data set. There are two separate steps in this procedure: determining the

model orders and determining the model parameters. The model orders determine

the type of model that will be used, while the model parameters provide the actual

values for the model. The general, time series modelling procedure can be

summarised into the following steps:

1. Stationarity Testing: determine if the data set is stationary, by examining the

data set itself, its autocorrelation, and its partial autocorrelation plots. If there is

evidence of an integrator, difference the data, and repeat the procedure with the

differenced data until the data are stationary. This will give the value of d and D.
Note that it may sometimes be necessary to transform the data by applying a

nonlinear transformation, for example, ~yt¼ log(yt).
2. Model Order Determination: using the (differenced) data, determine the model

orders for the process. Model orders are determined by examining the autocor-

relation and partial autocorrelation plots for the data set combined with the

information presented in Table 5.1. This will give the values of p, P, q, and Q.
3. Model Parameter Estimation: using the selected model orders and an appropri-

ate method, estimate the model parameters.

4. Model Validation: validate the model by examining the residuals. If the residuals

satisfy the assumptions, then consider the model to be sufficient. Otherwise,

change the model orders (including, if necessary, the value of d and D) or try a

nonlinear transformation of the data. One can continue as long as one wants on

this step.

Table 5.1 Summary of the theoretical properties of different time series models

Model Form Autocorrelation ρ(τ)
Partial

autocorrelation

Pure white noise yt¼ et Single peak at τ¼ 0 Exponential decay

Moving average, MA(q) yt¼B(z�1) q significant peaks Exponential decay

Autoregressive model,

AR( p)
yt ¼

1

A z�1ð Þ et
Exponential decay p significant peaks

Integrating process, I(d )
yt ¼

1

1� z�1ð Þd et
Theoretically:

always 1.

Practically: very

slowly decaying

values.

Two peaks at

τ¼ 0 and 1, both with

value 1.

Autoregressive,

moving-average model,

ARMA( p, q)

yt ¼
B z�1ð Þ
A z�1ð Þ et

A combination of the MA and AR graphs

from which an estimate of the orders can be

obtained.

Seasonal component Replace z�1 by z�s in

the above formulae.

The graphs are the same as above, except that

there is now a space of s between each of the

peaks.
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5.4.1 Estimating the Time Series Model Parameters

Estimating the model parameter values is in general performed using one of two

methods: the method of moments leading to the Yule–Walker equations or the

maximum-likelihood method. Although the Yule–Walker equations are simpler,

they only provide an efficient estimator for autoregressive models. Also, the Yule–

Walker equations are useful for estimating the partial autocorrelation function.

Least-squares estimates are also possible, but they are difficult to solve analytically

due to the complex nature of the models.

5.4.1.1 Yule–Walker Equations for Estimating an Autoregressive Model

Consider the standard autoregressive model given by Eq. (5.49)

yt ¼ et � α1yt� 1 � α2yt� 2 � � � � � α pyt� p ð5:71Þ

Multiply this equation by yt, yt – 1,. . . yt – p and take the expectation of the resulting

p + 1 equations to give

γ 0ð Þ ¼ σ2 � α1γ 1ð Þ � α2γ 2ð Þ � � � � � α pγ pð Þ
γ 1ð Þ ¼ �α1γ 0ð Þ � α2γ �1ð Þ � � � � � α pγ 1� pð Þ

⋮
γ pð Þ ¼ �α1γ p� 1ð Þ � α2γ p� 2ð Þ � � � � � α pγ 0ð Þ

ð5:72Þ

Re-arranging this system of equations into matrix form gives

σ2 ¼ γ 0ð Þ þ ~αT~γ
~γ ¼ �Γ~α

ð5:73Þ

where ~α is the p� 1-row vector hα1, α2, . . ., αpiT, Γ is the p� p-matrix of

autocovariances defined as

Γ ¼

γ 0ð Þ γ 1ð Þ � � � � � � γ p� 1ð Þ
γ 1ð Þ γ 0ð Þ γ 1ð Þ � � � γ p� 2ð Þ
⋮ ⋱ ⋮
⋮ ⋱ ⋮

γ p� 1ð Þ � � � � � � γ 1ð Þ γ 0ð Þ

2
66664

3
77775 ð5:74Þ

and ~γ is the p� 1-row vector hγ(1), γ(2), . . ., γ( p)iT. Using the method of moments

approach and using the estimated autocovariances in place of the true values, it is

possible to obtain an estimate for ~α and σ2. The resulting equations are3

3 Since Γ is symmetric, ΓT ¼ Γ.
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σ̂2 ¼ γ̂ 0ð Þ � ~̂γ TΓ̂ �1~̂γ

~̂α ¼ �Γ̂ �1~̂γ
ð5:75Þ

An equivalent formulation in terms of the autocorrelation function gives

~̂ρ ¼ �Ρ̂~̂α ð5:76Þ

where ~̂α is the p� 1-row vector hα1, α2, . . ., αpiT, Ρ is the p� p-matrix of autocor-

relations defined as

Ρ̂ ¼

1 ρ̂ 1ð Þ � � � � � � ρ̂ p� 1ð Þ
ρ̂ 1ð Þ 1 ρ̂ 1ð Þ � � � ρ̂ p� 2ð Þ
⋮ ⋱ ⋮
⋮ ⋱ ⋮

ρ̂ p� 1ð Þ � � � � � � ρ̂ 1ð Þ 1

2
66664

3
77775; ð5:77Þ

and ~̂ρ is the p� 1-row vector ρ̂ 1ð Þ, ρ̂ 2ð Þ, . . . , ρ̂ pð Þh iT . Parameter estimates

obtained with either method will give the same result.

Although it is possible to solve this system of equations directly, computation-

ally, it can be better to solve them using an iterative approach. The most common

such method is the Durbin–Levinson algorithm (see Sect. 5.4.4.1 for an explanation

of this method).

The Yule–Walker estimators can be shown to be asymptotically normally

distributed (Shumway and Stoffer 2011), such that

~̂α � ~α 	 N 0;
σ2Γ�1

m

� �
ð5:78Þ

σ̂2 � σ2

where m is the number of data points used in the estimation. This implies that

approximate 100(1 – α)% confidence intervals for the parameters ~̂α can be

constructed as

α̂ i � t1� α
2
,m� p σ̂

ffiffiffiffiffiffiffiffi
Γ�1
ii

m

s
ð5:79Þ
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Example 5.8: Fitting an AR(2) Process Using the Yule–Walker

Equations

The following AR(2) process

yt ¼ 1:4yt� 1 � 0:5yt� 2 þ et

was simulated for 100 samples (provided in Sect. A5.2). Using the Yule–

Walker equations, fit an AR(2) model to the data and comment on the

resulting parameters. Compute the 95% confidence intervals.

Solution

Using the sample autocovariance formula, the sample autocovariances are

γ̂ 0ð Þ ¼ 13:6002, γ̂ 1ð Þ ¼ 12:5275, γ̂ 2ð Þ ¼ 10:7976

The required matrices then become

~̂γ ¼ 12:5275 10:7976½ 
T

Γ̂ ¼ 13:6002 12:5275
12:5275 13:6002

� 	

Solving the Yule–Walker equations gives

~̂α ¼� 13:6002 12:5275
12:5275 13:6002

� 	�1
12:5275
10:7976

� 	

¼ �1

13:60022 � 12:52752
13:6002 �12:5275
�12:5275 13:6002

� 	
12:5275
10:7976

� 	

¼ �1:2527
0:3599

� 	

σ̂2 ¼13:6002� 12:5275
10:7976

� 	T
13:6002 12:5275
12:5275 13:6002

� 	�1
12:5275
10:7976

� 	
¼1:7937

The 95% confidence bound, which in this case will be the same for both

parameters, can be computed as

δ ¼ 1:96 1:7937ð Þ0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:485 25

100

r
¼ 0:182 86

(continued)
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Example 5.8 (continued)

This implies that the confidence intervals for the two parameters are

~̂α ¼ �1:25� 0:18
0:36� 0:18

� 	
:

We can see that the confidence interval for both parameters covers the true

values.

5.4.1.2 Computing the Partial Autocorrelation Function

In order to compute the partial autocorrelation function, assume that the process of

interest can be modelled as a τ-order autoregressive process. Note that it does not
matter what model the true process has. Set up the τ-order Yule–Walker equation in

the form given by Eq. (5.76). It can be shown that the partial autocorrelation of lag τ
is equal to �ατ, that is, the final parameter that is estimated (Franke et al. 2011).4

Practically, rather than computing all the parameters, it is easier to simply compute

the final desired value using Cramer’s rule, that is,

ρXjXt þ 1, ...,Xt þ τ�1
τð Þ ¼ P*

τ



 


Pτk k ð5:80Þ

where k·k is the determinant of a matrix and P�
τ is the Pτ matrix with the τth column

replaced by ~ρ. Equation (5.80) gives that

ρXjXt þ 1, ...,Xt þ τ � 1
1ð Þ ¼ ρ 1ð Þ ð5:81Þ

and

ρXjXt þ 1, ...,Xt þ τ � 1
2ð Þ ¼

1 ρ 1ð Þ
ρ 1ð Þ ρ 2ð Þ











1 ρ 1ð Þ

ρ 1ð Þ 1











¼ ρ 2ð Þ � ρ 1ð Þ2

1� ρ 1ð Þ2 ð5:82Þ

Theoretical values for higher-order partial autocorrelation values can be similarly

computed. In practice, the Durbin–Levinson iterative method is used to compute

the required partial autocorrelations (see Sect. 5.4.4.1 for an explanation of this

method).

4 The negative sign arises from the way the model has been defined.
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Example 5.9: Partial Autocorrelation for an AR(1) Process

Consider the standard first-order autoregressive process and compute its

partial autocorrelation values.

Solution

FromCorollary 5.4, the autocorrelation for a first-order process can bewritten as

ρ τð Þ ¼ �α1ð Þτ

Therefore, the partial autocorrelation function can be written as

ρXjXt þ 1, ...,Xt þ τ � 1
1ð Þ ¼ ρ 1ð Þ ¼ �αð Þ1 ¼ �α

ρXjXt þ 1, ...,Xt þ τ � 1
2ð Þ ¼ ρ 2ð Þ � ρ 1ð Þ2

1� ρ 1ð Þ2 ¼ �αð Þ2 � �αð Þ2
1� �αð Þ2 ¼ 0

ρXjXt þ 1, ...,Xt þ τ � 1
τð Þ ¼ 0 for τ � 3

This shows that, as previously mentioned, the partial autocorrelation function

can be useful in identifying the order of the autoregressive function.

The partial autocorrelation function can be estimated by replacing the true

autocorrelations with the estimated ones. The statistical properties of the estimated

partial autocorrelation function are identical to those of the estimated autocorrela-

tion function, that is,

σρ̂XjXt þ 1, ..., t þ τ � 1
¼ 1ffiffiffiffi

m
p ð5:83Þ

where m is the number of data points used in estimating the partial autocorrelation

function.

5.4.2 Maximum-Likelihood Parameter Estimates for ARMA
Models

Assume that the ARMA process of interest can be written as an infinite-order

autoregressive process, that is,

et ¼ A z�1ð Þ
B z�1ð Þ yt ¼ yt þ

X1
i¼ 1

wiyt� i ð5:84Þ
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where w is the coefficient obtained upon performing long division on the term A/B,
which can be rewritten as

yt ¼
X1
i¼ 1

wiyt� i þ et ð5:85Þ

Assuming that the residuals (or et) are normally distributed, then

~y ¼ y1; y2; . . . ; ymh iT will have a multivariate normal distribution with a probabil-

ity density

p ~yj~θ
� �

¼ 2πð Þ�m=2 Γk k�0:5
exp � 1

2σ2
~yTΓ�1~y

� �
ð5:86Þ

where Γ is the matrix of autocovariances defined by Eq. (5.74) and ~θ is the model

parameter vector defined as

~θ ¼ α1,α2, . . . ,α p,β1,β2, . . . βq,σ
2
ε


 �T ð5:87Þ

and σ2ε is the variance of the white noise process. Let the likelihood function for this
problem be defined as

L ~θj~y
� �

¼ p ~yj~θ
� �

¼ 2πσ2ε
� ��m=2

Γk k�0:5
exp � 1

2σ2ε
~yTΓ�1~y

� �
ð5:88Þ

The log-likelihood function, ‘ ~θj~y
� �

, is given as

‘ ~θj~y
� �

¼ log L ~θj~y
� �

¼ �m

2
log2πσ2ε �

1

2
log Γk k � 1

2σ2ε
~yTΓ�1~y ð5:89Þ

The parameter estimates are then obtained by maximising either Eqs. (5.88) or

(5.89). The result given by Eq. (5.89) is called the exact log-likelihood function.
However, when dealing with a long time series with many data points, it will be

computationally expensive to compute the determinant and inverse required by the

exact log-likelihood function at every iteration. Instead, the exact probability can be

replaced by the conditional probability, that is, p ~yj~θ
� �

� p ytjyt� 1, . . . , y1,~θ
� �

.

This approximation holds well for large data sets. With such an approximation,

Eq. (5.88) can be written as

L ~θj~y
� �

¼
Ym
t¼ 1

p ytjyt� 1, . . . , y1,~θ
� �

ð5:90Þ

246 5 Modelling Stochastic Processes with Time Series Analysis



The expected value of the conditional probability can be written as

E ytjyt � 1, . . . , y1,~θ
� �

¼
X1
j¼ 1

wjyt� j �
Xt� 1

j¼ 1

wjyt� j ð5:91Þ

In such cases, the conditional log-likelihood function can be written as

‘ ~θj~y
� �

¼ log L ~θj~y
� �

¼ �m

2
log 2πσ2ε �

1

2
log σ2ε �

1

2σ2ε

Xm
i¼ 1

yi �
Xt� 1

j¼ 1

wjyi� j

 !2

ð5:92Þ

In the literature, this is often called the innovation-based approximation, since the

difference between themeasured and estimated values, called an innovation, is used in
the computation of the log-likelihood function. This approach has the advantage that

no inverses or determinants need to be computed. In general, sincemost data series are

quite long, with many data points, this approach provides sufficiently accurate values.

Various other simplifications can be made to improve the computational aspect of the

result. One common assumption is that values in the past with t< 0 are equal to zero.

The required noise variance is then computed using the following formula

σ2ε ¼
1

m� p� q

Xm
i¼ 1

yi � ŷið Þ2 ð5:93Þ

where ŷi is the predicted time series values based on the model and m is the number

of data points in the time series.

It can be noted that, irrespective of the approach taken, these equations will

generally have to be solved numerically using some form of an optimisation

algorithm. The required initial guess can be obtained based on either the Yule–

Walker parameter estimates or some other approaches. For autoregressive models,

a closed-form solution to the above equations is available. The final result is

identical to the Yule–Walker parameter estimates for an autoregressive model.

Example 5.10: Exact Solution of the Maximum-Likelihood Equation

for an Autoregressive Model

Consider an autoregressive model

yt þ
Xp
j¼ 1

αj yt� j ¼ et

Derive the corresponding maximum-likelihood estimates for this model using

the conditional probability density approach.

(continued)
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Example 5.10 (continued)

Solution

First, we can note that Eq. (5.91) can be made exact if we consider that there

are exactly p past values that need to be considered. This gives

E ytjyt� 1, . . . , y1,~θ
� �

¼
X1
j¼ 1

wjyt� j ¼ �
Xp
j¼ 1

αj yt� j:

Substituting this relationship into the log-likelihood function (Eq. (5.92))

gives

‘ ~θj~y
� �

¼ log L ~θj~y
� �

¼ �m

2
log 2πσ2ε �

1

2
log σ2ε �

1

2σ2ε

Xm
i¼ 1

yi þ
Xp
j¼ 1

αj yi� j

 !2

If it is assumed that σε is known, then the solution to the above equation can

be determined analytically by considering solely the last, quadratic term.

Thus, taking the derivative of the quadratic term with respect to the param-

eters αj and setting the result equal to zero gives

1

σ2ε

Xm
t¼ 1

yt þ
Xp
i¼ 1

αi yt� i

" #
yt� j ¼ 0 8j ¼ 1, 2, . . . , p

In order to solve the resulting system of equations, it can be helpful to note

that ytyt – j � γ̂ ( j), an estimated autocovariance. Therefore, the resulting

system of equations can be written as

~̂γ ¼ �Γ̂ ~̂α

where ~̂α is the p� 1-row vector α̂1; α̂2; . . . ; α̂ p


 �T
, which is identical to the

Yule–Walker equation.

As with all maximum-likelihood methods, the parameter estimates are asymp-

totically normally distributed, and approximate confidence intervals can be

obtained using the following formulae:
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~̂θ � ~θ 	 N 0;
σ2Γ�1

pq

m

 !

σ̂2
ε � σ2ε

ð5:94Þ

where m is the number of data points used in the estimation,

Γpq ¼ Γαα Γαβ

Γβα Γββ

� 	
; ð5:95Þ

Γαα is the p� p-matrix whose (i, j)th-entry is the γ(i – j) of the process A(z�1)yt¼ et;
Γββ is the q� qmatrix whose (i, j)th-entry is the γ(i – j) of the process yt¼B(z�1)et;
Γαβ is the p� q matrix whose (i, j)th-entry is the γXY(i – j) of the above two

processes, that is, each entry is the cross-covariance between the AR and

MA components at lag (i – j); and Γβα¼ΓT
αβ. This implies that approximate

100(1 – α)% confidence intervals for the parameters ~̂θ can be constructed as

θ̂i � t1� α
2
,m� p� q σ̂ε

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γpq

� ��1

ii

m

s
ð5:96Þ

Example 5.11: Modelling the Mean Summer Temperature

in Edmonton

Consider the previously examined Edmonton temperature data series detailed

in Sect. A5.1. For the purposes of this example, consider the problem of

estimating a model for the mean summer temperature. The autocorrelation

and the partial autocorrelation plots have already been shown and analysed

previously (see Figs. 5.2 and 5.3). Using the results from there, obtain an

initial model for the data.

Solution

Before a model can be fit, it is necessary to determine the orders of the model.

From the autocorrelation plot, it would seem that some type of autoregressive

component is present, since the values do not decay to zero. It can be noted that

there are pronounced spikes at lags 1, 2, and 8. In fact, all of the values are

significant and located above the confidence bounds for zero. On the other hand,

the partial autocorrelation plot shows only a few significant points, namely, lags

1, 2, 3, and 8. For the purposes of this example, it will be assumed that p¼ q¼ 8,

that is, an autoregressive moving-average model will be fit to the data set.

However, any potential seasonal component will be ignored at this point.

In general, when fitting a model, the data should be detrended, that is, the

mean value should be removed from the data set. Using appropriate computer

software, the model parameters with their standard deviation are

(continued)
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Example 5.11 (continued)

A z�1ð Þ ¼ 1� 0:948 �0:2ð Þz�1 þ 0:758 �0:1ð Þz�2 � 0:612 �0:2ð Þz�3

� 0:045 �0:155ð Þz�4 � 0:451 �0:2ð Þz�5 þ 0:508 �0:2ð Þz�6

� 0:643 �0:2ð Þz�7 � 0:446 �0:1ð Þz�8

B z�1ð Þ ¼ 1� 0:877 �0:1ð Þz�1 þ 0:840 �0:06ð Þz�2 � 0:493 �0:1ð Þz�3

� 0:137 �0:09ð Þz�4 � 0:598 �0:08ð Þz�5 þ 0:700 �0:1ð Þz�6

� 0:936 �0:06ð Þz�7 þ 0:760 �0:1ð Þz�8

The 95% confidence interval would be approximately twice (exactly 1.96) the

given standard deviation. It can be seen that in general the estimated coeffi-

cients corresponding to the values between z�4 and z�6 have large confidence

intervals that could cover zero. This agrees well with the observed results that

suggest that only the first few lags and a lag of 8 are significant. Model

validation will be performed in the subsequent example.

5.4.3 Model Validation for Time Series Models

The basic principles of model validation, testing the residuals and the overall

model, are the same as for regression analysis. The goal of this validation is to

confirm that the residuals obtained are independent, normally distributed, white

noise values and that the model captures a significant portion of the overall

variability. The main tools for model validation are:

1. Tests for Normal Distribution: in time series analysis, there are three common

approaches that can be used to test for normality:

(a) Normal Probability Plot: the most common method to test normality is to

plot a normal probability plot of the residuals. The points should lie along a

straight line. Examples of good and bad normal probability plots are shown

in Table 3.2.

(b) Autocorrelation Plot of the Residuals: the autocorrelation plot of the

residuals provides a useful visual aid in determining if the residuals are

white noise. If the 95% confidence intervals for a zero autocorrelation are

included in the plot, then at least 95% of the computed autocorrelations

should lie inside the plotted confidence intervals.

(c) Ljung–Box–Pierce Q-Statistic: this is a general test statistic that seeks to

determine if the observed autocorrelation is that of a white noise signal, that

is, do all nonzero lags have an autocorrelation of zero. The statistic is given as

Q ¼ m mþ 2ð Þ
XH
h¼ 1

ρ̂e hð Þ
m� h

ð5:97Þ
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where ρ̂e is the autocorrelation of the residuals and H is an arbitrary value,

normally selected to be about 20. The critical value, Qcrit, is computed using the

χ2-distribution with H – p – q degrees of freedom. If Q>Qcrit, then it can be

concluded that the autocorrelations are not indicative of white noise.

2. Tests for Independence and Homoscedasticity: these two aspects are most

commonly tested together using various types of scatter plots. The most com-

mon scatter plots to examine are:

(a) Plotting a time series plot of the residuals.

(b) Plotting the residuals against the measured values, y.

In all cases, there should not be any discernible patterns in the plots. Common

scatter plots are shown in Table 3.3 (see Sect. 3.3.5 for details on how to interpret

and analyse such plots).

3. Using the Confidence Interval for Each of the Parameters, θi: if the confidence
interval includes 0, then the parameter can be removed from the model. Ideally, a

new regression analysis excluding that parameter would need to be performed

and continued until there are no more parameters to remove or add.

4. Calculating Pearson’s Coefficient of Regression: the closer the value is to 1, the
better the regression is. This coefficient gives what fraction of the observed

behaviour can be explained by the given variables.

When performing model validation, it is important to bear in mind the final goal for

which the model will be used. In time series analysis, the majority of the time, such

models are used to forecast or predict future values of the system. In such cases, it is

very important to not only test the performance of the model using the initial data

set but also use another model validation data set. This validation data set can be

obtained by splitting the original data set into parts. The first part is used for model

estimation, while the second part is used for model validation. The residuals

obtained using the data from the second part would then be used for model

validation. The data set is often split ⅓ for estimation and ⅔ for validation.

Another approach to model validation is to consider various information criteria

that assess the trade-off between the number of parameters selected and the variance

of the model. These criteria can be useful for automating the estimation of initial

process parameters. However, any model obtained using such an approach still needs

to be validated for normality and purpose. The most common information criterion is

Akaike’s information criterion, which for any time series model can be written as

ηAIC ¼ ln σ̂2ε þ
mþ 2k

m
ð5:98Þ

where m is the number of data points and k is the total number of parameters, that is,

k¼ p+P+ q+Q. Another commonly used criterion is the Bayesian or Schwarz
information criterion (BIC) defined as

ηBIC ¼ ln σ̂2ε þ
k log m

m
ð5:99Þ
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Example 5.12: Validating the Initial Mean Summer Temperature

in Edmonton Model

Consider the model fit in Example 5.11 and perform model validation to

determine the overall quality of the model (Fig. 5.14).

Solution

The Ljung–Box–Pierce Q-statistic has a value of 4.35 (for H¼ 20). The 95%

critical value is 31.41. Since Qcomputed<Qtest, the null hypothesis cannot be

rejected, and it can be concluded that the residuals are white noise.

Figure 5.15 shows the measured and predicted mean summer temperatures

as a function of time. It can be seen that the model does follow the trends in

the data well. However, it does not predict well the extreme values. Looking

at this plot it seems quite clear that there is a seasonal component to the

occurrence of extreme values. The fit as determined by Pearson’s coefficient
of regression is 32.04%.

Finally, we may note that ηAIC¼ ln(0.395 884) + (120 + 2 � 16)/

120¼ 0.340.

Based on the results obtained here, it can be seen that, although the model

passes all the assumption tests, its predictive capability is not the best. There

seems to be some components in the data that is not being reflected in the

model. Furthermore, some of the parameter estimate confidence intervals are

close to zero, suggesting that those estimates should be excluded from the

model.

(continued)
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Fig. 5.14 (Left) Normal probability plot and (right) autocorrelation plot for the residuals
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Example 5.12 (continued)

5.4.4 Model Prediction and Forecasting Using Time
Series Models

One of the primary purposes for a model is to determine future values of the

process. For time series, it is useful to distinguish between two cases: prediction
and forecasting. Prediction refers to determining future values using a model whose

parameters are known and represent the true system values, while forecasting refers

to determining future values using a model whose parameters have been obtained

using some form of modelling. The results in this section will be presented without

necessarily going into great detail regarding the derivation of the forms.

For predicting a value into the future given a known model, let ytþ τjt be the

τ-step ahead prediction given all available data up to the current time point t.
The τ-step ahead prediction can be obtained by solving the following system of

equations (Shumway and Stoffer 2011):

20 40 60 80 100 120
−2.5
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−1.5

−1

−0.5
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0.5
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1.5
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y1

Measured
Initial Model ARMA(8,8); fit: 32.04%

Fig. 5.15 Measured and one-step-ahead forecast temperatures as a function of years

since 1882
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ytþ τjt ¼ ~ϕT
t ~yt

Γt
~ϕt ¼ ~γt

ð5:100Þ

where

Γt ¼
γ 0ð Þ � � � γ t� 1ð Þ
⋮ ⋮

γ t� 1ð Þ � � � γ 0ð Þ

2
4

3
5,~γt ¼ γ τð Þ

⋮
γ τ þ t� 1ð Þ

2
4

3
5,~yt ¼ yt

⋮
y1

2
4

3
5, ~ϕt ¼

ϕt1

⋮
ϕtt

2
4

3
5

ð5:101Þ

and ~ϕt represents the vector of prediction coefficients. For an autoregressive

process with t� p and τ¼ 1, ~ϕt ¼ ~α. The variance associated with this

prediction is

σ2tþ τjt ¼ γ 0ð Þ �~γ Tt Γ
�1
t ~γt ð5:102Þ

For large data sets, the solution of these equations directly can be difficult. Instead,

iterative methods are used. The most common such iterative method is the Durbin–

Levinson algorithm, which is described in Sect. 5.4.4.1.

For forecasting a value into the future (or filtering an already measured value5)

given an estimated model, the situation is a bit more complicated. Consider the

infinite moving-average representation for an ARMA process, that is,

ytþ τ ¼
X1
j¼ 0

hjetþ τ � j ð5:103Þ

which can be partitioned into parts: one which considers the future errors between

t+ 1 and t+ τ and the second component that solely considers the remaining terms,

that is,

ytþ τ ¼
Xτ� 1

j¼ 0

hjetþ τ � j þ
X1
j¼ τ

hjetþ τ � j ð5:104Þ

5 This is also called filtering because one reason for forecasting is to remove (filter) the noise from

the (already made) measurements.
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Since the best linear predictor in the mean square sense is obtained by conditioning

the estimate on all available past information, we get that the τ-step ahead forecast,
ŷtþ τjt, is

ytþ τ ¼ E ytþ τjyt, yt� 1, yt� 2, . . .
� � ¼X1

j¼ τ

hjetþ τ � j ð5:105Þ

It should be noted that

E etþ τ � jjyt, yt� 1, yt� 2, . . .
� � ¼ 0 j < τ

etþ τ � j j � τ

�
ð5:106Þ

Therefore, the error associated with the forecast can be written as

εtþ τjt ¼ ytþ τ � ŷ tþ τjt ¼
Xτ � 1

j¼ 0

hjetþ τ � j ð5:107Þ

The forecast error variance then can be determined as

σ̂2tþ τjt ¼ σ2e
Xτ � 1

j¼ 0

h2j ð5:108Þ

The 100(1 – α)% confidence interval can then be computed using the standard

formula, that is,

ytþ τ ¼
X1
j¼ τ

hjetþ τ � j � t1� α
2
,m� n σ̂e

Xτ � 1

j¼ 0

h2j ð5:109Þ

where n is the total number of parameters in the model and α is α-error value.
It should be noted that, in practice, the above equations for the forecast value

contain two issues, that is, they require an infinite amount of process data to be

available and need to know the past values of the white noise. The first issue of

requiring an infinite amount of data is not an issue for large data sets. This implies

that truncation after m data points will not impact the final result. The second issue

of requiring past white noise values can be resolved by computing estimated white

noise values using the following formula:

êt ¼ yt �
Xq
j¼ 1

βiêt� i �
Xp
j¼ i

αi yt� i

 !
ð5:110Þ

The algorithm is initialised by setting all et for which t< p+ 1 to zero and then

iterating forwards. For pure moving-average or autoregressive processes, the fore-

cast equation has a very simple form.
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Example 5.13: Forecasting A Ma(3) Process

Provide one-, two-, and four-step-ahead forecasts and 95% confidence

intervals for the estimated model

yt ¼ et þ 0:436et� 1 � 0:293et� 2 � 0:763et� 3

using the data provided in Sect. A5.3. The noise variance, σ2e , is 1.0870.

Solution

In order to compute the required forecasts, it is first necessary to obtain

estimates of the errors. Computing the errors using Eq. (5.110) gives the

following results for the final 5 errors: ê96 ¼�0.5949, ê97 ¼�1.3221,

ê98 ¼ �0:4402, ê99¼ 0.5044, and ê100¼ 0.8410.

One-Step-Ahead Predictor

The one-step ahead predictor can be obtained from Eq. (5.105)

ŷ101j100 ¼ 0:436e99 � 0:293e98 � 0:763e97
¼ 0:436 0:5044ð Þ � 0:293 �0:4402ð Þ � 0:763 �1:3221ð Þ
¼ 1:3577

The variance associated with this prediction is obtained from Eq. (5.108)

σ̂2101j100 ¼ 1:0807 1ð Þ ¼ 1:0807

Using t0.975, 97¼ 1.96 gives a 95% confidence interval as 1.4�2.1.

Two-Step-Ahead Predictor

The two-step-ahead predictor can be obtained from Eq. (5.105)

ŷ102j100 ¼�0:293e99 � 0:763e98
¼�0:293 0:5044ð Þ � 0:763 �0:4402ð Þ
¼ 0:1881

The variance associated with this prediction is obtained from Eq. (5.108)

σ̂2102j100 ¼ 1:0807 1ð Þ þ 0:4362 ¼ 1:2708

Using t0.975, 97¼ 1.96 gives a 95% confidence interval as 0.2�2.5.

Four-Step-Ahead Predictor

The four-step ahead predictor can be obtained from Eq. (5.105). However,

note that in this case, there are no nonzero terms for hj. Therefore, the

(continued)
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Example 5.13 (continued)

predicted value is ŷ104j100¼ 0 (or the mean value). The variance obtained from

Eq. (5.108) will then be

σ̂2104j100 ¼ 1:0807 1ð Þ þ 0:4362 þ �0:293ð Þ2 þ �0:763ð Þ2 ¼ 1:9388

Using t0.975, 97¼ 1.96 gives a 95% confidence interval as 0�3.8. In fact, for a

MA(q) process, the prediction will be the same for all τ> q.

5.4.4.1 Durbin–Levinson Algorithm

The Durbin–Levinson algorithm is a useful iterative method for inverting and hence

solving the prediction equations given by Eq. (5.100) for a large data set. The

procedure can be summarised as follows:

1. Initialisation: set ϕ00¼ 0, σ21j0 ¼ γ 0ð Þ, and n¼ 1.

2. Diagonal Terms: for n� 1, compute

ϕnn ¼
ρ nð Þ �

Xn� 1

k ¼ 1
ϕn� 1,kρ n� kð Þ

1�
Xn� 1

k ¼ 1
ϕn� 1,kρ kð Þ

, σ2nþ 1jn ¼ σ2njn� 1 1� ϕ2
nn

� � ð5:111Þ

3. Off-Diagonal Terms: for n� 2, compute

ϕnk ¼ ϕn� 1,k � ϕnnϕn� 1,n� k, k ¼ 1, 2, . . . , n� 1 ð5:112Þ

4. Increment: increment n by 1 and go to Step 2. Stop when the desired value of

n has been reached.

The Durbin–Levinson Algorithm can be used to also compute the Yule–Walker

parameters and the partial autocorrelation function, since both have a similar

matrix form.

Example 5.14: Using the Durbin–Levinson Algorithm to Obtain

the Predictor

Use the Durbin–Levinson algorithm to obtain the one-step-ahead predictors

for the case where there are 1, 2, and 3 past data points.

(continued)
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Example 5.14 (continued)

Solution

Since each subsequent step requires the information from the previous step,

the values will first be computed and then the predictors assembled.

n¼ 0: set ϕ00¼ 0, σ21j0 ¼ γ 0ð Þ, and n¼ 1.

n¼ 1: in this step, there will only be a single diagonal term,

ϕ11 ¼
ρ 1ð Þ �

X0
k ¼ 1

ϕ0,kρ 1� kð Þ

1�
X0
k ¼ 1

ϕ0,kρ kð Þ
¼ ρ 1ð Þ, σ2nþ 1jn ¼ σ21j0 1� ρ 1ð Þð Þ

¼ γ 0ð Þ 1� ρ 1ð Þð Þ

n¼ 2: in this step, both diagonal and off-diagonal terms will be computed

ϕ22 ¼
ρ 2ð Þ �

X1
k ¼ 1

ϕ1,kρ 2� kð Þ

1�
X1
k ¼ 1

ϕ1,kρ kð Þ
¼ ρ 2ð Þ � ρ 1ð Þ2

1� ρ 1ð Þ2

σ23j2 ¼ σ22j1 1� ϕ2
22

� � ¼ γ 0ð Þ 1� ρ 1ð Þð Þ 1� ρ 2ð Þ � ρ 1ð Þ2
1� ρ 1ð Þ2

 !

¼ γ 0ð Þ 1� ρ 1ð Þð Þ 1� ρ 2ð Þ
1� ρ 1ð Þ2

 !

ϕ21 ¼ ϕ11 � ϕ22ϕ11, k ¼ 1

¼ ρ 1ð Þ � ρ 1ð Þ ρ 2ð Þ � ρ 1ð Þ2
1� ρ 1ð Þ2 ¼ ρ 1ð Þ 1� ρ 2ð Þ

1� ρ 1ð Þ2
 !

n¼ 3: like for n¼ 2, both diagonal and off-diagonal terms will be computed

ϕ33 ¼
ρ 3ð Þ �

X2
k ¼ 1

ϕ2,kρ 3� kð Þ

1�
X2
k ¼ 1

ϕ2,kρ kð Þ
¼ ρ 3ð Þ � ϕ21ρ 2ð Þ � ϕ22ρ 1ð Þ

1� ϕ21ρ 2ð Þ � ϕ22ρ 1ð Þ

σ24j3 ¼ σ23j2 1� ϕ2
33

� �
¼ γ 0ð Þ 1� ρ 1ð Þð Þ 1� ρ 2ð Þ

1� ρ 1ð Þ2
 !

1� ρ 3ð Þ � ϕ21ρ 2ð Þ � ϕ22ρ 1ð Þ
1� ϕ21ρ 2ð Þ � ϕ22ρ 1ð Þ

� �

¼ γ 0ð Þ 1� ρ 1ð Þð Þ 1� ρ 2ð Þ
1� ρ 1ð Þ2
 !

1� ρ 3ð Þ
1� ϕ21ρ 2ð Þ � ϕ22ρ 1ð Þ
� �

(continued)
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Example 5.14 (continued)

ϕ31 ¼ ϕ21 � ϕ33ϕ22, k ¼ 1

ϕ32 ¼ ϕ22 � ϕ33ϕ21, k ¼ 2

It should be noted that if the process model is known, then it is relatively easy

to obtain the required auto- and cross-correlations and use them to compute

the predictor.

5.5 Frequency-Domain Analysis of Time Series

Frequency-domain analysis of a time series is a useful tool for analysing and

determining the presence of periodic signals in a given signal. This can be useful

in determining and confirming the presence of seasonal components in the data set.

It may not always be obvious what seasonal components are present purely by

examining the auto- and partial autocorrelation plots.

5.5.1 Fourier Transform

The Fourier transform is the decomposition of an original signal into its periodic

components. Formally, the Fourier transform, represented byF, converts a function,
f(t), defined in the time domain, to its corresponding frequency-domain function,

f(ω). The relationship between the two functions can be written as

f ωð Þ ¼ F f tð Þð Þ ¼
ð1

�1
f tð Þe�2πiωtdt ð5:113Þ

The function f ωð Þ is called the spectral density or power spectrum of f(t). It can be

noted that this definition of the Fourier transform does not explicitly show its

connection with a periodic signal. However, we can note that by Euler’s formula

e�iωt ¼ cos ωtð Þ þ i sin ωtð Þ; ð5:114Þ

the definition can be converted into one containing more obvious periodic terms.

For this reason, ω is called the frequency. This clearly shows that the underlying

system is periodic.

Furthermore, it should be noted that the resulting spectral density function will

be a complex function. Since, in frequency-domain analysis, it is the strength of the

individual frequencies that are of interest, it is common to convert the imaginary
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numbers into a more useful form. Consider an imaginary number C¼ x + yi, where
x and y are real. The magnitude of C, Cj j, is defined as

Cj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
ð5:115Þ

and the angle, ∠C, is defined as

∠C ¼ arctan2 x; yð Þ ð5:116Þ

The arctan2 function is equivalent to the arctan(yx�1) with the resulting angle

placed in the correct quadrant based on the signs of x and y. Based on this analysis,

the magnitude plotted as a function of the frequency will provide information about

which frequencies are most prevalent in the signal.

However, in practice, the signal of interest is discrete rather than continuous. In

such a case, there is a need to modify the above results to take into consideration the

effect that discretisation has on the signal properties. Before considering the

changes, it is instructive to consider the effect of discretisation on the signal

properties. The largest effect is that information about the original signal is lost.

For the purposes of frequency-domain analysis, the important result is the Nyquist

frequency, fNyquist

fNyquist ¼ 0:5 f sampling ð5:117Þ

where fsampling is the sampling rate. Frequencies above the Nyquist frequency

cannot be recovered given a sampling rate. This implies that frequencies above

this cutoff cannot be estimated.

The discrete Fourier transform is defined as

f
k

n

� �
¼ F Xnð Þ ¼

Xn� 1

t¼ 0

xte
�2πikt

n ð5:118Þ

where k is an integer and n is the length of the signal. The frequency is given as k/n
cycles per sample. The amplitude, or strength, of the given frequency can be

obtained using Eq. (5.115). Although it is possible to compute the discrete Fourier

transform using a number of different methods, the most popular and efficient

method for computer implementation is the fast Fourier transform method, which

computes the required values efficiently and quickly (Bloomfield 2000; Welch

1967).

The following theorems will show some further relationships between the

Fourier transform and various time series properties.

Theorem 5.3 Wiener–Khinchin Theorem. The autocovariance and the spectral
density function are related as follows (Khintchine 1934):
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f ωð Þ ¼
X1

τ ¼�1
γ τð Þe�iωτ ð5:119Þ

and

γ τð Þ ¼ 1

2π

ð π
�π

f ωð Þe�iωτdω ð5:120Þ

Proof A detailed proof is presented in Priestley 1981, p. 219. Q.E.D.

Corollary 5.5 Spectral Density of White Noise. The spectral density of white noise
is a constant function equal to the white noise variance, that is,

f ωð Þ ¼ σ2w ð5:121Þ

Proof For white noise, γ(0)¼ σ2w and all other autocovariances are zero. From the

first part of Theorem 5.3, the stated result follows. Q.E.D.

Corollary 5.6 Parseval’s Theorem. The variance of a signal can be computed from
its spectral density using the following equation

σ2 ¼ γ 0ð Þ ¼ 1

2π

ð π
�π

f ωð Þdω ð5:122Þ

Proof Setting τ¼ 0 in the second part of Theorem 5.3 and simplifying produces the

given result. Q.E.D.

Theorem 5.4 Filtering Theorem. If two signals are related by

y tð Þ ¼ B z�1ð Þ
A z�1ð Þ u tð Þ; ð5:123Þ

then the spectral density functions are related as

fy ωð Þ ¼ B e�jωð Þ
A e�jωð Þ
����

����
2

fu ωð Þ ð5:124Þ

Proof A detailed proof is presented in Stoica and Moses 2005 Q.E.D.
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Corollary 5.7 Filtering White Noise. If u(t) is white noise and is being filtered by a
function of the form in Theorem 5.4, then the filtered spectral density will be

fy ωð Þ ¼ B e�jωð Þ
A e�jωð Þ
����

����
2

σ2w ð5:125Þ

Proof This result directly follows from combining the definition of the spectral

density of white noise into Theorem 5.4. Q.E.D.

5.5.2 Periodogram and Its Use in Frequency-Domain
Analysis of Time Series

Since it has been shown that the Fourier transform contains the same information as

the autocorrelation function, one may wonder what is the advantage of using

it. Basically, the Fourier transform provides a different perspective on the same

information allowing for different features to be more prominent. In the case of the

Fourier transform, the periodicities are made clear, while in the (partial) autocor-

relation plots, the different orders are emphasised.

The most common way to use the Fourier transform is to construct a

periodogram that shows all the identifiable frequencies and their amplitudes.

When using the fast Fourier transform to obtain the periodogram, only half of the

values are plotted, since the other half is a mirror image (about f¼ 0).6 The

periodogram is constructed as follows:

1. Obtain the complex spectral density function, f(ω), using any appropriate method

(most often the fast Fourier method). Let n be the number of data points in the

signal.

2. Compute the amplitude q¼ jf(ω)j2¼Re(f(ω))2 + Im(f(ω))2, where Re represents
the real component and Im the imaginary component of f(ω).

3. Set the centre point to be C¼b0.5nc + 1, where b·c is the floor or round down to
the nearest integer function.

4. Compute the frequency range, F, as follows:

(a) For a half-frequency periodogram, set F¼h0, 1,. . ., Ci/n.
(b) For a full-frequency periodogram, set F¼h0, 1,. . ., n – 1i/n.

5. To plot the full periodogram, set the x-axis equal to F and the y-axis to q/n.

6 The formatting and layout of a periodogram vary greatly from source to source. The form

presented here is the most convenient for time series analysis. Appropriate code for creating

such a periodogram is presented in Chapter 7 for MATLAB® and Chapter 8 for Excel®.
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6. To plot half of the periodogram, set the x-axis equal to F and the y-axis to

2q(1:C – 1)/n. The coefficient of 2 augments the amplitude to take into consid-

eration the fact that only half of the periodogram was plotted.

7. The units of the graph will be cycles per sample for the x-axis and the original

units of the signal for the y-axis.
8. To plot the frequency in the original units, multiply F by the sampling rate to

give cycles per unit time, that is F0 ¼F� fsampling. F
0 would then be used in place

of F when plotting the periodogram.

9. In some applications, it may be desired to plot a full, zero-centred periodogram.

In this case, there is a need to re-arrange both the F and q vectors obtained above
in order to account for the differences. Basically, the second half of the original

vector must be placed at the beginning. The following steps can be followed:

(a) Let q0 ¼ hq(C : end), q(1 :C – 1)i.
(b) If n is even, let F¼h�0.5n, �0.5n + 1,. . ., 0, 1,. . ., 0.5n – 1i/n.
(c) If n is odd, let F¼h�0.5(n – 1), �0.5(n – 1) + 1,. . ., 0, 1,. . ., 0.5(n – 1)i/n.
(d) Plot F on the x-axis and q0 on the y-axis. The axis labels and interpretation

will be the same as before.

The resulting half periodogram represents a decomposition unto either a series of

cosines or a series of sines of the form

y ¼
X0:5nb c

k ¼ 0

A cos 2π f kð Þ

y ¼
X0:5nb c

k ¼ 0

A sin 2π f kð Þ
ð5:126Þ

where A is the amplitude, defined as jAj ¼ 2q, and f is the corresponding frequency,
that is, f¼F(k)/2. This can be seen in Fig. 5.16, where three very simple

periodograms are shown: one single cosine, one single sine, and both a sine and

cosine. It should be noted that the periodogram ignores signs, that is, both a positive

and a negative amplitude, will appear as the same positive value.
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Fig. 5.16 Periodograms for three simple cases: (left) single cosine, (middle) single sine, and

(right) both cosine and sine together
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The interpretation of more complex cases follows naturally from the simple cases.

Figure 5.17 shows periodograms for a seasonal process with a seasonal component of

3 samples and that of white noise. The first two periodogram show, as expected, a

strong peak around f¼⅓, which corresponds more or less to the seasonal component.

It should be noted that the integrator has the strongest and cleanest peak, while the

autoregressive example has a less clean peak. The last example, that of white noise,

shows what the expected flat spectrum looks like in practice. We can see that the

values are quite jagged fluctuating about some mean point. As α1 approaches 0, it is
expected that the overall graph will approach a white noise graph. Furthermore, the

peaks may appear at somemultiple of the period, which can make identifying the true

value a bit more difficult. Finally, rather than seeing a peak, a trough may occur at a

given point. This is very common with seasonal moving-average processes, as these

can remove certain frequencies from the signal. Figure 5.18 shows different moving-

average processes all with a seasonal component of 3. Both the trough and multiple

frequencies can be clearly seen in this figure.

Example 5.15: Periodograms for the Edmonton Temperature Series

Consider the Edmonton temperature series that is fully described in

Sect. A5.1. Plot the periodograms for the spring, summer, and winter mean

temperature series. Also, plot the periodogram for the differenced summer

temperature series. What are some of the salient features?

(continued)
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Fig. 5.18 A seasonal moving-average process with a seasonal component of 3 and (left)
β1¼�0.95, (middle) β1¼�0.5, and (right) β1¼ 0.5
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Fig. 5.17 Process with a seasonal component of 3 samples: (left) integrator, (middle)
autoregressive, and (right) white noise
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Example 5.15 (continued)

Solution

The three undifferenced periodograms are shown in Fig. 5.19. Before running

the Fourier transform, it is necessary to remove the mean value from the data

set. It can be noted that both the spring and summer graphs have a peak close

to the zero value (> 60 years/cycle). This can suggest that an integrator is

present in the signal, since an integrator will have peaks at 0 and 1. On the

other hand, the winter series shows a single large peak at 3.3 years/cycle and

multiple smaller peaks throughout the spectrum.

(continued)
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Fig. 5.20 Periodogram for the differenced summer temperature series
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Fig. 5.19 Periodograms for (left) spring, (middle) summer, and (right) winter of the

Edmonton temperature series
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Example 5.15 (continued)

Figure 5.20 shows the periodogram for the once-differenced summer

temperature time series. Unlike in the previous periodogram, there are now

a series of peaks clustered in the area around 2.5–3 years/cycle. Also, there is

a secondary peak around 4 years/cycle followed by a rather weak peak in the

8 years/cycle region. All these values seem to be multiples of each other

suggesting that they represent a single feature rather than separate features.

It can be noted that the spring and summer temperature series have a

similar undifferenced behaviour, which suggests that an integrator could be

present. Differencing the summer temperature series reveals the potential of

seasonal components at 3, 4, and 8 years. On the other hand, the winter

temperature series has a different behaviour with a single peak at 3.3 years/

cycle and no suggestions of an integrator.

5.6 State-Space Modelling of Time Series

State-space modelling is a useful, generalised approach to modelling a wide range

of different systems under many different situations, including such cases as

missing observations, outliers, or changing process parameters. Such cases are

difficult, if not impossible, to incorporate into a transfer function-based approach

to modelling. The disadvantage of a state-space-based approach is that the models

can be complex, without necessarily having a direct, physical meaning.

5.6.1 State-Space Model for Time Series

The complete state-space model can be written as a set of two coupled equations

~xk þ 1 ¼ A~xk þ B~uk þ ~ωk

~yk ¼ C~xk þD~uk þ~ek
ð5:127Þ

where ~x is the n� 1 vector of states; ~y is the p� 1 vector of observations
(or outputs); ~uk is the m� 1 vector of inputs; ωk is the n� 1 vector of independent,

white noise random variables drawn from a Gaussian distribution with zero mean

and covariance Σω; ek is the p� 1 vector of independent, white noise random

variables drawn from a Gaussian distribution with zero mean and covariance Σe;

A, B, C, and D are appropriately sized matrices; and the subscript k is an integer

representing the current sample. The matrices are referred to by the name of the

vector coming after, for example, A is the state matrix.

It can be noted that, in Eq. (5.127), an additional term, called the input, has been

included in the model. This term allows the model to consider deterministic or other

stochastic signals that have an impact on the overall process. When dealing with

state-space models, it is traditional to consider the full form from the start rather
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than separating it out. The principles and ideas of such a term are developed further

in Chap. 6. Also, it can be noted that in state-space models, only the input and

output are normally measured directly. The remaining terms will need to be inferred

using an appropriate method.

Finally, a state-space model is said to be causal (or stable) if the absolute value of

the eigenvalues of the state matrix (A-matrix) lie inside the unit circle.

5.6.2 The Kalman Equation

One of the most commonly used methods for predicting and forecasting new values

using a state-space model is the Kalman filter developed by Kalman et al. in the

early 1960s (Kalman 1960; Kalman and Bucy 1961). The power of the Kalman

equation lies in its ability to deal with a wide range of situations including missing

data or time-varying parameters.

Before defining the Kalman filter itself, it is necessary to define some notation

that will make the formulation and interpretation of the results simpler. First, let the

vector of available observations be defined as

~Ys ¼ ~y1; . . . ; ~ysh i ð5:128Þ
Next, let the time point at which the prediction is to be made be denoted by t. If
s< t, then the problem to be solved is called a prediction or forecasting problem. If

s¼ t, then the problem is called filtering. If s> t, then the problem is called

smoothing. Irrespective of the time horizon, a general term for this problem is

(state) estimation. Finally, define the conditional estimate of the state given the

information currently available as

~xtjs ¼ E ~xtj~Ys

� � ð5:129Þ

and the prediction covariance as

Σt1, t2js ¼ E ~xt1 �~xt1js
� �

~xt2 �~xt2js
� �T� �

ð5:130Þ

If t1¼ t2¼ t, then only a single t will be written to simplify the notation.

Theorem 5.5 Basic Kalman Filter. For the state-space model previously defined
with initial conditions ~x0j0 ¼ μ0 and Σ0j0, for t¼ 0,. . ., n, the Kalman filter can be

defined as

~xtjt� 1 ¼ A~xt� 1jt� 1 þ B~ut ð5:131Þ
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and the covariance is given as

Σt� 1jt ¼ AΣt� 1jtAT þ Σω ð5:132Þ

The update equations can be written as

~xtjt ¼ ~xtjt� 1 þKt ~yt � C~xtjt� 1 �D~ut
� �

Σtjt ¼ I �KtC½ 
Σtjt� 1
ð5:133Þ

where Kt is the Kalman gain, defined as

Kt ¼ Σt� 1jtCT CΣt� 1jtCT þ Σe

� � ð5:134Þ
Proof The proof for these equations can be found in (Kalman 1960). Q.E.D.

Using the basic Kalman filter, the prediction error (or innovation), εt,
7 can be

defined as

~εt ¼ ~y� ~̂y ¼ ~yt � E ~yjYt� 1ð Þ ¼ ~yt � C~xtjt� 1 �D~ut ð5:135Þ

with a covariance matrix, Σε, defined as

Σε ¼ var ~εtð Þ ¼ CΣtjt� 1CT þ Σe ð5:136Þ

Theorem 5.6 Kalman Smoother. For the state-space model previously defined
with initial conditions ~xnjn and Σnjn, for t¼ n, n – 1,. . .,1, the Kalman smoother

can be defined as

~xnjt� 1 ¼ ~xt� 1jt� 1 þ J t� 1 ~xtjn �~xtjt� 1

� � ð5:137Þ

and the covariance given as

Σt� 1jn ¼ Σt� 1jt� 1 þ J t� 1 Σt� 1jn � Σt� 1jt� 1

� �J T
t� 1 ð5:138Þ

where J t is the Kalman smoother gain, defined as

J t� 1 ¼ Σt� 1jt� 1ATΣ�1
tjt� 1 ð5:139Þ

7 Strictly speaking, this is a one-step-ahead prediction error.
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Proof The proof for these equations can be found in Shumway and Stoffer

2011. Q.E.D.

The estimated values and their corresponding bounds depend on the application.

For each of the three previously considered cases, the corresponding formula is:

1. Smoothing: for smoothing, the mean response interval for a Kalman smoothed

value can be written as

~xt� 1jr
� �

i
� t1� α

2
,m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σt� 1jr
� �

ii

q
ð5:140Þ

where i refers to the ith entry in the state vector, r is the data length used, andm is

the total number of data points available. In most circumstances, the t-value can
be replaced by the z-value of 1.96.

2. Filtering: for filtering, the mean response interval for a Kalman filtered value

can be written as

~xtjt
� �

i
� t1� α

2
,m

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Σtjt
� �

ii

q
ð5:141Þ

where i refers to the ith entry in the state vector and m is the total number of data

points available. In most circumstances, the t-value can be replaced by the

z-value of 1.96.

3. Prediction: the (one-step-ahead) prediction of future values using the Kalman

filter can be accomplished by setting the initial conditions to be ~x0j0 ¼ ~xnjn and
Σnjn and then using Eqs. (5.131) and (5.132) to obtain the prediction. The mean

response interval for this prediction would be

~xtjt� 1

� �
i
� t1� α

2
,m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σtjt� 1

� �
ii

q
ð5:142Þ

where m is the total number of data points available.

The above equations can be simply extended to the case where the A-, B-, C-,
and D-matrices and the Σω- and Σe-matrices are time varying, that is, their values

change with time. In such cases, one simply needs to simply make the

corresponding changes in the above equations.
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5.6.3 Maximum-Likelihood State-Space Estimates

The estimation of the state-space parameters can be challenging given the

complexities of the resulting equations. Consider the case where all the parameters,
~θ¼hΣ0, A, B, C, D, Σω, Σei, are to be estimated. It will be assumed that the initial

state~x0 is normally distributed with zero mean and a covariance matrix Σ0, and the

errors (ω and e) are jointly normally distributed and uncorrelated. Assume that the

time series contains m data points and that there are a total of n unknown

parameters.

In order to compute the maximum-likelihood estimates, compute the one-step-

ahead prediction error, εt, using Eq. (5.135) and the corresponding covariance

matrix, Σε, using Eq. (5.136). Ignoring constant terms, the log-likelihood function,

‘Y ~θð Þ, can be written as

�‘Y ~θð Þ ¼ 0:5
Xm
t¼ 1

ln Σε ~θð Þj j þ 0:5
Xm
t¼ 1

~εTt ~θð ÞΣ�1
ε ~θð Þ~εt ~θð Þ ð5:143Þ

Solving this equation requires using various numerical methods. Irrespective of the

approach taken, the procedure can be summarised as follows:

1. Obtain the initial parameter estimate, ~θ0, and set j¼ 1.

2. Using the basic Kalman filter as given in Theorem 5.5 and the initial parameter

estimate, ~θ0, obtain the innovations and error covariances for t¼ 1,. . ., m.

3. Perform one iteration of Newton’s method with �‘Y ~θj� 1

� �
as the objective

function to obtain a new parameter estimate, ~θj.

4. Augment j by 1 and repeat steps 2 and 3 until the difference between ~θj� 1 and

~θj� 1 or the difference between �‘Y ~θð Þ and �‘Y ~θj� 1

� �
is small.

Other approaches are possible, including an expectation–maximisation-like

method for state-space parameter estimation (Shumway and Stoffer 2011).

Theorem 5.7 Properties of the Maximum-Likelihood Estimates. Using the

maximum-likelihood method to obtain the state-space parameter estimates ~̂θ j and
assuming that the prediction errors have the usual properties, as m ! 1,

~̂θ j � ~θ 	 N
�
0,m�0:5F�1

�
~θ
�� ð5:144Þ
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where F ~θð Þ is the asymptotic Fisher information matrix defined as

F�~θ� ¼ lim
m!1m�1E �∂‘Y

�
~θ
�

∂~θ∂~θT

 !
ð5:145Þ

Proof A general proof of these results based on the maximum-likelihood approach

is presented in (Hannan and Deistler 2012). Q.E.D.

5.7 Comprehensive Example of Time Series Modelling

Having considered multiple different methods and approaches to modelling time

series, it is now necessary to apply these methods to the problem at hand: estimating

the mean summer temperature in Edmonton. The data set is described in Sect. 5.1.3

and preliminary results have already been presented (see Example 5.11, Example

5.12, and Example 5.15).

5.7.1 Summary of Available Information

From an initial attempt to model the mean summer temperature in Edmonton as an

ARMA(8,8) process, the parameter estimates and their standard deviation were

determined as

A z�1ð Þ ¼ 1� 0:948 �0:2ð Þz�1 þ 0:758 �0:1ð Þz�2 � 0:612 �0:2ð Þz�3

�0:045 �0:155ð Þz�4 � 0:451 �0:2ð Þz�5 þ 0:508 �0:2ð Þz�6

�0:643 �0:2ð Þz�7 � 0:446 �0:1ð Þz�8

B z�1ð Þ ¼ 1� 0:877 �0:1ð Þz�1 þ 0:840 �0:06ð Þz�2 � 0:493 �0:1ð Þz�3

�0:137 �0:09ð Þz�4 � 0:598 �0:08ð Þz�5 þ 0:700 �0:1ð Þz�6

�0:936 �0:06ð Þz�7 þ 0:760 �0:1ð Þz�8

Performing model validation on this model led to the conclusion that the model

obtained was not complete. First, it was noted that the 95% confidence interval for

some of the middle terms in the above polynomials covered zero. This suggests that

those terms are not significant and that they should be excluded from the model.

Second, the model assumptions regarding the errors were all validated, suggesting

that the residuals were normally distributed, white noise. Third, the predictive

capability of the model was not the best. The general trend was captured, but the

individual estimates were not good. This suggests that the model could be missing

some component or values. Fourth, the periodogram for the undifferenced mean

summer data set suggested that an integrator could be present in the data set.

Similarly, the periodogram for the once-differenced data suggested two separate

cycles: one around 2.5–3 years/cycle and another around 4 years/cycle.
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5.7.2 Obtaining the Final Univariate Model

Based on the above discussion, different models were fit, including seasonal

differencing of 3 and 4 years, differencing of 1 year, and model orders between

1 and 3 parameters for both the seasonal and nonseasonal components. After trying

different models, the final model was determined to be

Ap z�1ð Þ ¼ 1� 0:465 �0:08ð Þz�1 � 0:45 �0:1ð Þz�2 þ 0:673 �0:06ð Þz�3

AP z�1ð Þ ¼ 1� 0:9343 �0:009ð Þz�4

Bq z�1ð Þ ¼ 1� 0:50 �0:1ð Þz�1 � 0:33 �0:1ð Þz�2

BQ z�1ð Þ ¼ 1� 1 �0:5ð Þz�4

with a seasonal difference of order 1 and s¼ 3. Thus, the final model can be written as

Ap z�1
� �

AP z�1
� �

1� z�3
� �

yt ¼ Bq z�1
� �

BQ z�1
� �

et

The normal probability plot of the residuals and the autocorrelation of the residuals

are shown in Fig. 5.21. Both results show that the residuals are normally distributed

and white. In the normal probability plot, the tails deviate a bit from what would be

desirable, but given that this is real data, such behaviour is inevitable.

A comparison between the predicted and measured temperatures is shown in

Fig. 5.22. As before, the model gets the overall trends correct, but the individual

predictions are not very good.
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Fig. 5.21 (Left) Residual analysis for the final temperature model: autocorrelation plot of the

residuals and (right) normal probability plot of the residuals
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5.8 Further Reading

The following are references that provide additional information about the topic:

1. General Time Series Analysis: these sources also often contain information

about transfer function-based analysis:

(a) Bloomfield P (2000) Fourier analysis of time series: an introduction, 2nd

edn. Wiley, New York

(b) Box GE, Jenkins GM (1970) Time series analysis, forecasting, and control.

Holden-Day, Oakland

(c) Franke J, Härdle WK, Hafner CM (2011) Statistics of financial markets: an

introduction, 3rd edn. Springer, Heidelberg. doi:10.1007/978-3-642-16521-4

(d) Hannan EJ, Deistler M (2012) The statistical theory of linear systems.
Society of Industrial and Applied Mathematics, Philadelphia (Originally

published: Wiley, New York, 1988)

(e) Montgomery DC, Jennings CL, Kulahci M (2008) Introduction to time

series analysis and forecasting. Wiley, Hoboken

(f) Shumway RH, Stoffer DS (2011) Time series analysis and its applications with

R examples, 3rd edn. Springer, New York. doi:10.1007/978-1-4419-7865-3

2. Properties of Time Series:

(a) Ashley R (1988) On the relative worth of recent macroeconomic forecasts.

Int J Forecast 4:363–376
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(b) Hassler U (1994) The sample autocorrelation function of I(1) processes.

Statistical Papers�Statistische Hefte 35:1–16

(c) Khintchine A (1934) Korrelationstheorie der stationären stochastischen

prozesse (correlation theory of stocastic processes). Math Ann 109

(1):604–615. doi:10.1007/BF01449156

(d) Nelson CR (1972) The prediction performance of the FRB-MIT-PENN

model of the U.S. Economy. Am Econ Rev 62(5):902–917

(e) Shardt Y (2012) Data quality assessment for closed-loop system identifica-

tion and forecasting with application to soft sensors. Doctoral thesis, Uni-
versity of Alberta, Department of Chemical and Materials Engineering,

Edmonton, Alberta, Canada. doi: http://hdl.handle.net/10402/era.29018

(f) Wichern DW (1973) The behaviour of the sample autocorrelation function

for an integrated moving average process. Biometrika 60(2):235–239. doi:

http://www.jstor.org/stable/2334535?origin¼JSTOR-pdf

3. Spectral Analysis:

(a) Priestley MB (1981) Spectral analysis and time series: Vol. 1: univariate series

and vol 2: multivariate series, prediction, and control. Academic, New York

(b) Stoica P, Moses R (2005) Spectral analysis of signals. Prentice Hall, Upper

Saddle River

(c) Welch PD (1967) The use of fast Fourier transform for the estimation of

power spectra: a method based on time averaging over short, modified

Periodograms. IEEE Trans Audio Elecotroacustics AU-15(2):70–73

4. State-Space Analysis:

(a) Harvey AC (1991) Forecasting, structural time series models and the

Kalman filter. Cambridge University Press, Cambridge

(b) Kalman RE (1960) A new approach to linear filtering and prediction

problems. Trans ASME J Basic Eng 82:35–45

(c) Kalman RE, Bucy RS (1961) New results in filtering and prediction theory.

Trans ASME J Basic Eng 83:95–108

5.9 Chapter Problems

Problems at the end of the chapter consist of three different types: (a) Basic Concepts
(True/False), which seek to test the reader’s comprehension of the key concepts in the
chapter; (b) Short Exercises, which seek to test the reader’s ability to compute the
required parameters for a simple data set using simple or no technological aids, and
this section also includes proofs of theorems; and (c) Computational Exercises, which
require not only a solid comprehension of the basic material but also the use of
appropriate software to easily manipulate the given data sets.

274 5 Modelling Stochastic Processes with Time Series Analysis

http://dx.doi.org/10.1007/BF01449156
http://hdl.handle.net/10402/era.29018
http://www.jstor.org/stable/2334535?origin=JSTOR-pdf
http://www.jstor.org/stable/2334535?origin=JSTOR-pdf


5.9.1 Basic Concepts

Determine if the following statements are true or false and state why this is the case.

1. The causality of an ARMA process is determined by examining the numerator

of the transfer function.

2. An autoregressive process is always invertible.

3. An invertible moving-average process will give when inverted a causal

autoregressive process.

4. A seasonal autoregressive process can be analysed by setting z�1 in the

standard autoregressive model to be equal to z�s, where s is the seasonal term.

5. The autocorrelation plot can be used to determine the orders of the

autoregressive component.

6. The presence of an integrator can be detected by a slowly decaying term in the

partial autocorrelation plot.

7. If the time series is stationary, then it should always be differenced.

8. If the roots of the A-polynomial of an autoregressive process are 0.5,

�0.5� 0.75i, then the process is causal.

9. If the roots of the B-polynomial of an ARMA process are �0.45, 0.15, and

0.75� 0.5i, then the process is invertible.

10. If the autocorrelation function is given as ρ(τ)¼ 0.5τ for all τ� 0, then it can be

concluded that the process is a moving-average process.

11. If the autocorrelation function is given as ρ(τ)¼ 0.5τ for all τ� 0, then it can be

concluded that the process is causal.

12. If the partial autocorrelation plot has spikes at τ¼ 0, 3, 6, 9, and 12, then we are

dealing with a seasonal autoregressive process with s¼ 3 and P¼ 4.

13. The Yule–Walker equations are a method of moment estimator for

autoregressive processes.

14. The method of moment estimator for moving-average processes is unbiased.

15. The maximum-likelihood parameter estimates for an ARMA process are

asymptotically normally distributed.

16. The maximum-likelihood parameter estimates for an MA process can be

obtained by solving a matrix equation without any numerical iterations.

17. If, when examining the autocorrelation plot of the residuals, out of 25 autocor-

relations, 2 (including the zero-lag contribution) are located outside the 95%

confidence bands, then it can be concluded that the residuals are Gaussian.

18. If a peak at f¼ 0.25 cycles/sample is observed on the periodogram, then it can

be concluded that the process has a seasonal component, such that s¼ 0.25.

19. The Kalman filter is used to determine the parameter estimates for state-space

models.

20. State-space parameter estimates obtained using the maximum-likelihood

approach are not asymptotically consistent.
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5.9.2 Short Exercises

These questions should be solved using only a simple, nonprogrammable,
nongraphical calculator combined with pen and paper.

21. Consider an ARMA(1,0,1) process of the form ut ¼ C z�1ð Þ
D z�1ð Þ ¼ A� Bz�1

C� Dz�1 et. Derive

the spectral density function for ut in terms of the transfer function parameters

and the white noise spectral density.

22. For a causal AR(2) process, derive the autocorrelation and partial autocorrela-

tion function.

23. For an invertible MA(3) process, derive the autocorrelation function and the

first 4 partial autocorrelation values.

24. Given the data in Table 5.2, determine an appropriate ARIMAmodel for the time

series. It should be noted that 1,000 data points were used to compute the samples.

25. Given the data in Fig. 5.23, suggest an appropriate SARIMAmodel for this data.

5.9.3 Computational Exercises

The following problems should be solved with the help of a computer and appro-
priate software packages, such as MATLAB® or Excel®.

26. Take the Edmonton temperature series and fit appropriate ARMAmodels to the

winter, spring, fall, and annual mean temperatures. Be sure to examine the

residuals and verify that the assumptions are met.

27. Using the Kalman filter, develop a model for the Edmonton temperature series.

28. Take the AR(2) process data in Sect. A5.2 and fit an AR(1) process to

it. Analyse the residuals and fit. Comment on the results. Repeat, but using

an AR(3) model. Compare the two models with the accurate AR(2) model (see

Example 5.8 for the model). What happens when a model is over- or underfit?

29. Take the MA(3) process data in Sect. A5.3 and fit a MA(1) process to

it. Analyse the residuals and fit. Comment on the results. Repeat, but using a

MA(4) model. Compare the two models with the accurate MA(3) model (see

Example 5.13 for the model). What happens when a model is over- or underfit?

30. Take any time series of interest, analyse it, and fit an appropriate model to it.

Table 5.2 Autocovariance

and partial autocorrelation

data (for Question 24) Lag

Autocovariance Partial autocorrelation

γ(τ) ρXjXt þ 1, ...,Xt þ τ � 1
τð Þ

0 5.212 –

1 3.832 0.735

2 2.919 0.045

3 2.183 0.064

4 1.645 0.022

5 1.234 0.028

6 0.923 0.013
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Appendix A5: Data Sets for This Chapter

This section gives detailed information about the data set used for analysis in

Chap. 5. All data can be downloaded as an Excel® spreadsheet or MATLAB® file

from the book website.

A5.1: Edmonton Weather Data Series (1882–2002)

The raw data for the Edmonton Weather Data Series are presented in Table 5.3.

This data set has been compiled using daily temperature values available from

Environment Canada. The values are obtained by combining the daily temperature

values from two nearby weather stations: Edmonton (C3012195) from 1880 to 1943

and Edmonton City Centre (C3012208) from 1937 to 2002. Since both locations are

close to each other, the two data series were combined into a single set with the

change over year being 1940: up until that year, the data were taken from the

Edmonton weather station, while from January 1st, 1940, the data were taken from
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autocorrelation plot for an unknown process
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Table 5.3 Edmonton Weather Data Series (1882–2002)

Year

Mean temperature (�C)
Annual Winter Spring Summer Fall

1882 1.10 �11.12 0.79 15.56 1.53

1883 0.35 �16.05 2.60 14.36 �0.40

1884 0.93 �14.90 3.49 14.18 2.48

1885 2.69 �16.96 5.23 14.75 4.36

1886 1.48 �14.42 3.24 15.23 3.43

1887 �0.25 �19.89 4.00 13.24 2.64

1888 1.52 �16.05 �0.07 14.15 4.70

1889 5.07 �5.69 7.66 15.45 5.05

1890 2.67 �17.31 2.83 15.31 6.86

1891 3.72 �8.98 5.09 14.94 4.11

1892 2.46 �10.34 3.06 14.93 3.57

1893 1.58 �12.26 1.79 14.99 1.42

1894 2.76 �13.80 3.94 16.87 3.00

1895 2.90 �12.82 5.14 14.82 3.93

1896 1.63 �11.38 1.78 15.84 �0.66

1897 2.71 �10.23 3.01 15.78 2.79

1898 3.62 �10.00 3.51 16.54 2.84

1899 1.54 �11.09 �0.69 14.61 4.73

1900 3.31 �10.80 4.82 14.61 2.68

1901 4.01 �8.30 5.85 14.72 3.50

1902 2.80 �7.26 3.83 14.39 3.22

1903 3.24 �11.14 1.49 15.04 3.71

1904 2.32 �12.28 1.81 14.96 6.25

1905 4.24 �11.22 6.40 15.66 4.70

1906 3.85 �6.61 4.02 16.64 4.61

1907 1.84 �16.86 �0.05 14.34 6.53

1908 3.62 �7.46 3.31 15.17 4.21

1909 1.11 �14.77 1.93 15.58 2.34

1910 3.65 �12.03 6.83 14.88 3.51

1911 2.29 �14.01 4.85 14.83 2.89

1912 4.37 �9.13 4.61 15.83 4.65

1913 3.33 �11.19 3.64 15.61 4.54

1914 3.21 �10.60 4.74 15.93 5.02

1915 4.10 �11.33 6.55 15.25 3.74

1916 1.55 �13.60 3.13 14.60 4.57

1917 1.56 �15.28 2.01 15.20 6.18

1918 3.38 �15.92 3.45 15.26 5.30

1919 1.94 �8.70 2.34 15.58 �0.16

1920 2.22 �11.07 0.15 15.60 3.95

1921 2.89 �10.32 2.93 15.33 2.83

1922 2.74 �12.90 3.37 16.33 5.44

1923 3.66 �12.95 2.53 15.54 6.79

(continued)
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Table 5.3 (continued)

Year

Mean temperature (�C)
Annual Winter Spring Summer Fall

1924 2.48 �9.21 3.37 15.15 3.86

1925 2.27 �15.50 3.82 15.38 1.47

1926 3.23 �6.58 5.38 14.95 0.60

1927 0.71 �13.16 2.19 15.54 0.63

1928 3.89 �11.40 3.67 14.79 4.07

1929 2.48 �13.01 3.49 15.77 5.45

1930 3.75 �12.69 4.47 16.31 3.35

1931 4.50 �3.02 3.75 15.39 3.62

1932 2.28 �12.15 2.42 16.36 2.77

1933 1.41 �12.67 2.80 15.72 3.86

1934 3.63 �12.28 5.57 14.44 2.88

1935 1.74 �12.51 �0.09 15.83 2.19

1936 1.56 �18.47 3.99 16.51 5.24

1937 2.22 �15.56 5.28 15.88 3.55

1938 3.72 �13.35 4.58 15.89 5.76

1939 3.46 �11.70 3.60 15.26 4.29

1940 2.12 �10.38 2.86 14.91 3.07

1941 3.21 �12.09 4.59 16.47 3.96

1942 3.01 �8.90 4.35 15.40 2.45

1943 3.42 �14.14 1.98 15.09 6.57

1944 4.04 �7.39 4.50 15.28 5.28

1945 1.93 �10.34 2.54 15.88 1.05

1946 2.65 �12.47 5.34 15.27 2.03

1947 2.65 �13.63 2.64 15.35 3.94

1948 2.22 �10.13 �0.09 16.39 4.91

1949 2.79 �16.16 5.56 15.92 6.13

1950 0.51 �19.16 1.62 15.98 1.39

1951 0.53 �13.83 1.03 14.31 1.43

1952 3.73 �14.09 4.22 15.32 6.50

1953 4.13 �9.48 2.69 15.67 6.67

1954 2.67 �10.54 0.38 14.74 5.89

1955 1.60 �7.74 1.21 16.64 0.33

1956 2.79 �16.23 3.10 16.58 5.25

1957 3.43 �12.27 4.12 15.83 4.76

1958 4.06 �8.84 4.49 16.58 4.53

1959 3.13 �13.09 5.09 15.30 2.72

1960 3.37 �8.73 2.82 16.05 4.52

1961 3.67 �7.62 4.48 18.45 2.47

1962 3.36 �14.24 2.34 15.57 6.19

1963 4.15 �9.94 4.15 16.96 5.86

1964 2.91 �7.24 2.42 16.24 3.53

1965 2.17 �15.99 1.51 16.98 2.68

1966 1.90 �14.47 3.08 15.45 3.10

(continued)
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the Edmonton City Centre weather station. It should be noted that due to missing

values, most data between 1880 and 1881 have been excluded from the data series.

The December 1881 values, which are complete, have been used in the computation

of the mean winter temperature for 1882.

Table 5.3 (continued)

Year

Mean temperature (�C)
Annual Winter Spring Summer Fall

1967 3.17 �11.54 0.23 17.06 6.60

1968 3.32 �10.80 5.57 15.43 5.02

1969 2.65 �18.29 4.50 16.51 4.11

1970 2.61 �9.46 3.32 17.79 2.21

1971 3.02 �14.25 4.43 16.98 4.07

1972 2.06 �15.76 4.23 16.38 2.72

1973 3.36 �10.97 5.49 16.23 1.29

1974 3.59 �11.89 1.59 16.12 5.94

1975 3.18 �8.50 1.81 16.21 4.90

1976 5.21 �8.62 5.91 16.61 6.18

1977 4.56 �5.84 6.45 15.50 4.32

1978 3.58 �13.98 5.11 16.81 4.62

1979 3.26 �15.33 3.36 16.85 6.70

1980 3.93 �9.99 5.85 15.74 6.23

1981 6.22 �7.89 6.67 17.48 6.59

1982 2.13 �14.89 2.18 16.48 3.93

1983 3.97 �7.60 4.79 17.37 4.39

1984 4.04 �8.18 5.14 17.47 1.01

1985 3.55 �11.80 5.94 16.02 �0.09

1986 4.76 �6.91 6.34 16.29 2.89

1987 6.19 �4.07 5.22 16.01 7.28

1988 5.31 �7.51 7.74 16.63 5.08

1989 3.75 �9.40 2.64 16.71 4.77

1990 4.10 �7.75 5.71 16.76 3.66

1991 4.79 �8.29 4.79 17.42 2.87

1992 4.67 �6.11 6.31 16.31 4.27

1993 4.40 �11.54 5.96 15.27 4.55

1994 3.59 �12.12 6.49 16.66 4.90

1995 3.27 �9.67 4.18 15.87 3.53

1996 1.42 �13.57 2.37 16.25 1.20

1997 4.45 �11.97 2.90 16.71 5.33

1998 5.02 �7.65 6.85 18.07 5.21

1999 4.84 �9.86 4.43 16.15 5.69

2000 3.65 �7.29 4.45 16.22 4.49

2001 5.29 �8.51 6.13 16.86 5.37

2002 3.85 �7.74 �0.64 17.75 4.17
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The mean temperatures were obtained by computing the mean value of the

available daily high and low temperatures in the given interval. The intervals are

defined as follows:

1. Annual: from January 1st to December 31st of the given year.

2. Winter: from December 1st of the previous year to February 28th (or 29th, in a

leap year) of the given year.

3. Spring: from March 1st to May 31st of the given year.

4. Summer: from June 1st to August 31st of the given year.

5. Fall: from September 1st to November 30th of the given year.

A5.2: AR(2) Process Data

One hundred simulations of an autoregressive process were performed and the data

recorded. The values are provided in Table 5.4.

Table 5.4 Sample data for the AR(2) process

Sample

time Value

1 0.5377

2 2.5866

3 1.0936

4 1.0999

5 1.3118

6 �0.0211

7 �1.119

8 �1.2135

9 2.4391

10 6.7908

11 6.9378

12 9.3524

13 10.3499

14 9.7505

15 9.1906

16 7.7866

17 6.1818

18 6.2509

19 7.0694

20 8.1889

21 8.6013

22 6.7398

23 5.8524

24 6.4536

25 6.5978

Sample

time Value

26 7.0448

27 7.2907

28 6.3811

29 5.5821

30 3.8371

31 3.4693

32 1.7914

33 �0.2956

34 �2.119

35 �5.7631

36 �5.5705

37 �4.5919

38 �4.3984

39 �2.4915

40 �3.0004

41 �3.057

42 �3.0211

43 �2.3818

44 �1.5112

45 �1.7896

46 �1.7799

47 �1.7619

48 �0.949

49 0.6456

50 2.4876

Sample

time Value

51 2.2962

52 2.0482

53 0.5053

54 �1.4302

55 �2.2618

56 �0.9187

57 �0.925

58 �0.4643

59 �0.4131

60 0.7712

61 0.1972

62 �0.077

63 0.3461

64 1.6237

65 3.6443

66 4.3761

67 2.8128

68 1.0076

69 �1.0574

70 0.3664

71 0.426

72 1.1613

73 1.2204

74 2.0165

75 1.4481

Sample

time Value

76 �0.3832

77 �2.6829

78 �3.0763

79 �3.1427

80 �3.0577

81 �1.2901

82 0.0143

83 0.8628

84 2.7885

85 2.6681

86 3.0377

87 3.7538

88 3.4927

89 3.2286

90 1.6078

91 �0.5113

92 �1.4148

93 �1.0029

94 1.8889

95 2.479

96 2.7135

97 2.4769

98 0.1779

99 �1.4284

100 �3.8834
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A5.3: MA(3) Process Data

One hundred simulations of a moving-average process were performed and the data

recorded. The values are provided in Table 5.5.

Table 5.5 Sample data for the MA(3) process

Sample

time Value

1 �1.0642

2 1.0714

3 2.3025

4 0.7850

5 �3.1322

6 �2.0663

7 0.1705

8 1.4389

9 0.2493

10 0.3608

11 0.4718

12 �0.9697

13 �2.0038

14 �1.1963

15 0.2966

16 0.3218

17 0.5350

18 �2.5619

19 �1.7343

20 1.7619

21 1.9407

22 0.4325

23 0.1520

24 0.7127

25 �0.6199

Sample

time Value

26 �1.7293

27 �0.8909

28 1.8161

29 2.0952

30 �0.247

31 �1.941

32 �0.482

33 0.3695

34 1.1009

35 �0.1946

36 �0.7037

37 1.6789

38 �0.9078

39 0.7717

40 0.4991

41 2.3052

42 �2.9206

43 �1.9253

44 �0.9071

45 1.6793

46 �0.9468

47 �0.2606

48 �0.8765

49 0.5945

50 0.6349

Sample

time Value

51 1.5463

52 1.0334

53 0.9764

54 �0.6638

55 �1.1319

56 �1.4077

57 �1.3701

58 0.3072

59 1.5012

60 0.7052

61 0.1900

62 1.0638

63 0.4609

64 0.5934

65 1.0214

66 0.1294

67 �1.7406

68 �1.754

69 0.8591

70 �0.3351

71 �0.6397

72 �2.4522

73 1.2611

74 1.8775

75 1.6385

Sample

time Value

76 �1.0511

77 �3.1683

78 �0.6451

79 �1.2271

80 �1.6961

81 �0.9675

82 1.3156

83 1.6567

84 1.0599

85 1.8047

86 �0.7402

87 �0.6184

88 �0.1452

89 1.2824

90 0.5870

91 0.8840

92 �0.4366

93 �0.8398

94 0.2937

95 �1.4840

96 �1.7080

97 �1.7478

98 0.7010

99 1.1535

100 2.1987
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Chapter 6

Modelling Dynamic Processes Using System
Identification Methods

Process system identification is a complex and involved process that can take on

multiple different facets and requires understanding not only the chemical and

physical aspects of the process but also the mathematical and statistical background

of identification. In system identification, there are two basic approaches to this

problem:

1. First-principle, white-box, or ab initio modelling, where a description of the

process is obtained from the fundamental equations (mass, energy, and force

balances) and various simplifications about the overall process. Although such

an approach provides a very general model that can potentially be applied over a

wide range of conditions, practically, it can be very difficult to obtain a tractable

and useful form for many reasons, including lack of process understanding,

especially at the molecular or submolecular levels, missing information about

the relevant parameters, and the complexities of the resulting equation leading to

difficulties in obtaining the desired final answer.

2. Data-driven or black-box modelling, where a description of the process is

obtained solely by developing models for the available data. This approach

can provide very accurate models of the system at a given set of conditions,

but the model cannot generalise well to other conditions. Furthermore, develop-

ing such models can be difficult, since the selection of appropriate terms and

relevant data is a nontrivial task. Unless the correlations are strong, it may be

difficult to decide on an appropriate data-driven model.

Given the potential problems associated with both approaches, a third, middle way,

has also been considered. This approach is called grey-box modelling, where the

initial form of the equation determined based on the first-principle model is used for

data-driven modelling. This approach has the advantage that the form of the

equation has some physical meaning and could provide a reasonable description

of the process.
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Furthermore, another component of process system identification is that not only

is the deterministic model considered, but the stochastic component is also taken

into consideration to give a regression model of the form

yt ¼ f ~ut; ~βu

� �
þ g et; ~βe

� �
ð6:1Þ

where ut represents the deterministic input to the model (equivalent to x in Chap. 3).
The deterministic inputs can often be treated as a time series themselves but whose

values are not necessarily driven by a white noise process (as in Chap. 5). In order to

obtain a useful solution, various assumptions are made regarding the forms of f and
g and how they interact with the different systems. It should be noted that the

concepts presented here are not limited in their application to solely process system

identification but can also be applied in a wide variety of different fields, including

complex econometric analysis and robotics.

Although the focus of this chapter will be on linear model identification, a

cursory investigation of nonlinear approaches will be presented in order to provide

a complete overview of system identification.

6.1 Control and Process System Identification

In process control, the objective is to design a controller so that the overall system

can track and maintain a given reference signal. Figure 6.1 shows a generalised

block diagram description of the system. The signals are denoted by lines with

arrows, while the blocks denote a process that converts the signals entering the

block into signals leaving it. The most important signals are:

1. Reference signal (rt): This represents the desired or set point value for the

process.

2. Input signal (ut): This represents the input into the process. This signal can also

be called the manipulated variable.

3. Output signal (yt): This represents the measured value of the process. This signal

can also be called the controlled variable.

Gc Ga Gp

Gl

utrt

et

yt

+
++

−

Gs

Fig. 6.1 Block diagram of the control system
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4. Disturbance signal (et): This represents the unmodelled changes in the process.

The disturbance signal is often assumed to be a Gaussian, white noise signal with

zero mean and variance σ2.

The most important blocks are:

1. Controller (Gc): This gives the model of the controller.

2. Process (Gp): This gives the known model of the process.

3. Disturbance (Gl): This gives the model of the unknown component.

4. Actuator (Ga): This gives the model for how the valve responds to a change in

the given values. In most cases, since the response is very fast, it can be safely

lumped together with the process model.

5. Sensor (Gs): This gives the model for how the sensor or measurement device

works and responds to changes in the process. In most cases, since only the

measured values are available, it is useful to lump this model together with the

process and disturbance models. This block is useful to remind the reader that

unless a variable can be measured, then it cannot be used for control.

Together the process and disturbance models create the plant model.
The primary objective is to perform system identification, that is, obtain a plant

model, especially that of the process, in order to design a controller. Two different

situations can be considered: open-loop system identification and closed-loop
system identification.

In open-loop system identification, it is assumed that the controller and reference

signal are not present, that is, the control loop has not been closed. In such a case,

Fig. 6.1 reduces to Fig. 6.2. The relationship between the input and output can then

be written as

yt ¼ Gput þ Glet ð6:2Þ

In closed-loop system identification, the controller is fully functioning and

determining the value of the output based on the measured output value. Two

different cases can be distinguished depending on the behaviour of the reference

signal:

1. Routine Operating Mode, where the reference signal does not change its value

over the course of the experiment.

2. Externally Excited Mode, where the reference signal does change its value in

some predetermined manner over the course of the experiment.

Ga

Gl

Gp yt

+
+

et

ut

Fig. 6.2 Generic open-loop

process
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The relationship between the reference signal and the output can be written as

yt ¼
GcGp

1þ GcGp
rt þ Gl

1þ GcGp
et ð6:3Þ

If the reference signal is zero (or constant), then Eq. (6.3) reduces to solely the

second term. This suggests that such a system can be modelled as a univariate time

series model.

Irrespective of the situation, process system identification is focused on deter-

mining the values for Gp and Gl as accurately as possible. Since most of the

applications assume that the controller is digital, the system identification methods

considered here will focus on the discrete time implementation of system identifi-

cation. For this reason, the models for each of the blocks will be assumed to be

linear, rational functions of the backshift operator z�1. Such models are most often

referred to as transfer functions. The most general plant model is the prediction
error model, which has the following form:

A z�1
� �

yt ¼
B z�1ð Þ
F z�1ð Þ ut� k þ C z�1ð Þ

D z�1ð Þ et ð6:4Þ

where A (z�1), C(z�1), D(z�1), and F(z�1) are polynomials in z�1 of the form

1þ
Xna
i¼ 1

θiz
�i ð6:5Þ

where na is the order of the polynomial and θi are the parameters, and B(z�1) is a

polynomial in z�1 of the form

Xnb
i¼ 1

θiz
�i ð6:6Þ

where nb is the order of the polynomial, and k is the time delay in the system. In

general, it is very rare for this system to be used directly. Instead, any of the

following simplifications may be used:

1. Box-Jenkins Model: In this model, the A(z�1) polynomial is ignored. Thus, this

model is given as

yt ¼
B z�1ð Þ
F z�1ð Þ ut� k þ C z�1ð Þ

D z�1ð Þ et ð6:7Þ

In practice, this method is sufficient to obtain an accurate model of the system.

2. Autoregressive Moving Average Exogenous Model (ARMAX): In this model, the

D(z�1) and F(z�1) polynomials are ignored, which gives
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A z�1
� �

yt ¼ B z�1
� �

ut� k þ C z�1
� �

et ð6:8Þ

This model assumes that the denominator for both the input and the error is

the same.

3. Autoregressive Exogenous Model (ARX): This is a simplified version of the

ARMAX model, wherein it is assumed that C(z�1) can be ignored. This gives

a model of the form:

A z�1
� �

yt ¼ B z�1
� �

ut� k þ et ð6:9Þ

Although this model is very simple, it has the beneficial property that the

estimation of its parameters can be performed using least-squares analysis. In

many respects, this model is very similar to the autoregressive model previously

considered for time series analysis.

4. Output-Error Model (OE): In this model, only the model for the input is fit to the

data. The error terms are ignored. Thus, the model is given as

yt ¼
B z�1ð Þ
F z�1ð Þ ut� k þ et ð6:10Þ

Another model that is occasionally used is the impulse response model, which
can be written as

yt ¼
X1
i¼ 0

hiut� i þ
X1
j¼ 0

hjet� j ð6:11Þ

where h is the impulse response coefficient that can be obtained by performing long

division with the polynomials in the prediction error model. The first term of the

error impulse response model, h0, is traditionally equal to 1. This model is com-

monly encountered in theoretical applications.

6.1.1 Predictability of Process Models

Since the models obtained in system control are often used to predict or forecast

future behaviour of a system, it is important to develop an understanding of the

predictive properties of a model. This can be formalised by considering the m-step
ahead predictor for a process, ŷ tþ τjt, which predicts the process value m-steps

ahead given all the values of the process up until the current point t and the input up
until the point t+ τ. Let the prediction error be defined as
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εtþ τjt ¼ ytþ τ � ŷ tþ τjt ð6:12Þ

and the linear, m-step ahead predictor be defined as

ŷ tþ τjt ¼ L1utþ τ þ L2ytþ τ ð6:13Þ

where some L is a rational function of z�1.

Theorem 6.1 (τ-step ahead linear predictor) The m-step ahead linear predictor,
ŷ tþ τjt, is

ŷ tþ τjt ¼ I �
Xτ � 1

i¼ 0

hiz
�iG�1

l

 !
ytþ τ þ

Xτ � 1

i¼ 0

hiz
�iG�1

l Gp

 !
utþ τ ð6:14Þ

where h are the impulse coefficients of the disturbance model.

Proof The proof of this theorem can be obtained by solving Eq. (6.12) for the case

of a linear predictor given by Eq. (6.13) and the model by Eq. (6.2). Many of the

steps will be similar to those used to obtain the time series predictor in Sect. 5.4.4.

Substituting Eqs. (6.13) and (6.2) into Eq. (6.12) gives

εtþ τjt ¼ Gputþ τ þ Gletþ τ � L1utþ τ � L2ytþ τ ð6:15Þ

In order to separate the available error values from those which are not, the impulse

response model of the disturbance transfer function will now be split into two

components: a term containing all the terms up to, but excluding, the τth impulse

term (unavailable future component) and a term containing all the remaining terms

(available past component). It can be noted that the last term can be rewritten as a

difference between the original disturbance transfer function and the unavailable

future component, that is,

X1
i¼ τ

hiz
�i ¼ Gl �

Xτ � 1

i¼ 0

hiz
�i ð6:16Þ

Thus, Eq. (6.15) can be rewritten as

εtþ τjt ¼ Gputþ τ þ Gl �
Xτ � 1

i¼ 0

hiz
�i

 !
etþ τ þ

Xτ � 1

i¼ 0

hiz
�ietþ τ

�L1utþ τ � L2ytþ τ

ð6:17Þ
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Solving Eq. (6.2) for the disturbance signal gives

et ¼ G�1
l yt � Gput
� � ð6:18Þ

Substituting Eq. (6.18) for only the first error term in Eq. (6.17) gives

εtþ τjt ¼ Gputþ τ þ Gl �
Xτ � 1

i¼ 0

hiz
�i

 !
G�1

l ytþ τ � Gputþ τ

� �

þ
Xτ � 1

i¼ 0

hiz
�ietþ τ � L1utþ τ � L2ytþ τ ð6:19Þ

Re-arranging and combining like terms gives1

εtþ τjt ¼
Xτ � 1

i¼ 0

hiz
�iG�1

l Gp � L1

 !
utþ τ þ I �

Xτ � 1

i¼ 0

hiz
�iG�1

l � L2

 !
ytþ τ

þ
Xτ � 1

i¼ 0

hiz
�ietþ τ ð6:20Þ

The last term in Eq. (6.20) cannot be simplified since it depends on future values of

the error that are not yet known. Since it has been assumed that there is at least one

time delay in the process transfer function, that is, Gp 0; ~θ
� �

¼ 0, and that

Gl 0; ~θ
� �

¼ I , this shows that the errors are uncorrelated with either each other

or the input. Thus, in order to minimise the prediction error, both of the coefficients

for ut + τ and yt + τ must equal zero, that is,

Xτ � 1

i¼ 0

hiz
�iG�1

l Gp � L1 ¼ 0 ) L1 ¼
Xτ � 1

i¼ 0

hiz
�iG�1

l Gp ð6:21Þ

I �
Xτ � 1

i¼ 0

hiz
�iG�1

l � L2 ¼ 0 ) L2 ¼ I �
Xτ � 1

i¼ 0

hiz
�iG�1

l ð6:22Þ

Thus, Eqs. (6.21) and (6.22) show that the m-step ahead predictor can be written as

ŷ tþ τjt ¼ I �
Xτ � 1

i¼ 0

hiz
�iG�1

l

 !
ytþ τ þ

Xτ � 1

i¼ 0

hiz
�iG�1

l G p

 !
utþ τ ð6:23Þ

Q.E.D.

1 It should be noted that I represents the n� n identify matrix, where n is the size of the (square)

disturbance transfer function matrix. In most cases, I will equal 1.
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Theorem 6.2 Variance of the τ-step ahead predictor. The variance of the τ-step
ahead predictor is

σ2τ ¼ σ2w
Xτ � 1

i¼ 0

h2i ð6:24Þ

Proof The required variance can be obtained by examining the prediction error.

Simplifying Eq. (6.20) based on the results from Theorem 6.1 gives that the

prediction error can be written as

εtþ τjt ¼
Xτ � 1

i¼ 0

hiz
�ietþ τ ð6:25Þ

Since et is white noise, this implies that it is uncorrelated with past or future values

of itself. Therefore, the variance of the estimate will be given as

σ2τ ¼ σ2w
Xτ � 1

i¼ 0

h2i ð6:26Þ

Q.E.D.

Corollary 6.1 Properties of the one-step ahead predictor. The one-step ahead
predictor is given by

ŷtþ 1jt ¼ I � G�1
l

� �
yt þ G�1

l Gput ð6:27Þ

and has a variance equal to

σ21 ¼ σ2w ð6:28Þ

Proof Set τ¼ 1 in Theorem 6.1 and Theorem 6.2 to give the above results. Q.E.D.

The one-step ahead predictor forms an important basis for estimating the param-

eters of such systems.

Corollary 6.2 The infinite-step ahead predictor. The infinite-step ahead predictor,
or the infinite horizon predictor, is given by
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ŷ1 ¼ Gput ð6:29Þ

and has a variance equal to

σ21 ¼ σ2l ð6:30Þ

where σ2l is the variance of the disturbance model.

Proof Take the limit as τ!1 of the corresponding equations in Theorem 6.1 and

Theorem 6.2 to give the above results. Q.E.D.

The infinite horizon predictor is useful when looking at the predictive properties

of a model and how generalisable the model is. Basically, the infinite horizon

predictor assumes that the errors are not known and seeks to predict the process

solely on the basis of the available input information.

6.2 Framework for System Identification

The system identification framework shown in Fig. 6.3 extends the general regres-

sion framework shown in Fig. 3.1 to take into account the specific issues in process

system identification. The framework consists of three steps:

1. Data Collection: During the data collection step, the required data are collected

and analysed to determine if there are any obvious problems with the data set,

such as missing data, faulty sensors, faulty values, or multiple operating modes.

The framework presented in Fig. 6.3 assumes that a separate experiment will be

designed in order to obtain the data required for system identification. In

industry, the ability to perform such experiments can be limited due to various

factors, including safety, economic, or reluctance on the part of the plant

operators. Instead, historical data from the data historian are extracted and

preprocessed to determine their usefulness for the given problem.

2. Model Creation and Validation: During this step, the data set is used to create the
model and obtain parameter estimates. Also, the given model is validated to

determine if it could potentially be used.

3. Decision Making: Based on the model obtained from the previous step, a

decision is made whether the given model is sufficient or a better model needs

to be sought. Clearly, the available time and purpose of the model will determine

the amount of effort required and model accuracy. For a simple controller, a

relatively crude model may be more than sufficient to obtain a good controller.
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6.3 Open-Loop Process Identification

This section will examine the principles and key results for modelling an open-loop

process modelled using the general prediction error model given by Eq. (6.4). The

foundation for such modelling is the prediction error method, which uses the fact

that most models in system identification are used for predicting future values of the

process.

6.3.1 Parameter Estimation in Process Identification

Although for simple models it is possible to estimate the parameters using least-

squares, linear regression (see, e.g. Question 21) in Sect. 3.8.2), for more complex

models this is not possible. Instead, more complex methods are required in order to

obtain them. One very popular approach is the prediction error method. Parameter

estimation using the prediction error method can be summarised as follows:

1. Select an appropriate (prediction error) model and determine the corresponding

one-step ahead optimal predictors (Eq. (6.27)).

2. Using the experimental data, compute the prediction values and prediction errors

as functions of the unknown parameters θ.
3. Obtain the parameter estimates that minimise the sum of all of the prediction

errors. Due to the nonlinear nature of the problem, this step is most often

performed using a numerical optimisation algorithm.

Design 
Experiment

Start Obtain Data Check the Data

Determine the Time
DelaySelect a Model

Obtain Model
Parameters

Validate the
Model

Was 
Validation 
Successful?

Yes

No

Use the model for designing the controller.

No

Yes Consider more advanced 
methods, such as nonlinear 

models.

Is the Model
Order High?

Fig. 6.3 System identification framework
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In practice, this procedure is greatly simplified, since there exist appropriate

computer functions that can perform the required tasks once the general form of

the model (orders and time delay) is specified.

Theorem 6.3 Open-Loop Process Identification (properties of the prediction error
method). The prediction error method produces parameter estimates that are
unbiased if the prediction error is a white noise signal.

Proof This will be shown by examining the conditions under which the one-step

ahead predictor will give a white noise signal.

From Eq. (6.12), the one-step ahead prediction error can be written as

εtjt� 1 z�1; ~θ; ~̂θ
� �

¼ yt � ŷtjt� 1 ð6:31Þ

where ŷtjt� 1 is the one-step ahead prediction based on the assumed model for the

system,~θ is the (true) parameter vector, and ~̂θ is the estimated parameter vector. We

know that

et ¼ Ĝ�1
l yt � Ĝput
� � ð6:32Þ

and that the true model can be given as

yt ¼ Gput þ Glet ð6:33Þ

Substituting the above results into Corollary 6.1, the prediction error can be

written as

εtþ 1jt z�1; ~θ; ~̂θ
� �

¼ Ĝ�1
l Gput þ Glet � Ĝput
� � ð6:34Þ

Combining the terms for input and error together gives

εtþ 1jt z�1; ~θ; ~̂θ
� �

¼ Ĝ�1
l Gp � Ĝp

� �
ut þ Ĝ�1

l Glet ð6:35Þ

Let2

2 The dependence of theΦ-functions on the backshift operator is made explicit in this formulation.

The backshift operator has not been considered in any of the other transfer functions in order to

keep the notation simple.
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Φu z�1; ~θ; ~̂θ
� �

¼ Ĝ�1
l Gp � Ĝp

� �
Φe z�1; ~θ; ~̂θ
� �

¼ Ĝ�1
l Gl

ð6:36Þ

then Eq. (6.35) can be rewritten as

εtþ 1jt z�1; ~θ; ~̂θ
� �

¼ Φu z�1; ~θ; ~̂θ
� �

ut þΦe z�1; ~θ; ~̂θ
� �

et ð6:37Þ

Since it is desired to introduce white noise into the system, et will be added and

subtracted from Eq. (6.37). This gives

εt ~θ; ~̂θ
� �

¼ Φu z�1; ~θ; ~̂θ
� �

ut þ Φe z�1; ~θ; ~̂θ
� �

� I
� �

et þ et ð6:38Þ

It should be noted that, since this is assumed to be a sampled system, with zero-

order hold, Gp will have at least one-sample time delay, that is,

Gp 0ð Þ ¼ 0 ð6:39Þ

Furthermore, it will be assumed that

Gl 0ð Þ ¼ I ð6:40Þ

The above two conclusions also hold for the estimated models. Thus, it can be seen

that since both Φu 0; ~θ; ~̂θ
� �

and Φe 0; ~θ; ~̂θ
� �

� I
� �

equal zero, then this implies

that they both have at least a one-sample time delay. Furthermore, due to the

one-sample time delay, there is no correlation between et and

Φe 0; ~θ; ~̂θ
� �

� I
� �

, since the first term in Φe is et – 1, with which white noise is

by definition uncorrelated. Now, if it is further assumed that ut and et are indepen-
dent, then the variance of the prediction error can be written as

var εt ~θ; ~̂θ
� �� �

¼ var Φe z�1; ~θ; ~̂θ
� �

ut

� �
þ var Φe z�1; ~θ; ~̂θ

� �
� I

� �
et

� �
þ var etð Þ ð6:41Þ

The variance given by Eq. (6.41) is at least equal to, if not greater than, the variance

of white noise, et. Since it is desired to minimise the covariance of the errors, this
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implies that by setting both Φu and Φe z�1; ~θ; ~̂θ
� �

� I equal to zero, a minimum

variance estimate can be obtained. Thus, it can be concluded that

Φu z�1; ~θ; ~̂θ
� �

¼ Ĝ�1
l Gp � Ĝp

� � ¼ 0

Φe z�1; ~θ; ~̂θ
� �

¼ Ĝ�1
l Gl ¼ I

ð6:42Þ

This implies that Gp ¼ Ĝp and Gl ¼ Ĝl . Thus, this shows that the parameter

estimates are unbiased.

Theorem 6.4 Asymptotic variance of the prediction error method. The prediction
error method is asymptotically a minimum variance estimator.

Proof This will be shown by deriving the Fisher information matrix for the

prediction error method.

First, define the sensitivity function, ψ t; ~θ
� �

, as

ψ t; ~θ
� �

¼ �
dεtjt� 1

~θ
� �

d~θ

2
4

3
5
T

ð6:43Þ

This can be rewritten using Eq. (6.12) to give

ψ t; ~θ
� �

¼ dŷ tjt� 1

d~θ

� �T
ð6:44Þ

It can be seen that the larger the sensitivity, and thus the smaller the variance, the

better the estimates will be. Note that the asymptotic variance for the parameters

can be written as

cov ~̂θ
� �

¼ σ2w
Xm
t¼ 1

ψ t; ~̂θ
� �

ψ t; ~̂θ
� �T

ð6:45Þ

where m is the number of data points used and σ2w is the noise of the white noise.

The Cramér-Rao lower bound for the parameter estimates states that

cov ~̂θ
� �

� F�1 ð6:46Þ

where F is the Fisher information matrix, which is defined as
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F ¼ 1

σ2w

Xm
t¼ 1

ψ t; ~̂θ
� �

ψ t; ~̂θ
� �T" #�1

ð6:47Þ

Since Theorem 6.3 states that the prediction error method produces unbiased

estimates, as m!1, the estimated parameter values will approach the true param-

eter values. Thus, it can be concluded that the prediction error method asymptoti-
cally approaches a minimum variance estimator.

Q.E.D.

6.3.2 Model Validation in Process Identification

Once the model parameters have been determined, it is necessary to validate the

model. As before, three different components need to be considered: (1) testing the

residuals, (2) testing the adequacy of the model, and (3) taking corrective action.

The general details of these components are the same as for regression analysis (see

Sect. 3.3.5: Model Validation). However, some specific details are needed for

model validation in process system identification.

The first system identification-specific detail is that the goal of most such models

is to predict future values. Therefore, the model validation tests are often performed

on a separate set of data that was not used for model parameter estimation. This is

one major difference from standard regression analysis where the same data set is

used for both cases. This means that the data set is split into two parts: one is used

for model parameter estimation and one is used for model validation. In general, the

model creation part will consist of ⅓ of the data, while the model validation part

will consist of ⅔ of the data.

The second system identification-specific detail is that testing of the residuals is

commonly performed using the autocorrelation and cross-correlation tests rather

than any other method. The autocorrelation test of the residuals seeks to determine

if the residuals are white noise by plotting the autocorrelation function of the

residuals for different lags (most often up to a lag of 20). If 95% of all the

autocorrelations lie inside the 95% confidence interval for zero at all lags not

equal to zero and there are no significant trends, then it can be concluded that the

residuals are white noise. Otherwise, there is a need to take corrective action.

Unfortunately, the autocorrelation plot does not provide a good indication of the

source of any problems. The cross-correlation test between the residuals and input
seeks to determine if the residuals and inputs are independent of each other.

Theoretically speaking, due to the assumption of independence, the two signals

should have a cross-correlation plot that is equal to zero for all lags. Practically, this

can be stated as 95% of all cross-correlations should lie inside the 95% confidence

interval for zero at all lags, and there should not be any significant trends in the data.

If this test fails, then the process model is likely to be incorrectly specified.

296 6 Modelling Dynamic Processes Using System Identification Methods

http://dx.doi.org/10.1007/978-3-319-21509-9_3


Testing model adequacy in process system identification is similar to the basic

regression problem, for example, considering confidence intervals, comparing

predicted and measured values, and using some type of index-based method.

However, there are small differences. When comparing confidence intervals for

the parameters, if there is a string of confidence intervals that cover zero at the end

of the polynomial, then it is often the case that a too large an order was selected for

that polynomial. Similarly, if there are many confidence intervals that cover zero at

the start of the B-polynomial, then this can be a sign that the time delay has been

incorrectly specified. The time delay, nk, should then be increased by the number of

zero terms and the order of the B-polynomial decreased by the same amount. The

net change will be zero, but the estimation can be made more precise.

When comparing predicted and measured values, the data set will often be

different from that initially used in order to determine the adequacy of the model

for forecasting new future points. Furthermore, different types of predictors can be

used, for example, one-ahead, two-ahead, m-ahead, and infinite horizon predictors.

The infinite horizon predictor is essentially a prediction of the process using only

the deterministically available inputs. If the predictive capability of the model is

good with the infinite horizon predictor, then this implies that the model captures

well most of the process behaviour in the given region. On the other hand, a poor

performance with the infinite horizon predictor can be a sign that additional

information about the process may be required. This can be confirmed if

low-order predictors, such as the two- or five-step ahead predictors, give good

performance. The reason for this is that the past errors can contain additional

information about the process that can be useful in predicting the overall process.

It is possible to test model adequacy using various indices. These indices seek to

take into consideration the trade-off between the overall model fit as measured

using the variance of the residuals and the number of parameters used. The two

most common indices are:

1. Akaike’s Information Criterion (AIC): Akaike’s information criterion seeks to

find the global minimum between the variance and the number of parameters. It

is defined as

AIC ¼ mlog m�1
Xm
t¼ 1

εtjt� 1
~̂θ
� �

εtjt� 1
~̂θ
� �T !

þ 2n ð6:48Þ

where n is the total number of estimated parameters in the model and m is the

number of data points.

2. Final Prediction Error Criterion (FPE): The final prediction error criterion

seeks to minimise the variance of the prediction errors with future data. It is

defined as

FPE ¼ m�1
Xm
t¼ 1

εtjt� 1
~̂θ
� �

εtjt� 1
~̂θ
� �T 1þ nm�1

1� nm�1

� 	
ð6:49Þ
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Although they can be useful for automating the model adequacy checking compo-

nent, they still need to be combined with careful process knowledge in order to

obtain a good final model.

In general, a model with fewer parameters is often better than a complex model

with many different parameters, especially when trying to predict future process

values. Analysis of complex macroeconomic models has shown that these complex

models can produce predictions that have variances greater than the original vari-

ables and hence are meaningless (Ashley 1988; Nelson 1972).

6.3.3 Design of Experiments in Process Identification

The final topic in open-loop process system identification is considering the design

of experiment problem: under what conditions can the most information about the

process be extracted from the system with minimal effort. Also, it would be useful

to know the limitations on identifying the given model. Detailed information about

this topic can be found in Ljung (1999) and S€oderstr€om, Gustavsson, and Ljung

(1975). Practically, there are two topics to consider when designing a system

identification experiment: theoretical constraints and practical design

considerations.

Theoretically, the main concerns lie with identifiability of a process, that is,

given a data set and model structure (order of polynomials), what are the conditions

for there to be a unique solution to the parameter estimates. For open-loop exper-

iments, the identifiability constraint for a prediction error model can be simply

written as

nr � na þ nb þ nc þ nd þ n f ð6:50Þ

where nr is the persistent excitation order of the input signal. Persistency, or the
amount of information excited by a signal in the process, is defined as follows. A

signal is said to have a persistent excitation order n, if the following 2 conditions are
satisfied:

1. The following limit exists:

γ τð Þ ¼ lim
m!1

1

m

Xm
t¼ 1

utþ τu
T
t ð6:51Þ

2. The matrix, Γu(n), is positive definite, or for a symmetric matrix this is equiv-

alent to saying that the matrix is invertible. The n-by-nmatrix Γu(n) is defined as

298 6 Modelling Dynamic Processes Using System Identification Methods



Γu nð Þ ¼
γ̂u 0ð Þ γ̂u 1ð Þ � � � γ̂u n� 1ð Þ
γ̂u �1ð Þ γ̂u 0ð Þ � � � γ̂u n� 2ð Þ
⋮ ⋱ ⋮

γ̂u 1� nð Þ γ̂u 2� nð Þ � � � γ̂u 0ð Þ

2
664

3
775 ð6:52Þ

where γ̂ is the estimated autocovariance of the signal.

Based on the result, it can be seen that a step input has a persistent excitation

order of 1. An impulse response has a persistent excitation order of 0, while white

noise has a persistent excitation order of infinity. This would suggest that

performing system identification with a white noise signal would be ideal, as all

prediction error model systems irrespective of complexity could be identified.

However, practically speaking, a white noise input signal is not useful since it is

contains too many random fluctuations in the values. These fluctuations would

cause the actuator, such a valve, to jump around, leading to potential mechanical

stresses and equipment failure. Therefore, instead of using a white noise signal, a

random binary signal, which oscillates between two fixed levels (conventionally

denoted as +1 and �1), is used. Such a signal approximates the white noise signal

and causes less mechanical stress on the system.

Designing the random binary signal requires setting the following parameters:

levels, sampling time, and bandwidth. The physical values for the levels need to be

selected carefully taking into consideration the actual system constraints, for

example, overfilling a tank or leaving it empty, due to selecting too large or too

small a flow rate. Selecting a wide range between the two values can also lead to

undesirable behaviour, such as exciting nonlinearities.

The sampling time, τs, represents how often the data from the system is col-

lected. Both too fast and too slow sampling will have implications on the ability to

obtain a good model. Fast sampling will force the poles of the model to approach

�1, which means that the system will be difficult to identify accurately. Similarly,

too slow sampling will mean that the relevant information will be lost about the

process due to the Nyquist sampling theorem. The general rule for selecting the

sampling time is (Zhu 2001)

τs ¼ 0:1τmin to 0:2τmin ð6:53Þ

where τmin is the smallest time constant in the process. The time constant, τp, of a
process represents how quickly the process responds to a change in the system. The

larger the time constant, the slower the response to changes.

Finally, the bandwidth needs to be selected. The bandwidth represents how

much of the frequency domain is excited (or examined) by the given signal. Most

chemical processes can be treated as low-pass filters, that is, only low frequencies

are important for describing the process. Therefore, there is only a need to excite the

process between [0, fupper], where fupper is some upper-bound frequency. For a first-

order process, the bandwidth of a process is defined as the inverse of the time

constant. For higher-order processes, the bandwidth of a process can be defined as
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the inverse of the smallest time constant. In order to be certain that all of the

relevant bandwidth has been excited, a safety factor, k, is included. This safety

factor is normally set to be equal to either 2 or 3, depending on the associated

uncertainties in the initial process knowledge. If the process is known approxi-

mately, then it is possible to use a smaller k. Therefore, the bandwidth for the input

signal can be defined as 0, kτ�1
min


 �
, where, as before, τmin is the smallest time

constant.

From the above description, it would seem that, in order to identify the process, it

is necessary to already know information about the process. In a way, this is indeed

the case. However, the initial knowledge about the process need not be very precise

and could be obtained using basic identification methods, such as the step test. The
step test is a method for identifying a first-order, linear process based on making a

step change in the input signal. The advantage of this approach is that it provides a

quick and effective way of determining the process characteristics. The disadvan-

tage is that the approach can only be used for simple processes that require/can be

approximated with a single time constant. In practice, this is sufficient as a first

approximation for most chemical engineering systems. Thus, this approach is

perfect for providing the initial estimate for system identification.

The procedure for running a step test can be summarised as follows:

1. Once the process is at some steady state (all the process values are constant

except for some minor variations), make a step change in the input signal.

2. Record the data until the process reaches a new steady state. The graph should

look something similar to Fig. 6.4.

3. From the graph, compute the time delay, θ, the gain, K, and the time constant, τ.

6.3.4 Final Considerations in Open-Loop Process
Identification

The above sections have provided a comprehensive view of the main issues in

open-loop identification. However, there remain some final things to consider

before this can be applied in practice. The most important things are time delay

estimation, drifting in the disturbance, linearity, and time invariance.

6.3.4.1 Time Delay

For both the prediction error and the linear, least-squares methods, the value of the

time delay must be known beforehand, that is, neither of the methods can estimate

the time delay as part of the regression problem. Estimating the time delay can be

performed using various different methods. The most common include using the

values obtained from the step tests and the cross-correlation plot between the inputs

and outputs.
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Using step tests to estimate the time delay is a convenient and straightforward

method. However, it should be noted that the time delay obtained is in continuous

units that need to be converted into sampled units, using

nk ¼ θ

τs

� 

ð6:54Þ

where b · c is the floor function that rounds down a value to the nearest integer.

Another approach to estimating the time delay is to use the cross-correlation plot

between the input and outputs. The delay will then appear as a series of zero values

between a lag of 0 and the time delay, nk. A typical cross-correlation plot is shown

in Fig. 6.5 (left). In this plot, the time delay would be estimated as being 4, since

that is the last nonzero value before the significant peak. Note that using this

approach requires that the input be a white noise signal.

A related approach to estimating the time delay is to determine the impulse

response coefficients, h, for the model. Similar to the cross-correlation plot, the first

nonzero value would be assumed to be equal to the time delay. A typical impulse

response plot is shown in Fig. 6.5 (right). In this plot, the time delay would be

estimated as being four, since that is the last nonzero value before the significant

peak. This method requires that the data be obtained from an open-loop experiment.
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Fig. 6.4 Estimating parameters using a step test
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6.3.4.2 Drifting and Disturbances

As when analysing a time series, the stationarity of the disturbance signal is an

important characteristic to consider. If the output is not stationary, then all the data

must be differenced in order to obtain a stationary model. If the data is differenced

k times, then the disturbance model will be of the form

Gl ¼ Gld 1� z�1
� ��k ð6:55Þ

where Gld is the disturbance model estimated using the differenced data. However,

as for the univariate time series case, it should be noted that differencing the data

can lead to loss of information (excitation) in the input signal and an increase in

noise. Thus, differencing the data should only be performed if no “reasonable”

model can be obtained without differencing.

6.3.4.3 Linearity

When fitting a prediction error model to the data, it is assumed that the true model of

the process is linear. Since very few chemical processes are truly linear, it is

necessary to check the original process if a linear model is sufficient over the

region of consideration of the variables. Two common tests are:

1. Step-Up and Step-Down Check: In this test, a step increase from the original

conditions in the process is performed, followed by a step down back to the

original process conditions. The key process parameters, such as the time delay,

gain, and process time constant, should be similar for the two responses. The

ideal response is shown in Fig. 6.6 (left).
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Fig. 6.5 Estimating the time delay using (left) the cross-correlation plot and (right) the impulse

response method
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2. Proportional Test: In this test, a set of step increases of magnitude M is

performed. The response of the system should be the same during each step

increase interval. The ideal response is shown in Fig. 6.6 (right).

6.3.4.4 Time Invariance

Finally, the prediction error model assumes that the parameter values do not change

with respect to time, that is, they are time invariant. A quick and simple test of the

invariance of the model is to split the data into two parts and cross validate the

models using the other data set. If both models perform successfully, then the

parameters are probably time invariant, at least over the time interval considered.

6.4 Closed-Loop Process Identification

In chemical engineering, it is common to encounter cases where identifying a

process using open-loop data may not be practical. Furthermore, it may be useful

to extract process information from a closed-loop process without disrupting the

overall process. In such cases, using and understanding closed-loop data are

important. Closed-loop data comes in two flavours: routine operating data and

externally excited data. In routine operating data, the reference signal is held

constant and does not change its value during the course of the experiment. The

only disturbances to the process come through the disturbance signal, et. On the

other hand, in externally excited data, the value of the reference signal changes.
The general closed-loop system is shown in Fig. 6.7, for which the transfer

function can be written as
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Fig. 6.6 (Left) Ideal behaviour for the response for the step-up and step-down check and (right)
ideal behaviour for the response for the proportional test
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yt ¼
GcGp

1þ GcGp
rt þ Gl

1þ GcGp
et ð6:56Þ

where Gc is the controller transfer function and rt is the reference, or set point,

signal. In general, closed-loop identification is more complicated than open-loop

identification, since it cannot be assumed that the error and inputs are uncorrelated.

For any closed-loop system, two competing equations can be fit:

yt ¼ Gput þ Glet ð6:57Þ
yt ¼ rt � G�1

c ut ð6:58Þ

The primary issue with closed-loop identification is how to identify the desired

process model Gp given the two competing equations.

If the data obtained are routine operating data, then the process model, Gp, can

only be identified if the controller transfer function has a higher order than the

process and the effect of an incorrect model on the controller transfer function is

larger than on the disturbance model or if there is significant nonlinearity in the

controller and the error caused by an incorrect controller model is larger than the

disturbance error.

On the other hand, if there is an external excitation, then it is easier to perform

closed-loop identification. However, if the excitation is much weaker than the

disturbance, the model given by Eq. (6.58) will be determined. Thus, the signal-

to-noise ratio is extremely important in closed-loop identification. Also, identifica-

tion depends on the model structure that has been determined for the process. If the

model structure chosen for Gp and Gl is different from the structure of Gc, then the

model can be identified even if the excitation is weak. Since most controllers do not

have any sample time delays, if the structure chosen for Gp has at least one-sample

time delay (as it should if it is a discrete system), then the closed-loop system can be

easily identified even with a weak excitation.

If it is assumed that a prediction error model is being fit, then general conditions

for identifiability based on the orders of the polynomials can be obtained. A process

is identifiable from routine operating data if (Shardt and Huang 2011)
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Fig. 6.7 Block diagram for a closed-loop process
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max nX þ nk � nF � nA, nY � nBð Þ � nD
þmin nC þ nF þ nY , nA þ nF þ nY , nB þ nXð Þ

ð6:59Þ

where the controller is defined as

Gc ¼ X z�1ð Þ
Y z�1ð Þ ð6:60Þ

X and Y are polynomials similarly defined to the A-polynomial with order nX and nY.
A process is identifiable from a reference signal with persistent excitation order, nr,
if (Shardt and Huang 2014)

nr � nD þmin nC þ nF þ nY , nA þ nF þ nY , nB þ nXð Þ
þmin nF þ nA � nX � nk, nB � nYð Þ ð6:61Þ

There are three different approaches in determining the model structure of a

closed-loop system: indirect identification, direction identification, and joint input-
output identification.

6.4.1 Indirect Identification of a Closed-Loop Process

The first method for closed-loop identification is called indirect identification,
where Eq. (6.56) is first fit as

yt ¼ M z�1
� �

rt þW z�1
� �

et ð6:62Þ

Then, given the controller transfer function, the process transfer function can be

calculated as

Gp ¼ 1
Gc

M � Gc

ð6:63Þ

Since most processes have low-order dynamics and the overall transfer function,M,

is likely to have a large order, plenty of cancellations must occur betweenGc andM.

However, many of these cancellations will not occur if the model estimates are even

slightly off. Thus, there is a potential of creating a very large order model, even if it

is not warranted. Furthermore, this method can only be used for identifying data

obtained when the process has external excitation.
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6.4.2 Direct Identification of a Closed-Loop Process

The second method is called direct identification, where the fact that the process is
running in closed loop is ignored. In this type of identification, both the process and

error structures must be simultaneously estimated. Thus, either a Box-Jenkins or a

general prediction error model should be fit. Since this is one of the more common

approaches to closed-loop system identification, it is necessary to examine the

properties of this approach. It will be assumed that the prediction error method

will be used.

Theorem 6.5 Properties of the prediction error method for closed-loop identifi-
cation. The prediction error method produces parameter estimates that are unbi-
ased when the process is running in closed loop.

Proof The proof will follow the same form as the open-loop proof.

Assume that Gp has at least one-sample time delay and the reference signal has

sufficient persistent excitation. Since the direct identification method is the same as

the open-loop identification method, the prediction error should be the same. Thus,

εtjt�1 z�1; ~θ; ~̂θ
� �

¼ Ĝ�1
l Gput þ Glet � Ĝput
� � ð6:64Þ

Re-arranging Eq. (6.56) to solve for ut gives

ut ¼ Gc

1þ GcGp
rt � GlGc

1þ GcGp
et ð6:65Þ

Substituting Eq. (6.65) into Eq. (6.64) and simplifying gives

εtjt� 1 z�1; ~θ; ~̂θ
� �

¼ Ĝ�1
l Gp � Ĝp

� �
sGcrt þ sGl

ŝ Ĝl

et ð6:66Þ

where s is the sensitivity function defined as

s ¼ 1

1þ GcGp
ð6:67Þ

and ŝ represents the estimated form of Eq. (6.67), that is, with Gp replaced by Ĝp. As

in the open-loop case, define

Φr z�1; ~θ; ~̂θ
� �

¼ Ĝ�1
l Gp � Ĝp

� �
sGc

Φe z�1; ~θ; ~̂θ
� �

¼ Ĝ�1
l Glsŝ

�1
ð6:68Þ
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Thus, Eq. (6.66) can be rewritten as

εtjt� 1 z�1; ~θ; ~̂θ
� �

¼ Φr z�1; ~θ; ~̂θ
� �

rt þΦe z�1; ~θ; ~̂θ
� �

et ð6:69Þ

Similarly, a white noise term will be introduced into Eq. (6.69) to give

εtjt� 1 z�1; ~θ; ~̂θ
� �

¼ Φr z�1; ~θ; ~̂θ
� �

rt þ Φe z�1; ~θ; ~̂θ
� �

� I
� �

et þ et ð6:70Þ

Since it was assumed that there is at least one-sample time delay in Gp, it can be

noted that Φr 0; ~θ; ~̂θ
� �

equals zero. Also, Φe 0; ~θ; ~̂θ
� �

� I will equal zero. Thus,

since both of the terms have at least a one-sample time delay, rt and et are

uncorrelated, and et and Φe z�1; ~θ; ~̂θ
� �

� I
� �

et are uncorrelated. Thus, the

variance can be written as

var ε
t
��t� 1

z�1; ~θ; ~̂θ
� �� 	

¼ var Φr z�1; ~θ; ~̂θ
� �

rt

� �

þ var Φe z�1; ~θ; ~̂θ
� �

� I
� �

et

� �
þ var etð Þ ð6:71Þ

which must be equal to or greater than the variance of white noise. The minimum

value will occur when bothΦr z�1; ~θ; ~̂θ
� �

and Φe z�1; ~θ; ~̂θ
� �

� I
� �

equal zero. In

order for this to occur,

Gp ¼ Ĝp ð6:72Þ

which implies that

s ¼ ŝ ð6:73Þ

Equation (6.73) and Φe z�1; ~θ; ~̂θ
� �

� I
� �

equalling zero imply that

Gl ¼ Ĝl ð6:74Þ

Thus, the parameter estimates are unbiased for the direct identification

method. Q.E.D.

This implies that the prediction error method can be used to estimate the model

parameters without taking into consideration the fact that the system is running in

closed loop. Furthermore, the model of the controller is not required nor is any
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information about rt needed. This implies that this approach works for both routine

operating and externally excited data.

However, when performing model validation using this approach, a few changes

need to be made in the analysis due to correlation between the input, ut, and the

disturbance, et. This correlation implies that the input will be correlated with past
values of the disturbance (and hence the residuals). Therefore, the conditions for the

cross-correlation test, mentioned previously for the open-loop case, need to be

changed to state “95% of all cross-correlations should lie inside the 95% confidence

interval for zero for lags greater than zero.”3

When using the direct approach to closed-loop identification for routine operat-

ing process data, it is important to note that due to the weak excitations present, the

length of the data series is important for obtaining a good estimate of the param-

eters. For first-order models, about 2,000 data points are required (Shardt and

Huang 2011). Furthermore, small, but consistent, changes in the overall disturbance

model can render the identification of the process difficult.

6.4.3 Joint Input-Output Identification of a Closed-Loop
Process

The third and final method for closed-loop process identification is called the joint
input-output identification method, which uses all three signals, yt, ut, and rt, in
order to identify a model of the system in a two-step procedure. In the first step, a

model between rt and ut is fit to give

ut ¼ Q z�1
� �

rt þ R z�1
� �

et ð6:75Þ

where

Q z�1ð Þ ¼ Gc

1þ GpGc

R z�1ð Þ ¼ � GcGl

1þ GpGc

ð6:76Þ

Then, the reference signal, rt, is filtered using the resulting Q-polynomial to obtain

an uncorrelated with noise, input signal, ût. The process model can be identified by

fitting the following relationship

3 Instead of the previous “95% of all cross-correlations should lie inside the 95% confidence

interval for zero at all lags.”
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yt ¼ Gp z�1
� �

ût þ P z�1
� �

et ð6:77Þ

where P(z�1) is an arbitrary polynomial that is theoretically equal to –R(z�1). The

key advantage of this method is that there is no need to know any information about

the controller. However, this approach does require that all three signals be

available.

6.5 Nonlinear Process Identification

Although in many circumstances linear system identification can provide a suffi-

ciently good model of the system for the intended purpose, it is occasionally

necessary to consider nonlinear system identification.

Nonlinear system identification attempts to fit a nonlinear model to the given

data. However, since there is a large number of potential nonlinear models that

could be fit, nonlinear identification simplifies the available functions. Instead of

choosing any arbitrary function, a basis function, κ(x), is selected. The basis

function can also be called the generating function or the mother function. Then,
the goal becomes to fit the following model to the data

y ~ϕ
� �

¼
Xn
k ¼ 0

αkκ βk ~ϕ� γk

� �� �
ð6:78Þ

where

~ϕ ¼ yt� 1, yt� 2, . . . , yt� ny , ut� nk � 1, ut� nk � 2, . . . ut� nk � nu

D E
ð6:79Þ

ny is the number of past values of the output to be considered, nu is the number of

past values of the input to be considered, nk is the time delay, n is the number of

basis functions to be used, α is the coefficient, β is the dilation factor, and γ is the
translation factor. Since this resembles an ARMAX model, this method is often

referred to as a nonlinear autoregressive exogenous model (NLARX). Thus, in
nonlinear system identification, the goal is to fit the 3 parameters, α, β, and γ, by
minimising the prediction error using an appropriate nonlinear solver. In certain

cases, the results obtained may not be the true global minimum but rather a local

one. Therefore, there is a need to carefully select both the function form and the

solver method. A “good” nonlinear model should pass all of the standard system

identification tests mentioned above for the linear case.

Common basis functions include:

1. Taylor Series Expansion: κ xð Þ ¼ xk;
2. Fourier Transformation: κ xð Þ ¼ cos xð Þ;
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3. Piecewise Constant Function: κ xð Þ ¼ 1 0 � x � 1

0 otherwise

�
;

4. Gaussian Function: κ xð Þ ¼ 1ffiffiffiffi
2π

p e
�x2
�
σ2 ;

5. Sigmoid Function: κ xð Þ ¼ 1
1þ e�x;

6. Wavelet Function: κ xð Þ ¼ e�0:5x2 . This is only one example of many different

possible basis functions using combinations of trigonometric functions and

exponential functions.

It can be shown that for a sufficiently large value of n, for almost any choice of

the basis function, except a polynomial basis, any reasonable nonlinear function can

be approximated arbitrarily well.

6.5.1 Transformation of Nonlinear Models: Wiener-
Hammerstein Models

Instead of fitting a fully nonlinear model, another approach to nonlinear system

identification is to partition the nonlinearities from the linear component. A com-

mon application of this approach is the Wiener-Hammerstein model. A Wiener-

Hammerstein model is a generalisation of the Hammerstein model, where non-

linearities are assumed only to be in the input, and the Wiener model, where

nonlinearities are assumed only to be in the output, which allows nonlinearities to

be present in both the input and output. The process model is assumed to be linear.

Thus, the general form of the model can be written as

g ytð Þ ¼ B z�1ð Þ
F z�1ð Þ f ut� kð Þ þ C z�1ð Þ

D z�1ð Þ et ð6:80Þ

where f(x) and g(x) are functions of predetermined form. Identification would then

proceed in the usual manner.

Weiner-Hammerstein models are useful with the actuators or sensors have

significant nonlinearities in their behaviour. A common application is when the

valve, used as an actuator, is not behaving normally and has significant nonlinear-

ities, such as stiction. By removing the nonlinearities from the modelling process, it

becomes possible to convert the initially nonlinear problem into a linear one.

6.6 Modelling the Water Level in a Tank

Consider the task of developing models for the water level in the four tanks shown

in Fig. 6.8. In this system, there are two inputs, u1 and u2, which represent the flow

rate delivered by the two pumps. Each input is split into two and enters a bottom
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tank and a different top tank. Thus, input 1 enters Tanks 1 and 3, while input

2 enters Tanks 2 and 4. The amount of split is determined by the ratios γ1 and γ2.
The height of water in each of the tanks can be monitored. For this experiment, the

steady-state values are shown in Table 6.1.

The objective of this experiment is to determine an appropriate model for the

water level in Tank 1 assuming that the splits are fixed, but the flow rate from the

two pumps can vary. Design an appropriate experiment and analyse the results.

Perform both linear and nonlinear system identification and compare the resulting

models. Which one would be preferred?

6.6.1 Design of Experiment

The design of the experiment can be split into two parts: preliminary identification

using step tests and final identification using a random binary signal.

Legend

Tank

Flow meter

L

LL

L L Level meter
1 2

34

g 1 g 2

u1 u2

Fig. 6.8 Schematic of the four-tank system

Table 6.1 Steady-state

parameter values for the

system

Parameter Left (1) Right (2)

γ 0.2 0.3

uss (cm
3/s) 13 12

hss (cm) 18 24
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6.6.1.1 Preliminary Identification

In preliminary identification, the objective is to obtain a rough idea of how the

system behaves under different conditions. In order to achieve this, a series of step

tests will be performed on the system. Each pump will be tested separately at this

point in order to make the computations easier. For each pump, a step increase of

+2 cm3/s will be made. The resulting changes in the Tank 1 level are shown in

Fig. 6.9. Table 6.2 shows the values obtained and the computation of the required

time constants.

From Table 6.2, it can be seen that an approximate time constants for the level in

Tank 1 are 100 s for the left pump and 195 s for the right pump. This information

will now be used to design an appropriate input signal.

6.6.1.2 Final Identification

Once a basic understanding of the system parameters has been obtained, the input

signal can be designed. As mentioned before, the best input signal to consider is the

random binary signal. In order to use this signal, three components must be

selected: levels, sampling time, and bandwidth.
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Fig. 6.9 Level in Tank 1: (left) Step change in u1 and (right) step change in u2

Table 6.2 Summary of the values used to obtain the time constants, where τp is the time constant,

h is the height, θ the time delay, and t is the time. The subscript ss1 refers to the initial steady-state
values and ss2 the final steady-state height. Subscripts b and c refer to specified time instants.

θ
(s)

hssl
(m)

hss2
(m)

hc ¼ 0:63 hss2 � hsslð Þ þ hssl
(s)

tb¼ t(hc)
(s)

τ¼ tb� θ
(s)

u1 changed 62 0.184 0.194 0.190 162 100

u2 changed 80 0.183 0.237 0.216 274 195
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The levels should be selected to be symmetric about the nominal steady-state

values and in most cases, less than the step changes previously made. It should be

noted that selecting too large a level can lead to either the tanks overflowing or

being empty during the course of the experiment. Since neither case is desirable, it

is important to avoid such a situation. In this case, the level selected will be

�1.5 cm3/s.

The sampling time is selected as some fraction of the smallest of the system time

constants. Since the preliminary identification has shown that the time constants are

100 and 195 s, the base value is 100 s. The sampling time should then be between

10 and 20% of this value or between 10 and 20 s. For the purposes of this

experiment, it was assumed that the midpoint would be best, that is, the sampling

time was selected to be 15 s. Note, it is very helpful when selecting the sampling

time to make sure that the total experimental time can be divided by the sampling

time to give no remainder.

Finally, it is necessary to select the process bandwidth. The Nyquist bandwidth is

selected as the region 0; kτsτpπ

h i
with k equal to 2 and τp¼ 100 s, the smallest time

constant. The final signal was generated using the idinput command in

MATLAB®

>>u¼idinput(2*60*60/Ts,'rbs',[0,2*Ts/Tp/pi],[-1.5,
1.5])

It was assumed that the experiment was going to be run for 2 h (¼ 2� 60� 60 s).

The values were then sent to the distributed control system (DCS) controlling the

four-tank system. The data was recorded every second and the values collected in

MATLAB.

6.6.2 Raw Data

The data obtained for both Tank 1 and Tank 2 levels is shown in Fig. 6.10. A total of

2 h of data were collected. It can be seen that there are no obvious issues with the

data collected, such as missing values or abnormal values. In order to use the data, it

is necessary to downsample the 1 s data to the desired sampling rate of 15 s.

This can be accomplished by taking every 15th data point from the original data

set for the new downsampled data vector. The downsampled data are presented in

Sect. 3.A.1: Water Level in Tanks 1 and 2 Data.

For the purposes of modelling, the data set will be split into two parts: training

and validation. The training set will consist of the first ⅔, while the validation set

will consist of the remaining ⅓. Although this split is different from the suggested

division, it will be used in order to obtain better initial parameter estimates. All

modelling will be performed on Tank 1. The modelling of Tank 2 will be left as an

exercise.
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6.6.3 Linear Model Creation and Validation

The first step will be to create a linear model of the system and validate it. This

procedure will be split into three steps: time delay estimation, model creation, and

model validation. The last two steps are iterative, in that if the model validation

fails, a new model structure may be created and then fit. This procedure is repeated

until a sufficiently good model is obtained. For the purpose of this section, the initial

model and the final model will be presented, as well as any intermediate steps that

present any special challenges.

6.6.3.1 Time Delay Estimation

The normalised signal values, as well as the actual heights of the tanks are shown in

Fig. 6.10. In general, the data look quite good. Figure 6.11 shows the impulse

response calculations between each of the inputs and outputs. This is the only

approach that will work given the fact that the input was not white noise. The results

suggest a time delay of zero for u1 and one for u2.
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Fig. 6.10 The signals and heights as a function of time
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6.6.3.2 Initial Model

Unless there is additional information about the process, it is useful to always start

with the simplest model and work one’s way up. A good recommended initial guess

is a first-order Box-Jenkins model and then, based on the fit, to advance to more

complex models until the fit becomes good or the model order is too large.

For the initial, first-order Box-Jenkins model, the parameter estimates and their

standard deviation are:

h1 ¼ 5:7� 10�4 � 7� 10�5
� �

z�1

1� 0:91� 0:03ð Þz�1

1:76� 10�3 � 7� 10�5
� �

z�2

1� 0:956� 0:006ð Þz�1

� �
u1
u2

� �

þ 1þ 0:38� 0:05ð Þz�1

1� 0:99� 0:01ð Þz�1
et

ð6:81Þ

The auto- and cross-correlation plots are shown in Fig. 6.12. A comparison between

the predicted and actual levels is shown in Fig. 6.13. Both figures use the validation

data set for testing the model. From Fig. 6.12, it is clear that the residuals are not

uncorrelated with each other or the inputs. Therefore, the initial model needs to be

improved. Since there is a suggestion that the process model is incorrectly specified,

it will first be changed. The best approach is to increase the order of the numerator

and denominator (of the B- and F-polynomials) until either the cross-correlation

plot shows the desired behaviour or the confidence intervals for the parameters

cover zero. If the second case is reached, then this could be a suggestion that a linear

model is insufficient/inappropriate for the given data set. Furthermore, the fit

between the predicted and measured levels is not great (55.4%).
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Fig. 6.11 Impulse responses for Tank 1 level (left) for u1 and (right) for u2
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6.6.3.3 Final Model

After performing a series of iterations in increasing the model orders, the final

model for the system can be written as

h1 ¼
4:5� 10�4 � 4� 10�5
� �

z�1 þ 3:4� 10�4 � 4� 10�5
� �

z�2

1� 0:85� 0:01ð Þz�1
u1

þ 7:8� 10�4 � 2� 10�5
� �

z�2

1� 1:664� 0:007ð Þz�1 þ 0:695� 0:007ð Þz�1
u2

þ 1þ 0:3� 0:2ð Þz�1 � 0:23� 0:06ð Þz�2

1� 1:3� 0:2ð Þz�1 þ 0:4� 0:2ð Þz�2
et

ð6:82Þ

The auto- and cross-correlation plots are shown in Fig. 6.14. A comparison between

the predicted and actual levels is shown in Fig. 6.15. Both figures use the validation

data set for testing the model. The amount of deviation has now been significantly

decreased from the initial model. Although some of the correlation values are still

above the 95% confidence intervals, the values are closer to what should be

expected. The fit for the data is an excellent 93.15%, which is not significantly
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between the inputs (left) u1 and (right) u2 and the residuals for the initial linear model
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Fig. 6.13 Predicted and experimental tank levels for the initial linear model
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improved by changing the model structure further. Therefore, this will be consid-

ered the final linear model.

6.6.4 Nonlinear Model Creation and Validation

Finally, a nonlinear model will be fit to the data to see if any improvement can be

obtained. Using MATLAB, the wavenet basis function will be used. This implies

that the model will be given as

h1 ¼ ~x� xð ÞP L þ
Xnw
k ¼ 1

αkg βk ~x� xð ÞQ � βkγkð Þ ð6:83Þ

where~x is the vector of regressors; x is the mean value of the regressors;P andQ are

projection matrices resulting from a principal component analysis of the estimation

data;L is another projection matrix; α, β, and γ are the unknown parameters; g ~xð Þ is
the wavelet basis function

g ~xð Þ ¼ nr �~x~xT
� �

e�0:5~x~xT ð6:84Þ
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Fig. 6.15 Predicted and experimental tank levels for the final linear model
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nw is the number of wavelets to be used, and nr is the number of regressors present

in the model. Notice the complexity of the model and the number of parameters

being estimated.

A wavelet model for the data consisted of the following regressors: yt – 1, yt – 2,

yt – 3, and yt – 4, plus for each of the inputs the terms between nk+ 1 and nk + 5.
The total time delay was assumed to be one for the process between the u1 and h1
and two between the u2 and h1. Note that the time delay used here must include the

one-sample time delay introduced by sampling a system, that is, the total time delay

equals nk+ 1. The estimated model parameters will not be included here as they are

quite complex and provide no real insight into the results. The number of wavelets

was set at six. The auto- and cross-correlation plots are shown in Fig. 6.16. A

comparison between the predicted and actual levels is shown in Fig. 6.17. It can be

seen that the fit has improved to 96.71%. However, this has come at the cost of a

much more complex model whose physical understanding and computational

requirements are much greater. This is often the problem encountered in system

identification: the trade-off between the model complexity and fit. Furthermore, it
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Fig. 6.16 (Top) Autocorrelation plot for the residuals and (bottom) cross-correlation plots

between the inputs (left) u1 and (right) u2 and the residuals for the nonlinear model
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can be noted that the nonlinear approach requires the regressors to be estimated

using some other method. This may not always be so easy to do, especially if the

number of potential regressors is very large.

6.6.5 Final Comments

This brief example has shown some of the issues and concepts involved in the

development of models for real systems. The procedure involved becomes more

complicated as the complexity of the system increases, but the basic steps remain

the same. Also, it can be seen that obtaining a good fit can require trying multiple

different models and comparing the results. Although, in general, the fit will

improve with increased model complexity, it does not always mean that such a

model is better or more appropriate for the given application. There is always the

need to compare the model obtained against the purpose for which the model will

be used.
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6.7 Further Reading

The following are references that provide additional information about the topic:

1. General System Identification:

(a) Huang B, Kadali R (2008) Dynamic modeling, predictive control, and

performance monitoring. Springer, London

(b) Ljung L (1999) System identification theory for the user. Prentice Hall,

Inc., Upper Saddle River

(c) Zhu Y (2001) Multivariable system identification for process control.

Elsevier Science Ltd., Oxford

2. Properties of System Identification:

(a) Ashley R (1988) On the relative worth of recent macroeconomic forecasts.

Int J Forecast 4:363–376

(b) Nelson CR (1972) The prediction performance of the FRB-MIT-PENN

model of the U.S. Economy. Am Econ Rev 62(5):902–917

(c) Shardt YA, Huang B (2011) Closed-loop identification with routine oper-

ating data: effect of time delay and sampling time. J Process Control

21:997–1010

(d) Shardt YA, Huang B (2014) Minimal required excitation for closed-loop

identification: implications for PID control loops. In: ADCONIP confer-

ence proceedings, Hiroshima, Japan, pp 296–301. doi:http://www.nt.ntnu.

no/users/skoge/prost/proceedings/adconip-2014/pdf/SUBS61TO80/0069/

0069_FI.pdf

(e) S€oderstr€om T, Gustavsson I, Ljung L (1975) Identifiability conditions for

linear systems operating in closed loop. Int J Control 21(2):243–255

6.8 Chapter Problems

Problems at the end of the chapter consist of three different types: (a) Basic
Concepts (True/False), which seek to test the reader’s comprehension of the key
concepts in the chapter; (b) Short Exercises, which seek to test the reader’s ability
to compute the required parameters for a simple data set using simple or no
technological aids, and this section also includes proofs of theorems; and
(c) Computational Exercises, which require not only a solid comprehension of the
basic material but also the use of appropriate software to easily manipulate the
given data sets.
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6.8.1 Basic Concepts

Determine if the following statements are true or false and state why this is the case.

1. Data-driven models can be used for arbitrary conditions and operating points.

2. Grey-box modelling combines the advantages of first-principle and data-driven

models.

3. The controller, process, and disturbance models together create the plant

model.

4. In the Box-Jenkins model, the A-polynomial has a fixed order of three.

5. All prediction error models can be fit using standard, linear regression.

6. Only the one-step ahead predictor has a variance equal to the white noise

variance.

7. The prediction error method provides consistent parameter estimates.

8. Many nonzero autocorrelation and cross-correlation values implies that the fit

of the model is poor.

9. If the cross-correlation plot shows many nonzero correlations, then the likely

problem is a misspecified process model.

10. A first-order Box-Jenkins model (i.e. all polynomials have order one) requires a

signal to have at least a persistent excitation of four.

11. White noise has a persistent excitation order of exactly 1,000.

12. A random binary signal does not approximate a white noise signal.

13. To specify a random binary signal, the physical values for the levels, the

sampling time, and bandwidth are required.

14. A step test can provide information about high-order processes.

15. The time delay can be estimated using the autocorrelation plot.

16. All chemical process are linear and time invariant.

17. In closed-loop identification, it is not necessary to accurately specify both the

process and disturbance models.

18. Indirect identification of closed-loop processes requires that only the input and

output signals be available.

19. A polynomial basis function can fit any nonlinear function arbitrarily well.

20. The Wiener transformation removes nonlinearities from the process output.

6.8.2 Short Exercises

These questions should be solved using only a simple, nonprogrammable,
nongraphical calculator combined with pen and paper.

21. What is the three-step ahead predictor and its variance? If Gp¼ 5/(1 – 0.5z�1)

and Gl¼ 1/(1 – 0.25z�1), what is the three-step ahead predictor?

22. Show that, for open-loop identification irrespective of the true plant model, an

output-error model will provide an unbiased estimate of the process parame-

ters. Provide a useful implication of this result.
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23. Show that, for closed-loop identification irrespective of the true plant

model, an output-error model will provide a biased estimate of the process

parameters.

24. What is the time delay for the figures provided in Fig. 6.18? Assume open-loop

conditions.

25. Comment on the validation figures shown in Fig. 6.19. Is the model adequate?

Assume open-loop conditions.

26. Comment on the validation figures shown in Fig. 6.20. Is the model adequate?

Assume closed-loop conditions.
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Fig. 6.18 Estimating time delay: (left) cross-correlation plot and (right) impulse response
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Fig. 6.19 Model validation for the open-loop case: (left) cross-correlation between the input and

the residuals and (right) autocorrelation of the residuals
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6.8.3 Computational Exercises

The following problems should be solved with the help of a computer and appro-
priate software packages, such as MATLAB® or Excel®.

27. Take the Edmonton temperature series from Sect. D.1: Edmonton Weather

Data Series (1882–2002) and model the winter temperature as a function of the

other available temperatures. Validate the model.

28. Model the height in Tank 2 using the data provided in Sect. E.1: Water Level in

Tanks 1 and 2 Data.

29. Take a process that you are familiar with and design an experiment to identify the

process. If possible perform the experiment and obtain an appropriate model of

the system.Make sure to clearly explain the design of experiment,model creation,

and model validation used. Consider both linear and nonlinear modelling.

Appendix A6: Data Sets for This Chapter

This section gives detailed information about the data set used for analysis in

Chap. 6. All data can be downloaded as an Excel® spreadsheet or MATLAB® file

from the book website.

A6.1: Water Level in Tanks 1 and 2 Data

The water level in both Tanks 1 and 2, as well as the corresponding pump flow rates,

is presented in Table 6.3, in 15 s intervals.
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Fig. 6.20 Model validation for the closed-loop case: (left) cross-correlation between the input and
the residuals and (right) autocorrelation of the residuals

324 6 Modelling Dynamic Processes Using System Identification Methods

http://dx.doi.org/10.1007/978-3-319-21509-9_5
http://dx.doi.org/10.1007/978-3-319-21509-9_6
http://dx.doi.org/10.1007/978-3-319-21509-9_6


Table 6.3 Water tank data set

Time (s)

Level (m) Pump flow rate (cm3/s)

Tank 1 (h1) Tank 2 (h2) Left pump (u1) Right pump (u2)

1 0.1792 0.2456 14.5 13.5

16 0.1801 0.2462 14.5 13.5

31 0.1814 0.2480 14.5 13.5

46 0.1855 0.2507 14.5 13.5

61 0.1881 0.2538 14.5 13.5

76 0.1913 0.2565 14.5 10.5

91 0.1944 0.2579 14.5 10.5

106 0.1955 0.2588 14.5 10.5

121 0.1952 0.2593 14.5 10.5

136 0.1939 0.2603 14.5 10.5

151 0.1917 0.2611 14.5 10.5

166 0.1887 0.2617 14.5 10.5

181 0.1855 0.2626 14.5 10.5

196 0.1815 0.2639 14.5 10.5

211 0.1776 0.2649 11.5 10.5

226 0.1720 0.2654 11.5 10.5

241 0.1672 0.2647 14.5 10.5

256 0.1635 0.2629 14.5 10.5

271 0.1611 0.2615 14.5 10.5

286 0.1592 0.2607 14.5 10.5

301 0.1583 0.2605 14.5 10.5

316 0.1566 0.2605 14.5 10.5

331 0.1552 0.2609 14.5 10.5

346 0.1536 0.2615 14.5 10.5

361 0.1524 0.2625 14.5 10.5

376 0.1511 0.2638 14.5 10.5

391 0.1505 0.2647 14.5 10.5

406 0.1500 0.2654 14.5 10.5

421 0.1494 0.2666 14.5 10.5

436 0.1489 0.2674 14.5 10.5

451 0.1495 0.2682 14.5 10.5

466 0.1489 0.2692 14.5 10.5

481 0.1486 0.2701 14.5 10.5

496 0.1480 0.2703 14.5 10.5

511 0.1477 0.2714 11.5 10.5

526 0.1457 0.2714 11.5 10.5

541 0.1438 0.2700 11.5 10.5

556 0.1419 0.2677 11.5 10.5

571 0.1404 0.2641 11.5 10.5

586 0.1393 0.2601 11.5 10.5

601 0.1378 0.2553 11.5 13.5

616 0.1385 0.2524 11.5 13.5

(continued)
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Table 6.3 (continued)

Time (s)

Level (m) Pump flow rate (cm3/s)

Tank 1 (h1) Tank 2 (h2) Left pump (u1) Right pump (u2)

631 0.1415 0.2499 11.5 13.5

646 0.1451 0.2476 11.5 13.5

661 0.1501 0.2450 11.5 13.5

676 0.1550 0.2422 11.5 13.5

691 0.1612 0.2395 14.5 13.5

706 0.1671 0.2372 14.5 13.5

721 0.1748 0.2365 14.5 13.5

736 0.1814 0.2373 14.5 13.5

751 0.1873 0.2394 14.5 13.5

766 0.1923 0.2421 14.5 13.5

781 0.1966 0.2457 14.5 13.5

796 0.2001 0.2492 14.5 13.5

811 0.2039 0.2535 14.5 13.5

826 0.2069 0.2570 14.5 13.5

841 0.2095 0.2611 14.5 13.5

856 0.2120 0.2647 14.5 13.5

871 0.2141 0.2681 14.5 13.5

886 0.2164 0.2712 14.5 13.5

901 0.2179 0.2736 14.5 10.5

916 0.2189 0.2747 11.5 10.5

931 0.2162 0.2740 11.5 10.5

946 0.2115 0.2725 11.5 10.5

961 0.2060 0.2692 11.5 10.5

976 0.2003 0.2657 11.5 10.5

991 0.1936 0.2607 11.5 10.5

1,006 0.1880 0.2562 11.5 10.5

1,021 0.1816 0.2504 11.5 10.5

1,036 0.1765 0.2461 14.5 13.5

1,051 0.1732 0.2427 14.5 13.5

1,066 0.1730 0.2422 14.5 13.5

1,081 0.1742 0.2430 14.5 13.5

1,096 0.1770 0.2449 14.5 13.5

1,111 0.1812 0.2480 14.5 13.5

1,126 0.1848 0.2507 14.5 13.5

1,141 0.1892 0.2541 14.5 13.5

1,156 0.1930 0.2572 14.5 13.5

1,171 0.1973 0.2604 14.5 13.5

1,186 0.1999 0.2636 14.5 13.5

1,201 0.2027 0.2672 14.5 13.5

1,216 0.2053 0.2701 14.5 13.5

1,231 0.2075 0.2731 14.5 13.5

(continued)
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Table 6.3 (continued)

Time (s)

Level (m) Pump flow rate (cm3/s)

Tank 1 (h1) Tank 2 (h2) Left pump (u1) Right pump (u2)

1,246 0.2105 0.2759 14.5 13.5

1,261 0.2126 0.2790 14.5 13.5

1,276 0.2147 0.2808 14.5 13.5

1,291 0.2161 0.2832 14.5 13.5

1,306 0.2183 0.2847 14.5 10.5

1,321 0.2196 0.2844 14.5 10.5

1,336 0.2190 0.2834 14.5 10.5

1,351 0.2168 0.2820 14.5 10.5

1,366 0.2126 0.2807 14.5 10.5

1,381 0.2080 0.2800 14.5 10.5

1,396 0.2027 0.2794 14.5 10.5

1,411 0.1979 0.2789 14.5 10.5

1,426 0.1924 0.2784 14.5 10.5

1,441 0.1879 0.2778 14.5 10.5

1,456 0.1833 0.2770 14.5 10.5

1,471 0.1793 0.2770 14.5 10.5

1,486 0.1746 0.2769 14.5 10.5

1,501 0.1715 0.2768 14.5 13.5

1,516 0.1691 0.2784 11.5 13.5

1,531 0.1678 0.2803 11.5 13.5

1,546 0.1671 0.2810 11.5 13.5

1,561 0.1682 0.2799 11.5 13.5

1,576 0.1705 0.2778 11.5 13.5

1,591 0.1728 0.2744 11.5 13.5

1,606 0.1759 0.2710 11.5 13.5

1,621 0.1789 0.2668 11.5 13.5

1,636 0.1821 0.2627 11.5 13.5

1,651 0.1851 0.2583 11.5 13.5

1,666 0.1884 0.2543 11.5 13.5

1,681 0.1909 0.2499 11.5 10.5

1,696 0.1929 0.2447 11.5 10.5

1,711 0.1929 0.2381 11.5 10.5

1,726 0.1907 0.2332 11.5 10.5

1,741 0.1880 0.2278 11.5 10.5

1,756 0.1843 0.2240 11.5 10.5

1,771 0.1807 0.2199 14.5 10.5

1,786 0.1775 0.2173 14.5 10.5

1,801 0.1759 0.2161 14.5 10.5

1,816 0.1739 0.2170 14.5 10.5

1,831 0.1719 0.2191 14.5 10.5

1,846 0.1691 0.2217 14.5 10.5
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Table 6.3 (continued)

Time (s)

Level (m) Pump flow rate (cm3/s)

Tank 1 (h1) Tank 2 (h2) Left pump (u1) Right pump (u2)

1,861 0.1671 0.2249 14.5 10.5

1,876 0.1641 0.2284 14.5 10.5

1,891 0.1625 0.2321 14.5 10.5

1,906 0.1605 0.2356 14.5 10.5

1,921 0.1592 0.2390 14.5 10.5

1,936 0.1578 0.2426 14.5 10.5

1,951 0.1563 0.2458 14.5 13.5

1,966 0.1568 0.2507 14.5 13.5

1,981 0.1588 0.2556 14.5 13.5

1,996 0.1623 0.2608 14.5 13.5

2,011 0.1662 0.2649 14.5 13.5

2,026 0.1709 0.2687 14.5 13.5

2,041 0.1752 0.2721 14.5 13.5

2,056 0.1805 0.2751 11.5 13.5

2,071 0.1834 0.2775 11.5 13.5

2,086 0.1857 0.2784 11.5 10.5

2,101 0.1878 0.2759 11.5 10.5

2,116 0.1878 0.2709 11.5 10.5

2,131 0.1866 0.2660 11.5 10.5

2,146 0.1836 0.2593 11.5 10.5

2,161 0.1805 0.2543 11.5 10.5

2,176 0.1772 0.2483 11.5 10.5

2,191 0.1738 0.2435 11.5 10.5

2,206 0.1697 0.2379 11.5 10.5

2,221 0.1663 0.2333 11.5 10.5

2,236 0.1627 0.2286 11.5 10.5

2,251 0.1588 0.2251 11.5 10.5

2,266 0.1554 0.2214 11.5 10.5

2,281 0.1533 0.2186 11.5 10.5

2,296 0.1503 0.2155 11.5 10.5

2,311 0.1479 0.2134 11.5 10.5

2,326 0.1457 0.2108 11.5 10.5

2,341 0.1440 0.2091 11.5 10.5

2,356 0.1422 0.2075 11.5 10.5

2,371 0.1407 0.2062 11.5 10.5

2,386 0.1397 0.2047 11.5 10.5

2,401 0.1387 0.2036 11.5 10.5

2,416 0.1377 0.2027 11.5 10.5

2,431 0.1371 0.2025 11.5 13.5

2,446 0.1378 0.2033 11.5 10.5

2,461 0.1398 0.2036 11.5 10.5
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Table 6.3 (continued)

Time (s)

Level (m) Pump flow rate (cm3/s)

Tank 1 (h1) Tank 2 (h2) Left pump (u1) Right pump (u2)

2,476 0.1415 0.2025 11.5 10.5

2,491 0.1421 0.2019 11.5 10.5

2,506 0.1419 0.2009 11.5 10.5

2,521 0.1418 0.2004 11.5 10.5

2,536 0.1412 0.1999 11.5 10.5

2,551 0.1403 0.1993 11.5 10.5

2,566 0.1397 0.1990 11.5 10.5

2,581 0.1394 0.1983 11.5 10.5

2,596 0.1388 0.1975 11.5 10.5

2,611 0.1388 0.1972 11.5 10.5

2,626 0.1384 0.1967 11.5 10.5

2,641 0.1381 0.1966 11.5 10.5

2,656 0.1379 0.1958 11.5 10.5

2,671 0.1376 0.1953 11.5 10.5

2,686 0.1366 0.1951 11.5 10.5

2,701 0.1358 0.1947 11.5 10.5

2,716 0.1361 0.1946 11.5 10.5

2,731 0.1355 0.1946 11.5 10.5

2,746 0.1353 0.1946 11.5 10.5

2,761 0.1352 0.1945 14.5 10.5

2,776 0.1361 0.1949 14.5 10.5

2,791 0.1378 0.1971 14.5 13.5

2,806 0.1416 0.2022 14.5 13.5

2,821 0.1457 0.2086 14.5 13.5

2,836 0.1517 0.2156 14.5 13.5

2,851 0.1569 0.2223 14.5 13.5

2,866 0.1635 0.2297 14.5 13.5

2,881 0.1692 0.2355 14.5 13.5

2,896 0.1755 0.2417 14.5 13.5

2,911 0.1808 0.2471 14.5 13.5

2,926 0.1866 0.2524 14.5 13.5

2,941 0.1906 0.2568 14.5 13.5

2,956 0.1960 0.2615 14.5 13.5

2,971 0.2002 0.2648 14.5 13.5

2,986 0.2044 0.2687 14.5 13.5

3,001 0.2074 0.2715 14.5 13.5

3,016 0.2104 0.2746 14.5 13.5

3,031 0.2127 0.2766 14.5 13.5

3,046 0.2155 0.2790 14.5 10.5

3,061 0.2171 0.2790 14.5 10.5

3,076 0.2173 0.2780 14.5 10.5
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Table 6.3 (continued)

Time (s)

Level (m) Pump flow rate (cm3/s)

Tank 1 (h1) Tank 2 (h2) Left pump (u1) Right pump (u2)

3,091 0.2145 0.2771 11.5 10.5

3,106 0.2099 0.2759 11.5 10.5

3,121 0.2028 0.2734 11.5 10.5

3,136 0.1968 0.2703 11.5 10.5

3,151 0.1898 0.2663 11.5 10.5

3,166 0.1841 0.2610 11.5 10.5

3,181 0.1775 0.2563 11.5 10.5

3,196 0.1722 0.2506 14.5 10.5

3,211 0.1682 0.2456 14.5 10.5

3,226 0.1660 0.2423 14.5 10.5

3,241 0.1638 0.2402 14.5 10.5

3,256 0.1612 0.2400 14.5 10.5

3,271 0.1587 0.2406 14.5 10.5

3,286 0.1566 0.2421 14.5 10.5

3,301 0.1548 0.2438 14.5 10.5

3,316 0.1533 0.2458 14.5 10.5

3,331 0.1529 0.2481 14.5 10.5

3,346 0.1518 0.2502 14.5 13.5

3,361 0.1522 0.2539 14.5 13.5

3,376 0.1548 0.2588 14.5 13.5

3,391 0.1585 0.2630 14.5 13.5

3,406 0.1624 0.2674 14.5 13.5

3,421 0.1682 0.2707 14.5 13.5

3,436 0.1733 0.2737 14.5 13.5

3,451 0.1781 0.2761 14.5 13.5

3,466 0.1834 0.2788 11.5 13.5

3,481 0.1871 0.2801 11.5 13.5

3,496 0.1900 0.2801 11.5 13.5

3,511 0.1927 0.2787 11.5 10.5

3,526 0.1946 0.2738 11.5 10.5

3,541 0.1941 0.2676 11.5 10.5

3,556 0.1920 0.2609 11.5 10.5

3,571 0.1886 0.2548 11.5 10.5

3,586 0.1848 0.2486 11.5 10.5

3,601 0.1802 0.2430 11.5 10.5

3,616 0.1758 0.2373 11.5 10.5

3,631 0.1712 0.2326 11.5 10.5

3,646 0.1672 0.2276 11.5 10.5

3,661 0.1629 0.2240 11.5 10.5

3,676 0.1592 0.2201 11.5 10.5

3,691 0.1555 0.2171 11.5 10.5
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Table 6.3 (continued)

Time (s)

Level (m) Pump flow rate (cm3/s)

Tank 1 (h1) Tank 2 (h2) Left pump (u1) Right pump (u2)

3,706 0.1525 0.2143 11.5 10.5

3,721 0.1496 0.2122 11.5 10.5

3,736 0.1472 0.2095 11.5 10.5

3,751 0.1446 0.2078 11.5 10.5

3,766 0.1428 0.2060 11.5 10.5

3,781 0.1412 0.2053 11.5 10.5

3,796 0.1400 0.2034 11.5 10.5

3,811 0.1389 0.2018 11.5 10.5

3,826 0.1381 0.2015 11.5 10.5

3,841 0.1371 0.2009 11.5 10.5

3,856 0.1365 0.2002 11.5 10.5

3,871 0.1357 0.1994 11.5 10.5

3,886 0.1353 0.1991 11.5 10.5

3,901 0.1348 0.1985 11.5 10.5

3,916 0.1343 0.1984 11.5 10.5

3,931 0.1339 0.1981 11.5 10.5

3,946 0.1337 0.1972 11.5 10.5

3,961 0.1337 0.1969 11.5 10.5

3,976 0.1337 0.1965 11.5 10.5

3,991 0.1336 0.1965 11.5 10.5

4,006 0.1332 0.1964 11.5 10.5

4,021 0.1331 0.1966 11.5 10.5

4,036 0.1332 0.1962 11.5 10.5

4,051 0.1332 0.1959 11.5 10.5

4,066 0.1332 0.1966 11.5 10.5

4,081 0.1332 0.1967 11.5 10.5

4,096 0.1335 0.1967 14.5 10.5

4,111 0.1355 0.1967 14.5 10.5

4,126 0.1376 0.1977 14.5 10.5

4,141 0.1401 0.2009 14.5 10.5

4,156 0.1412 0.2044 14.5 10.5

4,171 0.1417 0.2088 14.5 10.5

4,186 0.1425 0.2141 14.5 10.5

4,201 0.1429 0.2187 14.5 10.5

4,216 0.1438 0.2232 14.5 10.5

4,231 0.1446 0.2280 14.5 10.5

4,246 0.1455 0.2328 14.5 10.5

4,261 0.1459 0.2361 14.5 10.5

4,276 0.1459 0.2405 14.5 10.5

4,291 0.1459 0.2437 14.5 10.5

4,306 0.1459 0.2471 14.5 10.5
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Table 6.3 (continued)

Time (s)

Level (m) Pump flow rate (cm3/s)

Tank 1 (h1) Tank 2 (h2) Left pump (u1) Right pump (u2)

4,321 0.1465 0.2498 14.5 10.5

4,336 0.1463 0.2527 11.5 10.5

4,351 0.1452 0.2548 11.5 10.5

4,366 0.1431 0.2550 11.5 10.5

4,381 0.1409 0.2544 11.5 10.5

4,396 0.1395 0.2523 11.5 10.5

4,411 0.1377 0.2498 11.5 10.5

4,426 0.1374 0.2457 11.5 10.5

4,441 0.1364 0.2423 11.5 10.5

4,456 0.1356 0.2376 11.5 10.5

4,471 0.1352 0.2341 11.5 10.5

4,486 0.1347 0.2296 11.5 10.5

4,501 0.1341 0.2260 11.5 10.5

4,516 0.1338 0.2221 11.5 10.5

4,531 0.1337 0.2190 11.5 10.5

4,546 0.1333 0.2163 14.5 10.5

4,561 0.1345 0.2141 14.5 10.5

4,576 0.1358 0.2132 14.5 10.5

4,591 0.1384 0.2144 14.5 10.5

4,606 0.1399 0.2166 14.5 10.5

4,621 0.1411 0.2192 14.5 10.5

4,636 0.1416 0.2227 14.5 10.5

4,651 0.1432 0.2264 14.5 10.5

4,666 0.1444 0.2304 14.5 10.5

4,681 0.1452 0.2338 14.5 10.5

4,696 0.1459 0.2371 14.5 10.5

4,711 0.1467 0.2402 14.5 10.5

4,726 0.1470 0.2437 14.5 10.5

4,741 0.1473 0.2463 14.5 10.5

4,756 0.1479 0.2490 14.5 10.5

4,771 0.1481 0.2518 14.5 10.5

4,786 0.1483 0.2536 14.5 10.5

4,801 0.1486 0.2554 14.5 10.5

4,816 0.1488 0.2571 14.5 10.5

4,831 0.1489 0.2593 14.5 13.5

4,846 0.1498 0.2622 14.5 13.5

4,861 0.1521 0.2663 14.5 13.5

4,876 0.1566 0.2699 14.5 13.5

4,891 0.1610 0.2735 14.5 13.5

4,906 0.1665 0.2762 14.5 13.5

4,921 0.1721 0.2786 14.5 13.5
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Table 6.3 (continued)

Time (s)

Level (m) Pump flow rate (cm3/s)

Tank 1 (h1) Tank 2 (h2) Left pump (u1) Right pump (u2)

4,936 0.1773 0.2807 14.5 13.5

4,951 0.1817 0.2831 14.5 13.5

4,966 0.1873 0.2848 14.5 13.5

4,981 0.1910 0.2863 14.5 13.5

4,996 0.1962 0.2877 14.5 13.5

5,011 0.2000 0.2887 14.5 13.5

5,026 0.2036 0.2892 14.5 13.5

5,041 0.2065 0.2897 14.5 13.5

5,056 0.2089 0.2907 14.5 13.5

5,071 0.2114 0.2909 14.5 13.5

5,086 0.2134 0.2922 14.5 13.5

5,101 0.2155 0.2920 14.5 13.5

5,116 0.2167 0.2928 14.5 13.5

5,131 0.2181 0.2931 14.5 13.5

5,146 0.2192 0.2936 14.5 10.5

5,161 0.2201 0.2920 14.5 10.5

5,176 0.2189 0.2895 14.5 10.5

5,191 0.2158 0.2878 14.5 10.5

5,206 0.2121 0.2857 14.5 10.5

5,221 0.2080 0.2841 14.5 10.5

5,236 0.2037 0.2823 14.5 10.5

5,251 0.1989 0.2815 14.5 10.5

5,266 0.1943 0.2803 14.5 10.5

5,281 0.1891 0.2792 14.5 10.5

5,296 0.1848 0.2786 14.5 10.5

5,311 0.1802 0.2778 14.5 10.5

5,326 0.1762 0.2766 14.5 10.5

5,341 0.1716 0.2764 14.5 10.5

5,356 0.1685 0.2751 14.5 10.5

5,371 0.1658 0.2749 14.5 10.5

5,386 0.1632 0.2747 14.5 10.5

5,401 0.1603 0.2747 14.5 10.5

5,416 0.1581 0.2744 14.5 10.5

5,431 0.1565 0.2747 14.5 10.5

5,446 0.1549 0.2743 14.5 13.5

5,461 0.1542 0.2760 14.5 13.5

5,476 0.1560 0.2784 14.5 13.5

5,491 0.1594 0.2807 14.5 13.5

5,506 0.1632 0.2827 14.5 13.5

5,521 0.1685 0.2844 14.5 13.5

5,536 0.1733 0.2860 14.5 13.5
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Table 6.3 (continued)

Time (s)

Level (m) Pump flow rate (cm3/s)

Tank 1 (h1) Tank 2 (h2) Left pump (u1) Right pump (u2)

5,551 0.1785 0.2872 14.5 13.5

5,566 0.1828 0.2884 14.5 13.5

5,581 0.1870 0.2892 14.5 13.5

5,596 0.1919 0.2906 14.5 13.5

5,611 0.1957 0.2908 14.5 13.5

5,626 0.1991 0.2917 14.5 13.5

5,641 0.2023 0.2924 14.5 13.5

5,656 0.2054 0.2931 14.5 13.5

5,671 0.2078 0.2936 14.5 13.5

5,686 0.2102 0.2937 11.5 13.5

5,701 0.2112 0.2937 11.5 13.5

5,716 0.2111 0.2922 11.5 13.5

5,731 0.2111 0.2900 11.5 13.5

5,746 0.2109 0.2856 11.5 13.5

5,761 0.2111 0.2815 11.5 13.5

5,776 0.2115 0.2762 11.5 13.5

5,791 0.2116 0.2712 11.5 13.5

5,806 0.2119 0.2655 11.5 13.5

5,821 0.2120 0.2607 11.5 13.5

5,836 0.2125 0.2553 11.5 13.5

5,851 0.2126 0.2510 11.5 13.5

5,866 0.2131 0.2464 11.5 13.5

5,881 0.2138 0.2428 11.5 13.5

5,896 0.2144 0.2389 11.5 13.5

5,911 0.2138 0.2357 11.5 13.5

5,926 0.2139 0.2327 11.5 13.5

5,941 0.2141 0.2303 11.5 13.5

5,956 0.2141 0.2281 11.5 13.5

5,971 0.2139 0.2265 11.5 13.5

5,986 0.2139 0.2247 11.5 13.5

6,001 0.2139 0.2233 11.5 13.5

6,016 0.2141 0.2220 11.5 13.5

6,031 0.2139 0.2210 11.5 13.5

6,046 0.2142 0.2199 11.5 13.5

6,061 0.2137 0.2191 11.5 13.5

6,076 0.2140 0.2184 11.5 13.5

6,091 0.2137 0.2178 11.5 13.5

6,106 0.2140 0.2171 11.5 13.5

6,121 0.2139 0.2167 11.5 13.5

6,136 0.2140 0.2161 11.5 10.5

6,151 0.2134 0.2140 11.5 10.5

(continued)
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Table 6.3 (continued)

Time (s)

Level (m) Pump flow rate (cm3/s)

Tank 1 (h1) Tank 2 (h2) Left pump (u1) Right pump (u2)

6,166 0.2113 0.2111 14.5 10.5

6,181 0.2085 0.2091 14.5 10.5

6,196 0.2065 0.2090 14.5 10.5

6,211 0.2031 0.2105 14.5 10.5

6,226 0.1994 0.2128 14.5 10.5

6,241 0.1949 0.2161 14.5 10.5

6,256 0.1904 0.2202 14.5 10.5

6,271 0.1853 0.2238 14.5 10.5

6,286 0.1810 0.2285 14.5 10.5

6,301 0.1772 0.2323 14.5 10.5

6,316 0.1741 0.2364 14.5 10.5

6,331 0.1698 0.2397 14.5 10.5

6,346 0.1663 0.2434 14.5 10.5

6,361 0.1629 0.2469 11.5 10.5

6,376 0.1592 0.2494 11.5 10.5

6,391 0.1548 0.2504 11.5 10.5

6,406 0.1514 0.2496 11.5 10.5

6,421 0.1480 0.2480 11.5 13.5

6,436 0.1467 0.2472 11.5 13.5

6,451 0.1481 0.2465 11.5 13.5

6,466 0.1506 0.2450 11.5 13.5

6,481 0.1542 0.2432 11.5 13.5

6,496 0.1580 0.2408 11.5 13.5

6,511 0.1628 0.2390 14.5 13.5

6,526 0.1683 0.2373 14.5 13.5

6,541 0.1748 0.2371 14.5 13.5

6,556 0.1797 0.2383 14.5 13.5

6,571 0.1856 0.2405 14.5 13.5

6,586 0.1894 0.2436 14.5 13.5

6,601 0.1944 0.2467 14.5 13.5

6,616 0.1985 0.2507 14.5 13.5

6,631 0.2021 0.2540 14.5 13.5

6,646 0.2056 0.2581 14.5 13.5

6,661 0.2083 0.2612 11.5 13.5

6,676 0.2093 0.2644 11.5 10.5

6,691 0.2089 0.2642 11.5 10.5

6,706 0.2072 0.2617 11.5 10.5

6,721 0.2032 0.2573 11.5 10.5

6,736 0.1991 0.2525 11.5 10.5

6,751 0.1936 0.2485 11.5 10.5

6,766 0.1888 0.2440 11.5 10.5

(continued)
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Table 6.3 (continued)

Time (s)

Level (m) Pump flow rate (cm3/s)

Tank 1 (h1) Tank 2 (h2) Left pump (u1) Right pump (u2)

6,781 0.1829 0.2391 11.5 10.5

6,796 0.1782 0.2352 11.5 10.5

6,811 0.1728 0.2303 11.5 10.5

6,826 0.1682 0.2271 11.5 10.5

6,841 0.1632 0.2228 11.5 10.5

6,856 0.1595 0.2198 11.5 10.5

6,871 0.1553 0.2167 11.5 10.5

6,886 0.1524 0.2140 11.5 10.5

6,901 0.1493 0.2115 14.5 10.5

6,916 0.1481 0.2100 14.5 10.5

6,931 0.1479 0.2100 14.5 10.5

6,946 0.1482 0.2113 14.5 10.5

6,961 0.1485 0.2141 14.5 10.5

6,976 0.1484 0.2169 14.5 10.5

6,991 0.1483 0.2213 14.5 10.5

7,006 0.1478 0.2246 14.5 10.5

7,021 0.1472 0.2289 14.5 10.5

7,036 0.1473 0.2320 14.5 10.5

7,051 0.1473 0.2360 14.5 10.5

7,066 0.1469 0.2396 14.5 10.5

7,081 0.1474 0.2428 14.5 10.5

7,096 0.1478 0.2460 14.5 10.5

7,111 0.1475 0.2486 11.5 10.5

7,126 0.1458 0.2511 11.5 10.5

7,141 0.1434 0.2514 11.5 10.5

7,156 0.1417 0.2508 11.5 10.5

7,171 0.1402 0.2486 11.5 10.5

7,186 0.1386 0.2457 11.5 10.5

7,201 0.1374 0.2428 11.5 10.5

7,216 0.1368 0.2390 11.5 10.5

7,231 0.1360 0.2358 11.5 10.5

7,246 0.1355 0.2314 14.5 10.5

7,261 0.1367 0.2285 14.5 10.5
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Chapter 7

Using MATLAB® for Statistical Analysis

MATLAB® is a mathematical programme developed by the company called The

MathWorks Inc. Examples in this chapter have been tested on MATLAB versions

between 2011a and 2015b. It is expected that most of the commands presented will

work with some earlier versions, as well as most later versions. It will be assumed

that the reader has a basic understanding of MATLAB, can write MATLAB

statements, understands basic MATLAB commands, and can plot a simple

MATLAB graph. This chapter will examine in detail additional features, such as

the different toolboxes and formatting features. In order to clearly distinguish

between the code required for the MATLAB function and text, all MATLAB

commands and variables are shown in bold Courier New.

7.1 Basic Statistical Functions

The functions presented in this section are available with all standard MATLAB

installations and do not require purchasing any additional toolboxes or licences.

The most common statistical functions are listed in Table 7.1.

7.2 Basic Functions for Creating Graphs

A list of functions for creating different types of graphs is listed in Table 7.2.

Functions with an asterisk after them require installation of the Statistics and

Machine Learning Toolbox in MATLAB. In pre-2013 versions of MATLAB, this

toolbox is called the Statistics Toolbox.
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Table 7.2 Basic plotting functions (functions followed by an asterisk (*) require the Statistics and

Machine Learning Toolbox)

Function Description

bar(x) Creates the vertical bar graph for the data in x.

barh(x) Creates the horizontal bar graph for the data in x. When using

the set method to set the labels, xticklabel should be

replaced by yticklabel.

boxplot(x,nameArray)* Creates a box-and-whisker plot for the data in x. The chart
labels are provided in the list array nameArray. Multiple

box-and-whisker plots can be combined by entering multiple

columns in the matrix x. A separate box-and-whisker plot

will be made for each column.

colorbar Sets the colour bar in 3-D plots.

colormap(NAME) Sets the colour map to the given NAME.

hist(x) Creates the histogram for the data in x.

imagesc(data) Creates an image plot so that the information in data is

centred and displays properly. Useful for creating cross-

correlation plots. In order to create the classical correlation

plot, it is necessary to use the following two additional

comments:

1. set(gca, 'xtick', 1:n)where gca is a handle to the

current figure and n is the number of data points in the

plot. This command centres the bins so that the labels are

properly set in the next step. The handle gca can be

replaced by the actual handle to the figure.

2. set(gca,'xticklabel',L}) where gca is a handle

to the current figure and L is an array that gives the names

of the individual points.

It should be noted that the above comments are only for the

x-axis. This must be repeated for the y-axis by replacing the

x by y, so that xtick is replaced by ytick, for example,

set(gca,'yticklabel',L}).

(continued)

Table 7.1 Basic statistics functions

Function Description

mean(x) For vectors, this function determines the mean of x. For matrices, this function

determines the mean for each column and returns a row vector containing these

values.

median(x) For vectors, this function determines the median value of x. For matrices, this

function determines the median value of each column and returns a row vector

containing these values.

std(x) For vectors, this function determines the observational (sample) standard

deviation of x. For matrices, this function determines the standard deviation

of each column and returns a row vector containing these values.

std(x,1) For vectors, this function determines the sample space (population) standard

deviation of x. For matrices, this function determines the sample space standard

deviation of each column and returns a row vector containing these values.
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Table 7.2 (continued)

Function Description

legend(nameArray) Adds a legend to the graph. The nameArray contains an

array ordered so that the first entry corresponds with the name

for the first drawn line. If more names are provided, then only

the first n are used. Latex commands can be used.

loglog(x,y,’format’) Plots given the vector x on the x-axis and the vector y on the

y-axis following the formatting rules presented in format
string (see Table 7.3 for some common examples). Both axes

will be logarithmic.

normplot(x)* Plots a normal probability graph for the data given by x. The
axes are flipped from what is recommended in this textbook,

that is, the x-axis has the data and the y-axis has the expected
scores.

pie(x,nameArray) Creates a pie chart for the data in x. The pie chart labels are
provided in the list array nameArray. The data should be

provided as percentages that totals 100%.

plot(x,y,’format’) Plots given the vector x on the x-axis and the vector y on the

y-axis following the formatting rules presented in format
string (see Table 7.3 for some common examples). The vector

x can be omitted, in which case a time series plot will be drawn,

that is, the x-axis will increment by 1 after each data point.

plot3(x,y,z) Plots a 3-dimensional line plot with x on the x-axis, y on the

y-axis, and z on the z-axis. This is the 3-dimensional analogue

to the plot function.

plotmatrix(array) Creates an n�n plot using columns of array. It is assumed

that the rows of array represent sample values and the

columns different variables. The plot that is displayed

contains on the diagonal, the (i, i)-entry, a histogram of the

data in the ith column. The off-diagonal entries, that is, the

(i, j)-entries, represent the correlation between the ith and

jth column of array.

plotmatrix(x,y)
plotmatrix(y)

Plots the columns of data matrix x against the columns of the

data matrix y to show the relationships between the different

columns. Providing a single entry is the same as

plotmatrix(y,y), except that the diagonals are replaced
by histograms.

polar(th,r,’format’) Plots a polar graph using the angle vector th and the radius

vector r following the formatting rules presented in format
string (see Table 7.3 for some common examples). The angle

vector can be omitted, in which case it is assumed that the angle

increases by exactly 1 radian (57.296�) for each data point.

rose(x,bins) Plots a polar histogram using the data vector x and the

requested number of bins. The number of bins is optional.

scatter(x,y,g) Creates a scatter plot with x on the x-axis and y on the y-axis.
Cell array g is a grouping variable by which one can plot

multiple groups on a single scatter plot. The values in g then

become the default legend labels. For example, with two runs,

g would be written as {'Run 1'; 'Run 2'; 'Run 1'; 'Run
1'; 'Run 2'; 'Run 2'}. This would assign the first entry in x
and y to Run 1, the second to Run 2, and so on.

(continued)
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Table 7.2 (continued)

Function Description

semilogx(x,y,
’format’)
semilogy(x,
y,’format’)

Plots given the vector x on the x-axis and the vector y on the

y-axis following the formatting rules presented in format
string (see Table 7.3 for some common examples). Either the

x- or y-axis will be logarithmic.

set
(gca,’xticklabel’,
listarray)

Creates for the vertical bar graph referenced by the handle

gca the x-axis labels given in the listarray. The current
graph is referenced by the handle gca, while the handle for a
specific graph can be obtained by setting h¼plot(. . .)
(or any similar method to obtain a figure).

surf(x,y,z) Creates a 3-dimensional surface plot with x on the x-axis, y on

the y-axis, and z on the z-axis.

title(’name’) Draws the title for the graph. Latex commands can be used.

xlabel(’name’) Draws the label for the x- (y- or z-) axis. Latex commands can

be used.ylabel(’name’).

zlabel(’name’).

ylabel(colorbar,'My
colorbar')

Sets the label for the colour bar.

Table 7.3 Useful formatting

options
Name Description

b blue

g green

r red

w white

c cyan

y yellow

k black

m magenta

. (period) dot

+ cross, +

* start, *

s square, □

d diamond, ◇
v ▽

^ △

< ◁
> ▷
p ☆

h hexagram, ★

- solid line

: dotted line

-. dash-dotted line

-- dashed line

340 7 Using MATLAB® for Statistical Analysis



7.3 The Statistics and Machine Learning Toolbox

This section lists those statistical functions that require the Statistics and Machine

Learning Toolbox in MATLAB to be installed. In pre-2013 versions of MATLAB,

this toolbox is called the Statistics Toolbox.

7.3.1 Probability Distributions

Detailed information regarding the definitions of the different probability density

functions and the meaning of the required variables can be found in Sect. 2.4.

Table 7.4 presents a summary of the available functions.

7.3.2 Advanced Statistical Functions

The functions listed in Table 7.5 are useful for computing more advanced statistical

properties.

Table 7.4 Probability distribution functions

Function Description

chi2inv(p,df) Calculates the inverse χ2-distribution, given a probability, p, and the

number of degrees of freedom, df.

chi2pdf(x,df) Calculates the χ2-cumulative density function for x, given the number

of degrees of freedom, df.

finv(p,ndf,ddf) Calculates the inverse F-distribution at a probability, p, given the

number of degrees of freedom for the numerator, ndf, and the number

of degrees of freedom for the denominator, ddf.

fpdf(x,ndf,ddf) Calculates the F-distribution cumulative density function at x given the

number of degrees of freedom for the numerator, ndf, and the number

of degrees of freedom for the denominator, ddf.

normcdf(x,m,s) Calculates the normal cumulative density function for a given x, given a
mean of m and a standard deviation of s. If m and s are not given, then

the default values of m ¼ 0 and s ¼ 1 will be used.

norminv(p) Calculates the Z-score for the probability p, which must be between

0 and 1.

tinv(p,df) Calculates the inverse t-distribution at a probability, p, given the

number of degrees of freedom, df.

tpdf(x,df) Calculates the t-distribution cumulative density function at x given the

number of degrees of freedom, df.

7.3 The Statistics and Machine Learning Toolbox 341

http://dx.doi.org/10.1007/978-3-319-21509-9_2


7.3.3 Useful Probability Functions

A summary of useful probability functions is given in Table 7.6.

7.3.4 Linear Regression Analysis

There are two main functions for performing linear regression in MATLAB:

regress and nlinfit. The first works for linear regression, while the second

works for nonlinear regression. Weighted, linear least squares can be performed

using lscov. Detailed information about the different commands and their

requirements is given in Table 7.7.

7.3.5 Design of Experiments

The functions listed in Table 7.8 are useful when performing design of experiments

or their analysis.

Table 7.5 Advanced statistical functions

Function Description

mad(y,1) Computes the median absolute difference for the data vector y.

zscore(u) Normalises the data matrix u by columns, that is, it computes for each column

the mean and standard deviation to normalise the values in that column.

Table 7.6 Useful probability functions

Function Description

quantile(X,p) Creates the p-tiles for the given data set X.

rand(x,y) Creates an x by y matrix of pseudorandom numbers generated from a

uniform distribution on ]0, 1[.

randn(x,y) Creates an x by y matrix of pseudorandom numbers generated from a

normal distribution with mean equal to zero and standard deviation equal

to 1.

randperm(N) Creates a vector containing a random permutation of the numbers from

1 to N.

342 7 Using MATLAB® for Statistical Analysis



Table 7.7 Linear regression functions

Function Description

[coeff,Cint,res,resint,
stats]
¼regress(b,A,alpha)

Computes a multivariate linear regression model of

the form y ¼ Aβ and returns the following parame-

ters:

(a) coeff, which is the vector containing the

estimated coefficients using least squares, β̂ .
(b) Cint, which is a vector that contains the 100

(1 � alpha)% confidence intervals for the

coefficients in coeff.
(c) Res, which is a vector containing the residuals.

(d) resint, which is a vector that contains the

confidence interval for the residuals.

(e) stats, which is a vector that contains the

following entries (in order): R2, F-statistics,

p-value, and σ̂2.
The variable alpha is optional. The default value of

alpha is 0.05.

[beta,r,J,covb] ¼ nlinfit
(x,y,’FUN’,beta0)

Performs nonlinear regression using the Gauss–

Newton estimation method. The x-data is given as x,
while the y-data is given as y. The function, FUN,
that is to be fitted must be written as an m-file. It will
take three arguments: the coefficient values, x, and
y (in this order). The function should be written to

allow for matrix evaluation. The initial guess is

specified in beta0. The vector beta contains the

estimated values of the coefficients, the vector r
contains the residuals, and covb is the estimated

covariance matrix for the problem. J is the Jacobian

matrix evaluated with the best estimate for the

parameters.

Ci¼nlparci(beta,r,’covar’,
covb)

Calculates the 100(1—alpha)% confidence inter-

vals for the coefficients, beta, given the residuals,

r, and the covariance matrix, covb.

[y,delta]¼nlpredci(’Fun’,
x, beta,r,’covar’,covarb)

Calculates the 100(1—alpha)% mean confidence

intervals for the nonlinear function, Fun, given the

values of x, x; the estimated coefficients, beta; the
residuals, r; and the covariance matrix, covarb.
The function returns the predicted y-values, y, and
the half-width lengths, delta. This implies that the

mean confidence interval will be given as

y�delta.

[y,delta]¼
nplpredci(’Fun ’,x,beta,r,
’covar’,covarb,’predopt’,
’observation’)

Calculates the 100(1—alpha)% predicted confi-

dence intervals for the nonlinear function, Fun,
given the values of x, x; the estimated coefficients,

beta; the residuals, r; and the covariance matrix,

covarb. The function returns the predicted y-
values, y, and the half-width lengths, delta. This
implies that the prediction confidence interval will

be given as y�delta.

(continued)
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7.4 The System Identification Toolbox

The System Identification Toolbox in MATLAB is a very useful toolbox when

fitting models for system identification using the prediction error model. It provides

a convenient and concise way of storing, accessing, and manipulating different data

sets and their associated models. Although most time series analyses can be

performed using the System Identification Toolbox, at times it is easier to use

the econometric toolbox described below. In order to fully appreciate and use the

System Identification Toolbox, it is first useful to examine in detail the special data

objects that store and hold the information: the iddata and the idpoly objects.

The iddata object, which will be denoted by a generic z, stores the data that is
used in determining the models. It consists of 2 main fields:

1. The inputs to the system are stored in z.u, which is a matrix. Each of the

columns contains a different input.

2. The outputs from the system are stored in z.y, which is a matrix. Each of the

columns contains a different output. Thus, the second output of the system would

be accessed as z.y(:,2), regardless of how the variables may be named on the

screen.

Table 7.7 (continued)

Function Description

[coeff,stdevc,mse,s] ¼ lscov
(A,y,W)

Computes a weighted, multivariate linear regression

model of the form y¼Aβ given the weighting matrix

W. The weighting vector W is equal to the diagonal

terms of the weighting matrixW, that is, W¼diag(W).

The parameter estimates are returned as coeff, the
standard deviation for the parameter estimates is

returned as stdevc, the variance of the model is

returned as mse, and s is the covariance matrix for

the parameters.

Table 7.8 Design of experiment functions

Function Description

A¼ff2n(n) Determines the 2n factorial experimental regression matrix

using codes 0 and 1.

[A, conf]¼
fracfact(’a b c ab bc’)

Determines a fractional factorial experimental regression

matrix, A, using the stated generating strings. The matrix conf
contains the confounding pattern for the given design.

[setting,A]¼
cordexch(nf,nr,’q’)

Determines aD-optimal regression matrix, A, given the number

of runs, nr, and the number of factors, nf.
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Additional fields include:

• z.Tstart, which stores the value of the starting time for the object.

• z.Ts, which stores the value of the sampling time.

The iddata object can be treated as a vector to access all the relevant data

between two end points. For example, to take the data located from the 1st to 100th

point in the object, the command would be z(1:100).
The idpoly object, which will be denoted by a generic m, stores information

about the model that has been fit to the data. It consists of five main fields that

consist of the coefficients, ai, ordered in descending powers of z�1, given by

1þ
Xn

i¼ 1

aiz
�i

where n is the order of the system. Each of the fields is the same length. The fields

are given the names, A, B, C, D, and F, and represent the coefficients of the

following model:

A z�1
� �

yk ¼
B z�1ð Þ
F z�1ð Þ uk � d þ C z�1ð Þ

D z�1ð Þ et;

where d is the discrete time delay, which for a zero-order hold is one more than the

continuous time delay. The coefficients of A(z�1) would be accessed using m.A. Note
that the definition of the B-polynomial in MATLAB is different from the definition

used in the other chapters. This difference implies that the time delay, d, must be

increased by 1 from the values obtained in the other chapters, that is, d¼ nk + 1. This

is because MATLAB requires the time delay due to sampling to be explicitly noted in

the definition of the function.

For multi-input systems, where there are multiple inputs, the model representa-

tion is converted into a matrix form, so that each row represents a different input

and the columns represent the parameter specifications. The orders are then stored

as the augmented column matrix with each column representing the orders of a

different row, for example, the B-order would be specified as [2, 3] for a 2-input

system.

The most important functions from the System Identification Toolbox are given

in Table 7.9 for creating the data object, Table 7.10 for creating the model,

Table 7.11 for validating the model, and Table 7.12 for designing the system

identification experiment.
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7.5 The Econometrics Toolbox

The Econometrics Toolbox contains some useful tools for analysing and

preprocessing time series data. It is especially useful for fitting seasonal models.

Unfortunately, not all the validation functions can be as easily obtained with this

toolbox. Table 7.13 contains the required functions for creating an econometric

model, Table 7.14 contains the functions for creating various types of correlation

plots, Table 7.15 contains the functions for estimating the model parameters of

econometric functions, and Table 7.16 contains useful functions for model

validation.

7.6 The Signal Processing Toolbox

The Signal Processing Toolbox contains complementary functions that can be used

to create cross- and autocorrelation plots without using the Econometrics Toolbox.

It can also be used to effectively create periodograms. Table 7.17 contains a

summary of the useful functions.

Table 7.9 System Identification Toolbox: Functions for creating the data object

Function Description

z¼iddata(yk,uk,Ts) Creates an iddata object, z, based on the input, uk, and output,
yk, with a sample time of Ts. For time series data, uk can be left

blank by replacing it by [].

zd ¼ detrend(z,0) Removes a trend from the given iddata object, z, and returns

the iddata object, zd. The option 0 removes the mean value

from the data allowing the data to vary about the mean of zero.

This should be performed on all data before carrying out any

further analysis.

idplot(z) This allows an iddata object, z, to be plotted. Two basic

figures are produced: the output as a function of time and the

input as a function of time. The programme will pause between

each set of inputs and outputs. To continue, return to the main

MATLAB window and press any key. Note: typing plot(z)
will also work.

model¼idpoly(A,B,
C,D,F,S,Ts)

Creates an idpoly object, model, that describes the model

based on the generalised prediction error model. The elements are

entered in descending powers of z�1, starting with the constant

term, even if it is absent. S is the variance of the error term and

Ts is the sampling time. The last two terms are optional.
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7.7 MATLAB® Recipes

This section provides useful MATLAB code for various functions that are not

provided by default in MATLAB. This code can be reused, but full attribution

both to the author and this book must be made.

Table 7.10 System Identification Toolbox: Functions for creating a model

Function Description

cra(z) Determines the impulse response coefficients between the

input and output, as defined in the iddata object, z. The
output is the value of the impulse responses. A graph is plotted

showing the individual coefficients, as well as the confidence

intervals. This function can be used to estimate the time delay.

mARab¼ar(z,[na,nb]) Finds for the data in the iddata object, z, an autoregressive

model with orders na and nb. This model is stored as an

idpoly object, mARab.

mARMAXacd¼armax(z,
[na,nc,d])

Finds for the data in the iddata object, z, an autoregressive

moving average with exogenous input model with orders na
and nc with a delay of d. This model is stored as an idpoly
object, mARMAXacd.

mARXabd¼arx(z,[na,
nb,d])

Finds for the data in the iddata object, z, an autoregressive

exogenous model with orders na and nb with a delay of d.
This model is stored as an idpoly object, mARXabd.

mBJbcdfd¼bj(z,[nb,
nc,nd,nf,d])

Finds for the data in the iddata object, z, a Box-Jenkins
model with orders nb, nc, nd, and nf with a delay of d. This
model is stored as an idpoly object, mBJbcdfd.

mNL¼nlarx(z,nn,
basis);

Finds for the data in the iddata object, z, a nonlinear ARX
model with ARX orders nn and the basis function given by

basis. When defining the basis function, it is important to

include the number of functions to be used; for a wavelet basis

function, this can be done as follows wavenet('num',
nfun), where nfun is the number of basis functions to be

used. The ARX orders are entered in the same manner as the

standard ARX model. This model is stored as an idpoly
object, mNL.

mOEabd¼oe(z,[nb,nf,
d])

Finds for the data in the iddata object, z, an output-error

model with orders nb and nf with a delay of d. This model is

stored as an idpoly object, mOEbfd.

nk¼delayest(z,na,nb,
minnk,maxnk)

Estimates the time delay for the iddata object, z, by
searching all feasible ARMAX models and selecting the one

with the lowest error. The estimated time delay is returned as

nk. If a large order model is to be searched, then na is the

order of the A polynomial and nb is the order of the B-
polynomial, minnk is the minimum time delay, and maxnk is

the maximum time delay. The last four values need not be

specified.

7.7 MATLAB® Recipes 347



Table 7.11 System Identification Toolbox: Functions for validating a model

Function Description

compare(z,mabd) Compares the original data stored in the iddata object, z, with the
model stored in mabd, to produce a plot showing the fit between the
original data and the predicted data. This function call uses the

infinite horizon predictor for the modelled data.

compare(z,mabd,n) Compares the original data stored in the iddata object, z, with the
model stored in mabd and an nth-step ahead predictor to produce a

plot showing the fit between the original data and the predicted data.

This function call uses the nth-step ahead predictor to forecast the

values.

present(mabd) Displays the idpoly object, mabd, with the estimated parameters

and their standard deviation.

resid(mabd,z) Determines and plots the residuals between the idpoly model,

mabd, and the original iddata object, z. The plot shows the
correlation between the residuals as well as the cross-correlation

between the residuals and the inputs. N.B.: The bounds are the 99%
confidence intervals.

residual¼resid
(mabd,z)

Same as resid(mabd,z), also returns the residuals as a vector.

Table 7.12 System Identification Toolbox: Functions for designing a system identification

experiment

Function Description

u¼idinput
(N,Type,band,
Range)

Creates an input, u, with number of values, N, with the following

characteristics:

(a) Type, which describes what kind of input is desired. Permitted types

include: ’RGS’, which gives random, Gaussian signal and ’RBS’,
which gives a random, binary signal.

(b) band, which is a 1-by-2 row vector that describes the region of the

passband in terms of the NYQUIST frequency. It must, thus, lie

within [0, 1].

(c) Range, which describes the region over which the data ranges.

Table 7.13 Econometrics Toolbox: Functions for creating the data object

Function Description

modStruc ¼ arima
('Constant',0,'D',d,
'Seasonality',
S,'SMALags',
nSMA,'MALags',
nMA,'ARlags',
nAR,'SARLags',nSAR)

Creates the initial model structure for fitting a seasonal

(or more advanced) model in MATLAB. The model structure

is given as modStruc. The degree of normal differencing is

given as d, and the seasonal differencing order is S. The
seasonal moving average orders are explicitly stated in the

vector nSMA, the moving average order in the vector nMA, the
seasonal autoregressive orders as nSAR, and the

autoregressive orders as nAR. The order vector given as [1,
2, 3, 5]would specify that the coefficients at the points z�1,

z�2, z�3, and z�5 are to be estimated. For the seasonal terms, it

is necessary to clearly state the values including any seasonal

component, so that [4 8] would correspond to the seasonal

vector z�4 and z�2�4.
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Table 7.14 Econometrics Toolbox: Functions for creating various correlation plots

Function Description

autocorr(data) Displays the autocorrelation graph for the data set data, including
appropriate confidence intervals.

crosscorr(data1,
data2)

Displays the cross-correlation graph between two data sets data1
and data2 including appropriate confidence intervals.

parcorr(data) Displays the partial autocorrelation graph for the data set data,
including appropriate confidence intervals.

Table 7.15 Econometrics Toolbox: Functions for estimating model parameters

Function Description

model¼estimate
(modStruc,data)

Estimates a model given the initial model structure

modStruc and the data vector data.

residual¼infer
(model,data)

Obtains the residuals residual given the estimated model
and the data vector data.

Table 7.16 Econometrics Toolbox: Functions for validating the model

Function Description

[h,p,stat,c]¼
lbqtest
(residuals,’lags’,
lags)

Performs the Ljung–Box–Pierce test on the data set

residuals. The optional vector lags contains the lag

values at which the statistic is to be evaluated. It can be

either a vector or a scalar. The default number of lags is 20.

Let l be equal to the number of lags tested. The Boolean

value of the hypothesis test is returned as the l�1 column

vector h, the corresponding p-values for the test statistic as
the l�1 column vector p, the actual test statistic values as
the l�1 column vector stat, and the corresponding critical
values as the l�1 column vector c.

Table 7.17 Signal Processing Toolbox: Functions for analysing signals

Function Description

[q]¼xcorr
(data1,data2)

Obtains the cross-correlation between two data series data1 and

data2, each of length m, and returns it as the (2m – 1)�1 vector q.
Autocorrelation can be obtained by setting data2 to be equal to

data1.

periodogram(yt) Displays the periodogram for the signal yt.
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7.7.1 Periodogram

Requirements: None
Goal: Given a data series yt return the corresponding periodogram on the region

[0, 0.5].

File Name: periodogram2.m

function periodogram2(yt)

%Custom-built function that creates the periodogram for a given

signal

%Inputs:

% yt: signal for which the periodogram is desired.

%Copyright 2014: Yuri Shardt

%Distributed as part of the book Statistics for Chemical and

Process

%Engineers: A Modern Approach, published by Springer Verlag.

%Checking the data

q¼size(yt);

N¼length(yt);

if (N<5)

error(’Please make sure that the size of yt is at least 5 samples.’);

end

if (N¼¼q(1) && q(2)~¼1) || (N¼¼q(2) && q(1)~¼1)

error(’Please make sure that yt is either a row or column vector.’);

end

y¼detrend(yt,0);

%Perform the Fast Fourier Transform

X1¼abs(fft(y,N));

X¼fftshift(X1);

if (mod(N,2)¼¼0)

F¼[-(N)/2:(N)/2-1]/N;

count¼N/2+1;

else

F¼[-(N-1)/2:(N-1)/2]/N;

count¼(N-1)/2+1;

end

%Creating the plot

plot(F(count:end),X(count:end)/N*2,’-k’)

xlabel([’Frequency, $f$,(cycles/sample)’],’interpreter’,’latex’),

ylabel(’Amplitude, $|y|$’,’interpreter’,’latex’)

end
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7.7.2 Autocorrelation Plot

Requirements: Signal Processing Toolbox (xcorr)
Goal: Given a data series yt return the corresponding autocorrelation plot for

20 lags.

File Name: autocorrelation.m

function autocorrelation(yt)

%Custom-built function that creates the autocorrelation plot for

a given

%signal. A lag of 20 is the maximum lag considered.

%Inputs:

% yt: signal for which the autocorrelation plot is desired.

%%Copyright 2014: Yuri Shardt

%Distributed as part of the book Statistics for Chemical and Process

%Engineers: A Modern Approach, published by Springer Verlag.

%Checking the data

q¼size(yt);

N¼length(yt);

lag¼20;

if (N<lag)

error(’Please make sure that the size of yt is at least 20 samples.’);

end

if (N¼¼q(1) && q(2)~¼1) || (N¼¼q(2) && q(1)~¼1)

error(’Please make sure that yt is either a row or column vector.’);

end

y¼detrend(yt,0);

%Obtain the autocorrelation values

q¼xcorr(y,y);

count¼N;

%Creating the plot

plot([0:lag],q(count:count+lag)/max(q),’ok’)

grid on

holdon;plot([0,lag],tinv(0.975,N)*[1,1]/sqrt(N),’--k’,’linewidth’,2)

plot([0,lag],-tinv(0.975,N)*[1,1]/sqrt(N),’--k’,’linewidth’,2)

plot([0,lag],[0,0],’-k’)

xlabel([’Lag (samples)’],’interpreter’,’latex’),ylabel(’Autocor-

relation, $\rho$’,’interpreter’,’latex’)

end
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7.7.3 Correlation Plot

Requirements: None
Goal: Given a matrix of correlations, correlation creates the two-dimensional

correlation plot.

File Name: corrplot1.m

function corrplot1(correlation,tags,title1,axis1)

%Custom-built function that creates the corelation plot given a

correlation matrix

%Inputs:

% correlation: correlation matrix

% tags: alphanumeric explanation of the columns in the data set

(should not be left blank)

% title1: a title for the figure (can be left blank)

% axis1: the lable for the axis (can be left blank)

%Copyright 2014: Yuri Shardt

%Distributed as part of the book Statistics for Chemical and Process

%Engineers: A Modern Approach, published by Springer Verlag.

[a,b]¼size(correlation);

imagesc(abs(correlation));colorbar;colormap(jet)

set(gca, ’XTick’, 1:a); % center x-axis ticks on bins

set(gca, ’YTick’, 1:a); % center y-axis ticks on bins

set(gca, ’XTickLabel’, tags); % set x-axis labels

set(gca, ’YTickLabel’, tags); % set y-axis labels

title(title1); % set title

xlabel(axis1);

ylabel(axis1);

7.7.4 Cross-Correlation Plot

Requirements: Signal Processing Toolbox (xcorr)
Goal: Given 2 data series yt and zt return the corresponding cross-correlation plot

for �20 lags.

File Name: crosscorrelation.m

function crosscorrelation(xt,yt)

%Custom-built function that creates the crosscorelation plot for

2 signals.

%A maximal lag of +-20 is assumed.

%Inputs:
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% x: signal 1

% y: signal 2

%Copyright 2014: Yuri Shardt

%Distributed as part of the book Statistics for Chemical and Process

%Engineers: A Modern Approach, published by Springer Verlag.

%Checking the data

q1¼size(xt);

N1¼length(xt);

q2¼size(yt);

N2¼length(yt);

lag¼20;

if (N1~¼N2)

error(’Please make sure that both signals have the same length’);

end

if (N1<2*lag || N2<2*lag)

error(’Please make sure that the size of yt and zt are at least

40 samples.’);

end

if (N1¼¼q1(1) && q1(2)~¼1)|| (N1¼¼q1(2) && q1(1)~¼1)|| (N2¼¼q2

(1) && q2(2)~¼1) || (N2¼¼q2(2) && q2(1)~¼1)

error(’Please make sure that both yt and zt is either a row or

column vector.’);

end

x¼detrend(xt,0);

y¼detrend(yt,0);

%Obtain the autocorrelation values

q¼xcorr(y,x);

count¼N1;

N¼N1;

%Creating the plot

plot([-lag:lag],q(count-lag:count+lag)/std(x)/std(y)/N1,’ok’)

grid on

hold on;plot([-lag,lag],tinv(0.975,N)*[1,1]/sqrt(N),’--k’,’

linewidth’,2)

plot([-lag,lag],-tinv(0.975,N)*[1,1]/sqrt(N),’--k’,’linewidth’,2)

plot([-lag,lag],[0,0],’-k’)

xlabel([’Lag (samples)’],’interpreter’,’latex’),ylabel(’Crosscorrelation,

$\rho_{YZ}$’,’interpreter’,’latex’)

end
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7.8 MATLAB® Examples

This section presents three examples that show how to implement various forms of

regression analysis in MATLAB. The topics considered are linear regression,

nonlinear regression, and system identification. All examples are based on real data

obtained from experiments. Appropriate MATLAB code, as well as the final results,

is provided so that the reader can modify these examples to fit their particular needs.

7.8.1 Linear Regression Example in MATLAB

This example examines the problem of fitting a theoretical equation to experimental

data in order to obtain the values of the different constants in the system. Detailed

information about the problem can be found in Prickett et al. (2011); Elliott

et al. (2007); Prickett et al. (2010); and Jochem and K€orber (1987). Data provided
courtesy of Dr. Richelle Prickett.

7.8.1.1 Problem Statement for Linear Regression Example

Consider the problem of obtaining the values of the parameters in a theoretical

equation that describes the osmotic pressure of the sodium chloride (NaCl) salt and

hydroxyethyl starch (HES, chemical formula (C6H10O5)m(C2H5O)n). Based on the

virial equation of state, it is assumed that the following equation can be used to

describe the osmolality (Π) of such a mixture

Π ¼ B3m
2
3 þ B3kdissm2m3 þ C3m

3
3 þ kc ð7:1Þ

where B3 and C3 are the virial parameters to be determined, m2 is the molality of

NaCl in millimol/kg of solvent, m3 is the molality of HES in millimol/kg of solvent,

kdiss is the disassociation constant that is equal to 1.678, and kc is a known constant
that depends on the system being analysed. An experiment was run where the ratio

of the mass of HES to the mass of NaCl was fixed to 0.5. The results obtained are

shown in Table 7.18.

7.8.1.2 Solution for Linear Regression Example

Before linear regression can be applied, the above equation must be re-arranged so

that all known constant information is on the left-hand side and all the unknown

variables are on the right-hand side. Thus, the equation would be rewritten as

Π � kc ¼ B3 m2
3 þ kdissm2m3

� �þ C3m
3
3 ð7:2Þ

354 7 Using MATLAB® for Statistical Analysis



The required variables would be defined as

y ¼ Π � kc
~x ¼ m2

3 þ kdissm2m3,m
3
3

� �

~β ¼ B3;C3h iT
ð7:3Þ

In order to obtain the parameter estimates and analyse the results, the following

MATLAB script will be used:

%Script for solving linear regression problems in MATLAB

%Copyright 2015 Yuri Shardt

%To be used in conjunction with Chapter 7 of the Springer book,

Statistics

%for Chemical and Process Engineers: A Modern Approach.

%Entering the raw data

m2¼[0 600 1268 2013 2852 3803 4889]’;

m3¼[0 0.039 0.0823 0.1307 0.182 0.2469 0.3175]’;

kc¼[0 1052 2326 3879 5792 8170 11161]’;

pi¼[0 1314 2267 3712 5496 8035 11513]’;

kdiss¼1.678;

%Creating the required data matrices for solving the problem.

y¼pi-kc;

A¼[m3.^2+kdiss*m2.*m3 m3.^3]; %Note the use of the dot operator

%Add code here for Part 2.

%Solve the problem to obtain the parameter estimates and associated

%information

[param,CI,residual,sr,info]¼regress(y,A);

%display the results

fprintf([’B_3: %f�%f\n’],param(1),(CI(1,2)-CI(1,1))/2);

fprintf([’C_3: %f�%f\n’],param(2),(CI(2,2)-CI(2,1))/2);

%display the statistics

fprintf([’R^2 ¼ %f\n’],info(1));

%examine the residuals

normplot(residual);

Table 7.18 Fitting the virial equation (MATLAB example)

m2 (millimol/kg solv) m3 (millimol/kg solv) kc (milliosm/kg solv) Π (milliosm/kg solv)

0 0.0000 0 0

600 0.0390 1,052 1,314

1,268 0.0823 2,326 2,267

2,013 0.1307 3,879 3,712

2,852 0.1852 5,792 5,496

3,803 0.2469 8,170 8,035

4,889 0.3175 11,161 11,513
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figure;plot(y,residual,’ok’);xlabel(’Measured value’);

ylabel(’Residual’);

figure;plot(A(:,1),residual,’ok’);xlabel(’First Regressor’);

ylabel(’Residual’);

figure;plot(A(:,2),residual,’ok’);xlabel(’Second Regressor’);

ylabel(’Residual’);

figure;plot(A*param,residual,’ok’);xlabel(’Predicted value’);

ylabel(’Residual’);

figure;plot(residual,’ok’);xlabel(’Sample’);

ylabel(’Residual’);

The output from MATLAB is:

B3: -0.8206�0.624

C3: 77,469�55,563

R2 ¼ 0.731103

The figures are shown in Fig. 7.1. It is clear from examining these figures that the

second data point seems to be quite the outlier with an error that is much larger than

any of the other data point. Other than this single outlier, the data set looks quite

good. Even though the data sample is small, it would be worthwhile to remove this

point and see how the regression changes. The previous MATLAB code is changed

by adding, after defining the regression matrices, the lines:

y¼y([1, 3:length(y)]);

A¼A([1, size(A,1)],:);

The output from MATLAB becomes:

B3: -0.8535�0.168

C3: 80,344�14,965

R2 ¼ 0.982121

It can be seen that the confidence intervals have decreased markedly and the R2

is now almost 1. This strongly suggests that the removed data point was an outlier.

Given the small sample size, the residual analysis graphs do not give any additional

information. Practically speaking, the background regarding the outlier would need

to be investigated in order to confirm that it is indeed an outlier. If after examining

there were no data collection or input errors, then the presence of the outlier could

suggest that the model was not appropriate for the data set. It is always important to

provide detailed reasons for why a given point was removed as an outlier, especially

if there is access to the original data.

356 7 Using MATLAB® for Statistical Analysis



−5
0

0
50

10
0

15
0

20
0

25
0

0.
05

0.
10

0.
25

0.
50

0.
75

0.
90

0.
95

D
at

a

Probability

−3
00

−2
00

−1
00

0
10

0
20

0
30

0
40

0
−5

005010
0

15
0

20
0

25
0

30
0

M
ea

su
re

d 
va

lu
e

Residual

0
50

0
10

00
15

00
20

00
25

00
30

00
−5

005010
0

15
0

20
0

25
0

30
0

F
irs

t R
eg

re
ss

or

Residual

0
0.

00
5

0.
01

0.
01

5
0.

02
0.

02
5

0.
03

0.
03

5
−5

005010
0

15
0

20
0

25
0

30
0

S
ec

on
d 

R
eg

re
ss

or

Residual

-3
00

-2
00

-1
00

0
10

0
20

0
30

0
40

0
-5

005010
0

15
0

20
0

25
0

30
0

P
re

di
ct

ed
 v

al
ue

Residual

1
2

3
4

5
6

7
−5

005010
0

15
0

20
0

25
0

30
0

S
am

pl
e

Residual

F
ig
.
7
.1

L
in
ea
r
re
g
re
ss
io
n
ex
am

p
le
:
M
A
T
L
A
B

p
lo
ts

o
f
th
e
(t
op
,
le
ft
)
n
o
rm

al
p
ro
b
ab
il
it
y
p
lo
t
o
f
th
e
re
si
d
u
al
s,
(t
op

,
ce
nt
re
)
re
si
d
u
al
s
as

a
fu
n
ct
io
n
o
f
y,

(t
o
p,

ri
gh

t)
re
si
d
u
al
s
as

a
fu
n
ct
io
n
o
f
th
e
fi
rs
t
re
g
re
ss
o
r,
x 1
,
(b
ot
to
m
,
le
ft
)
re
si
d
u
al
s
as

a
fu
n
ct
io
n
o
f
x 2
,
(b
ot
to
m
,
ce
nt
re
)
re
si
d
u
al
s
as

a
fu
n
ct
io
n
o
f
ŷ
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7.8.2 Nonlinear Regression Example in MATLAB

This example examines the problem of fitting a theoretical equation to experimental

data in order to obtain the values of the different constants in the system. Unlike the

previous case, nonlinear regression must be performed in order to obtain a result.

Detailed information about the problem can be found in Ross-Rodriguez (2009).

Data provided courtesy of Dr. Lisa Ross-Rodriguez.

7.8.2.1 Problem Statement for Nonlinear Regression Example

Consider the problem of obtaining a relationship for the ratio between the equilib-

rium and isotonic cell volumes given the osmotic pressure. The theoretical rela-

tionship can be written as

V

V0

¼ 1� b*
� ��1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4BΠ0

p

�1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4BΠ

p þ b* ð7:4Þ

where both B and b* are the parameters to be determined andΠ0 is a known osmotic

value. The experimental data is provided in Table 7.19. For this data set, Π0 has a

value of 0.293.

7.8.2.2 Problem Solution for Nonlinear Regression Example

In order to solve the problem in MATLAB, the function for which the parameter

estimates are being obtained needs to be written as a MATLAB function. It is very

important that the following points be considered when writing the function:

1. First, it must be able to deal with vector entries, that is, the dot operators should

be used with times (*) and divide (/) to give (.*) and (./).
2. Second, the header of the function must be correctly specified. The order of the

inputs is parameter values, regressor values, and measured values. Each entry is

assumed to be a matrix of appropriate size. The output is a single vector

containing the results. Therefore, the header will be of the form

Table 7.19 Equilibrium cell

volume data (MATLAB

example)

V/V0 Π

1.00034 0.29278

0.80465 0.57172

0.75358 0.85514

0.71548 1.13595

0.68588 1.43349

0.66600 1.72908

0.65913 2.02815

0.64004 2.32660

0.62661 2.66704
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y¼functionName(parameters,A,y).

Based on these constraints, the following MATLAB function was written. It

should be saved in the same location as the script that will be used to run the

nonlinear regression.

function [y1]¼volume(beta,x,y)

%Function to compute the predicted cell volumes given

% beta: the parameter coefficients

% x: the corresponding regressors

% y: the correspindg measured values

%Copyright 2015 Yuri Shardt

%Written as part of the Springer book Statistics for Chemical

and Process

%Engineers: A Modern Approach

y1¼(1-beta(1))*(-1+sqrt(1+4*beta(2)*0.293))./(-1+sqrt(1+4*beta

(2)*x))+beta(1);

The following script was used to solve the nonlinear regression problem. The

initial guess for the parameter estimates needs to be made carefully, as it can impact

the ability of the system to give an answer. If possible, using the estimate obtained

using the linearised model is a good idea.

%Script for solving linear regression problems in MATLAB

%Copyright 2015 Yuri Shardt

%To be used in conjunction with Chapter 7 of the Springer book,

Statistics

%for Chemical and Process Engineers: A Modern Approach.

%Entering the raw data

VVo¼[1.00034 0.80465 0.75358 0.71548 0.68588 0.66600

0.65913 0.64004 0.62661];

pi¼[0.29278 0.57172 0.85514 1.13595 1.43349 1.72908

2.02815 2.32660 2.66704];

%Solve the problem to obtain the parameter estimates and associated

%information

[param,residual,J,covb] ¼ nlinfit(pi,VVo,’volume’,[0.2,0.56]);

CI¼nlparci(param,residual,’covar’,covb);

%display the results

fprintf([’b*: %f�%f\n’],param(1),(CI(1,2)-CI(1,1))/2);

fprintf([’B: %f�%f\n’],param(2),(CI(2,2)-CI(2,1))/2);

%examine the residuals

normplot(residual);
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figure;plot(VVo,residual,’ok’);xlabel(’Measured value’);ylabel

(’Residual’);

figure;plot(pi,residual,’ok’);xlabel(’First Regressor’);ylabel

(’Residual’);

figure;plot(residual,’ok’);

xlabel(’Sample’);ylabel(’Residual’);

Note that the parameter estimates may be slightly different from those obtained here

due to differences in the way the optimising engine works. The MATLAB output is:

b*: 0.5245�0.0436

B: 2.408�3.616

From here, it is easy to note that the B parameter is not significant and its value

could be zero. This suggests that potentially not enough data have been collected to

make an appropriate estimate. The residual plots are shown in Fig. 7.2. This figure

seems to show that there is some trend to the residuals. However, given the rather

small sample, it is hard to discern exactly what this trend may be. Since it has been

assumed that the given equation holds, in order to obtain a better understanding of

the data, additional experiments should be provided.
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Fig. 7.2 Linear regression example: MATLAB plots of the (top, left) normal probability plot of

the residuals, (top, right) residuals as a function ofΠ, (bottom, left) residuals as a function of ŷ , and
(bottom, right) a time series plot of the residuals
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7.8.3 System Identification Example in MATLAB

The final example will consider the problem of system identification using the same

data as used in Sect. 6.6: Modelling the Water Level in a Tank. For this reason, only

the code required to model the level in Tank 1 will be presented. After making the

relevant changes in the figure formatting, the given figures will be obtained. This

code requires the use of the System Identification Toolbox. The function can be

called as follows: systemidentification([1 2],1 1,[1 2],[1 2])
where, since there are two inputs, the values of nb, nf, and nk are entered as vectors

with each entry represents the individual cases.

function z¼systemidentification(nb,nc,nd,nf,nk)

%Function to obtain system identification models of the data

assuming a

%Box-Jenkins model with parameter orders nb, nc, nd, and nf with

a time

%delay of nk.

%Copyright 2015 Yuri Shardt

load SystemIdentificationData;

newy1¼Lower_Left_Level;

qnew¼size(newy1);

%Plot the raw data

subplot(2,2,1), plot(U1)

xlabel(’time (s)’)

ylabel(’flow rate, u (cm/s)’)

title(’Signal 1’)

subplot(2,2,2), plot(U2)

xlabel(’time (s)’)

ylabel(’flow rate, u (cm/s)’)

title(’Signal 2’)

subplot(2,2,3), plot(newy1)

xlabel(’time (s)’)

ylabel(’height, h (m)’)

title(’Tank 1’)

%Create the data to store the object

z1¼iddata([newy1],[U1,U2],1);

z1¼detrend(z1,0);

%Obtain the parameter estimates

z¼processbj(z1,nb,nc,nd,nf,nk,qnew);

end

function modelBJ¼processbj(z1,nb,nc,nd,nf,nk,q)

%Partition the data set

split¼ceil(2*q(1)/3);

%Obtain the parameter estimates

modelBJ¼bj(z1(1:split),’nb’,nb,’nc’,nc,’nd’,nd,’nf’,nf,’nk’,nk);

%Display the results
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present(modelBJ)

%Plot the required residual analysis figures

figure

compare(modelBJ,z1(split+1:end))

figure

resid(modelBJ,z1(split+1:end)) %Note that the programme will pause

here in order to for the first graph to be examined before displaying

the next one.

r¼resid(modelBJ,z1(split+1:end));

figure

normplot(r.OutputData);

end

7.9 Further Reading

The following are references that provide additional information about the topic:

1. General MATLAB Help:

(a) Sizemore J, Mueller JP (2015) MATLAB for dummies. Wiley, Hoboken

(b) Hunt BR, Lipsman RL, Rosenberg J (2014) A guide to MATLAB: for

beginners and experienced users: updated for MATLAB 8 and Simulink

8, 3rd edn. Cambridge University Press, Cambridge, UK

2. Linear Regression Data Set:

(a) Elliott JA, Prickett RC, Elmoazzen HY, Porter KR, McGann LE (2007) A

multisolute osmotic virial equation for solutions of interest in biology. J

Phys Chem B 111:1775–1785

(b) Prickett RC, Elliott JA, McGann LE (2010) Application of the osmotic

virial equation in cryobiology. Cryobiology 2010:30–42

(c) Prickett RC, Elliott JA, McGann LE (2011) Application of the multisolute

osmotic virial equation to solutions containing electrolytes. J Phys Chem B

115:14531–14543

(d) Jochem M, K€orber C (1987) Extended phase diagrams for the ternary

solutions H2O�NaCl� glycerol and H2O�NaCl� hydroxyethylstarch

(HES) determined by DSC. Cryobiology 24:513–536

3. Nonlinear Regression Data Set:

(a) Ross-Rodriguez LU (2009) Cellular osmotic properties and cellular

responses to cooling. University of Alberta, Edmonton
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Chapter 8

Using Excel® to Do Statistical Analysis

Microsoft Excel® is a spreadsheet programme developed by Microsoft®, which

comes bundled with Microsoft Office®. The most recent version of Microsoft

Office is Office 2013. Not only can Excel perform most basic spreadsheet com-

mands, it contains a programming language called Visual Basic that can be used to

create powerful and useful macros. Most, if not all, of the analysis presented in the

previous chapters can be easily implemented in Excel. It will be assumed that the

reader has a basic understanding of Excel, can write simple formulae (equations),

understands what a column and row are, and can create basic graphs. Basic

background information about Excel can be found from such sources as the Excel
for Dummies Series (Harvey 2013). This chapter will examine in detail additional

features, such as array functions, using Solver, and writing basic Excel macros. In

order to clearly distinguish between the code required for Excel functions and text,

all Excel commands and variables are shown in bold Courier New. Locations on
the ribbon, menu paths, and keystrokes are shown in plain Courier New.

8.1 Ranges and Arrays in Excel

Ranges and arrays are how Excel refers to groups of columns and rows. The

difference lies in how they are used. A range is a group of rows and columns in

an Excel spreadsheet, while an array is a group of rows and columns used in an

Excel function or code. In Excel, an array most closely approximates a matrix.

One useful property of Excel is the ability to write an equation in one cell and

then drag it to other cells. When dragging such an equation, any references to a

range will be changed as the cells are dragged, for example, the cell A4will become

A5 if the formula is dragged down one row and B4 if it is dragged right by one

column. This is called relative referencing, since it depends on the location.

Although relative referencing is useful, it is not always desirable. Excel allows a

cell reference to be made absolute, that is, it will not change its value as the cell is
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dragged. This is done by placing a dollar sign $ before the element that one wishes

to freeze. There are three options (illustrated using cell A2):

1. Absolute Rows and Columns ($A$2): in this case, the reference will always be to
this cell.

2. Absolute Row but Relative Column (A$2): in this case, the row will stay the

same, but the column can change.

3. Absolute Column but Relative Row ($A2): in this case, the column will stay the

same, but the row can change.

Another useful feature in Excel is the ability to name a range. This means that

rather than having to drag and select a very large range of cells, it can be

conveniently referred to using the corresponding range name, for example, instead

of average(B4:B1000) we could write average(y), where y has been

defined to equal B4:B1000. Naming a range is shown in Fig. 8.1 and consists of

two steps: select the range and enter a name in the location shown. In order to make

your life easier, make sure that the name selected is unique to the workbook and not

just the worksheet.

Fig. 8.1 Naming a range (Excel 2007)

364 8 Using Excel® to Do Statistical Analysis



8.2 Useful Excel Functions

This section will examine various Excel functions that can be used for solving

statistical problems.

8.2.1 Array Functions in Excel

Array functions are Excel’s equivalent to matrices. Arrays are defined as a range of

cells that are treated together. When using array functions, the following steps must

be followed:

1. Select the output range.

2. Enter the array formula into one of the cells in the selected array.

3. Once the formula has been entered, press Ctrl + Shift + Enter to register

the formula as an array formula. Normally, one would simply press Enter.

A summary of the most common array functions is given in Table 8.1.

8.2.2 Statistical Functions in Excel

Table 8.2 lists some common statistical functions in Excel. Most of these functions

as written only work on newer versions of Excel (2010 or newer). A detailed

explanation of the functions and differences can be found in Sect. 2.4: Common

Statistical Distributions.

Table 8.1 Excel array functions

Function Description

mdeterm(array) Determines the determinant of an array. The result will be a single
scalar value.

minverse(array) Determines the inverse of the n� n array. The result will be the same

size as the initial array.

mmult(array1,
array2)

Multiplies two arrays array1 and array2 together. If array1 has

size m� n, then array2 must have size n� p. The result will have
size m� p.

transpose
(array)

Transposes an array, that is, the rows and column are exchanged. If

the array was originally n�m, then the output will be m� n.
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8.3 Excel Macros and Security

Macros are Excel’s version of functions, or user-written code, that Excel can

execute. The programming language used by Excel is called Visual Basic (VB).

In Excel 2003, code can be inserted by going to Tools! Macro ! Visual
Basic Editor (Alt + F11). In Excel 2007 or newer, code can be inserted by

going to the View Ribbon and selecting the Macro icon and then View Macro.
For both versions of Excel, in the window that appears, enter the name of the

function that you desire to create (or edit) and press Create (Edit). If a new

function is being created then, in the new window that opens, replace Sub with

Public Function. This will allow the new code to be directly accessed from the

spreadsheet by typing¼FunctionName(Required Parameters). Below,
some sample code has been provided that implements the Michaelis–Menten

equation.

Public Function MichaelisMenten(Concentration, vmax, KM) As

Double

’This function will contain a single line of code that ’implements

the Michaelis-Menten equation

MichaelisMenten ¼ vmax * Concentration / (KM + Concentration)

End Function

Table 8.2 Excel statistical functions

Function Description

average(range) Determines the mean value of the numbers in range.

count(range) Counts the number of nonempty cells in range.

f.inv(p,df1,df2) Returns the critical value of the F-test for the given left probability p,
the degrees of freedom in the numerator df1, and the degrees of

freedom in the denominator df2.

norm.inv(p,mean,
stdev)

Returns the critical value for the normal distribution with mean

mean and standard deviation stdev given the left probability p.

norm.s.inv(p) Returns the critical value for the standard normal distribution (μ¼ 0

and σ¼ 1) given the left probability p.

rank(value,
range,order)

Returns the order rank of value given the range. The option
order determines in which manner the list is ordered: 0 implies

descending order and 1 implies ascending order.

stdev(range) Determines the sample standard deviation of the numbers in range.

sum(range) Determines the sum of the numbers in range.

t.inv(p,df) Returns the critical value of Student’s t-test for the given left prob-

ability p and degrees of freedom df.
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8.3.1 Security in Excel

Unfortunately, when a macro is designed, Excel has the tendency to be paranoid

and think that it is always a nasty virus. Thus, the appropriate parameters should be

set for security. The procedure in dealing with security in Excel depends on the

version of Excel installed. The following sections explain the procedures for Excel

2003 (and older) and Excel 2007 (and newer).

8.3.1.1 Dealing with Security in Excel 2003 or Older

In Excel 2003, go to Tools ! Macros ! Security. A new window will

appear. Select Medium. With this option, Excel will always ask you on opening the

file whether you wish to activate the macros or not. When a file with macros is

loaded, then the warning shown in Fig. 8.2 will appear when the file is initially

loaded.

8.3.1.2 Dealing with Security in Excel 2007 or Newer

In Excel 2010 or newer, to set the security, go to the File menu, and select

Options. In Excel 2007, go the Start button instead of the File menu and

select Excel Options. Select Trust Center in the window that appears.

After this, select Trust Center Settings. . .. In the new window, go to

Macro Settings and select the appropriate level of security you desire. A

good choice is to select the option Disable All Macros with Notification
because the macros will be disabled, but you will be notified of their existence.

Press OK on all the open windows to save the changes. A file with a macro must be

saved as an .xlsm file. In Excel 2007 or newer, when opening the file with a macro

and the suggested above settings, a warning will appear. Clicking on the warning

will in Excel 2010 or newer activate the macros (shown in Fig. 8.3), while in Excel

2007 another window will appear which allows the macros to be activated (shown

in Fig. 8.4).

Fig. 8.2 Warning when

dealing with a file with a

macro in Excel 2003
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8.4 The Excel Solver Add-In

Solver is an Excel add-in that allows the user to iteratively solve systems of

equations. Unfortunately, it is not installed by default on most computers.

8.4.1 Installing the Solver Add-In

In Excel 2003, in order to install the Solver add-in, go to Tools! Add-in. In the
window that appears, which is shown in Fig. 8.6, select Solver Add-in and

press OK. Excel will then try to install the add-in. This may require the original

Excel CD or DVD.

In Excel 2007, in order to install the Solver add-in, go to the Start button and

select Excel Options at the bottom of the menu that appears. In the new window

Fig. 8.3 Security warning when macros are present (Excel 2010 or newer)

Fig. 8.4 Security warning when macros are present (Excel 2007). The inset shows the window

that appears after clicking options
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that appears, select Add-ins. Finally, go to the Go. . . button and a window similar

to Fig. 8.6 should appear.

In Excel 2010 or 2013, in order to install the Solver add-in, go to the Filemenu

and select Options at the bottom of the Menu that appears. In the new window

that appears, select Add-ins. Finally, click the Go. . . button. The last two steps

are shown in Fig. 8.5. A window similar to Fig. 8.6 should appear.

8.4.2 Using the Solver Add-In

In order to start Solver, in Excel 2007 or newer, locate the Data ribbon and go to

the extreme right-hand side in the area marked Analysis. Solver should be there
as shown in Fig. 8.7. In Excel 2003 or older, go to Tools ! Solver.

Figure 8.8 shows the main Solver window that appears in Excel 2010 or newer. It

is a must that the option Make Unconstrained Variables Non-Negative
be unchecked, as it can lead to wrong results otherwise. The following sections are

important for use in regression analysis:

1. Objective Function Value: this is the value of the objective function that is to be
optimised.

2. Type of Optimisation: what type of optimisation is desired: maximisation (Max),

minimisation (Min), or force the solver to obtain a particular value (Value of).

For regression, the minimisation option should be used.

3. Variables: this is the range of the cells (variables) that the computer can vary to

determine the solution. For regression, this would represent the cells where the

parameter values have been entered.

4. Constraints: this box lists the constraints for the problem. In order to add a

constraint, click on the “Add” button. The window shown in Fig. 8.9 should

appear. Once the desired form of the constraint has been selected, click Add to

add the constraint to the list of constraints. Selecting a constraint from the box

and clicking Change will cause the same window to appear and the properties

of the constraint can be changed. Finally, selecting a constraint and clicking

Delete will remove the constraint.

5. Solve: clicking this button will start the solver. The solution of the problem may

take some time. Solver will either state that a solution was found (Fig. 8.10 (left))

or that no solution was found (Fig. 8.10 (right)). In general, if a solution is found,

select Keep Solver Solution and press OK; otherwise, select Restore
Original Values and press OK. If the Solver fails to find a solution, an error
message will be included. It can give a suggestion as to how to fix the problem.

Three common things to check (in order of precedence) are that:

(a) The number of iterations was not exceeded.

(b) The Excel spreadsheet and Solver were properly configured, especially that

Box 7 in Fig. 8.8 is unchecked; and
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Fig. 8.6 Installing Solver

Fig. 8.7 Location of the Solver and Data Analysis add-ins (Excel 2013)

Fig. 8.8 Main Solver window (Excel 2010 or newer)
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(c) To make sure that the appropriate solver method was selected. Changing

the solver method from GRG nonlinear to evolutionary can be useful.

6. Options: clicking this button will bring up the window shown in Fig. 8.11. Each

of the choices in this window can speed up or slow down the amount of time

required to obtain a solution or even if a solution can be found. Each option will

be discussed separately:

(a) Max Time: this represents the maximum amount of time that Solver will run

in order to determine a solution. If the problem is large, then increasing this

option can potentially allow Solver to find a solution.

(b) Iterations: this represents the maximum number of iterations that Solver

will perform before it stops. If the initial guess is far from the solution, it

may take many iterations before a solution is obtained. Thus, increasing the

number of iterations can be a good idea.

(c) Precision: this represents the largest possible difference between the cal-

culated value of the constraints and the specified value of the constraints.

The smaller the number the longer it will take to find a solution.

Fig. 8.9 Add constraint window

Fig. 8.10 (Left) Solver found a solution and (right) Solver failed to find a solution (one possible

result)
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(d) Tolerance: this is similar to precision but is used for integer constraints. It

represents the percentage by which the calculated values differ from the

specified values.

(e) Convergence: this is similar to precision but is used to compute the

maximum allowable difference between 2 iterations of the parameters

(or cells that can change). Since for most purposes, a relative value would

be better, this entry should be changed whenever the parameters are

expected to either be all very large numbers or very small numbers.

(f) Use Automatic Scaling: this should always be selected as it minimises the

effect the magnitude of the different variables can have on the solution. It is

especially important if one of the variables ranges from 100 to 1,000, but

the other variable ranges from 0.01 to 1.

The options in the other tabs are mostly irrelevant and should be left at their default

values unless the problem at hand requires special treatment. However, the correct

approach to take requires consulting an appropriate source on numerical methods.

In the older version of Excel (2007 or older), the solver window has the form

shown in Fig. 8.12. The available information is the same except that it is arranged

slightly differently. Also, the method that Excel uses to solve the nonlinear problem

is based on a simple Newtonian search, so that the results can be more difficult to

obtain or different from those obtained using the newer methods. The options are

shown in Fig. 8.13.

Fig. 8.11 Solver option window (Excel 2010 or newer)
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8.5 The Excel Data Analysis Add-In

The Data Analysis add-in in Excel is another very useful Excel add-in that can

improve the ability to perform certain statistical tasks. It is installed using the same

procedure as installing the Solver add-in (see Sect. 8.4.1: Installing the Solver

Add-In). In order to start Solver, in Excel 2007 or newer, locate the Data ribbon

and go to the extreme right-hand side in the area marked Analysis. Solver should
be there as shown in Fig. 8.7. In Excel 2003 or older, go to Tools ! Data
Analysis.

The Data Analysis window is shown in Fig. 8.14. Although there are many

different options, the main problem with the data analysis add-in is that the results

are static and that any changes made in the original data set require the given

programme to be rerun. Also, the display of information is not always the best.

Nevertheless, for the purposes of this book, the only useful option is the Fourier

Fig. 8.13 Solver options

(Excel 2007 or older)

1. Objective 
 Function Value

2. Type of
 Optimisation

3. Variables

4. Constraints

5. Solve

6. Options

Fig. 8.12 Solver window (Excel 2007 or older)
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analysis option, which will compute, given a data set, the appropriate Fourier

coefficients, which can then be used to create a periodogram for the data set. An

Excel template file has been created to simplify the process (see Sect. 8.6.3:

Periodogram Template).

Selecting the Fourier analysis option will give the window shown in Fig. 8.15.

There are only two key areas to consider. First, the input range must have a length of

2n, where n 2 ℕ, that is, the length must be an integer power of 2. If the particular

list is less than the desired value, then add extra zeros to the end of the list to make it

an integer power of 2. The output range should have the same size and orientation as

the input range, that is, if the input range is a column, then the output range should

also be one, similarly for a row. Clicking OK will give the required Fourier

coefficients.

Fig. 8.14 Data Analysis window (Excel 2010 or newer)

1. Input Range

2. Output Range

Fig. 8.15 Fourier analysis window (Excel 2010 or newer)
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8.6 Excel Templates

This section describes the Excel templates available from the book website. All

templates have been tested on Excel 2013 and 2010. All should work on Excel 2007

as well. For the few that require special formulae, a separate Excel 2007 version has

been included.

The following are some useful remainders when using the templates:

1. Adding new rows: new rows should be entered inside the thick-bordered area.

This will automatically update all formulae to include the new row. This can be

accomplished by right-clicking on the appropriate row name and selecting

Insert. A row will be inserted above the selected row. See Fig. 8.16 for an

example.

2. Adding new columns: new columns should be entered inside the double-bordered

area. This will automatically update all formulae to include the new column.

This can be accomplished by right-clicking on the appropriate column name and

selecting Insert. A column will be inserted to the left of the selected column.

See Fig. 8.16 for an example.

3. Formulae: most formulae can be dragged down or across to fill the new data. It is

suggested that you drag from the first row (or column) down to the last to make

sure that everything is properly aligned.

4. Macros: a few of the templates contain macros that allow for easier and better

implementation of the given procedures. When macros are present, make sure

that the security is appropriately set so that they can be used (see Sect. 8.3.1:

Security).

Fig. 8.16 (Left) Inserting a row and (right) column (Excel 2013)
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8.6.1 Normal Probability Plot Template

Requirements: basic Excel installation.
Goal: create a normal probability plot in Excel that can be modified to deal with

other distributions.

Filename: normplot.xltx
Description: a screen shot of the template with an explanation of the formulae used

is shown in Fig. 8.17. The resulting normal probability plot is shown in Fig. 8.18.

The steps for creating a normal probability plot can be summarised as follows:

1. Place the original data in Column A.

2. Obtain the order of the data in Column A in Column B. You can use the rank

function.

3. In Column C, enter¼normsinv((ColumnB1-0.5)/count(Column
$A)). 0.5 is subtracted from the original ranked value in order to avoid asking

the computer for the location for which the probability is 100% (it is +1!).

4. In Column D, compute the Z-score for each of the data points, that is, subtract
the mean and divide the resulting value by the standard deviation of the

values in Column A.

Fig. 8.17 Normal probability plot data (the formulae given are those placed in the first row, and

they would then be dragged down into each of the remaining rows)
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5. Plot a scatter plot of the data in Columns C and D.

6. The straight line can be added by plotting the data in Column C against itself.

Warnings: the axes of the plot are fixed to the range [�3.0, 3.0]. Should there be

data outside this region, then it will be necessary to manually change the axis

limits.

8.6.2 Box-and-Whisker Plot Template

Requirements: basic Excel installation.
Goal: create a box-and-whisker plot in Excel.

Filename: boxplot.xltx
Filename, Excel 2007 or Older: boxplot2007.xlt
Description: a screen shot of the box-and-whisker plot is shown in Fig. 8.19. The

following steps can be used to create a box-and-whiskers plot in Excel from

scratch:

1. Place the data in a column (or row) and call that range data.
2. Compute the minimum, first quartile, median, third quartile, and

maximum values. This can be accomplished by using the following

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

N
or

m
al

is
ed

 R
es

id
ua

l

Fig. 8.18 Resulting normal probability plot
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formulae: min(data), quartile.inc(data,1), median(data),
quartile.inc(data,3), and max(data). In Excel 2007 or older,

one should replace quartile.inc by quartile.
3. Create a column containing the following values in the specified order: Q1 –

minimum, Q1, median – Q1, Q3, and maximum – Q3. This will allow the

box-and-whisker plot to be properly created in Excel.

4. Select the middle three items (Q1, median – Q1, and Q3) and create a stacked

column graph. The steps required are shown in Fig. 8.20 for Excel 2013. The

arrows provide the sequence of steps that should be followed to create the

graph. The initial graph that is obtained now needs to be formatted to look

like a box-and-whisker plot.

5. Select the bottom blue box and add a negative error bar, which is equal to Q1 –

minimum. Set the positive error bar equal to zero. The steps required are

shown in Fig. 8.21 for Excel 2013. Select the top grey box and add a positive

error bar, equal to maximum – Q3. The negative error bar should be set to

zero. The same procedure would be followed, mutatis mutandis.
6. Once again, select the blue box and set the fill option to no fill and the

border option to no line. The steps required are shown in Fig. 8.22 for

Excel 2013. Select the orange box and set its fill to no fill. Repeat for the
grey box. This should now look like a box-and-whisker plot. Additional

formatting can be performed to obtain the final version.
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Fig. 8.19 Box-and-whisker plot in Excel
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8.6.3 Periodogram Template

Requirements: basic Excel installation plus installing the Data Analysis add-in (see

Sect. 8.5: the Excel Data Analysis for how to install it.)

Goal: create both the full and half periodograms in Excel.

Filename: periodogram.xltx
Description: a screenshot of the template is shown in Fig. 8.23 with the resulting

periodograms shown in Fig. 8.24. Note that every time new data are entered, it is

necessary to rerun the Fourier analysis function in the Data Analysis add-in. The

set-up of the Fourier transform window is shown as an inset in Fig. 8.23. Also,

the number of data points must be a multiple of 2n where n is an integer, that is,

2, 4, 8, 16, 64, 128, 456,. . .. If the data set of interest is not a multiple, then it is

necessary to add extra zeros to the end of the list to make it so.

An explanation of the columns is as follows:

1. Column A contains a simple count of the sample number starting from 1.
2. Column B contains the values corresponding to each sample number. This

column is called data and must be a multiple of 2n, where n is an integer.

3. Column C contains the Fourier transform values as returned by the Fourier

analysis function in Excel. The values are complex numbers and should not

be changed.

4. Column D contains the magnitude of the values in Column C, that is,

¼abs(C2). This column is used to construct the full periodogram.

5. Column E contains the frequency corresponding to each sample, that is,

¼(A2-1)/COUNT(data).
6. Column F contains the half periodogram frequencies, which is basically the

first 2n – 1 values from Column E with the remaining values set to #N/A, so
that they will be ignored. The formula used is¼IF(A2-1<$I$2,E2,
#N/A). It should be noted that cell $I$2 contains the centre point value.

7. Column G contains the half periodogram magnitudes, which is basically

twice the corresponding value in Column D, up to the centre point value,

after which the values are arbitrarily set to #N/A. This allows the half

periodogram to be plotted for an arbitrary number of values. The formula

used is¼IF(A2-1<$I$2,D2*2,"NaN").
8. Full Periodogram: the full periodogram is created by plotting Column D as

the y-axis and Column E as the x-axis.
9. Half Periodogram: the half periodogram is created by plotting Column G as

the y-axis and Column F as the x-axis.

Warnings: the Fourier transform function must be rerun each time the data are

changed. Furthermore, the data length must always be a multiple of 2n, where

n is an integer.
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8.6.4 Linear Regression Template

Requirements: basic Excel installation plus ability to use macros.

Goal: perform linear regression in Excel in an easy and straightforward manner.

Filename: linearregresion.xltm
Description: a screenshot of the plain template is shown in Fig. 8.25. The yellow

blocks are where the required data are entered. The green block represents the

row in which an array formula needs to be entered. The complete green row
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Fig. 8.24 Sample full and half periodograms

Fig. 8.25 Linear regression template
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should be selected and then the first cell highlighted. Finally, press Ctrl
+Shift+Enter to copy the array formula to the entire green row. Adding

additional parameters and data points will also require that the formulae be

appropriately copied down. The spreadsheet automatically creates the normal

probability plot for the residuals and plots of the residuals as a function of y and
ŷ , as well as a time series plot of the residuals. Additional plots can be created by

the user. An example of how to use the template is provided in Sect. 8.7.1: Linear

Regression Example.

Warning: this template requires that the internal macros be enabled. Also, the array

formulae need to be properly entered.

8.6.5 Nonlinear Regression Template

Requirements: basic Excel installation plus installation of Solver and the ability to

use macros.

Goal: perform nonlinear regression in Excel in an easy and straightforward manner.

Filename: nonlinearregresion.xltm
Description: a screenshot of the plain template is shown in Fig. 8.26. The yellow

blocks are where the required data are entered. Note that Solver needs to be used

to obtain a solution to the problem. The configuration of Solver is shown as an

inset in Fig. 8.26. The layout and formatting of the results are similar to the linear

regression case. Two important differences are that the model and its Jacobian

must be entered as a macro and that Solver must be used. The spreadsheet

automatically creates the normal probability plot for the residuals and plots of

the residuals as a function of y and ŷ , as well as a time series plot of the residuals.

Additional plots can be created by the user. An example of how to use the

template is provided in Sect. 8.7.2: Nonlinear Regression Example.

The template comes with four predefined functions for creating the model and

the corresponding Jacobian. Each function takes the same inputs: the range

corresponding to the parameters and the range corresponding to the inputs.

The fours functions are model, dydb1, dydb2, and dydb3. This approach
is very similar to what MATLAB® requires and provides the most flexibility in

defining the relevant functions.

Warning: this template requires that the internal macros be enabled and Solver

installed.

8.6.6 Factorial Design Analysis Template

Requirements: basic Excel installation and appropriate macro security.

Goal: perform the analysis of a factorial design experiment in Excel in an easy and

straightforward manner.
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Filename: factorialdesigntemplate.xltm
Description: a screenshot of the plain template is shown in Fig. 8.27. The yellow

blocks are where the required data are entered. The green block represents the

row in which an array formula needs to be entered. The complete green row

should be selected and then the first cell highlighted. Finally, press Ctrl
+Shift+Enter to copy the array formula to the entire green row. Adding

additional parameters and data points will also require that the formulae be

appropriately copied down.

The spreadsheet automatically creates the normal probability plot for the

parameters and residuals as well as plots of the residuals as a function of y and
ŷ and a time series plot of the residuals. Additional plots can be created by the

user. An example of how to use the template is provided in Sect. 8.7.3: Factorial

Design Examples.

Warning: this template requires that the internal macros be enabled. Also, the array

formulae need to be properly entered.

8.7 Excel Examples

This section presents three examples that show how to implement various forms of

regression analysis in Excel. The topics considered are linear regression, nonlinear

regression, and analysis of factorial design. All examples are based on real data

obtained from experiments. The procedures use the appropriate templates for

Fig. 8.27 Analysis of factorial experiments template
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solving the problem faster. The final form of the spreadsheet including all required

information is provided as a reference for the user.

8.7.1 Linear Regression Example in Excel

This example examines the problem of fitting a theoretical equation to experimental

data in order to obtain the values of the different constants in the system. Detailed

information about the problem can be found in Prickett et al. (2011); Elliott

et al. (2007); Prickett et al. (2010); and Jochem and K€orber (1987). Data provided
courtesy of Dr. Richelle Prickett.

8.7.1.1 Problem Statement for Linear Regression Example

Consider the problem of obtaining the values of the parameters in a theoretical

equation that describes the osmotic pressure of the sodium chloride (NaCl) salt and

hydroxyethyl starch (HES, chemical formula (C6H10O5)m(C2H5O)n). Based on the

virial equation of state, it is assumed that the following equation can be used to

describe the osmolality (Π) of such a mixture:

Π ¼ B3m
2
3 þ B3kdissm2m3 þ C3m

3
3 þ kc ð8:1Þ

where B3 and C3 are the virial parameters to be determined, m2 is the molality of

NaCl in millimol/kg of solvent, m3 is the molality of HES in millimol/kg of solvent,

kdiss is the disassociation constant that is equal to 1.678, and kc is a known constant
that depends on the system being analysed. An experiment was run where the ratio

of the mass of HES to the mass of NaCl was fixed to 0.5. The results obtained are

shown in Table 8.3.

Table 8.3 Fitting the virial equation (Excel example)

m2 (millimol/kg solv) m3 (millimol/kg solv) kc (milliosm/kg solv) Π (milliosm/kg solv)

0 0.0000 0 0

600 0.0390 1,052 1,314

1,268 0.0823 2,326 2,267

2,013 0.1307 3,879 3,712

2,852 0.1852 5,792 5,496

3,803 0.2469 8,170 8,035

4,889 0.3175 11,161 11,513
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8.7.1.2 Problem Solution for Linear Regression Example

Before linear regression can be applied, the above equation must be rearranged so

that all known constant information is on the left-hand side and all the unknown

variables are on the right-hand side. Thus, the equation would be rewritten as

Π � kc ¼ B3 m2
3 þ kdissm2m3

� �þ C3m
3
3 ð8:2Þ

The required variables would be defined as

y ¼Π � kc
~x ¼ m2

3 þ kdissm2m3,m
3
3

� �
~β ¼ B3;C3h iT

ð8:3Þ

Entering all the data in the Excel spreadsheet gives the results shown in Figs. 8.28

and 8.29.

Using the original data shows that the second point (Π¼ 1,314) is potentially an

outlier, since its residual is extremely large. Thus, the row corresponding to this point

(row 4 in the original layout) was deleted and the regression analysis was redone. The

results are shown in Figs. 8.30 and 8.31. The results are much better as there are now

no clear outliers and the data confidence intervals, especially for C3, are much smaller.

Fig. 8.28 Linear regression example: Data Analysis results
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8.7.2 Nonlinear Regression Example in Excel

This example examines the problem of fitting a theoretical equation to experimental

data in order to obtain the values of the different constants in the system. Unlike the

previous case, nonlinear regression must be performed in order to obtain a result.

Detailed information about the problem can be found in Ross-Rodriguez (2009).

Data provided courtesy of Dr. Lisa Ross-Rodriguez.
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Fig. 8.29 (Left) Linear regression example: normal probability and (right) time series plots. The

circled point is a potential outlier

Fig. 8.30 Linear regression example: Data Analysis results after removing the outlier
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8.7.2.1 Problem Statement for Nonlinear Regression Example

Consider the problem of obtaining a relationship for the ratio between the equilib-

rium and isotonic cell volumes given the osmotic pressure. The theoretical rela-

tionship can be written as

V

V0

¼ 1� b*
� ��1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4BΠ0

p

�1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4BΠ

p þ b* ð8:4Þ

where both B and b* are the parameters to be determined andΠ0 is a known osmotic

value. The experimental data are provided in Table 8.4. For this data set, Π0 has a

value of 0.293.

8.7.2.2 Problem Solution for Nonlinear Regression Example

Before we set up the problem in Excel, it is first necessary to compute some

preliminary information. First, we need to obtain the derivatives of Eq. (8.4) with

respect to the parameters, that is,
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Fig. 8.31 Linear regression example: (left) normal probability and (right) time series plots after

removing outliers

Table 8.4 Equilibrium cell

volume data (Excel example)
V/V0 Π

1.00034 0.29278

0.80465 0.57172

0.75358 0.85514

0.71548 1.13595

0.68588 1.43349

0.66600 1.72908

0.65913 2.02815

0.64004 2.32660

0.62661 2.66704
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d V=V0ð Þ
db*

¼ 1� 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4BΠ0

p

1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4BΠ

p ð8:5Þ

d V=V0ð Þ
dB

¼ 2 1� b*
� � Π0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4BΠ0

p �1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4BΠ

p� �� Π �1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4BΠ0

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4BΠ

p �1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4BΠ

p� �2
" #

ð8:6Þ

It can clearly be seen that this equation is nonlinear in the parameters. Thus, nonlinear
regression using Solver will be performed. In order to obtain values for the parameter

confidence intervals using Equation (198), the grand Jacobian will be calculated using

the “best” estimated values of the parameters and the above derivatives.

The nonlinear regression Excel template used is set up identically to that of the

linear regression template. The only difference is that now the estimated parameter

values are not computed using a formula. Instead, they must be determined using

Solver. Given the problem set-up, initial parameter estimates can be a bit of an

issue, as the solution is sensitive to them. A recommended initial guess would be

0.5 for b* and 2.5 for B. The macros are shown in Sect. 8.7.2.3: VB Macros.

The final results are shown in Fig. 8.32. Figure 8.33 shows the normal proba-

bility plot and a time series plot of the residuals. It is easy to note that the

B parameter is not significant and its value could be zero. Given the overall good

fit and the relative well-behaved nature of the residuals, this would suggest that

potentially not enough data have been collected to make an appropriate estimate.

This situation partly explains why the Solver can have issues with obtaining a good

value for B. The residual plots are shown in Fig. 8.33. Overall the results are decent,

Fig. 8.32 Nonlinear regression example: Excel spreadsheet results
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given the small sample. Since it has been assumed that the given equation holds, in

order to obtain a better understanding of the data, additional experiments should be

performed.

8.7.2.3 VB Macros

The macros required for performing the detailed regression analysis are shown

here. There are three main macros: (1) to compute the model parameters (model),
(2) to compute the derivative of the model with respect to b* (dydb1), and (3) to

compute the derivative of the model with respect to B (dydb3).

Public Function model(parameter, x)

bs ¼ parameter(1)

B ¼ parameter(2)

model¼ (1 - bs) * (-1 + Sqr(1 + 4 * B * 0.293)) / (-1 + Sqr(1 + 4 * B * x(1)))

+ bs

End Function

Function dydb1(parameter As Range, x As Range)

bs ¼ parameter(1)

B ¼ parameter(2)

dydb1 ¼ 1 - (-1 + Sqr(1 + 4 * B * 0.293)) / (-1 + Sqr(1 + 4 * B * x(1)))

End Function
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Fig. 8.33 Nonlinear regression example: (left) normal probability plot and (right) time series plot

of the residuals
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Function dydb3(parameter As Range, x As Range)

bs ¼ parameter(1)

B ¼ parameter(2)

Pio ¼ 0.293

so ¼ Sqr(1 + 4 * B * Pio)

s ¼ Sqr(1 + 4 * B * x(1))

dydb3 ¼ 2 * (1 - bs) * (Pio / so / (s - 1) - x(1) * (so - 1) / s / (s - 1) ^ 2)

End Function

8.7.3 Factorial Design Examples Using Excel

This section presents the Excel spreadsheets for analysing some of the factorial

design experiments presented in Chap. 4. The examples are all based on the

factorial design template. The following examples have a corresponding Excel

spreadsheet:

1. Figure 8.34: Example 4.2, Analysis of a Full Factorial Experiment, from Sect.

4.4.4, Projection;

2. Figure 8.35: Sect. 4.7.4, Detailed Mixed-Level Example; and

3. Figure 8.36: Sect. 4.8.2, Factorial Design with Centre Point Example.

8.8 Further Reading

The following are references that provide additional information about the topic:

1. General Excel Help:

(a) Harvey G (2013) Excel® 2013 All-in-One for dummies. Wiley, Hoboken

(b) Brillo J (2007) Excel for scientists and engineers: numerical methods.

Wiley, Hoboken

(c) Schmuller J (2013) Statistical analysis with Excel® for dummies, 3rd edn.

Wiley, Hoboken

2. Linear Regression Data Set:

(a) Elliott JA, Prickett RC, Elmoazzen HY, Porter KR, McGann LE (2007) A

multisolute osmotic virial equation for solutions of interest in biology. J

Phys Chem B 111:1775–1785

(b) Prickett RC, Elliott JA, McGann LE (2010) Application of the osmotic

virial equation in cyrobiology. Cryobiology 2010:30–42
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(c) Prickett RC, Elliott JA, McGann LE (2011) Application of the multisolute

osmotic virial equation to solutions containing electrolytes. J Phys Chem B

115:14531–14543

(d) Jochem M, K€orber C (1987) Extended phase diagrams for the ternary

solutions H2O�NaCl� glycerol and H2O�NaCl� hydroxyethylstarch

(HES) determined by DSC. Cryobiology 24:513–536

3. Nonlinear Regression Data Set:

(a) Ross-Rodriguez LU (2009) Cellular osmotic properties and cellular

responses to cooling. University of Alberta, Edmonton

Fig. 8.36 Factorial design: combined factorial and centre point example
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Appendix A: Solution Key

This appendix provides brief solutions to some of the problems in the book. Often
only the final answer or value is provided without any explanation or justification.
Given the sometimes subjective nature of regression analysis, other equally valid
answers can also exist. As well, although the author has strived to verify that the
answers are correct, it is inevitable that one or two stray errors may appear. This
should be borne in mind when comparing answers. If you believe that there is
indeed an error in the solution key, please let the author know so that appropriate
corrections can be made.

Chapter 1

(1) F; (2) F; (3) T; (4) F; (5) T; (6) F; (7) T; (8) F; (9) T; (10) T; (11) F; (12) T;

(13) F; (14) F; (15) T; (16) T; (17) F; (18) T; (19) T; (20) T

(21) (a) μ¼ 4.3, mode¼ 5, median¼ 5; (b) σ2¼ 5.12, MAD¼ 1.84, range¼ 7;

(c) Q1¼ 2, Q2¼ 5, Q3¼ 5

(24) Maybe!

Chapter 2

(1) T; (2) F; (3) T; (4) T; (5) T; (6) F; (7) T; (8) T; (9) F; (10) F; (11) T; (12) T;

(13) F; (14) T; (15) T; (16) T; (17) F

(18) (a) ¼ {Q♥, Q♠, Q♣}; ¼ {{}, {Q♥}, {Q♠}, {Q♣}, {Q♥, Q♠}, {Q♥, Q♣},
{Q♠, Q♣}, {Q♥, Q♠, Q♣}}; P({})¼ 0; P({Q♥})¼⅓, P({Q♠})¼⅓; P({Q♣})¼⅓;

P({Q♥, Q♠})¼⅔; P({Q♥, Q♣}) ¼ ⅔; P({Q♠, Q♣}) ¼ ⅔; P({Q♥, Q♠, Q♣})¼ 1;

(b) ⅓; (c) μ¼ 0; σ2 ¼ 2.
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(20) (a) ¼ {HH, HT, TH, TT};¼ {{}, {HH}, {HT}, {TH}, {TT}, {HH, HT},

{HH, TH}, {HH, TT}, {HT, TH}, {HT, TT}, {TH, TT}, {HH, HT, TH}, {HH, HT,

TT}, {HH, TH, TT}, {HT, TH, TT}, {HH, HT, TH, TT}}; P({})¼ 0, P({HH})¼
0.3, P({HT})¼ 0.3, P({TH})¼ 0.2, P({TT})¼ 0.2, P({HH, HT})¼ 0.6, P({HH,

TH})¼ P({HH, TT})¼ P({HT, TH})¼ P({HT, TT})¼ 0.5, P({TH, TT})¼ 0.4,

P({HH, HT, TH})¼ P({HH, HT, TT})¼ 0.8, P({HH, TH, TT})¼ P({HT, TH,

TT})¼ 0.7, P({HH, HT, TH, TT})¼ 1.

(21) (a) No; (b) No; (c) Yes, μ¼ 2.5, σ2¼ 25/12, E(jxj)¼ 2.5.

(23) E(2X – 4Y )¼�6; E(3XY)¼ 6; E(X2)¼ 3.

(27) See Table A.1.

(29) (a) Yes; (b) No; (c) Yes; (d) No.

(34) (b) μ¼ 0.5π; (c) 4.84�ψ � 6.41, yes; (d) sampled mean is not equal to the

true value; (e) P(0.25<X< 0.5)¼ 0.046.

Chapter 3

(1) F; (2) T; (3) F; (4) T; (5) F; (6) T; (7) T; (8) F; (9) F; (10) T; (11) F; (12) F;

(13) T; (14) T; (15) F; (16) T; (17) F; (18) T; (19) T; (20) T

(23) The solution is given as

~y ¼ y3; y4; . . . ; y100h iT

A ¼

�y2 �y1 u2 u1

�y3 �y2 u3 u2

⋮ ⋮ ⋮ ⋮

�y99 �y98 u99 u98

2
666664

3
777775

~β ¼ α1; α2; β1; β2h iT

(24) (c) R̂ ¼ 2.15 Ω, σ̂ ¼ 0.85; (d) 2.1� 0.2 Ω; (e) Yes; (f) Fit is not good, as the
errors are increasing with current.

(25) (b) R̂ ¼ 2.044 Ω; (c) An examination of the residuals (especially as a

function of the current, I) and how close to normality they are; (d) Instrument error

is often proportional to the magnitude of the measured value.

(27) (a + b) β0¼ 276� 6.8; β1¼�1.98� 1.0; β2¼ 0.012� 0.041;

β3¼ 0.00018� 0.00045; (c) 229.5� 3.3, 229.5� 8.5; (d) Yes; (e) R2¼ 0.963,

F-score¼ 87.23, No.

Table A.1 Answers for question 27 in Chap. 2

μ̂1 μ̂2 μ̂3 μ̂4 μ̂5
Bias 0 0 0.5 μ 1=

3
μ 0

σ2 σ2 0.5σ2 1.25σ2 0:2σ2 σ2 / N

MSE σ2 0.5σ2 1.25σ2 + 0.25 μ 0:2σ2 þ 0:1μ σ2 / N
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(29) (b+ c) ln K̂ ¼ 5.3� 0.45, b̂ ¼ 0.54� 0.28; (d) 128�K� 317; b̂ stays the

same; (e) σ̂ ¼ 0.103, R2¼ 0.8789; (g) Yes; (h) R¼ 0.467 kg ·m�0.5 · s�1; (i) K̂ ¼
181� 67, b̂ ¼ 0.46� 0.25; R2¼ 0.8905, σ̂ ¼ 7.397; (j) Yes, R¼ 0.518 kg ·m�0.5 · s�1.

(31) (a) No, plot the errors for the two runs using different symbols; (c) Yes.

Chapter 4

(1) T; (2) T; (3) F; (4) F; (5) F; (6) F; (7) F; (8) F; (9) T; (10) T; (11) T; (12) T;

(13) T; (14) F; (15) T; (16) T; (17) F; (18) F; (19) F; (20) T; (21) (a) No; (b) Yes.

(23) (a) I¼ACD¼CDF¼AF; (b) (two examples) A¼ F¼CD¼ACDF,

B¼ABF¼ABCD¼ABCDF; (c) III; (d) (one of many)

I¼ABCE¼ACDF¼BDEF.

(25) (a brief outline of the solution) A fractional factorial design with centre

point replicates. Blocking and randomisation should also be considered.

(26) (a) I ¼ x1x
2
2x3 ¼ x21x2x

2
3 ; (b) x1 ¼ x21x

2
2x3 ¼ x2x

2
3, x2 ¼ x1x3 ¼ x21x

2
2x

2
3,

x3 ¼ x1x
2
2x

2
3 ¼ x21x2, x

2
1 ¼ x22x3 ¼ x1x2x

2
3, x

2
2 ¼ x1x2x3 ¼ x21x

2
3, x

2
3 ¼ x1x

2
2 ¼ x21x2x3,

x1x2 ¼ x21x3 ¼ x22x
2
3, x2x3 ¼ x1x

2
3 ¼ x21x

2
2, x1x

2
2x3 ¼ x21x2x

2
3 ¼ I; (c)

y ¼ β0 þ β1x1 þ β2x2 þ β3x3 þ β11x
2
1 þ β22x

2
2 þ β33x

2
3 þ β12x1x2 þ β23x2x3

(29) (b) E¼�ABCD; c) V; d) BD, AE, DE, BE, and E.

(31) (a) y ¼ 100� 4x21 � 12x22 � 9x23; (b) 100.

Chapter 5

(1) T; (2) F; (3) T; (4) T; (5) F; (6) F; (7) F; (8) T; (9) T; (10) F; (11) T; (12) T;

(13) T; (14) F; (15) T; (16) F; (17) T; (18) F; (19) T; (20) F; (24) AR(1).

(25) seasonal MA(1) with s¼ 3 and a normal AR(4).

Chapter 6

(1) F; (2) T; (3) T; (4) F; (5) F; (6) t; (7) T; (8) T; (9) T; (10) T; (11) F; (12) F; (13) T;

(14) F; (15) T; (16) F; (17) T; (18) F; (19) F; (20) T.

(24) left graph: 10, right graph: 5. (25) Model is not adequate. (26) Model is

adequate.
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An index of Excel and Matlab topics is listed as a separate index located after this one on p. 413.

A
ACF. See Autocorrelation function (ACF)

Akaike’s information criterion (AIC), 251, 297

Aliased. See Confounded
α-error, 59, 60, 99, 255
Alternative hypothesis, 58, 59, 68, 73, 76, 113

Analysis of variance (ANOVA), 2, 99–102,

110, 146, 170

AR, See See Autoregressive model.

ARIMA. See Autoregressive, integrating,
moving average model (ARIMA)

ARMA. See Autoregressive moving average

model (ARMA)

Autocorrelation function (ACF), 213, 214, 225,

230, 237, 238, 240, 244, 245, 250, 296

Autocovariance, 37, 213–215, 223, 224,

226–229, 231, 237, 241, 243, 246,

248, 260, 261, 276, 299

Autoregressive exogenous model (ARX), 287,

347

Autoregressive, integrating, moving average

model (ARIMA), 235–237, 276

Autoregressive model (AR), 221, 223, 240–

244, 247, 275, 287, 347

Autoregressive moving average exogenous

model (ARMAX), 286, 287,

309, 347

Autoregressive moving average model

(ARMA), 222, 235–237, 240, 245–250,

254, 271, 275–276

B
Backshift operator, 220, 286, 293

Bandwidth, 299, 300, 312, 313, 322

Bar chart, 9–10

Bayesian information criterion (BIC), 251

Bernoulli distribution, 49

β-error, 59, 60
Bias, 51, 53, 57, 82, 111

unbiased, 51

Binomial distribution, 48–50, 68, 77

Black-box model, 145, 147, 202, 283

Blocking, 141, 143, 144, 176–178, 202

Box-and-whisker plot. See Boxplot
Box-Jenkins model, 286, 315, 322,

347, 361

Boxplot, 12, 338, 378

Tukey, 12

C
Causal, 222, 223, 227, 229, 234–236, 267,

275, 276

cdf. See Cumulative distribution function (cdf)

Central composite design, 199–200, 203

Central limit theorem, 58, 64, 84

Centre point design, 193, 195

Chi-squared distribution (χ2), 2, 46–47, 67, 80,
83, 251, 341

Complete defining relationship, 161–168,

170–178, 203–205
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Confidence interval, 58–78, 96, 146, 215, 296,

343, 394

converting, 62–64, 124

cover, 61

Confounded, 142–144, 158–159, 161–164,

166, 167, 171, 193, 203

Confounding, 141–143, 158–166, 170, 177,

202, 204, 205, 344

pattern, 158, 159, 161–166, 170, 204, 205,

344

Consistency, 51–52, 194

Correlation, 20, 39, 89, 108, 138, 139,

141–143, 200, 213–215, 232, 273, 294,

308, 316, 338, 339, 346, 348, 349, 352

Covariance, 37, 39, 42, 45, 79, 95, 96,

213–215, 217, 228, 249, 266–268,

270, 294, 343, 344

matrix, 39, 42, 45, 95, 268, 270, 343, 344

Cramér–Rao lower bound, 52, 55, 299. See also
Maximum likelihood method; Method

of moments; Regression

Cross-correlation plot, 20, 217, 296, 300–302,

315–319, 322, 323, 338, 352–353

Cross-covariance, 213–215, 217, 228, 249

Cumulative distribution function (cdf), 15,

32–34, 44, 46–48

D
Data-driven modelling, 283, 325. See also

Grey-box model

Data scaling, 113

Data sets, 2–8, 10, 12, 13, 15–17, 19, 21–24,

26–30, 52, 54, 57, 70, 71, 79, 80, 84,

87, 111–112, 119, 124, 127, 131, 133,

134, 154, 171, 195, 202, 206, 212, 216,

218, 219, 239, 240, 246, 249, 251, 254,

255, 257, 259, 271, 274, 277–282, 291,

296–298, 303, 313, 315, 316, 321,

324–336, 342, 349, 352, 356, 358,

361, 362, 374, 375, 383, 392, 395, 398

friction factor, 21, 23

Data visualisation, 1–30

Defining relationship, 160–168, 170, 171, 177,

178, 203–205

Differencing, 216, 220, 266, 272, 302, 348

periodic, 216

true, 216

Direct identification, 306–312. See also System
identification, closed-loop

Distribution, 2, 8, 13, 15–18, 43–50, 53, 55, 57,

58, 64, 67, 68, 77, 80, 83, 89, 92, 96,

156, 246, 250, 251, 341, 342, 370.

See also Bernoulli distribution;

Binomial distribution; Chi-squared

distribution (χ2); F-distribution; Normal

distribution; Poisson distribution;

Student’s t-distribution
Durbin–Levinson Algorithm, 242, 257–259

E
Edmonton temperature, 249, 264–266, 276, 324

Effects, 16, 17, 70, 134, 142–145, 147, 148,

152–154, 156, 158, 159, 169, 176, 197,

202, 209, 214, 216, 260, 304, 321, 377.

See also Factorial design, influential

parameters

Error, 8, 45, 89, 113, 141, 221, 286, 344, 373.

See also Residual

Error structure, 89–92, 112, 113, 131, 132, 136,

137, 306

Expectation operator, 37, 96

Experimental design, 126, 142, 147, 203, 205,

207

Externally excited data, 303, 312. See also
System identification, closed-loop

Extrapolation, 126, 127, 131

F
Factor, 6, 49, 88, 111, 141, 147, 291, 348

Factorial design, 147–160, 166, 169–200,

202–204, 207–209, 386–388, 395–398,

405. See also Orthogonal basis

generalised, 178–192

influential parameters, 152

projection, 152

False negative rate. See β-error
False positive rate. See α-error
F-distribution, 17, 47–48, 83, 341
Final prediction error criterion (FPE), 297, 298

First-principle model, 145, 283

Forecasting, 145, 253–259, 267, 273, 274, 301.

See also Prediction

Forward shift operator, 219, 220

Fourier transform, 212, 259–262, 265, 274,

309, 383

Fractional factorial design, 157–177, 202.

See also Factorial design

G
Generator, 160, 161, 163, 165–167, 170, 171,

177, 203–206

Grey-box model, 145, 283, 322
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H
Histogram, 6, 9–11, 19, 20, 28, 29, 338, 339

Hypothesis testing, 2, 58–78, 94

mean, 65

one-sided, 59, 73, 74

ratio, 69

two samples, 69, 77

two-sided, 59

variance, 2, 94

I
Identifiability, 298, 304, 321

Impulse response model, 222

Independent, 37, 40, 42, 50, 54, 55, 69, 79, 81,

82, 89, 94, 96, 99, 108, 147, 160, 166,

167, 194, 204, 213, 220, 223, 224, 228,

250, 266, 294, 296

Indirect identification, 309. See also System

identification, closed-loop

Innovation, 247, 268, 270. See also Maximum

likelihood method, for ARMA model

Integrated/integrating model, 19, 20, 221–222,

274

Interpolation, 7, 126

Invertible, 94, 141, 204, 222, 223, 227, 235,

236, 275–276, 298

J
Joint input-output identification, 308–313.

See also System identification, closed-

loop

K
Kalman filter, 211, 267–270, 274–276. See also

Time series, state-space approach

Kolmogorov’s axioms, 31

L
Least-squares regression, 93–99, 102–104,

116–120, 127, 137–139. See also
Regression

ordinary, 93–99, 102–104, 116–120, 127

weighted, 116–120

Left probability, 63, 66, 366

Level, 30, 59, 66, 75, 80, 84, 114, 147–151,

158, 159, 168, 169, 178, 180–187,

189–191, 197, 202–204, 207, 208,

283, 299, 310–320, 322, 324–336,

361, 367

Line chart, 8, 10–12

time series, 11

Ljung–Box–Pierce Q-Statistic, 250–252, 349

M
MA. See Moving average model (MA)

Main effects, 147, 148, 158

Maximum likelihood method, 52, 54–57, 241,

248, 270. See also Kalman filter; Time

series, state-space approach

for ARMA model, 222, 240, 276

log-likelihood function, 56, 246–248, 270

state-space approach, 211, 212, 266

Mean, 3, 4, 23, 33, 36, 44, 46–50, 57, 64, 66,

69–76, 88, 130–131, 147, 212, 285,

338, 370

average, 364

conditional, 39

response, 96–99, 103, 106, 117, 123, 127,

130–131, 138, 140, 147–150, 161, 269

Mean square error (MSE), 51, 82

Measures of central tendency, 3–4, 6. See also
Mean; Median; Mode

Measures of dispersion, 4–6. See also Range;

Skew; Standard deviation; Variance

Median, 3–6, 8, 12, 23–26, 28, 29, 338, 342,

378, 383. See also Quantile

Median absolute deviation (MAD), 5, 6

Method of moments, 52–54, 57, 82, 241, 275

Mode, 3, 4, 18, 29, 285

Model validation, 88, 107–116, 118, 123, 124,

240, 250–252, 271, 296–298, 308, 314,

323, 324, 346
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Index of Excel and MATLAB Topics

This index only considers Excel and Matlab functions that are used in this book. The main index

is found on p. 407.

E
Excel

absolute, 364

array function, 365

macros, 366–368, 385, 386

range, 363–365

relative, 364

security, 366–368

Excel 2003/7

binomdist, 49
chiinv, 47
finv, 48
normdist, 44
norminv, 44
poissondist, 50
tinv, 46

Excel Add-ins

Data Analysis Add-in, 374–376

Solver Add-in, 368

Excel Function

average, 363
binom.dist, 49
binom.inv, 49
chisq.inv, 47
chisq.pdf, 47
count, 366
f.dist, 48
f.inv, 48, 63, 366
mdeterm, 365
minverse, 365
mmult, 365

norm.dist, 44
norm.inv, 44, 63, 366
norm.s.inv, 366
poisson.dist, 50
quartile, 27
quartile.inc, 26, 27, 379
rank, 366
stdev, 344, 366
sum, 366
t.dist, 46
t.inv, 46, 63, 366
transpose, 365

Excel Template

boxplot2007.xlt, 378
boxplot.xltx, 378
factorialdesigntemplate.xltm,

388

linearregression.xltm, 385
nonlinearregression.xltm, 386
normplot.xltx, 377
periodogram.xltx, 383

M
MATLAB Function

ar, 347
arima, 348
armax, 347
arx, 347
autocorr, 349
bar, 338
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MATLAB Function (cont.)
barh, 338
binoinv, 49
binopdf, 49
binornd, 49
bj, 347
boxplot, 338
chi2pdf, 47, 341
chi2rnd, 47
colorbar, 338
colormap, 338
compare, 348
cordexch, 344
cra, 347
crosscorr, 349
delayest, 347
detrend, 346
estimate, 349
ff2n, 344
finv, 48, 63, 341
fpdf, 48, 341
fracfact, 344
frnd, 48
hist, 338
iddata, 346
idinput, 348
idplot, 346
idpoly, 346
imagesc, 338
infer, 349
lbqtest, 349
legend, 339
lscov, 344
mad, 342
mean, 338
median, 338
nlarx, 347
nlinfit, 343
nlparci, 343

nlpredci, 343
norminv, 44, 63, 341
normpdf, 44
normplot, 339
normrnd, 44
oe, 347
parcorr, 349
periodogram, 349
pie, 339
plot, 339
plot3, 339
plotmatrix, 339
poissinv, 50
poisspdf, 50
poissrnd, 50
present, 348
quantile, 342
rand, 342
randn, 342
randperm, 342
regress, 342, 343
resid, 348
scatter, 339
set, 340
std, 338
surf, 340
tinv, 341
title, 340
tpdf, 341
xcorr, 349
xlabel, 340
ylabel, 44
zlabel, 340
zscore, 342

MATLAB Recipe

autocorrelation.m, 351
corrplot1.m, 352
crosscorrelation.m, 352
periodogram2.m, 350

414 Index of Excel and MATLAB Topics


	Foreword
	Contents
	List of Figures
	List of Tables
	Chapter 1: Introduction to Statistics and Data Visualisation
	1.1 Basic Descriptive Statistics
	1.1.1 Measures of Central Tendency
	1.1.2 Measures of Dispersion
	1.1.3 Other Statistical Measures
	1.1.3.1 Quantiles
	1.1.3.2 Outliers


	1.2 Data Visualisation
	1.2.1 Bar Charts and Histograms
	1.2.2 Pie Charts
	1.2.3 Line Charts
	1.2.4 Box-and-Whisker Plots
	1.2.5 Scatter Plots
	1.2.6 Probability Plots
	1.2.7 Tables
	1.2.8 Sparkplots
	1.2.9 Other Data Visualisation Methods

	1.3 Friction Factor Example
	1.3.1 Explanation of the Data Set
	1.3.2 Summary Statistics
	1.3.3 Data Visualisation
	1.3.4 Some Observations on the Data Set

	1.4 Further Reading
	1.5 Chapter Problems
	1.5.1 Basic Concepts
	1.5.2 Short Exercises
	1.5.3 Computational Exercises


	Chapter 2: Theoretical Foundation for Statistical Analysis
	2.1 Statistical Axioms and Definitions
	Example 2.1: Determining the Probability Space
	Example 2.2: Determining Acceptable Probability Density Functions
	Example 2.3: Computing Mean and Variance from the Probability Density Function
	2.2 Expectation Operator
	Example 2.4: Using the Expectation Operator
	2.3 Multivariate Statistics
	Example 2.5: Dealing with a Multivariate Distribution
	2.4 Common Statistical Distributions
	2.4.1 Normal Distribution
	2.4.2 Student´s t-Distribution
	2.4.3 chi2-Distribution
	2.4.4 F-Distribution
	2.4.5 Binomial Distribution
	2.4.6 Poisson Distribution

	2.5 Parameter Estimation
	2.5.1 Considerations for Parameter Estimation
	2.5.2 Methods of Parameter Estimation
	2.5.2.1 Method of Moments
	Example 2.6: Method of Moments for a Normal Distribution
	2.5.2.2 Maximum Likelihood Method
	Example 2.7: Maximum Likelihood Estimates for a Normal Distribution

	2.5.3 Remarks on Estimating the Mean, Variance, and Standard Deviation

	2.6 Central Limit Theorem
	2.7 Hypothesis Testing and Confidence Intervals
	2.7.1 Computing the Critical Value
	2.7.2 Converting Confidence Intervals
	2.7.3 Testing the Mean
	Example 2.8: Testing the Mean-Computing a Confidence Interval
	Example 2.9: Testing the Mean-Hypothesis Testing
	Example 2.10: Testing the Mean-Unknown Variances
	Example 2.11: Testing the Mean-Detailed Example
	2.7.4 Testing the Variance
	Example 2.12: Testing the Variance
	2.7.5 Testing a Ratio or Proportion
	Example 2.13: Testing a Ratio
	2.7.6 Testing Two Samples
	2.7.6.1 Testing the Mean
	Example 2.14: Testing Differences in Means-Variances Known
	Example 2.15: Testing the Difference in Means-Unknown, Common Mean
	Example 2.16: Testing Two Means-Unknown Variance
	Example 2.17: Testing a Paired Mean
	2.7.6.2 Testing Two Variances
	Example 2.18: Testing Two Sample Variances
	2.7.6.3 Testing Two Proportions
	Example 2.19: Testing Two Proportions


	2.8 Further Reading
	2.9 Chapter Problems
	2.9.1 Basic Concepts
	2.9.2 Short Exercises
	2.9.3 Computational Exercises

	Appendix A2: A Brief Review of Set Theory and Notation

	Chapter 3: Regression
	3.1 Regression Analysis Framework
	3.2 Regression Models
	3.2.1 Linear and Nonlinear Regression Functions
	Example 3.1: Linearising Nonlinear Models

	3.3 Linear Regression
	3.3.1 Ordinary, Least-Squares Regression
	3.3.2 Analysis of Variance of the Regression Model
	3.3.3 Useful Formulae for Ordinary, Least-Squares Regression
	3.3.4 Computational Example Part I: Determining the Model Parameters
	3.3.5 Model Validation
	3.3.5.1 Residual Testing
	3.3.5.2 Testing for Model Adequacy
	3.3.5.3 Taking Corrective Action

	3.3.6 Computational Example Part II: Model Validation
	3.3.7 Weighted, Least-Squares Regression
	3.3.7.1 Determining the Weights
	Example 3.2: Determining the Weights for Weighted, Least-Squares Regression


	3.4 Nonlinear Regression
	3.4.1 Gauss-Newton Solution for Nonlinear Regression
	3.4.2 Useful Formulae for Nonlinear Regression
	3.4.3 Computational Example of Nonlinear Regression

	3.5 Models and Their Use
	3.6 Summative Regression Example
	3.6.1 Data and Problem Statement
	3.6.2 Solution
	3.6.2.1 Simple Linear Model
	3.6.2.2 Quadratic Model
	3.6.2.3 Mean Response Intervals


	3.7 Further Reading
	3.8 Chapter Problems
	3.8.1 Basic Concepts
	3.8.2 Short Exercises
	3.8.3 Computational Exercises

	Appendix A3: Nonmatrix Solutions to the Linear, Least-Squares Regression Problem
	A.1 Nonmatrix Solution for the Ordinary, Least-Squares Case
	A.2 Nonmatrix Solution for the Weighted, Least-Squares Case


	Chapter 4: Design of Experiments
	4.1 Fundamentals of Design of Experiments
	4.1.1 Sensitivity
	4.1.2 Confounding and Correlation Between Parameters
	4.1.3 Blocking
	4.1.3.1 Rabbit Weight Experiment
	4.1.3.2 Shoe Wear Example

	4.1.4 Randomisation

	4.2 Types of Models
	4.2.1 Model Use

	4.3 Framework for the Analysis of Experiments
	4.4 Factorial Design
	4.4.1 Factorial Design Models
	Example 4.1: Full Factorial Design
	4.4.2 Factorial Analysis
	4.4.3 Selecting Influential Parameters (Effects)
	4.4.4 Projection
	Example 4.2: Analysis of a Full Factorial Experiment

	4.5 Fractional Factorial Design
	4.5.1 Notation for Fractional Factorial Experiments
	4.5.2 Resolution of Fractional Factorial Experiments
	4.5.3 Confounding in Fractional Factorial Experiments
	4.5.3.1 Background Information
	Example 4.3: Modular Arithmetic
	4.5.3.2 Generators for Fractional Factorial Experiments
	Example 4.4: Generators and Defining Relationships for a Fractional Factorial Design
	4.5.3.3 Complete Defining Relationship for Fractional Factorial Experiments
	4.5.3.4 Complete Confounding Pattern for Fractional Factorial Experiments
	Example 4.5: Complete Defining Relationship and Confounding Pattern for a Half-Fractional Factorial Example
	Example 4.6: Confounding Pattern for a Quarter-Fractional Factorial Example
	4.5.3.5 Higher-Level Designs
	Example 4.7: Complete Confounding Pattern for a 3-Level Experiment

	4.5.4 Design Procedure for Fractional Factorial Experiments
	Example 4.8: Analysing the Structure of a Fractional Factorial Experiment
	4.5.5 Analysis of Fractional Factorial Experiments
	4.5.6 Framework for the Analysis of Factorial Designs
	Example 4.9: Detailed Analysis of a Fractional Factorial Experiment

	4.6 Blocking and Factorial Design
	Example 4.10: Blocking and Full Factorial Design
	Example 4.11: Blocking and Fractional Factorial Design
	4.7 Generalised Factorial Design
	4.7.1 Obtaining an Orthogonal Basis
	4.7.2 Orthogonal Bases for Different Levels
	4.7.2.1 Case l=2
	4.7.2.2 Case l=3
	Example 4.12: Orthogonal Basis for a Mixed-Level Factorial Experiment
	4.7.2.3 Case l=4
	4.7.2.4 Generalised Orthonormal Basis Functions for First- and Second-Order Terms

	4.7.3 Sum of Squares in Generalised Factorial Designs
	4.7.4 Detailed Mixed-Level Example
	4.7.4.1 Analysis
	4.7.4.2 Preprocessing the Data
	4.7.4.3 Determining the General Model Form
	4.7.4.4 Obtaining a Basis
	4.7.4.5 Defining the Linear Regression Problem
	4.7.4.6 Determining the Model
	4.7.4.7 Analysing the Residuals


	4.8 2k Factorial Designs with Centre Point Replicates
	4.8.1 Orthogonal Basis for 2k Factorial Designs with Centre Point Replicates
	4.8.2 Factorial Design with Centre Point Example
	4.8.2.1 Determining the General Model
	4.8.2.2 Selecting the Orthogonal Basis
	4.8.2.3 Defining the Linear Regression Problem
	4.8.2.4 Determining the Model
	4.8.2.5 Analysing the Residuals


	4.9 Response Surface Design
	4.9.1 Central Composite Design
	4.9.1.1 Determining the Value of α

	4.9.2 Optimal Design
	4.9.3 Response Surface Procedure

	4.10 Further Reading
	4.11 Chapter Problems
	4.11.1 Basic Concepts
	4.11.2 Short Exercises
	4.11.3 Computational Exercises

	Appendix A4: Nonmatrix Approach to the Analysis of 2k-Factorial Design Experiments

	Chapter 5: Modelling Stochastic Processes with Time Series Analysis
	5.1 Fundamentals of Time Series Analysis
	5.1.1 Estimating the Autocovariance and Cross-Covariance and Correlation Functions
	5.1.2 Obtaining a Stationary Time Series
	5.1.3 Edmonton Weather Data Series Example

	5.2 Common Time Series Models
	5.3 Theoretical Examination of Time Series Models
	5.3.1 Properties of a White Noise Process
	5.3.2 Properties of a Moving-Average Process
	Example 5.1: Example of a Moving-Average Process
	Example 5.2: Simulation of a Moving-Average Process
	5.3.3 Properties of an Autoregressive Process
	Example 5.3: Example of an Autoregressive Process
	Example 5.4: Simulation of an Autoregressive Process
	5.3.4 Properties of an Integrating Process
	Example 5.5: Simulation of an Integrating Process
	5.3.5 Properties of ARMA and ARIMA Processes
	Example 5.6: Simulation of an ARMA Process
	5.3.6 Properties of the Seasonal Component of a Time Series Model
	Example 5.7: Simulation of the Seasonal Component
	5.3.7 Summary of the Theoretical Properties for Different Time Series Models

	5.4 Time Series Modelling
	5.4.1 Estimating the Time Series Model Parameters
	5.4.1.1 Yule-Walker Equations for Estimating an Autoregressive Model
	Example 5.8: Fitting an AR(2) Process Using the Yule-Walker Equations
	5.4.1.2 Computing the Partial Autocorrelation Function
	Example 5.9: Partial Autocorrelation for an AR(1) Process

	5.4.2 Maximum-Likelihood Parameter Estimates for ARMA Models
	Example 5.10: Exact Solution of the Maximum-Likelihood Equation for an Autoregressive Model
	Example 5.11: Modelling the Mean Summer Temperature in Edmonton
	5.4.3 Model Validation for Time Series Models
	Example 5.12: Validating the Initial Mean Summer Temperature in Edmonton Model
	5.4.4 Model Prediction and Forecasting Using Time Series Models
	Example 5.13: Forecasting A Ma(3) Process
	5.4.4.1 Durbin-Levinson Algorithm
	Example 5.14: Using the Durbin-Levinson Algorithm to Obtain the Predictor


	5.5 Frequency-Domain Analysis of Time Series
	5.5.1 Fourier Transform
	5.5.2 Periodogram and Its Use in Frequency-Domain Analysis of Time Series
	Example 5.15: Periodograms for the Edmonton Temperature Series

	5.6 State-Space Modelling of Time Series
	5.6.1 State-Space Model for Time Series
	5.6.2 The Kalman Equation
	5.6.3 Maximum-Likelihood State-Space Estimates

	5.7 Comprehensive Example of Time Series Modelling
	5.7.1 Summary of Available Information
	5.7.2 Obtaining the Final Univariate Model

	5.8 Further Reading
	5.9 Chapter Problems
	5.9.1 Basic Concepts
	5.9.2 Short Exercises
	5.9.3 Computational Exercises

	Appendix A5: Data Sets for This Chapter
	A5.1: Edmonton Weather Data Series (1882-2002)
	A5.2: AR(2) Process Data
	A5.3: MA(3) Process Data


	Chapter 6: Modelling Dynamic Processes Using System Identification Methods
	6.1 Control and Process System Identification
	6.1.1 Predictability of Process Models

	6.2 Framework for System Identification
	6.3 Open-Loop Process Identification
	6.3.1 Parameter Estimation in Process Identification
	6.3.2 Model Validation in Process Identification
	6.3.3 Design of Experiments in Process Identification
	6.3.4 Final Considerations in Open-Loop Process Identification
	6.3.4.1 Time Delay
	6.3.4.2 Drifting and Disturbances
	6.3.4.3 Linearity
	6.3.4.4 Time Invariance


	6.4 Closed-Loop Process Identification
	6.4.1 Indirect Identification of a Closed-Loop Process
	6.4.2 Direct Identification of a Closed-Loop Process
	6.4.3 Joint Input-Output Identification of a Closed-Loop Process

	6.5 Nonlinear Process Identification
	6.5.1 Transformation of Nonlinear Models: Wiener-Hammerstein Models

	6.6 Modelling the Water Level in a Tank
	6.6.1 Design of Experiment
	6.6.1.1 Preliminary Identification
	6.6.1.2 Final Identification

	6.6.2 Raw Data
	6.6.3 Linear Model Creation and Validation
	6.6.3.1 Time Delay Estimation
	6.6.3.2 Initial Model
	6.6.3.3 Final Model

	6.6.4 Nonlinear Model Creation and Validation
	6.6.5 Final Comments

	6.7 Further Reading
	6.8 Chapter Problems
	6.8.1 Basic Concepts
	6.8.2 Short Exercises
	6.8.3 Computational Exercises

	Appendix A6: Data Sets for This Chapter
	A6.1: Water Level in Tanks 1 and 2 Data


	Chapter 7: Using MATLAB for Statistical Analysis
	7.1 Basic Statistical Functions
	7.2 Basic Functions for Creating Graphs
	7.3 The Statistics and Machine Learning Toolbox
	7.3.1 Probability Distributions
	7.3.2 Advanced Statistical Functions
	7.3.3 Useful Probability Functions
	7.3.4 Linear Regression Analysis
	7.3.5 Design of Experiments

	7.4 The System Identification Toolbox
	7.5 The Econometrics Toolbox
	7.6 The Signal Processing Toolbox
	7.7 MATLAB Recipes
	7.7.1 Periodogram
	7.7.2 Autocorrelation Plot
	7.7.3 Correlation Plot
	7.7.4 Cross-Correlation Plot

	7.8 MATLAB Examples
	7.8.1 Linear Regression Example in MATLAB
	7.8.1.1 Problem Statement for Linear Regression Example
	7.8.1.2 Solution for Linear Regression Example

	7.8.2 Nonlinear Regression Example in MATLAB
	7.8.2.1 Problem Statement for Nonlinear Regression Example
	7.8.2.2 Problem Solution for Nonlinear Regression Example

	7.8.3 System Identification Example in MATLAB

	7.9 Further Reading

	Chapter 8: Using Excel to Do Statistical Analysis
	8.1 Ranges and Arrays in Excel
	8.2 Useful Excel Functions
	8.2.1 Array Functions in Excel
	8.2.2 Statistical Functions in Excel

	8.3 Excel Macros and Security
	8.3.1 Security in Excel
	8.3.1.1 Dealing with Security in Excel 2003 or Older
	8.3.1.2 Dealing with Security in Excel 2007 or Newer


	8.4 The Excel Solver Add-In
	8.4.1 Installing the Solver Add-In
	8.4.2 Using the Solver Add-In

	8.5 The Excel Data Analysis Add-In
	8.6 Excel Templates
	8.6.1 Normal Probability Plot Template
	8.6.2 Box-and-Whisker Plot Template
	8.6.3 Periodogram Template
	8.6.4 Linear Regression Template
	8.6.5 Nonlinear Regression Template
	8.6.6 Factorial Design Analysis Template

	8.7 Excel Examples
	8.7.1 Linear Regression Example in Excel
	8.7.1.1 Problem Statement for Linear Regression Example
	8.7.1.2 Problem Solution for Linear Regression Example

	8.7.2 Nonlinear Regression Example in Excel
	8.7.2.1 Problem Statement for Nonlinear Regression Example
	8.7.2.2 Problem Solution for Nonlinear Regression Example
	8.7.2.3 VB Macros

	8.7.3 Factorial Design Examples Using Excel

	8.8 Further Reading

	Appendix A: Solution Key
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6

	References
	Subject Index
	Index of Excel and MATLAB Topics

