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Foreword

The need for the development and understanding of large, complex data sets in a
wide range of different fields, including economics, chemistry, chemical engineer-
ing, and control engineering is very important. In all these fields, the common
thread is using these data sets for the development of models to forecast or predict
future behaviour. Furthermore, the availability of fast computers has meant that
many of the techniques can now be used and tested even on one’s own computer.
Although there exist a wealth of textbooks available on statistics, they are often
lacking in two key respects: application to the chemical and process industry and
their emphasis on computationally relevant methods. Many textbooks still contain
detailed explanations of how to manually solve a problem. Therefore, the goal of
this textbook is to provide a thorough mathematical and statistical background the
regression analysis through the use of examples drawn from the chemical and
process industries. The majority of the textbook presents the required information
using matrices without linking to any particular software. In fact, the goal here is to
allow the reader to implement the methods on any appropriate computational
device irrespective of their specific availability. Thus, detailed examples, that is,
base cases, and solution steps are provided to ease this task. Nevertheless, the
textbook contains two chapters devoted to using MATLAB® and Excel®, as these
are the most commonly used tools both in industry and in academics. Finally, the
textbook contains at the end of each chapter a series of questions divided into three
parts: conceptual questions to test the reader’s understanding of the material; simple
exercise problems that can be solved using pen, paper, and a simple, handheld
calculator to provide straightforward examples to test the mechanics and under-
standing of the material; and computational questions that require modern
computational software that challenge and advance the reader’s understanding of
the material.

This textbook assumes that the reader has completed a basic first-year university
course, including univariate calculus and linear algebra. Multivariate calculus, set
theory, and numerical methods are useful for understanding some of the concepts,
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but knowledge is not required. Basic chemical engineering, including mass and
energy balances, may be required to solve some of the examples.

The textbook is written so that the chapters flow from the basic to the most
advanced material with minimal assumptions about the background of the reader.
Nevertheless, multiple different courses can be organised based on the material
presented here depending on the time and focus of the course. Assuming a single
semester course of 39 h, the following would be some options:

L. Introductory Course to Statistics and Data Analysis: The foundations of statis-
tics and regression are introduced and examined. The main focus would be on
Chap. 1: Introduction to Statistics and Data Visualisation, Chap. 2: Theoretical
Foundation for Statistical Analysis, and parts of Chap. 3: Regression, including
all of linear regression. This course would prepare the student to take the
Fundamentals of Engineering Exam in the United States of America, a prereq-
uisite for becoming an engineer there.

2. Deterministic Modelling and Design of Experiments: In-depth analysis and
interpretation of deterministic models, including design of experiments, is intro-
duced. The main focus would be on Chap. 3: Regression and Chap. 4: Design of
Experiments. Parts of Chap. 2: Theoretical Foundation for Statistical Analysis
may be included if there is a need to refresh the student’s knowledge of
background information.

3. Stochastic Modelling of Dynamic Processes: In-depth analysis and interpretation
of stochastic models, including both time series and prediction error methods, is
examined. The main focus would be on Chap. 5: Modelling Stochastic Processes
with Time Series Analysis and Chap. 6: Modelling Dynamic Processes. As
necessary, information from Chap. 2: Theoretical Foundation for Statistical
Analysis and Chap. 3: Regression could be used. The depth in which these
concepts would be considered would depend on the orientation of the course:
either a theoretical emphasis can be made, by focusing on the theory and proofs,
or an application emphasis can be made, by focusing on the practical use of the
different results.

As appropriate, material from Chap. 7: Using MATLAB® for Statistical Anal-
ysis and Chap. 8: Using Excel® to do Statistical Analysis could be introduced to
show and explain how the students can implement the proposed methods. It should
be emphasised that this material should not overwhelm the students nor should it
become the main emphasis and hence avoid thoughtful and insightful analysis of
the resulting data.

The author would like to thank all those who read and commented on previous
versions of this textbook, especially the members of the process control group at the
University of Alberta, the students who attended the author’s course on process data
analysis in the Spring/Summer 2012 semester, and members of the Institute of
Automation and Complex Systems (Institute fiir Automatisierungstechnik und
komplexe Systeme) at the University of Duisburg-Essen. The author would specif-
ically wish to thank Profs. Steven X. Ding and Biao Huang for their support,
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Chapter 1
Introduction to Statistics and Data
Visualisation

Eixoc yop yivesOor moAd& kai mapi to €ikdg.
1t is likely that unlikely things should happen.
Aristotle, Poetics, 1456a, 24

Although it is a common perception that statistics seeks to quantify and categorise
uncertainty and unlikely events, it is actually a much broader and more general
field. In fact, statistics is the science of collecting, analysing, interpreting, and
displaying data in an objective manner. Built on a strong foundation in probability,
the application of statistics has expanded to consider such topics as curve fitting,
game theory, and forecasting. Its results are applied in many different fields,
including biology, market research, polling, economics, cryptography, chemistry,
and process engineering.

Basic statistical methods have been traced back to the earliest times in such
forms as the collection of data regarding a farmer’s livestock; the amount, quality,
and type of grain in the city granaries; or the phases of the moon by early
astronomers. With these simple data sets, graphs could be created, summary values
could be computed, and patterns could be detected and used. Greek philosophers,
such as Aristotle (384-322 B.C), pontificated on the meaning of probability and its
different realisations. Meanwhile, ancient astronomers, such as Ptolemy (c.
A.D. 90-168) and Al-Biruni (973—-1048), were developing methods to deal with
the randomness and inherent errors in their astronomical measurements. By the start
of the late Middle Ages around 1,300, rudimentary probability was being developed
and applied to break codes. With the start of the seventeenth century and spurned by
a general interest in games of chance, the foundations of statistics probability were
developed by Abraham de Moivre (1667-1754), Blaise Pascal (1623-1662), and
Jacob Bernoulli (1655-1705). These scientists sought to resolve and determine
optimal strategies for such games of chance. The nascent nation states also took a
strong interest in the collection and interpretation of economic and demographic
information. In fact, the word statistics, first used by the German philosopher
Gottfried Achenwall (1719-1772) in 1749, is derived from the Neolatinate term
statisticum collegium, meaning council of the state, referring to the fact that even
then the primary use of the collected information was to provide insight (council)
about the nation state (Varberg 1963). In the early nineteenth century, work by

© Springer International Publishing Switzerland 2015 1
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2 1 Introduction to Statistics and Data Visualisation

amongst others Johann Carl Friedrich Gauss (1777-1855), Pierre-Simon Laplace
(1749-1827), and Thomas Bayes (1701-1761) led to the development of new
theoretical and practical ideas. Theoretically, the grounding of statistics in proba-
bility theory, especially the development of the Gaussian distribution, allowed for
many practical applications, including curve fitting and linear regression. Subse-
quent work, by such researchers as Andrei Kolmogorov (1903—1987) and Andrei
Markov (1856—-1922), solidified the theoretical underpinning and developed new
ways of understanding randomness and methods for quantifying its behaviour.
From these foundations, Karl Pearson (1857-1936) and Ronald Fisher (1890-
1962) developed hypothesis testing, the y*-distribution, principal component anal-
ysis, design of experiments, analysis of variance, and method of maximum likeli-
hood, which continue to be used today. Subsequently, these ideas were used by
George Box (1919-2013), Gwilym Jenkins (1932-1982), and Lenart Ljung
(1946—) to develop stochastic modelling and advanced probabilistic models with
applications in economics, biology, and process control. With the advent of com-
puters, many of the previously developed methods can now be realised efficiently
and quickly to analyse enormous amounts of data. Furthermore, the increasing
availability of computers has led to the use of new methods, such as Monte Carlo
simulations and bootstrapping.

Even though statistics still remains solidly applied to the study of economics and
demographics, it has broadened its scope to cover almost every human endeavour.
Some of the earliest modern applications were to the design and analysis of
agricultural experiments to show which fertilisers and watering methods were
better despite uncontrollable environmental differences, for example, amount of
sunlight received or local soil conditions. Later these methods were extended to
analyse various genetic experiments. Currently, with the use of powerful com-
puters, it is possible to process and unearth unexpected statistical relationships in a
data set given many thousands of variables. For example, advertisers can now
accurately predict changes in consumer behaviour based on their purchases over a
period of time.

Another area where statistics is used greatly is the chemical process industry,
which seeks to understand and interpret large amounts of industrial data obtained
from a given (often, chemical) process in order to achieve a safer, more environ-
mentally friendly, and more profitable plant. The process industry uses a wide range
of statistics, ranging from simple descriptive methods through to linear regression
and on to complex topics such as system identification and data mining. In order to
appreciate the more advanced methods, there is a need to thoroughly understand the
fundamentals of statistics. Therefore, this chapter will start the exploration with
some fundamental results in statistical analysis of data sets coupled with a thorough
analysis of the different methods for visualising or displaying data. Subsequent
chapters will provide a more theoretical approach and cover more complex methods
that will always come back to use the methods presented here. Finally, as a side
note, it should be noted that the focus of this book is on presenting methods that can
be used with modern computers. For these reasons, heavy emphasis will be made on
matrices and generalised approaches to solving the problems. However, except for
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the last two chapters dedicated to MATLAB® and Excel®, little to no emphasis will
be placed on any specific software as a computational tool; instead the theoretical
and implementation aspects will be examined in depth.

1.1 Basic Descriptive Statistics

The most basic step in statistical analysis of a data set is to describe it descriptively,
that is, to compute properties associated with the data set and to display the data set
in an informative manner. A data set consists of a finite number of samples or data
points. In this book, a data set will be denoted using either set notation, that is, {xi,
X2,. . ., X} OF vector notation, that is, as X = (x1,x2,...,X,). Set notation is useful
for describing and listing the elements of a data set, while vector notation is useful
for mathematical manipulation. The size of the data set is equal to n. The most
common descriptive statistics include measures of central tendency and dispersion.

1.1.1 Measures of Central Tendency

Measures of central tendency provide some information about the most common
value in the data set. The basic measures of central tendency include the mean,
mode, and median. Since the most common such measure is the mean, which is
often colloquially called the average, all of these measures are often referred to as
averages. A summary of the basic properties of these measures is provided in
Table 1.1.

The mean is a measure of the central value of the set of numbers. It is often
denoted as an overbar (<) over a variable, for example, the mean of X would be
written as X. The most common mean is simply the sum of all the values divided by
the total number of data points, 7, that is,

)—C:Q (1_1)

n

Alternatively, a weighted mean can be computed, where for each value a weight
w is assigned, that is,

2" (1.2)

xX= n

Wi
Zi:l !
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Table 1.1 Summary of the main properties of the measures of central tendency

Measure | Formula Advantages Disadvantages

Mean L Easy to compute and | Can easily be influenced b,
X= Q inte}rlpret b extreme \yalues ’

Mode Most common entries in Easy to interpret Many not accurately represent
the data set the data set

Median | Middle entry of the Robust and easy to Not necessarily easy to
ordered data set interpret compute

The weighted mean can be used when the accuracy of some of the values is
suspected to be less than that of others. Although the mean is a commonly used
measure of central tendency and hence widely reported when describing data, it is
not necessarily a robust measure, that is, the mean can be heavily skewed by one or
two numbers that are significantly different from the others. For example, if we
have the data set of three numbers, {2, 3, 4}, whose mean is X = 3, and replace the
4 by 10, the mean becomes X =5, which is larger than two of the other numbers.

The mode represents the most common entry in a given data set. Multiple entries
can be tied for the mode, in which case, the data set is said to be multimodal.' For the
following set of numbers, {2, 4, 5, 5, 5, 6, 7, 10, 10, 10, 11}, there are two modes:
5 and 10, as both occur exactly 3 times. Although, in general, the mode is less
sensitive to minor changes in the data set, it is still relatively easy to skew the results
by adding too many identical values to create a new modal value. Furthermore, the
most common entry need not be in any way descriptive of the overall properties of the
data set. This can especially be the case if one of the extreme values occurs slightly
more often than the other numbers and hence becomes the modal value.

The median represents the middle value of an ordered data set. If the number of
data points is odd, then the median will represent the middle value. On the other
hand, if the number of data points is even, then the median will be the mean value of
the two middle values. Although it can happen that the median value is equal to a
value in the data set, this is not necessarily always true. For the set given as {2, 4, 5,
10, 14, 14, 16, 17}, the median value would be 12 (= Y%(10+ 14)). The main
advantage of the median value is that it represents the middle value of a given set
and is robust to single extreme values.

1.1.2 Measures of Dispersion

Measures of dispersion seek to provide some information about how the values in a
given data set are distributed, that is, are all the values clustered about one number

VIf the specific number of tied entries is known, then the data set can be referred to by that number,
for example, bimodal for a data set with 2 modes or trimodal for three modes.
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Table 1.2 Summary of the main properties of the measures of dispersion

Measure Formula Advantages | Disadvantages | Comment
Range Max — min or [min, max] Easy to Can easily be
compute influenced by
extreme
values
Standard Commonly | Can easily be | Squaring it gives
deviation used, can be | influenced by | the variance
easy to extreme
interpret values
Median 6map = median(|x; — Xedian|) | RObust Can be
absolute estimate converted to an
difference estimate of the
standard
deviation
Skew -l Z" (x; —x)° Measures Rarely used in
7= n’ = NS the spread of practice
(n*lzl_: (i —%) ) the extreme
values

or are they spread out across a large range of numbers. The basic measures of
dispersion include range, standard deviation or variance, skew, and median abso-
lute deviation (MAD). A summary of the basic properties of these measures is
provided in Table 1.2.

The range of a data set is simply defined as the difference between the largest
and smallest values within the data set. It is also possible to report the range as the
two numbers representing the extreme data set values. It provides a simple, but not
very meaningful, interpretation of the spread of the values. The larger the range, the
more spread out the values are. Clearly, the range is affected adversely by large
extreme values, since they would be directly used in its computation.

The standard deviation, o, and variance, 02, are two related measures of the
spread of the data set. The variance is always equal to the second power of the
standard deviation. The larger the standard deviation, the more spread out the data
set is. The variance can be computed as

(1.3)

The standard deviation can then be computed by taking the square root of the value
obtained using Eq. (1.3). In statistics, the circumflex () over a value shows that it is
estimated or computed from a data set, rather than some theoretical value, for
example, in Eq. (1.3), 62 is the estimated value of the true variance, 02, given the
data set. Even if the variance for the data set were the same, taking different data
points will lead to some variation in the computed value. It can be noted that the



6 1 Introduction to Statistics and Data Visualisation

variance is sensitive to extreme values. Occasionally, the variance can be denoted
as the function var, for example, var(x) is the variance of x.

A method to avoid the sensitivity of the standard deviation to extreme values is
to compute the median absolute deviation (MAD), denoted by opmap, Which
replaces the mean by the robust median. It can be computed as follows:

[7MAD = median(|xl~ — Xmedian\) (14)

where median is the function that determines the median value given a data set and
Xmedian 15 the median value for the data set. It is possible to convert 6yap to a robust
estimate of the standard deviation. However, it requires knowing the underlying
distribution in order to compute the conversion factor. For a normal distribution, the
robust estimate of the standard deviation can be written as

6 = 1.48266\ap (1.5)

The skew, denoted by y, measures the amount of asymmetry in the distribution.
Skewness is determined by examining the relationship in the clustering of extreme
values, that is, the tails. If more of the data set is clustered towards the smaller
extreme values, then it is said that the system has positive or right skewness. On the
other hand, if the data set is clustered towards the larger extreme values, then it is
said that the system has negative or left skewness. The skew of a data set can be
computed as

n! n Xi — X 3
= Y
i=1\"

Graphically, the skewness can be seen from a histogram, which plots the frequency
of a value against the value. Examples of left and right skewness are shown in
Fig. 1.1.

1.1.3 Other Statistical Measures

In addition to the measures of central tendency and dispersion, there exist other
ways of quantifying a particular data set. This section will briefly review the two
most common such methods: guantiles and outliers.

1.1.3.1 Quantiles

A quantile is a way of dividing the data set into segments based on the ordered rank
of the data set. Common quantiles are the median (2 segments with the split at
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Fig. 1.1 (Left) Right-skewed and (right) left-skewed data set

50%), quartiles (4 segments at 25, 50, and 75%), quintiles (5 segments at 20, 40,
60, and 80%), and percentiles (100 segments). In order to obtain a meaningful
division, there should be at least as many different data points as there are segments.

Partitioning a data set into quantiles can be accomplished using the following
steps:

1. Order the data set from smallest to largest.
2. Obtain an estimate of the boundaries for each of the segments using the
following formula (Hyndman and Fan 1996)

h=n-1)p+1 17
Q, =xpuy + (h = [A]) (xp) +1 = x1)) (1.7)
where 7 is the number of data points, p = k/q, k, and g are defined as the kth g-tile, x;
is the ith data point of the ordered data set, and |- | is the floor function, that is, round
down any number to its nearest integer. When p =1, then Q,, = x,,.

Different formulae for computing the sample quantile can be obtained by
changing the equation for 4. Two other common formulations are:

1. Exclusive Formulation: h= (n+1)p +1 with both p and Q,, computed the same
way as before.

2. Linear Interpolation Formulation: h= np + /> with both p and Q,, computed the
same way as before.

The differences in the estimated values are in most cases quite minimal. A
comparison of the above methods is given in Table 1.6 in the context of an example
(see Sect. 1.3.3, p. 28).

It can be noted that in all versions of Excel®, the method defined by Eq. (1.7) is
available (as either the function quartile or quartile. inc). Newer versions
of Excel® (2010 or newer) also support option 1 (as quartile.exc). All
versions of MATLAB® implement option 2.
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1.1.3.2 Outliers

Outliers are data points that seem to be quite different from surrounding values and
expected behaviour. Outliers can be caused by many different factors, including
data entry or data collection errors or caused by randomness inherent in the system.
Whenever a point is suspected to be an outlier, it is always useful to check that it has
been correctly recorded and collected. Determining whether a point is an outlier is
ultimately subjective and relies on intuition. Common rules for determining outliers
include (Lin et al. 2007):

1. Visual Tests: visual inspection to determine which values are located far from
the bulk of the data, for example, in the set {1, 2, 1, 2, 3,0, 2, —10}, —10 could
be considered to be an outlier. Displaying the data using graphs can be a very
useful approach. Graphs, such as the box-and-whisker plot, line charts, and
scatter plots, can be useful for determining outliers.

2. 30 Edit Rule: data points whose Z-score are large (>3), where the Z-score is
given as

Z = (1.8)

Xx; is the data point of interest, Z; is the corresponding Z-score, X is the mean value
of the data set, and o is the standard deviation of the data set. This approach only
works if it can be assumed that the data set comes from a normal distribution and
is not very robust.

3. Hampel identifier (Davies and Gather 1993): the Hampel identifier assumes that
points which lie outside the band Xegian £ 36mag, Where 6,4 is defined as

Omad = 1.4826median(|x; — Xmedian|) (1.9)

and median is the function that determines the median value of the given data
set. This equation represents the median absolute difference and is a robust
manner of estimating the spread of the data. The constant is selected such that
Omad 1S equal to o for a normal distribution. In fact, for a normal distribution, the
Hampel identifier and the 3¢ edit rules will produce the same results.

1.2 Data Visualisation

Data visualisation is the science and art of displaying information in a visual
manner that not only displays the relevant information accurately but is also
visually appealing. There exist many different methods for visualising a given
data set, including graphs and tables. Each method has its advantages and disad-
vantages when it comes to displaying the data. In general, the following principles
can be followed to determine which method is best to display the data:
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. Density of Information: how much information is to be presented? Are there only

a few points that need to be summarised, or are there multiple points that need to
be shown?

. Comparison: what is the point of showing the values? What types of relation-

ships between the data are to be highlighted?

. Efficiency: which method shows the desired relationships the best? How well is

the information displayed? Are the desired relationships visible clearly?

. Display Scheme: what kind of display scheme will be required? Will you need to

use different colours? If so, how many? Will you need to use multiple different
symbols? If so, which ones? Can they all be distinguished easily in the figure?
What if the figure is printed in black and white? What type of scale will be used:
normal or logarithmic?

Irrespective of the method selected, it is important that the following informa-

tion, as appropriate, be included:

1.

2.

Titles/Captions: each figure or group of figures should have a clear title or
caption that briefly explains the information in the figure.

Labels: appropriate labels should be included. This should include, as appropri-
ate, the full name of what is being shown, abbreviations, and units. All axes and
legend headings should be considered. For axes, an acceptable and very useful
approach would be to use the following label “full name, abbreviation (units)”,
for example, “temperature, T (°C)”. A legend should be provided if multiple
types of information are plotted on the same graph.

. Display: are the different symbols used clearly distinguishable? Consider the

fact that many figures will end up in black-and-white publications. This implies
that relying solely on colour to distinguish different aspects on a figure can be
difficult. Furthermore, data points should not be connected by lines unless there
is a reason for connecting the points. This implies that experimental data in many
cases should be entered as single points, while theoretical values should be
connected with a single continuous line.

A good discussion of the art of data visualisation, as well as some ideas on how

to implement it, can be found in the books by Edward Tufte (Tufte 2001; Tufte
1997).

1.2.1 Bar Charts and Histograms

A bar chart is a graph that contains vertical or horizontal bars whose length is
proportional to the value. Bar charts compare by their nature discrete information.
One axis will contain the category or discrete item, while the other axis will contain
the value axis. Typical bar charts are shown in Fig. 1.2. Although 3-D bar charts are
possible, they do not provide any advantage for displaying the information accu-
rately or efficiently.
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Fig. 1.2 (Left) Vertical bar chart and (right) horizontal bar chart

A histogram, similar to a bar chart, shows the frequency of a given range of
values that occur in the data set. Thus, a histogram records continuous data but
presents it in a similar manner. A histogram is constructed by first creating bins or
ranges of numbers. Next, the number of times a value from the data set falls within
each of the ranges is determined and noted. Once this has been completed, a vertical
bar chart is plotted using the bins as the category and the occurrences as the value. It
should be noted that the bins are normally assigned so that they are of equal size
(except for the two end points) and are continuous, that is, two adjacent bins share
the same end point. A 4-bin example could be x < 3,3 <x<5,5<x<7,andx>7.
A typical histogram is shown in Fig. 1.3. Not all software provides methods for
directly creating a histogram. In some cases, it is necessary to manually bin the data
and then create the corresponding bar graph.

1.2.2 Pie Charts

A pie chart is a circle whose arc length has been divided up into different pro-
portions. It is named after how a pie is cut. Pie charts can be used to display the
relationships of parts to a whole, for example, components of a budget. However,
too many different items in a pie chart can lead to difficulties with representing the
items effectively, as the number of available colours and amount of space can be
limited. Also, a pie chart tends to require more space than would ideally be needed
to display the information. A typical pie chart is shown in Fig. 1.4.

1.2.3 Line Charts

A line chart is a graph that contains individual data points connected by a line.
Very often, the horizontal, or x-axis, will represent time and the vertical, or
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y-axis, will represent the value of some variable over time. For this reason, a line
chart is often called a time series plot. A line chart is very effective in showing
how a variable(s) changes over time. However, too many competing lines can
make the figure difficult to read and understand. A typical line chart is shown in

Fig. 1.5.
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Fig. 1.5 Typical line chart

1.2.4 Box-and-Whisker Plots

A box-and-whisker plot, or more simply a boxplot, is a complex graph that is based
on quartiles to conveniently display multiple different properties of the data set. It
can conveniently be used to compare different data sets. A box-and-whisker plot
consists of two parts: the box and the whiskers. The box is formed by the 25th
(Q1) and 75th (Q3) percentile boundaries with the middle line invariably being the
median (Q2). The whisker limits are defined using any of the following rules:

1. Maximum and minimum of the data set.

2. Lowest data point located within 1.5 of the interquartile range from the lower
quartile and the largest data point located within 1.5 of the interquartile range
above the upper quartile. The interquartile range is defined as the difference
between Q3 and Q1. Such a plot is often called a Tukey boxplot.

3. The 9th and 91st percentiles.

4. The 2nd and 98th percentiles.

In all cases, data points lying outside the whisker limits are conventionally denoted
by crosses or dots, often in another colour. Such points can be labelled as outliers.
Of the available definitions, the most commonly encountered box-and-whisker
plots use whisker bounds defined by the first two rules. Typical box-and-whisker
plots are shown in Fig. 1.6. These box-and-whisker plots were created using the
interquartile range for the data points.
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Fig. 1.6 Typical box-and-whisker plots

1.2.5 Scatter Plots

A scatter plot shows the values obtained using some mark. These marks are not
connected and hence it looks like all the values are scattered around. A scatter plot
is useful when it is desired to show the relationship between two variables, but the
values vary quite a bit between each sample. Often, the true or predicted values can
be superimposed using a line. The selection of the appropriate mark can be
important, especially when there are many data points to show. Ideally, each data
point should be clearly visible. In some cases, it may be useful to show data from
multiple experiments or runs together on a single plot. Again, the various marks
need not only to be individually distinguishable, but also they need to be distin-
guishable from each other. A typical scatter plot is shown in Fig. 1.7.

1.2.6 Probability Plots

A probability plot is a graph that compares the data set against some expected
statistical distribution by comparing the actual quantiles against the theoretical
quantiles. Such probability plots are also often called O —Q or P — P plots. The
most common statistical distribution for comparison is the normal distribution. The
exact values plotted on each of the axes depend on the desired graph and software
used. In general, the theoretical values are plotted on the x-axis, while the actual
values are plotted on the y-axis. Occasionally, the actual values are modified in
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1.
2.

order to emphasise certain properties. A generalised probability plot can be
constructed using the following steps:

For each data point, compute its rank, denoted by R;.
Compute an approximation of the quantile position using the following formula:

1-0.5 i=1
i— 03175
P I —— .:2,3,..., _1. .
Ui =9\ 7+ 0365 ' " (1.10)
0.5 i=n

It can be noted that any of many different formulae can be used here. The
simplest formula is given as

1—0.5
Upi = . 111
R " (1.11)

The final results will be very similar, irrespective of the actual formula used.
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3. Compute the N-score for each rank, Ng;, using the following formula:

NR,' = lCdf(UR,) (112)

where icdf is the inverse of the cumulative distribution function of the desired
distribution (further information about distribution functions can be found in
Sect. 2.3).

. If desired, transform the actual data. Two common transformations are:

(a) Z-Score: if the theoretical distribution is assumed to be normal, then it can
be convenient to transform the data into the corresponding Z-score. This
will minimise the need to know the true mean and standard deviation of the
data set. The formula for the Z-score is

z; =211 (1.13)

6

(b) Quantiles: another option is to plot the quantiles corresponding to the data
set on the y-axes rather than the actual values. Any of the formulae for
computing the quantile can be used. The most common one in this case is
Eq. (1.11). This will give a cumulative distribution feel to the data set.
Some software, such as MATLAB®, uses this approach to produce its
probability plots.

. Plot Ng; on the x-axis and x; on the y-axis to construct the normal

probability plot.

The interpretation of this probability plot is based on the following theoretical

observations:

1.

The data should lie on a straight line, which, in the ideal case, is y = x.

2. If the straight line given by the data is shifted vertically by a fixed amount, then

this represents the difference in the mean between the assumed distribution and
the actual data distribution.

. If the straight line given by the data has a different slope (1), then the standard

deviation of the data set is different from the assumed distribution’s standard
deviation.

This is shown graphically in Fig. 1.8, for the case of a normal distribution with
different means and variances compared against a normal distribution with a mean
of zero and a variance of 1. It can be seen that the straight line’s slope and y-
intercept match well the theoretical values. Therefore, based on these observations,
it can be useful to include a straight line (line of best fit) to give an estimate of the
true mean and standard deviation.

From these theoretical observations, this means that the points in the probability

plot should all lie along a straight line. The exact slope and y-intercept are not all
that important. Deviations from a straight line are indications that the data may not
come from the proposed theoretical distribution. The most common deviations are:


http://dx.doi.org/10.1007/978-3-319-21509-9_2
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Fig. 1.8 Probability plots and the effect of the location parameters (4 and 6°)

. Outliers or extreme values at the end points.
. Tails at the end points, or curvature, that is, one tail is below the straight line and

the other is above the straight line. This implies that the true distribution of the
data set has a different distribution than the target distribution. Practically, if the
left tail is below and the right tail is above, then the distribution in the tails is
larger than in the target distribution. On the other hand, if the left tail is above
and the right tail is below the straight line, then the data distribution in the tails is
smaller than in the target distribution.

. Convex or concave curvature in the centre, that is, the given data set is not

symmetric compared with the target distribution.

. Plateaus, gaps, or horizontal data, that is, the data seems to fall only within

certain values. This is most likely to be the result of rounding errors introduced
during measurement, storage, or data manipulation.

Figure 1.9 shows examples of how these kinds of problems can appear on a
probability plot. Figure 1.9a shows a normal probability distribution with mean
0 and variance 1 with 2 outliers (circled). Notice how the outliers can cause some of
the adjacent points to also be skewed from the ideal location. Figure 1.9b shows the
case where the tails of the distribution do not match. In this case, a 2-degree-of-
freedom Student’s ¢-distribution was compared against the normal distribution. The
t-distribution has larger tails than the normal distribution. This can clearly be seen
by the deviations on both sides from the central line. Figure 1.9c shows the case
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Fig. 1.9 Issues with probability plots. (a) Outliers. (b) Tails. (¢) Concave behaviour. (d) Rounded
to 3 decimal places

where there is convex curvature in the centre. In this case, the asymmetric
F-distribution was compared with the normal distribution. In such a case, drawing
the desired straight line can be quite difficult since there can potentially be two or
more “best” regions. Figure 1.9 shows the case where there are horizontal plateaus
combined with gaps. In this case, the normal distribution with mean of 5 and
variance of 4 was rounded down to 3 decimal places. This clearly shows the gaps
and plateaus that rounding can induce in the results. Furthermore, it should be noted
that drawing the straight line for comparison can be difficult when the data set does
not match the underlying distribution. Finally, when dealing with small samples
(say less than about 30 points), then less ideal behaviour in the extreme regions
(tails) can be tolerated. The extent and amount of tolerated deviations will depend
on where the normal probability plot is being used. Figure 1.10 shows the normal
probability plot for nine different realisations of eight data points drawn from the
standard normal distribution. It can be seen that all samples show varying amounts
of curvature and tails. Detailed comparisons of the effect of data size on normal
probability plots can be found in (Daniel and Wood 1980).
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Fig. 1.10 Nine probability plots of eight samples drawn from a standard normal distribution

1.2.7 Tables

A table is a textual way of displaying information that consists of rows and
columns. A table is useful to present a small amount of data whose exact values
are important. It can be used to give information about summary statistics, such as
the mean, mode, and standard deviation. Every table should have headers for its
columns and rows. This can be formatted similarly to graph axes, by including the
name of the variable, its symbol, and its units. A well designed table will contain all
the relevant information within it and be self-explanatory. Numbers should be
properly formatted and not taken straight from the software used. There is no
need to display more than about 3 or 4 digits (unless special circumstances warrant)
with spacing between groups of 3 digits (on both sides of the decimal place).
Scientific notation should be used as appropriate, for example, the number obtained
from a calculator as 1.25896321532e3 could be written as either 1.259 x 10°
(using scientific notation) or 1,259. A typical table is shown in Table 1.3.
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Table 1.3 Typical table formatting

Mean thickness Variance Range

Treatment 6 (pm) e (umz) [lower, upper] (um)

A 1.25 0.25 [0.25, 5.00]

B 1.50 0.10 [0.50, 2.25]

C 2.25 0.50 [0.50, 10.0]

Fault Number per Day Fault Hourly Value
A mlmsesslsssnlslemmen a2  — —
B simsislissssmssfsflis@s b ——
B e mecaawnilinanadoasall d s mxags
E pufinnissifisnigeienl ¢ —
F __________________ f W

Fig. 1.11 (Left) Spark bar graph showing the number of times a given fault occurs over the course
of many days and (right) sparkline showing the hourly process value for six different variables
from a single unit over the course of a day

1.2.8 Sparkplots

Sparkplots or profile plot are various ways of summarising information so that only
the trends and comparison between different data sets are compactly shown.
Sparkplots often do not have explicit axes or category markings. Sparkplots can
be either line graphs (known as sparklines) or bar graphs (known as spark bar
graphs). It is common to use sparklines to show the behaviour of multiple process
variables in order to understand which variables could be influencing others. Spark
bar graphs are often used as histograms to show the distribution of variables and at
the same time show the individual values. Typical examples are shown in Fig. 1.11.

1.2.9 Other Data Visualisation Methods

The above sections have presented the most common data visualisation methods for
a given data set. More complex forms can be created by combining different simple
data visualisation methods into a final integrated plot. Alternatively, the data could
be transformed (changed in some manner) before being plotted. The different
techniques that are available to accomplish this depend strongly on the intended
application and will be introduced in the relevant sections in later chapters. Often
such plots are created when there is multiple information that needs to be displayed,
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Fig. 1.12 Complex data visualisation example: a cross-correlation plot

for example, one is interested in determining which of 20 variables are important
for your analysis.

Two typical integrated data visualisation methods are presented in Figs. 1.12 and
1.13. In Fig. 1.12, the linear relationship between 100 different variables is plotted
to determine which variables are most related with each other. This plot involves
taking the data, transforming it, and then computing the correlation between each
pair of the transformed data. A strong linear relationship is denoted by 1 (or a red
colour), while a weak linear correlation is denoted by O (or a dark blue colour).
Obviously, the variables themselves are strongly related with each other and so the
diagonal is always equal to 1 in such plots. More information on creating and
plotting such figures can be found in Chap. 5. In Fig. 1.13, two variables are plotted
against each other as a scatter plot with histograms to show the distribution of the
individual variables. These plots can be useful for seeing and understanding
complex interactions between different variables and how best to interpret them
later. In this particular example, it can be seen that both variables are skewed to the
left, with a rather large right tail.
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Fig. 1.13 Complex data visualisation example: combining multiple plot types

1.3 Friction Factor Example

In this section, experimental data from a friction factor experiment will be consid-
ered. This data set consists of four separate runs performed on different pipe
diameters collected on different days (often with a large separation in time).

1.3.1 Explanation of the Data Set

In the friction factor experiment, the flow of water through a pipe is changed to
determine the pressure drop across a length of pipe for pipes with different
diameters. In order to compare the results across multiple different diameters, the
data are converted into two dimensionless numbers: the Reynolds number (Re),
which represents the flow and is defined as

__pvD
u

Re (1.14)
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Table 1.4 Data from friction factor experiments

Run 1 Run 2 Run 3 Run 4
Re f Re f Re f Re f
6,478 0.0355 19,476 0.0268 20,701 0.0251 11,529 0.0308
11,785 0.0303 13,439 0.0293 13,248 0.0286 9,993 0.0318
5,485 0.0369 15,844 0.0281 18,409 0.0266 9,340 0.0329
9,075 0.0321 5,251 0.0369 5,602 0.0351 3,187 0.0420
11,815 0.0302 11,980 0.0303 14,251 0.0281 6,248 0.0362
7,246 0.0343 17,732 0.0272 18,978 0.0261 4,838 0.0387
10,403 0.0309 6,366 0.0352 9,787 0.0309 4,427 0.0394
13,364 0.0292 15,115 0.0283 6,638 0.0339 9,567 0.0327
10,811 0.0310 7,461 0.0345 10,748 0.0302 7,141 0.0351
7,730 0.0334 10,227 0.0314 16,813 0.0270 5,750 0.0371
9,938 0.0316 13,240 0.0296 12,730 0.0290 11,187 0.0312
11,581 0.0305 13,987 0.0291 8,794 0.0319 3,925 0.0405
8,432 0.0327 16,606 0.0277 15,041 0.0278
12,546 0.0297 11,152 0.0307 12,060 0.0292
9,051 0.0325 5,226 0.0377 6,937 0.0337
9,470 0.0317 4,895 0.0364

where p is the density of the fluid, v is the velocity, D is the pipe diameter, and y is
the dynamic viscosity of the fluid, and the friction factor (f), which represents the
pressure drop in the pipe and is defined as

_ 2DAP

f="r (1.15)

where L is the length of the pipe and AP is the pressure drop.
The relationship between the friction factor and Reynolds number can be written
as (Gerhart et al. 1992):

f =KRef (1.16)

where K and f are parameters to be fit. For turbulent flow, where
4,000 <Re < 100,000, the Blasius equation predicts that K=0.316 and
p=—0.25 (Gerhart et al. 1992).

The experiment consisted of data collected on multiple days for different
pipe diameters and flow rates using water as the fluid. Sample data are presented
in Table 1.4. Runs 1 and 2 were performed on the same day, but with different pipe
diameters: 4.9 mm for Run 1 and 6.1 mm for Run 2. Run 3 was performed on
another day with a pipe diameter of 7.8 mm. Finally, Run 4 was some historical data
obtained 6 years previously using the same equipment and a pipe diameter of
4.9 mm. The data are presented sequentially in the order in which the experiments
were run, that is, for example, in Run 1, the experiment with a Re = 6,478 was run
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Table 1.5 Summary statistics for the friction factor data set

Run 1 Run 2 Run 3 Run 4
Summary statistic | Re f Re f Re f Re f
Mean 9,700 |0.0320 |12,200 |0.0309 |12,200 |0.0300 |7,260 |0.0357
Median 9,700 [0.0317 | 13,200 |0.0296 |12,400 |0.0291 |6,700 |0.0357
c 2,300 |0.0021 4,500 |0.0036 4,900 |0.0034 |2,900 |0.0039
Range 7,880 [0.0077 | 14,300 |0.0109 |15,800 |0.0113 |8,340 |0.0112
OMAD 1,900 |0.0012 3,000 |0.0018 4,000 |0.0023 |2,700 |0.0034

first, followed by the experiment with Re = 117,785. Replicates were performed at
some of the values, for example, in Run 1, there are two cases with a Re ~ 11,800.

1.3.2 Summary Statistics

The mean, median, standard deviation, range, and median absolute difference will
be determined for all four runs. Sample computations will be shown for Run 4 using
the Reynolds number values. The results are summarised in Table 1.5.

For Run 4 and the Re values, the mean would be computed using Eq. (1.1) to
give

\ 11,529 + 9,993 + 9,340 + 3,187 + 6,248 + 4,838
— DN 44427+ 9,567+ 7,141 4 5,750 + 11,187 + 3,925
R 12

= 7,261 (1.17)

Similarly, the median would be computed by first ordering the data set from
smallest to largest and then finding the average of the two midpoint values (since
there is an even number of values present), that is,

3,187;3,925; 4,427; 4,838;5,750; 6,248;7,141;9,340;9,567;9,993; 11,187; 11,529
| OSIRg———

6248 +7,141
medlan :f

=6,694.5

(1.18)

The standard deviation can be computed using a modified form of Eq. (1.3)
commonly used for manual computations to give
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n 1 n 2
g 2 _ - § .. n 2 2
_ i=1%i n( i:l)") . (2:[:1)6[)—11)(
ORe = =
n—1 n—1
( 11,529% +9,993% + 9,340% + 3,187° + 6,248 + 4,838>

+4,427% 49,5677 +7,141% 4+ 5,750° + 11,187 + 3,925%
12 -1

)-12(7,261)2 (1.19)

=2,900

The range can be found by determining the largest and smallest values and
subtracting them. Thus, the maximum value is 11,529 and the minimum value is
3,187. Therefore, the range is 11,529 — 3,187 = 8,340.

The median absolute difference can be computed by first ordering the absolute
value of the difference between the data point and the median to give

3,507.5;2,769.5;2,267.5; 1,856.5; 944.5; 446.5; 446.5; 2,645.5; 2,872.5; 3,298.5; 4,492.5; 4,834.5
(1.20)

The ordered list then becomes

446.5;446.5;944.5;1,856.5;2,267.5;2,645.5;2,769.5; 2,872.5; 3,298.5; 3,507.5;4,492.5;4,834.5
—/_/

(1.21)

The median of the residuals is therefore 2,707.5.

It should be noted that all of the values have been rounded to three decimal
places, except for the standard deviation, which has been rounded to two decimal
places, in order to improve the presentation. It should be noted that the original
mass flow rates and pressure drops used to compute the Reynolds number and
friction factor were recorded to only three decimal places.

1.3.3 Data Visualisation

In this particular case, a scatter plot showing all the 4 runs together and a box-and-
whisker plot of each run separately will be plotted. Detailed code for creating these
graphs is given in Chap. 7 for MATLAB® and Chap. 8 for Microsoft Excel®.
Figure 1.14 shows a scatter plot of the data showing each of the runs separately,
while Fig. 1.15 gives the box-and-whisker plots for both the Reynolds number and
the friction factor. The theoretical values using the Blasius equation have also been
included in Fig. 1.14 to provide some reference point against which to compare the
data set.

In order to illustrate the procedure for constructing a box-and-whisker plot by
hand and determining the appropriate quartile boundaries, the Reynolds numbers
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Fig. 1.14 Scatter plot of the friction factor as a function of Reynolds number for all four runs

x 10*
2 - - ] 0.042 -
1.8 0.04 : 4
T 1.6 0.038 4

0.036 | - {
0.034 3 {
0.032 E — ]

0.03 ; -
0.028
0.026 J

Reynolds Number, Re
Friction Factor, f

=il
i
T}
i
i

Run 1 Run 2 Run 3 Run 4 Run 1 Run 2 Run 3 Run 4

Fig. 1.15 Box-and-whisker plots for the friction factor experiment for the (/eff) Reynolds number
and (right) friction factor

from Run 4 will be used. For a box-and-whisker plot, it is necessary to determine
the values located at Qg»s, Qo5 (= median) and Qg s. Equation (1.7) gives a
general formula for computing these values. For Qg ,s, the first quartile, setting
n=12 and p =0.25 =% in the formula gives:

15
h=(12-1)025+1=--=375

Qo5 = X3.75) + (3.75 — [3.75]) (x(3.75) 41 — X|3.75)) (1.22)
:X3+(3.75—3)(X4—X3) ’
— 4,427+ 0.75(4,838 — 4,427)
— 4735
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Similarly, Q¢ 5 can be computed as

—
W

h=(12-1)05+1=

Qo5 =X[65) + (6.5 — [6.5]
=x6 + (0.5)(x7 — x¢)
— 6,248 + 0.5(7,141 — 6,248)
— 6,695

=6.5

— N

(Xm.sj +1 —Xm.sj) (1.23)

It can be noted that, after rounding, this value is identical to that previously
computed for the median. This should be always the case.
Similarly, Qg 75 can be computed as

37
h=(12- 1075+ 1="7-=925

Qo75 = X925 + (9.25 — L9'25J)(X[9.25J +1 —Xp,zsj)
= X9 + (0.25)()(10 — Xg)
=9,567 4+ 0.25(9,993 — 9,567)
=9,674

(1.24)

For comparison, the values computed above are compared with the values obtained
using different software in Table 1.6. It can be seen that each software package can
compute the same value differently. In all cases, the median will be computed the
same way, since it is a fixed value. As was previously mentioned, this verifies that
quartile.inc function in Excel is equivalent to the values obtained manually
based on Eq. (1.7), while quartile. exc function in Excel is based on option 1 for
Eq. (1.7). Finally, MATLAB uses option 2 for Eq. (1.7). Nevertheless, all values are
relatively close to each other and would not impact too greatly the overall results.

1.3.4 Some Observations on the Data Set

First, consider the results in Table 1.5, which presents the summary statistics for the
data set. It can be noted that for Runs 2 and 3, which both have a similar mean
Reynolds Number, the median is quite different for each. This suggests that the
distribution is different. Looking at Fig. 1.15 for these two runs, it can be seen that
Run 3 has more extreme values (in both directions) than Run 2, which will balance
out both the mean and median values. On the other hand, Fig. 1.15 shows that for
Run 2, the size of the Q2—Q3 area is much smaller than for Run 3, suggesting that
25% of the data are compactly located in a small area. On the other hand, for Run
1, the mean and median are more closely aligned, which suggests that the data are
more evenly distributed. This is confirmed by looking at Fig. 1.15 for Run 1, where
the size of the two boxes is almost equal. Run 4 for the friction factor has a similar
even distribution. In all cases, Table 1.5 shows that a larger range implies that the
standard deviation will also be larger.



1.4 Further Reading 27

Table 1.6 Computing quartiles with different software packages

Excel® 2010 Excel® 2010
Quartile Manual (quartile.inc) (quartile.exc) MATLAB® 2014
1 4,735 4,735 4,530 4,633
2 6,695 6,695 6,695 6,695
3 9,674 9,674 9,887 9,780

Next, consider the scatter plot shown in Fig. 1.14, where a scatter plot of the data
by run and the theoretical values are presented. Note that each run is denoted by a
symbol that appears distinct even if there is no colour. From here, it can be observed
that Run 3 is consistently below the theoretical value. This suggests that this run
could potentially be some sort of outlier. Furthermore, Run 4 seems to have been
performed at much lower Reynolds numbers than the rest of the experiments. This
difference is even evident from the summary statistics.

1.4 Further Reading

The following are references that provide additional information about the topic:
1. History of Statistics:

(a) Hald A (2003) A history of probability and statistics and their application
before 1750. Wiley, Hoboken

(b) Sheynin O (2004) History of the theory of probability to the beginning of
the 20th century. NG Verlag, Berlin

(c) Varberg DE (1963) The development of modern statistics. Math Teach 56
(4):252-257

2. Data Analysis:

(a) Barnett V, Lewis T (1994) Outliers in statistical data, 3rd edn. Wiley,
Chichester

(b) Daniel C, Wood FS (1980) Fitting equations to data, 2nd edn. Wiley,
New York

(c) Davies L, Gather U (1993) The identification of multiple outliers. ] Am Stat
Assoc 88(423):782-792

(d) Hawkins DM (1980) Identification of outliers. Chapman and Hall, London

(e) Hodge VI, Austin J (2004) A survey of outlier detection methodologies.
Artif Intell Rev 22:85-126

(f) Hyndman RJ, Fan Y (1996) Sample quantiles in statistical packages. Am
Stat 50(4):361-365

(g) Lin B, Recke B, Knudsen JK, Jgrgensen SB (2007) A systematic approach
for soft sensor development. Comput Chem Eng 31:419-425
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3. Data Visualisation:

(a) Tufte ER (1997) Visual and statistical thinking: displays of evidence for
making decisions. Graphics Press LLC, Cheshire

(b) Tufte ER (2001) The visual display of quantitative information. Graphics
Press LLC, Cheshire

1.5 Chapter Problems

Problems at the end of the chapter consist of three different types: (a) Basic
Concepts (True/False), which seek to test the reader’s comprehension of the key
concepts in the chapter, (b) Short Exercises, which seek to test the reader’s ability
to compute the required parameters for a simple data set using simple or no
technological aids, and this section also includes proofs of theorems; and
(c) Computational Exercises, which require not only a solid comprehension of the
basic material but also the use of appropriate software to easily manipulate the
given data sets.

1.5.1 Basic Concepts

Determine if the following statements are true or false and state why this is the case.

. The mean is a robust measure of central tendency.

. A trimodal data set has four modes.

. The median measures the middle value of a data set.

. The median and the mean will always be the same.

. The variance is equal to the standard deviation squared.

. The range is a useful measure of the spread of the data.

. The median absolute difference is a robust measure of dispersion.

. A left-skewed data set has many values in the left tail.

. The skewness of a data set measures how symmetric the data set is.

. Sextiles partition a data set into six parts.

. Outliers are data points whose values are abnormal.

. A graph should have clearly labelled axes and an appropriate legend.

. Graphs containing many different symbols distinguished solely by colour are
well designed.

14. Pie charts are the foundation upon which histograms are constructed.

15. Sparkplots are useful for describing trends and general behaviour of a data set.

16. Tables are useful for summarising important information, such as mean and

variance, of a data set.
17. Taking a numeric value directly from software and placing it unformatted into a
table is a good idea.

0NN N AW =

it
W N = OO



18.

19.
20.
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A probability plot is useful for comparing the data set against some theoretical
distribution.

Transforming a data set can lead to a more meaningful graph.

Combining different types of graphs together can create a graph with more
information.

1.5.2 Short Exercises

These questions should be solved using only a simple, nonprogrammable,
nongraphical calculator combined with pen and paper.

21.

22.

For the data set {1,3,5,2,5,7,5,2,8,5},

(a) Compute the mean, mode, and median.

(b) Compute the variance, median absolute difference, and range.

(c) Compute the first, second, and third quartiles.

(d) Plot a box-and-whisker plot.

(e) Plot ahistogram with bins x <2,2 <x<4,4<x<6,6<x<8,and x> 8.

For the data set {2.3,1.2,3.4,4.5,3.4,1.2,3.4,4.0,1.1},

(a) Compute the mean, mode, and median.

(b) Compute the variance, median absolute difference, and range.
(c) Compute the first, second, third, and fourth quintiles.

(d) Plot a box-and-whisker plot.

(e) Plot a histogram with bins x < 2,2 <x<3,3<x<4, and x> 4.

1.5.3 Computational Exercises

The following problems should be solved with the help of a computer and appro-
priate software packages, such as MATLAB® or Excel®.

23.

24.

Consider the data in Table 1.7 that shows the different faults (problems)
associated with running a reactor over a 30-day period. A fault can occur
multiple times in a given time frame. Compute appropriate summary statistics
and create appropriate graphs to summarise the data. (Hint: there is no one
single correct solution.)

Consider the data in Table 1.8 that shows the flow rate of steam in kg/h through
a pipe. Due to the presence of stiction and other nonlinearities in the control
valve, a new control algorithm is being proposed. The engineer in charge of
making the change has to evaluate whether the new algorithm is better. A better
algorithm is defined as one that reduces the variance of the steam flow rate and
can keep the process closer to the desired set point of 8.5 kg/h. The original and
new control methods are both tested for 2 h and the data are collected every
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Table 1.7 Reactor fault types by shift (for Question 23)

Number of faults by shift
Morning

Night (midnight (6:00 a.m. to Afternoon (noon Evening (6:00 p.m.
Fault type to 6:00 a.m.) noon) to 6:00 p.m.) to midnight)
High reac- 5 6 2 6
tor level
Abnormal 10 2 2 5
pressure
Explosion 2 0 0 0
Low 5 2 10 5
temperature
High 5 8 0 10
temperature
Others 2 10 5 0

Table 1.8 Steam control data with two different methods (for Question 24)

Time (min) |5 10 15 20 |25 30 35 |40 |45 50 |55 60
Base (1h |85 |87 |84 |86 |82 |87 |89 (85 |85 |84 |83 |86
2h |82 |84 |83 |82 |84 |85 |88 (83 |86 (87 |85 |83
New |1h |84 |85 |84 |85 |86 |83 |86 (87 |82 |83 |84 |85
2h |85 |86 |84 |83 |84 (86 |87 |85 |85 (85 |83 |84

5 min. Plot the available data and analyse it. Without using any formal
statistical tests, suggest whether the proposed control algorithm is better than
the original, base case.

25. Take any large data set that is of interest to you and analyse it using the methods
presented in this chapter. The data set should have at least 1,000 data points and
two variables. You can then use this data set in subsequent chapters to perform
additional analysis.



Chapter 2
Theoretical Foundation for Statistical
Analysis

Having examined briefly the application of statistics to describe and visualise a
given data set, it is now necessary to examine and understand the theoretical
foundation underpinning most statistical methods. With such a theoretical founda-
tion, it is then possible to apply statistics to solving such problems as regression and
design of experiments.

2.1 Statistical Axioms and Definitions

Consider a measurable probability space, 2, defined by three variables, S, F, and P,
which is denoted as Q (S, F, P) which define a complete o-algebra for statistical
manipulation. Let S be defined as the sample space, which includes all possible
outcomes. Let [F be defined as the o-algebra that contains all possible events for a
given situation. It is most often a power set of S. F must satisfy the following
properties':

1. It contains the null set {} or &J;

2. It is closed under complementation, that is, if an event E is an element in F, or
E €T, then the set of F excluding E is also an element of F, or F\E € F.

3. Itis closed under union, that is, the union of countable many subsets of ['is in [F.

Finally, let P be the measure function, called the probability function, that
assigns a real number to all the members of . In most cases, it provides the
likelihood that a given event will occur. The measure function must satisfy
Kolmogorov’s axioms: for any event, E € FF,

1. P(E)>0
2. PS)=1

' A review of set theory is provided in Appendix A2, at the end of this chapter.

© Springer International Publishing Switzerland 2015 31
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3. P(EyUE,UEsU---UE,) = Z P(E;), where each eventE; is pairwise disjoint
i=1
(i.e. mutually exclusive).

Example 2.1: Determining the Probability Space
Determine the probability space, Q(S, I, P), for tossing a fair coin.

Solution: Tossing a coin has two outcomes: either the coin lands Aeads or it
lands tails. Thus, the sample space S is defined as S = {heads, tails}.

The event set, I, is defined as the power set of S. A power set is simply a
new set created from all possible combinations of the original set, that is, it
contains all combinations of the elements of S drawn singly, doubly, in threes,
etc. If there are n elements in the original set, then there will be 2" elements in
the power set. Since S has 2 elements, this implies that F will have 22—4
elements. Irrespective of the situation, F will always contain the null set, {},
and S. This is a consequence of the requirements on F. Therefore, in this
example, F would be defined as F = {{}, {heads}, {tails}, {heads, tails}}.

For each of the four events in F, the following values would be assigned:

H=0

heads}) =%
tails}) =%
heads, tails})=1.

P(
P(
P(
P(

—_————— —

It can be noted that when tossing a coin, one of two options must occur.”
Therefore, it is impossible for none of the options to occur, that is, the
probability of the null set is zero! This is the case in all situations. Similarly,
the likelihood that either heads or tails occurs is certain, as the coin will land
on one of these two options. Therefore, P({heads, tails}) =P(S)=1. This
once again will always hold.

Let X be a random variable that assigns or determines the observed outcome for
a particular case, that is, what outcome or event, X C S, is obtained at some given
observation X;. The process of obtaining an observation is called sampling. In the
simplest case, this can be viewed as flipping a coin and noting whether it landed
heads or tails. Thus, the random variable takes one from the domain of the
probability sample space to the observational space, X. A collection of observations
taken from the same underlying probability space is called a sample.

For a continuous probability function, P(x), the cumulative distribution function,
Fx(x), (cdf) is defined as

Fx(x) = P(X < x) (2.1)

2 At least under normal circumstances!
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where P(X <x) is the probability that the outcome X is less than some
predetermined value x. If P(x) is discrete, like, for example, tossing a coin, then
the cumulative distribution function can be written as

Fx(x) =P(X <x)= Y P(X=x) (2.2)

xi < x

where the sum is taken over all realisation less than or equal to x. It should be noted
that if the events are not numerical values, then it is difficult to define a cumulative
distribution function.

The probability density function, f(x), (pdf) is then defined as

_ de(X)

1) = =5

(2.3)

By Kolmogorov’s axiom that P(S) = 1, the probability density function has the
following property:

J F)dx =1 (2.4)

Furthermore, by Kolmogorov’s axiom that P (E) >0,

f(x) >0 for all x (2.5)

The properties given by Egs. (2.4) and (2.5) are useful for determining if a given
candidate function is in fact a probability density function or if the result obtained is
indeed correct.

In order to describe the probability space, it is useful to consider two terms
previously introduced that will now be formally defined: mean and variance. For a
discrete function, the mean, g, is defined as

p=>Y xP(X=x) (2.6)

xesS

The variance, 02, is defined as

=Y (x—u)’P(X=x) (2.7)

x €S

The standard deviation would be defined as the square root of the variance.

For continuous functions, it is more convenient to work with the probability
density function and dispense almost entirely with both S and F. In such cases, the
mean would be computed as
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S EC (28)
while the variance would be computed as

var(x) = o? = j (x — W) f(x)dx
L (29)
- jx2f<x>dx—u2

The variance can either be denoted by 6> or by var. It is common to use var when it
is desired to treat the variance as an operator and perform additional manipulations
with it. The cumulative distribution function or the probability that X is less than
some value a would then be obtained from

P(X <a)= J Fx)dx (2.10)

Finally, the ith uncentred moment of the probability density function f{x), written as
my,, is

m; = J X f(x)dx (2.11)

It can be noted that the first moment is equivalent to the mean. In certain cases,
centred moments are preferred. In such cases, the ith centred moment for the
probability density function f{(x), written as m;, is

m= | e (2.12)

The second centred moment, 71,, is equivalent to the variance.

Example 2.2: Determining Acceptable Probability Density Functions
Determine if the following functions can be used as probability density
functions:

1. f(x) = x? for 0 <x <2, zero otherwise
2. f(x)=N ~! for 0 <x <N, zero otherwise; N a positive number.

(continued)
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Example 2.2 (continued)
4

35 ¢

3}

25 |

2t

f(x)

15

1 |

0.5

Fig. 2.1 Plot of the probability density function 1 in Example 2.2

If a candidate function cannot be used, suggest how to make it a valid
probability density function.

Solution

Graph of the function given by f(x) =x? for 0<x<?2, zero otherwise, is
shown in Fig. 2.1. From Fig. 2.1, it can be seen that the function satisfies
the condition f (x) > 0 for all x (Eq. (2.5)). In order to determine if the other
constraint given by Eq. (2.4) is satisfied, it is necessary to integrate the given
function, that is,

Since the integral does not equal 1, the given function is not a probability
density function. In order to make it one, it is necessary to divide the function
by the inverse of what was obtained above, that is,

f(x) ==x* for0<x<2, zerootherwise

is a probability density function. In general, if the value of the integral is
K for a candidate function f, then K~ 'f will be a probability density function

(continued)
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Example 2.2 (continued)
assuming that Eq. (2.5) is satisfied. The procedure is commonly used and is
called normalisation.

For the function given by f(x) =N"!for 0 <x <N, zero otherwise, with
N a positive number, it is easy to verify that Eq. (2.5) holds. To verify
Eq. (2.4), integration gives

Since the integral equal 1, this implies that Eq. (2.4) is satisfied. Since both
conditions are satisfied, this is a candidate probability density function.

Example 2.3: Computing Mean and Variance from the Probability
Density Function

For the corrected probability density function from Example 2.2, compute the
mean, standard deviation, and variance.

Solution
Since we have that f(x):3x2/8 for 0 <x <2, the mean can be found as
follows:

—T f()dx—3J 2y = 2 i gt 15
U= xf(x —Sxx —(8)4x0 84 =1.
—00 0
The variance can be found as
[e9) 2 2
o sz (x)dx—yz:észxzdx—1SZZLX5 —1.5°
8 ’ )5 |, ’
—00
3

=—25_152=0.15
(8)5

The standard deviation can be written as o = 1/0.15.
Therefore, for the given probability density function, the mean is 1.5, the

variance is 0.15, and the standard deviation is +/0.15.
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2.2 Expectation Operator

In order to simplify some of the mathematical operations that are required in
manipulating statistical properties, the concept of the expectation operator, E,
needs to be introduced. The expectation operator determines the mean, or expected,
value of a distribution and is defined as

E(x) = J xf(x)dx=u (2.13)

For any two random variable X and Y, and ¢ € R, the expectation operator has the
following properties:

1. EX+c)=EX)+c;
2. E(cX)=cEX);,
3. EX+Y)=EX)+EY);

4 B0 = | gl
—00
5. EXY)=EX)E(Y)+cov(X, Y), where cov is the covariance (or the degree of
relationship between) of X and Y. Note that if two variables are independent of
each other, then their covariance is zero. The covariance of the same variable,
that is, cov(X, X) or the autocovariance, is by definition equal to the variance of

the variable, that is, o=.

Properties 1, 2, and 3 show that the expectation operator is a linear operator.

Example 2.4: Using the Expectation Operator
Consider two variables X (u =35 and 6>=4)and Y (=2 and 6% =2), with
covariance, cov(X, Y) =2, and compute the following values:

1. EQX - 5)
2. E3XY)

Solution
For part 1, we have that
EQX-5)=2EX)-5=2(5)-5=5
and for part 2, we have that
EGBXY)=3EXY)=3 (EX)E(Y)+cov(X, Y))=3 ((5)(2) —2)=24.
Both results are obtained by a straightforward application of the rules for
the expectation operator.
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2.3 Multivariate Statistics

So far it has been assumed that there is only a single variable that governs the
behaviour of the probability space. However, in many cases, it is useful to deal with
multivariate probability spaces where multiple variables determine the outcome. In
general, all of the univariate results generalise straightforwardly to the multivariate
case. In order to simplify the presentation, all results will be derived first for the
bivariate (n = 2) situation. The extension to an arbitrary n simply requires adding
additional integrations.

Assume that X = (X1,X7) and X is similarly defined. Let the joint probability
density function, f 3(), be defined over the region R*. The joint probability density
function satisfies the following three properties:

1. f4(X¥) >0, forall Xe X:

2. J J f(X)dxX = 1; and
—00 —00 -

3. P()? €H) = J J f3(X)d¥ where H is some subspace (region) of the R*

—00 —00

space.

The marginal probability density function represents the probability for a subset
of random variables in the original joint probability density function. The subset
considered is used as the subscript for the function, for example, fx(x), would be the
marginal probability density function for X. The marginal probability density
function is obtained by integrating out all the remaining variables, that is,

hﬁﬂzjfﬂﬂm (2.14)

The process of removing some subset of random variables is called marginalisation
and the removed variables (x, in this case) are said to be marginalised out.

The conditional probability represents the probability, given information
about some of the other variables, for example, if there are two variables X and Y,
then once the value of X is determined, what is the probability of obtaining a
given Y. Using probability notation, the conditional probability of Y given X is
defined as

P(XNY)

PO =

(2.15)
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The conditional probability density function for Y given X = x is written as

_ /(%)

Since this is a probability density function, it will satisfy all the usual properties.
The mean value of X; can be obtained as

pux, = E(X1) = J x1 fx, (x1)dx (2.17)

Similarly, the conditional mean of X, given X| = x; can be written as

Hxoe, = E(Xa|xi) = J X2 fx, x, (2)dx (2.18)

The variance of each variable would be defined similarly to the means. The
covariance, oxy or cov(X, Y), represents the degree of linear relationship between
two variables and is defined as

ox,\X, = J J X122 [y x, (1, x2)do dxy — puy piy, (2.19)

The covariance matrix, 2, is defined as the n X n matrix whose elements are
the covariances of the given variables, that is, X;;=cov(X;, X;). It should be
noted that oxy is equal to the variance of X. Formally, the covariance matrix is
defined as

z=E(X"X) - E(X")E(X) (2.20)

where X is the 1 x n vector of random variables. The correlation is the normalised
covariance and is defined as

0X1X2 6X1Xz
corr(X1,X2) = px,x, = = (2.21)
1 2

The correlation is bounded between —1 and 1.
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Two (or more) variables are said to be independent if the following hold:

L. f)?(f) = ﬁfx;(xi) for all x;;

i=1

2. fx () = fx, () forall x; and x; with fy (x;) > 0; and

N
3. PX,€B,X,€B,,.... Xy €By) = HP(Xi € B;) for any sets B; in the range
i=1

of Xi.

When dealing with a multivariate distribution, the computation of the marginal
and conditional probabilities is more complex. Let D= (Dy,Ds,...,Dy) be an
m-dimensional subset of the n-dimensional vector X , and let d be defined similarly.
Let )_(',A be defined such that it contains all the variables in X that are not in D and let

%, be defined similarly. Let D be the subset of R" for the D vector. The marginal
probability density function can then be written as

I (3> = J [ 3(X)dx; (2.22)
RM\D
where the integration is performed on the interval] — oo, oo[for all the variables not
in D.

The conditional probability for D given D', such that there are no variables in
common with both vectors, is defined as

= 77 (2.23)

Equations (2.22) and (2.23) reduce to the bivariate examples provided previously.

Example 2.5: Dealing with a Multivariate Distribution
Consider the following multivariate distribution:

Fxrz(X,9,2) =406 2% x>0,y>0,z>0

and compute the following information:

L. fx(x)
2. frz(y, 2)

3. fyz1x(y, 2). Does the value depend on x?

4. Compute the covariance between Y and Z.
5. Determine if the variables are independent.

(continued)
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Example 2.5 (continued)

Solution . .

For (1),letD = (X), d=(x), X,=(Y,Z), and X, = (y,z).Dwillbe
10, oo[. Equation (2.22) can then be rewritten as

710 = [ [ Farstx v ayaz = | [a0e 324 ayaz
00 00

- 4Oe*5)‘Je_2ydyJe_4zdz = 40e*(0.5)(0.25)
0

0
=5e™>*

It should be noted that J e “%dz=c"

For (2), let D = <Y,Z>, d=(y,z),X, = (X), and X, = (x). D will be 10,
oo[ x ]0, oo[. Equation (2.22) can then be rewritten as

frz(y,z JfXYZ x,y,z)dx = J40€75X72y74zdx
0 0
= 8e

—2y—4z

For 3), let D'=(X), d =(), D=(Y,Z), and d=(y,z).
Equation (2.23) can then be rewritten as

fxrz(x,y,2) _ 40e>727% Qo—2—4

Fx(x) - Se~>

fYZ|x(ya Z) =

It can be seen that the conditional probability does not depend on x.
For (4), first compute the mean value of both Y and Z:

T 1
yfy(y)dy = J 2ye 2dy =2 x 7= 0.5
0

1
dze ¥dy =4 x — = 0.25
zZ€ y X 16

<

N
—

N
)
o

=

%8

(continued)
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Example 2.5 (continued)

o0
Note that Jze’”dz = ¢72. Then, the covariance between Y and Z can be

0
determined as

[eelee]

JJyz(Se_zy_4z)dydz —0.125
00

ohg

2= | |12, 21002 - 0:5)0.25) =
0

2 4 125 =8x-x——0.12
SJy dyjze dz —0.125 8><4><16 0.125
0

=0

For (5), note that fxy, = fxfyf~, which corresponds to the first statement for
independence. Since it is satisfied, we can conclude that all three variables are
independent of each other. Note that fyz and fy;|, are the same, which should

be the case if the variables are independent.

When computing the variance and covariance matrices using vectors, there can

be some confusion about the order in which the transposes are placed (on the first or
second member). Part of the confusion stems from the fact that depending on the
particular application, the same vector can be used to obtain two different values:
either a scalar variance value or a matrix covariance value. The following rules can
be used to resolve any potential issues:

1.

Scalar column vector rule: Consider X to be a 1 x n vector of random variables,
for which it is desired to compute the second moment, #1,. In such a case, the
correct formula is given asm, = E ()? )?T) where T is the transpose operator. It is
easy to verify that this will give a scalar value.

. Scalar row vector rule: Consider X to be an n x 1 vector of random variables, for

which it is desired to compute the second moment, m,. In such a case, the correct
formula is given asm, = E(X” X), where T is the transpose operator. It is easy to
verify that this will give a scalar value.

. Matrix column vector rule: Consider X to be a 1 x n vector of random variables,

for which it is desired to compute the covariance matrix, X. In such a case, the
correct formula is givenas X = E (X rx ) where T is the transpose operator. It is
easy to verify that this will give a matrix value.

. Matrix row vector rule: Consider X to be a n x 1 vector of random variables, for

which it is desired to compute the covariance matrix, X. In such a case, the
correct formula is givenas X = E ()?)?T) , where T is the transpose operator. It is
easy to verify that this will give a matrix value.



2.4 Common Statistical Distributions 43

5. Product of vector rule: Consider two vectors X 1 and )_fz that are multiplied
together. It is desired to determine the second moment for the product of these two

vectors X | X ». In such a case, the first vector in the product will determine which of
the two rules apply. For example, if X is a column vector and X, the corresponding
row vector, then the second moment would be computed as follows:
my, = E()?)?T) = E(}?l}?z (}?1)?2)T) = E()_fl)_fz)?g)?{), where the last manipu-
lation results from the property of transpose and inverse for matrices, that is,

(AB)" = BTAT (2.24)

where A and B are two appropriately sized matrices. Mutatis mutandis for the inverse.

2.4 Common Statistical Distributions

In statistics, a commonly encountered generalised probability space, given by either
actual probabilities or a probability density function, is called a distribution. Such
distributions show how a variable is distributed among all possible available values.
In this section, the following common distributions will be considered: normal,
Student’s t-, ;(2—, F-, binomial, and Poisson distributions. Except for the last three
distributions which are discrete, all the other distributions are continuous.

The swing dash (~) is used to denote that a random variable follows a given
distribution, for example, y ~ 9%(0, 6°) means that the random variable y follows a
normal distribution with mean zero and variance ¢°. In general, a capital Fraktur
letter will be used to refer to a specific distribution. Occasionally, due to historical
precedent, a different symbol may be used. In many applications, it is desired to find
the x-value corresponding to a specific probability for the given distribution. In
general, this will be denoted using the same symbol as before, but with the addition
of a subscript probability value, that is, N, , ,» would represent the x-value of the
normal probability density function with parameters  and o7, such that the area
under the curve equals p, that is, finding the x-value for the cumulative probability
function for the normal distribution with parameters y and o~ given a probability of
p. In general, this problem does not have a closed-form solution.

2.4.1 Normal Distribution

The normal (or Gaussian) distribution, denoted by D%(u, 02), is the most common
distribution in statistics. It can be fully described by the mean, y, and standard
deviation, o. It is a symmetric distribution centred on the mean. The spread of
values is determined by the standard deviation. The larger the standard deviation,
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Table 2.1 Useful properties of the normal distribution

Property

Value

Notation

Ny, %)

910, 1) is denoted by Z.
- w?

fx) = e

Mean /]

Probability density function

Variance e

MATLAB
Excel 2010/13

Probability density function normpdf (x, u, o)

norm.dist (x, u, o,
false)

normdist (x, u, o,
false)

normrnd (n, p, Size)

Excel 2003/7

Generate Numbers Drawn From Given MATLAB

Distribution

Inverse cumulative distribution function MATLAB, Excel

2003/7
Excel 2010/2013

norminv (p, u, o)

norm.inv (p, u, o)

the more spread out the values are. The following are some useful rules of thumb
regarding a normal distribution:

. 68% of all values drawn from a normal distribution lie within the interval y + o.

. 95% of all values drawn from a normal distribution lie within the interval u + 20.

. 99.7% of all values drawn from a normal distribution lie within the interval u + 30.

. 999,999 out of one million values drawn from a normal distribution lie within
the interval u &+ 60. This observation is the origin for 60 process control and
analysis.

AW N —

Common properties of the normal distribution are summarised in Table 2.1,
while Fig. 2.2 gives a probability plot of the normal distribution.

The standard normal distribution, denoted by Z, is defined as a normal
distribution with ¢ =0 and ¢ =1. A variable following any normal distribution
can be standardised as follows:

(2.25)

where Z is often called the Z-score for the given variable. This normalisation allows
for easier comparison between variables drawn from different distributions. The
cumulative distribution function for the standard normal distribution, denoted
by ®(2), is

[ 1 —c-w
d(z)=P(X<z)= e 22 dx

(2.26)

The normal distribution is commonly encountered when performing regression
analysis, system identification, or analysing systems in process control. As well,
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Fig. 2.2 Probability density function for the normal distribution where y =0 and 6 =4

due to the behaviour of large numbers and means, it is used to describe the
distribution of many common parameters, including heights and weights of people,
grades, and machine errors.

In some cases, the multivariate normal distribution is useful. For a vector of
random variables, )?, with a mean vector z and a covariance matrix X, then the
multivariate normal distribution is

F(R) = (27) 3|z e tT - AR (2.27)

where |-| is the determinant function. The shape and behaviour of the multivariate
normal distribution is the same as the univariate normal distribution.

2.4.2 Student’s t-Distribution

The Student’s t-distribution, denoted as #(v) or more commonly as t,, is a statistical
distribution that is used for dealing with the estimation of the mean of a normal
distribution when the sample size is small and the population standard deviation is
unknown. It approaches the normal distribution as the number of degrees of
freedom, v, approaches infinity. In general, the Student’s z-distribution has larger
tails than the normal distribution. Useful properties of the Student’s ¢-distribution
are summarised in Table 2.2, while Fig. 2.3 compares the Student’s ¢-distribution
with the normal distribution.
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Table 2.2 Useful properties of the Student’s ¢-distribution

Property

Value

Notation

tv)ort,

Probability density function

1

@ =pl (142)

where I is the gamma function.

Mean Oforv>1
Variance v/(v—-2) forv>2
Probability density function MATLAB tpdf (x, v)

Excel 2010/2013 | t.dist (x, v, false)

Generate Numbers Drawn From Given
Distribution

MATLAB trnd (v, Size)

Inverse cumulative distribution function

MATLAB tinv (p, v)

Excel 2010/2013 | t.inv (p, v)

Excel 2003/2007 | tinv (2 —2p, v)

0.35

0.3

0.25

0.2

f(x)

0.15

0.1

0.05

7= T T T T

t-distribution
L i Normal distribution | -

Fig. 2.3 Comparison between the #-distribution with 2 degrees of freedom and the standardised

normal distribution

2.4.3 y’-Distribution

The xz-distribution, denoted as y*(v) or ;(f, is a distribution that can be used to
model the distribution of standard deviations. It depends on the number of degrees
of freedom, v, for the given set of observations. Useful properties of the
y*-distribution are summarised in Table 2.3, while Fig. 2.4 gives a plot of the
probability density function for the y*-distribution for different values of v.
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Table 2.3 Useful properties of the y*-distribution

47

Property Value
Notation ;(2(1/) or )(5
Probability density function flx) =tz le:

r(s)2
where I” is the gamma function.

Mean v

Variance 2u

Probability density function MATLAB chi2pdf (x, v)
Excel 2013 chisqg.pdf (x, v)

Generate Numbers Drawn From Given MATLAB chi2rnd (v, Size)

Distribution

Inverse cumulative distribution function MATLAB chi2inv (p, v)
Excel 2010/2013 | chisqg.inv (p, v)
Excel 2003/2007 | chiinv (1 —p, v)

0.25 -

0.2

0.15

0.1

0.05

Fig. 2.4 Probability density function for the y*-distribution as a function of the degrees of

freedom

2.4.4 F-Distribution

The F-distribution, denoted as §(v1,v2) or Fy, ,,, is a distribution that can be used to
model the distribution of ratios. Its shape depends on the number of degrees of
freedom for both the numerator, v;, and denominator, v,, of the ratio. Useful
properties of the F-distribution are summarised in Table 2.4, while Fig. 2.5 gives
a plot of the probability density function for the F-distribution.
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Table 2.4 Useful properties of the F-distribution

Property Value
Notation g(ylv 1/2) or Fm,uz
Probability density function (o102
(vix + ) 1T 72
X)="—""F7—+-—
= a )

where B is the beta function.

Mean vy [ (vy—2)foruv, >2
Variance 213(vy +21/2 -2) for 1, >4

vi(v2 —2) (1, — 4)
Probability density function MATLAB fpdf (x, vi, vy)

Excel 2010/2013 | £.dist (x, v1, V5, false)
Generate Numbers Drawn From Given MATLAB frnd (vq, vy, Size)
Distribution
Inverse cumulative distribution function | MATLAB finv (p, v1, vy)

Excel 2010/2013 | £.inv (p, vy, v3)

Excel 2003/2007 |finv (1 - p, v1, U3)

0.8

0.7

Fig. 2.5 Probability density function for the F-distribution for v, =8 and v, =10

2.4.5 Binomial Distribution

The binomial distribution, denoted by B (n, q), is a discrete distribution used to model
the outcome of a series of binary (0 and 1 or yes or no) events. For each trial or
realisation, the value 1 can occur with probability ¢ and the value 0 with probability
1 —g. Tt is assumed that there are £ trials and the number of 1s is s. The order in which
the events occur is not important, only their total number, for example, {1, 0, 0, 1}
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Table 2.5 Useful properties of the binomial distribution

Property Value
Notation B(n, q)

Probability function n ne
Y P(sz)z(k)qk(l—cﬁ ¢

where 7 is the total number of trials and k is the number
of trials with outcome 1.

Mean nq
Variance ng (1-¢q)
Probability function MATLAB binopdf (k,n, q)

Excel 2010/2013 |binom.dist (k, n, g, false)
Excel 2003/2007 |binomdist (k, n, g, false)

Generate Numbers Drawn From MATLAB binornd (n, g, Size)
Given Distribution

Inverse MATLAB binoinv (p, n, q)
Excel 2010/2013 binom.inv (n, g, p)

and {1, 1,0, 0}, would be equivalent, since each has 2 cases of 1 and 2 cases of 0. The
meaning assigned to 1 and O can be arbitrary as long as the outcome is binary. For
example, 1 could represent success and O failure or 1 heads and O tails. Useful
properties of the binomial distribution are summarised in Table 2.5.

Setting n = 1, that is, only a single trial occurs, we get the Bernoulli distribution.
It models the probability of a single trial given two possibilities. Historically, this
distribution was first proposed and then generalised to the binomial distribution.

Finally, it should be noted that it is possible to approximate the binomial
distribution using the standard normal distribution if np >5 and n(l — p) >5. In
this case,

X —np

Z= N (2.28)

is approximately a standard normal variable. When computing probabilities, it is
normal to add a correction factor to deal with the fact that the binomial distribution is
discrete while the normal distribution is continuous. The correction can be written as

P(X < x) zp<z<w>
np(1—p) (2.29)
x—05—np
PX>x)~P|Z>"— 5
np(l—p)

It can be noted that in both cases the final probability will be larger than if no
correction factor had been used.
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Table 2.6 Useful properties of the Poisson distribution

Property Value

Notation p(d)

Probability function P(X=k = v
where k£ >0 is an integer.

Mean A

Variance A

Probability function MATLAB poisspdf (k, A)
Excel 2010/ poisson.dist (k, 4,
2013 false)
Excel 2003/ poissondist (k, 4,
2007 false)

Generate Numbers Drawn From Given MATLAB poissrnd (4, Size)

Distribution

Inverse MATLAB poissinv (p, 4)

2.4.6 Poisson Distribution

The Poisson distribution, denoted by p(4),” is a discrete distribution used to model
the occurrence of independent events in a given time interval or space. It is the
result of taking the binomial distribution and extending the number of trials to
infinity. The Poisson distribution is encountered in reliability engineering to model
the time occurrences of failure and used in queuing theory to model the behaviour
of a queue. Useful properties of the Poisson distribution are summarised in

Table 2.6.

It should be noted that, as for the binomial distribution from which it is derived,
it is possible to approximate the Poisson distribution using the standard normal

distribution if 4 > 5. In this case,

X —2
z=""1
VA

is approximately a standard normal variable.

2.5 Parameter Estimation

(2.30)

Parameter estimation is the name given to the procedure used to estimate, or
approximate, the true population parameters, based on a sample of the population.
This is commonly encountered when, after running some experiment or other data

*Note a lowercase Fraktur p is used as the symbol here.
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collection method, it is necessary to obtain estimated values for the parameters.
Since the true parameter values are not known, a method needs to be developed for
estimating the values so that they are as close to the true values as possible.

In general, the estimated parameter is denoted by placing a circumflex (&) over
the theoretical or population parameter, for example, i is the estimated value for the
mean p. Very often, an arbitrary parameter is denoted by @ and its estimated value is

given as 6.

2.5.1 Considerations for Parameter Estimation

When estimating the value of a parameter, the following points should be borne in
mind:

1. Bias: A good estimate of a parameter should be unbiased, that is, E(é) =0@. The
bias, §, in a parameter estimate is defined as:

s=E0)-0 (2.31)

2. Variance: The variance of the parameter should be as small as possible. A
parameter estimate with the smallest variance over all possible parameter esti-
mates is called the minimum variance estimator (MVE) for that parameter.

3. Mean square error (MSE): The mean square error of a parameter is defined as

MSE(0) =E((6 —£(0))") =} + & (2.32)

where o-é is the variance of the parameter estimate. If the estimate is unbiased,

then the mean square error is equal to the variance. A minimum mean square
error estimate for a parameter need not be equal to its minimum variance
estimator.

4. Consistency: This says that as the number of samples used to estimate the
parameter goes to infinity, then the estimate of the parameter goes to the true
value of the parameter with probability one, that is,

plimé, = 0 (2.33)

n—oQ

where 6, is the parameter estimate using n data points and plim denotes conver-
gence in a probabilistic manner, that is, given a sequence {X,}, it is said to
converge in a probabilistic manner to the random variable X, if for any e,

lim P(|X, —X| > ¢) =0 (2.34)

n—oo
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The Cramér—Rao lower bound for a parameter estimate provides a bound on
how low the variance of the estimated parameters can be. Achieving the lower
bound implies that we have a minimum variance estimate. The Cramér—Rao lower
bound is defined as

o) > F(0) (2.35)

where F is the Fisher information matrix defined as

0 - (Tt a3

and L(0]x) is the likelihood function for the parameter estimates. The Cramér—Rao
lower bound can be used to define the efficiency of a parameter estimate, that is,
how close does the parameter estimate come to the lower bound. Let the efficiency
of a parameter estimate, g;, be defined as

FO)!

- <1 (2.37)

89 =

A parameter estimator achieving the Cramér-Rao lower bound will have an
efficiency of 1.

2.5.2 Methods of Parameter Estimation

In general, there are three different methods that can be used to estimate a
parameter:

1. Method of moments, where the parameter estimates are obtained by calculating
the moments of the sample and comparing them with the theoretical moments.

2. Maximum likelihood method, where the likelihood function given the data set is
optimised to determine the optimal parameter values.

3. Regression, where the error between the estimated and actual data points is
minimised to determine the parameter estimates. Since this method is so com-
monly used, the following chapter (Chap. 3) is devoted to examining this
concept further.

2.5.2.1 Method of Moments

In the method of moments approach, theoretical expressions for the moments of the
distribution are determined. Using the sample obtained, the sample moments are


http://dx.doi.org/10.1007/978-3-319-21509-9_3
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then computed and compared with the theoretical expressions. Solving the resulting
system of equations for the unknown parameters will give the method of moments
parameter estimates. If there are m parameters that describe a given distribution,
then at least the first m moments will need to be computed. The sample moments
can be computed as follows:

Mp=-9% x! (2.38)

The method of moments can provide easy-to-obtain parameter estimates for a
distribution. However, the parameter estimates may be biased. As well, solving
the system of equations can be difficult.

Example 2.6: Method of Moments for a Normal Distribution
Consider estimating the mean and standard deviation for a normal distribu-
tion using the method of moments. Are the parameter estimates biased?

Solution
The theoretical expressions for the two moments are

mi = p,my = 6> + i
Let the sample moments be given as
i =3 i =1
m; = — Xi, My = — X
= ni=

Equating the corresponding moments gives

i=1 i=1

1< 1 <& 1 <& :
Lo L 2 2 2 2 1 R i
mg—ngxi—a +u =6 _”,-EZIXi ngx,

To determine bias of the parameter estimates, take the expected value of the
equations obtained above, namely,

1

E(i) = E(%zn: x,-) = %z”: E(x;) = Zi: u = p (unbiased!)

i=1 i=1

(continued)
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Example 2.6 (continued)
I, 1< ? 1 NP ?
Z;xi = (Z;x,> :;E ;xi _Z<._lei>
:—ZE<x ——x,ij 2Zx12xk>

1—1 j=1 k=1
— ——ZE x,xj ZZZE xjxk 2ZE( )
1—1 j;éz ]—lk#] j=1
:_Z”_ 2)_2(”_1)ﬂ2+”_1ﬂ2+1(62+ﬂ2)
1_1 n n n
=2 l 2
3

—1
S (biased!)

n

Therefore, the estimate for the mean is unbiased, while for the variance, the
estimate is biased.

2.5.2.2 Maximum Likelihood Method
The maximum likelihood method seeks to maximise the likelihood function for the

parameters given the data set. The likelihood function for the parameters € given the
data set X, L(6]X), can be written as*

L(0|%) = f(%,0) (2.39)
where f(X, 0) is the assumed probability density function from which the data set

came. If it can be assumed that the individual data points are independent of each
other, and then Eq. (2.39) reduces to

H (x;,6 (2.40)

where f(x, 0) is the corresponding univariate probability density function and 7 is
the number of samples or data points. Since it is difficult to deal with a product, the

“ The likelihood function is similar in form to a probability density function, but the relationship
between the parameters and data points is reversed, that is, the probability density function
assumes the parameters and seeks the data points, while the likelihood function assumes the
data points and seeks the parameters.
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logarithm of the likelihood function is most often used for optimisation. The /og-
likelihood function, €(6|%), is defined as

n

0(6|1%) =1og L(6]%) = > f(x;,0) (2.41)

i=1

Maximisation is performed by setting the derivatives of ¢ with respect to the
parameters to zero and solving the resulting system of equations, that is,

O yie = arg max £(0|%) (2.42)

The maximum likelihood method has the following asymptotic properties:

. E@)=~0,

. The variance of the estimate attains the Cramér—Rao lower bound;
. The estimate is consistent;

. The estimate is efficient; and

N AW N =

.0 is approximately normally distributed.

Asymptotic means that these properties are attained as the number of samples
approaches infinity (n — oo). Furthermore, the maximum likelihood estimate has
the advantage that a function of a parameter estimate is also a maximum likelihood
estimate of the function of the true values, that is, if 0 is the maximum likelihood
estimate for 6, then g(é) is the corresponding estimate for g(6). This is called the
transformative property.

The main problem with the maximum likelihood method is that a closed-form
solution cannot always be obtained for the parameter estimates. Solving such a
system numerically may not always be easy.

Example 2.7: Maximum Likelihood Estimates for a Normal
Distribution

Consider the problem of finding the maximum likelihood estimates given X,
X5,. .., X,, random, independent samples drawn from a normal distribution.
Determine the maximum likelihood parameter estimates.

Solution
The probability density function of interest can be written as

1 —ow?
e 2.2

o\2x

f(xuua 62) =

(continued)
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Example 2.7 (continued)
Therefore, given n samples, the log-likelihood function can be written as

o RN AN 1 (x; — p)°
€(0|x)=Zlog \/2_e 2 :Z]Og —=) "5

i=1 OV st i=1

Z,-n:] (x; — p)°

202

= fglog 2n — nlog o —

Taking the derivative of the log-likelihood function with respect to y gives

.n, (x; —/4)2 n
ag_Ei(—gloan—nlogo—leT __Zi:1<xi_”)
ou ou - o2

Equating to zero and solving for u gives

n n
. Xi — nu . Xi
z : =i o 2 : =1
—e=r=1 62 = 0 = Iu = 71’1
Taking the derivative with respect to o, equating to zero, and solving the
resulting equation for o give

n 2
n E i1(xi_”)> @
. :(‘5<—§log27r—nloga—T _ __+§;i:1(xi_ﬂ)2

oo Oo c o3

S

It can be noted that both parameter estimates are equivalent to the method of
moment estimator. This is not necessarily true in general. Finally, note that
the estimate for the variance is biased. An exploration of the meaning of this
is given in Sect. 2.5.3.
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2.5.3 Remarks on Estimating the Mean, Variance,
and Standard Deviation

As can be seen from the above results for the normal distribution, the estimate of the
mean is unbiased irrespective of the method selected.

Unfortunately, the same cannot be said about the variance, which is biased. The
bias in the variance is

—0 = —— 2.43
- —o0 p, ( )

It can thus be seen that the variance will be underestimated using the maximum
likelihood or method of moment values. Furthermore, note that as n — oo, n~ ! — 0,
so that the bias will decrease to zero. This clearly shows that the estimate is an
asymptotically unbiased estimator. In order to obtain an unbiased estimator, the
formula needs to be changed using Bessel’s correction. The unbiased estimate of
the variance is then

n A 2
2 _ D i—a) (2.44)

where the 7 in the original denominator is replaced by n — 1. One way to explain this
change is to note that since the true mean is not known, one degree of freedom is
used to compute its value. Therefore, the variance does not have n, but rather n — 1
degrees of freedom. This correction should only be used if both the population
mean and variance are being estimated from the same data set. If the population
mean is known, then there is no need to use the correction.

Since the standard deviation is equal to the square root of the variance, it follows
that the corrected standard deviation would be

(2.45)

However, unlike the variance, this estimate will be biased. In fact, since the
standard deviation is equal to the square root of the variance, the bias will only
be corrected by using a different estimator for standard deviation. It can be noted
that asymptotically the bias will go to zero as given by the transformation property
of the maximum likelihood method.
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2.6 Central Limit Theorem

The central limit theorem is an important result concerning the behaviour of the
mean of any distribution computed from multiple different samplings of the
original distribution.

Theorem 2.1 Given {X|, Xs... ., X,,}, a set of random variables that are indepen-
dent and identical, with mean p and finite variance 6> #0. Let S, =X, +Xo+. ..
+ X, then

. Sn_nﬂ
lim P < =o 24
tim P(22 <) — 0 (2.46)

that is, the probability density function of S, converges to the standard normal
distribution.

The result of the central limit theorem explains why many observations can be
treated as coming from a normal distribution. Specifically, for the mean, which is
computed as the sum of all observations divided by the number, n, we get

Tim P(’i /?/Z < z) — ®(z) (2.47)

This can be obtained from Eq. (2.46) by dividing both the numerator and denom-
inator by n and noting that S,/n = j . This implies that the estimated mean comes
from a normal distribution with y = i and 6> = 6°/n.

2.7 Hypothesis Testing and Confidence Intervals

One of the most common applications of statistics is to test different “questions”
about the relationship between the true (or assumed) value and the estimated value
obtained after sampling some population. Hypothesis testing always consists of two
parts: the null hypothesis, Hy, which represents the default position and the alter-
native hypothesis, H;, which represents the other option. If it is assumed that the

true parameter is 6 and the corresponding estimated parameter value is 6, then the
null hypothesis can be written as

Ho:0 =6 (2.48)

There are three different possibilities for the alternative hypothesis:
Case 1: Hy : 0 # 0,

Case 2: H, : 0 < 0; and

Case 3: Hy : 0 > 0.
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Fig. 2.6 Probability densities for the two hypotheses

Case 1 is often referred to as a two-sided or two-tailed test, while Cases 2 and
3 are often called single-sided or single-tailed tests. The hypothesis test is
performed at some confidence level 100(1 — a)%, where a is the a-error, Type 1
error, or false positive rate, which is the fraction of times with which the null
hypothesis will be rejected even though the estimated parameter value did indeed
come from the sample space. The opposite situation of accepting the null hypoth-
esis, even though the alternative hypothesis is correct, is called a Type II error,
P-error, or false negative rate. The confidence level typically determines what
critical value should be used to determine which hypothesis better describes the
obtained estimate. It should be noted that if the alternative hypothesis is rejected
based on the test statistic and the critical value, then the null hypothesis is more
likely, and it is said that the null hypothesis may be correct, since some other
untested hypothesis may be an even better fit with the relationship between the true
and estimated parameters. On the other hand, if the null hypothesis is rejected, then
it is said that the alternative hypothesis is accepted.

Consider the probability density functions shown in Fig. 2.6, where the solid,
black curve is the probability density function for the null hypothesis and the
dashed, green curve is the probability density function for the alternative hypoth-
esis. The black line represents the selected critical value (rcpsica))- The area to the
right of this line and under the solid, black curve represents the likelihood of
rejecting the null hypothesis even if it is true. This region is called the a-error
(or Type I error) region. On the other hand, the area to the left of this line and under
the dashed, green curve represents the likelihood of rejecting the alternative
hypothesis even if it is true. This region is called the S-error (or Type II error)
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Fig. 2.7 Three different distributions and their overlap

region. Ideally, it would be nice to reduce the size of both regions simultaneously.
However, this is not practical, as decreasing the a-error, by shifting the critical
value (denoted by the black line) to the right, will lead to an increase in the f-error.
Therefore, there is a trade-off between the two objectives.

To illustrate this trade-off, Fig. 2.7 shows three different distributions and how
they overlap with each other. From this figure, it can be seen that if we take the solid
curve as the basis (or null hypothesis) and compare it with the dashed curves, we see
that only the dash—dot curve with u =10 is substantially different from the null
hypothesis. This shows the importance of the variance and mean on the tests. If the
mean changes substantially, then, even if the variance is large, the difference will be
clearer. On the other hand, to detect small changes in the process requires that the
parameter variance also be small. One way in which the parameter variance can be
decreased is to increase the number of data points used to estimate the given value.

The general procedure for hypothesis testing can be written as:

1. Determine an appropriate test statistic for the problem at hand. The test statistic
is some transformation of the available data that leads to a parameter that follows
a known distribution.

2. Compute the value of the test statistic using the available data.

3. Determine the critical value based on the value of «, the number of data points,
and any other relevant criteria.

4. Compare the test statistic with the critical value.

5. Draw the appropriate conclusion given the relationship between the test statistic,
the critical value, and the hypotheses being considered.

A 100(1—a)% confidence interval for a parameter represents the region in which
it would be expected to find the true parameter value. Confidence intervals exist for
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Fig. 2.8 Confidence intervals and covering a value

all three cases, of which the confidence interval obtained from the first case is the
most common. For case 1, the corresponding confidence interval is

0 — I'ower 69 < 0 < é ~+ 7 upper 09 (249)

where 7oy 18 the lower bound critical value, rypper is the upper bound critical
value, and oy is the standard deviation of the parameter estimate. For case 2, the
corresponding confidence interval is

0 — riower 60 < 0 (2.50)

For case 3, the corresponding confidence interval is

0< 0 =+ 7 upper 09 (251)

A confidence interval is said to cover a value at the given confidence value a, if the
given value lies within the given confidence bounds. Consider the confidence
interval shown in Fig. 2.8. Points b and ¢ are inside the confidence interval, and
hence it would be said that the confidence interval covers the given values. On the
other hand, points a and d are outside the confidence interval, which implies that the
points are not covered by the confidence interval. A point inside the confidence
interval can be considered to be equal to the value expressed by the confidence
interval. For example, if the true value is 5 and the estimated value is 6 +3 (95%
confidence interval), then it can be concluded that the estimated value covers the
true value, and hence it is likely that the values are the same. On the other hand, if
we had 10+2 (95% confidence interval) and the same true value, then we can
conclude that the true value and the estimated value are different.

2.7.1 Computing the Critical Value

In order to compute the critical values for the test statistic, there is a need to
understand the difference between left and right probabilities. Define the left
probability, p,, to be
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Fig. 2.9 Difference between (a) left and (b) right probabilities

Teritical

= | flx)dx (2.52)

where 7 iicar 1S the desired critical value. Define the right probability, p,, to be

e ¢}

p, = J Fx)dx (2.53)

Teritical
In all cases, the following relationship holds:

Figure 2.9 shows the difference between left and right probabilities.

The need to distinguish between left and right probabilities arises from the way
different software and books tabulate the relationship between a (a probability) and
the critical value. Table 2.7 summarises the different software and the location
returned. It should be noted that this textbook strives to consistently use left
probabilities in defining all relationships.

2.7.2 Converting Confidence Intervals

It can happen that the variable for which the confidence intervals have been computed
is not the variable that is actually desired. This can happen often when there is a need
to transform one variable (or set of variables) into another in order to obtain a better
statistical result. Such transformations are often encountered in regression analysis.
Consider the case where the parameter for which the confidence interval
has been computed, /3, is some function of the desired parameter, a, for example,
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Table 2.7 Different software and the probability values they return

63

Software

Left probability

Right probability

MATLAB

finv, tinv, chi2inv, norminv

Excel 2007 or older

norminv

finv, chiinv® tinv®

Excel 2010 or newer

t.inv, f.inv, norm.inv, chi2.inv

Statistical tables

Always give right
probabilities

“This function has issues with computing values for large degrees of freedom and probabilities

around 0.5

Given Microsoft’s aversion to things scientific, it should come as no surprise that Excel’s tinv
function is not only a right probability, but it is for the two-tailed situation, that is, it returns the
critical value corresponding to a p-value half that which it is given

p=f(a). If the confidence interval is obtained as f; < < Sy, then the following
3 different cases can be distinguished for converting the given confidence interval
into the desired confidence interval:

1. If fla) is a one-to-one, monotonic function, then the desired confidence interval can

be given as f~' () < a <f '(By), where f~'(§) is the inverse function for f(). In
this context, a one-to-one function is simply a function that contains a unique
inverse. For example, y = +” is not one-to-one, while y = x is. A monotonic function
is a function that on a given interval is either constant and increasing or constant
and decreasing. For example, y=x is monotonic everywhere, while y=x is
monotonic over the regions [0, +oo[ and ] —oo, 0], but not over] —oo, +00[.

. If fla) is a one-to-one function, but not necessarily monotonic, then the maxi-
mum and minimum values of the function need to be determined over the given
region, that is, the following 3 steps need to be performed:

(a) Find the values offl(ﬂL) and £~ (By).

df (ﬂ,

(b) Determine whether =~ = 0 over the interval f; < < and determine

the value of the functlon at these points.
(c) Take the maximum and minimum of the values for a obtained in the above
steps to be the confidence intervals for the parameter, a.

. If none of the above holds, then the following method can be used to obtain an
estimate for the converted confidence interval for a small initial confidence
intervals. This method can also be used if the function depends on more than
one of the parameters. The general formula is given as

Z df” (“ /3) (2.55)

! dg;

i

where 67 is the variance associated with the ith parameter and o2 is the variance
associated with the parameter of interest.
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Table 2.8 Summary of the required critical values, bounds, and confidence intervals for testing
hypotheses about the mean

Probability (p)
Case H, Left Right Test to reject Hy Confidence intervals
1 i#u |1-a2  |ap A A
2 A<y a l-a teomputed < Ip, n — 1 f=tpn-15
3 o >p l-a a Teomputed > Ip, n — 1 /2+11,’n71%

2.7.3 Testing the Mean

For testing hypotheses involving the mean, the test statistic is

A~

tcompuled -~
’)

Vi

where 7 is the number of data points. Invariably, the correct critical value can be
obtained from the Student’s #-distribution. If the true population standard deviation is
known or n > 30, then the normal distribution can be used instead. Strictly speaking,
this test only applies to samples drawn from a normal distribution. However, by the
central limit theorem, this result can be used even for nonnormal distributions
provided that a relatively large number of samples is available (say n > 30).

Table 2.8 summarises the appropriate probabilities, critical values, testing
conditions, and corresponding confidence intervals for the different hypothesis
cases. In all cases, the t-score can be replaced by the Z-score if the true population
variance is known (in which it should be used in lieu of ) or n > 30.

(2.56)

Example 2.8: Testing the Mean—Computing a Confidence Interval
Consider the following data that are claimed to come from a normal distri-
bution with mean 1 and standard deviation 1. Compute a 95% confidence
interval and determine if it covers the true mean.

X ={2.16, 2.71, 1.09, 0.40, 1.47, 1.13, 1.97}

Solution
The mean is

. 216+271+1.09+0.40+ 147+ 1.13 4 1.97
M =
7

- 10.93

7
=1.56

(continued)
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Example 2.8 (continued)

Since the population standard deviation is known, Z; _ ,» will be used, which
in this case is 1.96 (useful number to memorise). Therefore, the confidence
interval is

o
+7Z,—
,M p\/ﬁ
1
1.56 £ 1.96—
V7
1.56 &+ 0.741

Since the confidence interval includes the true value of 1, it can be concluded
that the true value is covered by the mean.

Example 2.9: Testing the Mean—Hypothesis Testing
Consider the same data and set-up as in Example 2.8, but now perform the
following hypothesis test:

Horjp = p

Hy:fp #p

Solution

Since we are dealing with case 1, a two-tailed test will be performed. Since
the population standard deviation is known, the Z-test will be used. The
computed statistic can be written as

1.56 — 1
Zcomputed - T = 1.48

V7

The critical value of Z;; is 1.96. Since ’Zcompmed’ < Zeit, the null hypothesis
cannot be rejected. Note that the same conclusion was reached with the
confidence interval.

Example 2.10: Testing the Mean—Unknown Variances

Consider the same data and set-up as in Example 2.8, but now assume that the
standard deviation is unknown. Perform the following hypothesis test:
Ho:pp = p

Hy:fi #p

(continued)
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Example 2.10 (continued)

Solution

Since we are dealing with case 1, a two-tailed test will be performed. Since
the sample space standard deviation is unknown, the #-test will be used. The
estimated standard deviation is 0.78. The computed statistic can be written as

1.56 — 1
Tcomputed = o071 =192

V7

The critical value of 7. with 7— 1 =06 degrees of freedom is 2.97. Since
|tcompmed| < tuit, the null hypothesis cannot be rejected. Note that the value of
the #-score is much larger than the corresponding Z-score, since we are
dealing with a very small sample.

Example 2.11: Testing the Mean—Detailed Example

As plant engineer of a bitumen processing plant, you have specified in the
supplier’s contract that the delivered processed bitumen must have a purity of
at least 99.0% at a 95% confidence level. You obtain a shipment of bitumen
which you test. With 200 samples, you obtain a mean purity of 98.6% with a
standard deviation of 0.5%. The company claims that this is sufficiently close
that the shipment should be accepted. Should the shipment be rejected at the
95% confidence level?

Solution
The statistical set-up is:

Horjp = p
Hy:j<up
which implies that we are dealing with Case 2. Since there are more than

30 samples (precisely 200 samples), the Z-score can be used. The computed
value is given as

98.6 —99.0

Zcomputed = —05 11.3

V200

Since the value of Z a1 is —1.64 (single-tail, left probability with a p-value
of 0.05) and Z omputed < Zeritical» it can be concluded that the mean is indeed
less than the specified value and the shipment should be rejected.
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Table 2.9 Summary of the required critical values, bounds, and confidence intervals for testing
hypotheses about the variance

Probability (p)
Case |H, Left Right Test to reject Hy Confidence interval
1 327é62 pi=1-0a/2 |pi=af2 )(gompuled>)(2p],nfl ?;;71)(}2§0_2§(n2—1)32
pr=0a/2 p2=1-0a2 |OR Frpon- Frasn-t
2 2
}{computed < )(pz, n—1
2 _ 2 2 2 -1)é
2 o <o o l-a X computed < Xpon—1 (an Dé
pyn—1
~2 2 2 2 —1)6?
3 6° >0 l-a a KXeomputed = Xp, n—1 ()’;271)
pyn—1

2.7.4 Testing the Variance

For testing hypotheses involving the variance, the test statistic is

(n—1)6*

: (2.57)

X gomputed = c
where 7 is the number of data points. Invariably, the correct critical value can be
obtained from the y*-distribution. It should be noted that this assumes that the
underlying distribution is normal.

Table 2.9 summarises the appropriate probabilities, critical values, testing con-
ditions, and corresponding confidence intervals for the different hypothesis cases.

Example 2.12: Testing the Variance

You have been hired to design a new control scheme for a temperature controller.
In order to show that your controller is better, you need to show that the variance
of the new control scheme has been decreased. Historically speaking, the
previous controller had a variance of 2 K. Upon implementing the new control
scheme for 100 samples, the variance is 1.2 K2 Atan a= 0.05, has the control
scheme decreased the variance of the temperature controller?

Solution
The statistical set-up is:

H 0- o 2= 62

H o 6'2 < (72

which implies that we are dealing with Case 2. The correct test statistic is the
x°-test. The computed value is

(n—1)6*
(103— 1)(1.2)
2

2 —
X computed ~

=594

(continued)
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Example 2.12 (continued)

The critical value of the y*-test with 100 — 1 =99 degrees of freedom at a
p-value of 0.05 is 77.0. Comparing the critical value with the computed value,
it can be seen that 59.4 < 77.0, which implies that the null hypothesis should
be rejected and the alternative hypothesis accepted. Thus, it can be concluded
that the variance of the process has improved (decreased).

2.7.5 Testing a Ratio or Proportion

For testing hypotheses involving binomial proportions, 7, then the appropriate test
statistic is

X —nr r —

F
Zcomputed = =
puted Var(L—r)  y/ntr(1—7)

where 7 is the number of data points and x is the number of successes. In order to
apply the normal approximation to the binomial distribution, nr >S5 and n (1 —r) > 5
should hold.

Table 2.10 summarises the appropriate probabilities, critical values, testing con-
ditions, and corresponding confidence intervals for the different hypothesis cases.

(2.58)

Example 2.13: Testing a Ratio

As the plant engineer, you have been monitoring the incidences of faults in
your plant. Historically, you have observed that the hourly rate of faults is 30%.
After implementing a new process management technique, you noticed that the
hourly rate of faults has decreased to 25% over a period of 200 h, that is, there
were some type of faults during 40 h of operation. You have been asked by
your boss to determine if the rate of incidence of faults has decreased.

Solution
The statistical set-up is:

H():
H

r
ilo r

S D
A

which implies that we are dealing with Case 2. The correct test statistic is the
Z-test. The computed value is

F—r
0.25 — 0.30

B /2007 (0.3)(1 - 0.3)
— 154

Zcomputed =

(continued)
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Example 2.13 (continued)

The critical value the Z-test at a p-value of 0.05 is —1.64. Comparing the
critical value with the computed value, it can be seen that —1.64 < —1.54,
which implies that the null hypothesis cannot be rejected. Thus, it can be
concluded that the new process management software has not necessarily
improved the hourly fault rate.

2.7.6 Testing Two Samples

So far all the examples considered have examined testing some value against some
reference or known benchmark value. However, in many cases, it is interesting to
compare two estimated values against each other to determine if they are different.
This section will consider the tests required to obtain such conclusions.

2.7.6.1 Testing the Mean

When comparing two sample means, there is a need to carefully consider not only
the available information but also the experimental set-up. It all cases, it is assumed
that the underlying distribution is normal for both samples and that the two samples
are distinct and mutually independent of each other. Five different cases can be
distinguished:

1. The true (population) variances for both samples are known.

2. The two variances are unknown, but a large number of data points was used for
both samples (7; and n, both greater than about 30). This case can be treated as if
the variances were known for both samples and analysed using the first
approach.

. The two variances are unknown but can be assumed to be equal.

. The two variances are unknown and cannot be assumed to be equal.

5. The mean has been obtained by taking the difference between two samples, that

is, paired data are being used.

W

Table 2.10 Summary of the required critical values, bounds, and confidence intervals for testing
hypotheses about a ratio

Probability (p)

Case H, Left Right Test to reject Hy Confidence interval
1 F#r 1-a2 al2 Z >Z . F(1—F
} computed| P ;4 Zp i( - i)
2 F<r a l-a Z computed < Zp PN ATED
P n
3 F>r l-a a Zecomputed > Z, . F(1—7
compute; ‘P F+ Zp P ( - i)
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Table 2.11 Summary of the Probability ( p)
required crmca.l values and Case H,; Left Right Test to reject Hy
bounds for testing hypotheses =
about a difference when the 1 A#A 1—af2 af2 |Zeompued| > Zp
true variances are known 2 A<A a l-a Zcomputed < Zp

3 A > A l-a o Zcompuled > Zp
Tab!e 2.12. .Summary of the Probability (p) Test to reject Ho
required critical values and Case " Left Right 2
bounds for testing hypotheses ! £ — 1T
about a difference when the 1 A#A 1—al2 a2 }tcomputed| >pv
true variances are unknown, 2 A<A a l-a feomputed < Ip, v
but assumed equal 3 As A I—a o feomputed > Ty, »

The null hypothesis for cases I to IV can be stated as Hy: p; — pp = A, while for
case V, it can be stated as Hy: up =0, where up is the mean value of all the
differences. Paired tests are useful when the individual characteristics of an object
may vary from sample to sample and it is desired to determine the overall effect on
the system.

For case I, where the true variances are known, or case II, where the variances
are unknown, but the sample sizes are large, the test statistic can be written as

7 M — - A
computed — T 5
I
n n

where the subscripts refer to the two data sets being compared. The required critical
values and testing conditions are shown in Table 2.11.

For case III, where the true variances are unknown but equal, the test statistic can
be written as

(2.59)

iy —fiy — A
fcomputed = A 71“2 (260)
Gpy /- +L

n n

where the subscripts refer to the two data sets being compared and 6, is the pooled
standard deviation computed from

6_2 — (nl - 1)6% + (n2 - 1)&% (261)
p ny+ny—2

The degrees of freedom (v) for this test are equal to 1, + n, — 2. The required critical
values and testing conditions are shown in Table 2.12.
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Table 2.13 Summary of the required critical values, bounds, and confidence intervals for testing
hypotheses about a paired mean value

Probability (p)
Case H, Left Right Test to reject Hy Confidence interval
1 Ap# pp 1-af2 a/2 |fcomputea| > #p, n — 1 fip £ tp.n— 158
2 Ap <pp a l-a feomputed < I, n — 1 fip = tp.n— 1%
3 Ap>pp l-a a Tcomputed > I, n — 1 fip it 1&7%

For case IV, where the true variances are unknown and cannot be assumed equal,
the test statistic can be written as
i Ay — A
computed = S (262)
o5 %
g + -2
ny ny
where the subscripts refer to the two data sets being compared. The degrees of
freedom (v) for this test are computed from

(&% 52\ 2
_+_7)
v= |2 (2.63)

%) %

n3(m—1) " n3(m—1)

where |-] is the floor or round down function, that is, [ —1.23] would be —2 and
|1.86] would be 1. The required critical values and testing conditions are the same
as those shown in Table 2.12, except that v would be computed using Eq. (2.63).

Finally, for case V, where a paired difference is being considered, the test
statistic can be written as

__Hp — HMp
tcomputed - L 7
6p /
Vi

where 6p is the standard deviation of the differences and n is the number of
differences available. In most cases, yp =0, since we are testing whether the pair
differences are significant. The required critical values, testing conditions, and
corresponding confidence intervals are shown in Table 2.13.

(2.64)
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Example 2.14: Testing Differences in Means—Variances Known

Two separate samples from the same batch were taken and tested by two
different operators. As the plant engineer, you are interested in knowing if the
two operators provide similar test results. Historically, it has been determined
that the variability of the test results is 4.0. It can be assumed that the
variability will be the same for both operators as the samples are drawn
from the same batch. The first operator performed 10 tests and obtained the
following values: 9.6, 9.9, 8.9, 12.0, 10.4, 13.8, 10.8, 10.3, 9.2, and 9.3. The
second operator performed 10 tests and obtained 10.8, 11.0, 11.1, 11.2, 7.6,
9.8, 14.0, 7.8, 8.6, and 8.4. Are the two operators similar? Assume a = 0.05.

Solution
In order to answer the question, we will need to compute the mean value for
the two operators:

. 96+99+89+12.0+ 104 +13.8+10.8+10.3+9.2+9.3

M1 10
=104.
N 108 +11.0+11.1+112+7.6 +9.8+14.0+ 7.8+ 8.6 + 8.4
Ha =
10
= 10.0.

Since we are testing to determine if there is a difference between the two
operators, A = 0. The statistical set-up is:

HO: A = A.

Hi: A+ A.

Since the variance is known, this is case I and the test statistic can be
computed as

104 —10.0 -0
Zcomputed = ﬁ
Vie+ie

The critical value is Z,;; = 1.96. Comparing the critical and computed values
gives |Zcomputed} < Zqit, which suggests that the null hypothesis cannot be
rejected. Therefore, it can be concluded that the two operators give similar
results.

= 0.4602
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Example 2.15: Testing the Difference in Means—Unknown,
Common Mean
As a plant engineer, you are testing a new drying procedure for the plant. Two
options exist: A and B. Option A is currently in place, while option B is a
faster new method. It is desired to determine whether option B should be
implemented. The criterion for implementation is that the quality of the
material being dried should not decrease by more than 0.1 at an a=0.05.
This value has been determined based on a cost-benefit analysis of the costs of
drying compared with the costs of production. It will be assumed that the
variance for both options is the same.

Option A gave the following product quality: 95.6, 97.3, 95.6, 95.4, 99.4,
97.2,92.2,92.8, 94.3, and 92.6. Option B gave the following product quality:
89.2,94.2,93.9,93.2,94.7,91.7,93.2, 92.4, 91.8, and 91.5.

Solution
Before performing the tests, compute the mean and variance for both options:

_95.6+973+95.6+954+99.4+97.2+92.2+92.8+94.3 +92.6

fia 0 =95.24
90,755.3 — (10)95.24*
~AD _ £l _
63 = 01 =541
iy = 89.2+942+939+9324947+917+932+924+91.8+915 _ o
B — = .
10
4.2 — (10)92.58>
&2 _ 85,73 - ( 10)9 58 o6

Since we are testing to determine if the observed difference is significant to
warrant a change in operating conditions, p4 — pig = A =0.1. The statistical
set-up is:

Hp: A = A.

Hpi: A> A.

This is a single-sided test since we only care about degradation in process
quality. Should Option B increase product quality, then it is another reason to
implement it. Note that it is very important to carefully state all the definitions
at this point as there are multiple equivalent approaches that one can take. In
this particular example, it has been assumed that the difference is defined as
Ua — up, which implies that if this difference is greater than 0.1, then it can be
assumed that the new drying option is not good. If the difference had been
defined as pi3 — u4, then the alternative hypothesis would have been defined as

H;: A < A, with A=—0.1.

(continued)
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Example 2.15 (continued)

Since the true variances are not known, this is case III of the options for
testing sample means. Thus, we need to compute the pooled standard devi-
ation. The formula gives

5 (na—1)63+ (ng — 1)63 (10— 1)(5.41) + (10 — 1)(2.626)

P na +ng — 2 10+10—2
— 4018

The test statistic can be computed as

95.24 —92.58 — 0.1
tcompuled = = 2.857

V4015, /3 + L

The degrees of freedom are 10+ 10— 2 = 18. The critical value is #..;;, 15 =1.73.
Comparing the critical and computed values gives fcomputed > ferit» Which sug-
gests that the null hypothesis can be rejected. Therefore, option B decreases
product quality and hence should not be implemented.

Example 2.16: Testing Two Means—Unknown Variance

Consider the same data as in Example 2.15. This time assume that the
variances cannot be assumed to be equal. Determine if option B should be
implemented.

Solution
Since the required mean and variance have already been computed, we
can proceed to the next step. The statistical set-up will be identical to before,
that is,

Ho: A = A.

Hpi: A> A.

This is a single-sided test for case IV. The test statistic can be written as

95.24 — 92.58 — 0.1 _ 2.56 5856

[ —
computed 541 4 2626 1/0.08036
\/ 10 10

(continued)
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Example 2.16 (continued)
The degrees of freedom can be computed as

- (5.41) N (26267 |

(34 + 26262 LO.64577
(10)*(10—1) ' 10*(10—1)

= 0'04018J = 16.071] = 16

The critical value 7., 16=1.75. Comparing the critical and computed values
g1VES Tcomputed > ferit» Which suggests that the null hypothesis can be rejected.
Therefore, option B decreases product quality and hence should not be
implemented. Notice that the same conclusion has been reached irrespective
of whether the variances were assumed to be equal. In practice, the equality of
the two sample variances could be tested using the method presented in
Sect. 2.7.6.2 below.

Example 2.17: Testing a Paired Mean

You have been asked to test whether two different approaches to testing a
sample of wood to determine heat capacity are the same. Each wood sample is
divided in two and tested with each approach. Since the sample is burnt
afterwards, a new sample is required to repeat the procedure. However, the
individual properties of each sample could be sufficiently different that the
values of the heat capacity obtained are different. Therefore, it is desired to
use the difference between each sample to determine whether the methods are
the same at a level of @ =0.05. The data are provided below.

Approach 1 Approach 2 Difference
Sample @-g 'K J-g"-K™h Jg-g " Kh
1 1.75 1.73 0.02
2 1.65 1.64 0.01
3 1.67 1.67 0.00
4 1.53 1.51 0.02
5 1.76 1.74 0.02
6 1.72 1.70 0.02
7 1.78 1.77 0.01
8 1.68 1.65 0.03

75

(continued)
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Example 2.17 (continued)

Solution

In order to solve the question, it is first necessary to compute the mean and
variance of the differences. Doing so, gives

= 0.01625

. 0.02+0.01+0.00+ 0.02 + 0.02 + 0.02 + 0.01 + 0.03
/,[ =

., 0.0027 — (8)0.01625
o~ =

= 3. 1073
- 8.39 x 10

Since we are testing a paired difference, this is case V. The statistical set-up
will be:

Ho: jip=pp=0.

Hy: fip # pp-

This is a two-sided test for case V. The test statistic can be written as

0.01625 — 0

Tcomputed =
V/8.39 x 10—5/
V8

The degrees of freedom, v, is 8 — 1 =7. The corresponding critical
value is t.;,7=2.36 (at p=0.975, since this is a two-sided test). Since
|tcompmed| > tuit, it can be concluded that the null hypothesis should be
rejected and the alternative hypothesis accepted. Therefore, it can be con-
cluded that there is a (statistical) difference between the two approaches to
determining the heat capacity of the wood samples.

=5.017

2.7.6.2 Testing Two Variances

In order to compare the variance of two normally distributed samples, it is useful to
form a ratio of the two variances and compare them against 1. If the ratio is close to
1, then it can be concluded that the two variances are the same; otherwise, there is a
difference. The null hypothesis in this case is

L2 2
Hy:01 =03

The test statistic can be written as

6.2

Fcomputed = A_; (265)
)
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Table 2.14 Summary of the required critical values and bounds for testing hypotheses about the
two variances

Probability ( p)

Case H, Left Right Test to reject Hy
1 6%7&6% p1:1—(l/2 pl:a/2 chnputcd >Fp,,n|—l,nz—l
p2=al2 po=1-a/2 OR

Fcnmputcd < sz, ny—1,np —1

(T% > O'% l-a a Fcompuled > Fp, n—l,np—1

Table 2.14 summarises the appropriate probabilities, critical values, and testing
conditions for the different hypothesis cases. Testing two sample variances forms
the foundation for various methods that can be used to compare different data
subsets to determine their significance.

Example 2.18: Testing Two Sample Variances
Consider the same data as in Example 2.15 and test to determine if the
variances could be assumed to be the same.

Solution
The statistical set-up will be:
H 0- 01 — 0).
H 1- 01 7& 0).
This is a two-sided test. The test statistic can be written as
)
Fcomputed = Z_;Z = % = 2.06

The two required degrees of freedom are v; = 10— 1 =9 and v, =9. The critical
values are F'; ¢ 9=4.026 and F ¢ o= 0.2484. Since F < Fcomputed < F1, the
null hypothesis cannot be rejected. This suggests that the two variances are
actually the same. This result agrees with the previously observed results that
showed that assuming that the variances were the same gave very similar results
to assuming that they were not.

2.7.6.3 Testing Two Proportions

In order to test two sample proportions, assume that a large number of samples has
been taken, so that the normal approximation to the binomial distribution can be
used. The null hypothesis can be written as

HO: ry=rnr,.
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Tab!e 2.15. ‘Summary of the Probability ( p)
required crmca} values and Case H, Left Right Test to reject Hy
bounds for testing hypotheses
about two proportions rF# 1—af2 a2 |Zeompued| > Z»
2 ri<r a l-a Zcompuled < Zp
3 r>r l-a a Zcomputed > Zp

The appropriate test statistic can then be written as

Zcompuled — - I’i —n 1 ; (266)
\/r,,(l — rp) (”f + ny )
where 7, is the common or pooled proportion computed as follows:
. omritmi
= =< 2.67
p n + ng ( )

Table 2.15 summarises the appropriate probabilities, critical values, and testing
conditions for the different hypothesis cases.

Example 2.19: Testing Two Proportions

A test for defects was performed on two different batches of drugs. In the first
batch, out of 50 samples, there were 20 defects. In the second batch, out of
40 samples, there were 15 defects. Is the proportion of defects in the two
batches different? Assume a = 0.10.

Solution

The statistical set-up for this problem can be written as:
H o- ' =Tn;.
H 1- 71 # .
The pooled proportion is

P mf, 20415 7T
T Tt 50440 18

The respective proportions are 71 = 20/50 = 0.40 and 7, = 15/40 = 0.375. The
test statistic can be written as

0.40 — 0.375 _0.025

Zcomputed = =0.2417
V(=R (50! +407) (/s

The two-tailed critical value is Z., 095 = 1.65. Since |Zcomputed| < Zerit, WE

cannot reject the null hypothesis and conclude that the defects in the two
batches are indeed the same.
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2.8 Further Reading

The following are references that provide additional information about the topic:
1. Statistical theory:

(a) Varberg DE (1963) The development of modern statistics. Math Teacher
56(4):252-257

(b) Kallenberg O (2002) Foundations of modern probability. Springer,
New York

(c) Ogunnaike BA (2010) Random phenomena: fundamentals of probability
and statistics for engineers. CRC Press, Boca Raton

2. Introduction to statistics:

(a) Box GE, Hunter WG, Hunter JS (1978) Statistics for experimenters: an
introduction to design, data analysis, and model building. Wiley, New York

(b) Johnson RA, Wichern DW (2007) Applied multivariate statistical analysis,
6th edn. Prentice Hall, Upper Saddle River

(c) Montgomery DC, Runger GC (2007) Applied statistics and probability for
engineers, 4th edn. Wiley, Hoboken

(d) Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statis-
tics in biological research, 3rd edn. W. H. Freeman and Company,
New York

(e) Steel RG, Torrie JH (1980) Principles and procedures of statistics: a
biometrical approach, 2nd edn. McGraw-Hill Kogakusha, Ltd, Tokyo

2.9 Chapter Problems

Problems at the end of the chapter consist of three different types: (a) Basic
Concepts (True/False), which seek to test the reader’s comprehension of the key
concepts in the chapter, (b) Short Exercises, which seek to test the reader’s ability
to compute the required parameters for a simple data set using simple or no
technological aids, including proofs of theorems,; and (c¢) Computational Exercises,
which require not only a solid comprehension of the basic material but also the use
of appropriate software to easily manipulate the given data sets.

2.9.1 Basic Concepts

Determine if the following statements are true or false and state why this is the case.

1. If the covariance of two variables X and Y is zero, then they are independent.
2. The function f{x) = sin(x) is a probability density function.
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10.
11.
12.
13.
14.

15.

16.

17.
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. The function fix)=2x, 0<x <1, zero otherwise, is a probability density
function.

. The function f{x) = 0.25|cos(x)| for 0 <x < 2z, zero otherwise, is a probability
density function.

. If X has a mean value of 5, then E(2X) = 10.

.IfEX)=1 and E(X2) =2, then the variance is 2.

. If two variables are independent, then their joint probability density function is
equal to the product of their individual probability density functions.

- If fxy|. =fxy for all z, then it can be concluded that variables X and Y are

independent of Z.
. A two-tailed test is necessary when testing the following alternative hypothe-
sissHy:pu> .
If E(@) =a+ 1, then it can be said that the parameter estimate of a is unbiased.
If E(g) =g, then it is said that the parameter estimator for g is unbiased.
If ten samples were taken and a mean calculated, then the appropriate test
statistic is the t-test with 9 degrees of freedom.
An unbiased, minimum variance estimator is also a minimum mean square
error estimator.
In order to compute the confidence intervals for variance, the xz-distribution is
required.
When testing the hypothesis H;: i > 0 with 10 samples at a 90% confidence
level, the appropriate test statistic is the #-score with 9 degrees of freedom at a
value of 0.05.
If the 95% confidence interval is [0.95, 4], then at a 95% confidence level, it can
be concluded that the data set comes from a population with a mean of 3.
If a parameter and its 95% confidence interval can be written as 5 + 6.2 m, then
this parameter does not equal zero at a 95% confidence level.

2.9.2 Short Exercises

These questions should be solved using only a simple, nonprogrammable,
nongraphical calculator combined with pen and paper.

18. Consider a game of Three Card Monte, where three cards, Q¥, Q#, and Q#,

are shown and it is desired to select, after shuffling, the Queen of Hearts (Q¥).
Answer the following questions:

(a) What are S, [F, and P?

(b) What is the probability of winning?

(c) If each win is worth $2 and each loss is worth — $1 (you lose money),
what is the expected (or mean) payout? What is the variance of this
payout?
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19.

20.

21.

22.

23.

24.

Consider the case of flipping a single biased coin where heads will turn up
70% of the time. Answer the following questions for this case:

(a) What are S, [F, and P?

(b) If heads are worth $1 and tails are worth — $2 (you lose money), what is
the expected (or mean) payout? Will you make money in the long run?

(c) What is the breakeven point, that is, the point at which the expected value
is zero?

Consider the case of flipping two coins A and B. Coin A is biased and will turn
up heads 60% of the time, while Coin B is unbiased and will turn up heads
50% of the time. Answer the following questions for this case:

(a) What are S, IF, and P?
(b) If heads are worth $2 and tails are worth $1, what is the expected
(or mean) payout?

Hint: The possible outcomes can be denoted as HH (for heads A, heads B),
HT (for heads A, tails B), and so on.
Consider the following potential probability density functions. Determine if
they can be used as probability density functions and if so compute the mean,
variance, and E(|x|)):

(@) fix)=cos(x) for —z < x < &, zero otherwise.
(b) flx)=sin(x) for 0 <x <, zero otherwise.
© fx)= N~! for 0 < x <N, zero otherwise.

Consider a variable ¥ whose probability density function is

V2 y?
fy) = meXp(— 2—62> x>0 (2.68)

Answer the following questions:

(a) Compute u=E(Y).

(b) Compute the variance.

(c) Consider a normal variable X drawn from a zero-mean normal distribu-
tion and compute E(|X|)). (Hint: Split the integral into two parts, one
from —oc to 0 and the other from 0 to +0o. Note that |x| can be written as
X ifx<0and x if x >0.)

(d) Explain how the result from (c) compares with that from (a).

Consider two independent variables X (u=1 and 6>=2) and Y (u=2 and
o*=1); compute the following values: E(2X — 4Y), E(3XY), and EX?).
Consider the gamma distribution

Xt lefx//}
f(x) = W, x>0 (269)
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with the following moments:

EX)=ap
) ” (2.70)
E(X?) =pa(l +a)

Derive the method of moment estimators for @ and f.

25. Devise a method for estimating the mean of # samples drawn from an arbitrary
distribution so that the parameter estimate:

(a) Is biased but consistent.
(b) Is unbiased but not consistent.

26. Consider the production of glass sheets in a plant. Every day 20 samples of
these sheets are randomly taken and tested for quality. Based on historical
considerations, the distribution of quality is normally distributed with a mean
0.85 and a variance of 0.2. Assume that the sample is an independent random
variable.

(a) What is the probability that quality is below 0.75 for 5 samples in a row?
(b) What is the probability that the quality is above 0.90 for all
20 samples?

27. Consider estimating the mean of a variable drawn from a population with mean
u and standard deviation o, using the following formulae:

Assume that in all cases the individual estimates x; are independent of each
other. Determine the bias, variance, and mean square error for each of the
estimators. Which ones are biased?

28. You are an engineer working in the process control department of a petro-
chemical plant. You have hired George, a postdoctoral fellow, to improve the
performance of your control system. George has proposed a new control
algorithm that involves the use of soft sensors. It gives a mean of 0.9855 for
the purity with a standard deviation of 0.005 on a test of 1,000 samples.
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29.

30.

Historically, the process has been run at 0.985 with a standard deviation of
0.01. Answer the following questions:

(a) Has the performance of the process been degraded by introducing this new
control algorithm? Performance would be degraded if the mean value is
less than the historical one. Formulate an appropriate hypothesis and test it
with an a=0.95.

(b) Has the performance of the process improved? Formulate appropriate
hypotheses and test them with an a =0.05.

(c) Is the new variance significantly different from historical one? Compute
the 95% confidence interval for the sample variance.

(d) Would you implement the new control algorithm?

For the following experiments, compute the 95% confidence intervals and
determine whether the data comes from the stated population:

(@) X =1{3,23,45,12,56,2.3, 45}, u=3.
(b) /2:420—1211—100;4 3

) 4=02,6=5n=10,u=3.

() 6:15n—106 5.

Given the data, resolve the following hypotheses with a = 0.05:

(@ Hy:pu> jg,forug =-56=12,u=2,n=100.
(b) Hy:p# ji,forg=-56=12,u=2,n=100.

2.9.3 Computational Exercises

The following problems should be solved with the help of a computer and appro-
priate software packages, such as MATLAB® or Excel®.

31.

Consider the following distributions and their key parameters. Plot each distri-
bution on a single plot and compare how the distribution changes, when the
given parameter is changed.

(@) Normal distribution: Change the standard deviation from 0.5 to 5 in
increments of at least 0.5.

(b) Student’s t-distribution: Change the value of v from 2 to 50 in increments
of 2. Compare against each other as well as the standard normal distribu-
tion. How do the two distributions compare as v — co?

(¢c) y°-distribution: Change the value of v from 3 to 20 in increments of at
least 2.

(d) F-distribution: Change of the value of v from 1 to 20, keeping v, fixed at
5. Repeat with v, between 1 and 20 and v, fixed at 5. Compare the results.
What happens to the two graphs?
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32. Verify the central limit theorem for the following distributions: normal, y*-,
and F-distributions. Compute the mean value for multiple samplings of these
distributions. Do they converge to the normal distribution?

33. Compute the maximum likelihood estimators for the gamma distribution (see
Question 24, Eq. (2.69) for the probability density function). Using a numerical
solver, obtain parameter estimates for the following data set: 8.1864, 8.7553,
18.0286, 22.4389, 8.0564, 2.1472, 9.1224, 4.1870, 8.3551, 12.4235, 6.9026,
11.3712, 9.4377, 8.8809, 5.3927, 9.9001, 6.5891, 6.8874, 6.5011, and 7.3799.
Compute the 95% confidence interval for the parameters. Are they close to the
true values of a=3 and f=23? (Hint: The confidence intervals can be com-
puted by making use of the fact that the parameters are almost normally
distributed.)

34. Consider the following probability density function:

_ f05sin(x) 0<x<mx
f) = { 0 otherwise

and address the following questions:

(a) Show that f(x) is indeed a probability density function.

(b) Compute the mean value of this distribution.

(c) If a parameter y is well described by this distribution, compute the 95%
confidence interval for y giveny = 6 and 6= 1.0. Could the true value of
w be 5.5?

(d) After sampling the above distribution 200 times, the mean value was
obtained to be 1.1 with a variance of 0.5. Formally, test at the 95% level
(@ =0.05) whether this result equals the true value obtained in (b). Note
that you should clearly state what the null and alternative hypotheses are
and what test needs to be performed.

(e) Compute P(0.25 <x < 0.5) for this probability density function.

Appendix A2: A Brief Review of Set Theory and Notation

In mathematics, sets are defined as a collection of objects that share some type of
property. A set is delimited using curly brackets “{}” and often denoted using
double struck letters (A, B, C,...). Common sets include:

1. R (U+211D),5 which is the set of all real numbers;
2. N (U+2215), which is the set of all natural numbers and defined as N = {0,
1,2,...}

5 The values in brackets are the Unicode code points that will allow the given character to be easily
entered on the keyboard.
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3. Z (U+2124), which is the set of all integers;

4. C (U+2102), the set of complex numbers; and

5. {} or @ (U+2205), the null or empty set. This is used to represent a set that
contains no members or elements.

The element operator € (U+2208) states that a given variable is a member or
element of the set, for example, 1 € N, states that 1 belongs to (or is an element of)
the set of natural numbers. The exclusion operator \ states that some given set is to
be excluded, for example, N\{0} is the set of natural numbers excluding zero.

There are two common set operations: union and intersection. The union of
two sets, denoted as U (U +222A), is the set that contains all elements found in
both sets, while the intersection of two sets, denoted as N (U+2229), is the set
that contains only those elements that are common (found) in both sets. For
example, if A = {1,2,3,4}and B ={4,5,6,7},then AU B ={1,2,3,4,5,6,7},
while AN B = {4}.



Chapter 3
Regression

Regression is the method by which a set of data is fitted to a relationship with
unknown parameter values by minimising some criterion. The most common
criterion is least squares, where the sum of the square of the residuals, that is, the
difference between the measured and predicted values, is minimised. Regression
can be subdivided into two broad categories: linear regression, where the model of
interest can be written as the sum of linear functions, and nonlinear regression,
where this is not the case. In turn, there are two main methods to deal with
regression: ordinary least-squares and weighted least-squares analysis.

3.1 Regression Analysis Framework

The regression analysis framework, shown in Fig. 3.1, is an iterative procedure that
seeks to determine the best model for the data. Before the procedure can be started,
three things must be determined:

1. Data: What information is available about the system of interest and which
variables can be measured? If no data sets are readily available, then it may be
necessary to perform experiments to obtain the required data (see Chap. 4:
Design of Experiments for further information).

2. Model: What model (relationship) will be fit? How many parameters will be
considered? The selection of an appropriate model is neither a trivial nor an easy
task. Luckily in many processes applications, there may be some idea of what the
model should be based on a theoretical analysis of the system.

3. Regression Method: Which method will be used to determine the model param-
eters? The selection of the correct method will impact the validity of the model
obtained and what type of analysis can be performed.
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Fig. 3.1 Flow chart for regression analysis

Once these three aspects have been determined, the regression framework consists
of three steps:

1.

Parameter Determination: In this step, the model parameters are determined
using an appropriate regression method. Values required for further analysis can
also be computed at this point.

. Model Validation: In this step, the adequacy of the model is determined by

considering two different aspects: the assumptions of the regression model and
the overall fit. It is important to verify that the resulting regression satisfies the
assumptions. Failure to satisfy the assumptions means that subsequent analysis
may be incorrect. Assessing the overall fit seeks to determine how well the
model fits the data.

. Decision: Based on the desired use of the model, the time available, and any

other relevant factors, a decision needs to be made whether to accept the model
as it currently is or to improve the model. Improving the model considers
changing any of the three initial inputs: data, model, and regression method.
For example, additional experiments could be performed to provide more data
and help make a better decision, or a more complex model could be selected in
order to improve model performance.

3.2 Regression Models

Consider the following generalised representation of the regression problem
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y=g(ﬁ, )?78) (3.1)

where

1. y is the output (or dependent) variable. This is the variable that we seek to model
or describe. Often in process engineering, it will be a variable of importance such
as concentration or quality.

2. X¥isan! x 1 vector containing the regressor (or independent) variables. These are
the variables that can be used to describe how the output will behave. In many
cases, irrelevant variables may be considered in order to be certain that a
complete model has been obtained. The regressors need not have any physical
relationship with the output; rather, they may solely be correlated with the output
variable. If they are correlated, then the quality of the model may suffer once the
correlation no longer holds.

3. ﬁ is an n x 1 vector containing the parameters, which are model constants whose
values will be determined during regression. The parameters will most often be
treated as statistical variables coming from a normal distribution, so that the
significance of the results can be obtained.

4. ¢ is the error. In practical situations, the output values obtained are subject to
variability, that is, under the same conditions, it is unlikely that the same output
values will be obtained due to measurement error, analysis errors, or the like.
These errors mean that the predicted value given by g will be different from the
measured values. The error is often assumed to be a stochastic, that is, random,
variable whose values follow the normal distribution.

5. g is the complete model that describes the relationship between the regressors,
parameters, errors, and output. The form of the model determines what type of
analysis can be performed.

In order to simplify calculation, the complete model, g, is often split into two
components. The first component, denoted as f( ﬁx, 56) , and called the regression

model, deals solely with the relationship between the inputs and outputs. For this
reason, it is often called the deterministic component of the model. The second

component, denoted as k(ﬁg,s) and called the error structure or model, deals

solely with the relationship between the error and output. For this reason, it is often
called the stochastic component of the model. There are two main ways to relate
these two components to the complete model:

1. Additive Approach: In the additive approach, it is assumed that g =f+ k. This
implies that the error is added solely to the output. In regression analysis, this is
the only acceptable model.

2. Multiplicative Approach: In the multiplicative approach, it is assumed that
g =/fk. This implies that the magnitude of the error depends on the value of the
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deterministic component. In regression analysis, this type of model must be
re-arranged into an additive model in order to obtain a solution.

Although the stochastic component is important for analysing the results obtained
using regression, it is useless from the perspective of using the model, as the exact
value of the stochastic component can never be known. Therefore, although
specifying the stochastic component is important for obtaining and analysing
model parameters, it is often ignored when using the model to predict future or
new values. In many applications, the two components can be modelled separately.
The methods for modelling the stochastic component using the residuals will be
presented in Chap. 5: Modelling Stochastic Processes. An application to the iden-
tification of a process for application in process control will be presented in Chap. 6:
Modelling Dynamic Process. Also, some cases where both components need to be
simultaneously modelled will be considered in that chapter.

Finally, assume that m > n experiments were performed. Thus, there are m data
points to be fitted with » unknown parameter values. Once again, estimated values
will be denoted using a circumflex (%).

3.2.1 Linear and Nonlinear Regression Functions

A model is said to be linear if the first derivative of the regression model with

respect to the parameters B is not a function of any of the parameters. A regression
model whose first derivatives with respect to the parameters depend on the param-
eters is called a nonlinear model. For example, y = fy + 1x + x> is a linear model
in terms of the parameters, since none of the derivatives with respect to the
parameters depend on the parameters. On the other hand, y = ffoe " is nonlinear
since the derivatives with respect to the parameters depend on the parameter
estimates (e.g. 0y/0f, = e 7).

A nonlinear model can occasionally be converted into a linear model by
transforming the model to obtain a linear model. However, it should be noted that
transforming the model introduces problems into the model by changing the error
structure, which may imply that the assumptions of linear regression are not
satisfied. In this case, the parameter estimates obtained from a linearised model
can then be used as the initial guess for the nonlinear regression case.

Example 3.1: Linearising Nonlinear Models

Consider the following nonlinear models. Linearise them so that linear regres-
sion methods can be applied. Explain in which cases the error structure will be
that of the standard, linear model (additive error) and where it will not be.

- . _Eg . .

1. Arrhenius’s Equation I: K = Ae®e &r, where K is the reaction rate, A the
reaction constant, E, the activation energy, R the universal gas constant,
and T the temperature.

(continued)
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Example 3.1 (continued)

. . _Ea . .
2. Arrhenius’s Equation II: K = Ae™®T + ¢, where K is the reaction rate, A the
reaction constant, E, the activation energy, R the universal gas constant,

and T the temperature.

3. Michaelis—Menten Equation: K = If’"‘iss + &, where K.« 1S the maximum

reaction rate, S the substrate concentration, and K,,, a reaction constant.
4. Power Equation: y :Aexb, where y is the output, A a constant, and b the
exponent. Show that this is a nonlinear equation.

Solution

1. Arrhenius’s Equation I: For the first equation, taking the natural logarithm
of this equation will give

Ea Eg E
an:ln(Aese_ﬁ) zlnA—f—lneg—i—lne_ﬁ:lnA—R—;—i—e

which by defining
y=(K),f=(nA-E" 2= 1)

can be written in the standard linear regression format. Therefore, if we
assume that the original error structure is lognormal, as in this example,
then the system will be linearisable, and the linear regression methods will
completely apply.

2. Arrhenius’s Equation II: The second equation, which is the same as the
first equation, except that the error structure is different now: it is additive
rather than multiplicative. Therefore, when the logarithm is taken, the
error term will remain inside the logarithm, namely,

mK:m@€%+Q

and the complete sum cannot be simplified in order to obtain a solution that
includes the error. In such cases, it is common to simply ignore the error
structure and proceed to linearise the equation. The final result will be the
same as was obtained for 1).

3. Michaelis—Menten Equation: Since this is a very common equation in
biochemical engineering, different forms of linearisation have been
devised. In this example, two different linearisation will be considered.

(continued)
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Example 3.1 (continued)

Form I: The following steps can be taken to linearise the equation:

_ KmaxS

_Km—i—S_'_g
KS =Kmax — KKy + (K + S)e

Let
F=(KS), = (Kmax Kn),Z=(1 —K)

Note that the error structure, although additive, has a variance that depends on
the value of the unknown parameter K,,,.
Form 2: Take the following steps to linearise the equation:

1 Kn+S
K KpaS+ (Kp +S)e
1 Kn N 1
- K, +S
K KnaS+ (K +S)e Ko+ ( S+ ) .

If we ignore the fact that the error is in the denominator and proceed by
dropping it, we can see that

- =i\ 7 _ 1 4 \T 5 -1

y_<K >’ﬁ_<Kmax Kmeax>’x_<1 N >
This approach is called the Lineweaver—Burk plot. It can be seen that the error
structure is not additive and there is a need to take the inverse of potentially small
numbers which can introduce further errors. In general, none of the methods is very
good at obtaining accurate parameter values, and nonlinear regression is better.

4. Power Equation: For this equation, take the following steps to linearise it

log y =log A + log & + log x”
=log A + log € + blog x

Let
¥=(logy),f=(logA b) ,¥=(1 logx)

Note that the error structure, although additive, has a different form. It is no
longer a normal distribution. Also, there can be issues with negative numbers, as
although the original equation can deal with them, the linearised version cannot.

To show that the given equation is nonlinear, compute the derivatives of
the function with respect to the parameters, that is,

(continued)
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Example 3.1 (continued)

Oy _
ﬁ_gxb
ay_ b1
b = Abex

From these two equations, it is obvious that the derivatives depend on the
parameters, and so the resulting system is nonlinear.

3.3 Linear Regression

In linear regression, it is assumed that the function of interest can be written as:

y= Zﬂifi(z) te=ap+e (32)

i=1

where the individual functions f; are all known, and d is the vector containing the
values of the functions, that is, @ = (f,(X), f2(X), ..., f,(X)). Assume that there
are m > n data points that are to be fitted to the model given by Eq. (3.2). The data
points are given as x;, where i =1, 2, 3, ..., m, and the individual parameters are
given as f3;, where j=1,2,3, ..., n.

3.3.1 Ordinary, Least-Squares Regression

This is the most common type of linear regression. In ordinary, least-squares
regression, the objective function to be optimised is given as

m/;n<(§—Aﬁ)T(§—Aﬁ)> (33)

where A, denoted as the regression matrix, is defined as

fi(x) fH(x) - fu(3)

A= f](:ﬁ2) fz(ﬂz) fn(:2) (3'4)

fl()?m) fz()_ém) fn()_ém)

and
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ﬁ: <ﬂ1’ﬁ2’ . "ﬂn>T (35)
F= 0y o) (3.6)

Theorem 3.1 The solution for Eq. (3.3) is

f=(ATA) ATy (3.7)

Proof In order to find the solution to the optimisation problem given by Eq. (3.3), it
is necessary to determine the points at which the derivative of the objective function
are zero and then solve for the desired unknown values.

Therefore, taking the derivative of Eq. (3.3) with respect to the unknown

parameters, S gives

6aﬂ( Aﬁ) (7-47) = aaﬂ(#?— VAR~ AT+ ATAP)
= 245+ 24" Ap (3.8)

Setting Eq. (3.8) equal to zero and assuming that A’ A is full rank, that is, invertible,
give

ATy + 24T Af =0
ATAp=A"y (3.9)
f=(ATA) AT

which is equivalent to Eq. (3.7).
Q.ED.

In order to analyse the resulting parameter estimates, it is necessary to make four
assumptions about the underlying error structure:

. The errors have a mean of zero.

. The errors are independent.

. The errors are homoscedastic, that is, they have the same variance.
. The errors are normally distributed.

BN =

The first three assumptions are required to obtain an understanding of the
properties of the least-squares estimate, while the last assumption allows for
hypothesis testing to be performed on the estimates, as well as making the regres-
sion estimates equal to the maximum-likelihood parameter estimates.
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Theorem 3.2 Under the assumptions stated above, the regression parameter
estimates are unbiased.

Proof To show that the parameter estimates are unbiased, E(é)ze must be
satisfied. Substituting the parameter estimates given by Eq. (3.7) into this equation
gives

E((A74) " AT5) (3.10)
Substituting the true model ¥ = A + ¢ into Eq. (3.10) and simplifying give

E((ATA) AT (AB+e) ) = E((ATA) " ATAB + (A7A) " ATe)

=B E((ATA) " ATe) G0

Since it has been assumed that E(e) =0, Eq. (3.11) becomes ﬁ, which is the true
parameter value. This shows that the parameter estimates are unbiased.
Q.E.D.

Theorem 3.2 Under the assumptions stated above, the covariance matrix of the
regression parameter estimates is

=0’ (A74)" (3.12)

where o is the variance of the error.

Proof The variance of the parameters can be written as
N EN AN\T
o :E(ﬂﬁT> —E(ﬁ)E(ﬂ) (3.13)

Making the same substitutions as in Theorem 3.2 for f)" and noting that from that

theorem we have the value for £ ( ﬂ) gives
o = E((ATA)“AT (AB + e) <(ATA)_1AT (AB + e))T) —BF (3.14)

Multiplying out and simplifying give

2 = E((AT4) AT (A7 +e) (AF +e) a((ara) ) ) - B
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BB+ per A(ATA)™ )
—E| +(ATA) ' ATef — BB (3.15)
H(ATA) T ATeeT A(ATA)

Applying the linearity of the expectation operator gives
5= E(BF ) + E(Fe" A(ATA) ) + E((ATA)ATef)
+E((ATA) " ATeeT A(ATA) ) - BF (3.16)
Since E(¢) =0, the above equation simplifies to
o = E((ATA) AT A(A74) ") (3.17)

Since it is assumed that the individual errors (residuals) are independent, have a
mean of zero, and have the same error covariance, the error covariance can be
rewritten as

0% = E(ee") =67 (3.18)

A YR S

Therefore, the covariance of the parameters can be rewritten as

0% = (AT A) AT AATA) T = A (AT A) (3.19)

RSSR

Q.E.D.

Further, if it is assumed that the errors follow a normal distribution, Theorem 3.3
allows the confidence intervals for the parameter estimates to be established, that is,

Bitty-mi-s61/(ATA) (3.20)

a
2

-1 . ,
.. represents the entry in the ith
u

where i refers to the ith parameter estimate, (AT.A)
column and row of the (.AT.AY1 matrix, and ¢ is the estimated value of the error
standard deviation.

Having established the properties of the parameter estimates, it will now be
useful to look at the predictive properties of the overall model: what are the values
and confidence intervals for a given prediction. Given a new data point, X, there are
two different measures for answering this question: the mean response and the
predicted response confidence intervals. The mean response represents the average
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value at a given point given the available data, that is, E(y’)'c'd). Essentially, this
represents the value that would be obtained if multiple experiments are repeated at
similar conditions with the same input values. The predicted response represents the
value obtainable from a single new experiment. In all cases, the confidence interval
for a predicted response will be larger than that of the mean response, since there is
additional uncertainty in the predicted value.

Theorem 3.3 Under the assumptions stated above, the mean response and its
confidence interval for the point Xy are given as

e, B0 g a6\ (ATA) L (3.21)

Xd

where dx, = (f\(Xa), [2(%a), - - -, fu(Xa)).

Proof This requires showing two things: the mean response value and its associ-
ated confidence interval. First, consider the mean response value given by E(y|¥;) =
Hy|x,- The best estimate for this value is the mean value obtained from the regression

equation, that is,

=0

E(ylds,) = dx, (3.22)

This is an unbiased estimate for the mean response since from Theorem 3.2 we have

that ﬁ is an unbiased estimate of /_)" This establishes the best estimate of the mean
response.

Next, consider the confidence interval. In order to do this, we need to determine
the variance of the mean response estimate, that is, mzy‘ P

= E(aydﬁ (a;{,ﬁ)r) — E(Zi;ﬁ)E(&’;ﬁ)T (3.23)
Simplifying Eq. (3.23) by noting that d, is a constant gives
Gy = axE(PB")at — axE(5)E(5) al (3.24)
Rewriting Eq. (3.24) by noting that the variance of the parameters can be written as
CE53) - #3350 e
Oy, = dea% al (3.25)
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Theorem 3.3, which gives the parameter variance in terms of the variance of the
errors, allows Eq. (3.25) to be rewritten as

Oy = s, (ATA) Gl (3.26)

This establishes the variance of the mean response. In practice, o is not known and
must be replaced by its estimated value, 6. It can be noted that since the parameter
estimates themselves are normally distributed (under the assumption that the errors
themselves are normally distributed), then the confidence interval can be written as

1 a6, (ATA) G (3.27)

=

o
ay,

Q.E.D.

Theorem 3.4 Under the assumptions stated above, the predicted response and its
confidence interval for the point Xy is given as

St g aoy/1+ dg, (ATA) ' al (3.28)

=0

N
ay,

where dy, = (f1(Xa), f2(Xa)s -, £, (Xa))-

Proof This requires showing two things: the predicted response value and its
associated confidence interval. First, the predicted response value will be the
same as for the mean response value and so will be unbiased.

For the confidence interval, consider the difference between the true value, y,
and the predicted value, y, at the point, that is,

e=y—7J (3.29)

The variance of ¢, will determine the variance of the predicted value estimate. The
required variance can be obtained as follows:

E((y—y><y7y>T) —E(y—$)E(y—5)" (3.30)

2, 2
y 15
From Theorem 3.4, the value of oyg will be equal to that given by Eq. (3.26). The

only remaining term will be the variance due to the true value given by 05. This can
be computed as follows:

(y)E(y)T
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It can be noted that the terms that do not contain ¢ are all constant. Furthermore, by
assumption, € has a mean value of 0. Therefore, Eq. (3.31) can be rewritten as

LT Lol
o> =adpf a +e’ —app a (332)

Thus, the variance of the predicted response value can be written as

2 2, 2> T 15T 2 ~ T N\~ lor
o, =0 to as,(A'A) ay =0 (1 + dx, (A" A) a;d) (3.33)
In practice, 6” is not known and must be replaced by its estimated value, 6°. Similar
to the mean response, noting that both the parameter estimates and the errors are
normally distributed, the confidence interval can be written as

irl,%,m,n&\/l + a’;d(ATA)"a'; (3.34)

ASNTR

ay,

Q.E.D.

The residual is defined as the difference between the predicted and measured
values, that is,

y y
_ (z - A(ATA)”AT)y (3.35)

where Z is the appropriately sized identity matrix.

3.3.2 Analysis of Variance of the Regression Model

Analysis of variance is an approach to determining the significance and validity of
aregression model using variances obtained from the data and model. The goal is
to simultaneously test multiple means in order to determine the overall signifi-
cance. Unfortunately, the naive approach of simply comparing pairwise each
mean can easily lead to too large an overall a-error. For this reason, the analysis
of variance approach seeks to decompose the total variability in the data into
various orthogonal components that can then be independently analysed. For the
purposes of analysing the regression, let the fotal sum of squares, denoted by TSS,
be defined as

TS =) (vi=3" =531 (3.36)
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where 1 is the unit column vector, that is, 1 = (1,1,1,...,1)", and ||-|| is the
standard, vector 2-norm. Let the sum of squares due to regression, SSR, be defined as

2

SSR=>"(5;—¥)° =|[y - 51 (3.37)
Let the sum of squares due to the error, SSE, be defined as
112
SSE=" (v =3 =& =53 (338)

Theorem 3.5 SSR and SSE are an orthogonal decomposition of TSS.

Proof In order to simplify the computations, the proof will be performed using
suitable vector manipulations. By definition, we can rewrite the total sum of
squares as

7ss = |5 - 51| =|G5-3)+ (-5 69

[5-5T+5-3]

By the polarisation identity between norms and dot products ||a+b|*=|a|*+
|b||* +2b"a,' Eq. (3.39) can be rewritten as

rss=|(5-5)[ +G ) +2(-5) G-51) o)

It is now necessary to show that the last term in Eq. (3.40) equals zero. This can be
accomplished by writing the last term as

(5-3) (5 —51)=(3-3) 5+ (5-

Since ):1' = Aﬁ , the first part of the last term simplifies to

<>

)TyT (3.41)

(5-3) b= ((z- (" "a")5) 4
=5 (7 - AU )AF

=5 (A- A(ATA)”ATA)ﬁ —F(A-Af =0 (3.42)

! For two column vectors a and b, the dot product a - b can be defined as the matrix multiplication
T T
aborba.
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AT .
For the second part of the last term, it can be noted that Z & = (55 — j)') 1=0,

by the assumptions of linear regression. This shows that the second part is also
equal to zero. Thus, the last term in Eq. (3.39) is equal to zero. This shows that

TSS:H(y-?)HZJrH(i—yT)H2=SSE+SSR (3.43)

Q.E.D.

It can be noted that the sum of squares due to regression can be further
partitioned if an orthogonal basis is used to define the regression parameters. This
will be explored in greater detail in Chap. 4, including how to define an orthogonal
basis for regression.

In the analysis of variance approach, the F-statistic can be calculated as
follows:

F= i/ (3.44)
" SSE :

m—n

where k is defined as follows. If there is a function, such that fi(x) = 1 for all values
of x, then k =n — 1; otherwise, k = n. This value should be compared to the critical
F-value computed as F; _ 4 . m - »» Where a is the alpha error. The F-statistic
computed using Eq. (138) should be greater than the critical value to conclude that
the parameter estimates are significant compared to the noise in the system.
Basically, the analysis of variance seeks to determine which of the two components,
the regression model or the noise variance, is greater. A good regression model
should give a larger SSR value than a bad regression model.

Another useful measure of the regression model is Pearson’s coefficient of
regression, R*. It can be calculated as follows:

R2_$_R_1_&S_E
TTSS TSS

(3.45)

The closer the value is to one, the better the regression model is. Furthermore, R?
measures the fraction of the total variance in the model explained by the regression
with the given variables. The value of R? lies between [0, 1]. Unfortunately, this
parameter has the tendency that, as the number of parameters is increased, the value
of R? approaches 1. This would suggest that the model is improved by an increase in
the number of parameters. However, if there are exactly n data points, then any n-
parameter model will fit the data quite closely. A possible approach to fix this
problem is to calculate the adjusted R?, which is given as


http://dx.doi.org/10.1007/978-3-319-21509-9_4
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2 m—n 2 m—1
R =1— 75 1:1_(1_R)( _> (3.46)

It should be noted that the adjusted R? is not constrained to lie in the interval [0, 1].
Thus, negative values can be expected using this measure.

3.3.3 Useful Formulae for Ordinary, Least-Squares
Regression

This section provides a convenient summary of all the equations required for
ordinary, least-squares regression.
For the regression model given by

yzzn:ﬁ,fi()‘c')—i—e: ap+e (3.47)

i=1

the solution can be obtained by solving the following equation for the unknown,

estimated coefficients, ﬁ :

ATAG = AT (3.48)

where

B = (Pl B (3.50)
F= (Vs oY) (3.51)

The standard deviation for this model is given by

T 3T 7o T~
syl PAY_ €8 (3.52)
m-—n m-—n
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where ¢ are the residuals given as

\<1>
‘ub
I

g

y- y—
( ATA ‘AT) y (3.53)

The 100(1—a)% confidence interval for j3; is given by

Bitti s nd\/(ATA) (3.54)

where (AT.A);I represents the value located at (i, /) in the matrix (.ATA)A.
The 100(1—a)% mean response confidence intervals, that is, the region within
which the mean value of repeated measurements will lie 100(1—a)% of the time,

for the point X; is given by

S

C_l'*dﬂ itl_%ym_n(f (.AT.A)

(3.55)

‘11

where dz, = (f,(X4), f2(X4), ..., [,(X4)). It can be noted that if the parameter
estimates are obtained using some transformed equation, then the mean response
confidence interval cannot be converted into the original units.

The 100(1—a)% predictive confidence intervals, that is, the region within which
the actual value will lie 100(1—a)% of the time, for the point X; is given by

a_‘d

irl,%,m,n&\/l + a';d(ATA)"a’; (3.56)

U

The sum of squares due to regression, SSR, can be calculated as follows:

SSR=> (5 —

N 5112 A
§—31 :ﬂTATyf—(yTn y) (3.57)
m

where 1 is the unit column vector of size m x 1, that is, 1 = (1,1,1,... 1>T
The sum of squares due to the errors, SSE, can be calculated as follows:

2

SSE=>_(n—3)=|7-3| =77-5"45 s
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The total sum of squares, TSS, can be calculated as follows:

TSS = (vi—¥)

L o 7. Vo gpoor,
|5 -51| = yTy—;?(yTllTy) (3.59)

Appendix A3 presents a traditional, nonmatrix, approach to performing univariate
(one variable), linear, least-squares regression.

3.3.4 Computational Example Part I: Determining the Model
Parameters

Consider the problem of trying to estimate the resistance coefficient for the orifice
flow out of a tank. For the particular flow rates and orifice size, the relationship is
assumed to be

m =RVh (3.60)

where 171 is the mass flow rate, R the resistance coefficient, and / the height in the
tank. The data are provided in Table 3.1. Using these data, determine the parameter
estimates and their confidence intervals and the standard deviation of the model; for
the point, x =0.225 m, determine the mean and predictive confidence intervals for
the flow rate out of the tank; obtain SSR, TSS, SSE, R2, and the F-statistic; and
provide the model significance at a =0.05.

Solution

Before obtaining the actual parameter estimates, it is instructive to set up the
problem in the proper framework. Converting from the parameters given in the
problem statement to the standard regression parameters gives

y=m
f=R (3.61)
A=+h
Table 3.1 Height and flow Height, & (m) Flow rate, 11 (kg/min)
rate data 035 164
0.30 15.4
0.25 14.3
0.20 12.7
0.15 11.0
0.10 9.6
0.05 6.4
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Therefore, writing the matrices for the seven data points gives

—[164 154 143 127 110 9.6 6.4]"

(V035 030 025 020 0.5 0.0 0.05] (3.62)

y
A

The value of m is seven (as there are seven data points) and 7 is one (as there is only
one parameter of interest).
The least-squares parameter estimates are given by

(V0357 Tv0351\  [v035] [ 1647
V030 | | v0.30 V030 | | 154
A » 0.25 0.25 025 |143
j=(A"A) ATy=1]|v020| |+020 V020 | | 127
V015 | | V015 V015 | | 11.0
V0.10 | | v0.10 V010 | | 9.6

| V0.05] [V005]) [v005] | 64

= 1.471(39.69) = 28 3500 K& (3.63)
’ ' ' min - m%3 '

Units should always be included in the final answer. It is rare that a parameter in

engineering does not have some physical units attached. The number of decimals to

display is determined by the confidence interval. Intermediate results should contain a

reasonable amount of digits. All digits should be used to perform the calculations.
The standard deviation of the model can be obtained from

(1647 [16.47 /03517 [16.4]
154 154 030 | | 154
143 | 143 V025 | | 143
12.7 12.7 | —28.35297 | o220 | | 127
10| 110 VoI5| | 11.0
9.6 9.6 Vool | 96
T AT . | L64] [64] V005 | 64
6=\ LI LAY = 71
B \/1 126.02 — 28.3529 x 39.694 062 63
N 71
1126.02 — 1125441
:\/ 6.0 - 15 88 031043

(3.64)
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The standard deviation of the model, &, is 0.3104 kg-min~'-m~%°. The 95%
confidence intervals for R can be obtained as follows:

Bitti—gmnéy/(ATA) (3.65)
where 7975, 7 1 =2.967. This gives

28.3529 £ 2.9687(0.310 43)+/0.714 28

kg (3.66)

28.3529 £ 0.7789 —————
min - m*

The standard deviation and confidence bound should be reported to one or two
digits. Based on the magnitude of the standard deviation/confidence bound, the
mean value should be rounded to the same value. In this example, the confidence
bound could be written as 0.8, which implies that the mean is accurate to about three
digits. Therefore, the value of R should be reported as 28.4 + 0.8 kg-min~'-m %~

For the point, x =0.225 m, the mean response confidence interval for the flow

rate out of the tank is given as

X’oﬁitl,%,m,n& )?()(AT.A)il)‘C’g
/0.225(28.3529) + 2.9687(0.310 43)\/ V0225(0.714 28)v/0.225  (3.67)
k
13.448 96 + 0.3694—2-
min

Therefore, the mean response confidence interval is 13.5+0.4 kg-min_l. (Same
rounding rules as for the parameter estimates apply here.) The predictive confidence
interval is given as

Y ES . \/1 + J_c'o(ATA)_l)‘c'OT
V0.225(28.3529) + 2.9687(0.310 43)\/ 1 +v0.225(0.714 28)/0.225
13.448 96 + 0.9920 &
min

(3.68)

Therefore, the predictive confidence interval is 14 4 1 kg - min~'. (Same rounding
rules as for the parameter estimates apply here.) Note the change in rounding and
the larger confidence interval value.

Since SSE = 8‘2(m — n), it is easy to find SSE from the data, namely,

SSE = 6*(m — n) = (0.31041)*(7 — 1) = 0.5781 (3.69)



3.3 Linear Regression 107

TSS can be found as follows:

_ - Ll _poer
TSS=) (=3 =¥ 3- (3113
r16.477 [ 16.4 (16471 T17 71771647
154 | 154 154 1] 1] |154
1431 (143 [ {143] |||t 143
=127 | [ 127| 5| (127} | 1] |1] |127
11 11 11 1)1 11
9.6 9.6 9.6 1|1 9.6
| 64 | | 6.4 64 | |1][1] [64]
1
—1126.02 — 5(85.8)2 — 74357 (3.70)

Since TSS = SSE + SSR, SSR can be found by subtraction, that is,

74.357 =0.5781 + SSR
SSR =73.78 (3.71)
Since R?=SSR/TSS , for which we have both values, it gives that
R?=73.78/74.357 = 0.9922. Since the F-statistic is defined as

SSR/k

F:SSE/
m-—n

(3.72)

where k is defined as the number of nonconstant functions (which in this case is 1),
the value of the F-statistic is

73478/l

F = 765.7 (3.73)

- 0.5781/7 .

The critical F-value has 1 degree of freedom in the numerator and 6 in the
denominator, which gives F 951 6=5.99. Since it is much smaller than the calcu-
lated F-value, it can be concluded that the model is significant.

3.3.5 Model Validation

Model validation is the process by which the least-squares model is examined to
determine whether it is sufficiently good. Although many aspects can be formalised
mathematically, some amount of intuition and experience is required in order to
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analyse the results. The intuition and experience can only be gained by examining
and analysing many different regression cases, in order to understand the impact
different factors have on the model.

Model validation consists of three parts: (1) testing the residuals, (2) testing the
adequacy of the model, and (3) taking corrective action. Each of these three parts
will now be examined in greater detail.

3.3.5.1 Residual Testing

It has been shown that for ordinary, least-squares analysis to hold, four assumptions
are required about the distribution of the errors. These assumptions must be verified in
order to determine the validity of the method. To refresh, the four key assumptions are:

. The errors have a mean of zero.

. The errors are independent.

. The errors are homoscedastic, that is, they have the same variance.
. The errors are normally distributed.

ROV I\ Y

Since the true errors cannot be known, the residuals obtained from regression
analysis are used instead. The following tests can be performed to determine the
validity of the assumptions:

1. Test for Zero Mean: The easiest test is to compute the mean value of the
residuals. If desired a formal hypothesis test can be performed.

2. Tests for Normal Distribution: The most common method to test normality is to
plot a normal probability plot of the residuals. The points should lie along a
straight line. Examples of good and bad normal probability plots are shown in
Table 3.2. Alternatively, more advanced methods that consider the correlation
properties of normally distributed errors can be used.

3. Tests for Independence and Homoscedasticity: These two aspects are most
commonly tested together using various types of scatter plots. The most com-
mon scatter plots to examine are:

(a) Plotting a time series plot of the residuals, that is, plotting the residuals as a
function of time or sample.

(b) Plotting the residuals as a function of the variables, X.

(c) Plotting the residuals against the fitted values, y.

(d) Plotting the residuals against the measured values, y.

(e) Plotting the residuals against the previous residual.

In cases (a) to (e), there should not be any discernible patterns in the plots.
Common scatter plots are shown in Table 3.3. In this case, the bad scatter plots
reveal the potential issues with the data and may suggest how to correct the situation.
Graph (a) shows that there is a single outlier (point much further from the other
points). Graph (b) shows that the residuals are increasing in value with respect to the
x-axis value. If the x-axis is a regressor, then it can be suggested that the error model
depends on the given regressor and weighted, least-squares may need to be used.
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Table 3.2 Sample, normal probability plots

Ideal (large) sample Small sample

Good normal probability plot 4

A tail at the ends
is acceptable.

Bad normal probability plots for
all cases (for large samples, the
small sample example would
count as well)
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Similarly, if the x-axis represents time, then it can be concluded that the variance of
the residuals depends on time. Graph (c) shows a sinusoidal pattern that suggests that
a sinusoidal behaviour was missed when fitting the data. Graph (d) shows that the
residuals are drifting as the x value increases. This suggests that either there were
process issues or that the x value should be included in the analysis. Graph (e) shows a
U-shaped (or quadratic) curve that potentially a quadratic term may be missing from
the analysis. Finally, Graph (f) shows the results for a multivariate case, where
multiple values were obtained at a single point. It can be seen here that the residuals
at each of the points do not cluster about zero. Rather there seem to be points where
they are smaller and points where they are larger.

3.3.5.2 Testing for Model Adequacy

Having determined that the residuals are well-behaved, it is now necessary to
examine the quality of the model. The following methods can be used to achieve
this.

1. Using the Confidence Interval for Each of the Parameters, f;: If the confidence
interval includes 0, then the parameter can be removed from the model. Ideally, a
new regression analysis excluding that parameter would need to be performed
and continued until there are no more parameters to remove.

2. Calculating Pearson’s Coefficient of Regression: The closer the value is to one,
the better the regression is. This coefficient gives what fraction of the observed
behaviour can be explained by the given variables.

3. Examining the Observational and Prediction Confidence Intervals: The smaller
they are the better. Note that if few samples or replicates are available, then the
confidence intervals may be large purely due to the small sample size.

4. Computing the F-Statistic: The F-test or analysis of variance (ANOVA) test
considers which component, the variance in the error or the variance explained
by the regression, is more prominent. If the error term is more significant, then
the regression is likely to be spurious or unimportant.

5. Examining Outliers: Outliers are defined as points that have residuals whose
values differ greatly from surrounding values. Possible causes for outliers
include typos when entering the data into the computer or errors in obtaining
the data. Outliers tend to increase the confidence intervals producing “worse”
results. Outliers can be spotted from any of the above plots that are used to check
the model assumptions as points that are far from the expected behaviour. If a
point is suspected to be an outlier, it should be removed and the regression
redone.

6. Examining Influential Points: Some of the data points may strongly influence the
regression model. Often this is a result of the fact that the given data points lie
much further from the rest of the data. If the estimated model parameters change
dramatically when such points are removed, then it can be stated that these
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points are influential. Formally, this can be determined using Cook’s distance,
D;, which is defined as

(6, — B) AT A (5, - §)

D; = :
! ne?

(3.74)

where ﬁi is the model parameters estimated by removing the ith data point.
Practically, Cook’s distance can be calculated as follows:

2
i
D= — (3.75)
n&z(l — /’ll',')

where #;; is the (i, i) entry in the H-matrix, which is defined as
H=A(ATA) AT (3.76)

If D;>1, then the given point can be considered to be influential, and the
appropriateness of the model should be reconsidered.

7. Examining the Plots of the Predicted and Actual Values: Plotting the predicted
values as a function of y (the true values) can be very useful for dealing with
large data sets. It can reveal which predicted values differ greatly from the
measured values. Theoretically speaking, all the data should lie on the
y=x axis. Practically, due to noise, data points will lie in an ellipse or oval
around the line. Table 3.4 shows some typical predicted as a function of
measured value plots. Common problems include (the letters correspond to the
graphs shown in Table 3.4 as problem graphs):

(a) Outlier: The presence of an outlier is easy to spot, as it will be located far
from the y = x line.

(b) Cluster: A cluster of points that lie far from the y = x line is common when
dealing with historical industrial data that does not contain any planned
experiments. Such a cluster suggests that the operating conditions are
different from the main set of data. This could be due to plant shutdown,
changes in process conditions, or other factors that should be investigated
before removing the points from the data set.

(c) Calibration: In this case, the slope of the points is not one. This suggests
that either terms are missing from the model or that different models apply
for different values of the measured values, since some of the values are
overpredicted, while others are underpredicted.

(d) Bias: This suggests that the values obtained differ by some constant from
the expected values. In linear regression, such a problem should not occur.
However, it can happen with other more complex methods.
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Table 3.4 Sample, predicted as a function of true value plots

Examples

Good plot 4 v i
¥ o * Y

Problem plots

3.3.5.3 Taking Corrective Action

If the above tests fail or give inconclusive results or the assumptions in the model
are not verified, then the analyst is left with the following options:

1. Changing the model by additional parameters suggested by the analysis of the
residual plots, using a completely different model, or changing the error
structure.

(a) Regressor Selection: Selecting appropriate regressors based on the data set
provided is a complex subject that involves combining intuition or previous
knowledge with various data mining methods. There are two main
approaches to regressor selection:

(i) Forward Selection: In forward selection, the parameter estimates for
the simplest model are first determined. If the resulting model analysis
suggests that the model is sufficient for the required application, then it
is adopted. Otherwise, additional regressors are added to the model
until the model fit is adequate. The benefit of this approach is that a
simple model is likely to be found. However, an important regressor
could have been missed if it was not selected in the initial or subse-
quent steps.

(i) Backward Selection: In backward selection, the full set of regressors is
used to estimate the model. Regressors are then removed until the
model is simplified to the smallest available model. The advantage of
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this approach is that all relevant regressors are likely to be in the
model. However, the model could be larger than required for good fit.

(b) Error Structure: In least-squares analysis, it is assumed that the error
structure is additive and only applies to the measured output variable (y).
In many engineering applications, both the regressor and output variables
are measured and can contain errors. Furthermore, the error may be pro-
portional to some percentage of the measured value, which means that the
error is not additive but rather multiplicative. One way to correct for this
error is to use weighted, least squares.

2. Changing the regression method by using either weighted, least-squares analy-
sis, if the variance is not homoscedastic, or nonlinear, least-squares analysis to
determine the parameter values.

3. Obtaining more data by running additional experiments, which can be useful if
few experiments were performed and the results are ambiguous. Obtaining
additional data helps resolve two potential issues:

(a) Sample Size: Small sample size can lead to large confidence intervals,
especially if there is some noise in the original data. Increasing sample
size can improve the accuracy of the parameter estimates. This helps to
minimise Type II errors, which seeks to minimise the probability of
rejecting the alternative hypothesis, even if it is true.

(b) Replicates or Reproducibility: Repeating an experiment at the same con-
ditions allows a more accurate determination of the variance associated
with the given point. Also, replicates can show how reproducible the results
are at any one given point and if any additional factors could affect the
results. Often, in practical cases, it may not be possible to obtain exactly the
same conditions. However, if the conditions are similar, then the results can
be treated as replicates.

One area that needs to be considered when obtaining additional data is experi-
mental design, that is, how the procedure for obtaining the data is defined. Given the
importance of this concept, a separate chapter, Chap. 4, is devoted to this topic. One
area of concern is multicollinearity. Multicollinearity is defined as a relationship
between the columns of the .4 matrix. This multicollinearity can detract from
finding the desired relationship between the regressors and the output and lead to a
poor estimate of the individual parameters. It can be noted that the overall model
may still be useful. Often multicollinearity may not be suspected by the experi-
menter or it can hold approximately. Multicollinearity is common in experiments
were the variables cannot all be independently varied, for example, mixture exper-
iments where the total sum of component fractions must total one.

A further area of concern is data scaling. This is an important issue, especially in
nonlinear, least-squares analysis, where the orders of magnitude of the different
regressors may be quite different. Since the optimisation routines will seek to
minimise the absolute error, the parameter estimates corresponding to the larger
order of magnitude regressors will be less accurate than those corresponding to
smaller order of magnitude regressors, as their contribution to the overall error will
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be less. Consider the case where temperature ranges from 270 to 400 K and level
ranges from 0.01 to 0.40 m are used. In this case, the levels are at least 10 times
smaller than the temperatures. Furthermore, poorly scaled data may lead to issues
with inverting the matrix in order to obtain the parameter estimates. There are two
main methods by which scaling can be performed:

1. Normalisation: A common method is to introduce scaling with the following
formula

(3.77)

where X is the scaled variable, X is the mean value of x, and ¢ is the standard
deviation of x. The mean and standard deviation can be determined based on all
the values of x available for the regression.

2. Centring the Data: The following formula, commonly encountered in analysis of
variance (ANOVA), centres the data so that it lies between —1 and 1:

~  x—0.5(max + Xmin)
X = 3.78
O~5(xmax - xmin) ( )

3.3.6 Computational Example Part I1: Model Validation

Continuing with the orifice flow example from Sect. 3.3.4, model validation will
now be performed by examining the residuals and the model quality and taking
appropriate corrective action.

Figure 3.2 shows the residuals as a function of \h, flow rate, and the previous
residual. In all cases, there seems to be a single outlier that is located far from the
other points. Otherwise, given the rather small sample size, it is hard to see whether
the residuals have any pattern.

The normal probability plot of the residuals is shown in Fig. 3.3. There seem to
be some mild deviations from normality in the central region. Overall, given the
small sample, there is not much that can be concluded with this particular sample.

In order to determine model adequacy, all the previous computed data will be
collected and then examined. The values are:

R—284+08 <& _
min - m%5

F =765.7 > 5.99
R?> =0.9922

There seems to be a single outlier at the point 7 = 0.10 m. Influential analysis, using
Cook’s distance is given below. Cook’s distance for each of the points is given in
Table 3.5. It can be seen that none of the points is individually influential as all the
values are less than one.
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Table 3.5 Calculating Cook’s distance. The potential outlier is shown in bold

m (kg - min~!) K3 (m®5) m (kg-min_l) Residual Residual® Influence
16 0.5916 16.774 —0.374 0.140 0.645

15 0.5477 15.530 —0.130 0.017 0.060

14 0.5000 14.176 0.124 0.015 0.042

13 0.4472 12.680 0.020 0.000 8.23x107*
11 0.3873 10.981 0.019 0.000 572x 1074
10 0.3162 8.966 0.634 0.402 0.346

6 0.2236 6.340 0.060 0.004 1.44 %1073

It can be noted that repeating the analysis by removing the identified outlier does
not improve the fit or parameter estimates. Since the value of R* is high, the F-test is
passed, and the confidence interval is small, it can be concluded that the model
adequately describes the data and that the value of the resistance coefficient is

approximately 28.4 kg -min~'-m .

3.3.7 Weighted, Least-Squares Regression

In weighted, least-squares analysis, it is assumed that the variance of the individual
data points may be variable. In order to reduce this problem to the standard linear
regression framework, a weight, w;, is introduced for each observation that reflects
how “good” the data point is. Thus, the regression model for weighted, least-squares is

y = Z Bif () +w e =adp+w % (3.79)

i=1

This implies that the objective function to be optimised in weighted, least squares is
given as

mﬁin((WVZ j— W'/ZAB)T (w'/z 5 - W‘/ZAE)) (3.80)

Following a similar procedure as for the ordinary, least-squares case, Eq. (3.80)

can be solved to obtain the unknown, estimated coefficients, ﬁ :

ATWAG = ATW5 (3.81)
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where

A fl(x2) f2(x2) fn(xz) (382)
F1(Zm) o) Fa(Xm)
B =B B)" (3.83)
¥=0nya ) (3.84)
Wi 0 0
0 w 0 0
W=l 02 o (3.85)
o - 0 w,

The weighted residual is defined as the difference between the predicted and
measured values, that is,

EZWVE y‘iWsz} :Wsz’iwyzAB
— WS- WEA(ATWA) AT W

=W (T - A(AWA) W) 5 (3.86)

where Z is the appropriately sized identity matrix.
The standard deviation for this model is given by

o 37 ATy
s \/yTWy—ﬂ AW3

3.87
po— (3.87)
The 100(1 —a)% confidence interval for f3; is given by

Bitti g6\ (ATWA) (3.88)

where (ATWA);I represents the value located at (7, i) in the matrix (ATW.A) -

The 100(1—a)% mean response confidence intervals, that is, the region within
which the mean value of repeated measurements will lie 100(1—a)% of the time,
for the point X; is given by

de,B £ g6 dsn (ATWA) aT (3.89)

where ﬁ}d = <f1(fd),f2(fd), . »fn()?d»-
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The 100(1—a)% predictive confidence intervals, that is, the region within which
the actual value will lie 100(1—a)% of the time, for the point ¥, is given by

AR

axz,

1 _
£t _emn_n6 \/W—+ dz, (ATWA) 155,, (3.90)
- 0

where wy, is the predicted weight at X,; found based on the model with n, parameters
(see Sect. 3.3.7.1 for additional information about creating models for the weights).
The sum of squares due to regression, SSR, can be calculated as follows:

=T Y o

. I (" -
SSR =" wil§; —3)> = B ATWY - n—1<yTW‘ T ITW/’y) (3.91)

where 1 is the unit column vector with size m x 1.
The error sum of squares, SSE, can be calculated as follows:

5T

SSE = wi(y;—3)* =y Wy — p ATW3 (3.92)

The total sum of squares, 7SS, can be calculated as follows:

_ Typy= L (T h TP TT oAk =
7SS = Y wily; = 3)" = W5 ——(FWHTTW"5) (3.93)

Pearson’s coefficient of regression, RZ, and the adjusted R? are calculated the same
way as in ordinary, least-squares analysis. The same can be said of the F-statistic.

Model validation is performed the same way as for ordinary, least-squares
analysis, replacing the residuals by their weighted residual values.

3.3.7.1 Determining the Weights

One of the hardest things in weighted, least-squares analysis is to determine the
appropriate weights. There are two principle ways in which this can be achieved:

1. Replicates: If for the same conditions, two or more values of y are obtained, then
it is possible to calculate the variance of the values at the given point. The
variance would be determined using Eq. (3.68). The weight would then be given
as w; = 1/var(y,).

2. A Priori Model: If the model for the variance is known ahead of time, then it can
be used to determine the appropriate weight. The weight would then be given as
w; = 1/var(x, y). If no suitable model can be determined, then an arbitrary model
can be assumed, for example, w; = 1/x or w; = 1/x°.

In predicting the actual response at x; using Eq. (3.89), a model is required for the
weights. If an a priori model has been used, then it is relatively easy to calculate the
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“predicted” future weight value. If for this model, the value of the parameters is
known ahead of time and is not estimated from the data obtained, then n, = 0. On the
other hand, if the data or variances are used to estimate the a priori model parameters
using regression, then n, will equal the number of parameters in that model. If
replicates are used, then a model needs to be fit to the variances or weights to obtain
an appropriate model. The number of parameters in this model would equal 7.

Example 3.2: Determining the Weights for Weighted, Least-Squares
Regression

Consider the following situations and determine appropriate weights for the
given data sets:

1. The experiment with replicates shown in Table 3.6.

2. Assume that the standard deviation of the error is proportional to the
square root of the height. What would be the appropriate weightings for
each data point?

Solution
For the data shown in Table 3.6, calculate the mean of each run and then
determine the variance of each point using the following formula:

var(y;) = (y; — ?)2

The weights for each point would then be 1/var(y;). The results are
summarised in Table 3.7. It can be seen that those points which are located
far from the mean have very small weights (consider replicates 2 and 3 of run
2), while cases with generally large variability have small weights as well
(consider Run 2, as an example).

Therefore, the weighting matrix would be written as

S T
y= <)’11a)’120’13,)’21,)’227)’237)’317)’32a)’33>
W = diag((12.20, 1111, 17.24, 0.826, 2.04, 0.305, 71.43, 1.83, 1.38))

For the second example, the weights would be w = 1/h, since the variance
would be proportional to A (as variance is standard deviations squared).
Therefore, the weighting matrix would be diagonal with the entry 1/h eval-
uated for the corresponding value of the height.

Table 3.6 Replicated data Run |/ |Replicate 1 |Replicate 2 | Replicate 3
for determining the weights ) 10.54 1022 1001

2 4 |28.65 28.25 25.74

3 6 |46.74 46.12 47.71

(continued)
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Example 3.2 (continued)
Table 3.7 Weights for the example

Run Mean Variance of point Weights

1 10.25 0.082 9x10* 0.058 12.20 1,111 17.24
2 27.55 1.21 0.49 3.28 0.826 2.04 0.305
3 46.86 0.014 0.546 0.723 71.43 1.83 1.38

3.4 Nonlinear Regression

In many cases, it may not be possible to obtain a valid linear regression model, and
it may be necessary to perform nonlinear regression. In general, since nonlinear
regression can handle an arbitrarily complex function, there is really no need to
make any simplifications about the form of the regression model. Therefore, the
model to be identified can be written as

y= g(ﬁ, %, e) (3.94)

This ability to deal with general models means that much of the linear regression
analysis cannot be performed exactly, since the underlying assumptions are not
valid any more. Nevertheless, most of the linear regression results hold if the
number of data points is much larger than the number of parameters to be estimated.
The optimisation algorithm can be written as

min> w3 (7. er) ) (399)
i=1

where w; is the weight. In most cases, w; =1 and the weights can be ignored.

All nonlinear regression approaches use numerical methods, such as the Gauss—
Newton or Levenberg—Marquardt algorithm optimisation algorithms, to search for
the optimal point.

The derivative matrix of this problem, called the grand Jacobian matrix, 7, plays
a role similar to that of the A matrix in linear regression. The Jacobian, 7', for the
system can be calculated as

j,:[ag<ﬁ,)_c',£) og(B.%.¢) M] (3.96)
0B, 05, op,
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The value of 7' is determined for each of the data points present to obtain the grand
Jacobian matrix, /. Thus, J can be written as

_5g(ﬁ,fhe) 5g(ﬁ,fu8) 5g(3,fhe>_
71 (N g
SRR T~ I
I ag(ﬁ,:)_c’m,s) ag(ﬁ,:fm,e) ag(ﬁzfn,,s)
L aﬂ] aﬂz aﬁn -

3.4.1 Gauss—Newton Solution for Nonlinear Regression

In order to show the numerical approach and understand some of the issues
involved with solving nonlinear regression problems, the Gauss—Newton numerical
solution will be examined. The Gauss—Newton method presented here is the
generalisation to the multivariate case of the standard Newton method for finding
roots of univariate functions. Using the grand Jacobian matrix, the values of the
parameters are determined as follows:

. C =0 . Lo
1. Using the initial guess for the parameters, ﬂ( ), the grand Jacobian matrix is
evaluated, and the predicted values are determined,

al

<
Il

f(

—

p

p

<0>_q)'
;X1

(3" %)

), )
) ‘xnl

(3.98)

2. Next, the difference between the predicted values, § and the actual, measured

values is determined, that is,

Ay=y—

<

(3.99)

3. Using an appropriate numerical method, the following system of equation is

solved for A B,

J'IAG =TT A

(3.100)
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4. Finally, the new estimated value for the parameters is determined as

AV =Y 1 ap (3.101)

5. The new value of the parameters, /_)" (k+ l), then becomes the new guess, and the above
procedure is repeated from Step 1. This procedure continues until the difference in
values between the parameters from two consecutive steps is less than some
predetermined accuracy, or a certain number of iterations has been reached.

As with many numerical methods, the following are some common issues:

1. Initial Guess: Determining the initial guess can have a large impact on how
quickly and accurately the values are obtained. If the function can be linearised,
then a suitable initial guess can be the linearised parameter estimates. On the
other hand, if the function cannot be linearised, then knowledge about the range
of possible parameter values given the problem at hand can be used to provide
reasonable initial estimates. The final option is to use multiple initial guesses and
select the one providing the smallest objective value.

2. Determining the Minimal Value: As with any numerical method, the Gauss—
Newton method only finds those points at which the derivative is zero. However, a
derivative of zero does not necessarily imply that the point is the global minimum;
instead it could be a local minimum. Therefore, one way around this problem is to
use multiple initial guesses and then select the point that provides the lowest value.

3.4.2 Useful Formulae for Nonlinear Regression

Unlike in linear regression where exact results can be obtained under the stated
assumptions, in nonlinear regression the results are only approximate. Furthermore,
there do not exist nice matrix-based solutions for the various parameters. This
section provides a convenient summary of the useful equations for nonlinear
regression. In general, to compute the approximate confidence intervals for a
nonlinear regression problem, the final grand Jacobian matrix, 7, can be used in
place of A and 7' in place of @y, in the linear regression formulae.
The model residuals can be computed as

& =Y — Y :yi_f(ziv/_j) (3.102)

The standard deviation, &, can be obtained as follows:

(3.103)
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The approximate /00(1—a)% confidence interval for f; is given by

Bitti_emnér(T°T); (3.104)

where (j ry );1 represents the value located at (7, i) in the grand Jacobian matrix
-1
J'7)".

The approximate 100(1—a)% mean response confidence intervals, that is, the

region within which the mean value of repeated measurements will lie 100(1—a)%
of the time, for the point X, is given by

f(fd,ﬁ) g 60T () (T) (3.105)

where J' is the value of the Jacobian evaluated at the point X; and ﬁ .

The approximate /00(1—a)% predictive confidence intervals, that is, the region
within which the actual value will lie 100(1—a)% of the time, for the point X, is
given by

= T

f(fc’d,ﬂ) itl_g,m_nﬁ\/l+J’(jTJ)“(j’) (3.106)

The sum of squares due to regression, SSR, and the sum of squares due to the
error, SSE, are calculated using the definitions given by Eqgs. (3.36) and (3.37). The
total sum of squares, TSS, can be calculated as follows:

_ I
TSS =Y (v, =3’ = yTy*%(yTllTy) (3.107)

Model validation would be performed in the similar manner as that for ordinary,
least-squares analysis bearing in mind that the computed confidence intervals are only
approximate. R* cannot be used as a measure of performance in nonlinear regression,
since the relationship between the sums of squares is no longer orthogonal.

3.4.3 Computational Example of Nonlinear Regression

In the development of a new drug, you are investigating the previously unknown
reaction between two compounds X and Y to produce a valuable intermediary Z.
One of the important tasks is to characterise the reaction properties. Luckily, X and
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Table 3.8 Reaction rate data Reaction rate (K, cm? - Sfl)
Temperature (K) Run 1 Run 2 Run 3
200 122.9 122.5 121.9
250 145.5 146.6 146.0
300 163.9 165.5 164.5
350 180.4 179.4 179.3
400 191.9 191.5 1914
450 201.4 199.8 201.0

Y are relatively easy to produce and so that multiple runs and trials could be
performed. At each of the temperatures, three separate runs were performed. The
results obtained are shown in Table 3.8. It is desired to fit Arrhenius’s equation to
this data set and determine the reaction constant and activation energy. Perform
both linear and nonlinear regressions and compare the results using a =0.05.

Solution

The results will be presented without showing all the detailed calculations as they
are relatively straightforward. From Example 3.1, we have that Arrhenius’s reaction
can be linearised as

E
InK =InA ——= (3.108)
RT

where R=8.314 J-mol '-K~'. Using Eq. (3.108), the linearised parameters are
In A=5.700 84 +0.007 62 and — E,R ' = —178.84 +2.208 78. In order to obtain
the original parameter estimates, there is a need to convert the values. Since both
functions are monotonic, the conversion is relatively simple.

For A, the mean value can be computed as A =e>7%%% —299 12. The confidence
interval can be computed by converting each of the bounds using the same formula.
This gives Ajgye = 57% 3~ 0007 62206 8 and Ao = ¢57% 34 + 000762 _ 307 41
Therefore, the confidence for A can be written as [297, 301] cm?’-s L It should be
mentioned that the confidence interval is not symmetric about the mean value. This is
because the exponential function does not preserve distance.

For E,, the mean value can be computed as E,=—8314 x —178.84 = 1,486.91.
The confidence interval becomes 2.208 78 x —8.314 = (—)18.36. Therefore, the
confidence interval for E, is 1,490+ 18 J- mol~!. Notice that, in this case, the
confidence interval remains symmetric about the mean value. Model validation
graphs will be shown combined with the nonlinear regression results.

For the nonlinear regression, the required derivatives are:

0K e,g_%
0A
K e (3.109)
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Fig. 3.4 (Top) Normal probability plots of the residuals and (bottom) residuals as a function of
temperature for (/eft) linearised and (right) nonlinear models

After setting up the problem,” the following values are obtained:

A =2994+2cm® s !and E,=1,490+21 J-mol '. Approximate confidence
intervals were computed based on the linearised formulae. The value of J TJ 18

2483498 21.1988

T —
(‘7 j) T 121.198 824 194414

(3.110)

First, it can be seen that, in this case, the results are quite similar both in the estimated
value and the confidence intervals. Secondly, Fig. 3.4 shows normal probability plots
and the residuals as a function of the temperature for both cases. From the normal
probability plots, it would seem that the residuals for both models are quite similar.
On the other hand, there do seem to be more abnormal points in the linearised model
case, suggesting that the residuals may violate the assumption of normality. Exam-
ining the residual as a function of temperature plots shows some interesting results.
Firstly, for the linearised model, Run 3 forms the largest residuals in all but one case.
Secondly, there are few, if any, large negative deviations compared with the large
number of positive deviations. Based solely on the linearised model, one would have
to conclude that Run 3 was abnormal, and the collection of the data would warrant

2 A detailed example on solving the nonlinear regression problem is given in Sect. 7.8.2, Nonlinear
Regression Example for MATLAB®, and Sect. 8.7.2, Nonlinear Regression Example for Excel®.


http://dx.doi.org/10.1007/978-3-319-21509-9_7
http://dx.doi.org/10.1007/978-3-319-21509-9_8
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additional scrutiny. On the other hand, when the nonlinear case is used, the results are
quite different and a different pattern emerges. First, Run 3 is no longer the leader in
residual magnitude, and there are now both positive and negative residuals in equal
magnitude. Second, it would seem that the residuals depend on the temperature with a
lower value around 350400 K and higher values at the extremes. Since Arrhenius’s
equation is an accepted model for the observed behaviour, this feature could poten-
tially be attributed to issues in experimental design, that is, the conditions and
methods by which the data were obtained, for example, faulty measurements or an
incomplete procedure.

Itis interesting to note that, although both the linear and nonlinear methods provided
similar parameter estimates and confidence intervals, the residual analysis is quite
different. In the linear case, it would be concluded that Run 3 had some abnormal
residuals and would require additional analysis. In the nonlinear case, it would be
concluded that there seems to be some temperature dependency of the residuals. This
shows the importance of selecting an appropriate method for the given problem.

3.5 Models and Their Use

Once regression analysis has been performed, it is often desired to use the model for
predicting the behaviour of the system at other conditions. However, the validity of
the results needs to be carefully examined. Firstly, the model should be used for
interpolation, that is, to predict values that lie within the original region. The
opposite term, extrapolation, denotes using the model outside the original region.
However, determining whether or not extrapolation is an issue is not necessarily
easy, especially in the multivariate case. Consider, for example, the two variables
shown in Fig. 3.5. The model was fit based on the data denoted as black circles in
Fig. 3.5, which gives a range of [10°C, 40°C] for the temperature (7)) and [10 m,
20 m] for the height (4). It can be seen that, for whatever reason, the temperatures
and heights were not randomly selected across the range; rather they seem to fall in
a certain region. If the resulting model was then used to predict the value for the
green triangle, the results could be erroneous, as the point is located far outside the
original region of the data. However, it can be noted that the point selected lies
inside both of the ranges and would often be assumed to be okay. This means that it
is necessary to check whether the selected data point lies within the original
regression space.

3.6 Summative Regression Example

In order to apply all that has been considered in this chapter, a single summative
example will be examined.
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Fig. 3.5 Extrapolation in multivariate analysis

3.6.1 Data and Problem Statement

For the efficient and profitable operation, especially during the summer months, of
electrical generating plants, there is a need to forecast the expected peak power load
(P*) as accurately as possible given the anticipated peak temperature. The data set
in Table 3.9 is a random sample of 30 daily high temperatures (7, °F) and the peak
power demand (P*, MW). Perform the following analysis:

1. Fit a linear (P* = aT + b) model to the data. Is the data set well described by this
model?

2. Fit a quadratic model (P* = aT”+bT +¢). Is the data set well described by this
model?

3. Using the best model, predict the peak power at T=50°F and T = 105°F.
Compute the 95% mean response confidence intervals, which value you do
trust more? Why?

3.6.2 Solution
3.6.2.1 Simple Linear Model

First, consider the simple linear model P* =aT +b. The parameter estimates are
obtained using ordinary, least-squares regression. The parameter estimates with
95% confidence intervals are:

a =1.941+0.303
b=-44.541+26.3
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Table 3.9 Peak power and

Temperature, | Peak power, P*
temperature T (°F) (MW)
95 140.7
88 116.4
84 113.4
106 178.2
94 136.0
108 189.3
90 132.0
100 151.9
71 92.5
96 131.7
67 96.5
98 150.1
97 153.2
67 101.6
89 118.5
79 106.2
76 100.2
87 114.7
92 135.1
68 96.3
85 1114
100 143.6
74 103.9
89 116.5
86 105.1
75 99.6
70 97.7
69 97.6
82 107.3
101 157.6

Data and inspiration taken from
Random Phenomena, Fundamen-
tals of Probability and Statistics
for Engineers, Babutnde
A. Ogunnaike, CRC Press, 2010

R? is 0.8612 and the F-statistic is 173 (Feritical = 4.195). The residuals as a function
of the temperature are shown in Fig. 3.6, while the normal probability plot of the

residuals is shown in Fig. 3.7.

From Fig. 3.6, a quadratic pattern to the residuals is quite evident. This strongly
suggests that a quadratic term is missing from the model and should be added.
Notice how the confidence intervals are also quite large, especially for the intercept.
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Fig. 3.6 Residuals as a function of temperature
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Fig. 3.7 Normal probability plot of the residuals
3.6.2.2 Quadratic Model

For the quadratic model P*=aT”+bT+c, the parameter estimates with 95%
confidence intervals are:

a =0.0598 £0.0133
b=-8.295+2.27
¢ =385.1£96.2

R?is 0.9667 and the F-statistic is 392.2 (Fsitical = 4.21). The residuals as a function
of the temperature are shown in Fig. 3.8, while the normal probability plot of the
residuals is shown in Fig. 3.9.
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Fig. 3.9 Normal probability plot of the residuals for the quadratic case

It can be noted that adding a quadratic term has improved the size of the
parameter estimate confidence intervals, as well as increasing R>. Furthermore,
the normal probability plot of the results seems to suggest that there could be some
problems due to the clustering of values. The residuals as a function of temperature
plot does not show any real issues. There does seem to be a small increase in
variability of the values as the temperature increases. There are no discernible
parameters that would improve the fit.

3.6.2.3 Mean Response Intervals

For T =50°F, the predicted peak power and its 95% confidence interval is

120 + 15 MW,
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while for T = 105°F, the predicted peak power and its 95% confidence interval is

173.9+ 4.6 MW.

The confidence interval for T=105°F is more reliable, since it has a smaller
confidence interval and there is no extrapolation. On the other hand, for 7= 50°F,
there is extrapolation and the confidence interval is larger.

3.7 Further Reading

The following are references that provide additional information about the topic:
1. General Modelling and Linear Regression:

(a) Montgomery DC, Peck EA (1982) Introduction to linear regression analy-
sis, 1st edn. Wiley, New York

(b) Ogunnaike BA (2010) Random phenomena: fundamentals of probability
and statistics for engineers. CRC Press, Boca Raton

2. Weighted Regression:

(a) Zorn ME, Gibbons RD, Sonzogni WC (1997) Weighted least-squares
approach to calculating limits of detection and quantification by modeling
variability as a function of concentration. Analy Chem 69(15):3069-3075

3. Nonlinear Regression:

(a) Seber GA, Wild CJ (1989) Nonlinear regression. Wiley, New York

3.8 Chapter Problems

Problems at the end of the chapter consist of three different types: (a) Basic Concepts
(True/False), which seek to test the reader’s comprehension of the key concepts in the
chapter; (b) Short Exercises, which seek to test the reader’s ability to compute the
required parameters for a simple data set using simple or no technological aids, and
this section also includes proofs of theorems, and (c¢) Computational Exercises, which
require not only a solid comprehension of the basic material but also the use of
appropriate software to easily manipulate the given data sets.

3.8.1 Basic Concepts

Determine if the following statements are true or false and state why this is the case.

1. If the residuals are distributed so that they are increasing in magnitude as the
x value increases, then it can be concluded that the model is adequate.
2. Weighted, least squares can correct for the error structure.
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10.

11.

12.

14.
15.
16.
17.
18.
19.

20.
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If RzzO, then it can be concluded that there is no relationship between the

parameters of interest.

. If the residuals are normally distributed, then the calculated confidence inter-

vals are valid.

. If the current residual depends on the past value of the residuals, then the

regression analysis is valid.

. In order to analyse statistically the least-squares estimates, the residuals must

be normally distributed.

. If the residuals as a function of the regressors have a quadratic pattern, then it

can be concluded that a quadratic term should be added to the model.

. If the mean of the residuals is seven, then it can be concluded that the

parameters are unbiased.

. If b= 1.25410.5 m, then it can be concluded that this parameter should be

included in the model.

If there are more parameters than data points, then an estimate of the parameters
cannot be obtained.

Linearising a nonlinear equation will always provide worse parameter estimates
than performing nonlinear regression.

With nonlinear regression, exact confidence intervals can be found for the
parameters.

. When solving nonlinear regression using the Gauss—Newton method, the final

parameter estimates are sensitive to the initial guesses.

In nonlinear regression, a good initial guess for the parameters is to use those
obtained from a linear solution of the linearised model.

In nonlinear regression, all the regular tests apply, but they need not be satisfied
for the model to be acceptable.

Especially in nonlinear regression, scaling can improve the results.
Decreasing the sample size will provide smaller confidence intervals.
Replicates allow for detecting outliers and potential issues with the error
structure.

Multicollinearity implies that there are hidden relationships in the data that
could impact on the invertibility of the information matrix (A”.A4)~".

If the error structure is incorrect, then the least-squares parameters estimates
are biased.

3.8.2 Short Exercises

These questions should be solved using only a simple, nonprogrammable,
nongraphical calculator combined with pen and paper.

21.

22.

Derive the traditional, least-squares formulae shown in Appendix A3.1 for the
two parameter case.

Derive the traditional, weighted, least-squares formulae shown in Appen-
dix A3.2 for the two parameter case.
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23.

24.

25.
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Consider the problem of trying to fit data to the following model
yiotay 1ty o=+ u—2+e (3.111)

where a and f are coefficients to be determined; ¢ is a subscript representing the
time of measurement, that is, ¢ represents the current time; and ¢ — 1 represents
the time one sampling unit in the past. Show how this model can be set up in the
standard least-squares system in order to estimate a sample of data (y,, u,) starting
at =1 and going up until = 100. (Note that not every entry need be listed).

Consider trying to verify the resistance of a resistor by measuring the voltage at
different currents. The model of interest is based on Ohm’s Law and can be
written as

V=IR+¢ (3.112)

where V is the voltage in volts (V), I the current in amperes (Amp), and R the
resistance in ohms (€2). The data you obtained from the experiment is given in
Table 3.10.

Answer the following questions using this data set:

(a) Set this problem up in the standard matrix-based, ordinary, linear regres-
sion format for an arbitrary number of data points.
(b) Show that for the given model, the ordinary, least-squares estimate of the

m m

zm:]iv,» ZV? —IQZI,Vi

resistance (R) isR = =——and 6 = \| = =

i=1 l
(c) Calculate R and 6 using the derived equations.
(d) Obtain the 95% confidence interval for the parameter estimate.
(e) The stated resistance is 2 Q. Does the experimental value obtained
confirm the stated resistance?
() You fitted the model and obtained the residuals shown in Fig. 3.10. Is the
fit good? If not, what could be the cause of the observed pattern?

Continuing with the data in Table 3.10 but now considering the case where the
variance of the errors is proportional to the current squared (var(e) 12),
answer the following questions.

(a) What is the weighting matrix? Set this problem up in the standard matrix-
based weighted, least-squares, linear regression format for an arbitrary
number of data points.

(b) Show that, in this case, the estimate of the resistance can be calculated as
m

Vi .
l 1 . . .
R = T Calculate R using the derived equation.

i=1""!
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Table 3.10 Current and
voltage for an unknown
resistor (for Question 24)

Fig. 3.10 Residuals as a
function of current for
Question 24

Residual

1.5

0.5

-0.5

-1.5

3 Regression

Current (/) (amp)

Voltage (V) (V)

1

1.95

2 3.78

3 6.21

7 13.98

8 16.61
10 22.83

4
*

T 1
5 15

Current, / (Amp)

(c) How would you determine whether the provided data set is better
described by the ordinary, least-squares estimate (Question 24) or the
result obtained using weighted, least squares?

(d) When would this weighted, least-squares model be appropriate? Suggest
why when computing the resistance, it is so common to simply take the

average of all the available values.

26. Using the data from Sect. 3.4.3, perform a more detailed analysis of the effect
of linearisation on the model. Consider how linearisation changes the distribu-
tion of the original data points and how this could impact the parameter
estimates obtained. What kind of transformations will cause this behaviour?

3.8.3 Computational Exercises

The following problems should be solved with the help of a computer and appro-
priate software packages, such as MATLAB® or Excel®.

27. Consider fitting a cubic (third-order) polynomial to determine the relationship
between the freezing point of ethylene glycol and the weight percent of
ethylene glycol in a water solution shown in Table 3.11.

(a) Determine the coefficients of the cubic polynomial using linear

regression.
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Table 3.11 Freezing point Mole percent
Olf different tethylgnte ethylene glycol Freezing point (K)
col — water mixtures

%fgr Question 27) 0.00 273.15

5.09 267.46

11.30 258.50

15.47 251.72

20.94 241.58

30.97 225.28

31.22 225.49

36.62 228.03

42.76 229.89

48.00 230.50

49.34 230.54

51.36 230.37

56.36 232.12

59.05 234.62

28.

29.

Data taken with permission from
J. Bevan Ott, J. Rex Goates, and Hohn
D. Lamb (1972). “Solid-liquid phase
equilibria in water +ethylene glycol”,
Journal of Chemical Thermodynamics,
4, pp. 123-126

(b) Determine the 95% confidence intervals for the parameters.

(c) When we have 33.3 wt% of ethylene glycol in a solution, what is the freezing
point? Calculate the 95% mean and predictive confidence intervals for the
estimate. In general, why are the predictive confidence intervals larger?

(d) Plot the residuals as a function of weight percent and as a function of the
freezing point. Include a normal probability plot of the residuals. Are there
any issues with the model assumptions?

(e) Compute the R and F-score for the model. Is the model good? Are there any
physical explanations that could be provided for the observed behaviour?

Consider trying to determine the calibration curve for gas chromatography
based on some sample measurements with known ratios. Assume that the
variance is proportional to x%. Use the provided data to fit a linear model to
the data. Analyse the residuals and model adequacy to determine how good the
fit is (Table 3.12).

Consider the data shown in Table 3.13, which seeks to determine the relation-
ship between the time constant (residence time) in a tank and the properties of
the system. Fit the following model to the data

7 =Kn (3.113)

where 7 is the time constant, K a parameter of interest, /& the height, and b the
unknown power. Theoretically, the value of b should be 0.5 and K =2pA/R,
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Table 3.12 Gas o Measured ratio (y) | Known ratio (x)
chromatography calibration 1,000 02
data (for Question 28) : .
0.987 0.3
1.347 0.6
2.856 1.3
4.476 2.6
5.148 4.0
Table 3.13 Time constant Time constant, 7 (s) | Height, & (m)
(7) as a function of the tank 517 01
height (/) (for Question 29) : :
82.8 0.15
91 0.2
97.2 0.25
101.4 0.3
107.6 0.35

where p is the density, A the cross-sectional area of the tank, and R is the
resistance coefficient.

(a)
(b)

(©
(d)

(e)
®

€3]
(h)
()

@

(9]

Linearise the model given by Eq. (3.113) (ignore any error structure issues).
Fit the data to the linearised model to obtain the linearised parameter
estimates.

Determine the confidence intervals of the linearised parameters.

Convert the linearised parameters into the true values. Can you obtain a
confidence interval for the true value of K?

Compute R and 6.

Plot the time series plot of the residuals and a normal probability plot of
the residuals.

Is the value of b equal to 0.5?

If p = 1,000 kg/m* and A = 0.0469 m?, compute R.

Repeat the above exercise for the original, nonlinear model. Obtain
parameter estimates and confidence intervals for the nonlinear parameters.
Compute R* and 6 . Plot the time series plot of the residuals and a normal
probability plot of the residuals.

Using the nonlinear model, determine if the value of b is equal to 0.5?
Compute R using the nonlinear model if p=1,000 kg/m® and
A=0.0469 m”.

Compare the linearised results with the nonlinear ones. What are the main
differences between the two fits. Plot both fits with the original data on the
same plot and compare the results. Which fit is better?

30. Using the friction factor data presented in Sect. 1.3, fit the nonlinear model and
assess the quality of the result model. Pay special attention to the results of the
different runs.

31. Consider fitting the Antoine equation to some vapour pressure as a function of
temperature data that was obtained using toluene given in Table 3.14. The
general form of the Antoine equation can be written as


http://dx.doi.org/10.1007/978-3-319-21509-9_1
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Table 3.14 Pa.lrtial pressures Temperature Vapour pressure, P**" (mm Hg)
of toluene at different o ’
T (°C) Run 1 Run 2
temperatures (for
Question 31) —4.4 5.05 5.15
6.4 10.0 9.89
18.4 20.1 21.9
31.8 39.9 40.8
40.3 59.8 62.5
519 99.9 97.8
69.5 200 206
89.5 400 415
110.6 760 747
136.5 1,502 1,512
P =107 T (3.114)

where A, B, and C are parameters, T is the temperature in °C, and P**P is the
vapour pressure of toluene in mm Hg. Two separate runs were performed using
two different makes of measurement devices. By fitting a linearised model, a
nonlinear model, obtained by taking log;o, of Eq. (3.114), and a nonlinear
model, obtained using Eq. (3.114) to the data and analysing the residuals,
answer the following questions:

(a) Are the errors for the two runs the same? How can this be determined?

(b) Obtain separate parameter estimates for each of the runs and models.
Which model best describes the data for the given run? What does this
suggest about the appropriate error structure for each run?

(c) Using the best parameter estimates for A, B, and C, compare them against
the theoretical values of A =6.954 64, B =1,344.8°C, and C =219.482°C
(Dean 1999). Are the experimental values close to the accepted values?

Hint: For the nonlinear models, it is suggested that the estimates obtained using
the linearised model be used as the initial guess for the nonlinear method.

Appendix A3: Nonmatrix Solutions to the Linear,
Least-Squares Regression Problem

A.1 Nonmatrix Solution for the Ordinary, Least-Squares Case

The nonmatrix solution only applies to the case of solving a simple model that can
be written as

y=a+bx (3.A1)

Note that x can be replaced by f(x) here and in all the following equations.
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The ordinary, least-squares problem can be solved by first computing the

following two quantities:

; Y (Zx)z
Lo ()

m

Then, the linear regression coefficients can be calculated as follows:

5 :mny - szzy
mszA— (Zx)
D y=b)

4 =
The correlation coefficient is calculated using

o= (20 (20)]
X = (S [ ()]
The standard deviation of the model is given as

1 2 122
m—Z(Sy_b s)‘)

The standard deviation for coefficient b is given as

R? =

&:

o (ATA);Z =8 =

The standard deviation of coefficient a is given as

— 5 X2
&\/(ATA)H‘SH%\/%

The confidence interval for the mean response at a value of x, is given by

) IR
Yxthogm206\—+—F—=
m 52

(3.A2)

(3.A3)

(3.A4)

(3.A5)

(3.A6)

(3.A7)

(3.A8)
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The confidence interval for the prediction at a value of x, is given by

[ )

yEh-gm—20\1+—+
m

(3.A9)

The total sum of squares would then be calculated using

rss=3" (-9 = Y5 - (3 (3.A10)
i=1

A.2 Nonmatrix Solution for the Weighted, Least-Squares Case

The nonmatrix solution only applies to the case of solving a simple model that can
be written as

Yy =a, + byx (3.A11)

Note that x can be replaced by f(x) here and in all the following equations.
The ordinary, least-squares problem can be solved by first computing the
following two quantities:

DD (3w
s
, wew = (Xw)

T

Then, the linear regression coefficients can be calculated as follows:

- (Zw)way — waZwy
(ZW>ZW2 - (Z Wx) (3.A13)

wy — bwz wx
(3w)

The correlation coefficient is calculated using

()= () ()]
()= (S| [(Zw)Em = (E )]

(3.A12)

w =

R* = (3.A14)
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The standard deviation of the model is given as

G = — (s2 —st?) (3.A15)

w m— 2\ WXy,

The standard deviation of coefficient b,, is given as

61/ (ATWA),) = s, = ;L (3.A16)

The standard deviation of coefficient a is given as

~ 2
6\ (AWA) [ =5, = %Wx (3.A17)
Xy w

The confidence interval for the mean response at a value of x, is given by

1 o (Z Wi)

y :l:l‘lfg’mfzﬁw + > (3A18)
S E T ®
The confidence interval for the prediction at a value of x, is given by
Xa — +Z WiX;
: L (>ow)
y :‘:Z‘lf%’m,Z,n,r oy |— + + 2 (3A19)

Wa (Z Wi) 52

It should be noted that the predicted weight at the given point, w,, should be
determined from a model with 7, unknown parameters.
The total sum of squares would then be calculated using

TSS = iwi(yi -3 = Zwy2 - (Zilw)(z wy)2 (3.A20)



Chapter 4
Design of Experiments

Given the power of regression analysis, it would be great to design experiments or
ways of obtaining the process information so that as much useful information is
obtained with the smallest number of experiments. In any real system, running
experiments costs money and wastes resources, since the process will not neces-
sarily be producing at its optimal levels. The question is how to design experiments
so that the maximal amount of information can be extracted and used in regression
analysis. Basically, this problem reduces to developing various designs for the
regression matrix 4. When the designed regression matrix contains certain desir-
able properties, then the computation and analysis of the parameters can be
performed faster and better.

4.1 Fundamentals of Design of Experiments

In order to understand the methods by which optimal experiments may be
designed, it is necessary to understand some of the factors that affect the results.
The most important topics are sensitivity, confounding and correlation between
parameters, blocking and randomisation. In general, the question in the design of
experiments reduces to determining whether .A” A is invertible and well condi-
tioned. A well-conditioned matrix is required when performing computations on a
computer, since there will always be inevitable round-off errors. In a well-
conditioned matrix, such round-off errors do not have a disproportionate impact
on the final result.

© Springer International Publishing Switzerland 2015 141
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4.1.1 Sensitivity

The sensitivity, S, is a measure of how easy it is to estimate a given parameter. The
sensitivity of the process with respect to a given parameter f; is

Sp, :% (4.1)

where f()'é, ﬁ) is the regression function. The larger the value, the easier it is to

estimate the parameters. Basically, if the sensitivity is small, then a large change is
required in the regressors to obtain a statistically significant result. On the other
hand, if the sensitivity is large, then a smaller change in the regressors is required to
obtain a statistically significant result. This implies that the information matrix will
be well conditioned.

Sensitivity is also important because there will always be noise (or unwanted
changes) in the system that cannot be accounted for. In these cases, if the change in
the system is not noticeable given the input, then it will be difficult to identify the
system effectively, that is, the signal-to-noise ratio needs to be larger for insensitive
systems. Large (input or regressor) signals can have practical issues, in that they
may not be feasible due to safety or process constraints, for example, a tank cannot
be filled to more than its capacity or a valve cannot be opened to more than 100%
(or fully open).

4.1.2 Confounding and Correlation Between Parameters

Correlation between parameters represents the degree to which two separate param-
eters can be identified independently of each other. Issues with correlation often arise
when fitting theoretical models. For example, consider the following relationship

y= e it (4.2)

where it is desired to estimate both a and b. In this example, one cannot estimate
both parameters separately as they are completely correlated with one another. In
such a situation, it is said that the two parameters are confounded with each other.

On the other hand, the situation where there is no correlation between the
different parameters is referred to as orthogonality. The benefits of orthogonality
are that it allows for easy analysis of the resulting models, including the effects of
adding or removing parameters. In many experimental designs, orthogonality is a
much sought after quality of a model.
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The correlation between parameters can be determined by an analysis of the
(ALA) matrix. If the off-diagonal entries of a given parameter are nonzero, then
the variable is correlated with this other parameter. For example, for the
matrix given as

(A7) =

— O N

0 1
30 (4.3)
0 1

The first parameter is correlated with the third parameter, while the second param-
eter is not correlated with any of the other two. If two or more columns are a linear
combination of each other, then the parameters are said to be confounded with
each other. In most cases, this will be seen as two columns that are multiples of
each other.

4.1.3 Blocking

Blocking seeks to minimise the effect of known but uncontrollable variables that
could obscure the desired relationships. The effect of these variables depends on the
type of experiment being performed. In chemical engineering, uncontrollable vari-
ables can include changes in the daily feed composition, ambient conditions
(changes in the seasons), and differences between different analysis methods.
Depending on the type of experiment designed, the importance of and ways to
implement blocking will be different.

A block is a single group of experiments that is run under nearly identical
conditions, with separate blocks having potentially different conditions. The impor-
tance of blocking can be illustrated by the following examples.

4.1.3.1 Rabbit Weight Experiment

Consider an experiment designed to determine the effects of diets A and B on
rabbits. There are eight cages arranged as shown in Fig. 4.1. There are a total of
8 rabbits of the same species of which 4 are male and 4 female. Based on previous
experiments, it is known that the sex of the rabbits and the location of the rabbit
in the room will influence the weight of the rabbit. The question is how to design
an experiment that will minimise the effect of the undesired variables (location
and sex) and maximise the effect of the desired variables (diet) on the rabbits’
weights.

If a diet regime is assigned randomly to each rabbit, which is then randomly
assigned to the cages, it can easily be seen that it is possible that most of the females
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Fig. 4.1 Layout of the cages

get Diet A and the males get Diet B. Since males gain more weight than females, the
effect of the diets could be confounded with the effect of sex. A similar situation
could apply to the partitioning of the rabbits in the different cages.

Another approach to take is to assign a pair of identical rabbits (same sex) to each
station and then give one of the rabbits Diet A and the other Diet B. The analysis
would then be performed by considering the difference between the two rabbits at
each station. Since it can be assumed that each station has two, nearly identical
rabbits with very similar environmental factors, the effect of these environmental
variables on the two rabbits should be the same (or similar). Therefore, any difference
between the pair can be attributed to the difference between the diets.

It should be noted that blocking has reduced the number of data points from
8 (in the naive implementation) to 4 (in the blocked version). This reduction of
available samples is often the result of implementing blocking. However, blocking
can lead to an improvement in uncovering the relationship.

4.1.3.2 Shoe Wear Example

Consider the case of trying to determine whether a new material for the sole of a
shoe is better than the previous material (Box et al. 1978). In this case, it is obvious
that the amount of wear a shoe experiences depends on the person. Therefore,
giving one person either a shoe with the new material or the old material will not
account for this problem. An ingenious solution to the problem is to give each
person a pair of shoes where one sole is made of the new material and the other sole
is of the old material, and then analyse the difference in wear between the two soles.
Furthermore, randomising on which foot (left or right) the new material will be used
will allow for an even better analysis of the results.
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4.1.4 Randomisation

Randomisation is the procedure by which the order of the runs in the experiment is
determined randomly. This allows the effect of any nuisance or uncontrollable
factors on the experiment to be minimised. This is especially true with replicates, as
running a set of replicates one after another can often eliminate the benefit of having
performed replication, since the conditions will often remain the same.

4.2 Types of Models

In the chemical and process industry, there exist three broad categories of models
that can be used:

1. White-box or first-principle models, which are developed based on a theoretical
analysis of the system using mass and energy balances, as well as known physical
constants. These models have the advantage that they are very general and can be
applied to a wide range of similar system. Their main disadvantage is that often
various limiting assumptions need to be taken in order to obtain a useful solution.
As well, obtaining exact values for the parameters may be difficult.

2. Black-box models, which are developed solely from experimental data. These
models can accurately describe the given operating point, but cannot be applied
to new conditions or operating points of the system.

3. Grey-box models, which combine the first-principle models with experimental
data. In these types of models, the general form of the model is obtained using a
first-principle approach, and then experimental data are used to obtain the values
of the different constants. The advantage of this approach is that it combines the
advantages of the other approaches. It is a very common approach in chemical
engineering.

4.2.1 Model Use

The models that are developed can be used for two different goals: analysing (past)
performance or forecasting future performance. Depending on the goal, the
methods used to validate the model, that is, show that it is sufficient, will be
different. For the first goal of analysing performance, the method previously
presented will be sufficient. However, when developing models for forecasting
future performance, it is necessary to show that the model can accurately forecast
future values using data that were not originally part of the model creation step. In
many cases, a model that is sufficient for analysing performance may not give good
forecasting performance. This topic is explored in greater detail in Chap. 6, where
the development of black-box models for process control is considered.
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4.3 Framework for the Analysis of Experiments

Irrespective of the type of experiment being analysed, the following procedure can
be followed:

1. Pre-analysis, which lays the groundwork for the following parts. In many ways,
this is both the most difficult and the most important step in the whole frame-
work. It consists of the following steps:

(a) Determine the type of experiment that was performed and relevant infor-
mation about the model.

(b) Write down the model that will be estimated given the above information.

(c) If desired, determine an appropriate orthogonal or orthonormal basis for the
model.

2. Calculating the values, using appropriate formulae compute the parameter
estimates, the normal probability plot of the parameters, and if appropriate, the
SSR; and F-value for each of the parameters.

3. Model reduction, which seeks to remove all unnecessary parameters from the
model. Three main methods can be used:

(a) Normal probability plot of the parameters, which seeks to determine which
parameters are most significant based on their deviation from normality.
This approach works as long as an orthonormal basis has been selected for
the model.

(b) F-test for the parameters, which seeks to determine which parameters are
most significant based on an analysis of variance method. This approach
works as long as an orthogonal basis has been selected for the model and
there are replicates with which to compute an estimate of the model variance.

(c) Confidence intervals for the parameters, which seek to determine which
confidence intervals of the parameters cover zero and hence should be
rejected. This approach works as long as there are replicates with which
to compute an estimate of the model variance.

4. Residual analysis, using the reduced model, the resulting residuals should be
analysed to determine whether the assumptions underlying regression have been
satisfied. If the residuals suggest problems, then further experiments or analysis
may need to be performed to resolve the issue.

5. Conclusions, which seek to answer based on the reduced model whatever
questions the objectives of the exercise gave, for example, determining the
optimal operating point.
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4.4 Factorial Design

Factorial design seeks to determine a black-box model of the system that can
accurately describe the behaviour of the system in the region studied that also
includes interactions or combinations of the different variables (e.g. x1x;). Factorial
designs have the advantage that changes in the variables are not made sequentially,
but following some type of pattern, so that interactions between the different
variables can also be measured.

The basic factorial design consists of k factors or independent variables and /
different levels or points at which the system will be tested. A factorial experiment
with [ levels and k factors is called an [* factorial experiment. For the purposes of
this discussion, it will be assumed that all factors have the same number of levels.
The complete experimental design will be repeated ng times, which is referred to as
the number of replicates. A treatment refers to a single run of the factorial design
with given values for each factor.

Traditionally, the factors are encoded using the centring formula presented as
Eq. (3.77), so that the largest value of a factor has an encoded value of +1 and the
smallest value of the factor has an encoded value of —1. Discrete or qualitative
variables can be encoded by arbitrarily assigning a given value with a specific
encoded value, for example, cast iron could be given a value of +1 and stainless
steel a value of —1. For a 2-level factorial design, it is traditional to denote the two
levels as —1 and +1, which provides an orthonormal basis for regression analysis.
For a 3-level factorial design, it is traditional to denote the three levels as —1, 0, and
+1. Unfortunately, such a coding is not orthogonal.

4.4.1 Factorial Design Models

The model that will be fit in factorial designs can be written abstractly as

k
V=AY T+ D vt (4.4)

=1

where p is the mean response, 7;; is the main effect of the jth factor at the ith
treatment level, y;, is the gth interaction, y, the observed output at the ith treatment
level, and e is the error. Practically, the abstract model given by Eq. (4.4) can be
rewritten as


http://dx.doi.org/10.1007/978-3-319-21509-9_3
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k 1-1 k 1-1

vi=bo+d D e+ J[ (B D x| +e (45

j=ld=1 in twos,

threes,

ey
groups of /

where f are the parameters to be estimated, f« is shorthand for writing f;..; , and the
~—~

d—times
product term represents the main effects taken in groups of two, three, and so on
until a single group of all / parameters is taken. For an [* experiment, there should be
a total of /* parameters to be estimated. For a 2-level experiment, the model fit is
given as

n n n k
y:ﬂo+2ﬂixi+z Z BipXixp + .-+ P Hxi (4.6)

i=1 j=1p=j+1 Hiizl
i=1

The order of an interaction is defined as the sum of the powers of the variables that
multiply together to give the particular interaction. Thus, for example, the interac-
tion given by x; has order 1, or is a first-order interaction, while the interaction
given by x1x,x3 has order 3, or is a third-order interaction. Likewise, x%xz has order
3, since x; is raised to the second power and x; is raised to the first power, which
totals 3. First-order interactions are often referred to as the main effects. The zero-
order interaction is commonly referred as the mean response. The coefficients for
each interaction are denoted as follows: B, is the coefficient multiplying the
interaction given by x;, while f,3 is the coefficient multiplying the interaction
given by x;x,x3. Note that the order of an interaction has nothing to do with the
order of a model. The order of a model is defined as the highest power of a factor
present in the model.

Therefore, based on the above discussion of the model to be determined, for a
23_factorial design, the model can be written as

Y = Bo + Bix1 + foxa + Paxs + Proxixa + Pisxixs + Poaxoxs + frozxiaxs  (4.7)
This implies that a single row of the .A-matrix can be written as

A=11 k factors groupsof2 groupsof3 .. allkfactors] (4.8)
= [1 X1 X2 X3 XiX2 X1X3 X2X3 xleX3] )
The values to the factors are assigned so that all possible combinations of levels and
factors are obtained. For a 2* factorial experiment (i.e. there are 2 levels with
3 factors), the regression matrix (A) would look like this
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1 A B C |\ 4B AC BC ABC
R e B e T e T e T )
[ T I A S B
111 —1r1 -1 -1 -1
11 -1 1j{-1 1 -1 -1
11 -1 —1{-1 -1 1 1
A= ;

I -1 1 1i-1 -1 1 -1
-1 1 -1i-1 1 -1 1
I -1 -1 11 -1 -1 1
I -1 -1 -1{1 1 1 -1

where +1 refers to one level (normally high) and —1 refers to the other level
(normally low). Only the columns with the individual factors need to be entered
separately. The rest can be calculated.

The output can be stored as follows. Define

Yiu o Vi
: : (4.9)

<>
I

Yir o Vit

where y;; are the individual replicate results corresponding to treatments given in A.
Furthermore, define

NnR

Y1i
i=1

: (4.10)

R

<l
|
|

Yiki
i=1

Example 4.1: Full Factorial Design
Consider a 2 full factorial experiment with two replicates and answer the
following questions:

1. How many levels and factors are there in this example?

2. What model will be fit to the data?

3. Which parameter(s) represents the mean response, the first-order interac-
tions, and the second-order interactions?

(continued)
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Example 4.1 (continued)
4. How many experiments will be run in this example?
5. What is the regression matrix (A) for this example?

Solution

1. There are 2 levels and 2 factors. Traditionally, the factors are denoted
using uppercase Latin letters in sequential order, that is, A represents the
first factor, B the second, C the third, and so on.

2. The following model will be fit to the data:

Yi = Bo + Bix1 + Boxa + fraxixa.

3. The mean response is denoted by f, the first-order interactions by f; and
p», and the second-order interaction by f,.

4. A total of 2% = 4 experiments will be run in each replicate. Since there are
two replicates, a grand total of 8 experiments will be run.

5. The regression matrix for this example is

1 A B AB
N
1 1 1 1
A= 1 1 -1 -1
1 -1 1 -1
1 -1 -1 1

4.4.2 Factorial Analysis

It is possible to analyse the model based on an F-test analysis and matrices. A
nonmatrix approach is presented in Appendix A4: Nonmatrix Approach to the
Analysis of 2*-Factorial Design. Let

A

A= E (4.11)

ng times

A
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y(1% column)
(4.12)

(2" column)

<L
I

ﬁ(nz‘ column)
(4.13)

p=(ATA) ATy

Then the standard deviation is defined as follows:
(4.14)

VY- Ay

N Fm -

(4.15)

The sum of squares due to errors, SSE, is given by

SSE=Y'Y —pTATY

If an orthogonal basis is used for the levels, then the sum of squares due to each
(4.16)

regressor, SSR;, is given by
SSR; = (AT A), 47

where (A7 A), is the (i, i) (diagonal) entry in the (A”A) matrix. If an orthonormal
basis is used to encode the variables and their levels, then'
(ATA) = FngT (4.17)

When /=2 and the proposed +1 encoding is used, then, by definition, the basis is
(4.18)

orthonormal, and Eq. (3.17) reduces to
(ATA) = 2T

! Determining an orthogonal or orthonormal basis for an arbitrary level is explained fully in

Sect. 4.7.
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The total sum of squares, 7SS, is given by

[A
TSS = SSE+ Y _ (AT A), B (4.19)

i=1

To determine whether a given regressor should be in the model, calculate for each
regressor the F-statistic as follows:

SSR;

lk(nR — 1)

The value obtained from Eq. (4.20) is compared with the critical F-value denoted as
F(0.95, 1, lk(nR — 1)). If F; is greater than F-critical, then the regressor should be
kept in the model. Otherwise, the given regressor can be eliminated from the model.
The effect due to an interaction is equal to twice the corresponding calculated
regression parameter.

4.4.3 Selecting Influential Parameters (Effects)

Since factorial designs are orthogonal designs, it is possible to analyse the signif-
icance of the individual parameters by examining their distribution. The easiest
approach is to plot the parameters on a normal probability plot. Those parameters
that are far from being normal (i.e. they are “outliers”) are most likely to be
significant and should be retained in the final model, while those parameters that
are close to being normal should not be retained in the final model. For example,
consider the estimated parameters for a 2* factorial experiment shown in Fig. 4.2.
Those points that have been circled and labelled are significant, in that they lie far
from the main central cluster of points that define a line. Therefore, it can be seen
that there are only five significant parameters (effects) that should be considered in
the final model.

4.4.4 Projection

The property of projection states that if one of the factors is removed from a
factorial experiment (due to whatever reasons), then the remaining experiment is
still a factorial experiment. Formally, this can be stated that, if the original
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Fig. 4.2 Normal probability plot of parameters (effects) for a 2* experiment with significant
points highlighted and labelled

experiment is /* and p < k factors are removed, then the design becomes an /¥ =7
experiment with p+ 1 (= ng) replicates. Consider the following 2° experiment
where the first factor (x;) is removed. Initially, the regression matrix can be
written as

1 A B C AB AC BC ABC
e N U s T N
1 1 1 1 1 1 1 1
1 1 1 -1 1 -1 -1 -1
1 1 -1 1 -1 1 =1 -1
A= 1 1 -1 -1 -1 -1 1 1
1 -1 1 1 -1 -1 1 -1
1 -1 1 -1 -1 1 -1 1
1 -1 -1 1 1 -1 -1 1
1 -1 -1 -1 1 1 1 -1

Removing the columns that contain the A factor gives
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_l A B C AB| _] B C BC
11 T 1T 1 17T 1T 1
1 1 1 -1 1 1 1 1 -1
1 -1 1 - 1 -1 1 -1
1 -1 -1 1 1 -1 -1 1
A= 4 TT T T
1 1 1 -1 1 1 1 -1 -1
1 1 -1 1 1 1 -1 1 -1
1 -1 -1 -1 1 1 -1 -1 1

where there are now two replicates of the new experiment. This feature is
extremely useful because it means that removing an unnecessary factor does not
mean that the experiment was wasted. In fact, the remaining factors can be
analysed as if they had been taken from an original full factorial designed
experiment with replicates.

Example 4.2: Analysis of a Full Factorial Experiment

A series of experiments have been performed on a plant distillation column to
determine the effects of different parameters on the overall purity of the
overhead product. The variables of interest are reboiler duty (A), feed tem-
perature (B), reflux ratio (C), and feed location (D). The purity of the product
is expressed in a proprietary scale where 150 is absolutely pure and 50 is 70%
pure. The data obtained from this 2*-factorial experiment with no replicates
are shown in Table 4.1. Perform the following analysis of the data set:

1. What is the full model being fit?

2. Plot a normal probability plot of the effects. Which effects are significant?
Which factor does not seem to influence the results at all?

3. What simplified model could be fit?

4. Analyse the simplified model and determine if it is sufficient?

Solution
1. The model for the 2*-factorial experiment can be written as
y =Po + Bix1 + Paxz + 3x3 + Paxa + froxixs + fraxixa + Praxixg

+ Br3XaXs + PosXaXa + P3aX3X4 + B1o3X1X2X3 + ProaX1X2Xg
+ Pr3aX1x3X4 + f34%0X3X4 + f1234X1X2X3 X4

Since 2* = 16, there should be 16 parameters in the model. The regression
matrix can be written as

(continued)
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Example 4.2 (continued)

D (x4)
1

C (x3)
1

B (%)
1

A (x1)
1

Table 4.1 Factorial design
data for a plant distillation

column

45

71

48

65

68

60
80

65

43

100

45

104

75
86
70
96

AB | AC AD BC BD CD |ABC ABD  ACD |BCD | ABCD

D

C

B

A

247 and

that A"y can be computed by taking the sign from the appropriate column in

the above table and placing it in front of the y matrix. This gives

The parameter estimates can be obtained by noting that .A” A

(continued)
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Example 4.2 (continued)

p=2"A"y

101 5.19 —0.813 —2.19 3.06 —0.0625 —7.69 —0.438 0813 0.813

- : —0313 0313 —0.188 —0.0625 0.188 —0.313

T

2. A normal probability plot of the effects is shown in Fig. 4.3. The effects
that lie far from the expected normal distribution values are those that are
significant because they are not chance values. The most significant effects
have been circled and labelled. It should be noted that in this particular
example, some of the effects have the same value and so will appear at the
same location in the plot, for example, both AD and BD are denoted by the
same point. Furthermore, the circled point representing the two values AD
and BD is borderline. It could be included or not. In this analysis, since the
point lies much closer the straight line than any of the other points, it will
not be considered in the final analysis. Therefore, the significant effects are
those denoted as A, C, D, and AC. The effect due to B is negligible.

3. Dropping the B factor will produce a 2*-factorial experiment with 2 repli-
cates. In addition to dropping the terms associated with the B factor, all
other terms will also be dropped. Since the design is orthogonal, we can

A®
-0.1
b ®
AD, BD
-0.2
¢ ®
-0.3
®c
-0.4
-0.5
@ Ac
-0.6
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

Fig. 4.3 Normal probability plot of the effects

(continued)



4.5 Fractional Factorial Design 157

Example 4.2 (continued)

2.5
2
1.5
1
0.5
0

-0.5

=25 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Fig. 4.4 Normal probability plot of the residuals for the reduced model

drop the terms, without needing to recalculate anything. Therefore, the
simplified model is given as

y =101 + 5.19x; — 2.19x3 + 3.06x4 — 7.69xx3

4. The residuals for this case are shown in Fig. 4.4. It can be seen that they are
more or less normally distributed. Furthermore, since the reduced model
has an R*=0.970 with all significant parameter values, it can be con-
cluded that the results are probably good.

The solution to this problem using Excel® is presented in Sect. 8.7.3:
Factorial Design Examples.

4.5 Fractional Factorial Design

For a large number of factors, it may be inconvenient to perform all the necessary
experiments to determine a full fractional experiment, for example, for a 10-factor
experiment, a total of 210 — 1,024 experiments need to be run. Since in many cases,
a single experiment can take a few hours to run, then it could easily take more than
two months to complete the experiment. At the same time, it may be known that
many of the higher-order interactions may be negligible and can, thus, be ignored.
This assumption is necessary, since by performing fewer experiments, some of the
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effects will be confounded, or aliased, with other measured effects. If the con-
founded interactions are small, then they will not affect the values obtained for the
main effects. Therefore, the goal of this section is to determine the confounding
pattern so that only the most important parameters are included in the model and the
confounded parameters are kept to a minimum.

4.5.1 Notation for Fractional Factorial Experiments

Given [ levels, k factors, and p fractions, then I = P interactions of the original "
interactions can be estimated. For example, an experiment where /=2, k=35, and
p = 11is often called a half-fraction experiment, since half as many experiments will
be performed.

4.5.2 Resolution of Fractional Factorial Experiments

The resolution of an experiment shows the manner in which the confounding in a
given experiment occurs. The resolution is denoted using a subscripted Roman
numeral, for example, 2%, is a quarter fraction of a 2°-factorial experiment with a
resolution of IV. There are three common resolutions:

1. Resolution III: In these experiments, no main effects are confounded with each
other. However, some main effects may be confounded with second-order interac-
tions. Finally, some second-order interactions may be confounded with each other.

2. Resolution 1V: In these experiments, no main effects are confounded with each
other or second-order interactions. However, some second-order interactions are
confounded with each other.

3. Resolution V: In these experiments, no main effects or second-order interactions
are confounded with each other. However, second-order interactions are con-
founded with third-order interactions.

Determining the resolution requires looking at the complete confounding pattern
for the given fractional factorial experiment and determining the term with the
smallest number of variables multiplied together.

4.5.3 Confounding in Fractional Factorial Experiments

One of the most important concepts in fractional factorial design is confounding or
aliasing. Confounding occurs when two or more interactions share the same column
space, that is, the column entries for the interactions are the same. Only a full factorial
experiment does not have confounding. By reducing the number of experiments
performed, not all of the parameters can be estimated. In a p-fractional experiment,
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- P(? — 1) of the interactions will be confounded. Confounding implies that the
estimate of a given parameter is actually the estimate of 2 or more unbiased (unaliased)
parameters. However, if it is assumed that higher-order interactions are negligible,
then the effect of the higher interactions on the lower interactions’ estimates will be
small, and the parameter that will be estimated will be close to the true lower-
interaction value. This assumption can be made due to Occam’s razor or the sparsity-
of-effects principle, which states that the smaller the number of interactions, the more
likely the model is to be a good description of the system.

4.5.3.1 Background Information

In order to determine the manner in which the different variables are confounded, it
is first necessary to consider two mathematical concepts: identity vector and
modular arithmetic.

For an orthogonal basis, let / be the defined as a vector of 1’s. The vector I forms
the basis for the constant term, S, in the factorial experiment. Irrespective of the
factorial design, the vector I can be treated as representing the identity vector for the
system under pointwise multiplication denoted by @.2

Modular arithmetic denoted as x mod y, where x is the divisor and y is the
dividend (or base), seeks to determine the remainder when x is divided by y, for
example, 7 mod 2 will be equal to 1, since the remainder when 7 is divided by 2 is
1 (7=3 x2+1). When seeking to determine the confounding pattern in fractional
factorial experiments and higher-order terms are encountered, then reduction of
these terms is performed using /-base modular arithmetic, where /, as before, is the
number of levels in the design.

Example 4.3: Modular Arithmetic
Consider a 3-level design with the term x;x,x}. Determine the reduced form.

Solution

Since this is a 3-level experiment, all reductions will be performed using
modular arithmetic with a base of 3. Therefore, the following reductions will
be performed:

x1:3mod3=0=x;=1
X7: 1 mod 3 = 1= x, remains as is
x3:4mod3=1= xg‘ becomes x3

Therefore, the reduced form for x3x,x% is xpx3.

2 Pointwise multiplication of two vectors, also called the Schur or Hadamard product, and denoted in
this work by O (U +2299), is defined as the multiplication of two vectors by taking each entry of the
two vectors and multiplying them together, that is, z; = x;y,, where k are the index locations.
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4.5.3.2 Generators for Fractional Factorial Experiments

A generator is defined as a set of variables which when multiplied together will
yield /. Ideally, it is desired that only the variable multiplied by itself will yield /.
However, this can only occur in the case where a full factorial design is used. If a
fractional factorial design is used, then some subset of the variables will yield 1. The
relationship showing this subset is called the defining relationship. The defining
relationship can be determined from the method presented to create a fractional
factorial experiment, by multiplying each generator by the new variable to yield /,
for example, if the generator is x, = x1X,X3, then, for / = 2, the defining relationship
would be obtained as follows:

X4 = X1X2X3 = X4Xq4 = X1XX3X4 = I = X1XpX3X4

The term “x;x,x3x4” is called a word. The resolution of the design is equal to the
number of terms (letters) in the smallest word that is used as a generator. Further
note that each of the generators used must be independent generators. In any
fractional factorial experiment, p independent generators will be required.

Although most experiments assume that the defining relationship is positive
(as above), it is also possible to define it as a negative value, that is, ] = —xX,X3X4.
Such a design is less commonly seen.

Example 4.4: Generators and Defining Relationships for a Fractional
Factorial Design

Determine a suitable defining relationship and generator for an experiment
where [=2,p=1, and k=35.

Solution
For this experiment, since p = 1, there will be a need to determine a single
generator. Although there are many different options, the best generator
would be x5 =x;x,x3x4, since it combines the largest number of variables
together. This generator implies that the signs/levels for x5 will be determined
as the product of the signs of the other 4 variables.

The defining relationship would then be obtained by multiplying the
generator by x5 and reducing all powers by modulo 2 arithmetic. Therefore,

X5X5 = X1XpX3X4X5 = [ = X1X0X3X4X5

Note that xsxs has a power of 2, which becomes 0 and hence drops out.

Since the length of the word is 5, the resolution is V. It is always true that
the resolution of a fractional factorial design is equal to the length of the
smallest word in the defining relationship.
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4.5.3.3 Complete Defining Relationship for Fractional Factorial
Experiments

The complete defining relationship presents the confounding pattern for (or gives
those variables that are confounded with) the mean response. It can be determined
as follows. Since each defining relationship is equal to /, all the defining relation-
ships can be equated (as they are confounded with the same parameter—the mean
response). However, this does not determine all the possible defining relationships
that are equal to /, since multiplying any two defining relationships will produce
another defining relationship that equals /. Thus, if there are n defining relation-
ships, then the complete defining relationship can be determined by taking all
possible products of 2 generators taken together, 3 generators taken together, and
continuing until all n generators have been taken together. The equality as it stands
will give one of the confounding patterns, stating that the mean response will be
confounded with the given interactions.

4.5.3.4 Complete Confounding Pattern for Fractional Factorial
Experiments

To determine the complete confounding pattern, the complete defining relationship
is then multiplied by each of the variables singly and is reduced according to the
rules. This will give the confounding between the first-order interactions and
higher-order interactions. Next multiply the complete defining relationship by
each of the variables taken in groups of 2 and simplify. If any group of
m variables occurs in a word of length m + 1, then it can be ignored. This is repeated
until, if n is even, (n/2) variables are being multiplied or, if » is odd, [(n — 1)/2]
variables are being multiplied.

It should be strongly emphasised that the parameters that are equated in the
complete confounding pattern cannot be estimated independently. In practice, the
lowest-order interaction is assumed to be the most significant and fitted, while the
higher-order interactions are assumed to be negligible (or zero). However, this
lower-order interaction will be influenced by the value of the other interactions with
which it is confounded, especially if they are not zero.

Example 4.5: Complete Defining Relationship and Confounding Pattern
for a Half-Fractional Factorial Example

Continuing with the same fractional factorial experiment as in Example 4.4,
determine the complete defining relationship and the complete confounding
pattern for the experiment. The defining relationship is given as

I = X1X2X3X4X5,

(continued)
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Example 4.5 (continued)
which happens to also be equal to the complete defining relationship. This
states that the zero-order interaction, constant term, /o, is confounded with
the highest-order interaction, f1,345. Multiplying by each of the variables

singly gives

4 Design of Experiments

X1l = X1 (X1X0X3X4X5) = X1 = X2X3X4X5

Xol = X2 (X1X2X3X4X5) = Xp = X1X3X4X5

Xal = X4(X1X2X3X4X5) = X4 = X1 X2X3X5

X5l = X5(X1X0X3X4X5) = X5 = X1 X2X3X4

( )
( )
X3l = X3 (X1 X0X3X4X5) = X3 = X1 XpX4X5
( )
( )

This states that f;, a first-order interaction, is confounded with the fourth-
order interaction, f>345. Furthermore, f5,, which is also a first-order interac-
tion, is confounded with the (different) fourth-order interaction, f34s.
A similar analysis can be performed with the remaining cases.

Multiplying the identity by each of the variables taken in pairs will give

x1x = )C1X2(X1)C2X3)C4X5> = X1X2
xX1x3] = X163 (X1 X0X3X4X5) = X1X3
xX1x4] = X1X4(X1X2X3.X4X5) = X1X4
X1x5] = x1X5 (XI)CQ)C3)C4X5) = X1X5
X3l = X003 (X1 XpX3X4X5) = XpX3
X4l = X4 (X1 X2X3X4X5) = XpX4
XoXs] = xXpX5 ()CIXQ)C3)C4)C5> = X2X5
X3x4] = X3%4 (X1XQX3)C4)C5) = X3X4
X3x5] = X35 (X1 XpX3X4X5) = X3X5
Xaxs5] = X4x5 (X1X2X3X4XS) = X4X5

— X3X4X5
= X2X4X5
— X2X3X5
= X2X3X4
= X1X4X5
= X1X3X5
= X1X3X4
= X1X2X5
= X1X2X4

= X1X2X3

This states that the f,, a second-order interaction, is confounded with the
third-order interaction, f345. Likewise, ;5 is confounded with f54s.

Since 7 is odd, all the possible confounded variables have been found.
Thus, the resolution of this method is V, since no second-order terms are
confounded with each other. As well, note that the length of the smallest word
in the complete defining relationship is 5, which is equal to the resolution.
Such a relationship between the resolution and the smallest word in the
complete defining relationship always holds.
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Example 4.6: Confounding Pattern for a Quarter-Fractional Factorial
Example

Determine the confounding pattern for a quarter-fractional factorial experi-
ment, where /=2, p=2, and k=35. Select a suitable set of generators.

Solution
Since p =2, more than one generator is required. A suitable choice would be
the following set of generators:

X4 =x1x3 and x5 = XXy
which give the defining relationship to be
I = x1x3x4 and [ = x1xpx5

Setting the two defining relationships equal to each other will give the
following equality:

I = X1X3X4 = X1X2X5

In order to obtain the complete defining relation, the two generators can be
multiplied together to give the complete defining relationship as

I = X1X3X4 — X1X2X5 = XpX3X4qX5

This implies that the zero-order interaction is confounded with 2 third-order
interactions, i34 and f,5, and 1 fourth-order interaction, fr34s. It also
implies that the resolution of this experiment is III, since this is the length
of the shortest word.

Multiplying the complete defining relationship by each of the variables
singly gives

xil = xi(xix03xs) = X
Xol = xp(x1x3%4) = X2 (1 X5

( ( )=
( ( )=
X3l = x3(x1x3%4) = X3 (1 20%5) = X3
( ( )=
( ( )=

XZX3X4X5) = X] = X3X4 = X2X5 = X1X2X3X4X5
X2X3X4)C5) = X7 = X1X2X3X4 = X1X5 = X3X4X5
X2X3X4X5) = X3 = X1X4 = X]X2X3X5 = XpX4X5
Xz)C3X4X5) = X4 = X1X3 = X1XpX4X5 = XpX3X5
X2X3X4X5) = X5 = X1X3X4X5 = X1X2 = X2X3X4

X41 = X4 X1X3X4) = X4
x5l = x5(x1x3%4) = X5

NN N N

This implies that the first-order interactions are confounded with both
second-, fourth-, or fifth-order interactions. For example, f5 is confounded

with 14, fr4s, and f23s.

(continued)
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Example 4.6 (continued)
Multiplying by pairs of the variables will give, after ignoring terms xx,,
X1X3, X1X4, X1X5, XoXs5, and x3x4, Which all can be found in the smallest words

=X2X3 ()CleXS = X2X3 (X2X3)C4)C5 = X2X3 = X1X2X4 = X1 X3X5 = X4X5

) )

=X2X4 ) = X2X4 (X2X3X4X5) = X2X4 = X1X2X3 = X1 X4X5 = X3X5
X1XX5) = Xpa )
) )

)C2X31=X2X3 (XIX3.X4
X2X41 =X2X4 (X1X3X4
X3X51 =X3X5 (X1X3X4
)C4X51 =X4X5 (XI.X3.X4

= X3X5 XX4(X2X3X4X5 ) = X3X5 = X1 X4X5 = X1 X2X3 = X3X5
= X4X5 ()Cle)(s =X4X5 (X2X3)C4)C5 = X4X5 = X1X3X5 = X1 XpX4 = X2X3

)
)
)
)

It should be noted that the first and last lines are the same, as are the 2 middle
lines. Thus, the complete confounding pattern can be given as

Pattern Number of Terms
I = X230, = X,X,%5 = X,%,%,%s 3
X, = Xy X, = XX = X, X, XX, Xs 3
Xy = XX, Xy X, = XX = X;X,Xs 3
Xy = XX, = X, X,X5X5 = X, X, Xs 3
X, = XXy = XXX, X5 = X, XX 3
X5 = X, X3 X, X5 = X, X, = X, X, X, 3
X)Xy = X, X, X, = X, X3X5 = X, Xs 3
Xy Xy = X Xo X5 = XXy Xg = X3 X 3
Total 24

It should be noted that the number of terms confounded will always be equal
to I* ~P(I” — 1), which in this case is 2° ~%(2* — 1) = 8 x 3 =24. This is an easy
way to check that all the confounded terms have been considered.

4.5.3.5 Higher-Level Designs

When dealing with higher-level designs, some of the rules and observations need to
be changed slightly. The two biggest changes are as follows:

1. Modulo / arithmetic must be used.

2. The complete defining relationship is obtained by following the above procedure
and adding the following step: once the defining relationship has been created as
above, it must be augmented by all the powers of itself up to / — 1. Thus, the
complete defining relationship would be I=I=F=F ...=I'" .
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Example 4.7: Complete Confounding Pattern for a 3-Level Experiment
Consider the following 3 ~ ! factorial experiment with a generator given as

2 _ .2
X3 = X1X;.

Determine the complete defining relationship, the complete confounding
pattern, and the model that can be fit given the confounding pattern.

Solution
The complete defining relationship for this experiment can be found as
follows. First, the given generator has to be converted to give

X3 (x% = xlxg) =1= x1x§x3

If this were a 2-level experiment, then one would stop at this point. However,
for higher-level experiments, powers of the above equation must be taken and
reduced with modulo / arithmetic. Therefore, squaring this defining relation-
ship and reducing everything modulo 3 gives

r’= xlx%qux%)q

2. .2
= XX2X3

Therefore, the complete defining relationship is
2 2.2
I = xyx3x3 = xX7x0%5

The complete confounding pattern can be found as follows (note that all
reductions are modulo 3):

20 2002 e 2. 22
X1 (1 = X1X3X3 = x1x2x3) Xo (1 = X1X5X3 = xlxzx3)

X1 =330 =003 (2) X2 = x5 = X33 (2)
X3 (1 = xlx%xg = x%xzxg) x% (1 = x1x§x3 = x%xzxg)
X3 = x50 =100 (2) 2 =15 = x0xd (2)
X3 (I = x5 = x%xzxg) i (I = x50 = x%xzxg)
B =xx0x0 =303 (2) 3 =13 = X (2)
X1X2 (1 = xlx%)g = x%xzxg) X2X3 (1 = xlx%x3 = x%xzx%)
X1 = x1x3 = 1343 (2) X3 = X143 = 1743 (2)
xlx%xg (I = xlx%)g = x%xzxg)

xlx%)g = X%XQX% =1(2)

(continued)
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Example 4.7 (continued)
Therefore, a total of 18 terms are confounded with the last entry being equal
to the original confounding pattern. It can be noted that I =~ 7( — 1)=
3% 131~ 1) =9 x 2 =18, which is as expected.

A second-order model can be fit with the given experiment. Ignoring any
higher-order terms that are confounded, the fitted model will have the form

Y = Bo + Bix1 + Baxa 4 Baxs + Xt + BuXs + a3 + Praxixy + Prsxaxs

It can be noted that not all of the second-order interaction terms can be
estimated (namely, x;x5; is confounded with x,). This shows that the design
is of Resolution III. This can be confirmed by noting that the smallest word
has length 3.

4.5.4 Design Procedure for Fractional Factorial

Experiments

The following steps will allow the design of a fractional factorial experiment:

1

2.

. Design a full /* ~ 7 factorial experiment for the k — p variables. These k — p variables

are called the independent or basic variables.

Create p new variables, which are independent combinations of some or all of
the k — p factors. The combinations should be determined using the above
information on confounding, resolution, confounding pattern, and any additional
information known about the process.

. Add p columns to the table created in Step 1, each containing one of the

combinations determined above. Set each of the p variables equal to one of the
new columns. Determine the appropriate level for each new column by consid-
ering the combination chosen for that row. It should be noted that there are many
different methods to accomplish this creation of the table.

. Thus, the actual experiment will consist of =P runs (or treatments), where each row

corresponds to a single run. For each run, the values of the factors are determined
based on the corresponding column values in the table obtained in step 3.

Example 4.8: Analysing the Structure of a Fractional Factorial
Experiment

Consider the factorial design shown in Table 4.2. What are the independent
factors, the dependent factors, the generators, the complete defining relation-
ship, the resolution, and the aliases for A and for AB? What type of factorial
design is it?

(continued)
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Example 4.8 (continued)

Table 4.2 Design for the Run A B C D Value
fractional factorial
. 1 - - = = 219

experiment
2 + = = + 214
3 = 3 = 3 154
4 + + — — 150
5 = = + + 124
6 + = + = 132
7 = 3 + = 114
8 + + + + 134

Solution

Independent and Dependent Factors: Looking at the way the data is
presented, it can be seen that one of the factors depends on the others.
Since the first three factors have the form of the classical full factorial
experiment, it will be assumed that factor D depends on the other factors.
Therefore, the basic factors are A, B and C, while the dependent factor is D.

Generator: The generator is D = ABC. Once it has been determined that D
is the dependent factor, all that is required is to try different combinations of
the other factors to determine the appropriate generator.

Complete Defining Relationship: The complete defining relationship is
obtained as follows:

D x D =D x ABC = I = ABCD.

Resolution: Since the smallest word in the complete defining relationship is
4 letters (factors) long, the resolution is IV, that is, the second-order interac-
tions are confounded with each other.

Aliases for A: They can be obtained by multiplying the defining relation by
A and reducing everything modulus 2, that is,

A xI=Ax ABCD = A = A’BCD = A = BCD
Aliases for AB: Similar to the aliases for A, the results are
AB x I = AB x ABCD = AB = A’B’CD = AB = CD.

This is expected because it was determined that second-order interactions can
be confounded with each other. This implies that both AB and CD cannot be
estimated simultaneously.

(continued)
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Example 4.8 (continued)

Complete Description: This is a 2" factorial experiment with the
complete defining relationship I = ABCD. Note that a complete description
requires that all the necessary parameters (/, p, resolution, and complete
defining relationship) be provided.

4.5.5 Analysis of Fractional Factorial Experiments

Define, as before,
A

A= (4.21)

ng times

A
y(1** column)
§(2“d column)

Y= (4.22)
?(n}? column)
p=(ATA) ATy (4.23)
Then the standard deviation is defined as follows:
(4.24)
The sum of squares due to errors, SSE, is given by
SSE = Y'Y —pTATY (4.25)

If an orthogonal basis is used for the levels, then the sum of squares due to each
regressor, SSR;, is given by’

SSR; = (AT A), B (4.26)

ii

3 Determining an orthogonal basis for an arbitrary level is explained fully in Sect. 4.7.
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where (A7 A), is the (i, i) (diagonal) entry in the (A”A) matrix. If an orthonormal
basis is used to encode the variables and their levels, then

(ATA). = I~ Png (4.27)

i

When /=2 and the proposed +1 encoding is used, then, by definition, the basis is
orthonormal, and Equation (4.27) reduces to

(ATA). =28 Py (4.28)

ii

The total sum of squares, 7SS, is given by

k=r
TSS = SSE+ Y _ (ATA), 3} (4.29)

i=1

To determine whether a given regressor should be in the model, calculate for each
regressor the F-statistic as follows:

SSR;

= P(ng — 1)

The value obtained from Eq. (4.30) is compared with the critical F-value denoted as
F(0.95, 1, 1F " P(ng — 1)). If F, is greater than F-critical, then the regressor should be
kept in the model. Otherwise, the given regressor can be eliminated from the model.
The effect due to an interaction is equal to twice the corresponding calculated
regression parameter.

4.5.6 Framework for the Analysis of Factorial Designs

The analysis of a factorial experiment can be summarised as follows:

1. Pre-analysis, which characterises the experiment and determines the appropriate
method to be followed.

(a) Determine the number of factors, &, the number of levels, /, and the number
of replicates, ng.
(b) Determine the number of dependent variables, p.



170 4 Design of Experiments

(c) If p#0, determine the generators, the complete defining relationship and
the complete confounding pattern.

(d) Write down the model that will be estimated given the above information.

(e) Determine an appropriate orthogonal or orthonormal basis for the model.

2. Calculating the values, using appropriate formulae compute the parameter
estimates, the normal probability plot of the parameters, and if appropriate, the
SSR; and F-value for each of the parameters.

3. Model reduction, which seeks to remove all unnecessary parameters from the
model. Three main methods can be used:

(a) Normal probability plot of the parameters, which seeks to determine which
parameters are most significant based on their deviation from normality.
This approach works as long as an orthonormal basis has been selected for
the model.

(b) F;-test for the parameters, which seeks to determine which parameters are
most significant based on an analysis of variance method. This approach
works as long as an orthogonal basis has been selected for the model and
there are replicates with which to compute an estimate of the model
variance.

(c) Confidence intervals for the parameters, which seek to determine which
confidence intervals of the parameters cover zero and hence should be
rejected. This approach works as long as there are replicates with which
to compute an estimate of the model variance.

4. Residual analysis, using the reduced model, the resulting residuals should be
analysed to determine whether the assumptions underlying regression have been
satisfied. If the residuals suggest problems, then further experiments may need to
be performed to resolve the issue.

5. Conclusions, which seek to answer based on the reduced model whatever
questions the objectives of the exercise had, for example, determining the
optimal operating point.

Example 4.9: Detailed Analysis of a Fractional Factorial Experiment
Consider the following experiment to obtain the best beef stew rations. Note
that the company does not care about the taste, but cares solely on how well
the product can be cooked, and hence the focus will be on the Heating Index.
The following 5 factors will be considered: A = sauce viscosity, B = residual
gas, C = solid/liquid ratio, D = net weight, and E =rotation speed. Given the
large number of factors and limited number of available samples, a fractional
factorial experiment has been conducted with a single replicate. The data are
shown in Table 4.3. Answer the following questions:

(continued)
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Example 4.9 (continued)

Table 4.3 P.reparing Heating index

ST o oM Gl Replicate I |Replicate Il |A |B |C |D |E
8.46 9.61 1 -1 =1 |=1 | 1
15.68 14.68 1 =1 |—1 |-1 |1
14.94 13.09 1|1 =1 -1 |-1
12.52 12.71 L |1 |=1 |1 |1
17.00 16.36 1 =1 | 1 =1 |-t
11.44 11.83 1 =1 | 1 |-1 | 1
10.45 9.22 1 |1 |1 |1
19.73 16.94 Ll 1] 1 |-1 =1
77 16.36 1|1 =1 | 1 |-t
14.98 11.93 1 =1 |-1 | 1] 1
8.40 8.16 11 =1 | 1|1
19.08 15.40 11 |—1 |1 |=1
13.07 10.55 21 (-1 1|11
18.57 2053 L =1 | 1] 1 |-t
20.59 21.19 ST T B I
14.03 1131 1] 1] 1]1]1

Data taken from “A Comparison of Multiresponse
Optimization Sensitivity to Parameter Selection” in Quality
Engineering, Copyright © 1999 Taylor & Francis

1. Using this data set, determine the generators, the complete defining
relationship, and the type of experiment.

2. Using a normal probability plot of the estimated model parameters,
determine the significant parameters. Analyse this reduced model.

3. Using the F-test approach to determining the significant parameters, find a
reduced model and analyse its residuals. Compare with the results from
part 2. Which method is better and when can each be used?

Solutions

Question 1

After some experimentation, it can be determined that the basic factors
are A, B, C, and D, while the dependent factor is E. The generator for this
experiment can be written as E = ABCD. The complete defining relationship
is then | = ABCDE. Based on the above analysis, it can be concluded that this
is a Y4-fractional factorial experiment with a resolution of V, that is, 23,_1. It
should be noted here that not all of the parameters can be estimated since they
will be confounded with others. Without going into the details here, all of the
zero-, first-, and second-order interactions are estimable. They will be con-
founded with various higher-order interactions.

(continued)
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Example 4.9 (continued)
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Fig. 4.5 Normal probability plot of the parameters

Question 2

Without going into the details of the calculation of all of the values, as an
Excel® spreadsheet was used to obtain the values, the summary results are
presented here. The normal probability plot of the parameters is shown in
Fig. 4.5. From this figure, it can be seen that there are 2 really significant
values (which could well not be white noise), , and f5, which imply that the
only significant factor is E. This suggests that the model can be written as

y=14.7 — 3.1x;5

The analysis of the reduced model is shown in Fig. 4.6 and Table 4.4.
Based on these figures, it can be seen that it does not look like the model
captures all of the variation present in the data. Specifically, the residuals do
not seem to be normally distributed because there is a significant tail espe-
cially at the top end. Furthermore, the residuals seem to be decreasing in
value as the runs increase (i.e. run 16 has consistently smaller variance than

(continued)
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(continued)
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Example 4.9 (continued)

Ta(})le 4.'5. l\/{odel parfame}:ers Parameters Value SSR; F;

il oo,

reduced using the F-test b 0.819 215 118
P —0.031 0.03 0.02
p3 0.910 26.5 14.5
Pa 0.850 23.1 12.7
Ps —3.10 307 168
P12 0.161 0.83 0.46
P13 —0.447 6.40 3.51
P4 —0.206 1.36 0.75
Pis 0.608 11.8 6.49
P23 0.288 2.65 1.46
Poa —0.315 3.17 1.74
Pas —0.286 2.62 1.44
Paa 0.205 1.34 0.74
Pss —0.589 11.1 6.10
Pas —0.463 6.85 3.76
Statistic Value Statistic Value
e’ 39.8 6 model 1.34
SSE 39.7 1SS 455
R® 0.913 SSR 416
F-critical, model 2.34 F-test 25.5

run 1). This could suggest that additional variables may need to be consid-
ered. On the other hand, the coefficient of regression is 0.67, and the F-test for
the model suggests that the model is significant (as F-test > F-critical). If we
desire a very simple model, this is it (one parameter to explain 63% of the
variability in the data is quite good). On the other hand, there do seem to be
some issues with the underlying model, since the residuals are not normally
distributed.

Question 3

Repeating the analysis but using the F-test method gives the following
results. The required values are given in Table 4.5. The critical value of the
F-testis 4.49. Any F; greater than this is a significant parameter. It can be seen
that a much larger number of parameters is now significant. However,
examining the ‘“discarded” parameters, it can be seen that factor B is
completely irrelevant to the experiment, as all its interactions are zero.
Model analysis for this reduced model is shown in Fig. 4.7. It can be seen
that the residuals are now more normally distributed and that there is no tail.

(continued)
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Example 4.9 (continued)
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Fig. 4.7 (Top) Normal probability plot of the residuals and (bottom) time series plot of the
residuals with the different replicates clearly shown for the model reduced using the F-test

On the other hand, the time series plot of the residuals still seems to show
some weird behaviour between the two different replicates. Now it seems to
suggest that one replicate is different from the other. On the other hand, the
coefficient of regression is now 0.91, and the model is significant given the
F-test. On the whole, it would suggest that the model obtained by reducing

(continued)
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Example 4.9 (continued)

the parameters using the F-test is better. However, it can be noted that the
number of parameters selected is much more than in the normal probability
plot method.

Finally, some brief comments regarding the different methods are needed.
Firstly, it can be noted that the normal probability plot method can be used
irrespective of whether replicates were performed. In this particular case, the
method underestimates the number of significant parameters in the model. On
the other hand, the F-test method produces a larger model, and it would seem
a more accurate model, but it does require that replicates be available.

4.6 Blocking and Factorial Design

When blocking has to be implemented due to either a very large number of runs that
need to be run over multiple days or equipment limitations that could make each
individual run not be identical, it is necessary to develop an appropriate structure to
minimise these effects on the overall design.

The easiest approach is to treat the blocking variable (day or run) as an additional
factor in the experiment and then design a [** D =r =1 fractional factorial
experiment, where the blocking factor will be the treated as the dependent factor.
The runs would then be segregated based on the values of the parameters, for
example, +1 would represent all runs done on one day, and —1 would represent all
runs done on another day.

When analysing the results, the blocking factor can be ignored. Including the
blocking factor in the model will allow a determination of the effect of blocking on
the overall system. The principles from fractional factorial design can be used to
design the optimal blocking pattern.

Example 4.10: Blocking and Full Factorial Design

Consider the case where we have a full 2* factorial experiment that must be
run in 2 blocks of 8 runs (two days). Assume that it is known that the AB
interaction is zero. Design an appropriate experiment that maximises the
information that can be extracted.

Solution

In general, whenever one is faced with a blocking issue with known variables,
then the problem can be reduced and analysed as if it were a fractional
factorial design with additional dummy variables. In this particular example,
let the original factors be A, B, C, and D and let the blocking variable be an
additional fifth factor, E. Since we have been told that the AB interaction is
zero, in order to minimise the confounding, let E=AB. All runs

(continued)
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Example 4.10 (continued)

Table 4.6 Design for a blocked, full factorial experiment

E=AB
Run A B C D (blocking factor)

1 — — _ = aF

2 + - - - B

3 = + - - =

4 + + - - N

5 - = + s

6 + - g - -

7 = + < - .

8 + + + - N

9 = = - * s

10 + = - i B

11 - + - + =

12 & + - * N

13 = = + * +

14 + = + i -

15 - + + + =

16 + + + i hs

All experiments with (+) in the final column and in light grey would be run on 1 day and
those with a (—) in the final column and in dark grey would be run on another day

where E is positive (+) would be run on one day, and all runs where E is
negative (—) would run on the other day. The analysis would be performed
based on using the original factors. The factor AB that would be fit would
basically represent the contribution of blocking to the design (and should
hopefully be close to zero). Practically, this can be written as shown in
Table 4.6.

Example 4.11: Blocking and Fractional Factorial Design

Consider a 2* ~ ! factorial experiment with the complete defining relationship
I=ABCD. Determine an appropriate blocking pattern for this experiment
given that AB is known to be zero, and determine the new complete defining
relationship.

Solution

Given the information, let the blocking variable be E. The generator will then
be E = AB with the defining relationship being I = ABE. The new complete
defining relationship can be obtained using the same procedure as before.
First, setting the given defining relationships equal to each other,

I=ABCD = ABE.

(continued)
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Example 4.11 (continued)
Second, multiplying together the last two members gives

ABCD x ABE = A’B’CDE = CDE.
Therefore, the complete defining relationship is
I=ABCD = ABE =CDE.

It can be noted that the resolution of the experiment has decreased from IV
to III by the introduction of a blocking variable. This is expected given the
general nature of blocking.

4.7 Generalised Factorial Design

In order to effectively apply the proposed methods to solving higher-level exper-
iments, there is a need to develop the tools for the creation of orthogonal bases for
arbitrary polynomial functions. Such an approach has the benefit that the previously
obtained results from linear regression can be applied to solving such problems.
Therefore, this section will provide the methods for obtaining such a solution.

Consider an /-level experiment with a single factor x, which has been scaled so
that its values lie between [—1, 1]. Furthermore, assume that the spacing between
each of the treatment points is equal. The spacing between successive treatment
points, §;, can be determined as follows:

2
& =—— 4.31
= (4.31)

Finally, if there are replicates, assume that all treatments/runs have been replicated,
so that ngl experiments have been performed, where ny, is the number of replicates.
The model for such an experiment can be written as

y=PBo+Bx+Bux’ + B 4 puodd ! (4.32)

If the A-matrix is created for the problem as it is currently written, it is easy to see
that the resulting A’ A matrix will not be orthogonal. In order to obtain an
orthogonal matrix, it is necessary to obtain an appropriate orthogonal basis for
the set of polynomials given as {1, x, D ST S }. For example, for a three-
level, single factor experiment, equally spaced treatment points would be —1, 0, and
1, and the model fit would be

y =Py +Pix + By (4.33)
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Therefore, there is a need to rearrange Eq. (4.32) so that the individual terms are
orthogonal to each other, that is,

y = BoLo(x) + L1 (x) + f11L2(x) (4.34)

where Ly, L, and L, are some orthogonal functions on [—1, 1] that depend on the
original parameter x. In general, L, is always assumed to be the unit function, that
is, Ly = 1. The exact form of the remaining functions will now be determined.

4.7.1 Obtaining an Orthogonal Basis

In order for the basis to be orthogonal, it is necessary that the following two
conditions hold:

> Li(x) =0, V>0 (4.35)

i .
S L)L) = {2 A (4.36)

i=1

where x; is the coded value of the treatment point and d is any arbitrary value greater
than zero. The first condition expresses the orthogonality of the zero-order, constant
polynomial from all the other terms. Although it can be obtained from the second
condition, it is useful to keep it separate. A polynomial basis, where d =1, has
computational and theoretical advantages. Such a basis, where d =1, is called an
orthonormal basis. The values of the basis at the given treatment point will be
referred to as the experimental coefficient, y, that is,

yji :Lj(xl-) (437)

and the subscript on the polynomial basis refers to which power the polynomial is a
basis. The general form of the polynomial can be written as®

S
> gt jodd
Lix)=q 7! (4.38)
2
ZﬂjixZi jeven
i=0

*The form of the polynomials is similar to the standard, discrete Gram polynomials.
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Combining Egs. (4.37) and (4.38) gives that for the case of an even power the
individual experimental coefficients can be written as

%
vi= Y Bt (4.39)
k=0

The case for an odd power is similar, mutatis mutandis.

4.7.2 Orthogonal Bases for Different Levels

In general, if an /-level factorial design is of interest, then the orthogonal basis for
this factorial design will be formed by the set of polynomials from 0 to / — 1, evaluated
at each of the treatment levels. The zeroth-order polynomial, Ly, will be used for the
zero-order interaction (f3y). The first-order polynomial, L;, will be used for the factors
whose powers are 1. Similarly, the second-order polynomials, L,, will be used for the
factors whose powers are 2. The results can be obtained by solving Eqgs. (4.35) and
(4.36). In the following sections, the results for /=2, 3, and 4 will be provided, as
well as generalised orthonormal polynomials for /=2 and 3. Examples will be
provided as appropriate.

4.7.2.1 Casel=2

Consider first the situation of determining the orthogonal basis for the simplest
factorial design with two levels. Since the two treatment points are —1 and 1, and
the basis function has the form

Li(x) = py1x (4.40)
the treatment coefficients can be written as

Y = Puxi :ﬂll(_l>

4.41
712:ﬁ11x2:ﬁ11(1) ( )

Note that, by condition (4.35), y11+712=0. This gives that Eq. (4.41) can be
written as

Y11 :ﬂn(_l)

—7n ::Bll(l) (442)
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for which there is an infinite number of valid solutions. Taking the simplest solution
y11=—1 and y;, =1 gives that #;; = 1. This is clearly the same result as before.
Condition (4.36), which can be written as

i

> ri=d (4.43)

gives that with this basis, d =2 =1, which is good. Thus, for /=2, the basis
polynomial is orthonormal and can be written as

Li(x) =x (4.44)
4.7.22 Casel=3
Now, consider the case of determining the orthogonal basis for the factorial design
with three levels. The three equispaced coded treatment points are —1, 0, and

1(6;=1). Ignoring the zero-power basis function, there will be two additional
basis functions of general form:

Ly(x) = pyyx
Ly (x) = By + Pog (4.45)

For the factors raised to the first power, the treatment coefficients can be written as
ri = Buxi = P (=1)

Yi2=Pux2 = ﬂn(o)
Y13 = Puxs :ﬂn(l)

Since the situation is similar to that previously obtained for the two-level case, the
following values can be obtained’:

rmn=-Lrn=0yr3=L1p,=1 (4~47)

(4.46)

However, note that d =2, which means that this basis is not orthonormal. An
orthonormal basis can be determined by solving the following system of equations:

{7’%1"‘7%3—3

4.48
rutriz=0 ( )

which gives after substitution of the second equation into the first

3 3
Y = _\/;77’13 = \/; (4.49)

This implies that f; = 1.593.

5 Note that y,, must always equal zero given the set-up of the problem.
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L,, which forms the basis for the second-power terms, can be obtained by first
noting that the treatment coefficients can be written as

Y21 = BaXi + Bao = Bay (_1)2 + B
Y22 = BnX5 + Pag = Par (0)2 + b (4.50)
Y23 = B2X3 + Bag = P21 (1)” + Bag

which can be rewritten as the following system of equations

Y21 = Por + Pao
Y22 = Pao (4.51)
Y23 = Ba1 + Poo

subject to the usual constraint of y;;+y12+713=0. It can be noted that this is an
indeterminate system with one degree of freedom (6 unknowns, but 5 equations).
Arbitrarily setting y;3 =y =1, gives the following solution:

Y21 =Y = Lyn=-2,
P =3 = —2 (4.52)

Therefore, the factors raised to the first power will be encoded by L;, while the
factors raised to the second power will be encoded by L,. Thus, for / = 3, the basis
polynomial is orthogonal and can be written as

Ll X)

(
Lo (4.53)

X
3x2 -2

Example 4.12: Orthogonal Basis for a Mixed-Level Factorial
Experiment

Consider the following 2-factor experiment where the first factor (x;) has
3 levels and the second factor (x;) has 2 levels. Assume that a total of
6 (=3 x 2) experiments has been performed and the following model will
be fit:

i = Po + Bixt + Boxz + Broxixa + Biixt + Biaxixz

Assume that the treatment points for x; are —1, 0, and 1, while for x, they are
—1 and 1. It should be noted that for x; the encoding provided by L; will be
used, while for x% the encoding provided by L, will be used. As well, unless
an orthonormal basis is desired, then the same L; can be used to encode those

(continued)
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Example 4.12 (continued)

factors containing the factors x; and x; at the first power. Otherwise, different
first-order polynomials will be used. This implies that the actual model being
fit is

Yo = Bo + BiLli(x1) + BoLi(x2) + BroLa (x1)L1 (x2) + BriLa(x1)
+ BriaLa(x1)L1 (x2)

Based on this discussion, the regression matrix can be given as

Po B b Pra Pu Pz

AN AN AN N A S

1 —1 —1 1 1 —1

1 0 1 0 -2 -2

A=1 1 1 -1 -1 1 -1
1 —1 1 —1 1 1

1 0 -1 0 -2 2
11 11 11|

The column headed by f is encoded using L,. The column headed by f, is
encoded using L, evaluated at the three treatment points (—1, 0, 1), while the
column headed by f, is encoded using L; evaluated at the two treatment
points (—1, 1). The column headed by f;, is encoded by multiplying the
corresponding rows in f; and f,, for example, the first row would be
—1x —1=1. The column headed by f,; is encoded by evaluating L, at the
three treatment points (—1, 0, 1). Finally, the column headed by f;;, is
encoded by multiplying the corresponding rows in f;; and f,, for example,
the first row would be 1 x —1 = —1. The inverse of the information matrix
can be written as

AT A=

Notice how the diagonal values are all different. This is a result of the fact that
a nonnormal basis was used to encode the values.
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4.7.2.3 Casel=4

Now, consider the case of determining the orthogonal basis for the factorial design
with four levels. The four equispaced treatment points are —1, —'3, 3, and 1 (5, = %).
Ignoring the zero-order basis function, there will be three additional basis functions of
general form:

Lyi(x) = px
Ly (x) = fy1x* + P (4.54)
Ls(x) = fapx® + fi31x

For the factors raised to the first power, the treatment coefficients can be written as

Y = Puxi = pu(=1)

Yi2 = Puxa = 1( ]/3)

4.55

713 = Buxs = B () ( )
(1

)

Since the solution the situation is similar to that previously obtained for the two-
and three-level cases, the following values can be obtained:

Y13 = Puxs = P

ru=-Lro==Yrn="Yrs=1 (4.56)
Pu=1

However, note that d =7/3, which means that this basis is not orthonormal. In
general, for factors to the first power, it is possible to use the same basis irrespective
of the number of levels. However, this is not generally true, especially for higher-
order basis functions.

An orthonormal basis can be determined by solving the following system of
equations:

{V%1+7’%2+Y%3+7%4_4 (4.57)
Yutratrztru=20
with the relationships obtained from Eq. (4.55), that is,
p p
Yu=—burn= _%, V13 = 311’713 B (4.58)

Since the second part of Eq. (4.57) is always satisfied with the given combination of
parameters, the first part of Eq. (4.57) gives

36 3
ﬂll = % = % (4-59)
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This gives that

3 1 1 3
Y11 = _ﬁ#lz = _ﬁ’YB = 7—5—,}’13 = 775—

which is indeed an orthonormal basis.
L,, which forms the basis for the second-power terms, can be obtained by first
noting that the treatment coefficients can be written as

(4.60)

Y21 = Paixt + Pao = Pay ) + P = ﬂzl + B

(—
Y2 = B3 + Pao = Pai ( 1/3) + By = ﬂzl + B
( (4.61)

1
Y23 = BX3 + Pao = Par ) + By = —ﬂzl + b

Y24 = B + Pao = P (1) + Pro = Por + Pao

subject to the usual constraint of y1;+7y12+y13+714 =0. It can be noted that this is
an indeterminate system with one degree of freedom (6 unknowns, but 5 equations).
Firstly, it can be noted that y;3=y;, and y;4=y;;. Arbitrarily setting
y13 =712 = —1 gives the following solution:

Y=Yn=—Lyy=ru=1

4.62
ﬂ21 = 2.25,ﬂ20 = 71.25 ( )

L3, which forms the basis for the factors raised to the third power, can be
obtained by first noting that the treatment coefficients can be written as

731 = Bt + Bt = Pra(—1)° + B3y (=1) = =B — By

ra =B+ P = pua (<) B () = — 5o — 3P
7 = By + Bys = B, ) + 6 (') :21—7ﬁ32+%/f31

Vaa = Boxi + Baxs = Bn(1)” + B3 (1) = Py + By

(4.63)

subject to the usual constraint of y1,+7y12+ 713+ 714 =0. It can be noted that this is
an indeterminate system with 2 degrees of freedom (6 unknowns, but only 4 inde-
pendent equations). First, it can be noted that y;3=—y, and y;4= —y1;, which
implies that the constraint is immediately satisfied given the values. Arbitrarily
setting y;; =—1, which implies that y;4,=1, and y;, =1, which implies that
y13 = —1, gives the following solution:

ra=—L ru=1L rp=1 y3=-1

(4.64)
Pan=45, fy=—
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Therefore, the factors raised to first power will be encoded by L,, the factors
raised to the second power by L,, and the factors raised to the third power by Ls.
Thus, for / =4, the basis polynomial is orthogonal and can be written as

Li(x)=x

Lo(x) = 2.25¢% — 1.25 (4.65)
L3(x) = 4.5x° — 3.5x

4.7.2.4 Generalised Orthonormal Basis Functions for First-
and Second-Order Terms

Deriving the required forms for the orthonormal basis functions can be quite

challenging in the general case. This section will present generalised orthonormal

basis functions for first- and second-order terms for an arbitrary number of levels.

The derivation of these results follows the same pattern as for the specific examples.
The generalised orthonormal L;(x) function can be written as

Li(x) = ,/31:13)5 (4.66)

The generalised orthonormal L,(x) function can be written as

_3(1-1) 5(—1) 2_1 50—+ 1)
La(x) == \/(z+1)(z—2)(1+2)x 2\ 1=2)(1+2) (4.67)
The generalised orthonormal L;(x) function can be written as
(- 1)25 201 3
Lalx) = 4 (21—1)(1+1)(1—2)(1112—111—10)x
(4.68)

=" 201
2 21— 1)+ 1)1 —2) (112 =111 — 10)x

Higher-order generalised functions can be derived using a similar pattern.

4.7.3 Sum of Squares in Generalised Factorial Designs

When fitting a model that contains factors raised to powers higher than 1, it is
common practice to combine the terms into a single term. The basic rule for
combining the terms is to ignore any powers on the factors and see what the
corresponding interaction is, for example, if we have the following set of
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Table 4.7 Optimising the performance of a bottling process

Deviation from
expected height
(inches)
Run | Percent carbonation (x;) | Line speed (x3) | Operating pressure (xp) |I 11
1 10 200 25 -3 —1
2 10 250 25 —1 0
3 10 200 30 -1 0
4 10 250 30 1 1
5 12 200 25 0 1
6 12 250 25 2 1
7 12 200 30 2 3
8 12 250 30 6 5
9 14 200 25 5 4
10 14 250 25 7 6
11 14 200 30 7 9
12 14 250 30 10 11

interactions {A, B, AB, A2 A’B }, then both A and A? would be represented by the
sum of squares due to A (SS,), while AB and A’B would be represented by the sum
of squares due to AB (SS4p). These terms would be found by combining the
appropriate individual terms, that is,

S84 = 884, + S84, (4.69)

where §S4, is obtained using the standard formula for the SSR of 8, while SS4,, is
obtained using the standard formula for the SSR of ;. The number of terms that are
combined would equal the degrees of freedom for the given component, for
example, §S, in the above example would have 2 degrees of freedom.

4.7.4 Detailed Mixed-Level Example

A soft drink bottler is interested in obtaining more uniform fill heights in the bottles
produced by the manufacturing process. The process engineer can control three
variables: the percent carbonation (x;), the operating pressure in the filler (x,), and
the bottles produced per minute or the line speed (x3). Due to various control issues,
the percent carbonation was selected at three different levels (10, 12, and 14%),
while the pressure (25 and 30 psi) and line speed (200 and 250 rpm) were selected at
two different levels. Two replicates will be performed and the deviation from the
correct fill height noted. The results are shown in Table 4.7. Based on the provided
results, analyse the model using the methods provided in the above discussion to
determine the best model for the process. Be certain to analyse the residuals to



188 4 Design of Experiments

determine the adequacy of the model (Data taken from Montgomery, Design and
Analysis of Experiments, 6th edn.).

4.74.1 Analysis

In order to solve this problem, the procedure will be split into the following steps:

. Preprocessing the given data, that is, converting it into the desired format.
. Determining the general form of the model.

. Obtaining an appropriate basis for each of the factors.

. Performing linear regression to obtain the parameter estimates.

. Analysing the results using the F-test to determine an appropriate model.
. Analysing the residuals and if necessary revise the model.

AN AW

An explanation of how to implement this problem in Excel® is presented in
Sect. 8.7.3: Factorial Design Examples.

4.7.4.2 Preprocessing the Data

Before the data can be analysed, it must be converted into the format required for
analysis, that is, it must vary between —1 and 1 (inclusive). Using the formula for
centring the data (Eq. (3.77)) gives the following formulae:

_ x —0.5(14+10)

- =0.5x, -6
T T05(14 - 10) M
_ x3—0.5(25+ 30)

- = 0.4x, — 11 470
2770530 — 25) 2 (4.70)
£ 2= 050004250) o0

0.5(250 — 200)

Using this encoding will place all of the variables in the [—1, 1] range.

4.74.3 Determining the General Model Form
The general model can be written as

Yy =Py + Bi1X1 + BaXa + f3X3 + fpX1Xo + P13X1X3 + fazXoX3 + f3X1X2X3
+ B1XT + BrioX X2 + Pr13X1X3 + fria3X 1 XaK3
(4.71)


http://dx.doi.org/10.1007/978-3-319-21509-9_8
http://dx.doi.org/10.1007/978-3-319-21509-9_3
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It can be noted that since x; has three levels, terms raised to the second power can be
included in the model. Note that there are 3 x 2 x 2 =12 terms, which is equal to
the product of the individual number of levels for each factor.

4.7.4.4 Obtaining a Basis

Using the previously developed methods, the first factor will be transformed using
the /=3 results, while the other two factors will be transformed using the standard
/=2 results (as has been done previously). Therefore, for / = 3, the basis functions
will be L{(X1) = X; and L,(X1) =3X; — 2, while for [ =2, the basis function will
be L(X;) = X, (or X3).

4.7.4.5 Defining the Linear Regression Problem

Based on the above results, the following matrices will be defined

1 -1 -1 -1 1 1 1 -1 1 -1 -1 1
1 -1 -1 1 1 -1 -1 1 1 -1 1 =1
1 -1 1 -1 -1 1 -1 1 1 1 =1 -1
1 -1 1 1 -1 -1 1 -1 1 1 1 =2
1 0 -1 -1 0 0 1 0 -2 2 2 2
1 0 -1 1 0 0 -1 0 -2 2 -2 2
Aar=11 0 1 1 0 0 -1 0 -2 -2 2 -2 (4.72)
1 0o 1 1 0 0 1 0 -2 -2 -2 1
1 1 -1 -1 -1 -1 1 1 1 =1 -1 =1
1 1 -1 1 -1 1 =1 -1 1 -1 1 -1
1 1 1 -1 1 -1 -1 -1 1 1 -1 1
ot 1 1 1 1 1 1 1 1 1 1 1]
A
A= |7 P 4.73
|:-Apart ( )
¥=[-3 -1 -1 1022657710 -1 0011315496 11
(4.74)

Solving the linear regression problem will give

S

p =[3.125 3938 1375 0958 0.563 0.188 0.208 0.063 0.313
—0.063 —0.208 —0.146]"

(4.75)
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Table 4.8 F-test values—

I - bold < nificant Parameters Value SSR; F;

atthe 95% level o 315 234 31
B 3.938 248 350
P2 1.375 454 64.1
B3 0.958 22.0 31.1
Pz 0.563 5.063 7.147
45 0.188 0.563 0.794
Prs 0.208 1.042 1471
P23 0.063 0.063 0.088
P 0.313 4.688 6.618
Bz —0.063 0.188 0.265
P —0.021 0.021 0.029
Brios —0.146 1.021 1.441

The diagonal entries of the (A”.A) matrix can be written as

diag((A"A)) =[24 16 24 24 16 16 24 16 48 48 48 48]
(4.76)

It can be noted that the values are not the same. This is expected since an
orthonormal basis was not used.

4.7.4.6 Determining the Model

From Eq. (4.164.16), the sum of squares due to regression can be written as

SSR; = (AT A), p? (4.77)

12

and the F-test will have the following form:

SSR; SSR,
Fi=—¢g—="53E (4.78)

3@ 1) 2412

where SSE is equal to 8.50 (from sum of residuals). The results are summarised in
Table 4.8. The critical value of F at 95% with 1 and 12 degrees of freedom is 4.75.

Based on the values in Table 4.8, and comparing the final column with the
critical value, gives that the values in bold are significant (F; > Fjjica)- Therefore,
the reduced model can be written as

y = 3.13 + 3.94%; + 1.38%; + 0.958%3 + 0.563%,%, + 0.313Ly () (4.79)
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Fig. 4.8 Normal probability plot of the parameters for the mixed factorial example

Replacing the basis function by its actual value gives the following model:

y=3.13+3.94x; 4 1.38x, + 0.958x3 + 0.563x X, + 0.313(35(% — 2)

4.80

y=2.50 + 3.94%; + 1.38%; + 0.958%3 + 0.563%1%, + 0.939%3 ( )
If model reduction were to be performed using a normal probability plot of the
parameter values, the results would be a bit more ambiguous. Figure 4.8 shows the
normal probability plot of the parameters. In such cases, an orthonormal basis is
preferred as it would weigh each of the points equally.

4.7.4.7 Analysing the Residuals

For the reduced model, R2:O.966, and the F-statistic for the reduced model is
103 (>2.77 at the 95% confidence level). The residual plots are shown in Figs. 4.9,
4.10,and 4.11. It would seem that the residuals are normally distributed without any
significant trends. Therefore, it can be concluded that the reduced-order model
accurately describes the given data.
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Fig. 4.10 Residuals as a function of y

4.8 2* Factorial Designs with Centre Point Replicates

Although higher-order factorial designs are useful for fitting higher-order models, it
is easy to see that the number of experiments required can quickly become too large
to handle effectively given various constraints, such as available time and cost.
Therefore, methods have been developed that can fit higher-order models without
necessarily dealing with a full factorial experiment. One simple approach is to add
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Fig. 4.11 Time series plot of the residuals

centre points, that is, runs where all the coded variables are equal to zero, to the
design of the experiment. This approach has two advantages. First, it allows for the
computation of a variance for the model, which implies that the F-test can be used
even with a full factorial experiment with no replicates. Second, it can provide a
measure of the amount of curvature in the model. The model for this design consists
of two parts: the standard / =2 factorial design model combined with a curvature
term denoted as ﬂéxz, that is,

k
=py + X+ pa 4.81
y="h ;ﬂ p (4.81)
remaining

factorial
terms

It can be noted that it is impossible to determine the individual contributions to the
curvature as all the second-order terms are confounded with each other, for exam-
ples, both x% and x% will have a column of 2* ones followed by as many zeroes as
there are centre point replicates.

As well, multiple replicates at the centre point are performed, so that an estimate
of the variance can be obtained. Clearly, if there is only a single centre point
replicate, then no estimate of the model variance can be obtained.

4.8.1 Orthogonal Basis for 2* Factorial Designs with Centre
Point Replicates

Assuming that the model is coded as usual for an / =2 design, it is easy to show that
the curvature term is not orthogonal with the rest of the factorial design, since the
curvature term is correlated with the first-order responses (51, fs,. . .). Furthermore,
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there is an uneven number of experiments performed. Therefore, let L,(x) represent
an orthogonal basis for the curvature term, that is, Eq. (4.81) can be rewritten as

2I<
y—ﬂo+;ﬂ1xl ol BeLi(x) (4.82)
remaining
factorial
terms

In order to obtain an orthogonal basis in this case, it is necessary to note that the
results from Sect. 4.7 need to be modified to take into consideration the fact that an
arbitrary number of experiments will be performed. In this case, the key constraint
can be written as

2% ng

+

nc

Ll(xi) =0 (483)

Il
—_

where 7 is the number of centre point replicates. It is easy to show that the factorial
component will satisfy this constraint as the factorial component must sum to zero
and the centre points are all encoded as 0, so that the sum remains 0. On the other
hand, the curvature term will not be orthogonal as it will contain 2knR ones and n¢
zeroes, which will not equal zero. Note that for the curvature basis there are only
two independent values y; and y,, and Eq. (4.83) can be rewritten as

2kngy, +ncy, =0 (4.84)
Since this equation has 2 unknowns and only 1 equation, we are free to arbitrary

assign any value to one of the two parameters. For the sake of consistency,’ let
y1 =1, which implies that

2ki’lR
Vo= — (4.85)
nc
The basis function can be written as
Li(x) = pix* + (4.86)

S This will leave the factorial component unchanged.
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Table 4.9 Improving Run

- - Reaction time (min) | Temperature (°C) | Yield (%)
chemical plant yield data set

—1 -1 39.3
-1 40.0

1 — 40.9
41.5
40.3
40.5
40.7
40.2
40.6

NoNE-CRIENE N RV, NI N ROSHE SR
[=hi=lleliel el
[=h=llelieliellS L

which given the two treatment values gives
2kl’lR
L(0)=p=rs=——-
e (4.87)

2kpn ne + 2%n
LiE) =4 +h=1=p=1+—"" ="
nc nc

Therefore, the basis function for the curvature can be written as

ne + 2kn 2%n
Li(x) = (Cn—cR)xz - n—CR (4.88)

4.8.2 Factorial Design with Centre Point Example

Consider a chemical engineer who is studying the yield of a chemical process.
There are 2 variables of interest: reaction time and reaction temperature. Since there
is some uncertainty regarding the appropriateness of a linear model, a single
unreplicated 2*-factorial experiment was performed with 5 centre point replicates.
The results of the experiment are shown in Table 4.9. Based on the provided results,
analyse the model using the methods provided in the above discussion to determine
the best model for the process. Be certain to analyse the residuals to determine the
adequacy of the model (Data taken from Montgomery, Applied Statistics and
Probability for Engineers, 4th edn.).

An Excel®-based solution to this problem is presented in Sect. 8.7.3.

A similar procedure to that used to analyse the results in Sect. 4.7.4.1 will be
used in this example.

4.8.2.1 Determining the General Model

The model that will be analysed can be written as

Y = Po + Bixi + Boxa + Broxin + fx° (4.89)


http://dx.doi.org/10.1007/978-3-319-21509-9_8
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4.8.2.2 Selecting the Orthogonal Basis

Since nc =135 and k =2, an appropriate basis function for the curvature tern can be
written as

54+2%(1 22(1

=1.8x>-0.8

which gives that the model in terms of the orthogonal basis functions can be written
as

y = Bo + Bix1 + Boxa + Proxin + B (1.8x° — 0.8) (4.91)
4.8.2.3 Defining the Linear Regression Problem

Based on the above results, the following matrices will be defined

-1 -1 1
-1 1 -1
1 1

P—

1
-0.8 (4.92)
-0.8
-0.8
—0.8
I —0.8 |

¥y=1[39.3 40.0 409 415 403 40.5 40.7 402 40.6]T (4.93)

™

I
_— e — e
cooco o~
cocoococo~|
coococo~ |

Solving the linear regression problem will give

f =1[40.44 0775 0325 —0.025 —0.019] (4.94)

The diagonal entries of the (A”.4) matrix can be written as
diag((ATA4)) =[9 4 4 4 7.2] (4.95)
It can be noted that the values are not the same. This is expected since an

orthonormal basis was not used. An explanation of how to implement this problem
in Excel® is presented in Sect. 8.7.3: Factorial Design Examples.


http://dx.doi.org/10.1007/978-3-319-21509-9_8
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Table 4.10 F-test values—

h Ve Parameters Value SSR; F;
Zflt‘l‘l?g‘;;;‘iﬁge significant — 40.44 14,700 342,000
$i 0.775 2.40 55.9
pa 0.325 0.423 9.83
Pz —0.025 0.0025 0.058
/8 —0.019 0.00272 0.063

4.8.2.4 Determining the Model

From Eq. (4.16), the sum of squares due to regression can be written as

SSR; = (AT A) p? (4.96)

i

and the F-test will have the following form

SSR; SR SSR;  SSR;
Fi="gsg = SSE = SSE T SSE (4.97)

m—n 28 4pe—28—1 nc—1 4

where SSE is equal to 0.172 (from sum of residuals). The results are summarised in
Table 4.10. The critical value of F at 95% with 1 and 4 degrees of freedom is 7.71.

Based on the values in Table 4.10 and comparing the final column with the
critical value gives that the values in bold are significant (F; > Fjica)- Therefore,
the reduced model can be written as

y = 40.4 + 0.775x; + 0.325x, (4.98)

Furthermore, it can be concluded that the effect of curvature is minimal in this
system as f. is not significant.

With so few parameters, using a normal probability plot of the parameters will
not give meaningful results.

4.8.2.5 Analysing the Residuals

For the reduced model, R?>=0.941 and the F-statistic is 15.9 (> 6.4 at the 95%
confidence level). The residual plots are shown in Figs. 4.12,4.13,4.14, and 4.15. It
would seem that the residuals are normally distributed without any significant
trends. Therefore, it can be concluded that the reduced-order model accurately
describes the given data.
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Fig. 4.12 Normal probability plot of the residuals for the reduced model
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Fig. 4.13 Residuals for the reduced model as a function of y

4.9 Response Surface Design

Another approach for designing second-order models to be used for process opti-
misation, without using higher-order factorial design for optimisation, is response
surface design. Many different approaches have been developed, many of which
require the use of specialised computer software to obtain a tractable solution.
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Fig. 4.15 Residuals for the reduced model as a function of x,

4.9.1 Central Composite Design

The central composite design avoids the problem of higher-order factorial designs,
by judiciously selecting additional parameter points. The generic regression matrix,
A, for k factors consists of three different parts:

1. The regression matrix obtained from the 2* factorial experiment. This will be
denoted by F.

2. The central point of the system denoted by (0, O, ..., 0, 0), where there are
k zeroes. This part can be repeated as often as is desired or required. This part
will be denoted by C.
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3. A matrix which consists of each factor at some value + a, where « is a value
determined by the designer. Thus, this part, denoted by &, will have the follow-
ing form:

a 0 0 R 0
—a 0 0 R 0
0 a 0 - 0
E=]10 —-a O - 0 (4.99)
0 O 0 - - «
0 0 0 -+ - —a
Thus, the regression matrix .4 will have the following form:
]:
A=1|¢C (4.100)
&
The model that can be fit to this type of experiment is given as
) k
y=pb+) Pxi +...+ Bixt (4.101)
i=1 — :Z:l
remaining
factorial
terms

which is basically the standard 2 factorial experiment with the addition of the pure
quadratic terms due to each of the factors themselves.

4.9.1.1 Determining the Value of a

There are many different methods to determine the value of a. Let F :2k, the
number of points due to the factorial design, and T=2k+nc, the number of
additional points, where n is the number of central points in the design. Common
values are as follows (Myers 1971):

1. Rotatable design: a=F"%, which is the design implemented by the
ccdesign (k) function in MATLAB®. Rotatability implies that the variance
for points equidistant from the centre is equal. This is useful if the region of
interest is spherical.

2. Face-centred cubical design: o =1, which is useful if the region of interest is a
cube. This approach will place the values in the centre of the plane defined by the
factorial experiment.

3. Orthogonal design: a= (0.25QF)0‘25, where Q = (\/F +T — \/F)2, which
minimises the correlation between the different parameter estimates.
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4.9.2 Optimal Design

Optimal design is the process of designing an experiment so that it is optimal with
respect to some criteria. All such designs are computer generated in that some
complex formula must be used in order to perform the relevant optimisation. The
most common forms of optimal design are:

1. A-optimal design, which seeks to minimise the trace of (ATA)_l. This can be
interpreted as the minimisation of the average value of the variance of the
regression coefficients.

2. D-optimal design, which seeks to minimise the determinant of (A"4)~". This can
be interpreted as the minimisation of the volume of the joint confidence region of
the regression coefficients.

. E-optimal design, which seeks to minimise the largest eigenvalue of (A”.A)~".

4. G-optimal design, which seeks to minimise the largest value of Nvar(y)/o”. This
can be interpreted as the minimisation of the scaled prediction variance. This
approach is useful if the goal of the model is to use it for future predictions.

5. V-optimal design, which seeks to minimise the average prediction variance for a
set of prediction points. This approach is useful if the goal of the model is to use
it for future predictions over multiple different points.

(98]

4.9.3 Response Surface Procedure

The response surface method is an iterative procedure for determining the optimal
point of a process. Starting from an initial large set of variables, a screening
experiment can be performed to determine which of the variables have the largest
influence on the desired variable. The number of variables selected at this stage can
be a factor of the time available to perform the detailed experiments and the
influence that the given variables have on the system. Once the screening experi-
ment has been completed, then a factorial or response surface method experiment
can be designed to obtain an initial estimate of the optimal point. Based on this
estimate of the optimal point, a new experiment could be designed to determine a
new optimal point. This procedure can be repeated until either the procedure
stabilises about a fixed point or after a fixed number of experiments. It can be
noted that the above procedure does not guarantee that the true optimal point will be
reached.

In seeking the optimal point, it is common to use the method of steepest ascent
or the gradient method. In this approach, based on the resulting relationship, the
new process operating point will be determined based on the direction with the
steepest gradient. This approach ensures that the optimal point can be reached the
fastest.
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4.10 Further Reading

The following are references that provide additional information about the topic:

1. General Design and Analysis of Experiments: Most of these references contain
information about factorial and fractional factorial design.

(a) Box GE, Hunter WG, Hunter JS (1978) Statistics for experimenters: an
introduction to design, data analysis, and model building. Wiley, New York

(b) Hinkelmann K, Kempthorne O (2007) Design and analysis of experiments,
vols I, II, III. Wiley, Hoboken

(c) Montgomery DC (1991) Design and analysis of experiments, 3rd
edn. Wiley, New York

2. Response Surface Methodology:

(a) Myers RH (1971) Response surface methodology. Allyn and Bacon, Inc.,
Boston

4.11 Chapter Problems

Problems at the end of the chapter consist of three different types: (a) Basic
Concepts (True/False), which seek to test the reader’s comprehension of the key
concepts in the chapter; (b) Short Exercises, which seek to test the reader’s ability
to compute the required parameters for a simple data set using simple or no
technological aids; this section also includes proofs of theorems; and
(c¢) Computational Exercises, which require not only a solid comprehension of the
basic material, but also the use of appropriate software to easily manipulate the
given data sets.

4.11.1 Basic Concepts

Determine if the following statements are true or false and state why this is the case.

1. Confounding of variables implies that (A”.A) is uninvertible.

2. Randomisation is important, since it can minimise the effect of unknown
variables on the regression results.

3. Blocking seeks to minimise the effect of unknown variables on the regression
results.

4. A model defined based on an energy balance over the system is a black-box
model of the system.

5. A model developed for analysing the performance of the system can always be
used to predict the future behaviour of the system under new conditions.

6. A 3% full factorial experiment has 4 levels and 3 factors.

7. For a factorial experiment with no replicates, the variance can be determined.
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8. If the design is orthogonal, after a parameter is removed, then the remaining
parameters need to be recalculated.
9. The factor x;x3x4 is a third-order interaction.

10. Factorial design experiments with large number of levels and factors can be
expensive to run.

11. For fractional factorial experiment, it is useful if higher-order interactions are
known to be unimportant.

12. If the complete defining relationship is I=ABCD = ADE = ABF, then the
resolution of this design is IV.

13. The more letters (factors) in a defining relationship, the larger the potential
resolution of the design.

14. Two interactions that are confounded can be individually estimated.

15. If the generator is F= ABD, then the defining relationship for this generator is
I=ABDF.

16. Adding central points to a factorial design experiment allows for the testing of
curvature (or second-order terms, such as A in the design).

17. If it is desired to use a model for future prediction, then an A-optimal design
is best.

18. If there are only a few factors to consider, then designing a screening experi-
ment is profitable.

19. The response surface methodology is an iterative procedure that requires
multiple experiments and modelling exercises.

20. A rotatable central composite design is useful if it is desired to have a common
variance for points equidistant from the centre.

4.11.2 Short Exercises

These questions should be solved using only a simple, nonprogrammable,
nongraphical calculator combined with pen and paper.

21. Consider the problem of trying to fit data to the following model:
Vo=—ay, 1+ -+ (4.102)

where a and g are coefficients to be determined and ¢ is a subscript representing
the time of measurement, that is, ¢ represents the current time and ¢ — 1 repre-
sents the time one sampling unit in the past. For this model, it can be shown that
(Ljung 1999)

s 9
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Table 4.11 Design for the Run |A |B |C E

fractic?nal factorial . 1 - 1 1 1= 1

experiment (for Question 22)
2 + |- |+ - | =
3 - |+ |- [+ |- |-
4 + |+ |- |- |- |+
5 - = 1= |- |+ |+
6 + - |- |+ |+ |-
7 - |+ |+ = |+ =
8 + |+ |+ |+ |+ 4+

22.

In order to obtain parameter estimates, the matrix given by Eq. (4.103) must
be invertible for all nonzero values of @ and f. If the input signal is of the
following form, under what conditions can the process be identified:

(a)
(b)

u, = —Ky,.
u=—Ky; _».

(Further information about fitting such processes can be found in Chapter 6.)
Consider the following factorial design whose regression matrix is shown in
Table 4.11. Determine:

(a)

(b)
()
(d)

O]
€3]

23.

What are the independent (or basic) factors and what are the dependent
factors?

What are the generators?

What is the complete defining relationship?

What are the aliases of C (or what is the confounding relationship for C)
and for AF?

What is the resolution?

What type of factorial design it is?

You have to run a fractional factorial experiment where there are 6 (A, B,
C, D, E, and F) factors each at two different levels. You have decided that
a 2° ~ 2 fractional factorial experiment will be performed with the follow-
ing two generators:

Answer the following questions:

(a)
(b)
(©)
(d

What is the complete defining relation?

What is the confounding pattern for all the first-order interactions?

What is the resolution of this experiment?

If a resolution of IV is desired, how could the above generators be changed
to achieve this? Give the complete defining relation to prove that the
design is indeed resolution I'V.


http://dx.doi.org/10.1007/978-3-319-21509-9_6
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24. You ran a 4 full factorial experiment. Not wanting to go through the hassle of
developing an orthogonal basis for such an experiment, you decided to analyse
this experiment as a 2-level factorial experiment. Answer the following
questions:

(a) What model can you fit with the original 4% experiment?

(b) Clearly explain how you could analyse this experiment as a 2-level
factorial experiment.

(c) Can you fit the original model using this type of analysis?

25. As the plant engineer, you have been asked to optimise the performance of a
chemical reactor. Using the information below, suggest a potential experimen-
tal design (including all defining relationships, generators, resolution, and the
regression matrix in terms of the factors). Clearly justify your choices based on
the requirements. The situation is as follows:

(a) There are five factors (A, B, C, D, and E).

(b) You have managed to obtain 2 days (48 hours) to do the complete
experiment.

(c) Each run takes 2 h, that is, you have enough time to complete 24 runs.

(d) All third-order and higher interactions are known to be minimal.

(e) It is expected that only some of the five factors are significant.

() Itis desired to run some of the runs at the centre point in order to test for
curvature and variability in the results.

26. Consider the following 37! factorial experiment with the generator given as
=0

Answer the following questions:

(a) What is the complete defining relationship for this experiment?

(b) Determine the complete confounding pattern? (Hint: You will need to
confound 18 variables.)

(c) What type of model could be estimated using this type of experiment?
Give all estimable terms.

27. Propose a 2° ~ 2 factorial experiment so that it has resolution IV.
28. Determine a suitable design for a 3* ~ ! factorial experiment.

4.11.3 Computational Exercises

The following problems should be solved with the help of a computer and appro-
priate software packages, such as MATLAB® or Excel®.
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Ta'?lﬁ .‘1‘.}12(1 ?ry soup Run |6,(bs) |A |B [C(s) |D(lbs) |E (days)
forla‘():lésynoﬁ 39) 1 078 1 ¢ |eo 2,000 |7
2 [110 3 |[c [s0 2000 |7
3 [170 3 |Aa |60 1,500 1
4 |18 3 [c [s0 1,500 1
5 097 1 |Aa |60 1,500 |7
6 |147 1 |c |80 1,500 |7
7 |185 1 |A |60 2,000 1
8 [2.10 3 A [s0 2,000 1
9 |06 1 |A |80 2,000 |7
10 |o62 3 |A |60 2000 |7
11 | 1.09 1 |c |80 2,000 1
2 |13 1 |c |60 1,500 1
13 [1.25 3 |c |60 1,500 |7
14 |098 3 A [s0 1,500 |7
15 |136 3 |[c |60 2,000 1
16 |1.18 1 |A |80 1,500 1

Reprinted with permission from the Journal of Quality Tech-
nology ©1988 ASQ, http://asq.org

29. In the article “In the Soup: A Case Study to Identify Contributors to Filling
Variability”, Hare (1988) considers the problem of trying to determine the
variables which affect the filling variability of dry soup mix. Five different
variables where considered: (A) number of filling ports being used in the
mixer, (B) the operating temperature, (C) the mixing time in seconds, (D) the
batch weight in pounds (Ibs.), and (E) the delay between mixing and pack-
aging. The operating temperature was maintained using a cooling jacket:
either the cooling jacket was on (denoted by C) or the process was
operated at ambient conditions (denoted by A). The results are shown in
Table 4.12. Run 7 is the normal operating conditions. The results are
presented in the order in which they were run. Perform the following
analysis of this data set:

(a) Determine an appropriate coding for this experiment.

(b) What is the generator for this design?

(c) What is the resolution of this design?

(d) Estimate the factors? Which ones are significant?

(e) Using the reduced-order model, analyse the residuals and determine if the
design assumptions are met?


http://asq.org/
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Table 4.13 Tool life data
(for Question 30)
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Replicate

Run A B C 1 Y2 Y3
1 — — — 22 31 25
2 + — — 32 43 29
3 — + — 35 34 50
4 + + — 55 47 46
5 — — + 44 45 38
6 + — + 40 37 36
7 — + + 60 50 54
8 + + + 39 41 47

Data taken from D. Montgomery, Design and
Analysis of Experiments, 6th edn., Wiley & Sons

30. Consider the problem of trying to determine which conditions impact the life
(in hours) of a machine tool. The variables of interested have been selected as
cutting speed (A), tool geometry (B), and cutting angle (C). Consider the
following full factorial design whose regression matrix and results are shown
in Table 4.13. Perform all analysis at the 95% level. Answer the following

31.

questions:

(a) Determine the model for the full factorial experiment.

(b) Fit the model and obtain confidence intervals for the parameter estimates.
Determine which parameter estimates should be kept.

(c) Calculate the F-score for each parameter estimate. Determine which
parameters should be kept.

(d) Are the results from (b) and (c) the same? Do you think that this is a
coincidence, or will this always be the case?

(e) Based on your results from (b) and (c), what model would you suggest for
the data? Which interactions are significant? Why?

(f) Examine the residuals for the full model, and determine if there are any

issues with the distribution of the residuals. (Hint: Plot the residuals for
each replicate in a different colour or on separate graphs.)

Consider the data shown in Table 4.14, which is for the optimisation of crystal
growth. In crystal growth optimisation, it is desired to produce the heaviest
crystal. Using the concepts presented in this and previous chapters, analyse the
provided data to answer the following questions:

(a)
(b)
©

What is the best model for the data provided?
At what optimal point should the process be operated?
Criticise the experimental design and suggest ways to improve it.
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Table 4.14 Crystal y (grammes) A B C
optimisatiqn data 66 1 -1 -1
(for Question 31) 20 1 ] 1
78 -1 1 -1
920 1 1 —1
75 -1 -1 1
70 1 -1 1
60 -1 1 1
75 1 1 1
90 —1.682 0 0
86 1.682 0 0
68 0 —1.682 0
63 0 1.682 0
75 0 0 —1.682
75 0 0 1.682
105 0 0 0
100 0 0 0
103 0 0 0
95 0 0 0
100 0 0 0
96 0 0 0

Data taken from D. Montgomery, Design and
Analysis of Experiments, 6th edn., Wiley & Sons

Appendix A4: Nonmatrix Approach to the Analysis
of 2*-Factorial Design Experiments

It will be assumed that a 2*-factorial experiment has been designed with ng full
replicates. Furthermore, it will be assumed that all the factors have been coded
so that —1 and 1 represent the upper and lower levels in the experiment. The
same notation as presented in Chap. 4 will be used. Thus, instead of calculating
inverses and transposes, the following simplifications work for a 2*-factorial
experiment:

AT A =247, (4.104)
where 7 is the k X k identity matrix,
(ATA) ™ =27+, (4.105)

f=2"*ATy (4.106)


http://dx.doi.org/10.1007/978-3-319-21509-9_4
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If A is used, then the results are

AT A = 2*ng T, (4.107)
(ATA) ™ = 2% (ng) ' Ts (4.108)

The sum of squares due to errors, SSE, can be computed using the following
formula:

2k
SSE = (ng — 1)) _ 57, (4.109)
i=1

where s; is the standard deviation for the replicates for treatment i. Thus the
standard deviation, ¢, can be determined as

(4.110)

The effect due to each variable can be determined from

Effect = 23 (4.111)



Chapter 5
Modelling Stochastic Processes with Time
Series Analysis

So far with a few minor exceptions, the data used for regression analysis has been
assumed to be independent of time, that is, the same values would be obtained
irrespective of the time or sequence of events. In many process engineering
examples, such an assumption is not necessarily true. The process values change
from sampling point to sampling point and the individual values strongly depend on
adjacent process values, for example, the growth of a crystal is a time-dependent
process. In such cases, analysing the data set using standard regression analysis may
not be appropriate. A data set where the time element is important is often called a
time series. Time series are found in many different fields including economics,
business, social sciences, and of course, science and engineering. The development
of time series analysis methods has often been done in parallel in many different
fields. Three different approaches to the analysis of time series can be considered
(Shumway and Stoffer 2011). The first approach, which will be referred to here as
the transfer function-based approach, seeks to develop a class of suitable models
that describe the observable system using the available information. The internal
dynamics of the system are not considered in this approach. The transfer function-
based approach finds wide application in process engineering, as it forms one of the
main forms of modelling in process control applications. The foundations of this
approach were laid by Box and Jenkins (Box and Jenkins 1970) in the middle part of
the twentieth century. The second approach, which will be referred to here as the
state-space-based approach, seeks to develop an understanding of the internal
process dynamics that can be used to predict the future behaviour of the system.
This approach incorporates the Kalman filter into developing appropriate parameter
estimates. This approach although relatively new is finding more widespread
implementation in process engineering due to its ability to handle complex process
dynamics. The approach is based on the work of Kalman in developing a new
method for dealing with time series data (Kalman 1960; Kalman and Bucy 1961).
Applications of this approach to time series analysis are detailed in Harvey (1991).
The third and final approach, which will be referred to here as the frequency-
domain-based approach, seeks to develop methods for understanding the process

© Springer International Publishing Switzerland 2015 211
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in the frequency domain, that is, what kind of periodic signals are present in the
given data set. In chemical and process engineering, transfer function and
frequency-domain-based approaches are the most common ways of examining
time series. Frequency-domain analysis often uses a Fourier transformation of the
data set to highlight the key frequencies present. A good overview of these methods
can be found in (Bloomfield 2000 and Priestley 1981).

Given the pre-eminence of the transfer function and frequency-domain-based
approaches in process and chemical engineering, these two approaches will be
discussed in greatest detail in this chapter. Nevertheless, information about the
state-space-based approach will also be considered. This chapter will present the
basic, univariate approach to time series analysis, which will be extended in Chap. 6
to consider the multivariate case containing both stochastic and deterministic
components in order to model complex processes for process control, economic
analysis, and simulation development.

5.1 Fundamentals of Time Series Analysis

A time series is a data set whose individual entries are ordered chronologically, that
is, let the time series Y be defined as follows:

Y:{y()7ylay27"'7ym} (51)

where y, represents the data sample at the initial sampling point, y; the data sample
at the first sampling point, and m the total number of samples taken. It should be
noted that the time interval between each of the samples is constant, that is, each
sample is obtained every S seconds or other appropriate time units.

For a time series, it is possible to compute such statistical properties as mean and
standard deviation. However, these values can easily depend on time, that is,
different subsets will have completely different means, for example, a growing
crystal will initially have a small mean value, which will increase as the crystal
grows. Since dealing with changing values can be difficult in many statistical
applications, some assumptions are made about the properties of the time series.

A time series is said to be strictly stationary if the probabilistic behaviour of
every subset of values, {x,, X, ; .. .X, 4 ;} is identical to the time shifted set {x, , ,
Xet+ k+ 1o- - Xp + & +j}, that s,

P(x, <Cly vy Xigj < cj) :P(x,+k <Cly vy Xigkgj < Cj) (5.2)

forallj=1,2,...; all time points  =¢,, t5,. . .; all constants ¢y, ¢5. . .,c;; and all shifts,
k=0, 1, 2,.... Strict stationarity implies that the distribution of variables is the
same at every time instant and that all statistical properties are constant. In practice,
it can be difficult to determine if a single data set satisfies this strict stationary
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condition. Therefore, a weaker version that only constrains the first two moments
has been developed.
A time series is said to be weakly stationary, if:

1. The time series has a finite variance.

2. The mean of the time series is constant and independent of time, that is, =
E(x,).

3. The autocovariance function, defined by Eq. (5.3), is independent of time.

Unless otherwise specified, references to a stationary signal will imply that we are
dealing with the weakly stationary definition.

In order to compute various properties, it is useful to treat each entry in a time
series as a random variable. Therefore, the autocovariance of the time series, y(¢, 7),
at time ¢ and lag 7 can be given as:

y(t,7) =E<(y,—E(y,))(y,+T—E(yt+T))T) (5.3)

The autocovariance of a signal shows the degree of correlation between the signal at
different time periods. It can be noted that the autocovariance at a lag of 0 is always
equal to the covariance of the time series. However, since the values of the
autocovariance are not normalised, comparing different time series can be difficult.
Instead, the normalised autocovariance, or the autocorrelation, p(t, t), is more
useful. Autocorrelation is defined as

p(t,7) = 7(0) - (54)

The autocorrelation, unlike the autocovariance, varies only between —1 and 1.
From the definition of a weakly stationary signal, the autocovariance and autocor-
relation will not depend on ¢. Therefore, the ¢ can be dropped from the computation
to give

(7)) = E((3, = pty) 314 e — 1y)") (5.5)
_r@ _r®)
p(7) = M0 @ (5.6)

where i, is the mean value of the given time series. For a stationary signal, both the
autocovariance and autocorrelation functions are even functions, that is,

p(z) = p(—7) (5.7)

For two stationary time series, X and Y, the cross-covariance, yxy(7), is defined as

rxy(t,7) = E((Xr = px) Veg e — ﬂy)T) (5.8)
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Similar to the autocovariance, this measure is not very useful as it is not bounded.
Instead, the cross-correlation, pxy(7), which is a measure of the correlation between
the two signals, is more useful. The cross-correlation is defined as

E((x = px) 3y e — my)")

pxy(t,7) =
\Voxoy

Two time series are said to be jointly stationary if

(5.9)

1. Both series are stationary.
2. The cross-covariance function for the two time series does not depend on ¢.

Joint stationarity implies that the cross-correlation function can be written as

pxy(7) = — > — (5.10)

In such cases, the cross-correlation function is an odd function, that is,

Pxy(t) = pyx(—1) (5.11)

The final useful type of correlation is the partial correlation, which represents
the amount of correlation between two variables after accounting for any mutual
variables, that is, it is a conditional correlation defined as

cov(x, y|z)

Pxyjz = (5.12)

cov(x|z)cov(y|z)

where Z represents the variables on which conditioning is performed (Franke
et al. 2011). In time series analysis, the most common form of partial correlation
is the partial autocorrelation defined as

CoV(Xy, Xy g c|Xe g1, oo s X 1)

VOV (XX 4 1y e oo Xe e 1)COV(X Xt 1y oy Xe o 1)

pX\Z(T) (5.13)

In partial autocorrelation, the conditioning is performed on all values located
between the two variables of interest. This implies that the effect of the intermediate
variables is removed from the computed autocorrelation between the two variables.
In order to compute this function, it is first necessary to develop the appropriate
models for time series analysis. Further information about computing the values are
provided in Sect. 5.4.1.2.
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5.1.1 Estimating the Autocovariance and Cross-Covariance
and Correlation Functions

The autocovariance and cross-covariance can be estimated using the following
formulae:

m-—rt

70 =—> vl
=1 (5.14)

m-—zT

. 1
Ixy(7) = n_zzxt)’rir

t=1

The parameter estimates given above are biased but more useful. On the other hand,
to obtain unbiased estimates, m can be replaced by m — 7.
The estimated autocorrelation function is defined as

pe) = 1 (5.15)

A _ 7xy(7)
pr(T) - }?XY(O) (516)

The large sample properties for both the estimated autocorrelation and the
estimated cross-correlation functions are similar. The large sample distribution of
p(7) is normal with zero mean and a standard deviation given as

05 = ﬁ (5.17)

where m is the number of data points used to estimate the correlation function. This
relationship applies both for the auto- and cross-correlation functions. The confi-
dence interval for the estimated correlation values can then be written as

t _a
Cl, = 1—2m 5.18
P \/m ( )
In practice, since we have assumed that m is large, then ¢, «)  ~Z, o, =

1.96 =~ 2. This confidence interval is useful in determining which correlation values
are significant and which ones could be equal to zero.
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5.1.2 Obtaining a Stationary Time Series

Since the results presented in this chapter require that a series be stationary, it is
necessary to consider the procedure for obtaining a stationary series. A
nonstationary signal can be made stationary by taking the difference between
two adjacent values. This procedure is called differencing. If the differences them-
selves are not stationary, then they can be differenced until a stationary differenced
signal is obtained. However, it should be noted that differencing will lead to a loss of
information in the signal and can introduce correlations where there are none.

There are two types of differencing: true and periodic. In true differencing, the
difference between adjacent values is taken, that is,

Ay, =y, —y (5'19)

where A represents the difference operator. The value is an approximation to the
derivative at this point. Therefore, to obtain the final model, it will be necessary to
integrate the differenced model.

On the other hand, in periodic differencing, the difference is computed between
values that are some constant distance apart, that is,

Apy, =Yt=Yi—p (5.20)

where p is the period for differencing and A, is the periodic difference operator.
Such differencing can be useful if the data set shows cyclic or periodic behaviour.
This is especially common in econometric or meteorological data series, where a
period of 1 year or 12 months (depending on the sampling) is commonly observed.

5.1.3 Edmonton Weather Data Series Example

Consider the case of a chemical engineer who is involved in the optimisation of a
plastics plant on Refinery Row in Edmonton, Alberta, Canada. After analysing the
available data, it was determined that the summer temperature had an overall effect
on profitability of the plant. For this reason, it was desired to model the mean
summer temperature so as to be able to predict the temperature in the future.

After examining all the available weather data, the data set presented in Table 5.3
for Edmonton was compiled using original data from Environment Canada. Further
information regarding this data set, including all the original data points, can be
found in Appendix AS. The challenge is to use this data set to develop a model of
the mean summer temperature.

A time series plot of the mean summer temperature is shown in Fig. 5.1. In this
example, the autocorrelation of the mean summer temperature will be determined.
Also, the cross-correlation between the mean summer temperature and the mean
spring temperature will be examined. The methods used to compute these plots can
be found in either Chap. 7 for MATLAB®™ or Chap. 8 for Excel®.
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Fig. 5.1 Time series plot of the mean summer temperature in Edmonton

The autocorrelation plot is shown in Fig. 5.2, the partial autocorrelation plot in
Fig. 5.3, and the cross-correlation between the mean summer and spring tempera-
tures in Edmonton in Fig. 5.4. For the autocorrelation plot shown in Fig. 5.2, there
are some salient features that need to be considered. Firstly, it can be noted that at a
lag of zero, the autocorrelation is, as expected, 1. Secondly, it can be seen that all of
the autocorrelations are located above the 95% confidence interval for significance.
Note that the confidence intervals are equal to 2/\121 = 0.18. This suggests that all
of the observed correlations are significant. Finally, there seems to be a weak, but
noticeable, 8-lag oscillation.

The partial autocorrelation plot for the mean summer temperature in Edmonton,
shown in Fig. 5.3, has the same format as the autocorrelation plot. Unlike in the
autocorrelation plot, here, there are values located both inside and outside of the
confidence region. A similar pattern to that previously observed can be seen here,
that is, the values are significant at multiples of some constant. In this case, the
significant partial autocorrelation values are located at lags of 1, 2, 3, and 8. This
suggests a potential 2-year seasonal component (with values at 2, 4, 6, and 8).

The cross-correlation plot shown in Fig. 5.4 between the mean summer and
spring temperatures has a similar format to the previously considered autocorrela-
tion plot. The confidence interval is, as was previously noted, the same as for the
autocorrelation plot. The salient feature is the 4 largest lags at —20, —16, 3, and 4.
At this point, it would be useful to comment briefly about the meaning of these
values. Since the formula for computing the cross-covariance can be written as
Y: + - =X, or equivalently y,=x, _ ., we can see that positive values correspond to a
relationship between past values of x (or in our case, the mean spring temperature)
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Fig. 5.2 Autocorrelation plot for the mean summer temperature in Edmonton. The thick dashed
lines show the 95% confidence intervals for the given data set
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Fig. 5.3 Partial autocorrelation plot for the mean summer temperature in Edmonton. The thick
dashed lines show the 95% confidence intervals for the given data set
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Fig. 5.4 Cross-correlation between the mean summer temperature (y) and the mean spring
temperature (x) in Edmonton. The thick dashed lines show the 95% confidence intervals for the

given data set

and current values of y (the mean summer temperature). Negative lags correspond
to future values of x impacting a current value of y. Since we are interested in
developing a model for y, a future lag relationship is not too useful, as it would
imply that we will need to know values about the mean spring temperature in years
that have not yet occurred. Since this requires either a good crystal ball or another
model with its own inherent imperfections, the negative lag correlations are not
terribly useful for the stated purpose. Therefore, the only two lags of interest are the
positive ones at 3 and 4 years.

5.2 Common Time Series Models

In order to describe different time series models compactly, it is necessary to
introduce the z- or forward shift operator." It is defined as

Vi1 =2V (5.21)

"In the literature, different definitions can be found leading to slightly different overall forms,
especially when it comes to the analysis of the model properties. The approach taken here is the
most common, especially in the process control field.
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that is, the forward shift operator shifts the time forwards by one sample. Similarly,

27" or the backshift operator performs the opposite job of the forward shift

operator, that is,
Yeo1 = Zﬁl)’t (5'22)

or a backward shift of one sample.
This implies that the differencing formulae can be rewritten as

Ay, =y, — Z_lyt = (1 - Z_l)yt (5'23)
and
Ay, =y —zty= (1 _Z_p))’t (5-24)

The most general, time series model called a seasonal, autoregressive, inte-
grated, moving-average (SARIMA) model of order (p, d, q) x (P, D, Q) has the
form

Ap(z)A,(z7)(1 - z_‘“)D(l - z_l)dy, =Bo(z")B,(z7 e, (5.25)

where Ap(zfl) and Bq(zfl) are polynomials in 27! of the form

A,z =1+ zp:aizfi
! | (5.26)
Be ) =1+ pe

i=1

a; and f; are the parameters of the corresponding polynomial, and Ap(z—°) and
Bo(z™) are defined as

P
Ag(z™) =14 ayz ™"
o (5.27)
Bp(z) =14 fz "

i=1

The process to be modelled is denoted by y, and e represents an independent,
random variable drawn from a Gaussian distribution at each time instance, ¢. The
model can be split into two components: the seasonal component and the conven-
tional component. The seasonal component concerns those polynomials that
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contain an s in their power representation and have orders given by capital letters,
that is, polynomials Ap By, and (1 — 2P, The remaining terms (A, B, and
(1 =z~ Y% are called the conventional component. In practice, various simplifica-
tions are made to this model. The following are the most common simplified
models:

1.

Autoregressive Model: in this model, all polynomials except the Ap(z*l)-
polynomial are assumed to have zero order. This gives a model of the form

1 1
Y AED Y T A

(5.28)

It is called an autoregressive model because the model solely depends on the
past values of the process itself, that is, Eq. (5.28) can be written as

o=y, tmy o+ tayy, e (5.29)

The pure seasonal autoregressive model is similarly defined but solely con-
siders the seasonal component given by Ap(z™~).

. Moving-Average Model: in this model, all polynomials except the Bq(zfl)-

polynomial are assumed to have zero order. This gives a model of the form
v, =B,(z7")e, =B(z7")e, (5.30)

It is called a moving-average model, since it computes the (weighted) average
of the past random values. Eq. (5.30) can be written as

yi=e+pe—1+pe 2+ +pe—y (5.31)

The pure seasonal autoregressive model is similarly defined but solely con-
siders the seasonal component given by Bpo(z ™).

Y =Bo(z7)e; (5.32)

. Integrating Model: in this model, all polynomials, except (1 —z~")%, are assumed

to have zero order. This gives a model of the form

1

=l (5.33)

e =

It is called an integrating model because the error is continually added to the
previous values, that is, for the case, d =1, Eq. (5.33) can be written as

y=y_+e (5.34)

The integrating model is often also called the random-walk model, since the
time series plot of the data can resemble a person walking randomly along the
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xy-plane. The pure seasonal integrating model is similarly defined but solely

considers the seasonal component given by (1 — z~*)".

4. Autoregressive, Moving-Average Model (ARMA): this model combines the
autoregressive and moving-average models but ignores the seasonal and inte-

grating components to give a model of the form

€ (5.35)

Another type of model that can be used to describe a time series is the infinite-
order moving-average, also known as the causal form of the model, which is
defined as

Ve = Zhjef*j (5.36)
izo

where £ is the impulse response coefficient that can be obtained by performing long
division with the polynomials in the general model. The first term of the error impulse
response model, A, is traditionally equal to 1. This model is commonly encountered
in many theoretical applications. The corresponding form in terms of the noise term is
called the invertible form of the model and is defined as

.
e=) ki, (5.37)
j=0

where k is defined analogously to /4 in the causal form.

In order to understand the different properties of these models, the next section
will examine the theoretical behaviour of the different models. This will provide
insight into methods that can be used to estimate some of the required parameters.

5.3 Theoretical Examination of Time Series Models

The theoretical examination of time series models considers the computation of
theoretical properties and their interpretation. These results will allow us to develop
different methods for modelling and understanding time series.

For the analysis of time series models, two concepts need to be introduced:
causality and invertibility. A process is said to be causal, if and only if, the current
value of the process can be determined solely using past or current values of the
process. This means that no unavailable, future values of the process are required. A
process is said to be causal if and only if all roots of the denominator (i.e. the A-
polynomials) lie inside the unit circle in the complex domain, that is, |z| < 1. Under
such circumstances, a causal process is also stationary. Furthermore, for a causal
process, the infinite-order moving-average model will converge to a finite value.
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A time series process is said to be invertible if and only if the inverse process is
also causal, that is, if y,=Le, and then if e,:L_ly, is causal, it is said that the
original process is invertible. Furthermore, this implies that an invertible form of
the model converges to a defined value. Clearly, if the denominator of the model
determines causality, then invertibility will be determined by roots of the numerator
of the original process (i.e. the B-polynomials) lying inside the complex unit circle,
that is, |z| < 1. Invertibility arises in the analysis of moving-average processes,
since it can be impossible to distinguish between two different moving-average
processes by solely examining their output, that is, y,.

5.3.1 Properties of a White Noise Process

Before considering the different types of models mentioned above, it is instructive
to first examine a white noise signal. A white noise signal is defined as

Ve =€ (538)

where e, ~ 9M(0, ¢°). Furthermore, it is assumed that the individual values are
identical (same distribution) and independent. The mean of this signal is

Hy =E(y)=E(e) =0 (5.39)
The autocovariance is

2 =0

0O =Ebo ) =Elae-) = {5 oo (540

The result follows from the fact that the signal values are independent of each other.
This implies that for two values e; and e, _ ., 7 # 0, the expected value will be zero.
This is a very useful property of a white noise signal. The autocorrelation will then
be O for all |z| >0 and 1 for = 0. This implies that a white noise signal will have a
single peak on a autocorrelation plot at = 0. All other values will be zero. A pure,
white noise signal is always invertible and causal.

5.3.2 Properties of a Moving-Average Process

This section will examine the properties of a moving-average process, MA(g),
defined as

q
=etpe_1thhe ot tBe—g=> B (5.41)
i=0
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where, as before, ¢, ~ 91(0, 02) and the individual values are identical (same
distribution) and independent. It should be noted that, by convention, fy = 1. The
mean of the process is easy to compute as being equal to 0.

Theorem 5.1 Autocovariance of a Moving-Average Process. The autocovariance
of a moving-average process can be written as

q—7
)/(T) — ;}ﬂiﬂﬂrrdz T S q (542)

0 otherwise

Proof Substituting the definition of a moving-average series (Eq. 5.41) into the
definition of the autocovariance (Eq. 5.3) gives

q a
r(7) :E<Zﬁieti2ﬁjetj+q> (5.43)
=0 =0

Multiplying through Eq. (5.43) gives

r(r) = (iﬁiE <etiiﬂjefj+r>>
i=0 =0

. (5.44)
= (ZﬂiE(ﬂOet—ieH—‘r the—ierio—1+-- +ﬂq€r—i€r—q+r)>
i=0

From the definition of a white noise signal, the autocovariance will be nonzero if
and only if the two white noise realisations have the same subscripts. Therefore,
solving for the subscripts gives

t—i=t—j+r7 (5.45)
j=i+r7 '
Thus, the only nonzero terms inside the expectation sign will be the terms such that
j=1i+ 7. This implies that Eq. (5.44) can be rewritten as

r(z) = <§qjﬂ,~ﬂi+162> (5.46)
i=0

Now, it should be noted that the values of j3; for j > ¢ will be equal to zero. Therefore,
setting j = ¢ in the subscript equation gives that i < g — 7. Furthermore, for lags 7 > ¢
there will not be any nonzero parameters (at least one of the two parameters will be
zero), and so the sum will be zero. Therefore, Eq. (5.42) is obtained. Q.ED.
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Corollary 5.1 Variance of a Moving-Average Process. The variance of a moving-
average process can be written as

r(0)=3 pio (5.47)
i=0

Proof Setting 7 =0 into Eq. (5.42) will quickly give the above solution. Q.E.D.

Corollary 5.2 Autocorrelation of a Moving-Average Process. The autocorrelation
of a moving-average process can be written as

q-t
Zﬁiﬁi-‘rr
i=0

pr)=1{ & T4 (5.48)
DM
i=0
0 otherwise
Proof From Eq. (5.42) and the definition of autocorrelation. Q.E.D.

For a moving-average process, it can be seen that the autocorrelation will
decrease from 1 at a lag of zero to a value of O for all lags greater than ¢. This
suggests that plotting the (estimated) autocorrelation function of an unknown
moving-average process can reveal the underlying order g.

Example 5.1: Example of a Moving-Average Process
Consider the following moving-average process:

y.=e+ 05¢ |+ 0.le;, ,

where e, ~ (0, 4) is a Gaussian, white noise process. Compute the mean,
variance, and general autocorrelation function for the process. Compare with
the results from Corollary 5.2.

Solution
The mean value can be computed as follows:

#y=E(y,) = E(e; +0.5¢, - +0.1e,_»)
= E(e,) + O.SE(€t7 1) + O.lE(etfz)
=0

(continued)
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Example 5.1 (continued)
since E(e;) = E(e, _ 1) = E(e, _ ) = 0. The variance can be computed as follows

o) = E(y,y,) = E((e; + 0.5¢, 1 +0.1¢,_3)(e; +0.5¢; -1 4 0.1¢; _5))
= E(ese;) + 0.5E(e;—1e;) + 0.1E(e; —2e;) + 0.5E(e;— 1€;)
+0.5%E(e; 1, 1) +0.1(0.5)E(e; _se; 1) + 0.1E(e; se;)
aF OS(OI)E(Q, 1€ — 2) =F 0.12E(€,,2€,, 2)
=062 +0.5%6> +0.16> = 1.26(4) = 5.04

Note that only the terms where the subscripts are equal have a nonzero value.
All other values are zero. The autocovariance function for z >0 can be
computed as follows

y(z)= E(y,y,JrT) =E((e;+0.5¢,—1+0.1e,—2)(er+.+0.5¢;, 14, +0.1e,—24,))
=E(ee;+.)+0.5E(e,—1e4.) + 0.1E(e,— e, 4+ )+
0.5E(e;_ 11 re;) +0.5%E(e,_ 146, 1) +0.1(0.5)E(e; _2e, 1 4 )+
0.1E(e;_2 4 ¢;) +0.5(0.1)E(e,_ 1€;—24:) +0.12E(e; _ 5 4 16,_2)

Again, the only significant terms will be for those whose subscripts are equal
at the given lag. For 7= 1, we get

y(1) = 0.5E(ese;) +0.5(0.1)E(e; _ e, 1) = 0.556% = 0.55(4)
=22

Similarly, for z=2, we get

7(2) =0.1E(ee;) = 0.16* = 0.1(4)
=04

For > 3, the autocovariance will be zero. Since p(r) =y(z)/y(0), the auto-
correlation function becomes

1 =0

= T=1
=37 T2,
63

0  otherwise

This is identical to the results obtained using the formula in Corollary 5.2.
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Example 5.2: Simulation of a Moving-Average Process

Consider the same moving-average process as in Example 5.1, which has
been simulated for 2,000 samples. Examine the provided autocorrelation plot
and compare it with the values obtained previously. The results are shown in
Fig. 5.5.

Solution

As expected, the autocorrelation plot has only three significant peaks
(at =0, 1, and 2). The estimated values are close to the theoretical values.
Notice that even though the values for 7 > 3 should be zero, we see some of
them being on the boundary or slightly over. This will always be the case with
estimated values, which makes the exact determination of the order slightly
more complicated. Nevertheless, for a moving-average process, the autocor-
relation plot does allow for the process order to be estimated.
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Fig. 5.5 (Left) Time series plot of the given moving-average process and (right) auto-
correlation plot for the same process

Since a moving-average process does not contain a denominator, it is always
causal. However, it may not always be invertible. Consider a simple MA(1) process
where f, =2 and ] = 27! = 0.5. It is easy to see that both will have the same
autocorrelation function. In fact, this is true for any pair of values, f; and /31’1.
Furthermore, the autocovariance function for both | = 2 with 6> =1 and 8/ = 0.5
with 6® =4 will be the same. This implies that it will be impossible to distinguish
these two pairs solely by examining y,. Unfortunately, since y, is the only informa-
tion about the process that we have, it is necessary to break the tie somehow. In this
case, the best choice is to take the one that is invertible, that is, its inverse process is
causal. Invertibility can be useful when dealing with process analysis.
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5.3.3 Properties of an Autoregressive Process

This section will examine the properties of an autoregressive process, AR(p),
defined as
P
Y= =My Yo7 T ApYy p =6 Zath—i
i=0

1
Sl taz  tazr it tar P

e (5.49)

where, as before, ¢, ~ (0, 02) and the individual values are identical (same
distribution) and independent. In order to simplify the computation of the various
properties of an autoregressive process, it is useful to recast the process into its
equivalent infinite moving-average form, that is,

)4 o0
Vi =€ — Zaiytfi = Zhietﬂ' (5.50)
=0 =0

The coefficients /; can be obtained by performing long division on the original
polynomial expression given in Eq. (5.49).

The mean value of the autoregressive process can be computed using Eq. (5.50),
that is,

o0
Hy =E(y,) = ZhiE(e,_,-) = 0, if the series converges (5.51)
i=0
Clearly, if the series does not converge, then the mean value cannot exist.

Theorem 5.2 Autocovariance of an Autoregressive Process. The autocovariance
. . 2
of an autoregressive process can be written as

() = Z (_LMGZ (5.52)

where 6 are the distinct, possibly complex, roots of the A-polynomial and ¢ are the
partial fraction coefficients, that is,

2The presented formula assumes that there are no repeated roots in the decomposition of the
function. If there are repeated roots, then the value can be obtained by either taking the limit of the
above equation as two of the roots approach each other or looking at Appendix A3 of (Shardt
2012a), which presents a detailed method for the symbolic computation of the cross-covariance for
two arbitrary time series.
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1 LN
= == ! 5.53
Y 1—&—a]z“—l—azz—z—l—---—l—al,z—l’et ;1—&-&81 (5:53)

Proof Consider a causal, autoregressive process that can be written as follows:

1

=
H —1—9271

i=1

Y, e, (5.54)

where 6; are the distinct, possibly complex, roots of the A-polynomial. By partial
fractioning, Eq. (5.54) can be rewritten as

= ¢

= —_— 5.55
i = 1+95271€[ ( )

Noting that, for any causal autoregressive process where |0] < 1,
1 o0

=> (=02 (5.56)

140;z7! =

Equation (5.55) can be rewritten as

p 00

Y= Z¢iz (=0:Yer—; (5.57)

Since we are interested in the autocovariance, we can write the autocovariance as

<<Z¢’i Yer j) (iqsz ) (_Hf)ketk+1>> (5.58)
i=1 j=1 i=1 k=1

Similar to the solution for the moving-average process, the only terms that are
significant are those whose subscripts are the same, that is,

t—j=t—k+1
k—jtr (5.39)

Noting and keeping only those terms that are feasible as defined by the subscripts
and substituting this into Eq. (5.58) gives

=D e ;> (=0 (=0 "TE(er—jer ;) (5.60)

I=1i=1 j=1
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Using Eq. (5.56) in reverse and relabelling the indices gives
L2 (<6) ¢ty
rD) =3 > 4) 52 (5.61)

Q.E.D.

Corollary 5.3 Variance of an Autoregressive Process. The variance of an
autoregressive process can be written as

2 o 3 L ¢i¢j 2
o =70)=>_>" g ® (5.62)

i=1j=1 iv]

Proof Setting 7 =0 into Eq. (5.52) will quickly give the above solution. Q.E.D.

Corollary 5.4 Autocorrelation of an Autoregressive Process. The autocorrelation
of an autoregressive process can be written as

(5.63)

Proof From Eq. (5.52) and the definition of autocorrelation. Q.ED.

For an autoregressive process, it can be seen that the autocorrelation does not
have an abrupt end point; rather, it continues to decay and slowly approach 0. This
means that it is not possible to determine the order of an autoregressive process
from the autocorrelation plot. Instead, we need to consider the partial autocorre-
lation function (PACF). It can be shown (see Sect. 5.4.1.2 for the details) that the
PACF of an autoregressive process stops after g lags. This makes the PACF
analogous to the ACF for a moving-average process. In fact, for a moving-average
process, the PACF will decay for all lags.
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Example 5.3: Example of an Autoregressive Process
Consider the following autoregressive process

¥, =05y, +e
where e, ~ 91(0, 4) is a Gaussian, white noise process. Compute the mean,
variance, and general autocorrelation function for the process.

Solution

Before computing any of the required values, let us first rewrite this into the
infinite moving-average form. Rewriting the process into the transfer function
form gives

1

I T 051

From the derivation for the autocovariance, Eq. (5.56) gives that the infinite
moving-average form will be

Y, = ZO.Sief_i
i=0

The mean value can be computed as follows:

ny=E(y) =E (Zo.sfe, )
i=0

Note that only the terms where the subscripts are equal have a nonzero value.
All other values are zero. The autocorrelation function for z>0 can be
computed using Corollary 5.4 to give

(continued)
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Example 5.3 (continued)

‘L’

ZZ 1_¢¢/ 21221: gg o

_i=1lj=1 i=1j=1 1—0.527 T
p(T) p P ¢¢j _ 1 1 ¢¢ 1 =05
i j _
Z:Z:]_gig. Zzl 1-0.5°
i=1lj=1 J i=1lj=1

This result clearly shows the behaviour of the autocorrelation function for an
autoregressive process and its difference from the moving-average process.

Example 5.4: Simulation of an Autoregressive Process

Consider the same autoregressive process as in Example 5.3, which has been
simulated for 2,000 samples. Examine the provided autocorrelation plot and
compare it with the values obtained previously. The results are shown in
Fig. 5.6.

Solution

As expected, the autocorrelation plot decays slowly to zero. The first three
values are close to the theoretical values of 0.5, 0.25, and 0.125. As well, note
that the estimated autocorrelation values for large lags are relatively impre-
cise, since in reality the value could easily be close to zero. For comparison
purposes, the partial correlation plot is shown in Fig. 5.7 for both the AR(1)
process considered in this example and the MA(1) process considered in
Example 5.1. Here it is quite obvious that the autoregressive process has a
single spike at a lag of 1, while the moving-average process has at least
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Fig. 5.6 (Left) Time series plot of the given autoregressive process and (right) autocorre-
lation plot for the same process

(continued)
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Example 5.4 (continued)
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Fig. 5.7 Partial autocorrelation plot for (left) AR(1) and (right) MA(2) processes

two significant points. The difference between the expected and observed
behaviours can be attributed to the fact that these are simulation examples, for
which there will be a wide range of possible outcomes.

5.3.4 Properties of an Integrating Process
The integrating process, also known as the random walk, is defined as

ye=e+y_y = (5.64)

—z
It is easy to see that an integrating process is unstable, since z = 1. Therefore, the
mean value for this process is undefined. The theoretical autocorrelation will be a
uniform 1 for all lags. Practically, when estimating the autocorrelation, it will very
slowly decrease as a function of the lags (Wichern 1973; Hassler 1994). This makes
it difficult to distinguish from a true autoregressive model with a =~ 1. In practice, if
the data do not look stationary, then it is quite likely that the process contains an
integrator rather than a slowly varying autoregressive component.

Example 5.5: Simulation of an Integrating Process

Simulate an integrating process for 2,000 samples and compare it with an AR
(1) process with a; = —0.98. Compute the sample autocorrelation and partial
autocorrelation functions. Compare and suggest ways to distinguish the two
cases. The simulation results are shown in Fig. 5.6. The Gaussian noise for
both processes is the same (Fig. 5.8).

(continued)
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Example 5.5 (continued)
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Fig. 5.8 (Top) Time series plot, (middle) autocorrelation plot, and (botfom) partial auto-
correlation plot for (left) integrating and (right) AR(1) with @ = —0.98 processes

Solution

First, it can be noted that the integrating process has a much larger deviation
from the mean value than the causal autoregressive process with uneven
distribution about the mean. The autocorrelation plot shows that the value
for both decays slowly. However, for the autoregressive process, it is much

(continued)
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Example 5.5 (continued)

faster than for the integrating process. On the other hand, for the partial
autocorrelation plot, the overall behaviour is quite similar. Both have two
peaks (at zero and one), but the values of the peaks are quite different. For the
integrating process, the value is exactly one for both peaks, while for the
autoregressive process, the value is, as expected, less than one (= 0.9856).
This suggests that in addition to identifying the order of the autoregressive
component, the partial autocorrelation plot can be useful in separating inte-
grating processes from other types of autoregressive processes based on the
value of the lag 1 term.

5.3.5 Properties of ARMA and ARIMA Processes

The autoregressive, moving-average process denoted as ARMA(p, ¢) is one of the
most common times series models that can be used. It has the general form given as

B(z") 1 +4pz A
71—|—a12"—|—---—|—apz"’

e (5.63)

This model combines the properties and behaviour of both the moving-average and
autoregressive processes. Therefore, it will be causal if its AR component, denoted
by the A-polynomial, has roots inside the unit circle. It will be invertible if its
MA component, denoted by the B-polynomial, has roots inside the unit circle.
Similarly, the autoregressive, integrating, moving-average process, denoted as
ARIMA(p, d, g), has the general form given as

B(z™! L+pz 4+ gz d
y, = () e = ! q <€ (5.66)
Az7H(1 —z71 (I+aiz '+ +apzr)(1—z71)

The autocorrelation function for an ARMA process can be computed exactly (for
details, see Appendix A3 of Shardt 2012a). In general, the determination of the
orders can be estimated by examining the autocorrelation and partial autocorrela-
tion plots. In most cases, it is desired to obtain an approximate value for these
parameters to be used as an initial estimate for the identification procedure.
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Example 5.6: Simulation of an ARMA Process
Consider the following ARMA(2, 2) process:

_14027' — 05272
1204140522

Determine the causality and invertibility of this process. Simulate it for 2,000
samples and obtain estimates for the autocorrelation and partial autocorrela-
tion functions. Can the true orders be determined?

Solution

The causality of this process is determined by considering the roots of the
denominator, that is, 1 — 0.4z~ ' + 0.5272. Using the quadratic formula, gives
two roots, z=0.2 & 0.678i. Computing the absolute value (or modulus) of the
roots gives |z| =0.7071 < 1. Since this value is less than 1, it can be concluded
that the process is causal. Likewise, for invertibility, considering the numerator of
the process, we get that the roots are z=0.61414 and —0.81414. Since the
absolute value of both roots is less than 1, it can be concluded that the process
is invertible.

The simulation results are shown in Figs. 5.9 and 5.10. First, it can be
noted that both the autocorrelation and partial autocorrelation plots do not
show any clear behaviour or cutoff points. The autocorrelation plot does not
decay exponentially to zero; rather around a lag of 4, there is some unex-
pected behaviour. Furthermore, both plots show values that alternate in sign.

6
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Fig. 5.9 Time series plot of the ARMA process

(continued)
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Example 5.6 (continued)
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Fig. 5.10 (Left) Autocorrelation plot and (right) partial autocorrelation plot for the ARMA
process

This behaviour is common if any of the roots are complex numbers. Since we
are dealing with a real process, this observation implies that there must be at
least 2 (or a similar even number of) such complex roots, that is, the order is at
least 2. For both plots, the largest peaks occur at a lag of 2. This reflects well
on what we know about the process.

5.3.6 Properties of the Seasonal Component of a Time Series
Model

There are three seasonal components: the seasonal autoregressive component defined as

v, = Ap(lZ_S) e =1 o +1' e —— e (5.67)
the seasonal moving-average component defined as
¥, =Bo(z7%)e, = (1 +pz 4 —i—ﬁQz*Q‘Y)e,, (5.68)
and, finally, the seasonal integrating process defined as
1
YW= ———p (5.69)

(1—2z7)

The properties of the seasonal components are similar to those of the corresponding
base components after taking into consideration the seasonal component. This can be
accomplished by replacing the z~' in the base polynomials by z* to yield the seasonal
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forms. The mean and variance will stay the same. The autocovariance and autocorre-
lation can be computed by replacing 7 in the base formulae by zs. At all other points,
the values will be zero. A similar transformation applies for the partial autocorrelation.
This implies that the seasonal component can be identified by noting consistent gaps in
the process between significant values. For example, the autocorrelation for the
seasonal autoregressive component can be computed as follows:

k
Zp: zp: (_9./’) S¢i¢j
== o0 ks Vk € N
T=ks
p(r) = 2 zf’: bi; (5.70)
i=1j=1 1 —6:6;
0 otherwise

Example 5.7: Simulation of the Seasonal Component
Simulate the following seasonal processes for 2,000 samples and comment on
their autocorrelation and partial autocorrelation plots:

1
1—2z-5

1

N =Tt = (140527 =02 e, y; =

(7

Solution

The simulation results are shown in Figs. 5.11, 5.12, and 5.13. In all cases, the
autocorrelation and partial autocorrelation functions show only significant
values at multiples of a seasonal component. In all other cases, the results are
very similar to those previously considered with the autocorrelation function
being useful to show the moving-average values and the partial autocorrela-
tion function useful for the autoregressive and integrating processes.
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Fig. 5.11 (Left) Autocorrelation plot and (right) partial autocorrelation plot for the
seasonal autoregressive process

(continued)
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Example 5.7 (continued)
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Fig. 5.12 (Left) Autocorrelation plot and (right) partial autocorrelation plot for the
seasonal moving-average process
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Fig. 5.13 (Left) Autocorrelation plot and (right) partial autocorrelation plot for the
seasonal integrating process

5.3.7 Summary of the Theoretical Properties for Different
Time Series Models

A useful summary of the different properties of the common time series models is
shown in Table 5.1. This summary is very useful when trying to determine the
initial orders for the data set.
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Table 5.1 Summary of the theoretical properties of different time series models

Partial
Model Form Autocorrelation p(z) | autocorrelation
Pure white noise yi=e, Single peak at z=0 | Exponential decay
Moving average, MA(q) |y, =B"h q significant peaks Exponential decay
Autoregressive model, 1 Exponential decay | p significant peaks
AR(p) TSI
Integrating process, 1(d) . 1 Theoretically: Two peaks at
Y= (1 ,Z—l)de[ always 1. 7=0and 1, both with
Practically: very value 1.
slowly decaying
values.
Autoregressive, B(z") A combination of the MA and AR graphs
moving-average model, |V = Az er from which an estimate of the orders can be
ARMA(p, q) obtained.
Seasonal component Replace z~' by z*in | The graphs are the same as above, except that
the above formulae. | there is now a space of s between each of the
peaks.

5.4 Time Series Modelling

Having examined the different theoretical properties of time series models in the
previous sections, it is now possible to consider the modelling of the time series
given some data set. There are two separate steps in this procedure: determining the
model orders and determining the model parameters. The model orders determine
the type of model that will be used, while the model parameters provide the actual
values for the model. The general, time series modelling procedure can be
summarised into the following steps:

L.

Stationarity Testing: determine if the data set is stationary, by examining the
data set itself, its autocorrelation, and its partial autocorrelation plots. If there is
evidence of an integrator, difference the data, and repeat the procedure with the
differenced data until the data are stationary. This will give the value of d and D.
Note that it may sometimes be necessary to transform the data by applying a
nonlinear transformation, for example, y, =log(y,).

. Model Order Determination: using the (differenced) data, determine the model

orders for the process. Model orders are determined by examining the autocor-
relation and partial autocorrelation plots for the data set combined with the
information presented in Table 5.1. This will give the values of p, P, ¢, and Q.

. Model Parameter Estimation: using the selected model orders and an appropri-

ate method, estimate the model parameters.

. Model Validation: validate the model by examining the residuals. If the residuals

satisfy the assumptions, then consider the model to be sufficient. Otherwise,
change the model orders (including, if necessary, the value of d and D) or try a
nonlinear transformation of the data. One can continue as long as one wants on
this step.
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5.4.1 Estimating the Time Series Model Parameters

Estimating the model parameter values is in general performed using one of two
methods: the method of moments leading to the Yule-Walker equations or the
maximum-likelihood method. Although the Yule—Walker equations are simpler,
they only provide an efficient estimator for autoregressive models. Also, the Yule—
Walker equations are useful for estimating the partial autocorrelation function.
Least-squares estimates are also possible, but they are difficult to solve analytically
due to the complex nature of the models.

5.4.1.1 Yule-Walker Equations for Estimating an Autoregressive Model
Consider the standard autoregressive model given by Eq. (5.49)

Yr=€ =1y =Yg ="~ 0pY_p (5.71)

Multiply this equation by y,, ¥, _1,. .. ¥, _ ,, and take the expectation of the resulting
p + 1 equations to give

7(0) = 6* —ay(1) — aay(2) — -~ —a,y(p)
]/(1) : _QIY(O) —(12]/(—1) _"'_aﬁy(l —[7) (572)
y@)¥—mﬂp—0—aw@—2%~~—aﬂ®)

Re-arranging this system of equations into matrix form gives

F=-ra (5.73)
where @ is the p x l-row vector {(aj,as,..., a1,>T, I' is the p X p-matrix of
autocovariances defined as

r(0)  y(1) - r(p—1)
r(1)  r(0) y(1) - y(p—2)

I = : : (5.74)
rip=1) - - y(1)  y(0)

and 7 is the p x 1-row vector (y(1),7(2),...,7(p))". Using the method of moments
approach and using the estimated autocovariances in place of the true values, it is
possible to obtain an estimate for & and ¢°. The resulting equations are’

3Since I is symmetric, I'7 =T
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Q>
[
I
=»>
<>

0) — 771!

7 (5.75)
_1"—17

KL
I

An equivalent formulation in terms of the autocorrelation function gives
p=-Pa (5.76)

where @ is the p x l-row vector {(ay, as, . . ., a,,}T, P is the p X p-matrix of autocor-
relations defined as

p— 5 L 2 (5.77)

plp—=1) -+ o p(1) I
and § is the p x l-row vector (p(1).p(2).....p(p))". Parameter estimates
obtained with either method will give the same result.

Although it is possible to solve this system of equations directly, computation-
ally, it can be better to solve them using an iterative approach. The most common
such method is the Durbin—Levinson algorithm (see Sect. 5.4.4.1 for an explanation
of this method).

The Yule—Walker estimators can be shown to be asymptotically normally
distributed (Shumway and Stoffer 2011), such that

R 2[*71
&—aNm@f ) (5.78)
m

6% ~ 6

where m is the number of data points used in the estimation. This implies that

approximate 100(1 — a)% confidence intervals for the parameters & can be
constructed as

. !
ai:ttl,%,m,pa m (579)
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Example 5.8: Fitting an AR(2) Process Using the Yule-Walker
Equations
The following AR(2) process

y=14y,_,—-05y,_,+e

was simulated for 100 samples (provided in Sect. A5.2). Using the Yule—
Walker equations, fit an AR(2) model to the data and comment on the
resulting parameters. Compute the 95% confidence intervals.

Solution
Using the sample autocovariance formula, the sample autocovariances are

7(0) = 13.6002, 7 (1) = 12.5275, 7 (2) = 10.7976

The required matrices then become

SR>

= [12.5275 10.7976]"

= 13.6002 12.5275
T 12,5275 13.6002

Solving the Yule—Walker equations gives

~ _ [13.6002 12.5275 '112.5275
@ =7 1125275 13.6002 10.7976
B -1 13.6002  —12.52751[12.5275
T 13.6002%2 — 12.52752 | —12.5275  13.6002 10.7976
_[-1.2527
~| 0.3599
T —1
g _ [12.5275]7[13.6002 12.5275 12.52757
& =10E [10.7976} [12.5275 13.6002] [10.7976]_1'7937

The 95% confidence bound, which in this case will be the same for both
parameters, can be computed as

0.485 25
8 =1.96(1.7937)"% |00 = 0-18286

(continued)
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Example 5.8 (continued)
This implies that the confidence intervals for the two parameters are

SI8

_ | —-1.25£0.18

~ ] 0.36+0.18

We can see that the confidence interval for both parameters covers the true
values.

5.4.1.2 Computing the Partial Autocorrelation Function

In order to compute the partial autocorrelation function, assume that the process of
interest can be modelled as a r-order autoregressive process. Note that it does not
matter what model the true process has. Set up the 7-order Yule—Walker equation in
the form given by Eq. (5.76). It can be shown that the partial autocorrelation of lag =
is equal to —a, that is, the final parameter that is estimated (Franke et al. 201 .2
Practically, rather than computing all the parameters, it is easier to simply compute
the final desired value using Cramer’s rule, that is,

Pr
pX‘XHlv“vX’*f*‘(T) - |||Pr| (580)

*

where ||-|| is the determinant of a matrix and P? is the P, matrix with the rth column
replaced by pg. Equation (5.80) gives that

Px, oo (1) = p(1) (5.81)
and
I O] I
PXIX, 1y Xes e ( H ZE? H :p(lz)__p(pl(;z) (5.82)
1

Theoretical values for higher-order partial autocorrelation values can be similarly
computed. In practice, the Durbin—Levinson iterative method is used to compute
the required partial autocorrelations (see Sect. 5.4.4.1 for an explanation of this
method).

*The negative sign arises from the way the model has been defined.
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Example 5.9: Partial Autocorrelation for an AR(1) Process
Consider the standard first-order autoregressive process and compute its
partial autocorrelation values.

Solution
From Corollary 5.4, the autocorrelation for a first-order process can be written as

ple) = (~ar)"

Therefore, the partial autocorrelation function can be written as

pX|X,+1,...,X,+,,1(1) =p(l) = (_0‘)1 =—«a

_p@)=p(1) _ (=a)’ = (-a)’ _
pX\X/+1,...,X,+T,1( )= 1—p(1)2 T (—a)2 =0

pX‘le,w,prfl(T) =0 forz 2 3

This shows that, as previously mentioned, the partial autocorrelation function
can be useful in identifying the order of the autoregressive function.

The partial autocorrelation function can be estimated by replacing the true
autocorrelations with the estimated ones. The statistical properties of the estimated
partial autocorrelation function are identical to those of the estimated autocorrela-
tion function, that is,

1
GﬁX‘XrJrl,...,rJrr—l = \/—% (583)

where m is the number of data points used in estimating the partial autocorrelation
function.

5.4.2 Maximum-Likelihood Parameter Estimates for ARMA
Models

Assume that the ARMA process of interest can be written as an infinite-order
autoregressive process, that is,

Az
B(z

e =

—1 00
_1;ytyt+zwiyti (5.84)

i=1
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where w is the coefficient obtained upon performing long division on the term A/B,
which can be rewritten as

00
Vi = sz'yt_,- +e (5.83)

i=1

Assuming that the residuals (or e,) are normally distributed, then

Y=,V ym)T will have a multivariate normal distribution with a probabil-
ity density

-1 A —m —U. 1 - —1 =
p(519) = n) A exp( 515 (5.56)

where [ is the matrix of autocovariances defined by Eq. (5.74) and 6 is the model
parameter vector defined as

0= (arar....apppy ... Bpo’) (5.87)

and o is the variance of the white noise process. Let the likelihood function for this
problem be defined as

= - —m/2 | =
L(815) = p(516) = (2r02) "1 Osexp<—ﬁy r > (5.88)
The log-likelihood function, £(§| y), is given as

, , 1
é(ew) - 10gL<9|§J'> = —glogZﬂog — Slog|| 7| - 2y Ty (5.89)

20

The parameter estimates are then obtained by maximising either Eqgs. (5.88) or
(5.89). The result given by Eq. (5.89) is called the exact log-likelihood function.
However, when dealing with a long time series with many data points, it will be
computationally expensive to compute the determinant and inverse required by the
exact log-likelihood function at every iteration. Instead, the exact probability can be

replaced by the conditional probability, that is, p(j}’| é) ~ p(y[|yt7 s oo s Vs 5)

This approximation holds well for large data sets. With such an approximation,
Eq. (5.88) can be written as

L(8)5) = ﬂ p(3dy s w30, ) (5.90)
t=1
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The expected value of the conditional probability can be written as

t—1

o0
E(ytlytfl,-wyl,é') =Y wy > wi (5.91)
j=1

j=1

In such cases, the conditional log-likelihood function can be written as
e(é’\y) - 1ogL(é'\y)

m —1 2
oom , 1 , 1 d
=— Elog 20, — Elog o, — FZ (y,- - Z WiYi_j (5.92)

ci=1 ji=1

In the literature, this is often called the innovation-based approximation, since the
difference between the measured and estimated values, called an innovation, is used in
the computation of the log-likelihood function. This approach has the advantage that
no inverses or determinants need to be computed. In general, since most data series are
quite long, with many data points, this approach provides sufficiently accurate values.
Various other simplifications can be made to improve the computational aspect of the
result. One common assumption is that values in the past with ¢ < 0 are equal to zero.
The required noise variance is then computed using the following formula

’ 1

o, ———

A2
P Yi— Vi 5.93
Ty i) (5.93)

m
=1
where ¥ is the predicted time series values based on the model and  is the number
of data points in the time series.

It can be noted that, irrespective of the approach taken, these equations will
generally have to be solved numerically using some form of an optimisation
algorithm. The required initial guess can be obtained based on either the Yule—
Walker parameter estimates or some other approaches. For autoregressive models,
a closed-form solution to the above equations is available. The final result is
identical to the Yule-Walker parameter estimates for an autoregressive model.

Example 5.10: Exact Solution of the Maximum-Likelihood Equation
for an Autoregressive Model
Consider an autoregressive model

p
yt+zajyt—j =é
i=1

Derive the corresponding maximum-likelihood estimates for this model using
the conditional probability density approach.

(continued)
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Example 5.10 (continued)

Solution

First, we can note that Eq. (5.91) can be made exact if we consider that there
are exactly p past values that need to be considered. This gives

00 p
E(yflyt_l, ---,y1’9) =Y W=Dy
izl

j=1
Substituting this relationship into the log-likelihood function (Eq. (5.92))
gives

€(§|§) = logL<§| j}')

2
m ) 1 5 1 m )4
:—510g2ﬂ'0’€7§10g68*2762 <y,~+2ajyl'j

ei=1 j=1

If it is assumed that o, is known, then the solution to the above equation can
be determined analytically by considering solely the last, quadratic term.
Thus, taking the derivative of the quadratic term with respect to the param-
eters a; and setting the result equal to zero gives

1<
=)

er=1

P
y,—l—Za,‘y,_i]y,_‘j =0Vj=1,2,...,p

i=1

In order to solve the resulting system of equations, it can be helpful to note
that y,y, _ ; & 7(j), an estimated autocovariance. Therefore, the resulting
system of equations can be written as

7=-r

Qb

& FA . \T L .
where a is the p x 1-row vector <a1,a2, . ,a,,) , which is identical to the
Yule—Walker equation.

As with all maximum-likelihood methods, the parameter estimates are asymp-
totically normally distributed, and approximate confidence intervals can be
obtained using the following formulae:
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5 S o*r!
. Pq
i-5-n(o5)

where m is the number of data points used in the estimation,

raa Faﬂ:|7 (595)

I, =
,,q [F pa Tpp

I 1s the p X p-matrix whose (i, j)th-entry is the y(i —j) of the process A(zfl)y, =e,;
I'ppis the g x g matrix whose (i, j)th-entry is the y(i — ) of the process y, =Bz Ve,
I'yp is the p x g matrix whose (i, j)th-entry is the yxy(i — j) of the above two
processes, that is, each entry is the cross-covariance between the AR and
MA components at lag (i — j); and I'g,=1T gﬁ. This implies that approximate

100(1 — @)% confidence intervals for the parameters 6 can be constructed as

-1

. (Fpq)
~ Prq

Hi:tl‘lf%,mfpfqas =

(5.96)

Example 5.11: Modelling the Mean Summer Temperature

in Edmonton

Consider the previously examined Edmonton temperature data series detailed
in Sect. A5.1. For the purposes of this example, consider the problem of
estimating a model for the mean summer temperature. The autocorrelation
and the partial autocorrelation plots have already been shown and analysed
previously (see Figs. 5.2 and 5.3). Using the results from there, obtain an
initial model for the data.

Solution
Before a model can be fit, it is necessary to determine the orders of the model.
From the autocorrelation plot, it would seem that some type of autoregressive
component is present, since the values do not decay to zero. It can be noted that
there are pronounced spikes at lags 1, 2, and 8. In fact, all of the values are
significant and located above the confidence bounds for zero. On the other hand,
the partial autocorrelation plot shows only a few significant points, namely, lags
1,2, 3, and 8. For the purposes of this example, it will be assumed that p = g = 8,
that is, an autoregressive moving-average model will be fit to the data set.
However, any potential seasonal component will be ignored at this point.

In general, when fitting a model, the data should be detrended, that is, the
mean value should be removed from the data set. Using appropriate computer
software, the model parameters with their standard deviation are

(continued)
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Example 5.11 (continued)
A(z7Y) =1 —0.948(20.2)z7" +0.758(%0.1)z72 — 0.612(£0.2)z 3
—0.045(+£0.155)z7* — 0.451(£0.2)z7> + 0.508(+0.2)z ¢
—0.643(+0.2)z77 — 0.446(40.1)z78

B(z™") = 1 — 0.877(0. 1)z—1 4 0.840(40.06)z72 — 0.493(40.1)z 3
—0.137(£0.09)z~* — 0.598(£0.08)z> + 0.700(£0.1)z~°
—0.936(£0.06)z~7 + 0.760(£0.1)z8

The 95% confidence interval would be approximately twice (exactly 1.96) the
given standard deviation. It can be seen that in general the estimated coeffi-
cients corresponding to the values between z~* and z~° have large confidence
intervals that could cover zero. This agrees well with the observed results that
suggest that only the first few lags and a lag of 8 are significant. Model
validation will be performed in the subsequent example.

5.4.3 Model Validation for Time Series Models

The basic principles of model validation, testing the residuals and the overall
model, are the same as for regression analysis. The goal of this validation is to
confirm that the residuals obtained are independent, normally distributed, white
noise values and that the model captures a significant portion of the overall
variability. The main tools for model validation are:

1. Tests for Normal Distribution: in time series analysis, there are three common
approaches that can be used to test for normality:

(a) Normal Probability Plot: the most common method to test normality is to
plot a normal probability plot of the residuals. The points should lie along a
straight line. Examples of good and bad normal probability plots are shown
in Table 3.2.

(b) Autocorrelation Plot of the Residuals: the autocorrelation plot of the
residuals provides a useful visual aid in determining if the residuals are
white noise. If the 95% confidence intervals for a zero autocorrelation are
included in the plot, then at least 95% of the computed autocorrelations
should lie inside the plotted confidence intervals.

(c) Ljung—Box—Pierce Q-Statistic: this is a general test statistic that seeks to
determine if the observed autocorrelation is that of a white noise signal, that
is, do all nonzero lags have an autocorrelation of zero. The statistic is given as

230 848 597
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where p, is the autocorrelation of the residuals and H is an arbitrary value,
normally selected to be about 20. The critical value, Q. is computed using the
2 -distribution with H — p — ¢ degrees of freedom. If Q > Q... then it can be
concluded that the autocorrelations are not indicative of white noise.

2. Tests for Independence and Homoscedasticity: these two aspects are most
commonly tested together using various types of scatter plots. The most com-
mon scatter plots to examine are:

(a) Plotting a time series plot of the residuals.
(b) Plotting the residuals against the measured values, y.

In all cases, there should not be any discernible patterns in the plots. Common
scatter plots are shown in Table 3.3 (see Sect. 3.3.5 for details on how to interpret
and analyse such plots).

3. Using the Confidence Interval for Each of the Parameters, 6;: if the confidence
interval includes 0, then the parameter can be removed from the model. Ideally, a
new regression analysis excluding that parameter would need to be performed
and continued until there are no more parameters to remove or add.

4. Calculating Pearson’s Coefficient of Regression: the closer the value is to 1, the
better the regression is. This coefficient gives what fraction of the observed
behaviour can be explained by the given variables.

When performing model validation, it is important to bear in mind the final goal for
which the model will be used. In time series analysis, the majority of the time, such
models are used to forecast or predict future values of the system. In such cases, it is
very important to not only test the performance of the model using the initial data
set but also use another model validation data set. This validation data set can be
obtained by splitting the original data set into parts. The first part is used for model
estimation, while the second part is used for model validation. The residuals
obtained using the data from the second part would then be used for model
validation. The data set is often split '3 for estimation and % for validation.
Another approach to model validation is to consider various information criteria
that assess the trade-off between the number of parameters selected and the variance
of the model. These criteria can be useful for automating the estimation of initial
process parameters. However, any model obtained using such an approach still needs
to be validated for normality and purpose. The most common information criterion is
Akaike’s information criterion, which for any time series model can be written as

m+ 2k

Naic = In 62 + (5.98)

where m is the number of data points and £ is the total number of parameters, that is,
k=p+P+q+Q. Another commonly used criterion is the Bayesian or Schwarz
information criterion (BIC) defined as

(5.99)

k log m
2
Npic = In o, +— —
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Example 5.12: Validating the Initial Mean Summer Temperature

in Edmonton Model

Consider the model fit in Example 5.11 and perform model validation to
determine the overall quality of the model (Fig. 5.14).

Solution

The Ljung—Box—Pierce Q-statistic has a value of 4.35 (for H = 20). The 95%
critical value is 31.41. Since O ompuread < Qresr» the null hypothesis cannot be
rejected, and it can be concluded that the residuals are white noise.

Figure 5.15 shows the measured and predicted mean summer temperatures
as a function of time. It can be seen that the model does follow the trends in
the data well. However, it does not predict well the extreme values. Looking
at this plot it seems quite clear that there is a seasonal component to the
occurrence of extreme values. The fit as determined by Pearson’s coefficient
of regression is 32.04%.

Finally, we may note that n4;,c=1In(0.395 884) + (120 + 2 x 16)/
120 = 0.340.

Based on the results obtained here, it can be seen that, although the model
passes all the assumption tests, its predictive capability is not the best. There
seems to be some components in the data that is not being reflected in the
model. Furthermore, some of the parameter estimate confidence intervals are
close to zero, suggesting that those estimates should be excluded from the
model.
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Autocorrelation, p
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Fig. 5.14 (Left) Normal probability plot and (right) autocorrelation plot for the residuals

(continued)
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Example 5.12 (continued)
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Fig. 5.15 Measured and one-step-ahead forecast temperatures as a function of years
since 1882

5.4.4 Model Prediction and Forecasting Using Time
Series Models

One of the primary purposes for a model is to determine future values of the
process. For time series, it is useful to distinguish between two cases: prediction
and forecasting. Prediction refers to determining future values using a model whose
parameters are known and represent the true system values, while forecasting refers
to determining future values using a model whose parameters have been obtained
using some form of modelling. The results in this section will be presented without
necessarily going into great detail regarding the derivation of the forms.

For predicting a value into the future given a known model, let y, , be the
7-step ahead prediction given all available data up to the current time point .
The z-step ahead prediction can be obtained by solving the following system of
equations (Shumway and Stoffer 2011):
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Yoo = 413 (5.100)
r!¢t = 77t
where
r(0) - y(t=1) r(7) 7 .
I, = : : V= : Y= L= :
7([_ 1) 7(0) V(TJFI_ 1) Y1 O
(5.101)

and ¢, represents the vector of prediction coefficients. For an autoregressive

process with t>p and 7=1, (}5,: d. The variance associated with this
prediction is

ofy =10 =717, (5.102)

For large data sets, the solution of these equations directly can be difficult. Instead,
iterative methods are used. The most common such iterative method is the Durbin—
Levinson algorithm, which is described in Sect. 5.4.4.1.

For forecasting a value into the future (or filtering an already measured value’)
given an estimated model, the situation is a bit more complicated. Consider the
infinite moving-average representation for an ARMA process, that is,

Vewr =D e (5.103)
j=0

which can be partitioned into parts: one which considers the future errors between
t+1 and 7+ 7 and the second component that solely considers the remaining terms,
that is,

7—1 00

yt+rzzhjet+rfj+zhjet+ffj (5.104)
j=0 j=t

5 This is also called filtering because one reason for forecasting is to remove (filter) the noise from
the (already made) measurements.



5.4 Time Series Modelling 255

Since the best linear predictor in the mean square sense is obtained by conditioning
the estimate on all available past information, we get that the z-step ahead forecast,

Vit )> 18

Vere =B eyoyi v o) =) e (5.105)

j=7

It should be noted that

0 j<rt
E(erse—ilyoyi 12y 2 --) = {€z+rj P>t (5.106)

Therefore, the error associated with the forecast can be written as

T—1

€r+r\zZy,+r—)7,+7‘,=Zhje,+r,j (5.107)
j=0

The forecast error variance then can be determined as

7—1

6 =00y I (5.108)
j=0

The 100(1 — a)% confidence interval can then be computed using the standard
formula, that is,

7—1

y1+1:Zhjetqtr—j:tll—%,m—n&gzhf (5109)
j=0

j=t

where 7 is the total number of parameters in the model and «a is a-error value.

It should be noted that, in practice, the above equations for the forecast value
contain two issues, that is, they require an infinite amount of process data to be
available and need to know the past values of the white noise. The first issue of
requiring an infinite amount of data is not an issue for large data sets. This implies
that truncation after m data points will not impact the final result. The second issue
of requiring past white noise values can be resolved by computing estimated white
noise values using the following formula:

q p
&=y - (Zﬂiéti_zaiyr—i> (5.110)
Jj=1 Jj=i

The algorithm is initialised by setting all e, for which t<p+1 to zero and then
iterating forwards. For pure moving-average or autoregressive processes, the fore-
cast equation has a very simple form.
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Example 5.13: Forecasting A Ma(3) Process
Provide one-, two-, and four-step-ahead forecasts and 95% confidence
intervals for the estimated model

Y, =€ + 0.436¢;,_1 — 0.293¢,_, — 0.763¢;_3

using the data provided in Sect. A5.3. The noise variance, ag, is 1.0870.

Solution
In order to compute the required forecasts, it is first necessary to obtain
estimates of the errors. Computing the errors using Eq. (5.110) gives the
following results for the final 5 errors: eégs =—0.5949, ey; =—1.3221,
é98 = —0.4402, é99: 05044, and é]o(): 0.8410.

One-Step-Ahead Predictor

The one-step ahead predictor can be obtained from Eq. (5.105)

57101“00 = 0.436699 — 0.293698 — 0.7636’97
=0.436(0.5044) — 0.293(—0.4402) — 0.763(—1.3221)
=1.3577

The variance associated with this prediction is obtained from Eq. (5.108)

1011100 = 1:0807(1) = 1.0807

Using #9975, 97 = 1.96 gives a 95% confidence interval as 1.4£2.1.
Two-Step-Ahead Predictor
The two-step-ahead predictor can be obtained from Eq. (5.105)

5’102“00 = —0.293¢99 — 0.763¢93
= —0.293(0.5044) — 0.763(—0.4402)
=0.1881

The variance associated with this prediction is obtained from Eq. (5.108)

‘A’%ozuoo = 1.0807(1) 4 0.436* = 1.2708

Using #9975, 97 = 1.96 gives a 95% confidence interval as 0.242.5.
Four-Step-Ahead Predictor
The four-step ahead predictor can be obtained from Eq. (5.105). However,
note that in this case, there are no nonzero terms for A4; Therefore, the

(continued)
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Example 5.13 (continued)
predicted value is ;4100 = 0 (or the mean value). The variance obtained from
Eq. (5.108) will then be

Fhoap100 = 1.0807(1) + 0.436% + (—0.293) + (—0.763)* = 1.9388

Using #9975, 97 = 1.96 gives a 95% confidence interval as 0£3.8. In fact, for a
MA(g) process, the prediction will be the same for all 7 > g.

5.4.4.1 Durbin-Levinson Algorithm

The Durbin—-Levinson algorithm is a useful iterative method for inverting and hence
solving the prediction equations given by Eq. (5.100) for a large data set. The
procedure can be summarised as follows:

1.
2.

Initialisation: set ¢go =0, U%\o =y(0),and n=1.

Diagonal Terms: for n > 1, compute

p) =S ipln— k)

Gy = -1 ’Gn+l|n:0i\n—l(l_¢ﬁn) (5111)
1 Zk:l ¢n71,kp(k)

. Off-Diagonal Terms: for n > 2, compute

¢nk = ¢n71,k _¢nn¢n71,nfk’ k= 152’ ...,fl—l (5112)

. Increment: increment n by 1 and go to Step 2. Stop when the desired value of

n has been reached.

The Durbin-Levinson Algorithm can be used to also compute the Yule—Walker

parameters and the partial autocorrelation function, since both have a similar
matrix form.

Example 5.14: Using the Durbin-Levinson Algorithm to Obtain

the Predictor

Use the Durbin—Levinson algorithm to obtain the one-step-ahead predictors
for the case where there are 1, 2, and 3 past data points.

(continued)
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Example 5.14 (continued)
Solution
Since each subsequent step requires the information from the previous step,
the values will first be computed and then the predictors assembled.
n=0: set ¢poo=0, O'%‘O =y(0),and n=1.
n =1: in this step, there will only be a single diagonal term,

0
p(1) — Z%,kﬂ(l — k)
b = k:()l :P(l)"’iﬂ\n = ‘7%\0(1 —p(1))
1 - fo’o,kﬂ(k)
k=1

r(0)(1 —p(1))

n =2: in this step, both diagonal and off-diagonal terms will be computed

p(2) = prup(2—K)
¢ = = =
1 - Z(bl,kﬂ(k)

=1
3 = 031 (1 = ¢%) =r(0)(1 - p(1)) (1 —
1-p(2)
— 7(0)(1 —
00 p<1>><1_p(1)2>
by =11 — Pndn, k=1

=p(1) —p(l)p(z)_ip(l)zpu)(l;’)(z))

p(2) = p(1)*
1—p(1)?

p(2) —p(1)*
1—p(1)?

L—p(1)? L—p(1)°

n = 3: like for n =2, both diagonal and off-diagonal terms will be computed

2
p(3) — Z¢2,kﬂ(3 —k)
33 = k:21 —
1- Z¢2,kﬂ(k)

k=1
GZB = "§|2(1 - ¢§3)

1010~ ({225 (-t Sttt

B L—p(2) 1-p(3)

(3) = ¢21p(2) — pop(1)
1 —¢p1p(2) — ¢rap(1)

(continued)
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Example 5.14 (continued)

P31 =2 — P332, k=1
P30 = — P332y, k=2

It should be noted that if the process model is known, then it is relatively easy
to obtain the required auto- and cross-correlations and use them to compute
the predictor.

5.5 Frequency-Domain Analysis of Time Series

Frequency-domain analysis of a time series is a useful tool for analysing and
determining the presence of periodic signals in a given signal. This can be useful
in determining and confirming the presence of seasonal components in the data set.
It may not always be obvious what seasonal components are present purely by
examining the auto- and partial autocorrelation plots.

5.5.1 Fourier Transform

The Fourier transform is the decomposition of an original signal into its periodic
components. Formally, the Fourier transform, represented by §, converts a function,
f(t), defined in the time domain, to its corresponding frequency-domain function,
f(w). The relationship between the two functions can be written as

l ft)e ™ dt (5.113)

g
!
=
~
I
g —8

The function f(w) is called the spectral density or power spectrum of f(z). It can be
noted that this definition of the Fourier transform does not explicitly show its
connection with a periodic signal. However, we can note that by Euler’s formula
e " = cos (wt) + isin (wt), (5.114)
the definition can be converted into one containing more obvious periodic terms.
For this reason, w is called the frequency. This clearly shows that the underlying
system is periodic.
Furthermore, it should be noted that the resulting spectral density function will
be a complex function. Since, in frequency-domain analysis, it is the strength of the
individual frequencies that are of interest, it is common to convert the imaginary
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numbers into a more useful form. Consider an imaginary number C = x + yi, where
x and y are real. The magnitude of C, |C|, is defined as

IC] = /X2 + y? (5.115)

and the angle, «C, is defined as

£C = arctan2(x, y) (5.116)

The arctan2 function is equivalent to the arctan(yx ') with the resulting angle
placed in the correct quadrant based on the signs of x and y. Based on this analysis,
the magnitude plotted as a function of the frequency will provide information about
which frequencies are most prevalent in the signal.

However, in practice, the signal of interest is discrete rather than continuous. In
such a case, there is a need to modify the above results to take into consideration the
effect that discretisation has on the signal properties. Before considering the
changes, it is instructive to consider the effect of discretisation on the signal
properties. The largest effect is that information about the original signal is lost.
For the purposes of frequency-domain analysis, the important result is the Nyquist

frequency, fnyquist
Fyquist = 0-57 sampling (5.117)

where fompling 15 the sampling rate. Frequencies above the Nyquist frequency
cannot be recovered given a sampling rate. This implies that frequencies above
this cutoff cannot be estimated.

The discrete Fourier transform is defined as

n—1
f<§> =3(X,) = Zx,e*@ (5.118)
t=0

n

where £ is an integer and 7 is the length of the signal. The frequency is given as k/n
cycles per sample. The amplitude, or strength, of the given frequency can be
obtained using Eq. (5.115). Although it is possible to compute the discrete Fourier
transform using a number of different methods, the most popular and efficient
method for computer implementation is the fast Fourier transform method, which
computes the required values efficiently and quickly (Bloomfield 2000; Welch
1967).

The following theorems will show some further relationships between the
Fourier transform and various time series properties.

Theorem 5.3 Wiener—Khinchin Theorem. The autocovariance and the spectral
density function are related as follows (Khintchine 1934):
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flw) = i y(z)e " (5.119)

and
0= Ho)ea (5.120)
=— w)e @ .
e 27 _,
Proof A detailed proof is presented in Priestley 1981, p. 219. Q.ED.

Corollary 5.5 Spectral Density of White Noise. The spectral density of white noise
is a constant function equal to the white noise variance, that is,

f(w) = o2 (5.121)

w

Proof For white noise, y(0) = va and all other autocovariances are zero. From the
first part of Theorem 5.3, the stated result follows. Q.ED.

Corollary 5.6 Parseval’s Theorem. The variance of a signal can be computed from
its spectral density using the following equation

o’ =y(0) = %Ji flow)dw (5.122)

Proof Setting 7 =0 in the second part of Theorem 5.3 and simplifying produces the
given result. Q.ED.

Theorem 5.4 Filtering Theorem. If two signals are related by

y(t) = —ul?), (5.123)

then the spectral density functions are related as

2

Be™) f.(o) (5.124)

A(e i®)

o)~ |

Proof A detailed proof is presented in Stoica and Moses 2005 Q.ED.
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Corollary 5.7 Filtering White Noise. If u(t) is white noise and is being filtered by a
function of the form in Theorem 5.4, then the filtered spectral density will be

B(e /@
‘ () (5.125)

fy(@) = Ae i)

Proof This result directly follows from combining the definition of the spectral
density of white noise into Theorem 5.4. Q.ED.

5.5.2 Periodogram and Its Use in Frequency-Domain
Analysis of Time Series

Since it has been shown that the Fourier transform contains the same information as
the autocorrelation function, one may wonder what is the advantage of using
it. Basically, the Fourier transform provides a different perspective on the same
information allowing for different features to be more prominent. In the case of the
Fourier transform, the periodicities are made clear, while in the (partial) autocor-
relation plots, the different orders are emphasised.

The most common way to use the Fourier transform is to construct a
periodogram that shows all the identifiable frequencies and their amplitudes.
When using the fast Fourier transform to obtain the periodogram, only half of the
values are plotted, since the other half is a mirror image (about f=0).° The
periodogram is constructed as follows:

1. Obtain the complex spectral density function, f(w), using any appropriate method
(most often the fast Fourier method). Let n be the number of data points in the
signal.

2. Compute the amplitude g = |f(a))|2 =Re(f(w))* + Im(f(w))?, where Re represents
the real component and /m the imaginary component of f(w).

3. Set the centre point to be C = |0.5xn] + 1, where |-] is the floor or round down to
the nearest integer function.

4. Compute the frequency range, F, as follows:

(a) For a half-frequency periodogram, set F=(0, 1,..., C)/n.
(b) For a full-frequency periodogram, set F = (0, 1,...,n—1)/n.

5. To plot the full periodogram, set the x-axis equal to F and the y-axis to g/n.

SThe formatting and layout of a periodogram vary greatly from source to source. The form
presented here is the most convenient for time series analysis. Appropriate code for creating
such a periodogram is presented in Chapter 7 for MATLAB® and Chapter 8 for Excel®.


http://dx.doi.org/10.1007/978-3-319-21509-9_7
http://dx.doi.org/10.1007/978-3-319-21509-9_8
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Fig. 5.16 Periodograms for three simple cases: (left) single cosine, (middle) single sine, and
(right) both cosine and sine together

6. To plot half of the periodogram, set the x-axis equal to F and the y-axis to
2¢(1:C — 1)/n. The coefficient of 2 augments the amplitude to take into consid-
eration the fact that only half of the periodogram was plotted.

7. The units of the graph will be cycles per sample for the x-axis and the original
units of the signal for the y-axis.

8. To plot the frequency in the original units, multiply F by the sampling rate to
give cycles per unit time, that is F/ = F X foumpling. /' Would then be used in place
of F when plotting the periodogram.

9. In some applications, it may be desired to plot a full, zero-centred periodogram.
In this case, there is a need to re-arrange both the F and ¢ vectors obtained above
in order to account for the differences. Basically, the second half of the original
vector must be placed at the beginning. The following steps can be followed:

(a) Letq =(g(C:end), ¢(1:C - 1)).

(b) Ifniseven,let F=(—0.51n, —0.5n+ 1,...,0, 1,...,0.5n - 1)/n.

(¢) Ifnisodd,let F=(—0.5(n-1),-0.5(n-1)+1,...,0,1,...,0.5(n-1))/n.

(d) Plot F on the x-axis and ¢’ on the y-axis. The axis labels and interpretation
will be the same as before.

The resulting half periodogram represents a decomposition unto either a series of
cosines or a series of sines of the form

10.5n]
y=Y_Acos(2zfk)

k=0

10.5n)

y= Y Asin(2zfk)
k=0

(5.126)

where A is the amplitude, defined as |A| =2¢, and f is the corresponding frequency,
that is, f=F(k)/2. This can be seen in Fig. 5.16, where three very simple
periodograms are shown: one single cosine, one single sine, and both a sine and
cosine. It should be noted that the periodogram ignores signs, that is, both a positive
and a negative amplitude, will appear as the same positive value.
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Fig. 5.17 Process with a seasonal component of 3 samples: (leff) integrator, (middle)
autoregressive, and (right) white noise
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Fig. 5.18 A seasonal moving-average process with a seasonal component of 3 and (left)
p1=—0.95, (middle) p, = —0.5, and (right) p; =0.5

The interpretation of more complex cases follows naturally from the simple cases.
Figure 5.17 shows periodograms for a seasonal process with a seasonal component of
3 samples and that of white noise. The first two periodogram show, as expected, a
strong peak around /= %3, which corresponds more or less to the seasonal component.
It should be noted that the integrator has the strongest and cleanest peak, while the
autoregressive example has a less clean peak. The last example, that of white noise,
shows what the expected flat spectrum looks like in practice. We can see that the
values are quite jagged fluctuating about some mean point. As a; approaches 0, it is
expected that the overall graph will approach a white noise graph. Furthermore, the
peaks may appear at some multiple of the period, which can make identifying the true
value a bit more difficult. Finally, rather than seeing a peak, a trough may occur at a
given point. This is very common with seasonal moving-average processes, as these
can remove certain frequencies from the signal. Figure 5.18 shows different moving-
average processes all with a seasonal component of 3. Both the trough and multiple
frequencies can be clearly seen in this figure.

Example 5.15: Periodograms for the Edmonton Temperature Series
Consider the Edmonton temperature series that is fully described in
Sect. A5.1. Plot the periodograms for the spring, summer, and winter mean
temperature series. Also, plot the periodogram for the differenced summer
temperature series. What are some of the salient features?

(continued)
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Example 5.15 (continued)
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Fig. 5.19 Periodograms for (left) spring, (middle) summer, and (right) winter of the
Edmonton temperature series
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Fig. 5.20 Periodogram for the differenced summer temperature series

Solution

The three undifferenced periodograms are shown in Fig. 5.19. Before running
the Fourier transform, it is necessary to remove the mean value from the data
set. It can be noted that both the spring and summer graphs have a peak close
to the zero value (> 60 years/cycle). This can suggest that an integrator is
present in the signal, since an integrator will have peaks at 0 and 1. On the
other hand, the winter series shows a single large peak at 3.3 years/cycle and
multiple smaller peaks throughout the spectrum.

(continued)
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Example 5.15 (continued)

Figure 5.20 shows the periodogram for the once-differenced summer
temperature time series. Unlike in the previous periodogram, there are now
a series of peaks clustered in the area around 2.5-3 years/cycle. Also, there is
a secondary peak around 4 years/cycle followed by a rather weak peak in the
8 years/cycle region. All these values seem to be multiples of each other
suggesting that they represent a single feature rather than separate features.

It can be noted that the spring and summer temperature series have a
similar undifferenced behaviour, which suggests that an integrator could be
present. Differencing the summer temperature series reveals the potential of
seasonal components at 3, 4, and 8 years. On the other hand, the winter
temperature series has a different behaviour with a single peak at 3.3 years/
cycle and no suggestions of an integrator.

5.6 State-Space Modelling of Time Series

State-space modelling is a useful, generalised approach to modelling a wide range
of different systems under many different situations, including such cases as
missing observations, outliers, or changing process parameters. Such cases are
difficult, if not impossible, to incorporate into a transfer function-based approach
to modelling. The disadvantage of a state-space-based approach is that the models
can be complex, without necessarily having a direct, physical meaning.

5.6.1 State-Space Model for Time Series

The complete state-space model can be written as a set of two coupled equations

Xkv1 = AXy + By + @y (5.127)
Yo = CXy + Diiy + & ’
where X is the n x 1 vector of states; y is the p x 1 vector of observations
(or outputs); 1y is the m x 1 vector of inputs; w, is the n x 1 vector of independent,
white noise random variables drawn from a Gaussian distribution with zero mean
and covariance X,; e; is the p x 1 vector of independent, white noise random
variables drawn from a Gaussian distribution with zero mean and covariance X,;
A, B, C, and D are appropriately sized matrices; and the subscript & is an integer
representing the current sample. The matrices are referred to by the name of the
vector coming after, for example, A is the state matrix.

It can be noted that, in Eq. (5.127), an additional term, called the input, has been
included in the model. This term allows the model to consider deterministic or other
stochastic signals that have an impact on the overall process. When dealing with
state-space models, it is traditional to consider the full form from the start rather
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than separating it out. The principles and ideas of such a term are developed further
in Chap. 6. Also, it can be noted that in state-space models, only the input and
output are normally measured directly. The remaining terms will need to be inferred
using an appropriate method.

Finally, a state-space model is said to be causal (or stable) if the absolute value of
the eigenvalues of the state matrix (A-matrix) lie inside the unit circle.

5.6.2 The Kalman Equation

One of the most commonly used methods for predicting and forecasting new values
using a state-space model is the Kalman filter developed by Kalman et al. in the
early 1960s (Kalman 1960; Kalman and Bucy 1961). The power of the Kalman
equation lies in its ability to deal with a wide range of situations including missing
data or time-varying parameters.

Before defining the Kalman filter itself, it is necessary to define some notation
that will make the formulation and interpretation of the results simpler. First, let the
vector of available observations be defined as

—

Yo= (51,0 0\ ) (5.128)

Next, let the time point at which the prediction is to be made be denoted by ¢. If
s < t, then the problem to be solved is called a prediction or forecasting problem. If
s=t, then the problem is called filtering. If s>¢, then the problem is called
smoothing. Irrespective of the time horizon, a general term for this problem is
(state) estimation. Finally, define the conditional estimate of the state given the
information currently available as

X5 = E<)?z| i) (5.129)

and the prediction covariance as
S o Y
Zinls = E((th - le|s) (th - th|s) ) (5.130)

If t{ =1, =1, then only a single ¢ will be written to simplify the notation.

Theorem 5.5 Basic Kalman Filter. For the state-space model previously defined
with initial conditions 550‘0 = py and Zo\o, for t=0,.. ., n, the Kalman filter can be
defined as

55,‘,,1 :A.;C’tfl‘tfl-i-lgﬁt (5131)


http://dx.doi.org/10.1007/978-3-319-21509-9_6
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and the covariance is given as
oy =AZ_ AT+ 5, (5.132)
The update equations can be written as

ff|f = f,|,, 1+ ’Ct(yr - Cfﬂt— 1= Dﬁt)

=T - KClZy—y (5.133)

where K, is the Kalman gain, defined as
K=, €T (CZ 1 C" + =) (5.134)
Proof The proof for these equations can be found in (Kalman 1960). Q.ED.

Using the basic Kalman filter, the prediction error (or innovation), e,,7 can be
defined as

(=3—¥ =%—EGIYi_1) =¥, —C¥_, — Dii, (5.135)
with a covariance matrix, 2,, defined as

X, =var(§) =CZy_C" + 2, (5.136)
Theorem 5.6 Kalman Smoother. For the state-space model previously defined

with initial conditions )'c’n‘,, and Xy, for t=n,n — 1,.. .1, the Kalman smoother
can be defined as

Rpfe—1 =X 1j—1 + To—1 (T — Xge—1) (5.137)
and the covariance given as
=21+ T (S = Zo )T (5.138)
where J, is the Kalman smoother gain, defined as

Ti-1 :thlh—lATZ[T[l,l (5.139)

7 Strictly speaking, this is a one-step-ahead prediction error.
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Proof The proof for these equations can be found in Shumway and Stoffer
2011. Q.ED.

The estimated values and their corresponding bounds depend on the application.
For each of the three previously considered cases, the corresponding formula is:

1. Smoothing: for smoothing, the mean response interval for a Kalman smoothed
value can be written as

(ff— 1\1‘)1 Eth-gm (Zf— 1|r)ii (5.140)

where i refers to the ith entry in the state vector, r is the data length used, and m is
the total number of data points available. In most circumstances, the z-value can
be replaced by the z-value of 1.96.

2. Filtering: for filtering, the mean response interval for a Kalman filtered value
can be written as

(%), 01— amy/ (Zr), (5.141)

where i refers to the ith entry in the state vector and m is the total number of data
points available. In most circumstances, the f-value can be replaced by the
z-value of 1.96.

3. Prediction: the (one-step-ahead) prediction of future values using the Kalman
filter can be accomplished by setting the initial conditions to be X9 = X,, and
X, and then using Eqs. (5.131) and (5.132) to obtain the prediction. The mean
response interval for this prediction would be

(ftltfl)iitlf%’m (2,‘,,1% (5.142)

where m is the total number of data points available.

The above equations can be simply extended to the case where the A-, B-, C-,
and D-matrices and the X,,- and X ,-matrices are time varying, that is, their values
change with time. In such cases, one simply needs to simply make the
corresponding changes in the above equations.
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5.6.3 Maximum-Likelihood State-Space Estimates

The estimation of the state-space parameters can be challenging given the
complexities of the resulting equations. Consider the case where all the parameters,
6= (Zo0, A, B,C, D, X,, X,), are to be estimated. It will be assumed that the initial
state X is normally distributed with zero mean and a covariance matrix X, and the
errors (@ and e) are jointly normally distributed and uncorrelated. Assume that the
time series contains m data points and that there are a total of n unknown
parameters.

In order to compute the maximum-likelihood estimates, compute the one-step-
ahead prediction error, ¢&;, using Eq. (5.135) and the corresponding covariance
matrix, X, using Eq. (5.136). Ignoring constant terms, the log-likelihood function,
ly(@), can be written as

0(5) = 055 Wis(3)] + 053 & (3)5(9)5(d) (5.143)

=1 t=1

Solving this equation requires using various numerical methods. Irrespective of the
approach taken, the procedure can be summarised as follows:

1. Obtain the initial parameter estimate, 50, and set j=1.
2. Using the basic Kalman filter as given in Theorem 5.5 and the initial parameter

estimate, 50, obtain the innovations and error covariances for t=1,.. ., m.

3. Perform one iteration of Newton’s method with —Ey(éj, 1) as the objective
function to obtain a new parameter estimate, éj.

4. Augment j by 1 and repeat steps 2 and 3 until the difference between éj_ | and
éj_ 1 or the difference between —fy(g) and —fy (é,»_ 1) is small.

Other approaches are possible, including an expectation—-maximisation-like
method for state-space parameter estimation (Shumway and Stoffer 2011).

Theorem 5.7 Properties of the Maximum-Likelihood Estimates. Using the

maximum-likelihood method to obtain the state-space parameter estimates 0 ; and
assuming that the prediction errors have the usual properties, as m — 0o,

0;— 0~ n(0.m 5 F(8)) (5.144)



5.7 Comprehensive Example of Time Series Modelling 271

where F(§) is the asymptotic Fisher information matrix defined as

. Oty (6

F(8) = 1im m'E[ - +(0) (5.145)
e 06067

Proof A general proof of these results based on the maximum-likelihood approach

is presented in (Hannan and Deistler 2012). Q.ED.

5.7 Comprehensive Example of Time Series Modelling

Having considered multiple different methods and approaches to modelling time
series, it is now necessary to apply these methods to the problem at hand: estimating
the mean summer temperature in Edmonton. The data set is described in Sect. 5.1.3
and preliminary results have already been presented (see Example 5.11, Example
5.12, and Example 5.15).

5.7.1 Summary of Available Information

From an initial attempt to model the mean summer temperature in Edmonton as an
ARMA(8,8) process, the parameter estimates and their standard deviation were
determined as

A(z7') =1 —0.948(£0.2)z" + 0.758(20.1)z72 — 0.612(£0.2)z 3
—0.045(£0.155)z~% — 0.451(40.2)z~5 + 0.508(£0.2)z~6
—0.643(£0.2)z"7 — 0.446(40.1)z8

B(z7!) =1-0.877(£0.1)z"! + 0.840(40.06)z72 — 0.493(+0.1)z 3
—0.137(£0.09)z~* — 0.598(=£0.08)z7> + 0.700(£0.1)z7°
—0.936(£0.06)z"7 + 0.760(£0.1)z8

Performing model validation on this model led to the conclusion that the model
obtained was not complete. First, it was noted that the 95% confidence interval for
some of the middle terms in the above polynomials covered zero. This suggests that
those terms are not significant and that they should be excluded from the model.
Second, the model assumptions regarding the errors were all validated, suggesting
that the residuals were normally distributed, white noise. Third, the predictive
capability of the model was not the best. The general trend was captured, but the
individual estimates were not good. This suggests that the model could be missing
some component or values. Fourth, the periodogram for the undifferenced mean
summer data set suggested that an integrator could be present in the data set.
Similarly, the periodogram for the once-differenced data suggested two separate
cycles: one around 2.5-3 years/cycle and another around 4 years/cycle.
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Fig. 5.21 (Left) Residual analysis for the final temperature model: autocorrelation plot of the
residuals and (right) normal probability plot of the residuals

5.7.2 Obtaining the Final Univariate Model

Based on the above discussion, different models were fit, including seasonal
differencing of 3 and 4 years, differencing of 1 year, and model orders between
1 and 3 parameters for both the seasonal and nonseasonal components. After trying
different models, the final model was determined to be

Ap(z7') =1 —0.465(£0.08)z"! — 0.45(+0.1)z"2 + 0.673(+0.06)z
Ap(z71) =1 — 0.9343(40.009)z~*

B,(z7") =1—0.50(£0.1)z"" — 0.33(40.1)z2

Bo(z ') =1— 1(+0.5)z"

with a seasonal difference of order 1 and s = 3. Thus, the final model can be written as
AT A1) (1 - )y, = By () Bo(= e

The normal probability plot of the residuals and the autocorrelation of the residuals
are shown in Fig. 5.21. Both results show that the residuals are normally distributed
and white. In the normal probability plot, the tails deviate a bit from what would be
desirable, but given that this is real data, such behaviour is inevitable.

A comparison between the predicted and measured temperatures is shown in
Fig. 5.22. As before, the model gets the overall trends correct, but the individual
predictions are not very good.
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Fig. 5.22 Predicted and measured mean summer temperature using the final model

5.8 Further Reading

The following are references that provide additional information about the topic:

1. General Time Series Analysis: these sources also often contain information
about transfer function-based analysis:

(a)
(b)
(©)
(d)

(e)
®

Bloomfield P (2000) Fourier analysis of time series: an introduction, 2nd
edn. Wiley, New York

Box GE, Jenkins GM (1970) Time series analysis, forecasting, and control.
Holden-Day, Oakland

Franke J, Hiardle WK, Hafner CM (2011) Statistics of financial markets: an
introduction, 3rd edn. Springer, Heidelberg. doi:10.1007/978-3-642-16521-4
Hannan EJ, Deistler M (2012) The statistical theory of linear systems.
Society of Industrial and Applied Mathematics, Philadelphia (Originally
published: Wiley, New York, 1988)

Montgomery DC, Jennings CL, Kulahci M (2008) Introduction to time
series analysis and forecasting. Wiley, Hoboken

Shumway RH, Stoffer DS (2011) Time series analysis and its applications with
R examples, 3rd edn. Springer, New York. doi:10.1007/978-1-4419-7865-3

2. Properties of Time Series:

(a) Ashley R (1988) On the relative worth of recent macroeconomic forecasts.

Int J Forecast 4:363-376


http://dx.doi.org/10.1007/978-3-642-16521-4
http://dx.doi.org/10.1007/978-1-4419-7865-3
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(b)
(©)

(d)
(e)

®
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Hassler U (1994) The sample autocorrelation function of I(1) processes.
Statistical Papers—Statistische Hefte 35:1-16

Khintchine A (1934) Korrelationstheorie der stationdren stochastischen
prozesse (correlation theory of stocastic processes). Math Ann 109
(1):604-615. doi:10.1007/BF01449156

Nelson CR (1972) The prediction performance of the FRB-MIT-PENN
model of the U.S. Economy. Am Econ Rev 62(5):902-917

Shardt Y (2012) Data quality assessment for closed-loop system identifica-
tion and forecasting with application to soft sensors. Doctoral thesis, Uni-
versity of Alberta, Department of Chemical and Materials Engineering,
Edmonton, Alberta, Canada. doi: http://hdl.handle.net/10402/era.29018
Wichern DW (1973) The behaviour of the sample autocorrelation function
for an integrated moving average process. Biometrika 60(2):235-239. doi:
http://www jstor.org/stable/2334535?0rigin=JSTOR-pdf

3. Spectral Analysis:

(a)
(b)
(©)

Priestley MB (1981) Spectral analysis and time series: Vol. 1: univariate series
and vol 2: multivariate series, prediction, and control. Academic, New York
Stoica P, Moses R (2005) Spectral analysis of signals. Prentice Hall, Upper
Saddle River

Welch PD (1967) The use of fast Fourier transform for the estimation of
power spectra: a method based on time averaging over short, modified
Periodograms. IEEE Trans Audio Elecotroacustics AU-15(2):70-73

4. State-Space Analysis:

(a)
(b)
(©)

Harvey AC (1991) Forecasting, structural time series models and the
Kalman filter. Cambridge University Press, Cambridge

Kalman RE (1960) A new approach to linear filtering and prediction
problems. Trans ASME J Basic Eng 82:35-45

Kalman RE, Bucy RS (1961) New results in filtering and prediction theory.
Trans ASME J Basic Eng 83:95-108

5.9 Chapter Problems

Problems at the end of the chapter consist of three different types: (a) Basic Concepts
(True/False), which seek to test the reader’s comprehension of the key concepts in the
chapter; (b) Short Exercises, which seek to test the reader’s ability to compute the
required parameters for a simple data set using simple or no technological aids, and
this section also includes proofs of theorems; and (c¢) Computational Exercises, which
require not only a solid comprehension of the basic material but also the use of
appropriate software to easily manipulate the given data sets.


http://dx.doi.org/10.1007/BF01449156
http://hdl.handle.net/10402/era.29018
http://www.jstor.org/stable/2334535?origin=JSTOR-pdf
http://www.jstor.org/stable/2334535?origin=JSTOR-pdf
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5.9.1 Basic Concepts

Determine if the following statements are true or false and state why this is the case.

1.

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

The causality of an ARMA process is determined by examining the numerator
of the transfer function.

. An autoregressive process is always invertible.
. An invertible moving-average process will give when inverted a causal

autoregressive process.

. A seasonal autoregressive process can be analysed by setting z ' in the

standard autoregressive model to be equal to z°, where s is the seasonal term.

. The autocorrelation plot can be used to determine the orders of the

autoregressive component.

. The presence of an integrator can be detected by a slowly decaying term in the

partial autocorrelation plot.

. If the time series is stationary, then it should always be differenced.
. If the roots of the A-polynomial of an autoregressive process are 0.5,

—0.5 +0.75i, then the process is causal.

. If the roots of the B-polynomial of an ARMA process are —0.45, 0.15, and

0.75 £0.5i, then the process is invertible.

If the autocorrelation function is given as p(r) = 0.5 for all 7 > 0, then it can be
concluded that the process is a moving-average process.

If the autocorrelation function is given as p(r) = 0.5" for all 7 > 0, then it can be
concluded that the process is causal.

If the partial autocorrelation plot has spikes at 7 =0, 3, 6, 9, and 12, then we are
dealing with a seasonal autoregressive process with s =3 and P =4.

The Yule-Walker equations are a method of moment estimator for
autoregressive processes.

The method of moment estimator for moving-average processes is unbiased.
The maximum-likelihood parameter estimates for an ARMA process are
asymptotically normally distributed.

The maximum-likelihood parameter estimates for an MA process can be
obtained by solving a matrix equation without any numerical iterations.

If, when examining the autocorrelation plot of the residuals, out of 25 autocor-
relations, 2 (including the zero-lag contribution) are located outside the 95%
confidence bands, then it can be concluded that the residuals are Gaussian.

If a peak at f=0.25 cycles/sample is observed on the periodogram, then it can
be concluded that the process has a seasonal component, such that s =0.25.
The Kalman filter is used to determine the parameter estimates for state-space
models.

State-space parameter estimates obtained using the maximum-likelihood
approach are not asymptotically consistent.
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Table 5.2 Autocovariance
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Autocovariance Partial autocorrelation

and partial autocorrelation
data (for Question 24) Lag (@ PXXr ity X (®)

0 5.212 -

1 3.832 0.735

2 2919 0.045

3 2.183 0.064

4 1.645 0.022

5 1.234 0.028

6 0.923 0.013

5.9.2 Short Exercises

These questions should be solved using only a simple, nonprogrammable,
nongraphical calculator combined with pen and paper.

21.

22.

23.

24.

25.

Consider an ARMA(1,0,1) process of the form u; = % = é:—g?le,. Derive

the spectral density function for u, in terms of the transfer function parameters
and the white noise spectral density.

For a causal AR(2) process, derive the autocorrelation and partial autocorrela-
tion function.

For an invertible MA(3) process, derive the autocorrelation function and the
first 4 partial autocorrelation values.

Given the data in Table 5.2, determine an appropriate ARIMA model for the time
series. It should be noted that 1,000 data points were used to compute the samples.
Given the data in Fig. 5.23, suggest an appropriate SARIMA model for this data.

5.9.3 Computational Exercises

The following problems should be solved with the help of a computer and appro-
priate software packages, such as MATLAB® or Excel®.

26.

27.

28.

29.

30.

Take the Edmonton temperature series and fit appropriate ARMA models to the
winter, spring, fall, and annual mean temperatures. Be sure to examine the
residuals and verify that the assumptions are met.

Using the Kalman filter, develop a model for the Edmonton temperature series.
Take the AR(2) process data in Sect. AS5.2 and fit an AR(1) process to
it. Analyse the residuals and fit. Comment on the results. Repeat, but using
an AR(3) model. Compare the two models with the accurate AR(2) model (see
Example 5.8 for the model). What happens when a model is over- or underfit?
Take the MA(3) process data in Sect. A5.3 and fit a MA(1) process to
it. Analyse the residuals and fit. Comment on the results. Repeat, but using a
MA(4) model. Compare the two models with the accurate MA(3) model (see
Example 5.13 for the model). What happens when a model is over- or underfit?
Take any time series of interest, analyse it, and fit an appropriate model to it.
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Fig. 5.23 (Top) Periodogram, (bottom, left) autocorrelation plot, and (bottom, right) partial
autocorrelation plot for an unknown process

Appendix AS: Data Sets for This Chapter

This section gives detailed information about the data set used for analysis in
Chap. 5. All data can be downloaded as an Excel® spreadsheet or MATLAB® file
from the book website.

AS5.1: Edmonton Weather Data Series (1882-2002)

The raw data for the Edmonton Weather Data Series are presented in Table 5.3.
This data set has been compiled using daily temperature values available from
Environment Canada. The values are obtained by combining the daily temperature
values from two nearby weather stations: Edmonton (C3012195) from 1880 to 1943
and Edmonton City Centre (C3012208) from 1937 to 2002. Since both locations are
close to each other, the two data series were combined into a single set with the
change over year being 1940: up until that year, the data were taken from the
Edmonton weather station, while from January 1st, 1940, the data were taken from


http://dx.doi.org/10.1007/978-3-319-21509-9_5
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Table 5.3 Edmonton Weather Data Series (1882-2002)
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Mean temperature (°C)

Year Annual Winter Spring Summer Fall

1882 1.10 —11.12 0.79 15.56 1.53
1883 0.35 —16.05 2.60 14.36 —0.40
1884 0.93 —14.90 3.49 14.18 2.48
1885 2.69 —16.96 5.23 14.75 4.36
1886 1.48 —14.42 3.24 15.23 343
1887 —0.25 —19.89 4.00 13.24 2.64
1888 1.52 —16.05 —0.07 14.15 4.70
1889 5.07 —5.69 7.66 15.45 5.05
1890 2.67 —17.31 2.83 15.31 6.86
1891 3.72 —8.98 5.09 14.94 4.11
1892 2.46 —10.34 3.06 14.93 3.57
1893 1.58 —12.26 1.79 14.99 1.42
1894 2.76 —13.80 3.94 16.87 3.00
1895 2.90 —12.82 5.14 14.82 3.93
1896 1.63 —11.38 1.78 15.84 —0.66
1897 2.71 —10.23 3.01 15.78 2.79
1898 3.62 —10.00 3.51 16.54 2.84
1899 1.54 —11.09 —0.69 14.61 4.73
1900 3.31 —10.80 4.82 14.61 2.68
1901 4.01 —8.30 5.85 14.72 3.50
1902 2.80 —7.26 3.83 14.39 3.22
1903 3.24 —11.14 1.49 15.04 3.71
1904 2.32 —12.28 1.81 14.96 6.25
1905 4.24 —11.22 6.40 15.66 4.70
1906 3.85 —6.61 4.02 16.64 4.61
1907 1.84 —16.86 —0.05 14.34 6.53
1908 3.62 —7.46 3.31 15.17 4.21
1909 1.11 —14.77 1.93 15.58 2.34
1910 3.65 —12.03 6.83 14.88 3.51
1911 2.29 —14.01 4.85 14.83 2.89
1912 4.37 —9.13 4.61 15.83 4.65
1913 3.33 —11.19 3.64 15.61 4.54
1914 3.21 —10.60 4.74 15.93 5.02
1915 4.10 —11.33 6.55 15.25 3.74
1916 1.55 —13.60 3.13 14.60 4.57
1917 1.56 —15.28 2.01 15.20 6.18
1918 3.38 —15.92 3.45 15.26 5.30
1919 1.94 —8.70 2.34 15.58 —0.16
1920 222 —11.07 0.15 15.60 3.95
1921 2.89 —10.32 2.93 15.33 2.83
1922 2.74 —12.90 3.37 16.33 5.44
1923 3.66 —12.95 2.53 15.54 6.79

(continued)
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Table 5.3 (continued)
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Mean temperature (°C)

Year Annual Winter Spring Summer Fall

1924 2.48 —9.21 3.37 15.15 3.86
1925 2.27 —15.50 3.82 15.38 1.47
1926 3.23 —6.58 5.38 14.95 0.60
1927 0.71 —13.16 2.19 15.54 0.63
1928 3.89 —11.40 3.67 14.79 4.07
1929 2.48 —13.01 3.49 15.77 5.45
1930 3.5 —12.69 4.47 16.31 3.35
1931 4.50 -3.02 3.75 15.39 3.62
1932 2.28 —12.15 242 16.36 2.77
1933 1.41 —12.67 2.80 15.72 3.86
1934 3.63 —12.28 5.57 14.44 2.88
1935 1.74 —12.51 —0.09 15.83 2.19
1936 1.56 —18.47 3.99 16.51 5.24
1937 2.22 —15.56 5.28 15.88 3.55
1938 3.72 —13.35 4.58 15.89 5.76
1939 3.46 —11.70 3.60 15.26 4.29
1940 2.12 —10.38 2.86 1491 3.07
1941 3.21 —12.09 4.59 16.47 3.96
1942 3.01 —8.90 4.35 15.40 2.45
1943 3.42 —14.14 1.98 15.09 6.57
1944 4.04 —7.39 4.50 15.28 5.28
1945 1.93 —10.34 2.54 15.88 1.05
1946 2.65 —12.47 5.34 15.27 2.03
1947 2.65 —13.63 2.64 15.35 3.94
1948 2.22 —10.13 —0.09 16.39 491
1949 2.79 —16.16 5.56 15.92 6.13
1950 0.51 —19.16 1.62 15.98 1.39
1951 0.53 —13.83 1.03 14.31 1.43
1952 3.73 —14.09 422 15.32 6.50
1953 4.13 —9.48 2.69 15.67 6.67
1954 2.67 —10.54 0.38 14.74 5.89
1955 1.60 —7.74 1.21 16.64 0.33
1956 2.79 —16.23 3.10 16.58 5.25
1957 3.43 —12.27 4.12 15.83 4.76
1958 4.06 —8.84 4.49 16.58 4.53
1959 3.13 —13.09 5.09 15.30 2.72
1960 3.37 —8.73 2.82 16.05 4.52
1961 3.67 —7.62 4.48 18.45 2.47
1962 3.36 —14.24 2.34 15.57 6.19
1963 4.15 -9.94 4.15 16.96 5.86
1964 291 —7.24 242 16.24 3.53
1965 2.17 —15.99 1.51 16.98 2.68
1966 1.90 —14.47 3.08 15.45 3.10

(continued)
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Table 5.3 (continued)

Mean temperature (°C)

Year Annual Winter Spring Summer Fall

1967 3.17 —11.54 0.23 17.06 6.60
1968 3.32 —10.80 5.57 15.43 5.02
1969 2.65 —18.29 4.50 16.51 4.11
1970 2.61 -9.46 3.32 17.79 221
1971 3.02 —14.25 443 16.98 4.07
1972 2.06 —15.76 4.23 16.38 2.72
1973 3.36 —10.97 5.49 16.23 1.29
1974 3.59 —11.89 1.59 16.12 5.94
1975 3.18 —8.50 1.81 16.21 4.90
1976 5.21 —8.62 5.91 16.61 6.18
1977 4.56 —5.84 6.45 15.50 4.32
1978 3.58 —13.98 5.11 16.81 4.62
1979 3.26 —15.33 3.36 16.85 6.70
1980 393 -9.99 5.85 15.74 6.23
1981 6.22 —7.89 6.67 17.48 6.59
1982 2.13 —14.89 2.18 16.48 3.93
1983 3.97 —7.60 4.79 17.37 4.39
1984 4.04 —8.18 5.14 17.47 1.01
1985 3.55 —11.80 5.94 16.02 —0.09
1986 4.76 —6.91 6.34 16.29 2.89
1987 6.19 —4.07 5.22 16.01 7.28
1988 5.31 —7.51 7.74 16.63 5.08
1989 3.75 —9.40 2.64 16.71 4.77
1990 4.10 —7.75 5.71 16.76 3.66
1991 4.79 —8.29 4.79 17.42 2.87
1992 4.67 —6.11 6.31 16.31 4.27
1993 4.40 —11.54 5.96 15.27 4.55
1994 3.59 —12.12 6.49 16.66 4.90
1995 3.27 —9.67 4.18 15.87 3.53
1996 1.42 —13.57 2.37 16.25 1.20
1997 4.45 —-11.97 2.90 16.71 5.33
1998 5.02 —7.65 6.85 18.07 5.21
1999 4.84 —9.86 4.43 16.15 5.69
2000 3.65 —7.29 4.45 16.22 4.49
2001 5.29 —8.51 6.13 16.86 5.37
2002 3.85 —7.74 —0.64 17.75 4.17

the Edmonton City Centre weather station. It should be noted that due to missing
values, most data between 1880 and 1881 have been excluded from the data series.
The December 1881 values, which are complete, have been used in the computation
of the mean winter temperature for 1882.
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The mean temperatures were obtained by computing the mean value of the
available daily high and low temperatures in the given interval. The intervals are
defined as follows:

1. Annual: from January 1st to December 31st of the given year.
2. Winter: from December 1st of the previous year to February 28th (or 29th, in a

leap year) of the given year.
. Spring: from March 1st to May 31st of the given year.
. Summer: from June 1st to August 31st of the given year.

W

5. Fall: from September 1st to November 30th of the given year.

AS5.2: AR(2) Process Data

One hundred simulations of an autoregressive process were performed and the data
recorded. The values are provided in Table 5.4.

Table 5.4 Sample data for the AR(2) process

Sample Sample Sample Sample
time Value time Value time Value time Value
1 0.5377|| 26 7.0448 || 51 22962 || 76 —0.3832
2 2.5866 || 27 7.2907 || 52 2.0482 | 77 —2.6829
3 1.0936 || 28 6.3811 | 53 0.5053 || 78 —3.0763
4 1.0999 || 29 5.5821 | 54 —1.4302 || 79 —3.1427
5 1.3118|| 30 3.8371 || 55 —2.2618 || 80 —3.0577
6 —0.0211 || 31 34693 || 56 —0.9187 || 81 —1.2901
7 —-1.119 32 1.7914 || 57 —0.925 82 0.0143
8 —1.2135|| 33 —0.2956 || 58 —0.4643 || 83 0.8628
9 24391 | 34 —2.119 59 —0.4131 || 84 2.7885
10 6.7908 || 35 —5.7631 || 60 0.7712|| 85 2.6681
11 6.9378 || 36 —5.5705 || 61 0.1972|| 86 3.0377
12 9.3524 || 37 —4.5919 || 62 —0.077 87 3.7538
13 10.3499 || 38 —4.3984 || 63 0.3461 | 88 3.4927
14 9.7505 || 39 —2.4915 || 64 1.6237 || 89 3.2286
15 9.1906 || 40 —3.0004 || 65 3.6443 || 90 1.6078
16 7.7866 || 41 —3.057 66 4.3761 || 91 —0.5113
17 6.1818 || 42 —3.0211 || 67 2.8128 || 92 —1.4148
18 6.2509 || 43 —2.3818 || 68 1.0076 || 93 —1.0029
19 7.0694 || 44 —1.5112 || 69 —1.0574 || 94 1.8889
20 8.1889 || 45 —1.7896 || 70 0.3664 || 95 2.479
21 8.6013 || 46 —1.7799 || 71 0.426 96 2.7135
22 6.7398 || 47 —1.7619 || 72 1.1613 || 97 2.4769
23 5.8524 || 48 —0.949 73 1.2204 || 98 0.1779
24 6.4536 || 49 0.6456 || 74 2.0165| 99 —1.4284
25 6.5978 || 50 24876 | 75 1.4481 || 100 —3.8834
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AS5.3: MA(3) Process Data

One hundred simulations of a moving-average process were performed and the data
recorded. The values are provided in Table 5.5.

Table 5.5 Sample data for the MA(3) process

Sample Sample Sample Sample
time Value time Value time Value time Value
1 —1.0642 || 26 —1.7293 || 51 1.5463 || 76 —1.0511
2 1.0714 || 27 —0.8909 || 52 1.0334 || 77 —3.1683
3 2.3025|| 28 1.8161 || 53 0.9764 || 78 —0.6451
4 0.7850|| 29 2.0952 | 54 —0.6638 || 79 —1.2271
5 —3.1322 || 30 —0.247 55 —1.1319 || 80 —1.6961
6 —2.0663 || 31 —1.941 56 —1.4077 || 81 —0.9675
7 0.1705|| 32 —0.482 57 —1.3701 || 82 1.3156
8 1.4389|| 33 0.3695 | 58 0.3072 || 83 1.6567
9 0.2493 || 34 1.1009 || 59 1.5012 || 84 1.0599
10 0.3608 || 35 —0.1946 || 60 0.7052 || 85 1.8047
11 04718 | 36 —-0.7037 || 61 0.1900 || 86 —0.7402
12 —0.9697 || 37 1.6789 || 62 1.0638 || 87 —0.6184
13 —2.0038 || 38 —0.9078 || 63 0.4609 || 88 —0.1452
14 —1.1963 || 39 0.7717 | o4 0.5934 || 89 1.2824
15 0.2966 || 40 0.4991 | 65 1.0214 || 90 0.5870
16 0.3218 || 41 2.3052 | 66 0.1294 || 91 0.8840
17 0.5350 | 42 —2.9206 || 67 —1.7406 || 92 —0.4366
18 —2.5619 || 43 —1.9253 || 68 —1.754 93 —0.8398
19 —1.7343 || 44 —0.9071 || 69 0.8591 || 94 0.2937
20 1.7619 || 45 1.6793 || 70 —0.3351 || 95 —1.4840
21 1.9407 || 46 —0.9468 || 71 —0.6397 || 96 —1.7080
22 0.4325|| 47 —0.2606 || 72 —2.4522 || 97 —1.7478
23 0.1520 || 48 —0.8765 || 73 1.2611 | 98 0.7010
24 0.7127 || 49 0.5945 | 74 1.8775| 99 1.1535
25 —0.6199 || 50 0.6349 || 75 1.6385 || 100 2.1987




Chapter 6
Modelling Dynamic Processes Using System
Identification Methods

Process system identification is a complex and involved process that can take on
multiple different facets and requires understanding not only the chemical and
physical aspects of the process but also the mathematical and statistical background
of identification. In system identification, there are two basic approaches to this
problem:

1. First-principle, white-box, or ab initio modelling, where a description of the
process is obtained from the fundamental equations (mass, energy, and force
balances) and various simplifications about the overall process. Although such
an approach provides a very general model that can potentially be applied over a
wide range of conditions, practically, it can be very difficult to obtain a tractable
and useful form for many reasons, including lack of process understanding,
especially at the molecular or submolecular levels, missing information about
the relevant parameters, and the complexities of the resulting equation leading to
difficulties in obtaining the desired final answer.

2. Data-driven or black-box modelling, where a description of the process is
obtained solely by developing models for the available data. This approach
can provide very accurate models of the system at a given set of conditions,
but the model cannot generalise well to other conditions. Furthermore, develop-
ing such models can be difficult, since the selection of appropriate terms and
relevant data is a nontrivial task. Unless the correlations are strong, it may be
difficult to decide on an appropriate data-driven model.

Given the potential problems associated with both approaches, a third, middle way,
has also been considered. This approach is called grey-box modelling, where the
initial form of the equation determined based on the first-principle model is used for
data-driven modelling. This approach has the advantage that the form of the
equation has some physical meaning and could provide a reasonable description
of the process.

© Springer International Publishing Switzerland 2015 283
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Furthermore, another component of process system identification is that not only
is the deterministic model considered, but the stochastic component is also taken
into consideration to give a regression model of the form

yt:f<ﬁt7ﬁu> +g(ez73e) (6.1)

where 1, represents the deterministic input to the model (equivalent to x in Chap. 3).
The deterministic inputs can often be treated as a time series themselves but whose
values are not necessarily driven by a white noise process (as in Chap. 5). In order to
obtain a useful solution, various assumptions are made regarding the forms of f and
g and how they interact with the different systems. It should be noted that the
concepts presented here are not limited in their application to solely process system
identification but can also be applied in a wide variety of different fields, including
complex econometric analysis and robotics.

Although the focus of this chapter will be on linear model identification, a
cursory investigation of nonlinear approaches will be presented in order to provide
a complete overview of system identification.

6.1 Control and Process System Identification

In process control, the objective is to design a controller so that the overall system
can track and maintain a given reference signal. Figure 6.1 shows a generalised
block diagram description of the system. The signals are denoted by lines with
arrows, while the blocks denote a process that converts the signals entering the
block into signals leaving it. The most important signals are:

1. Reference signal (r;): This represents the desired or set point value for the
process.

2. Input signal (u,): This represents the input into the process. This signal can also
be called the manipulated variable.

3. Output signal (y,): This represents the measured value of the process. This signal
can also be called the controlled variable.

€; > G]
JF
r— oo Ge o Gy ] Gy >,
G, |«

Fig. 6.1 Block diagram of the control system
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Fig. 6.2 Generic open-loop e » G
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4. Disturbance signal (e,): This represents the unmodelled changes in the process.
The disturbance signal is often assumed to be a Gaussian, white noise signal with
zero mean and variance o°.

The most important blocks are:

. Controller (G.): This gives the model of the controller.

. Process (G): This gives the known model of the process.

. Disturbance (G,): This gives the model of the unknown component.

. Actuator (G,): This gives the model for how the valve responds to a change in
the given values. In most cases, since the response is very fast, it can be safely
lumped together with the process model.

5. Sensor (Gy): This gives the model for how the sensor or measurement device

works and responds to changes in the process. In most cases, since only the

measured values are available, it is useful to lump this model together with the
process and disturbance models. This block is useful to remind the reader that
unless a variable can be measured, then it cannot be used for control.

ROV I O Y

Together the process and disturbance models create the plant model.

The primary objective is to perform system identification, that is, obtain a plant
model, especially that of the process, in order to design a controller. Two different
situations can be considered: open-loop system identification and closed-loop
system identification.

In open-loop system identification, it is assumed that the controller and reference
signal are not present, that is, the control loop has not been closed. In such a case,
Fig. 6.1 reduces to Fig. 6.2. The relationship between the input and output can then
be written as

v, = Gpu; + Ge, (6.2)

In closed-loop system identification, the controller is fully functioning and
determining the value of the output based on the measured output value. Two
different cases can be distinguished depending on the behaviour of the reference
signal:

1. Routine Operating Mode, where the reference signal does not change its value
over the course of the experiment.

2. Externally Excited Mode, where the reference signal does change its value in
some predetermined manner over the course of the experiment.
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The relationship between the reference signal and the output can be written as

GG, n Gy )
Vi ' l—‘chGpd

=13 GG, r (6.3)

If the reference signal is zero (or constant), then Eq. (6.3) reduces to solely the
second term. This suggests that such a system can be modelled as a univariate time
series model.

Irrespective of the situation, process system identification is focused on deter-
mining the values for G, and G, as accurately as possible. Since most of the
applications assume that the controller is digital, the system identification methods
considered here will focus on the discrete time implementation of system identifi-
cation. For this reason, the models for each of the blocks will be assumed to be
linear, rational functions of the backshift operator z~'. Such models are most often
referred to as transfer functions. The most general plant model is the prediction
error model, which has the following form:

Ay, _ig;iu,ﬁ%e, (6.4)

where A z7"), Cz™Y), D(z™"), and F(z™") are polynomials in 27! of the form

1+) 6 (6.5)

i=1

where n, is the order of the polynomial and 6; are the parameters, and B(zfl) is a
polynomial in z~' of the form

np

> oz (6.6)

i=1

where n,, is the order of the polynomial, and k is the time delay in the system. In
general, it is very rare for this system to be used directly. Instead, any of the
following simplifications may be used:

1. Box-Jenkins Model: In this model, the A(z™") polynomial is ignored. Thus, this
model is given as

_B(ETY c
)’f*m”t—k+mez (6.7)

In practice, this method is sufficient to obtain an accurate model of the system.
2. Autoregressive Moving Average Exogenous Model (ARMAX): In this model, the
D(z™ ") and F(z~") polynomials are ignored, which gives
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Az )y, =Bz Nu—r +C(z7 Ve, (6.8)

This model assumes that the denominator for both the input and the error is
the same.

3. Autoregressive Exogenous Model (ARX): This is a simplified version of the
ARMAX model, wherein it is assumed that C(z_l) can be ignored. This gives
a model of the form:

Az )y, =Bz u—r+e (6.9)

Although this model is very simple, it has the beneficial property that the
estimation of its parameters can be performed using least-squares analysis. In
many respects, this model is very similar to the autoregressive model previously
considered for time series analysis.

4. Output-Error Model (OE): In this model, only the model for the input is fit to the
data. The error terms are ignored. Thus, the model is given as

B(z!

mlh,k—f—e[ (610)

Ye =

Another model that is occasionally used is the impulse response model, which
can be written as

Y= hau i+ hie, (6.11)
i=0 ji=0

where £ is the impulse response coefficient that can be obtained by performing long
division with the polynomials in the prediction error model. The first term of the
error impulse response model, 4, is traditionally equal to 1. This model is com-
monly encountered in theoretical applications.

6.1.1 Predictability of Process Models

Since the models obtained in system control are often used to predict or forecast
future behaviour of a system, it is important to develop an understanding of the
predictive properties of a model. This can be formalised by considering the m-step
ahead predictor for a process, y, ., which predicts the process value m-steps
ahead given all the values of the process up until the current point ¢ and the input up
until the point ¢+ 7. Let the prediction error be defined as
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EI+T‘I:yt+T_yt+T\t (6.12)
and the linear, m-step ahead predictor be defined as
5’;+r\t:L1”t+r+L2y,+T (6.13)

where some L is a rational function of z~'.

Theorem 6.1 (z-step ahead linear predictor) The m-step ahead linear predictor,
5’ t+ 1| is

7—1 7—1
Poa = (I - hiz’G,1>y[+, + (Z h,-z’G,‘Gp> T (6.14)
i=0 i=0

where h are the impulse coefficients of the disturbance model.

Proof The proof of this theorem can be obtained by solving Eq. (6.12) for the case

of a linear predictor given by Eq. (6.13) and the model by Eq. (6.2). Many of the

steps will be similar to those used to obtain the time series predictor in Sect. 5.4.4.
Substituting Eqgs. (6.13) and (6.2) into Eq. (6.12) gives

€t+r|t:Gput+r+Glet+r_Llu1+1_L2yt+r (615)

In order to separate the available error values from those which are not, the impulse
response model of the disturbance transfer function will now be split into two
components: a term containing all the terms up to, but excluding, the zth impulse
term (unavailable future component) and a term containing all the remaining terms
(available past component). It can be noted that the last term can be rewritten as a
difference between the original disturbance transfer function and the unavailable
future component, that is,

00 7—1

> hz =G =Y bz (6.16)
i=0

1=1
Thus, Eq. (6.15) can be rewritten as

7—1 7—1
€[+r|t = Gp”t+r + (Gl - Zh,‘Z’) €4t + ZhiziletJrr (6 17)
i=0 .

i=0

—Lyy o — Loy, .


http://dx.doi.org/10.1007/978-3-319-21509-9_5

6.1 Control and Process System Identification 289

Solving Eq. (6.2) for the disturbance signal gives
e, =Gy ' (y, — Gouy) (6.18)

Substituting Eq. (6.18) for only the first error term in Eq. (6.17) gives

7—1

Er41r = GputJrr + (Gl - Zhiz_l) Gl_l (yt+1 - Gput+r)
i=0

7—1

+) hizers e — Lt o — Loy, ., (6.19)
i=0

Re-arranging and combining like terms gives'

7—1 -1
Eryot = <Z hiz”'G G, _L1>ut+‘r + <I— > hz G —L2>Yr+r

i=0 i=0

7—1

+ Y hiz e (6.20)
i=0

The last term in Eq. (6.20) cannot be simplified since it depends on future values of
the error that are not yet known. Since it has been assumed that there is at least one

time delay in the process transfer function, that is, G, (O, 5) =0, and that

G (0, 5) = 7, this shows that the errors are uncorrelated with either each other

or the input. Thus, in order to minimise the prediction error, both of the coefficients
for u, , ; and y, , . must equal zero, that is,

7—1 7—1
Y hzG'Gy—Li=0=L =Y hz'G/'G, (6.21)
i=0 i=0
7—1 ) T—1 )
IT-> hz'Gl' =Ly =0=Ly=T-> hz G/’ (6.22)

i=0 i=0

Thus, Egs. (6.21) and (6.22) show that the m-step ahead predictor can be written as

T—1 T—1
Ve = (I -y h,—z-'G,—‘>y,H + (Z h,-z"G,‘le> Uy s (6.23)
i=0 i=0

Q.E.D.

't should be noted that Z represents the n x n identify matrix, where 7 is the size of the (square)
disturbance transfer function matrix. In most cases, Z will equal 1.
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Theorem 6.2 Variance of the t-step ahead predictor. The variance of the t-step
ahead predictor is

7—1

ol = oi,z h? (6.24)
i=0

Proof The required variance can be obtained by examining the prediction error.
Simplifying Eq. (6.20) based on the results from Theorem 6.1 gives that the
prediction error can be written as

7—1

Erq o = Zhiz’ie,+f (6.25)
i=0

Since e, is white noise, this implies that it is uncorrelated with past or future values
of itself. Therefore, the variance of the estimate will be given as

7—1

or=0,y I} (6.26)
i=0
Q.E.D.

Corollary 6.1 Properties of the one-step ahead predictor. The one-step ahead
predictor is given by

Vv = (=G )y + G 'Gouy (6.27)

and has a variance equal to

ol =0’ (6.28)

w

Proof Set r=1 in Theorem 6.1 and Theorem 6.2 to give the above results. Q.E.D.

The one-step ahead predictor forms an important basis for estimating the param-
eters of such systems.

Corollary 6.2 The infinite-step ahead predictor. The infinite-step ahead predictor,
or the infinite horizon predictor, is given by
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Voo = Gpls (6.29)
and has a variance equal to
ol =0} (6.30)

where 0'12 is the variance of the disturbance model.

Proof Take the limit as 7 — oo of the corresponding equations in Theorem 6.1 and
Theorem 6.2 to give the above results. Q.ED.

The infinite horizon predictor is useful when looking at the predictive properties
of a model and how generalisable the model is. Basically, the infinite horizon
predictor assumes that the errors are not known and seeks to predict the process
solely on the basis of the available input information.

6.2 Framework for System Identification

The system identification framework shown in Fig. 6.3 extends the general regres-
sion framework shown in Fig. 3.1 to take into account the specific issues in process
system identification. The framework consists of three steps:

1. Data Collection: During the data collection step, the required data are collected
and analysed to determine if there are any obvious problems with the data set,
such as missing data, faulty sensors, faulty values, or multiple operating modes.
The framework presented in Fig. 6.3 assumes that a separate experiment will be
designed in order to obtain the data required for system identification. In
industry, the ability to perform such experiments can be limited due to various
factors, including safety, economic, or reluctance on the part of the plant
operators. Instead, historical data from the data historian are extracted and
preprocessed to determine their usefulness for the given problem.

2. Model Creation and Validation: During this step, the data set is used to create the
model and obtain parameter estimates. Also, the given model is validated to
determine if it could potentially be used.

3. Decision Making: Based on the model obtained from the previous step, a
decision is made whether the given model is sufficient or a better model needs
to be sought. Clearly, the available time and purpose of the model will determine
the amount of effort required and model accuracy. For a simple controller, a
relatively crude model may be more than sufficient to obtain a good controller.


http://dx.doi.org/10.1007/978-3-319-21509-9_3
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De51.gn > Obtain Data —>» Check the Data
Experiment

Validate the Obtain Model : Determine the Time
Model < Parameters €] Select a Model Delay

No

Was
Validation
Successful?

Consider more advanced
methods, such as nonlinear
models.

Is the Model
Order High?

)I Use the model for designing the controller.

Fig. 6.3 System identification framework

6.3 Open-Loop Process Identification

This section will examine the principles and key results for modelling an open-loop
process modelled using the general prediction error model given by Eq. (6.4). The
foundation for such modelling is the prediction error method, which uses the fact
that most models in system identification are used for predicting future values of the
process.

6.3.1 Parameter Estimation in Process Identification

Although for simple models it is possible to estimate the parameters using least-
squares, linear regression (see, e.g. Question 21) in Sect. 3.8.2), for more complex
models this is not possible. Instead, more complex methods are required in order to
obtain them. One very popular approach is the prediction error method. Parameter
estimation using the prediction error method can be summarised as follows:

1. Select an appropriate (prediction error) model and determine the corresponding
one-step ahead optimal predictors (Eq. (6.27)).

2. Using the experimental data, compute the prediction values and prediction errors
as functions of the unknown parameters 6.

3. Obtain the parameter estimates that minimise the sum of all of the prediction
errors. Due to the nonlinear nature of the problem, this step is most often
performed using a numerical optimisation algorithm.
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In practice, this procedure is greatly simplified, since there exist appropriate
computer functions that can perform the required tasks once the general form of
the model (orders and time delay) is specified.

Theorem 6.3 Open-Loop Process Identification (properties of the prediction error
method). The prediction error method produces parameter estimates that are
unbiased if the prediction error is a white noise signal.

Proof This will be shown by examining the conditions under which the one-step
ahead predictor will give a white noise signal.
From Eq. (6.12), the one-step ahead prediction error can be written as

€t|171(271757§) ZYr_)A’t\z—l (6.31)

where y,, _, is the one-step ahead prediction based on the assumed model for the

system, Gis the (true) parameter vector, and 6 is the estimated parameter vector. We
know that

e = G,‘l (yf — Gpu,) (6.32)
and that the true model can be given as
Yo = Gyt + Gre; (6.33)

Substituting the above results into Corollary 6.1, the prediction error can be
written as

€4 1) (Zﬁl, 5, 5) = Gfl (G,,u, + Gie; — Gput) (6.34)
Combining the terms for input and error together gives
s,+1|,(z*1,é,é) = GG, — Gy)u + G ' Gre, (6.35)

Let?

2 The dependence of the ®-functions on the backshift operator is made explicit in this formulation.
The backshift operator has not been considered in any of the other transfer functions in order to
keep the notation simple.
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o

)ZGI_I(GP_GAP)

P (Zil’ 4 (6.36)
e Zﬁl,é,é’) :GI_IG1 .

@ (
then Eq. (6.35) can be rewritten as

8[+1‘1<Z_l, 9, é) =, (2_1, 9, é)u, + @, (z_l, 9, é)e, (6.37)

Since it is desired to introduce white noise into the system, e, will be added and
subtracted from Eq. (6.37). This gives

8,(5, 3) = (I)u(Z_l, 0, 3)14,—}— ((IDE,(z_l, 9, 5) — I)et—i—e, (6.38)

It should be noted that, since this is assumed to be a sampled system, with zero-
order hold, G, will have at least one-sample time delay, that is,

G,(0)=0 (6.39)
Furthermore, it will be assumed that
G(0)=17T (6.40)

The above two conclusions also hold for the estimated models. Thus, it can be seen
that since both @, (O, 5, 5) and (CDE (O, 5, 5) -7 ) equal zero, then this implies

that they both have at least a one-sample time delay. Furthermore, due to the
one-sample time delay, there 1is no correlation between e, and

(q>e (0, 8, é’) _ I), since the first term in @, is e, _ ;, with which white noise is

by definition uncorrelated. Now, if it is further assumed that u, and e, are indepen-
dent, then the variance of the prediction error can be written as

Var(et(é, 5)) = var(dD(, (z’l, é, 3)14,)
+ Var((fbe (z_', 6, é) - I) e,) + var(e;) (6.41)

The variance given by Eq. (6.41) is at least equal to, if not greater than, the variance
of white noise, e,. Since it is desired to minimise the covariance of the errors, this
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implies that by setting both ®, and @, (z’l, 5, 5) — 7 equal to zero, a minimum
variance estimate can be obtained. Thus, it can be concluded that

- 5

®,(=1,6,6) =G (G, — Gy) =0

@, (Zfl, é, 5) = GI*IG[ -7 (6.42)

This implies that G, = Gp and G, = G. Thus, this shows that the parameter
estimates are unbiased.

Theorem 6.4 Asymptotic variance of the prediction error method. The prediction
error method is asymptotically a minimum variance estimator.

Proof This will be shown by deriving the Fisher information matrix for the
prediction error method.

First, define the sensitivity function, y/(t, 5) , as

A T
l//(t, 5) —_ # (6.43)

This can be rewritten using Eq. (6.12) to give

l//(t, é) - [dy ’L‘]T (6.44)

do

It can be seen that the larger the sensitivity, and thus the smaller the variance, the
better the estimates will be. Note that the asymptotic variance for the parameters
can be written as

cor(8) = 23w (1.6 )u(r.6) (6.45)
t=1

where m is the number of data points used and o2 is the noise of the white noise.
The Cramér-Rao lower bound for the parameter estimates states that

oy

cov(é) > F! (6.46)

where F is the Fisher information matrix, which is defined as
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e é’)T 647

Since Theorem 6.3 states that the prediction error method produces unbiased
estimates, as m — 0o, the estimated parameter values will approach the true param-
eter values. Thus, it can be concluded that the prediction error method asymptoti-
cally approaches a minimum variance estimator.

SaYhy

> u(e

t=1

1
F==
o2

w

Q.E.D.

6.3.2 Model Validation in Process Ildentification

Once the model parameters have been determined, it is necessary to validate the
model. As before, three different components need to be considered: (1) testing the
residuals, (2) testing the adequacy of the model, and (3) taking corrective action.
The general details of these components are the same as for regression analysis (see
Sect. 3.3.5: Model Validation). However, some specific details are needed for
model validation in process system identification.

The first system identification-specific detail is that the goal of most such models
is to predict future values. Therefore, the model validation tests are often performed
on a separate set of data that was not used for model parameter estimation. This is
one major difference from standard regression analysis where the same data set is
used for both cases. This means that the data set is split into two parts: one is used
for model parameter estimation and one is used for model validation. In general, the
model creation part will consist of %5 of the data, while the model validation part
will consist of % of the data.

The second system identification-specific detail is that testing of the residuals is
commonly performed using the autocorrelation and cross-correlation tests rather
than any other method. The autocorrelation test of the residuals seeks to determine
if the residuals are white noise by plotting the autocorrelation function of the
residuals for different lags (most often up to a lag of 20). If 95% of all the
autocorrelations lie inside the 95% confidence interval for zero at all lags not
equal to zero and there are no significant trends, then it can be concluded that the
residuals are white noise. Otherwise, there is a need to take corrective action.
Unfortunately, the autocorrelation plot does not provide a good indication of the
source of any problems. The cross-correlation test between the residuals and input
seeks to determine if the residuals and inputs are independent of each other.
Theoretically speaking, due to the assumption of independence, the two signals
should have a cross-correlation plot that is equal to zero for all lags. Practically, this
can be stated as 95% of all cross-correlations should lie inside the 95% confidence
interval for zero at all lags, and there should not be any significant trends in the data.
If this test fails, then the process model is likely to be incorrectly specified.
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Testing model adequacy in process system identification is similar to the basic
regression problem, for example, considering confidence intervals, comparing
predicted and measured values, and using some type of index-based method.
However, there are small differences. When comparing confidence intervals for
the parameters, if there is a string of confidence intervals that cover zero at the end
of the polynomial, then it is often the case that a too large an order was selected for
that polynomial. Similarly, if there are many confidence intervals that cover zero at
the start of the B-polynomial, then this can be a sign that the time delay has been
incorrectly specified. The time delay, n;, should then be increased by the number of
zero terms and the order of the B-polynomial decreased by the same amount. The
net change will be zero, but the estimation can be made more precise.

When comparing predicted and measured values, the data set will often be
different from that initially used in order to determine the adequacy of the model
for forecasting new future points. Furthermore, different types of predictors can be
used, for example, one-ahead, two-ahead, m-ahead, and infinite horizon predictors.
The infinite horizon predictor is essentially a prediction of the process using only
the deterministically available inputs. If the predictive capability of the model is
good with the infinite horizon predictor, then this implies that the model captures
well most of the process behaviour in the given region. On the other hand, a poor
performance with the infinite horizon predictor can be a sign that additional
information about the process may be required. This can be confirmed if
low-order predictors, such as the two- or five-step ahead predictors, give good
performance. The reason for this is that the past errors can contain additional
information about the process that can be useful in predicting the overall process.

It is possible to test model adequacy using various indices. These indices seek to
take into consideration the trade-off between the overall model fit as measured
using the variance of the residuals and the number of parameters used. The two
most common indices are:

1. Akaike’s Information Criterion (AIC): Akaike’s information criterion seeks to
find the global minimum between the variance and the number of parameters. It
is defined as

AIC = mlog m_lgm:e,‘,, 1 (é)e,‘,, 1 (§)T> +2n (6.48)

t=1

where 7 is the total number of estimated parameters in the model and m is the
number of data points.

2. Final Prediction Error Criterion (FPE): The final prediction error criterion
seeks to minimise the variance of the prediction errors with future data. It is
defined as

o =Y e ()en () (1) (o)

t=1
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Although they can be useful for automating the model adequacy checking compo-
nent, they still need to be combined with careful process knowledge in order to
obtain a good final model.

In general, a model with fewer parameters is often better than a complex model
with many different parameters, especially when trying to predict future process
values. Analysis of complex macroeconomic models has shown that these complex
models can produce predictions that have variances greater than the original vari-
ables and hence are meaningless (Ashley 1988; Nelson 1972).

6.3.3 Design of Experiments in Process Ildentification

The final topic in open-loop process system identification is considering the design
of experiment problem: under what conditions can the most information about the
process be extracted from the system with minimal effort. Also, it would be useful
to know the limitations on identifying the given model. Detailed information about
this topic can be found in Ljung (1999) and Soderstrom, Gustavsson, and Ljung
(1975). Practically, there are two topics to consider when designing a system
identification experiment: theoretical constraints and practical design
considerations.

Theoretically, the main concerns lie with identifiability of a process, that is,
given a data set and model structure (order of polynomials), what are the conditions
for there to be a unique solution to the parameter estimates. For open-loop exper-
iments, the identifiability constraint for a prediction error model can be simply
written as

Ny > Ng + Ny 4+ ne +ng + ny (6.50)

where 7, is the persistent excitation order of the input signal. Persistency, or the
amount of information excited by a signal in the process, is defined as follows. A
signal is said to have a persistent excitation order #, if the following 2 conditions are
satisfied:

1. The following limit exists:

1
y(z) = lim —Y u, ! (6.51)

m—oo m
t=1

2. The matrix, I",(n), is positive definite, or for a symmetric matrix this is equiv-
alent to saying that the matrix is invertible. The n-by-n matrix I",(n) is defined as
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7,00 70) Fuln — 1)
Ful=n) 7.2=n) - 7,0

where 7 is the estimated autocovariance of the signal.

Based on the result, it can be seen that a step input has a persistent excitation
order of 1. An impulse response has a persistent excitation order of 0, while white
noise has a persistent excitation order of infinity. This would suggest that
performing system identification with a white noise signal would be ideal, as all
prediction error model systems irrespective of complexity could be identified.
However, practically speaking, a white noise input signal is not useful since it is
contains too many random fluctuations in the values. These fluctuations would
cause the actuator, such a valve, to jump around, leading to potential mechanical
stresses and equipment failure. Therefore, instead of using a white noise signal, a
random binary signal, which oscillates between two fixed levels (conventionally
denoted as +1 and —1), is used. Such a signal approximates the white noise signal
and causes less mechanical stress on the system.

Designing the random binary signal requires setting the following parameters:
levels, sampling time, and bandwidth. The physical values for the /evels need to be
selected carefully taking into consideration the actual system constraints, for
example, overfilling a tank or leaving it empty, due to selecting too large or too
small a flow rate. Selecting a wide range between the two values can also lead to
undesirable behaviour, such as exciting nonlinearities.

The sampling time, t,, represents how often the data from the system is col-
lected. Both too fast and too slow sampling will have implications on the ability to
obtain a good model. Fast sampling will force the poles of the model to approach
—1, which means that the system will be difficult to identify accurately. Similarly,
too slow sampling will mean that the relevant information will be lost about the
process due to the Nyquist sampling theorem. The general rule for selecting the
sampling time is (Zhu 2001)

Ty = 0.17min t0 0.27min (6.53)

where 7y, is the smallest time constant in the process. The time constant, 7, of a
process represents how quickly the process responds to a change in the system. The
larger the time constant, the slower the response to changes.

Finally, the bandwidth needs to be selected. The bandwidth represents how
much of the frequency domain is excited (or examined) by the given signal. Most
chemical processes can be treated as low-pass filters, that is, only low frequencies
are important for describing the process. Therefore, there is only a need to excite the
process between [0, f,,,per], Where f,,,,,. is some upper-bound frequency. For a first-
order process, the bandwidth of a process is defined as the inverse of the time
constant. For higher-order processes, the bandwidth of a process can be defined as
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the inverse of the smallest time constant. In order to be certain that all of the
relevant bandwidth has been excited, a safety factor, &, is included. This safety
factor is normally set to be equal to either 2 or 3, depending on the associated
uncertainties in the initial process knowledge. If the process is known approxi-
mately, then it is possible to use a smaller k. Therefore, the bandwidth for the input
signal can be defined as [O, kr;li‘n], where, as before, 7,,;, is the smallest time
constant.

From the above description, it would seem that, in order to identify the process, it
is necessary to already know information about the process. In a way, this is indeed
the case. However, the initial knowledge about the process need not be very precise
and could be obtained using basic identification methods, such as the step test. The
step test is a method for identifying a first-order, linear process based on making a
step change in the input signal. The advantage of this approach is that it provides a
quick and effective way of determining the process characteristics. The disadvan-
tage is that the approach can only be used for simple processes that require/can be
approximated with a single time constant. In practice, this is sufficient as a first
approximation for most chemical engineering systems. Thus, this approach is
perfect for providing the initial estimate for system identification.

The procedure for running a step test can be summarised as follows:

1. Once the process is at some steady state (all the process values are constant
except for some minor variations), make a step change in the input signal.

2. Record the data until the process reaches a new steady state. The graph should
look something similar to Fig. 6.4.

3. From the graph, compute the time delay, 8, the gain, K, and the time constant, 7.

6.3.4 Final Considerations in Open-Loop Process
Identification

The above sections have provided a comprehensive view of the main issues in
open-loop identification. However, there remain some final things to consider
before this can be applied in practice. The most important things are time delay
estimation, drifting in the disturbance, linearity, and time invariance.

6.3.4.1 Time Delay

For both the prediction error and the linear, least-squares methods, the value of the
time delay must be known beforehand, that is, neither of the methods can estimate
the time delay as part of the regression problem. Estimating the time delay can be
performed using various different methods. The most common include using the
values obtained from the step tests and the cross-correlation plot between the inputs
and outputs.
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Fig. 6.4 Estimating parameters using a step test

Using step tests to estimate the time delay is a convenient and straightforward
method. However, it should be noted that the time delay obtained is in continuous
units that need to be converted into sampled units, using

o= FJ (6.54)

Ts

where | - | is the floor function that rounds down a value to the nearest integer.

Another approach to estimating the time delay is to use the cross-correlation plot
between the input and outputs. The delay will then appear as a series of zero values
between a lag of 0 and the time delay, n,;. A typical cross-correlation plot is shown
in Fig. 6.5 (left). In this plot, the time delay would be estimated as being 4, since
that is the last nonzero value before the significant peak. Note that using this
approach requires that the input be a white noise signal.

A related approach to estimating the time delay is to determine the impulse
response coefficients, 4, for the model. Similar to the cross-correlation plot, the first
nonzero value would be assumed to be equal to the time delay. A typical impulse
response plot is shown in Fig. 6.5 (right). In this plot, the time delay would be
estimated as being four, since that is the last nonzero value before the significant
peak. This method requires that the data be obtained from an open-loop experiment.
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Fig. 6.5 Estimating the time delay using (left) the cross-correlation plot and (right) the impulse
response method

6.3.4.2 Drifting and Disturbances

As when analysing a time series, the stationarity of the disturbance signal is an
important characteristic to consider. If the output is not stationary, then all the data
must be differenced in order to obtain a stationary model. If the data is differenced
k times, then the disturbance model will be of the form

G = G/d(l —Z_l)_k

(6.55)
where G, is the disturbance model estimated using the differenced data. However,
as for the univariate time series case, it should be noted that differencing the data
can lead to loss of information (excitation) in the input signal and an increase in
noise. Thus, differencing the data should only be performed if no “reasonable”
model can be obtained without differencing.

6.3.4.3 Linearity

When fitting a prediction error model to the data, it is assumed that the true model of
the process is linear. Since very few chemical processes are truly linear, it is
necessary to check the original process if a linear model is sufficient over the
region of consideration of the variables. Two common tests are:

1. Step-Up and Step-Down Check: In this test, a step increase from the original
conditions in the process is performed, followed by a step down back to the
original process conditions. The key process parameters, such as the time delay,
gain, and process time constant, should be similar for the two responses. The
ideal response is shown in Fig. 6.6 (left).
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Fig. 6.6 (Left) Ideal behaviour for the response for the step-up and step-down check and (right)
ideal behaviour for the response for the proportional test

2. Proportional Test: In this test, a set of step increases of magnitude M is
performed. The response of the system should be the same during each step
increase interval. The ideal response is shown in Fig. 6.6 (right).

6.3.4.4 Time Invariance

Finally, the prediction error model assumes that the parameter values do not change
with respect to time, that is, they are time invariant. A quick and simple test of the
invariance of the model is to split the data into two parts and cross validate the
models using the other data set. If both models perform successfully, then the
parameters are probably time invariant, at least over the time interval considered.

6.4 Closed-Loop Process Identification

In chemical engineering, it is common to encounter cases where identifying a
process using open-loop data may not be practical. Furthermore, it may be useful
to extract process information from a closed-loop process without disrupting the
overall process. In such cases, using and understanding closed-loop data are
important. Closed-loop data comes in two flavours: routine operating data and
externally excited data. In routine operating data, the reference signal is held
constant and does not change its value during the course of the experiment. The
only disturbances to the process come through the disturbance signal, ¢, On the
other hand, in externally excited data, the value of the reference signal changes.

The general closed-loop system is shown in Fig. 6.7, for which the transfer
function can be written as
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where G, is the controller transfer function and r, is the reference, or set point,
signal. In general, closed-loop identification is more complicated than open-loop
identification, since it cannot be assumed that the error and inputs are uncorrelated.
For any closed-loop system, two competing equations can be fit:

Y = Gpur + Giey (6.57)
yo=ri—G.lu (6.58)

The primary issue with closed-loop identification is how to identify the desired
process model G, given the two competing equations.

If the data obtained are routine operating data, then the process model, G,,, can
only be identified if the controller transfer function has a higher order than the
process and the effect of an incorrect model on the controller transfer function is
larger than on the disturbance model or if there is significant nonlinearity in the
controller and the error caused by an incorrect controller model is larger than the
disturbance error.

On the other hand, if there is an external excitation, then it is easier to perform
closed-loop identification. However, if the excitation is much weaker than the
disturbance, the model given by Eq. (6.58) will be determined. Thus, the signal-
to-noise ratio is extremely important in closed-loop identification. Also, identifica-
tion depends on the model structure that has been determined for the process. If the
model structure chosen for G, and G; is different from the structure of G, then the
model can be identified even if the excitation is weak. Since most controllers do not
have any sample time delays, if the structure chosen for G,, has at least one-sample
time delay (as it should if it is a discrete system), then the closed-loop system can be
easily identified even with a weak excitation.

If it is assumed that a prediction error model is being fit, then general conditions
for identifiability based on the orders of the polynomials can be obtained. A process
is identifiable from routine operating data if (Shardt and Huang 2011)
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max(ny + ny — ng — na,ny — ng) > np
+ min(n¢c + np + ny, na + np + ny, ng + ny)
(6.59)

where the controller is defined as

G, = (6.60)

X and Y are polynomials similarly defined to the A-polynomial with order ny and ny.
A process is identifiable from a reference signal with persistent excitation order, 7,,
if (Shardt and Huang 2014)

n, > np + min(nc + ng + ny, na + ng + ny, ng + nx)

. 6.61
+ min(ng + ng — ny — ng, ng — ny) ( )

There are three different approaches in determining the model structure of a
closed-loop system: indirect identification, direction identification, and joint input-
output identification.

6.4.1 Indirect Identification of a Closed-Loop Process

The first method for closed-loop identification is called indirect identification,
where Eq. (6.56) is first fit as

Vi ZM(Z_l)r,—i—W(z_l)et (6.62)

Then, given the controller transfer function, the process transfer function can be
calculated as

1

GP:G.
G G

(6.63)

Since most processes have low-order dynamics and the overall transfer function, M,
is likely to have a large order, plenty of cancellations must occur between G, and M.
However, many of these cancellations will not occur if the model estimates are even
slightly off. Thus, there is a potential of creating a very large order model, even if it
is not warranted. Furthermore, this method can only be used for identifying data
obtained when the process has external excitation.
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6.4.2 Direct Identification of a Closed-Loop Process

The second method is called direct identification, where the fact that the process is
running in closed loop is ignored. In this type of identification, both the process and
error structures must be simultaneously estimated. Thus, either a Box-Jenkins or a
general prediction error model should be fit. Since this is one of the more common
approaches to closed-loop system identification, it is necessary to examine the
properties of this approach. It will be assumed that the prediction error method
will be used.

Theorem 6.5 Properties of the prediction error method for closed-loop identifi-
cation. The prediction error method produces parameter estimates that are unbi-
ased when the process is running in closed loop.

Proof The proof will follow the same form as the open-loop proof.

Assume that G, has at least one-sample time delay and the reference signal has
sufficient persistent excitation. Since the direct identification method is the same as
the open-loop identification method, the prediction error should be the same. Thus,

£l (zfl, g, E)’) = G (G + Gre, — Gy (6.64)

Re-arranging Eq. (6.56) to solve for u, gives

G, GG,
= re— 6.65
Uz lJchGp t lJrGUGI,Et ( )
Substituting Eq. (6.65) into Eq. (6.64) and simplifying gives
1z 2\ Al A . sGy
Eir (z 0, 9) =G (G, — Gy)sGor, + ke, (6.66)
N G[
where s is the sensitivity function defined as
P S (6.67)
 1+G.G, '

and § represents the estimated form of Eq. (6.67), that is, with G, replaced by Gp. As
in the open-loop case, define

®,(1,8,6) =G (G, — G,)sG.
( ) /' (Gy — Gy) (6.68)
6

0.(1.0.6) = 6;'Guss
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Thus, Eq. (6.66) can be rewritten as
Eili—1 (zfl, 9, é) = o, (271, g, 5)r, + @, (zfl, 0, 5)@ (6.69)
Similarly, a white noise term will be introduced into Eq. (6.69) to give
Edr—1 (zfl, 0, 5) =®, (zfl, 9, é)r, + <<I>e (271, g, 3) - I)e, +e  (6.70)

Since it was assumed that there is at least one-sample time delay in G, it can be
noted that @, (O, @, 5) equals zero. Also, @, (O, 5, 5) — 7 will equal zero. Thus,
since both of the terms have at least a one-sample time delay, r, and e, are
uncorrelated, and e, and (d)e (z’l, 5, 5 ) — I)e[ are uncorrelated. Thus, the

variance can be written as

Var(st’t_ . (z’l, é, 3)) = var(CI),‘ (z’l7 5, 5);’,)

which must be equal to or greater than the variance of white noise. The minimum
value will occur when both @, (z’l, 6,0 ) and ((Dg (z’l, 0,0 ) - ) equal zero. In

order for this to occur,
G, =G, (6.72)
which implies that

s=3S§ (6.73)
Equation (6.73) and ((I)e (z‘l, 0, 5) -7 ) equalling zero imply that

G =G (6.74)

Thus, the parameter estimates are unbiased for the direct identification
method. Q.E.D.

This implies that the prediction error method can be used to estimate the model
parameters without taking into consideration the fact that the system is running in
closed loop. Furthermore, the model of the controller is not required nor is any
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information about 7, needed. This implies that this approach works for both routine
operating and externally excited data.

However, when performing model validation using this approach, a few changes
need to be made in the analysis due to correlation between the input, u,, and the
disturbance, e,. This correlation implies that the input will be correlated with past
values of the disturbance (and hence the residuals). Therefore, the conditions for the
cross-correlation test, mentioned previously for the open-loop case, need to be
changed to state “95% of all cross-correlations should lie inside the 95% confidence
interval for zero for lags greater than zero.”

When using the direct approach to closed-loop identification for routine operat-
ing process data, it is important to note that due to the weak excitations present, the
length of the data series is important for obtaining a good estimate of the param-
eters. For first-order models, about 2,000 data points are required (Shardt and
Huang 2011). Furthermore, small, but consistent, changes in the overall disturbance
model can render the identification of the process difficult.

6.4.3 Joint Input-Output Identification of a Closed-Loop
Process

The third and final method for closed-loop process identification is called the joint
input-output identification method, which uses all three signals, y,, #;, and 7;, in
order to identify a model of the system in a two-step procedure. In the first step, a
model between r, and u, is fit to give

U = Q(z’l)r, —|—R(271)e, (6.75)
where
G,
0 =
1+G,Ge (6.76)
Rty -GG '
1+ G,G.

Then, the reference signal, r,, is filtered using the resulting Q-polynomial to obtain
an uncorrelated with noise, input signal, #,. The process model can be identified by
fitting the following relationship

*Instead of the previous “95% of all cross-correlations should lie inside the 95% confidence
interval for zero at all lags.”
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Vi = Gp<Z_l)’2t +P(Z_l)et (6.77)

where P(z~") is an arbitrary polynomial that is theoretically equal to —R(z~"). The
key advantage of this method is that there is no need to know any information about
the controller. However, this approach does require that all three signals be
available.

6.5 Nonlinear Process Identification

Although in many circumstances linear system identification can provide a suffi-
ciently good model of the system for the intended purpose, it is occasionally
necessary to consider nonlinear system identification.

Nonlinear system identification attempts to fit a nonlinear model to the given
data. However, since there is a large number of potential nonlinear models that
could be fit, nonlinear identification simplifies the available functions. Instead of
choosing any arbitrary function, a basis function, k(x), is selected. The basis
function can also be called the generating function or the mother function. Then,
the goal becomes to fit the following model to the data

y(rfﬁ) = ;akK(ﬂk((Z - }’k>) (6.78)

where

—

¢ = <y,,1,y,,2, ~~w)’;,,,y,uzfn,(f1,Mt7n,(72, ~~-ut7n;(7nl,> (679)

ny is the number of past values of the output to be considered, n, is the number of
past values of the input to be considered, n; is the time delay, n is the number of
basis functions to be used, a is the coefficient, f is the dilation factor, and y is the
translation factor. Since this resembles an ARMAX model, this method is often
referred to as a nonlinear autoregressive exogenous model (NLARX). Thus, in
nonlinear system identification, the goal is to fit the 3 parameters, @, f, and y, by
minimising the prediction error using an appropriate nonlinear solver. In certain
cases, the results obtained may not be the true global minimum but rather a local
one. Therefore, there is a need to carefully select both the function form and the
solver method. A “good” nonlinear model should pass all of the standard system
identification tests mentioned above for the linear case.
Common basis functions include:

1. Taylor Series Expansion: x(x) = x*;
2. Fourier Transformation: k(x) = cos (x);
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1 0<x<1,

3. Piecewise Constant Function: x(x) = { 0 otherwise’

2,
4. Gaussian Function: k(x) = Nerd I ;
.
1+e ™
052
—e 0.5x

5. Sigmoid Function: x(x) =
6. Wavelet Function: x(x) . This is only one example of many different

possible basis functions using combinations of trigonometric functions and
exponential functions.

It can be shown that for a sufficiently large value of n, for almost any choice of
the basis function, except a polynomial basis, any reasonable nonlinear function can
be approximated arbitrarily well.

6.5.1 Transformation of Nonlinear Models: Wiener-
Hammerstein Models

Instead of fitting a fully nonlinear model, another approach to nonlinear system
identification is to partition the nonlinearities from the linear component. A com-
mon application of this approach is the Wiener-Hammerstein model. A Wiener-
Hammerstein model is a generalisation of the Hammerstein model, where non-
linearities are assumed only to be in the input, and the Wiener model, where
nonlinearities are assumed only to be in the output, which allows nonlinearities to
be present in both the input and output. The process model is assumed to be linear.
Thus, the general form of the model can be written as

B(z™!) C(z ™

50 = %ﬂm) n

e (6.80)

where f(x) and g(x) are functions of predetermined form. Identification would then
proceed in the usual manner.

Weiner-Hammerstein models are useful with the actuators or sensors have
significant nonlinearities in their behaviour. A common application is when the
valve, used as an actuator, is not behaving normally and has significant nonlinear-
ities, such as stiction. By removing the nonlinearities from the modelling process, it
becomes possible to convert the initially nonlinear problem into a linear one.

6.6 Modelling the Water Level in a Tank

Consider the task of developing models for the water level in the four tanks shown
in Fig. 6.8. In this system, there are two inputs, u#; and u,, which represent the flow
rate delivered by the two pumps. Each input is split into two and enters a bottom
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Fig. 6.8 Schematic of the four-tank system
Table 6.1 Steady-state Parameter | Left (1) | Right (2)
parameter values for the
s 4 0.2 0.3
ystem 3
ug (cm’/s) | 13 12
hg (cm) 18 24

tank and a different top tank. Thus, input 1 enters Tanks 1 and 3, while input
2 enters Tanks 2 and 4. The amount of split is determined by the ratios y; and y,.
The height of water in each of the tanks can be monitored. For this experiment, the
steady-state values are shown in Table 6.1.

The objective of this experiment is to determine an appropriate model for the
water level in Tank 1 assuming that the splits are fixed, but the flow rate from the
two pumps can vary. Design an appropriate experiment and analyse the results.
Perform both linear and nonlinear system identification and compare the resulting
models. Which one would be preferred?

6.6.1 Design of Experiment

The design of the experiment can be split into two parts: preliminary identification
using step tests and final identification using a random binary signal.
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Fig. 6.9 Level in Tank 1: (left) Step change in u; and (right) step change in u,

Table 6.2 Summary of the values used to obtain the time constants, where 7,, is the time constant,
h is the height, 0 the time delay, and  is the time. The subscript ss; refers to the initial steady-state
values and ss, the final steady-state height. Subscripts b and c refer to specified time instants.

0 D, hss, he = 0.63(hgy, — hyy) + hys, | t=0h) |T=1,—0
(s) | (m) (m) (s) (s) (s)

u, changed |62 |0.184 0.194 0.190 162 100

up changed |80 |0.183 0.237 0.216 274 195

6.6.1.1 Preliminary Identification

In preliminary identification, the objective is to obtain a rough idea of how the
system behaves under different conditions. In order to achieve this, a series of step
tests will be performed on the system. Each pump will be tested separately at this
point in order to make the computations easier. For each pump, a step increase of
+2 cm?®/s will be made. The resulting changes in the Tank 1 level are shown in
Fig. 6.9. Table 6.2 shows the values obtained and the computation of the required
time constants.

From Table 6.2, it can be seen that an approximate time constants for the level in
Tank 1 are 100 s for the left pump and 195 s for the right pump. This information
will now be used to design an appropriate input signal.

6.6.1.2 Final Identification

Once a basic understanding of the system parameters has been obtained, the input
signal can be designed. As mentioned before, the best input signal to consider is the
random binary signal. In order to use this signal, three components must be
selected: levels, sampling time, and bandwidth.
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The levels should be selected to be symmetric about the nominal steady-state
values and in most cases, less than the step changes previously made. It should be
noted that selecting too large a level can lead to either the tanks overflowing or
being empty during the course of the experiment. Since neither case is desirable, it
is important to avoid such a situation. In this case, the level selected will be
+1.5 cm/s.

The sampling time is selected as some fraction of the smallest of the system time
constants. Since the preliminary identification has shown that the time constants are
100 and 195 s, the base value is 100 s. The sampling time should then be between
10 and 20% of this value or between 10 and 20 s. For the purposes of this
experiment, it was assumed that the midpoint would be best, that is, the sampling
time was selected to be 15 s. Note, it is very helpful when selecting the sampling
time to make sure that the total experimental time can be divided by the sampling
time to give no remainder.

Finally, it is necessary to select the process bandwidth. The Nyquist bandwidth is

selected as the region [0, %} with k equal to 2 and 7, =100 s, the smallest time
»

constant. The final signal was generated using the idinput command in
MATLAB®

>>u—idinput (2*60*60/Ts, 'rbs', [0,2*Ts/Tp/pil, [-1.5,
1.5])

It was assumed that the experiment was going to be run for 2 h (=2 x 60 x 60 s).
The values were then sent to the distributed control system (DCS) controlling the
four-tank system. The data was recorded every second and the values collected in
MATLAB.

6.6.2 Raw Data

The data obtained for both Tank 1 and Tank 2 levels is shown in Fig. 6.10. A total of
2 h of data were collected. It can be seen that there are no obvious issues with the
data collected, such as missing values or abnormal values. In order to use the data, it
is necessary to downsample the 1 s data to the desired sampling rate of 15 s.
This can be accomplished by taking every 15th data point from the original data
set for the new downsampled data vector. The downsampled data are presented in
Sect. 3.A.1: Water Level in Tanks 1 and 2 Data.

For the purposes of modelling, the data set will be split into two parts: training
and validation. The training set will consist of the first %5, while the validation set
will consist of the remaining '5. Although this split is different from the suggested
division, it will be used in order to obtain better initial parameter estimates. All
modelling will be performed on Tank 1. The modelling of Tank 2 will be left as an
exercise.
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Fig. 6.10 The signals and heights as a function of time

6.6.3 Linear Model Creation and Validation

The first step will be to create a linear model of the system and validate it. This
procedure will be split into three steps: time delay estimation, model creation, and
model validation. The last two steps are iterative, in that if the model validation
fails, a new model structure may be created and then fit. This procedure is repeated
until a sufficiently good model is obtained. For the purpose of this section, the initial
model and the final model will be presented, as well as any intermediate steps that
present any special challenges.

6.6.3.1 Time Delay Estimation

The normalised signal values, as well as the actual heights of the tanks are shown in
Fig. 6.10. In general, the data look quite good. Figure 6.11 shows the impulse
response calculations between each of the inputs and outputs. This is the only
approach that will work given the fact that the input was not white noise. The results
suggest a time delay of zero for u; and one for u,.
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Fig. 6.11 Impulse responses for Tank 1 level (left) for u; and (right) for u,

6.6.3.2 Initial Model

Unless there is additional information about the process, it is useful to always start
with the simplest model and work one’s way up. A good recommended initial guess
is a first-order Box-Jenkins model and then, based on the fit, to advance to more
complex models until the fit becomes good or the model order is too large.

For the initial, first-order Box-Jenkins model, the parameter estimates and their
standard deviation are:

hy =

(57x107*£7x107)z7" (176 x 1073 £7 x 107)272] [y
1—(0.91£0.03)z"! 1 — (0.956 4 0.006)z ! ] [Mz}

1+ (0.38 +0.05)z"!

- (0.99+0.01)z"

(6.81)

The auto- and cross-correlation plots are shown in Fig. 6.12. A comparison between
the predicted and actual levels is shown in Fig. 6.13. Both figures use the validation
data set for testing the model. From Fig. 6.12, it is clear that the residuals are not
uncorrelated with each other or the inputs. Therefore, the initial model needs to be
improved. Since there is a suggestion that the process model is incorrectly specified,
it will first be changed. The best approach is to increase the order of the numerator
and denominator (of the B- and F-polynomials) until either the cross-correlation
plot shows the desired behaviour or the confidence intervals for the parameters
cover zero. If the second case is reached, then this could be a suggestion that a linear
model is insufficient/inappropriate for the given data set. Furthermore, the fit
between the predicted and measured levels is not great (55.4%).
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Fig. 6.12 (Top) Autocorrelation plot for the residuals and (bottom) cross-correlation plots
between the inputs (leff) u; and (right) u, and the residuals for the initial linear model

6.6.3.3 Final Model

After performing a series of iterations in increasing the model orders, the final
model for the system can be written as

(45x10%+4x107)z7 '+ (34 x 10" £4 x 1077)z 72
L= 1~ (0.85£0.01)z-"! “
(7.8 x107*£2x107°)z72
T (1664 £0.007)2 T + (0.695 £ 0.007)z " 2
1+(034+0.2)z7" —(0.23 +0.06)z2

1—(13£02)z "+ (0.4 £0.2)z2

(6.82)

e

The auto- and cross-correlation plots are shown in Fig. 6.14. A comparison between
the predicted and actual levels is shown in Fig. 6.15. Both figures use the validation
data set for testing the model. The amount of deviation has now been significantly
decreased from the initial model. Although some of the correlation values are still
above the 95% confidence intervals, the values are closer to what should be
expected. The fit for the data is an excellent 93.15%, which is not significantly
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Fig. 6.15 Predicted and experimental tank levels for the final linear model

improved by changing the model structure further. Therefore, this will be consid-
ered the final linear model.

6.6.4 Nonlinear Model Creation and Validation

Finally, a nonlinear model will be fit to the data to see if any improvement can be
obtained. Using MATLAB, the wavenet basis function will be used. This implies
that the model will be given as

Ny

h=F-PLA D agB(X—%)Q - Bry) (6.83)
k=1

where Xis the vector of regressors; X is the mean value of the regressors; P and Q are
projection matrices resulting from a principal component analysis of the estimation
data; £ is another projection matrix; @, 8, and y are the unknown parameters; g(¥) is
the wavelet basis function

g(®) = (n, — ¥ )e 05 (6.84)
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Fig. 6.16 (Top) Autocorrelation plot for the residuals and (bottom) cross-correlation plots
between the inputs (/eff) u; and (right) u, and the residuals for the nonlinear model

n,, is the number of wavelets to be used, and #, is the number of regressors present
in the model. Notice the complexity of the model and the number of parameters
being estimated.

A wavelet model for the data consisted of the following regressors: y, _ 1, y; _ 2,
Y: — 3, and y, _ 4, plus for each of the inputs the terms between n;+ 1 and n;+35.
The total time delay was assumed to be one for the process between the u; and 4,
and two between the u, and /. Note that the time delay used here must include the
one-sample time delay introduced by sampling a system, that is, the total time delay
equals n; + 1. The estimated model parameters will not be included here as they are
quite complex and provide no real insight into the results. The number of wavelets
was set at six. The auto- and cross-correlation plots are shown in Fig. 6.16. A
comparison between the predicted and actual levels is shown in Fig. 6.17. It can be
seen that the fit has improved to 96.71%. However, this has come at the cost of a
much more complex model whose physical understanding and computational
requirements are much greater. This is often the problem encountered in system
identification: the trade-off between the model complexity and fit. Furthermore, it
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Fig. 6.17 Predicted and experimental tank level for the nonlinear model

can be noted that the nonlinear approach requires the regressors to be estimated
using some other method. This may not always be so easy to do, especially if the
number of potential regressors is very large.

6.6.5 Final Comments

This brief example has shown some of the issues and concepts involved in the
development of models for real systems. The procedure involved becomes more
complicated as the complexity of the system increases, but the basic steps remain
the same. Also, it can be seen that obtaining a good fit can require trying multiple
different models and comparing the results. Although, in general, the fit will
improve with increased model complexity, it does not always mean that such a
model is better or more appropriate for the given application. There is always the
need to compare the model obtained against the purpose for which the model will
be used.
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6.7 Further Reading

The following are references that provide additional information about the topic:
1. General System Identification:

(a) Huang B, Kadali R (2008) Dynamic modeling, predictive control, and
performance monitoring. Springer, London

(b) Ljung L (1999) System identification theory for the user. Prentice Hall,
Inc., Upper Saddle River

(c) Zhu Y (2001) Multivariable system identification for process control.
Elsevier Science Ltd., Oxford

2. Properties of System Identification:

(a) Ashley R (1988) On the relative worth of recent macroeconomic forecasts.
Int J Forecast 4:363-376

(b) Nelson CR (1972) The prediction performance of the FRB-MIT-PENN
model of the U.S. Economy. Am Econ Rev 62(5):902-917

(c) Shardt YA, Huang B (2011) Closed-loop identification with routine oper-
ating data: effect of time delay and sampling time. J Process Control
21:997-1010

(d) Shardt YA, Huang B (2014) Minimal required excitation for closed-loop
identification: implications for PID control loops. In: ADCONIP confer-
ence proceedings, Hiroshima, Japan, pp 296-301. doi:http://www.nt.ntnu.
no/users/skoge/prost/proceedings/adconip-2014/pdf/SUBS61TO80/0069/
0069_FI.pdf

(e) Soderstrom T, Gustavsson I, Ljung L (1975) Identifiability conditions for
linear systems operating in closed loop. Int J Control 21(2):243-255

6.8 Chapter Problems

Problems at the end of the chapter consist of three different types: (a) Basic
Concepts (True/False), which seek to test the reader’s comprehension of the key
concepts in the chapter; (b) Short Exercises, which seek to test the reader’s ability
to compute the required parameters for a simple data set using simple or no
technological aids, and this section also includes proofs of theorems; and
(c) Computational Exercises, which require not only a solid comprehension of the
basic material but also the use of appropriate software to easily manipulate the
given data sets.


http://www.nt.ntnu.no/users/skoge/prost/proceedings/adconip-2014/pdf/SUBS61TO80/0069/0069_FI.pdf
http://www.nt.ntnu.no/users/skoge/prost/proceedings/adconip-2014/pdf/SUBS61TO80/0069/0069_FI.pdf
http://www.nt.ntnu.no/users/skoge/prost/proceedings/adconip-2014/pdf/SUBS61TO80/0069/0069_FI.pdf
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6.8.1 Basic Concepts

Determine if the following statements are true or false and state why this is the case.

1. Data-driven models can be used for arbitrary conditions and operating points.
2. Grey-box modelling combines the advantages of first-principle and data-driven
models.
3. The controller, process, and disturbance models together create the plant
model.
4. In the Box-Jenkins model, the A-polynomial has a fixed order of three.
5. All prediction error models can be fit using standard, linear regression.
6. Only the one-step ahead predictor has a variance equal to the white noise
variance.
7. The prediction error method provides consistent parameter estimates.
8. Many nonzero autocorrelation and cross-correlation values implies that the fit
of the model is poor.
9. If the cross-correlation plot shows many nonzero correlations, then the likely
problem is a misspecified process model.
10. A first-order Box-Jenkins model (i.e. all polynomials have order one) requires a
signal to have at least a persistent excitation of four.
11. White noise has a persistent excitation order of exactly 1,000.
12. A random binary signal does not approximate a white noise signal.
13. To specify a random binary signal, the physical values for the levels, the
sampling time, and bandwidth are required.
14. A step test can provide information about high-order processes.
15. The time delay can be estimated using the autocorrelation plot.
16. All chemical process are linear and time invariant.
17. In closed-loop identification, it is not necessary to accurately specify both the
process and disturbance models.
18. Indirect identification of closed-loop processes requires that only the input and
output signals be available.
19. A polynomial basis function can fit any nonlinear function arbitrarily well.
20. The Wiener transformation removes nonlinearities from the process output.

6.8.2 Short Exercises

These questions should be solved using only a simple, nonprogrammable,
nongraphical calculator combined with pen and paper.

21. What is the three-step ahead predictor and its variance? If G, =5/(1 - 05271
and G;=1/(1 - 0.25271), what is the three-step ahead predictor?

22. Show that, for open-loop identification irrespective of the true plant model, an
output-error model will provide an unbiased estimate of the process parame-
ters. Provide a useful implication of this result.
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Fig. 6.19 Model validation for the open-loop case: (left) cross-correlation between the input and
the residuals and (right) autocorrelation of the residuals

23. Show that, for closed-loop identification irrespective of the true plant
model, an output-error model will provide a biased estimate of the process
parameters.

What is the time delay for the figures provided in Fig. 6.18? Assume open-loop
conditions.

Comment on the validation figures shown in Fig. 6.19. Is the model adequate?
Assume open-loop conditions.

Comment on the validation figures shown in Fig. 6.20. Is the model adequate?
Assume closed-loop conditions.

24.

25.

26.
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Fig. 6.20 Model validation for the closed-loop case: (/eft) cross-correlation between the input and
the residuals and (right) autocorrelation of the residuals

6.8.3 Computational Exercises

The following problems should be solved with the help of a computer and appro-
priate software packages, such as MATLAB® or Excel®.

27. Take the Edmonton temperature series from Sect. D.1: Edmonton Weather
Data Series (1882-2002) and model the winter temperature as a function of the
other available temperatures. Validate the model.

28. Model the height in Tank 2 using the data provided in Sect. E.1: Water Level in
Tanks 1 and 2 Data.

29. Take a process that you are familiar with and design an experiment to identify the
process. If possible perform the experiment and obtain an appropriate model of
the system. Make sure to clearly explain the design of experiment, model creation,
and model validation used. Consider both linear and nonlinear modelling.

Appendix A6: Data Sets for This Chapter

This section gives detailed information about the data set used for analysis in
Chap. 6. All data can be downloaded as an Excel® spreadsheet or MATLAB® file
from the book website.

A6.1: Water Level in Tanks 1 and 2 Data

The water level in both Tanks 1 and 2, as well as the corresponding pump flow rates,
is presented in Table 6.3, in 15 s intervals.


http://dx.doi.org/10.1007/978-3-319-21509-9_5
http://dx.doi.org/10.1007/978-3-319-21509-9_6
http://dx.doi.org/10.1007/978-3-319-21509-9_6

Appendix A6: Data Sets for This Chapter

Table 6.3 Water tank data set
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Level (m) Pump flow rate (cm?/s)
Time (s) Tank 1 (h;) Tank 2 (h,) Left pump (u;) Right pump (u,)

1 0.1792 0.2456 14.5 13.5
16 0.1801 0.2462 14.5 13.5
31 0.1814 0.2480 14.5 13.5
46 0.1855 0.2507 14.5 13.5
61 0.1881 0.2538 14.5 13.5
76 0.1913 0.2565 14.5 10.5
91 0.1944 0.2579 14.5 10.5
106 0.1955 0.2588 14.5 10.5
121 0.1952 0.2593 14.5 10.5
136 0.1939 0.2603 14.5 10.5
151 0.1917 0.2611 14.5 10.5
166 0.1887 0.2617 14.5 10.5
181 0.1855 0.2626 14.5 10.5
196 0.1815 0.2639 14.5 10.5
211 0.1776 0.2649 11.5 10.5
226 0.1720 0.2654 11.5 10.5
241 0.1672 0.2647 14.5 10.5
256 0.1635 0.2629 14.5 10.5
271 0.1611 0.2615 14.5 10.5
286 0.1592 0.2607 14.5 10.5
301 0.1583 0.2605 14.5 10.5
316 0.1566 0.2605 14.5 10.5
331 0.1552 0.2609 14.5 10.5
346 0.1536 0.2615 14.5 10.5
361 0.1524 0.2625 14.5 10.5
376 0.1511 0.2638 14.5 10.5
391 0.1505 0.2647 14.5 10.5
406 0.1500 0.2654 14.5 10.5
421 0.1494 0.2666 14.5 10.5
436 0.1489 0.2674 14.5 10.5
451 0.1495 0.2682 14.5 10.5
466 0.1489 0.2692 14.5 10.5
481 0.1486 0.2701 14.5 10.5
496 0.1480 0.2703 14.5 10.5
511 0.1477 0.2714 11.5 10.5
526 0.1457 0.2714 11.5 10.5
541 0.1438 0.2700 11.5 10.5
556 0.1419 0.2677 11.5 10.5
571 0.1404 0.2641 11.5 10.5
586 0.1393 0.2601 11.5 10.5
601 0.1378 0.2553 11.5 13.5
616 0.1385 0.2524 11.5 13.5

(continued)
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Table 6.3 (continued)

Level (m) Pump flow rate (cm?/s)
Time (s) Tank 1 (h;) Tank 2 (h,) Left pump (u;) Right pump (u,)
631 0.1415 0.2499 11.5 13.5
646 0.1451 0.2476 11.5 13.5
661 0.1501 0.2450 11.5 13.5
676 0.1550 0.2422 11.5 13.5
691 0.1612 0.2395 14.5 13.5
706 0.1671 0.2372 14.5 13.5
721 0.1748 0.2365 14.5 13.5
736 0.1814 0.2373 14.5 13.5
751 0.1873 0.2394 14.5 13.5
766 0.1923 0.2421 14.5 13.5
781 0.1966 0.2457 14.5 13.5
796 0.2001 0.2492 14.5 13.5
811 0.2039 0.2535 14.5 13.5
826 0.2069 0.2570 14.5 13.5
841 0.2095 0.2611 14.5 13.5
856 0.2120 0.2647 14.5 13.5
871 0.2141 0.2681 14.5 13.5
886 0.2164 0.2712 14.5 13.5
901 0.2179 0.2736 14.5 10.5
916 0.2189 0.2747 11.5 10.5
931 0.2162 0.2740 11.5 10.5
946 0.2115 0.2725 11.5 10.5
961 0.2060 0.2692 11.5 10.5
976 0.2003 0.2657 11.5 10.5
991 0.1936 0.2607 11.5 10.5
1,006 0.1880 0.2562 11.5 10.5
1,021 0.1816 0.2504 11.5 10.5
1,036 0.1765 0.2461 14.5 13.5
1,051 0.1732 0.2427 14.5 13.5
1,066 0.1730 0.2422 14.5 13.5
1,081 0.1742 0.2430 14.5 13.5
1,096 0.1770 0.2449 14.5 13.5
1,111 0.1812 0.2480 14.5 13.5
1,126 0.1848 0.2507 14.5 13.5
1,141 0.1892 0.2541 14.5 13.5
1,156 0.1930 0.2572 14.5 13.5
1,171 0.1973 0.2604 14.5 13.5
1,186 0.1999 0.2636 14.5 13.5
1,201 0.2027 0.2672 14.5 13.5
1,216 0.2053 0.2701 14.5 13.5
1,231 0.2075 0.2731 14.5 13.5
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Level (m) Pump flow rate (cm?/s)
Time (s) Tank 1 (h;) Tank 2 (h,) Left pump (u;) Right pump (u,)
1,246 0.2105 0.2759 14.5 13.5
1,261 0.2126 0.2790 14.5 13.5
1,276 0.2147 0.2808 14.5 13.5
1,291 0.2161 0.2832 14.5 13.5
1,306 0.2183 0.2847 14.5 10.5
1,321 0.2196 0.2844 14.5 10.5
1,336 0.2190 0.2834 14.5 10.5
1,351 0.2168 0.2820 14.5 10.5
1,366 0.2126 0.2807 14.5 10.5
1,381 0.2080 0.2800 14.5 10.5
1,396 0.2027 0.2794 14.5 10.5
1,411 0.1979 0.2789 14.5 10.5
1,426 0.1924 0.2784 14.5 10.5
1,441 0.1879 0.2778 14.5 10.5
1,456 0.1833 0.2770 14.5 10.5
1,471 0.1793 0.2770 14.5 10.5
1,486 0.1746 0.2769 14.5 10.5
1,501 0.1715 0.2768 14.5 13.5
1,516 0.1691 0.2784 11.5 13.5
1,531 0.1678 0.2803 11.5 13.5
1,546 0.1671 0.2810 11.5 13.5
1,561 0.1682 0.2799 11.5 13.5
1,576 0.1705 0.2778 11.5 13.5
1,591 0.1728 0.2744 11.5 13.5
1,606 0.1759 0.2710 11.5 13.5
1,621 0.1789 0.2668 11.5 13.5
1,636 0.1821 0.2627 11.5 13.5
1,651 0.1851 0.2583 11.5 13.5
1,666 0.1884 0.2543 11.5 13.5
1,681 0.1909 0.2499 11.5 10.5
1,696 0.1929 0.2447 11.5 10.5
1,711 0.1929 0.2381 11.5 10.5
1,726 0.1907 0.2332 11.5 10.5
1,741 0.1880 0.2278 11.5 10.5
1,756 0.1843 0.2240 11.5 10.5
1,771 0.1807 0.2199 14.5 10.5
1,786 0.1775 0.2173 14.5 10.5
1,801 0.1759 0.2161 14.5 10.5
1,816 0.1739 0.2170 14.5 10.5
1,831 0.1719 0.2191 14.5 10.5
1,846 0.1691 0.2217 14.5 10.5

(continued)
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Table 6.3 (continued)

Level (m) Pump flow rate (cm?/s)
Time (s) Tank 1 (h;) Tank 2 (h,) Left pump (u;) Right pump (u,)
1,861 0.1671 0.2249 14.5 10.5
1,876 0.1641 0.2284 14.5 10.5
1,891 0.1625 0.2321 14.5 10.5
1,906 0.1605 0.2356 14.5 10.5
1,921 0.1592 0.2390 14.5 10.5
1,936 0.1578 0.2426 14.5 10.5
1,951 0.1563 0.2458 14.5 13.5
1,966 0.1568 0.2507 14.5 13.5
1,981 0.1588 0.2556 14.5 13.5
1,996 0.1623 0.2608 14.5 13.5
2,011 0.1662 0.2649 14.5 13.5
2,026 0.1709 0.2687 14.5 13.5
2,041 0.1752 0.2721 14.5 13.5
2,056 0.1805 0.2751 11.5 13.5
2,071 0.1834 0.2775 11.5 13.5
2,086 0.1857 0.2784 11.5 10.5
2,101 0.1878 0.2759 11.5 10.5
2,116 0.1878 0.2709 11.5 10.5
2,131 0.1866 0.2660 11.5 10.5
2,146 0.1836 0.2593 11.5 10.5
2,161 0.1805 0.2543 11.5 10.5
2,176 0.1772 0.2483 11.5 10.5
2,191 0.1738 0.2435 11.5 10.5
2,206 0.1697 0.2379 11.5 10.5
2,221 0.1663 0.2333 11.5 10.5
2,236 0.1627 0.2286 11.5 10.5
2,251 0.1588 0.2251 11.5 10.5
2,266 0.1554 0.2214 11.5 10.5
2,281 0.1533 0.2186 11.5 10.5
2,296 0.1503 0.2155 11.5 10.5
2,311 0.1479 0.2134 11.5 10.5
2,326 0.1457 0.2108 11.5 10.5
2,341 0.1440 0.2091 11.5 10.5
2,356 0.1422 0.2075 11.5 10.5
2,371 0.1407 0.2062 11.5 10.5
2,386 0.1397 0.2047 11.5 10.5
2,401 0.1387 0.2036 11.5 10.5
2,416 0.1377 0.2027 11.5 10.5
2,431 0.1371 0.2025 11.5 13.5
2,446 0.1378 0.2033 11.5 10.5
2,461 0.1398 0.2036 11.5 10.5
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Level (m) Pump flow rate (cm?/s)
Time (s) Tank 1 (h;) Tank 2 (h,) Left pump (u;) Right pump (u,)
2,476 0.1415 0.2025 11.5 10.5
2,491 0.1421 0.2019 11.5 10.5
2,506 0.1419 0.2009 11.5 10.5
2,521 0.1418 0.2004 11.5 10.5
2,536 0.1412 0.1999 11.5 10.5
2,551 0.1403 0.1993 11.5 10.5
2,566 0.1397 0.1990 11.5 10.5
2,581 0.1394 0.1983 11.5 10.5
2,596 0.1388 0.1975 11.5 10.5
2,611 0.1388 0.1972 11.5 10.5
2,626 0.1384 0.1967 11.5 10.5
2,641 0.1381 0.1966 11.5 10.5
2,656 0.1379 0.1958 11.5 10.5
2,671 0.1376 0.1953 11.5 10.5
2,686 0.1366 0.1951 11.5 10.5
2,701 0.1358 0.1947 11.5 10.5
2,716 0.1361 0.1946 11.5 10.5
2,731 0.1355 0.1946 11.5 10.5
2,746 0.1353 0.1946 11.5 10.5
2,761 0.1352 0.1945 14.5 10.5
2,776 0.1361 0.1949 14.5 10.5
2,791 0.1378 0.1971 14.5 13.5
2,806 0.1416 0.2022 14.5 13.5
2,821 0.1457 0.2086 14.5 13.5
2,836 0.1517 0.2156 14.5 13.5
2,851 0.1569 0.2223 14.5 13.5
2,866 0.1635 0.2297 14.5 13.5
2,881 0.1692 0.2355 14.5 13.5
2,896 0.1755 0.2417 14.5 13.5
2,911 0.1808 0.2471 14.5 13.5
2,926 0.1866 0.2524 14.5 13.5
2,941 0.1906 0.2568 14.5 13.5
2,956 0.1960 0.2615 14.5 13.5
2,971 0.2002 0.2648 14.5 13.5
2,986 0.2044 0.2687 14.5 13.5
3,001 0.2074 0.2715 14.5 13.5
3,016 0.2104 0.2746 14.5 13.5
3,031 0.2127 0.2766 14.5 13.5
3,046 0.2155 0.2790 14.5 10.5
3,061 0.2171 0.2790 14.5 10.5
3,076 0.2173 0.2780 14.5 10.5
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Table 6.3 (continued)

Level (m) Pump flow rate (cm?/s)
Time (s) Tank 1 (h;) Tank 2 (h,) Left pump (u;) Right pump (u,)
3,091 0.2145 0.2771 11.5 10.5
3,106 0.2099 0.2759 11.5 10.5
3,121 0.2028 0.2734 11.5 10.5
3,136 0.1968 0.2703 11.5 10.5
3,151 0.1898 0.2663 11.5 10.5
3,166 0.1841 0.2610 11.5 10.5
3,181 0.1775 0.2563 11.5 10.5
3,196 0.1722 0.2506 14.5 10.5
3,211 0.1682 0.2456 14.5 10.5
3,226 0.1660 0.2423 14.5 10.5
3,241 0.1638 0.2402 14.5 10.5
3,256 0.1612 0.2400 14.5 10.5
3,271 0.1587 0.2406 14.5 10.5
3,286 0.1566 0.2421 14.5 10.5
3,301 0.1548 0.2438 14.5 10.5
3,316 0.1533 0.2458 14.5 10.5
3,331 0.1529 0.2481 14.5 10.5
3,346 0.1518 0.2502 14.5 13.5
3,361 0.1522 0.2539 14.5 13.5
3,376 0.1548 0.2588 14.5 13.5
3,391 0.1585 0.2630 14.5 13.5
3,406 0.1624 0.2674 14.5 13.5
3,421 0.1682 0.2707 14.5 13.5
3,436 0.1733 0.2737 14.5 13.5
3,451 0.1781 0.2761 14.5 13.5
3,466 0.1834 0.2788 11.5 13.5
3,481 0.1871 0.2801 11.5 13.5
3,496 0.1900 0.2801 11.5 13.5
3,511 0.1927 0.2787 11.5 10.5
3,526 0.1946 0.2738 11.5 10.5
3,541 0.1941 0.2676 11.5 10.5
3,556 0.1920 0.2609 11.5 10.5
3,571 0.1886 0.2548 11.5 10.5
3,586 0.1848 0.2486 11.5 10.5
3,601 0.1802 0.2430 11.5 10.5
3,616 0.1758 0.2373 11.5 10.5
3,631 0.1712 0.2326 11.5 10.5
3,646 0.1672 0.2276 11.5 10.5
3,661 0.1629 0.2240 11.5 10.5
3,676 0.1592 0.2201 11.5 10.5
3,691 0.1555 0.2171 11.5 10.5
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Level (m) Pump flow rate (cm?/s)
Time (s) Tank 1 (h;) Tank 2 (h,) Left pump (u;) Right pump (u,)
3,706 0.1525 0.2143 11.5 10.5
3,721 0.1496 0.2122 11.5 10.5
3,736 0.1472 0.2095 11.5 10.5
3,751 0.1446 0.2078 11.5 10.5
3,766 0.1428 0.2060 11.5 10.5
3,781 0.1412 0.2053 11.5 10.5
3,796 0.1400 0.2034 11.5 10.5
3,811 0.1389 0.2018 11.5 10.5
3,826 0.1381 0.2015 11.5 10.5
3,841 0.1371 0.2009 11.5 10.5
3,856 0.1365 0.2002 11.5 10.5
3,871 0.1357 0.1994 11.5 10.5
3,886 0.1353 0.1991 11.5 10.5
3,901 0.1348 0.1985 11.5 10.5
3916 0.1343 0.1984 11.5 10.5
3,931 0.1339 0.1981 11.5 10.5
3,946 0.1337 0.1972 11.5 10.5
3,961 0.1337 0.1969 11.5 10.5
3,976 0.1337 0.1965 11.5 10.5
3,991 0.1336 0.1965 11.5 10.5
4,006 0.1332 0.1964 11.5 10.5
4,021 0.1331 0.1966 11.5 10.5
4,036 0.1332 0.1962 11.5 10.5
4,051 0.1332 0.1959 11.5 10.5
4,066 0.1332 0.1966 11.5 10.5
4,081 0.1332 0.1967 11.5 10.5
4,096 0.1335 0.1967 14.5 10.5
4,111 0.1355 0.1967 14.5 10.5
4,126 0.1376 0.1977 14.5 10.5
4,141 0.1401 0.2009 14.5 10.5
4,156 0.1412 0.2044 14.5 10.5
4,171 0.1417 0.2088 14.5 10.5
4,186 0.1425 0.2141 14.5 10.5
4,201 0.1429 0.2187 14.5 10.5
4216 0.1438 0.2232 14.5 10.5
4231 0.1446 0.2280 14.5 10.5
4,246 0.1455 0.2328 14.5 10.5
4,261 0.1459 0.2361 14.5 10.5
4,276 0.1459 0.2405 14.5 10.5
4,291 0.1459 0.2437 14.5 10.5
4,306 0.1459 0.2471 14.5 10.5
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Table 6.3 (continued)

Level (m) Pump flow rate (cm?/s)
Time (s) Tank 1 (h;) Tank 2 (h,) Left pump (u;) Right pump (u,)
4,321 0.1465 0.2498 14.5 10.5
4,336 0.1463 0.2527 11.5 10.5
4,351 0.1452 0.2548 11.5 10.5
4,366 0.1431 0.2550 11.5 10.5
4,381 0.1409 0.2544 11.5 10.5
4,396 0.1395 0.2523 11.5 10.5
4411 0.1377 0.2498 11.5 10.5
4,426 0.1374 0.2457 11.5 10.5
4,441 0.1364 0.2423 11.5 10.5
4,456 0.1356 0.2376 11.5 10.5
4,471 0.1352 0.2341 11.5 10.5
4,486 0.1347 0.2296 11.5 10.5
4,501 0.1341 0.2260 11.5 10.5
4,516 0.1338 0.2221 11.5 10.5
4,531 0.1337 0.2190 11.5 10.5
4,546 0.1333 0.2163 14.5 10.5
4,561 0.1345 0.2141 14.5 10.5
4,576 0.1358 0.2132 14.5 10.5
4,591 0.1384 0.2144 14.5 10.5
4,606 0.1399 0.2166 14.5 10.5
4,621 0.1411 0.2192 14.5 10.5
4,636 0.1416 0.2227 14.5 10.5
4,651 0.1432 0.2264 14.5 10.5
4,666 0.1444 0.2304 14.5 10.5
4,681 0.1452 0.2338 14.5 10.5
4,696 0.1459 0.2371 14.5 10.5
4,711 0.1467 0.2402 14.5 10.5
4,726 0.1470 0.2437 14.5 10.5
4,741 0.1473 0.2463 14.5 10.5
4,756 0.1479 0.2490 14.5 10.5
4771 0.1481 0.2518 14.5 10.5
4,786 0.1483 0.2536 14.5 10.5
4,801 0.1486 0.2554 14.5 10.5
4,816 0.1488 0.2571 14.5 10.5
4,831 0.1489 0.2593 14.5 13.5
4,846 0.1498 0.2622 14.5 13.5
4,861 0.1521 0.2663 14.5 13.5
4,876 0.1566 0.2699 14.5 13.5
4,891 0.1610 0.2735 14.5 13.5
4,906 0.1665 0.2762 14.5 13.5
4921 0.1721 0.2786 14.5 13.5
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Level (m) Pump flow rate (cm?/s)
Time (s) Tank 1 (h;) Tank 2 (h,) Left pump (u;) Right pump (u,)
4,936 0.1773 0.2807 14.5 13.5
4,951 0.1817 0.2831 14.5 13.5
4,966 0.1873 0.2848 14.5 13.5
4981 0.1910 0.2863 14.5 13.5
4,996 0.1962 0.2877 14.5 13.5
5,011 0.2000 0.2887 14.5 13.5
5,026 0.2036 0.2892 14.5 13.5
5,041 0.2065 0.2897 14.5 13.5
5,056 0.2089 0.2907 14.5 13.5
5,071 0.2114 0.2909 14.5 13.5
5,086 0.2134 0.2922 14.5 13.5
5,101 0.2155 0.2920 14.5 13.5
5,116 0.2167 0.2928 14.5 13.5
5,131 0.2181 0.2931 14.5 13.5
5,146 0.2192 0.2936 14.5 10.5
5,161 0.2201 0.2920 14.5 10.5
5,176 0.2189 0.2895 14.5 10.5
5,191 0.2158 0.2878 14.5 10.5
5,206 0.2121 0.2857 14.5 10.5
5,221 0.2080 0.2841 14.5 10.5
5,236 0.2037 0.2823 14.5 10.5
5,251 0.1989 0.2815 14.5 10.5
5,266 0.1943 0.2803 14.5 10.5
5,281 0.1891 0.2792 14.5 10.5
5,296 0.1848 0.2786 14.5 10.5
5,311 0.1802 0.2778 14.5 10.5
5,326 0.1762 0.2766 14.5 10.5
5,341 0.1716 0.2764 14.5 10.5
5,356 0.1685 0.2751 14.5 10.5
5,371 0.1658 0.2749 14.5 10.5
5,386 0.1632 0.2747 14.5 10.5
5,401 0.1603 0.2747 14.5 10.5
5,416 0.1581 0.2744 14.5 10.5
5,431 0.1565 0.2747 14.5 10.5
5,446 0.1549 0.2743 14.5 13.5
5,461 0.1542 0.2760 14.5 13.5
5,476 0.1560 0.2784 14.5 13.5
5,491 0.1594 0.2807 14.5 13.5
5,506 0.1632 0.2827 14.5 13.5
5,521 0.1685 0.2844 14.5 13.5
5,536 0.1733 0.2860 14.5 13.5
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Table 6.3 (continued)

Level (m) Pump flow rate (cm?/s)
Time (s) Tank 1 (h;) Tank 2 (h,) Left pump (u;) Right pump (u,)
5,551 0.1785 0.2872 14.5 13.5
5,566 0.1828 0.2884 14.5 13.5
5,581 0.1870 0.2892 14.5 13.5
5,596 0.1919 0.2906 14.5 13.5
5,611 0.1957 0.2908 14.5 13.5
5,626 0.1991 0.2917 14.5 13.5
5,641 0.2023 0.2924 14.5 13.5
5,656 0.2054 0.2931 14.5 13.5
5,671 0.2078 0.2936 14.5 13.5
5,686 0.2102 0.2937 11.5 13.5
5,701 0.2112 0.2937 11.5 13.5
5,716 0.2111 0.2922 11.5 13.5
5,731 0.2111 0.2900 11.5 13.5
5,746 0.2109 0.2856 11.5 13.5
5,761 0.2111 0.2815 11.5 13.5
5,776 0.2115 0.2762 11.5 13.5
5,791 0.2116 0.2712 11.5 13.5
5,806 0.2119 0.2655 11.5 13.5
5,821 0.2120 0.2607 11.5 13.5
5,836 0.2125 0.2553 11.5 13.5
5,851 0.2126 0.2510 11.5 13.5
5,866 0.2131 0.2464 11.5 13.5
5,881 0.2138 0.2428 11.5 13.5
5,896 0.2144 0.2389 11.5 13.5
5911 0.2138 0.2357 11.5 13.5
5,926 0.2139 0.2327 11.5 13.5
5,941 0.2141 0.2303 11.5 13.5
5,956 0.2141 0.2281 11.5 13.5
5,971 0.2139 0.2265 11.5 13.5
5,986 0.2139 0.2247 11.5 13.5
6,001 0.2139 0.2233 11.5 13.5
6,016 0.2141 0.2220 11.5 13.5
6,031 0.2139 0.2210 11.5 13.5
6,046 0.2142 0.2199 11.5 13.5
6,061 0.2137 0.2191 11.5 13.5
6,076 0.2140 0.2184 11.5 13.5
6,091 0.2137 0.2178 11.5 13.5
6,106 0.2140 0.2171 11.5 13.5
6,121 0.2139 0.2167 11.5 13.5
6,136 0.2140 0.2161 11.5 10.5
6,151 0.2134 0.2140 11.5 10.5
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Level (m) Pump flow rate (cm?/s)
Time (s) Tank 1 (h;) Tank 2 (h,) Left pump (u;) Right pump (u,)
6,166 0.2113 0.2111 14.5 10.5
6,181 0.2085 0.2091 14.5 10.5
6,196 0.2065 0.2090 14.5 10.5
6,211 0.2031 0.2105 14.5 10.5
6,226 0.1994 0.2128 14.5 10.5
6,241 0.1949 0.2161 14.5 10.5
6,256 0.1904 0.2202 14.5 10.5
6,271 0.1853 0.2238 14.5 10.5
6,286 0.1810 0.2285 14.5 10.5
6,301 0.1772 0.2323 14.5 10.5
6,316 0.1741 0.2364 14.5 10.5
6,331 0.1698 0.2397 14.5 10.5
6,346 0.1663 0.2434 14.5 10.5
6,361 0.1629 0.2469 11.5 10.5
6,376 0.1592 0.2494 11.5 10.5
6,391 0.1548 0.2504 11.5 10.5
6,406 0.1514 0.2496 11.5 10.5
6,421 0.1480 0.2480 11.5 13.5
6,436 0.1467 0.2472 11.5 13.5
6,451 0.1481 0.2465 11.5 13.5
6,466 0.1506 0.2450 11.5 13.5
6,481 0.1542 0.2432 11.5 13.5
6,496 0.1580 0.2408 11.5 13.5
6,511 0.1628 0.2390 14.5 13.5
6,526 0.1683 0.2373 14.5 13.5
6,541 0.1748 0.2371 14.5 13.5
6,556 0.1797 0.2383 14.5 13.5
6,571 0.1856 0.2405 14.5 13.5
6,586 0.1894 0.2436 14.5 13.5
6,601 0.1944 0.2467 14.5 13.5
6,616 0.1985 0.2507 14.5 13.5
6,631 0.2021 0.2540 14.5 13.5
6,646 0.2056 0.2581 14.5 13.5
6,661 0.2083 0.2612 11.5 13.5
6,676 0.2093 0.2644 11.5 10.5
6,691 0.2089 0.2642 11.5 10.5
6,706 0.2072 0.2617 11.5 10.5
6,721 0.2032 0.2573 11.5 10.5
6,736 0.1991 0.2525 11.5 10.5
6,751 0.1936 0.2485 11.5 10.5
6,766 0.1888 0.2440 11.5 10.5
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Table 6.3 (continued)

Level (m) Pump flow rate (cm?/s)
Time (s) Tank 1 (h;) Tank 2 (h,) Left pump (u;) Right pump (u,)
6,781 0.1829 0.2391 11.5 10.5
6,796 0.1782 0.2352 11.5 10.5
6,811 0.1728 0.2303 11.5 10.5
6,826 0.1682 0.2271 11.5 10.5
6,841 0.1632 0.2228 11.5 10.5
6,856 0.1595 0.2198 11.5 10.5
6,871 0.1553 0.2167 11.5 10.5
6,386 0.1524 0.2140 11.5 10.5
6,901 0.1493 0.2115 14.5 10.5
6,916 0.1481 0.2100 14.5 10.5
6,931 0.1479 0.2100 14.5 10.5
6,946 0.1482 0.2113 14.5 10.5
6,961 0.1485 0.2141 14.5 10.5
6,976 0.1484 0.2169 14.5 10.5
6,991 0.1483 0.2213 14.5 10.5
7,006 0.1478 0.2246 14.5 10.5
7,021 0.1472 0.2289 14.5 10.5
7,036 0.1473 0.2320 14.5 10.5
7,051 0.1473 0.2360 14.5 10.5
7,066 0.1469 0.2396 14.5 10.5
7,081 0.1474 0.2428 14.5 10.5
7,096 0.1478 0.2460 14.5 10.5
7,111 0.1475 0.2486 11.5 10.5
7,126 0.1458 0.2511 11.5 10.5
7,141 0.1434 0.2514 11.5 10.5
7,156 0.1417 0.2508 11.5 10.5
7,171 0.1402 0.2486 11.5 10.5
7,186 0.1386 0.2457 11.5 10.5
7,201 0.1374 0.2428 11.5 10.5
7,216 0.1368 0.2390 11.5 10.5
7,231 0.1360 0.2358 11.5 10.5
7,246 0.1355 0.2314 14.5 10.5
7,261 0.1367 0.2285 14.5 10.5




Chapter 7
Using MATLAB® for Statistical Analysis

MATLAB® is a mathematical programme developed by the company called The
MathWorks Inc. Examples in this chapter have been tested on MATLAB versions
between 2011a and 2015b. It is expected that most of the commands presented will
work with some earlier versions, as well as most later versions. It will be assumed
that the reader has a basic understanding of MATLAB, can write MATLAB
statements, understands basic MATLAB commands, and can plot a simple
MATLAB graph. This chapter will examine in detail additional features, such as
the different toolboxes and formatting features. In order to clearly distinguish
between the code required for the MATLAB function and text, all MATLAB
commands and variables are shown in bold Courier New.

7.1 Basic Statistical Functions

The functions presented in this section are available with all standard MATLAB
installations and do not require purchasing any additional toolboxes or licences.
The most common statistical functions are listed in Table 7.1.

7.2 Basic Functions for Creating Graphs

A list of functions for creating different types of graphs is listed in Table 7.2.
Functions with an asterisk after them require installation of the Statistics and
Machine Learning Toolbox in MATLAB. In pre-2013 versions of MATLAB, this
toolbox is called the Statistics Toolbox.

© Springer International Publishing Switzerland 2015 337
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Table 7.1 Basic statistics functions

Function Description

mean (x) For vectors, this function determines the mean of x. For matrices, this function
determines the mean for each column and returns a row vector containing these
values.

median (x) | For vectors, this function determines the median value of x. For matrices, this
function determines the median value of each column and returns a row vector
containing these values.

std(x) For vectors, this function determines the observational (sample) standard
deviation of x. For matrices, this function determines the standard deviation
of each column and returns a row vector containing these values.

std(x,1) For vectors, this function determines the sample space (population) standard

deviation of x. For matrices, this function determines the sample space standard
deviation of each column and returns a row vector containing these values.

Table 7.2 Basic plotting functions (functions followed by an asterisk (*) require the Statistics and
Machine Learning Toolbox)

Function Description
bar (x) Creates the vertical bar graph for the data in x.
barh (x) Creates the horizontal bar graph for the data in x. When using

the set method to set the labels, xticklabel should be
replaced by yticklabel.

boxplot (x,nameArray) * | Creates a box-and-whisker plot for the data in x. The chart

labels are provided in the list array nameArray. Multiple
box-and-whisker plots can be combined by entering multiple
columns in the matrix x. A separate box-and-whisker plot
will be made for each column.

colorbar Sets the colour bar in 3-D plots.

colormap (NAME) Sets the colour map to the given NAME.

hist(x) Creates the histogram for the data in x.
imagesc(data) Creates an image plot so that the information in data is

centred and displays properly. Useful for creating cross-

correlation plots. In order to create the classical correlation

plot, it is necessary to use the following two additional
comments:

1. set (gca, 'xtick’', 1:n) where gca is a handle to the
current figure and n is the number of data points in the
plot. This command centres the bins so that the labels are
properly set in the next step. The handle gca can be
replaced by the actual handle to the figure.

2. set (gca, 'xticklabel',L}) where gca is a handle
to the current figure and L is an array that gives the names
of the individual points.

It should be noted that the above comments are only for the

x-axis. This must be repeated for the y-axis by replacing the

x by y, so that xtick is replaced by ytick, for example,

set (gca, 'yticklabel', L}).

(continued)
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Table 7.2 (continued)

Function

Description

legend (nameArray)

Adds a legend to the graph. The nameArray contains an
array ordered so that the first entry corresponds with the name
for the first drawn line. If more names are provided, then only
the first n are used. Latex commands can be used.

loglog(x,y, 'format’)

Plots given the vector x on the x-axis and the vector y on the
y-axis following the formatting rules presented in format
string (see Table 7.3 for some common examples). Both axes
will be logarithmic.

normplot (x) *

Plots a normal probability graph for the data given by x. The
axes are flipped from what is recommended in this textbook,
that is, the x-axis has the data and the y-axis has the expected
scores.

pie(x,nameArray)

Creates a pie chart for the data in x. The pie chart labels are
provided in the list array nameArray. The data should be
provided as percentages that totals 100%.

plot (x,y,’format’)

Plots given the vector x on the x-axis and the vector y on the
y-axis following the formatting rules presented in format
string (see Table 7.3 for some common examples). The vector
x can be omitted, in which case a time series plot will be drawn,
that is, the x-axis will increment by 1 after each data point.

plot3(x,y,z)

Plots a 3-dimensional line plot with x on the x-axis, y on the
y-axis, and z on the z-axis. This is the 3-dimensional analogue
to the plot function.

plotmatrix(array)

Creates an nxn plot using columns of array:. It is assumed
that the rows of array represent sample values and the
columns different variables. The plot that is displayed
contains on the diagonal, the (i, i)-entry, a histogram of the
data in the ith column. The off-diagonal entries, that is, the
(i, j)-entries, represent the correlation between the ith and
Jjth column of array.

plotmatrix(x,y)
plotmatrix(y)

Plots the columns of data matrix x against the columns of the
data matrix y to show the relationships between the different
columns. Providing a single entry is the same as
plotmatrix(y,y), except that the diagonals are replaced
by histograms.

polar(th,r, 'format’)

Plots a polar graph using the angle vector th and the radius
vector r following the formatting rules presented in format
string (see Table 7.3 for some common examples). The angle
vector can be omitted, in which case it is assumed that the angle
increases by exactly 1 radian (57.296°) for each data point.

rose (x,bins)

Plots a polar histogram using the data vector x and the
requested number of bins. The number of bins is optional.

scatter(x,y,g)

Creates a scatter plot with x on the x-axis and y on the y-axis.
Cell array g is a grouping variable by which one can plot
multiple groups on a single scatter plot. The values in g then
become the default legend labels. For example, with two runs,
g would be written as {'Run 1'; 'Run 2'; 'Run 1'; 'Run
1'; 'Run 2'; 'Run 2'}. This would assign the first entry in x
and y to Run 1, the second to Run 2, and so on.

(continued)
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Function

Description

semilogx(x,y,
’format’)
semilogy (x,
y, 'format’)

Plots given the vector x on the x-axis and the vector y on the
y-axis following the formatting rules presented in format
string (see Table 7.3 for some common examples). Either the
x- or y-axis will be logarithmic.

set
(gca, 'xticklabel’,
listarray)

Creates for the vertical bar graph referenced by the handle
gca the x-axis labels given in the 1istarray. The current
graph is referenced by the handle gca, while the handle for a
specific graph can be obtained by setting h=plot(...)

(or any similar method to obtain a figure).

surf(x,y,z)

Creates a 3-dimensional surface plot with x on the x-axis, y on
the y-axis, and z on the z-axis.

title(’name’)

Draws the title for the graph. Latex commands can be used.

xlabel (’/name’)

ylabel(’name’).

zlabel (’name’).

Draws the label for the x- (y- or z-) axis. Latex commands can
be used.

ylabel (colorbar, 'My
colorbar')

Sets the label for the colour bar.

Table 7.3 Useful formatting
options

Z
o
3
a

Description
blue

green

red

white

cyan

yellow
black
magenta
(period) | dot
cross, +
* start, *
square, O

8" g R|a|b

diamond, ¢

>|d ||

b"d\//\
% VAl |«

hexagram, %

- solid line
dotted line

-. dash-dotted line
-- dashed line
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Table 7.4 Probability distribution functions

Function Description

chi2inv(p,df) Calculates the inverse ;(Z—distribution, given a probability, p, and the
number of degrees of freedom, df.

chi2pdf (x,df) Calculates the ;(z—cumulative density function for %, given the number
of degrees of freedom, d£.

finv (p,ndf,ddf) | Calculates the inverse F-distribution at a probability, p, given the
number of degrees of freedom for the numerator, nd£, and the number
of degrees of freedom for the denominator, da£.

fpdf (x,nd£f,ddf) | Calculates the F-distribution cumulative density function at x given the

number of degrees of freedom for the numerator, nd£, and the number
of degrees of freedom for the denominator, dd£.

normcdf (x,m, s)

Calculates the normal cumulative density function for a given x, given a
mean of m and a standard deviation of s. If m and s are not given, then
the default values of m = 0 and s = 1 will be used.

norminv(p) Calculates the Z-score for the probability p, which must be between
0 and 1.

tinv(p,df) Calculates the inverse z-distribution at a probability, p, given the
number of degrees of freedom, A£f.

tpdf (x,df) Calculates the #-distribution cumulative density function at x given the

number of degrees of freedom, d£.

7.3 The Statistics and Machine Learning Toolbox

This section lists those statistical functions that require the Statistics and Machine
Learning Toolbox in MATLAB to be installed. In pre-2013 versions of MATLAB,
this toolbox is called the Statistics Toolbox.

7.3.1 Probability Distributions

Detailed information regarding the definitions of the different probability density
functions and the meaning of the required variables can be found in Sect. 2.4.
Table 7.4 presents a summary of the available functions.

7.3.2 Advanced Statistical Functions

The functions listed in Table 7.5 are useful for computing more advanced statistical

properties.
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Table 7.5 Advanced statistical functions

Function Description

mad(y,1) Computes the median absolute difference for the data vector y.

zscore (u) | Normalises the data matrix u by columns, that is, it computes for each column

the mean and standard deviation to normalise the values in that column.

Table 7.6 Useful probability functions

Function Description

quantile(X,p) | Creates the p-tiles for the given data set X.

rand(x,y) Creates an x by y matrix of pseudorandom numbers generated from a
uniform distribution on |0, 1].

randn (x,y) Creates an x by y matrix of pseudorandom numbers generated from a
normal distribution with mean equal to zero and standard deviation equal
to L.

randperm(N) Creates a vector containing a random permutation of the numbers from

1toN.

7.3.3 Useful Probability Functions

A summary of useful probability functions is given in Table 7.6.

7.3.4 Linear Regression Analysis

There are two main functions for performing linear regression in MATLAB:
regress and nlinfit. The first works for linear regression, while the second
works for nonlinear regression. Weighted, linear least squares can be performed
using lscov. Detailed information about the different commands and their
requirements is given in Table 7.7.

7.3.5 Design of Experiments

The functions listed in Table 7.8 are useful when performing design of experiments

or their analysis.
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Table 7.7 Linear regression functions

Function Description

[coeff,Cint,res, resint, Computes a multivariate linear regression model of
stats] the form y = Af and returns the following parame-
=regress(b,A,alpha) ters:

(a) coef £, which is the vector containing the
estimated coefficients using least squares, /3.

(b) cint, which is a vector that contains the 100
(1 — alpha)% confidence intervals for the
coefficients in coef£.

(c) Res, which is a vector containing the residuals.

(d) resint, which is a vector that contains the
confidence interval for the residuals.

(e) stats, which is a vector that contains the
following entries (in order): R2, F-statistics,
p-value, and 62.

The variable alpha is optional. The default value of

alpha is 0.05.

[beta, r,J,covb] = nlinfit Performs nonlinear regression using the Gauss—

(x,y, 'FUN’ ,betal) Newton estimation method. The x-data is given as x,

while the y-data is given as y. The function, FUN,

that is to be fitted must be written as an m-file. It will
take three arguments: the coefficient values, x, and

y (in this order). The function should be written to

allow for matrix evaluation. The initial guess is

specified in beta0. The vector beta contains the

estimated values of the coefficients, the vector r

contains the residuals, and covb is the estimated

covariance matrix for the problem. J is the Jacobian
matrix evaluated with the best estimate for the
parameters.

Ci=nlparci (beta,r,’covar’, Calculates the 100(1—alpha)% confidence inter-
covb) vals for the coefficients, beta, given the residuals,
r, and the covariance matrix, covb.

[v,deltal =nlpredci(’Fun’, Calculates the 100(1—alpha)% mean confidence
x, beta,r, 'covar’,covarb) intervals for the nonlinear function, Fun, given the
values of x, x; the estimated coefficients, beta; the
residuals, r; and the covariance matrix, covarb.
The function returns the predicted y-values, y, and
the half-width lengths, delta. This implies that the
mean confidence interval will be given as

y+tdelta.
[v,deltal = Calculates the 100(1—alpha)% predicted confi-
nplpredci(’/Fun ’,x,beta,r, dence intervals for the nonlinear function, Fun,
’covar’,covarb, 'predopt’, given the values of x, x; the estimated coefficients,
’observation’) beta; the residuals, r; and the covariance matrix,

covarb. The function returns the predicted y-
values, y, and the half-width lengths, delta. This
implies that the prediction confidence interval will
be given as ytdelta.

(continued)
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Table 7.7 (continued)

Function Description

[coeff, stdevc,mse,s] = 1lscov | Computes a weighted, multivariate linear regression
(A,y,W) model of the form y=Ap given the weighting matrix
W. The weighting vector W is equal to the diagonal
terms of the weighting matrix W, that is, W=diag(W}).
The parameter estimates are returned as coe£f £, the
standard deviation for the parameter estimates is
returned as stdeve, the variance of the model is
returned as mse, and s is the covariance matrix for
the parameters.

Table 7.8 Design of experiment functions

Function Description

A=ff2n(n) Determines the 2™ factorial experimental regression matrix
using codes 0 and 1.

[A, conf]l= Determines a fractional factorial experimental regression
fracfact(’abcabbc’) | matrix, A, using the stated generating strings. The matrix conf
contains the confounding pattern for the given design.

[setting,A]l= Determines a D-optimal regression matrix, A, given the number
cordexch(nf,nr, 'q’) of runs, nr, and the number of factors, n€f.

7.4 The System Identification Toolbox

The System Identification Toolbox in MATLAB is a very useful toolbox when
fitting models for system identification using the prediction error model. It provides
a convenient and concise way of storing, accessing, and manipulating different data
sets and their associated models. Although most time series analyses can be
performed using the System Identification Toolbox, at times it is easier to use
the econometric toolbox described below. In order to fully appreciate and use the
System Identification Toolbox, it is first useful to examine in detail the special data
objects that store and hold the information: the iddata and the idpoly objects.

The iddata object, which will be denoted by a generic z, stores the data that is
used in determining the models. It consists of 2 main fields:

1. The inputs to the system are stored in z.u, which is a matrix. Each of the
columns contains a different input.

2. The outputs from the system are stored in z .y, which is a matrix. Each of the
columns contains a different output. Thus, the second output of the system would
be accessed as z.y ( :, 2), regardless of how the variables may be named on the
screen.
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Additional fields include:

e z.Tstart, which stores the value of the starting time for the object.
e z.Ts, which stores the value of the sampling time.

The iddata object can be treated as a vector to access all the relevant data
between two end points. For example, to take the data located from the 1st to 100th
point in the object, the command would be z(1:100).

The idpoly object, which will be denoted by a generic m, stores information
about the model that has been fit to the data. It consists of five main fields that
consist of the coefficients, a;, ordered in descending powers of z~', given by

1+ i afz_i

where n is the order of the system. Each of the fields is the same length. The fields
are given the names, A, B, C, D, and F, and represent the coefficients of the
following model:

A(z_l)yk — ]égj:l; U _q +g§i:l;

€r,

where d is the discrete time delay, which for a zero-order hold is one more than the
continuous time delay. The coefficients of A(z ') would be accessed using m. A. Note
that the definition of the B-polynomial in MATLAB is different from the definition
used in the other chapters. This difference implies that the time delay, d, must be
increased by 1 from the values obtained in the other chapters, that is, d = n; + 1. This
is because MATLAB requires the time delay due to sampling to be explicitly noted in
the definition of the function.

For multi-input systems, where there are multiple inputs, the model representa-
tion is converted into a matrix form, so that each row represents a different input
and the columns represent the parameter specifications. The orders are then stored
as the augmented column matrix with each column representing the orders of a
different row, for example, the B-order would be specified as [2, 3] for a 2-input
system.

The most important functions from the System Identification Toolbox are given
in Table 7.9 for creating the data object, Table 7.10 for creating the model,
Table 7.11 for validating the model, and Table 7.12 for designing the system
identification experiment.
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Table 7.9 System Identification Toolbox: Functions for creating the data object

Function Description

z=iddata (yk, uk, Ts) Creates an iddata object, z, based on the input, uk, and output,
vk, with a sample time of Ts. For time series data, uk can be left
blank by replacing it by [].

zd = detrend(z,0) Removes a trend from the given iddata object, z, and returns
the iddata object, zd. The option 0 removes the mean value
from the data allowing the data to vary about the mean of zero.
This should be performed on all data before carrying out any
further analysis.

idplot (z) This allows an iddata object, z, to be plotted. Two basic
figures are produced: the output as a function of time and the
input as a function of time. The programme will pause between
each set of inputs and outputs. To continue, return to the main
MATLAB window and press any key. Note: typing plot (z)
will also work.

model=idpoly(A,B, Creates an idpoly object, model, that describes the model
c,D,F,S,Ts) based on the generalised prediction error model. The elements are
entered in descending powers of z~ !, starting with the constant
term, even if it is absent. S is the variance of the error term and
Ts is the sampling time. The last two terms are optional.

7.5 The Econometrics Toolbox

The Econometrics Toolbox contains some useful tools for analysing and
preprocessing time series data. It is especially useful for fitting seasonal models.
Unfortunately, not all the validation functions can be as easily obtained with this
toolbox. Table 7.13 contains the required functions for creating an econometric
model, Table 7.14 contains the functions for creating various types of correlation
plots, Table 7.15 contains the functions for estimating the model parameters of
econometric functions, and Table 7.16 contains useful functions for model
validation.

7.6 The Signal Processing Toolbox

The Signal Processing Toolbox contains complementary functions that can be used
to create cross- and autocorrelation plots without using the Econometrics Toolbox.
It can also be used to effectively create periodograms. Table 7.17 contains a
summary of the useful functions.
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Table 7.10 System Identification Toolbox: Functions for creating a model

Function

Description

cra(z)

Determines the impulse response coefficients between the
input and output, as defined in the 1ddata object, z. The
output is the value of the impulse responses. A graph is plotted
showing the individual coefficients, as well as the confidence
intervals. This function can be used to estimate the time delay.

mARab=ar(z, [na,nb])

Finds for the data in the iddata object, z, an autoregressive
model with orders na and nb. This model is stored as an
idpoly object, mARab.

mARMAXacd=armax(z,
[na,nc,dl])

Finds for the data in the iddata object, z, an autoregressive
moving average with exogenous input model with orders na
and nc with a delay of d. This model is stored as an idpoly
object, mARMAXacd.

mARXabd=arx(z, [na,
nb,d])

Finds for the data in the iddata object, z, an autoregressive
exogenous model with orders na and nb with a delay of 4.
This model is stored as an idpoly object, mARXabd.

mBJbcdfd=bj (z, [nb,
nc,nd,nf,d])

Finds for the data in the iddata object, z, a Box-Jenkins
model with orders nb, nc, nd, and nf with a delay of 4. This
model is stored as an idpoly object, mBJbcd£fd.

mNL=nlarx(z,nn,
basis);

Finds for the data in the iddata object, z, a nonlinear ARX
model with ARX orders nn and the basis function given by
basis. When defining the basis function, it is important to
include the number of functions to be used; for a wavelet basis
function, this can be done as follows wavenet ('num',
nfun), where nfun is the number of basis functions to be
used. The ARX orders are entered in the same manner as the
standard ARX model. This model is stored as an idpoly
object, mNL.

mOEabd=oe (z, [nb,nf,
dl)

Finds for the data in the iddata object, z, an output-error
model with orders nb and nf with a delay of d. This model is
stored as an idpoly object, mOEb£d.

nk=delayest (z,na,nb,
minnk, maxnk)

Estimates the time delay for the iddata object, z, by
searching all feasible ARMAX models and selecting the one
with the lowest error. The estimated time delay is returned as
nk. If a large order model is to be searched, then na is the
order of the A polynomial and nb is the order of the B-
polynomial, minnk is the minimum time delay, and maxnk is
the maximum time delay. The last four values need not be
specified.

7.7 MATLAB® Recipes

This section provides useful MATLAB code for various functions that are not
provided by default in MATLAB. This code can be reused, but full attribution
both to the author and this book must be made.
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Table 7.11 System Identification Toolbox: Functions for validating a model

Function

Description

compare (z,mabd)

Compares the original data stored in the iddata object, z, with the
model stored in mabd, to produce a plot showing the fit between the
original data and the predicted data. This function call uses the
infinite horizon predictor for the modelled data.

compare (z,mabd,n)

Compares the original data stored in the iddata object, z, with the
model stored in mabd and an nth-step ahead predictor to produce a
plot showing the fit between the original data and the predicted data.
This function call uses the nth-step ahead predictor to forecast the
values.

present (mabd)

Displays the idpoly object, mabd, with the estimated parameters
and their standard deviation.

resid(mabd, z)

Determines and plots the residuals between the idpoly model,
mabd, and the original iddata object, z. The plot shows the
correlation between the residuals as well as the cross-correlation
between the residuals and the inputs. N.B.: The bounds are the 99%
confidence intervals.

residual=resid
(mabd, z)

Same as resid (mabd, z), also returns the residuals as a vector.

Table 7.12 System Identification Toolbox: Functions for designing a system identification

experiment

Function

Description

u=idinput
(N, Type,band,
Range)

(©

Creates an input, u, with number of values, N, with the following
characteristics:
(a) Type, which describes what kind of input is desired. Permitted types

include: *RGS’, which gives random, Gaussian signal and 'RBS”,
which gives a random, binary signal.

(b) band, which is a 1-by-2 row vector that describes the region of the

passband in terms of the NYQUIST frequency. It must, thus, lie
within [0, 1].
Range, which describes the region over which the data ranges.

Table 7.13 Econometrics Toolbox:

Functions for creating the data object

Function

Description

modStruc = arima
('Constant’',0,'D', 4,
'Seasonality’,
S,'SMALags’',

nSMA, 'MALags',

nMA, 'ARlags’',

nAR, 'SARLags', nSAR)

Creates the initial model structure for fitting a seasonal

(or more advanced) model in MATLAB. The model structure
is given as modStruc. The degree of normal differencing is
given as d, and the seasonal differencing order is S. The
seasonal moving average orders are explicitly stated in the
vector nSMA, the moving average order in the vector nMA, the
seasonal autoregressive orders as nSAR, and the
autoregressive orders as nAR. The order vector given as [1,
2, 3, 5] would specify that the coefficients at the points z~ 1,
272,273, and z~° are to be estimated. For the seasonal terms, it
is necessary to clearly state the values including any seasonal
component, so that [4 8] would correspond to the seasonal
vector z * and 272",
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Toolbox: Functions for creating various correlation plots

Function Description

autocorr(data) Displays the autocorrelation graph for the data set data, including
appropriate confidence intervals.

crosscorr(datal, |Displays the cross-correlation graph between two data sets datal

data2) and data2 including appropriate confidence intervals.

parcorr (data) Displays the partial autocorrelation graph for the data set data,
including appropriate confidence intervals.

Table 7.15 Econometrics

Toolbox: Functions for estimating model parameters

Function

Description

model=estimate

Estimates a model given the initial model structure

(modStruc,data) modStruc and the data vector data.
residual=infer Obtains the residuals residual given the estimated model
(model,data) and the data vector data.

Table 7.16 Econometrics

Toolbox: Functions for validating the model

Function Description
[h,p,stat,c]l= Performs the Ljung—Box—Pierce test on the data set
lbgtest residuals. The optional vector lags contains the lag

(residuals, 'lags’,
lags)

values at which the statistic is to be evaluated. It can be
either a vector or a scalar. The default number of lags is 20.
Let / be equal to the number of lags tested. The Boolean
value of the hypothesis test is returned as the /x1 column
vector h, the corresponding p-values for the test statistic as
the /x 1 column vector p, the actual test statistic values as
the /x 1 column vector stat, and the corresponding critical
values as the /x 1 column vector c.

Table 7.17 Signal Process

ing Toolbox: Functions for analysing signals

Function

Description

[g] =xcorr

Obtains the cross-correlation between two data series datal and

(datal,data2) dataz2, each of length m, and returns it as the (2m — 1)x 1 vector q.
Autocorrelation can be obtained by setting data2 to be equal to
datal.

periodogram(yt) Displays the periodogram for the signal yt.
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7.7.1 Periodogram

Requirements: None

Goal: Given a data series yt return the corresponding periodogram on the region
[0, 0.5].

File Name: periodogram2.m
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7.7.2 Autocorrelation Plot

Requirements: Signal Processing Toolbox (xcorr)

Goal: Given a data series yt return the corresponding autocorrelation plot for
20 lags.

File Name: autocorrelation.m
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7.7.3 Correlation Plot

Requirements: None

Goal: Given a matrix of correlations, correlation creates the two-dimensional
correlation plot.

File Name: corrplotl.m

function corrplotl (correlation, tags, titlel,axisl)
%Custom-built function that creates the corelation plot given a
correlationmatrix

$Inputs:

% correlation: correlationmatrix

% tags: alphanumeric explanation of the columns in the data set
(should not be left blank)

% titlel: a title for the figure (can be left blank)

% axisl: the lable for the axis (can be left blank)

%Copyright 2014: Yuri Shardt

%Distributed as part of the book Statistics for Chemical and Process
%Engineers: A Modern Approach, published by Springer Verlag.
[a,bl=size(correlation) ;

imagesc (abs (correlation) ) ;colorbar;colormap (jet)

set (gca, 'XTick’, 1:a); % center x-axis ticks on bins

set (gca, 'YTick’, 1:a); % center y-axis ticks on bins

set (gca, 'XTickLabel’, tags); % set x-axis labels

set (gca, 'YTickLabel’, tags); % set y-axis labels
title(titlel); % set title

xlabel (axisl) ;

ylabel (axisl) ;

7.7.4 Cross-Correlation Plot

Requirements: Signal Processing Toolbox (xcorr)

Goal: Given 2 data series yt and zt return the corresponding cross-correlation plot
for £20 lags.

File Name: crosscorrelation.m

function crosscorrelation (xt,yt)

%Custom-built function that creates the crosscorelation plot for
2 signals.

%A maximal lag of +-20 is assumed.

$Inputs:
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7.8 MATLAB® Examples

This section presents three examples that show how to implement various forms of
regression analysis in MATLAB. The topics considered are linear regression,
nonlinear regression, and system identification. All examples are based on real data
obtained from experiments. Appropriate MATLAB code, as well as the final results,
is provided so that the reader can modify these examples to fit their particular needs.

7.8.1 Linear Regression Example in MATLAB

This example examines the problem of fitting a theoretical equation to experimental
data in order to obtain the values of the different constants in the system. Detailed
information about the problem can be found in Prickett et al. (2011); Elliott
et al. (2007); Prickett et al. (2010); and Jochem and Korber (1987). Data provided
courtesy of Dr. Richelle Prickett.

7.8.1.1 Problem Statement for Linear Regression Example

Consider the problem of obtaining the values of the parameters in a theoretical
equation that describes the osmotic pressure of the sodium chloride (NaCl) salt and
hydroxyethyl starch (HES, chemical formula (C¢H;0O5),,(C,Hs0),,). Based on the
virial equation of state, it is assumed that the following equation can be used to
describe the osmolality (I7) of such a mixture

11 = Bsmj + Bskaissmoms + Cym; + ke (7.1)

where B; and Cj are the virial parameters to be determined, m;, is the molality of
NaCl in millimol/kg of solvent, m3 is the molality of HES in millimol/kg of solvent,
kuiss 1 the disassociation constant that is equal to 1.678, and k.. is a known constant
that depends on the system being analysed. An experiment was run where the ratio
of the mass of HES to the mass of NaCl was fixed to 0.5. The results obtained are
shown in Table 7.18.

7.8.1.2 Solution for Linear Regression Example
Before linear regression can be applied, the above equation must be re-arranged so
that all known constant information is on the left-hand side and all the unknown

variables are on the right-hand side. Thus, the equation would be rewritten as

I — k. = B3(m3 + kaissmoms) + C3m; (7.2)
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Table 7.18 Fitting the virial equation (MATLAB example)

my (millimol/kg solv) | m3 (millimol/kg solv) | k. (milliosm/kg solv) |7 (milliosm/kg solv)
0 0.0000 0 0
600 0.0390 1,052 1,314
1,268 0.0823 2,326 2,267
2,013 0.1307 3,879 3,712
2,852 0.1852 5,792 5,496
3,803 0.2469 8,170 8,035
4,889 0.3175 11,161 11,513

The required variables would be defined as

™ =<
I

11—k,
< %+kdlasm2m37m§> (73)
(B3,C3)"

In order to obtain the parameter estimates and analyse the results, the following
MATLAB script will be used:

%Script for solving linear regression problems in MATLAB
%Copyright 2015 Yuri Shardt

%To be used in conjunction with Chapter 7 of the Springer book,
Statistics

%for Chemical and Process Engineers: A Modern Approach.
%Entering the raw data

m2=[0 600 1268 2013 2852 3803 4889] ' ;

m3=[00.0390.0823 0.1307 0.182 0.2469 0.3175]";

kc=[0 1052 2326 3879 5792 8170 111611 ";

pi=[0 1314 2267 3712 5496 8035 11513] " ;

kdiss=1.678;

%Creating the required data matrices for solving the problem.
y=pi-kc;

A=[m3."2+kdiss*m2.*m3 m3."3]; ¥Note the use of the dot operator
%Add code here for Part 2.

%Solve the problem to obtain the parameter estimates and associated
%information

[param,CI,residual, sr,info]l=regress(y,A);

%display the results

fprintf (['B_3: $f£%f\n’],param(1l), (CI(1,2)-CI(1,1))/2);
fprintf (['C_3: $f£%f\n’],param(2), (CI(2,2)-CI(2,1))/2);
%display the statistics

fprintf (['R"2 =%f\n’],info (1)) ;

%examine the residuals

normplot (residual) ;
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figure;plot (y,residual, 'ok’) ;xlabel ('Measured value’) ;
yvlabel ('Residual’) ;

figure;plot (A(:,1),residual, 'ok’) ;xlabel ('First Regressor’) ;
ylabel ('Residual’) ;

figure;plot (A(:,2) ,residual, 'ok’) ;xlabel (' Second Regressor’) ;
yvlabel ('Residual’) ;

figure;plot (A*param, residual, ‘ok’) ;xlabel (' Predicted value’) ;
ylabel (‘Residual’) ;

figure;plot (residual, 'ok’) ;xlabel (' Sample’) ;

ylabel (‘Residual’) ;

The output from MATLAB is:

By: -0.8206+0.624
Cs: 77,469455,563
R?=10.731103

The figures are shown in Fig. 7.1. It is clear from examining these figures that the
second data point seems to be quite the outlier with an error that is much larger than
any of the other data point. Other than this single outlier, the data set looks quite
good. Even though the data sample is small, it would be worthwhile to remove this
point and see how the regression changes. The previous MATLAB code is changed
by adding, after defining the regression matrices, the lines:

y=y([1, 3:1length(y)]);
A=A([1l, size(A,1)1,:);

The output from MATLAB becomes:

By: -0.8535+0.168
C5: 80,344+14,965
R?=10.982121

It can be seen that the confidence intervals have decreased markedly and the R?
is now almost 1. This strongly suggests that the removed data point was an outlier.
Given the small sample size, the residual analysis graphs do not give any additional
information. Practically speaking, the background regarding the outlier would need
to be investigated in order to confirm that it is indeed an outlier. If after examining
there were no data collection or input errors, then the presence of the outlier could
suggest that the model was not appropriate for the data set. It is always important to
provide detailed reasons for why a given point was removed as an outlier, especially
if there is access to the original data.
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Table 7.19 Equilibrium cell ViV, II
volume data (MATLAB
example)

1.00034 0.29278
0.80465 0.57172
0.75358 0.85514
0.71548 1.13595
0.68588 1.43349
0.66600 1.72908
0.65913 2.02815
0.64004 2.32660
0.62661 2.66704

7.8.2 Nonlinear Regression Example in MATLAB

This example examines the problem of fitting a theoretical equation to experimental
data in order to obtain the values of the different constants in the system. Unlike the
previous case, nonlinear regression must be performed in order to obtain a result.
Detailed information about the problem can be found in Ross-Rodriguez (2009).
Data provided courtesy of Dr. Lisa Ross-Rodriguez.

7.8.2.1 Problem Statement for Nonlinear Regression Example

Consider the problem of obtaining a relationship for the ratio between the equilib-
rium and isotonic cell volumes given the osmotic pressure. The theoretical rela-
tionship can be written as

V=t +VTHABI .

(7.4)

Vo —1+4++1+4+4BI1

where both B and b* are the parameters to be determined and 71, is a known osmotic
value. The experimental data is provided in Table 7.19. For this data set, I, has a
value of 0.293.

7.8.2.2 Problem Solution for Nonlinear Regression Example

In order to solve the problem in MATLAB, the function for which the parameter
estimates are being obtained needs to be written as a MATLAB function. It is very
important that the following points be considered when writing the function:

1. First, it must be able to deal with vector entries, that is, the dot operators should
be used with times (*) and divide (/) to give (. *) and (. /).

2. Second, the header of the function must be correctly specified. The order of the
inputs is parameter values, regressor values, and measured values. Each entry is
assumed to be a matrix of appropriate size. The output is a single vector
containing the results. Therefore, the header will be of the form
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y=functionName (parameters,A,vy) .

Based on these constraints, the following MATLAB function was written. It
should be saved in the same location as the script that will be used to run the
nonlinear regression.

function [yl]=volume (beta,x,vy)

$Function to compute the predicted cell volumes given

% beta: the parameter coefficients

% xX: the corresponding regressors

% y: the correspindg measured values
%Copyright 2015 Yuri Shardt

$Written as part of the Springer book Statistics for Chemical
and Process

%Engineers: A Modern Approach
yvl=(1l-beta(l))*(-1l+sqgrt(l+4*beta(2)*0.293)) ./ (-1l+sgrt (1l+4*beta
(2) *x) ) +beta (1) ;

The following script was used to solve the nonlinear regression problem. The
initial guess for the parameter estimates needs to be made carefully, as it can impact
the ability of the system to give an answer. If possible, using the estimate obtained
using the linearised model is a good idea.

%Script for solving linear regression problems in MATLAB
%Copyright 2015 Yuri Shardt

%To be used in conjunction with Chapter 7 of the Springer book,
Statistics

%for Chemical and Process Engineers: A Modern Approach.
%Entering the raw data

VVo=[1.00034 0.80465 0.75358 0.71548 0.68588 0.66600
0.65913 0.64004 0.626611];

pi=[0.29278 0.57172 0.85514 1.13595 1.43349 1.72908
2.02815 2.32660 2.66704];

%Solve the problem to obtain the parameter estimates and associated
%information

[param, residual, J, covb] = nlinfit (pi,VVo, ‘volume’, [0.2,0.56]) ;
CI=nlparci (param,residual, 'covar’, covb) ;

%display the results

fprintf (['b*: $f£%f\n’] ,param(1l), (CI(1,2)-CI(1,1))/2);
fprintf (['B: $f£%f\n’],param(2), (CI(2,2)-CI(2,1))/2);
%examine the residuals

normplot (residual) ;
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figure;plot (VVo, residual, 'ok’) ;xlabel ('Measured value’) ;ylabel
('Residual’) ;

figure;plot (pi, residual, 'ok’) ;xlabel ('First Regressor’) ;ylabel
("Residual’) ;

figure;plot (residual, ‘ok’) ;

xlabel (’Sample’) ;ylabel (’'Residual’) ;

Note that the parameter estimates may be slightly different from those obtained here
due to differences in the way the optimising engine works. The MATLAB output is:

b*: 0.52454+0.0436
B: 2.408£3.616

From here, it is easy to note that the B parameter is not significant and its value
could be zero. This suggests that potentially not enough data have been collected to
make an appropriate estimate. The residual plots are shown in Fig. 7.2. This figure
seems to show that there is some trend to the residuals. However, given the rather
small sample, it is hard to discern exactly what this trend may be. Since it has been
assumed that the given equation holds, in order to obtain a better understanding of
the data, additional experiments should be provided.
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o o ©
0.005
0.75
z o °
= = ° o
] 050 3
8 3 °
o H @ -0.005
025 f--i- R
0.10 }--i- -0.01
0.05 °
-0.015
0.65 0.7 0.75 0.8 085 09 095 1 1.05
Measured value
0.01 0.01
° o o
0.005 ° ° 0.005
° o
_ 0 = 0 o
E ’ s
3 3
T -0.005 T -0.005
-0.01 -0.01
o o
-0.015 + x * + * -0.015
0 0.5 1 15 2 2.5 1 2 3 4 5 6 7 9

First Regressor

Sample

Fig. 7.2 Linear regression example: MATLAB plots of the (fop, left) normal probability plot of
the residuals, (fop, right) residuals as a function of 17, (bottom, left) residuals as a function of y , and
(bottom, right) a time series plot of the residuals
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7.8.3 System Identification Example in MATLAB

The final example will consider the problem of system identification using the same
data as used in Sect. 6.6: Modelling the Water Level in a Tank. For this reason, only
the code required to model the level in Tank 1 will be presented. After making the
relevant changes in the figure formatting, the given figures will be obtained. This
code requires the use of the System Identification Toolbox. The function can be
called as follows: systemidentification([1 21,1 1,[1 21,I[1 21)
where, since there are two inputs, the values of ny, ns and ny are entered as vectors
with each entry represents the individual cases.

function z=systemidentification (nb,nc,nd,nf, nk)
%Function to obtain system identification models of the data
assuming a

%$Box-Jenkins model with parameter orders nb, nc, nd, and nf with
a time

%delay of nk.

%Copyright 2015 Yuri Shardt

load SystemIdentificationData;
newyl=Lower_Left_Level;

gnew=size (newyl) ;

%Plot the raw data

subplot(2,2,1), plot(Ul)

xlabel (’time (s) ')

ylabel (’flow rate, u (cm/s) ’)

title(’Signal 1")

subplot(2,2,2), plot(U2)

xlabel (’time (s) ')

yvlabel (’flow rate, u (cm/s) ’)

title(’Signal 2")

subplot(2,2,3), plot (newyl)

xlabel (’time (s) ')

yvlabel (‘height, h (m) ")

title(’'Tank 1’)

%Create the data to store the object

zl=iddata ([newyl], [U1,U2],1);

zl=detrend(zl,0) ;

%0btain the parameter estimates

z=processbj (zl,nb,nc,nd,nf, nk, gnew) ;

end

function modelBJ=processbj (zl,nb,nc,nd,nf,nk, q)
%Partition the data set

split=ceil (2*q(1l)/3);

%0btain the parameter estimates

modelBJ=bj (z1(1l:split), ‘nb’,nb, ‘'nc’,nc, 'nd’,nd, 'nf’,nf, 'nk’,nk);
%Display the results
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present (modelBJ)

%Plot the required residual analysis figures

figure

compare (modelBJ, z1 (split+l:end))

figure

resid(modelBJ, z1 (split+l:end)) %$Note that the programme will pause
here in order to for the first graph to be examined before displaying
the next one.

r=resid(modelBJ, zl (split+l:end)) ;

figure

normplot (r.OutputData) ;

end

7.9 Further Reading

The following are references that provide additional information about the topic:
1. General MATLAB Help:

(a) Sizemore J, Mueller JP (2015) MATLAB for dummies. Wiley, Hoboken

(b) Hunt BR, Lipsman RL, Rosenberg J (2014) A guide to MATLAB: for
beginners and experienced users: updated for MATLAB 8 and Simulink
8, 3rd edn. Cambridge University Press, Cambridge, UK

2. Linear Regression Data Set:

(a) Elliott JA, Prickett RC, Elmoazzen HY, Porter KR, McGann LE (2007) A
multisolute osmotic virial equation for solutions of interest in biology. J
Phys Chem B 111:1775-1785

(b) Prickett RC, Elliott JA, McGann LE (2010) Application of the osmotic
virial equation in cryobiology. Cryobiology 2010:30-42

(c) Prickett RC, Elliott JA, McGann LE (2011) Application of the multisolute
osmotic virial equation to solutions containing electrolytes. J Phys Chem B
115:14531-14543

(d) Jochem M, Korber C (1987) Extended phase diagrams for the ternary
solutions H,O — NaCl — glycerol and H,O — NaCl — hydroxyethylstarch
(HES) determined by DSC. Cryobiology 24:513-536

3. Nonlinear Regression Data Set:

(a) Ross-Rodriguez LU (2009) Cellular osmotic properties and cellular
responses to cooling. University of Alberta, Edmonton



Chapter 8
Using Excel® to Do Statistical Analysis

Microsoft Excel® is a spreadsheet programme developed by Microsoft®, which
comes bundled with Microsoft Office™. The most recent version of Microsoft
Office is Office 2013. Not only can Excel perform most basic spreadsheet com-
mands, it contains a programming language called Visual Basic that can be used to
create powerful and useful macros. Most, if not all, of the analysis presented in the
previous chapters can be easily implemented in Excel. It will be assumed that the
reader has a basic understanding of Excel, can write simple formulae (equations),
understands what a column and row are, and can create basic graphs. Basic
background information about Excel can be found from such sources as the Excel
for Dummies Series (Harvey 2013). This chapter will examine in detail additional
features, such as array functions, using Solver, and writing basic Excel macros. In
order to clearly distinguish between the code required for Excel functions and text,
all Excel commands and variables are shown in bold Courier New. Locations on
the ribbon, menu paths, and keystrokes are shown in plain Courier New.

8.1 Ranges and Arrays in Excel

Ranges and arrays are how Excel refers to groups of columns and rows. The
difference lies in how they are used. A range is a group of rows and columns in
an Excel spreadsheet, while an array is a group of rows and columns used in an
Excel function or code. In Excel, an array most closely approximates a matrix.
One useful property of Excel is the ability to write an equation in one cell and
then drag it to other cells. When dragging such an equation, any references to a
range will be changed as the cells are dragged, for example, the cell A4 will become
A5 if the formula is dragged down one row and B4 if it is dragged right by one
column. This is called relative referencing, since it depends on the location.
Although relative referencing is useful, it is not always desirable. Excel allows a
cell reference to be made absolute, that is, it will not change its value as the cell is

© Springer International Publishing Switzerland 2015 363
Y.A.W. Shardt, Statistics for Chemical and Process Engineers,
DOI 10.1007/978-3-319-21509-9_8
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I
4

Enter the desired name here.

A B C D E F G

2 ¥ a b c d ]_f- )
3 5 1.00 1 1.00 5.8333333
4 6 .00 1 1.00 -1l 7.1666667
5 7 1.00 1 -1.00 4.0833333
6 8 100 1 -1.00 -1f 5.4166667
7 2 1.00 -1 -1.00 2.8333333
8 3 1.00 -1 -1.00 -1f 4.1666667
9 4 1.00 -1 1.00 4.5833333
10 5 .00 -1 1.00 -1f 5.0166667
11 2 1.00 1 -1.00 4.0833333
12 5 .00 1 -1.00 -1f 5.4166667
13 7 1.00 -1 1.00 4.5833333
14 8 .00 -1 1.00 -1f 5.9166667
15 3 100 0 0.00 [ 5
16 I'a 5 0625 0875 -0.66667|

17 ] 1.308845 1.444926 1.444926 1.362289

Fig. 8.1 Naming a range (Excel 2007)

dragged. This is done by placing a dollar sign $ before the element that one wishes
to freeze. There are three options (illustrated using cell A2):

1. Absolute Rows and Columns ($A$2): in this case, the reference will always be to
this cell.

2. Absolute Row but Relative Column (A$2): in this case, the row will stay the
same, but the column can change.

3. Absolute Column but Relative Row ($A2): in this case, the column will stay the
same, but the row can change.

Another useful feature in Excel is the ability to name a range. This means that
rather than having to drag and select a very large range of cells, it can be
conveniently referred to using the corresponding range name, for example, instead
of average (B4:B1000) we could write average (y), where y has been
defined to equal B4:B1000. Naming a range is shown in Fig. 8.1 and consists of
two steps: select the range and enter a name in the location shown. In order to make
your life easier, make sure that the name selected is unique to the workbook and not
just the worksheet.
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Table 8.1 Excel array functions

Function

Description

mdeterm(array)

Determines the determinant of an array. The result will be a single
scalar value.

minverse (array)

Determines the inverse of the n X n array. The result will be the same
size as the initial array.

mmult (arrayl,

Multiplies two arrays arrayl and array2 together. If array1 has

array2) size m X n, then array2 must have size n X p. The result will have
size m X p.

transpose Transposes an array, that is, the rows and column are exchanged. If

(array) the array was originally n x m, then the output will be m X n.

8.2 Useful Excel Functions

This section will examine various Excel functions that can be used for solving

statistical problems.

8.2.1 Array Functions in Excel

Array functions are Excel’s equivalent to matrices. Arrays are defined as a range of
cells that are treated together. When using array functions, the following steps must

be followed:

1. Select the output range.

2. Enter the array formula into one of the cells in the selected array.

3. Once the formula has been entered, press Ctrl + Shift + Enter to register
the formula as an array formula. Normally, one would simply press Enter.

A summary of the most common array functions is given in Table 8.1.

8.2.2 Statistical Functions in Excel

Table 8.2 lists some common statistical functions in Excel. Most of these functions
as written only work on newer versions of Excel (2010 or newer). A detailed
explanation of the functions and differences can be found in Sect. 2.4: Common
Statistical Distributions.
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Table 8.2 Excel statistical functions

Function

Description

average (range)

Determines the mean value of the numbers in range.

count (range)

Counts the number of nonempty cells in range.

f.inv(p,d£f1,d£2)

Returns the critical value of the F-test for the given left probability p,
the degrees of freedom in the numerator d£1, and the degrees of
freedom in the denominator A£2.

norm.inv(p,mean,
stdev)

Returns the critical value for the normal distribution with mean
mean and standard deviation stdev given the left probability p.

norm.s.inv(p)

Returns the critical value for the standard normal distribution (u =0
and o = 1) given the left probability p.

rank (value,
range, order)

Returns the order rank of value given the range. The option
order determines in which manner the list is ordered: 0 implies
descending order and 1 implies ascending order.

stdev (range) Determines the sample standard deviation of the numbers in range.
sum(range) Determines the sum of the numbers in range.
t.inv(p,df) Returns the critical value of Student’s #-test for the given left prob-

ability p and degrees of freedom df.

8.3 Excel Macros and Security

Macros are Excel’s version of functions, or user-written code, that Excel can
execute. The programming language used by Excel is called Visual Basic (VB).
In Excel 2003, code can be inserted by going to Tools — Macro — Visual

Basic Editor (Alt + F11). In Excel 2007 or newer, code can be inserted by
going to the View Ribbon and selecting the Macro icon and then View Macro.
For both versions of Excel, in the window that appears, enter the name of the
function that you desire to create (or edit) and press Create (Edit). If a new
function is being created then, in the new window that opens, replace Sub with
Public Function. This will allow the new code to be directly accessed from the
spreadsheet by typing = FunctionName (Required Parameters). Below,
some sample code has been provided that implements the Michaelis—Menten
equation.

Public Function MichaelisMenten (Concentration, vmax, KM) As
Double

'This functionwill contain a single 1line of code that ’'implements
the Michaelis-Menten equation

MichaelisMenten = vmax * Concentration / (KM + Concentration)

End Function
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dealing with a file with a H —

macro in Excel 2003 "C:\TestFile.xls™ contains macros. |

Macros may contain viruses. It is usually safe to disable macros, butif the
macros are legitimate, you might lose some functionality.

8.3.1 Security in Excel

Unfortunately, when a macro is designed, Excel has the tendency to be paranoid
and think that it is always a nasty virus. Thus, the appropriate parameters should be
set for security. The procedure in dealing with security in Excel depends on the
version of Excel installed. The following sections explain the procedures for Excel
2003 (and older) and Excel 2007 (and newer).

8.3.1.1 Dealing with Security in Excel 2003 or Older

In Excel 2003, go to Tools — Macros — Security. A new window will
appear. Select Medium. With this option, Excel will always ask you on opening the
file whether you wish to activate the macros or not. When a file with macros is
loaded, then the warning shown in Fig. 8.2 will appear when the file is initially
loaded.

8.3.1.2 Dealing with Security in Excel 2007 or Newer

In Excel 2010 or newer, to set the security, go to the File menu, and select
Options. In Excel 2007, go the Start button instead of the File menu and
select Excel Options. Select Trust Center in the window that appears.
After this, select Trust Center Settings.... In the new window, go to
Macro Settings and select the appropriate level of security you desire. A
good choice is to select the option Disable A1l Macros with Notification
because the macros will be disabled, but you will be notified of their existence.
Press OK on all the open windows to save the changes. A file with a macro must be
saved as an . x1sm file. In Excel 2007 or newer, when opening the file with a macro
and the suggested above settings, a warning will appear. Clicking on the warning
will in Excel 2010 or newer activate the macros (shown in Fig. 8.3), while in Excel
2007 another window will appear which allows the macros to be activated (shown
in Fig. 8.4).
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Fig. 8.4 Security warning when macros are present (Excel 2007). The inset shows the window
that appears after clicking options

8.4 The Excel Solver Add-In

Solver is an Excel add-in that allows the user to iteratively solve systems of
equations. Unfortunately, it is not installed by default on most computers.

8.4.1 Installing the Solver Add-In

In Excel 2003, in order to install the Solver add-in, go to Tools — Add-in. In the
window that appears, which is shown in Fig. 8.6, select Solver Add-in and
press OK. Excel will then try to install the add-in. This may require the original
Excel CD or DVD.

In Excel 2007, in order to install the Solver add-in, go to the Start button and
select Excel Options at the bottom of the menu that appears. In the new window



8.4 The Excel Solver Add-In 369

that appears, select Add-ins. Finally, go to the Go. . . button and a window similar
to Fig. 8.6 should appear.

In Excel 2010 or 2013, in order to install the Solver add-in, go to the File menu
and select Options at the bottom of the Menu that appears. In the new window
that appears, select Add-ins. Finally, click the Go. .. button. The last two steps
are shown in Fig. 8.5. A window similar to Fig. 8.6 should appear.

8.4.2 Using the Solver Add-In

In order to start Solver, in Excel 2007 or newer, locate the Data ribbon and go to
the extreme right-hand side in the area marked Analysis. Solver should be there
as shown in Fig. 8.7. In Excel 2003 or older, go to Tools — Solver.

Figure 8.8 shows the main Solver window that appears in Excel 2010 or newer. It
is a must that the option Make Unconstrained Variables Non-Negative
be unchecked, as it can lead to wrong results otherwise. The following sections are
important for use in regression analysis:

1. Objective Function Value: this is the value of the objective function that is to be
optimised.

2. Type of Optimisation: what type of optimisation is desired: maximisation (Max),
minimisation (Min), or force the solver to obtain a particular value (Value of).
For regression, the minimisation option should be used.

3. Variables: this is the range of the cells (variables) that the computer can vary to
determine the solution. For regression, this would represent the cells where the
parameter values have been entered.

4. Constraints: this box lists the constraints for the problem. In order to add a
constraint, click on the “Add” button. The window shown in Fig. 8.9 should
appear. Once the desired form of the constraint has been selected, click Add to
add the constraint to the list of constraints. Selecting a constraint from the box
and clicking Change will cause the same window to appear and the properties
of the constraint can be changed. Finally, selecting a constraint and clicking
Delete will remove the constraint.

5. Solve: clicking this button will start the solver. The solution of the problem may
take some time. Solver will either state that a solution was found (Fig. 8.10 (left))
or that no solution was found (Fig. 8.10 (right)). In general, if a solution is found,
select Keep Solver Solution and press OK; otherwise, select Restore
Original Values and press OK. If the Solver fails to find a solution, an error
message will be included. It can give a suggestion as to how to fix the problem.
Three common things to check (in order of precedence) are that:

(a) The number of iterations was not exceeded.
(b) The Excel spreadsheet and Solver were properly configured, especially that
Box 7 in Fig. 8.8 is unchecked; and
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Fig. 8.6 Installing Solver

" | Analysis ToolPak - VBA
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|| Euro Currency Tools
| | Internet Assistant VBA
|| Lookup Wizard

[V] Solver Add-in

Analysis ToolPak

Provides functions and interfaces for financial and
scientific data analysis
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Location of Solver and
Data Analysis add-ins.

Fig. 8.7 Location of the Solver and Data Analysis add-ins (Excel 2013)

1. Objective
Function Value
: @ Mig 0 ———— 2. Type of Optimisation
Chai Variable Cells:
[ = 3. Vasiables
Subject to the Constraints:
—
add
Shange
4.C Delete
Beset Al
7. Must be E
Unchecked! | Make SO D
Select a Solving Method: GRG Nonlinear v .__ 6. Options
Solving Method
Select the GRG Nonlinear engine for Solver Problems that are smooth nonlinear. Select the LP
Simplex engine for linear Solver Problems, and select the Evolutionary engine for Sobver
problems that are non-smooth.
Help | Sohve : — 5. Solve

Fig. 8.8 Main Solver window (Excel 2010 or newer)
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Add Constraint n
Cell Reference: Constraint:
- -
| Bkl <= v 2.7
oK Add Cancel
Fig. 8.9 Add constraint window
Solver Results Ed Solver Results Ex
Solver found a solution, All Constraints and optimality The Objective Cell values do not converge
conditions are satisfied Regorts Reports
Answer
@ Keep Sotver Soksn Sensitivity ® Keep Sohver Solution
Limnits
O Restore Original Values O Bestore Orignal Values
[ Return to Solver Parameters Dialog O oytline Reparts [0 rgturn to Solver Parameters Dialog [0 outline Reports
goce | gonce —
Sobver found a solution. All Constraints and optimality conditions are The Objective Cell values do not converge.
satisfied.
When the GRG engine is used, Solver has found at least a local optimal ‘ Solver can make the Objective Cell as large (or small when
solution. When Simplex LP is used, this means Solver has found a global - minimizing) as it wants.

optimal solution.

Fig. 8.10 (Left) Solver found a solution and (right) Solver failed to find a solution (one possible
result)

(c) To make sure that the appropriate solver method was selected. Changing
the solver method from GRG nonlinear to evolutionary can be useful.

6. Options: clicking this button will bring up the window shown in Fig. 8.11. Each
of the choices in this window can speed up or slow down the amount of time
required to obtain a solution or even if a solution can be found. Each option will
be discussed separately:

(a) Max Time: this represents the maximum amount of time that Solver will run
in order to determine a solution. If the problem is large, then increasing this
option can potentially allow Solver to find a solution.

(b) [Iterations: this represents the maximum number of iterations that Solver
will perform before it stops. If the initial guess is far from the solution, it
may take many iterations before a solution is obtained. Thus, increasing the
number of iterations can be a good idea.

(c) Precision: this represents the largest possible difference between the cal-
culated value of the constraints and the specified value of the constraints.
The smaller the number the longer it will take to find a solution.
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Options i < | Options » IEN Options * IEN
All Methods. | GRG Monlinear | Evluticnary | All Methods  GRG Nonlinear | Bvolutionary | All Methods | GRG Nonlinear Evolutionary
Constraing Precision o 1
B 9.c0000) Comvergence 0.0001 Convergence 0.0001]
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ton Results Eopulation Size 100
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Max Subproblems
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Fig. 8.11 Solver option window (Excel 2010 or newer)

(d)

(e)

®

Tolerance: this is similar to precision but is used for integer constraints. It
represents the percentage by which the calculated values differ from the
specified values.

Convergence: this is similar to precision but is used to compute the
maximum allowable difference between 2 iterations of the parameters
(or cells that can change). Since for most purposes, a relative value would
be better, this entry should be changed whenever the parameters are
expected to either be all very large numbers or very small numbers.

Use Automatic Scaling: this should always be selected as it minimises the
effect the magnitude of the different variables can have on the solution. It is
especially important if one of the variables ranges from 100 to 1,000, but
the other variable ranges from 0.01 to 1.

The options in the other tabs are mostly irrelevant and should be left at their default
values unless the problem at hand requires special treatment. However, the correct
approach to take requires consulting an appropriate source on numerical methods.

In the older version of Excel (2007 or older), the solver window has the form
shown in Fig. 8.12. The available information is the same except that it is arranged
slightly differently. Also, the method that Excel uses to solve the nonlinear problem
is based on a simple Newtonian search, so that the results can be more difficult to
obtain or different from those obtained using the newer methods. The options are
shown in Fig. 8.13.
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8.5 The Excel Data Analysis Add-In

The Data Analysis add-in in Excel is another very useful Excel add-in that can
improve the ability to perform certain statistical tasks. It is installed using the same
procedure as installing the Solver add-in (see Sect. 8.4.1: Installing the Solver
Add-In). In order to start Solver, in Excel 2007 or newer, locate the Data ribbon
and go to the extreme right-hand side in the area marked Analysis. Solver should
be there as shown in Fig. 8.7. In Excel 2003 or older, go to Tools — Data
Analysis.

The Data Analysis window is shown in Fig. 8.14. Although there are many
different options, the main problem with the data analysis add-in is that the results
are static and that any changes made in the original data set require the given
programme to be rerun. Also, the display of information is not always the best.
Nevertheless, for the purposes of this book, the only useful option is the Fourier
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Data Analysis ? “
Analysis Tools

Anova: Single Factor ~

Anova: Two-Factor With Replication Cancel
Anova: Two-Factor Without Replication

Correlation

Covariance Help

Descriptive Statistics
Exponential Smoothing

F-Test Two-Sample for Variances

Histogram e

Fig. 8.14 Data Analysis window (Excel 2010 or newer)
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2. Output Range (®) Output Range: =3

New Worksheet Ply:
() New Workbook

[] inverse

Fig. 8.15 Fourier analysis window (Excel 2010 or newer)

analysis option, which will compute, given a data set, the appropriate Fourier
coefficients, which can then be used to create a periodogram for the data set. An
Excel template file has been created to simplify the process (see Sect. 8.6.3:
Periodogram Template).

Selecting the Fourier analysis option will give the window shown in Fig. 8.15.
There are only two key areas to consider. First, the input range must have a length of
2", where n € N, that is, the length must be an integer power of 2. If the particular
list is less than the desired value, then add extra zeros to the end of the list to make it
an integer power of 2. The output range should have the same size and orientation as
the input range, that is, if the input range is a column, then the output range should
also be one, similarly for a row. Clicking OK will give the required Fourier
coefficients.
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Fig. 8.16 (Left) Inserting a row and (right) column (Excel 2013)

8.6 Excel Templates

This section describes the Excel templates available from the book website. All
templates have been tested on Excel 2013 and 2010. All should work on Excel 2007
as well. For the few that require special formulae, a separate Excel 2007 version has

been included.

The following are some useful remainders when using the templates:

. Adding new rows: new rows should be entered inside the thick-bordered area.

This will automatically update all formulae to include the new row. This can be
accomplished by right-clicking on the appropriate row name and selecting
Insert. A row will be inserted above the selected row. See Fig. 8.16 for an
example.

. Adding new columns: new columns should be entered inside the double-bordered

area. This will automatically update all formulae to include the new column.
This can be accomplished by right-clicking on the appropriate column name and
selecting Insert. A column will be inserted to the left of the selected column.
See Fig. 8.16 for an example.

. Formulae: most formulae can be dragged down or across to fill the new data. It is

suggested that you drag from the first row (or column) down to the last to make
sure that everything is properly aligned.

. Macros: a few of the templates contain macros that allow for easier and better

implementation of the given procedures. When macros are present, make sure
that the security is appropriately set so that they can be used (see Sect. 8.3.1:
Security).
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A B C D E F G

1 |Data Rank  Expected Value Normalised Data Data Summary Statistics
2 | -1.0625 4 -0.8994 -0.7151 mean 0.0525
3| -0.3125 8 -0.2670 -0.2341 G 1.5593
4 | -0.0625 9 -0.1323 -0.0737

5| 26875 19 1.937 1.6899

6 | -4.0625 1 -1.9379 -2.6391

7 | -1.0625 4 -0.8994 -0.7151

8| 19375 17 1.1190 1.2089

9| 2.1250 18 14122 13292

10] 1.0625 14 0.5549 0.6478

11| -1.1875 3 -1.1190 -0.7952

12| 0.0625 10 0.0000 0.0064

13| -1.4500) 2 -1.4122 -0.9636

14| 1.0625 14 0.5549 0.6478

15| -0.9375 6 -0.5549 -0.6349

16| 1.0625 14 0.5549 0.6478|

17| 0.0625 10 0.0000 0.0064

18| 0.8560 13 0.4067 0.5153

19| 0.7856 12 0.2670 0.4702

20] -0.5695 7 -0.4067 -0.3989|e—— = (A1 - $GS$2)/5GS3

Data =normsinv((B1-0.5) /Count (Data))
=rank (Al,Data,l)

Fig. 8.17 Normal probability plot data (the formulae given are those placed in the first row, and
they would then be dragged down into each of the remaining rows)

8.6.1 Normal Probability Plot Template

Requirements: basic Excel installation.

Goal: create a normal probability plot in Excel that can be modified to deal with
other distributions.

Filename: normplot .x1tx

Description: a screen shot of the template with an explanation of the formulae used
is shown in Fig. 8.17. The resulting normal probability plot is shown in Fig. 8.18.
The steps for creating a normal probability plot can be summarised as follows:

1. Place the original data in Column A.

2. Obtain the order of the data in Column A in Column B. You can use the rank
function.

3. In Column C, enter=normsinv((ColumnBl-0.5) /count (Column
$A)). 0.5 is subtracted from the original ranked value in order to avoid asking
the computer for the location for which the probability is 100% (it is+ co!).

4. In Column D, compute the Z-score for each of the data points, that is, subtract
the mean and divide the resulting value by the standard deviation of the
values in Column A.
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Fig. 8.18 Resulting normal probability plot

5. Plot a scatter plot of the data in Columns C and D.
6. The straight line can be added by plotting the data in Column C against itself.

Warnings: the axes of the plot are fixed to the range [—3.0, 3.0]. Should there be
data outside this region, then it will be necessary to manually change the axis
limits.

8.6.2 Box-and-Whisker Plot Template

Requirements: basic Excel installation.

Goal: create a box-and-whisker plot in Excel.

Filename: boxplot.x1ltx

Filename, Excel 2007 or Older: boxplot2007 .x1t

Description: a screen shot of the box-and-whisker plot is shown in Fig. 8.19. The
following steps can be used to create a box-and-whiskers plot in Excel from
scratch:

1. Place the data in a column (or row) and call that range data.
2. Compute the minimum, first quartile, median, third quartile, and
maximum values. This can be accomplished by using the following
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16

14

12

10

Fig. 8.19 Box-and-whisker plot in Excel

formulae: min(data), quartile.inc(data, l), median(data),
quartile.inc(data, 3), and max(data). In Excel 2007 or older,
one should replace quartile.inc by quartile.

3. Create a column containing the following values in the specified order: Q1 —
minimum, Q1, median — Q1, Q3, and maximum — Q3. This will allow the
box-and-whisker plot to be properly created in Excel.

4. Select the middle three items (Q1, median — Q1, and Q3) and create a stacked
column graph. The steps required are shown in Fig. 8.20 for Excel 2013. The
arrows provide the sequence of steps that should be followed to create the
graph. The initial graph that is obtained now needs to be formatted to look
like a box-and-whisker plot.

5. Select the bottom blue box and add a negative error bar, which is equal to Q1 —
minimum. Set the positive error bar equal to zero. The steps required are
shown in Fig. 8.21 for Excel 2013. Select the top grey box and add a positive
error bar, equal to maximum — Q3. The negative error bar should be set to
zero. The same procedure would be followed, mutatis mutandis.

6. Once again, select the blue box and set the fill option to no fill and the
border option to no line. The steps required are shown in Fig. 8.22 for
Excel 2013. Select the orange box and set its fill to no fil1. Repeat for the
grey box. This should now look like a box-and-whisker plot. Additional
formatting can be performed to obtain the final version.
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8.6.3 Periodogram Template

Requirements: basic Excel installation plus installing the Data Analysis add-in (see
Sect. 8.5: the Excel Data Analysis for how to install it.)

Goal: create both the full and half periodograms in Excel.

Filename: periodogram.xltx

Description: a screenshot of the template is shown in Fig. 8.23 with the resulting
periodograms shown in Fig. 8.24. Note that every time new data are entered, it is
necessary to rerun the Fourier analysis function in the Data Analysis add-in. The
set-up of the Fourier transform window is shown as an inset in Fig. 8.23. Also,
the number of data points must be a multiple of 2" where 7 is an integer, that is,
2,4,8, 16, 64, 128, 456,. . .. If the data set of interest is not a multiple, then it is
necessary to add extra zeros to the end of the list to make it so.

An explanation of the columns is as follows:

1. Column A contains a simple count of the sample number starting from 1.

2. Column B contains the values corresponding to each sample number. This
column is called data and must be a multiple of 2", where 7 is an integer.

3. Column C contains the Fourier transform values as returned by the Fourier
analysis function in Excel. The values are complex numbers and should not
be changed.

4. Column D contains the magnitude of the values in Column C, that is,
=abs (C2). This column is used to construct the full periodogram.

5. Column E contains the frequency corresponding to each sample, that is,
=(A2-1) /COUNT (data).

6. Column F contains the half periodogram frequencies, which is basically the
first 2" ~ ' values from Column E with the remaining values set to #N/A, so
that they will be ignored. The formula used is=IF(A2-1<$I$2,E2,
#N/A) . It should be noted that cell $I$2 contains the centre point value.

7. Column G contains the half periodogram magnitudes, which is basically
twice the corresponding value in Column D, up to the centre point value,
after which the values are arbitrarily set to #N/A. This allows the half
periodogram to be plotted for an arbitrary number of values. The formula
used is=IF(A2-1<$I$2,D2*2, "NaN").

8. Full Periodogram: the full periodogram is created by plotting Column D as
the y-axis and Column E as the x-axis.

9. Half Periodogram: the half periodogram is created by plotting Column G as
the y-axis and Column F as the x-axis.

Warnings: the Fourier transform function must be rerun each time the data are
changed. Furthermore, the data length must always be a multiple of 2", where
n is an integer.
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Fig. 8.24 Sample full and half periodograms

A B G D E F G H 1 1 3 L
1
2 v a b [ o i residuals r Ordered Z-Rank Z-Score
] 3 1.00 1 1.00 1] 5.8333333 0.83 0.69] 7 0 0.461266]
4 (3 1.00 1 1.00 =1| 7.1666667 117 1.36) 10 0.61514 0.645772
5 7 1.00 1 =1.00 1] 4.0833333 =292 8.51 1 -1.76883 -1.61443
6 & 1.00 1 =1.00 =1| 54166667 -2.58 6.67) 2 -1.19838 -1.42992
7 2 1.00 =1 -1.00 1] 2.8333333 0.83 0.69] 7 0 0.461266)
8 3 1.00 =1 -1.00 =1 4.1666667 117 1.36) 10 0.61514 0.645772
9 4 1.00 =1 1.00 1| 4.5833333 0.58 0.34 6 -0.19403 0.322886]
10 5 1.00 =1 1.00 =1| 5.9166667 0.92 0.84) 9 039573 0.507392
11 2 1.00 1 -1.00 1| 4.0833333 208 434 3 1.76883 1.153164
12 5 1.00 1 =1.00 =1 5.4166667 0.42 0.17] 5 -0.39573 0.230633
13 7 1.00 =1 1.00 1] 4.5833333 =242 5.84 3 -0.86942 -1.33767
14 8 1.00 =1 1.00 =1| 5.9166667 =208 4.34 4 -0.61514 -1.15316|
15 3 1.00 0 0.00 0] 5 2.00 4.00] 12 1.19838 1.107037
16 I: 5 0625 0875 -0.66667| sum(r’) 39.17 Wivines  8.88E-16
17 44 1308845 1.444926 1.444926 1.362289| i 2.09) Crues 1806624
18 a 0.05] .
10 tinv(a) 2.262157 iﬂmol ;‘:"“”1 peobability
20 -] 13]  created using the data
Fi " 4]  provided in columns H, K,
2 k 3] and L and displayed in the
23 TSS 53| Normplot tab of this
24 ESS 39.16667| workbook.
25 SS5R 14.83333
26 r 0.274691
7 F -test 1.13617|
28 F-critical, model | 3862548
29 F-critical, factorial| 5.117355
30
W 4 59| Regression Normplt . Trra Seras Resduak . Reseab vi.y . Resduabvi§ %3 T

Fig. 8.25 Linear regression template

8.6.4 Linear Regression Template

Requirements: basic Excel installation plus ability to use macros.

Goal: perform linear regression in Excel in an easy and straightforward manner.

Filename: 1inearregresion.xltm

Description: a screenshot of the plain template is shown in Fig. 8.25. The yellow
blocks are where the required data are entered. The green block represents the
row in which an array formula needs to be entered. The complete green row



386 8 Using Excel® to Do Statistical Analysis

should be selected and then the first cell highlighted. Finally, press Ctrl
+Shift+Enter to copy the array formula to the entire green row. Adding
additional parameters and data points will also require that the formulae be
appropriately copied down. The spreadsheet automatically creates the normal
probability plot for the residuals and plots of the residuals as a function of y and
v, as well as a time series plot of the residuals. Additional plots can be created by
the user. An example of how to use the template is provided in Sect. 8.7.1: Linear
Regression Example.

Warning: this template requires that the internal macros be enabled. Also, the array
formulae need to be properly entered.

8.6.5 Nonlinear Regression Template

Requirements: basic Excel installation plus installation of Solver and the ability to
use macros.

Goal: perform nonlinear regression in Excel in an easy and straightforward manner.

Filename: nonlinearregresion.xltm

Description: a screenshot of the plain template is shown in Fig. 8.26. The yellow
blocks are where the required data are entered. Note that Solver needs to be used
to obtain a solution to the problem. The configuration of Solver is shown as an
inset in Fig. 8.26. The layout and formatting of the results are similar to the linear
regression case. Two important differences are that the model and its Jacobian
must be entered as a macro and that Solver must be used. The spreadsheet
automatically creates the normal probability plot for the residuals and plots of
the residuals as a function of y and y , as well as a time series plot of the residuals.
Additional plots can be created by the user. An example of how to use the
template is provided in Sect. 8.7.2: Nonlinear Regression Example.

The template comes with four predefined functions for creating the model and
the corresponding Jacobian. Each function takes the same inputs: the range
corresponding to the parameters and the range corresponding to the inputs.
The fours functions are model, dydbl, dydb2, and dydb3. This approach
is very similar to what MATLAB® requires and provides the most flexibility in
defining the relevant functions.

Warning: this template requires that the internal macros be enabled and Solver
installed.

8.6.6 Factorial Design Analysis Template

Requirements: basic Excel installation and appropriate macro security.
Goal: perform the analysis of a factorial design experiment in Excel in an easy and
straightforward manner.
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A 0 c ) ; ¥ G H [ } [ L ™ N o 3

2 A 8 £ LA LA A fu fa P |7 residusly [ Ordered  ZRank _ Z-Score

3 a5 1 1 1 1 ] 1 = 475 a5 o4 12 0579132 061545745
4 36 14 1 1 1 1 -1 1 31 050 023 4 076422 12309145
5 25 1 4 - 1 1 -1 A 1 3 ase 0 13 123091491
& 4 1 B B 1 1 1 1 A 415 015 0.02f 10 0.36927447]
7 3 1 1 1 1 1 -1 1 -1 478 028 .06} 3 0% 2 06154574
s 26 T 1 1 1 1 -1 1 31 0% o 15 1318011 123091401
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10 43 14 -1 -1 1 | 1 -1 415 015 002 7
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Fig. 8.27 Analysis of factorial experiments template

Filename: factorialdesigntemplate.xltm

Description: a screenshot of the plain template is shown in Fig. 8.27. The yellow
blocks are where the required data are entered. The green block represents the
row in which an array formula needs to be entered. The complete green row
should be selected and then the first cell highlighted. Finally, press Ctrl
+Shift+Enter to copy the array formula to the entire green row. Adding
additional parameters and data points will also require that the formulae be
appropriately copied down.

The spreadsheet automatically creates the normal probability plot for the

parameters and residuals as well as plots of the residuals as a function of y and
y and a time series plot of the residuals. Additional plots can be created by the
user. An example of how to use the template is provided in Sect. 8.7.3: Factorial
Design Examples.

Warning: this template requires that the internal macros be enabled. Also, the array
formulae need to be properly entered.

8.7 Excel Examples

This section presents three examples that show how to implement various forms of
regression analysis in Excel. The topics considered are linear regression, nonlinear
regression, and analysis of factorial design. All examples are based on real data
obtained from experiments. The procedures use the appropriate templates for
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Table 8.3 Fitting the virial equation (Excel example)

my (millimol/kg solv) | m3 (millimol/kg solv) | k. (milliosm/kg solv) | IT (milliosm/kg solv)
0 0.0000 0 0
600 0.0390 1,052 1,314
1,268 0.0823 2,326 2,267
2,013 0.1307 3,879 3,712
2,852 0.1852 5,792 5,496
3,803 0.2469 8,170 8,035
4,889 0.3175 11,161 11,513

solving the problem faster. The final form of the spreadsheet including all required
information is provided as a reference for the user.

8.7.1 Linear Regression Example in Excel

This example examines the problem of fitting a theoretical equation to experimental
data in order to obtain the values of the different constants in the system. Detailed
information about the problem can be found in Prickett et al. (2011); Elliott
et al. (2007); Prickett et al. (2010); and Jochem and Korber (1987). Data provided
courtesy of Dr. Richelle Prickett.

8.7.1.1 Problem Statement for Linear Regression Example

Consider the problem of obtaining the values of the parameters in a theoretical
equation that describes the osmotic pressure of the sodium chloride (NaCl) salt and
hydroxyethyl starch (HES, chemical formula (C¢H;00O5),,(C2H50),). Based on the
virial equation of state, it is assumed that the following equation can be used to
describe the osmolality (/1) of such a mixture:

1T = Bsm3 + Bskgisgmams + Caym3 + k, (8.1)

where B3 and Cj are the virial parameters to be determined, m, is the molality of
NaCl in millimol/kg of solvent, mj; is the molality of HES in millimol/kg of solvent,
kaiss 1s the disassociation constant that is equal to 1.678, and k.. is a known constant
that depends on the system being analysed. An experiment was run where the ratio
of the mass of HES to the mass of NaCl was fixed to 0.5. The results obtained are
shown in Table 8.3.
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A B C D E F G H i
1
2 v B, Cy i residuals r lOrdered Z-Rank Z-Score
3 0 0.00 0| 0 0.00 0.00 5 0.366106 0.390353
4 262 39.27 5.93E-05| -28.03735 -290.04 84121.66| 1 -1.46523 -2.180899|
5 -59 175.12 0.000557| -102.0621 -43.06  1854.34 2 -0.79164 0.008597
6 -167 441.50 0.002233| -192.4215 -25.42 646.25 3 -0.36611 0.164986
7 -296 886.34 0.006352| -239.621 56.38  3178.59| 7 1.465234 0.890167
8 =135 1575.64 0.015051 -131.135 3.86 14.94 6 0.791639 0.424617|
9 352 2604.79 0.032006| 342.05393 -9.95 98.92 4 0 0.302179
10 '3 -0.832522 78441.55 sum(r’) 89914.71 -44.03186/
11 &4 0.637833 56795.37 Oraodal 134.10 112.8
12 a 0.05
13 tinv(a) 2570582
14 m 7
15 n 2
16 k 2|
17 TSS 3294949
18 SSE §9914.71
19 SSR 239580.2
20 R 0.727113
21 F-test 6.661317 —/
22 F -critical, model 5.786135
23 F -critical, factorial] 6.607891
24
25

Fig. 8.28 Linear regression example: Data Analysis results

8.7.1.2 Problem Solution for Linear Regression Example

Before linear regression can be applied, the above equation must be rearranged so
that all known constant information is on the left-hand side and all the unknown
variables are on the right-hand side. Thus, the equation would be rewritten as

Il — k.= B3 (m% =+ kd,-ssmzn%) + C3ng (8.2)

The required variables would be defined as

y :H — k(.
X= <m§ + kgissmams, m§> (8.3)
B =(B5,C3)"

Entering all the data in the Excel spreadsheet gives the results shown in Figs. 8.28
and 8.29.

Using the original data shows that the second point (/7 = 1,314) is potentially an
outlier, since its residual is extremely large. Thus, the row corresponding to this point
(row 4 in the original layout) was deleted and the regression analysis was redone. The
results are shown in Figs. 8.30 and 8.3 1. The results are much better as there are now
no clear outliers and the data confidence intervals, especially for Cs, are much smaller.
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Fig. 8.29 (Left) Linear regression example: normal probability and (right) time series plots. The
circled point is a potential outlier

A B G D F G J

1

2 i; B, Cs i r 1 r Ordered Z-Rank Z-Score
3 0 0.00 0 0 0.00 0.00 5 0.67449 0.231205
4 -39 175.12 0.000557| -106.3545 -47.35 224245 1 -1.38299 -1.24741
5 -167 441.50 0.002233] -200.7887 -33.79 1141.68 2 -0.67449 -0.82383
3 -296 886.34 0.006352| -250.8708 4513 2036.65 6 1.38299 1.640339
7 -135 1575.64 0.015051| -139.9814 -4.98 24.81 3 -0.21043 0.075665
8 352 2604.79 0.032006]| 348.5676 -3.43 11.78 4 0.21043 0.124029
9 s -0.86648 81408.59 sum(r’) 5457.37 esiduats  ~7.40462
10 4 0.190134  16929.1 Ormodel 36.94 Oresiduats 3202622
11 a 0.05

= tinv(a) 2776445

13 m 6

14 n 2

15 k 2

16 TSS 245610.8

17 SSE 5457.365

18 SSR 240153.5

19 R 0.97778

20 F-test 88.01077

21 F -critical, model | 6.944272

22 F -critical, factorial 7.708647

=
=n

W] Pgureie Tl el Feurissoght 53

Fig. 8.30 Linear regression example: Data Analysis results after removing the outlier

8.7.2 Nonlinear Regression Example in Excel

This example examines the problem of fitting a theoretical equation to experimental
data in order to obtain the values of the different constants in the system. Unlike the
previous case, nonlinear regression must be performed in order to obtain a result.
Detailed information about the problem can be found in Ross-Rodriguez (2009).
Data provided courtesy of Dr. Lisa Ross-Rodriguez.
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Fig. 8.31 Linear regression example: (/eff) normal probability and (right) time series plots after
removing outliers

Table 8.4 Equilibrium cell ViV, I
volume data (Excel example) 100034 029278

0.80465 0.57172
0.75358 0.85514
0.71548 1.13595
0.68588 1.43349
0.66600 1.72908
0.65913 2.02815
0.64004 2.32660
0.62661 2.66704

8.7.2.1 Problem Statement for Nonlinear Regression Example

Consider the problem of obtaining a relationship for the ratio between the equilib-
rium and isotonic cell volumes given the osmotic pressure. The theoretical rela-
tionship can be written as

v_(1 b*)—1+\/1+43n0+b*
Vo —1+ 1 +4BI
where both B and b* are the parameters to be determined and 71 is a known osmotic

value. The experimental data are provided in Table 8.4. For this data set, I, has a
value of 0.293.

(8.4)

8.7.2.2 Problem Solution for Nonlinear Regression Example

Before we set up the problem in Excel, it is first necessary to compute some
preliminary information. First, we need to obtain the derivatives of Eq. (8.4) with
respect to the parameters, that is,
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A B C 1] E F G H 1 1 K
1 Jacobian
2 Vive I |ey@p,  oep. |y residuals r Ordered Z-Rank Z-Score
3 1.0003 | 029278 0.00 -0.00001]  1.0003 0.00 0.00 5 0 -0.056022
4 0.8047 | 0.57172 038 0.007262]  0.58174 0.01 0.00 9 1.593219 1924833
5 0.7536 | 0.85514 053 0.008435]  0.7472 -0.01 0.00 1 -1.59322 -1.028294
6 0.7155 | 1.13595 0.61 0.008527]  0.7095 -0.01 0.00 2 -0.96742 -0.975596|
7 0.6859 1.43349 0.66 0.008329 0.6840 0.00 0.00 4 -0.28222 -0.335861
8 0.6660 1.72908 0.70 0.008053 0.6664) 0.00 0.00 6 0.282216 0.015948
9 0.6591 2.02815 0.73  0.007763) 0.6531 -0.01 0.00 3 -0.58946 -0.972668
10 0.6400 | 2.3266 0.75 0.007486]  0.6429 000 0.00 7 0589456 03941
11 0.6266 | 2.66704 0.77_0.007194]  0.6336 0.01 0.00 § 0967422 1.03356]
12 s 0.524581 2.408129 sum(r’) 0.00 ; 0000291
13 6 0043624 3.616267) Tmodel 0.01 0.006449)
14 a 0.05
15 tinvia ) 2.364624
16 m 9
17 n 2
18 & 2
19 TSS 0.109233
20 SSE 0.000333
21 SSR 0.1089 —1
22 R 0.996947
23 F-test 1143.092
24 F-critical, model | 4.737414
25 F -critical, factorial] 5.591448
T rigure) 26 TIN5 |
Fig. 8.32 Nonlinear regression example: Excel spreadsheet results
d(v/Vo) _ | 1-VT¥aBI, &)
7* - - - — .
db 1 —+/1+4Bll
d(V/Vy) 21— ) I, 11(—1+ +/1+4BIl,)
~p - - 2
dB VTI+4BIy(—1+1+4BI) \/T+4BIl FABII(—1 + T+ 4BI)
(8.6)

It can clearly be seen that this equation is nonlinear in the parameters. Thus, nonlinear
regression using Solver will be performed. In order to obtain values for the parameter
confidence intervals using Equation (198), the grand Jacobian will be calculated using
the “best” estimated values of the parameters and the above derivatives.

The nonlinear regression Excel template used is set up identically to that of the
linear regression template. The only difference is that now the estimated parameter
values are not computed using a formula. Instead, they must be determined using
Solver. Given the problem set-up, initial parameter estimates can be a bit of an
issue, as the solution is sensitive to them. A recommended initial guess would be
0.5 for " and 2.5 for B. The macros are shown in Sect. 8.7.2.3: VB Macros.

The final results are shown in Fig. 8.32. Figure 8.33 shows the normal proba-
bility plot and a time series plot of the residuals. It is easy to note that the
B parameter is not significant and its value could be zero. Given the overall good
fit and the relative well-behaved nature of the residuals, this would suggest that
potentially not enough data have been collected to make an appropriate estimate.
This situation partly explains why the Solver can have issues with obtaining a good
value for B. The residual plots are shown in Fig. 8.33. Overall the results are decent,
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Fig. 8.33 Nonlinear regression example: (/eff) normal probability plot and (right) time series plot
of the residuals

given the small sample. Since it has been assumed that the given equation holds, in
order to obtain a better understanding of the data, additional experiments should be
performed.

8.7.2.3 VB Macros

The macros required for performing the detailed regression analysis are shown
here. There are three main macros: (1) to compute the model parameters (model),
(2) to compute the derivative of the model with respect to b* (d&ydb1l), and (3) to
compute the derivative of the model with respect to B (dydb3).

Public Function model (parameter, X)

bs = parameter (1)

B = parameter (2)

model = (1-bs) * (-1 +Sqgqr(1+4*B*0.293)) / (-1 +Sgr(1l+4*B*x(1)))
+ bs

End Function

Function dydbl (parameter As Range, X As Range)

bs = parameter (1)

B = parameter (2)

dydbl =1- (-1 +Sgr(1+4*B*0.293)) / (-1 +Sgr(l+4*B*x(1)))
End Function
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Function dydb3 (parameter As Range, X As Range)

bs = parameter (1)

B = parameter (2)

Pio=0.293

so=8qgr(l+4 *B* Pio)

s=8qgr(l+4*B*x(1))

dydb3=2* (1-bs) * (Pio/so/ (s-1) -x(1) * (so-1) /s / (s-1) ~2)
End Function

8.7.3 Factorial Design Examples Using Excel

This section presents the Excel spreadsheets for analysing some of the factorial
design experiments presented in Chap. 4. The examples are all based on the
factorial design template. The following examples have a corresponding Excel
spreadsheet:

1. Figure 8.34: Example 4.2, Analysis of a Full Factorial Experiment, from Sect.
4.4.4, Projection;

2. Figure 8.35: Sect. 4.7.4, Detailed Mixed-Level Example; and

3. Figure 8.36: Sect. 4.8.2, Factorial Design with Centre Point Example.

8.8 Further Reading

The following are references that provide additional information about the topic:
1. General Excel Help:

(a) Harvey G (2013) Excel® 2013 All-in-One for dummies. Wiley, Hoboken

(b) Brillo J (2007) Excel for scientists and engineers: numerical methods.
Wiley, Hoboken

(c) Schmuller J (2013) Statistical analysis with Excel® for dummies, 3rd edn.
Wiley, Hoboken

2. Linear Regression Data Set:

(a) Elliott JA, Prickett RC, Elmoazzen HY, Porter KR, McGann LE (2007) A
multisolute osmotic virial equation for solutions of interest in biology. J
Phys Chem B 111:1775-1785

(b) Prickett RC, Elliott JA, McGann LE (2010) Application of the osmotic
virial equation in cyrobiology. Cryobiology 2010:30-42


http://dx.doi.org/10.1007/978-3-319-21509-9_4
http://dx.doi.org/10.1007/978-3-319-21509-9_4
http://dx.doi.org/10.1007/978-3-319-21509-9_4
http://dx.doi.org/10.1007/978-3-319-21509-9_4
http://dx.doi.org/10.1007/978-3-319-21509-9_4

8 Using Excel® to Do Statistical Analysis

396

ordurexs [er10joe} [[nJ :uSIsAp [eLI00R HE'§ "SI

T w T [+ [CEEXE
o€

SE

L3

IRNN# | Puopne ‘- L
TN | Ppom - ®
A= na- g 114
ioAlas K o€
iAlae S| C3
ivaIae ES TRNE  DUING DN DUING DUING DUINS  GRONR DUINF DUING DUINS  RONR IRNONR DNINR | GNS 8
sE605L5 sy ANe  NON®  IRONS  NONe  DNANS  DNAN®  NONS  NONS KON DRONS  BNONR  DNONS NN DRONS GRONK @
[ | ININS  DNONS  WONS KON DNONS  DRON®  WONS  NONS  DNONS  DRON® WM NN DNONS  NONS  NONE NN "ass %=
d b IPO0E0" ISEIFD- ETSSE0- 99TITO- LI9BTUr TILEO-  6BEREUT PITLTON L9LOETD SLISED- SLSEEU- ITRLOD BOOPOT- €60STO- SEITLTO westroe | amesg i
o1 M TLE00-  10BIET- 666001 STZOND IFSLOY" THOLLO™ EIGLSO" TINSLOD 666001 ELT9ET- STTONO' ITHOLLO TEN6LSO TOTLETO TIOSIET TeLTowt| e "
151 M 5 T 3 11 g L s L] £l 1 8 £l (4 o1 5l a1 PRERIO)| 134
TNE (epam| ERd P L w
i b i
u AIgs badic i o
000 nﬂi 2 &1
% 1 q I 1 % o

o 1 1 I I 15 1 I 1 1 I I 1 I I [ o i

L] 1 I I I I 1 5 (5 1 1 L 1 1 I 1o " o

5t i I G I I 1 L I 5 I i I i I o 5 st

ol i 1 Iz 1 I Iy I E I & 1 1 I I L. ol "

5t 1 I I I I I i I I f I t I [ -1 5t ]

001 u 1 - L 1 i L 1 1 - L 1 i L 1 001 o

Er 1 1 i I - Lo - 4 o 1 1 1 1 tir = I £r L

59 i - Liy I i L - 1 L 1 1 I 1 1 1 59 L

] t I 1 1 b I I ! I I T T I 1 1 L] &

2] t 1 I 1 I 1 1 1 1 t 1 £ I T FT (] 8

8 - 1 1 %) 1 I I 1 I 1 i 3 i T o 89 [

59 1 1 1 I 1 1 i 1 1 1 1 1 I 1 o1 59 s

s I- 1 1% 1 1 1 i & 1 I I £ 1 I L st s

© i I- 1 1 1 I 1 I 1 1 I I I I [ © v

5t 1 I & L L4 1 I I I [ I I I I 1 5t i

sjenpisag ﬁ_‘_ ﬁ‘ a\ ;.!n‘ a\ 'A‘ -n\ ﬂ\ v_‘ :‘ un‘ ;ﬁ nﬁ “‘ _‘ t‘_ T

T

X ~» A n 4 5 ¥ o d o N w 1 b r ] H 2 i 3 a 2 8 v |4




397

8.8 Further Reading

orduwrexa [9Ad[-paxIwt :uFISOp [eLI0IOE] SE'§ "SI

13

STTLRL'Y

TEELILT

ETI1TH

GFLPLE0

STI8TE
58 PRSI PRSI pRINQ : PRI PRSI pRS] 2| i ¥ 3 | uessieeg 9€
ST9PEE PLITFFT TIFGT00 QOLKOT'O LFDLID SETZB00 8BSOLF1 SBIINGL'0 GSOLFIL SOLITIE T88S0F9 650705t FISBOLE iy SE
it ¥ EESOTO'T ££80T0°0 SL81°0 SL89F 7900 L991F0'T  ST950 ST90°% LOTHOTT  SLESK STROSHT  SLERET "85S vE
g fu EFBOL0- EERLO0- B6PS0L°0- STRETFO- SOOTIP'0- €8105°0- TISLIS0- EETSETO- 6TLTOO0 TLEQLED 18TS0ET 9DLOES'1 23035-7 €€
<1 u OO1EL°T- TITIZ0- GFEOST'T- 60010 TTS8FS'0- £E0POI0- GEORIE'0- GE9816°0 TTSBKS0 BITTIZO +O9IELT GHEOSTT wed-Z i€
L d 1 £ i L ¥ 9 & 8 L] o1 il 1 PSP 1€
EIBBLI'T Bjamm) SINFWEIEJ JO SISARUY [FUMES (3
so0 4 6z
616L09°0 WD 80 [BLOHOT'0 BLOH9T0 BLOHOT'0 BLOWOT'0 OEPESHO TIERLE0 9EFBSHO OQEFBSHO TIERLE0 TIERLE'D OfFESHO 1IEMLED o= 8T
pr-aroT e 058 E8SHT 0 - STIED  STH00  EE€30T0 SL8T'0 SISO sier e 4 &
BFTT80- S1L880- § 5T0 1 1 1 1 1 1 1 1 11 9z
P6HFO1- TIFEST- T 00°1 - 1 1= £ 1 - 1 1 6 st
BLFTTIE0 S60RLED 91 570 1= 1 I - 1 1= 1 4 1 9 L
BLFTIS0 S60RLED 91 570 U 1= I 1 - - [ L 1 F £z
BLETIE0 S60RLED 91 ST°0 i [ & 1 0 [} 1 1 1 g 11
BFII8°0- SIL880- € 570 [ (4 [ 1- 0 0 I 1 1 £ i
BLFTTS0 TIELS10 #1 S0 [ <« < 142 0 0 1 1- 4 1 oz
BFTI80- TELST0- 1T 570 - 4 T 1 0 0 I 1 1 6T
PI-FEE-  STTS00- 1 00°0 1 1 1 I & 1 Uy 1= 1 1 1 81
BFTTE0- SIPOT0- 01 ST'0 1= 1= 1 I 1 1= 1 I- 1 1 ] LT
BHTI80- LHHEOTT- ¢ 570 L 1 I I 1 I- I 1 I 1 0 91
96FH0 1 £8960°C- 1 00°1 1 & 1= 1 1% 1 1 1 - 1 5 St
BLFTTIE0 S60RLED 91 570 1 1 1 1 1 1 1 1 1 1 o1 *1
LE6FFY T PESREDT #T 00°1 L I- 1 1 - I- I 1 1 1 L £1
BFTTE0- S1L88°0- € 520 - 1 i) I I- I- 1 1= i 1 L It
B+TT80- S1L88°0- € 570 1 I I- I 1 1 I- 1- - 1 £ i
3FTI80- SIL880- S ST0 - T - [ 0 1 0 0 1 I 9 ot
BLFTTE0 S60RLED 91 5T0 L 4 & i 0 I- 0 0 1 1 T &
BFTT80- PIBSTT- € 520 [T i T i 0 | 0 0 I 1 T 2
BLETIS'D TOISST'1 TT ST'0 - T T T 0 1 0 0 1= 1 ] L
O1-FE'€- STTEO0- T 000 1 1 1 1 I- 1 I- 1= 1 1 1 9
BLFTIS0 TLRFSOT 1T 570 1= 1 1 1 1 1= 1 5 1 I 1 s
BLFTIE0 LPIFDTO 51 5T0 L 1 1= § 1 I= I 1 | b 1 - L
LE6FFY T ITIFES'T €T 00°1 [ 1 1 5 1 1 1 1= 1 £ £
A1005-7 MUTY-Z PAIapIO COr] iy Tty g filg g g o] £ z
1

1 s Y o d o N W 1 Az T 1 H ] i i a J L v



398 8 Using Excel® to Do Statistical Analysis
A 8 (= D E F G H 1 K L M

1

2 L £ £ Fiz B s Ordered Z-Rank Z-Score

3 393 1 -1 -1 1 1 393 0.00 0.00} 4| -0.2822 0)

4 40 1 -1 1 -1 1 40 0.00 0.00) 4 -0.2822 0)

5 40.9 1 1 -1 -1 1 409 0.00 0.00] 4 0|

6 415 1 1 1 1 1 415 0.00 0.00] 4

7 40.3 1 0 L] 0 (18] 4046 0.16 0.03 8

8 40.5 1 o 0 0 ~0.8] 4046 -0.04 0.00} 3

) 40.7 1 ] a ] -0.8] 4046 -0.24 0.086] 1

10 402 1 o ] a (18] 4046 0.26 0.07 9

11 40.6 1 0 0 0 =08 40.46 -0.14 0.02 2

12 I 404444 0775 0325 -0.025 -0.01944| sumir’) 0.17] .

13 d 0.19191 0.287868 0.287868 0.287868 0.21456 Frascut 0.21

14 f:3 0.05]

15 Factorial Analysis of Parameters timv{a ) 277645

16 Ordered 5 4 3 1 2 m 9|

17 Z-Rank 1.28155 0.524401 0 -1.28155 -0.5244 1t 5

18 Z-Score 1.78856 -0.4187 -0.44374 -0.46321 -0.4629| LTy 2]

19 SSR, 14721.8 24025 04225 0.0025 0.00272 k 4

0 Fy 342367 5587209 9825581 0.05814 0.06331 TSS 3.00222

21 Decision [Keep Keep Keep Discard  Discard SSE 0172

22 SSR 2.83022

23 R’ 094271

24 Fotest 16.4548

5 F-critical, model 6.38823

26 F-critical, factorial| 7.70865

Fig. 8.36 Factorial design: combined factorial and centre point example

(c) Prickett RC, Elliott JA, McGann LE (2011) Application of the multisolute
osmotic virial equation to solutions containing electrolytes. J Phys Chem B
115:14531-14543

(d) Jochem M, Korber C (1987) Extended phase diagrams for the ternary
solutions H,O — NaCl — glycerol and H,O — NaCl — hydroxyethylstarch
(HES) determined by DSC. Cryobiology 24:513-536

3. Nonlinear Regression Data Set:

(a) Ross-Rodriguez LU (2009) Cellular osmotic properties and cellular
responses to cooling. University of Alberta, Edmonton



Appendix A: Solution Key

This appendix provides brief solutions to some of the problems in the book. Often
only the final answer or value is provided without any explanation or justification.
Given the sometimes subjective nature of regression analysis, other equally valid
answers can also exist. As well, although the author has strived to verify that the
answers are correct, it is inevitable that one or two stray errors may appear. This
should be borne in mind when comparing answers. If you believe that there is
indeed an error in the solution key, please let the author know so that appropriate
corrections can be made.

Chapter 1

DFEQFEGT@OFEOTOFEMT, GFOT,U0) T, 1) F, (12) T;
(13)F;, (14) F, (15) T; (16) T; (17) F; (18) T; (19) T; (20) T

(21) (a) p=4.3, mode =5, median =5; (b) 6> =5.12, MAD = 1.84, range =7,
©)Q1=2,Q2=5,Q3=5

(24) Maybe!

Chapter 2

DODTLAOFERAT,GOT, ST, OF T, ® T, 9F (10)F (11) T; (12) T;
(I13)F: (14) T; (15) T; (16) T; (17) F

(18) (@) S={QY, Q4, Q& }; F= {{}, {Qv}, {Qa}, {Q*}, {Q¥, Qa}, {QVY, Q&},
{Qa, Q%}, {QY, Q4, Q2}}; P({}) =0; P({QY}) =5, P({Qa}) =3 P({Q%}) = V3;
P({QY, Qa}) =7%; P({QY, Q#}) = 7; P({Qa, Q#}) = %5 P({QY, Q4, Q&) =1;
(b) %; () u=0; 6> = 2.

© Springer International Publishing Switzerland 2015 399
Y.A.W. Shardt, Statistics for Chemical and Process Engineers,
DOI 10.1007/978-3-319-21509-9
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Table A.1 Answers for question 27 in Chap. 2

i fiy i3 H4 As
Bias 0 0 0.5u yA” 0
¢’ o? 0.56> 1.256° 0262 o> /N
MSE o? 0.56° 1.256%+0.25 0262+ 0.1y o> /N

(20) (a) S={HH, HT, TH, TT}; F= {{}, {HH}, {HT}, {TH}, {TT}, {HH, HT},
{HH, TH}, {HH, TT}, {HT, TH}, {HT, TT}, {TH, TT}, {HH, HT, TH}, {HH, HT,
TT}, {HH, TH, TT}, {HT, TH, TT}, {HH, HT, TH, TT}}; P({}) =0, P({HH}) =
0.3, P({HT})=0.3, P({TH})=0.2, P{TT})=0.2, P({HH, HT})=0.6, P({HH,
TH}) =P({HH, TT})=P({HT, TH}) =P({HT, TT})=0.5, P({TH, TT})=0.4,
P({HH, HT, TH})=P({HH, HT, TT})=0.8, P({HH, TH, TT}) =P({HT, TH,
TT})=0.7, P{HH, HT, TH, TT})=1.

(21) (a) No; (b) No; (c) Yes, u=2.5, 6> =25/12, E(|x])=2.5.

(23) E(2X — 4Y) = —6; E(3XY) = 6; E(X*) = 3.

(27) See Table A.1.

(29) (a) Yes; (b) No; (¢) Yes; (d) No.

(34) (b) u=0.57; (c) 4.84 <y <6.41, yes; (d) sampled mean is not equal to the
true value; (e) P(0.25 <X < 0.5) =0.046.

Chapter 3

MWDEQTAFE@GTG)F 6T, ()T, 3 F O F (10)T; (11) F, (12) F;
(13)T; (14) T, (15 F; (16) T; (17) F, (18) T; (19) T; (20) T
(23) The solution is given as

= T
y= <)’37)’47 .. '7y]00>
Y2 Ty W2 U

Y3~y Uz U

A:

—Yo9  —Yog U9y Uy

/_); = <a]7a27ﬂ17ﬂ2>T

24) (¢) R =215Q,6 = 0.85; (d) 2.1 £0.2 Q; (e) Yes; (f) Fit is not good, as the
errors are increasing with current.

(25) (b) R = 2.044 Q; (c) An examination of the residuals (especially as a
function of the current, /) and how close to normality they are; (d) Instrument error
is often proportional to the magnitude of the measured value.

27) (a+b) pp=276+6.8;, p;=—-198+1.0; p,=0.0124+0.041;
f3=0.00018 4+ 0.00045; (c) 229.543.3, 229.5+8.5; (d) Yes; (¢) R*=0.963,
F-score =87.23, No.


http://dx.doi.org/10.1007/978-3-642-16521-4
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(29) (b+c) In K = 53+045, b = 0.54+0.28; (d) 128 <K<317; b stays the
same; (¢) 6 = 0.103, R2:0.8789; (g) Yes; (h) R=0.467 kg-mfo‘s-sfl; 6))] K =
181 £67,b = 0.46+0.25; R =0.8905,6 = 7.397; (j) Yes, R =0.518 kg - m - s

(31) (a) No, plot the errors for the two runs using different symbols; (c) Yes.

Chapter 4

MT AT, F @ F G)F (0 F (7)F ®)F (9 T, (10) T; (11) T; (12) T;
(13) T; 14) F; (15) T; (16) T; (17) F; (18) F; (19) F; (20) T; (21) (a) No; (b) Yes.
(23) (a) I=ACD=CDF=AF; (b) (two examples) A=F=CD = ACDF,
B =ABF=ABCD = ABCDF; (©) 1I1; (d) (one of many)
I=ABCE = ACDF = BDEF.

(25) (a brief outline of the solution) A fractional factorial design with centre
point replicates. Blocking and randomisation should also be considered.

26) (a) I = xlxg)@ = x%xzxg ; (b)) x = xfx%)g = xzxg, Xy = X1X3 = x%x%x%,
X3 = X1X%X% = X%XZ, X% = X%X3 = X1X2x§, X% = X1X2X3 = X%X%, X% = x1x§ = X%Xz)C'j,
XXy = X%X3 = x%x%, XoX3 = x1x§ = x%x%, xlx%x3 = x%xzxg =1, (c)
Y = Po + Bix1 + Poxa 4 faxs + Brixt + Prxs + 3303 + Proxixna + Prsxaxs

(29) (b) E=—ABCD; ¢) V; d) BD, AE, DE, BE, and E.

(3D (a) y =100 — 4x% — 12x§ — 9x§; (b) 100.

Chapter 5

OT,AOFEQG T AT S F 6)F (F @) T; 9 T; (10) F; (11) T; (12) T;
(13) T; (14) F; (15) T; (16) F; (17) T; (18) F; (19) T; (20) F; (24) AR(1).
(25) seasonal MA(1) with s =3 and a normal AR(4).

Chapter 6

MDFEQT,AT,@GOFEGOFEOGGMT,@T,OT,10)T; ADF, (12)F, (13) T;
(14 F, (15 T; (16) F; (17) T; (18) F; (19) F; (20) T.

(24) left graph: 10, right graph: 5. (25) Model is not adequate. (26) Model is
adequate.
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