
Chapter 4
Multi-Objective Surrogate Based Optimization
of Gas Cyclones Using Support Vector Machines
and CFD Simulations

Khairy Elsayed and Chris Lacor

Abstract In order to accurately predict the complex nonlinear relationships
between the cyclone performance parameters (The Euler and Stokes numbers)
and the four significant geometrical dimensions (the inlet section height and width,
the vortex finder diameter and the cyclone total height), the support vector machines
approach has been used. Two support vector regression surrogates (SVR) have been
trained and tested by CFD datasets. The result demonstrates that SVR can offer an
alternative and powerful approach to model the performance parameters. The SVR
model parameters have been optimized to obtain the most accurate results from the
cross validation steps. SVR (with optimized parameters) can offer an alternative
and powerful approach to model the performance parameters better than Kriging.
SVR surrogates have been employed to study the effect of the four geometrical
parameters on the cyclone performance. The genetic algorithms optimization
technique has been applied to obtain a new geometrical ratio for minimum Euler
number and for minimum Euler and Stokes numbers. New cyclones over-perform
the standard Stairmand design performance. Pareto optimal solutions have been
obtained and a new correlation between the Euler and Stokes numbers is fitted.
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4.1 Introduction

Cyclone separators are widely used in gas-solid separation for aerosol sampling and
industrial applications [1] where both the gravity and centrifugal force are used to
separate solids from a mixture of solids and fluids. Cyclones have the following
advantages. Simplicity in construction, contain no moving parts, relatively main-
tenance free, can handle high pressure and temperature mixtures and corrosive
gases, relative economy in power consumption. Due to these advantages, cyclone
separators have become one of the most important particle removal devices in both
engineering and process operation [1] such as cement industry, oil and gas, coal
fired boiler, workshops and vacuum cleaners.

4.1.1 Cyclone Geometry

The cyclone geometry is described by seven geometrical parameters, viz. the inlet
height a and width b, the vortex finder diameter Dx and length S, the cylinder height
h, the cyclone total height Ht and cone-tip diameter Bc as shown in Fig. 4.1. It
has been approved in previous studies by the authors that only four geometrical

Fig. 4.1 Cyclone geometry.
In this study,
h=D D 1:5; S=D D
0:5; Bc=D D 0:375
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Table 4.1 The definition of the cyclone performance parameters

The Euler number Eu The Stokes number Stk50

The Euler number is the dimensionless pressure drop �P.
�P D (the area- and time-averaged static pressure at the inlet
section) - (the area- and time-averaged static pressure at the
gas exit section).

Eu D The pressure drop between the inlet and the gas exit

The average kinetic energy at the inlet

Eu D �P
1
2

�V2
in

where � is the gas density and Vin is the average

inlet velocity. Eu is not affected by operating conditions in
the high Reynolds number range (Re > 5 � 104, Re D �VinD

�
)

[3, 10]

Stk50 is the dimensionless cut-
off diameter x50. x50 is the parti-
cle diameter that produces 50 %
collection efficiency. Stk50 D
�px2

50Vin=.18�D/ D �p

�f
[11]. It

is the ratio between the particle
relaxation time (the time con-
stant in the exponential decay of
the particle velocity due to drag)
�p D �px2

50=.18�) and the gas
flow integral time scale �f D
D=Vin where �p is the particle
density and � is the gas viscosity

parameters significantly affect the cyclone flow pattern and performance [2–9]. The
four significant factors are the inlet section height a and width b, the vortex finder
diameter Dx and the cyclone total height Ht.

4.1.2 Cyclone Performance

Besides the separation efficiency (or alternatively, the cut-off diameter for low mass
particle loading), pressure drop is another major index for cyclone performance
evaluation. Therefore, it is necessary to obtain an accurate model to determine the
complex relationship between the performance parameters and the cyclone charac-
teristics. Table 4.1 presents more details about the two performance parameters.

4.1.3 Literature Review

To estimate the cyclone performance parameters there are five approaches:

1. Experimental investigations [12]
2. Theoretical and semi-empirical models [13]
3. Statistical models [14]
4. Computational fluid dynamics (CFD) [2–4, 7, 8]
5. Surrogate models (e.g., Polynomial regression (PR), Kriging (KG) and artificial

neural networks (ANN)) [5, 6]

The afore-mentioned prediction models (PR, KG and ANN) have numerous
drawbacks, which include locally optimal solutions, low generalization, over-fitting
and poor stability [15]. The support vector machine (SVM) surrogate can offer a
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better alternative to these models. In the field of performance evaluation for cyclone
separators, unfortunately, SVM does not receive a great deal of attention on its
algorithmic advantages. There is only one study using the support vector regression
(SVR) on cyclone separator performed by Zhao [1]. He approved the potential
of SVR to model the effect of cyclone geometry on the pressure drop (based on
experimental dataset collected from different sources) but he did not go further to
use the fitted SVR to study the effect of each parameter on the performance or for
optimization. Moreover, he used the traditional approach to find suitable values for
SVR parameters.

4.1.4 Target of This Study

This study aims to:

• Apply the SVR surrogate to model the variation of the two cyclone performance
parameters with the change in the most significant geometrical parameters based
on CFD based dataset.

• Introduce a computationally cheap framework for SVR parameter optimization
using a Python code.

• Compare the accuracy of the fitted SVRs models with the KG models.
• Study the effect of each significant geometrical parameter on the cyclone

performance using the SVR models.
• Optimize the cyclone performance for minimum Euler number as well as for best

performance using multi-objective optimization technique.

4.2 Least Squares: Support Vector Regression

The least squares support vector regression (LS-SVR) was introduced by Suykens
et al. [16] as a reformulation to the standard SVR. LS-SVR simplified the standard
SVR model to a great extent by applying linear least squares criteria to the loss
function instead of a traditional quadratic programming method [16]. As excellent
examples of the nonlinear dynamic system, LS-SVR based on the structured risk
minimization principle has been successfully applied to many fields of function
approximation and pattern recognition because of its high accuracy and gener-
alization capabilities [17]. Compared with ANN, LS-SVR seeks to minimize an
upper bound of the generalization error instead of the empirical error, and can
provide more reliable and better generalization performance under the same training
conditions [18].

In the LS-SVR model, the training dataset of l points is assumed to be xk; yk

(k D 1; 2; � � � ; l), in which xk 2 Rn is the input vector and yk 2 R is the
corresponding target vector. The regression problem can be transformed into the
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following optimization problem [15, 19]:

minimize
!;b;ek

�.!; e/ D 1

2
!T! C C

2

lX

kD1

e2
k (4.1)

subject to yk D !T�.xk/ C b C ek; .k D 1; 2; : : : ; l/ (4.2)

where ek is the error between the predicted value and the true value of the system,
C > 0 is the regularization parameter applied to minimize estimation error and
control function smoothness, �.�/ denotes the nonlinear mapping from input spaces
to feature space, ! is an adjustable weight vector and b is the bias (scalar threshold).
Equation (4.2) is the constraint.

The resulting LS-SVR model for function estimation is obtained as:

Oy D f .x/ D
lX

kD1

˛kK.xk; x/ C b (4.3)

In Eq. (4.3), K.xk; x/ is the kernel function which satisfies Mercers condition
corresponding to a dot product in some feature spaces. Four common Mercer kernel
functions are widely used [15]:

Linear kernel: K.xk; x/ D xT
k x

Polynomial kernel: K.xk; x/ D .xT
k x=�2 C 	/d

RBF kernel: K.xk; x/ D exp.�	 k xk � x k2/

Sigmoid kernel: K.xk; x/ D tanh.	xT
k x C r/

where d; 	 and � are constants.
Because RBF kernels map samples into high dimensional space in a nonlinear

fashion and have fewer parameters to set, and because this method handles the
nonlinear relationship well and has an excellent overall performance, it is by far
the most popular option for kernel function types [16]. This study consequently
adopted an RBF kernel function, shown in Eq. (4.4) in order to contribute to the
LS-SVR model’s achieving optimal solution.

K.xk; x/ D exp.�	 k xk � x k2/ (4.4)

Generally, LS-SVR solves linear equations and will lead to important reductions
in calculation complexity. Compared with SVR, LS-SVR is characterized by faster
training speed, higher stability and better control strategy [15, 19].
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4.2.1 LS-SVR Parameter Optimization

The LS-SVR performance heavily depends on the choice of several hyperparame-
ters, which are necessary to define the optimization problem and the final LS-SVR
model.

To design an LS-SVR, one must choose a kernel function, set hyperparameters
such as the kernel parameters, and determine a regularization parameter C. The
hyperparameters that should be optimized include the regularization parameter C
and the kernel function parameters such as 	 for the radial basis function (RBF)
kernel. Thus, selecting appropriate model parameters has a crucial impact on
prediction accuracy. Unfortunately, there is no exact method to obtain the optimal
set of LS-SVR hyperparameters; consequently, a search algorithm must be applied
to obtain the parameters.

For the nonlinear LS-SVR, its generalization performance depends on the proper
setting of parameters C and kernel parameters 	 . Inappropriate hyperparameters
combinations in LS-SVR lead to over-fitting or under-fitting. One procedure to
obtain the LS-SVR parameters follows the trial and error approach to minimize
some generalized error measures such as the mean squared error. This procedure
is time-consuming, tedious and unable, in many cases, to converge at the global
optimum. Zhao [1] applied the two-step search technique to dynamically seek the
optimal values for the LS-SVR parameters. The two steps are: First perform a coarse
search to identify a better region in search field according to contour lines of MSE.
Then perform a fine search over that region. The disadvantage of the multi-step
search technique is that it will be more prone to be trapped in local optimum point
especially if a limited number of points are used.

In this study, we propose an alternative approach. The proposed approach
employs the simulated annealing optimization technique to heuristically seek the
optimal values for the LS-SVR parameters that minimize the difference between
the predicted and the true values.

The simulated annealing (SA) is used in this study to optimize the parameters of
SVR: C and kernel parameter 	 of RBF-kernel function. In the training and testing
process of LS-SVR, the objective is to minimize the errors between the actual and
predicted values of the testing samples. Therefore, the objective (fitness) function
of SA is the mean squared error from the cross validation.

In the parameters optimization process, K-fold cross validation is employed to
avoid the over-fitting and to calculate the fitness function. The original sample is
randomly partitioned into K subsamples. In these subsamples, a single subsample
is used as the validation data for testing the model while the other K-1 subsamples
are used as training data. The cross validation process is then repeatedly performed
K times, with each of the K subsamples selected exactly once as the validation
data. The cross validation error is estimated as the average mean squared error
(MSE) on test subsamples, as shown in Eq. (4.5). Commonly, fivefold and tenfold
cross validation is the most widely used method. In this study, the fivefold cross
validations are employed to estimate the MSE.
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Fig. 4.2 Flow chart for the complete optimization framework

MSE D 1

K

KX

jD1

0

@
NtjX

iD1

.byi � yi/
2

1

A (4.5)

where K is the number of folds (5 in this study), Ntj is the number of testing
points in fold j, yi represents the actual values and byi represents the predicted values.

Figure 4.2 presents a flow chart for the complete optimization framework.
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4.3 Results and Discussion

4.3.1 The Training Dataset

The training dataset has been created using the Box–Behnken design of experiment
(DoE) and has been used in a previous study to optimize the cyclone geometry
using the polynomial regression and RBF artificial neural network surrogates
[7]. The minimum and maximum values for the four design parameters are
listed in Table 4.2. To avoid scaling effect, all values are scaled (using the
preprocessing.MinMaxScaler class from Scikit-learn) to be in range
of 0 to 1 before being used in training the surrogates.

Table 4.3 presents the statistical descriptive parameters for the SVR (before and
after parameter optimization) and Kriging surrogate. It is clear that the SVR with
optimized parameter superior the performance of the Kriging model as is clear from
the better matching between the statistical descriptive parameters of the input and
the output results from the surrogate as well as the smaller value of MSE and the R2

value close to unity.

4.3.2 Geometry Effect

One of the benefits of using surrogate models is to apply them to study the effect of
each design variable on the response (performance parameters). The two optimized
SVR models are used to study the effect of the four geometrical parameters on both
the Euler number and the Stokes number. As is clear from Fig. 4.3, the SVR and
KG models give the same trend of variation but the SVR models can predict more
local variation than the KG model. It is worth to mention that the variation of the
Euler number with the change in the vortex finder diameter Dx predicted by the SVR
model is similar to that reported by the authors in previous studies [3, 7]. For the

Table 4.2 The values of the cyclone geometrical parameters used in the DoE (cf. Fig. 4.1)

Variables Minimum Center Maximum

Inlet height, x1 D a=D 0.4 0.55 0.7

Inlet width, x2 D b=D 0.14 0.27 0.4

Vortex finder diameter, x3 D Dx=D 0.2 0.475 0.75

Total cyclone height, x4 D Ht=D 3.0 5.0 7.0

Cylinder height, h=D 1.5

Vortex finder length, S=D 0.5

Cone-tip diameter, Bc=D 0.375

The values of the cylinder height, vortex finder length and the cone tip diameters are kept at the
Stairmand design values, where h � S D 1 which is the optimum difference between the two
dimensions as reported by many researchers [20]
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Fig. 4.3 Comparison between the effect of each geometrical parameter on the cyclone perfor-
mance parameters using SVR (black lines) and KG (blue lines)

variation of the cyclone performance with the total height (Ht), the reduction in the
Euler number (pressure drop) stops after Ht D 4:625 whereas the enhancement in
the collection efficiency (reduction in the cut-off diameter) continue with lengthen
the cyclone.

4.3.3 Geometry Optimization

Two optimization techniques have been applied to obtain new geometrical ratio
set, namely the Nelder–Mead technique [22] and the genetic algorithms [6, 23].
Table 4.4 lists the new generated cyclone geometry ratios for minimum pressure
drop (Euler number).

For single objective and one parameter optimization using the Nelder–Mead
technique from Scipy. The total cyclone height Ht is optimized for minimum Euler
number. The optimum value of Ht is 4.694, i.e., hc D 3:194, where h D 1:5 which
results in Eu D 3:432.
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Table 4.4 Optimum geometrical ratios for minimum Euler number

a b Dx Ht Eu

Optimum cyclone total height (Nelder–Mead technique) 0.25 0.15 0.5 4.694 3.432

Optimization of the four factors (Nelder–Mead technique) 0.499 0.15 0.658 3.0 0.667

Fig. 4.4 Pareto front for
NSGA-II optimization with
polynomial fit

Since the cyclone performance has two major performance indices (the Euler
and the Stokes numbers) a multi-objective optimization process is needed for
optimum cyclone performance. In this study, NSGA-II [7, 24] available from deep
(evolutionary toolbox for python) [25] has been used to obtain the Pareto front
shown in Fig. 4.4.

The obtained Pareto front has been used to fit a correlation between the two
performance parameters. The application of the polyfit function from Numpy
Python package [26] results in the following correlation

Stk50 � 103 D 10�0:065z3�0:195z2�0:193zC0:372

where z D log10.Eu/. It is worth to mention that the accuracy of the new third
order correlation is R2 D 0:996 which is superior that proposed by the authors in a
previous article [6]. This correlation can be used to predict the Stokes number (the
cut-off diameter) given the pressure drop (Euler number).

Conclusions
In order to accurately predict the complex nonlinear relationships between the
cyclone performance parameters and its geometrical dimensions, the support
vector machines approach has been used and compared with the Kriging
surrogate. Two SVR surrogate models have been trained and tested by 33
CFD datasets. The result demonstrates that SVR can offer an alternative and

(continued)
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powerful approach to model the performance parameters. The SVR model
parameters have been optimized to obtain the most accurate results from
the cross validation steps. The parameters optimization has been optimized
using the Simulated annealing technique. SVR (with optimized parameters)
can offer an alternative and powerful approach to model the performance
parameters better than Kriging. The SVR surrogates used to study the effect
of the four geometrical parameters on the cyclone performance. The genetic
algorithms optimization technique has been used to obtain a new geometrical
ratio for minimum Euler number and for minimum Euler and Stokes numbers.
The new cyclones over-perform the standard Stairmand design performance.
A new correlation between the Stokes number and Euler number is provided
which is more accurate than the existing correlations in the literature.
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