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Preface

Essentially, all models are wrong, but some are useful
George Edward Pelham Box

Aircraft design, as many other engineering applications, is increasingly relying on
computational power. The growing need for multi-disciplinarity and high-fidelity in
design optimization for industrial applications implies a huge number of repeated
simulations to find an optimal design candidate. The main drawback is that each
simulation can be computationally expensive: this turns out to be an even bigger
issue when used within parametric studies, automated search or optimization loops
which typically may require thousands of analysis evaluations. In recent years,
global optimization by meta-models has been widely applied to design exploration
in order to rapidly investigate the design space and find sub-optimal solutions.
Indeed, surrogate and reduced order models can provide a valuable alternative
at a much lower computational cost. In this perspective, this book proposes the
application of surrogate-based optimization to aerodynamic design cases with
reasonable computational resources.

The idea for this book evolved from activities and discussions within the Action
Group number 52 (AG-52) of the Group for Aeronautical Research and Technology
in Europe (GARTEUR). The Action Group, active from 2012 to 2016, belongs to the
GARTEUR-Aerodynamic (AD) research field and aims to explore surrogate-based
global optimization methods for aerodynamic shape design. The main objective
is, by means of a European collaborative research, to make a deep evaluation
and assessment of surrogate-based global optimization methods for aerodynamic
shape optimization. At the end of the AG-52, the partners will have improved
global shape optimization capabilities and valuable knowledge of the selected set
of techniques. Through the proposed work program, it is expected that some “best
practice” guidelines will be concluded to ease the use of surrogate-based global
optimization methods in aeronautic industries.

The dissemination of the work done within the AG-52 has led to the organization
of dedicated special sessions within European Community on Computational Meth-
ods in Applied Sciences (ECCOMAS) thematic conferences. The book collects the
papers presented within the mini-symposium on the topic held at the 6th European

vii



viii Preface

Conference on Computational Fluid Dynamics (ECFD VI) in 2014. The first two
chapters deal with partial results of the AG-52, while the last two chapters include
external contributions, which enrich the collaborative network on this topic.

Capua, Italy Emiliano Iuliano
Torrejón de Ardoz, Spain Esther Andrés-Pérez
May 2015
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Chapter 1
Aerodynamic Shape Design by Evolutionary
Optimization and Support Vector Machines

Esther Andrés-Pérez, Leopoldo Carro-Calvo, Sancho Salcedo-Sanz,
and Mario J. Martin-Burgos

Abstract This paper proposes a computational methodology for the aerodynamic
shape design of aeronautical configurations, aiming a broad and efficient exploration
of the design space. A novel adaptive sampling technique focused on the global
optimization problem, the Intelligent Estimation Search with Sequential Learning
(IES-SL), is presented. This approach is based on the use of Support Vector
Machines (SVMs) as the surrogate model for estimating the objective function,
in combination with an evolutionary algorithm (EA) to enable the discovery of
global optima. The proposed methodology is applied to improve the aerodynamic
performance of a two-dimensional airfoil and a three-dimensional wing and results
on surrogate model validation and optimization-focused sampling criteria are
discussed.

1.1 Introduction

Aerodynamic shape optimization is nowadays acquiring a huge importance in
the aeronautical industries, which are aiming to reduce both fuel consumption
and contaminants emissions to be competitive in a world globalized environment.
In order to emphasize the importance of drag minimization and therefore fuel
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requirements, based on the Breguet range equation, an airline operator would have
to reduce the payload, and therefore the incomes, by 7.6 % to recover a 1 %
of increase in drag [1]. In the current scenario, where most airlines operate with
small benefit margins, this illustrates the importance of small drag reductions which
may even signify a profit or non-profit business. This explains why computational
fluid dynamics (CFD) driven aerodynamic shape design has been increasingly
applied during the past decades, mostly for providing local deformations from
a given baseline geometry. However, today’s aircraft configurations are reaching
their limit in performance and no further significant improvements are expected
by producing only small modifications of their original shapes. The design of new
concepts needs to be faced with a mixture of high accuracy methods, efficient global
optimization strategies, flexible geometry parameterizations and broad exploration
and exploitation of the design space.

Non-deterministic methods have the ability to work with noisy objective func-
tions without assumptions on continuity and they have a high potential to find
the global optimum of complex problems involving a large amount of design
parameters. Therefore, these methods seem to be appropriate when a broad explo-
ration of the design space is desired, as occurs when looking for non-conventional
shapes. However, they require a vast number of evaluations to obtain the optimum
even for a small number of variables. Each evaluation would require a complete
CFD analysis which makes the method unfeasible, in terms of computational cost.
To overcome this drawback, surrogate evaluation models or metamodels can be
used. The metamodel is the inexpensive and approximate model of the evaluation
problem. For aerodynamic design optimization using evolutionary algorithms, the
metamodel could be used to calculate the fitness (i.e. aerodynamic coefficients, lift
and drag) of the solutions, that means to replace the CFD tool.

Apart from the robustness, the potential applicability in different disciplines,
and the inherent parallelization of these algorithms, their feasibility in an industrial
environment has currently serious limitations, for example, the number of design
variables to be considered and the time required by the optimization process.
Therefore, there are still some important open issues as the capability to deal with
the so-called curse of dimensionality, the reduction of the design space, the use of
gradients information within the global optimization process, the use of multiple
fidelity models and an efficient constraints handling. Particularly, the strategy to
properly choose the sampling data to build the surrogate model is of enormous
importance to achieve an adequate model prediction accuracy that allows to guide
the optimization process towards the real global optima. This Design of Experiments
(DoE) strategy heavily depends on the type of surrogate model, its output function
and the way it is integrated within the optimization algorithm, aiming a good trade-
off between the explorative and predictive capabilities of the surrogate, which means
to allow a broad exploration of the design space while providing enough accuracy
in those regions where predicted minima is located.

In this work, a surrogate-based global optimization (SBGO) method is applied to
the multi-point aerodynamic shape optimization of a two-dimensional airfoil and
a three-dimensional wing. A novel adaptive sampling technique focused on the
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optimization problem, the Intelligent Estimation Search with Sequential Learning
(IES-SL), is presented. This approach is based on the use of Support Vector
Machines (SVMs) as the surrogate model for estimating the objective function in
combination with an evolutionary algorithm (EA) to enable the discovery of global
optima.

This paper is structured as follows: First, previous works on surrogate-enhanced
evolutionary algorithms are discussed and the proposed approach is described,
giving details on the EA and SVM algorithms. Then, the experimental part of
the paper is explained, where results on the surrogate model performance are
displayed. Finally, some remarks on the feasibility of the proposed approach in case
of designing industrial configurations are outlined.

1.2 Literature Review

In the last few years, there has been an increasing interest in the topic of SBGO
methods for aerodynamic shape design. This section mentions only some of the
very recent works focusing on SBGO with application to the aerodynamic shape
design of aeronautical configurations.

In [2] a physics-based surrogate approach exploiting space mapping is applied to
the drag minimization of NACA0012 and RAE2822 transonic airfoils. In that work,
the airfoil geometries were parameterized using PARSEC and involving five to ten
design parameters. In [3], surrogate-based optimization strategies are applied to the
drag minimization of an NLF0416 airfoil with ten design parameters. In addition,
Koziel and Leifsson [4] applied a shape optimization strategy using variable-fidelity
CFD models to the optimization of a transonic airfoil parameterized by the NACA
four-digit definition with three design variables. The work in [5] employs an active
subspace method for effectively searching the design space in the optimization of the
ONERA M6 transonic wing, parameterized with 50 Free-Form Deformation (FFD)
design variables. In [6, 7] a surrogate based on Proper Orthogonal Decomposition
(POD) is applied to the aerodynamic shape optimization of an airfoil geometry
parameterized by 16 design variables defined with Class Shape Transformation
(CST) method. Other approach is presented in [8], where a combination of a genetic
algorithm (GA) and an artificial neural network (ANN) is applied to the shape
optimization of an airfoil, parameterized by a modified PARSEC parameterization
involving ten design variables.

Different kinds of surrogate modelling techniques have been proposed in the
literature, for example, Polynomial Regression (PR), Multivariate Adaptive Regres-
sion Splines (MARS), Gaussian Processes, Kriging (KG), cokriging [9], ANN [10,
11], Radial Basis Functions (RBF) [12], SVM [13, 14] and Ensemble methods
[15], among others. Furthermore, the use of Support Vector Regression algorithms
(SVMr) as metamodels has been applied to a large variety of regression problems,
in many of them mixed with evolutionary algorithms [16, 17].
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With respect to the combination of global and local search methods within the
design optimization process, the so-called hierarchical approach has been proposed
in recent papers [18, 19]. Metamodel-assisted memetic algorithms are hybrid
schemes that combine, for example, stochastic methods for the exhaustive search of
the design space along with gradient-based methods for the refinement of promising
solutions.

With the aim of providing a comprehensive survey about different surrogate
methods for surrogate-based aerodynamic shape optimization, a GARTEUR Action
Group (AD/AG52) started [20] at the beginning of 2013. Within this Group,
research activities are planned over a three-year period, with the objective of per-
forming a fair comparison between different surrogate modelling methods applied to
the aerodynamic optimization of baseline geometries, sharing the parameterization
and mesh deformation algorithms.

1.3 Proposed SBGO Approach

The proposed SBGO approach is comprised of several key features:

1. Non-Rational Uniform B-Splines (NURBS) geometry parameterization.
2. High fidelity CFD solver: The DLR TAU solver
3. Low fidelity: SVMs as the surrogate model
4. Sampling DoE strategy focused directly on optimization: IES-SL
5. Evolutionary optimization algorithm

This section details each brick of this approach.

1.3.1 Geometry Parameterization with Non-rational Uniform
B-Splines

The parameterization is crucial in an aerodynamic design optimization problem,
where the selection of the design parameters not only affects significantly the
performance of the optimization, but also the optimal solution to be obtained.
NURBS have been suggested as an efficient and flexible parameterization [21–
23], able to represent complex configurations, giving the optimizer enough freedom
to converge to a wide range of possible optimal designs. Moreover, NURBS
have demonstrated to be able to accurately represent a large family of geometries
given their main advantage of providing a global parameterization with a smooth
surface while still maintaining the locality in the deformation [24]. In addition, the
optimized surface at the end of the optimization process has the correct format to
feed directly the CAD and grid generation applications.
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From a mathematical point of view, NURBS surfaces are defined as:

S .�; �/ D

IX

i

JX

j

Ui;p .�/ Vj;q .�/ wijCij

IX

i

JX

j

Ui;p .�/ Vj;q .�/ wij

(1.1)

where C are the control points spatial coordinates, w are the control points weights,
and U and V are the basis functions which are calculated using the following
expression:

Ui;1 .�/ D
�

1 if ui � � < uiC1

0 otherwise

Ui;k .�/ D .��ui/Ui;k�1.�/

uiCk�1�ui
C .uiCk��/UiC1;k�1.�/

uiCk�uiC1

(1.2)

The basis coefficients are calculated from the knots vectors Ū and V which are a
sequence of real numbers.

Basis functions are equal to zero everywhere except for an interval delimited
by the order of the NURBS, defining the area of influence of each control point.
This paper does not aim to provide an exhaustive review of this parameterization
technique. A more extended reference for NURBS can be found in [25].

In particular, for the experiments performed in this paper, volumetric B-Splines
have been used. The mathematical expression is:

B .u; v; w/ D
IX

i

JX

j

KX

k

Ui;pu.u/Vi;pv.v/Wi;pw.w/Cijk (1.3)

where pu, pv, pw are the polynomial orders, C are the control points’ Cartesian
coordinates, and U, V and W are the basis functions, calculated with the expression
(1.2), since they are the same than in case of surface NURBS.

1.3.2 The DLR TAU Solver

The fluid flow over the object of interest is simulated with the TAU Code [26,
27]. The unsteady TAU-Code solves the compressible, three-dimensional Reynolds-
Averaged Navier–Stokes equations using a finite volume formulation. The TAU-
Code is based on a hybrid unstructured-grid approach, which makes use of the
advantages of semi-structured prismatic grids in the viscous shear layers near walls,
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and the flexibility in grid generation offered by tetrahedral grids in the surrounding
flow volume. A dual-grid approach with an edge-based data structure is used in
order to make the flow solver independent from the cell types used in the initial
grid. The TAU-Code consists of several different modules, including:

– The Grid Partitioner, which splits the primary grid into n number of subgrids for
n processors.

– The Preprocessor module, which uses the information from the initial grid to
create a dual-grid and secondly coarser grids for multi-grid.

– The Solver module, which performs the flow calculations on the dual-grid.
– The Adaptation module, which refines and de-refines the computational grid with

different indicator functions.
– The Deformation module, which propagates the deformation of surface grid

points to the surrounding volume grid.
– The Post-processing module, which is used to convert result files to formats

usable by popular visualization tools.

Together all modules are available with Python interfaces for computing complex
application, e.g. unsteady cases, complete force polar curves or fluid-structure
couplings in an automatic framework. Furthermore, it eases the usage on highly
massive parallel computers to execute applications.

The TAU code also includes the following modules for handling NURBS
parameterization:

• The Point Inversion module, which calculates the parametric coordinates of each
surface mesh point over the NURBS.

• The Mesh to NURBS module, which deforms the surface mesh in order to adapt
it to the NURBS.

• The NURBS Sensitivity module, which maps the sensitivities of the surface
mesh points onto the NURBS control points, considering also the geometric
derivatives.

• The NURBS deformation module, which performs NURBS deformation in
order to reach the goal given by the objective function with a steepest descent
algorithm.

1.3.3 SVMs as Surrogate Model

SVMs for regression (SVMr) are a powerful tool used on the machine learning
field [28], and as a modelling tool for a large amount of regression problems on
engineering [29]. The SVMr can be solved as a convex optimization problem using
kernel theory to face nonlinear problems. The SVMr consider not only the prediction
error but also the generalization of the model.
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The SVMr consist of training a model with the form y D wT '.x/ C b given a
set of parameters C D ˚�

xi; yj
�

; i D 1; : : : ; l
�
, to minimize a general risk function

of the form:
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where w controls the smoothness of the model, ®(x) is a function of projection of the
input space to the feature space, b is a parameter of bias, xi is a feature vector of the
input space with dimension N, yi is the output value to be estimated and L(yi, f (x)) is
the loss function selected. In this paper, the L1-SVR (L1 support vector regression)
is used, characterized by an "-insensitive loss function

L .yi; f .x// D jyi � f .xi/j" (1.5)

In order to train this model, it is necessary to solve the following optimization
problem
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To do this, a dual form is usually applied, obtained from the minimization of the
Lagrange function that joins the function to minimize and the restrictions. The dual
form is:
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In addition to the restrictions, also must be taken into account the Karush–Kuhn–
Tucker conditions and obtain the bias value. For simplicity they will be omitted. A
complete description can be consulted on [28].

In the dual formulation we must emphasize the apparition of the kernel function
K(xi, xj), which is equivalent to the scalar product h®(xi), ®(xj)i. In our case, the
kernel function is a Gaussian function:

K
�
xi; xj

� D e�� �kxi�xjk2

(1.10)

The final form of the regression model depends on the Lagrange multipliers ˛i, ˛*
i ,

following the expression:

f .x/ D
lX

iD1

�
˛i � ˛i

��
K .xi; x/ C b (1.11)

In this way, the SVMr model depends on three parameters, ", C and � . The "

parameter controls the error margin permitted for the model, as can be seen in Eqs.
(1.6) and (1.7), and the C parameter controls the number of outliers allowed on
the optimization of the function [Eq. (1.6)]. Finally the � parameter determines the
Gaussian variance for the kernel. Depending on the selection of these values, the
model can have a different performance. To obtain the best SVM performance, a
search of the most suitable combination of these three parameters must be carried
on, usually by using cross-validation techniques over the training set. To reduce the
computational time of this process, different methods have been proposed in the
literature to reduce the search space related to these parameters. In this case, it has
been applied to the one developed by Ortiz-García et al. [30], which has proven to
require pretty short search times.

1.3.4 Evolutionary Optimization Algorithm

Evolutionary Algorithms (EAs) are bio-inspired methods that mimic the behaviour
of natural evolution to solve complex optimization problems. The main elements of
an EA are the solution coding, the selection operator and the crossover and mutation
operators. The EA implemented for this work has the following characteristics:

1. Solution coding: The solutions are coded as a vector of real values from 0 to 1.
Each element of the vector represents the value of a normalized parameter.

2. Selection operator: In the proposed EA, the selection operator is applied by
replacing a portion of the current generation by new individuals generated from
parents [31]. It is considered the replacement of the individuals in the population
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with fitness value under the population’s mean fitness. First, the mean population
fitness is calculated as:

g D 1

�

�X

kD1

gk (1.12)

where gk is the fitness of the kth individual and Ÿ represents the number of
individuals in the population. Every individual in the population with a value
of fitness under g is discarded, and substituted by a new individual obtained with
the crossover operator.

3. Crossover operator: generates a new individual from the values of two parents
selected randomly from the survival individuals. A multi-point crossover which
selects the value of one of the parents with probability 0.5 is applied.

4. Mutation operator: The values of each new individual are mutated with proba-
bility 1/Np, where Np is the number of parameters to be optimized. This operator
changes the initial individual by using this formula:

Vi D Vi � .1 C U � ˛/ (1.13)

where Vi represents each one of the parameters to optimize, U is a uniform noise
[0–1] and ’ is a value which represents the mutation level. Three values of ’

have been used, 1, 0.1 and 0.01, randomly selected for each new individual with
probability 1/3. It can be observed that ’ D 1 represents a strong change on the
initial value. On the other hand, ’ D 0.01 implies a change of 1 % of the initial
value, allowing a local search over this parameter.

1.3.5 Intelligent Estimation Search with Sequential Learning

In this paper, a novel SBGO method is proposed: The IES-SL. This method
allows performing an efficient adaptive sampling guiding the optimization algorithm
towards the most promising regions of the design space. First, an initial set of N
randomly generated geometries are selected and evaluated with the CFD tool, in
this case the TAU code. With this set, a first surrogate is built and linked within an
evolutionary algorithm. The latter will search for the minimum of the surrogate in
each of the optimization iterations, and the returned optima will be again evaluated
using the high-fidelity CFD solver, and then incorporated to the surrogate model,
which is rebuilt. The process will end when a certain number of CFDs (called
budget) is reached.

The IES-SL is an algorithm designed to implement an adaptive sampling directly
focused on the optimization search. From this point of view, the key feature of this
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Fig. 1.1 Scheme of the first step of the proposed IES-SL. Initial surrogate model construction with
a-priori random sampling of the design space

Fig. 1.2 Scheme of the second step of the proposed IES-SL. Adaptive sampling directly focused
on the optimization search

new approach is to use the surrogate model to estimate the location of the optimum
in the real function. To do this, an optimization search is applied over the surrogate,
obtaining an estimated value of the real minimum position (an “intelligent guess”).
Each of the estimations of the optimum location gives us a new sampling point (it
means a new geometry that is also analysed using the CFD solver). Within a trial-
and-error cycle, the surrogate proposes a new design which is again evaluated by
the CFD solver and then, in a sequential learning, the surrogate model is enriched
with the associated cost function.

The proposed IES-SL is a two-step algorithm. Figure 1.1 shows the first step,
where the algorithm is initialized, generating an initial database by evaluating a
small number of random designs (four in this case). The initial surrogate model is
generated using this database.

Then, in the second step, displayed in Fig. 1.2, the algorithm searches for the
position of the optimum value with the surrogate model to use it as an estimation
for the real optimum position. The estimated optimum is then evaluated using the
CFD solver, obtaining a new pair (design, high fidelity performance) that will enrich
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the database. Then, the surrogate is updated by adjusting it to the complete database
and the cycle is finished, starting again the search for the new sample.

When the maximum number of iterations is reached, the optimum design is
obtained as the best parameters on the database. In this way, it is ensured that the
design obtained is optimum with respect to the high fidelity simulator system (CFD
solver) and not only to the surrogate model, which avoids to find fake optima.

1.4 Numerical Results

1.4.1 Test Cases Definition

The proposed methodology is applied to the aerodynamic shape optimization of an
RAE2822 airfoil [32] and a DPW-W1 wing from the Third AIAA Drag Prediction
Workshop [33], with the problem formulation defined in Table 1.1.

In particular, the objective function implemented is described in the following
formula:

f D 1

2

�
Cd C Cd;t C Cd;l

Cl

Cl;0

Cd;0

	

DP1

C 1

2

�
Cd C Cd;t C Cd;l

Cl

Cl;0

Cd;0

	

DP2

(1.14)

where CD,0 and CL,0 are the drag and lift coefficients of the original geometry and:

.Cd;t/DPi D 0:01 � max .0; Cm;0 � Cm/DPi

.Cd;l/DPi D 10 � max
�
0; Cl;0

2 � Cl
2
�

DPi

(1.15)

The optimization of these cases is subject to both aerodynamic and geometric
constraints, as displayed in Table 1.2.

A total budget of CFD computations was defined by five times the number of
design variables. Therefore, for the RAE2822 it was possible to perform 70 CFD
evaluations, while for the DPW wing, 180 CFDs are allowable for both surrogate
model construction and optimization.

Table 1.1 Test cases definition

Flow conditions

Configuration Design point 1 Design point 2
Objective
function

RAE2822 airfoil CL D 0.8, Mach D 0.734,
Re D 6.5 � 106

CL D 0.743, Mach D 0.754,
Re D 6.2 � 106

Maximize (CL/CD)

DPW-W1 wing CL D 0.5, Mach D 0.76 CL D 0.5, Mach D 0.78
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Table 1.2 Aerodynamic and geometric constraints

Configuration
Geometric
constraints

Aerodynamic
constraints

RAE2822 airfoil (a) Airfoil maximum thickness
ratio � 12.1 %

(a) Prescribed minimum lift
coefficient CL

0

(b) Airfoil minimum thickness ratio at
0.80c � 4 %

(b) Prescribed minimum pitching
moment coefficient CM

0

(c) Minimum leading edge
radius D 0.004

CM.k/ � C0
M.k/

(d) Limit: ˙ 20 % of the initial
control points values

If constraint on minimum pitching
moment is not satisfied, the penalty
will be 1 drag count per 0.01 in 4CM

DPW-W1 wing (a) Airfoils’ maximum thickness
constraint � 13.5 %
(b) Airfoils’ beam constraints:
Minimum thickness at 0.20c � 12 %
Minimum thickness at 0.75c � 5.9 %
(c) Limit: ˙ 20 % of the initial
control points values

RAE2822 airfoil geometry defined by a 
NURBS with 14 control points (CPs).

DPW wing geometry defined by three sections (airfoils), 
root, mid-span and tip. Each airfoil is addressed by a 

NURBS with 12 control points (36 CPs in total).

Fig. 1.3 NURBS parameterization of the RAE2822 airfoil (left) and DPW-W1 wing (right).
RAE2822 airfoil geometry defined by an NURBS with 14 control points (CPs). DPW wing
geometry defined by three sections (airfoils), root, mid-span and tip. Each airfoil is addressed
by an NURBS with 12 control points (36 CPs in total)

1.4.2 Parameterization and Design Space Definition

The defined test cases are parameterized using volumetric NURBS which provides a
high level of flexibility in order to discover optimal shapes. Authors have previously
applied this parameterization technique to other local optimization problems [34,
35] and, in this paper, it is applied within a global optimization algorithm.

The RAE2822 airfoil and DPW-W1 wing test cases are parameterized with 14
and 36 design variables, respectively, which correspond to the z displacements of
the volumetric NURBS control points, as can be observed in Fig. 1.3. The selected
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Table 1.3 RAE2822 grids generated for sensitivity study

Type # Points # Surface points # Elements # Surface elements

Coarse Unstructured 56.700 388 68.758 192
Fine Unstructured 185.364 772 245.618 384

Table 1.4 RAE2822 grid sensitivity results compared to experimental values

DP1 DP2
CL D 0.8, Mach D 0.734,
Re D 6.5 � 106

CL D 0.743, Mach D 0.754,
Re D 6.2 � 106

CL CD CM CL CD CM

Unstructured Coarse grid 0.800 0.0188 �0.0953 0.743 0.0240 �0.1215
Fine grid 0.800 0.0189 �0.0953 0.741 0.0239 �0.1210

Experiment 0.803 0.0168 �0.099 0.743 0.0242 �0.106
Constraint 0.800 � �0.100 0.750 � �0.110

parameterization, especially in the case of the wing, will help to draw conclusions
on the feasibility of these methods when handling a high number of design variables.

1.4.3 Grid Sensitivity Analysis

In order to ensure the independence of the results from the computational grid
employed, a grid sensitivity analysis has been performed on the baseline geometries.

RAE2822 Airfoil

For the RAE2822, two different computational grids were used in this sensitivity
study. The characteristics of these grids can be observed in Table 1.3.

Table 1.4 shows the results of the CFD computation using these two grids and
compared to experimental values [33]. As can be observed, there are not significant
differences in the aerodynamic coefficients between the coarse and fine grid. In
addition, the Cp plots are also very similar, as is displayed in Fig. 1.4. Therefore,
the coarse grid was selected to be used for optimization purposes along this work.

DPW-W1 Wing

In the case of the DPW-W1, two different computational grids were used in this
sensitivity study. The features of these grids can be observed in Table 1.5.

Table 1.6 shows the results of the CFD computation using these two grids and the
Cp plots are displayed in Fig. 1.5. Although, in this case, some differences can be
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Fig. 1.4 RAE2822 Cp distribution coarse vs. fine unstructured grids

Table 1.5 DPW unstructured grids generated for sensitivity study

Type # Points # Surface points # Elements # Surface elements

Coarse Unstructured 566.534 135.046 2.388.975 269.768
Fine Unstructured 3.660.283 539.859 18.005.856 1.079.072

Table 1.6 DPW grid
sensitivity results

DP1
Mach D 0.76, AoA D 0.5
CL CD CM

Coarse grid 0.6077 0.0208 �0.2049
Fine grid 0.6165 0.0197 �0.2081

observed in the Cp plots between coarse and fine grids, the coarse one is considered
to be enough adequate, in a balance of accuracy and size, for the optimization
purpose.

1.4.4 Metamodel Obtention (SVMr)

The surrogate model based on SVMr is built following the approach displayed in
Figs. 1.1 and 1.2. After this construction process, a tenfold cross-validation strategy
has been applied to measure its prediction capabilities. The cross-validation method
has been broadly used for estimating the prediction error of surrogate models. A k-
fold cross-validation strategy splits the available data into k parts. For the kth part,
the model is fitted to the other k � 1 parts of the data and the prediction error of the
fitted model is calculated when predicting the kth part. This process is repeated for
k D 1, 2, 3, : : : k and the combination of those values gives the prediction error.

As the choice of the sampling fold decomposition is crucial for the error
estimation, the validation procedure was repeated five times, each time using
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Fig. 1.5 DPW Cp distribution coarse vs. fine unstructured grids
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different subset decompositions, in order to get a reliable error measure and make it
independent on the choice of the training set decomposition.

The error metrics considered are described here:

(a) Mean squared error (Cross-Validation):

MSE
� Of

�
D 1

N

NX

iD1

�
f i � Of �k.i/

.xi/
�2

(1.16)

The MSE metric gives an estimate of the expected test error. Of �k
.X/ denotes the

function fitted with the surrogate and computed by removing the kth part of the
training data. Smaller MSE values indicate smaller errors.

(b) Pearson Correlation coefficient
The Pearson’s correlation coefficient ranges between �1 and 1 and provides

the ratio between the covariance of f and Of the product of their standard
deviations. If � is close to zero, f and Of are weakly correlated and, therefore,
it can be expected that the prediction model Of badly reproduces the variation
of the function f. On the other hand, if the Pearson coefficient is close to 1, it
means that there is a strong correlation between the two functions. Finally, if
it is close to �1, anti-correlation exists and thus, a positive variation of f may
produce a negative variation of Of .
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(c) G-metric for monocity
When the surrogate model is used within an optimization loop, another

important measure is the capability to reproduce order relation between values
of the objective function. In this sense, a surrogate model is monotonic when
for any choice of xi and xj:

f .xi/ � f
�
xj

� D> Of .xi/ � Of �
xj

�

In order to measure this property in the dataset, the G metric is used:

G D
NX

iD1

iX

jD1

� min

"
0;

Of .xi/ � Of �
xj

�

f .xi/ � f
�
xj

�
#

(1.18)

The G metric is always positive, G D 0 means global monotonicity, while higher
values indicate loss in monotonicity.
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Table 1.7 Validation of the
surrogate model based on
SVMr for the RAE2822 test
case

MSE Pearson G-metric

Partition A 0.117564 0.555654 1971.121
Partition B 0.136239 0.490717 1528.915
Partition C 0.127884 0.535217 1144.694
Partition D 0.162249 0.416737 1689.266
Partition E 0.117948 0.552823 1495.125
Mean value 0.132377 0.51023 1565.824

Fig. 1.6 RAE2822 dataset distribution with respect to design variables 3, 4, 7 and 8

The obtained error metrics when predicting the objective function in Eq. (1.14)
for the case of the RAE2822 airfoil are displayed in Table 1.7.

The cross-validation analysis permits the study of the overall behaviour of the
SVMr model and the searching method. If we analyse the error metrics, we can see
that the Pearson correlation is between 0 and 1 and the MSE is not small compared
with the optimization improvements we want to achieve. This is also the case of
the R-squared value that was lower than 0.26 in all the partitions. Despite this we
can see that the G-metric shows values smaller than other methods applied over this
problem, which means that the global monotonicity is improved.

While the estimation of the SVM-r fitted by a small number of points can
present low quality estimations about the value of the real objective function, the
monotonicity (order relation between values) is best represented. Since the search
method did not use the estimated value of the SVM-r, but only the location of the
minimum value, a good representation of the function monotonicity implies a better
performance of the optimization algorithm.

Figure 1.6 shows scatter plots of how the dataset is structured with respect to
two of the design variables. A strong clustering can be observed in a specific region
of the design space. This is due to the DoE technique used to generate the training
database. As mentioned previously, the IES-SL focuses on optimization. Therefore
the points added to the dataset are mostly in a specific region, where the predicted
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Fig. 1.7 Model vs. CFD
correlation plot (RAE2822
dataset)

minima is located. As, in each iteration, the predicted minima is validated with a
CFD computation, this clustered region is also the one where the real optima is
located. In Fig. 1.7 we can see that the points with high objective function values
are not very good fitted. This behaviour is produced by the dynamic sampling
method. We are interested in an accurate description of low regions (for model
adjustment), but we are only interested in a broad representation of high regions.
When we applied the cross-validation method, there are not too much additional
information for a good estimation of points with high objective function values,
since the sampling method is more interesting in describing low areas.

This also implies that the algorithm is converging fast to the location of
a minimum value. The balance between exploration and exploitation is a very
interesting topic, since it represents the compromise between new model discovery
(global search) and model adjustment (local search). We work with a reduced budget
so the method must be capable to analyse the function, learning as soon as possible
the main tendencies and try to find the best parameter combination in fewer steps
than the maximum number of iterations allowed.

1.4.5 Multi-Point Optimization of the RAE2822
with Geometric Constraints

In this case, the approach is applied to the multi-point optimization of the RAE2822
airfoil. Table 1.8 shows the objective function and aerodynamic coefficients of the
original and optimized geometries (note that the coefficients have been normalized
by their initial values). The results show that the multi-point objective function has
been improved by 42 %. It is important to notice how constraints on CL and CM have
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Table 1.8 RAE2822 optimization results

DP1 DP2
Configuration Objective function CL CD CM CL CD CM

RAE2822 1 0.800 0.0188 �0.0953 0.743 0.0240 �0.1215
Optimized 0.58 0.823 0.0128 �0.0911 0.775 0.0124 �0.1140

Fig. 1.8 Baseline RAE2822 and optimized geometries

been fulfilled. Figures 1.8, 1.9 and 1.10 show the shapes and pressure distributions
of the original and optimized geometries for both design points.

1.4.6 Multi-Point Optimization of the DPW-W1 with Geometric
Constraints

In this section, the approach is applied to the optimization phase of the DPW
wing, as defined above. Table 1.9 shows the objective function of the original and
optimized geometries. The results show that the objective function (in this case,
minimize c-drag) has been improved only by 2 %. Figure 1.11 shows the comparison
between the original and optimized shapes for different cuts along the wing span,
and Fig. 1.12 shows the Mach number distribution, where it can be observed that
the shock wave on the upper part of the wing has been slightly weakened.
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Fig. 1.9 RAE2822 airfoil vs. optimized airfoil pressure distribution at DP1

Fig. 1.10 RAE2822 airfoil vs. optimized airfoil pressure distribution at DP2
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Table 1.9 DPW-W1 wing optimization results

DP1 DP2
Configuration Objective function CL CD CM CL CD CM

DPW-W1 1 0.500 0.0140 �0.0202 0.500 0.0158 �0.0226
Optimized 0.98 0.505 0.0142 �0.0210 0.507 0.0154 �0.0232

Fig. 1.11 Original vs. optimized wing shape

Conclusions
This paper presented a global optimization strategy using a novel surrogate
model approach: The IES-SL. The hybridization of EA and SVMr has been
tested on the optimization of a RAE2822 airfoil and a DPW wing, showing
first promising results.

Further research will be performed on the accuracy of surrogate model
when considering different budget (CFD computations) and taking into
account other configurations. Future work will also try to improve the
optimization results in the case of the DPW wing, by performing a detailed
sensitivity analysis of the large number of design variables involved, and
considering also gradient information during the optimization process.

In addition, we plan to apply the proposed methodology for the aero-
dynamic shape optimization of a cylinder, in transonic conditions, with the

(continued)
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Fig. 1.12 Original vs. optimized Mach number distribution

aim to demonstrate the capability of this method to perform a real global
optimization (where the initial configuration is very far from the optimum)
and obtain airfoil-like geometries.
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Chapter 2
Adaptive Sampling Strategies
for Surrogate-Based Aerodynamic
Optimization

Emiliano Iuliano

Abstract The chapter proposes the application of surrogate-based optimization to
the efficient design of aeronautical configurations. The surrogate model consists
of the Proper Orthogonal Decomposition of computed aerodynamic flow fields
and Radial Basis Functions interpolation to reconstruct the aerodynamic flow at
any unknown design vector. The surrogate model is coupled to an evolutionary
algorithm to globally explore the design space. Several adaptive sampling strategies
are proposed, either objective-driven (i.e. aimed at improving the fitness function)
or error-driven (i.e. aimed at reducing the prediction error of the surrogate model
globally). The proposed methodology is applied to the design optimization of a
two-dimensional airfoil in multi-point transonic conditions. The results of different
training strategies are critically discussed and compared.

2.1 Introduction

Modern air vehicle design has been increasingly driven by environmental as well
as operational constraints. Environmental concerns, including emissions and noise,
are gaining increasing importance in the design and operations of commercial
aircraft. Taking into account the current prognoses for the growth in air traffic,
the above-mentioned challenges become even more significant [1]. In this context,
the development and assessment of new theoretical methodologies represents a
cornerstone for reducing the experimental load, exploring trade-offs and proposing
alternatives along the design path. The fidelity of such methods is essential to
reproduce real-life phenomena with a significant degree of accuracy and to take
them into account since the very beginning of the design process. Therefore,
highly accurate analysis methods have been continuously introduced both in
geometric representation and physical modeling, but the main drawback is that
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they are computationally expensive. For example, the solution of the Navier–Stokes
equations around complex aerodynamic configurations requires a huge amount
of computational resources even on modern state-of-the-art computing platforms.
This turns out to be an even bigger issue when hundreds or thousands of analysis
evaluations, like in parametric or optimization studies, have to be performed. In
order to speed up the computation while keeping a high level of fidelity, the
scientific community is increasingly focusing on surrogate methodologies like
meta-models, multi-fidelity models or reduced order models, which can provide a
compact, accurate and computationally efficient representation of the aircraft design
performance. Nevertheless, the usage of such models is not straightforward as the
amount and quality of information the user has to provide in the learning phase
is not known a priori; furthermore, the efficient exploitation of learning data may
be hampered by the inherent complexity of the design problem, e.g. nonlinearities
in the physical model, constraints handling, curse of dimensionality, multi-modal
fitness landscape, accuracy vs computational effort trade-off. Hence, no general
rule exists on the optimal choice of the type of surrogate model, the training and
validation strategy, the combination of surrogate model and optimization algorithm.

Finding the set of parameters which best fit the model to the available data
is usually known as the training phase. The training dataset is usually obtained
by sampling the design space (Design and Analysis of Computer Experiments,
DACE) and performing expensive high-fidelity computations on the selected points.
Depending on the adopted surrogate technique, design objectives and constraints or
vector/scalar fields of interest are used to feed the surrogate model. The strategy
to properly and optimally choose the DACE sampling dataset is of paramount
importance to achieve a satisfactory accuracy of the surrogate model. Unfortunately,
classical sampling methods, like Latin Hypercube sampling, are very sensible
to the nature of the problem at hand and they may deceive the surrogate-based
optimization by hiding or masking the true optima locations. This is especially true
in aerodynamic shape design problems where both model nonlinearities and the
dimension of the search space combine to emphasize this issue: classical DACE
techniques would lead to intensively sample the search space, thus vanishing the
actual advantage of surrogate-based optimization.

Indeed, the training strategy is heavily dependent on the type and scope of the
surrogate model and should be tailored on it. Generally speaking, two different
needs have to be taken into account when searching for “optimal” training points:
exploration and “trust” or exploitation. The first aims at unveiling promising regions
of the design space where global/local minima might reside; the second consists in
giving the surrogate model confidence on the prediction of minima locations and,
as a result, sampling in the surroundings. For the sake of clarity, an evenlyspaced
dense sampling could be classified as purely exploratory, while a properly clustered
sampling could fall in the exploitative class. As a consequence, a trade-off exist
between the exploration of the design solutions and the trust in surrogate accuracy
near predicted minima. A proper balance between these two concepts allows to
combine the need to exploit the approximation surface (by sampling where it is
minimized) with the need to improve the approximation (by sampling far from
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the known points, i.e. where prediction error may be high). With the term “in-fill
criteria” it is usually meant some principles which allow to optimally place new
points (in-fill points) at which the true target function should be called. The selection
of in-fill points is referred to as adaptive sampling or model updating.

In order to reduce the computational effort in training accurate surrogate models
for aerodynamic shape design problems, this paper proposes adaptive sampling
strategies which use ad hoc in-fill criteria to drive the training process. The
adaptive criteria are formulated by explicitly taking into account the optimization
target function with the help of auxiliary functions which have to be maximized.
The aim is to find new “optimal” design space points which, once added to the
training dataset, provide a “better” surrogate approximation for the optimization
purpose. Two surrogate models will be investigated, namely a Kriging model and a
proper orthogonal decomposition (POD) model coupled with Radial Basis Function
Networks for global interpolation of the modal coefficients. Moreover, several
choices of the in-fill criteria will be presented in the paper and compared to already
published adaptive sampling techniques, like Expected Improvement maximization
for Kriging and in-fill criteria for POD model machinery. The performance of each
adaptive sampling criterion will be monitored during the in-fill process by means of
cross validation techniques and proper generalization error metrics will be adopted.
Moreover, an aerodynamic optimization case study will be proposed to test different
combinations of surrogate models and adaptive sampling methods once fixed the
computational budget in terms of number of high-fidelity simulations (i.e. CFD
analyses). This will allow to measure the performances of the presented strategies
in a real-world environment and to draw some conclusions about the suitability of
in-fill criteria to a specific surrogate model for such a class of problems.

2.2 Literature Review

Jones et al. [10], among the first, proposed a response surface methodology based
on modelling the objective and constraint functions with stochastic processes
(Kriging). The so-called design and analysis of computed experiments (DACE)
stochastic process model was built as a sum of regression terms and normally
distributed error terms. The main conceptual assumption was that the lack of fit
due only to the regression terms can be considered as entirely due to modelling
error, not measurement error or noise, because the training data are derived from a
deterministic simulation. Hence, by assuming that the errors at different points in
the design space are not independent and the correlation between them is related to
the distance between the computed points, the authors came up with an interpolating
surrogate model able to provide not only the prediction of objectives/constraints at
a desired sample point, but also an estimation of the approximation error. After
the construction of such a surrogate model, this last powerful property is exploited
to build an efficient global optimization (EGO), which can be considered as the
progenitor of a long and still in development chain of SBO methods. Indeed, they
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found a proper balancing between the need to exploit the approximation surface
(by sampling where it is minimized) with the need to improve the approximation
(by sampling where prediction error may be high). This was done by introducing
the Expected Improvement (EI) concept, already proposed by Schonlau et al. [12],
that is an auxiliary function to be maximized instead of the original objective.
Sampling at a point where this auxiliary function is maximized improves both the
local (exploitation) and global (exploration) search.

An overview of SBO techniques was presented also by Queipo et al. [11] and
Simpson et al. [13]. They covered some of the most popular methods in design
space sampling, surrogate model construction, model selection and validation,
sensitivity analysis, and surrogate-based optimization. Forrester and Keane [4]
recently proposed a review of some advances in surrogate-based optimization. An
important lesson learned is that only calling the true function can confirm the results
coming from the surrogate model. Indeed, the path towards the global optimum
is made of iterative steps where, even exploiting some surrogate model, only the
best results coming from the true function evaluations are taken as optimal or sub-
optimal design. The true function evaluation has to be also invoked to improve the
surrogate model. With the term “in-fill criteria” it is usually meant some principles
which allow to intelligently place new points (in-fill points) at which the true
function should be called. The selection of infill points, also referred to as adaptive
sampling or model updating, represents the core of a surrogate-based optimization
method and helps to improve the surrogate prediction in promising areas of the
objective space.

Several recent studies have been focused on two main aspects: the right choice
of the number of points for the initial sampling and the ratio between initial/in-
fill samples. However, it must be underlined that no universal rules exist, as
each choice should be carefully evaluated according to the design problem (e.g.,
number of variables, computational budget, type of surrogate). Forrester and Keane
assumed that there is a maximum budget of function evaluations, so as to define
the number of points as a fraction of this budget. They identified three main cases
according to the aim of the surrogate construction: pure visualization and design
space comprehension, model exploitation and balanced exploration/exploitation. In
the first case, the sampling plan should contain all of budgeted points as no further
refinement of the model is foreseen. In the exploitation case, the surrogate can be
used as the basis for an in-fill criterion, that means some computational budget must
be saved for adding points to improve the model. They also proposed to reserve
less than one half points to the exploitation phase as a small amount of surrogate
enhancement is possible during the in-fill process. In the third case, that is two-
stage balanced exploitation/exploration in-fill criterion, as also shown by Sbester
[14], they suggested to employ one third of the points in the initial sample while
saving the remaining for the in-fill stage. Indeed, such balanced methods rely less
on the initial prediction and so fewer points are required. Concerning the choice
of the surrogate, the authors observed that it should depend on the problem size,
i.e. the dimensionality of the design space, the expected complexity, the cost of the
true analyses and the in-fill strategy to be adopted. However, for a given problem,
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there is not a general rule. The proper choice could come up past various model
selection and validation criteria. The accuracy of a number of surrogates could
be compared by assessing their ability to predict a validation dataset. Therefore,
part of the true computed data should be used for validation purposes only and not
for model training. This approach can be infeasible when the true evaluations are
computationally expensive.

Forrester also underlined that some in-fill criteria and certain surrogate models
are somewhat intimately connected. For a surrogate model to be considered suitable
for a given in-fill criterion, the mathematical machinery of the surrogate should
exhibit the capability to adapt to unexpected, local nonlinear behaviour of the true
function to be mimicked. From this point of view, polynomials can be immediately
excluded since a very high order would be required to match this capability,
implying a high number of sampling points. In general, a global search would
require a surrogate model able to provide an estimate of the error it commits when
predicting. Thus, the authors suggested to use Gaussian process based methods like
Kriging, although citing the work of Gutmann et al. [5] as an example of one-
stage goal seeking approach employing various radial basis functions. Finally, some
interesting suitable convergence criterion to stop the surrogate in-fill process were
proposed. In an exploitation case, i.e. when minimizing the surrogate prediction,
one can rather obviously choose to stop when no further significant improvement
is detected. On the other hand, when an exploration method is employed, one is
interested in obtaining a satisfying prediction everywhere, so that he can decide
to stop the in-filling when some generalization error metrics, e.g. cross-validation,
fall below a certain threshold. When using the probability or expectation of
improvement, a natural choice is to consider the algorithm converged when the
probability is very low or the expected improvement drops below a percentage of
the range of observed objective function values. However, the authors also observed
that discussing on convergence criterion may be interesting and fruitful, but “in
many real engineering problems we actually stop when we run out of available
time or resources, dictated by design cycle scheduling or costs”. This is what
typically happens in aerodynamic design, where the high-dimensionality of the
design space and expensive computer simulations often do not allow to reach the
global optimum of the design problem but suggest to consider even a premature,
sub-optimal solution as a converged point.

2.3 Surrogate Model

The singular value decomposition (SVD) solution of the POD basis vectors and
coefficients for steady-state problems is described in [6–9]. This approach is
normally preferred to the eigenvalue/eigenvector solution as it is faster and easier
to implement. The discussion will unfold with specific reference to compressible
aerodynamic problems, hence the space domain will be the discretized volume
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occupied by the flowing air and the snapshot vectors will be defined from computed
flow fields.

Given the three spatial components .�; �; �/ of the computational mesh points
and the general snapshot vector s, let fwjg be a set of design vectors (e.g. sampled
from the design space with a DoE technique) and fsjg the corresponding snapshot,
i.e. column vectors containing the volume grid and flow variables as obtained from
a CFD solution:

s D .sgrid; sflow/T

sgrid D .�1; : : : ; �q; �1; : : : ; �q; �1; : : : ; �q/

sflow D .�1; : : : ; �q; �� 0
1; : : : ; �� 0

q; �� 0
1; : : : ; �� 0

q; �� 0
1; : : : ; �� 0

q; p1; : : : ; pq/

where q is the number of mesh nodes involved in the POD computation, .�; �; �/ are
the mesh nodes coordinates in a Cartesian reference system, � is the flow density,
.� 0; � 0; � 0/ are the three Cartesian velocity components and p is the static pressure.
The computational mesh has been included in the POD snapshot to let the SVD
basis catch the coupling effects between space location and state field. Hence, once
the surrogate model is built, not only a flow field can be computed, but also an
approximation of the volume mesh. Such a surrogate model would be able to catch,
although in a reduced order form, the cross effects of geometry modification and
aerodynamic flow change. As the total number of variables is eight (three mesh
variables and five flow variables), the global size of the snapshot is N D 8 � q.

2.3.1 SVD Solution

Starting from the vectors s1; s2; : : : ; sM obtained by CFD expensive computations
for a representative set of design sites w1; w2; : : : ; wM , finding a POD means to
compute a linear basis of vectors to express any other sj 2 R

Nwith the condition that
this basis is optimal in some sense. To compute the optimal basis, we first define the
snapshot deviation matrix

P D �
s1 � Ns s2 � Ns � � � sM � Ns�

where the ensemble mean vector is computed as

Ns D 1

M

MX

jD1

sj
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The POD decomposition is obtained by taking the SVD of P

P D U†VT D U

0

BBB@

	1 � � � 0
:::

: : :
:::

0 � � � 	M

0 � � � 0

1

CCCA VT (2.1)

with U 2 R
N�N ; V 2 R

M�M ; † 2 R
N�Mand the singular values 	1 � 	2 � : : : �

	M � 0. The POD basis vectors, also called POD modes, are the first M column
vectors of the matrix U, while the POD coefficients ˛i.wj/ are obtained by projecting
the snapshots onto the POD modes:

˛i.wj/ D .sj � Ns; �i/ (2.2)

If a fluid dynamics problem is approximated with a suitable number of snapshots
from which a rich set of basis vectors is available, the singular values become
small rapidly and a small number of basis vectors are adequate to reconstruct
and approximate the snapshots as they preserve the most significant ensemble
energy contribution. In this way, POD provides an efficient means of capturing the
dominant features of a multi-degree of freedom system and representing it to the
desired precision by using the relevant set of modes. The reduced order model is
derived by projecting the CFD model onto a reduced space spanned by only some
of the proper orthogonal modes or POD eigenfunctions. This process realizes a kind
of lossy data compression through the following approximation

sj ' Ns C
OMX

iD1

˛i.wj/�i (2.3)

where

OM � M H)
P OM

iD1 	2
iPM

iD1 	2
i

� 
 (2.4)

and 
 is a pre-defined energy level. In fact, the truncated singular values fulfil the
relation

MX

iD OMC1

	2
i D 
 OM

If the energy threshold is high, say over 99 % of the total energy, then OM modes are
adequate to capture the principal features and approximately reconstruct the dataset.
Thus, a reduced subspace is formed which is only spanned by OM modes.
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2.3.2 Pseudo-Continuous Global Representation

Equation (2.3) allows to get a POD approximation of any snapshot sj belonging to
the ensemble set. Indeed, the model does not provide an approximation of the state
vector at design sites which are not included in the original training dataset. In other
words, the POD model by itself does not have a global predictive feature, i.e. over
the whole design space. As the aim is to exactly reproduce the sample data used
for training and to consistently catch the local data trends, a radial basis function
(RBF) network answers to these criteria and has been chosen as POD coefficients
interpolation. Gaussian, multi-quadric and inverse quadratic functions are used. The
RBF parameters are found by imposing the interpolation condition on the training
set for any modal coefficient i � OM,

The RBF width parameters have a big influence both on the accuracy of the RBF
model and on the conditioning of the solution matrix. In particular, it has been found
[2, 5] that interpolation errors become high for very small and very large values of
� , while the condition number of the coefficient matrix increases with increasing
values of � . Therefore, they have to be “optimal” in the sense that a tuning of the
width parameters is needed to find the right trade-off between interpolation errors
and solution stability (Reference [2] for a discussion about how to properly select
the best set of parameters). The pseudo-continuous prediction of the flow field at a
generic design site w is then expressed as:

s.w/ D Ns C
OMX

iD1

˛i.w/�i (2.5)

This provides a useful surrogate model which combines design of experiments
for sampling, CFD for training, POD for model reduction and RBF network for
global approximation. In conclusion, an explicit, global, low-order and physics-
based model linking the design vector and the state vector has been derived and
will be used as surrogate model.

2.4 In-Fill Criteria

The strategy for training a surrogate model is heavily dependent on its type and
scope and, in principle, has to be tailored on it. Indeed, the addition of new samples,
if not completely random, must follow some specific criteria that may be very
different depending on the purpose of the training process. For instance, Latin
Hypercube Sampling has been designed to satisfy space-filling requirements and
obtain a good coverage of the design space. Here, the emphasis is given on sampling
strategies which are able to “ adapt” to the response within an optimization process:
in particular, they can aim at improving the quality of the model prediction (error-
driven strategies) or minimizing the objective function (objective-driven strategies).
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Fig. 2.1 Exploitation vs exploration, 1D example

Most of the adaptive sampling approaches pursue the exploration/exploitation
trade-off, where exploration means sampling away from available data, where the
prediction error is supposedly higher, while exploitation means trusting the model
prediction, thus sampling where the surrogate provides global minima. It is clear
that a trade-off between the two behaviours is needed: indeed, exploration is useful
for global searching, but it may lead to unveil uninteresting regions of the design
space; on the other hand, exploitation helps to improve the local accuracy around the
predicted optima, but it may result in local minima entrapment. Figure 2.1 provides a
simple example of adding a new training point by using, respectively, exploitation,
exploration and balanced approaches. Given a set of training points (black circle
points) evaluated on the true function (solid black line), a surrogate model (dashed
black line) is built: if a new sample has to be added, a pure exploitation approach
would place it where the global minimum of the surrogate is detected, i.e. very close
to one the training point (triangle point); a pure exploration approach, instead, would
lead to sample where the maximum uncertainty in the model prediction is found, i.e.
far from available training points (circle point); a balanced exploration/exploitation
approach combines the two aspects, thus providing a new sample which significantly
improves the surrogate prediction.

Here, we are interested in designing balanced in-fill criteria for a generic
surrogate model. They are formulated in terms of auxiliary functions which have to
be maximized. In order to realize a trade-off between exploration and exploitation,
the general form of the auxiliary function is factorized as follows:

v.x; Of .x/; Xn; FXn/ D g.x; Xn/h.Of .x/; FXn/ (2.6)
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where x is the generic design vector, Of .x/ is the surrogate prediction at x,Xn is the
set of n available training points and FXn is the corresponding set of true objective
function values:

Xn D fx1; x2; : : : ; xng FXn D ff .x1/; f .x2/; : : : ; f .xn/g

The v function is called potential of improvement function. The functions g and h
measure the exploration and model trust contributions. In particular, the exploration
function depends on the Euclidean distance d.x; xi/ between the generic design
space location x and the i-th element of the training set Xn:

g.x; Xn/ D g.d.x; x1/; d.x; x2/; : : : ; d.x; xn//

Different in-fill criteria are selected by properly designing the functions g and h.
In order to update the training dataset, a new sample is selected by maximizing the
auxiliary function:

xnC1 D argmax
x

v.x; Of .x/; Xn; FXn/

Hereinafter the maximization of the auxiliary function is achieved in the follow-
ing way: a huge Latin Hypercube Sampling dataset (e.g. 500 times the dimension of
the design space) is computed and the values of the auxiliary functions are computed
at each point (this requires limited computational effort as the auxiliary function
only depends on the surrogate prediction, which is fast to obtain, and on the true
objective function values at already collected points); hence, the new sample is
located where the maximum value of the auxiliary function is met. In order to avoid
the duplication of the updating samples when iterating the in-fill process, the seed
of the Latin Hypercube is changed at each iteration.

2.4.1 Error-Driven In-Fill Criteria

Two error-driven in-fill criteria are presented in this section. Both are aimed at
sampling where the leave-one-out (LOO) prediction error is highest. The first
strategy, named “LOO” hereafter, adopts the following functions:

g.x; Xn/ D min
xi2Xn

d.x; xi/ (2.7)

h.Of .x/; FXn/ D jOf �k.xk/ � f .xk/j (2.8)

where, given x, xk D argminxi2Xn
d.x; xi/ is its nearest neighbour training point and

Of �k.xk/ is the LOO surrogate prediction at xk. In other words, the exploration term is
given by the distance from the nearest training point, while the exploitation function
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is based on the absolute value of the LOO prediction error: hence, this approach
will tend to sample where there is big uncertainty in the prediction and to improve
the surrogate model where it lacks accuracy. However, no information is introduced
about the objective function minimization, thus no significant improvement of the
global optimum search can be expected from its application.

The second strategy, named “LOOW” hereafter, is similar to the former, but
a weighting function is introduced in the exploitation term to partially take into
account the behaviour of the objective function. Indeed, the exploration function is
the same, while the exploitation one is designed as follows:

h.Of .x/; FXn/ D exp
�
�	

Of .x/ � fmin

fmax � fmin

�
jOf �k.xk/ � f .xk/j (2.9)

where 	 is a tuning parameter and fmin; fmax are the minimum and maximum
objective function values in the training set. The parameter 	 can be varied to adjust
the contribution of the exploitation function: for low values of 	 , the surrogate
prediction is considered unreliable, hence promising as well as poor regions are
equally treated; for high values of 	 , a transition to a more exploitative approach is
done, as the regions exhibiting poor values of the objective function will be filtered
out.

Figure 2.2a shows the potential of improvement functions obtained by applying
the aforementioned LOO-based criteria to the example reported in Fig. 2.1. In
particular, concerning the LOOW strategy, three different values of the 	 parameter
have been selected to compare the function behaviour. It is clearly observable that
the introduction of the weighting function strongly dampens the potential levels,
especially in those regions where the explorative behaviour is active. For 	 D 10,
the maximum location of the potential of improvement moves to a completely
different region which is closer to the true optimum.

2.4.2 Objective-Driven Criteria

An objective-drive in-fill criterion is presented here. It has been designed trying to
mimic the same rationale of the Expected Improvement criterion, usually coupled
to a Kriging-based surrogate, as highlighted in Sect. 2.2. The present approach,
named “ EI-like” hereinafter, represents a generalization of that method as, for a
generic surrogate model, the information about the uncertainty of the surrogate
is not available, while a Kriging model, being a Gaussian process, provides an
estimate of the prediction variance together with the prediction itself. The potential
of improvement is designed to have the same form of the Expected Improvement
function, that is:

v.x; Of .x/; Xn; FXn/ D .fmin � Of .x//ˆ
� fmin � Of .x/

Os.x/

�
COs.x/�

� fmin � Of .x/

Os.x/

�
(2.10)
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where Os.x/ is an estimate of the prediction error and ˆ.x/ and �.x/ are, respectively,
the cumulative distribution and probability density functions of a standard normal
distribution. The prediction error is estimated as follows:

Os.x/ D 1

2
jfmax � fminj exp

�
��

maxxi;xj2Xn d.xi; xj/

minxi2Xn d.x; xi/

�
(2.11)

where � is a tuning parameter. This function has been designed in order to quickly
increase with increasing distance from an available sample and to have an order of
magnitude related to the actual values of the objective function. Figure 2.2b shows
the v function for various values of the � parameter. As in the previous case, the �

parameter strongly alter the potential of improvement profile in terms of both global
levels and position of the maximum point. Indeed, for � D 0:001; 0:005, the peak
of the potential of improvement is around x ' 0:7, while for � D 0:05 it moves to
x ' 0:4.

2.5 Surrogate-Based Shape Optimization Approach

The workflow of the surrogate-based shape optimization (SBSO) is depicted
in Fig. 2.3. Basically, it starts with an a-priori design of experiment (a Latin
Hypercube sampler) whose aim is to initialize the database population: typically,
based on literature results and author’s experience, the dimension of the initial
sampling should not exceed one-third of the total computational budget. A NURBS
parameterization module transforms the design vectors into geometrical shapes,

Fig. 2.3 Workflow of surrogate-based evolutionary optimization
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for each shape a volume mesh is computed by launching an in-house developed
automatic mesh generator and a set of CFD computations are executed in parallel
with the in-house ZEN CFD flow solver [1]. Once the converged flow field variables
are available, the snapshots collection is carried out according to Sect. 2.3 and the
POD/RBF surrogate model is built as described in Sects. 2.3.1 and 2.3.2. After that,
the workflow in Fig. 2.3 shows two internal cycles, namely the adaptive sampling
and the optimization update. These iterative phases reflect two different needs: first
of all, providing an improved and reliable model to the optimizer; then, iterating
the optimizer to refine the optimum search. The first cycle (database updating by
in-fill criteria) is based on the techniques described in Sect. 2.4 and is aimed at
improving the surrogate model before the optimization phase by providing new
design candidates xnew to be added to the ensemble database. The condition to
exit from this internal loop is based either on pre-defined levels of improvement
or on computational budget considerations. The second cycle (database updating
by optimization) allows for including optimal design sites xopt, provided by the
surrogate-based optimization, into the POD ensemble database: this phase should
lead to the final exploitation of the design space region where the “ true” optimum
resides. The loop terminates either when the residual of the objective function of
the predicted optima falls below a pre-defined threshold or when the computational
budget limit has been reached. The optimizer consists of an evolutionary algorithm
implemented within the in-house ADGLIB optimization library [15].

2.6 Application: Multi-Point Shape Optimization
of a Two-Dimensional Airfoil

The proposed methodology is applied to the shape optimization problem of a two-
dimensional airfoil at two design points in transonic conditions. The baseline shape
is the well-known RAE 2822 airfoil [3].

2.6.1 Problem Definition

The RAE2822 airfoil is parameterized by a volumetric three-dimensional NURBS
control-box, as described in Fig. 2.4. Even if the control box consists of 200 control
points, only 14 are used to modify the geometry. The design points are summarized
in Table 2.1 and correspond to Case 9 and 10 of the experimental database [3].
Figure 2.5a,b show the pressure coefficient distribution as computed with the ZEN
flow solver on the baseline airfoil at both design points. Two different turbulence
models have been used, namely k � ! TNT and SST, to assess their effects on the
aerodynamic flow and the CFD results have been also compared to the available
experimental data. Design point 2 is particularly difficult to handle as a shock-
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Fig. 2.4 NURBS control box

Table 2.1 Design points

DP Mach number Reynolds number Angle of attack (ı)

1 0.734 6.5eC06 2.65

2 0.754 6.2eC06 2.9
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Fig. 2.5 Pressure coefficient distribution of the RAE2822 baseline airfoil. (a) Design point 1.
(b) Design point 2



40 E. Iuliano

Table 2.2 Aerodynamic
coefficients of baseline airfoil

DP Cl;0 Cd;0 Cm;0

1 0.805 0.0192 �0.1

2 0.743 0.0280 �0.11

induced separation is found on the suction side which significantly increases the
aerodynamic drag and represents a major challenge of the proposed design problem.
The objective function to be minimized is specified as follows:

f .x/ D 1

2

�Cd C Cd;m C Cd;l

Cl

Cl;0

Cd;0

�

DP1
C 1

2

�Cd C Cd;m C Cd;l

Cl

Cl;0

Cd;0

�

DP2

where Cl; Cd; Cm are the lift, drag and pitching moment coefficient of the airfoil
under evaluation and Cl;0; Cd;0; Cm;0 are the same coefficient values of the baseline
airfoil. Table 2.2 reports the aerodynamic coefficients of the baseline airfoil. As
regards aerodynamic constraints, both lift and moment coefficients are required to
be greater or equal to the baseline values, i.e. Cl � Cl;0 and Cm � Cm;0. Hence, two
drag penalization terms Cd;l; Cd;m are introduced and designed as follows:

Cd;m D 0:01 max.0; Cm;0 � Cm/

Cd;l D 0:1 max.0; C2
l;0 � C2

l /

The order of magnitude of the penalization terms is such that the drag coefficient
is penalized by one drag count per one hundredth moment violation and sixteen
drag counts for one tenth lift violation. Geometric constraints are also introduced
to set the airfoil maximum thickness-to-chord ratio t

c at 12.1 %, to keep the
airfoil thickness ratio at 80 % chord greater than 4 % and the leading edge radius
greater than 0.004 m. The geometric constraints are implicitly satisfied within the
parameterization.

2.6.2 Optimization Setup

Five different surrogate-base optimization runs have been launched with different
sampling strategies and two surrogate models, namely the POD/RBF model and
a Kriging model. While the latter can be built directly on the objective function
database computed on the training set, the former presents some additional issues:
indeed, dealing with a problem with multiple design points, as the POD/RBF model
has to be fed with the aerodynamic flow solution, two independent POD/RBF
models have to be trained, one for each design point. This further complicates the
optimization case and makes it a solid and robust test of the whole methodology.
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Table 2.3 Setup of SBO runs

DB ID Model In-fill Budget A priori Adaptive Opt. updating

DB-LOO POD/RBF LOO 100 18 52 30

DB-LOOW POD/RBF LOOW 100 18 52 30

DB-EIPOD POD/RBF EI-like 100 18 82 –

DB-EIKRIG Kriging EI-like 100 18 82 –

DB-EGO Kriging EI 100 18 82 –

The computational budget has been fixed in order to fairly compare optimization
results obtained with different methods and consists of 100 CFD computations: this
represents a rather low threshold, especially considering that the dimension of the
design space is 14 and that classical evolutionary algorithm may reach the optimal
solution after a number of CFD evaluations at least one order of magnitude higher
than this. The computational load has to be split into a priori sampling, adaptive
sampling and optimization updating. Table 2.3 reports the basic information for each
optimization run. DB-LOO and DB-LOOW optimizations have been obtained by
iterating the corresponding error-driven in-fill criteria for nearly a half of the total
computational budget and refining the search by applying the optimization updating
for 30 more times. DB-EIPOD database has been obtained by employing the EI-like
criterion 82 times and with no optimization updating as this is an objective-driven
approach. The last two simulations, namely DB-EIKRIG and DB-EGO, have been
launched for assessment purposes as they both adopt a Kriging model instead of the
POD/RBF surrogate. However, they differ for the in-fill criterion used, the EI-like
in the first case, the classical Expected Improvement maximization (i.e. exploiting
the original Kriging prediction and variance) in the second case.

2.6.3 Surrogate Model Validation

Each combination of surrogate model/in-fill strategy has been validated after 52
samples addition (i.e. surrogate models built with 70 total samples) in order to
estimate their prediction error and make some preliminary analyses. In particular,
in order to re-use the same samples, tenfold cross-validation has been used and
five repetitions of the database partition have been performed to get averaged
values of the error metrics. These are the root mean squared error (RMSE) and the
Pearson correlation coefficient. Table 2.4 summarizes the results of the validation
analysis. It can be observed how the weighting of the LOO error has been effective
in providing a better model. EI-like criterion results are in line with LOO ones,
while Kriging-based models exhibit superior performances, especially in terms of
correlation coefficient. However, these indications cannot be considered as definitive
for two reasons: for DB-LOO and DB-LOOW runs, the optimization phase has not
yet started; for EI-based runs, the different combination of surrogate model/in-fill
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Table 2.4 Validation results DB ID RMSE Pearson correlation

DB-LOO 0.542 0.609

DB-LOOW 0.320 0.680

DB-EIPOD 0.406 0.589

DB-EIKRIG 0.255 0.817

DB-EGO 0.146 0.837

Fig. 2.6 Correlation plots. (a) DB-EIPOD. (b) DB-LOOW

criterion may alter the speed of convergence of the method. Figure 2.6a,b show two
correlation plots where the cross-validated model values of the objective function
are compared to the true value (i.e. obtained with the CFD solver). Results for
DB-EIPOD and DB-LOOW cases are reported. A significant clustering of sub-
optimal candidates is observed for DB-EIPOD run, while the distribution of points
is more scattered for DB-LOOW. This reflects the substantial difference of the two
approaches in updating the design database. Moreover, a closer look to DB-EIPOD
results points out that the model prediction is very good when the objective function
is around one or less, while it is significantly worsened for higher values: this
clearly means that the EIPOD model is well approximating the objective function in
interesting regions of the design space, where the solution is not constrained, while,
due to the balanced nature of the in-fill criterion, highly constrained zones are still
being explored but small effort is done by the method to locally increase the model
accuracy, hence the prediction error looks quite large. This behaviour penalizes the
evaluation of the error metrics for the DB-EIPOD case.

2.6.4 Optimization Results

Figures 2.7 and 2.8 show the objective function history of selected surrogate-based
optimizations: the true objective function values corresponding to the design space
samples are reported from the initial LHS samples (ID 1 to ID 18) to the completion
of the full training set (up to ID 100), according to the split reported in Table 2.3.
A clear trend to improve the objective function is observable for objective-driven
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Fig. 2.7 Objective function history of POD-based optimization runs. (a) DB-EIPOD. (b) DB-
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Fig. 2.8 Objective function history of Kriging-based optimization runs. (a) DB-EGO. (b) DB-
EIKRIG

methods (DB-EIPOD, DB-EIKRIG and DB-EGO), while the DB-LOO case appears
much more explorative. For each database, the best solution is extracted after the
total computational budget has been reached. Table 2.5 summarizes the aerodynamic
coefficients and the objective function values for each optimal candidates. For
the sake of clarity, the performances of the baseline RAE2822 airfoil are also
reported. Significant drag reduction and lift increase are observed at both design
points. The objective-driven methods significantly outperform the error-driven and
Kriging-based methods achieve the best performances, especially on design point 2
where the drag reduction is more significant. The aerodynamic flow for the selected
optimal candidates is compared in Figs. 2.9a,b and 2.10a,b. For each airfoil, the
pressure distribution at both design points are depicted. All the objective-driven
design solutions look very similar, DB-EGO solution is evidently preferable as the
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Table 2.5 Aerodynamic coefficients of baseline and optimal candidates

ID Cl;DP1 Cd;DP1 Cm;DP1 Cl;DP2 Cd;DP2 Cm;DP2 Obj. function

RAE2822 0.805 0.0192 �0.1 0.743 0.0280 �0.11 1.00

DB-LOO 0.833 0.0151 �0.105 0.761 0.0241 �0.103 0.800

DB-LOOW 0.806 0.0134 �0.093 0.777 0.0226 �0.096 0.732

DB-EIPOD 0.827 0.0135 �0.106 0.796 0.0223 �0.108 0.716

DB-EIKRIG 0.817 0.0127 �0.107 0.790 0.0209 �0.109 0.681

DB-EGO 0.826 0.0128 �0.103 0.796 0.0211 �0.104 0.677
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Fig. 2.9 Pressure coefficient distribution of POD-based optimal candidates. (a) DB-EIPOD.
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shock wave is slightly smoother. However, results show that the adoption of an EI-
like in-fill criterion coupled with a POD/RBF surrogate model and an evolutionary
algorithm yields noticeable results for the proposed shape design problem and
compares fairly well with similar well-known and widely used methods like EGO
algorithm.

Conclusions
The paper proposed objective-driven (EI-like) and error-driven adaptive
sampling techniques suitable for generic surrogate models. The related in-
fill criteria have been designed in order to improve an auxiliary function
that can be linked to a certain metric of the model improvement. Moreover,
multi-point POD/RBF models have been developed and integrated within
an evolutionary optimization system, so that a full chain of surrogate-based
optimization with intelligent training of the surrogate model is available.
Results showed that objective-driven sampling strategies over-performed the
error-driven in terms of search efficiency at fixed computational budget.
Thanks to the intelligent in-fill, optimal solutions of the two-dimensional
airfoil shape design problem have been found by different surrogate-based
methods by calling the CFD solver only 100 times. This represented a big
challenge for the problem at hand and adds significant value to the proposed
methodology. The application of EI-like in-fill criteria provided promising
outlook when compared to existing and well-established methods, like the
EGO algorithm. Further research in this direction is envisaged to continue the
design and testing of such approaches in order to reach the same performance
level of classical optimization algorithm at much lower computational cost.
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Chapter 3
PCA-Enhanced Metamodel-Assisted
Evolutionary Algorithms for Aerodynamic
Optimization

Varvara G. Asouti, Stylianos A. Kyriacou, and Kyriakos C. Giannakoglou

Abstract This paper deals with evolutionary algorithms (EAs) assisted by surro-
gate evaluation models or metamodels (metamodel-assisted EAs, MAEAs) which
are further accelerated by exploiting the principal component analysis (PCA) of
the elite members of the evolving population. In each generation of the MAEA,
PCA is used to (a) better guide the application of evolution operators and (b) train
metamodels, in the form of radial basis functions networks, on patterns of smaller
dimension. Note that the present MAEA relies upon “local” metamodels which
are trained on-line, separately for each and every population member. Compared
to previous works by the same authors, this paper proposes a new way to apply
the PCA technique. In particular, the front of non-dominated solutions is divided
into sub-fronts and the PCA is applied “locally” to each sub-front. The proposed
method is demonstrated in multi-objective, constrained, aerodynamic optimization
problems.

3.1 Introduction

EAs are capable of handling complex, constrained, multi-objective problems by
accommodating any analysis/evaluation software, without even having access to
its source code. Being the most known representative of global optimization
methods, EAs are widely used to solve engineering optimization problems. Their
only drawback and main reason preventing the extensive use of EAs in large-
scale problems is the great number of calls to the evaluation software required
for capturing the optimal solution(s). In real-world applications, the computational
cost per evaluation is often quite high and, in combination with a great number
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of optimization unknowns (N >>), the optimization turnaround time might even
become prohibitive. The CFD-based optimization is a typical example.

As population-based search methods, EAs are amenable to parallelization. The
concurrent evaluation of candidate solutions on different processors is straight-
forward. Smarter usage of a multi-processor system can be made by means of
asynchronous EAs [1], which overcome the synchronization barrier at the end of
each generation.

On the other hand, the most common technique to reduce the CPU cost of
the EA-based optimization is the extensive use of surrogate evaluation models (or
metamodels). They are used to inexpensively approximate the objective function
value(s), by replacing the call to the costly problem-specific evaluation model.
Metamodels, after being trained on previously-seen solutions, can be incorporated
into an EA in different ways, depending on whether their training takes place during
(on-line) [7, 8, 11, 14] or separately from (off-line) the evolution [3, 13]. In this
paper, metamodel-assisted EAs (MAEAs) with on-line trained metamodels [5, 8],
are employed. According to the inexact pre-evaluation (IPE) approach, with the
exception of a few starting generations, all population members are approximately
evaluated using local metamodels trained separately for each one of them. A few
most promising among them, as indicated by the metamodel, are re-evaluated on
the exact and costly model.

Engineering optimization problems usually have several objectives and/or con-
straints and involve a great number of design variables. The high number of design
variables deteriorates the efficiency of a conventional EA, since it requires more
evaluations and increases the computational cost. Also, in MAEAs, the metamodels’
training time increases and the prediction accuracy decreases as the number of
design variables increases.

A way to overcome the overall performance degradation, often referred to as
the curse of dimensionality, is by decreasing the problem dimension via dimension
reduction techniques. This can be done using principal component analysis (PCA)
techniques [6]. In contrast to other methods where PCA is exclusively used to
reduce the optimization problem dimension, here PCA is used both to guide the
application of the evolution operators (without dimension reduction) and reduce
the number of sensory units of the radial basis function (RBF) networks used as
metamodels [9, 10]. Compared to [9, 10], there is a novel enhancement of the already
published method. PCA is not applied to the entire elite set but to sub-fronts, after
appropriately splitting the set of elite members into parts. According to this scheme,
each parent is transformed using information from the PCA of the closest in the
design space sub-front. By doing so, the EA requires less evaluations compared
to [9]. The proposed method is demonstrated in three cases concerned with the
preliminary design of a supersonic business jet, the aeroelastic design of a wind
turbine blade and the aerodynamic design of an isolated airfoil.
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3.2 PCA-Enhanced EAs and MAEAs

The PCA of a data set in the design space leads to new orthogonal linear
combinations of the “original” variables, each of which with a different variance.
Once the principal components are computed, the first one is associated with the
largest variance, the second one is perpendicular to the first and associated with the
next largest variance and so forth.

Without loss in generality, the proposed method is demonstrated on a multi-
objective optimization (MOO) problem. In each generation, the PCA of the elite
set is carried out. In single-objective optimization (SOO) problems, instead of the
front of non-dominated solutions, the elite set may comprise the current optimal and
a few near-optimal solutions.

The elite set is brought into the form of a standardized data set X with zero mean
value and unit standard deviation along all directions. Based on X, the covariance
matrix P is computed as

PN�N D 1



XXT (3.1)

where 
 is the elite set size. Using the spectral decomposition theorem [2], P is
written as

PN�N D U�UT (3.2)

where � is a diagonal matrix with the eigenvalues and U a N�N matrix formed by
the eigenvectors of P as rows.

Compared to [10], in this paper the front of the non-dominated solutions is
divided into a user-defined number of sub-fronts (Fig. 3.1) and the PCA is applied
locally to each sub-front. The two ways of taking advantage of PCA are briefly
described below. Section 3.2.1 describes how the principal components can be used
to drive the evolution operators. Section 3.2.2 describes how the PCA is used to
reduce the number of sensory nodes of the metamodel. The combined use of these
two options is straightforward.

3.2.1 PCA-Enhanced Evolution Operators

The evolution operators are applied to a temporarily transformed (rotated) design
space according to the principal components computed by the PCA. If xi is
a candidates’ solution design vector, the vector ei aligned with the principal
component directions, is defined as follows:

ei D U.xi � �X/ (3.3)
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Fig. 3.1 Schematic
representation of the division
of the non-dominated
individuals into three
sub-fronts

where �X is the vector of mean (over the elite set) design variables. Once the design
space becomes aligned with the principal component directions, the application of
crossover and mutation operators follows. The crossover operator is applied to the
transformed parent population genotypes. If a different PCA is performed for each
sub-front, the parents design vector is rotated based on the PCA of the sub-front
parents are associated with (the closest, in terms of Euclidean distances, in the
design space).

Concerning mutation, an increased mutation probability along the directions
with small variances is required. To this end, instead of using a constant, user-
defined, mutation probability pm, the mutation probability assigned to each principal
component (index i) is given by Kyriacou et al. [10]

pi
m D ˛pm C .1 � ˛/pm

N

DV
� Vmax � Vi

Vmax � Vmin
(3.4)

where ˛ 2 Œ0; 1�, Vi is the variance of the current elite set with respect to the ith
principal component, Vmax D maxfV1; : : : ; VNg, Vmin D minfV1; : : : ; VNg and

DV D
NX

iD1

Vmax � Vi

Vmax � Vmin
(3.5)

Each mutated offspring is, then, transformed back to the original design space. This
inverse transformation, from ei to xi, is given by

xi D U�1ei C �X (3.6)

Note that since U is an orthogonal matrix, its inversion has negligible CPU cost.
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3.2.2 EA with PCA-Assisted Metamodels

An additional role of the PCA in MAEAs is to reduce the dimension of a problem
having a large number of design variables, so as to overcome the so-called curse
of dimensionality. When handling high-dimensional optimization problems, an
increased number of training patterns is required to build an accurate metamodel
and this increases a lot the cost of the training procedure. The reduction of the
number of sensory nodes of a metamodel (RBF network), through PCA, increases
its prediction accuracy and accelerates the training process.

The eigenvectors included in matrix U, Eq. (3.2), are associated with the
variances of the design variables and can be used to identify the directions where
the elite members are less or more scattered (high variance indicates scattered data
whereas small variance corresponds to less scattered data). Based on this, a user-
defined number of RBF network sensory units, in fact those corresponding to the
directions of the design space with high variances, are filtered out. Consequently,
the RBF network is trained on lower dimension data and this turns out to yield more
reliable networks, trained at lower cost.

This truncation applies only during the RBF network training. In particular,
during the IPE phase, for all population members, a local metamodel is built by
selecting training patterns following the procedure described in detail in [7]. The
training patterns are rotated (Eq. (3.3)) and, then, their components associated with
the higher eigenvalues are excluded from the training.

3.3 Applications

The proposed methodology is applied in three cases in the field of aerodynamics,
namely the preliminary design of a supersonic business jet, the aeroelastic design
of a wind turbine blade and the aerodynamic design of an isolated airfoil. In what
follows the term M(PCA)AEA(PCA) will be used to denote an MAEA where both
the evolution operators and metamodels are assisted by the PCA.

3.3.1 Preliminary Design of a Supersonic Business Jet

The first two-objective application deals with the preliminary design of a supersonic
business jet for maximum range (R) and minimum take-off weight (TOW). The
design variables (13 in total) are related to the flight conditions (cruise altitude
and Mach number), fuel weight and aircraft geometry (wing and tail reference
areas, leading and training edge sweep angles, etc.). This is, in fact, a multi-
disciplinary optimization problem which involves disciplines such as aerodynamics,
structures/weights, propulsion, etc., each of which is modeled using low-fidelity
models.
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Fig. 3.2 Preliminary design
of a supersonic business jet:
comparison of the fronts of
non-dominated solutions
computed using MAEA
(filled triangles),
M(PCA)AEA(PCA) (empty
circles) and
M(PCA)AEA(PCA)local
(filled squares) at the cost of
2000 evaluations
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In this application, computations based on standard MAEA and
M(PCA)AEA(PCA) in the two variants of the latter in which PCA is driven by
either the entire elite front or two sub-fronts have been carried out and their results
are compared. In all three runs, a .�; �/ D .30; 90/ MAEA (with � parents and �

offspring) was used and the metamodel-based IPE phase started once the database
(DB) recorded the first 100 entries (already evaluated individuals). Then, in each
subsequent generation, five to ten individuals were re-evaluated on the problem-
specific tool. The same stopping criterion of 2000 evaluations was imposed during
all runs. A comparison of the obtained fronts of the three methods is shown in
Fig. 3.2. In either form, the M(PCA)AEA(PCA) outperforms the standard MAEA.
Furthermore, as expected, the local application of PCA performs better compared
to the PCA of the entire elite set.

3.3.2 Aeroelastic Design of a Wind Turbine Blade

The second optimization problem is about the aeroelastic design of a wind turbine
blade for maximum annual energy production (AEP) and minimum mass (m). The
rotation speed of the blade is ˝R D1:267 rad/s and the AEP is determined using the
whole range of wind speeds between cut-in and cut-out wind speed, with Vin D5 m/s
and Vout D25 m/s up to the rated wind speed (in this case, for a 5 MW wind turbine,
Vrated equals 11:35 m/s). The optimization is subject to constraints for the flapwise
bending moment at the blade root (Mf ;root) and the maximum flapwise (	f ;max)
and edgewise 	e;max stresses, as

Mf ;root �10000 kNm ; 	f ;max �64000 kN/m2 ; 	e;max �90000 kN/m2 (3.7)

For each blade section an I-beam structural model is assumed, Fig. 3.3, using two
spar caps joined together by a shear web. The design variables are the blade chord,
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Fig. 3.3 Aeroelastic design of a wind turbine blade: schematic representation of the I-Beam
structural model for each blade section
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Fig. 3.4 Aeroelastic design of a wind turbine blade: comparison of the fronts of non-dominated
solutions computed using M(PCA)AEA(PCA) (empty circles) and M(PCA)AEA(PCA)local (filled
squares) at the same CPU cost

twist and thickness, the I-beam base length, the spar caps, shear web and shell
thickness at nine preselected spanwise positions. Targeting realizable designs, the
objective functions are also constrained, as follows:

AEP�10 GWh ; m�20 tn (3.8)

The evaluation of each candidate solution was based on the Blade Element
Momentum model included in NTUA’s aeroelastic software GAST (General Aero-
dynamic and Structural numerical Tool [12]). This case was studied using the
M(PCA)AEA(PCA) with .�; �/ D .30; 90/ and a termination criterion of 10,000
evaluations. The metamodel was activated once 500 feasible (non-violating the
constraints) solutions were stored in the DB and, during the IPE phase, 9–15

individuals were re-evaluated on the GAST software. The resulted fronts of non-
dominated solutions are compared in Fig. 3.4 where, in this case too, the local
application of PCA proved to yield better solutions.
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3.3.3 Optimization of an Isolated Airfoil

The last case is a two-objective, constrained, optimization problem concerned with
the optimization of an isolated airfoil for minimum drag (CD) and maximum lift
(CL) coefficient. The flow conditions are: free-stream Mach number M1 D0:3, flow
angle a1 D 4o and Rec D 6:2 � 106. The airfoil is parameterized using two Bézier
curves, separately for the pressure and suction sides, with eight control points each.
Only the internal control points of each Bézier curve may vary, summing up to 24

design variables.
The tool used to evaluate each individual applies a viscous–inviscid flow

interaction method based on an integral boundary layer method, coupled with an
external flow solver [4]. To prevent the formation of unacceptably thin airfoils,
geometrical constraints on the airfoil thickness t.x/ at three chordwise positions
(x), are imposed, namely

t.0:25c/�0:12c; t.0:5c/�0:12c; t.0:75c/�0:05c (3.9)

where c is the chord length. The constraint violation check is performed in two
stages. Airfoils with a severe violation of even a single geometrical constraint were
immediately rejected by assigning a death penalty to their objective functions,
without undergoing evaluation using the flow solver. On the other hand, other
airfoils which violated the thickness constraints to a lesser extent were allowed to
undergo flow evaluation for computing their objective function values which were,
then, penalized using an exponential penalty term.

This case was studied with MAEA and M(PCA)AEA(PCA) by applying PCA
on a single front of non-dominated solutions and on two sub-fronts and the results
obtained are compared. In the case of the local application of PCA, the first sub-front
corresponds to the “family” of low lift-low drag airfoils, whereas the second to that
of high lift-high drag airfoils. To separate the two sub-fronts a simple criterion was
used. In each generation, after computing/updating the current elite set, its median
was used as the threshold between the two airfoil “families”.

In both cases, a stopping criterion of 1500 evaluations was imposed. A .�; �/D
.20; 60/ MAEA was used and metamodels were applied once the first 300 feasible
solutions were stored in the DB. During the IPE phase, in each generation, five to
eight individuals were re-evaluated on the integral boundary layer method.

Figure 3.5 compares fronts of non-dominated solutions computed by the
three methods at the same cost, practically the same number of evaluations.
The M(PCA)AEA(PCA) was able to capture parts of the Pareto front which
MAEA couldn’t. Though, in the low lift-low drag region, MAEA computed
some individuals dominating those of M(PCA)AEA(PCA), in the high lift-high
drag region MAEA’s performance was very poor. Regarding the two variants of
M(PCA)AEA(PCA), individuals resulted from the local application of PCA were
better spread along the front and the majority of them dominated those from PCA
on the entire elite set. Three airfoil shapes from each sub-front, i.e. the low lift-low
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Fig. 3.5 Optimization of a 2D isolated airfoil: comparison of the computed fronts of non-
dominated solutions computed using MAEA (filled triangles), M(PCA)AEA(PCA) (empty circles)
and M(PCA)AEA(PCA)local (filled squares)

Fig. 3.6 Optimization of a 2D isolated airfoil: three airfoil shapes corresponding to the low lift-
low drag part of the Pareto front (first sub-front) shown in Fig. 3.5. From left to right the three
airfoils yield the following CL; CD values: .0:707; 0:00901/, .0:817; 0:00918/ and .0:894; 0:00948/

Fig. 3.7 Optimization of a 2D isolated airfoil: three airfoil shapes corresponding to the high lift-
high drag part of the Pareto front (second sub-front) shown in Fig. 3.5. From left to right the three
airfoils yield the following CL; CD values: .0:968; 0:00978/, .1:096; 0:010678/ and .1:19; 0:01136/

drag and high lift-high drag ones are shown in Figs. 3.6 and 3.7, respectively. From
the presented airfoil shapes, the two “families” can easily be distinguished. As
shown in Fig. 3.5, this sub-division of the elite front is beneficiary for the search
method.

Conclusions
This paper reconfirms the superiority of the so-called M(PCA)AEA(PCA)
algorithm, originally proposed and assessed in [10], using three test problems.
In each generation of the EA, the analysis of the population members
using information related to the principal directions, as extracted by the
characteristics of the current elite individuals, is used to (a) reduce the
dimensionality of the RBF networks, by making their training easier and
their predictions more dependable and (b) apply the evolution operators in a

(continued)
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properly transformed space. In addition, this paper demonstrated the increase
in performance offered by the local application of the PCA-driven actions
during an M(PCA)AEA(PCA) run. Locality is related to the splitting of the
current front of non-dominated solutions into sub-fronts, in each of which
an independent PCA is performed. The better performance of the proposed
scheme is justified by the fact that candidate solutions at the different edges
of a Pareto front may have very different characteristics, the “averaging”
of which through the single PCA should preferably be avoided. In this
paper, restricted to two-objective problems with constraints, the current front
of non-dominated solutions was decomposed into two sub-fronts, using its
dynamically changing median.
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Chapter 4
Multi-Objective Surrogate Based Optimization
of Gas Cyclones Using Support Vector Machines
and CFD Simulations

Khairy Elsayed and Chris Lacor

Abstract In order to accurately predict the complex nonlinear relationships
between the cyclone performance parameters (The Euler and Stokes numbers)
and the four significant geometrical dimensions (the inlet section height and width,
the vortex finder diameter and the cyclone total height), the support vector machines
approach has been used. Two support vector regression surrogates (SVR) have been
trained and tested by CFD datasets. The result demonstrates that SVR can offer an
alternative and powerful approach to model the performance parameters. The SVR
model parameters have been optimized to obtain the most accurate results from the
cross validation steps. SVR (with optimized parameters) can offer an alternative
and powerful approach to model the performance parameters better than Kriging.
SVR surrogates have been employed to study the effect of the four geometrical
parameters on the cyclone performance. The genetic algorithms optimization
technique has been applied to obtain a new geometrical ratio for minimum Euler
number and for minimum Euler and Stokes numbers. New cyclones over-perform
the standard Stairmand design performance. Pareto optimal solutions have been
obtained and a new correlation between the Euler and Stokes numbers is fitted.
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4.1 Introduction

Cyclone separators are widely used in gas-solid separation for aerosol sampling and
industrial applications [1] where both the gravity and centrifugal force are used to
separate solids from a mixture of solids and fluids. Cyclones have the following
advantages. Simplicity in construction, contain no moving parts, relatively main-
tenance free, can handle high pressure and temperature mixtures and corrosive
gases, relative economy in power consumption. Due to these advantages, cyclone
separators have become one of the most important particle removal devices in both
engineering and process operation [1] such as cement industry, oil and gas, coal
fired boiler, workshops and vacuum cleaners.

4.1.1 Cyclone Geometry

The cyclone geometry is described by seven geometrical parameters, viz. the inlet
height a and width b, the vortex finder diameter Dx and length S, the cylinder height
h, the cyclone total height Ht and cone-tip diameter Bc as shown in Fig. 4.1. It
has been approved in previous studies by the authors that only four geometrical

Fig. 4.1 Cyclone geometry.
In this study,
h=D D 1:5; S=D D
0:5; Bc=D D 0:375
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Table 4.1 The definition of the cyclone performance parameters

The Euler number Eu The Stokes number Stk50

The Euler number is the dimensionless pressure drop �P.
�P D (the area- and time-averaged static pressure at the inlet
section) - (the area- and time-averaged static pressure at the
gas exit section).

Eu D The pressure drop between the inlet and the gas exit

The average kinetic energy at the inlet

Eu D �P
1
2

�V2
in

where � is the gas density and Vin is the average

inlet velocity. Eu is not affected by operating conditions in
the high Reynolds number range (Re > 5 � 104, Re D �VinD

�
)

[3, 10]

Stk50 is the dimensionless cut-
off diameter x50. x50 is the parti-
cle diameter that produces 50 %
collection efficiency. Stk50 D
�px2

50Vin=.18�D/ D �p

�f
[11]. It

is the ratio between the particle
relaxation time (the time con-
stant in the exponential decay of
the particle velocity due to drag)
�p D �px2

50=.18�) and the gas
flow integral time scale �f D
D=Vin where �p is the particle
density and � is the gas viscosity

parameters significantly affect the cyclone flow pattern and performance [2–9]. The
four significant factors are the inlet section height a and width b, the vortex finder
diameter Dx and the cyclone total height Ht.

4.1.2 Cyclone Performance

Besides the separation efficiency (or alternatively, the cut-off diameter for low mass
particle loading), pressure drop is another major index for cyclone performance
evaluation. Therefore, it is necessary to obtain an accurate model to determine the
complex relationship between the performance parameters and the cyclone charac-
teristics. Table 4.1 presents more details about the two performance parameters.

4.1.3 Literature Review

To estimate the cyclone performance parameters there are five approaches:

1. Experimental investigations [12]
2. Theoretical and semi-empirical models [13]
3. Statistical models [14]
4. Computational fluid dynamics (CFD) [2–4, 7, 8]
5. Surrogate models (e.g., Polynomial regression (PR), Kriging (KG) and artificial

neural networks (ANN)) [5, 6]

The afore-mentioned prediction models (PR, KG and ANN) have numerous
drawbacks, which include locally optimal solutions, low generalization, over-fitting
and poor stability [15]. The support vector machine (SVM) surrogate can offer a
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better alternative to these models. In the field of performance evaluation for cyclone
separators, unfortunately, SVM does not receive a great deal of attention on its
algorithmic advantages. There is only one study using the support vector regression
(SVR) on cyclone separator performed by Zhao [1]. He approved the potential
of SVR to model the effect of cyclone geometry on the pressure drop (based on
experimental dataset collected from different sources) but he did not go further to
use the fitted SVR to study the effect of each parameter on the performance or for
optimization. Moreover, he used the traditional approach to find suitable values for
SVR parameters.

4.1.4 Target of This Study

This study aims to:

• Apply the SVR surrogate to model the variation of the two cyclone performance
parameters with the change in the most significant geometrical parameters based
on CFD based dataset.

• Introduce a computationally cheap framework for SVR parameter optimization
using a Python code.

• Compare the accuracy of the fitted SVRs models with the KG models.
• Study the effect of each significant geometrical parameter on the cyclone

performance using the SVR models.
• Optimize the cyclone performance for minimum Euler number as well as for best

performance using multi-objective optimization technique.

4.2 Least Squares: Support Vector Regression

The least squares support vector regression (LS-SVR) was introduced by Suykens
et al. [16] as a reformulation to the standard SVR. LS-SVR simplified the standard
SVR model to a great extent by applying linear least squares criteria to the loss
function instead of a traditional quadratic programming method [16]. As excellent
examples of the nonlinear dynamic system, LS-SVR based on the structured risk
minimization principle has been successfully applied to many fields of function
approximation and pattern recognition because of its high accuracy and gener-
alization capabilities [17]. Compared with ANN, LS-SVR seeks to minimize an
upper bound of the generalization error instead of the empirical error, and can
provide more reliable and better generalization performance under the same training
conditions [18].

In the LS-SVR model, the training dataset of l points is assumed to be xk; yk

(k D 1; 2; � � � ; l), in which xk 2 Rn is the input vector and yk 2 R is the
corresponding target vector. The regression problem can be transformed into the
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following optimization problem [15, 19]:

minimize
!;b;ek

�.!; e/ D 1

2
!T! C C

2

lX

kD1

e2
k (4.1)

subject to yk D !T�.xk/ C b C ek; .k D 1; 2; : : : ; l/ (4.2)

where ek is the error between the predicted value and the true value of the system,
C > 0 is the regularization parameter applied to minimize estimation error and
control function smoothness, �.�/ denotes the nonlinear mapping from input spaces
to feature space, ! is an adjustable weight vector and b is the bias (scalar threshold).
Equation (4.2) is the constraint.

The resulting LS-SVR model for function estimation is obtained as:

Oy D f .x/ D
lX

kD1

˛kK.xk; x/ C b (4.3)

In Eq. (4.3), K.xk; x/ is the kernel function which satisfies Mercers condition
corresponding to a dot product in some feature spaces. Four common Mercer kernel
functions are widely used [15]:

Linear kernel: K.xk; x/ D xT
k x

Polynomial kernel: K.xk; x/ D .xT
k x=	2 C �/d

RBF kernel: K.xk; x/ D exp.�� k xk � x k2/

Sigmoid kernel: K.xk; x/ D tanh.�xT
k x C r/

where d; � and 	 are constants.
Because RBF kernels map samples into high dimensional space in a nonlinear

fashion and have fewer parameters to set, and because this method handles the
nonlinear relationship well and has an excellent overall performance, it is by far
the most popular option for kernel function types [16]. This study consequently
adopted an RBF kernel function, shown in Eq. (4.4) in order to contribute to the
LS-SVR model’s achieving optimal solution.

K.xk; x/ D exp.�� k xk � x k2/ (4.4)

Generally, LS-SVR solves linear equations and will lead to important reductions
in calculation complexity. Compared with SVR, LS-SVR is characterized by faster
training speed, higher stability and better control strategy [15, 19].
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4.2.1 LS-SVR Parameter Optimization

The LS-SVR performance heavily depends on the choice of several hyperparame-
ters, which are necessary to define the optimization problem and the final LS-SVR
model.

To design an LS-SVR, one must choose a kernel function, set hyperparameters
such as the kernel parameters, and determine a regularization parameter C. The
hyperparameters that should be optimized include the regularization parameter C
and the kernel function parameters such as � for the radial basis function (RBF)
kernel. Thus, selecting appropriate model parameters has a crucial impact on
prediction accuracy. Unfortunately, there is no exact method to obtain the optimal
set of LS-SVR hyperparameters; consequently, a search algorithm must be applied
to obtain the parameters.

For the nonlinear LS-SVR, its generalization performance depends on the proper
setting of parameters C and kernel parameters � . Inappropriate hyperparameters
combinations in LS-SVR lead to over-fitting or under-fitting. One procedure to
obtain the LS-SVR parameters follows the trial and error approach to minimize
some generalized error measures such as the mean squared error. This procedure
is time-consuming, tedious and unable, in many cases, to converge at the global
optimum. Zhao [1] applied the two-step search technique to dynamically seek the
optimal values for the LS-SVR parameters. The two steps are: First perform a coarse
search to identify a better region in search field according to contour lines of MSE.
Then perform a fine search over that region. The disadvantage of the multi-step
search technique is that it will be more prone to be trapped in local optimum point
especially if a limited number of points are used.

In this study, we propose an alternative approach. The proposed approach
employs the simulated annealing optimization technique to heuristically seek the
optimal values for the LS-SVR parameters that minimize the difference between
the predicted and the true values.

The simulated annealing (SA) is used in this study to optimize the parameters of
SVR: C and kernel parameter � of RBF-kernel function. In the training and testing
process of LS-SVR, the objective is to minimize the errors between the actual and
predicted values of the testing samples. Therefore, the objective (fitness) function
of SA is the mean squared error from the cross validation.

In the parameters optimization process, K-fold cross validation is employed to
avoid the over-fitting and to calculate the fitness function. The original sample is
randomly partitioned into K subsamples. In these subsamples, a single subsample
is used as the validation data for testing the model while the other K-1 subsamples
are used as training data. The cross validation process is then repeatedly performed
K times, with each of the K subsamples selected exactly once as the validation
data. The cross validation error is estimated as the average mean squared error
(MSE) on test subsamples, as shown in Eq. (4.5). Commonly, fivefold and tenfold
cross validation is the most widely used method. In this study, the fivefold cross
validations are employed to estimate the MSE.
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Fig. 4.2 Flow chart for the complete optimization framework

MSE D 1

K

KX

jD1

0

@
NtjX

iD1

.byi � yi/
2

1

A (4.5)

where K is the number of folds (5 in this study), Ntj is the number of testing
points in fold j, yi represents the actual values and byi represents the predicted values.

Figure 4.2 presents a flow chart for the complete optimization framework.
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4.3 Results and Discussion

4.3.1 The Training Dataset

The training dataset has been created using the Box–Behnken design of experiment
(DoE) and has been used in a previous study to optimize the cyclone geometry
using the polynomial regression and RBF artificial neural network surrogates
[7]. The minimum and maximum values for the four design parameters are
listed in Table 4.2. To avoid scaling effect, all values are scaled (using the
preprocessing.MinMaxScaler class from Scikit-learn) to be in range
of 0 to 1 before being used in training the surrogates.

Table 4.3 presents the statistical descriptive parameters for the SVR (before and
after parameter optimization) and Kriging surrogate. It is clear that the SVR with
optimized parameter superior the performance of the Kriging model as is clear from
the better matching between the statistical descriptive parameters of the input and
the output results from the surrogate as well as the smaller value of MSE and the R2

value close to unity.

4.3.2 Geometry Effect

One of the benefits of using surrogate models is to apply them to study the effect of
each design variable on the response (performance parameters). The two optimized
SVR models are used to study the effect of the four geometrical parameters on both
the Euler number and the Stokes number. As is clear from Fig. 4.3, the SVR and
KG models give the same trend of variation but the SVR models can predict more
local variation than the KG model. It is worth to mention that the variation of the
Euler number with the change in the vortex finder diameter Dx predicted by the SVR
model is similar to that reported by the authors in previous studies [3, 7]. For the

Table 4.2 The values of the cyclone geometrical parameters used in the DoE (cf. Fig. 4.1)

Variables Minimum Center Maximum

Inlet height, x1 D a=D 0.4 0.55 0.7

Inlet width, x2 D b=D 0.14 0.27 0.4

Vortex finder diameter, x3 D Dx=D 0.2 0.475 0.75

Total cyclone height, x4 D Ht=D 3.0 5.0 7.0

Cylinder height, h=D 1.5

Vortex finder length, S=D 0.5

Cone-tip diameter, Bc=D 0.375

The values of the cylinder height, vortex finder length and the cone tip diameters are kept at the
Stairmand design values, where h � S D 1 which is the optimum difference between the two
dimensions as reported by many researchers [20]
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Fig. 4.3 Comparison between the effect of each geometrical parameter on the cyclone perfor-
mance parameters using SVR (black lines) and KG (blue lines)

variation of the cyclone performance with the total height (Ht), the reduction in the
Euler number (pressure drop) stops after Ht D 4:625 whereas the enhancement in
the collection efficiency (reduction in the cut-off diameter) continue with lengthen
the cyclone.

4.3.3 Geometry Optimization

Two optimization techniques have been applied to obtain new geometrical ratio
set, namely the Nelder–Mead technique [22] and the genetic algorithms [6, 23].
Table 4.4 lists the new generated cyclone geometry ratios for minimum pressure
drop (Euler number).

For single objective and one parameter optimization using the Nelder–Mead
technique from Scipy. The total cyclone height Ht is optimized for minimum Euler
number. The optimum value of Ht is 4.694, i.e., hc D 3:194, where h D 1:5 which
results in Eu D 3:432.
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Table 4.4 Optimum geometrical ratios for minimum Euler number

a b Dx Ht Eu

Optimum cyclone total height (Nelder–Mead technique) 0.25 0.15 0.5 4.694 3.432

Optimization of the four factors (Nelder–Mead technique) 0.499 0.15 0.658 3.0 0.667

Fig. 4.4 Pareto front for
NSGA-II optimization with
polynomial fit

Since the cyclone performance has two major performance indices (the Euler
and the Stokes numbers) a multi-objective optimization process is needed for
optimum cyclone performance. In this study, NSGA-II [7, 24] available from deep
(evolutionary toolbox for python) [25] has been used to obtain the Pareto front
shown in Fig. 4.4.

The obtained Pareto front has been used to fit a correlation between the two
performance parameters. The application of the polyfit function from Numpy
Python package [26] results in the following correlation

Stk50 � 103 D 10�0:065z3�0:195z2�0:193zC0:372

where z D log10.Eu/. It is worth to mention that the accuracy of the new third
order correlation is R2 D 0:996 which is superior that proposed by the authors in a
previous article [6]. This correlation can be used to predict the Stokes number (the
cut-off diameter) given the pressure drop (Euler number).

Conclusions
In order to accurately predict the complex nonlinear relationships between the
cyclone performance parameters and its geometrical dimensions, the support
vector machines approach has been used and compared with the Kriging
surrogate. Two SVR surrogate models have been trained and tested by 33
CFD datasets. The result demonstrates that SVR can offer an alternative and

(continued)
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powerful approach to model the performance parameters. The SVR model
parameters have been optimized to obtain the most accurate results from
the cross validation steps. The parameters optimization has been optimized
using the Simulated annealing technique. SVR (with optimized parameters)
can offer an alternative and powerful approach to model the performance
parameters better than Kriging. The SVR surrogates used to study the effect
of the four geometrical parameters on the cyclone performance. The genetic
algorithms optimization technique has been used to obtain a new geometrical
ratio for minimum Euler number and for minimum Euler and Stokes numbers.
The new cyclones over-perform the standard Stairmand design performance.
A new correlation between the Stokes number and Euler number is provided
which is more accurate than the existing correlations in the literature.
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