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Abstract. The neighbourhood of a language L with respect to an addi-
tive distance consists of all strings that have distance at most the given
radius from some string of L. We show that the worst case (deterministic)
state complexity of a radius r neighbourhood of a language recognized
by an n state nondeterministic finite automaton A is (r+2)n. The lower
bound construction uses an alphabet of size linear in n. We show that the
worst case state complexity of the set of strings that contain a substring
within distance r from a string recognized by A is (r + 2)n−2 + 1.
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1 Introduction

The similarity of strings is often defined using the edit distance [11,16], also
known as the Levenshtein distance [14]. The edit distance is particularly useful
for error-correction and error-detection applications [7–10,12]. A useful property
is that the edit distance is additive with respect to concatenation of strings in
the sense defined by Calude et al. [4].

If the distance of any two distinct strings of a language L is greater than r, the
language L can detect up to r errors [9,11,13] (assuming the errors have unit
weight). Alternatively we can consider what the shortest distance is between
strings in languages L1 and L2, that is, what is the smallest number errors
that transform a string of L1 into a string of L2. Calude at al. [4] showed that
the neighbourhood of a regular language with respect to an additive distance is
always regular. Additive quasi-distances preserve regularity as well [4]. This gives
rise to the question how large is the deterministic finite automaton (DFA) needed
to recognize the neigbourhood of a regular language. Informally, determining the
optimal size of the DFA for the neighbourhood gives the state complexity of error
detection. Note that since complementation does not change the size of a DFA,
the size of the minimal DFA for the neighbourhood of L of radius r equals to
the state complexity of the set of strings that have distance at least r + 1 from
any string in L.

Povarov [17] showed that the Hamming neighbourhood of radius one of an
n-state DFA language can be recognized by a DFA of size n · 2n−1 + 1 and also
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gave a lower bound 3
8n · 2n − 2n−4 +n for its state complexity. Using a weighted

finite automaton construction the third author and Schofield [18] gave an upper
bound of (r+2)n for the neighbourhood of radius r of an n-state DFA-language.
No good lower bounds are known for neighbourhoods of radius at least two.

The string matching problem consists of finding occurrences of a particular
string in a text [2]. El-Mabrouk [6] considers the problem of pattern matching
with r mismatches from a descriptional complexity point of view. Given a pattern
P of length m and a text T , the problem is to determine whether T contains
substrings of length m having characters differing from P in at most r positions,
that is, substrings having Hamming distance at most r from P . For a pattern
P = am consisting of occurrences of only one character, the state complexity
was shown to be

(
m+1
r+1

)
[6].

The state complexity of Σ∗LΣ∗ was considered by Brzozowski, Jirásková,
and Li [3] and was shown to have a tight bound of 2n−2 + 1. A DFA recogniz-
ing Σ∗LΣ∗ can be viewed to solve the exact string matching problem. In the
terminology of Brzozowski et al. [3], Σ∗LΣ∗ is a two-sided ideal and the descrip-
tional complexity of related subregular language families was studied recently
by Bordihn et al. [1].

This paper studies the descriptional complexity of neighbourhoods and of
approximate string matching. As our main result we give a lower bound (r+2)n

for the size of a DFA recognizing the radius r neighbourhood of an n-state regular
language. The lower bound matches the previously known upper bound [18]. The
bound can be reached either using a neighbourhood of an n-state DFA language
with respect to an additive quasi-distance or using a neighbourhood of an n state
NFA (nondeterministic finite automaton) language using an additive distance.

The lower bound constructions use an alphabet of size linear in n. A further
limitation is that the (quasi-)distance associates different values to different edit
operations. The precise state complexity of the edit distance with unit error costs
remains open.

We also show that if L is recognized by an n-state NFA the set of strings
that contain a substring within distance r from a string in L with respect to
an additive (quasi-)distance is recognized by a DFA of size (r + 2)n−2 + 1 and
that this bound cannot be improved in the worst case. When r is zero the result
coincides with the state complexity of two-sided ideals [3].

2 Preliminaries

Here we briefly recall some definitions and notation used in the paper. For all
unexplained notions on finite automata and regular languages the reader may
consult the textbook by Shallit [19] or the survey by Yu [20]. A survey of distances
is given by Deza and Deza [5] and the notion of quasi-distance is from Calude
et al. [4].

We denote by Σ a finite alphabet, Σ∗ the set of words over Σ, and ε the empty
word. A nondeterministic finite automaton (NFA) is a tuple A = (Q,Σ, δ, q0, F )
where Q is a finite set of states, Σ is an alphabet, δ is a multi-valued transition
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function δ : Q × Σ → 2Q, q0 ∈ Q is the initial state, and F ⊆ Q is a set of final
states. We extend the transition function δ to Q × Σ∗ → 2Q in the usual way.
A word w ∈ Σ∗ is accepted by A if δ(q0, w)∩F �= ∅ and the language recognized
by A consists of all strings accepted by A. The automaton A is a deterministic
finite automaton (DFA) if, for all q ∈ Q and a ∈ Σ, δ(q, a) either consists of one
state or is undefined. The DFA A is complete if δ(q, a) is defined for all q ∈ Q
and a ∈ Σ. Two states p and q of a DFA A are equivalent if δ(p,w) ∈ F if
and only if δ(q, w) ∈ F for every string w ∈ Σ∗. A complete DFA A is minimal
if each state q ∈ Q is reachable from the initial state and no two states are
equivalent. The (right) Kleene congruence of a language L ⊆ Σ∗ is the relation
≡L⊆ Σ∗ × Σ∗ defined by setting

x ≡L y iff [(∀z ∈ Σ∗) xz ∈ L ⇔ yz ∈ L].

The language L is regular if and only if the index of ≡L is finite and, in this case,
the index of ≡L is equal to the size of the minimal DFA for L [19]. The minimal
DFA for a regular language L is unique. The state complexity of L, sc(L), is the
size of the minimal complete DFA recognizing L.

A function d : Σ∗ ×Σ∗ → [0,∞) is a distance if it satisfies for all x, y, z ∈ Σ∗

the conditions d(x, y) = 0 if and only if x = y, d(x, y) = d(y, x), and d(x, z) ≤
d(x, y) + d(y, z). The function d is a quasi-distance [4] if it satisfies conditions
2 and 3 and d(x, y) = 0 if x = y; that is, a quasi-distance between two distinct
elements can be zero. In the following, unless otherwise mentioned, we consider
only integral (quasi-)distances; that is, d is always a function Σ∗ × Σ∗ → IN0.

The neighbourhood of a language L of radius r is the set

E(L, d, r) = {x ∈ Σ∗ | (∃w ∈ L)d(x,w) ≤ r}.

A distance d is finite if for all nonnegative integers r the neighbourhood of radius
r of any string with respect to d is finite. A distance d is additive [4] if for every
factorization of a string w = w1w2 and radius r ≥ 0,

E(w, d, r) =
⋃

r1+r2=r

E(w1, d, r1) · E(w2, d, r2).

A neighbourhood of a regular language with respect to an additive quasi-distance
is regular [4].

The following upper bound for the state complexity of the neighbourhood
of a regular language with respect to additive distances is known by [18] and
by [15] for additive quasi-distances. The results are stated in terms of weighted
finite automata.

Proposition 2.1 ([15,18]). If A is an n-state NFA and d an additive quasi-
distance, then for any r ∈ IN, sc(E(L(A), d, r)) ≤ (r + 2)n.

We will use also the NFA construction for a neighbourhood due to
Povarov [17]. Informally, the construction makes r +1 copies of an NFA A, with
each copy corresponding to a cumulative error ranging from 0 to r. A transition
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from a level i to a level i′ > i occurs when there is a transition that does not
exist in A. There are r+1 such copies of A to allow for at most r errors. Strictly
speaking, [17] deals with additive distances but exactly the same construction
works for quasi-distances.

Proposition 2.2 ([17]). If A is an NFA with n states and d is an additive
quasi-distance, then E(L(A), d, r) has an NFA of size n · (r + 1).

3 State Complexity of Additive Neighbourhoods

As the main result of this section we give a tight lower bound for the state com-
plexity of a neighbourhood of a regular language given by a DFA (respectively,
by an NFA) with respect to an additive quasi-distance (respectively, an additive
distance).

For n ∈ IN we consider an alphabet

Σn = {a1, . . . , an−1, b1, . . . , bn, c1, . . . , cn−1}. (1)

For r ∈ IN, we define a quasi-distance dr : Σ∗
n × Σ∗

n → IN0 by the conditions:

– dr(ai, aj) = r + 1 for i �= j
– dr(bi, bj) = 1 for i �= j
– dr(ai, bj) = dr(ci, bj) = r + 1 for all 1 ≤ i, j ≤ n
– dr(ai, ci) = 0 for 1 ≤ i ≤ n − 1
– dr(ci, cj) = r + 1 for all 1 ≤ i, j ≤ n
– dr(ai, cj) = r + 1 for all i �= j
– dr(σ, ε) = r + 1 for all σ ∈ Σ.

Note that the value dr(σ, ε) denotes the cost of the deletion and insertion oper-
ations and that the listed substitution, insertion, and deletion operations on
elements of Σn define a unique additive quasi-distance of Σ∗

n [4].

Lemma 3.1. The function dr is an additive quasi-distance.

We define the following family of incomplete DFAs. Let An =
(Qn, Σn, δ, 1, {n}) be a DFA with n states where Qn = {1, . . . , n} and Σn is
as in (1). The transition function δ is defined by setting

– δ(i, ai) = i + 1 for 1 ≤ i ≤ n − 1
– δ(i, aj) = i for 1 ≤ i ≤ n − 2 and i + 1 ≤ j ≤ n − 1
– δ(i, bj) = i for 1 ≤ i ≤ n − 1 and j = i − 1 or i + 1 ≤ j ≤ n
– δ(i, ci) = i for 1 ≤ i ≤ n − 1

All transitions not listed are undefined. The DFA An is depicted in Figure 1.
The quasi-distance dr identifies the symbols ai and ci, 1 ≤ i ≤ n. By using

two different symbols that have distance zero in our quasi-distance allows us
to define An to be deterministic. By identifying ai and ci we can later modify
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1start 2 · · · n− 1 n
a1 a2 an−2 an−1

c1, a2, . . . , an−1

b2, b3, . . . , bn

c2, a3, . . . , an−1

b1, b3, . . . , bn
cn−1, bn−2, bn

bn−1

Fig. 1. The DFA An

the construction to give a lower bound for the neighbourhood of a language
recognized by an NFA with respect to a distance (see Lemma 3.4).

To establish a lower bound for the state complexity of the neighbourhood
E(L(An), dr, r) we define a set S of strings that are all pairwise inequivalent
with respect to the Kleene congruence of the neighbourhood. First we construct
an NFA Bn,r for E(L(An), dr, r) and the inequivalence of the strings in S is
verified using properties of Bn,r.

Suppose we have a DFA A = (Q,Σ, δ, q0, F ). Using Proposition 2.2 (due
to [17]), an NFA B = (Q′, Σ, δ′, q′

0, F
′) which recognizes the neighbourhood

of radius r of L(A) with respect to a quasi-distance d is defined by setting
Q′ = Q × {0, . . . , r}, q′

0 = (q0, 0), F ′ = F × {0, . . . , r} and the transitions of δ′

for q ∈ Q, 0 ≤ k ≤ r and a ∈ Σ are defined as

δ′((q, k), a) = (δ(q, a), k) ∪
⋃

b∈(Σ∪{ε})\{a}
{(δ(q, b), k + d(a, b)) | k + d(a, b) ≤ r}.

Now as described above we construct the NFA

Bn,r = (Q′
n, Σn, δ′, q′

0, F
′), (2)

shown in Figure 2, which recognizes the neighbourhood of L(An) of radius r with
respect to the quasi-distance dr, where Q′

n = Qn × {0, 1, . . . , r}, q′
0 = (q0, 0),

F ′ = F × {0, 1, . . . , r} and the transition function δ′ is defined by

– δ′((q, j), aq) = {(q, j), (q + 1, j)} for 1 ≤ q ≤ n − 1,
– δ′((q, j), aq′) = {(q, j)} for all 1 ≤ q ≤ n − 1 and q ≤ q′ ≤ n − 1,
– δ′((q, j), bi) = {(q, j + 1)} for 1 ≤ q ≤ n and i = 1, . . . , q − 2, q,
– δ′((q, j), bi) = {(q, j)} for 1 ≤ q ≤ n and i = q − 1, q + 1, . . . , n,
– δ′((q, j), cq) = {(q, j), (q + 1, j)} for 1 ≤ q ≤ n − 1.

All transitions not listed above are undefined. Note that since in the distance dr

the cost of inserting/deleting a symbol is r + 1 and Bn,r recognizes a neigh-
bourhood of radius r there are no error transitions corresponding to inser-
tion/deletion. For the same reason the only error transitions for substitution
correspond to substituting bi with bj , i �= j. The distance between ai and ci is
zero (no error), and all other substitutions have cost r + 1.

For 0 ≤ ki ≤ r + 1, 1 ≤ i ≤ n, we define the string

w(k1, . . . , kn) = a1b
k1
1 a2b

k2
2 · · · an−1b

kn−1
n−1 bkn

n . (3)
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Fig. 2. The NFA Bn,r

The next lemma establishes a technical property of the computations of the NFA
Bn,r on the strings w(k1, . . . , kn). The property is then used to establish that
the strings are pairwise inequivalent with respect to the language recognized by
Bn,r.

Lemma 3.2. If ki ≤ r, then there exists a computation Ci of the NFA Bn,r

which reaches the state (i, ki) at the end of the input w(k1, . . . , kn), 1 ≤ i ≤ n.
There is no computation of Bn,r on w(k1, . . . , kn) that reaches a state (i, k′

i) with
k′

i < ki. Furthermore, if ki = r + 1, no computation of Bn,r reaches at the end
of w(k1, . . . , kn) a state where the first component is i.

Proof. We verify that a computation Ci can reach state (i, ki), ki ≤ r. First
consider the case i < n. For j = 1, . . . , i−1, aj takes state (j, 0) to (j +1, 0) and
the next kj symbols bj are read using the self-loop in state (j +1, 0). In this way
the computation reaches state (i, 0) where we read ai using the self-loop and
then reading the ki symbols bi the computation reaches (i, ki). In state (i, ki)
the remaining suffix ai+1b

ki+1
i+1 · · · an−1b

kn−1
n−1 bkn

n is consumed using the self-loops.
Second, in the case i = n similarly as above the computation after symbol an−1

reaches state (n, 0), the symbols bn−1 are read using self-loops and reading the
kn symbols bn takes us to state (n, kn).

To verify the second part of the lemma we first observe the following. The
only transitions of Bn,r which move from a state (i, j) to a state of the form
(i + 1, j′), 0 ≤ j ≤ r, are on symbols ai and ci. Note that since the distance dr
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associates cost r + 1 to insertions and deletions, as well as to replacing ai or ci

by any other symbol, the NFA Bn,r does not have error transitions that change
the first component of a state. Since dr(ai, ci) = 0, we can treat them as the
same letter and for convenience, we refer only to ai. Thus, the only way to reach
a state (q, j) for any j ≤ r, is by taking transitions ((i, j), ai, (i + 1, j)) on each
occurrence of ai in w(k1, . . . , kn) for i < q. Otherwise, the computation remains
in some state (i′, j) for i′ < q.

Now we show that there is no computation of w(k1, . . . , kn) that can reach a
state (j, k′

j) with k′
j < kj . As discussed above, the only way for the computation

to end in a state (j, i), 0 ≤ i ≤ r, is by reaching the state (j, 0) when consuming
the prefix a1b

k1
1 · · · aj−1b

kj−1
j−1 and then reading aj using a self-loop. There is no

other way to reach a state (j, i) for any i, since exiting the states with second
components zero (corresponding to the original DFA) requires reading some aj′

with a self-loop, after which there is no transition which can be taken to move to
a state (j′ + 1, i). If in the state (j, 0) the symbol aj is not read with a self-loop
then the first component becomes j + 1 and we cannot reach a state (j, i) with
the remaining suffix. Thus, from (j, 0) the NFA is forced to read the following kj

symbols bj with error transitions, ending in the kj-th level in the state (j, kj).
Exactly the same argument verifies that in the case kj = r+1, no computation

can end in a state where the first component is j. As above it is seen that to
do this we must in the state (j, 0) read the symbol aj with a self-loop and after
attempting to read the following r + 1 symbols bj with an error transition the
computation becomes undefined. ��

With the previous lemma we can now establish a lower bound for the state
complexity of the neighbourhood of L(An).

Lemma 3.3. Let An be the DFA as in Figure 1. The strings w(k1, . . . , kn),
0 ≤ ki ≤ r+1, 1 ≤ i ≤ n, are all pairwise inequivalent with respect to the Kleene
congruence of E(L(An), dr, r).

Proof. We consider two distinct strings w(k1, . . . , kn) and w(k′
1, . . . , k

′
n) with

0 ≤ ki, k
′
i ≤ r + 1 for i = 1, . . . , n. There exists an index j such that kj �=

k′
j and without loss of generality, we have kj < k′

j . To distinguish the strings

w(k1, . . . , kn) and w(k′
1, . . . , k

′
n) consider the word z = b

r−kj

j aj+1 · · · an−1. The
string z is well-defined since kj < k′

j ≤ r + 1 and so r − kj ≥ 0.
Let Bn,r be the NFA constructed for E(L(A), dr, r) as in (2). We claim that

w(k1, . . . , kn) · z ∈ L(Bn,r) but w(k′
1, . . . , k

′
n) · z �∈ L(Bn,r). We note that by

Lemma 3.2, Bn,r has a computation on w(k1, . . . , kn) that ends in state (j, kj).
Note that kj ≤ r. When continuing the computation on the string z, by reading
the r − kj symbols bj ’s, the machine is taken to the state (j, r). Then, reading
the suffix aj+1 · · · an−1 takes the machine to the accepting state (n, r).

To show w(k′
1, . . . , k

′
n) · z �∈ L(Bn,r), we consider from which states of Bn,r

an accepting state, that is, a state with first component n is reachable on the
string z. We recall that in Bn,r the transitions on bj cannot change the first com-
ponent of the state. (According to the definition of Bn,r the reason for this is that
dr associates cost r+1 to insertion/deletion or to subsitute a symbol ai, ci by bj .)
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Thus, for Bn,r to reach an accepting state (with first component n) on the
string w(k′

1, . . . , k
′
n)·z, a computation must reach a state of the form (j, �j) on the

prefix w(k′
1, . . . , k

′
n). By Lemma 3.2, this is possible only if �j ≥ k′

j . From state

(j, �j), �j ≥ k′
j , reading the substring b

r−kj

j takes the machine to an undefined
state, as it is not possible to make r − kj error transitions on bj in a state where
the second component is �j > kj . This means that Bn,r cannot accept the string
w(k′

1, . . . , k
′
n) · z.

Thus, each string w(k1, . . . , kn), 0 ≤ i ≤ r + 1, 1 ≤ i ≤ n, defines a distinct
equivalence class of ≡E(L(A),dr,r). ��

As a corollary of the proof of the previous lemma we get also a lower bound
for the state complexity of the neighbourhood of an NFA-language with respect
to an additive distance.

Lemma 3.4. For n, r ∈ IN there exists an additive distance d′
r and an NFA A′

n

over an alphabet Σ′
n of size 2n − 1 such that

sc(E(L(A′
n), d′

r, r)) ≥ (r + 2)n.

Proof. Choose Σ′
n = {a1, . . . , an−1, b1, . . . , bn} and d′

r is the restriction of dr to
the alphabet Σ′

n (where dr is the quasi-distance of Lemma 3.1). The function d′
r

does not assign distance zero to any pair of distinct elements.
The NFA A′

n is obtained from the DFA An in Figure 1 by replacing all ci-
transitions by ai-transitions, 1 ≤ i ≤ n − 1. Thus, A′

n is nondeterministic. An
NFA B′

n,r for the neighbourhood E(L(A′
n), d′

r, r) is obtained from the NFA Bn,r

in (2) simply by omitting all transitions on ci, 1 ≤ i ≤ n − 1. Note that in Bn,r

the transitions on ci exactly coincide with the transitions on ai, 1 ≤ i ≤ n − 1,
reflecting the situation that dr(ai, ci) = 0.

The strings w(k1, . . . , kn) (as in (3)) did not involve any symbols ci, and the
proof of Lemma 3.3 remains the same, word for word, just by replacing Bn,r

with B′
n,r. ��

Now putting together Lemma 3.3, Lemma 3.4 and Proposition 2.1, we have:

Theorem 3.1. If d is an additive quasi-distance, A is an NFA with n states
and r ∈ IN,

sc(E(L(A), d, r) ≤ (r + 2)n).

There exists an additive quasi-distance dr and a DFA A with n states over an
alphabet of size 3n − 2 such that sc(E(L(A), dr, r) = (r + 2)n.

There exists an additive distance d′
r and an NFA A′ with n states over an

alphabet of size 2n − 1 such that sc(E(L(A′), d′
r, r) = (r + 2)n.

The lower bound construction has the trade-off of either using a DFA and a
quasi-distance or an NFA and a distance, respectively. It would be interesting to
know whether or not the general upper bound can be improved in cases where
we are using a distance and the language is specified by a DFA.
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4 State Complexity of Pattern Matching

We consider an extension of the pattern matching problem with mismatches in
the sense of El-Mabrouk [6]. For a given finite automaton A and an additive
quasi-distance d we construct a DFA for the language Σ∗E(L(A), d, r)Σ∗, that
is, the set of strings that contain a substring within distance r from a string of
L(A). The construction gives an upper bound for the pattern matching problem
and using a modification of the constructions in the previous section we show
that the upper bound is optimal.

Lemma 4.1. Let A = (Q,Σ, δ, q0, FA) be an n-state NFA with k ≥ 1 final states
and d is an additive quasi-distance. Then the language

L1 = Σ∗E(L(A), d, r)Σ∗

can be recognized by a DFA B with (r + 2)n−1−k + 1 states.

Proof. Let Q = {q0, q1, . . . , qn−1}. If q0 ∈ FA, then L1 = Σ∗ and there
is nothing to prove. Thus, in the following we can assume that F =
{qn−k, qn−k+1, . . . , qn−1}, 1 ≤ k ≤ n−1. Furthermore, without loss of generality
we assume that

(∀w ∈ Σ∗) δ(q0, w) ∩ FA �= ∅ implies d(ε, w) > r. (4)

If the above condition does not hold, ε ∈ E(L(A), d, r) and there is nothing to
prove.

The DFA B recognizing L1 operates as follows. Roughly speaking, B is look-
ing for a substring of the input that belongs to E(L(A), d, r). For this purpose,
for all non-final states qz of A, the deterministic computation of B keeps track
of the smallest cumulative error between a string that takes q0 to qz and any
suffix of the input processed thus far. Note that for the initial state q0 this value
is always zero and, hence, the states of P store the cumulative error only for
the nonfinal states q1, . . . , qn−k−1. When B has found a substring belonging to
E(L(A), d, r) the computation goes to the final state pf and after that accepts
an arbitrary suffix. Next we give the definition of B and after that include a
brief correctness argument.

Define B = (P,Σ, γ, p0, FB) with set of states

P = {(i1, . . . , in−k−1) | 0 ≤ ij ≤ r + 1, j = 1, . . . , n − k − 1} ∪ {pf},

the initial state is p0 = (h1, . . . , hn−k+1) where

hz = inf{d(ε, w) | qz ∈ δ(q0, w)}, 1 ≤ z ≤ n − k − 1,

and the set of final states is defined as FB = {pf}. Note that by (4) we know
that ε �∈ L1. Next we define the transitions of B. First, γ(pf , b) = pf for all
b ∈ Σ. For p = (i1, . . . , in−k−1) ∈ P , 0 ≤ iz ≤ r + 1, z = 1, . . . , n − k − 1, and
b ∈ Σ we define
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(i) γ(p, b) = pf if (∃1 ≤ z ≤ n − k − 1)(∃w ∈ Σ∗) δ(qz, w) ∩ FA �= ∅ and iz +
d(b, w) ≤ r;

(ii) and if the conditions in (i) do not hold, then γ(p, b) = (j1, . . . , jn−k−1),
where, for x = 1, . . . , n − k − 1,

jx = inf[ {iz + d(b, w) | qx ∈ δ(qz, w), 1 ≤ z ≤ n − k − 1}
∪ {d(b, w) | qx ∈ δ(q0, w)} ].

In a state of the form (i1, . . . , in−k−1) ∈ P , the component iz, 1 ≤ z ≤ n−k−1,
keeps track of the smallest distance d(usuf , w) where usuf is a suffix of the input
processed up to that point and w is a string that in A takes the initial state q0 to
state qz. The smallest error between the suffix ε and a string that in A reaches q0
is always zero and this value is not stored in the state of B. If the computation has
found a substring in E(L(A), d, r), the state of B will be pf . ��

By modifying the construction used in the proof of Lemma 3.4 (and
Lemma 3.3) we give a lower bound that matches the upper bound from
Lemma 4.1.

Lemma 4.2. For n, r ∈ IN, there exist an additive distance d and an NFA A
with n states defined over an alphabet Σ of size 2n − 1 such that the minimal
DFA for Σ∗E(L(A), d, r)Σ∗ must have at least (r + 2)n−2 + 1 states.

Proof. Choose Σn = {a1, . . . , an−1, b1, . . . , bn} and let A′
n and d′

r be as in the
proof of Lemma 3.4. Let B′

n,r be the NFA constructed for E(L(A′
n), d′

r, r) in the
proof of Lemma 3.4.1 For 0 ≤ ki ≤ r + 1, i = 1, 2, . . . , n − 2, define

u(k1, k2, . . . , kn−2) = a1b
k1
1 a2b

k2
2 · · · an−2b

kn−2
n−2 .

Using the notations of (3) we have u(k1, . . . , kn−2) · an−1 = w(k1, k2, . . . , kn−2,
0, 0).

We claim that the strings u(k1, . . . , kn−2) are all pairwise inequivalent with
respect to the Kleene congruence of Σ∗

nE(L(A′
n), d′

r, r)Σ
∗
n. Consider two strings

u(k1, . . . , kn−2) and u(k′
1, . . . , k

′
n−2) where for some 1 ≤ j ≤ n − 2, kj < k′

j .

Choose z = b
r−kj

j aj+1 · · · an−1. As in the proof of Lemma 3.2 it is observed
that B′

n,r has a computation on u(k1, . . . , kn−2) that reaches state (j, kj), and a
computation started from state (j, kj) on input z can reach the accepting state
(n, r). Thus, u(k1, . . . , kn−2) · z ∈ L(B′

n,r) = E(L(A′
n), d′

r, r). We claim that

u(k′
1, . . . , k

′
n−2) · z �∈ Σ∗

nE(L(A′
n), d′

r, r)Σ
∗
n. (5)

Note that the string u(k′
1, . . . , k

′
n−2)·z contains exactly one occurrence of both a1

and an−1 and these are, respectively, the first and the last symbol of the string.
Since the distance d′

r associates cost r + 1 to any operation that substitutes,
deletes or inserts a symbol ai, if the negation of (5) holds then the only possibility
is that u(k′

1, . . . , k
′
n−2) · z must be in E(L(A′

n), d′
r, r). This, in turn, is possible

1 B′
n,r is obtained from the NFA of Fig. 2 by omitting all the transitions on ci’s.
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only if the computation of B′
n,r on the prefix u(k′

1, . . . , k
′
n−2) ends in a state of

the form (j, x), 0 ≤ x ≤ r. Now Lemma 3.2 implies that the second component
x must be at least k′

j and it follows that the computation on the suffix z cannot
end in an accepting state. (Lemma 3.2 uses Bn,r but the same argument applies
here because Bn,r equals B′

n,r when we omit the ci-transitions.)
Finally we note that none of the strings u(k1, . . . , kn−2), 0 ≤ ki ≤ r + 1,

is in Σ∗
nE(L(A′

n), d′
r, r)Σ

∗
n and hence they are not equivalent with a1a2 · · · an−1

which then gives the one additional equivalence class. ��
Combining the previous lemmas we can state the main result of this section.

Theorem 4.1. Let d be an additive quasi-distance on Σ∗. For any n-state NFA
A and r ∈ IN we have

sc(Σ∗ · E(L(A), d, r) · Σ∗) ≤ (r + 2)n−2 + 1).

For given n, r ∈ IN there exists an additive distance dr and an n-state NFA
A defined over an alphabet of size 2n − 1 such that sc(Σ∗E(L(A), dr, r)Σ∗ =
(r + 2)n−2 + 1.

Proof. The upper bound of Lemma 4.1 is maximized by an NFA with one final
state as (r + 2)n−2 + 1. The lower bound follows by Lemma 4.2. ��

Recall that Brzozowski et al. [3] have shown that, for an n-state DFA language
L, the worst case state complexity of the two-sided ideal Σ∗LΣ∗ is 2n−2 + 1.
This corresponds to the case of having error radius zero (r = 0) in Theorem 4.1.
Lemma 4.2 requires a linear size alphabet whereas the lower bound for the error
free case is obtained with a three letter alphabet [3]. As in Theorem 3.1 in the
lower bound result of Lemma 4.2 we can select A to be a DFA if we allow d to
be a quasi-distance.

5 Conclusion

We have given a tight lower bound construction for the state complexity of a
neighbourhood of a regular language. The construction uses a variable alphabet
of size linear in the number of states of the NFA. The main open problem
for further work is to develop lower bounds for neighbourhoods of languages
over a fixed alphabet. For radius one Hamming neighbourhoods an improved
upper bound and a good lower bound using a binary alphabet were given by
Povarov [17].

Our lower bound for the approximate pattern matching problem was obtained
by modifying the lower bound construction for neighbourhoods of a regular lan-
guage. This was, roughly speaking, made possible by the choice of the distance
function and the language definition where the strings must contain the sym-
bols a1, . . . , an−1 in this particular order. Similar constructions will be more
challenging if restricted to a fixed alphabet.
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3. Brzozowski, J., Jirásková, G., Li, B.: Quotient complexity of ideal languages.
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