
Path Checking for MTL and TPTL
over Data Words

Shiguang Feng1(B), Markus Lohrey2, and Karin Quaas1

1 Institut für Informatik, Universität Leipzig, Leipzig, Germany
2 Department für Elektrotechnik und Informatik,

Universität Siegen, Siegen, Germany
shig.feng@gmail.com

Abstract. Precise complexity results are derived for the model checking
problems for MTL and TPTL on (in)finite data words and deterministic
one-counter machines. Depending on the number of register variables and
the encoding of constraint numbers (unary or binary), the complexity
is P-complete or PSPACE-complete. Proofs can be found in the long
version [10].

1 Introduction

Linear time temporal logic (LTL) is nowadays of the main logical formalisms for
describing system behaviour Triggered by real time applications, various timed
extensions of LTL have been invented. Two of the most prominent examples
are MTL (metric temporal logic) [13] and TPTL (timed propositional temporal
logic) [2]. In MTL, the operators next (X) and until (U) are indexed by time
intervals. For instance, the formula pU[2,3) q holds at time t, if there is a time t′ ∈
[t+2, t+3), where q holds, and p holds during the interval [t, t′). TPTL is a more
powerful logic that is equipped with a freeze formalism. It uses register variables,
which can be set to the current time value and later these register variables can
be compared with the current time value. For instance, the above MTL-formula
pU[2,3) q is equivalent to the TPTL-formula x.(pU (q ∧ 2 ≤ x < 3)). Here, the
constraint 2 ≤ x < 3 should be read as: The difference of the current time
value and the value stored in x is in the interval [2, 3). In this paper, we always
use the discrete semantics (opposed to the continuous semantics), where formulae
are interpreted over (in)finite timed sequences (P0, d0)(P1, d1) . . . , where the di

are time stamps and the Pi are sets of atomic propositions.
The freeze mechanism from TPTL has also received attention in connection

with data words. A data word is a finite or infinite sequence (P0, d0)(P1, d1) . . .
of the above form, where we do not require the data values di to be monotonic,
and we speak of non-monotonic data words. As for TPTL, freezeLTL can store
the current data value in a register x. But in contrast to TPTL, the value of x
can only be compared for equality with the current data value.

S. Feng—The author is supported by the German Research Foundation (DFG), GRK
1763.

c© Springer International Publishing Switzerland 2015
I. Potapov (Ed.): DLT 2015, LNCS 9168, pp. 326–339, 2015.
DOI: 10.1007/978-3-319-21500-6 26

Path Checking for MTL and TPTL over Data Words 327

Satisfiability and model checking for MTL, TPTL and freezeLTL have been
studied intensively in the past [2–4,7,8,15–17]. For model checking freezeLTL the
authors of [8] consider one-counter machines (OCM) as a mechanism for gener-
ating infinite non-monotonic data words, where the data values are the counter
values along the unique computation path. Whereas freezeLTL model checking for
non-deterministic OCM is Σ1

1 -complete, the problem becomes PSPACE-complete
for deterministic OCM [8].

In this paper, we study MTL and TPTL over non-monotonic data words. The
latter logic extends both freezeLTL over non-monotonic data words and TPTL
over monotonic data words: As for freezeLTL, data values are natural numbers
that can vary arbitrarily over time. In contrast to the latter, one can express
that the difference of the current data value and the value stored in a register
belongs to a certain interval, whereas freezeLTL only allows to say that this
difference is zero. Applications for TPTL over non-monotonic data values can
be seen in areas, where data streams of discrete values have to be analyzed
and the focus is on the dynamic variation of the values (e.g. streams of discrete
sensor data or stock charts). Recently, it has been shown that (in contrast to
the monotonic setting [1]) in the non-monotonic setting, TPTL is strictly more
powerful than MTL [5].

We investigate the complexity of model checking problems for TPTL over
non-monotonic data words. These data words can be either finite or infinite
periodic; in the latter case the data word is specified by an initial part, a period,
and an offset number, which is added to the data values in the period after each
repetition of the period. For periodic words without data values (i.e., ω-words
of the form uvω), the complexity of LTL model checking (also known as LTL
path checking) belongs to AC1(LogDCFL) (a subclass of NC) [14]. This result
solved a long standing open problem. For finite monotonic data words, the same
complexity bound has been shown for MTL in [4].

We show that the latter result of [4] is quite sharp in the following sense:
Path checking for MTL over non-monotonic (finite or infinite) data words as
well as path checking for TPTL with one register variable over monotonic (finite
or infinite) data words is P-complete. Moreover, path checking for TPTL (with
an arbitrary number of register variables) over finite as well as infinite periodic
data words becomes PSPACE-complete. We also show that PSPACE-hardness
already holds (i) for the fragment of TPTL with only two register variables and
(ii) for full TPTL, where all interval borders are encoded in unary (the latter
result can be shown by a straightforward adaptation of the PSPACE-hardness
proof in [8]). These results yield a rather complete picture on the complexity of
path checking for MTL and TPTL, see Fig. 5.

2 Temporal Logics over Data Words

Let P be a finite set of atomic propositions. A data word over P is a finite
or infinite sequence (P0, d0)(P1, d1) · · · of pairs from 2P × N. It is monotonic
(strictly monotonic), if di ≤ di+1 (di < di+1) for all appropriate i. It is pure,

328 S. Feng et al.

if Pi = ∅ for all i ≥ 0. A pure data word is just written as a sequence of
natural numbers. We denote with (2P × N)∗ and (2P × N)ω, respectively, the
set of finite and infinite, respectively, data words over P. The length of a data
word u is denoted by |u|, where we set |u| = ∞ for the case that u is infinite.
For the data word u = (P0, d0)(P1, d1) · · · , we use the notations u[i] = (Pi, di),
u[: i] = (P0, d0)(P1, d1) · · · (Pi, di), u[i :] = (Pi, di)(Pi+1, di+1) · · · , and u+k =
(P0, d0+k)(P1, d1+k) · · · , where k ∈ N. We use u1u2 to denote the concatenation
of two data words u1 and u2, where u1 has to be finite. For finite data words u1,
u2 and k ∈ N, let

u1(u2)ω
+k = u1u2(u2)+k(u2)+2k(u2)+3k · · · .

For complexity considerations, the encoding of the data values and the offset
number k (in an infinite data word) makes a difference. We speak of unary (resp.,
binary) encoded data words if all these numbers are given in unary (resp., binary)
encoding.

The set of formulae of the logic MTL is built up from P by Boolean connec-
tives, the next and the until modality using the following grammar, where p ∈ P
and I ⊆ Z is an interval with endpoints in Z ∪ {−∞,+∞}:

ϕ ····= p | ¬ϕ | ϕ ∧ ϕ | XIϕ | ϕUIϕ

Formulae of MTL are interpreted over data words. Let w = (P0, d0)(P1, d1) · · ·
be a data word, and let i ≤ |w|. We define the satisfaction relation for MTL
inductively as follows (we omit the obvious cases for ¬ and ∧):

– (w, i) |= p if and only if p ∈ Pi

– (w, i) |= XIϕ if and only if i + 1 ≤ |w|, di+1 − di ∈ I and (w, i + 1) |= ϕ
– (w, i) |= ϕ1UIϕ2 if and only if there exists a position j with i ≤ j ≤ |w|,

(w, j) |= ϕ2, dj − di ∈ I, and (w, t) |= ϕ1 for all t ∈ [i, j).

We say that a data word satisfies an MTL-formula ϕ, written w |= ϕ, if (w, 0) |=
ϕ. We use the following standard abbreviations: ϕ1 ∨ϕ2 ··= ¬(¬ϕ1 ∧¬ϕ2), ϕ1 →
ϕ2 ··= ¬ϕ1 ∨ ϕ2, true ··= p ∨ ¬p, false ··= ¬true, FIϕ ··= trueUIϕ, GIϕ ··= ¬FI¬ϕ.

Next we define formulae of the logic TPTL. For this, let V be a countable
set of register variables. The set of TPTL-formulae is given by the following
grammar, where p ∈ P, x ∈ V , c ∈ Z, and ∼ ∈ {<,≤,=,≥, >}:

ϕ ····= p | x ∼ c | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ | x.ϕ (1)

We use the same syntactical abbreviations as for MTL. The fragment freezeLTL
is obtained by restricting ∼ in (1) to =. Ordinary LTL is obtained by disallowing
the use of register variables. Given r ≥ 1, we use TPTLr (resp., freezeLTLr) to
denote the fragment of TPTL (resp., freezeLTL) that uses at most r different
register variables.

A register valuation ν is a function from V to Z. Given a register valuation ν,
a data value d ∈ Z, and a variable x ∈ V , we define the register valuations ν + d

Path Checking for MTL and TPTL over Data Words 329

and ν[x → d] as follows: (ν + d)(y) = ν(y) + d for every y ∈ V , (ν[x → d])(y) =
ν(y) for every y ∈ V \{x}, and (ν[x → d])(x) = d.

Let w = (P0, d0)(P1, d1) · · · be a data word, let ν be a register valuation, and
let i ∈ N. The satisfaction relation for TPTL is inductively defined in a similar
way as for MTL; we only give the definitions for the new formulae:

– (w, i, ν) |= Xϕ if and only if i + 1 ≤ |w| and (w, i + 1, ν) |= ϕ
– (w, i, ν) |= ϕ1Uϕ2 if and only if there exists a position j with i ≤ j ≤ |w|,

(w, j, ν) |= ϕ2, and (w, t, ν) |= ϕ1 for all t ∈ [i, j)
– (w, i, ν) |= x.ϕ if and only if (w, i, ν[x → di]) |= ϕ
– (w, i, ν) |= x ∼ c if and only if di − ν(x) ∼ c.

Note that x ∼ c does not mean that the current value v = ν(x) of x satisfies
v ∼ c, but expresses that di − v ∼ c, where di is the current data value. We say
that a data word w satisfies a TPTL-formula ϕ, written w |= ϕ, if (w, 0, 0̄) |= ϕ,
where 0̄ denotes the valuation that maps all variables to the initial data value d0.

For complexity considerations, it makes a difference, whether the numbers c
in constraints x ∼ c are binary or unary encoded, and similarly for the interval
borders in MTL. We write TPTLr

u, TPTLu, MTLu (resp., TPTLr
b , TPTLb, MTLb)

if we want to emphasize that numbers are encoded in unary (resp., binary)
notation. The length of a (TPTL or MTL) formula ψ, denoted by |ψ|, is the
number of symbols occurring in ψ.

3 Path Checking Problems for TPTL and MTL

In this section, we study the path checking problems for our logics over data
words. Data words can be (i) finite or infinite, (ii) monotonic or non-monotonic,
(iii) pure or non-pure, and (iv) unary encoded or binary encoded. For one of our
logics L and a class of data words C, we consider the path checking problem for L
over C. It asks whether for a given data word w ∈ C and a given formula ϕ ∈ L,
w |= ϕ holds.

3.1 Upper Bounds

In this section we prove our upper complexity bounds. All bounds hold for non-
monotonic and non-pure data words (and we will not mention this explicitly in
the theorems). But we have to distinguish whether (i) data words are unary or
binary encoded, and (ii) whether data words are finite or infinite. For the most
general path checking problem (TPTLb over infinite binary encoded data words)
we can devise an alternating polynomial time algorithm (and hence a polynomial
space algorithm). The only technical difficulty is to bound the position in the
infinite data word and the values of the register valuation, so that they can be
stored in polynomial space, see [10] for details.

Theorem 1. Path checking for TPTLb over infinite binary encoded data words
is in PSPACE.

330 S. Feng et al.

If the number of register variables is fixed and all data values are unary encoded,
then the alternating Turing-machine in the proof of Theorem 1 works in loga-
rithmic space. Since ALOGSPACE = P, we obtain the following statement for (i).
For (ii) we show that an infinite binary encoded monotonic data word can be
replaced by an infinite unary encoded data word, which allows to apply (i).

Theorem 2. For every fixed r ∈ N, path checking for TPTLr
u over (i) infinite

unary encoded data words or (ii) infinite binary encoded monotonic data words
is in P.

Actually, for finite data words, we obtain a polynomial time algorithm also for
binary encoded data words (assuming again a fixed number of register variables):

Theorem 3. For every fixed r ∈ N, path checking for TPTLr
b over finite binary

encoded data words is in P.

For infinite data words we have to reduce the number of register variables to one
in order to get a polynomial time complexity for binary encoded numbers:

Theorem 4. Path checking for TPTL1b over infinite binary encoded data words
is in P.

For the proof of Theorem 4 we need the following two lemmas.

Lemma 5. For a given LTL-formula ψ, words u1, . . . , uk, u ∈ (2P)∗ and binary
encoded numbers N1, . . . , Nk ∈ N, the question whether uN1

1 uN2
2 · · · uNk

k uω |= ψ
holds, belongs to P (actually, AC1(LogDCFL)).

The crucial point is that for all finite words u, v ∈ (2P)∗, every infinite word
w ∈ (2P)ω and every number N ≥ |ψ|, we have uvNw |= ψ if and only if
uv|ψ|w |= ψ. This can be shown by using the Ehrenfeucht-Fräıssé game for LTL
from [9]. Hence, one can replace all exponents Ni by small numbers of size at
most |ψ|. Then, one can use a polynomial time algorithm (or AC1(LogDCFL)
algorithm) for LTL path checking [14].

Lemma 6. Path checking for TPTLb-formulae, which do not contain subformu-
lae of the form x.θ for a register variable x, over infinite binary encoded data
words is in P (in fact, AC1(LogDCFL)).

Proof. We reduce the question, whether w |= ψ in logspace to an instance of the
succinct LTL path checking problem from Lemma 5. Let w = u1(u2)ω

+k and let
w[i] = (Pi, di) ∈ 2P × N. Let n1 = |u1| and n2 = |u2|. We can assume that only
one register variable x appears in ψ (since we do not use the freeze construct
x.() in ψ all register variables remain at the initial value d0).

In order to construct an LTL-formula from ψ, it remains to eliminate occur-
rences of constraints x ∼ c in ψ. W.l.o.g. all constraints are of the form
x < c or x > c. Let x ∼1 c1, . . . , x ∼m cm be a list of all constraints that
appear in ψ. We introduce for every 1 ≤ j ≤ m a new atomic proposition
pj and let P ′ = P ∪ {p1, . . . , pm}. Let ψ′ be obtained from ψ by replacing

Path Checking for MTL and TPTL over Data Words 331

every occurrence of x ∼j cj by pj , and let w′ ∈ (2P′
)ω be the ω-word with

w′[i] = Pi ∪ {pj | 1 ≤ j ≤ m, di − d0 ∼j cj}. Clearly w |= ψ if and only if
w′ |= ψ′. We will show that the word w′ can be written in the form considered
in Lemma 5.

First of all, we can write w′ as w′ = u′
1u

′
2,0u

′
2,1u

′
2,2 · · · , where |u′

1| = n1

and |u′
2,i| = n2. The word u′

1 can be computed in logspace by evaluating all
constraints at all positions of u1. Moreover, every word u′

2,i is obtained from u2

(without the data values) by adding the new propositions pj at the appropriate
positions. Consider the equivalence relation ≡ on N with a ≡ b if and only if
u′
2,a = u′

2,b. The crucial observations are that (i) every equivalence class of ≡ is
an interval, and (ii) the index of ≡ is bounded by 1 + n2 · m (one plus length of
u2 times number of constraints). To see this, consider a position 0 ≤ i ≤ n2 − 1
in the word u2 and a constraint x ∼j cj (1 ≤ j ≤ m). Then, the truth value of
“proposition pj is present at the ith position of u′

2,x” switches (from true to false
or from false to true) at most once when x grows. The reason for this is that the
data value at position n1 + i + n2 · x is dn1+i+n2·x = dn1+i + k · x for x ≥ 0, i.e.,
it grows monotonically with x. Hence, the truth value of dn1+i + k · x − d0 ∼j cj

switches at most once, when x grows. So, we get at most n2 ·m many “switching
points” in N which produce at most 1 + n2 · m many intervals.

Let I1, . . . , Il be a list of all ≡-classes (intervals), where a < b whenever
a ∈ Ii, b ∈ Ij and i < j. The borders of these intervals can be computed in
logspace using arithmetic on binary encoded numbers (addition, multiplication
and division with remainder can be carried out in logspace on binary encoded
numbers [12]). Hence, we can compute in logspace the lengths Ni = |Ii| of the
intervals, where Nl = ω. Also, for all 1 ≤ i ≤ l we can compute in logspace the
unique word vi such that vi = u′

2,a for all a ∈ Ii. Hence, w′ = u′
1v

N1
1 · · · vNl

l .
We can now apply Lemma 5. ��
Proof of Theorem 4. Consider an infinite binary encoded data word w = u1(u2)ω

+k

and a TPTL1b-formula ψ. Let n = |u1|+|u2|. We check in polynomial time whether
w |= ψ. A TPTL-formula ϕ is closed if every occurrence of a register variable x
in ϕ appears within a subformula of the form x.θ. The following two claims are
straightforward:
Claim 1 : If ϕ is closed, then for all valuations ν, ν′, (w, i, ν) |= ϕ iff (w, i, ν′) |= ϕ.
Claim 2 : If ϕ is closed and i ≥ |u1|, then for every valuation ν, (w, i, ν) |= ϕ iff
(w, i + |u2|, ν) |= ϕ.
By Claim 1 we can write (w, i) |= ϕ for (w, i, ν) |= ϕ. It suffices to compute for
every (necessarily closed) subformula x.ϕ of ψ the set of all positions i ∈ [0, n−1]
such that (w, i) |= x.ϕ, or equivalently w[i :] |= ϕ. We do this in a bottom-up
process. Consider a subformula x.ϕ of ψ and a position i ∈ [0, n−1]. We have to
check whether w[i :] |= ϕ. Let x.ϕ1, . . . , x.ϕl be all maximal (with respect to the
subformula relation) subformulae of ϕ of the form x.θ. We can assume that for
every 1 ≤ s ≤ l we have already determined the set of positions j ∈ [0, n−1] such
that (w, j) |= x.ϕs. We can therefore replace every subformula x.ϕs of ϕ by a new
atomic proposition ps and add in the data words u1 (resp., u2) the proposition

332 S. Feng et al.

a1 a2 a3 a4 a5

b1 b2 b3 b4 b5

c1 c2 c3 c4 c5

level 1 (∧)

level 2 (∨)

level 3 (∧)

Fig. 1. An SAM2-circuit

ps to all positions j (resp., j −|u1|) such that (w, j) |= x.ϕs, where j ∈ [0, n−1].
Here, we make use of Claim 2. We denote the resulting formula and the resulting
data word with ϕ′ and w′ = u′

1(u
′
2)

ω
+k, respectively. Next, it is easy to compute

from u′
1 and u′

2 new finite data words v1 and v2 such that v1(v2)ω
+k = w′[i :]: If

i < |u′
1| then we take v1 = u′

1[i :] and v2 = u′
2. If |u′

1| ≤ i ≤ n − 1, then we take
v1 = ε and v2 = u′

2[i :](u′
2[: i − 1] + k). Finally, using Lemma 6 we can check in

polynomial time whether w′[i :] |= ϕ′. ��

3.2 Lower Bounds

We prove several P-hardness and PSPACE-hardness results for path checking.

P-Hardness. We prove our P-hardness results by a reduction from a restricted
version of the Boolean circuit value problem. A synchronous alternating mono-
tone circuit with fanin 2 and fanout 2 (briefly, SAM2-circuit) is a Boolean circuit
divided into levels 1, . . . , l (l ≥ 2) such that the following properties hold:

– All wires go from a gate in level i + 1 to a gate from level i (1 ≤ i ≤ l − 1).
– All output gates are in level 1 and all input gates are in level l, and the latter

are labelled with input bits. Moreover, there is a distinguished output gate
on level 1.

– All gates in the same level 1 ≤ i ≤ l − 1 are of the same type (∧ or ∨) and
the levels alternate between ∧-levels and ∨-levels.

– All gates except the output gates have fanout 2 and all gates except the
input gates have fanin 2. The two input gates for a gate at level i ≤ l − 1
are different.

By the restriction to fanin 2 and fanout 2, we know that each level contains the
same number of gates. Fig. 1 shows an example of an SAM2-circuit (the node
names ai, bi, ci will be needed later). The circuit value problem for SAM2-circuits
(i.e., the question whether the distinguished output gate of a given SAM2-circuit
evaluates to 1), which is called SAM2CVP, is P-complete [11].

Recall that finite path checking for MTL (a fragment of TPTL1) over mono-
tonic data words is in the parallel complexity class AC1(LogDCFL) [4]. We will
show that for both (i) MTLu over non-monotonic data words and (ii) TPTL1u over
monotonic data words the path checking problem becomes P-hard (and hence
P-complete).

Path Checking for MTL and TPTL over Data Words 333

a1,1 a1,2 a1,j1

b1,1 b1,2 b1,j1

a2,1 a2,2 a2,j2

b2,1 b2,2 b2,j2

ah,1 ah,2 ah,jh

level i

bh,1 bh,2 bh,jh
level i+1

Fig. 2. The induced subgraph between level i and i + 1

Theorem 7. Path checking for MTLu over finite unary encoded pure data words
is P-hard.

Proof. We reduce from SAM2CVP. Let α be the input circuit. We first encode
each two consecutive levels of α into a data word, and combine these data words
into a data word w, which is the encoding of the whole circuit. Then we construct
a formula ψ such that w |= ψ if and only if α evaluates to 1. The data word
w that we are constructing contains gate names of α (and some copies of the
gates) as atomic propositions. These propositions will be only needed for the
construction. At the end, we can remove all propositions from the data word
w and hence obtain a pure data word. The whole construction can be done in
logspace. The reader might look at the example in [10], where the construction
is carried out for the circuit from Fig. 1.

Let α be an SAM2-circuit with l ≥ 2 levels and n gates in each level. By
the restriction to fanin 2 and fanout 2, the induced undirected subgraph which
contains the nodes in level i and i + 1 (1 ≤ i < l) consists of several cycles; see
Fig. 2. For instance, for the circuit in Fig. 1 the number of cycles between level
1 and 2 (resp., 2 and 3) is 2.

We can enumerate in logspace the gates of level i and i + 1 such that they
occur in the order shown in Fig. 2. For this, let a1, . . . , an (resp., b1, . . . , bn) be
the nodes in level i (resp., i + 1) in the order in which they occur in the input
description. We start with a1 and enumerate the nodes in the cycle containing a1

(from a1 we go to the smaller neighbor among b1, . . . , bn, then the next node on
the cycle is uniquely determined since the graph has degree 2). Thereby we store
the current node in the cycle and the starting node a1. As soon as we return to
a1, we know that the first cycle is completed. To find the next cycle, we search
for the first node from a2, . . . , an that is not reachable from a1 (reachability in
undirected graphs is in logspace), and continue this way.

So, assume that the nodes in layer i and i + 1 are ordered as in Fig. 2. In
particular, we have h cycles. For each 1 ≤ t ≤ h, we add a new node a′

t,1 (resp.,
b′
t,1) after at,jt (resp., bt,jt). Then we replace the edge (at,jt , bt,1) by the edge

(at,jt , b
′
t,1) (1 ≤ t ≤ h). In this way we obtain the graph from Fig. 3. Again, the

construction can be done in logspace by adding the new nodes and new edges
once a cycle was completed in the enumeration procedure from the previous
paragraph.

334 S. Feng et al.

a1,1 a1,2 a1,j1 a′
1,1

b1,1 b1,2 b1,j1 b′
1,1

a2,1 a2,2 a2,j2 a′
2,1

b2,1 b2,2 b2,j2 b′
2,1

ah,1 ah,2 ah,jh
a′
h,1

bh,1 bh,2 bh,jh b′
h,1

Fig. 3. The graph obtained from the induced subgraph

d d+1 · · · d+j1

d′ d′ + 1 · · · d′ +j1

· · · d+j1+j2+1

· · · d′+j1+j2+1

· · · d+m−1

· · · d′+m−1

Fig. 4. Labeling the new graph

By adding dummy nodes, we can assume that for every 1 ≤ i ≤ l − 1, the
subgraph between level i and i + 1 has the same number (say h) of cycles. We
still denote by n the number of nodes in each level. Thus, after the above step we
have m = n+h nodes in each level. Let d = (i−1) ·2m and d′ = d+m. In Fig. 3,
we label the nodes in level i (resp., i+1) with the numbers d, d+1, . . . , d+m−1
(resp. d′, d′ + 1 . . . , d′ + m − 1) in this order, see Fig. 4. By this labeling, the
difference between two connected nodes in level i and level i + 1 is always m or
m + 1. So we can use the modality F[m,m+1] (resp., G[m,m+1]) to jump from an
∨-gate (resp., ∧-gate) in level i to a successor gate in level i + 1. We now obtain
in logspace the data word wi = wi,1wi,2, where

wi,1 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(a1,1, d)(a1,2, d + 1) · · · (a1,j1 , d + j1 − 1)
(a2,1, d + j1 + 1)(a2,2, d + j1 + 2) · · · (a2,j2 , d + j1 + j2) · · ·

(ah,1, d +
h−1∑

t=1

jt + h − 1)(ah,2, d +
h−1∑

t=1

jt + h) · · · (ah,jh , d + m − 2)

wi,2 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(b1,1, d
′) · · · (b1,j1 , d

′ + j1 − 1)(b′
1,1, d

′ + j1)
(b2,1, d

′ + j1 + 1) · · · (b2,j2 , d
′ + j1 + j2)(b′

2,1, d
′ + j1 + j2 + 1) · · ·

(bh,1, d
′ +

h−1∑

t=1

jt + h − 1) · · · (bh,jh , d′ + m − 2)(b′
h,1, d

′ + m − 1)

which is the encoding of the wires between level i and level i + 1 from Fig. 4.
Note that the new nodes a′

1,1, a
′
2,1, . . . , a

′
h,1 in level i of the graph in Fig. 3 do

not occur in wi,1.
Suppose now that all data words wi (1 ≤ i ≤ l − 1) are constructed. We

then combine them to obtain the data word w for the whole circuit as follows.

Path Checking for MTL and TPTL over Data Words 335

Suppose that

wi,2 = (b̃1, y1) · · · (b̃m, ym) and wi+1,1 = (b1, z1) · · · (bn, zn).

Note that every b̃i is either one of the bj or b′
j (the copy of bj). Let

vi+1,1 = (b̃1, z′
1) · · · (b̃m, z′

m),

where the data values z′
i are determined as follows: If b̃i = bj or b̃i = b′

j , then
z′
i = zj . Then, the data word w is w = w1,1w1,2v2,1w2,2 · · · vl−1,1wl−1,2.

Let us explain the idea. Consider a gate aj of level 2 ≤ i ≤ l − 1, and assume
that level i consists of ∨-gates. Let bj1 and bj2 (from level i + 1) be the two
input gates for aj . In the above data word vi,1 there is a unique position where
the proposition aj occurs, and possibly a position where the copy a′

j occurs. If
both positions exist, then they carry the same data value. Let us point to one of
these positions. Using an MTL formula, we want to branch (existentially) to the
positions in the factor vi+1,1, where the propositions bj1 , b

′
j1

, bj2 , b
′
j2

occur (where
b′
j1

and b′
j2

possibly do not exist). For this, we use the modality F[m,m+1]. By the
construction, this modality branches existentially to positions in the factor wi,2,
where the propositions bj1 , b

′
j1

, bj2 , b
′
j2

occur. Then, using the iterated modality
Xm (which is an abbreviation for m copies of the MTL-modality XZ), we jump
to the corresponding positions in vi+1,1.

In the above argument, we assumed that 2 ≤ i ≤ l − 1. If i = 1, then we
can argue similarly, if we assume that we are pointing to the unique aj-labeled
position of the prefix w1,1 of w. Now consider level l − 1. Suppose that

wl−1,2 = (d̃1, v1) . . . (d̃m, vm).

Let d1, . . . , dn be the original gates of level l, which all belong to {d̃1, . . . , d̃m},
and let xi ∈ {0, 1} be the input value for gate di. Define

I = {j | j ∈ [1,m],∃i ∈ [1, n] : d̃j ∈ {di, d
′
i}, xi = 1}. (2)

Let the designated output gate be the kth node in level 1. We construct the
MTL-formula ψ = Xk−1ϕ1, where ϕi (1 ≤ i ≤ l − 1) is defined inductively as
follows:

ϕi =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

F[m,m+1]X
mϕi+1 if i < l − 1 and level i is a ∨-level,

G[m,m+1]X
mϕi+1 if i < l − 1 and level i is a ∧-level,

F[m,m+1](
∨

j∈I X
m−j¬X true) if i = l − 1 and level i is a ∨-level,

G[m,m+1](
∨

j∈I X
m−j¬X true) if i = l − 1 and level i is a ∧-level.

Note that the formula ¬X true is only true in the last position of a data word.
Suppose data word w is the encoding of the circuit. From the above considera-
tion, it follows that w |= ψ if and only if the circuit α evaluates to 1. Note that
we do not use any propositional variables in the formula ψ. So we can ignore the
propositional part in the data word w to get a pure data word. ��

336 S. Feng et al.

Note that the above construction uses non-monotonic data words. This is
unavoidable since finite path checking for MTL over monotonic data words is
in NC [4]. On the other hand, for the extension TPTL1u of MTLu we can show,
using again a reduction from SAM2CVP (see [10]), P-hardness also for mono-
tonic data words:

Theorem 8. Path checking for TPTL1u over finite unary encoded strictly mono-
tonic pure data words is P-hard.

PSPACE-Hardness. In [10], we prove three PSPACE lower bounds, which com-
plete our complexity picture. The first one is shown by a reduction from QBF,
whereas the latter two results are shown by a reduction from a quantified variant
of the subset sum problem [19].

Theorem 9. Path checking for TPTLu over finite unary encoded strictly mono-
tonic pure data words is PSPACE-hard.

Theorem 10. Path checking for TPTL2b over the infinite strictly monotonic
pure data word w = 0(1)ω

+1 = 0, 1, 2, 3, 4, . . . is PSPACE-hard.

Theorem 11. Path checking for freezeLTL2 (and hence TPTL2u) over infinite
binary encoded pure data words is PSPACE-hard.

Recall from Theorem 2 that for every fixed r, path checking for TPTLr
u over

infinite binary encoded monotonic data words can be solved in polynomial time.
Hence, Theorem 11 shows that monotonicity is important for Theorem 2.

3.3 Summary of the Results

Figure 5 collects our complexity results for path checking problems (here the
superscript <∞ is a place holder for any number r ≥ 2). Whether data words
are pure or not does not influence the complexity in all cases. Moreover, for
finite data words, the complexity does not depend upon the encoding of data
words (unary or binary) and the fact whether data words are monotonic or non-
monotonic. On the other hand, for infinite data words, these distinctions influ-
ence the complexity: For binary and non-monotonic data words we get another
picture than or unary encoded or (quasi-)monotonic data words. Note that for
MTLb and MTLu the complexity is P-complete for all classes of data words (since
MTL translates in logspace into TPTL1).

One may also study the complexity of path checking problems for various
fragments of MTL and TPTL. In this context, it is interesting to note that all
lower bounds already hold for the corresponding unary fragments (where the
until-operator is replaced by F and G) with only one exception: Our proof for
Theorem 11 in [10] for freezeLTL2 needs the until operator. It is not clear, whether
path checking for the unary fragment of freezeLTL2 over infinite binary encoded
data words is still PSPACE-complete.

Path Checking for MTL and TPTL over Data Words 337

Fig. 5. Complexity results for path checking

Our complexity results for infinite unary encoded data words also hold for
deterministic one-counter machines (DOCMs), see [10] for a precise definition.
A DOCM produces in general an infinite data word, where the sequence of
atomic propositions is the sequence of states of the machine, and the sequence
of data values is the sequence of counter values produced by the DOCM (the
DOCM can block in which case it produces a finite data word). It is an easy
observation that the data word produced by a DOCM A is periodic in case it
is infinite, and one can in fact compute in logspace from A two unary encoded
finite data words u1 and u2 and a unary encoded number k such that u1(u2)ω

+k

is the data word produced by A, see also [8, Lemma 9]. For this it is crucial

338 S. Feng et al.

that the counter can be incremented or decremented in each step by at most
one (or, more general, a unary encoded number). This, in turn implies that for
each of the logics L considered in this paper, the model checking problem for
L over DOCM (i.e., the question, whether a given formula ϕ ∈ L holds in the
data word produced by a given DOCM) is equivalent with respect to logspace
reductions to the path checking problem for L over infinite unary encoded data
words. Hence, the upper left diagram from Figure 5 also shows the complexity
results for TPTL model checking over DOCM. In particular we strengthen the
third author’s recent decidability result for model checking non-monotonic TPTL
over DOCMs [18]. Our results also generalizes the PSPACE-completeness result
for freezeLTL over DOCMs from [8].

References

1. Alur, R., Henzinger, T.A.: Real-Time Logics: Complexity and Expressiveness. Inf.
Comput. 104(1), 35–77 (1993)

2. Alur, R., Henzinger, T.A.: A really temporal logic. J. ACM 41(1), 181–204 (1994)
3. Bouyer, P., Larsen, K.G., Markey. Model checking one-clock priced timed

automata. Log. Meth. Comput. Sci. 4(2) (2008)
4. Bundala, D., Ouaknine, J.: On the complexity of temporal-logic path checking. In:

Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part
II. LNCS, vol. 8573, pp. 86–97. Springer, Heidelberg (2014)

5. Carapelle, C., Feng, S., Gil, O.F., Quaas, K.: On the expressiveness of TPTL and
MTL over ω-data words. In: Proc. AFL 2014. EPTCS, vol. 151, pp. 174–187 (2014)

6. Carapelle, C., Feng, S., Fernández Gil, O., Quaas, K.: Satisfiability for MTL
and TPTL over non-monotonic data words. In: Dediu, A.-H., Mart́ın-Vide, C.,
Sierra-Rodŕıguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370,
pp. 248–259. Springer, Heidelberg (2014)

7. Demri, S., Lazić, R.: LTL with the freeze quantifier and register automata. ACM
Trans. Comput. Log. 10(3) (2009)

8. Demri, S., Lazić, R., Sangnier, A.: Model checking memoryful linear-time logics
over one-counter automata. Theor. Comput. Sci. 411(22–24), 2298–2316 (2010)

9. Etessami, K., Wilke, T.: An until hierarchy and other applications of an
Ehrenfeucht-Fräıssé game for temporal logic. Inf. Comput. 160(1–2), 88–108 (2000)

10. Feng, S., Lohrey, M., Quaas, K.: Path-Checking for MTL and TPTL, arXiv.org
1412.3644 (2014)

11. Greenlaw, R., Hoover, H.J., Ruzzo, W.L.: Limits to Parallel Computation:
P-completeness Theory. Oxford University Press (1995)

12. Hesse, W., Allender, E., Barrington, D.A.M.: Uniform constant-depth threshold cir-
cuits for division and iterated multiplication. J. Comput. System Sci. 65, 695–716
(2002)

13. Koymans, R.: Specifying real-time properties with metric temporal logic.
Real-Time Systems 2(4), 255–299 (1990)

14. Kuhtz, L., Finkbeiner, B.: Efficient parallel path checking for linear-time temporal
logic with past and bounds. Log. Meth. Comput. Sci. 8(4) (2012)

15. Laroussinie, F., Markey, N., Schnoebelen, P.: On model checking durational kripke
structures. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303,
pp. 264–279. Springer, Heidelberg (2002)

http://arxiv.org/abs/1412.3644

Path Checking for MTL and TPTL over Data Words 339

16. Ouaknine, J., Worrell, J.B.: On metric temporal logic and faulty turing
machines. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921,
pp. 217–230. Springer, Heidelberg (2006)

17. Ouaknine, J., Worrell, J.: On the decidability and complexity of metric temporal
logic over finite words. Log. Meth. Comput. Sci. 3(1) (2007)

18. Quaas, K.: Model checking metric temporal logic over automata with one counter.
In: Dediu, A.-H., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2013. LNCS, vol. 7810,
pp. 468–479. Springer, Heidelberg (2013)

19. Travers, S.: The complexity of membership problems for circuits over sets of
integers. Theor. Comput. Sci. 369(1), 211–229 (2006)

	Path Checking for MTL and TPTL over Data Words
	1 Introduction
	2 Temporal Logics over Data Words
	3 Path Checking Problems for TPTL and MTL
	3.1 Upper Bounds
	3.2 Lower Bounds
	3.3 Summary of the Results

	References

