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Abstract. We study reversible deterministic finite automata (REV-
DFAs), that are partial deterministic finite automata whose transition
function induces an injective mapping on the state set for every letter of
the input alphabet. We give a structural characterization of regular lan-
guages that can be accepted by REV-DFAs. This characterization is based
on the absence of a forbidden pattern in the (minimal) deterministic state
graph.Againwitha forbiddenpattern approach,wealso showthat themin-
imality of REV-DFAs among all equivalent REV-DFAs can be decided.
Both forbidden pattern characterizations give rise to NL-complete deci-
sion algorithms. In fact, our techniques allow us to construct the minimal
REV-DFA for a given minimal DFA. These considerations lead to asymp-
totic upper and lower bounds on the conversion from DFAs to REV-DFAs.
Thus, almost all problems that concern uniqueness and the size of minimal
REV-DFAs are solved.

1 Introduction

Reversibility is a fundamental principle in physics. Since abstract computational
models with discrete internal states may serve as prototypes of computing devices
which can be physically constructed, it is interesting to know whether these
abstract models are able to obey physical laws. The observation that loss of
information results in heat dissipation [16] strongly suggests to study compu-
tations without loss of information. Many different formal models have been
studied from this point of view. The reversibility of a computation means in
essence that every configuration has a unique successor configuration and a
unique predecessor configuration. For example, reversible Turing machines have
been introduced in [4], where it turned out that every Turing machine can be
simulated by a reversible one—for improved simulation constructions see [3,20].
Since Rice’s theorem shows that any non-trivial property on languages accepted
by (reversible) Turing machines is undecidable, it is reasonable from a practical
perspective to study reversibility in devices of lower computational capacity. On
the opposite end of the automata hierarchy, reversibility has been studied for
finite automata [1,6,8,11,17,21], pushdown automata [13], queue automata [15],
and even multi-head finite automata [2,14,18,19].
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Originally, reversible deterministic finite automata have been introduced and
studied in the context of algorithmic learning theory in [1]; see also [11]. Later
this concept was generalized in [21] and [17]. Almost all of these definitions agree
on the fact that the transition function induces a partial injective mapping for
every letter. Nevertheless, there are subtle differences. For instance, in [1] a par-
tial deterministic finite automaton (DFA) M is defined to be reversible if M
and the dual of M , that is the automaton that is obtained from M by reversing
all transitions and interchanging initial and final states, are both deterministic.
In particular, this definition implies that for reversible DFAs in the sense of [1]
only one final state is allowed; hence these devices were called bideterministic
in [21]. Since there are regular languages that are not accepted by any DFA with
a sole accepting state, by definition, there are non-reversible regular languages in
this setting. Then the definition of reversibility has been extended in [21]. Now
multiple accepting as well as multiple initial states are allowed. So, reversible
DFAs in the sense of [21] may have limited nondeterminism plugged in from
the outside world at the outset of the computation. But still, these devices turn
out to be less powerful than general (possibly irreversible) finite automata. An
example is the regular language a∗b∗ which is shown [21] to be not acceptable
by any reversible DFA. In the same paper it is proved that for a given DFA the
existence of an equivalent reversible finite automaton can be decided in polyno-
mial time. A further generalization of reversibility to quasi-reversibility, which
even allows nondeterministic transitions was introduced in [17]—see also [6].
Different aspects of reversibility for classical automata are discussed in [12]. In
view of these results natural questions concern the uniqueness and the size of a
minimal reversible DFA in terms of the size of the equivalent minimal DFA. For
the latter question, in [8], a lower bound of Ω(1.001n) states has been obtained
which, in turn, raises the question for the construction of a minimal reversible
DFA from a given (minimal) DFA. The construction problem has partially been
solved in [6,17], where so-called quasi-reversible automata are constructed. How-
ever, these quasi-reversible DFAs may themselves be exponentially more succinct
than the minimal reversible DFAs. In fact, the witness automata in [8] are already
quasi-reversible.

This is the starting point of our investigation. For our definition of reversibil-
ity we stick to standard definitions. That is, partial DFAs with a unique ini-
tial state and potentially multiple accepting states. Then such an automaton is
reversible if the transition function induces an injective mapping on the state set
for every letter. These basic definitions are given in the next section together with
an introductory example. For these reversible DFAs (REV-DFAs) we are able
to solve the question on uniqueness and size of minimal representations almost
completely. Section 3 is devoted to develop a method to decide the reversibility
of a given regular language. While the notion of reversibility proposed in [21] is
also decidable in polynomial time by an argument on the syntactic monoid of
the language under consideration, here we obtain a structural characterization
of regular languages that can be accepted by REV-DFAs in terms of their min-
imal DFAs. By this characterization an NL-complete decidability algorithm is
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shown, which is based on checking for the absence of forbidden patterns in the
state graph. Then in Section 4 we turn to the minimality of REV-DFAs. First
a structural characterization of minimal REV-DFAs is given. Again, this char-
acterization allows to establish an NL-complete algorithm that decides whether
a given DFA is already a minimal REV-DFA among all equivalent REV-DFAs.
A further result is the construction of a minimal REV-DFA out of a given DFA
that accepts a reversible language. Finally, this method is used to reconsider
the example given in [8] and to improve the lower bound derived there to its
maximum. Then we give a new family of binary witness languages that yield
a better lower bound in order of Φn, where Φ is the golden ratio. This bound
can be increased by larger alphabets, it has a limit of Ω(2n−1) as |Σ| tends to
infinity. Finally, our results allow to determine an upper bound of 2n−1 states
for the conversion of DFAs to minimal REV-DFAs, even for arbitrary alphabet
sizes.

2 Preliminaries

An alphabet Σ is a non-empty finite set, its elements are called letters or symbols.
We write Σ∗ for the set of all words over the finite alphabet Σ.

We recall some definitions on finite automata as contained, for example, in [7].
A deterministic finite automaton (DFA) is a system M = 〈S,Σ, δ, s0, F 〉, where S
is the finite set of internal states, Σ is the alphabet of input symbols, s0 ∈ S is
the initial state, F ⊆ S is the set of accepting states, and δ : S × Σ → S is the
partial transition function. Note, that here the transition function is not required
to be total. The language accepted by M is L(M) = {w ∈ Σ∗ | δ(s0, w) ∈ F },
where the transition function is recursively extended to δ : S × Σ∗ → S. By
δR : S × Σ → 2S , with δR(q, a) = { p ∈ S | δ(p, a) = q }, we denote the reverse
transition function of δ. Similarly, also δR can be extended to words instead of
symbols. Two devices M and M ′ are said to be equivalent if they accept the
same language, that is, L(M) = L(M ′). In this case we simply write M ≡ M ′.

Let M = 〈S,Σ, δ, s0, F 〉 be a DFA accepting the language L. The set of
words RM,q = {w ∈ Σ∗ | δ(q, w) ∈ F } refers to the right language of the state q
in M . In case RM,p = RM,q, for some states p, q ∈ S, we say that p and q are
equivalent and write p ≡M q. The equivalence relation ≡M partitions the state
set S of M into equivalence classes, and we denote the equivalence class of q ∈ S
by [q] = { p ∈ S | p ≡M q }. Equivalence can also be defined between states
of different automata: two states p and q of DFAs M and, respectively, M ′ are
equivalent, denoted by p ≡ q, if RM,p = RM ′,q.

A state p ∈ S is accessible in M if there is a word w ∈ Σ∗ such that
δ(s0, w) = p, and it is productive if there is a word w ∈ Σ∗ such that δ(p,w) ∈ F .
If p is both accessible and productive then we say that p is useful. In this paper
we only consider automata with all states useful. Let M and M ′ be two DFAs
with M ≡ M ′. Observe that if p is a useful state in M , then there exists a useful
state p′ in M ′, with p ≡ p′. A DFA is minimal (among all DFAs) if there does
not exist an equivalent DFA with fewer states. It is well known that a DFA is
minimal if and only if all its states are useful and no pair of states is equivalent.
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Next we define reversible DFAs. Let M = 〈S,Σ, δ, s0, F 〉 be a DFA. A
state r ∈ S is said to be irreversible if there are two distinct states p and q
in S and a letter a ∈ Σ such that δ(p, a) = r = δ(q, a). Then a DFA is reversible
if it does not contain any irreversible state. In this case the automaton is said to
be a reversible DFA (REV-DFA). Equivalently the DFA M is reversible, if every
letter a ∈ Σ induces an injective partial mapping from S to itself via the map-
ping δa : S → S with p �→ δ(p, a). In this case, the reverse transition function δR

can then be seen as a (partial) injective function δR : S × Σ → S. Notice that
if p and q are two distinct states in a REV-DFA, then δ(p,w) 	= δ(q, w), for all
words w ∈ Σ∗. Finally, a REV-DFA is minimal (among all REV-DFAs) if there
is no equivalent REV-DFA with a smaller number of states.

Example 1. Consider the finite language L = {aa, ab, ba}. The minimal DFA
and a REV-DFA for this language are shown in Figure 1. Obviously, the minimal
DFA is not reversible, since it contains the irreversible state 3. Moreover, it is
also easy to see that the REV-DFA shown is minimal. Here minimality is meant
with respect to all equivalent REV-DFAs. Note that redirecting the b-transition
connecting state 1 and 3 in the REV-DFA to become a transition from state 1
to 4 results in a minimal REV-DFA as well. 
�

0

1

2

3

a

b

a, b

a

0

1

2

3

4

a

b

a, b

a

Fig. 1. The minimal DFA (left) and a minimal REV-DFA (right) for the finite language
L = {aa, ab, ba}. Thus, L is a reversible language.

Finally we need some notations on computational complexity theory. We
classify problems on REV-DFAs with respect to their computational complexity.
Consider the complexity class NL which refers to the set of problems accepted
by nondeterministic logspace bounded Turing machines.

To describe some of our algorithms we make use of nondeterministic space
bounded oracle Turing machines, where the oracle tape is written deterministi-
cally. This oracle mechanism is known as RST-relativization in the literature [22].
If L is a set, we denote by NL〈L〉 the class of languages accepted by nondeter-
ministic logspace bounded RST oracle Turing machines with L oracle, and if C
is a family of language, then NL〈C〉 =

⋃
L∈C NL

〈L〉. Note that whenever C is a
subset of NL, then NL〈C〉 ⊆ NL. This is due to the well-known fact that NL is
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closed under complementation [10,23], that is, NL = coNL, where coNL is the
set of complements of languages from NL.

Further, hardness and completeness are always meant with respect to deter-
ministic logspace bounded reducibility, unless otherwise stated.

3 Deciding the Reversibility of a Regular Language

We consider the problem to decide whether a given regular language is reversible,
that is, it is accepted by a REV-DFA. Observe, that the minimal DFA for a lan-
guage need not be reversible, although the language is accepted by a REV-DFA.
This is seen by Example 1. Checking reversibility for the notion of [1] is trivial,
because it boils down to verify the reversibility of the minimal DFA for the lan-
guage, which must have a unique final state. Hence, the language from Example 1
is not reversible in the sense of [1]. On the other hand, the notion of reversibil-
ity proposed in [21] is also decidable, but by a more involved argument on the
syntactic monoid of the language under consideration. We prove the following
structural characterization of regular languages that can be accepted by REV-
DFAs in terms of their minimal DFAs. The conditions of the characterization
are illustrated in Figure 2.
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Fig. 2. The “forbidden pattern” of Theorem 2: the language accepted by a minimal
DFA M can be accepted by a REV-DFA if and only if M does not contain the structure
depicted on the left. Here the states p and q must be distinct, but state r could be
equal to state p or state q. The situations where r = q or r = p are shown in the middle
and on the right, respectively—here the word w and its corresponding path are grayed
out because they are not relevant: in the middle, the word w that leads from r to q is
not not relevant since it can be identified with the a-loop on state r = q. Also on the
right hand side, word w is not important because we can simply interchange the roles
of the states q and r = p.

Theorem 2. Let M = 〈S,Σ, δ, s0, F 〉 be a minimal deterministic finite automa-
ton. The language L(M) can be accepted by a reversible deterministic finite
automaton if and only if there do not exist useful states p, q ∈ S, a letter a ∈ Σ,
and a word w ∈ Σ∗ such that p 	= q, δ(p, a) = δ(q, a), and δ(q, aw) = q.
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By this characterization it is now easy to see that, e.g., both languages a∗ba∗

and b∗ab∗ are reversible, but their union is not reversible—obviously this union
is a reversible language in the sense of [21]. Next we prove Theorem 2 by the
upcoming two lemmata,

Lemma 3. Let M = 〈S,Σ, δ, s0, F 〉 be a deterministic finite automaton. If there
exist useful states p, q ∈ S, a letter a ∈ Σ and a word w ∈ Σ∗ such that p 	≡ q,
δ(p, a) ≡ δ(q, a), and δ(q, aw) ≡ q, then the language L(M) cannot be accepted
by a reversible deterministic finite automaton.

Proof. Assume M ′ = 〈S′, Σ, δ′, s′
0, F

′〉 is a REV-DFA with L(M ′) = L(M),
then of course s′

0 ≡ s0. Since the states p and q are useful, there must also
be states p′, q′ ∈ S′ with p′ ≡ p and q′ ≡ q. Thus, the relations p′ 	≡ q′,
δ′(p′, a) ≡ δ′(q′, a), and δ′(q′, aw) ≡ q′ must also hold in the REV-DFA M ′. Let
us now consider the sequence of states δ′(p′, (aw)i), for i ≥ 0. From the equiva-
lences δ′(p′, a) ≡ δ′(q′, a) and δ′(q′, aw) ≡ q′, we conclude δ′(p′, (aw)i) ≡ q′, for
all i ≥ 1. Thus, except for the first state p′, all states of the above sequence are
equivalent to q′. Notice that state p′ cannot be equivalent to the other states of
the sequence since p′ 	≡ q′. Since the number of states of M ′ must be finite, there
must be a loop in the considered state sequence. This means that there must
be integers k ≥ 0 and � ≥ 1 such that δ(p′, (aw)k) = δ(p′, (aw)k+�), and such
that all states in the sequence δ(p′, (aw)0), δ(p′, (aw)1), . . . , δ(p′, (aw)k+�−1) are
pairwise distinct. In fact we know that k ≥ 1 because δ′(p′, (aw)k+�) ≡ q′ can-
not even be equivalent to state δ′(p′, (aw)0) = p′. But now we have found two
distinct states δ′(p′, (aw)k−1) and δ′(p′, (aw)k+�−1) that both map to the same
state δ′(p′, (aw)k) on reading the input aw. This is a contradiction to M ′ being
reversible, hence L(M) cannot be accepted by any REV-DFA. 
�

When considering only minimal DFAs, the equivalences between states in
Lemma 3 become equalities, so we obtain one implication of Theorem 2. Now
let us prove that also the reverse implication is true. The idea how to make a
given DFA reversible is very intuitive: as long as there is an irreversible state,
copy this state and all states reachable from it, and distribute the incoming
transitions to the new copies. The absence of the “forbidden pattern” ensures
that this procedure eventually comes to an end.

For the proof of our next result we use the following notion. The state set S
of a DFA M = 〈S,Σ, δ, s0, F 〉 can be partitioned into strongly connected compo-
nents: such a component is an inclusion maximal subset C ⊆ S such that for all
pairs of states (p, q) ∈ C ×C there is a word w ∈ Σ∗ leading from p to q. Notice
that also a single state q may constitute a strongly connected component, even
if there is no looping transition on q.

Lemma 4. Let M = 〈S,Σ, δ, s0, F 〉 be a minimal deterministic finite automa-
ton. If there do not exist useful states p, q ∈ S, a letter a ∈ Σ and a word w ∈ Σ∗

such that p 	= q, δ(p, a) = δ(q, a), and δ(q, aw) = q, then the language L(M) can
be accepted by a reversible deterministic finite automaton.
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Proof. We show how to convert the DFA M into an equivalent REV-DFA. First
we build a topological order  of the strongly connected components of M ,
such that if C1  C2, for two such components C1 and C2, then no state in C1

can be reached from a state in C2. Consider a minimal (with respect to )
strongly connected component Ck that contains an irreversible state—if no such
component exists then the automaton is reversible. To determine the number of
necessary copies of Ck, compute

α = max{ ∣
∣δR(r, a)

∣
∣ | r ∈ Ck, a ∈ Σ }. (1)

Now we replace the component Ck by α copies of Ck and redistribute all incoming
transitions among these copies, such that no state in the copies of Ck is the target
of two or more transitions on the same letter. Notice that all transitions that
witness the irreversibility of states in Ck come from outside of Ck, because if
there were states p, q, r ∈ S and a letter a ∈ Σ with δ(p, a) = δ(q, a) = r
and q, r ∈ Ck then M would have the “forbidden pattern” since δ(q, aw) = q for
some w ∈ Σ∗. Therefore, the copies of Ck do not contain irreversible states.

Since also the transitions from states in the component Ck to states outside
of Ck are copied, of course previously reversible states directly “behind” the
copies of Ck could now become irreversible. However, in this way we only intro-
duce irreversible states in components that are of higher rank in the topological
order . Moreover, the obtained automaton is still equivalent to the original one.
Therefore the described procedure can be applied iteratively, each time enlarg-
ing the minimal -rank of components that contain irreversible states, which
eventually leads to a reversible DFA for L(M). 
�

For an example explaining the previous construction in further detail we
refer to the upcoming Example 9—there all strongly connected components are
singleton sets, but it is easy to see how the construction works for larger size
components as well. Now we have proven Theorem 2. In fact, we will later see
that the automaton constructed in the proof of Lemma 4 even is a minimal
REV-DFA.

It can be shown that the regular language reversibility problem—given a
DFA M , decide whether L(M) is accepted by any REV-DFA—is NL-complete.
The idea of the proof is to decide in NL whether a given DFA M = 〈S,Σ, δ, s0, F 〉
accepts a non-reversible language with the help of Theorem 2, by witnessing the
forbidden pattern depicted in Figure 2. Since NL is closed under complementation
the containment of the reversibility problem within NL follows.

Theorem 5. The regular language reversibility problem is NL-complete. 
�

4 Minimal Reversible Deterministic Finite Automata

We recall that it is well know that the minimal DFA accepting a given regular
language is unique up to isomorphism. So there is the natural question asking
for the relations between minimality and reversibility. It turned out that in
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this connection the different notions of reversibility do matter. For instance,
Example 1 already shows that minimal REV-DFAs are not unique (even not up
to isomorphism) in general. In [21] it is mentioned that a language L is accepted
by a bideterministic finite automaton if and only if the minimal finite automaton
of L is reversible and has a unique final state. This answers the question about
the notion of reversibility in [1]. However, for the other notions of reversibility
considered, the minimal reversible finite automaton for some language can be
exponentially larger than the minimal automaton. In [8] finite witness languages
are given that require 6n + 1 states for a minimal DFA, but Ω(1.001n) states
for a minimal reversible DFA. Before we turn to determine the exact number
of states for this example as well as an improved lower bound, first we derive a
structural characterization of minimal REV-DFAs.

Theorem 6. Let M = 〈S,Σ, δ, s0, F 〉 be a reversible deterministic finite
automaton with all states useful. Then M is minimal if and only if for every
equivalence class [q1] = {q1, q2, . . . , qn} in S, with n > 1, there exists a word w ∈
Σ+ such that δR(qi, w) is defined for 1 ≤ i ≤ n, and δR(qk, w) 	≡ δR(q�, w), for
some k and � with 1 ≤ k, � ≤ n. 
�

With the characterization of minimal REV-DFAs as stated in the previous
theorem we are ready to prove that deciding minimality for these devices is
NL-complete, and thus computationally not too complicated.

Theorem 7. Deciding whether a given deterministic finite automaton M is
already a minimal reversible deterministic finite automaton is NL-complete.

Proof. Due to limited space, we only prove containment in NL, which seems the
more interesting here than NL-hardness. Let the DFA M = 〈S,Σ, δ, s0, F 〉 be
given. We will prove minimality with respect to all REV-DFAs using Theorem 6.
Our algorithm uses the following oracle subroutines:

(i) Is state p from the DFA M useful?
(ii) Is p ≡M q in the DFA M?
(iii) Is |[p]| = k in the DFA M?—besides M and p the problem instance contains

also k in binary.

It is not hard to see that these problems and their complements can also be
solved on a nondeterministic Turing machine in logspace.

Now our algorithm proceeds as follows: first the Turing machine verifies that
the input is a REV-DFA, by inspecting all states and checking that for every
letter a there is at most one a-transition leaving and entering the state. If this is
not the case the Turing machine halts and rejects. Next, it is checked whether
all states are useful. Here RST oracle queries are used. If this is not the case,
the computation halts and rejects. Otherwise, we start verifying the conditions
given in Theorem 6. To this end we cycle through all states q ∈ S—note that
we already know that all these states are useful. Then we determine the size
of |[q]|. This is done by cycling through all k with 1 ≤ k ≤ |S| and asking our
oracle subroutine whether |[q]| = k holds in M . If k = 1 nothing has to be
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done and the algorithm proceeds with the next q. Otherwise, let k > 1, and the
algorithm has to verify the property stated in Theorem 6. Therefore we nonde-
terministically guess a word w = av in reversed order on the fly letter by letter.
In case v = b1b2 · · · bm with bi ∈ Σ, for 1 ≤ i ≤ m, then the machine guesses bm,
bm−1, . . . , b1 and a in this order. Then for the letter bm we deterministically com-
pute q′ = δR(q, bm) and verify (i) that |[q′]| = k and (ii) that δR(p, bm) is defined
for every state p in [q]. Notice that in this case, every state from the equivalence
class [q′] enters the equivalence class [q] on input bm. Again, both questions can
be answered with the help of oracles on a RST oracle Turing machine. Then
we continue the backward computation of M with state q′ and the letter bm−1

proceeding as just described above. This step by step backward computation
continues until we reach state q′′ with the next to last guessed letter b1. Finally,
reading letter a backward must result in a situation that the condition of The-
orem 6 is fulfilled. This means that δR(q′′, a) is defined and (i) results in an
equivalence class that is strictly smaller than k and (ii) moreover, δR(p, a) is
defined for every state p in [q′′]. As above these questions are answered with the
help of the oracles described above. The Turing machine halts and rejects if any
of these oracle questions is not answered appropriately. Then the equivalence
class [q] satisfies the condition of Theorem 6 via the witness w = av, and the
Turing machine proceeds with the next q in order.

If we have found witnesses for all equivalence classes [q], for all states q
in S, then Turing machine halts and accepts. Otherwise, it halts and rejects.
It is not hard to see that the described algorithm can be implemented on a
nondeterministic logspace bounded RST oracle Turing machine. Thus, we can
decide minimality of REV-DFAs in NL〈NL〉 = NL. 
�

A closer look on the construction of a REV-DFA from a given minimal DFA
in the proof of Lemma 4 reveals that the constructed automaton satisfies the
condition given in Theorem 6, and thus, is a minimal REV-DFA.

Lemma 8. Let M = 〈S,Σ, δ, s0, F 〉 be a minimal deterministic finite automa-
ton and M ′ = 〈S′, Σ, δ′, s′

0, F
′〉 the reversible deterministic finite automaton con-

structed from M as in the proof of Lemma 4. Then M ′ is a minimal reversible
deterministic finite automaton. 
�

Now we are prepared to derive lower bounds on the number of states for min-
imal reversible DFAs. The currently best known lower bound Ω(1.001n) origi-
nates in [8]. It relies on the 2n-fold concatenation L2n of the finite language
L = {aa, ab, ba}—see Figure 3. Using our technique for constructing a minimal
REV-DFA, one can derive the exact number of states of a minimal REV-DFA for
the language L2n, which is 22n+2 −3. Since the minimal DFA for L2n has 6n+1
states, the blow-up in the number of states is in the order of 2n/3 = ( 3

√
2)n, which

is approximately 1.259n. In our next example we present a better lower bound
which is related to the Fibonacci numbers, and thus is approximately 1.618n,
the golden ratio Φ to the power of n.
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Fig. 3. The minimal DFA accepting the language L2n, for n ≥ 1

Example 9. Let n ≥ 3 and consider the DFA Mn = 〈S,Σ, δ, s0, F 〉 with state
set Sn = {1, 2, . . . , n}, initial state s0 = 1, final state Fn = {n}, and transition
function δn given through:

δn(s, a) =

{
s + 1 if s ≤ n − 1 and s is odd,
s + 2 if s ≤ n − 2 and s is even,

δn(s, b) =

{
s + 2 if s ≤ n − 2 and s is odd,
s + 1 if s ≤ n − 1 and s is even.

Figure 4 shows an example of the automaton Mn for n = 6. Notice that no tran-
sitions are defined in state n, and only one transition is defined in state n − 1.
Clearly, the DFA Mn is minimal, but not reversible. However, since the lan-
guage L(Mn) is finite, one readily sees that it can be accepted by a REV-DFA.
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Fig. 4. The minimal DFA Mn, for n = 6, where the minimal REV-DFA needs∑n
i=1 F i = Fn+2 −1 states

Let us apply the construction from the proof of Lemma 4 to construct an
equivalent REV-DFA, which, by Lemma 8 is a minimal REV-DFA. The topolog-
ical order  of the strongly connected components of Mn clearly is the natural
order 1  2  · · ·  n. States 1 and 2 do not need to be copied, but we need two
copies of state 3 because of its two predecessor states 1 and 2 by letter b. Then we
need three copies of state 4 because of its three predecessors by letter a, namely
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state 2 and two copies of state 3. It is clear how this continues: every state s
of Mn with s ≥ 3 has two predecessors s − 1 and s − 2 either on letter a (if s
is even) or letter b (if s is odd). Therefore the number of copies of state s is the
sum of the number of copies of s − 1 and those of s − 2. Since we start with one
copy of state 1 and one copy of state 2, the number of copies of a state s ∈ Sn

in the minimal REV-DFA for L(Mn) is exactly F s, the s-th Fibonacci number.
Therefore the number of states of the minimal REV-DFA is

∑n
i=1 Fn. This is

equal to Fn+2 −1. From the closed form

Fn =
1√
5

·
(

1 +
√

5
2

)n

− 1√
5

·
(

1 − √
5

2

)n

and the fact that
(

1−√
5

2

)n

tends to zero, for large n, we see that state blow-up

when transforming M into an equivalent REV-DFA is in the order of
(

1+
√
5

2

)n

,
that is, approximately 1.618n. 
�

Thus, we have shown the following theorem.

Theorem 10. For every n with n ≥ 3 there is an n-state DFA Mn over a
binary input alphabet accepting a reversible language, such that any equivalent
REV-DFA needs at least Ω(Φn) states with Φ = (1+

√
5)/2, the golden ratio. 
�

It is worth mentioning that the lower bound of Example 9 is for a binary
alphabet. It can be increased at the cost of more symbols. For a k-ary
alphabet one can derive the lower bound from the k-ary Fibonacci function
Fn = Fn−1 +Fn−2 + · · · + Fn−k. For k = 3 the lower bound is of order 1.839n

and for k = 4 it is of order 1.927n. For growing alphabet sizes the bound asymp-
totically tends to 2n−1, that is, Ω(2n−1).

Finally, our techniques allow us to determine an upper bound of 2n−1 states
for the conversion from DFAs to equivalent REV-DFAs, even for arbitrary alpha-
bet sizes.

Theorem 11. Let M be a minimal deterministic finite automaton with n states,
that accepts a reversible language. Then a minimal reversible deterministic finite
automaton for L(M) has at most 2n−1 states. 
�
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