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xavier.provencal@univ-savoie.fr

Abstract. We consider finite trees with edges labeled by letters on a
finite alphabet Σ. Each pair of nodes defines a unique labeled path whose
trace is a word of the free monoid Σ∗. The set of all such words defines
the language of the tree. In this paper, we investigate the palindromic
complexity of trees and provide hints for an upper bound on the number
of distinct palindromes in the language of a tree.
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1 Introduction

The palindromic language of a word has been extensively investigated recently,
see for instance [1] and more recently [2,5]. In particular, Droubay, Justin and
Pirillo [10] established the following property:

Theorem 1 (Proposition 2 [10]). A word w contains at most |w| + 1 distinct
palindromes.

Several families of words have been studied for their total palindromic complex-
ity, among which periodic words [4], fixed points of morphism [15] and Sturmian
words [10].

Considering words as geometrical objects, we can extend some definitions. For
example, the notion of palindrome appears in the study of multidimensional geo-
metric structures, thus introducing a new characterization. Some known classes
of words are often redefined as digital planes [3,16], and the adjacency graph
of structures obtained by symmetries appeared more recently [9]. In the latter
article, authors show that the obtained graph is a tree and its palindromes have
been described by Domenjoud, Provençal and Vuillon [8]. The trees studied by
Domenjoud and Vuillon [9] are obtained by iterated palindromic closure, just
as Sturmian [7] and episturmian [10,13] words. It has also been shown [8] that
the total number of distinct nonempty palindromes in these trees is equal to the
number of edges in the trees. This property highlights the fact that these trees
form a multidimensional generalization of Sturmian words.
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A finite word is identified with a tree made of only one branch. Therefore,
(undirected) trees appear as generalizations of words and it is natural to look
forward to count the patterns occurring in it. Recent work by Crochemore et
al. [6] showed that the maximum number of squares in a tree of size n is in
Θ(n4/3). This is asymptotically bigger than in the case of words, for which the
number of squares is known to be in Θ(n) [12]. We discuss here the number of
palindromes and show that, as for squares, the number of palindromes in trees is
asymptotically bigger than in words. Figure 1, taken from [8], shows an example
of a tree having more nonempty palindromes than edges, so that Theorem 1 does
not apply to trees.

b a a a b
b

Fig. 1. A tree T with 6 edges and 7 nonempty palindromes, presented in [8]

Indeed, the number of nonempty factors in a tree is at most the ways of
choosing a couple of edges (ei, ej), and these factors correspond to the unique
shortest path from ei to ej . Therefore, the number of nonempty palindromes in
a tree cannot exceed the square of its number of edges. In this article, we exhibit
a family of trees with a number of palindromes substantially larger than the
bound given by Theorem 1. We give a value, up to a constant, for the maximal
number of palindromes in trees having a particular language, and we conjecture
that this value holds for any tree.

2 Preliminaries

Let Σ be a finite alphabet, Σ∗ be the set of finite words over Σ, ε ∈ Σ∗ be
the empty word and Σ+ = Σ∗ \ {ε} be the set of nonempty words over Σ. We
define the language of a word w by L(w) = {f ∈ Σ∗ | w = pfs, p, s ∈ Σ∗}
and its elements are the factors of w. The reverse of w is defined by w̃ =
w|w|w|w|−1 . . . w2w1, where wi is the i-th letter of w and |w|, the length of the
word. The number of occurrences of a given letter a in the word w is denoted |w|a.
A word w is a palindrome if w = w̃. The restriction of L(w) to its palindromes
is denoted Pal(w) = {u ∈ L(w) | u = ũ}.

Some notions are issued from graph theory. We consider a tree to be an
undirected, acyclic and connected graph. It is well known that the number of
nodes in a tree is exactly one more than the number of edges. The degree of a
node is given by the number of edges connected to it. A leaf is a node of degree
1. We consider a tree T whose edges are labeled by letters in Σ. Since in a tree
there exists a unique simple path between any pair of nodes, the function p(x, y)
that returns the list of edges along the path from the node x to the node y is
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well defined, and so is the sequence π(x, y) of its labels. The word π(x, y) is
called a factor of T and the set of all its factors, noted L(T ) = {π(x, y) | x, y ∈
Nodes(T )}, is called the language of T . As for words, we define the palindromic
language of a tree T by Pal(T ) = {w ∈ L(T ) | w = w̃}. Even though the size of
a tree T is usually defined by its nodes, we define it here to be the number of
its edges and denote it by |T |. This emphasizes the analogy with words, where
the length is defined by the number of letters. Observe that, since a nonempty
path is determined by its first and last edges, the size of the language of T is
bounded by:

L(T ) ≤ |T |2 + 1. (1)

Using the definitions above, we can associate a threadlike tree W to a pair
of words {w, w̃}. We may assume that x and y are its extremal nodes (the
leaves). Then, w = π(x, y) and w̃ = π(y, x). The size of W is equal to |w| = |w̃|.
Analogously, Pal(W ) = Pal(w) = Pal(w̃). The language of W corresponds to
the union of the languages of w and of w̃. For example, Figure 2 shows the word
ababb as a threadlike tree. Any factor of the tree is either a factor of π(x, y), if
the edges are read from left to right, or a factor of π(y, x), otherwise.

a b a b b
x y

Fig. 2. A threadlike tree represents a pair formed by a word and its reverse

For a given word w, we denote by Δ(w) its run-length-encoding, that is the
sequence of constant block lengths. For example, for the French word “appelle”,
Δ(appelle) = 12121. As well, for the sequence of integers w = 11112111211211,
Δ(w) = 4131212. Indeed, each letter of Δ(w) represents the length of a block,
while the length of Δ(w) can be associated with the number of blocks in w.

Given a fixed alphabet Σ, we define an infinite sequence of families of trees

Tk = {tree T | |Δ(f)| ≤ k for all f ∈ L(T )}.

For any positive integer k, we count the maximum number of palindromes of
any tree of Tk according to its size. To do so, we define the function

Pk(n) = max
T∈Tk,|T |≤n

|Pal(T )|.

This value is at least equal to n+1. It is known [10] that each prefix p of a Stur-
mian word contains |p| nonempty palindromes. This implies that P∞(n) ∈ Ω(n).
On the other hand, equation (1) provides a trivial upper bound on the growth
rate of Pk(n) since it implies P∞(n) ∈ O(n2). We point out that Pk(n) is an
increasing function with respect to k. In the following sections we provide the
asymptotic growth, in Θ-notation, of Pk(n), for k ≤ 4. Although we have not
been able to prove the asymptotic growth for k ≥ 5, we explain why we conjec-
ture that P∞(n) ∈ Θ(P4(n)) in section 5.
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3 Trees of the Family T2

First recall that, by definition, every nonempty factor of a tree T in T2 has
either one or two blocks of distinct letters. In other terms, up to a renaming of
the letters, every factor in T is of the form a∗b∗. Therefore, any palindrome in
T is on a single letter. From this, we can deduce a value for P2(n) :

Proposition 2. The maximal number of palindromes for the family T2 is
P2(n) = n + 1.

Proof. The number of nonempty palindromes on a letter a is the length of the
longest factor containing only a’s. Thus, the total number of palindromes is at
most the number of edges in T , plus one (for the empty word). This leads directly
to P2(n) ≤ n+1. On the other hand, a word of length n on a single-letter alpha-
bet contains n + 1 palindromes. This word is associated to threadlike tree in T1.
Therefore, P2(n) = n + 1. �

4 Trees of the Families T3 and T4

In this section, we show that {P3(n),P4(n)} ⊆ Θ(n
3
2 ). To do so, we proceed

in two steps. First, we present a construction that allows to build arbitrary
large trees in T3 such that the number of palindromes in their languages is large
enough to show that P3(n) ∈ Ω(n

3
2 ). Then, we show that, up to a constant, this

construction is optimal for all trees of T3 and T4.

4.1 A Lower Bound for P3(n).

Some Elements from Additive Combinatorics. An integer sequence is
a Sidon set if the sums (equivalently, the differences) of all distinct pairs of
its elements are distinct. There exists infinitely many of these sequences. For
example, the powers of 2 are an infinite Sidon set. The maximal size of a Sidon
set A ⊆ {1, 2, . . . , n} is only known up to a constant [14]. This bound is easily
obtained since A being Sidon set, there are exactly |A|(|A|+1)

2 sums of pairs of
elements of A and all their sums are less or equal to 2n. Thus,

|A|(|A| + 1)
2

≤ 2n

and |A| ≤ 2
√

n. Erdős and Turán [11] showed that for any prime number p, the
sequence

Ap = (2pk + (k2 mod p))k=1,2,...,p−1, (2)

is a Sidon set. The reader should notice that, since there exists arbitrarily large
prime numbers, there is no maximal size for sequences constructed in this way.
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Moreover, the sequence Ap is, up to a constant, the densest possible. Indeed,
the maximum value of any element of Ap is less than 2p2 and |Ap| = p − 1.
Since a Sidon set in {1, 2, . . . , n} is of size at most 2

√
n, the density of Ap is

√
8

(around 2.83) times smaller, for any large p.

The Hair Comb Construction. Our goal is to describe a tree having a palin-
dromic language of size substantially larger than the size of the tree. In this
section, we build a tree Cp ∈ T3 for any prime p containing a number of palin-
dromes in Θ(|Cp|

3
2 ).

For each prime number p, let B = (b1, . . . , bp−2) be the sequence defined by
bi = ai+1−ai, where the values ai are taken in the sequence Ap presented above,
equation (2), and let Cp be the tree constructed as follows :

1p 1p 1p 1p 1p 1p 1p 1p 1p 1p

0b1 0b2 0b3 0b4 0b5 0b6 0b7 · · · 0bp−2

Proposition 3. The sums of the terms in each contiguous subsequence of B are
pairwise distinct.

Proof. By contradiction, assume that there exists indexes k, l,m, n such that
∑l

i=k bi =
∑n

j=m bj . By definition of B,

l
∑

i=k

bi =
l

∑

i=k

(ai − ai−1) = al − ak−1 and
n

∑

j=m

bj = an − am−1.

This implies that al + am−1 = an + ak−1, which is impossible. �

Lemma 4. The number of palindromes in Cp is in Θ(p3).

Proof. The nonempty palindromes of Cp are of three different forms. Let c0 be
the number of palindromes of the form 0+, c1 be the number of palindromes of
the form 1+ and c101 be the number of palindromes of the form 1+0+1+. The
number of palindromes of Cp is clearly |Pal(Cp)| = c0 + c1 + c101 + 1, where one
is added for the empty word.

c0 = b1 + b2 + · · · + bp−2 = ap−1 − a1 = 2p2 − 4p,

c1 = p,

c101 = |{1x0y1x ∈ Pal(Cp)}|
= |{x | 1 ≤ x ≤ p}| · |{y | y =

∑l
i=k bi for 1 ≤ k ≤ l ≤ p − 2}|

= 1
2p(p − 1)(p − 2).
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The last equality comes from the fact that there are (p − 1)(p − 2)/2 possible
choices of pairs (k, l) and proposition 3 guarantees that each choice sums up
to a different value. The asymptotic behavior of the number of palindromes is
determined by the leading term p3. �

Lemma 5. The number of edges in Cp is in Θ(p2).

Proof. The number of edges labeled by 0 is b1 + b2 + . . . + bp−2 = 2p2 − 4p.
For those labeled with 1, there are exactly p−1 sequences of edges labeled with 1’s
and they all have length p. The total number of edges is thus 2p2−4p+p(p−1) =
3p2 − 5p. �

Theorem 6. P3(n) ∈ Ω(n
3
2 ).

Proof. Lemmas 4 and 5 implies that the number of palindromes in Cp is in
Θ(|Cp|

3
2 ). Since there are infinitely many trees of the form Cp and since their

size is not bounded, these trees provide a lower bound on the growth rate of
P3(n). �

4.2 The Value of P4(n) is in Θ(n
3
2 ).

In this subsection, we show that the asymptotic value of P3(n) is reached by the
hair comb construction, given above, and that it is the same value for P4(n).

Theorem 7. P4(n) ∈ Θ(n
3
2 ).

Before giving a proof of this theorem, we need to explain some arguments. We
first justify why we reduce any tree of T4 to a tree in T3. Then, we present some
properties of the latter trees in order to establish an upper bound on P4(n).

Lemma 8. For any T ∈ T4, there exists a tree S ∈ T3 on a binary alphabet
satisfying |S| ≤ |T |, and with 1

|Σ|2 |Pal(T )| − |T | ≤ |Pal(S)| ≤ |Pal(T )|.

Proof. If there is in T no factor with three blocks starting and ending with the
same letter, this means that all the palindromes are repetitions of a single letter.
We then denote by a the letter on which the longest palindrome is constructed.
It might not be unique, but it does not matter. Let S be the longest path labeled
only with a’s. Then, |Pal(T )| ≤ |Σ||Pal(S)| ≤ |Σ||Pal(T )|.
Otherwise, let a and b be letters of Σ and let (a, b) be a pair of letters for which
|L(T ) ∩ Pal(a+b+a+)| is maximal. We define the set

ES = ∪
(

p(u, v) | π(u, v) ∈ Pal(a+b+a+)
)

and let S be the subgraph of T containing exactly the edges of ES and the nodes
connected to these edges. Then, there are three things to prove :
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– S is a tree: Since S is a subgraph of T , it cannot contain any cycle. We
however need to prove that S is connected. To do so, assume that S has two
connected components named C1 and C2. Of course, L(C1) ⊆ a∗b∗a∗ and
C1 has at least one factor in a+b+a+. The same holds for C2. Since T is a
tree, there is a unique path in T\S connecting C1 and C2. We call it q.
There are paths in C1 and in C2 starting from an extremity of q and contain-
ing factors in b+a+. Thus, by stating that w is the trace of q, T has a factor
f ∈ a+b+a∗wa∗b+a+. By hypothesis, T ∈ T4 so any factor of T contains at
most four blocks. Then, f has to be in a+b+wb+a+, with w ∈ b∗ and so q is
a path in S. A contradiction.

a+ b+ a+ a+ b+

C1 C2

a+

q

– S ∈ T3 is on a binary alphabet: By construction, S contains only edges
labeled by a or b and has no leaf connected to an edge labeled by b. This
implies that if S contains a factor f ∈ a+b+a+b+, f may be extended to
f ′ ∈ a+b+a+b+a+, which does not appear in T .

– |Pal(S)| ≥ 1
|Σ|2 |Pal(T )| − |T |: We chose (a, b) to be the pair of letters for

which the number of palindromes on an alphabet of size at least 2 was
maximal. The number of palindromes on a single letter is at most |T |. Thus,

1
|Σ|2 |Pal(T )| − |T | ≤ |Pal(S)| ≤ |Pal(T )|.

�

Lemma 9. For any T ∈ T3, T cannot contain both factors of 0+1+0+ and of
1+0+1+.

Proof. We proceed by contradiction. Assume that there exists in T four nodes
u, v, x, y such that π(u, v) ∈ 0+1+0+ and π(x, y) ∈ 1+0+1+. Since T is a tree,
there exists a unique path between two nodes. In particular, there is a path from
w ∈ {u, v} to w′ ∈ {x, y} containing a factor of the form 0+1+0+Σ∗1+, which
contradicts the hypothesis that T ∈ T3. �

We now define the restriction Ra(T ) of a tree T to the letter a by keeping from
T only the edges labeled by a and the nodes connected to them.

Lemma 10. Let T be in T3. There exists at least one letter a ∈ Σ such that
Ra(T ) is connected.
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Proof. If T does not contain a factor on at least two letters that starts and ends
with the same letter, that is of the form b+a+b+, then Ra(T ) is connected for
any letter a.
Otherwise, assume that a factor f ∈ b+a+b+ appears in T . Then, Ra(T ) must
be connected. By contradiction, suppose there exists an edge labeled with a that
is connected to the sequence of a’s in f , by a word w that contains another
letter than a. Then, there exists a word of the form awa+b+ in L(T ) and this
contradicts the hypothesis that T ∈ T3. �

Given a node u in a tree, we say that u is a splitting on the letter a if deg(u) ≥ 3
and there is at least two edges labeled with a connected to u.

Lemma 11. Let T be in T3. Then, there is a tree T ′ of size |T | such that
L(T ) ⊆ L(T ′) and there exists a letter a ∈ Σ such that any splitting of T ′ is
on the letter a.

Proof. If T is in T2, we apply the upcoming transformation to every branches.
Otherwise, assume that a factor of the form b+a+c+ appears in T (note that b
might be equal to c). We allow splittings only on the letter a. Let v be a node
of T that is a splitting on b ∈ Σ\{a} (if it does not exist, then T ′ = T ). By
the hypothesis on T , this means that there exists, starting from v, at least two
paths labeled only with b’s leading to leaves x and y.

bi
bj· · ·

v x

y

bi bj· · ·
v x y

Fig. 3. The destruction of a splitting on the letter b

We assume that |π(v, x)| ≥ |π(v, y)|. Then, the words having π(v, y) as suffix
are a subset of those for which π(v, x) is suffix. Therefore, the only case where
π(v, y) may contribute to the language of T is when both the edges of π(v, x)
and π(v, y) are used. The words of this form are composed only of b’s and are
of length at most |π(v, x)| + |π(v, y)|. Moving the edges between s and y to the
other extremity of x, we construct a tree for which the language contains L(T )
and having the same number of nodes. Finally, we can apply this procedure until
the only remaining splittings are on the letter a. This leads to T ′. �

We are now ready to prove the main theorem.

Proof. [Theorem 7: P4(n) ∈ Θ(n
3
2 ).] Let T be in T4. By assumption, each factor

of T contains at most four blocks of distinct letters.
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1. Let S ∈ T3 be such that |S| ≤ |T |, L(S) ⊆ {0, 1}∗ and
|Pal(T )|−|T |

|Σ|2 ≤ |Pal(S)| ≤ |Pal(T )|. Using lemma 8, we know that this exists.
We know by lemma 9 that S may contain factors in 1+0+1+, but not in 0+1+0+.

2. By lemma 11, there exists a tree S′ with |S′| = |S|, such that L(S) ⊆ L(S′),
and with no splitting on the letter 1.

3. Finally, we count the palindromes in S′. The form of these palindromes is
either 0+, 1+ or 1+0+1+. For the palindromes on a one-letter alphabet, their
number is bounded by n, where n is the size of S′. We now focus on the num-
ber of palindromes of the form 1+0+1+. Call c101 this number. We show that
c101 ≤ 2n

√
n.

Since S′ does not admit any splitting on the letter 1, each connected compo-
nent of R1(S′) is a threadlike branch going from a leaf of S′ to a node of R0(S′).
We name these connected components b1, . . . , bm and by lemma 10, we know
that R0(S′) is connected.

Let bi and bj be two distinct branches of S′. By abuse of notation, we note
π(bi, bj) the word defined by the unique path from bi to bj . Let l be such that
π(bi, bj) = 0l and suppose that |bi| ≤ |bj |. Then, for any node u in bi, there exists
a unique node v in bj , such that the word π(u, v) = 1k0l1k is a palindrome.
Moreover, if |bi| < |bj |, then there are nodes in bj that cannot be paired to a
node of bi in order to form a palindrome. From this observation, a first upper
bound is:

c101 ≤
∑

1≤i<j≤m

min(|bi|, |bj |). (3)

Another way to bound c101 is to count the palindromes of the form 1+0+1+

according to the length of the block of 0’s. For each length l from 1 to n, there
might be more than one pair {bi, bj} that produces palindromes with central
factor 0l. This provides a second upper bound:

c101 ≤
n

∑

l=1

max
1≤i<j≤m

π(bi,bj)=0l

(min(|bi|, |bj |)) (4)

In order to obtain the desired bound on c101 we combine these two bounds.
Let B′ = {i | |bi| ≥ √

n}. Since n is the size of S′, we have that |B′| ≤ √
n and

that the average size of the branches bi is such that i ∈ B′ is bounded by n/|B′|.
By applying the bound from (3) to the palindromes formed by two branches in
B′, we obtain that the number of such palindromes is:

∑

1≤i<j≤m

{i,j}⊆B′

min(|bi|, |bj |) ≤ |B′|(|B′| − 1)
2

n

|B′| ≤ n
√

n. (5)
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Finally, it remains to count the number of palindromes that are defined by
pairs of branches {bi, bj} such that i or j is not in B′. In such case, we always
find that min(|bi|, |bj |) <

√
n. The number of such palindromes is:

n
∑

l=1

max
1≤i<j≤m

π(bi,bj)=0l

{i,j}	⊂B′

(min(|bi|, |bj |)) < n
√

n. (6)

Since each palindrome in S′ is counted by equation (5) or (6), we obtain,
summing both, c101 < 2n

√
n = 2|S′| 3

2 . We deduce that, for any tree T in T4, the
number of palindromes is bounded by

|Pal(T )| ≤ |Σ|2|Pal(S)| + |T | < 2|Σ|2|S′| 3
2 + |T | ≤ 2|Σ|2|T | 3

2 + |T |.

Using the fact that the alphabet is fixed (so its size is given by a constant), it is
enough to prove that P4(n) ∈ O(n

3
2 ). Combining this result with the one given

in section 4.1, one may assert that both P3(n) and P4(n) are in Θ(n
3
2 ). �

5 Hypotheses for the Construction of Trees with a Lot of
Distinct Palindromes

Let T be a tree that maximizes the number of palindromes for its size. It is likely
that T contains triples of nodes (u, v, w) such that π(u, v), π(u,w) and π(v, w)
are all palindromes. Suppose it is the case, and define T ′ as the restriction of
T to the paths that join u, v and w. We have that either T ′ is a threadlike
tree, or T ′ has three leaves and a unique node of degree 3. The first case is of
no interest here since it is equivalent to words, while the latter case implies a
restrictive structure on the factors π(u, v), π(u,w) and π(v, w). We now focus
on the second case and call x the unique node of T ′ with degree 3.

Let U = π(u, x), V = π(v, x), W = π(w, x) and, without loss of generality,
suppose that |U | ≤ |V | ≤ |W |. Then, as shown in Figure 4, U ˜V , U˜W and V ˜W
are all palindromes.

UV

U A

W

UAB

u

v wx

Fig. 4. The structure of the tree T ′. The palindromicity of U ˜V , U˜W and V˜W forces
that V starts with U while W starts with both factors U and V .
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Let A be the suffix of length |V | − |U | of V . Since, by hypothesis, U ˜V is a
palindrome, V = UA and A is a palindrome. Similarly, let B be the suffix of
length |W |− |V | of W. This implies that W = V B = UAB and both B and AB
are palindromes. Using a well-known lemma from Lothaire [17], we prove that
AB is periodic.

Lemma 12 (Proposition 1.3.2 in [17]). Two words commute if and only if they
are powers of the same word.

The next proposition states that the word ABA is periodic and that its
period is at most the gcd of the difference of length of the three paths between
u, v and w. More formally, let

p = gcd (|π(u,w)| − |π(u, v)|, |π(v, w)| − |π(u, v)|, |π(v, w)| − |π(u,w)|) .

Proposition 13. There exists a word S and two integers i, j such that |S|
divides p and A = Si and B = Sj.

Proof. Since A, B and AB are palindromes, AB = ˜AB = ˜B ˜A = BA. Thus, by
lemma 12, there exists a word S such that A = Si and B = Sj . This implies
that |S| divides gcd(|A|, |B|) and, by construction, gcd(|A|, |B|) = p. �

From the above proposition, we deduce that a triple of nonaligned nodes with
any path from a node to another being a palindrome forces a local structure
isomorphic to that of the hair comb tree, as illustrated in Figure 5.

UU U

Si Si+j

uv w

Fig. 5. A triple of nodes with palindromes between each pair of them is isomorphic to
a part of a hair comb

In a more general way, suppose that a tree contains m leaves (ui)1≤i≤m, and
that each π(ui, uj) is a palindrome. Let T ′ be the restriction of this tree to the
paths that connect these leaves and, for each i, let vi be the first node of degree
higher than 2 accessible from the leaf ui in T ′. By applying the above proposition
to each triplet (ui, uj , uk), for all i 	= j, the word π(ui, uj) is of the form

π(ui, uj) = US+
˜U,

where |U | = mini(π(ui, vi)) and |S| divides gcd
i	=j,k 	=l

(∣

∣|π(ui, uj)| − |π(uk, ul)|
∣

∣

)

.
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Moreover, in order to maximize the number of palindromes relatively to the
size of the tree, we can choose S to be a single letter. This is indeed possible
since the only condition on the length of S is that it divides all the differences
of lengths between any palindromic path from a leaf to another.

This gives a tree analogous to those presented in section 4.1, Cp, and for
which we have established that |Pal(Cp)| ∈ Θ(|Cp|

3
2 ). Therefore, we conjecture

that P∞(n) ∈ Θ(n
3
2 ).

References

1. Allouche, J.P., Baake, M., Cassaigne, J., Damanik, D.: Palindrome complexity.
Theoretical Computer Science 292(1), 9–31 (2003)
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8. Domenjoud, E., Provençal, X., Vuillon, L.: Palindromic language of thin discrete
planes (to appear)

9. Domenjoud, E., Vuillon, L.: Geometric palindromic closure. Uniform Distribution
Theory 7(2), 109–140 (2012)

10. Droubay, X., Justin, J., Pirillo, G.: Episturmian words and some constructions of
de Luca and Rauzy. Theoretical Computer Science 255(1–2), 539–553 (2001)

11. Erdös, P., Turán, P.: On a problem of Sidon in additive number theory, and on
some related problems. Journal of the London Mathematical Society. Second Series
16, 212–215 (1941)

12. Fraenkel, A.S., Simpson, J.: How many squares can a string contain? J. Combin.
Theory Ser. A 82(1), 112–120 (1998)

13. Glen, A., Justin, J.: Episturmian words: a survey. Theoretical Informatics and
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