
Igor Potapov (Ed.)

 123

LN
CS

 9
16

8

19th International Conference, DLT 2015
Liverpool, UK, July 27–30, 2015
Proceedings

Developments
in Language Theory

Lecture Notes in Computer Science 9168

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Igor Potapov (Ed.)

Developments
in Language Theory
19th International Conference, DLT 2015
Liverpool, UK, July 27–30, 2015
Proceedings

123

Editor
Igor Potapov
University of Liverpool
Liverpool
UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-21499-3 ISBN 978-3-319-21500-6 (eBook)
DOI 10.1007/978-3-319-21500-6

Library of Congress Control Number: 2015943441

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

The 19th International Conference on Developments in Language Theory (DLT 2015)
was organized by the University of Liverpool, UK, during July 27–30, 2015.

The DLT conference series is one of the major international conference series in
language theory and related areas. The Developments in Language Theory (DLT) con-
ference was established by G. Rozenberg and A. Salomaa in 1993. Since then, the DLT
conferences were held on every odd year: Magdeburg, Germany (1995), Thessaloniki,
Greece (1997), Aachen, Germany (1999), and Vienna, Austria (2001). Since 2001, a
DLT conference takes place in Europe on every odd year and outside Europe on every
even year. The locations of DLT conferences since 2002 were: Kyoto, Japan (2002),
Szeged, Hungary (2003), Auckland, New Zealand (2004), Palermo, Italy (2005),
Santa Barbara, California, USA (2006), Turku, Finland (2007), Kyoto, Japan (2008),
Stuttgart, Germany (2009), London, Ontario, Canada (2010), Milan, Italy (2011), Taipei,
Taiwan (2012), Marne-la-Vallée, France (2013), Ekaterinburg, Russia (2014).

The series of International Conferences on Developments in Language Theory
provides a forum for presenting current developments in formal languages and auto-
mata. Its scope is very general and includes, among others, the following topics and
areas: combinatorial and algebraic properties of words and languages; grammars,
acceptors and transducers for strings, trees, graphs, arrays; algebraic theories for
automata and languages; codes; efficient text algorithms; symbolic dynamics; decision
problems; relationships to complexity theory and logic; picture description and anal-
ysis; polyominoes and bidimensional patterns; cryptography; concurrency; cellular
automata; bio-inspired computing; quantum computing.

This volume of Lecture Notes in Computer Science contains the papers that were
presented at DLT 2015. There were 54 qualified submissions. Each submission was
reviewed by at least three Program Committee members. The committee decided to
accept 31 papers. The volume also includes the abstracts and extended abstracts of five
invited speakers:

– Mikolaj Bojanczyk: “Recognisable Languages over Monads”
– Patrick Dehornoy: “Garside and Quadratic Normalisation: A Survey”
– Vesa Halava: “Proofs of Undecidability”
– Markus Lohrey: “Grammar-Based Tree Compression”
– Wolfgang Thomas “Finite Automata and Transitive Closure Logic”

This year the Steering Committee of the DLT agreed to introduce a Best Paper
Award to encourage and reward high-quality research in language theory and related
areas. The Program Committee members after careful consideration of all accepted
papers decided to give the Best Paper Award to Jorge Almeida, Jana Bartonova, Ondrej
Klima, and Michal Kunc for their paper “On Decidability of Intermediate Levels of
Concatenation Hierarchies.”

We warmly thank all the invited speakers and all the authors of the submitted
papers. We would also like to thank all the members of the Program Committee and the
external referees (listed in the proceedings) for their hard work in evaluating the papers.
We also thank all members of the Organizing Committee at the University of Liver-
pool. We wish to express our sincere appreciation to the conference sponsors: NeST
Software Lab at the University of Liverpool and the European Association for
Theoretical Computer Science and the editors of the Lecture Notes in Computer
Science series and Springer, in particular Alfred Hofmann, for their help in publishing
this volume. The reviewing process was organized using the EasyChair conference
system created by Andrei Voronkov. We would like to acknowledge that this system
helped greatly to improve the efficiency of the committee work.

July 2015 Igor Potapov

VI Preface

Organization

Program Committee

Srecko Brlek Université du Québec à Montréal, Canada
Manfred Droste University of Leipzig, Germany
Rusins Freivalds University of Riga, Latvia
Mika Hirvensalo Turku University, Finland
Markus Holzer University of Giessen, Germany
Juraj Hromkovic ETH Zürich, Switzerland
Artur Jez University of Wroclaw, Poland
Natasha Jonoska University of South Florida, USA
Juhani Karhumaki Turku University, Finland
Gregory Kucherov CNRS/LIGM, France
Pierre McKenzie University of Montreal, Canada
Jean-Éric Pin CNRS/LIAFA, France
Igor Potapov, Chair University of Liverpool, UK
Daniel Reidenbach Loughborough University, UK
Marinella Sciortino University of Palermo, Italy
Rick Thomas University of Leicester, UK
Mikhail Volkov Ural Federal University, Russia
Hsu-Chun Yen National Taiwan University, Taiwan

Steering Committee

Marie-Pierre Béal Université Paris-Est-Marne-la-Vallée, France
Cristian S. Calude University of Auckland, New Zealand
Volker Diekert University of Stuttgart, Germany
Juraj Hromkovic ETH Zürich, Switzerland
Oscar H. Ibarra UCA, Santa Barbara, USA
Masami Ito Kyoto Sangyo University, Japan
Natasha Jonoska University of South Florida, USA
Juhani Karhumaki

(Chair)
Turku University, Finland

Martin Kutrib University of Giessen, Germany
Michel Rigo University of Liege, Belgium
Antonio Restivo University of Palermo, Italy
Grzegorz Rozenberg Leiden Institute of Advanced Computer Science,

The Netherlands
Arto Salomaa Turku University, Finland
Kai Salomaa Queen's University, Canada

Wojciech Rytter Warsaw University, Poland
Mikhail Volkov Ural Federal University, Russia
Takashi Yokomori Waseda University, Japan

Organizing Committee

Igor Potapov University of Liverpool, UK
Leszek Gasieniec University of Liverpool, UK
Russell Martin University of Liverpool, UK
Reino Niskanen University of Liverpool, UK
Dave Shield University of Liverpool, UK

Additional Reviewers

Anashin, Vladimir
Anselmo, Marcella
Bala, Sebastian
Blondin Massé, Alexandre
Blondin, Michael
Boeckenhauer, Hans-Joachim
Bucci, Michelangelo
Cadilhac, Michaël
Carton, Olivier
Chang, Yi-Jun
Chen, Ho-Lin
Choffrut, Christian
Colcombet, Thomas
Day, Joel
Farruggia, Andrea
Fici, Gabriele
Freydenberger, Dominik D.
Frid, Anna
Gawrychowski, Pawel
Gogacz, Tomasz
Halava, Vesa
Han, Yo-Sub
Harju, Tero
Jurdzinski, Tomasz
Kanazawa, Makoto
Kari, Jarkko
Konstantinidis, Stavros
Kosolobov, Dmitry
Kozen, Dexter
Kuske, Dietrich

Kutrib, Martin
Labelle, Gilbert
Lo Bosco, Giosue’
Malcher, Andreas
Maletti, Andreas
Manea, Florin
Mccolm, Gregory
Meckel, Katja
Newman, Alantha
Nickson, Thomas
Niskanen, Reino
Okhotin, Alexander
Otop, Jan
Otto, Friedrich
Panella, Federica
Paperman, Charles
Paun, Andrei
Penelle, Vincent
Place, Thomas
Prianychnykova, Olena
Provençal, Xavier
Quaas, Karin
Restivo, Antonio
Saarela, Aleksi
Saari, Kalle
Salomaa, Kai
Schewe, Sven
Sebastien, Labbe
Seki, Shinnosuke
Steiner, Wolfgang

VIII Organization

Truthe, Bianca
Törmä, Ilkka
Walen, Tomasz
Wang, Bow-Yaw

Yassawi, Reem
Yu, Tian-Li
Zeitoun, Marc

Organization IX

Abstracts of Invited Talks

Recognisable Languages Over Monads

Miko�laj Bojańczyk

University of Warsaw

This paper1 proposes monads as a framework for algebraic language theory.
Examples of monads include words and trees, finite and infinite. Each monad
comes with a standard notion of an algebra, called an Eilenberg-Moore alge-
bra, which generalises algebras studied in language theory like semigroups or
ω-semigroups. On the abstract level of monads one can prove theorems like the
Myhill-Nerode theorem, the Eilenberg theorem; one can also define profinite
objects.

Miko�laj Bojańczyk—Supported by the Polish NCN grant 2014-13/B/ST6/03595.
1 A full version of this paper is available at http://arxiv.org/abs/1502.04898 . The
full version includes many examples of monads, proofs, stronger versions of theorems
from this extended abstract, and entirely new theorems.

http://arxiv.org/abs/1502.04898

Grammar-Based Tree Compression

Markus Lohrey

Universität Siegen
lohrey@eti.uni-siegen.de

This paper gives a survey on recent progress in grammar-based compression for
trees. Also algorithms that directly work on grammar-compressed trees will be
surveyed.

This research is supported by the DFG-project LO 748/10-1.

Garside and Quadratic Normalisation: A Survey

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme, CNRS UMR 6139, Université de
Caen, 14032 Caen cedex, France, and Institut Universitaire de France

patrick.dehornoy@unicaen.fr,
www.math.unicaen.fr/∼dehornoy

Starting from the seminal example of the greedy normal norm in braid monoids,
we analyze the mechanism of the normal form in a Garside monoid and explain
how it extends to the more general framework of Garside families. Extend-
ing the viewpoint even more, we then consider general quadratic normalisation
procedures and characterise Garside normalisation among them.

Keywords: normal form; normalisation; regular language; fellow traveller prop-
erty; greedy decomposition; Garside family; quadratic rewriting system; braid
monoids; Artin–Tits monoids; plactic monoids

Proofs of Undecidability

Extended Abstract

Vesa Halava

Department of Mathematics and Statistics, University of Turku, Finland
Department of Computer Science, University of Liverpool, UK

vesa.halava@utu.fi

In the theory of computation and computability the existence of undecidable
problems is a fundamental property. Already in the famous paper by A. Tur-
ing in 1936 where he defined the machines we now know as Turing machines,
Turing showed that there exist problems which are unsolvable. Indeed, undecid-
ability was around even before Turing machines as the celebrated result of K.
Gödel (1931), known as the Incompleteness Theorem, can be considered as a
computational undecidability result.

In this talk we focus on the proofs of undecidability and study techniques of
reductions of the proofs. Two types of reductions are studied:

(i) reductions (or codings) between two computational machinery, and
(ii) reductions mapping an undecidable problem to a particular subclass of in-

stances of the same problem.

We will pass through notable problems such as the halting problem of the
Turing machines, the word problem and the termination problem of the semi-
Thue systems, the Post’s correspondence problem and the assertion problem of
the Post’s Normal systems. Also, we will notice that the Incompleteness Theorem
by Gödel is around the corner.

As examples for the reductions studied here we give the following:
For type (i), we will study the original undecidability proof by E. Post (1946)

for the correspondence problem using the Normal systems. We compare Post’s
technique to the standard textbook reduction from the Turing machines (or the
semi-Thue systems).

For type (ii), we consider a method for proving undecidability of the word
problem for the 3-rule semi-Thue systems (Matiyasevich and Sénizergues 2005).
We will compare their reduction to the reduction by Cĕıtin (1958) from the word
problem of Thue system into word problem of 7-rule Thue system. Moreover, we
study the difference of these techniques in the case of the termination problem
of the semi-Thue systems.

Finite Automata and Transitive Closure Logic

Wolfgang Thomas

RWTH Aachen University
Lehrstuhl Informatik 7, Aachen, 52056
thomas@informatik.rwth-aachen.de

The most prominent connection between automata theory and logic is the ex-
pressive equivalence between finite automata over words and monadic second-
order logic MSO. In this lecture, we focus on a more restricted, not as popular,
but also fundamental logic, “monadic transitive closure logic” MTC, which over
words has the same expressive power as MSO. In MTC one can proceed from
a formula F (z, z′) to F ∗(x, y) which expresses that a sequence exists from x to
y such that each step is in accordance with F . Thus, MTC is a very natural
framework to express reachability properties. We survey old and recent results
which clarify the expressive power and possible uses of MTC. We start with the
equivalence between MTC and MSO over word models. Then we discuss MTC
over trees, grids, and graphs, addressing the relation to tree walking automata
and analogous automata over grids and graphs. We conclude with some open
questions.

Contents

Recognisable Languages over Monads . 1
Mikołaj Bojańczyk

Garside and Quadratic Normalisation: A Survey. 14
Patrick Dehornoy

Grammar-Based Tree Compression . 46
Markus Lohrey

On Decidability of Intermediate Levels of Concatenation Hierarchies 58
Jorge Almeida, Jana Bartoňová, Ondřej Klíma, and Michal Kunc

Ergodic Infinite Permutations of Minimal Complexity. 71
Sergey V. Avgustinovich, Anna E. Frid, and Svetlana Puzynina

Diverse Palindromic Factorization Is NP-complete 85
Hideo Bannai, Travis Gagie, Shunsuke Inenaga, Juha Kärkkäinen,
Dominik Kempa, Marcin Piątkowski, Simon J. Puglisi,
and Shiho Sugimoto

Factorization in Formal Languages . 97
Paul C. Bell, Daniel Reidenbach, and Jeffrey Shallit

Consensus Game Acceptors . 108
Dietmar Berwanger and Marie van den Bogaard

On the Size of Two-Way Reasonable Automata for the Liveness Problem 120
Maria Paola Bianchi, Juraj Hromkovič, and Ivan Kováč

Squareable Words . 132
Francine Blanchet-Sadri and Abraham Rashin

Complexity Analysis: Transformation Monoids of Finite Automata 143
Christian Brandl and Hans Ulrich Simon

Palindromic Complexity of Trees . 155
Srečko Brlek, Nadia Lafrenière, and Xavier Provençal

Deciding Proper Conjugacy of Classes of One-Sided
Finite-Type-Dyck Shifts . 167

Marie-Pierre Béal and Pavel Heller

Transfinite Lyndon Words . 179
Luc Boasson and Olivier Carton

Unary Patterns with Permutations . 191
James Currie, Florin Manea, and Dirk Nowotka

Finite Automata Over Infinite Alphabets: Two Models with Transitions
for Local Change . 203

Christopher Czyba, Christopher Spinrath, and Wolfgang Thomas

Enumeration Formulæ in Neutral Sets . 215
Francesco Dolce and Dominique Perrin

On the Density of Context-Free and Counter Languages 228
Joey Eremondi, Oscar H. Ibarra, and Ian McQuillan

*-Continuous Kleene x-Algebras . 240
Zoltán Ésik, Uli Fahrenberg, and Axel Legay

Unary Probabilistic and Quantum Automata on Promise Problems 252
Aida Gainutdinova and Abuzer Yakaryılmaz

Generalizations of Code Languages with Marginal Errors 264
Yo-Sub Han, Sang-Ki Ko, and Kai Salomaa

Minimal Reversible Deterministic Finite Automata 276
Markus Holzer, Sebastian Jakobi, and Martin Kutrib

Multi-sequential Word Relations. 288
Ismaël Jecker and Emmanuel Filiot

The Boundary of Prefix-Free Languages . 300
Jozef Jirásek and Galina Jirásková

A Connected 3-State Reversible Mealy Automaton Cannot Generate
an Infinite Burnside Group . 313

Ines Klimann, Matthieu Picantin, and Dmytro Savchuk

Path Checking for MTL and TPTL over Data Words 326
Shiguang Feng, Markus Lohrey, and Karin Quaas

On Distinguishing NC1 and NL . 340
Andreas Krebs, Klaus-Jörn Lange, and Michael Ludwig

Surminimisation of Automata. 352
Victor Marsault

On the Complexity of k-Piecewise Testability and the Depth of Automata 364
Tomáš Masopust and Michaël Thomazo

XX Contents

Interval Exchange Words and the Question of Hof, Knill, and Simon 377
Zuzana Masáková, Edita Pelantová, and Štěpán Starosta

State Complexity of Neighbourhoods and Approximate Pattern Matching . . . 389
Timothy Ng, David Rappaport, and Kai Salomaa

Deterministic Ordered Restarting Automata that Compute Functions. 401
Friedrich Otto and Kent Kwee

Weight Assignment Logic . 413
Vitaly Perevoshchikov

Complexity Bounds of Constant-Space Quantum Computation:
(Extended Abstract) . 426

Tomoyuki Yamakami

Author Index . 439

Contents XXI

Recognisable Languages over Monads

Miko�laj Bojańczyk(B)

University of Warsaw, Warsaw, Poland
bojan@mimuw.edu.pl

Abstract. This paper proposes monads as a framework for algebraic
language theory. Examples of monads include words and trees, finite
and infinite. Each monad comes with a standard notion of an algebra,
called an Eilenberg-Moore algebra, which generalises algebras studied in
language theory like semigroups or ω-semigroups. On the abstract level
of monads one can prove theorems like the Myhill-Nerode theorem, the
Eilenberg theorem; one can also define profinite objects.

The principle behind algebraic language theory for various kinds of objects, such
as words or trees, is to use a “compositional” function from the objects into a
finite set. To talk about compositionality, one needs objects with some kind
of substitution. It so happens that category theory has an abstract concept of
objects with substitution, namely a monad. The goal of this paper is to propose
monads as a unifying framework for discussing existing algebras and designing
new algebras. To introduce monads and their algebras, we begin with two exam-
ples, which use a monad style to present algebras for finite and infinite words.

Example 1. Consider the following non-standard definition of a semigroup.
Define a +-algebra A to be a set A called its universe, together with a multi-
plication operation mulA : A+ → A, which is the identity on single letters, and
which is associative in the sense that the following diagram commutes.

(A+)+
μA ��

(mulA)+ ��

A+

mulA��
A+

mulA

�� A
,

In the diagram, (mulA)+ is the function that applies mulA to each label of a
word, and μA is the function which flattens a word of words into a word, e.g.

(abc)(aa)(acaa) �→ abcaaacaa.

M. Bojańczyk—Author supported by the Polish NCN grant 2014-13/B/ST6/03595.
A full version of this paper is available at http://arxiv.org/abs/1502.04898. The full
version includes many examples of monads, proofs, stronger versions of theorems
from this extended abstract, and entirely new theorems.

c© Springer International Publishing Switzerland 2015
I. Potapov (Ed.): DLT 2015, LNCS 9168, pp. 1–13, 2015.
DOI: 10.1007/978-3-319-21500-6 1

http://arxiv.org/abs/1502.04898

2 M. Bojańczyk

Restricting the multiplication operation in a +-algebra to words of length two
(the semigroup binary operation) is easily seen to be a one-to-one correspondence
between +-algebras and semigroups. �

The second example will be running example in the paper.

Running Example 1. Let us define an algebra for infinite words in the spirit of
the previous example. Define A∞ to be the finite and ω-words over A, i.e. A+ ∪
Aω. Define an ∞-algebra A to be a set A, called its universe, together with a
multiplication operation mulA : A∞ → A, which is the identity on single letters,
and which is associative in the sense that the following diagram commutes.

(A∞)∞ μA ��

(mulA)∞
��

A∞

mulA��
A∞

mulA

�� A

In the diagram, (mulA)∞ is the function that applies mulA to the label of every
position in a word from (A∞)∞, and μA is defined in analogy to mulA+ , with
the following proviso: if the argument of μA contains an infinite word on some
position, then all subsequent positions are ignored, e.g.

(abc)(aa)(aω)(abca)(abω) �→ abcaω

An ∞-algebra is essentially the same thing as an ω-semigroup, see [PP04],
with the difference that ω-semigroups have separate sorts for finite and infinite
words. There is also a close connection with Wilke semigroups [Wil91], which
will be described as the running example develops. �

The similarities in the examples suggest that the should be an abstract notion
of algebra, which would cover the examples and possibly other settings, e.g. trees.
A closer look at the examples reveals that concepts of algebraic language the-
ory such as “algebra”, “morphism”, “language”, “recognisable language” can be
defined only in terms of the following four basic concepts (written below in the
notation appropriate to +-algebras):

1. how a set A is transformed into a set A+;
2. how a function f : A → B is lifted to a function f+ : A+ → B+;
3. a flattening operation from (A+)+ → A+;
4. how to represent an element of A as an element of A+.

These four concepts are what constitutes a monad, a fundamental concept in cat-
egory theory and, recently, programming languages like Haskell. However, unlike
for Haskell, in this paper the key role is played by Eilenberg-Moore algebras.

The point of this paper is that, based on a monad one can also define things
like: “syntactic algebra”, “pseudovariety”, “mso logic”, “profinite object”, and
even prove some theorems about them. Furthermore, monads as an abstraction
cover practically every setting where algebraic language theory has been applied
so far, including labelled scattered orderings [BR12], labelled countable total

Recognisable Languages over Monads 3

orders [CCP11], ranked trees [Ste92], unranked trees [BW08], preclones [ÉW03].
These applications are discussed at length in the full version. The full version
also shows how new algebraic settings can be easily produced using monads, as
illustrated on a monad describing words with a distinguished position, where
standard theorems and definitions come for free by virtue of being a monad. A
related paper is [Ési10], which gives an abstract language theory for Lawvere
theories, and proves that Lawvere theories admit syntactic algebras and a pseu-
dovariety theorem. Lawvere theories can be viewed as the special case of finitary
monads, e.g. finite words are Lawvere theories, but infinite words are not.

This paper shows that several results of formal language theory can be stated
and proved on the abstract level of monads, including: the Myhill-Nerode theo-
rem on syntactic algebras, the Eilenberg pseudovariety theorem, or the Reiter-
man theorem on profinite identities defining pseudovarieties. Another example is
decidability of mso, although here monads only take care of the symbol-pushing
part, leaving out the combinatorial part that is specific to individual monads,
like applying the Ramsey theorem in the case of infinite words. When proving
such generalisations of classical theorems, one is naturally forced to have a closer
look at notions such as “derivative of a language”, or “finite algebra”, which are
used in the assumptions of the theorems.

Much effort is also devoted to profinite constructions. It is shown that every
monad has a corresponding profinite monad, which, like any monad, has its own
notion of recognisability, which does not reduce to recognisability in the original
monad. For example, the monad for finite words has a corresponding monad of
profinite words, and recognisable languages of profinite words turn out to be a
generalisation of languages of infinite words definable in the logic mso+u.

Thanks. I would like to thank Bartek Klin (who told me what a monad is),
Szymon Toruńczyk and Marek Zawadowski for discussions on the subject.

1 Monads and Their Algebras

This paper uses only the most rudimentary notions of category theory: the defi-
nitions of a category (objects and composable morphisms between them), and of
a functor (something that maps objects to objects and morphisms to morphisms
in a way that is consistent with composition). All examples in this paper use the
category of sets, where objects are sets and morphisms are functions; or possibly
the category of sorted sets, where objects are sorted sets for some fixed set of
sort names, and morphisms are sort-preserving functions.

A monad over a category is defined to be a functor T from the category to
itself, and for every object X in the category, two morphisms

ηX : X → TX and μX : TTX → TX,

which are called the unit and multiplication operations. The monad must satisfy
the axioms given in Figure 1.

We already saw two monads in Example 1 and in the running example.

4 M. Bojańczyk

X
f ��

ηX

��

Y

ηY

��
TX

Tf
�� TY

TTX
TTf ��

μX

��

TTY

μY

��
TX

Tf
�� TY

.

TTTX
μTX ��

TμX

��

TTX

μX

��
TTX

μX

�� TX

TX

idX

���
��

��
��

��
ηX ��

TηX

��

TTX

μX

��
TTX

μX

�� TX

Fig. 1. The axioms of a monad are that these four diagrams commute for every object
X in the category and every morphism f : X → Y . The upper diagrams say that the
unit and multiplication are natural. The lower left diagram says that multiplication is
associative, and the lower right says that the unit is consistent with multiplication.

For this paper, the most important thing about monads is that they have a
natural corresponding algebras. An Eilenberg-Moore algebra for a monad T, or
simply T-algebra, is a pair A consisting of a universe A, which is an object in
the underlining category, together with a multiplication morphism

mulA : TA → A,

such that the mulA ◦ηA is the identity, and which is associative in the sense that
the following diagram commutes.

TTA
μA ��

TmulA ��

TA
mulA��

TA
mulA

�� A

Observe that this associativity is similar to the lower left axiom in Figure 1. In
fact, the lower left axiom in Figure 1 and the upper half of the lower right axiom
say that TX equipped with the operation μX forms a T-algebra, called the free
T-algebra over X.

We use the convention that an algebra is denoted by a boldface letter, while
its universe is written without boldface. A T-morphism between two T-algebras
A and B is a function h between their universes which respects their multipli-
cation operations in the sense that the following diagram commutes.

TA
Th ��

mulA ��

TB
mulB��

A
h

�� B

This completes the definition of monads and their algebras.

Recognisable Languages over Monads 5

Languages and colorings. To develop the basic definitions of recognisable lan-
guages over a monad, we require the following parameters, which we call the
setting : the underlying category, the monad, a notion of finite alphabet, and a
notion of finite T-algebra. So far, we do not place any restrictions on the notions
of finiteness, e.g. when considering sets with infinitely many sorts, reasonable
settings will often have finite algebras whose universe is not finite in the same
sense as a finite algebra. Actually, for some monads, it is not clear what a finite
algebra should be, e.g. this is the case for infinite trees, and this paper sheds
little new light on the question. Fix a setting, with the monad being called T,
for the following definitions.

A coloring of a T-algebra is defined to be a morphism from its universe
to some object in the underlying category. A coloring is said to be recognised
by a T-morphism if the coloring factors through the morhpism. A coloring is
called T-recognisable if it is recognised by some T-morphism with a finite target,
according to the notion of finite T-algebra given in the setting.

When the underlying category is, possibly sorted, sets we can talk about
languages, as defined below. Consider a finite alphabet, according to the notion
of finite alphabet given in the setting. In all of the examples of this paper, a finite
alphabet will be a possibly sorted set with finitely many elements. In particular, if
there are infinitely many sorts, then a finite alphabet will use only finitely many.
A T-language over a finite alphabet Σ is defined to be any subset L ⊆ TΣ.
Notions of recognisability are inherited from colorings, using the characteristic
function of a language.

The Myhill-Nerode Theorem. We present a monad generalisation of the Myhill-
Nerode theorem. That is, we give a sufficient condition for colorings, and
therefore also languages, to have a syntactic (i.e. minimal) morphism. The gen-
eralisation only works in the setting of sorted sets, and therefore also in the
setting of normal sets. Fix the setting of sorted sets, for some choice of, possibly
infinitely many, sort names.

Define a (possibly sorted) set A to be finitary if for every w ∈ TA, there is
some finite Aw ⊆ A such that w ∈ TAw. A monad is called finitary if every set
is finitary, e.g. this is the case for the monad of finite words.

Theorem 1.1. [Syntactic Morphism Theorem] Consider a monad T in the set-
ting of sorted sets. Let f be a coloring of a T-algebra A, which is recognised
by a T-morphism h into some T-algebra with finitary universe. There exists a
surjective T-morphism into a T-algebra

syntf : A → Af ,

called the syntactic morphism of f , which recognises f and which factors through
every surjective T-morphism recognising f . Furthermore, syntf is unique up to
isomorphisms on Af .

If A itself has finitary universe, then f is recognised by the identity T-
morphism on A. Therefore, if the monad is finitary, then every T-language has

6 M. Bojańczyk

a syntactic morphism. This covers monads for objects such as finite words, ulti-
mately periodic words, or various kinds of finite trees. In monads describing
truly infinite objects, e.g. the monad for ∞-words used in the running example,
a syntactic morphism might not exist.

Running Example 2. Consider the following ∞-language

L = {an1ban2b · · · : the sequence ni is unbounded, i.e. lim supni = ∞.}

One can show that this language does not have a syntactic morphism, not even if
the target algebra is allowed to have infinite universe. The idea is that for every
n, there is a recognising morphism which identifies all words in {a1, a2, . . . , an},
but there is no morphism which identifies all words in a+. �

The Eilenberg Theorem. Another result which can be stated and proved on the
level of monads is Eilenberg’s pseudovariety theorem. This theorem says that,
in the case of semigroups, language pseudovarieties and algebra pseudovarieties,
which will be defined below, are in bijective correspondence. The theorem implies
that if L is a language pseudovariety, then the membership problem L ∈ L can
be decided only by looking at the syntactic semigroup of L, and one need not
look at the accepting set, nor at the information about which letters are mapped
to which elements of the semigroup.

Surely Eilenberg must have known that the pseudovariety works for mon-
ads in general and not just for monoids and semigroups, since he invented both
the pseudovariety theorem and algebras in abstract monads. However, such a
generalisation is not in his book [Eil74]. The generalisation subsumes pseudova-
riety theorems for: finite words in both monoid and semigroup variants [Eil74],
∞-words [Wil91], scattered linear orderings [BR12], finite trees [Ste92].

Fix a setting where the category is sets with finitely many sorts. Assume that
the notion of finite T-algebra is simply that the universe is finite, and a finite
alphabet is one with finitely many elements. A T-algebra with a finite universe
is finitary, and therefore every T-recognisable language has a syntactic algebra
by the Syntactic Morphism Theorem. Define a derivative1 of a T-recognisable
T-language L ⊆ TΣ to be any other subset of TΣ that is recognised by the
syntactic algebra of L. Define a T-language pseudovariety to be a class of T-
recognisable T-languages which is closed under Boolean combinations, deriva-
tives, and pre-images under T-morphisms. Since complementation is a form of
derivative, Boolean combinations could be replaced by unions in the definition
of a T-language pseudovariety. As usual for pseudovarieties, a T-language is for-
mally treated as its characteristic function, which means that a language comes
with a description of its input alphabet. Define a T-algebra pseudovariety to

1 This notion of derivative is nonstandard. For example, in the case of finite words, the
more accepted notion is that a derivative of L is any language of the form w−1Lv−1.
Because of this nonstandard definition, Theorem 1.2 does not directly generalise the
classical Pseudovariety Theorem by Eilenberg. This is discussed in the full version,
which contains a proper generalisation of the classical Pseudovariety Theorem.

Recognisable Languages over Monads 7

be a class of finite T-algebras which is closed under finite products, images of
surjective T-morphisms, and subalgebras.

For a class L of recognisable T-languages, define Alg L to be the class of
finite T-algebras that only recognise T-languages from L. For a class A of finite
T-algebras, define LanA to be the T-languages recognised by T-algebras from A.
The Pseudovariety theorem says that these mappings are mutual inverses.

Theorem 1.2. The mappings Lan and Alg are mutual inverses, when restricted
to pseudovarieties.

Running Example 3. Call an ∞-language definite if there is some n ∈ N such
that membership in the language depends only on the first n letters. Examples
of definite languages include: “words that begin with a”, or “words of length at
least two”. Call an ∞-algebra A definite if there is some n ∈ N such that

mulA(x1 · · · xnxn+1) = mulA(x1 · · · xn)

holds for every x1, . . . , xn+1 in the universe of the algebra. It is not difficult
to show that a recognisable ∞-language is definite if and only if its syntactic
algebra is definite, definite ∞-languages form a language pseudovariety, definite
∞-algebras form an algebra pseudovariety, and the two are in correspondence
as in the Pseudovariety Theorem. �

2 Deciding Monadic Second-Order Logic

An important part of language theory is the equivalence of recognisability and
definability in monadic second-order logic mso. Examples where this equivalence
holds include finite words and trees, and more interestingly from a combinatorial
perspective, infinite words and trees. There are common parts in all of the proofs,
and parts that are specific to each domain. We show that the common parts can
be stated and proved on the abstract level of monads.

Representing an algebra. To give an algorithm for mso satisfiability that uses
algebras, one needs a representation of finite algebras so that they can be manip-
ulated by algorithms. We propose such a representation; this is the main part
of this section. Fix a setting for the rest of this section, with the category being
sets, possibly sorted, but with finitely many sorts.

In most interesting cases, the monad T produces infinite sets, even on finite
arguments. Therefore, the finiteness of the universe of a T-algebra A does not,
on its own, imply that the algebra has a finite representation, because one needs
to also represent its multiplication operation, whose type is TA → A. To rep-
resent algebras, we will use an assumption, to made more precise below, which
roughly says that if an algebra has finite universe A, then the the multiplication
is determined by its values on a small finite subset of TA. For instance, in the
monad of finite words from Example 1, one chooses from A+ only the length

8 M. Bojańczyk

two words, because a +-algebra, i.e. a semigroup, is uniquely determined by its
binary multiplication. We now describe these notions in more detail.

Define a subfunctor of T to be a mapping T0 which takes each set X to a
subset T0X ⊆ TX. A subfunctor on its own is not a monad, however it can be
used to generate a monad as follows. For a set X, define T∗

0X to be the least
set which contains the units of X, and which also contains any multiplication
(flattening) of an element in T0T

∗
0X. It is not difficult to show that T∗

0 is a
submonad of T, i.e. a subfunctor with a monad structure as inherited from T. A
subfunctor T0 is said to span a T-algebra A if for every subset X of the universe,
mulA has the same image over T∗

0X and over TX, i.e.

mulAT∗
0X = mulATX.

A subfunctor is complete if it spans every T-algebra, and finitely complete if it
spans every finite T-algebra; the latter depends on the notion of finite T-algebra.

Consider a subfunctor T0 that is finitely complete for a monad T. For a finite
T-algebra A, define its T0-reduct to be the pair consisting of the universe A of
A, and the restriction of the multiplication operation from A to the subfunctor:

mulA|T0A : T0A → A

It is easy to show, using associativity, that if T0 spans A, then A is uniquely
determined by its T0-reduct. In particular, if T0 is complete, then every operation
T0A → A extends to at most one T-algebra with universe A. Note the “at most
one”, e.g. not every binary operation extends to a semigroup operation, for
this associativity is needed. The same holds for finite completeness and finite
algebras. The point of using T0-reducts is that sometimes T0 can be chosen so
that it preserves finiteness, and therefore finite T-algebras can be represented in
a finite way as functions T0A → A.

Running Example 4. As in [Wil91], one can use the Ramsey theorem to show
that a finite ∞-algebra is uniquely determined by the values of its multiplication
operation on arguments of the form xy and xω. Stated differently,

WX
def= {xy, xω : x, y ∈ X} ⊆ X∞.

is finitely complete subfunctor of the ∞-functor. The submonad W∗ maps an
alphabet X to the finite and ultimately periodic words over X. A W-reduct of a
finite ∞-algebra is essentially the same thing as a Wilke semigroup, modulo the
difference that Wilke semigroups are two-sorted. In [Wil91], Wilke shows axioms
which describe when a W-algebra extends to an ∞-algebra. �

A subfunctor T0 is called effective if it satisfies the following two conditions.

1. If X is a finite set then T0X is finite and can be computed. This means that
a finite T-algebra with universe A be represented as a function T0A → A.

2. For every finite set Σ and every w ∈ T0Σ, one can compute a T-morphism
into a finite T-algebra that recognises {w}, with the T-algebra represented
as in item 1, and the T-morphism represented by its values on units of Σ.

The second condition is maybe less natural, it will be used in deciding mso.

Recognisable Languages over Monads 9

Running Example 5. We claim that the functor W in the running example
is effective. For the first condition, the set WX is isomorphic to the disjoint
union X2 + X, and can therefore clearly be computed. For the second condi-
tion, one needs to show that for every ultimately periodic ∞-word w, there is
a finite ∞-algebra that recognises the singleton {w}, and its W-reduct can be
computed. The universe of this algebra consists of suffixes of w, finite infixes
modulo repetitions, and an error element. �

Monadic second-order logic. To establish the connection between mso and recog-
nisability on the level of monads, we use a definition of mso which does not talk
about “positions” or “sets of positions” of a structure, but which is defined in
purely language theoretic terms. In the abstract version, predicates, such as the
successor predicate, are modelled by languages. For a set L of T-languages, define
msoT(L) to be the smallest class of T-languages which contains L, is closed under
Booolean operations, images and inverse images of T-morphisms.

Running Example 6. The standard notion of mso for ∞-words, as studied
by Büchi, is equivalent to msoT(L) where L contains only two recognisable ∞-
languages over alphabet {0, 1}, namely the language of words which contain only
zeros, and the language of words where every one is followed only by ones. �

One can show that if L contains only T-recognisable T-languages, then so
does msoT(L). This uses the assumptions on the setting being sorted sets, and
finite algebras being ones with finite universes. A non-example is the category
of nominal sets with orbit-finite sets, where powerset does not preserve orbit-
finiteness, and also mso contains non-recognisable languages, see [Boj13].

A language in msoT(L) can be represented as a tree where leaves are lan-
guages from L, binary nodes are labelled by union or intersection, complemen-
tation is represented by unary nodes, and for every T-morphism h : TΣ → TΓ
there are two kinds of unary nodes, one for image and the other for inverse
image. Therefore, if L is finite (or has some fixed enumeration) then it makes
sense to consider the following decision problem, called msoT(L) satisfiability :
an instance is a tree representing a language from msoT(L), and the question is
whether the corresponding language is nonempty. We provide below a sufficient
criterion for the decidability the problem.
Theorem 2.1. Consider a setting with finitely sorted sets, and let L be all recog-
nisable languages. If there is a subfunctor that is effective and finitely complete,
then msoT(L) satisfiability is decidable.

As mentioned at the beginning of the section, the theorem takes care of
the symbol pushing part in deciding satisfiability of mso, and leaves only the
combinatorial part. The combinatorial part is finding an effective and finitely
complete subfunctor, this is typically done using some kind of Ramsey theorem.

Running Example 7. Applying Theorem 2.1 to the observations made so
far in the running example, we conclude that mso satisfiability over ∞-words is
decidable. The proof obtained this way follows the same lines as Büchi’s original
proof. �

10 M. Bojańczyk

3 Profinite Monads

Profinite constructions are an important tool in the study of recognisable lan-
guages. Example applications include: lattices of word languages correspond to
implications on profinite words [GGP08], pseudovarieties in universal algebra
correspond to profinite identities [Rei82], recognisable word languages are the
only ones which give a uniformly continuous multiplication in the profinite exten-
sion [GGP10]. In this section we show that these results can be stated and proved
on the abstract level of monads, thus covering cases like profinite trees or profi-
nite ∞-words. Furthermore, we show that profinite objects, e.g. profinite words,
form a monad as well, which has its own notion of recognisable language, a
notion that seems interesting and worthy of further study.

The Stone dual. A short definition of the profinite object uses Stone duality.
Define an ultrafilter in a Boolean algebra to be a subset of its universe which is
closed under ∧, and which contains every element of the Boolean algebra or its
complement, but not both. The set of ultrafilters is called the Stone dual of the
Boolean algebra. The Stone dual also comes with a topological structure, but
since we do not use it here, we do not describe it.

From the monad point of view, we are interested in the special case of the
Boolean algebra of recognisable languages in a T-algebra. Let A be a T-algebra,
not necessarily finite. Define the Stone dual of A, denoted by StoneA, to be the
Stone dual of the Boolean algebra of those subsets of A that are recognised by
T-morphisms from A into finite T-algebras. This definition generalises the well-
known space of profinite words, i.e. if the monad is the monad of finite words.
Note how the definition depends on the notion of finite algebra.

Running Example 8. For an alphabet Σ and w ∈ Σ+, define w# to be the
set of languages L ⊆ Σ∞ which are recognised by some finite ∞-algebra and
which contain wn! for all but finitely many n. This set is clearly closed under
intersection, and a standard pumping argument shows that for every recognisable
language L, it contains L or Σ+−L. Therefore w# is an ultrafilter, i.e. a profinite
∞-word. A common notation in profinite words would be to use ω, but this would
conflict with the infinite power in the context of ∞-words. �

Defining pseudovarieties by identities. Our first result on Stone duals is a monad
generalisation of the Reiterman Theorem [Rei82]. The original Reiterman Theo-
rem, which uses terminology of universal algebra, says that pseudovarieties can
be characterised by profinite identities. In the full version, we present a notion
of profinite identity, and prove the following theorem.

Theorem 3.1. Let L be class of recognisable T-languages. Then L is a pseu-
dovariety if and only if it is defined by a set of profinite identities.

Running Example 9. Recall the pseudovariety of definite ∞-languages. This
pseudovariety is defined by a single profinite identity, namely

xω = x#.

Recognisable Languages over Monads 11

One proves this the same way as in the classical result on definite languages
of finite words, which are characterised by the identity x#y = x#. The latter
identity is implied by the former, because xωy = xω is true in all ∞-words. �

The full version contains other results on Stone duals, in particular monad
generalisations of results from [GGP08] and [GGP10].

A profinite monad. We now explain how to convert a monad T into another
monad, called T, that describes profinite objects over T. The functor T maps a
set Σ to the Stone dual of the T-algebra TΣ. For a function f : Σ → Γ , the
mapping Tf takes an ultrafilter U ∈ TΣ to the set

V = {L ⊆ TΓ : (Tf)−1(L) ∈ U}

which is easily seen to be an ultrafilter, and therefore an element of TΓ . This
definition is a special case of the functor in the classical theorem on duality of
Boolean algebras and Stone spaces; in particular T is a functor. It remains to
provide the monad structure, namely the multiplication and unit. These will be
given in Theorem 3.2, using the following notion of profinite completion. Define
the profinite completion of a T-morphism h : TΣ → A into a finite T-algebra to
be the mapping

h̄ : TΣ → A

defined as follows: an ultrafilter U is mapped to the unique element a in the
universe of A such that the ultrafilter contains the language h−1(a).

Theorem 3.2. For every set Σ, there are unique operations

η̄Σ : Σ → TΣ μ̄Σ : TTΣ → TΣ

such that for every finite T-algebra A and every T-morphism h : TΣ → A, the
following diagrams commute

Σ
η̄Σ ��

ηΣ

��

TΣ

h̄
��

TΣ
h �� A

TTΣ

Th̄
��

μ̄Σ �� TΣ

h̄

��
TA

mulA �� A

.

Furthermore, equipped with the above operations, T is a monad.

What is the benefit of seeing T as a monad? Since T is itself a monad, it can
have its own notion of finite algebra and recognisable language. We illustrate
how these notions can be interesting, using the special case of profinite words.
Consider the monad Σ �→ Σ+ for finite words. Let us denote by Σ �→ Σ+̄ the
profinite version of this monad. An element of Σ+̄ is a simply profinite word
over the alphabet Σ. One way of creating a finite +̄-algebra is to take a finite
+-algebra, i.e. a finite semigroup, and extend its multiplication operation to

12 M. Bojańczyk

profinite words using profinite completion. More interesting +̄-algebras are not
obtained this way, here is one example.

Example 2. We say that a profinite word w ∈ {0, 1}+̄ has exactly n ones if,
when seen as an ultrafilter, it contains the recognisable language of words with
at least n ones. If a profinite word has exactly n ones for some n, then we say
that it has a bounded number of ones. For example, 1# does not have a bounded
number of ones. A certain amount of calculations shows that the set of profinite
words in {0, 1}+̄ which have a bounded number of ones is recognised by a +̄-
morphism into a finite +̄-algebra. The finite +̄-algebra has three elements in its
universe, standing for: “only zeros”, “a bounded number of ones”, and “not a
bounded number of ones”.

Let us define mso+inf by applying the abstract notion of mso defined in
Section 2, with the predicates being the following languages of profinite words
over alphabet {0, 1}: “a bounded number of ones”, “only zeros”, “every one is
followed by only zeros”. Under a different terminology, this class of languages
was considered in [Tor12]. Since the operators of mso preserve recognisability, it
follows that mso+inf contains only +̄-recognisable languages. It is not clear if
mso+inf contains all +̄-recognisable languages, but Corollary 2 from [Tor12] and
a new undecidability result from [MB15] imply that mso+inf has undecidable
satisfiability. �

References

[Boj13] Bojanczyk, M.: Nominal monoids. Theory Comput. Syst. 53(2), 194–222
(2013)

[BR12] Bedon, N., Rispal, C.: Schützenberger and Eilenberg theorems for words on
linear orderings. J. Comput. Syst. Sci. 78(2), 517–536 (2012)

[BW08] Bojanczyk, M., Walukiewicz, I.: Forest algebras. In: Logic and Automata:
History and Perspectives [in Honor of Wolfgang Thomas], pp. 107–132 (2008)

[CCP11] Carton, O., Colcombet, T., Puppis, G.: Regular languages of words over
countable linear orderings. In: Aceto, L., Henzinger, M., Sgall, J. (eds.)
ICALP 2011, Part II. LNCS, vol. 6756, pp. 125–136. Springer, Heidelberg
(2011)

[Eil74] Eilenberg, S.: Automata, languages, and machines, vol. A (1974)
[Ési10] Ésik, Z.: Axiomatizing the equational theory of regular tree languages. The

Journal of Logic and Algebraic Programming 79(2), 189–213 (2010)
[ÉW03] Ésik, Z., Weil, P.: On logically defined recognizable tree languages. In:

Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914,
pp. 195–207. Springer, Heidelberg (2003)

[GGP08] Gehrke, M., Grigorieff, S., Pin, J.É.: Duality and equational theory of regular
languages. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol.
5126, pp. 246–257. Springer, Heidelberg (2008)

[GGP10] Gehrke, M., Grigorieff, S., Pin, J.É.: A topological approach to recognition. In:
Abramsky, S.,Gavoille,C.,Kirchner,C.,Meyer auf derHeide,F., Spirakis, P.G.
(eds.) ICALP 2010. LNCS, vol. 6199, pp. 151–162. Springer, Heidelberg (2010)

Recognisable Languages over Monads 13

[MB15] Toruńczyk, S., Bojańczyk, M., Parys, P.: The mso+u theory of (N, <) is
undecidable (2015). CoRR, arXiv:1502.04578

[PP04] Perrin, D., Pin, J.-É.: Infinite Words: Automata, Semigroups, Logic and
Games. Elsevier (2004)

[Rei82] Reiterman, J.: The Birkhoff theorem for finite algebras. Algebra Universalis
14(1), 1–10 (1982)

[Ste92] Steinby, M.: A theory of tree language varieties. In: Tree Automata and
Languages, pp. 57–82 (1992)

[Tor12] Toruńczyk, S.: Languages of profinite words and the limitedness problem. In:
Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012,
Part II. LNCS, vol. 7392, pp. 377–389. Springer, Heidelberg (2012)

[Wil91] Wilke, T.: An Eilenberg theorem for infinity-languages. In: Leach Albert,
J., Monien, B., Rodŕıguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510,
pp. 588–599. Springer, Heidelberg (1991)

http://arxiv.org/abs/1502.04578

Garside and Quadratic Normalisation: A Survey

Patrick Dehornoy1,2(B)

1 Laboratoire de Mathématiques Nicolas Oresme, CNRS UMR 6139,
Université de Caen, 14032 Caen cedex, France

patrick.dehornoy@unicaen.fr

http://www.math.unicaen.fr/~dehornoy
2 Institut Universitaire de France, Paris, France

Abstract. Starting from the seminal example of the greedy normal
norm in braid monoids, we analyze the mechanism of the normal form
in a Garside monoid and explain how it extends to the more general
framework of Garside families. Extending the viewpoint even more, we
then consider general quadratic normalisation procedures and charac-
terise Garside normalisation among them.

Keywords: Normal form · Normalisation · Regular language · Fellow
traveller property · Greedy decomposition · Garside family · Quadratic
rewriting system · Braid monoids · Artin–Tits monoids · Plactic monoids

This text is an essentially self-contained survey of a general approach of nor-
malisation in monoids developed in recent years by the author in collabora-
tion with several co-authors and building on the seminal example of the greedy
normal form of braids independently introduced by S. Adjan [1] and by M.El-
Rifai and H. Morton [22]. The main references are the book [17], written with
F. Digne, E. Godelle, D. Krammer, and J. Michel, the recent preprint [19], writ-
ten with Y. Guiraud, and, for algorithmic aspects, the article [16], written with
V. Gebhardt.

If M is a monoid (or a semigroup), and S is a generating subfamily of M ,
then, by definition, every element of M is the evaluation of some S-word. A nor-
mal form for M with respect to S is a map that assigns to each element of M
a distinguished representative S-word, hence a (set theoretic) section for the
evaluation map from S∗ to M . The interest of normal forms is obvious, since
they provide a unambiguous way of specifying the elements of M and, from
there, for working with them in practice. As can be expected, the complexity of
a normal form is a significant element. It can be defined either by considering
the complexity of the language of normal words (regular, algebraic, etc.), or that
of the associated normalisation map, that is, the procedure that transforms an
arbitrary word into an equivalent normal word (linear, polynomial, etc.).

A huge number of normal forms appear in literature, based on quite different
initial approaches, and it is certainly difficult to establish nontrivial results uni-
fying all possible types. In this text, we concentrate on some families of normal
forms that turn out to be simple in terms of complexity measures, and whose
c© Springer International Publishing Switzerland 2015
I. Potapov (Ed.): DLT 2015, LNCS 9168, pp. 14–45, 2015.
DOI: 10.1007/978-3-319-21500-6 2

Garside and Quadratic Normalisation: A Survey 15

main specificity is to satisfy some locality assumptions, meaning that both the
property of being normal and the procedure that transforms an arbitrary word
into an equivalent normal word only involve factors of a bounded length, here
factors of length two (and that is why we call them “quadratic”). As we shall
see, several well-known classes of normalisation processes enter this framework,
for instance the seminal example of the greedy normal form in Artin’s braid
monoids [1,22,23] but also the normal forms in Artin–Tits monoids based on
rewriting systems as in [25] or, in a very different context, the normal form in
plactic monoids based on Young tableaux and the Robinson–Schenstedt algo-
rithm [5,6].

The current introductory text is organised in four sections, going from the
particular to the general. In Sec. 1, we analyze two motivating examples of greedy
normal forms, involving free abelian monoids, a toy case that already contains
the main ideas, and braid monoids, a more complicated case. Extending these
examples, we describe in Sec. 2 the mechanism of the Δ-normal form in the now
classical framework of Garside monoids. Next, in Sec. 3, we explain how most
of the results can be generalized and, at the same time, simplified, using the
notion of an S-normal form derived from a Garside family. Finally, in Sec. 4, we
introduce quadratic normalisations, which provide a natural unifying framework
for the normal forms we are interested in. Having defined a complexity mea-
sure called the class, we characterise Garside normalisations among quadratic
normalisations, and mention (positive and negative) termination results for the
rewriting systems naturally associated with quadratic normalisations.

Most proofs are omitted or only sketched. However, it turns out that some
arguments, mainly in Sec. 2 and 3, are very elementary, and then we included
them, hopefully making this text both more informative and thought-provoking.

Excepte in concluding remarks at the end of sections, we exclusively consider
monoids. A number of results, in particular most of those involving Garside
normalisation, can be extended to groups of fractions. Also, the whole approach
extends to categories, viewed as monoids with a partial multiplication.

Our notation is standard. We use Z for the set of integers, N for the set
of nonnegative integers. If S is a set, we denote by S∗ the free monoid over S
and call its elements S-words, or simply words. In this context, S is also called
alphabet, and its elements letters. We write ‖w‖ for the length of w, and S[p]

for the set of all S-words of length p. We use w|w′ for the concatenation of two
S-words w and w′. We say that w′ is a factor of w if there exist u, v satisfying
w = u|w′|v. If M is a monoid generated by a set S, we say that an S-word
s1| ··· |sp is a S-decomposition for an element g of M if g = s1 ···sp holds in M .

1 Two Examples

We shall describe a specific type of normal form often called the “greedy normal
form”. Before describing it in full generality, we begin here with two examples:
a very simple one involving free abelian monoids, and then the seminal example
of Artin’s braid monoids as investigated after Garside.

16 P. Dehornoy

1.1 Free Abelian Monoids

Our first example, free abelian monoids, is particularly simple, but it is funda-
mental as it can serve as a model for the sequel: our goal will be to obtain for
more complicated monoids counterparts of the results that are trivial here.

Consider the free abelian monoid (N,+)n with n � 1, simply denoted by N
n.

We shall see the elements of N
n as sequences of nonnegative integers indexed

by {1, ... , n}, thus writing g(k) for the kth entry of an element g, and use a
multiplicative notation: fg = h means ∀k (f(k) + g(k) = h(k)). Let An be the
family {a1, ... , an}, where ai is defined by ai(k) = 1 for k = i, and 0 otherwise.
Then An is a basis of N

n as an abelian monoid.
It is straightforward to obtain a normal form nfLex for N

n with respect to An

by fixing a linear ordering on An, for instance a1 < ··· < an, and, for g in N
n,

defining nfLex(g) to be the lexicographically smallest word representing g.
We shall be interested here in another normal form, connected with another

generating family. In this basic example, the construction may seem uselessly
intricate, but we shall see that it nicely extends to less trivial cases, which is not
the case of the above lexicographical normal form. Let us put

Sn := {s ∈ N
n | s(k) ∈ {0, 1} for k = 1, ... , n}. (1.1)

For f, g in N
n, define f � g to mean ∀k (f(k) � g(k)), and write f ≺ g for f � g

with f �= g. The relation � is a partial order, connected with the operation
of N

n, since f � g is equivalent to ∃g′∈N
n (fg′ = g), that is, f divides g in N

n.
Then Sn consists of the 2n divisors of the element Δn defined by

Δn(k) := 1 for k = 1, ... , n. (1.2)

We recall that, if M is a (left-cancellative) monoid generated by a family S,
the Cayley graph of M with respect to S is the S-labeled oriented graph with
vertex set M and, for g, h in M and s in S, there is an s-labeled edge from g to h
if, and only if, gs = h holds in M . Then, the Cayley graph of N

n with respect
to An is an n-dimensional grid, and Sn corresponds to the n-dimensional cube
that is the elementary tile of the grid, see Fig. 1.

Proposition 1.3 Every element of N
n admits a unique decomposition of the

form s1| ··· |sp with s1, ... , sp in Sn satisfying sp �= 1, and, for every i < p,

∀s∈Sn (si ≺ s ⇒ s �� sisi+1 ···sp). (1.4)

Condition (1.4) is a maximality statement. It says that s1 contains as much
of g as possible in order to remain in Sn and that, for every i, the entry si

similarly contains as much of the right chunk si ···sp as possible to remain in Sn:
when we try to replace si with a larger element s of Sn, then we quit the
divisors of si ···sp. This should make it clear why the decomposition s1| ··· |sp

of g is usually called greedy.

Garside and Quadratic Normalisation: A Survey 17

Example 1.5 Assume n = 3 and consider g = a3bc2, that is, g = (3, 1, 2) (we
write a, b, c for a1, a2, a3). The maximal element of S3 that divides g is Δ3, with
g = Δ3 · a2c. Then, the maximal element of S3 that divides a2c is ac, with
a2c = ac · a. The latter element left-divides Δ3. So the greedy decomposition
of g as provided by Prop. 1.3 is the length-three S3-word Δ3|ac|a, see Fig. 1.

1 a

b

c

Δ a3bc2

Fig. 1. The Cayley graph of N
n with respect to An, here for n = 3; we write a, b, c for

a1, a2, a3, and Δ for Δ3. The dark grey cube corresponds to the 8 elements of S3. Then,
the greedy decomposition of a3bc2 corresponds to the dashed path: among the many
possible ways of going from 1 to a3bc2, we choose at each step the largest possible
element of S3 that divides the considered element, thus remaining in the light grey
domain, which corresponds to the divisors of a3bc2.

Prop. 1.3 is easy. It can be derived from the following (obvious) observation:

Lemma 1.6 For every n, the divisibility relation of N
n is a lattice order, and

Sn is a finite sublattice formed by the divisors of Δn, which are 2n in number.

We recall that a lattice order is a partial order in which every pair of elements
admits a greatest lower bound and a lowest upper bound. When considering a
divisibility relation, it is natural to use “least common multiple” (lcm) and
“greatest common divisor” (gcd) for the least upper and greatest lower bounds.

Once Lemma 1.6 is available, Prop. 1.3 easily follows: indeed, starting from g,
if g is not 1, there exists a maximal element s1 of Sn dividing g, namely the
left-gcd of g and Δn. So there exists g′ satisfying g = s1g

′. If g′ is not 1,
we repeat with g′, finding a maximal element s2 of Sn dividing g′, etc. The
sequence s1|s2| ··· so obtained then satisfies the maximality condition of (1.4).

Remark 1.7 Let Z
n be the rank n free abelian group. Then Z

n is a group of
(left) fractions for the monoid N

n, meaning that every element of Z
n admits an

expression f−1g with f, g in N
n. It is easy to extend the greedy normal form

of Prop. 1.3 into a unique normal form on the group Z
n: indeed, every element

of Z
n can be expressed as Δm

n g with m in Z and g in N
n, hence it admits a

decomposition Δm
n |s1| ··· |sp with s1, ... , sp in Sn satisfying (1.4). The latter is

not unique in general, but it is if, in addition, one requires s1 �= Δn.

18 P. Dehornoy

1.2 Braid Monoids

Much less trivial, our second example involves braid monoids as investigated by
F.A. Garside in [24]. For our current purpose, it is convenient to start with a
presentation of the braid monoid B+

n , namely

B+
n =

〈
σ1, ... , σn−1

∣∣∣∣ σiσj = σjσi for |i − j| � 2
σiσjσi = σjσiσj for |i − j| = 1

〉+
. (1.8)

The braid group Bn is the group which, as a group, admits the presentation (1.8).
As shown by E. Artin in [3] (see, for instance, [7] or [18]), Bn interprets as the
group of isotopy classes of n-strand braid diagrams, which are planar diagrams
obtained by concatenating diagrams of the type

σi :

and σ−1
i :

1 i i+1 n

··· ···

··· ···

with 1 � i � n− 1. When an n-strand braid diagram is viewed as the projection
of n nonintersecting curves in a cylinder D2×R as in Fig. 2, the relations of (1.8)
correspond to the natural notion of a deformation, or ambient isotopy. Then, the
monoid B+

n corresponds to isotopy classes of positive braid diagrams, meaning
those diagrams in which all crossings have the orientation of σi.

σ1

σ3

σ−1
2

σ−1
1

σ2

Fig. 2. Viewing an n-strand braid diagram (here n = 4) as the plane projection of
a 3D-figure in a cylinder; on the right, by decomposing the diagram into elementary
diagrams involving only one crossing, with two possible orientations, one obtains an
encoding of an n-braid diagram by a word in the alphabet {σ±1

1 , ... , σ±1
n−1}

Defining unique normal forms for the elements of the monoid B+
n (called

positive n-strand braids) is both easy and difficult. Indeed, by definition, every
positive n-strand admits decompositions in terms of the letters σ1, ... , σn−1, and,
as in Subsec. 1.1, we obtain a distinguished expression by considering the lexi-
cographically smallest expression. This, however, is not a good idea: the normal
form so obtained is almost useless (nevertheless, see [2], building on unpublished
work by Bronfman, for an application in combinatorics), mainly because there
is no simple rule for obtaining the normal form of σig or gσi from that of σi. In
other words, one cannot compute the normal form easily.

Garside and Quadratic Normalisation: A Survey 19

A much better normal form can be obtained as follows. For each n, let Δn

be the positive n-strand braid inductively defined by

Δ1 := 1, Δn := Δn−1 σn−1 ···σ2σ1 for n � 2, (1.9)

corresponding to a (positive) half-turn of the whole family of n strands:

Δ1 Δ2

Δ3

Δ4

Next, let us call a positive braid simple if it can be represented by a positive
diagram in which any two strands cross at most once. One shows that the latter
property does not depend on the choice of the diagram. By definition, the trivial
braid 1, and every braid σi is simple. We see above that Δn is also simple. Let Sn

be the family of all simple n-strand braids.
As in Subsec. 1.1, let � be the left-divisibility relation of the monoid B+

n : so
f � g holds if, and only if, there exists g′ (in B+

n) satisfying fg′ = g. For n � 3,
the monoid B+

n is not abelian, so left-divisibility does not coincide in general
with right-divisibility, defined symmetrically by ∃g′ (g′f = g).

Then, we have the following counterpart of Lemma 1.6:

Lemma 1.10 [24] For every n, the left-divisibility relation of the monoid B+
n

is a lattice order, and Sn is a finite sublattice formed by the left-divisors of Δn,
which are n! in number.

Contrasting with Lemma 1.6, the proof of Lemma 1.10 is far from trivial.
Why n! appears here is easy to explain. Every n-strand braid g induces a well-
defined permutation π(g) of {1, ... , n}, where π(g)(i) is the initial position of the
strand that finishes at position i in any diagram representing g. In this way, one
obtains a surjective homomorphism from Bn to the symmetric group Sn. It turns
out that, for every permutation f of {1, ... , n}, there exists exactly one simple n-
strand braid whose permutation is f : so simple braids (also called “permutation
braids”) provide a (set-theoretic) section for the projection of Bn to Sn, and
they are n! in number, see Fig. 3.

Once Lemma 1.10 is available, repeating the argument of Subsec. 1.1 (with
some care) easily leads to

Proposition 1.11 [1,22] Every element of B+
n admits a unique decomposition

of the form s1| ··· |sp with s1, ... , sp in Sn satisfying sp �= 1, and, for every i < p,

∀s∈Sn (si ≺ s ⇒ s �� sisi+1 ···sp). (1.12)

In other words, we obtain for every positive braid a unique greedy decompo-
sition exactly similar to the one of Prop. 1.3.

Example 1.13 Consider g = σ2σ3σ2σ2σ1σ2σ3σ3 in B+
4 . First, by cutting when

two strands that already crossed are about to cross for the second time, we obtain
a decomposition into then three simple chunks σ2σ3σ2|σ2σ1σ2σ3|σ3. Next, we push

20 P. Dehornoy

1

Δn

Fig. 3. The lattice (Div(Δn), �) formed by the n! left-divisors of the braid Δn in
the monoid B+

n , here in the case n = 4: a copy of the n-permutahedron associated
with the symmetric group Sn equipped with what is called the weak order, see for
instance [9]; topologically, this is an n−2-sphere tessellated by hexagons and squares
which correspond to the relations of (1.8)

the crossings upwards as much as possible, we obtain σ2σ3σ2σ1|σ2σ1σ3|σ3, and
finally σ1σ2σ3σ2σ1|σ2σ1σ3, as in the diagram below. with only two entries.

We cannot go farther, so the decomposition is greedy.

Remark 1.14 Here again, the greedy normal form extends from the monoid to
the group. It turns out that Bn is a group of fractions for B+

n , and that Δn is a
sort of universal denominator for the elements of the group, meaning that every
element of Bn can be expressed as Δm

n g with m in Z and g in B+
n . As above,

it follows that every element of Bn admits a unique decomposition Δm
n |s1| ··· |sp

with m in Z, s1, ... , sp in Sn satisfying (1.4) and, in addition, s1 �= Δn.

2 The Δ-Normal Form in a Garside Monoid

In the direction of more generality, we now explain how to unify the examples
of Sec. 1 into the notion of a Δ-normal form associated with a Garside element
in what is now classically called a Garside monoid.

2.1 Garside Monoids

The greedy normal form of the braid monoid B+
n has been extended to other

similar monoids a long time ago. Typically, an Artin–Tits monoid, which, by def-
inition, is a monoid defined by relations of the form stst... = tsts... where both

Garside and Quadratic Normalisation: A Survey 21

sides have the same length, is called spherical if the Coxeter group obtained by
making all generators involutive, that is, adding s2 = 1 for each generator s, is
finite. For instance, (1.8) shows that B+

n is an Artin–Tits monoid, whose asso-
ciated Coxeter group is the finite group Sn, so B+

n is spherical. Then, building
on [10], it was shown in [12] that all properties of the greedy normal form of
braid monoids extend to spherical Artin–Tits monoids.

A further extension came with the notion of a Garside monoid (and of a
Garside group) introduced in [14] and slightly generalised in [13]. Recall that a
monoid M is left-cancellative (resp. right-cancellative) if fg = fg′ (resp. gf =
g′f) implies g = g′, and cancellative if it is both left- and right-cancellative. As
above, for f, g in M , we say that f is a left-divisor of g, or, equivalently, that g
is a right-multiple of f , written f � g, if there exists g′ in M satisfying fg′ = g.
We write f ≺ g for f � g with g �� f (which amounts to f �= g if M has no
nontrivial invertible element). For g′f = g, we symmetrically say that f is a
right-divisor of g, or, equivalently, that g is a left-multiple of f . Note that the
set gM of all right-multiples of g is the right-ideal generated by g, and, similarly,
the set Mg of all right-multiples of g is the left-ideal generated by g, as involved
in the definition of Green’s relations of M , see for instance [28].

Definition 2.1 A Garside monoid is a pair (M,Δ), where M is a cancellative
monoid satisfying the following conditions:

(i) There exists λ : M → N satisfying, for all f, g,

λ(fg) � λ(f) + λ(g) and g �= 1 ⇒ λ(g) �= 0.

(ii) Any two elements of M admit left- and right-lcms and gcds.
(iii) Δ is a Garside element of M , meaning that the left- and right-divisors

of Δ coincide and generate M ,
(iv) The family Div(Δ) of all divisors of Δ in M is finite.

Note that condition (i) in Def. 2.1 implies in particular that the monoid M
has no nontrivial invertible element (meaning: not equal to 1): indeed, 1 = 1 · 1
implies λ(1) = λ(1 · 1) � λ(1) + λ(1), hence λ(1) = 0, so fg = 1 implies
0 � λ(f) + λ(g), whence f = g = 1.

Example 2.2 For every n, the pair (Nn,Δn), with Δn as defined in (1.2), is a
Garside monoid. Indeed, N

n is cancellative, we can define λ(g) to be the com-
mon length of all An-words representing an element g of N

n and, according to
Lemma 1.6, the left- and right-divisibility relations (which coincide since N

n is
abelian) are lattice orders. Finally, Δn is a Garside element, since its divisors
include An, and the family Div(Δn) is finite, since it has 2n elements.

Similarly, the pairs (B+
n ,Δn), with Δn now defined by (1.9), is a Garside

monoid as well. That B+
n is cancellative is proved in [24], for λ(g) we can take

again the common length of all braid words representing g, and Lemma 1.10
provides the remaining conditions.

In the same vein, it can be shown that, if M is a spherical Artin–Tits monoid
and Δ is the lifting of the longest element w0 of the associated finite Coxeter

22 P. Dehornoy

group, then (M,Δ) is a Garside monoid. Actually, many more examples are
known. Let us mention two.

Example 2.3 First, let B∗+
n , the dual braid monoid, be the submonoid of the

braid group Bn generated by the n(n − 1)/2 braids

ai,j := σj−1 ···σi+1σiσ
−1
i+1 ···σ−1

j−1 with 1 � i < j � n,

and let Δ∗
n := a1,2a2,3 ···an−1,n [8]. Then (B∗+

n ,Δ∗
n) is a Garside monoid, and Bn

is its group of fractions (which shows that a group may be the group of fractions
of several Garside monoids). Note that B∗+

n includes B+
n , since σi = ai,i+1 holds.

The inclusion is strict for n � 3, since a1,3 is not a positive braid. The lattice of
the divisors of Δ∗

n has 1
n+1

(
2n
n

)
elements, which are in one–one correspondence

with the noncrossing partitions of {1, ... , n} [4].
Second, for n � 1 and e1, ... , en � 2, let

T+
e1,... ,en

:= 〈a1, ... , an | ae1
1 = ae2

2 = ··· = aen
n 〉+.

Define Δ to be the common value of aei
i for all i. Then (T+

e1,... ,en
,Δ) is a Garside

monoid. The lattice Div(Δ) has e1 + ··· + en − n + 2 elements and it consists
of n disjoint chains of lengths e1, ... , en connecting 1 to Δ.

As one can expect, a greedy normal form exists in every Garside monoid:

Proposition 2.4 Assume that (M,Δ) is a Garside monoid. Say that a Div(Δ)-
word s1| ··· |sp is Δ-normal if, for every i < p, we have

∀s∈Div(Δ) (si ≺ s ⇒ s �� sisi+1 ···sp), (2.5)

and that it is strict if, in addition, sp �= 1 holds. Then every element of M
admits a unique strict Δ-normal decomposition.

Proof. We show, using induction on �, that every element g of M satisfying
λ(g) � � admits a strict Δ-normal decomposition. For � = 0, the only possibility
is g = 1, and then the empty sequence is a Δ-normal decomposition of g. Assume
� � 1, and let g satisfy λ(g) � �. The case g = 1 has already been considered, so
we can assume g �= 1. Let s1 be the left-gcd of g and Δ. As Div(Δ) generates M ,
some nontrivial divisor of Δ must left-divide g, so s1 �= 1 holds. As M is left-
cancellative, there is a unique element g′ satisfying g = s1g

′. By assumption,
one has λ(g′) � λ(g)−λ(s1) < �. Then, by the induction hypothesis, g′ admits a
strict Δ-normal decomposition s2| ··· |sp. Then one easily checks that s1|s2| ··· |sp

is a strict Δ-normal decomposition for g.
As for uniqueness, it is easy to see that the first entry of any greedy decom-

position of g must be s1, and then we apply the induction hypothesis again. �
Note that, by definition, if s1| ··· |sp is a Δ-normal word, then so is every word

of the form s1| ··· |sp|1| ··· |1: uniqueness is guaranteed only when we forbid final
entries 1.

Garside and Quadratic Normalisation: A Survey 23

2.2 Computing the Δ-Normal Form

Prop. 2.4 is an existential statement, which does not directly solves the ques-
tion of practically computing a Δ-normal decomposition of an element given by
an arbitrary Div(Δ)-word. It turns out that simple incremental methods exist,
which explains the interest of the Δ-normal form.

We begin with preliminary results. Their proofs are not very difficult and we
give them as they are typical of what can be called the “Garside approach”.

Lemma 2.6 Assume that (M,Δ) is a Garside monoid. For g in M , define H(g)
to be the left-gcd of g and Δ. Then, for all s1, ... , sp in Div(Δ), the following
conditions are equivalent:

(i) The sequence s1| ··· |sp is Δ-normal.
(ii) For every i < p, one has si = H(sisi+1 ···sp).
(iii) For every i < p, one has si = H(sisi+1).

Proof. Assume that s1| ··· |sp is Δ -normal. By definition, we have si � Δ and
si � sisi+ ···sp, whence si � H(sisi+1 ···sp) by the definition of a left-gcd. Con-
versely, let s be the right-lcm of si and H(sisi+1 ···sp). As we have si � Δ and
H(sisi+1 ···sp) � Δ, the definition of a right-lcm implies s � Δ. Hence, we have
s1 � s ∈ Div(Δ) and s � sisi+1 ···sp, so (2.5) implies that si ≺ s is impossible.
Therefore, we must have s = si, meaning that H(sisi+1 ···sp) left-divides si. We
deduce si = H(sisi+1 ···sp). Therefore, (i) implies (ii).

The proof that (i) implies (iii) is exactly similar, replacing si ···sp with sisi+1.
Conversely, (ii) implies ∀s∈Div(Δ) (s � sisi+1 ···sp ⇒ s � si), whence a

fortiori ∀s∈Div(Δ) (s � sisi+1 ···sp ⇒ si �≺ s), which is equivalent to (2.5). So
(i) and (ii) are equivalent.

Next, by the definition of the left-gcd, si � H(sisi+1) � H(sisi+1 ···sp) is
always true, so (ii) implies (iii).

Finally, let us assume (iii) and prove (ii). We give the argument for p = 3,
the general case then follows by an induction on p. So, we assume s1 = H(s1s2)
and s2 = H(s2s3), and want to prove s1 = H(s1s2s3). The nontrivial argument
uses the right-complement operation. By assumption, any two elements f, g of M
admit a right-lcm, say h. Let us denote by f\g and g\f the (unique) elements
satisfying f(f\g) = g(g\f) = h. Using the associativity of the right-lcm opera-
tion, one checks that the right-complement operation \ obeys the law

(gh)\f = (g\f)\h. (2.7)

Now, let s be an element of Div(Δ) left-dividing s1s2s3. Our aim is to show
that s left-divides s1. By assumption, the right-lcm of s and s1s2s3 is s1s2s3,
so we have (s1s2s3)\s = 1. Applying (2.7) with f = s, g = s1, and h = s2s3,
we deduce (s1\s)\(s2s3) = 1, which means that s1\s left-divides s2s3. Because
s1 and s divide Δ, so does their right-lcm t, hence so does also their right-
complement s1\s, which is a right-divisor of t. So we have s1\s � s2s3, and the
assumption s2 = H(s2s3) then implies s1\s � s2. Arguing back, we deduce that
s1s2 is the right-lcm of s and s1s2, that is, that s left-divides s1s2. From there,
the assumption s1 = H(s1s2) implies that s left-divides s1, as expected. �

24 P. Dehornoy

Lemma 2.6 is not yet sufficient to compute a Δ-normal decomposition for an
arbitrary element, but it already implies an important property:

Proposition 2.8 If (M,Δ) is a Garside monoid, then Δ-normal words form a
regular language.

Proof. By assumption, the family Div(Δ) is finite. Moreover, by Lemma 2.6, a
word s1| ··· |sp is Δ-normal if, and only if, each length-two factor si|si+1 is Δ-
normal. Hence, the language of all Δ-normal words is defined over the alphabet
Div(Δ) by the exclusion of finitely many patterns, namely the pairs si|si+1

satisfying si �= H(sisi+1). Hence it is a regular language.

We now specifically consider the normalisation of Div(Δ)-words of
length two.

Lemma 2.9 If (M,Δ) is a Garside monoid, then, for all s1, s2 in Div(Δ), the
element s1s2 has a unique Δ-normal decomposition of length two.

Proof. Let s1, s2 belong to Div(Δ). Let s′
1 := H(s1s2). As M is left-cancellative,

there exists a unique element s′
2 satisfying s′

1s
′
2 = s1s2. By construction, s1

left-divides s′
1, which implies that s′

2 right-divides s2, hence a fortiori Δ. So s′
2

lies in Div(Δ). By construction, the Div(Δ)-word s′
1|s′

2 is Δ-normal, and it is
a decomposition of s1s2. Three cases are possible: if s′

2 is not 1, then s′
1|s′

2 is a
strict Δ-normal decomposition of s1s2 (which is then said to have Δ-length two);
otherwise, s1s2 is a divisor of Δ, so s′

1 is a strict Δ-normal decomposition of s1s2
(which is then said to have Δ-length one), unless s′

1 is also 1, corresponding to
s1 = s2 = 1, where the strict Δ-normal decomposition is empty (and s1s2, which
is 1, is said to have Δ-length zero). �

The previous result and the subsequent arguments become (much) more eas-
ily understandable when illustrated with diagrams. To this end, we associate to
every element g of the considered monoid a g-labeled edge g .
We then associate with a product the concatenation of the corre-
sponding edges (which amounts to viewing the ambient monoid
as a category), and naturally represent equalities in the ambient
monoid using commutative diagrams: for instance, the square on
the right illustrates an equality fg = f ′g′.

f

g

f ′

g′

Next, assuming that a set of elements S is given and some distinguished sub-
set L of S[2] has been fixed, typically length-two normal words of some sort, we
shall indicate that a length-two S-word s1|s2 belongs to L (that is, “is normal”)
by connecting the corresponding edges with a small arc, as in

s1 s2 . Then, Lemma 2.9 is illustrated in the diagram
on the right: it says that, for all given s1, s2 in Div(Δ) (solid
arrows), there exist s′

1, s
′
2 in Div(Δ) (dashed arrows) such that

s′
1|s′

2 is Δ-normal and the diagram is commutative.

s1

s2

s′
1

s′
2

The second ingredient needed for computing the normal form involves what
the call the (left) domino rule.

Garside and Quadratic Normalisation: A Survey 25

Definition 2.10 Assume that M is a left-cancellative monoid, S is a subset
of M , and L is a family of S-words of length two. We say that the left domino
rule is valid for L if, whenever s1, s2, s

′
1, s

′
2, t0, t1, t2 lie in S and s′

1t1 = t0s1 and
s′
2t2 = t1s2 hold in M , then the assumption that s1|s2, s′

1|t1, and s′
2|t2 lie in L

implies that s′
1|s′

2 lies in L as well.

The left domino rule corresponds to the diagram
on the right: the solid arcs are the assumptions,
namely that s′

1|t1, s′
2|t2 and s1|s2 lie in L, the dot-

ted arc is the expected conclusion, namely that s′
1|s′

2

does. s1 s2

s′
1 s′

2

t0 t1 t2

Lemma 2.11 If (M,Δ) is a Garside monoid, then the left domino rule is valid
for Δ-normal words of length two.

Proof. Assume that s1, s2, s
′
1, s

′
2, t0, t1, t2 lie in S and satisfy the assumptions of

Def. 2.10 (with respect to Δ-normal words of length two). We want to show that
s′
1|s′

2 is Δ-normal. In view of Lemma 2.6, assume s ∈ Div(Δ) and s � s′
1s

′
2.

Then, we have s � s′
1s

′
2t2, whence s � t0s1s2, see

the diagram on the right. Arguing as in the proof
of Lemma 2.6, we deduce t0\s � s1s2. As t0\s
lies in Div(Δ), we deduce t0\s � H(s1s2) = s1,
whence s � t0s1 = s′

1t1. As s lies in Div(Δ), we
deduce s � H(s′

1t1) = s′
1. Therefore, we have

s′
1 = H(s′

1s
′
2), and s′

1|s′
2 is Δ-normal. �

s′
1 s′

2

s1 s2

t0 t1 t2
s

t0\s

We can now easily compute a Δ-normal decomposition for every element.
In order to describe the procedure (which can be translated into an algorithm
directly), we work with Div(Δ)-words and, starting from an arbitrary Div(Δ)-
word w, explain how to build a Δ-normal word that represents the same element.
To this end, we first introduce notations that will be used throughout the paper.

Notation 2.12 (i) If S is a set and F is a map from S[2] to itself, then, for i � 1,
we denote by Fi the (partial) map of S∗ to itself that consists in applying F to
the entries in position i and i + 1. If u = i1| ··· |in is a finite sequence of positive
integers, we write Fu for the composite map Fin

◦ ··· ◦ Fi1 (so Fi1 is applied first).
(ii) If S is a set and N is a map from S∗ to itself, we denote by N the

restriction of N to S[2].

Then the main result about the Δ-normal form can be stated as follows:

Proposition 2.13 Assume that (M,Δ) is a Garside monoid. Then, for every
Div(Δ)-word w of length p, there exists a unique Δ-normal word NΔ(w) of
length p that represents the same element as w. Moreover, one has

NΔ(w) = NΔ
δp
(w), (2.14)

with δp inductively defined by δ2 := 1 and δp := sh(δp−1)|1|2| ··· |p−1, where sh
is a shift of all entries by +1.

26 P. Dehornoy

Thus, for instance, (2.14) says that, in order to normalise a Div(Δ)-word of
length four, we can successively normalise the length-two factors beginning at
positions 3, 2, 3, 1, 2, and 3, thus in six steps.

Proof. We begin with an auxiliary result, namely finding a Δ-normal decompo-
sition for a word of the form t|s1| ··· |sp where s1| ··· |sp is Δ-normal, that is, for
multiplying a Δ-normal word by one more letter on the left. Then we claim that,
putting t0 := t and, inductively, s′

i|ti := NΔ(ti−1|si) for i = 1, ... , p, provides a
Δ-normal decomposition of length p + 1 for ts1 ···sp. Indeed, the commutativity
of the diagram in Fig. 4 gives the equality ts1 ···sp = s′

1 ···s′
ptp in M , and the

validity of the left domino rule implies that each pair s′
i|s′

i+1 is Δ-normal. In
terms of NΔ, we deduce the equality

NΔ(t|w) = NΔ
1|2| ··· |p(t|w). (2.15)

when w is a Δ-normal word of length p. From there, (2.5) follows by a straight-
forward induction. �

s1 s2 sp

s′
1 s′

2 s′
p s′

p+1

t = t0 t1 t2 tp−1 tp

Fig. 4. Left-multiplying a Δ-normal word by an element of Div(Δ): the left domino
rule guarantees that the upper row is Δ-normal whenever the lower row is

The explicit description of Prop. 2.13 enables one to completely analyse the
complexity of the Δ-normal form.

Corollary 2.16 If (M,Δ) is a Garside monoid, then Δ-normal decompositions
can be computed in linear space and quadratic time. The Word Problem for M
with respect to Div(Δ) lies in dtime(n2).

Proof. By assumption, the set Div(Δ) is finite, so the complete table of the
map NΔ can be precomputed, and then each application of NΔ has time cost O(1)
and keeps the length unchanged. Then, as the sequence δp has length p(p−1)/2,
Prop. 2.13 implies that a Δ-normal decomposition for an element represented by
a Div(Δ)-word of length p can be obtained in time O(p2).

Computing Δ-normal decompositions yields a solution of the Word Problem,
since two Div(Δ)-words w,w′ represent the same element of M if, and only if,
the Δ-normal words NΔ(w) and NΔ(w′) only differ by the possible adjunction
of final letters 1.

On the other hand, a direct application of (2.15) and Fig. 4 is the fact that,
viewed as paths in the Cayley graph of M with respect to Div(Δ), the Δ-normal
forms of g and tg remain at a uniformly bounded distance, namely at most two.
Thus, we can state (see [27]):

Corollary 2.17 If (M,Δ) is a Garside monoid, then the Δ-normal words sat-
isfiy the 2-Fellow traveller Property on the left.

Garside and Quadratic Normalisation: A Survey 27

2.3 The Right Counterpart

Owing to Prop. 2.13 and its normalisation recipe based on left-multiplication,
the question naturally arises of a similar recipe based on right-multiplication,
hence based on computing a Δ-normal decomposition of gt from one of g. Such
a recipe does exist, but this is not obvious, because the definition of Δ-normality
is not symmetric.

Proposition 2.18 Assume that (M,Δ) is a Garside monoid. Then, for every
Div(Δ)-word w of length p, one also has

NΔ(w) = NΔ
˜δp
(w), (2.19)

with δ̃p inductively defined by δ̃2 := 1 and δ̃p := δ̃p−1|p−1| ··· |2|1.

For instance, (2.19) says that, in order to normalise a Div(Δ)-word of length
four, we can successively normalise the length-two factors beginning at posi-
tions 1, 2, 1, 3, 2, and 1, in six steps as in (2.14), but in a different order.

As can be expected, the proof of Prop. 2.18 relies on a symmetric counterpart
of the left domino rule of Def. 2.10.

Definition 2.20 Assume that M is a left-cancellative monoid, S is a subset
of M , and L is a family of S-words of length two. We say that the right domino
rule is valid for L if, whenever s1, s2, s

′
1, s

′
2, t0, t1, t2 lie in S and t0s

′
1 = s1t1 and

t1s
′
2 = s2t2 hold in M , then the assumption that s1|s2, t0|s′

1, and t1|s′
2 lie in L

implies that s′
1|s′

2 lies in L as well.

The right domino rule corresponds to the diagram
on the right: the solid arcs are the assumptions,
namely that t0|s′

1, t1|s′
2 and s1|s2 lie in L, and the

dotted arc is the expected conclusion, namely that
s′
1|s′

2 does. s′
1 s′

2

s1 s2

t0 t1 t2

Then we have the counterpart of Lemma 2.11. Observe that the argument is
totally different, reflecting the lack of symmetry in the definition of Δ-normality.

Lemma 2.21 If (M,Δ) is a Garside monoid, then the right domino rule is valid
for Δ-normal words of length two.

Proof (sketch). For s in Div(Δ), let ∂s be the element of Div(Δ) satisfying
s∂s = Δ, and let φ := ∂2. Then, sΔ = Δφ(s) holds for every s in Div(Δ), and
one shows that φ extends to an automorphism of M . It follows, in particular,
that s1|s2 being Δ-normal implies that φ(s1)|φ(s2) is Δ-normal as well. By
assumption, there exist t′0, t

′
1, t

′
2 satisfying t0t

′
0 = t1t

′
1 = t2t

′
2 = Δ. By the above

equality, we have s1Δ = Δφ(s1) and s2Δ = Δφ(s2), whence, by left-cancellation,
s′
1t

′
1 = t′0φ(s1) and s′

2t
′
2 = t′1φ(s1). Thus the diagram below is commutative.

Assume s � s′
1s

′
2 with s in Div(Δ). Let s′ := s′

1\s. Our aim is to prove that s
left-divides s′

1, that is, that s′ is 1.

28 P. Dehornoy

The assumption that s left-divides s′
1s

′
2 implies

s′ � s′
2, whence t1s

′ � t1s
′
2. On the other

hand, the assumption s � s′
1s

′
2 implies a for-

tiori s � s′
1s

′
2t

′
2, that is, s � t′0φ(s1)φ(s2)

and, therefore, t′0\s � φ(s1)φ(s2). As t′0\s lies
in Div(Δ) and φ(s1)|φ(s2) is Δ-normal, we deduce
t′0\s � φ(s1)φ(s2), whence s � t′0φ(s1), which is also φ(s1) φ(s2)

s′
1 s′

2

s1 s2

t′0 t′1 t′2

t0 t1 t2

s � s′
1t

′
1. We deduce s′ � t′1, and, therefore, t1s

′ � t1t
′
1 = Δ. Thus t1s

′ lies
in Div(Δ) and it left-divides t1s

′
2. By assumption, t1|s′

2 is Δ-normal, so we
deduce that t1s

′ left-divides t1, implying s′ = 1, as expected. Hence, s′
1|s′

2 is
Δ-normal, the right domino rule is valid. �

We can easily complete the argument.

Proof (of Prop. 2.18). The argument is symmetric of the one for Prop. 2.13. It
consists in establishing for w a Δ-normal word of length p the equality

NΔ(w|t) = NΔ
p|p−1| ··· |1(w). (2.22)

The latter immediately follows from the diagram

s′
0 s′

1 s′
p−1 s′

p

s1 sp−1 sp

t0 t1 t2 tp−1 tp = t

whose validity is guaranteed by the right domino rule. �
We deduce a counterpart of Cor. 2.17.

Corollary 2.23 Assume that (M,Δ) is a Garside monoid. Then Δ-normal
words satisfy the 2-Fellow traveller Property on the right.

Remark 2.24 As in Subsections 1.1 and 1.2, the Δ-normal decompositions
associated with a Garside monoid (M,Δ) extend to the group of fractions of M .
It directly follows from the definition that M satisfies the Ore conditions (can-
cellativity and existence of common right-multiples), hence embeds in a group of
(left) fractions G (then called a Garside group). Then every element of G admits
a unique decomposition of the form Δm|s1| ··· |sp where s1| ··· |sp is Δ-normal
and, in addition, we require s1 �= Δ (that is, m is maximal) and sp �= 1 (that
is, p is minimal). It is easy to deduce from Prop. 2.8 and Cor. 2.17 and 2.23 that
the Δ-normal form provides a biautomatic structure for G (in the sense of [23]).

3 The S-Normal Form Associated with a Garside Family

Looking at the mechanism of the Δ-normal form associated with a Garside
monoid invites to a further extension. Indeed, one quickly sees that several

Garside and Quadratic Normalisation: A Survey 29

assumptions in the definition of a Garside monoid are not used in the construc-
tion of a normal form that obeys the recipe of Prop. 2.13. This easy observation,
and the need of using decompositions similar to Δ-normal ones in more general
situations, led to introducing the notion of a Garside family [15], extensively
developed in the book [17]. Also see [16] for the computational aspects.

3.1 The Notion of a Garside Family

Our aim is to define normal forms that work in the same way as the Δ-normal
form of a Garside monoid, but in more general monoids (in fact, monoids can be
extended into categories at no cost). So, we start with a monoid M equipped with
a generating family S and try to define for the elements of M distinguished S-
decompositions that resemble Δ-normal decompositions: in particular, if (M,Δ)
is a Garside monoid and S is Div(Δ), we should retrieve Δ-normal decom-
positions. Of course, we cannot expect to do that for an arbitrary generating
family S, and this is where the notion of a Garside family will appear. First, if
we try to just copy (2.5), problems arise. Therefore, we start from a new notion.

Definition 3.1 If M is a left-cancellative monoid and S is included in M , an
S-word s1|s2 is called S-normal if the following condition holds:

∀s∈S ∀f∈M (s � fs1s2 ⇒ s � fs1). (3.2)

An S-word s1| ··· |sp is called S-normal if si|si+1 is S-normal for every i < p,
and strict S-normal if it is S-normal with, in addition, sp �= 1.

Relation (3.2) is reminiscent of (iii) in Lemma 2.6, but with the important
difference of the additional term f : we do not only consider the left-divisors
of s1s2 that lie in S, but, more generally, all elements of S that left-divide fs1s2.

Example 3.3 Assume that (M,Δ) is a Garside monoid, and let S := Div(Δ).
Assume that s1| ··· |sp is S-normal in the sense of Def. 3.1. Then, for every i, (3.2)
implies in particular ∀s∈S (s � s1s2 ⇒ s � s1), whence si = H(sisi+1). Hence,
by Lemma 2.6, s1| ··· |sp is Δ-normal in the sense of Prop. 2.4.

The converse implication is also true, but less obvious. Indeed, assume that
s1| ··· |sp is Δ-normal, and we have s � fsisi+1 for some s in Div(Δ) and f in M .
Then, using the right-complement operation \ as in the proof of Lemma 2.6, we
deduce that f\s left-divides sisi+1, as illustrated in the diagram

f s1 s2

s f\s

As si|si+1 is Δ-normal, we deduce f\s � si, whence s � fsi. Hence (3.2) is
satisfied and si|si+1 is S-normal in the sense of Def. 3.1.

By definition, being S-normal is a local property only involving length-two
subfactors. So we immediately obtain:

30 P. Dehornoy

Proposition 3.4 If M is a monoid and S is a finite subfamily of M , then
S-normal words form a regular language.

Hereafter we investigate S-normal decompositions. An easy, but important
fact is that such decompositions are necessarily (almost) unique when they exist.
We shall restrict to the case of monoids that admit no nontrivial invertible ele-
ment (as Garside monoids do). This restriction is not necessary, but it makes
statements more simple: essentially, one can cope with nontrivial invertible ele-
ments at the expense of replacing equality with the weaker equivalence rela-
tion =×, where g =× g′ means g = ge for some invertible element e, see [17].

Lemma 3.5 Assume that M is a left-cancellative monoid with no nontrivial
invertible elements and S is included in M . Then every element of g admits at
most one strict S-normal decomposition.

Proof (sketch). Assume that s1| ··· |sp and t1| ··· |tq are S-normal decompositions
of an element g. From the assumption that s1 lies in S and left-divides t1 ···tq, and
that t1| ··· |tq is S-normal, one easily deduces s1 � t1. By a symmetric argument,
one deduces t1 � s1, whence s1 = t1, because M has non nontrivial invertible
element. Then use an induction. �

If we consider S-normal decompositions that are not strict, uniqueness is
no longer true as, trivially, s1| ··· |sp being S-normal implies that s1| ··· |sp|1| ··· |1
is also S-normal (and represents the same element of the ambient monoid).
Lemma 3.5 says that this is the only lack of uniqueness.

At this point, we are left with the question of the existence of S-normal
decompositions, and this is where the central technical notion arises:

Definition 3.6 Assume that M is a left-cancellative monoid with no nontrivial
invertible elements and S is a subset of M that contains 1. We say that S is a
Garside family in M if every element g of M has an S-normal decomposition,
that is, there exists an S-normal S-word s1| ··· |sp satisfying s1 ···sp = g.

Example 3.7 It follows from the connection of Ex. 3.3 that, if (M,Div(Δ) is a
Garside monoid, then Div(Δ) is a Garside family in M . So, in particular, the n-
cube Sn of (1.1) is a Garside family in the abelian monoid N

n and, similarly, the
family of all simple n-strand braids is a Garside family in the braid monoid B+

n .
Many examples of a different flavour exist. For instance, every left-

cancellative monoid M is a Garside family in itself, since every element g of M
admits the length-one M -normal decomposition g (!). More interestingly, let K+

be the “Klein bottle monoid”

K+ := 〈a, b | a = bab〉+,

which is the positive cone in the ordered group 〈a, b | a = bab〉, itself the
fundamental group of the Klein bottle, and the nontrivial semidirect product
Z � Z. Then K+ cannot be made a Garside monoid since no function λ as in

Garside and Quadratic Normalisation: A Survey 31

Def. 2.1(i) may exist. However, if we put Δ := a2, the left- and right-divisors
of Δ coincide and the family Div(Δ) is an (infinite) Garside family in K+.

We refer to [17] for many examples of Garside families, and just mention
the recent result [20] that every finitely generated Artin–Tits monoid admits a
finite Garside family, independently of whether the associated Coxeter group is
finite or not. In Fig. 5, we display such a finite Garside family for the monoid with
presentation 〈σ1, σ2, σ3 | σ1σ2σ1 = σ2σ1σ2, σ2σ3σ2 = σ3σ2σ3, σ3σ1σ3 = σ1σ3σ1〉+,
that is, for what is called type Ã2.

1 σ1

σ2

σ3

σ1σ2

σ2σ1

σ2σ3

σ3σ2 σ1σ3

σ3σ1

σ2σ3σ2

(σ2σ1σ3)

(σ2σ3σ1)

σ3σ1σ3

(σ3σ1σ2)

(σ3σ2σ1)

σ1σ2σ1

(σ1σ2σ3)

(σ1σ3σ2)

σ1σ2σ3σ2

σ2σ3σ1σ3

σ3σ1σ2σ1

Fig. 5. A finite Garside family S in the Artin–Tits monoid of type ˜A2: the sixteen right-
divisors of the elements σ1σ2σ3σ2, σ2σ3σ1σ3, and σ3σ1σ3σ1. Attention! The family S is
not closed under left-divisor, implying that some intermediate vertices (the six grey
ones) do not belong to S

3.2 Computing S-Normal Decompositions

We postpone to the next subsection the question of recognising Garside families,
and explain here how S-normal decompositions behave when they exist, that is,
when S is a Garside family. To this end, the point is that the counterparts of
Lemmas 2.9 and 2.11 are valid.

Lemma 3.8 Assume that M is a left-cancellative monoid with no nontrivial
invertible element and S is a Garside family in M . Then, for all s1, s2 in S, the
element s1s2 has a unique S-normal decomposition of length two.

Proof. Let s1, s2 belong to S. By assumption, s1s2 admits an S-normal decompo-
sition, say s′

1| ··· |s′
p. As s1 belongs to S and s′

p−1|s′
p is S-normal, the assumption

s1 � (s′
1 ···s′

p−2)s
′
p−1s

′
p implies s1 � (s′

1 ···s′
p−2)s

′
p−1. Repeating the argument

p−1 times, we conclude that s1 left-divides s′
1, say s′

1 = s1t1. Left-cancelling s1,
we deduce s2 = t1s

′
2 ···s′

p and, arguing as above, we conclude that s2 must left-
divide t1s

′
2, say t1s

′
2 = s2t2. Left-cancelling s2, we deduce 1 = t2s

′
3 ···s′

p. As M
has no nontrivial invertible element, the only possibility is t1 = s′

3 = ··· = s′
p = 1,

which implies that s′
1|s′

2 is an S-normal decomposition of s1s2. The argument is

32 P. Dehornoy

illustrated in the diagram
s1 s2

s′
1 s′

2 s′
3 s′

p

t1 t2

Thus, every element of S[2] has an S-normal decomposition of length two. Its
uniqueness follows from Lemma 3.5.

Lemma 3.9 Assume that M is a left-cancellative monoid with no nontrivial
invertible element and S is a Garside family in M . Then the left domino rule is
valid for S-normal words of length two.

Proof. Assume that s1, s2, s
′
1, s

′
2, t0, t1, t2 lie in S and satisfy the assumptions of

Def. 2.10 (with respect to S-normal words of length
two). We want to show that s′

1|s′
2 is S-normal.

Assume s ∈ S and s � fs′
1s

′
2. First, s � s′

1s
′
2 implies

s � fs′
1s

′
2t2, whence s � ft0s1s2. As s1|s2 is S-

normal, we deduce s � ft0s1, whence s � fs′
1t1.

As s′
1|t1 is S-normal, we deduce s � fs′

1 in turn.
Therefore, s′

1|s′
2 is S-normal. � s1 s2

s′
1 s′

2

t0

f

t1 t2

s

Arguing exactly as for Prop. 2.13 and using, in particular, Fig. 4, we obtain

Proposition 3.10 Assume that M is a left-cancellative monoid with no non-
trivial invertible element and S is a Garside family in M . Then, for every S-word
w of length p, there exists a unique S-normal word NS(w) of length p that rep-
resents the same element as w. Moreover, with δp as in Prop. 2.13, one has

NS(w) = NS
δp
(w). (3.11)

Thus, the recipe for computing the Δ-normal form associated with a Gar-
side monoid extends without change to the S-normal form associated with an
arbitrary Garside family S. As in Sec. 2, we deduce

Corollary 3.12 Assume that M is a left-cancellative monoid with no nontrivial
invertible element and S is a Garside family in M . Then S-normal decomposi-
tions can be computed in linear space and quadratic time. The Word Problem
for M with respect to S lies in dtime(n2).

On the other hand, as the diagram of Fig. 4 remains valid, we obtain

Corollary 3.13 Assume that M is a left-cancellative monoid with no nontrivial
invertible element and S is a Garside family in M . Then the S-normal words
satisfy the 2-Fellow traveller Property on the left.

Garside and Quadratic Normalisation: A Survey 33

In contrast to the particular case of Garside monoids, there is no symmetric
counterpart involving right multiplication in the framework of an arbitrary Gar-
side family. As can be expected, the existence of such a counterpart is equivalent
to the validity of the right domino rule for S-normal words of length two.
Now, the latter may fail, as the counterexample
on the right shows: here S is the sixteen-element
Garside family described in Fig. 5 in the Artin–Tits
monoid of type Ã2. σ2 σ3

σ1 σ1σ2

σ1σ2σ1 σ1σ2σ1 σ1σ3

For more results on the question, we refer to Chap. V of [17], where the notion
of a bounded Garside family is introduced, and where it is proved that the right
domino rule and the counterpart of Prop. 2.18 are valid, whenever S is a bounded
Garside family.

3.3 Existence of S-Normal Decompositions

The notion of a Garside family is useful only if we can provide practical charac-
terisations, which amounts to giving sufficient conditions for S-normal decom-
positions to exist. A number of such characterisations are known [17, Chap. IV],
and we shall only mention a few of them.

Two types of characterisations exist, according to whether the ambient mon-
oid satisfies or not additional conditions. Let us begin with the case of a monoid
that is just assumed to be left-cancellative and, in this paper, to admit no non-
trivial invertible element. In order to state the results, we need two definitions.

Definition 3.14 If M is a left-cancellative monoid, S is included in M , and g
is an element of M , then an element s of S is said to be an S-head of g if we
have s � g and ∀t∈S (t � g ⇒ t � s).

In other words, an S-head of g is a greatest left-divisor of g lying in S. An
S-head is unique whenever the ambient monoid M has no nontrivial invertible
element: if s and s′ are S-heads of g, the definition implies s � s′ and s′ � s,
whence s′ = s. If (M,Δ) is a Garside monoid, the Div(Δ)-head of an element g
exists and is simply the left-gcd of g and Δ, as considered in Lemma 2.6.

Definition 3.15 If M is a left-cancellative monoid and S is included in M ,
we say that S is closed under right-comultiple if the
relation

∀s, t∈S ∀g∈M ((s � g and t � g)
⇒ ∃r∈S (s � r and t � r and r � g))

is satisfied in M , as illustrated on the right.

t

s
r∈S

Thus, a family S is closed under right-comultiple if every common right-
multiple of two elements s, t of S is a right-multiple of some common right-
multiple of s and t that lies in S. Finally, we naturally say that a family S is
closed under right-divisor if every right-divisor of an element of S belongs to S.

34 P. Dehornoy

Proposition 3.16 [15, Prop. 3.9] or [17, Prop. IV.1.24] Assume that M is a left-
cancellative monoid with no nontrivial invertible element, and S is a generating
subfamily of M that contains 1. Then S is a Garside family in M—that is, every
element of M admits an S-normal decomposition—if, and only if, it satisfies one
of the following equivalent conditions:

(i) Every nontrivial element of M admits an S-head, and S is closed under
right-divisor.

(ii) Every element of S2 admits a ≺-maximal left-divisor in S, and S is closed
under right-comultiple and right-divisor.

The conditions of Prop. 3.16 are not demanding: very little is required for the
existence of S-normal decompositions. The difference between (i) and (ii) is that,
in (ii), the existence of an S-head is relaxed twice: one considers elements of S2

(that is, elements that can be expressed as the product of two elements of S)
rather than arbitrary elements, and ≺-maximal left-divisors, which is weaker
than �-greatest left-divisors, since it amounts to replacing s � t with t �≺ s.

Example 3.17 Prop. 3.16(i) makes it straightforward that, if (M,Δ) is a Gar-
side monoid, Div(Δ) is a Garside family: as noted above, the left-gcd of g and Δ
is a Div(Δ)-head of g and, by definition, Div(Δ) is closed under right-divisor.

The argument is similar for the family Div(Δ) in the Klein bottle monoid K+

of Example 3.7, but one easily finds examples of a completely different flavour.
For instance, the reader can play with the family {bi | 0 � i � n + 1} ∪ {a} in
the monoid 〈a, b | abn = bn+1〉+ with n � 1.

When the ambient monoid satisfies additional assumptions, the conditions
of Prop. 3.16 can still be weakened.

Definition 3.18 A left-cancellative monoid is called right-noetherian if there is
no infinite descending sequence with respect to strict right-divisibility.

Equivalently, a left-cancellative monoid is right-noetherian if, and only if,
there is no infinite bounded ascending sequence with respect to strict left-
divisibility, meaning that g1 ≺ g2 ≺ ··· � g is impossible. When a monoid is
right-noetherian, the existence of ≺-maximal elements is for free, and we deduce

Corollary 3.19 Assume that M is a right-noetherian left-cancellative monoid
with no nontrivial invertible element, and S is a generating subfamily of M
that contains 1. Then S is a Garside family if, and only if, S is closed under
right-comultiple and right-divisor.

The criterion can be further improved as, for the ambient monoid to be
right-noetherian, it is sufficient that the restriction of right-divisibility to the
considered family S is, a trivial condition when S is finite, see [17, Prop. IV.2.18].

Finally, things become even more simple when the ambient monoid admits
conditional right-lcms, meaning that any two elements that admit a common
right-multiple admit a right-lcm. Then closure under right-comultiple boils down
to closure under right-lcm (that is, the right-lcm of two elements of S belongs
to S when it exists), and we obtain

Garside and Quadratic Normalisation: A Survey 35

Corollary 3.20 Assume that M is a left-cancellative monoid that is right-
noetherian, admits conditional right-lcms, and contains no nontrivial invertible
element, and S is a generating subfamily of M that contains 1. Then S is a
Garside family if, and only if, S is closed under right-lcm and right-divisor.

Thus, in the context of Cor. 3.20, being a Garside family is a closure property.
It follows that, for every generating set A, there exists a smallest Garside fam-
ily S that includes A, namely the closure of A under right-lcm and right-divisor.
When the ambient monoid is noetherian (meaning left- and right-noetherian), it
admits a smallest generating family, namely the family of atoms (indecomposable
elements), and therefore it admits a smallest Garside family, the closure of atoms
under right-lcm and right-divisor. A typical example is the family Div(Δ) in a
Garside monoid (with Δ chosen minimal), but another example is the Garside
family of Fig. 5 in the Artin–Tits monoid of type Ã2.

Let us mention a last result. We observed that the definition of an S-normal
sequence in (3.2) is a priori more demanding than that of (2.5). It turns out
that, when S satisfies convenient conditions, the conditions become equivalent:

Proposition 3.21 [17, Prop. IV.1.20] Assume that M is a left-cancellative mon-
oid with no nontrivial invertible element, and S is a generating family of M that
is closed under right-comultiple and right-divisor. Then an S-word s1| ··· |sp is
S-normal if, and only if, it satisfies the condition

∀s∈S (si ≺ s ⇒ s �� sisi+1 ···sp). (3.22)

We already observed that the condition is necessary. That it is sufficient
follows from arguments extending those of Ex. 3.3. Note that, by Prop. 3.16,
every Garside family satisfies the assumptions of Prop. 3.21 and, therefore, the
connection is valid in this case.

Remark 3.23 Once again, we can think of extending the results from the
monoid to its enveloping group. Here, some care is needed as, in general, a left-
cancellative monoid (even a cancellative one) need not embed in a group of left
fractions: by the classical Ore theorem, this happens if, and only if, the monoid M
is cancellative and any two elements of M admit a common left-multiple. But,
even in this case, the existence of unique S-normal decompositions in M does
not directly lead to unique distinguished decompositions for the elements of its
group of fractions, because fractional decompositions need not be unique. How-
ever, when the monoid M admits left-lcms, a notion of irreducible fraction arises
and one obtains unique decompositions (called “symmetric S-normal”) for the
elements of the group by using S-normal decompositions for the numerator and
the denominator of an irreducible fractional decomposition, see [17, Sec. III.2].

4 Quadratic Normalisation

Proceeding one step further, we now consider more general normalisation pro-
cesses that include those of the previous sections, but also new examples of a

36 P. Dehornoy

different flavour. However, we shall see that the mechanism of Garside normal-
isation, as captured in Prop. 3.10, can be retrieved in the more general frame-
work of what we shall call “quadratic normalisations of class (4, 3)”. One of the
benefits of such an extended approach is that some monoids that are not even
left-cancellative, like plactic monoids, become in turn eligible.

4.1 Normalisations and Geodesic Normal Forms

We now restart from a general standpoint and consider (not necessarily cancella-
tive) monoids equipped with a generating family. We are interested in normal
forms in such monoids, according to the following abstract scheme:

Definition 4.1 Assume that M is a monoid and S is a generating subfamily
of M . A normal form on (M,S) is a (set-theoretic) section of the canonical
projection ev of S∗ onto M . A normal form nf on (M,S) is called geodesic if,
for every g in M , we have ‖nf(g)‖ � ‖w‖ for every S-word w representing g.

Typically, we saw in Sec. 3 that, if M is left-cancellative with no nontriv-
ial invertible element, every Garside family S of M provides a normal form
on (M,S), associating with every element g of M the unique strict S-normal
decompositon of g. This normal form is geodesic, since, by Prop. 3.10, the
S-normal form of an element specified by an S-word of length p has length
at most p.

As already done in Sec. 2 and 3, we shall rather work with words, and concen-
trate on the normalisation maps that associate to an arbitrary word the unique
equivalent normal word. This leads us to the following notion.

Definition 4.2 A normalisation is a pair (S,N), where S is a set and N is a
map from S∗ to itself satisfying, for all S-words u, v, w,

‖N(w)‖ = ‖w‖, (4.3)
‖w‖ = 1 implies N(w) = w, (4.4)
N(u|N(w)|v) = N(u|w|v). (4.5)

An S-word w satisfying N(w) = w is called N -normal. If M is a monoid, we say
that (S,N) is a normalisation for M if M admits the presentation

〈S | {w = N(w) | w ∈ S∗}〉+. (4.6)

Note that (4.5) implies that N is idempotent. We shall see below that the
maps NΔ and NS considered in Sec. 2 and 3 are typical examples of normal-
isations. Many others appear in [19]. The connection between normalisations
and normal forms is easily described, especially in the case when all equivalent
S-words have the same length.

Proposition 4.7 [19, Prop. 2.1.12] If (S,N) is a normalisation for a mon-
oid M , then putting nf(g) = N(w), where w is any S-decomposition of g, pro-
vides a normal form on (M,S).

Garside and Quadratic Normalisation: A Survey 37

Conversely, if M is a monoid, S is a generating subfamily of M , and nf
is normal form on (M,S), and, moreover, any two S-decompositions of an ele-
ment of M have the same length, then putting N(w) = nf(ev(w)) provides a
normalisation for M .

Moreover, it is easily seen that the two correspondences of Prop. 4.7 are
inverses of one another.

When the elements of M may admit S-decompositions of different lengths
(as in the case of a Garside family), more care is needed, but we can still merge
unique normal forms and length-preserving normalisation maps at the expense
of introducing a dummy letter that represents 1 and is eventually collapsed.

Definition 4.8 If (S,N) is a normalisation, an element e of S is called N -neutral
if, for every S-word w, one has

N(w|e) = N(e|w) = N(w)|e. (4.9)

Then we write colle for the action of erasing e in an S-word. If M is a monoid,
we say that (S,N) is a normalisation mod e for M if M admits the presentation

〈S | {w = N(w) | w ∈ S∗} ∪ {e = 1}〉+. (4.10)

We invite the reader to check that, if S is a Garside family in a left-
cancellative monoid M that admits no nontrivial invertible element, then (S,NS)
is a normalisation for M mod 1 and the S-normal words of Sec. 3 are the asso-
ciated NS-normal words. Then Prop. 4.7 extends in

Proposition 4.11 [19, Prop. 2.2.7] If M is a monoid and (S,N) is a normalisa-
tion for M mod e, putting nf(g) = colle(N(w)), where w is any S-decomposition
of g, provides a geodesic normal form on (M,S \ {e}).

Conversely, if M is a monoid, S generates M , and nf is a geodesic normal
form on (M,S), putting N(w) = nf(ev(w))|em, with e a new letter not in S
evaluated to 1 in M and m = ‖w‖ − ‖nf(ev(w))‖, provides a normalisation
for M mod e (with alphabet S ∪ {e}).

Again, the two correspondences of Prop. 4.11 are inverses of one another.
Thus, investigating geodesic normal forms and investigating normalisations are
one and the same question.

This general framework being set, we now turn to a more specific situation.
By Prop. 3.4 and 3.10, subfactors of length two play a prominent rôle in Garside
normalisation. This is the property we shall extend. We recall Notation 2.12, in
particular that, for N : S∗ → S∗, we use N for the restriction of N to S[2].

Definition 4.12 A normalisation (S,N) is quadratic if the two conditions hold:
(i) An S-word w is N -normal if, and only if, every length-two factor of w is.
(ii) For every S-word w, there exists a finite sequence of positions u, depend-

ing on w, such that N(w) is equal to Nu(w).

38 P. Dehornoy

Example 4.13 By Prop. 3.4 and 3.10, if S is a Garside family, then the asso-
ciated normalisation (S,NS) is quadratic: Prop. 3.10 says that u := δp can be
chosen for every S-word w of length p.

For a different example, as in Ex. 1.5, let (An, NLex) be the lexicographic
normalisation for the free abelian monoid N

n. Then (An, NLex) is quadratic.
Indeed, an An-word is NLex-normal if, and only if, all its length-two subfactors
are ai|aj with i � j. On the other hand, every An-word can be transformed into
a NLex-normal word by switching adjacent letters that are not in the due order.

Simple counterexamples show that none of the two conditions in Def. 4.12
implies the other. When a normalisation (S,N) is quadratic, then, by defini-
tion, the restriction N of N to S[2] is crucial and most properties can be read
from N. In particular, one shows that, if M is a monoid and (S,N) is a quadratic
normalisation for M (resp. for M mod e), then M admits the presentation

〈S | {s|t = N(s|t) | s, t ∈ S}〉+, (4.14)

(resp. 〈S \ {e} | {s|t = colle(N(s|t)) | s, t ∈ S \ {e}}〉+). (4.15)

So, the relations between words of length two bear all information.
Before turning to more elaborate results, let us immediately note the follow-

ing direct consequence of Def. 4.12(i):

Proposition 4.16 If (S,N) is a quadratic normalisation and S is finite, then
N -normal words form a regular language.

4.2 The Class of a Quadratic Normalisation

We now introduce a parameter, called the class, evaluating the complexity of
the normalisation process associated with a quadratic normalisation.

If (S,N) is a quadratic normalisation and w is an S-word, N(w) is obtained
by successively applying the restriction N of N to S[2] at various positions. So,
in particular, for ‖w‖ = 3, we have N(w) = Nu(w) for some finite sequence u of
positions 1 and 2. As N is idempotent, repeating 1 or 2 in u is useless, and it is
enough to consider sequences u of the form 121... or 212... (we omit separators).

Notation 4.17 For m � 0, we write 121...[m] for the alternating sequence 121...
of length m, and similarly for 212...[m].

So, if (S,N) is a quadratic normalisation, then, for every S-word w of length
three, there exists m such that N(w) is N121...[m](w) or N212...[m](w).

Definition 4.18 We say that a quadratic normalisation (S,N) is of left class c
(resp. right-class c) if N(w) = N121...[c](w) (resp. N(w) = N212...[c](w)) holds for
every w in S[3], and of class (c, c′) if it is of left class c and right class c′.

Garside and Quadratic Normalisation: A Survey 39

Example 4.19 If (M,Δ) is a Garside monoid, Prop. 2.13 gives NΔ(w)=NΔ
212

(w)
for every Div(Δ)-word w of length three. Hence, (Div(Δ), NΔ) is of right class 3.
Symmetrically, Prop. 2.18 gives NΔ(w) = NΔ

121
(w), so (Div(Δ), NΔ) is also of left

class 3. Hence, the normalisation (Div(Δ), NΔ) is of class (3, 3).
If S is a Garside family in a left-cancellative monoid with no nontrivial invert-

ible element, then Prop. 3.10 implies that (S,NS) is of right class 3, but, lacking
in general a counterpart of Prop. 2.18, we have no hint for the left class.

The reader can check that the lexicographic normalisation (An, NLex) of
Ex. 1.5 also has class (3, 3). On the other hand, there exist examples of nor-
malisations with an arbitrarily high minimal class: see [19, Ex. 3.3.9], where the
minimal class is (3 + �log2 n�, 3 + �log2 n�) for a size n alphabet.

Let us mention one more normalisation, very different from the previous
examples. If X is a linearly ordered finite set, the plactic monoid over X is [6]

PX =
〈

X

∣∣∣∣ xzy = zxy for x � y < z
yxz = yzx for x < y � z

〉+
.

Then PX is also generated by the family CX of nonempty columns over X,
defined to be strictly decreasing products of elements of X. Call a pair of
columns s1|s2 normal if ‖s1‖ � ‖s2‖ holds and, for every 1 � k � ‖s2‖, the
kth element of s1 is at most the one of s2. Then normal sequences s1| ··· |sp are
in one-to-one correspondence with Young tableaux, and every element of PX is
represented by a unique tableau of minimal length (in terms of columns). Thus,
mapping a CX -word to the unique corresponding tableau defines a geodesic nor-
mal form on (PX , CX). Writing ĈX for CX enriched with one empty column ∅
and using Prop. 4.11, we obtain a normalisation (ĈX , N) for PX mod ∅. Then,
condition (i) in Def. 4.12 is satisfied by the definition of tableaux. Moreover, for
every ĈX -word w, the normal tableau N(w) can be computed by resorting to
the Robinson–Schensted’s insertion algorithm, progressively replacing each pair
s1|s2 of subsequent columns by N(s1|s2), which is a tableau with two columns
(if the algorithm returns a tableau with one column, we insert an empty column
to keep the length unchanged). So, the normalisation (ĈX , N) also satisfies con-
dition (ii) in Def. 4.12 and, therefore, it is quadratic. Then, the computations
of [5, §§3.2–3.4and§§4.2–4.4] show that (ĈX , N) is of class (3, 3).

There exists an easy connection between the left and the right class.

Lemma 4.20 If a quadratic normalisation is of left class c, then it is of left
class c′ for every c′ with c′ � c, and of right class c′′ for every c′′ with c′′ � c+1.

Proof. Assume that (S,N) is of left class c. First, for w in S[3], the equality
N(w) = N121...[c](w) implies N(w) = N121...[c+1](w), since N(w) is N -invariant.
So (S,N) is of left class c+1 as well and, from there, it is of left class c′ for c′ � c.

On the other hand, we have N(w) = N121...[c](N2(w)) = N212...[c+1](w) by the
assumption and by (4.5). Hence (S,N) is of right class c + 1 and, from there, of
right class c′′ for every c′′ with c′′ � c + 1.

40 P. Dehornoy

Hence, the minimal class of a quadratic normalisation (S,N) is either (c, c′)
with |c′−c| � 1, or (∞,∞), the latter being excluded for S finite. By Lemma 4.20,
a Garside normalisation is of right class 4, and we can state:

Proposition 4.21 If M is a left-cancellative monoid with no nontrivial invert-
ible element and S is a Garside family in M , then the normalisation (S,NS) is
of class (4, 3).

4.3 Quadratic Normalisations of Class (4, 3)

We shall now show that many properties of Garside normalisations extend to all
quadratic normalisations of class (4, 3). The extension comes from the following
observation:

Lemma 4.22 A quadratic normalisation (S,N) is of class (4, 3) if, and only if,
the left domino rule is valid for the family of all N -normal words of length two.

Proof. Assume that (S,N) is of right class 3, and let L be the family of all
N -normal words of length two. Let s1, s2, s

′
1, s

′
2, t0, t1, t2 be elements of S satis-

fying the assumptions of Def. 2.10. By the definition of the right class, we have
N(t0|s1|s2) = N212(t0|s1|s2). As, by assumption, s1|s2 is N -normal, we obtain
N(t0|s1|s2) = N12(t0|s1|s2) = N2(s′

1|t1|s2) = s′
1|s′

2|t2. So s′
1|s′

2|t2 is N -normal,
hence so is s′

1|s′
2. Therefore, the left domino rule is valid for L.

Conversely, assume that the left domino rule is valid for L. Let t0|r1|r2 belong
to S[3]. Put s1|s2 = N(r1|r2), s′

1|t1 = N(t0|s1), and s′
2|t2 = N(t1|s2). Then s′

2|t2
is N -normal by construction, and s′

1|s′
2 is N -normal by the left domino rule,

so s′
1|s′

2|t2 is N -normal. Hence we have N(w) = N212(w) for every w in S[3].
Therefore, (S,N) is of right class 3 and, therefore, of class (4, 3). �

Using the left domino rule exactly as in Sec. 2 and 3, we deduce

Proposition 4.23 If (S,N) is a quadratic normalisation of class (4, 3), then,
for every word w of length p, we have

N(w) = Nδp(w). (4.24)

So the universal recipe given by the sequence of positions δp is valid for
every normalisation of class (4, 3). Of course, a similar recipe associated with
the sequence of positions δ̃p as in Prop. 2.18 is valid for every normalisation
of class (3, 4), with the right domino rule replacing the left one. In the case
of a normalisation of class (3, 3), both recipes are valid, as in the case of the
Garside normalisation associated with a Garside monoid or, more generally, with
a bounded Garside family.

Arguing exactly as in the previous sections, we deduce

Corollary 4.25 If (S,N) is a quadratic normalisation of class (4, 3) for a mon-
oid M , then N -normal decompositions can be computed in linear space and
quadratic time. The Word Problem for M with respect to S lies in dtime(n2),
and, if e is a N -neutral element of S and Me is the quotient of M obtained by
collapsing e, so does the Word Problem for Me with respect to S \ {e}.

Garside and Quadratic Normalisation: A Survey 41

Corollary 4.26 If (S,N) is a quadratic normalisation of class (4, 3) (resp. of
class (3, 4)), then N -normal words satisfy the 2-Fellow traveller Property on the
left (resp. on the right).

Let us turn to another question, and mention (without proof) one further
result. We start from the (easy) observation that the class of a normalisa-
tion (S,N) can be characterised by algebraic relations satisfied by the map N
and its translated copy:

Lemma 4.27 [19, Prop. 3.3.5] A quadratic normalisation (S,N) is of left class c
if, and only if, the map N satisfies N121...[c] = N121...[c+1] = N212...[c+1]; it is of
class (c, c) if, and only if, the map N satisfies N121...[c] = N212...[c].

So, in particular, if a normalisation (S,N) is of class (4, 3), the map N,
which, by definition, is idempotent, satisfies N212 = N2121 = N1212. The next
result provides an axiomatisation of class (4, 3) normalisations: it shows that,
conversely, every idempotent map satisfying the above relation necessarily stems
from such a normalisation.

Proposition 4.28 [19, Prop. 4.3.1] If S is a set and F is a map from S[2] to
itself satisfying

F212 = F2121 = F1212, (4.29)

there exists a quadratic normalisation (S,N) of class (4, 3) satisfying F = N.

The problem is to extend F into a map F ∗ on S∗ such that (S, F ∗) is a
quadratic normalisation of class (4, 3). The idea of the proof is to take the recipe
given by (4.24) as a definition, and to show that the resulting map has the
expected properties. The result is not trivial, and there is no counterpart for
higher classes. The specific reasons why the result works for class (4, 3) are the
algebraic properties of the monoid that admits the presentation
〈

σ1, ... , σp−1

∣∣∣∣ σ2
i = σi for i � 1,

σiσj = σjσi for j − i � 2
σjσiσj = σiσjσiσj = σjσiσjσi for j = i + 1

〉+
.

This monoid is a sort of asymmetric version of a symmetric group (or rather
of the corresponding Hecke algebra at q = 0), which is considered and used by
A. Hess and V. Ozornova in [26], and investigated by D. Krammer in [30].

4.4 Characterising Garside Normalisations

We observed in Prop. 4.21 that every Garside normalisation is of class (4, 3), a
result that is optimal in general, since the right domino rule fails for the finite
Garside family of Fig. 5, implying that the associated normalisation is not of
class (3, 3). Conversely, it is easy to see that the lexicographic normalisation of
Ex. 4.13, which is of class (3, 3), hence a fortiori (4, 3), does not stem from a
Garside family. So the question arises of characterising Garside normalisations
among all normalisations of class (4, 3). The answer is simple.

42 P. Dehornoy

Definition 4.30 Assume that (S,N) is a (quadratic) normalisation for a mon-
oid M . We say that (S,N) is left-weighted if, for all s, t, s′, t′ in S, the equality
s′|t′ = N(s|t) implies s � s′ in M .

Thus, a normalisation (S,N) is left-weighted if, for every s in S, the first
entry of N(s|t) is always a right-multiple of s in the associated monoid.

Proposition 4.31 [19, Prop. 5.4.3] Assume that (S,N) is a quadratic normali-
sation mod 1 for a monoid M that is left-cancellative and contains no nontrivial
invertible element. Then the following are equivalent:

(i) The family S is a Garside family in M and N = NS holds.
(ii) The normalisation (S,N) is of class (4, 3) and is left-weighted.

The implication (i) ⇒ (ii) is almost straightforward. Indeed, if S is a Garside
family and s′

1|s′
2 = NS(s1|s2) holds, we have s1 � s′

1s
′
2 with s ∈ S, so the

assumption that s′
1|s′

2 is S-normal implies s1 � s′
1. Hence NS is left-weighted.

The converse implication is much more delicate. The main point is to show
that S is a Garside family in M , which is proved by establishing that S is closed
under right-divisor and every element of the ambient monoid M has an S-head,
and then using Prop. 3.16(i).

4.5 Connection with Rewriting Systems

There exists a simple connection between normalisations as introduced above
and rewriting systems. We refer to [21] or [29] for basic terminology.

Lemma 4.32 If (S,N) is a quadratic normalisation for a monoid M , then
putting R = {s|t → N(s|t) | s, t ∈ S, s|t �= N(s|t)} provides a rewriting sys-
tem (S,R) that is quadratic, reduced, normalising, confluent, and presents M .

Conversely, if (S,R) is a quadratic, reduced, normalising, and confluent
rewriting system presenting a monoid M , putting N(w) = w′, where w′ is the
R-normal form of w, provides a quadratic normalisation (S,N) for M .

The above correspondences are inverses of one another.

Example 4.33 If (An, NLex) is the lexicographic normalisation for the free com-
mutative monoid N

n , the associated quadratic rewriting system (An, Rn) con-
sists of the n(n − 1)/2 rules ai|aj → aj |ai for 1 � j < i � n.

The correspondence of Lemma. 4.32 extends to a normalisation mod a neutral
letter e at the expense of defining a new system Re by replacing s|t → N(s|t)
with s|t → colle(N(s|t)), that is, of erasing the involved N -neutral letter.

By Lemma 4.32, a quadratic normalisation (S,N) yields a reduced quadratic
rewriting system (S,R) that is normalising and confluent, meaning that, from
every S-word, there is a rewriting sequence leading to a N -normal word. This
however does not rule out the possible existence of infinite rewriting sequences:
the system (S,R) need not a priori be terminating. Here again, class (4, 3) is the
point where transition occurs.

Garside and Quadratic Normalisation: A Survey 43

Proposition 4.34 [19, Prop. 5.7.1] If (S,N) is a quadratic normalisation of
class (4, 3), then the associated rewriting system (S,R) is terminating, and so
is (S \ {e}, Re) if e is a N -neutral element of S. More precisely, every rewriting
sequence from a length-p word has length at most 2p − p − 1.

The (delicate) proof consists in showing that every sequence of R-rewritings
inevitably approaches a N -normal word: because of the left domino rule, in
whatever order the rewritings are operated, the distance between the current
word and its image under N cannot increase, and it must even decrease at some
predictible intervals.

Either by taking into account the influence of the right domino rule in the
proof of the above result, or by an alternative direct argument based on the
classical Matsumoto lemma for the symmetric group Sp, one can show that, in
the case of a normalisation of class (3, 3), the upper bound 2p − p − 1 drops
to p(p − 1)/2.

Owing to Prop. 4.21, we obtain as a direct application of Prop. 4.34:

Corollary 4.35 Assume that M is a left-cancellative monoid with no nontrivial
invertible element and S is a Garside family in M . Then the associated rewriting
system is terminating. More precisely, every rewriting sequence from a length-p
word has length at most 2p − p − 1.

By contrast, we have:

Proposition 4.36 There exists a quadratic normalisation of class (4, 4) such
that the associated rewriting system is not terminating.

Proof (sketch). Let S := {a, b, b′, b′′, c, c′, c′′, d} and let R consist of the five
rules ab → ab′, b′c′ → bc, bc′ → b′′c′′, b′c → b′′c′′, cd → c′d. Then (S,R) is
quadratic by definition, and the diagram

abcd

ab′cd

abc′d

ab′′c′′d ab′c′d

in which ab′′c′′d is R-normal, shows that (S,R) is not terminating, since it
admits the length-3 cycle abcd → ab′cd → ab′c′d → abcd. However, one can
show (with some care) that (S,R) is normalising and confluent, and that the
associated normalisation is of class (4, 4). �

It can be noted that terminating rewriting systems may also arise when the
minimal class is (4, 4): a beautiful example is provided by the Chinese monoid
based on a set of size 3, see [11].

44 P. Dehornoy

References

1. Adyan, S.I.: Fragments of the word Delta in a braid group. Mat. Zam. Acad. Sci.
SSSR 36–1, 25–34 (1984); translated Math. Notes of the Acad. Sci. USSR 36–1,
505–510 (1984)

2. Albenque, M., Nadeau, P.: Growth function for a class of monoids 21st Interna-
tional Conference on Formal Power Series and Algebraic Combinatorics (FPSAC
2009), 2538 Discrete Math. Theor. Comput. Sci. Proc., AK, Assoc. Discrete Math.
Theor. Comput. Sci., Nancy (2009)

3. Artin, E.: Theory of braids. Ann. of Math. 48, 101–126 (1947)
4. Bessis, D., Digne, F., Michel, M.: Springer theory in braid groups and the Birman-

Ko-Lee monoid. Pacific J. Math. 205, 287–309 (2002)
5. Bokut, L., Chen, Y., Chen, W., Li, J.: New approaches to plactic monoid via

Gröbner-Shirshov bases. J. Algebra 423, 301–317 (2015)
6. Cain, A., Gray, R., Malheiro, A.: Finite Gröbner-Shirshov bases for Plactic algebras

and biautomatic structures for Plactic monoids. J. Algebra 423, 37–52 (2015)
7. Birman, J.: Braids, Links, and Mapping Class Groups. Ann. of Math. Studies, 82

(1975). Princeton Univ. Press
8. Birman, J., Ko, K.H., Lee, S.J.: A new approach to the word problem in the braid

groups. Adv. in Math. 139–2, 322–353 (1998)
9. Bjorner, A., Brenti, F.: Combinatorics of Coxeter Groups. Graduate Texts in Math-

ematics, vol. 231, Springer (2005)
10. Brieskorn, E., Saito, K.: Artin-Gruppen und Coxeter-Gruppen. Invent. Math. 17,

245–271 (1972)
11. Cassaigne, J., Espie, M., Krob, D., Novelli, J.C., Hivert, F.: The Chinese monoid.

Internat. J. Algebra Comput. 11, 301–334 (2001)
12. Charney, R.: Artin groups of finite type are biautomatic. Math. Ann. 292–4,

671–683 (1992)
13. Dehornoy, P.: Groupes de Garside. Ann. Sci. Éc. Norm. Supér. 35, 267–306 (2002)
14. Dehornoy, P., Paris, L.: Gaussian groups and Garside groups, two generalizations

of Artin groups. Proc. London Math. Soc. 79–3, 569–604 (1999)
15. Dehornoy, P., Digne, F., Michel, J.: Garside families and Garside germs. J. Algebra

380, 109–145 (2013)
16. Dehornoy, P., Gebhardt, V.: Algorithms for Garside calculus. J. Symbolic Comput.

63, 68–116 (2014)
17. Dehornoy, P., Digne, F., Godelle, E., Krammer, D., Michel, J.: Foundations of

Garside Theory. EMS Tracts in Mathematics, 22 (2015)
18. Dehornoy, P., Dynnikov, I., Rolfsen, D., Wiest, B.: Ordering Braids Mathematical

Surveys and Monographs. Amer. Math. Soc. 148 (2008)
19. Dehornoy, P., Guiraud, Y.: Quadratic normalisation in monoids. arXiv:1504.02717
20. Dehornoy, P., Dyer, M., Hohlweg, C.: Garside families in Artin-Tits monoids and

low elements in Coxeter groups. Comptes-Rendus Math. 353, 403–408 (2015)
21. Dershowitz, N., Jouannaud, J.P.: Rewrite Systems. In: van Leeuwen, J. (ed.)

Handbook of Theoretical Computer Science B: Formal Methods and Semantics,
Chap. 6, pp. 243–320. North-Holland (1990)

22. El-Rifai, E.A., Morton, H.R.: Algorithms for positive braids. Quart. J. Math.
Oxford 45–2, 479–497 (1994)

23. Epstein, D., Cannon, J., Holt, D., Levy, S., Paterson, M., Thurston, W.: Word
Processing in Groups. Jones and Bartlett Publishers (1992)

http://arxiv.org/abs/1504.02717

Garside and Quadratic Normalisation: A Survey 45

24. Garside, F.A.: The braid group and other groups. Quart. J. Math. Oxford 20,
235–254 (1969)

25. Gaussent, S., Guiraud, Y., Malbos, P.: Coherent presentations of Artin monoids
Compos. Math. (to appear). arXiv:1203.5358

26. Hess, A., Ozornova, V.: Factorability, string rewriting and discrete Morse theory.
arXiv:1412.3025

27. Hoffmann, M., Thomas, R.M.: A geometric characterisation of automatic semi-
groups. Theoret. Comput. Sci. 369, 300–313 (2006)

28. Howie, J.M.: Fundamentals of Semigroup Theory. Clarendon, Oxford (1995)
29. Klop, J.W.: Term Rewriting Systems. In: Abramsky, S., Gabbay, D.M., Maibaum,

T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 2, Chap. 1, pp. 1–117.
Oxford University Press (1992)

30. Krammer, D.: An asymmetric generalisation of Artin monoids Groups Complex.
Cryptol. 5, 141–168 (2013)

http://arxiv.org/abs/1203.5358
http://arxiv.org/abs/1412.3025

Grammar-Based Tree Compression

Markus Lohrey(B)

Universität Siegen, Siegen, Germany
lohrey@eti.uni-siegen.de

Abstract. This paper gives a survey on recent progress in grammar-
based compression for trees. Also algorithms that directly work on gram-
mar-compressed trees will be surveyed.

1 Introduction

Trees are an omnipresent data structure in computer science. Large trees occur
for instance in XML processing or automated deduction. For certain appliations
it is important to work with compact tree representations. A widely studied
standard compact tree representation is the dag (directed acyclic graph), see e.g.
[5,10–12,38]. A dag is basially a folded tree, where nodes may share children. The
tree represented by a dag is obtained by unfolding the dag. One of the nice things
about dags is that every tree has a unique minimal (or smallest) dag that can be
computed in linear time [10]. In the minimal dag of a tree t, isomorphic subtrees
of t are represented only once. Figure 1 shows a tree and its minimal dag (we
consider ranked ordered trees, where every node is labelled with a symbol, whose
rank determines the number of children of the node). In [38], dags are used to
obtain a universal (in the information theoretic sense) compressor for binary trees
under certain distributions. Dags can achieve exponential compression in the
best case: The minimal dag of a full binary tree of height n is a linear chain of
length n.

In recent years, another compact tree representation that generalizes dags
has been studied: Tree straight-line programs, briefly TSLPs. Whereas dags can
only share repeated complete subtrees, TSLPs can also share repeated occur-
rences of subtrees with gaps (i.e., subtrees, where some smaller subtrees are
removed). A TSLP can be seen as a very restricted context-free tree grammar
that produces exactly one tree. It consists of rewrite rules (productions) of the
form A(x1, . . . , xk) → t(x1, . . . , xk). Here, A is a nonterminal of rank k and
x1, . . . , xk are parameters that are replaced by concrete trees in the application
of this rule. The nodes of the tree t(x1, . . . , xk) are labelled with terminal sym-
bols (the node labels of the tree produced by the TSLP), nonterminal symbols
and the parameters x1, . . . , xk. There is a distinguished start nonterminal S of
rank 0. To produce a single tree, it is required that (i) for every nonterminal
A there is exactly one rule with A on the left-hand side, and (ii) that from a
nonterminal A one cannot reach A by more than one rewrite step. Finally, it is

This research is supported by the DFG-project LO 748/10-1.

c© Springer International Publishing Switzerland 2015
I. Potapov (Ed.): DLT 2015, LNCS 9168, pp. 46–57, 2015.
DOI: 10.1007/978-3-319-21500-6 3

Grammar-Based Tree Compression 47

required that every parameter xi appears at most once in the right-hand side
of A (linearity). Dags can be seen as TSLPs, where every nonterminal has rank
zero. As for dags, TSLPs allow exponential compression in the best case, but
due to the ability to share also internal patterns, one can easily come up with
examples where the minimal dag is exponentially larger than the smallest TSLP,
see Section 2.

TSLPs generalize straight-line programs for words (SLPs). These are context-
free grammars that produce a single word. There exist several grammar-based
string compressors that produce (a suitable encoding of) an SLP for an input
word. Prominent examples are LZ78, RePair, Sequitur, and BiSection. Theoret-
ical results on the compression ratio of these algorithmis can be found in [8].
Over the last couple of years, the idea of grammar-based compression has been
extended from words to trees. In Section 3 we will discuss several grammar-based
tree compressors based on TSLPs.

SLPs and TSLPs are a simple and mathematically clean data structure.
These makes them well-suited for the development of efficient algorithms on
compressed objects. The goal of such algorithms is to manipulate and analyze
compressed objects and thereby beat a naive decompress-and-compute strategy,
where the uncompressed object is first computed and then analyzed. A typical
example for this is pattern matching. Here, we have a large text, which is stored
in compressed form and want to locate occurrences of a pattern (which is usually
given in explicit form) in the text. But algorithms on compressed objects can
be also useful for problems, where we do not directly deal with compression. In
many algorithms huge intermediate data structures have to be stored, which are
the main bottleneck in the computation. An obvious potential solution in such
a situation is to store these intermediate data structures in a compressed way.

A survey on algorithms that work on SLP-compressed words can be found
in [24], which contains a section on algorithms on TSLP-compressed trees as
well. In Section 4 we give a more detailed and up-to-date survey on algorithms
for trees that are represented by TSLPs.

2 Tree Straight-Line Programs

For background on trees and tree grammars see [9]. Here, trees are rooted,
ordered and node-labelled. Every node has a label from a finite alphabet Σ.
Moreover, with every symbol a ∈ Σ a natural number (the rank of a) is asso-
ciated. Symbols of rank zero are called constants and symbols of rank one are
unary. If a tree node v is labelled with a symbol of rank n, then v has exactly n
children, which are linearly ordered. Such trees can conveniently be represented
as terms. The size |t| of a tree t is the number of nodes of t. Here is an example:

Example 1. Let f be a symbol of rank 2, h a symbol of rank 1, and a a symbol
of rank 0 (a constant). Then the term h(f(h(f(h(h(a)), a)), h(f(h(h(a)), a))))
corresponds to the tree of size 14, shown in Figure 1.

48 M. Lohrey

Fig. 1. A node-labelled tree and its minimal dag

A tree straight-line program (TSLP for short and also called SLCF tree grammar
in [25,28] or SLT grammar in [27]) over the terminal alphabet Σ (which is a
ranked alphabet in the above sense) is a tuple G = (N,Σ, S, P), such that

– N is a finite set of ranked symbols (the nonterminals) with N ∩ Σ = ∅,
– S ∈ N has rank 0 (the initial nonterminal),
– and P is a finite set of productions of the form A(x1, . . . , xn) → t where A

is a nonterminal of rank n and t is a tree built up from the ranked symbols
in Σ ∪ N and the parameters x1, . . . , xn which are considered as symbols
of rank 0 (i.e., constants). Every xi is required to appear exactly once in
t. Moreover, it is required that every nonterminal occurs on the left-hand
side of exactly one production, and that the relation {(A,B) ∈ N × N |
(A(x1, . . . , xn) → t) ∈ P,B occurs in t} is acyclic.

A TSLP G generates a tree val(G) in the natural way. During the derivation
process, the parameters x1, . . . , xn are instantiated with concrete trees. Instead
of giving a formal definition, let us consider an example.

Example 2. Let S,A,B,C be nonterminals, let S be the start nonterminal and
let the TSLP G consist of the following productions:

S → A(B(a), B(a))
A(x1, x2) → C(C(x1, a), C(x2, a))
C(x1, x2) → h(f(x1, x2))

B(x) → h(h(x))

Grammar-Based Tree Compression 49

Then val(G) is the tree from Example 1. It can be derived as follows:

S → A(B(a), B(a))
→ C(C(B(a), a), C(B(a), a))
→ C(C(h(h(a)), a), C(h(h(a)), a))
→ h(f(C(h(h(a)), a), C(h(h(a)), a)))
→ h(f(h(f(h(h(a)), a)), h(f(h(h(a)), a))))

The size of a TSLP G = (N,Σ, S, P) is defined as the total number of all nodes
in right-hand sides of P , where nodes labelled with a parameter are not counted
(see [17] for a discussion of this). Hence, the size of the TSLP in Example 2 is
14. It is easy to show that the size of tree val(G) is bounded by 2O(|G|).

The following result from [28] turned out to be very useful for algorithmic
problems on trees that are represented by TSLPs:

Theorem 1 ([28]). From a given TSLP G = (N,Σ, S, P), where every A ∈ N
has rank at most k and every σ ∈ Σ has rank at most r, one can compute in
time O(k · r · |G|) a TSLP H of size O(r · |G|) such that (i) val(G) = val(H) and
every nonterminal of H has rank at most one.

This result is sharp in the sense that transforming a TSLP into an equivalent
TSLP where every nonterminal has rank zero involves an exponential blow-
up in the size of the TSLP. For instance, the tree tn = f2n

(a) with 2n many
occurrences of the unary symbol f can be produced by a TSLP of size O(n)
(S → An(a), Ai(x) → Ai−1(Ai−1(x)) for 1 ≤ i ≤ n, and A0(x) → f(x)) but
the minimal dag for tn is tn itself. Note that a dag can be transformed into
a TSLP, where every nonterminal has rank zero: The nodes of the dag are the
nonterminals of the TSLP, and if a σ-labelled node v has the children v1, . . . , vn in
the dag (from left to right), then we introduce the production v → σ(v1, . . . , vn).
Similarly, a TSLP, where every nonterminal has rank zero, can be transformed
into a dag of the same size.

In [25,27,28], also non-linear TSLPs were studied. A non-linear TSLP may
contain productions of the form A(x1, . . . , xk) → t, where a parameter xi occurs
several times in t. Non-linear TSLPs can achieve double exponential compression:
The non-linear TSLP with the productions S → An(a), Ai(x) → Ai−1(Ai−1(x))
for 1 ≤ i ≤ n, and A0(x) → f(x, x) produces a full binary tree of height 2n and
hence has 22

n+1 − 1 many nodes.
TSLPs generalize SLPs, which produce words instead of trees. In SLPs, sym-

bols do not have a rank, and the productions are simply of the form A → w,
where w consists of terminal symbols and nonterminals. It is required again that
every nonterminal occurs on the left-hand side of exactly one production, and
that the relation {(A,B) | (A → w) is a production and nonterminal B occurs
in w} is acyclic. More details on SLPs can be found in [24].

50 M. Lohrey

3 Constructing Small TSLPs

Efficient algorithms that generate for a given input tree t a linear TSLP G with
val(G) = t are described in [6,26]. The algorithm from [26], called TreeRePair,
is an extension of the grammar-based string compressor RePair [20] to trees. On
a collection of XML skeleton trees (where the data values were removed) the
compression ratio of TreeRePair (measured in the size of the computed TSLP
divided by the number of edges of the input tree) was about 2.8 %, whereas for
the same data set the compression ratio achieved by the minimal dag (number
of edges of the minimal dag divided by the number of edges of the input tree) is
about 12%, see [26].

Altough TreeRePair works very well on real XML data, its performance is
quite poor from a theoretical viewpoint: In [26], a familiy of (binary) trees tn
(n ≥ 1) is constructed, such that (i) tn has size O(n), (ii) a TSLP of size O(log n)
for tn exists, but (iii) the TSLP for tn computed by TreeRePair has size Ω(n).

For a tree t let opt(t) be the size of a smallest TSLP for the tree t. Similarly,
for a word s let opt(s) be the size of a smallest SLP for the word s. It was shown
in [8] that unless P = NP there is no polynomial time algorithm that computes
for a given word s an SLP of size less than 8569/8568 · opt(s). The same result
holds also for trees: Simply encode a word by the tree consisting of unary nodes
and a single leaf. A TSLP for this tree is basically an SLP for the original word.
For SLPs the best known polynomial time grammar-based compressors achieve
an approximation ratio of O(log(n

opt(s))), i.e., the size of the computed SLP for
an input word s of length n is bounded by O(opt(s) · log(n

opt(s))) [8,16,32,33].
Recently, this bound has been also shown for trees:

Theorem 2 ([17]). From a given tree t of size n, one can compute in linear
time a TSLP G of size O(r · g + r · g · log(n

r·g)) such that val(G) = t. Here,
g = opt(t) and r is the maximal rank of a node label in t.

The algorithm from [17] uses three different types of compression operations that
are executed repeatedly on the current tree in the following order as long as the
tree has size at least two. At the same time we build up the TSLP for the input
tree.

Chain Compression: For every unary symbol a, we replace every maximal occur-
rence of a pattern an(x) (maximal means that the parent node of the topmost
a-node is not labelled with a and also the unique child of the deepest a-node is
not labelled with a) by a single tree that is labelled with a fresh unary symbol an.
We call such maximal patterns maximal a-chains. Moreover, we add to the
TSLP productions that generate from the nonterminal an(x) the a-chain an(x).
These productions basically form an SLP for an. If an1(x), an2(x), . . . , ank(x)
are all maximal a-chains in the current tree with n1 < n2 < · · · < nk, then the
total size of all productions needed to produce these chains can be bounded by
O(k +

∑k
i=1 log(ni − ni−1) with n0 = 0.

Pair Compression: After the chain compression step, there do not exist occur-
rences of a pattern a(a(x)) in the current tree for a unary symbol a. Let Σ1 be

Grammar-Based Tree Compression 51

the set of all unary symbols that appear in the current tree. We first compute
a partition Σ1 = Σ0,1 ∪ Σ1,1. Then, every occurrence of a pattern a(b(x)) with
a ∈ Σ0,1 and b ∈ Σ1,1 is replaced by a single node labelled with the fresh unary
symbol ca,b. Moreover, we introduce the TSLP-production ca,b(x) → a(b(x)).
The partition Σ1 = Σ0,1 ∪ Σ1,1 is chosen such that the number of occurrences
of a pattern a(b(x)) with a ∈ Σ0,1 and b ∈ Σ1,1 is large. More precisely, one can
choose the partition such that there are at most (n1 − c+2)/4 such occurrences,
where n1 is the number of unary nodes in the current tree and c is the number
of maximal chains consisting of unary nodes.

Leaf Compression: We eliminate all leaves of the current tree as follows: Let
v be an f -labelled node such that v has at least one leaf among its children.
Let n ≥ 1 be the rank of f , and let 1 ≤ i1 < i2 < · · · < ik ≤ n be
the positions of the leaves among the children of v. Let aj be the label (a
constant) of the ithj child of v. Then we remove all children of v, which are
leaves, and replace the label f of v by the fresh symbol fi1,a1,...,ik,ak

, which
has rank n − k. Moreover, we add to the TSLP the production fi1,a1,...,ik,ak

→
f(x1, . . . , xi1−1, a1, xi1+1, . . . xi2−1, a2, xi2+1, . . . , xik−1, ak, xik+1, . . . , xn).

Chain compression and pair compression are the two compression steps in Jeż’s
string compressor from [16]. They allow to shrink chains of unary nodes. Intu-
itively, if there are no long chains of unary nodes in the tree, then there must be
many leaves and leaf compression will shrink the size of the tree substantially.
More precisely, it can be shown that in a single phase, consisting of chain com-
pression, followed by pair compression, followed by leaf compression, the size of
the tree drops by a constant factor. This allows to come up with a linear bound
on the running time. To bound the size of the produced TSLP and, in partic-
ular, to compare it with the size of a smallest TSLP for the input tree, Jeż’s
recompression technique is used in [17].

To the knowledge of the author, there is no algorithm for computing a small
non-linear TSLP for a given input tree and thereby achieves a reasonable approx-
imation ratio. This raises the question of whether the size of a smallest non-linear
TSLP can be approximated in polynomial time up to a factor of say log n (assum-
ing reasonable assumptions from complexity theory).

It is well known that for every word w ∈ Σ∗ there exists an SLP for w of
size O(n

logσ n), where σ = |Σ|. Examples of grammar-based compressors that
achieve this bound are for instance LZ78 or BiSection [18]. A simple information
theoretic argument shows that the bound O(n

logσ n) is optimal. By the following
result from [15] the same bound holds also for binary trees and TSLPs.

Theorem 3 ([15]). From a given tree t of size n, where every terminal symbol
has rank at most 2, one can compute in linear time a TSLP G of size O(n

logσ n)
such that val(G) = t. Here, σ is the number of different node labels that appear
in t.

In [15], only the bound O(n log n) on the running time is stated. The linear time
algorithm will appear in a long version of [15]. Let us briefly sketch the linear

52 M. Lohrey

time algorithm for a binary trees t with node labels from a set Σ (|Σ| = σ). The
algorithm works in two steps:

Step 1. We decompose the tree t into O(n
logσ n) many clusters (connected sub-

graphs) of size at most c · logσ n for a constant c that will be chosen later. Each
cluster is a full subtree of t with at most two full subtrees of t removed from
it. Hence, we can write such a cluster as a tree u(x1, . . . , xk) with k ≥ 2, where
every parameter xi appears exactly once. We replace each cluster u(x1, . . . , xk)
in t by a single node labelled with a nonterminal Au of rank at most two, and
introduce the production Au(x1, . . . , xk) → u(x1, . . . , xk). Note that the result-
ing tree s has size O(n

logσ n). We add the production S → s, where S is the start
nonterminal. With some care, this first step can be done in linear time.

Step 2. The TSLP we obtain from the previous step has size O(n), so nothing
is gained. We now compute in linear time (using [10]) the minimal dag for the
forest consisting of all cluster trees u(x1, . . . , xk). Recall that each such tree has
size at most c · logσ n. Hence, to bound the size of the minimal dag of this forest,
one only has to count the number of binary trees of size at most c · logσ n, where
every node is labelled with a symbol from Σ∪{x1, x2}. By choosing the constant
c suitably, we can (using the formula for the number of binary trees of size m,
which is given by the Catalan numbers) bound this number by

√
n. The minimal

dag for the cluster trees together with the start production S → s translates into
a TSLP for t of size

√
n + O(n

logσ n) = O(n
logσ n).

Theorem 3 can be generalized to trees of higher rank. Then the constant hidden
in the big-O-notation depends on the maximal rank of a terminal symbol, but
the precise dependence is not analyzed in [15].

A simple information theoretic argument shows that the average size of a
minimal TSLP for a uniformly chosen tree of size n with labels from an alphabet
of size σ is Ω(n

logσ n) and hence, by Theorem 3, Θ(n
logσ n). In [11] it is shown that

the average size of the minimal dag of a uniformly chosen binary tree with n
unlabelled nodes is Θ(n√

log n
). In [3] this result is extended to node-labelled

unranked trees.
With some additional effort, one can ensure that the TSLP G in Theorem 3

has height O(log n). This has an interesting application for the problem of trans-
forming arithmetical expressions into circuits (i.e., dags). Let S = (S,+, ·) be a
(not necessarily commutative) semiring. Thus, (S,+) is a commutative monoid
with identity element 0, (S, ·) is a monoid with identity element 1, and · left
and right distributes over +. An arithmetical expression is just a labelled binary
tree where internal nodes are labelled with the semiring operations + and ·,
and leaf nodes are labelled with variables y1, y2, . . . or the constants 0 and 1.
An arithmetical circuit is a (not necessarily minimal) dag whose internal nodes
are labelled with + and · and whose leaf nodes are labelled with variables or
the constants 0 and 1. The depth of a circuit is the length of a longest path
from the root node to a leaf. An arithmetical circuit evaluates to a multivari-
ate noncommutative polynomial p(y1, . . . , yn) over S, where y1, . . . , yn are the
variables occurring at the leaf nodes. Two arithmetical circuits are equivalent

Grammar-Based Tree Compression 53

if they evaluate to the same polynomial. Brent [4] has shown that every arith-
metical expression of size n over a commutative ring can be transformed into an
equivalent circuit of depth O(log n) and size O(n) (the proof easily generalizes to
semirings). Using Theorem 3 one can refine the size bound to O(n·log m

log n), where
m is the number of different variables in the formula:

Theorem 4 ([15]). A given arithmetical expression F of size n having m dif-
ferent variables can be transformed in time O(n) into an arithmetical circuit C
of depth O(log n) and size O(n·log m

log n) such that over every semiring, C and F

evaluate to the same noncommutative polynomial (in m variables).

To show Theorem 4 one first transforms the arithmetical expression into a TSLP
of size O(n

logm n) = O(n·log m
log n). Then one transforms the TSLP into a circuit that

evaluates to the same polynomial (over any semiring) as the TSLP. Only for this
second step, one has to use the semiring structure.

There are also some other tree compressors that use grammar formalisms
slightly different from TSLPs. In [1] so called elementary ordered tree grammars
are used, and a polynomial time compressor with an approximation ratio of
O(n5/6) is presented. Also the top dags from [2] can be seen as a variation of
TSLPs for unranked trees. In [2] it was shown that for every tree t of size n
the top dag has size O(n

log0.19 n
). An extension of TSLPs to higher order tree

grammars was proposed in [19].

4 Algorithmic Problems for TSLP-Compressed Trees

Let us now consider algorithmic problems for TSLP-compressed trees. Probably
the most basic question is whether two trees, both given by TSLPs, are equal.

Theorem 5 ([6,34]). For two given TSLPs G and H it can be checked in poly-
nomial time, whether val(G) = val(H).

For the proof of Theorem 5 one constructs in polynomial time from a TSLP G an
SLP G′ such that val(G′) represents a depth-first left-to-right transversal of the
tree val(G). For this, G′ contains k + 1 nonterminals A0,1, A1,2, A2,3, . . . , Ak−1,k,
Ak,0 for a rank-k nonterminal A of G. Intuitively, A0,1 produces the part of
the traversal of valG(A) from the root of valG(A) to the position of the first
parameter, Ai,i+1 (1 ≤ i ≤ k − 1) produces the part of the traversal from
the position of the ith parameter to the position of the (i + 1)th parameter, and
Ak,0 produces the part of the traversal from the position of the kth parameter
back to the root. For the TSLP from Example 2 we obtain the following SLP:

S0,0 → A0,1B0,1aB1,0A1,2B0,1aB1,0A2,0

A0,1 → C0,1C0,1, A1,2 → C1,2aC2,0C1,2C0,1, A2,0 → C1,2aC2,0C2,0

C0,1 → hf, C1,2 → ε, C2,0 → ε

B0,1 → hh, B1,0 → ε

54 M. Lohrey

For a ranked tree, its depth-first left-to-right transversal uniquely represents the
tree. Therefore, for two TSLPs G and H we have val(G) = val(H) if and only if
val(G′) = val(H′). Hence, equality of trees that are represented by linear TSLPs
can be reduced to checking equality of SLP-compressed words, which can be
checked in polynomial time by a famous result of Plandowski [31] (which has
been indendently shown in [14,30]). In [34], Theorem 5 is shown by a direct
extension of Plandowski’s algorithm for SLPs.

It is open whether Theorem 5 can be extended to non-linear TSLPs. For
these, the best upper bound on the equivalence problem is PSPACE [6] and no
good lower bound is known.

In [13], Theorem 5 has been extended to the unification problem. Unifica-
tion is a classical problem in logic and deduction. One considers trees s and t
with distinguished variables (these variables should be not confused with the
parameters in TSLPs), which label leaf nodes. The trees s and t are unifiable
if there exists a substitution that maps every variable x appearing in s or t to
a variable-free tree (also called ground term) such that σ(s) = σ(t). Here, σ(s)
(resp., σ(t)) denotes the tree that is obtained by replacing every x-labelled leaf
of s (resp., t) by the tree σ(x). The following result has been shown in [13]:

Theorem 6 ([13]). For two given TSLPs G and H (where some of the terminal
symbols of rank 0 are declared as variables) it can be checked in polynomial time,
whether val(G) and val(H) are unifiable.

In fact, the representation of the most general unifier of val(G) and val(H) in
terms of TSLPs for the variables is computed in [13] in polynomial time.

In [36], the authors studied the compressed submatching problem: The input
consists of TSLPs G (the pattern TSLP) and H, where some of the terminal
symbols of rank 0 appearing in G are declared as variables, and it is asked
whether there exists a substitution σ such that σ(val(G)) is a subtree of val(H).
Whereas the complexity of the general compressed submatching problem is still
open (the best upper bound is NP), Schmidt-Schauß proved in [36]:

Theorem 7 ([36]). Compressed submatching can be solved in polynomial time,
if (i) no variable appears more than once in the tree produced by the pattern
TSLP (i.e., this tree is linear) or (ii) all nonterminals in the pattern TSLP have
rank zero (i.e., the pattern TSLP is in fact a dag).

So far, we considered ordered trees, where the children of a node are linearly
ordered. Deciding isomorphism of unordered trees, where the children are not
ordered is more difficult than for ordered trees. For explicitly given unordered
trees, isomorphism can be decided in logspace by a result of Lindell [22]. For
unordered trees that are given by dags, one can solve the isomorphism problem
by a simple partition refinement algorithm [29]. Recently this result has been
extended to unordered trees that are represented by TSLPs [27]:

Theorem 8 ([27]). For two given TSLPs G and H it can be checked in poly-
nomial time, whether val(G) and val(H) are isomorphic as unordered trees.

Grammar-Based Tree Compression 55

For non-linear TSLPs it was shown in [27] that the problem whether val(G) and
val(H) are isomorphic as unordered trees is PSPACE-hard and in EXPTIME.

In [25,28], the problem of evaluating tree automata over TSLP-compressed
input trees was considered. A tree automaton runs on a ranked input tree
bottom-up and thereby assigns states to tree nodes. Transitions are of the form
(q1, . . . , qn, f, q), where f is a node label of rank n and q1, . . . , qn, q are states of
the tree automaton. Then a run of the tree automaton is a mapping ρ from the
tree nodes to states that is consistent with the set of transitions in the following
sense: If a tree node is labelled with the symbol f (of rank n) and v1, . . . , vn are
the children of v in that order, then (ρ(v1), . . . , ρ(vn), f, ρ(v)) must be a tran-
sition of the tree automaton. A tree automaton accepts a tree if there is a run
that assigns a final state to the root of the tree (every tree automaton has a
distinguished set of final states). The problem of checking whether an explicitly
given tree is accepted by a tree automaton that is part of the input is complete
for the class LogCFL (which is contained in the parallel class NC2) [23]. For a
fixed tree automaton this problem belongs to NC1 [23]. For TSLP-compressed
trees we have:

Theorem 9 ([28]). It is P-complete to check for a given TSLP G and a given
tree automaton A, whether A accepts val(G).

The polynomial time algorithm works in two steps:

Step 1. Using Theorem 1 the input TSLP G is transformed in polynomial time
into a TSLP H such that val(G) = val(H) and every nonterminal of H has rank
at most one.

Step 2. For a TSLP G, where every nonterminal has rank 0 or 1, it is easy
to evaluate a tree automaton A on val(G). Bottom-up on the structure of the
TSLP, one computes for every nonterminal A of rank 0 the set of states to which
valG(A) can evaluate (i.e., those states that may appear in a run at the root),
whereas for a nonterminal A of rank 1 one computes a binary relation on the set
of states of A. This relation contains a pair (q1, q2) if and only if the following
holds: There is a mapping from the nodes of valG(A) to the states of A such that
(i) the above condition of a run is satisfied, (ii) to the unique parameter-labelled
node of valG(A) the state q1 is assigned, and (iii) to the root the state q2 is
assigned. It is easy to compute this information for a nonterminal A assuming
it has been computed for all nonterminals in the right-hand side of A.

In [28], also a generalization of Theorem 9 to tree automata with sibling
constraints is shown. In this model, transitions can depend on (dis)equalities
between the children of the node to which the transition is applied to.

The problem, whether a given tree automaton accepts the tree val(G), where
G is a given non-linear TSLP was shown to be PSPACE-complete in [25]. In fact,
PSPACE-hardness already holds for a fixed tree automaton.

Several other algorithmic problems for TSLP-compressed input trees are
studied in [7,13,21,35–37].

56 M. Lohrey

References

1. Akutsu, T.: A bisection algorithm for grammar-based compression of ordered trees.
Information Processing Letters 110(18–19), 815–820 (2010)

2. Bille, P., Gørtz, I.L., Landau, G.M., Weimann, O.: Tree compression with top
trees. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP
2013, Part I. LNCS, vol. 7965, pp. 160–171. Springer, Heidelberg (2013)

3. Bousquet-Mélou, M., Lohrey, M., Maneth, S., Noeth, E.: XML compression via
DAGs. Theory of Computing Systems (2014). doi:10.1007/s00224-014-9544-x

4. Brent, R.P.: The parallel evaluation of general arithmetic expressions. Journal of
the Association for Computing Machinery 21(2), 201–206 (1974)

5. Buneman, P., Grohe, M., Koch, C.: Path queries on compressed XML. In:
Proceedings of VLDB 2003, pp. 141–152. Morgan Kaufmann (2003)

6. Busatto, G., Lohrey, M., Maneth, S.: Efficient memory representation of XML
document trees. Information Systems 33(4–5), 456–474 (2008)

7. Carles Creus, A.G., Godoy, G.: One-context unification with STG-compressed
terms is in NP. In: Proceedings of RTA 2012, vol. 15 of LIPIcs, pp. 149–164.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2012)

8. Charikar, M., Lehman, E., Lehman, A., Liu, D., Panigrahy, R., Prabhakaran, M.,
Sahai, A., Shelat, A.: The smallest grammar problem. IEEE Transactions on Infor-
mation Theory 51(7), 2554–2576 (2005)

9. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Löding, C.,
Tison, S., Tommasi, M.: Tree automata techniques and applications (2007). http://
tata.gforge.inria.fr/

10. Downey, P.J., Sethi, R., Tarjan, R.E.: Variations on the common subexpression
problem. Journal of the Association for Computing Machinery 27(4), 758–771
(1980)

11. Flajolet, P., Sipala, P., Steyaert, J.-M.: Analytic variations on the common subex-
pression problem. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 220–234.
Springer, Heidelberg (1990)

12. Frick, M., Grohe, M., Koch, C.: Query evaluation on compressed trees (extended
abstract). In: Proceedings of LICS 2003, pp. 188–197. IEEE Computer Society
Press (2003)

13. Gascón, A., Godoy, G., Schmidt-Schauß, M.: Unification and matching on com-
pressed terms. ACM Transactions on Computational Logic 12(4), 26 (2011)

14. Hirshfeld, Y., Jerrum, M., Moller, F.: A polynomial algorithm for deciding bisim-
ilarity of normed context-free processes. Theoretical Computer Science 158(1&2),
143–159 (1996)

15. Hucke, D., Lohrey, M., Noeth, E.: Constructing small tree grammars and small cir-
cuits for formulas. In: Proceedings of FSTTCS 2014, vol. 29 of LIPIcs, pp. 457–468.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2014)

16. Jeż, A.: Approximation of grammar-based compression via recompression. In:
Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol. 7922, pp. 165–176. Springer,
Heidelberg (2013)

17. Jeż, A., Lohrey, M.: Approximation of smallest linear tree grammars. In: Proceed-
ings of STACS 2014, vol. 25 of LIPIcs, pp. 445–457. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2014)

18. Kieffer, J.C., Yang, E.H.: Grammar-based codes: A new class of universal lossless
source codes. IEEE Transactions on Information Theory 46(3), 737–754 (2000)

http://dx.doi.org/10.1007/s00224-014-9544-x
http://tata.gforge.inria.fr/
http://tata.gforge.inria.fr/

Grammar-Based Tree Compression 57

19. Kobayashi, N., Matsuda, K., Shinohara, A.: Functional programs as compressed
data. In: Proceedings of PEPM 2012, pp. 121–130. ACM Press (2012)

20. Larsson, N.J., Moffat, A.: Offline dictionary-based compression. In: Proceedings of
DCC 1999, pp. 296–305. IEEE Computer Society Press (1999)

21. Levy, J., Schmidt-Schauß, M., Villaret, M.: The complexity of monadic second-
order unification. SIAM Journal on Computing 38(3), 1113–1140 (2008)

22. Lindell, S.: A logspace algorithm for tree canonization (extended abstract). In:
Proceedings of STOC 1992, pp. 400–404. ACM Press (1992)

23. Lohrey, M.: On the parallel complexity of tree automata. In: Middeldorp, A. (ed.)
RTA 2001. LNCS, vol. 2051, pp. 201–215. Springer, Heidelberg (2001)

24. Lohrey, M.: Algorithmics on SLP-compressed strings: A survey. Groups Complexity
Cryptology 4(2), 241–299 (2012)

25. Lohrey, M., Maneth, S.: The complexity of tree automata and XPath on grammar-
compressed trees. Theoretical Computer Science 363(2), 196–210 (2006)

26. Lohrey, M., Maneth, S., Mennicke, R.: XML tree structure compression using
RePair. Information Systems 38(8), 1150–1167 (2013)

27. Lohrey, M., Maneth, S., Peternek, F.: Compressed tree canonization.Technical
report, arXiv.org (2015). http://arxiv.org/abs/1502.04625. An extended abstract
will appear in Proceedings of ICALP 2015

28. Lohrey, M., Maneth, S., Schmidt-Schauß, M.: Parameter reduction and automata
evaluation for grammar-compressed trees. Journal of Computer and System
Sciences 78(5), 1651–1669 (2012)

29. Lohrey, M., Mathissen, C.: Isomorphism of regular trees and words. Information
and Computation 224, 71–105 (2013)

30. Mehlhorn, K., Sundar, R., Uhrig, C.: Maintaining dynamic sequences under
equality-tests in polylogarithmic time. In: Proceedings of SODA 1994, pp. 213–222.
ACM/SIAM (1994)

31. Plandowski, W.: Testing equivalence of morphisms on context-free languages. In:
van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 460–470. Springer, Heidelberg
(1994)

32. Rytter, W.: Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theoretical Computer Science 302(1–3), 211–222
(2003)

33. Sakamoto, H.: A fully linear-time approximation algorithm for grammar-based
compression. Journal of Discrete Algorithms 3(2–4), 416–430 (2005)

34. Schmidt-Schauß, M.: Polynomial equality testing for terms with shared sub-
structures. Technical Report Report 21, Institut für Informatik, J. W. Goethe-
Universität Frankfurt am Main (2005)

35. Schmidt-Schauß, M.: Matching of compressed patterns with character-variables.
In: Proceedings of RTA 2012, vol. 15 of LIPIcs, pp. 272–287. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2012)

36. Schmidt-Schauß, M.: Linear compressed pattern matching for polynomial rewriting
(extended abstract). In: Proceedings of TERMGRAPH 2013, vol. 110 of EPTCS,
pp. 29–40 (2013)

37. Schmidt-Schauss, M., Sabel, D., Anis, A.: Congruence closure of compressed terms
in polynomial time. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011.
LNCS, vol. 6989, pp. 227–242. Springer, Heidelberg (2011)

38. Zhang, J., Yang, E.-H., Kieffer, J.C.: A universal grammar-based code for lossless
compression of binary trees. IEEE Transactions on Information Theory 60(3),
1373–1386 (2014)

http://arxiv.org/abs/http://arxiv.org/abs/1502.04625

On Decidability of Intermediate Levels
of Concatenation Hierarchies

Jorge Almeida1, Jana Bartoňová2, Ondřej Kĺıma2, and Michal Kunc2(B)

1 CMUP, Dep. Matemática, Faculdade de Ciências,
Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal

jalmeida@fc.up.pt
2 Department of Mathematics and Statistics, Masaryk University,

Kotlářská 2, 611 37 Brno, Czech Republic
{xbartonovaj,klima,kunc}@math.muni.cz

Abstract. It is proved that if definability of regular languages in the
Σn fragment of the first-order logic on finite words is decidable, then it
is decidable also for the Δn+1 fragment. In particular, the decidability
for Δ5 is obtained. More generally, for every concatenation hierarchy of
regular languages, it is proved that decidability of one of its half levels
implies decidability of the intersection of the following half level with its
complement.

1 Introduction

A remarkable connection between finite automata and regular languages on one
hand and logic on the other hand was found by McNaughton and Papert [6], who
proved that star-free languages are exactly those languages that are definable
in first-order logic FO[<] on finite words. The decidability of star-freeness of a
regular language is in turn known thanks to Schützenberger [15], who provided a
key connection with algebra by showing that star-free languages are those whose
syntactic monoids are aperiodic.

Within the class of all star-free languages, Brzozowski and Cohen [5] defined
in 1971 the so-called dot-depth hierarchy, based on the polynomial closure and
Boolean closure operators. A long standing open question about this hierarchy
is to algorithmically determine the minimum level in the hierarchy to which a
given star-free language belongs. The logical significance of this problem was
discovered by Thomas [17], who proved that levels of the natural variant of
the dot-depth hierarchy known as the Straubing–Thérien hierarchy correspond
to levels of the quantifier-alternation hierarchy within FO[<] (see Figure 1).
More precisely, a regular language is definable in the Σn fragment if and only
if it belongs to the polynomial closure of the (n − 1)th level of the Straubing–
Thérien hierarchy; this polynomial closure is often referred to as the (n − 1/2)th

The first author was partially supported by CMUP (UID/MAT/00144/2013), which
is funded by FCT (Portugal) with national (MEC) and European structural funds
through the programs FEDER, under the partnership agreement PT2020. The last
two authors were supported by grant 15-02862S of the Czech Science Foundation.

c© Springer International Publishing Switzerland 2015
I. Potapov (Ed.): DLT 2015, LNCS 9168, pp. 58–70, 2015.
DOI: 10.1007/978-3-319-21500-6 4

On Decidability of Intermediate Levels of Concatenation Hierarchies 59

�

Πn

�

Σn

� Δn�BΣn−1

�

Πn−1

�

Σn−1

�

Π2

�

Σ2

� Δ2

�

BΣ1 �

Π1

�

Σ1

�Δ1

�
�

�
��

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

.

Fig. 1. The quantifier-alternation hierarchy of sentences of FO[<]

level of the hierarchy. Furthermore, the nth level of the Straubing–Thérien hier-
archy contains precisely BΣn-definable languages, that is, languages definable
by any sentence with n alternations of quantifiers. Finally, the Δn fragment
of FO[<] defines exactly the unambiguous polynomial closure of the (n − 1)th
level of the Straubing–Thérien hierarchy, which is equal to the intersection of
the (n − 1/2)th level with its complement. It is also worth mentioning that the
connection between the original dot-depth hierarchy and the Straubing–Thérien
hierarchy is well understood through the work of Straubing [16], which provides
an algebraic transformation from the latter to the former which preserves decid-
ability in both directions.

The Straubing–Thérien hierarchy is the most prominent example of a con-
catenation hierarchy of regular languages; each concatenation hierarchy is
obtained in the same way, once its lowest level is suitably chosen. Pin, Straub-
ing and Thérien [8] and Pin and Weil [10] described the algebraic counterpart
of the unambiguous polynomial closure and polynomial closure operators using
the Mal’cev product of pseudovarieties of finite (ordered) monoids. These results
(together with [14, Theorem 4.6.50]) show that decidability of any integer level
in an arbitrary concatenation hierarchy implies decidability of the intersection
of the next half level with its complement.

The decidability of the Straubing–Thérien hierarchy turned out to be very
difficult. The problem was eventually solved for levels up to 3/2 (see Subsec-
tion 8.1 of [7]), but the first algorithm for deciding definability in BΣ2 has been
announced only as late as 2014 by Place and Zeitoun [12]. In the same paper, it
is also shown that definability in Σ3 is decidable (to which, for shortness, we will
refer by saying Σ3 is decidable), and decidability of Σ4 was recently proved by
Place [11]. Place and Zeitoun [12] further provided, for each n, a non-effective
description of languages definable in Σn+1 and Δn+1 based on inequalities valid
in syntactic ordered monoids of languages definable in Σn. Their proof is spe-
cific for the Straubing–Thérien hierarchy, as it is based on manipulations with
first-order formulas.

Thus, only a finite number of levels of the Straubing–Thérien hierarchy have
been proved to be decidable. The main result of this paper, whose proof employs
techniques of profinite monoids, implies the following statement:

For each n, the problem of definability in Δn+1 polynomially reduces to
the problem of definability in Σn. In particular, if Σn is decidable, then
so is Δn+1.

60 J. Almeida et al.

More generally, we provide, for an arbitrary concatenation hierarchy, a poly-
nomial time reduction of the membership problem for the intersection of any
half level with its complement to the membership problem for the previous half
level. Combining with the results of Place and Zeitoun [12], one obtains that our
result implies decidability of Δ4, a fact that was independently discovered by
Place [11]. Furthermore, from the decidability of Σ4 also proved by Place [11],
our result yields the decidability of Δ5.

In the following section, the definition of concatenation hierarchies and basic
concepts of the algebraic theory of regular languages are recalled, in order to fix
terminology and notation; for a more comprehensive overview of results on these
hierarchies and for a general introduction to the theory, we refer to a handbook
chapter by Pin [7]. Section 3 describes the relationship between intermediate
levels in concatenation hierarchies, while Sections 4 and 5 are devoted to turning
this relationship into a polynomial time reduction of the membership problems.

2 Basic Concepts

2.1 Concatenation Hierarchies of Regular Languages

A class of regular languages consists of a set of regular languages over each
finite alphabet. A positive variety V is a class of regular languages such that
languages of V over each alphabet are closed under finite intersections, finite
unions and quotients, and additionally, for every homomorphism f : A∗ → B∗

and every L ⊆ B∗ belonging to V, the language f−1(L) belongs to V as well.
A positive variety V is a variety if it is also closed under complementation. For
a positive variety V, we denote by Co-V the positive variety consisting precisely
of complements of languages in V.

For a set of languages T over an alphabet A, its polynomial closure is the
set of all languages over A, which are finite unions of languages of the form
L0a1L1 . . . anLn, where n � 0, ai ∈ A, and Li ∈ T . If V is a variety of languages,
then we denote by Pol V the class of languages obtained by performing, over
every alphabet, the polynomial closure of languages from V. The resulting class
Pol V is a positive variety of languages (see Theorem 7.1 of [7]). Moreover, we
denote by BPol V the variety of languages consisting of Boolean combinations of
languages from PolV. In other words, BPolV is the join of PolV and Co-Pol V
in the lattice of all positive varieties. A widely studied variant of the polynomial
closure is the unambiguous polynomial closure UPol, which is known to satisfy
UPol V = Pol V ∩ Co-Pol V for every variety V; for details, see Subsection 7.2
of [7].

For a variety of languages V0, the concatenation hierarchy of basis V0 is
a hierarchy of classes of languages defined by the rules Vn+1/2 = Pol Vn and
Vn+1 = BPol Vn, for every integer n � 0. Each half level in the hierarchy is a
positive variety and each integer level is a variety. Such a hierarchy, together
with complements of half levels, is depicted in Figure 2. The Straubing–Thérien
hierarchy is the concatenation hierarchy whose basis V0 is formed by the smallest
variety of languages, which contains only the languages ∅ and A∗ over each

On Decidability of Intermediate Levels of Concatenation Hierarchies 61

�

Co-Vn+1/2 = Co-Pol Vn

�

Vn+1/2 = Pol Vn

� UPol Vn�BPol Vn−1 = Vn

�

Co-Vn−1/2

�

Vn−1/2

�

Co-V1/2

�

V1/2

�V0 � UPol V0

�
�

�
��

�

�
�

�
�

�
�

.

Fig. 2. A concatenation hierarchy of languages

alphabet A. In this hierarchy, the equality V0 = UPol V0 holds, and all other
inclusions in Figure 2 are proper. In the case of the Straubing–Thérien hierarchy,
Figure 2 represents the language counterpart of Figure 1, except for V0.

2.2 Ordered Monoids

A binary relation R on a set M is said to be a quasiorder if it is reflexive and
transitive. Every quasiorder R on M determines an equivalence relation Re on M ,
consisting of all pairs (s, t) ∈ R such that (t, s) ∈ R. Then R induces a partial
order on the quotient set M/Re, and we denote the resulting partially ordered
set by M/R. The transitive closure of a binary relation R on M is denoted T(R).

A binary relation R on a monoid M is called stable if for all (s, t) ∈ R and
z ∈ M , both pairs (sz, tz) and (zs, zt) belong to R. If R is a stable and reflexive
relation on M , then its transitive closure T(R) is a stable quasiorder on M .

An ordered monoid (M,�) is a monoid M equipped with a stable partial
order �. A homomorphism between ordered monoids (M,�) and (N,�) is a
mapping ϕ : M → N which is a monoid homomorphism and at the same time
monotone, i.e., for all s, t ∈ M satisfying s � t, the inequality ϕ(s) � ϕ(t) holds
in N . Given a stable quasiorder R on an unordered monoid M , the ordered
set M/R can be turned into an ordered monoid, and the natural projection
π : M → M/R becomes a homomorphism of ordered monoids, with M ordered
by the equality relation.

2.3 Pseudovarieties and Pseudoidentities

There is a one-to-one correspondence between varieties of languages and pseu-
dovarieties of finite monoids, which are classes of finite monoids closed under
homomorphic images, submonoids and finite direct products. Similarly, positive
varieties of languages are in one-to-one correspondence with pseudovarieties of
finite ordered monoids. For instance, a positive variety V corresponds to the pseu-
dovariety V generated by syntactic ordered monoids of languages in V. Then a
language L ⊆ A∗ belongs to V if and only if its syntactic ordered monoid belongs
to V, while an ordered monoid M belongs to V if and only if all preimages of
upper sets in M under homomorphisms ϕ : A∗ → M belong to V. In particular,
the decidability of the membership problems for V and for V are equivalent.

For an arbitrary pseudovariety V of ordered monoids, with the corresponding
positive variety V, the pseudovariety corresponding to the positive variety Co-V

62 J. Almeida et al.

is Vd = {(M,�) | (M,�) ∈ V}. We denote by BV the join of V and its dual
Vd in the lattice of all pseudovarieties of ordered monoids; it is the pseudova-
riety corresponding to the Boolean closure of V. The pseudovariety BV can be
equivalently characterized as the pseudovariety of ordered monoids generated by
the class {(M,=) | (M,�) ∈ V}. We call a pseudovariety V of ordered monoids
selfdual if V = Vd; these are precisely pseudovarieties of the form BW for some
pseudovariety W, or equivalently, those which satisfy V = BV. There is a one-
to-one correspondence between selfdual pseudovarieties of ordered monoids and
pseudovarieties of monoids; we will not distinguish between a selfdual pseudova-
riety V and the corresponding pseudovariety of monoids {M | (M,�) ∈ V}.

Reiterman [13] (see [7, Section 4.1]) proved that every pseudovariety of
monoids V can be characterized by some set of so-called pseudoidentities; each
such set is usually called a basis of pseudoidentities for V. Pseudoidentities are
generalizations of identities, that is, pairs u = v of words u, v ∈ A∗, which deter-
mine equational axioms for classes of finite monoids. Since not all pseudovarieties
of monoids are equational in this sense, Reiterman’s idea was to consider iden-
tities of generalized words. For this purpose, one takes the completion Â∗ of the
free monoid A∗ with respect to the metric induced by homomorphisms from A∗

into finite monoids, in which, roughly speaking, two distinct words are very close
if it takes a homomorphism from A∗ into a very large finite monoid to distinguish
them. The metric monoid Â∗ is profinite, which means that it is compact and
each pair of its elements can be distinguished by a continuous homomorphism
to a finite monoid endowed with the discrete topology. Moreover, the monoid
Â∗ is characterized by a universal property among profinite monoids, namely,
for every mapping α : A → S to a profinite monoid S, there exists a unique
continuous homomorphism α : Â∗ → S extending α (see [2, Proposition 3.4]).
This property can be in particular used if S is a finite monoid.

A pseudoidentity u = v is a pair of elements u, v of Â∗, and this pseudoiden-
tity is satisfied by a finite monoid M if α(u) = α(v) holds for every mapping
α : A → M . In the case of pseudovarieties of ordered monoids, the previous def-
inition must be modified to use the so-called inequalities. An inequality u � v
is a pair of elements of Â∗, and it is satisfied by an ordered monoid (M,�) if
α(u) � α(v) holds for every mapping α : A → M . Note that in this paper, as
usual in recent literature, the ordering of monoids corresponding to a positive
variety of languages is dual to the one used by Pin [7], and thus all inequalities
in [7] characterizing pseudovarieties of ordered monoids have to be reversed. This
stems from the fact that the reverse of the syntactic order which used to appear
in the literature has come to be preferred.

An element e of a monoid M is called an idempotent if ee = e. For an
arbitrary element s of a profinite monoid S, the sequence sn! converges in S to
an idempotent, which is denoted by sω. In particular, if S is a finite monoid,
then sω is the unique idempotent which is a power of s. We also write sω−1 for
the limit of the sequence sn!−1. For every continuous homomorphism γ : S → T
of profinite monoids and every s ∈ S, it is clear from the definition that γ(sω) =
γ(s)ω. A finite monoid is aperiodic if it satisfies the pseudoidentity xω+1 = xω.

On Decidability of Intermediate Levels of Concatenation Hierarchies 63

The pseudovariety of aperiodic monoids corresponds to the variety of star-free
languages (see [7, Theorem 5.2]).

3 Bases of Inequalities for Polynomial Closure

The aim of this section is to obtain such descriptions of various levels of concate-
nation hierarchies by inequalities, that can be turned into algorithms for testing
membership.

We will rely on a result that gives the inequalities of the pseudovarieties
corresponding to PolV and UPolV as a function of those of the pseudovariety
corresponding to V:

Proposition 1 ([8–10], [7, Theorems 6.5, 7.1 and 7.3]). Let V be a pseu-
dovariety of monoids and V be the corresponding variety of languages. Then

(i) the pseudovariety of ordered monoids corresponding to the positive variety
of languages Pol V is defined by the set of all inequalities vω � vωuvω, where
u, v belong to Â∗ for some finite set A and V satisfies u = v and v = v2,

(ii) the pseudovariety of monoids corresponding to the variety UPol V is defined
by the set of all pseudoidentities vω = vωuvω, where u, v belong to Â∗ for
some finite set A and V satisfies u = v and v = v2.

In the case of the Straubing–Thérien hierarchy, Place and Zeitoun [12]
described a basis of inequalities for Vn+1/2 very similar to the basis obtained
from Proposition 1(i) by taking V equal to Vn. The main difference is that
instead of assuming that the pseudoidentity u = v is valid in Vn, it is required
that the inequality u � v holds in Vn−1/2. A general relationship between such
characterizations will now be explained using a new operation on pseudovarieties.

The inequalities of Proposition 1 may be interpreted in terms of Mal’cev
products, an algebraic operation on pseudovarieties of monoids. Here we follow
another route by defining the new operation solely in terms of inequalities. For an
arbitrary pseudovariety of ordered monoids V, let Vm denote the pseudovariety
of ordered monoids with basis of inequalities consisting of all inequalities vω+1 �
vωuvω, where u, v ∈ Â∗ for some finite set A and the inequality u � v holds
in V. An alternative definition for Vm is obtained by taking the inequalities of the
form vω � vωuvω, where u, v ∈ Â∗ for some finite set A and both the inequality
u � v and the pseudoidentity v2 = v hold in V. To obtain the inequalities of
the latter definition from the former, assume that V satisfies u � v = v2. Then
the inequality vωu � vω is also valid in V, and thus (vω)ω+1 � vωuvω holds
in Vm by the former definition, which is the same inequality as vω � vωuvω.
Conversely, assuming the latter definition, take any inequality u � v valid in V.
Then obviously vω−1u � vω = (vω)2 also holds in V, and so the latter definition
gives validity of the inequality vω � vω−1uvω in Vm, which immediately implies
validity of vω+1 � vωuvω.

The operator ()m is monotone, that is, V ⊆ W implies Vm ⊆ Wm, because
every inequality from the basis for Wm is included in the basis for Vm. Addition-
ally, denote by VM the monoid pseudovariety Vm ∩ (Vm)d. Then VM is defined

64 J. Almeida et al.

by pseudoidentities of the form vω+1 = vωuvω, where u, v ∈ Â∗ for some finite
set A are such that the inequality u � v holds in V. An alternative basis can be
given as in the case of Vm.

Remark. The alternative definition of the pseudovariety Vm in particular shows
that if V is selfdual, then Vm and VM are defined by the inequalities and pseu-
doidentities of Proposition 1, and thus can be expressed in terms of the Mal’cev
product as Vm = W ©m V and VM = LI ©m V, with W and LI pseudovarieties of
finite semigroups defined by the inequality xω � xωyxω and the pseudoidentity
xω = xωyxω, respectively (see [7, Theorem 6.5]). However, if V is not selfd-
ual, such characterizations cannot be formulated, as the corresponding Mal’cev
products are not defined.

The following result is immediate from the definition of Vm, since validity of
v � u in an ordered monoid implies validity of vω+1 � vωuvω.

Lemma 2. Every pseudovariety of ordered monoids V satisfies the inclusion
Vd ⊆ Vm. In particular, if V is selfdual, then V ⊆ Vm. �	

The next lemma provides a condition on a pseudovariety V which guarantees
that the pseudovariety (BV)m can be obtained by applying the operator ()m

directly to V.

Lemma 3. Let V = Wm, with W a selfdual pseudovariety of ordered monoids.
Then Vm = (BV)m and VM = (BV)M.

Proof. Clearly, the first equality implies the second one. Since the operator ()m

is monotone, we have Vm ⊆ (BV)m. It remains to prove that every inequality
from the basis for Vm is valid in (BV)m as well. Let u, v ∈ Â∗ be such that u � v
holds in V. Then obviously vωuvω � vω+1 also holds in V. On the other hand,
because W is selfdual by assumption, the inclusion W ⊆ V holds by Lemma 2,
and consequently u � v is valid in W. Hence, the pseudovariety V = Wm satisfies
vω+1 � vωuvω. Together, this shows that the pseudoidentity vωuvω = vω+1 is
valid in V; therefore, it is also valid in BV. Now consider elements u = vωuvω and
v = vω+1 of Â∗. Then u = v holds in BV. This implies that the inequality vω+1 �
vωu vω is valid in (BV)m. However, this inequality is equivalent to vω+1 � vωuvω,
because (vω+1)ω+1 = vω+1 and (vω+1)ω = vω hold in Â∗. Hence, the inequality
vω+1 � vωuvω is valid in (BV)m. �	

Lemma 3 has the following consequence for concatenation hierarchies.

Proposition 4. Let (Vk)k∈N/2 be an arbitrary concatenation hierarchy and let
(Vk)k∈N/2 be the corresponding hierarchy of pseudovarieties of ordered monoids.
Then, for each positive integer n, the following equalities hold:

Vn+1/2 = (Vn)m = (Vn−1/2)
m

.

Proof. The equality Vn+1/2 = (Vn)m comes from Proposition 1(i) via the alter-
native definition of the operator ()m. The equality (Vn)m = (Vn−1/2)

m follows
from Lemma 3, because of Vn−1/2 = (Vn−1)

m and Vn = BVn−1/2. �	

On Decidability of Intermediate Levels of Concatenation Hierarchies 65

4 Testing the Inequalities in an Ordered Monoid

It is not clear that the inequalities defining Vm may be effectively tested in a
given ordered monoid (M,�). The aim of this section is to identify for which
pairs (s, t) of elements of M the inequality tω+1 � tωstω should be tested in
order to assure that (M,�) belongs to Vm. For this purpose, we define a binary
relation on M determined by inequalities that hold in V.

Recall that for a mapping α : A → M , there is a unique continuous homo-
morphism α : (Â∗,=) → (M,�) that extends α. We define a relation σV(M) on
M as the set of all pairs (α(u), α(v)), where α : A → M is a mapping from an
arbitrary finite alphabet A, and u, v ∈ Â∗ are such that the inequality u � v
holds in V. Thus, σV(M) is an order analog of the 2-pointlike pair relation on a
finite monoid, which in turn may be viewed as a topological separation problem
on regular languages within the free profinite monoid Â∗ [1]. In the work of Place
and Zeitoun [12] an element of σV3/2

(M) is called a two-element Σ2-chain of M ,
and may also be viewed as a topological separation property.

The relation σV(M) is obviously reflexive. It is also stable, since for given
(α(u), α(v)) ∈ σV(M) and z ∈ M , the pairs (α(u)z, α(v)z) and (zα(u), zα(v))
can be shown to belong to σV(M) by choosing a new letter x /∈ A, observing that
ux � vx and xu � xv hold in V, and extending α by setting α(x) = z. However,
it need not be transitive. The following lemma shows that instead of using all
possible mappings α, it is sufficient to use an arbitrary surjective mapping.

Lemma 5. Let V be a pseudovariety of ordered monoids and (M,�) a finite
ordered monoid. Let α : A → M be an arbitrary surjective mapping. Then, for
every s, t ∈ M , the pair (s, t) belongs to σV(M) if and only if (s, t) = (α(u), α(v))
for some u, v ∈ Â∗ such that the inequality u � v holds in V.

Proof. The “if” statement is trivial. In order to prove the “only if” part, assume
that (s, t) ∈ σV(M), that is, there exists a mapping β : B → M such that (s, t) =
(β(u), β(v)) for some u, v ∈ B̂∗, with u � v valid in V. The universal property
of B̂∗ and surjectivity of α imply that there exists a continuous homomorphism
γ : B̂∗ → Â∗ such that β = α ◦ γ. Then γ(u) � γ(v) holds in V, and (s, t) =
(α(γ(u)), α(γ(v))). �	

An alternative characterization of ordered monoids (M,�) belonging to the
pseudovariety Vm can be formulated using the relation σV(M).

Lemma 6. Let V be a pseudovariety of ordered monoids and (M,�) a finite
ordered monoid. Then (M,�) ∈ Vm if and only if tω+1 � tωstω holds for every
pair (s, t) ∈ σV(M).

An analogous characterization of the pseudovariety VM follows directly from
the characterizations of Vm and (Vm)d given by Lemma 6.

Corollary 7. Let V be a pseudovariety of ordered monoids and M a finite
monoid. Then M ∈ VM if and only if tω+1 = tωstω holds for every pair
(s, t) ∈ σV(M).

66 J. Almeida et al.

We return now to concatenation hierarchies with an application of Lemma 6
that is obtained directly from Proposition 4:

Proposition 8. Let (Vk)k∈N/2 be an arbitrary concatenation hierarchy of lan-
guages and let (Vk)k∈N/2 be the corresponding hierarchy of pseudovarieties of
ordered monoids. Let (M,�) be a finite ordered monoid. Then, for every posi-
tive integer n, the following conditions are equivalent:

(i) (M,�) ∈ Vn+1/2;
(ii) tω+1 � tωstω holds for all (s, t) ∈ σVn

(M);
(iii) tω+1 � tωstω holds for all (s, t) ∈ σVn−1/2

(M).

In the case of star-free languages, Proposition 8 can be formulated in a slightly
different way, since then one can assume that the monoid M is aperiodic, and
thus tω can be used in place of tω+1; this in particular shows that Proposition 8
generalizes Theorem 7 of Place and Zeitoun [12] from the case of the Straubing–
Thérien hierarchy to an arbitrary concatenation hierarchy.

One of the contributions of [12] is an algorithm for computing the relation
σV3/2

(M), which directly implies decidability of V5/2 and V5/2 ∩ (V5/2)
d. In this

paper, rather than computing directly the relation σV(M), we attempt to prove
decidability of pseudovarieties by computing the transitive closure of σV(M).
The following section shows that this approach can be used to verify validity
of all equalities tω+1 = tωstω in Corollary 7. Although one needs to be able
to verify all inequalities tω+1 � tωstω in order to decide membership in the
pseudovariety Vm, dealing with equalities is sufficient to obtain decidability of
the pseudovariety VM.

5 Polynomial Reduction of the Membership Problem

Let M be a finite monoid and let V be a pseudovariety of ordered monoids. We
say that a stable quasiorder ρ on M is a V-quasiorder if the quotient ordered
monoid M/ρ belongs to V. For a pair of stable quasiorders ρ and τ , the relation
ρ ∩ τ is a stable quasiorder as well, and the quotient M/(ρ ∩ τ) is isomorphic to
a submonoid of the ordered monoid M/ρ × M/τ . This shows that the set of all
V-quasiorders of the monoid M is closed under intersection, and consequently
there exists the smallest V-quasiorder on M , denoted ρV(M). If the pseudova-
riety V is decidable, then the relation ρV(M) is computable, since there are
only finitely many binary relations on the finite set M .

Lemma 9. Let M be a finite monoid and let V be a pseudovariety of ordered
monoids. Then ρV(M) is equal to the transitive closure of σV(M).

Proof. For every mapping α : A → M , the composition of α with the natural
projection π : M → M/ρV(M) ∈ V satisfies πα(u) � πα(v) for every inequal-
ity u � v valid in V. This shows that σV(M) ⊆ ρV(M), and consequently
T(σV(M)) ⊆ ρV(M) holds, as ρV(M) is transitive.

On Decidability of Intermediate Levels of Concatenation Hierarchies 67

Conversely, because σV(M) is a stable reflexive relation on M , its transitive
closure τ = T(σV(M)) is a stable quasiorder on M . Therefore, in order to prove
that τ ⊇ ρV(M), it suffices to verify that the ordered monoid M/τ belongs to V.
So, let u � v be an arbitrary inequality that holds in V, with u, v ∈ Â∗, and
consider any mapping β : A → M/τ . Let α : A → M be any mapping such that
β = π ◦α, where π : M → M/τ denotes the natural projection. Then the unique
extensions of the mappings α and β to the monoid Â∗ satisfy β = π ◦ α. By
definition of the relation σV(M), the pair (α(u), α(v)) belongs to σV(M), and
consequently also to τ . Altogether, we obtain β(u) = π(α(u)) � π(α(v)) = β(v),
thus showing that u � v is satisfied by M/τ . �	

The following lemma, analogous to Lemma 4.1 of [3], shows that when veri-
fying the condition of Corollary 7, that is, the condition

(∀s, t ∈ M
)(

(s, t) ∈ R =⇒ tω+1 = tωstω
)
, (1)

one can take R = ρV(M) instead of R = σV(M).

Lemma 10. Let M be a finite monoid and let R be a reflexive and stable binary
relation on M . Then R satisfies (1) if and only if the transitive closure of R
satisfies (1).

Proof. Assume that tω+1 = tωstω holds for each (s, t) ∈ R. We show by induction
with respect to n that tω+1 = tωstω holds also for each pair (s, t) from Rn. For
n = 1, this is the assumption. Let n > 1 and let (s, t) ∈ Rn. Thus, there exists
z ∈ M such that (s, z) ∈ R and (z, t) ∈ Rn−1. Since R is stable, we have
(tωstω, tωztω) ∈ R. The induction assumption gives tω+1 = tωztω, which means
that (tωstω, tω+1) ∈ R. Then tω+1 = (tω+1)ω+1 = (tω+1)ω(tωstω)(tω+1)ω =
tωstω by the assumption on R, as required. As the transitive closure of R is the
union of all relations Rn, the statement is proved. �	

In order to construct a polynomial time reduction of the membership problem
for the pseudovariety VM to that of V, we proceed in a way similar to [14,
Subsection 4.6.2], where the membership problem for some Mal’cev products is
solved by constructing certain congruences on a monoid M , and testing whether
the quotient monoid belongs to V. However, in our case, as V is a variety of
ordered monoids, instead of a congruence, an appropriate stable quasiorder has
to be constructed.

Let M be a finite monoid. Denote by κ(M) the union of all stable relations R
on M satisfying (1). Then κ(M) is obviously also a stable relation satisfying (1).
Moreover, it is reflexive, as the identity relation has these properties, and it is
transitive, as the transitive closure of a stable relation satisfying (1) is such a
relation as well, by Lemma 10. This shows that κ(M) is a quasiorder on M .

For a given pseudovariety of ordered monoids V, let Vκ be the class of all
monoids M such that M/κ(M) ∈ V.

Lemma 11. Let V be a pseudovariety of ordered monoids. Then Vκ = VM.
In particular, Vκ is a pseudovariety of monoids.

68 J. Almeida et al.

Proof. Corollary 7 shows that M belongs to VM if and only if σV(M) satisfies (1),
which holds precisely when ρV(M) satisfies (1), according to Lemmata 9 and 10.
This is equivalent to the requirement ρV(M) ⊆ κ(M), which holds if and only
if M/κ(M) ∈ V, by definition of ρV(M). The latter condition is exactly the
definition of membership of M in Vκ. �	

The algorithm for deciding membership in VM is based on calculating the
relation κ(M).

Lemma 12. For an arbitrary finite monoid M , the quasiorder κ(M) can be
calculated in polynomial time.

Proof. For each element m ∈ M , let κm be the binary relation on M defined by
the rule

(a, b) ∈ κm ⇐⇒ (∀p, q ∈ M)(pbq = m =⇒ mω · paq · mω = mω+1) .

Each of the relations κm can be calculated in polynomial time. It will be proved
that the relation κ(M) is equal to the intersection of all relations κm, which
means that it can be calculated in polynomial time as well.

In order to show that κ(M) ⊆ κm for every m ∈ M , let (a, b) ∈ κ(M) and
p, q ∈ M be such that pbq = m. The stability of κ(M) implies that (paq, pbq) ∈
κ(M), and since pbq = m, condition (1) gives mω · paq · mω = mω+1.

Conversely, in order to prove that the relation
⋂

m∈M κm is contained in
κ(M), it is sufficient to verify that

⋂
m∈M κm is a stable relation satisfying (1).

The stability of the intersection follows directly from the stability of each κm,
which is obvious from the definition. In order to verify condition (1), let (s, t)
belong to all relations κm, with m ∈ M . In particular, it belongs to κt, which
gives tωstω = tω+1 by choosing p = q = 1. �	

The desired polynomial reduction of the membership problem for VM is
obtained directly by combining Lemmata 11 and 12 and the definition of Vκ.

Proposition 13. For every pseudovariety of ordered monoids V, the member-
ship problem for the pseudovariety VM can be reduced in polynomial time to the
membership problem for V.

Note that for an arbitrary variety of languages V, with the corresponding
pseudovariety of monoids V, Proposition 1(ii) states that the pseudovariety cor-
responding to the variety UPolV is precisely VM. Therefore, as a special case
of Proposition 13 we obtain the known result that decidability of the variety V
implies decidability of the variety UPolV (see [14, Theorem 4.6.50]).

Propositions 4 and 13 together give the main result of this paper:

Theorem 14. Let (Vk)k∈N/2 be an arbitrary concatenation hierarchy of regular
languages and let (Vk)k∈N/2 be the corresponding hierarchy of pseudovarieties of
ordered monoids. If Vn−1/2 is a decidable pseudovariety, then Vn+1/2 ∩ (Vn+1/2)

d

is also decidable, that is, the variety UPol Vn is decidable.

On Decidability of Intermediate Levels of Concatenation Hierarchies 69

Using decidability of the variety V7/2 proved by Place [11], this theorem gives

Corollary 15. It is algorithmically decidable whether a given regular language
is definable in Δ5.

6 Conclusion

We have shown how structural techniques of the theory of profinite monoids
may be used to climb some steps of the decidable part of concatenation hierar-
chies, which is achieved through a polynomial time reduction. In the case of the
Straubing-Thérien hierarchy, this corresponds to step up from a Σn fragment of
FO[<] to the next Δn+1 fragment.

Our method consists in studying an operator ()M on pseudovarieties of
ordered monoids defined by the pseudoidentities used by Pin, Straubing and
Thérien [8] to give an algebraic characterization of unambiguous polynomial clo-
sure. To check whether a given finite monoid M belongs to the pseudovariety VM,
one needs to verify that the equality tω+1 = tωstω holds in M whenever (s, t) is
a member of the binary relation σV(M) on M whose elements are obtained by
evaluating inequalities u � v valid in V. Decidability of σV(M), that is of the sep-
aration property considered by Place and Zeitoun [12], then immediately gives
decidability of VM. We managed to show that the weaker hypothesis of decidabil-
ity of V suffices for the same conclusion by establishing the following key steps:
(i) the relation σV(M) may be replaced by its transitive closure ρV(M), which
is the smallest stable quasiorder such that M/ρV(M) ∈ V; (ii) the pseudovariety
VM consists of all finite monoids M such that M/κ(M) ∈ V, where κ(M) is
the largest stable relation on M such that (s, t) ∈ κ(M) implies tωstω = tω+1;
(iii) the relation κ(M) may be computed in polynomial time.

Since our main result steps up from Σn to Δn+1, not to Σn+1, it cannot
be simply iterated. The approach of Place and Zeitoun [11,12] has been to try
to show that one may climb from Σn to Σn+1 by proving decidability of the
separation property for Σn. If such a condition were inherited by Σn+1, then
all Σn and Δn fragments would be decidable. However, proving that condition
turns out to be very complicated and has so far only been achieved by a deep
but casuistic combinatorial analysis up to Σ4. If here also one could relax such a
condition to plain decidability to be able to climb the decidable part of the hier-
archy, then again all Σn and Δn fragments would be decidable. Thus, it would be
very interesting to adapt our algebraic approach to VM to the pseudovariety Vm.

In a less ambitious route, it should be possible to extend our approach to
regular languages of infinite words. More general classes of regular languages may
also be amenable to our methods, taking into account that the polynomial closure
of lattices of regular languages have already been investigated by Branco and
Pin [4]. A further natural question is to characterize the language counterpart
of the operator ()m.

70 J. Almeida et al.

Acknowledgments. The authors thank Jean-Éric Pin and the anonymous referees
for their comments and suggestions, which significantly contributed to improve the
presentation of this paper.

References

1. Almeida, J.: Some algorithmic problems for pseudovarieties. Publ. Math. Debrecen
54(Suppl), 531–552 (1999)

2. Almeida, J.: Profinite semigroups and applications. In: Kudryavtsev, V.B.,
Rosenberg, I.G. (eds.) Structural Theory of Automata, Semigroups and Universal
Algebra, pp. 1–45. Springer (2005)

3. Almeida, J., Kĺıma, O.: New decidable upper bound of the second level in the
Straubing-Thérien concatenation hierarchy of star-free languages. Discrete Math.
Theor. Comput. Sci. 12, 41–58 (2010)

4. Branco, M.J.J., Pin, J.-É.: Equations defining the polynomial closure of a lat-
tice of regular languages. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y.,
Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556,
pp. 115–126. Springer, Heidelberg (2009)

5. Brzozowski, J.A., Cohen, R.S.: Dot-depth of star-free events. J. Comput. System
Sci. 5, 1–15 (1971)

6. McNaughton, R., Papert, S.: Counter-Free Automata. MIT Press (1971)
7. Pin, J.-É.: Syntactic semigroups. In: Rozenberg, G., Salomaa, A. (eds.) Handbook

of Formal Languages, Chapter 10. Springer (1997)
8. Pin, J.-É., Straubing, H., Thérien, D.: Locally trivial categories and unambiguous

concatenation. J. Pure Appl. Algebra 52, 297–311 (1988)
9. Pin, J.-É., Weil, P.: Profinite semigroups, Mal’cev products and identities.

J. Algebra 182, 604–626 (1996)
10. Pin, J.-É., Weil, P.: Polynomial closure and unambiguous product. Theory Comput.

Systems 30, 383–422 (1997)
11. Place, T.: Separating regular languages with two quantifier alternations. In: Proc.

LICS (2015), to appear
12. Place, T., Zeitoun, M.: Going higher in the first-order quantifier alternation hierar-

chy on words. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.)
ICALP 2014, Part II. LNCS, vol. 8573, pp. 342–353. Springer, Heidelberg (2014)

13. Reiterman, J.: The Birkhoff theorem for finite algebras. Algebra Universalis 14,
1–10 (1982)

14. Rhodes, J., Steinberg, B.: The q-theory of Finite Semigroups. Springer (2009)
15. Schützenberger, M.-P.: On finite monoids having only trivial subgroups. Inform.

and Control 8, 190–194 (1965)
16. Straubing, H.: Finite semigroup varieties of the form V ∗D. J. Pure Appl. Algebra

36, 53–94 (1985)
17. Thomas, W.: Classifying regular events in symbolic logic. J. Comput. System Sci.

25, 360–376 (1982)

Ergodic Infinite Permutations of Minimal
Complexity

Sergey V. Avgustinovich1, Anna E. Frid2, and Svetlana Puzynina1,3(B)

1 Sobolev Institute of Mathematics, Novosibirsk, Russia
avgust@math.nsc.ru

2 Aix-Marseille Université, Marseille, France
anna.e.frid@gmail.com

3 LIP, ENS de Lyon, Université de Lyon, Lyon, France
s.puzynina@gmail.com

Abstract. An infinite permutation can be defined as a linear ordering of
the set of natural numbers. Similarly to infinite words, a complexity p(n)
of an infinite permutation is defined as a function counting the number of
its factors of length n. For infinite words, a classical result of Morse and
Hedlund, 1940, states that if the complexity of an infinite word satisfies
p(n) ≤ n for some n, then the word is ultimately periodic. Hence minimal
complexity of aperiodic words is equal to n + 1, and words with such
complexity are called Sturmian. For infinite permutations this does not
hold: There exist aperiodic permutations with complexity functions of
arbitrarily slow growth, and hence there are no permutations of minimal
complexity.

In the paper we introduce a new notion of ergodic permutation, i.e.,
a permutation which can be defined by a sequence of numbers from
[0, 1], such that the frequency of its elements in any interval is equal
to the length of that interval. We show that the minimal complexity
of an ergodic permutation is p(n) = n, and that the class of ergodic
permutations of minimal complexity coincides with the class of so-called
Sturmian permutations, directly related to Sturmian words.

1 Introduction

In this paper, we continue the study of combinatorial properties of infinite per-
mutations analogous to those of words. In this approach, infinite permutations
are interpreted as equivalence classes of real sequences with distinct elements,
such that only the order of elements is taken into account. In other words, an
infinite permutation is a linear order in N. We consider it as an object close to
an infinite word, but instead of symbols, we have transitive relations < or >
between each pair of elements.

S. Puzynina—Supported by the LABEX MILYON (ANR-10-LABX-0070) of Univer-
sité de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007)
operated by the French National Research Agency (ANR).

c© Springer International Publishing Switzerland 2015
I. Potapov (Ed.): DLT 2015, LNCS 9168, pp. 71–84, 2015.
DOI: 10.1007/978-3-319-21500-6 5

72 S.V. Avgustinovich et al.

Infinite permutations in the considered sense were introduced in [10]; see
also a very similar approach coming from dynamics [6] and summarised in [3].
Since then, they were studied in two main directions: first, permutations directly
constructed with the use of words are studied to reveal new properties of words
used for their construction [8,16–18,20–22]. In the other approach, properties of
infinite permutations are compared with those of infinite words, showing some
resemblance and some difference.

In particular, both for words and permutations, the (factor) complexity is
bounded if and only if the word or the permutation is ultimately periodic [10,19].
However, the minimal complexity of an aperiodic word is n + 1, and the words
of this complexity are well-studied Sturmian words; as for the permutations,
there is no “minimal” complexity function for the aperiodic case. By contrary, if
we modify the definition to consider the maximal pattern complexity [13,14], the
result for permutations is more classifying than that for words: in both cases,
there is a minimal complexity for aperiodic objects, but for permutations, unlike
for words, the cases of minimal complexity are characterised [4]. All the permu-
tations of lowest maximal pattern complexity are closely related to Sturmian
words, whereas words may have lowest maximal pattern complexity even if they
have another structure [14].

Other results on the comparison of words and permutations include an
attempt to define automatic permutations [12] analogously to automatic
words [1], a discussion [11] of the Fine and Wilf theorem and a study of square-
free permutations [5].

In this paper, we return to the initial definition of factor complexity and prove
a result on permutations of minimal complexity analogous to that for words. To
do it, we restrict ourselves to ergodic permutations. This new notion means that
a permutation can be defined by a sequence of numbers from [0, 1] such that the
frequency of its elements in any interval is equal to the length of that interval.
We show that this class of permutations is natural and wide, and the ergodic
permutations of minimal complexity are exactly Sturmian permutations in the
sense of Makarov [18].

The paper is organized as follows. After general basic definitions and a neces-
sary section on the properties of Sturmian words (and permutations), we intro-
duce ergodic permutations and study their basic properties. The main result of
the paper, Theorem 5.2, is proved in Section 5.

2 Basic Definitions

In what concerns words, in this paper we mostly follow the terminology and nota-
tion from [15]. We consider finite and infinite words over a finite alphabet Σ; here
we consider Σ = {0, 1}. A factor of an infinite word is any sequence of its consec-
utive letters. The factor u[i] · · · u[j] of an infinite word u = u[0]u[1] · · · u[n] · · · ,
with uk ∈ Σ, is denoted by u[i..j]; prefixes of a finite or an infinite word are as
usual defined as starting factors. A factor s of a right infinite word u is called
right (resp., left) special if sa, sb (resp., as, bs) are both factors of u for distinct
letters a, b ∈ Σ. A word which is both left and right special is called bispecial.

Ergodic Infinite Permutations of Minimal Complexity 73

The length of a finite word s is denoted by |s|. An infinite word u =
vwwww · · · = vwω for some non-empty word w is called ultimately (|w|-)periodic;
otherwise it is called aperiodic.

The complexity pu(n) of an infinite word u is a function counting the number
of its factors of length n; see [7] for a survey. Due to a classical result of Morse
and Hedlund [19], if the complexity pu(n) of an infinite word u satisfies pu(n) ≤ n
for some n, then u is ultimately periodic. Therefore, the minimal complexity of
aperiodic words is n + 1; such words are called Sturmian and are discussed in
the next section.

When considering words on the binary alphabet {0, 1}, we refer to the order
on finite and infinite words meaning lexicographic (partial) order: 0 < 1, u < v
if u[0..i] = v[0..i] and u[i + 1] < v[i + 1] for some i. For words such that one of
them is the prefix of the other the order is not defined.

A conjugate of a finite word w is any word of the form vu, where w = uv.
Clearly, conjugacy is an equivalence, and in particular, all the words from the
same conjugate class have the same number of occurrences of each symbol.

Analogously to a factor of a word, for a sequence (a[n])∞
n=0 of real numbers,

we denote by a[i..j] and call a factor of (a[n]) the finite sequence of numbers
a[i], a[i+1], . . . , a[j]. We need sequences of numbers to correctly define an infinite
permutation α as an equivalence class of real infinite sequences with pairwise dis-
tinct elements under the following equivalence ∼: we have (a[n])∞

n=0 ∼ (b[n])∞
n=0

if and only if for all i, j the conditions a[i] < a[j] and b[i] < b[j] are equiv-
alent. Since we consider only sequences of pairwise distinct real numbers, the
same condition can be defined by substituting (<) by (>): a[i] > a[j] if and
only if b[i] > b[j]. So, an infinite permutation is a linear ordering of the set
N0 = {0, . . . , n, . . .}. We denote it by α = (α[n])∞

n=0, where α[i] are abstract
elements equipped by an order: α[i] < α[j] if and only if a[i] < a[j] or, which
is the same, b[i] < b[j] of every representative sequence (a[n]) or (b[n]) of α. So,
one of the simplest ways to define an infinite permutation is by a representative,
which can be any sequence of distinct real numbers.

Example 2.1. Both sequences (a[n]) = (1,−1/2, 1/4, . . .) with a[n] = (−1/2)n

and (b[n]) with b[n] = 1000 + (−1/3)n are representatives of the same permuta-
tion α = α[0], α[1], . . . defined by

α[2n] > α[2n + 2] > α[2k + 3] > α[2k + 1]

for all n, k ≥ 0.

A factor α[i..j] of an infinite permutation α is a finite sequence (α[i], α[i +
1], . . . , α[j]) of abstract elements equipped by the same order than in α. Note
that a factor of an infinite permutation can be naturally interpreted as a
finite permutation: for example, if in a representative (a[n]) we have a factor
(2.5, 2, 7, 1.6), that is, the 4th element is the smallest, followed by the 2nd, 1st

and 3rd, then in the permutation, it will correspond to a factor
(

1 2 3 4
3 2 4 1

)
, which

we will denote simply as (3241). Note that in general, we number elements of

74 S.V. Avgustinovich et al.

infinite objects (words, sequences or permutations) starting with 0 and elements
of finite objects starting with 1.

A factor of a sequence (permutation) should not be confused with its subse-
quence a[n0], a[n1], . . . (subpermutation α[n0], α[n1], . . .) which is indexed with
a growing subsequence (ni) of indices.

Note, however, that in general, an infinite permutation cannot be defined as
a permutation of N0. For instance, the permutation from Example 2.1 has all its
elements between the first two ones.

Analogously to words, the complexity pα(n) of an infinite permutation α
is the number of its distinct factors of length n. As for words, this is a non-
decreasing function, but it was proved in [10] that contrary to words, we cannot
distinguish permutations of “minimal” complexity:

Example 2.2. For each unbounded non-decreasing function f(n), we can find a
permutation α on N0 such that ultimately, pα(n) < f(n). The needed permuta-
tion can be defined by the inequalities α[2n−1] < α[2n+1] and α[2n] < α[2n+2]
for all n ≥ 1, and α[2nk − 2] < α[2k − 1] < α[2nk] for a sequence {nk}∞

k=1 which
grows sufficiently fast (see [10] for more details).

In this paper, we prove that by contrary, as soon as we restrict ourselves
to ergodic permutations defined below, the minimal complexity of an ergodic
permutation is n. The ergodic permutations of complexity n are directly related
to Sturmian words which we discuss in the next section.

3 Sturmian Words and Sturmian Permutations

Definition 3.1. An aperiodic infinite word u is called Sturmian if its factor
complexity satisfies pu(n) = n + 1 for all n ∈ N.

Sturmian words are by definition binary and they have the lowest possible
factor complexity among aperiodic infinite words. This extremely popular class of
words admits various types of characterizations of geometric and combinatorial
nature (see, e. g., Chapter 2 of [15]). In this paper, we need their characterization
via irrational rotations on the unit circle found already in the seminal paper [19].

Definition 3.2. For an irrational σ ∈ (0, 1), the rotation by slope σ is the
mapping Rσ from [0, 1) (identified with the unit circle) to itself defined by
Rσ(x) = {x + σ}, where {x} = x − �x� is the fractional part of x.

Considering a partition of [0, 1) into I0 = [0, 1 − σ), I1 = [1 − σ, 1), define an
infinite word sσ,ρ by

sσ,ρ[n] =

{
0 if Rn

σ(ρ) = {ρ + nσ} ∈ I0,

1 if Rn
σ(ρ) = {ρ + nσ} ∈ I1.

We can also define I ′
0 = (0, 1 − σ], I ′

1 = (1 − σ, 1] and denote the corresponding
word by s′

σ,ρ. As it was proved by Morse and Hedlund, Sturmian words on {0, 1}
are exactly words sσ,ρ or s′

σ,ρ.

Ergodic Infinite Permutations of Minimal Complexity 75

The same irrational rotation Rσ can be used to define Sturmian permuta-
tions:

Definition 3.3. A Sturmian permutation β = β(σ, ρ) is defined by its repre-
sentative (b[n]), where b[n] = Rn

σ(ρ) = {ρ + nσ}.
These permutations are obviously related to Sturmian words: indeed, β[i + 1] >
β[i] if and only if s[i] = 0, where s = sσ,ρ. Strictly speaking, the case of s′

corresponds to a permutation β′ defined with the upper fractional part.
Sturmian permutations have been studied in [18]; in particular, it is known

that their complexity is pβ(n) ≡ n.
To continue, we now need a series of properties of a Sturmian word s =

s(σ, ρ). They are either trivial or classical, and the latter can be found, in par-
ticular, in [15].

1. The frequency of ones in s is equal to the slope σ.
2. In any factor of s of length n, the number of ones is either �nσ�, or 	nσ
. In

the first case, we say that the factor is light, in the second case, it is heavy.
3. The factors of s from the same conjugate class are all light or all heavy.
4. Let the continued fraction expansion of σ be σ = [0, 1+d1, d2, . . .]. Consider

the sequence of standard finite words sn defined by

s−1 = 1, s0 = 0, sn = sdn
n−1sn−2 for n > 0.

Then
– The set of bispecial factors of s coincides with the set of words obtained

by erasing the last two symbols from the words sk
nsn−1, where 0 < k ≤

dn+1.
– For each n, we can decompose s as a concatenation

s = p

∞∏
i=1

ski
n sn−1, (1)

where ki = dn+1 or ki = dn+1+1 for all i, and p is a suffix of s
dn+1+1
n sn−1.

– For all n ≥ 0, if sn is light, then all the words sk
nsn−1 for 0 < k ≤ dn+1

(including sn+1) are heavy, and vice versa.
5. A Christoffel word can be defined as a word of the form 0b1 or 1b0, where

b is a bispecial factor of a Sturmian word s. For a given b, both Christoffel
words are also factors of s and are conjugate of each other. Moreover, they
are conjugates of all but one factors of s of that length.

6. The lengths of Christoffel words in s are exactly the lengths of words sk
nsn−1,

where 0 < k ≤ dn+1. Such a word is also conjugate of both Christoffel words
of the respective length obtained from one of them by sending the first symbol
to the end of the word.

The following statement will be needed for our result.

76 S.V. Avgustinovich et al.

Proposition 3.4. Let n be such that {nα} < {iα} for all 0 < i < n. Then the
word sα,0[0..n−1] is a Christoffel word. The same assertion holds if {nα} > {iα}
for all 0 < i < n.

Proof. We will prove the statement for the inequality {nα} < {iα}; the other
case is symmetric. First notice that there are no elements {iα} in the interval
[1 − α, 1 − α + {nα}) for 0 ≤ i < n. Indeed, assuming that for some i we have
1 − α ≤ {iα} < 1 − α + {nα}, we get that 0 ≤ {(i + 1)α} < {nα}, which
contradicts the conditions of the claim.

Next, consider a word sα,1−ε[0..n−1] for 0 < ε < {nα}, i.e., the word obtained
from the previous one by rotating by ε clockwise. Clearly, all the elements except
for s[0] stay in the same interval, so the only element which changes is s[0]:
sα,0[0] = 0, sα,1−ε[0] = 1, sα,0[1..n − 1] = sα,1−ε[1..n − 1]. This means that the
factor sα,0[1..n − 1] is left special.

Now consider a word sα,1−ε′ [0..n − 1] for {nα} < ε′ < mini∈{0<i<n}{iα},
i.e., the word obtained from sα,0[0..n − 1] by rotating by ε′ (i.e., we rotate a
bit more). Clearly, all the elements except for s[0] and s[n − 1] stay in the same
interval, so the only elements which change are s[0] and s[n − 1]: sα,0[0] = 0,
sα,1−ε′ [0] = 1, sα,0[n−1] = 1, sα,1−ε′ [n−1] = 0, sα,0[1..n−2] = sα,1−ε′ [1..n−2].
This means that the factor sα,0[1..n − 2] is right special.

So, the factor sα,0[1..n− 2] is both left and right special and hence bispecial.
By the construction, sα,0[0..n − 1] is a Christoffel word.

The proof is illustrated by Fig. 1, where all the numbers on the circle are
denoted modulo 1. ��

Fig. 1. Intervals for a bispecial word

Note also that in the Sturmian permutation β = β(σ, ρ), we have β[i] <
β[j] for i < j if and only if the respective factor s[i..j − 1] of s is light (and,
symmetrically, β[i] > β[j] if and only if the factor s[i..j − 1] is heavy).

4 Ergodic Permutations

In this section, we define a new notion of an ergodic permutation.
Let (a[i])∞

i=1 be a sequence of real numbers from the interval [0, 1], represent-
ing an infinite permutation, a and p also be real numbers from [0, 1]. We say

Ergodic Infinite Permutations of Minimal Complexity 77

that the probability for any element a[j] to be less than a exists and is equal to
p if

∀ε > 0 ∃N ∈ N ∀n > N ∀j ∈ N

∣∣∣∣#{a[j + k]|0 ≤ k < n, a[j + k] < a}
n

− p

∣∣∣∣ < ε.

In other words, if we substitute all the elements from (a[i]) which are smaller
than a by 1, and those which are bigger by 0, the above condition means that
the uniform frequency of the letter 1 exists and equals p. So, the probability to
be smaller than a is the uniform frequency of the elements which are less than a.
For more on uniform frequencies of letters in words we refer to [9].

We note that this is not exactly probability on the classical sense, since we do
not have a random sequence. But we are interested in permutations where this
“probability” behaves in certain sense like probability of a random sequence
uniformly distributed on [0, 1]:

Definition 4.1. A sequence (a[i])∞
i=1 of real numbers is canonical if and only if

– all the numbers are pairwise distinct;
– for all i we have 0 ≤ a[i] ≤ 1;
– and for all a, the probability for any element a[i] to be less than a is well-

defined and equal to a.

More formally, the last condition should be rephrased as

∀a ∈ [0, 1], ε > 0 ∃N ∈ N ∀n > N, j ∈ N

∣

∣

∣

∣

#{a[j + k]|0 ≤ k < n, a[j + k] < a}
n

− a

∣

∣

∣

∣

< ε.

Remark 4.2. The set {a[i]|i ∈ N} for a canonical sequence (a[i]) is dense on [0, 1].

Remark 4.3. In a canonical sequence, the frequency of elements which fall into
any interval (t1, t2) ⊆ [0, 1] exists and is equal to t2 − t1.

Remark 4.4. Symmetrically to the condition “the probability to be less than a is
a” we can consider the equivalent condition “the probability to be greater than
a is 1 − a”.

Definition 4.5. An infinite permutation α = (αi)∞
i=1 is called ergodic if it has

a canonical representative.

Example 4.6. Since for any irrational σ and for any ρ the sequence of fractional
parts {ρ + nσ} is uniformly distributed in [0, 1), a Sturmian permutation βσ,ρ is
ergodic.

Example 4.7. Consider the sequence

1
2
, 1,

3
4
,
1
4
,
5
8
,
1
8
,
3
8
,
7
8
, · · ·

78 S.V. Avgustinovich et al.

defined as the fixed point of the morphism

ϕtm : [0, 1] �→ [0, 1]2, ϕtm(x) =

{
x
2 + 1

4 , x
2 + 3

4 , if 0 ≤ x ≤ 1
2 ,

x
2 + 1

4 , x
2 − 1

4 , if 1
2 < x ≤ 1.

If can be proved that this sequence is canonical and thus the respective permu-
tation is ergodic. In fact, this permutation, as well as its construction [17], are
closely related to the famous Thue-Morse word [2], and thus it is reasonable to
call it the Thue-Morse permutation.

Proposition 4.8. The canonical representative (a[n]) of an ergodic permutation
α is unique.

Proof. Given α, for each i we define

a[i] = lim
n→∞

#{α[k]|0 ≤ k < n, α[k] < α[i]}
n

and see that, first, this limit must exist since α is ergodic, and second, a[i] is the
only possible value of an element of a canonical representative of α. �

Note, however, that even if all the limits exist, it does not imply the existence
of the canonical representative. Indeed, there is another condition to fulfill: for
different i the limits must be different.

Consider a growing sequence (ni)∞
i=1, ni ∈ N, ni+1 > ni. The respective

subpermutation (α[ni]) will be called N -growing (N -decreasing) if ni+1−ni ≤ N
and α[ni+1] > α[ni] (α[ni+1] < α[ni]) for all i. A subpermutation which is N -
growing or N -decreasing is called N -monotone.

Proposition 4.9. If a permutation has a N -monotone subpermutation for some
N , then it is not ergodic.

Proof. Suppose the opposite and consider a subsequence (a[ni]) of the canonical
representative a corresponding to the N -monotone (say, N -growing) subpermu-
tation (α[ni]). Consider b = limi→∞ a[ni] (which exists) and an ε < 1/N . Let M
be the number such that a[nm] > b − ε for m ≥ M . Then the probability for an
element a[i] to be in the interval [a[nM], b] must be equal to b−a[nM] < ε due to
Remark 4.3. On the other hand, since all a[nm] for m > M are in this interval,
and ni+1 − ni ≤ N , this probability is at least 1/N > ε. A contradiction. �

An element α[i], i > N , of a permutation α is called N -maximal (resp., N -
minimal) if α[i] is greater (resp., less) than all the elements at the distance at
most N from it: α[i] > α[j] (resp., α[i] < α[j]) for all j = i−N, i−N +1, . . . , i−
1, i + 1, . . . , i + N .

Proposition 4.10. In an ergodic permutation α, for each N there exists an
N -maximal and an N -minimal element.

Ergodic Infinite Permutations of Minimal Complexity 79

Proof. Consider a permutation α without N -maximal elements and prove that
it is not ergodic. Suppose first that there exists an element α[n1], n1 > N , in
α which is greater than any of its N left neighbours: α[n1] > α[n1 − i] for all i
from 1 to N . Since α[n1] is not N -maximal, there exist some i ∈ {1, . . . , N} such
that α[n1 + i] > α[n1]. If such i are several, we take the maximal α[n1 + i] and
denote n2 = n1 + i. By the construction, α[n2] is also greater than any of its N
left neighbours, and we can continue the sequence of elements α[n1] < α[n2] <
· · · < α[nk] < · · · . Since for all k we have nk+1 − nk ≤ N , it is an N -growing
subpermutation, and due to the previous proposition, α is not ergodic.

Now suppose that there are no elements in α which are greater than all their
N left neighbours:

For all n > N, there exists some i ∈ {1, . . . , N} such that α[n − i] > α[n]. (2)

We take α[n1] to be the greatest of the first N elements of α and α[n2] to be the
greatest among the elements α[n1 + 1], . . . , α[n1 + N]. Then due to (2) applied
to n2, α[n1] > α[n2]. Moreover, n2 − n1 ≤ N and for all n1 < k < n2 we have
α[k] < α[n2].

Now we take n3 such that α[n3] is the maximal element among α[n2 +
1], . . . , α[n2 + N], and so on. Suppose that we have chosen n1, . . . , ni such that
α[n1] > α[n2] > · · · > α[ni], and

For all j ≤ i and for all k such that nj−1 < k < nj , we have α[k] < α[nj]. (3)

For each new α[ni+1] chosen as the maximal element among α[ni +1], . . . , α[ni +
N], we have ni+1 −ni ≤ N . Due to (2) applied to ni+1 and by the construction,
α[ni+1] < α[l] for some l from ni+1 − N to ni. Because of (3), without loss
of generality we can take l = nj for some j ≤ i. Moreover, we cannot have
α[ni] < α[ni+1] and thus j < i: otherwise ni+1 would have been chosen as nj+1

since it fits the condition of maximality better.
So, we see that α[ni] > α[ni+1], (3) holds for i+1 as well as for i, and thus by

induction the subpermutation α[n1] > · · · > α[ni] > · · · is N -decreasing. Again,
due to the previous proposition, α is not ergodic. �

5 Minimal Complexity of Ergodic Permutations

Proposition 5.1. For any ergodic permutation α, we have pα(n) ≥ n.

Proof. Due to Proposition 4.10, there exists an n-maximal element αi, i > n.
All the n factors of α of length n containing it are different: in each of them, the
maximal element is at a different position. �

The complexity of Sturmian permutations considered in Section 3 is known
to be pα(n) = n [18]. In what follows, we are going to prove that these are the
only ergodic examples of this minimal complexity, and thus the Sturmian con-
struction remains a natural “simplest” example if we restrict ourselves to ergodic
permutations. So, the rest of the section is devoted to the proof of

80 S.V. Avgustinovich et al.

Theorem 5.2. The minimal complexity of an ergodic permutation α is pα(n) ≡
n. The set of ergodic permutations of minimal complexity coincides with the set
of Sturmian permutations.

Since the complexity of ergodic permutations satisfies pα(n) ≥ n due to Proposi-
tion 5.1; and the complexity of Sturmian permutations is pα(n) ≡ n, it remains
to prove just that if pα(n) ≡ n for an ergodic permutation α, then α is Sturmian.

Definition 5.3. Given an infinite permutation α = α[1] · · · α[n] · · · , consider
its underlying infinite word s = s[1] · · · s[n] · · · over the alphabet {0, 1} defined
by

s[i] =

{
0, if α[i] < α[i + 1],
1, otherwise.

Note that in some papers the word s was denoted by γ and considered directly
as a word over the alphabet {<,>}.

It is not difficult to see that a factor s[i + 1..i + n − 1] of s contains only
a part of information on the factor α[i + 1..i + n] of α, i.e., does not define it
uniquely. Different factors of length n − 1 of s correspond to different factors of
length n of α. So,

pα(n) ≥ ps(n − 1).

Together with the above mentioned result of Morse and Hedlund [19], it gives
the following

Proposition 5.4. If pα(n) = n, then the underlying sequence s of α is either
ultimately periodic or Sturmian.

Now we consider different cases separately.

Proposition 5.5. If pα(n) ≡ n for an ergodic permutation α, then its underly-
ing sequence s is aperiodic.

Proof. Suppose the converse and let p be the minimal period of s. If p = 1, then
the permutation α is monotone, increasing or decreasing, so that its complexity
is always 1, a contradiction. So, p ≥ 2. There are exactly p factors of s of length
p − 1: each residue modulo p corresponds to such a factor and thus to a factor
of α of length p. The factor α[kp + i..(k + 1)p + i − 1], where i ∈ {1, . . . , p}, does
not depend on k, but for all the p values of i, these factors are different.

Now let us fix i from 1 to p and consider the subpermutation α[i], α[p +
i], . . . , α[kp+i], It cannot be monotone due to Proposition 4.9, so, there exist
k1 and k2 such that α[k1p+ i] < α[(k1 +1)p+ i] and α[k2p+ i] > α[(k2 +1)p+ i].
So, α[k1p + i..(k1 + 1)p + i] �= α[k2p + i..(k2 + 1)p + i]. We see that each of p
factors of α of length p, uniquely defined by the residue i, can be extended to the
right to a factor of length p + 1 in two different ways, and thus pα(p + 1) ≥ 2p.
Since p > 1 and thus 2p > p + 1, it is a contradiction. �

So, Propositions 5.4 and 5.5 imply that the underlying word s of an ergodic
permutation α of complexity n is Sturmian. Let s = s(σ, ρ), that is,

s[n] = �σ(n + 1) + ρ� − �σn + ρ�.

Ergodic Infinite Permutations of Minimal Complexity 81

In the proofs we will only consider s(σ, ρ), since for s′(σ, ρ) the proofs are sym-
metric.

It follows directly from the definitions that the Sturmian permutation β =
β(σ, ρ) defined by its canonical representative b with b[n] = {σn + ρ} has s as
the underlying word.

Suppose that α is a permutation whose underlying word is s and whose
complexity is n. We shall prove the following statement concluding the proof of
Theorem 5.2:

Lemma 5.6. Let α be a permutation of complexity pα(n) ≡ n whose underlying
word is s(σ, ρ). If α is ergodic, then α = β(σ, ρ).

Proof. Assume the converse, i.e., that α is not equal to β. We will prove that
hence α is not ergodic, which is a contradiction.

Recall that in general, pα(n) ≥ ps(n−1), but here we have the equality since
pα(n) ≡ n and ps(n) ≡ n + 1. It means that a factor u of s of length n − 1
uniquely defines a factor of α of length n which we denote by αu. Similarly,
there is a unique factor βu of β.

Clearly, if u is of length 1, we have αu = βu: if u = 0, then α0 = β0 = (12),
and if u = 1, then α1 = β1 = (21). Suppose now that αu = βu for all u of length
up to n − 1, but there exists a word v of length n such that αv �= βv.

Since for any factor v′ �= v of v we have αv′
= βv′

, the only difference between
αv and βv is the relation between the first and last element: αv[1] < αv[n + 1]
and βv[1] > βv[n + 1], or vice versa. (Note that we number elements of infinite
objects starting with 0 and elements of finite objects starting with 1.)

Consider the factor bv of the canonical representative b of β corresponding
to an occurrence of βv. We have bv = ({τ}, {τ + σ}, . . . , {τ + nσ}) for some τ .

Proposition 5.7. All the numbers {τ + iσ} for 0 < i < n are situated outside
of the interval whose ends are {τ} and {τ + nσ}.
Proof. Consider the case of βv[1] < βv[n + 1] (meaning {τ} < {τ + nσ}) and
αv[1] > αv[n + 1]; the other case is symmetric. Suppose by contrary that there
is an element {τ + iσ} such that {τ} < {τ + iσ} < {τ + nσ} for some i. It
means that βv[1] < βv[i] < βv[n + 1]. But the relations between the 1st and the
ith elements, as well as between the ith and (n + 1)st elements, are equal in αv

and in βv, so, αv[1] < αv[i] and αv[i] < αv[n + 1]. Thus, αv[1] < αv[n + 1], a
contradiction. �

Proposition 5.8. The word v belongs to the conjugate class of a Christoffel
factor of s, or, which is the same, of a factor of the form sk

nsn−1 for 0 < k ≤
dn+1.

Proof. The condition “For all 0 < i < n, the number {τ + iσ} is not situated
between {τ} and {τ + nσ}” is equivalent to the condition “{nα} < {iα} for
all 0 < i < n” considered in Proposition 3.4 and corresponding to a Christoffel
word of the same length. The set of factors of s of length n is exactly the set

82 S.V. Avgustinovich et al.

{sα,τ [0..n − 1]|τ ∈ [0, 1]}. These words are n conjugates of the Christoffel word
plus one singular factor corresponding to {τ} and {τ + nσ} situated in the
opposite ends of the interval [0, 1] (“close” to 0 and “close” to 1), so that all the
other points {τ + iσ} are between them.

Example 5.9. Consider a Sturmian word s of the slope σ ∈ (1/3, 2/5). Then the
factors of s of length 5 are 01001, 10010, 00101, 01010, 10100, 00100. Fig. 2
depicts permutations of length 6 with their underlying words. In the picture
the elements of the permutations are denoted by points; the order between two
elements is defined by which element is “higher” on the picture. We see that in
the first five cases, the relation between the first and the last elements can be
changed, and in the last case, it cannot since there are other elements between
them. Indeed, the first five words are exactly the conjugates of the Christoffel
word 1 010 0, where the word 010 is bispecial.

Fig. 2. Five candidates for v and a non-candidate word

Note also that due to Proposition 5.8, the shortest word v such that αv �= βv

is a conjugate of some sk
nsn−1 for 0 < k ≤ dn+1.

In what follows without loss of generality we suppose that the word sn is
heavy and thus sn−1 and sk

nsn−1 for all 0 < k ≤ dn+1 are light.
Consider first the easiest case: v = s

dn+1
n sn−1 = sn+1. This word is light, so,

βsn+1 [1] < βsn+1 [|sn+1| + 1]. Since the first and the last elements of αsn+1 must
be in the other relation, we have αsn+1 [1] > αsn+1 [|sn+1|+1]. At the same time,
since sn is shorter than sn+1, we have αsn = βsn and in particular, since sn is
heavy, αsn [1] > αsn [|sn| + 1].

Due to (1), the word s after a finite prefix can be represented as an infinite
concatenation of occurrences of sn+1 and sn: s = p

∏∞
i=1 sti

n sn+1, where ti =
ki − dn+1 = 0 or 1. But both αsn and αsn+1 are permutations with the last
elements less than the first ones. Moreover, if we have a concatenation uw of
factors u and w of s, we see that the first symbol of αw is the last symbol of αu:
αu[|u| + 1] = αw[1]. So, an infinite sequence of factors sn and sn+1 of s gives
us a chain of the first elements of respective factors of the permutation α, and
each next elements is less than the previous one. This chain is a |sn+1|-monotone
subpermutation, and thus α is not ergodic.

Now let us consider the general case: v is from the conjugate class of st
nsn−1,

where 0 < t ≤ dn+1. We consider two cases: the word st
nsn−1 can be cut either

in one of the occurrences of sn, or in the suffix occurrence of sn−1.

Ergodic Infinite Permutations of Minimal Complexity 83

In the first case, v = r1s
l
nsn−1s

t−l−1
n r2, where sn = r2r1 and 0 ≤ l < t. Then

s = p

∞∏
i=1

ski
n sn−1 = pr2(r1r2)k1−l−1

∞∏
i=2

v(r1r2)ki−t. (4)

We see that after a finite prefix, the word s is an infinite catenation of words v and
r1r2. The word r1r2 is shorter than v and heavy since it is a conjugate of sn. So,
αr1r2 = βr1r2 and in particular, αr1r2 [1] > αr1r2 [|r1r2| + 1]. The word v is light
since it is a conjugate of st

nsn−1, but the relation between the first and the last
elements of αv is different than between those in βv, that is, αv[1] > αv[|v| + 1].
But as above, in a concatenation uw, we have αu[|u| + 1] = αw[1], so, we see a
|v|-decreasing subpermutation in α. So, α is not ergodic.

Analogous arguments work in the second case, when st
nsn−1 is cut somewhere

in the suffix occurrence of sn−1: v = r1s
t
nr2, where sn−1 = r2r1. Note that sn−1

is a prefix of sn, and thus sn = r2r3 for some r3. In this case,

s = p

∞∏
i=1

ski
n sn−1 = pr2(r3r2)k1

∞∏
i=2

v(r3r2)ki−t. (5)

As above, we see that after a finite prefix, s is an infinite catenation of the heavy
word r3r2, a conjugate of sn, and the word v. For both words, the respective
factors of α have the last element less than the first one, which gives a |v|-
decreasing subpermutation. So, α is not ergodic.

The case when sn is not heavy but light is considered symmetrically and gives
rise to |v|-increasing subpermutations. This concludes the proof of Theorem 5.2.

References

1. Allouche, J.-P., Shallit, J.: Automatic sequences – theory, applications, generaliza-
tions. Cambridge University Press (2003)

2. Allouche, J.-P., Shallit, J.: The ubiquitous Prouhet-Thue-Morse sequence.
In: Sequences and Their Applications, Discrete Mathematics and Theoretical
Computer Science, pp. 1–16. Springer, London (1999)

3. Amigó, J.: Permutation Complexity in Dynamical Systems - Ordinal Patterns.
Permutation Entropy and All That, Springer Series in Synergetics (2010)

4. Avgustinovich, S.V., Frid, A., Kamae, T., Salimov, P.: Infinite permutations of
lowest maximal pattern complexity. Theoretical Computer Science 412, 2911–2921
(2011)

5. Avgustinovich, S.V., Kitaev, S., Pyatkin, A., Valyuzhenich, A.: On square-free
permutations. J. Autom. Lang. Comb. 16(1), 3–10 (2011)

6. Bandt, C., Keller, G., Pompe, B.: Entropy of interval maps via permutations.
Nonlinearity 15, 1595–1602 (2002)

7. Cassaigne, J., Nicolas, F.: Factor complexity. Combinatorics, automata and number
theory, Encyclopedia Math. Appl. 135, 163–247 (2010). Cambridge Univ. Press

8. Elizalde, S.: The number of permutations realized by a shift. SIAM J. Discrete
Math. 23, 765–786 (2009)

84 S.V. Avgustinovich et al.

9. Ferenczi, S., Monteil, T.: Infinite words with uniform frequencies, and invariant
measures. Combinatorics, automata and number theory. Encyclopedia Math. Appl.
135, 373–409 (2010). Cambridge Univ. Press

10. Fon-Der-Flaass, D.G., Frid, A.E.: On periodicity and low complexity of infinite
permutations. European J. Combin. 28, 2106–2114 (2007)

11. Frid, A.: Fine and Wilf’s theorem for permutations. Sib. Elektron. Mat. Izv. 9,
377–381 (2012)

12. Frid, A., Zamboni, L.: On automatic infinite permutations. Theoret. Inf. Appl. 46,
77–85 (2012)

13. Kamae, T., Zamboni, L.: Sequence entropy and the maximal pattern complexity
of infinite words. Ergodic Theory and Dynamical Systems 22, 1191–1199 (2002)

14. Kamae, T., Zamboni, L.: Maximal pattern complexity for discrete systems. Ergodic
Theory and Dynamical Systems 22, 1201–1214 (2002)

15. Lothaire, M.: Algebraic combinatorics on words. Cambridge University Press
(2002)

16. Makarov, M.: On permutations generated by infinite binary words. Sib. Elektron.
Mat. Izv. 3, 304–311 (2006)

17. Makarov, M.: On an infinite permutation similar to the Thue-Morse word. Discrete
Math. 309, 6641–6643 (2009)

18. Makarov, M.: On the permutations generated by Sturmian words. Sib. Math. J.
50, 674–680 (2009)

19. Morse, M., Hedlund, G.: Symbolic dynamics II: Sturmian sequences. Amer. J.
Math. 62, 1–42 (1940)

20. Valyuzhenich, A.: On permutation complexity of fixed points of uniform binary
morphisms. Discr. Math. Theoret. Comput. Sci. 16, 95–128 (2014)

21. Widmer, S.: Permutation complexity of the Thue-Morse word. Adv. Appl. Math.
47, 309–329 (2011)

22. Widmer, S.: Permutation complexity related to the letter doubling map, WORDS
(2011)

Diverse Palindromic Factorization
Is NP-complete

Hideo Bannai1, Travis Gagie2,3(B), Shunsuke Inenaga1,
Juha Kärkkäinen2, Dominik Kempa2,3, Marcin Pi ↪atkowski4,

Simon J. Puglisi2,3, and Shiho Sugimoto1

1 Department of Informatics, Kyushu University, Fukuoka, Japan
2 Department of Computer Science, University of Helsinki, Helsinki, Finland

3 Helsinki Institute for Information Technology, Espoo, Finland
travis.gagie@gmail.com

4 Faculty of Mathematics and Computer Science,
Nicolaus Copernicus University, Toruń, Poland

Abstract. We prove that it is NP-complete to decide whether a given
string can be factored into palindromes that are each unique in the fac-
torization.

1 Introduction

Several papers have appeared on the subject of palindromic factorization. The
palindromic length of a string is the minimum number of palindromic substrings
into which the string can be factored. Notice that, since a single symbol is a
palindrome, the palindromic length of a string is always defined and at most
the length of the string. Ravsky [8] proved a tight bound on the maximum
palindromic length of a binary string in terms of its length. Frid, Puzynina,
and Zamboni [4] conjectured that any infinite string in which the palindromic
length of any finite substring is bounded, is ultimately periodic. Their work led
other researchers to consider how to efficiently compute a string’s palindromic
length and give a minimum palindromic factorization. It is not difficult to design
a quadratic-time algorithm that uses linear space, but doing better than that
seems to require some string combinatorics.

Alatabbi, Iliopoulos and Rahman [1] first gave a linear-time algorithm for
computing a minimum factorization into maximal palindromes, if such a fac-
torization exists. Notice that abaca cannot be factored into maximal palin-
dromes, for example, because its maximal palindromes are a, aba, a, aca and a.
Fici, Gagie, Kärkkäinen and Kempa [3] and I, Sugimoto, Inenaga, Bannai and
Takeda [6] independently then described essentially the same O(n log n)-time

T. Gagie and S.J. Puglisi—Supported by grants 268324, 258308 and 284598 from
the Academy of Finland.
M. Pi ↪atkowski—Supported by a research fellowship within the project “Enhancing
Educational Potential of Nicolaus Copernicus University in the Disciplines of Math-
ematical and Natural Sciences” (project no. POKL.04.01.01-00-081/10).

c© Springer International Publishing Switzerland 2015
I. Potapov (Ed.): DLT 2015, LNCS 9168, pp. 85–96, 2015.
DOI: 10.1007/978-3-319-21500-6 6

86 H. Bannai et al.

algorithm for computing a minimum palindromic factorization. Shortly there-
after, Kosolobov, Rubinchik and Shur [7] gave an algorithm for recognizing
strings with a given palindromic length. Their result can be used to compute
the palindromic length � of a string of length n in O(n� log �) time. We also note
that Gawrychowski and Uznański [5] used similar techniques as Fici et al. and I
et al., for finding approximately the longest palindrome in a stream.

We call a factorization diverse if each of the factors is unique. Some well-
known factorizations, such as the LZ77 [10] and LZ78 [11] parses, are diverse
(except that the last factor may have appeared before). Fernau, Manea, Mercaş
and Schmid [2] very recently proved that it is NP-complete to determine whether
a given string has a diverse factorization of size at least k. It seems natural
to consider the problem of determining whether a given string has a diverse
factorization into palindromes. For example, bgikkpps and bgikpspk each have
exactly one such factorization — i.e., (b, g, i, kk, pp, s) and (b, g, i, kpspk),
respectively — but bgkpispk has none. This problem is obviously in NP and in
this paper we prove that it is NP-hard and, thus, NP-complete. Some people
might dismiss as doubly useless a lower bound for a problem with no apparent
application; nevertheless, we feel the proof is pretty (albeit somewhat intricate)
and we would like to share it. We conjecture that it is also NP-complete to
determine whether a given string has a palindromic factorization in which each
factor appears at most a given number k > 1 times.

2 Outline

The circuit satisfiability problem was one of the first to be proven NP-complete
and is often the first taught in undergraduate courses. It asks whether a given
Boolean circuit C is satisfiable, i.e., has an assignment to its inputs that makes
its single output true. We will show how to build, in time linear in the size
of C, a string that has a diverse palindromic factorization if and only if C is
satisfiable. It follows that diverse palindromic factorization is also NP-hard. Our
construction is similar to the Tseitin Transform [9] from Boolean circuits to CNF
formulas.

Because AND, OR and NOT gates can be implemented with a constant
number of NAND gates, we assume without loss of generality that C is composed
only of NAND gates with two inputs and one output each, and splitters that each
divide one wire into two. Furthermore, we assume each wire in C is labelled with
a unique symbol (considering a split to be the end of an incoming wire and the
beginning of two new wires, so all three wires have different labels). For each such
symbol a, and some auxiliary symbols we introduce during our construction, we
use as characters in our construction three related symbols: a itself, ā and xa.
We indicate an auxiliary symbol related to a by writing a′ or a′′. We write xj

a to
denote j copies of xa. We emphasize that, despite their visual similarity, a and
ā are separate characters, which play complementary roles in our reduction. We
use $ and # as generic separator symbols, which we consider to be distinct for
each use; to prevent confusion, we add different superscripts to their different
uses within the same part of the construction.

Diverse Palindromic Factorization Is NP-complete 87

We can build a sequence C0, . . . , Ct of subcircuits such that C0 is empty,
Ct = C and, for 1 ≤ i ≤ t, we obtain Ci from Ci−1 by one of the following
operations:

– adding a new wire (which is both an input and an output in Ci),
– splitting an output of Ci−1 into two outputs,
– making two outputs of Ci−1 the inputs of a new NAND gate.

We will show how to build in time linear in the size of C, inductively and in
turn, a sequence of strings S1, . . . , St such that Si represents Ci according to the
following definitions:

Definition 1. A diverse palindromic factorization P of a string Si encodes an
assignment τ to the inputs of a circuit Ci if the following conditions hold:

– if τ makes an output of Ci labelled a true, then a, xa and xaāxa are complete
factors in P but ā, xaaxa and xj

a are not for j > 1;
– if τ makes an output of Ci labelled a false, then ā, xa and xaaxa are complete

factors in P but a, xaāxa and xj
a are not for j > 1;

– if a is a label in C but not in Ci, then none of a, ā, xaaxa, xaāxa and xj
a

for j ≥ 1 are complete factors in P .

Definition 2. A string Si represents a circuit Ci if each assignment to the
inputs of Ci is encoded by some diverse palindromic factorization of Si, and each
diverse palindromic factorization of Si encodes some assignment to the inputs
of Ci.

Once we have St, we can easily build in constant time a string S that has
a diverse palindromic factorization if and only if C is satisfiable. To do this, we
append $#xaaxa to St, where $ and # are symbols not occurring in St and
a is the label on C’s output. Since $ and # do not occur in St and occur as
a pair of consecutive characters in S, they must each be complete factors in
any palindromic factorization of S. It follows that there is a diverse palindromic
factorization of S if and only if there is a diverse palindromic factorization of
St in which xaaxa is not a factor, which is the case if and only if there is an
assignment to the inputs of C that makes its output true.

3 Adding a Wire

Suppose Ci is obtained from Ci−1 by adding a new wire labelled a. If i = 1
then we set Si = xaaxaāxa, whose two diverse palindromic factorizations
(xa, a, xaāxa) and (xaaxa, ā, xa) encode the assignments true and false to
the wire labelled a, which is both the input and output in Ci. If i > 1 then we
set

Si = Si−1 $# xaaxaāxa ,

where $ and # are symbols not occurring in Si−1 and not equal to a′, a′ or xa′

for any label a′ in C.

88 H. Bannai et al.

Since $ and # do not occur in Si−1 and occur as a pair of consecu-
tive characters in Si, they must each be complete factors in any palindromic
factorization of Si. Therefore, any diverse palindromic factorization of Si is
the concatenation of a diverse palindromic factorization of Si−1 and either
($, #, xa, a, xaāxa) or ($, #, xaaxa, ā, xa). Conversely, any diverse palin-
dromic factorization of Si−1 can be extended to a diverse palindromic factoriza-
tion of Si by appending either ($, #, xa, a, xaāxa) or ($, #, xaaxa, ā, xa).

Assume Si−1 represents Ci−1. Let τ be an assignment to the inputs of Ci

and let P be a diverse palindromic factorization of Si−1 encoding τ restricted
to the inputs of Ci−1. If τ makes the input (and output) of Ci labelled a true,
then P concatenated with ($, #, xa, a, xaāxa) is a diverse palindromic factor-
ization of Si that encodes τ . If τ makes that input false, then P concatenated
with ($, #, xaaxa, ā, xa) is a diverse palindromic factorization of Si that
encodes τ . Therefore, each assignment to the inputs of Ci is encoded by some
diverse palindromic factorization of Si.

Now let P be a diverse palindromic factorization of Si and let τ be the
assignment to the inputs of Ci−1 that is encoded by a prefix of P . If P ends
with ($, #, xa, a, xaāxa) then P encodes the assignment to the inputs of
Ci that makes the input labelled a true and makes the other inputs true or
false according to τ . If P ends with ($, #, xaaxa, ā, xa) then P encodes the
assignment to the inputs of Ci that makes the input labelled a false and makes
the other inputs true or false according to τ . Therefore, each diverse palindromic
factorization of Si encodes some assignment to the inputs of Ci.

Lemma 1. We can build a string S1 that represents C1. If we have a string
Si−1 that represents Ci−1 and Ci is obtained from Ci−1 by adding a new wire,
then in constant time we can append symbols to Si−1 to obtain a string Si that
represents Ci.

4 Splitting a Wire

Now suppose Ci is obtained from Ci−1 by splitting an output of Ci−1 labelled a
into two outputs labelled b and c. We set

S′
i = Si−1 $# x3

ab′xaaxac′x5
a $′#′ x7

ab′xaāxac′x9
a ,

where $, $′, #, #′, b′, b′, c′ and c′ are symbols not occurring in Si−1 and not
equal to a′, a′ or xa′ for any label a′ in C.

Since $, $′, # and #′ do not occur in Si−1 and occur as pairs of consecutive
characters in S′

i, they must each be complete factors in any palindromic factoriza-
tion of S′

i. Therefore, a simple case analysis shows that any diverse palindromic
factorization of S′

i is the concatenation of a diverse palindromic factorization of
Si−1 and one of

Diverse Palindromic Factorization Is NP-complete 89

($, #, x3
a, b′, xaaxa, c′, x5

a, $′, #′, x2
a, x4

a, xab′xa, ā, xac′xa, x8
a) ,

($, #, x3
a, b′, xaaxa, c′, x5

a, $′, #′, x4
a, x2

a, xab′xa, ā, xac′xa, x8
a) ,

($, #, x3
a, b′, xaaxa, c′, x5

a, $′, #′, x6
a, xab′xa, ā, xac′xa, x8

a) ,

($, #, x2
a, xab′xa, a, xac′xa, x4

a, $′, #′, x7
a, b′, xaāxa, c′, x3

a, x6
a) ,

($, #, x2
a, xab′xa, a, xac′xa, x4

a, $′, #′, x7
a, b′, xaāxa, c′, x6

a, x3
a) ,

($, #, x2
a, xab′xa, a, xac′xa, x4

a, $′, #′, x7
a, b′, xaāxa, c′, x9

a) .

In any diverse palindromic factorization of S′
i, therefore, either b′ and c′ are

complete factors but b′ and c′ are not, or vice versa.
Conversely, any diverse palindromic factorization of Si−1 in which a, xa and

xaāxa are complete factors but ā, xaaxa and xj
a are not for j > 1, can be

extended to a diverse palindromic factorization of S′
i by appending either of

($, #, x3
a, b′, xaaxa, c′, x5

a, $′, #′, x2
a, x4

a, xab′xa, ā, xac′xa, x8
a) ,

($, #, x3
a, b′, xaaxa, c′, x5

a, $′, #′, x6
a, xab′xa, ā, xac′xa, x8

a) ;

any diverse palindromic factorization of Si−1 in which ā, xa and xaaxa are
complete factors but a, xaāxa and xj

a are not for j > 1, can be extended to a
diverse palindromic factorization of S′

i by appending either of

($, #, x2
a, xab′xa, a, xac′xa, x4

a, $′, #′, x7
a, b′, xaāxa, c′, x3

a, x6
a) ,

($, #, x2
a, xab′xa, a, xac′xa, x4

a, $′, #′, x7
a, b′, xaāxa, c′, x9

a) .

We set

Si = S′
i $′′#′′ xbbxbb

′xbb′xbb̄xb $′′′#′′′ xccxcc
′xcc′xcc̄xc ,

where $′′, $′′′, #′′ and #′′′ are symbols not occurring in S′
i and not equal to a′,

a′ or xa′ for any label a′ in C. Since $′′, $′′′, #′′ and #′′′ do not occur in S′
i

and occur as pairs of consecutive characters in S′
i, they must each be complete

factors in any palindromic factorization of Si. Therefore, any diverse palindromic
factorization of Si is the concatenation of a diverse palindromic factorization of
S′

i and one of

($′′, #′′, xb, b, xbb
′xb, b′, xbb̄xb, $′′′, #′′′, xc, c, xcc

′xc, c′, xcc̄xc) ,

($′′, #′′, xbbxb, b′, xbb′xb, b̄, xb, $′′′, #′′′, xccxc, c′, xcc′xc, c̄, xc) .

Conversely, any diverse palindromic factorization of S′
i in which b′ and c′ are

complete factors but b′ and c′ are not, can be extended to a diverse palindromic
factorization of Si by appending

($′′, #′′, xb, b, xbb
′xb, b′, xbb̄xb, $′′′, #′′′, xc, c, xcc

′xc, c′, xcc̄xc) ;

any diverse palindromic factorization of S′
i in which b′ and c′ are complete factors

but b′ and c′ are not, can be extended to a diverse palindromic factorization of
Si by appending

($′′, #′′, xbbxb, b′, xbb′xb, b̄, xb, $′′′, #′′′, xccxc, c′, xcc′xc, c̄, xc) .

90 H. Bannai et al.

Assume Si−1 represents Ci−1. Let τ be an assignment to the inputs of Ci−1

and let P be a diverse palindromic factorization of Si−1 encoding τ . If τ makes
the output of Ci−1 labelled a true, then P concatenated with, e.g.,

($, #, x3
a, b′, xaaxa, c′, x5

a, $′, #′, x2
a, x4

a, xab′xa, ā, xac′xa, x8
a,

$′′, #′′, xb, b, xbb
′xb, b′, xbb̄xb, $′′′, #′′′, xc, c, xcc

′xc, c′, xcc̄xc)

is a diverse palindromic factorization of Si. Notice b, c, xb, xc, xbb̄xb and xcc̄xc

are complete factors but b̄, c̄, xbbxb, xccxc, xj
b and xj

c for j > 1 are not. Therefore,
this concatenation encodes the assignment to the inputs of Ci that makes them
true or false according to τ .

If τ makes the output of Ci−1 labelled a false, then P concatenated with,
e.g.,

($, #, x2
a, xab′xa, a, xac′xa, x4

a, $′, #′, x7
a, b′, xaāxa, c′, x3

a, x6
a,

$′′, #′′, xbbxb, b′, xbb′xb, b̄, xb, $′′′, #′′′, xccxc, c′, xcc′xc, c̄, xc)

is a diverse palindromic factorization of Si. Notice b̄, c̄, xb, xc, xbbxb and xccxc are
complete factors but b, c, xbb̄xb, xcc̄xc, xj

b and xj
c for j > 1 are not. Therefore, this

concatenation encodes the assignment to the inputs of Ci that makes them true
or false according to τ . Since Ci−1 and Ci have the same inputs, each assignment
to the inputs of Ci is encoded by some diverse palindromic factorization of Si.

Now let P be a diverse palindromic factorization of Si and let τ be the
assignment to the inputs of Ci−1 that is encoded by a prefix of P . If P ends with
any of

($, #, x3
a, b′, xaaxa, c′, x5

a, $′, #′, x2
a, x4

a, xab′xa, ā, xac′xa, x8
a) ,

($, #, x3
a, b′, xaaxa, c′, x5

a, $′, #′, x4
a, x2

a, xab′xa, ā, xac′xa, x8
a) ,

($, #, x3
a, b′, xaaxa, c′, x5

a, $′, #′, x6
a, xab′xa, ā, xac′xa, x8

a)

followed by

($′′, #′′, xb, b, xbb
′xb, b′, xbb̄xb, $′′′, #′′′, xc, c, xcc

′xc, c′, xcc̄xc) ,

then a must be a complete factor in the prefix of P encoding τ , so τ must make
the output of Ci−1 labelled a true. Since b, c, xb, xc, xbb̄xb and xcc̄xc are complete
factors in P but b̄, c̄, xbbxb, xccxc, xj

b and xj
c for j > 1 are not, P encodes the

assignment to the inputs of Ci that makes them true or false according to τ .
If P ends with any of

($, #, x2
a, xab′xa, a, xac′xa, x4

a, $′, #′, x7
a, b′, xaāxa, c′, x3

a, x6
a) ,

($, #, x2
a, xab′xa, a, xac′xa, x4

a, $′, #′, x7
a, b′, xaāxa, c′, x6

a, x3
a) ,

($, #, x2
a, xab′xa, a, xac′xa, x4

a, $′, #′, x7
a, b′, xaāxa, c′, x9

a)

followed by

($′′, #′′, xbbxb, b′, xbb′xb, b̄, xb, $′′′, #′′′, xccxc, c′, xcc′xc, c̄, xc) ,

Diverse Palindromic Factorization Is NP-complete 91

then ā must be a complete factor in the prefix of P encoding τ , so τ must
make the output of Ci−1 labelled a false. Since b̄, c̄, xb, xc, xbbxb and xccxc are
complete factors but b, c, xbb̄xb, xcc̄xc, xj

b and xj
c for j > 1 are not, P encodes

the assignment to the inputs of Ci that makes them true or false according to τ .
Since these are all the possibilities for how P can end, each diverse palin-

dromic factorization of Si encodes some assignment to the inputs of Ci. This
gives us the following lemma:

Lemma 2. If we have a string Si−1 that represents Ci−1 and Ci is obtained
from Ci−1 by splitting an output of Ci−1 into two outputs, then in constant time
we can append symbols to Si−1 to obtain a string Si that represents Ci.

5 Adding a NAND Gate

Finally, suppose Ci is obtained from Ci−1 by making two outputs of Ci−1 labelled
a and b the inputs of a new NAND gate whose output is labelled c. Let C ′

i−1 be
the circuit obtained from Ci−1 by splitting the output of Ci−1 labelled a into
two outputs labelled a1 and a2, where a1 and a2 are symbols we use only here.
Assuming Si−1 represents Ci−1, we can use Lemma 2 to build in constant time
a string S′

i−1 representing C ′
i−1. We set

S′
i = S′

i−1 $# x3
c′a′

1xc′a1xc′a1xc′a′
1x

5
c′

$′#′ x7
c′a′

2xc′a2xc′a2xc′a′
2x

9
c′

$′′#′′ x11
c′ b′xc′bxc′ b̄xc′b′x13

c′ ,

where all of the symbols in the suffix after S′
i−1 are ones we use only here.

Since $, $′, $′′, $′′′, # and #′ do not occur in Si−1 and occur as pairs of
consecutive characters in S′

i, they must each be complete factors in any palin-
dromic factorization of S′

i. Therefore, any diverse palindromic factorization of
S′

i consists of

1. a diverse palindromic factorization of S′
i−1,

2. ($, #),
3. a diverse palindromic factorization of x3

c′a′
1xc′a1xc′a1xc′a′

1x
5
c′ ,

4. ($′, #′),
5. a diverse palindromic factorization of x7

c′a′
2xc′a2xc′a2xc′a′

2x
9
c′ ,

6. ($′′, #′′),
7. a diverse palindromic factorization of x11

c′ b′xc′bxc′ b̄xc′b′x13
c′ .

If a1 is a complete factor in the factorization of S′
i−1, then the diverse palin-

dromic factorization of
x3

c′a′
1xc′a1xc′a1xc′a′

1x
5
c′

must include either

(a′
1, xc′a1xc′ , a1, xc′a′

1xc′) or (a′
1, xc′a1xc′ , a1, xc′ , a′

1) .

92 H. Bannai et al.

Notice that in the former case, the factorization need not contain xc′ . If a1

is a complete factor in the factorization of S′
i−1, then the diverse palindromic

factorization of
x3

c′a′
1xc′a1xc′a1xc′a′

1x
5
c′

must include either

(xc′a′
1xc′ , a1, xc′a1xc′ , a′

1) or (a′
1, xc′ , a1, xc′a1xc′ , a′

1) .

Again, in the former case, the factorization need not contain xc′ . A simple case
analysis shows analogous propositions hold for a2 and b; we leave the details for
the full version of this paper.

We set

S′′
i = S′

i $†#† x15
c′ a′

1xc′c′xc′b′x17
c′ $††#†† x19

c′ a′
2xc′dxc′b′x21

c′ ,

where $†, #†, $††, #††, c′ and d are symbols we use only here. Any diverse
palindromic factorization of S′′

i consists of

1. a diverse palindromic factorization of S′
i,

2. ($†, #†),
3. a diverse palindromic factorization of x15

c′ a′
1xc′c′xc′b′x17

c′ ,
4. ($††, #††),
5. a diverse palindromic factorization of x19

c′ a′
2xc′dxc′b′x21

c′ .

Since a1 and a2 label outputs in C ′
i−1 split from the same output in Ci−1,

it follows that a1 is a complete factor in a diverse palindromic factorization of
S′

i−1 if and only if a2 is. Therefore, we need consider only four cases:

– The factorization of S′
i−1 includes a1, a2 and b as complete factors, so the

factorization of S′
i includes as complete factors either xc′a′

1xc′ , or a′
1 and xc′ ;

either xc′a′
2xc′ , or a′

2 and xc′ ; either xc′b′xc′ , or b′ and xc′ ; and b′. Trying all
the combinations — there are only four, since xc′ can appear as a complete
factor at most once — shows that any diverse palindromic factorization of
S′′

i includes one of

(a′
1, xc′c′xc′ , b′, . . . , a′

2, xc′ , d, xc′b′xc′) ,

(a′
1, xc′c′xc′ , b′, . . . , xc′a′

2xc′ , d, xc′b′xc′) ,

with the latter only possible if xc′ appears earlier in the factorization.
– The factorization of S′

i−1 includes a1, a2 and b as complete factors, so the
factorization of S′

i includes as complete factors either xc′a′
1xc′ , or a′

1 and xc′ ;
either xc′a′

2xc′ , or a′
2 and xc′ ; b′; and either xc′b′xc′ , or b′ and xc′ . Trying

all the combinations shows that any diverse palindromic factorization of S′′
i

includes one of

(a′
1, xc′ , c′, xc′b′xc′ , . . . , a′

2, xc′dxc′ , b′) ,

(xc′a′
1xc′ , c′, xc′b′xc′ , . . . , a′

2, xc′dxc′ , b′) ,

with the latter only possible if xc′ appears earlier in the factorization.

Diverse Palindromic Factorization Is NP-complete 93

– The factorization of S′
i−1 includes a1, a2 and b as complete factors, so the fac-

torization of S′
i includes as complete factors a′

1; a′
2; either xc′b′xc′ , or b′ and

xc′ ; and b′. Trying all the combinations shows that any diverse palindromic
factorization of S′′

i includes one of

(xc′a′
1xc′ , c′, xc′ , b′, . . . , xc′a′

2xc′ , d, xc′b′xc′) ,

(xc′a′
1xc′ , c′, xc′b′xc′ , . . . , xc′a′

2xc′ , d, xc′b′xc′) ,

with the latter only possible if xc′ appears earlier in the factorization.
– The factorization of S′

i−1 includes a1, a2 and b as complete factors, so the
factorization of S′

i includes as complete factors a′
1; a′

2; b′; and either xc′b′xc′ ,
or b′ and xc′ . Trying all the combinations shows that any diverse palindromic
factorization of S′′

i that extends the factorization of S′
i includes one of

(xc′a′
1xc′ , c′, xc′b′xc′ , . . . , xc′a′

2xc′ , d, xc′ , b) ,

(xc′a′
1xc′ , c′, xc′b′xc′ , . . . , xc′a′

2xc′ , d, xc′b′xc′) ,

with the latter only possible if xc′ appears earlier in the factorization.

Summing up, any diverse palindromic factorization of S′′
i always includes xc′

and includes either xc′c′xc′ if the factorization of S′
i−1 includes a1, a2 and b as

complete factors, or c′ otherwise.
We set

S′′′
i = S′′

i $†††#††† x23
c′ c′′xc′c′xc′c′xc′c′′x25

c′ ,

where $††† and #††† are symbols we use only here. Any diverse palindromic
factorization of S′′′

i consists of

1. a diverse palindromic factorization of S′′
i ,

2. ($†††, #†††),
3. a diverse palindromic factorization of x23

c′ c′′xc′c′xc′c′xc′c′′x25
c′ .

Since xc′ must appear as a complete factor in the factorization of S′′
i , if c′ is

a complete factor in the factorization of S′′
i , then the factorization of

x23
c′ c′′xc′c′xc′c′xc′c′′x25

c′

must include
(c′′, xc′c′xc′ , c′, xc′c′′xc′) ;

otherwise, it must include

(xc′c′′xc′ , c′, xc′c′xc′ , c′′) .

That is, the factorization of x23
c′ c′′xc′c′xc′c′xc′c′′x25

c′ includes c′′, xc′ and xc′c′′xc′

but not c′′ or xc′c′′xc′ , if and only if the factorization of S′′
i includes c′; otherwise,

it includes c′′, xc′ and xc′c′′xc′ but not c′′ or xc′c′′xc′ .
We can slightly modify and apply the results in Section 4 to build in constant

time a string T such that in any diverse palindromic factorization of

Si = S′′′
i $‡#‡ T ,

94 H. Bannai et al.

if c′′ is a complete factor in the factorization of S′′′, then c, xc and xcc̄xc are
complete factors in the factorization of T but c̄, xccxc and xj

c are not for j > 1;
otherwise, c̄, xc and xccxc are complete factors but c, xcc̄xc and xj

c are not for
j > 1. Again, we leave the details for the full version of this paper.

Assume Si−1 represents Ci−1. Let τ be an assignment to the inputs of Ci−1

and let P be a diverse palindromic factorization of Si−1 encoding τ . By Lemma 2
we can extend P to P ′ so that it encodes the assignment to the inputs of C ′

i−1

that makes them true or false according to τ . Suppose τ makes the output of
Ci−1 labelled a true but the output labelled b false. Then P ′ concatenated with,
e.g.,

($, #, x3
c′ , a′

1, xc′a1xc′ , a1, xc′a′
1xc′ , x4

c ,

$′, #′, x7
c′ , a′

2, xc′a2xc′ , a2, xc′a′
2xc′ , x8

c′ ,

$′′, #′′, x10
c′ , xc′b′xc′ , b, xc′ b̄xc′ , b′, x13

c′)

is a diverse palindromic factorization P ′′ of S′
i which, concatenated with, e.g.,

($†, #†, x15
c′ , a′

1, xc′ , c′, xc′b′xc′ , x16
c′ ,

$‡, #‡, x19
c′ , a′

2, xc′dxc′ , b′, x21
c′)

is a diverse palindromic factorization P ′′′ of S′′
i which, concatenated with, e.g.,

($†††, #†††, x23
c′ , c′′, xc′c′xc′ , c′, xc′c′′xc′ , x24

c′)

is a diverse palindromic factorization P † of S′′′
i . Since P † does not contain c′′

as a complete factor, it can be extended to a diverse palindromic factorization
P ‡ of Si in which c̄, xc and xccxc are complete factors but c, xcc̄xc and xj

c are
not for j > 1. Notice P ‡ encodes the assignment to the inputs of Ci that makes
them true or false according to τ . The other three cases — in which τ makes the
outputs labelled a and b both false, false and true, and both true — are similar
and we leave them for the full version of this paper. Since Ci−1 and Ci have the
same inputs, each assignment to the inputs of Ci is encoded by some diverse
palindromic factorization of Si.

Now let P be a diverse palindromic factorization of Si and let τ be the
assignment to the inputs of Ci−1 that is encoded by a prefix of P . Let P ′ be the
prefix of P that is a diverse palindromic factorization of S′′′

i and suppose the
factorization of

x23
c′ c′′xc′c′xc′c′xc′c′′x25

c′

in P ′ includes c′′ as a complete factor, which is the case if and only if P includes
c̄, xc and xccxc as complete factors but not c, xcc̄xc and xj

c for j > 1. We will
show that τ must make the outputs of Ci−1 labelled a and b true. The other
case — in which the factorization includes c′′ as a complete factor and we want
to show τ makes at least one of the inputs labelled a and b false — is similar
but longer, and we leave it for the full version of this paper.

Let P ′′ be the prefix of P ′ that is a diverse palindromic factorization of S′′
i .

Since c′′ is a complete factor in the factorization of

x23
c′ c′′xc′c′xc′c′xc′c′′x25

c′

Diverse Palindromic Factorization Is NP-complete 95

in P ′, so is c′. Therefore, c′ is not a complete factor in the factorization of

x15
c′ a′

1xc′c′xc′b′x17
c′

in P ′′, so a′
1 and b′ are.

Let P ′′′ be the prefix of P ′′ that is a diverse palindromic factorization of S′
i.

Since a′
1 and b′ are complete factors later in P ′′, they are not complete factors

in P ′′′. Therefore, a1 and b̄ are complete factors in the factorizations of

x3
c′a′

1xc′a1xc′ , a1xc′a′
1x

5
c′ and x11

c′ b′xc′bxc′ b̄xc′b′x13
c′

in P ′′′, so they are not complete factors in the prefix P † of P that is a diverse
palindromic factorization of S′

i−1. Since we built S′
i−1 from Si−1 with Lemma 2,

it follows that a1 and b are complete factors in the prefix of P that encodes τ .
Therefore, τ makes the outputs of Ci−1 labelled a and b true.

Going through all the possibilities for how P can end, which we will do in
the full version of this paper, we find that each diverse palindromic factorization
of Si encodes some assignment to the inputs of Ci. This gives us the following
lemma:

Lemma 3. If we have a string Si−1 that represents Ci−1 and Ci is obtained
from Ci−1 by making two outputs of Ci−1 the inputs of a new NAND gate,
then in constant time we can append symbols to Si−1 to obtain a string Si that
represents Ci.

6 Conclusion

By Lemmas 1, 2 and 3 and induction, given a Boolean circuit C composed only
of splitters and NAND gates with two inputs and one output, in time linear
in the size of C we can build, inductively and in turn, a sequence of strings
S1, . . . , St such that Si represents Ci. As mentioned in Section 2, once we have
St we can easily build in constant time a string S that has a diverse palindromic
factorization if and only if C is satisfiable. Therefore, diverse palindromic factor-
ization is NP-hard. Since it is obviously in NP, we have the following theorem:

Theorem 1. Diverse palindromic factorization is NP-complete.

Acknowledgments. Many thanks to Gabriele Fici for his comments on a draft of this
paper, and to the anonymous referee who pointed out a gap in the proof of Lemma 3.

References

1. Alitabbi, A., Iliopoulos, C.S., Rahman, M.S.: Maximal palindromic factorization.
In: Proceedings of the Prague Stringology Conference (PSC), pp. 70–77 (2013)

96 H. Bannai et al.

2. Fernau, H., Manea, F., Mercaş, R., Schmid, M.L.: Pattern matching with variables:
fast algorithms and new hardness results. In: Proceedings of the 32nd Symposium
on Theoretical Aspects of Computer Science (STACS), pp. 302–315 (2015)

3. Fici, G., Gagie, T., Kärkkäinen, J., Kempa, D.: A subquadratic algorithm for min-
imum palindromic factorization. Journal of Discrete Algorithms 28, 41–48 (2014)

4. Frid, A.E., Puzynina, S., Zamboni, L.: On palindromic factorization of words.
Advances in Applied Mathematics 50(5), 737–748 (2013)

5. Gawrychowski, P., Uznański, P.: Tight tradeoffs for approximating palindromes in
streams. Technical Report 1410.6433, arxiv.org (2014)

6. I, T., Sugimoto, S., Inenaga, S., Bannai, H., Takeda, M.: Computing palindromic
factorizations and palindromic covers on-line. In: Kulikov, A.S., Kuznetsov, S.O.,
Pevzner, P. (eds.) CPM 2014. LNCS, vol. 8486, pp. 150–161. Springer, Heidelberg
(2014)

7. Kosolobov, D., Rubinchik, M., Shur, A.M.: Palk is linear recognizable online.
In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Watten-
hofer, R. (eds.) SOFSEM 2015-Testing. LNCS, vol. 8939, pp. 289–301. Springer,
Heidelberg (2015)

8. Ravsky, O.: On the palindromic decomposition of binary words. Journal of
Automata, Languages and Combinatorics 8(1), 75–83 (2003)

9. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In:
Slisenko, A.O. (ed.) Structures in Constructive Mathematics and Mathematical
Logic, Part II, pp. 115–125 (1968)

10. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory 22(3), 337–343 (1977)

11. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding.
IEEE Transactions on Information Theory 24(5), 530–536 (1978)

Factorization in Formal Languages

Paul C. Bell1, Daniel Reidenbach1, and Jeffrey Shallit2(B)

1 Department of Computer Science, Loughborough University, Loughborough,
Leicestershire LE11 3TU, UK

{P.Bell,D.Reidenbach}@lboro.ac.uk
2 School of Computer Science, University of Waterloo, Waterloo,

ON N2L 3G1, Canada
shallit@cs.uwaterloo.ca

Abstract. We consider several language-theoretic aspects of unique fac-
torization in formal languages. We reprove the familiar fact that the set
uf(L) of words having unique factorization into elements of L is regular
if L is regular, and from this deduce an quadratic upper and lower bound
on the length of the shortest word not in uf(L). We observe that uf(L)
need not be context-free if L is context-free.

Next, we consider some variations on unique factorization. We define
a notion of “semi-unique” factorization, where every factorization has
the same number of terms, and show that, if L is regular or even finite,
the set of words having such a factorization need not be context-free.
Finally, we consider additional variations, such as unique factorization
“up to permutation” and “up to subset”. Although all these variations
have been considered before, it appears that the languages of words hav-
ing these properties have not been positioned in the Chomsky hierarchy
up to now. We also consider the length of the shortest word not having
the desired property.

1 Introduction

Let L be a formal language. We say x ∈ L∗ has unique factorization if whenever

x = y1y2 · · · ym = z1z2 · · · zn

for y1, y2, . . . , ym, z1, z2, . . . , zn ∈ L then m = n and yi = zi for 1 ≤ i ≤ m. If
every element of L∗ has unique factorization into elements of L, then L is called
a code.

Although codes have been studied extensively (see, for example, [1,8]), in
this paper we look at some novel aspects of unique factorization. Namely, we
look at some variations of unique factorization, consider the language of words
possessing this type of unique factorization, and position the resulting language
in the Chomsky hierarchy. We also consider the length of the shortest word not
having the desired property, if it exists.

c© Springer International Publishing Switzerland 2015
I. Potapov (Ed.): DLT 2015, LNCS 9168, pp. 97–107, 2015.
DOI: 10.1007/978-3-319-21500-6 7

98 P.C. Bell et al.

2 Unique Factorizations

Given L, we define uf(L) to be the set of all elements of L∗ having unique
factorization into elements of L. So L is a code iff L∗ = uf(L). We recall the
following familiar fact:

Proposition 1. If L is regular, then so is uf(L).

Proof. If L contains the empty word ε then no elements of L∗ have unique
factorization, and so uf(L) = ∅. So, without loss of generality we can assume
ε �∈ L.

To prove the result, we show that the relative complement L∗ − uf(L) is
regular. Let L be accepted by a deterministic finite automaton (DFA) M . On
input x ∈ L∗, we build a nondeterministic finite automaton (NFA) M ′ to guess
two different factorizations of x and verify they are different. The machine M ′

maintains the single state of the DFA M for L as it scans the elements of x,
until M ′ reaches a final state q. At this point M ′ moves, via an ε-transition, to a
new kind of state that records pairs. Transitions on these “doubled” states still
follow M ’s transition function in both coordinates, with the exception that if
either state is in F , we allow a “reset” implicitly to q0. Each implicit return to
q0 marks, in a factorization, the end of a term. The final states of M ′ are the
“doubled” states with both elements in F .

More precisely, assume M = (Q,Σ, δ, q0, F). Since ε �∈ L(M), we know
q0 �∈ F . We create the machine M ′ = (Q′, Σ, δ′, q0, F ′) as follows:

δ′(q, a) =

{
{δ(q, a)}, if q �∈ F ;
{δ(q0, a), [δ(q0, a), δ(q, a)]}, if q ∈ F .

Writing r = δ(p, a), s = δ(q, a), t = δ(q0, a), we also set

δ′([p, q], a) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{[r, s]}, if p �∈ F , q �∈ F ;
{[r, s], [t, s]}, if p ∈ F , q �∈ F ;
{[r, s], [r, t]}, if p �∈ F , q ∈ F ;
{[r, s], [t, s], [r, t], [t, t]}, if p ∈ F , q ∈ F .

Finally, we set F ′ = F × F . To see that the construction works, suppose that
x ∈ L∗ has two different factorizations

x = y1y2 · · · yjyj+1 · · · yk = y1y2 · · · yjzj+1 · · · z�

with yj+1 a proper prefix of zj+1. Then an accepting path starts with singleton
sets until the end of yj . The next transition goes to a pair having first element
δ(q0, a) with a the first letter of yj+1. Subsequent transitions eventually lead to
a pair in F × F .

On the other hand, if x is accepted, then two different factorizations are
traced out by the accepting computation in each coordinate. The factorizations
are guaranteed to be different because of the transition to [δ(q0, a), δ(q, a)]. ��

Factorization in Formal Languages 99

Remark 2. There is a shorter and more transparent proof of this result, as fol-
lows. Given a DFA for L, create an NFA A for L∗ by adding ε-transitions from
every final state back to the initial state, and then removing the ε-transitions
using the familiar method (e.g., [6, Theorem2.2]). Next, using the Boolean matrix
interpretation of finite automata (e.g., [15] and [12, §3.8]), we can associate an
adjacency matrix Ma with the transitions of A on the letter a. Then, on input
x = a1a2 · · · ai, a DFA can compute the matrix Mx = Ma1Ma2 · · · Mai

using
ordinary integer matrix multiplication, with the proviso that any entry that is
2 or more is changed to 2 after each matrix multiplication. This can be done by
a DFA since the number of such matrices is at most 3n2

where n is the number
of states of M . Then, accepting if and only if the entry in the row and column
corresponding to the initial state of A is 1, we get a DFA accepting exactly those
x having unique factorization into elements of L. While this proof is much sim-
pler, the state bound it provides is quite extravagant compared to our previous
proof.

Corollary 3. Suppose L is accepted by a DFA with n states. If L is not a code,
then there exists a word x ∈ L∗ with at least two distinct factorizations into
elements of L, with |x| < n2 + n.

Proof. Our construction in the proof of Proposition 1 gives an NFA M ′ accepting
all words with at least two different factorizations, and it has n2 + n states. If
M ′ accepts anything at all, it accepts a word of length at most n2 + n − 1. ��
Proposition 4. For all n ≥ 2, there exists an O(n)-state DFA accepting a
language L that is not a code, such that the shortest word in L∗ having two
factorizations into elements of L is of length Ω(n2).

Proof. Consider the language Ln = b(an)∗ ∪ (an+1)∗b. It is easy to see that
Ln can be accepted by a DFA with 2n + 5 states, but the shortest word in L∗

n

having two distinct factorizations into elements of Ln is b an(n+1) b, of length
n2 + n + 2. ��

In fact, there are even examples of finite languages with the same property.

Proposition 5. For all n ≥ 2, there exists an O(n)-state DFA accepting a
finite language L that is not a code, such that the shortest word in L∗ having
two factorizations is of length Ω(n2).

Proof. Let Σ = {b, a1, a2, . . . , an} be an alphabet of size n + 1, and let Ln be
the language of 2n words

{a1, an} ∪ {biai+1 : 1 ≤ i < n} ∪ {aib
i : 1 ≤ i < n}

defined over Σ.
Then it is easy to see that Ln can be accepted with a DFA of 2n + 2 states,

while the shortest word having two distinct factorizations is

a1ba2b
2a3b

3 · · · an−1b
n−1an,

which is of length n(n + 1)/2. ��

100 P.C. Bell et al.

Remark 6. The previous example can be recoded over a three-letter alphabet by
mapping each ai to the base-2 representation of i, padded, if necessary, to make
it of length �, where � =
log2 n�. With some reasonably obvious reuse of states
this can still be accepted by a DFA using O(n) states, and the shortest word
with two distinct factorizations is still of length Ω(n2).

Theorem 7. If L is a context-free language, then uf(L) need not be context-free.

Proof. Our example is based on two languages (see, for example, [10]):

(a) PALSTAR, the set of all strings over the alphabet Σ = {0, 1} that are the
concatenation of one or more even-length palindromes; and

(b) PRIMEPALSTAR, the set of all elements of PALSTAR that cannot be written as
the concatenation of two or more elements of PALSTAR.

Clearly PALSTAR is a context-free language (CFL). We see that uf(PALSTAR) =
PRIMEPALSTAR, which was proven in [10] to be non-context-free. ��

3 Semi-unique Factorizations

We now consider a variation on unique factorization. We say that x ∈ L∗ has
semi-unique factorization if all factorizations of x into elements of L consist of
the same number of factors. More precisely, x has semi-unique factorization if
whenever

x = y1y2 · · · ym = z1z2 · · · zn

for y1, y2, . . . , ym, z1, z2, . . . , zn ∈ L, then m = n.
Given a language L, we define su(L) to be the set of all elements of L∗

having semi-unique factorization over L. This concept was previously studied by
Weber and Head [14], where a language L was called numerically decipherable if
L = su(L), and an efficient algorithm was proposed for testing this property.

Example 8. Let L = {a, ab, aab}. Then su(L) = (ab)∗a∗.

Theorem 9. If L is regular, then su(L) is a co-CFL (and hence a context-
sensitive language).

Proof. To see that su(L) is a co-CFL, mimic the proof of Proposition 1. We use
a stack to keep track of the difference between the number of terms in the two
guessed factorizations, and another flag in the state to say which, the “top”,
or the “bottom” state, has more terms (since the stack can’t hold negative
counters). We accept if we guess two factorizations having different numbers of
terms.

It now follows immediately that su(L) is a context-sensitive language (CSL),
by the Immerman-Szelepcsényi theorem [7,13]. ��
Corollary 10. Given a regular language L, it is decidable if there exist elements
x ∈ L∗ lacking semi-unique factorization.

Factorization in Formal Languages 101

Proof. Given L, we can construct a pushdown automaton (PDA) accepting L∗ −
su(L). We convert this PDA to a context-free grammar G generating the same
language (e.g., [6, Theorem5.4]). Finally, we use well-known techniques (e.g., [6,
Theorem6.6]) to determine whether L(G) is empty. ��
Theorem 11. If L is regular then su(L) need not be a CFL.

Proof. Let

L = a0+b + 1 + c(23)+ + 23d + a + 0 + b1+c(23)+ + a0+b1+c2 + 32 + 3d.

Consider su(L) and intersect with the regular language a0+b1+c(23)+d.
Then there are only three possible factorizations for a given word here. They

look like (using parens to indicate factors)

(a0ib)1 · 1 · 1 · · · 1(c(23)k)(23d), which has j + 3 terms if j is the number of
1’s;

(a)0 · 0 · · · 0(b1jc(23)k)(23d), which has i + 3 terms if i is the number of 0’s;
and

(a0ib1jc2)(32)(32) · · · (32)(3d), which has k + 2 terms, if k is the number of
(32)’s.

So if all three factorizations have the same number of terms we must have
i = j = k − 1, giving us

{a0nb1nc(23)n−1d : n ≥ 1},

which is not a CFL. ��
There are even examples, as in Theorem 11, where L is finite. For expository

purposes, we give an example over the 21-letter alphabet

Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, a, b, c, d, e, f, g, h, i, j, k, l}.

Theorem 12. If L is finite, then su(L) need not be a CFL.

Proof. Define

L1 = {0ab, cd, ab, cd127, efgh, efgh3, 4ijkl, ijkl, 5, 68}
L2 = {0abc, dabc, d1, 27e, fg, he, h34ij, klij, kl568}
L3 = {0a, bcda, bcd12, 7ef, ghef, gh34i, jk, li, jkl56, 8}

and set L := L1 ∪ L2 ∪ L3.
Consider possible factorizations of words of the form

0(abcd)m127(efgh)n34(ijkl)p568

for some integers m,n, p ≥ 1. Any factorization of such a word into elements of
L must begin with either 0ab, 0abc, or 0a. There are three cases to consider:

102 P.C. Bell et al.

Case 1: the first word is 0ab. Then the next word must begin with c, and there
are only two possible choices: cd and cd127. If the next word is cd then since no
word begins with 1 the only choice is to pick a word starting with a, and there
is only one: ab. After picking this, we are back in the same situation, and can
only choose between cd followed by ab, or cd127. Once cd127 is picked we must
pick a word that begins with e. However, there are only two: efgh and efgh3.
If we pick efgh we are left in the same situation. Once we pick efgh3 we must
pick a word starting with 4, but there is only one: 4ijkl. After this we can either
pick 5 and then 68, or we can pick ijkl a number of times, followed by 568.

This gives the factorization

(0ab)((cd)(ab))m−1(cd127)(efgh)n−1(efgh3)(4ijkl)(ijkl)p−1(5)(68)

having 1 + 2(m − 1) + 1 + (n − 1) + 1 + 1 + (p − 1) + 1 + 1 = 2m + n + p + 2
terms.

Case 2: the first word is 0abc. Then the next word must begin with d, and there
are only two choices: dabc and d1. If we pick dabc we are back in the same
situation. If we pick d1 then the next word must begin with 2, but there is only
one such word: 27e. Then the next word must begin with f , but there is only
one: fg. Then the next word must begin with h, but there are only two: he and
h34ij. If we pick he we are back in the same situation. Otherwise we must have
a word beginning with k, but there are only two: klij and kl568. This gives the
factorization

(0abc)(dabc)m−1(d1)(27e)((fg)(he))n−1(fg)(h34ij)(klij)p−1(kl568)

having 1 + (m − 1) + 2 + 2(n − 1) + 1 + 1 + (p − 1) + 1 = m + 2n + p + 2 terms.

Case 3: the first word is 0a. Then only bcda and bcd12 start with b, so we must
choose bcda over and over until we choose bcd12. Only one word starts with 7 so
we must choose 7ef . Now we must choose ghef again and again until we choose
gh34i. We now choose jk and li alternately until jkl56. Finally, we pick 8.

This gives us a factorization

(0a)(bcda)m−1(bcd12)(7ef)(ghef)n−1(gh34i)((jk)(li))p−1(jkl56)(8)

with 1 + (m − 1) + 2 + (n − 1) + 1 + 2(p − 1) + 2 = m + n + 2p + 2.

So for all these three factorizations to have the same number of terms, we
must have

2m + n + p + 2 = m + 2n + p + 2 = m + n + 2p + 2.

Eliminating variables we get that m = n = p. So when we compute su(L) and
intersect with the regular language 0(abcd)+127(efgh)+34(ijkl)+568 we get

{0(abcd)n127(efgh)n34(ijkl)n568 : n ≥ 1},

which is clearly a non-CFL. ��

Factorization in Formal Languages 103

Remark 13. The previous two examples can be recoded over a binary alphabet,
by mapping the i’th letter to the string baib.

4 Permutationally Unique Factorization

In this section we consider yet another variation on unique factorization, which
are factorizations that are unique up to permutations of the factors. This concept
was introduced by Lempel [9] under the name “multiset decipherable codes”. For
other work on these codes, see [2,5,11].

Formally, given a language L we say x ∈ L∗ has permutationally unique
factorization if whenever x = y1y2 · · · ym = z1z2 · · · zn for

y1, y2, . . . , ym, z1, z2, . . . , zn ∈ L,

then m = n and there exists a permutation σ of {1, . . . , n} such that yi = zσ(i)

for 1 ≤ i ≤ n. In other words, we consider two factorizations that differ only in
the order of the factors to be the same. We define ufp(L) to be the set of x ∈ L∗

having permutationally unique factorization.

Example 14. Consider L = {a3, a4}. Then

ufp(L) = {a3, a4, a6, a7, a8, a9, a10, a11, a13, a14, a17}.

Theorem 15. If L is finite then ufp(L) is a co-CFL and hence a CSL.

Proof. We sketch the construction of a PDA accepting ufp(L). If a word is in
L∗ but has two permutationally distinct factorizations, then there has to be
some factor appearing in the factorizations a different number of times. Our
PDA nondeterministically guesses two different factorizations and a factor t ∈ L
that appears a different number of times in the factorizations, then verifies the
factorizations and checks the number. It uses the stack to hold the absolute value
of the difference between the number of times t appears in the first factorization
and the second. It accepts if both factorizations end properly and the stack is
nonempty. ��
Theorem 16. If L is finite then ufp(L) need not be a CFL.

Proof. Let Σ = {a, b, c}. Define L = {A,B, S1, S2, T1, T2} ⊆ Σ+ as follows:

A = aa, B = aaa, S1 = ab, S2 = ac, T1 = ba, T2 = ca.

Let R = aa(ab)+(ac)+aa(ba)+(ca)+aaa, and consider words of the form

w := aa(ab)r(ac)saa(ba)t(ca)qaaa ∈ ufp(L) ∩ R

with r, s, t, q ≥ 1 and the following two factorizations of w:

ASr
1S

s
2AT t

1T
q
2 B = aa · (ab)r · (ac)s · aa · (ba)t · (ca)q · aaa (1)

BT r
1 T s

2St
1S

q
2AA = aaa · (ba)r · (ca)s · (ab)t · (ac)q · aa · aa (2)

104 P.C. Bell et al.

It is not difficult to see that w must be of one of these two forms. Since w has
prefix aaab, it must start with either AS1 or BT1. If it starts with AS1 = aa ·ab,
the next factors must be Sr−1

1 to match (ab)r, so we have ASr
1 . We then see

(ac)s, which can only match with Ss
2 . Next, we see ‘aaba’, thus we must choose

AT1 = aa · ba. We then have (ba)t−1, which can only match with T t−1
1 , and then

(ca)q, matching only with T q
2 . Finally the suffix is ‘aaa’ which can only match

with B as required.
If w starts with BT1 = aaa · ba, the next part is (ba)r−1, which only matches

with T r−1
1 . Then we see (ca)s, so we must use factors T s

2 . We then see (ab)t and
(ac)q, matching with St

1 and Sq
2 respectively. Finally we have ‘aaaa’ matching

only with AA as required.
If r = t and s = q, then the number of each factor (A,B, S1, S2, T1, T2)

in factorizations (1) and (2) is identical. Therefore, w always has more than
one factorization (of type (1) or (2)); however, that factorization is only non-
permutationally equivalent if r �= t or s �= q. Therefore

ufp(L) ∩ R = {aa · (ab)r · (ac)s · aa · (ba)t · (ca)q · aaa | (r = t) ∧ (s = q)}
= {ASr

1S
s
2AT r

1 T s
2B : r, s ≥ 1},

which is not a context-free language. ��

5 Subset-Invariant Factorization

In this section we consider yet another variation on unique factorization, pre-
viously studied under the name “set-decipherable code” by Blanchet-Sadri and
Morgan [2].

We say a word x ∈ L∗ has subset-invariant factorization (into elements of L)
if there exists a subset S ⊆ L with the property that every factorization of x
into elements of L uses exactly the elements of S – no more, no less – although
each element may be used a different number of times. More precisely, x has
subset-invariant factorization if there exists S = S(x) such that whenever x =
y1y2 · · · ym with y1, y2, . . . , ym ∈ L, then S = {y1, y2, . . . , ym}. We let ufs(L)
denote the set of those x ∈ L∗ having such a factorization.

Theorem 17. If L is finite then ufs(L) is regular.

Proof. The proof is similar to the proof of Theorem 15 above. On input x we
nondeterministically attempt to construct two different factorizations into ele-
ments of L, recording which elements of L we have seen so far. We accept if we
are successful in constructing two different factorizations (which will be different
if and only if some element was chosen in one factorization but not the other).
This NFA accepts L∗ − ufs(L). So if L is finite, it follows that ufs(L) is regular.

In more detail, here is the construction. States of our NFA are 6-tuples of
the form [w1, s1, v1, w2, s2, v2] where w1, w2 are the words of L we are currently
trying to match; s1, s2 are, respectively, the suffixes of w1, w2 we have yet to
see, and v1, v2 are binary characteristic vectors of length |L|, specifying which

Factorization in Formal Languages 105

elements of L have been seen in the factorization so far (including w1 and w2,
although technically they may not have been seen yet). Letting C(z) denote the
vector with all 0’s except a 1 in the position corresponding to the word z ∈ L,
the initial states are [w,w,C(w), x, x, C(x)] for all words w, x ∈ L. The final
states are of the form [w, ε, v1, x, ε, v2] where v1 �= v2. Transitions on a letter a
look like δ([w1, as1, v1, w2, as2, v2], a) = [w1, s1, v1, w2, s2, v2]. In addition there
are ε-transitions that update the corresponding vectors if s1 or s2 equals ε, and
that “reload” the new w1 and w2 we are expecting to see:

δ([w1, ε, v1, w2, s2, v2], ε) = {[w,w, v1 ∨ C(w), w2, s2, v2] : w ∈ L}
δ([w1, s1, v1, w2, ε, v2], ε) = {[w1, s1, v1, w, w, v2 ∨ C(w)] : w ∈ L}.

��
The preceding proof also shows that the shortest word failing to have subset-

invariant factorization is bounded polynomially:

Corollary 18. Suppose |L| = n and the length of the longest word of L is m.
Then if some word of L∗ fails to have subset-invariant factorization, there is a
word with this property of length ≤ 2m2n2.

Proof. Let u ∈ L+ be a minimal length word such that u ∈ L+−ufs(L). Consider
the states of the NFA traversed in processing u. Let S0 := [w,w,C(w), x, x, C(x)]
be the initial state and SF := [wF , ε, vF , xF , ε, v′

F] the final state, where vF �= v′
F

and C(w), C(x) are defined as in the proof of Theorem 17. By definition, there
must exist some z ∈ L such that vF and v′

F differ on C(z), i.e., vT
F ·C(z)+ v′

F
T ·

C(z) = 1.
Initially the characteristic vectors have a single 1, and once an element is set

to 1 in a characteristic vector in the NFA, it is never reset to 0. Thus, there
exists some 1 ≤ k ≤ |u| such that u = u1 · · · uk−1 · uk · uk+1 · · · u|u| where
Sk−1 = δ(S0, u1 · · · uk−1) has a 0 in the characteristic vectors at position z, and
δ(Sk−1, uk) has a 1 in exactly one of the two characteristic vectors at position z.
We shall now prove that |u1 · · · uk−1|, |uk+1 · · · u|u|| ≤ m2n2, which proves the
result.

We prove the result for the word v = u1 · · · uk−1; a similar analysis holds
for uk+1 · · · u|u|. Let S0, S1, . . . Sk−1 be the states of the NFA visited as we
process v. We prove that there does not exist 0 ≤ i < j ≤ k − 1 such that
Si = [w1, s1, v1, w2, s2, v2] and Sj = [w1, s1, v

′
1, w2, s2, v

′
2]. We proceed by con-

tradiction. Assume that such an i and j exist. Then ui+1 · · · uj is such that
δ(Si, ui+1 · · · uj) = Sj . However, δ(Si, uj+1 · · · uk) and δ(Sj , uj+1 · · · uk) can only
differ in their binary characteristic vectors, since the transition function does not
depend upon the characteristic vectors when we update the words w1, s1, w2, s2.
Thus, we can remove the factor ui+1 · · · uj from u and still reach a final state
of the form SF2 := [wF , ε, vF2 , xF , ε, v′

F2
], for which we still have that vF2 �= v′

F2
,

since they differ on element z due to letter uk. Continuing this idea iteratively,
the maximal number of states k is bounded by m2n2. Doubling this bound gives
the result. ��

106 P.C. Bell et al.

The next result shows that we can achieve a quadratic lower bound.

Proposition 19. There exist examples with |L| = 2n and longest word of length
n for which the shortest word of L∗ failing to have subset-invariant factorization
is of length n(n + 1)/2.

Proof. We just use the example of Proposition 5. ��
Theorem 20. If L is regular then ufs(L) need not be a CFL.

Proof. We use a variation of the construction in the proof of Theorem 16. Let
L = (ab)+(ac)+aa + (ba)+(ca)+ + aa + aaa. Then (using the notation in the
proof of Theorem 16), if

w := aa(ab)r(ac)saa(ba)t(ca)qaaa ∈ ufs(L) ∩ R

with r, s, t, q ≥ 1 then there are two different factorizations of w:

w = aa · (ab)r(ac)saa · (ba)t(ca)q · aaa

= aaa · (ba)r(ca)s · (ab)t(ac)qaa · aa

which are subset-invariant if and only if r = t and s = q. So

ufs(L) ∩ R = {aa(ab)r(ac)saa(ba)r(ca)saaa : r, s ≥ 1},

which is not a CFL. ��

Acknowledgments. The idea of considering semi-unique factorization was inspired
by a talk of Nasir Sohail at the University of Waterloo in April 2014.
We are very grateful to the referees for pointing out relevant citations to the literature

that we did not know about.

References

1. Berstel, J., Perrin, D., Reutenauer, C.: Codes and automata. In: Encyclopedia of
Mathematics and its Applications, vol. 129. Cambridge University Press (2010)

2. Blanchet-Sadri, F., Morgan, C.: Multiset and set decipherable codes. Computers
and Mathematics with Applications 41, 1257–1262 (2001)

3. Burderi, F., Restivo, A.: Coding partitions. Discrete Mathematics and Theoretical
Computer Science 9, 227–240 (2007)

4. Head, T., Weber, A.: Deciding code related properties by means of finite
transducers. In: Capocelli, R., De Santis, A., Vaccaro, U. (Eds.) Sequences II: Meth-
ods in Communication, Security, and Computer Science, pp. 260–272. Springer
(1993)

5. Head, T., Weber, A.: Deciding multiset decipherability. IEEE Trans. Info. Theory
41, 291–297 (1995)

6. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley (1979)

Factorization in Formal Languages 107

7. Immerman, N.: Nondeterministic space is closed under complementation. SIAM J.
Comput. 17, 935–938 (1988)

8. Jürgensen, H., Konstantinidis, S.: Codes. In: Rozenberg, G., Salomaa, A. (Eds.)
Handbook of Formal Languages, Word, Language, Grammar, vol. 1, pp. 511–607.
Springer (1991)

9. Lempel, A.: On multiset decipherable codes. IEEE Trans. Info. Theory 32, 714–716
(1986)

10. Rampersad, N., Shallit, J., Wang, M.-W.: Inverse star, borders, and palstars. Info.
Proc. Letters 111, 420–422 (2011)

11. Restivo, A.: A note on multiset decipherable codes. IEEE Trans. Info. Theory 35,
662–663 (1989)

12. Shallit, J.: A Second Course in Formal Languages and Automata Theory.
Cambridge University Press (2009)

13. Szelepcsényi, R.: The method of forcing for nondeterministic automata. Bull.
EATCS 33, 96–100 (1987)

14. Weber, A., Head, T.: The finest homophonic partition and related code
concepts. In: Privara, I., Ružička, P., Rovan, B. (eds.) MFCS 1994. LNCS, vol.
841, pp. 618–628. Springer, Heidelberg (1994)

15. Zhang, G.-Q.: Automata, Boolean matrices, and ultimate periodicity. Inf. Comput.
152, 138–154 (1999)

Consensus Game Acceptors

Dietmar Berwanger(B) and Marie van den Bogaard(B)

LSV, ENS Cachan, CNRS and University of Paris-Saclay, Paris-Saclay, France
{dwb,mvdb}@lsv.fr

Abstract. We study a game for recognising formal languages, in which
two players with imperfect information need to coordinate on a common
decision, given private input strings correlated by a finite graph. The
players have a joint objective to avoid an inadmissible decision, in spite
of the uncertainty induced by the input.

We show that the acceptor model based on consensus games charac-
terises context-sensitive languages, and conversely, that winning strate-
gies in such games can be described by context-sensitive languages. We
also discuss consensus game acceptors with a restricted observation pat-
tern that describe nondeterministic linear-time languages.

1 Introduction

The idea of viewing computation as an interactive process has been at the ori-
gin of many enlightening developments over the past three decades. With the
concept of alternation, introduced around 1980 by Chandra and Stockmeyer,
and independently by Kozen [6], computation steps are attributed to conflicting
players seeking to reach or avoid certain outcome states. This approach relies
on determined games with perfect information, and it lead to important and
elegant results, particularly in automata theory. Around the same time, Peter-
son and Reif [18] initiated a study on computation via games with imperfect
information, also involving teams of players. This setting turned out to be even
more expressive, but also overwhelmingly difficult to comprehend. (See [3,10],
for more recent accounts.)

In this paper, we propose a game model of a language acceptor based on
coordination games between two players with imperfect information. Compared
to the model of Reif and Peterson, our setting is extremely simple: the games are
played on a finite graph, plays are of finite duration, they involve only one yes/no
decision, and the players have no means to communicate. Moreover, they are
bound to take their decisions in consensus. Given an input word that may yield
different observations to each of the players, they have to settle simultaneously
and independently on a common decision, otherwise they lose.

We model such systems as consensus game acceptors, a particular case of
coordination games with perfect recall, also described as multiplayer concurrent
games or synchronous distributed games with incomplete information in the
computer-science literature. Our motivation for studying the acceptor model
is to obtain lower bounds on the complexity of basic computational problems
c© Springer International Publishing Switzerland 2015
I. Potapov (Ed.): DLT 2015, LNCS 9168, pp. 108–119, 2015.
DOI: 10.1007/978-3-319-21500-6 8

Consensus Game Acceptors 109

regarding these more general games, specifically (1) solvability: whether a win-
ning strategy exists, for a given game, and (2) implementability: which compu-
tational resources are needed to implement a winning strategy, if any exists.

Without the restrictions to consensus and to a single decision per play, the
solvability problem for coordination games with safety winning conditions is
known to be undecidable for two or more players [18,19]. Furthermore, Janin [11]
points out that there exist two-player safety games that admit a winning strategy
but none that can be implemented by a Turing machine.

Our first result establishes a correspondence between context-sensitive lan-
guages and winning strategies in consensus games: We prove that every context-
sensitive language L corresponds to a consensus game in which the characteristic
function of L describes a winning strategy, and conversely, every consensus game
that admits a joint winning strategy also admits one characterised by a context-
sensitive language. Games with imperfect information for one player against the
environment (which, here we call Input) display a similar correspondence with
regular languages; they correspond to consensus games where the two player
receive identical (or functionally dependent) observations. In extension, we con-
sider consensus games where the observations of the two players can be ordered,
and we show that the resulting acceptor model subsumes context-free languages
and moreover allows to describe languages decidable in nondeterministic time.

The correspondence has several consequences in terms of game complexity.
On the one hand, it reveals that consensus games preserve surprisingly much
of the computational complexity found in games with imperfect information, in
spite of the restriction to a single decision and to consensus. Consensus games are
relevant because they represent coordination games in the limiting case where
signalling is impossible. The classical constructions for proving undecidability
of synchronous distributed games typically simulate a communication channel
that may lose one message and involve an unbounded number of non-trivial
decisions by which the players describe configurations of a Turing machine [2,
19,22]. In contrast, our undecidability argument for acceptor games relies on
the impossibility to attain common knowledge when knowledge hierarchies can
grow unboudedly, and this can be witnessed by a single decision. Apart of this,
we obtain a simple game family in which winning strategies are PSpace-hard
to run, in the length of the play, or, in a positive perspective, where winning
strategies can be implemented by a linear-bounded automata whenever they
exist.

2 Preliminaries

For classical notions of formal languages, in particular context-sensitive lan-
guages, we refer, e.g., to the textbook of Salomaa [21]. We use the characterisa-
tion of context-sensitive languages in terms of nondeterministic linear-bounded
automata, given by Kuroda [12] and the following well-known results from the
same article: (1) For a fixed context-sensitive language L over an alphabet Σ,
the problem whether a given word w ∈ Σ∗ belongs to L is PSpace-hard. (2) The

110 D. Berwanger and M. van den Bogaard

problem of determining whether a given context-sensitive language represented
by a linear-bounded automaton contains any non-empty word is undecidable.

2.1 Consensus Game Acceptors

Consensus acceptors are games between two cooperating players 1 and 2, and an
additional agent called Input. Given a finite observation alphabet Γ common to
both players, a consensus game acceptor G = (V,E, (β1, β2), v0, Ω) is described
by a finite set V of states, a transition relation E ⊆ V × V , and a pair of
observation functions βi : V → Γ that label every state with an observation,
for each player i = 1, 2. There is a distinguished initial state v0 ∈ V with no
incoming transition. States with no outgoing transitions are called final states;
the admissibility condition Ω : V → P({0, 1}) maps every final state v ∈ V to a
nonempty subset of admissible decisions Ω(v) ⊆ {0, 1}. The observations at the
initial and the final states do not matter, we may assume that they are labelled
with the same observation # for both players.

The game is played as follows: Input chooses a finite path π = v0, v1, . . . , vn+1

in G from the initial state v0, following transitions (v�, v�+1) ∈ E, for all � ≤ n, to
a final state vn+1. Then, each player i receives a private sequence of observations
βi(π) := βi(v1), βi(v1), . . . , βi(vn) and is asked to take a decision ai ∈ {0, 1},
independently and simultaneously. The players win if they agree on an admis-
sible decision, that is, a1 = a2 ∈ Ω(vn+1); otherwise they lose. Without risk of
confusion we sometimes write Ω(π) for Ω(vn+1).

We say that two plays π, π′ are indistinguishable to a player i, and write
π ∼i π′, if βi(π) = βi(π′). This is an equivalence relation, and its classes,
called the information sets of Player i, correspond to observation sequences
βi(π). A strategy for Player i is a mapping si : V ∗ → {0, 1} from plays π
to decisions si(π) ∈ {0, 1} such that si(π) = si(π′), for any pair π ∼i π′ of
indistinguishable plays. A joint strategy is a pair s = (s1, s2); it is winning, if
s1(π) = s2(π) ∈ Ω(π), for all plays π. In this case, the components s1 and s2

are equal, and we use the term winning strategy to refer to the joint strategy
or either of its components. Finally, a game is solvable, if there exists a (joint)
winning strategy.

In the terminology of distributed systems, consensus game acceptors corre-
spond to synchronous systems with perfect recall and known initial state. They
are a particular case of distributed games with safety objectives [16], coordina-
tion games with imperfect information [4], or multi-player concurrent games [1].

Strategies and Knowledge. We say that two plays π and π′ are connected, and
write π ∼∗ π′, if there exists a sequence of plays π1, . . . , πk such that π ∼1 π1 ∼2

· · · ∼1 πk ∼2 π′. Then, a mapping f : V ∗ → {0, 1} from plays to decisions is a
strategy that satisfies the consensus condition if, and only if, f(π) = f(π′), for
all π ∼∗ π′. In terms of distributed knowledge, this means that, for every play π,
the events {π ∈ V ∗ | f(π) = 1} and {π ∈ V ∗ | f(π) = 0} are common knowledge
among the players. (For an introduction to knowledge in distributed systems, see
the book of Fagin, Halpern, Moses, and Vardi [9, Ch.10,11].) Such a consensus

Consensus Game Acceptors 111

strategy — or, more precisely, the pair (f, f)— may still fail, due to prescribing
inadmissible decisions. We say that a decision a ∈ {0, 1} is safe at a play π if
a ∈ Ω(π′), for all π′ ∼∗ π. Then, a consensus strategy f is winning, if and only
if, it prescribes a safe decision f(π), for every play π.

It is sometimes convenient to represent a strategy for a player i as a func-
tion f i : Γ ∗ → {0, 1}. Every such function describes a valid strategy, because
observation sequences identify information sets; we refer to an observation-based
strategy in contrast to the state-based representation si : V ∗ → {0, 1}. Note
that the components of a joint winning strategy need no longer be equal in the
observation-based representation. However, once the strategy for one player is
fixed, the strategy of the other player is determined by the consensus condition,
so there is no risk of confusion in speaking of a winning strategy rather than a
joint strategy pair.

As an example, consider the game depicted in Figure 1, with observation
alphabet Γ = {a, b, �, 	, �}. States v at which the two players receive different
observations are split, with β1(v) written in the upper part and β2(v) in the
lower part; states at which the players receive the same observation carry only
one symbol. The admissible decisions at final states are indicated on the outgoing
arrow. Notice that upon receiving the observation sequence a2b2, for instance,
the first player is constrained to choose decision 1, due to the following sequence
of indistinguishable plays that leads to a play where deciding 0 is not admissible.⎛

⎜⎜⎝
a, a
a, �
b, 	
b, b

⎞
⎟⎟⎠ ∼2

⎛
⎜⎜⎝

a, a
�, �
	, 	
b, b

⎞
⎟⎟⎠ ∼1

⎛
⎜⎜⎝

a, �
�, 	
	, �
b, 	

⎞
⎟⎟⎠ ∼2

⎛
⎜⎜⎝

�, �
	, 	
�, �
	, 	

⎞
⎟⎟⎠ ∼1

⎛
⎜⎜⎝

�, �
	, �
�, �
	, �

⎞
⎟⎟⎠ ∼2

⎛
⎜⎜⎝

�, �
�, �
�, �
�, �

⎞
⎟⎟⎠

In contrast, decision 0 may be safe when Player 1 receives input a3b2, for instance.
Actually, the strategy s1(w) that prescribes 1 if, and only if, w ∈ {anbn : n ∈ N}
determines a joint winning strategy. Next, we shall make the relation between
games and languages more precise.

3 Describing Languages by Games

We consider languages L over a letter alphabet Σ. The empty word ε is excluded
from the language, and also from its complement L̄ := (Σ∗\{ε})\L. As acceptors
for such languages, we consider games over an observation alphabet Γ ⊇ Σ,
and we assume that no observation sequence in Σ+ is omitted: for every word
w ∈ Σ+, and each player i, there exists a play π that yields the observation
sequence βi(π) = w. Every consensus game acceptor can be modified to satisfy
this condition without changing the winning strategies.

Given an acceptor game G, we associate to every observation-based strategy
s ∈ S1 of the first player, the language L(s) := {w ∈ Σ∗ : s(w) = 1}. We say
that the game G covers a language L ⊆ Σ∗, if G is solvable and

– L = L(s), for some winning strategy s ∈ S1, and
– L ⊆ L(s), for every winning strategy s ∈ S1.

112 D. Berwanger and M. van den Bogaard

#

a �

a b

a
a

a
�

�
�

�
�

�

�b
b

b

b
�

�
�

�
�

#

10, 1

Fig. 1. A consensus game acceptor

If, moreover, L = L(s) for every winning strategy in G, we say that G charac-
terises L. In this case, all winning strategies map L to 1 and L̄ to 0.

As suggested above, the consensus game acceptor represented in Figure 1
covers the language {anbn : n ∈ N}. To characterise a language rather than
covering it, we need to add constraints that require to reject inputs.

Given two games G,G′, we define the conjunction G ∧ G′ as the acceptor
game obtained by taking the disjoint union of G and G′ and identifying the
initial states. Then, winning strategies of the component games can be turned
into winning strategies of the composite game, if they agree on the observation
sequences over the common alphabet.

Lemma 1. Let G, G′ be two acceptor games over observation alphabets Γ , Γ ′.
Then, an observation-based strategy r is winning in G ∧ G′ if, and only if, there
exist observation-based winning strategies s, s′ in G, G′ that agree with r on Γ ∗

and on Γ ′∗, respectively.

Whenever a language and its complement are covered by two acceptor games,
we can construct a new game that characterises the language. The construction
involves inverting the decisions in a game, that is, replacing the admissible deci-
sions for every final state v ∈ V with Ω(v) = {0} by Ω(v) := {1} and vice versa;
final states v with Ω(v) = {0, 1} remain unchanged.

Lemma 2. Suppose two acceptor games G, G′ cover a language L ⊆ Σ∗ and its
complement L̄, respectively. Let G′′ be the game obtained from G′ by inverting
the admissible decisions. Then, the game G ∧ G′′ characterises L.

Consensus Game Acceptors 113

3.1 Domino Frontier Languages

We use domino systems as an alternative to encoding machine models and formal
grammars (See [23] for a survey.). A domino system D = (D,Eh, Ev) is described
by a finite set of dominoes together with a horizontal and a vertical compatibility
relation Eh, Ev ⊆ D×D. The generic domino tiling problem is to determine, for a
given system D, whether copies of the dominoes can be arranged to tile a given
space in the discrete grid Z × Z, such that any two vertically or horizontally
adjacent dominoes are compatible. Here, we consider finite rectangular grids
Z(�,m) := {0, . . . , � + 1} × {0, . . . , m}, where the first and last column, and the
bottom row are distinguished as border areas. Then, the question is whether
there exists a tiling τ : Z(�,m) → D that assigns to every point (x, y) ∈ Z(�,m)
a domino τ(x, y) ∈ D such that:

– if τ(x, y) = d and τ(x + 1, y) = d′ then (d, d′) ∈ Eh, and
– if τ(x, y) = d and τ(x, y + 1) = d′ then (d, d′) ∈ Ev.

The Border-Constrained Corridor tiling problem takes as input a domino
system D with two distinguished border dominoes # and �, together with a
sequence w = w1, . . . , w� of dominoes wi ∈ D, and asks whether there exists a
height m such that the rectangle Z(�,m) allows a tiling τ with w in the top row,
in the first and last column, and � in the bottom row:

– τ(i, 0) = wi, for all i = 1, . . . , �;
– τ(0, y) = τ(� + 1, y) = #, for all y = 0, . . . , m − 1;
– τ(x,m) = �, for all x = 1, . . . , �.

Domino systems can be used to recognise formal languages. For a domino
system D with side and bottom border dominoes as above, the frontier lan-
guage L(D) is the set of words w ∈ D∗ that yield positive instances of the
border-constrained corridor tiling problem. We use the following correspondence
between context-sensitive languages and domino systems established by Latteux
and Simplot.

Theorem 3 ([13,14]). For every context-sensitive language L ⊆ Σ∗, we can
effectively construct a domino system D over a set of dominoes D ⊇ Σ with
frontier language L(D) = L.

Figure 2 describes a domino system for recognising the language anbn also
covered by the game in Figure 1. In the following, we show that domino systems
can generally be described in terms of consensus game acceptors.

3.2 Uniform Encoding of Domino Problems in Games

Game formulations of domino tiling problems are standard in complexity theory,
going back to the early work of Chlebus [7]. However, these reductions are typi-
cally non-uniform: they construct, for every input instance consisting of a domino
system together with a border constraint, a different game which depends, in

114 D. Berwanger and M. van den Bogaard

particular, on the size of the constraint. Here, we use imperfect information to
construct a uniform reduction that associates to a fixed domino system D a
game G(D), such that for every border constraint w, the question whether D, w
allows a correct tiling is reduced to the question of whether decision 1 is safe in
a certain play associated to w in G(D).

a a a a � a b � b b b b

� � � � � � # # � � � �

#
#

a
a

a
�

b
b

b
�

�
�

�
�

�
�

�
�

(a) domino system for anbn

a a a b b b
a a � � b b
a � � � � b
� � � � � �
� � � � � �

(b) tiling a3b3

Fig. 2. Characterising a language with dominoes

Proposition 4. For every domino system D, we can construct, in polynomial
time, a consensus game acceptor that covers the frontier language of D.

Proof. Let us fix a domino system D = (D,Eh, Ev) with a left border domino #
and a bottom domino �. We construct an acceptor game G for the alphabet
Σ := D \ {#,�} to cover the frontier language L(D).

The game is built as follows. There are domino states of two types: singleton
states d for each d ∈ D \ {#} and pair states (d, b) for each (d, b) ∈ Ev. At
singleton states d, the two players receive the same observation d.

At states (d, b), the first player observes d and the second player b. The
domino states are connected by moves d → d′ for every (d, d′) ∈ Eh, and (d, b) →
(d′, b′) whenever (d, d′) and (b, b′) are in Eh. There is an initial state v0 and two
final states ẑ and z, all associated to the the observation # for the border domino.
From v0 there are moves to all compatible domino states d with (#, d) ∈ Eh,
and all pair states (d, b) with (#, d) and (#, b) ∈ Eh. Conversely, the final state z
is reachable from all domino states d with (d,#) ∈ Eh, and all pair states (d, b)
with (d,#) and (b,#) ∈ Eh; the final ẑ is reachable only from the singleton
bottom domino state �. Finally, admissible decisions are Ω(z) = {0, 1} and
Ω(ẑ) = {1}. Clearly, G is an acceptor game, and the construction can be done
in polynomial time.

Note that any sequence x = d1, d2, . . . , d� ∈ D� that forms a horizon-
tally consistent row in a tiling by D corresponds in the game to a play πx =
v0, d1, d2, . . . , d�, z or πx = v0,��, ẑ. Conversely, every play in G corresponds
either to one possible row, in case Input chooses a single domino in the first
move, or to two rows, in case it chooses a pair. Moreover, a row x can appear on
top of a row y = b1, b2, . . . , b� ∈ D� in a tiling if, and only if, there exists a play ρ
in G such that πx ∼1 ρ ∼2 πy, namely ρ = v0, (d1, b1), (d2, b2), . . . (d�, b�), z.

Consensus Game Acceptors 115

Now, we claim that, at an observation sequence π = w for w ∈ Σ� the decision
0 is safe if, and only if, there exists no correct corridor tiling by D with w in the
top row. According to our remark, there exists a correct tiling of the corridor
with top row w, if and only if, there exists a sequence of rows corresponding
to plays π1, . . . , πm, and a sequence of witnessing plays ρ1, . . . , ρm−1 such that
w = π1 ∼1 ρ1 ∼2 π2 · · · ∼1 ρm−1 ∼2 πm = ��. However, the decision 0 is unsafe
in the play �� and therefore at w as well. Hence, every winning strategy s for
G must prescribe s(w) = 1, for every word w in the frontier language of D,
meaning that L(s) ⊆ L(D).

Finally, consider the mapping s : D∗ → A that prescribes s(w) = 1 if, and
only, if w ∈ L(D). The observation-based strategy s in the acceptor game G
is winning since s(�∗) = 1, and it witnesses the condition L(s) = L(D). This
concludes the proof that the constructed acceptor game G covers the frontier
language of D. 	

4 Characterising Context-Sensitive Languages

Theorem 5. For every context-sensitive language L ⊆ Σ∗, we can construct
effectively a consensus game acceptor that characterises L.

Proof. Let L ⊆ Σ∗ be an arbitrary context-sensitive language, represented, e.g.,
by a linear-bounded automaton. By Theorem 3, it is possible to construct a
domino system D with frontier language L. Then, by Proposition 4, we can
construct an acceptor game G that covers L(D) = L. Due to the Immerman-
Szelepcsényi Theorem, context-sensitive languages are effectively closed under
complement, so we construct an acceptor game G′ that covers L̄ following
the same procedure. Finally, we combine the games G and G′ as described in
Lemma 2 to obtain an acceptor game that characterises L. 	

One interpretation of the characterisation is that, for every context-sensitive
language, there exists a consensus game that is as hard to play as it is to decide
membership in the language. On the one hand, this implies that winning strate-
gies for consensus games are in general PSpace-hard. Indeed, there are instances
of acceptor games that admit winning strategies, however, any machine that
computes the decision to take in a play requires space polynomial in the length
of the play.

Theorem 6. There exists a solvable consensus game acceptor for which every
winning strategy is PSpace-hard.

Proof. There exist context-sensitive languages with a PSpace-hard word prob-
lem [12]. Let us fix such a language L ⊆ Σ∗ together with a consensus game G
that characterises it, according to Theorem 5. This is a solvable game, and every
winning strategy can be represented as an observation-based strategy s for the
first player. Then, the membership problem in L reduces (in linear time) to the
problem of deciding the value of s in a play in G: For any input word w ∈ Σ∗,
we have w ∈ L if, and only if, s(w) = 1. In conclusion, it is PSpace-hard to
decide whether s(π) = 1, for every winning strategy s in G. 	

116 D. Berwanger and M. van den Bogaard

On the other hand, it follows that determining whether a consensus game
admits a winning strategy is no easier than solving the emptiness problem of
context-sensitive languages, which is well known to be undecidable.

Theorem 7. The question whether an acceptor game admits a winning strategy
is undecidable.

Proof. We reduce the emptiness problem for a context-sensitive grammar to the
solvability problem for a acceptor game.

For an arbitrary context-sensitive language L ∈ Σ∗ given as a linear bounded
automaton, we construct an acceptor game G that characterises L, in polynomial
time, according to Theorem 5. Additionally, we construct an acceptor game G′

that characterises the empty language over Σ∗: this can be done, for instance,
by connecting a clique over letters in Σ observable for both players to a final
state at which only the decision 0 is admissible. Now, for any word w ∈ Σ∗, the
game G′ requires decision 0 at every observation sequences w ∈ Σ∗, whereas
G requires decision 1 whenever w ∈ L. Accordingly, the acceptor game G ∧ G′

is solvable if, and only if, L is empty. As the emptiness problem for context-
sensitive languages is undecidable [12], it follows that the solvability problem is
undecidable for consensus game acceptors. 	

We have seen that every context-sensitive language corresponds to a
consensus game acceptor such that language membership tests reduce to winning
strategy decisions in a play. Conversely, every solvable game admits a winning
strategy that is the characteristic function of some context-sensitive language.
Intuitively, a strategy should prescribe 0 at a play π whenever there exists a
connected play π′ at which 0 is the only admissible decision. Whether this is the
case can be verified by a nondeterministic machine using space linear in the size
of π.

Theorem 8. Every solvable acceptor game admits a winning strategy that is
implementable by a nondeterministic linear bounded automaton.

5 Games for Weaker Language Classes

The relation between the observation sequences received by the players in a syn-
chronous game on a finite graph can also be explained in terms of letter-to-letter
transducers, that is, finite-state automata where the transitions are labelled with
input and output letters (See, e.g., [20, Ch. IV]). For a game G, the relation
{(β1(π), β2(π)) ∈ Γ ∗ × Γ ∗ : π a play in G } and its inverse are recognised by
letter-to-letter transducers with the same transition structure as G. Conversely,
every transducer τ can be turned into a game by letting one player observe the
input and the other player the output letter of every transition. The consensus
condition requires decisions to be invariant under the transitive closure τ∗ of
the described relation over Γ ∗, which corresponds to iterating letter-to-letter
transductions. Denoting by Lacc ⊆ Γ ∗ the language of observation sequences for

Consensus Game Acceptors 117

plays in which only the decision 1 is admissible, the Σ-language covered by G is
L := Σ∗τ∗Lacc. To characterise L, we additionally need to ensure L̄ = Σ∗τ∗Lrej,
for the language Lrej of observation sequences for plays in which only decision 0
is admissible. Thus, every consensus game acceptor can be described as a col-
lection of three finite-state devices: two automata recognising the accepting and
rejecting seed languages Lacc and Lrej, and a (nondeterministic) letter-to-letter
transducer τ relating the observation sequences of the players.

Properties of iterated letter-to-letter transductions, or equivalently, length-
preserving transductions, have been investigated in [15], also leading to the
conclusion that iterated transducers capture context-sensitive languages. In the
following, we investigate restrictions of consensus game acceptors towards cap-
turing weaker language classes.

Firstly, we remark that regular languages correspond to games where the two
players receive the same observation at every node.

Proposition 9. Every regular language L ⊆ Σ∗ is characterised by a consensus
game acceptor with identical observations for the players.

Here, the consensus condition is ineffective, the model reduces to one-player
games with imperfect information. To characterise a regular language L, we can
build a game from a deterministic automaton for L, by moving symbols from
transitions into the target states and allowing Input to go from every accepting
state in the automaton to a final game state vacc with Ω(vacc) = {1}, and from
every rejecting state to a final state vrej with Ω(vrej) = {0}. Conversely, given
a consensus game acceptor G with identical observations, the accepting seed
language Lacc mentioned above yields the language characterised by G. Clearly,
winning strategies in such games are regular.

We say that a consensus game acceptor has ordered observations if its alpha-
bet Γ can be ordered so that β1(v) ≥ β2(v), for every state v ∈ V . One con-
sequence of this restriction is that the implementation complexity of winning
strategy drops from PSpace to NP.

Proposition 10. Every solvable acceptor game with ordered observations
admits a winning strategy that is characterised by a language in NP.

Without loss of generality we can assume that the symbols occurring in Lrej or
Lacc are disjoint from the input alphabet Σ and order them below. Then, given
a sequence of observations π ∈ Σ∗, any sequence of indistinguishable plays that
starts with observation π and leads to Lrej or Lacc is of length at most |Γ | × |π|.
To decide whether to prescribe 0 or 1 at π, a nondeterministic machine can guess
and verify such a sequence in at most cubic time.

Despite this drop of complexity, games with ordered observations are suffi-
ciently expressive to cover context-free languages.

Lemma 11. Every context-free language is covered by a consensus game accep-
tor with ordered observations.

Firstly, any Dyck language over a finite alphabet Σ of parentheses, possibly
with extra neutral symbols, can be covered by a consensus game acceptor over

118 D. Berwanger and M. van den Bogaard

Σ extended with one additional � symbol ordered below Σ. The accepting seed
language is Lacc = �∗, and the plays allow to project either a neutral symbol
or an innermost pair of parentheses from the observation sequence of the first
player by replacing them with � observations for the second player. Next, we
observe that the class of languages covered by consensus game acceptors with
ordered observations is effectively closed under intersection and letter-to-letter
transductions, and thus particularly under letter-to-letter homomorphisms. The
statement then follows by the Chomsky-Schützenberger [8] representation theo-
rem, in the non-erasing variant proved by Okhotin [17]: every context-free game
is the letter-to-letter homomorphic image of a Dyck language with neutral sym-
bols with a regular language.

Since it is undecidable whether two context-free languages have non-empty
intersection [21], the above lemma also imples that the solvability problem for
consensus game acceptors is undecidable, already when observations are ordered.
Concretely, we can represent the standard formulation of Posts Correspondence
Problem as a solvability problem for such restricted consensus games.

Corollary 12. The question whether a consensus game acceptor with ordered
observations admits a winning strategy is undecidable.

Due to the characterisation of nondeterministic linear-time languages as
homomorphic images of intersections of three context-free languages due to Book
and Greibach [5], we can draw the following conclusion.

Theorem 13. For every language L decidable in nondeterministic linear time,
we can effectively construct a consensus game acceptor with ordered observations
that covers L.

Acknowledgments. This work was supported by the European Union Seventh
Framework Programme under Grant Agreement 601148 (CASSTING).

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49, 672–713 (2002)

2. Arnold, A., Walukiewicz, I.: Nondeterministic controllers of nondeterministic pro-
cesses. In: Logic and Automata, vol. 2. Amsterdam University Press (2007)

3. Azhar, S., Peterson, G., Reif, J.: Lower bounds for multiplayer non-cooperative
games of incomplete information. Journal of Computers and Mathematics with
Applications 41, 957–992 (2001)

4. Berwanger, D., Kaiser, �L.: Information tracking in games on graphs. Journal of
Logic, Language and Information 19, 395–412 (2010)

5. Book, R.V., Greibach, S.A.: Quasi-realtime languages. Mathematical Systems The-
ory 4, 97–111 (1970)

6. Chandra, A.K., Kozen, D., Stockmeyer, L.J.: Alternation. Journal of the ACM 28,
114–133 (1981)

7. Chlebus, B.S.: Domino-tiling games. Journal of Computer and System Sciences 32,
374–392 (1986)

Consensus Game Acceptors 119

8. Chomsky, N., Schützenberger, M.: The algebraic theory of context-free languages.
In: Computer Programming and Formal Systems. Studies in Logic and the Foun-
dations of Mathematics, vol. 35, pp. 118–161. Elsevier (1963)

9. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge.
MIT Press (1995)

10. Hearn, R.A., Demaine, E.D.: Games, Puzzles, and Computation. A. K. Peters Ltd.,
Natick (2009)

11. Janin, D.: On the (high) undecidability of distributed synthesis problems. In: van
Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.)
SOFSEM 2007. LNCS, vol. 4362, pp. 320–329. Springer, Heidelberg (2007)

12. Kuroda, S.-Y.: Classes of languages and linear-bounded automata. Information
and Control 7, 207–223 (1964)

13. Latteux, M., Simplot, D.: Context-sensitive string languages and recognizable pic-
ture languages. Information and Computation 138, 160–169 (1997)

14. Latteux, M., Simplot, D.: Recognizable picture languages and domino tiling. The-
oretical Computer Science 178, 275–283 (1997)

15. Latteux, M., Simplot, D., Terlutte, A.: Iterated length-preserving rational trans-
ductions. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450,
pp. 286–295. Springer, Heidelberg (1998)

16. Mohalik, S., Walukiewicz, I.: Distributed games. In: Pandya, P.K., Radhakrishnan,
J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 338–351. Springer, Heidelberg (2003)

17. Okhotin, A.: Non-erasing variants of the Chomsky–Schützenberger theorem. In:
Yen, H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 121–129. Springer,
Heidelberg (2012)

18. Peterson, G.L., Reif, J.H.: Multiple-person alternation. In: Proc. 20th Annual Sym-
posium on Foundations of Computer Science (FOCS 1979), pp. 348–363. IEEE
(1979)

19. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:
Proceedings of the 31st Annual Symposium on Foundations of Computer Science,
FoCS 1990, pp. 746–757. IEEE Computer Society Press (1990)

20. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press (2009)
21. Salomaa, A.: Formal Languages. Academic Press, New York (1973)
22. Schewe, S.: Distributed synthesis is simply undecidable. Inf. Process. Lett. 114,

203–207 (2014)
23. van Emde Boas, P.: The convenience of tilings. In: Complexity, Logic, and Recur-

sion Theory. Lecture Notes in Pure and Applied Mathematics, vol. 18, pp. 331–363.
Marcel Dekker Inc. (1997)

On the Size of Two-Way Reasonable Automata
for the Liveness Problem

Maria Paola Bianchi1(B), Juraj Hromkovič1, and Ivan Kováč2

1 Department of Computer Science, ETH Zurich, Zürich, Switzerland
{maria.bianchi,juraj.hromkovic}@inf.ethz.ch

2 Department of Computer Science, Comenius University, Bratislava, Slovakia
ikovac@dcs.fmph.uniba.sk

Abstract. The existence of a size gap between deterministic and nonde-
terministic two-way automata is one of the most famous open problems
in automata theory. This problem is also related to the famous DLOG
vs. NLOG question. An exponential gap between the number of states
of two-way nondeterministic automata (2nfas) and their deterministic
counterparts (2dfas) has been proved only for some restrictions of 2dfas
up to now. It seems that the hardness of this problem lies in the fact
that, when trying to prove lower bounds, we must consider every possible
automaton, without imposing any particular structure or meaning to the
states, while when designing a specific automaton we always assign an
unambiguous interpretation to the states. In an attempt to capture the
concept of meaning of states, a new model of two-way automata, namely
reasonable automaton (ra), was introduced in [6]. In a ra, each state is
associated with a logical formula expressing some properties of the input
word, and transitions are designed to maintain consistency within this
setting. In this paper we extend the study, started in [6], of the descrip-
tional complexity of ras solving the liveness problem, showing several
lower and upper bounds for different choices of allowed atomic predicates
and connectors.

1 Introduction and Preliminaries

The relationship between determinism and nondeterminism is one of the pre-
dominant topics of research in theoretical computer science. Such a comparison
for polynomial-time Turing machines is the well-known P vs. NP question, and
is considered to be the hardest open problem in computer science. Thus, a lot of
effort has been aimed to study the problem on simpler computational models,
such as finite automata.

In the case of one-way finite automata it has been shown that nondeter-
minism, although it does not add any computational power [16], can reduce
the number of states exponentially with respect to determinism [13,15]. The

This work was partially supported by grants SNF 200021 146372/1 and VEGA
1/0979/12.

c© Springer International Publishing Switzerland 2015
I. Potapov (Ed.): DLT 2015, LNCS 9168, pp. 120–131, 2015.
DOI: 10.1007/978-3-319-21500-6 9

On the Size of Two-Way Reasonable Automata for the Liveness Problem 121

intuitive reason of this explosion in the number of states of one-way determinis-
tic automata (1dfas) with respect to their equivalent nondeterministic version
(1nfas) is that once a letter is read, the information given by this letter must be
either stored in the current state or forgotten. Thus, as the amount of potentially
useful information grows, so does the number of states in the 1dfa. On the other
hand, 1nfas can avoid this problem by storing only the part of information that
will be actually relevant later.

It is not as intuitive to understand what happens in the two-way model
[12,16], where the automaton has the ability of moving back on the input tape
to retrieve some information, once known it is required. Although adding such
an ability does not improve the computational power [12], both deterministic
and nondeterministic two-way finite automata (2dfas and 2nfas, respectively)
can be exponentially more succinct than their one-way counterparts [13,15,17].
For the exact bound for the simulation of 2dfas/2nfas by 1dfas/1nfas, see [8].

On the other hand, the costs of the simulations of 1nfas by 2dfas and of
2nfas by 2dfas are still unknown. The problem of stating them was raised in
1978 by Sakoda and Sipser [17], with the conjecture that they are not polynomial.
To support such a conjecture, they presented a complete analogy with the P
vs. NP question, by introducing a notion of reducibility between families of
regular languages which allows to obtain families of complete languages for these
simulations (see Section 1.1). In spite of all attempts to solve it, this problem is
still open. The hardness of this question is emphasized by the direct connection
to the DLOG vs. NLOG problem: in fact, if DLOG=NLOG, then there exists a
polynomial p such that, for every n-state 2nfa A, there exists a p(n)-state 2dfa
A′ which is equivalent to A, when restricted to inputs of maximal length p(n)
[2]. As a direct consequence of this result, if we were able to show an exponential
gap between the number of states of a 2dfa and a 2nfa by using only languages
with words of polynomial length, we would immediately prove DLOG �= NLOG.

Actually, the complexity theory for finite automata can be developed as a
part of standard complexity theory for Turing machines, with classes, reductions,
complete problems and so on. This approach was first suggested in [17] and later
followed in [9,11], under the name of minicomplexity theory.

Due to the hardness of the problem of comparing the size of 2dfas and 2nfas,
a lot of attention has been given to restricted versions of two-way automata,
in order to obtain a deeper understanding of the issue and isolate the critical
features of the model. In 1980, Sipser proved that if the resulting machine is
required to be sweeping (deterministic and reversing the direction of its input
head only at the endmarkers, two special symbols used to mark the left and
right ends of the input), the simulation of a 2nfa is indeed exponential [18].
This, however, does not solve the general problem: in fact the simulation of
unrestricted 2dfas by sweeping 2dfas also requires an exponential number of
states [1,14]. Sipser’s result was generalized by Hromkovič and Schnitger [7],
who considered oblivious machines (following the same trajectory of input head
movements along all inputs of equal length) and, recently, by Kapoutsis [10],
considering 2dfas where the number of input head reversals is sublinear in the

122 M.P. Bianchi et al.

length of the input. However, even the last condition gives a machine provably
less succinct than unrestricted 2dfas, hence the general problem remains open.

Other approaches were based not on the restriction of the automaton itself,
but on the form of the input, i.e. from a unary alphabet. The situation for the
unary languages differs from the general case: for any 1nfa, as well as any 2dfa,
it is possible to find an equivalent 1dfa of subexponential size [3,4]. Also the
relationship between 2dfas and 2nfas is in this case subexponential [5].

Hardness of proving lower bounds for the 2dfa vs. 2nfa problem is con-
nected to the fact that one has to reason about all possible 2dfas, including
automata without any clear structure or meaning of states. When proving that
an automaton solves some problem, we usually argue about the meaning of the
states, about possible places in a word where it can be while in some state, or
about reasons to change the state. So, there is a gap between the set of automata
we reason about when trying to show an upper bound and the set of all possible
automata we have to consider when proving lower bounds. Therefore, a possible
step towards solving the general problem might be to focus on automata with
clear meaning of states. To achieve this goal, Hromkovič et al. defined in [6]
the model of Reasonable Automaton, in which each state is mapped to a logi-
cal formula, composed by (a combination of) some atomic propositions, which
represent some property of the current input word.

1.1 Liveness Problem and Reasonable Automata

A complete problem for the question of the number of states needed to simulate
a 2nfa by a 2dfa is the two-way liveness (2-liv for short), defined in [17] as
an infinite family of languages {Cn}n≥1. The n-th language Cn is defined over
an alphabet whose letters are graphs consisting of n left nodes and n right
nodes. Directed arcs may join any distinct pair of nodes, and the input word is
interpreted as a graph, which arises by identifying the adjacent columns of each
two consecutive letters. A word belongs to Cn iff there exists a path from some
vertex in the leftmost column to some vertex in the rightmost column.

It is possible to create a 2nfa with O(n) states accepting Cn by nondetermin-
istically choosing one of the leftmost vertices and then iteratively guessing the
next vertex of the path. However, the existence of a 2dfa for this language with
a number of states polynomial in n would imply that the same is true for any
language family whose n-th member can be accepted by a 2nfa with n states.

A special case of 2-liv is the one-way liveness problem (1-liv for short)
where, in each letter, only oriented edges from the left column to the right
column are allowed. This problem turns out to be complete with respect to the
question of simulation of 1nfas by 2dfas. The restriction of 1-liv where the
n-th language contains only words of length f(n) will be denoted as 1-livf(n).

We define here formally the model of reasonable automaton introduced in
[6]. In what follows, for any word z, we denote by zi its i-th symbol.

Definition 1. Let F be a set of propositional expressions over some set of
atoms. A Reasonable Automaton (ra for short) A over F for words of fixed
length m is a tuple A = (Σ,Q,m, qs, QF , QR, δ, τ, κ), such that

On the Size of Two-Way Reasonable Automata for the Liveness Problem 123

– Σ is the input alphabet,
– Q is the finite set of states, QF , QR ⊆ Q are the sets of accepting and

rejecting states, respectively, for which it holds QF ∩ QR = ∅,
– m ∈ N is a positive integer,
– qs ∈ Q is the initial state,
– δ : Q \ (QF ∪ QR) × Σ → Q is the (total) transition function,
– τ : Q \ (QF ∪ QR) → {1, 2, . . . ,m} is a function that assigns to every state

q which is neither accepting nor rejecting its focus τ(q), i.e. the position on
the input tape that A scans while in the state q.

– κ : Q → F is a mapping such that the following properties hold:
1. If A is in a state q while processing a word z, then the condition κ(q)

must be valid for z (in the given interpretation of the atoms).
2. If δ(q, a) = p holds for a triple p, q ∈ Q and a ∈ Σ, then, for each

z ∈ Σm such that zτ(q) = a and the condition κ(q) is valid for z, then
the condition κ(p) must be valid for z as well.

3. For any q ∈ QF , the condition κ(q) must not be valid for any ω �∈ L(A).
4. For any q ∈ QR, the condition κ(q) must not be valid for any ω ∈ L(A).
5. A never enters an infinite loop in the computation on any input word.

The computation starts in the state qs on the τ(qs)-th symbol of the input word z.
In each computation step, the next state is given by δ(q, a), where q is the current
state and a is the symbol placed on the τ(q)-th position. The automaton works
on inputs of fixed length m, and each computation ends whenever the current
state is either accepting or rejecting.

By imposing restrictions on the allowed propositional expressions F , we obtain
classes of ras with very different succinctness. In [6,19] are proposed restric-
tions on the set of allowed logical connections and on the set of allowed atomic
statements. Namely, two ways of the choice of logical connections are taken into
consideration: in the first case, the stored information is only accumulated, which
is represented as a conjunction of the predicates and their negations. In the sec-
ond case, the information may have a more complicated form, as all well-formed
propositional formulæ are allowed.

The chosen predicates represent different kinds of information one can gather
about the input graph in the liveness problem families. In particular, the pred-
icates e(a, b), p(a, b), p(a, b, c), and r(a) have been considered. The predicate
e(a, b) is true iff there is an edge from a to b in the input graph. Similarly, the
predicate p(a, b) is true iff there is a path from a to b in the given graph, and
p(a, b, c) is true iff there is a path from a to b passing through the vertex c.
Finally, r(a) is true iff the vertex a is reachable from the left side, i.e. if there
exists a path from some vertex in the leftmost column to a.

In [6,19] the descriptional complexity of ras solving 1-liv in the case of words
of fixed length has been studied, leading to the bounds shown in Table 1. In this
paper, we extend such analysis by showing further bounds for several choices of
predicates and connectives. We first prove that the linear upper bound for ras
for 1-liv2 in which any formula on predicates e(a, b) is allowed is actually tight.
Then we show an exponential upper bound on ras allowing only conjunctions

124 M.P. Bianchi et al.

of either edge or path predicates, for words of constant length k, which is tight
for k = 2. In the case of edge variables we also show a lower bound which is
still exponential. Finally, we show that the choice of predicates of the form r(a)
leads to very weak expressive power since, even when allowing any propositional
formula on them, the number of states needed for such a ra to solve the n-th
language from 1-liv2 is Θ(2

n
2).

Table 1. Known bounds for any constant k and polynomial r, such that r(n) ≤ dnc for
some constants c, d. The ones displayed in bold are contained in this paper. In the case
of formulæ constructed through conjunctions and variables p(a, b), an upper bound of
O(n22n) for 1-liv2 was previously stated in [6].

Predicates Connectives Problem Lower bound Upper bound

e(a, b) full logic 1-liv2 Ω(n) O(n)
1-liv3, 1-liv4 O(n2)

1-livr(n) O(dn2+c+log2(dn
c))

e(a, b) conjunction 1-liv2 Ω(2n) O(2n)

1-livk Ω(2(k−1)n) O(k · 2(k−1)n)

p(a, b) conjunction 1-liv2 Ω(2n) O(2n)
1-livk O(k · n · 2n)

p(a, b, c) conjunction 1-liv2, 1-liv3 Ω(n2) O(n2)
1-liv4 O(n3)

1-livr(n) O(dn2+c+log2(dn
c))

r(a) full logic 1-liv2 Ω(2
n
2) O(2

n
2)

r(a) conjunction 1-liv2, 1-liv3, 1-liv4 Ω(2n) O(2n)

r(a), p(a, b, c) conjunction 1-liv2 Ω(n) O(n)
1-liv3, 1-liv4 O(n2)

2 Main Results

We start by considering the 1-liv problem on words of length 2. In [19] it was
shown an upper bound of O(n) states when considering ras where the allowed
formulæ are any propositional formula over predicates defined by the existence
of edges. Here, we complement this result with a matching lower bound.

Theorem 1. Consider propositional variables e(a, b) (¬e(a, b), resp.) with the
interpretation that there exists (does not exist, resp.) an edge between vertices a
and b, and let F be the set of all propositional formulæ on such variables. Then
any reasonable automaton solving the n-th language from the 1-liv2 family has
at least n states.

Proof. Let a be the first vertex in the first column, c the first vertex in the
third column and B the set of all vertices in the second column of the graph
defined by words of length 2 over the alphabet Σn. We define a subset of words
L = {z(1), z(2), . . . , z(2

n)} ⊂ Σ2
n not in the n-th language from 1-liv2 as follows:

for any ∅ ⊆ D ⊆ B there is a word in L such that it contains only edges (a, d),
for every d ∈ D, and edges (d′, c), for d′ /∈ D.

On the Size of Two-Way Reasonable Automata for the Liveness Problem 125

Suppose there exists a reasonable automaton A with m < n states solving the
n-th language from 1-liv2. For each x, y ∈ L, let Qx and Qy be the set of states
encountered during the computation of A on the word x and y, respectively.
Since m < n, there must exist two different words, say v and w, in L such that
Qv = Qw. Then, consider the word z = v1w2, which should be accepted by
A. However, we claim that the computation of A on z produces a set of states
Qz which is a subset of Qv. We show this claim by induction on the length of
the computation: (i) the first state of the computation is the starting state of
A, which is also in Qv, (ii) if the i-th state encountered in the computation is
qi ∈ Qv = Qw such that τ(qi) = 1 (= 2, resp.), then the next state is δ(qi, v1)
(δ(qi, w2), resp.) which is one of the states reached through the computation of
v (w, resp.), so it belongs to Qv. Thus the claim is settled.

However, since there are no accepting states in Qv, the word z cannot be
accepted by A, which is a contradiction.
�

In [6] it is proved that, when restricting the allowed connectors to only con-
junctions, i.e. allowing the state to only accumulate information on edge exis-
tence, ras need an exponential number of states to solve 1-liv2. Here we give a
matching upper bound, improving the one given in [6] by a factor of n2.

Theorem 2. Consider propositional variables e(a, b) (¬e(a, b), resp.) with the
interpretation that there exists (does not exist, resp.) an edge between vertices
a and b, and let F be propositional formulæ created by conjunctions of such
variables. For each n > 0, there exists a ra A over F accepting the n-th language
from 1-liv2 by using O(2n) states.

Proof. Let us call the vertices on left side A = {a1, . . . , an}, the vertices in the
middle B = {b1, . . . , bn} and the vertices on the right side C = {c1, . . . , cn}.
The idea behind the automaton solving the problem is the following. First, the
automaton tries to reject the word, showing that only vertices (in the middle
column) not reachable from the left side are connected to the right side. If this
approach does not work, then it chooses one edge from the second letter and
find its match in the first letter. (It does not matter which edge as long as the
vertex incident with it is reachable from the left side. This information is however
remembered in the state.) Formally, the automaton A has five types of states:

1. One initial state qs with focus 1, corresponding to the formula �.
2. The states q

(1)
D , for D ⊆ B, with focus 2, corresponding to formulæ∧

d∈D

∧n
i=1 ¬e(ai, d).

3. The rejecting states q
(2)
D , for D ⊆ B, corresponding to formulæ

(
∧

d∈D

∧n
i=1 ¬e(ai, d)) ∧ (

∧
d�∈D

∧n
k=1 ¬e(d, ck)),.

4. The states q
(3)
bj ,ck

with focus 1, corresponding to formulæ e(bj , ck).

5. The accepting states q
(4)
ai,bj ,ck

corresponding to formulæ e(ai, bj) ∧ e(bj , ck).

The automaton changes its state from qs to q
(1)
D if D is the maximal set of

vertices in the middle column which are not reachable from the left side. If in

126 M.P. Bianchi et al.

the second symbol there are no edges from the complement of D to the right
side, then A changes it state from q

(1)
D to the rejecting state q

(2)
D . Otherwise, it

chooses one edge (the minimum according to some fixed total ordering of edges)
{bj , ck} that appears in the second letter such that bj /∈ D and changes its state
to q

(3)
bj ,ck

. When in the state q
(3)
bj ,ck

, A checks if the edge {ai, bj} exists in the first
symbol for some ai on the left side. If it exists, then A goes to the accepting
state q

(4)
ai,bj ,ck

, otherwise it goes back to qs.
The total number of states is therefore (2n+1 + n3 + n2 + 1) ∈ O(2n). To

show that A is a ra, we need to ensure the validity of all five properties of κ
in Definition 1. Properties 1, 3 and 4 are straightforward. To prove property
2, we notice that, in transitions from states of type 2 to states of type 4, the
information of the preceding state is forgotten, and a new information is based
only on the knowledge of the symbol under the head. For all other transitions, the
information of the preceding state is accumulated together with new information
about the symbol under the head. Therefore, if the formula of the preceding state
is valid, the formula of the new state is valid as well. To show property 5 we notice
that the only possible loop in the automaton is of the form qs, q

(1)
C , q

(3)
bj ,ck

, qs. Since
states of type 4 are only reachable by words in the accepted language, this may
only be part of a computation on a word ω ∈ L(A). However, in this case the
set C chosen after the starting state would be the maximal set of vertices not
connected to the left side, which implies that for any possible bj in the choice
of the next state q

(3)
bj ,ck

, there must exist an edge {ai, bj} in the first symbol.

Therefore the state after q
(3)
bj ,ck

cannot be qs. In other words, the automaton
never goes from a state of type 4 back to the starting state if the computation
started in qs.
�

Since edges can be trivially represented by paths of length 1, we obtain the
same upper bound of Theorem 2 for the case of variable representing paths.

Corollary 1. Consider propositional variables p(a, b) (¬p(a, b), resp.) with the
interpretation that there exists (does not exist, resp.) a path between vertices
a and b, and let F be propositional formulæ created by conjunctions of such
variables. There exists a ra over F accepting the n-th language from 1-liv2 by
using O(2n) states.

We now extend the above reasoning to words of constant length.

Theorem 3. Consider propositional variables p(a, b) (¬p(a, b), resp.) with the
interpretation that there exists (does not exist, resp.) a path between vertices
a and b, and let F be propositional formulæ created by conjunctions of such
variables. There exists a ra A over F accepting the n-th language from 1-livk

by using O(k · n · 2n) states.

Proof (Sketch). We call the vertices in the i-th column V (i) = {a
(i)
1 , . . . , a

(i)
n },

and we build A for 1-livk as an extension of the one described in Theorem 2
for 1-liv2. Again, the automaton works in two phases using 5 types of states:

On the Size of Two-Way Reasonable Automata for the Liveness Problem 127

1. the starting state q
(1)
∅ , which has focus 1 and is associated to the formula �.

2. states of the form q
(i)
C , for 2 ≤ i ≤ k and C � V (i) have focus i and

correspond to the formula
⋃

a∈V (1), c∈C ¬p(a, c), meaning that no vertex in
the set C is reachable from the left side.

3. the rejecting state r, corresponding to the formula
⋃

a∈V (1), b∈V (k+1) ¬p(a, b).
4. states of the form p

(i)
C,b, for 1 ≤ i ≤ k − 1, C ⊆ V (i+1), b ∈ V (k+1) have focus

i and correspond to the formula
⋃

c∈C p(c, b), meaning that b is reachable
from all the vertices in C.

5. the accepting states of the form pa,b for a ∈ V (1) and b ∈ V (k+1), which
correspond to the formula p(a, b).

Hence, the total number of states is 1 + (k − 1)(2n − 1) + 1 + (k − 1)n2n + n2.
The automaton works as follows: in the first phase it scans the input left-to-

right, moving through states of type 2, and tries to prove that the word does
not belong to the language: when in a state q

(i)
C , it looks for the maximal set

C ′ ⊆ V (i+1) reachable from V (i) \ C. If C ′ = V (i+1), then it rejects the input,
otherwise it moves to q

(i+1)
C′ . If i = k, A chooses one vertex b in the right side

reachable from V k\C and moves to p
(k−1)
C′,b , where C ′ is the maximal set reachable

from b. In the second phase, A tries to find a path from b to the left side by
scanning the input right-to-left through states of type 4: from p

(i)
C,b it moves to

p
(i−1)
C′,b , where C ′ ⊆ V (i) is the maximal nonempty set reachable from C (in the

last step it simply chooses a single vertex a instead of a set). If such set does not
exist, it moves back to q

(1)
0 . Notice that this last transition is never actually used

in a computation starting from q
(1)
0 , however it is necessary to ensure Property

2 from Definition 1.
�
We can use a similar idea for proving an upper bound in the case of variables

defined by edges: in this case, however, since variables representing the existence
of a path are not allowed, in order to store in a state the information that some
subset C of the i-th column is not reachable from the right column, we store the
information that the set Ck−1 ⊆ V (k−1) is not reachable from the right side, and
Cj ⊆ V (j) is not reachable from the set V (j+1) \ Cj for all i ≤ j < k − 2. This
causes an increase in the number of states exponential in k.

Theorem 4. Consider propositional variables e(a, b) (¬e(a, b), resp.) with the
interpretation that there exists (does not exist, resp.) an edge between vertices
a and b, and let F be propositional formulæ created by conjunctions of such
variables. There exists a ra over F accepting the n-th language from 1-livk by
using O(2(k−1)n) states.

We complement Theorem 4 with an almost matching lower bound.

Theorem 5. Consider propositional variables e(a, b) (¬e(a, b), resp.) with the
interpretation that there exists (does not exists, resp.) an edge between vertices
a and b, and let F be propositional formulæ created by conjunctions of such
variables. For any integer k > 0 any reasonable automaton solving the n-th
language from the 1-livk family has Ω(2(k−1)n) states.

128 M.P. Bianchi et al.

Proof. Suppose there exists a reasonable automaton A recognizing the n-th lan-
guage from the 1-livk family. Let us call the vertices in the i-th column V (i) =
{a

(i)
1 , . . . , a

(i)
n }. We consider the language L = {z(1), z(2), . . . , z((2

n−2)k−1)} ⊂ Σk
n

such that, for every sequence of nonempty sets U (2), U (3), . . . , U (k), such that
U (i)

� V (i), there exists a word w ∈ L such that it consists of the edges
(a(1)

1 , b), for each b ∈ U (2), (b, c) for each b ∈ U (i) and c ∈ U (i+1), where 2 ≤ i < k,
(c′, d′) for each c′ ∈ V (i) \ U (i) and d′ ∈ V (i+1) \ U (i+1), where 2 ≤ i < k, and
(d′, a(k+1)

1) for each d′ ∈ V (k) \ U (k) (see Figure 1 for an example).

· · ·

U (1) U (2) U (3) U (4) U (k−2) U (k−1) U (k)

U (k+1)

Fig. 1. The word in L associated to sets U (2), . . . , U (k). For sake of notation we let
U (1) = {a

(1)
1 } and U (k+1) = V (k+1) \ {a

(k+1)
1 } for any word in L.

Let us look at the computation of A on words from L. Since all words in
L must be rejected, there must be some state q in the computation on the
current word such that κ(q) implies that there is no path from a

(1)
1 to a

(k+1)
1 .

We denote by qi the first state that satisfies this property for the word z(i). Since
qs can not satisfy this property, there always exists a state ri preceding qi in the
computation on z(i). We also call U

(h)
i , for 1 ≤ h ≤ k + 1, the sets of vertices

associated to z(i), and we let W
(h)
i = V

(h)
i \ U

(h)
i .

We claim that, for each z(i), the state ri must contain the information that,
for any letter except the focus of ri, there is no edge between U -vertices to the
left and the W -vertices to the right of that symbol. Formally, the formula κ(ri)
must contain variable ¬e(b, c), for any b ∈ U (α), c ∈ W (α+1), where 1 ≤ α ≤
k + 1 and α �= τ(ri). In fact, if one such variable is missing, say ¬e(b̄, c̄), we
consider the word z(j) having the same edges as z(i), plus the edge (b̄, c̄). Such a
word clearly satisfies κ(ri) and, since the τ(ri)-th symbol is the same, we have
δ(ri, z

(i)
τ(ri)

) = qi. However, in z(j) there exists a path from a
(1)
1 to a

(1)
k+1, therefore

it does not satisfy κ(qi). This contradiction settles the claim.
We now show that for any z(i), z(j) ∈ L such that i �= j, it holds that ri �= rj .

Since z(i) �= z(j), there exists a value 2 ≤ t ≤ k such that U
(t)
i �= U

(t)
j . Let t be

the highest value with such property: w.l.o.g., we assume there exists a vertex
v ∈ U

(t)
i \ U

(t)
j (otherwise swap i and j). If τ(ri) �= τ(rj), then we clearly have

ri �= rj , so we assume that τ(ri) = τ(rj) = x, i.e., they have the same focus x.

On the Size of Two-Way Reasonable Automata for the Liveness Problem 129

We first consider the case x �= t. Since v ∈ U
(t)
i , for any vertex c ∈ W

(t+1)
i ,

the word z(i) does not contain the edge (v, c), so the above claim implies that
¬e(v, c) must be part of κ(ri). However, because of how we chose t, we have
that U

(t+1)
i = U

(t+1)
j , so the word z(j) contains the edge (v, c), therefore ¬e(v, c)

cannot be part of κ(ri), thus ri �= rj .
Now we consider the case x = t. By going backwards from t, we find the first

position where there is a vertex on the left side of the current letter which is a
U -vertex for both words. More formally, we let
 = max {h ∈ {1, 2, . . . , t − 1} |
∃c ∈ V

(h+1)
i such that c ∈ U

(h+1)
i ∩ U

(h+1)
j }. Clearly such
 always exists since

a
(1)
1 ∈ U

(1)
i ∩ U

(1)
j . Because of the maximality of
, for
 < t − 1 there exists a

vertex b in the
+1-th layer such that, b ∈ U
(�+1)
i ∩W

(�+1)
j or b ∈ W

(�+1)
i ∩U

(�+1)
j .

We let, w.l.o.g., b ∈ U
(�+1)
i ∩ W

(�+1)
j (for the other case simply swap i and j),

and we let b = v in the case
 = t − 1. Thus, we have that there is no edge
between c and b in z(i), so because of the above claim ¬e(c, b) must be in κ(ri).
However, z(j) has the edge (c, b), therefore it must be ri �= rj .

As there are (2n − 2)k−1 words in L, there must be at least (2n − 2)k−1 non
accepting states, therefore the total number of states must be Ω(2(k−1)n).
�

We now consider only atomic predicates representing reachability of a given
vertex. When allowing only conjunctions as connectors, 2n required for ras for
recognizing the n-th language from 1-liv even in the case of only two-letter
words [6]. Here we show that, by allowing any well-formed formula over such
predicates, we can only improve the size by a square root factor.

Theorem 6. Consider propositional variables r(a) (¬r(a), resp.) with the inter-
pretation that a is reachable (non reachable, resp.) from the left side, and let F
be the set of all propositional formulæ on such variables. There exists a ra A
over F accepting the n-th language from 1-liv2 by using O(2

n
2) states.

Proof (Sketch). We call b1, . . . , bn the vertices on the middle side. We build A
for 1-liv2 that works as follows: after reading the first symbol, A memorises in
the state the set B1 of reachable vertices in S1 = {b1, . . . , b�n

2 �}. Then it reads
the second symbol: if there are edges connecting any vertex of B1 to the right
side, A accepts the input word, otherwise it computes the set B2 of vertices in
S2 = {b�n

2 �+1, . . . , bn} which have edges to the right side, and memorises in the
state the information that the right side is reachable if and only if one of the
vertices in B2 is reachable. Finally, the automaton reads the first symbol again,
and accepts the input word if and only if there exists a vertex in B2 connected
to the left side.
�

We now focus on proving a matching lower bound for the upper bound stated
in Theorem 6. For technical reasons, we need a normal form for ras, where the
automaton rejects (or accepts) as soon as possible, that is, whenever from the
formula and the current symbol we can infer a definite answer. This form can be
easily obtained by redirecting the transitions to the accepting/rejecting states as
soon as enough information can be inferred from the configuration of the system.

130 M.P. Bianchi et al.

Theorem 7. Consider propositional variables r(a) (¬r(a), resp.) with the inter-
pretation that the vertex a is reachable (non reachable, resp.) from the left side,
and let F be the set of all propositional formulæ on such variables. Then, any
reasonable automaton over F solving the n-th language from 1-liv2 must have
Ω(2

n
2) states.

Proof. Let us call the vertices on left side a1, . . . , an, the vertices in the middle
b1, . . . , bn and the vertices on the right side c1, . . . , cn. We show that this lower
bound holds for a restricted version of the problem, in which edges to c2, c3,
. . . , cn are not allowed. The bound can be then transfered to the general version
of the problem – if there existed an automaton with less states in the general
case, this automaton could be directly used for solving the restricted case as
well, since the restriction is purely syntactical. Let us therefore consider only
the restricted version of the problem.

We first notice that, in order to accept or reject the input word, any reason-
able automaton must first read the entire input, therefore every computation has
at least 3 states. We call pre-halting (pre-pre-halting, resp.) the state encountered
one step (two steps, resp.) before the accepting or rejecting state.

Let B = {b1, . . . , bn}. We consider a set L of 2n−2 words from Σ2
n constructed

as follows: for every set of vertices D in the middle column, such that ∅ ⊂ D ⊂ B,
we connect all vertices in D to the vertex a1, and we connect all the vertices in
the complement of D to the vertex c1. Clearly, none of these words belongs to
the n-th language from 1-liv2, and the restriction is valid in all of them. We
also consider the set L′ =

{
x1y2 ∈ Σ2

n | x ∈ L ∧ y ∈ L
}

of words obtained by
taking pairs of words in L and swapping the first letter. Clearly, all words in L′

belong to n-th language from 1-liv2.
By contradiction, suppose there exists a ra A = (Σn, Q, 2, qs, QF , QR, δ, τ, κ)

with m < 2
n
2 states solving the n-th language from 1-liv2. Since there are

only m2 < 2
n
2 − 2 pairs of states of A, there exist two input words x and y

whose computation has the same pre-halting and pre-pre-halting state. Let us
call those states s and t, respectively. Furthermore, let Dx,Dy ⊂ B be the sets
associated with the words x and y, respectively. Since we assumed A halts as
soon as possible, κ(t) together with the information carried by either xτ(t) or
yτ(t) cannot imply either r(c1) nor ¬r(c1). Therefore, since t is encountered in
the computations of both x and y, the formula κ(t) must hold for all words with
one of the following properties:

1.
∧

bi∈Dx
r(bi) ∧ ∧

bi∈B\Dx
¬r(bi) ∧ r(c1),

2.
∧

bi∈Dx
r(bi) ∧ ∧

bi∈B\Dx
¬r(bi) ∧ ¬r(c1),

3.
∧

bi∈Dy
r(bi) ∧ ∧

bi∈B\Dy
¬r(bi) ∧ r(c1),

4.
∧

bi∈Dy
r(bi) ∧ ∧

bi∈B\Dy
¬r(bi) ∧ ¬r(c1),

The word x1y2 belongs to the first category. Therefore, by property 2 of κ in
Definition 1, κ(s) must be valid for x1y2 as well, since δ(t, xτ(t)) = δ(t, yτ(t)) = s.
Using property 2 once more, since s is a pre-halting state which leads to a
rejecting state if the letter xτ(s) or yτ(s) is read, the word x1y2 will be rejected,
which contradicts the validity of the automaton A.
�

On the Size of Two-Way Reasonable Automata for the Liveness Problem 131

References

1. Berman, P.: A note on sweeping automata. In: de Bakker, J., van Leeuwen, J.
(eds.) ICALP. LNCS, vol. 85, pp. 91–97. Springer, Heidelberg (1980)

2. Berman, P., Lingas, A.: On complexity of regular languages in terms of finite
automata. Technical report, Institute of Computer Science, Polish Academy of
Sciences, Warsaw (1977)

3. Chrobak, M.: Finite automata and unary languages. Theor. Comp. Sci. 47(2),
149–158 (1986)

4. Geffert, V.: Magic numbers in the state hierarchy of finite automata. Information
and Computation 205(11), 1652–1670 (2007)

5. Geffert, V., Mereghetti, C., Pighizzini, G.: Converting two-way nondeterministic
unary automata into simpler automata. Theor. Comp. Sci. 295, 189–203 (2003)

6. Hromkovič, J., Královič, R., Královič, R., Štefanec, R.: Determinism vs. Nondeter-
minism for Two-Way Automata: Representing the Meaning of States by Logical
Formulæ. Int. J. Found. Comput. Sci. 24(7), 955–978 (2013)

7. Hromkovič, J., Schnitger, G.: Nondeterminism versus determinism for two-
way finite automata: generalizations of Sipser’s separation. In: Baeten, J.C.M.,
Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719,
pp. 439–451. Springer, Heidelberg (2003)

8. Kapoutsis, C.A.: Removing bidirectionality from nondeterministic finite automata.
In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618,
pp. 544–555. Springer, Heidelberg (2005)

9. Kapoutsis, C.A.: Size complexity of two-way finite automata. In: Diekert, V.,
Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 47–66. Springer, Heidelberg
(2009)

10. Kapoutsis, C.A.: Nondeterminism is essential in small two-way finite automata
with few reversals. Inf. Comput. 222, 208–227 (2013)

11. Kapoutsis, C.A., Královič, R., Mömke, T.: Size complexity of rotating and sweeping
automata. Journal of Computer and System Sciences 78(2), 537–558 (2012)

12. Kolodin, A.N.: Two-way nondeterministic automata. Cybernetics and Systems
Analysis 10(5), 778–785 (1972)

13. Lupanov, O.: A comparison of two types of finite automata. Problemy Kibernet
9, 321–326 (1993). (in Russian); German translation: Über den Vergleich zweier
Typen endlicher Quellen. Probleme der Kybernetik 6, 329–335 (1966)

14. Micali, S.: Two-way deterministic finite automata are exponentially more succinct
than sweeping automata. Inf. Process. Lett. 12, 103–105 (1981)

15. Moore, F.R.: On the bounds for state-set size in the proofs of equivalence between
deterministic, nondeterministic, and two-way finite automata. IEEE Transactions
on Computers C–20(10), 1211–1214 (1971)

16. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Dev. 3(2), 114–125 (1959)

17. Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two way finite automata.
In: Proc. of the 10th Annual ACM Symposium on Theory of Computing (STOC
1978), pp. 275–286. ACM Press, New York (1978)

18. Sipser, M.: Lower bounds on the size of sweeping automata. Journal of Computer
and System Sciences 21, 195–202 (1980)

19. Štefanec, R.: Semantically restricted two-way automata. PhD Thesis, Comenius
University in Bratislava (2014)

Squareable Words

Francine Blanchet-Sadri1(B) and Abraham Rashin2

1 Department of Computer Science, University of North Carolina, P.O. Box 26170,
Greensboro, NC 27402–6170, USA

blanchet@uncg.edu
2 Department of Mathematics, Rutgers University, 110 Frelinghuysen Rd.,

Piscataway, NJ 08854–8019, USA

Abstract. For a word w and a partial word u of the same length, say
w derives u if w can be transformed into u by inserting holes, i.e., by
replacing letters with don’t cares, with the restriction that no two holes
may be within distance two. We present and prove a necessary and suf-
ficient condition for a word of even length (at least eight) to not derive
any squares (such word is called non-squareable). The condition can be
decided in O(n) time, where n is the length of the word.

Keywords: Combinatorics on words · Partial words · Squareable word ·
Squares

1 Introduction

For an alphabet A, a partial word is a word over the extended alphabet A∪{�},
where � denotes a so-called “hole” or “don’t care”. These holes are used to indi-
cate positions which may contain letters from a given substitution alphabet. For
example, �ab�abb is a partial word with two holes at positions 0 and 3 that can
be transformed into any of the four words aabaabb, aabbabb, babaabb, babbabb by
using the substitution that maps � into {a, b}. In the context of string matching,
Fischer and Paterson [5] introduced partial words in 1974 as “strings with don’t
cares”. Berstel and Boasson [1] began the study of their combinatorics in 1999
(they also introduced the terminology “partial words”). Both algorithms and
combinatorics on partial words have been developing since (see, e.g., [2]).

The concepts of repetition-freeness such as square-freeness, cube-freeness,
and overlap-freeness in words were studied in the early papers of Thue [8,9].
These concepts were extended to partial words in some recent papers [4,6,7]
where the authors studied the problem of whether or not infinite repetition-
free total words (those without holes) exist with the property that an arbitrary
number of holes can be inserted while remaining repetition-free. Here, inserting
holes means replacing the letters at a number of positions of the word with
holes. This insertion of holes is subject to the restriction that no two holes may
be within distance two, i.e., any positions i, j satisfying 0 < |i − j| ≤ 2 are not
both holes. Such insertion, called 2-restricted, avoids the introduction of trivial

c© Springer International Publishing Switzerland 2015
I. Potapov (Ed.): DLT 2015, LNCS 9168, pp. 132–142, 2015.
DOI: 10.1007/978-3-319-21500-6 10

Squareable Words 133

squares and cubes. This problem is equivalent to determining whether an infinite
partial word u, constructed by a 2-restricted insertion of holes into a total word
w, exists such that none of u’s factors of length kp has period p, for any rational
k ≥ 2 and integer p ≥ 1.

Blanchet-Sadri et al. [3] described an algorithm that given as input a finite
total word w of length n, and integers p ≥ 1 and d ≥ 2, determines whether w
can be transformed into a p-periodic partial word u by a d-restricted insertion of
holes, i.e., a partial word with period p and with the property that no two holes
are within distance d. Their algorithm outputs (if any exists) such a “maximal”
partial word u in O(nd) time. Consequently, they constructed an infinite overlap-
free total word over a 5-letter alphabet that remains overlap-free by an arbitrary 2-
restricted insertion of holes. It had been shown earlier that there exists an infinite
overlap-free total word over a 6-letter alphabet that remains overlap-free by an
arbitrary insertion of holes, and that none exists over a 4-letter alphabet [4].

In this paper, we only deal with finite (total or partial) words. We consider
the question of determining whether or not a total word w of length 2�, with
� ≥ 4, can be turned into a partial word u that is a square (i.e., u0 · · · u�−1 and
u� · · · u2�−1 are compatible) by inserting holes into w, subject to a 2-restriction.
If such u exists, we say that w derives the square u or that w is squareable.
We give a complete characterization of when a total word is squareable and as
a consequence, we describe an algorithm for determining whether a total word
derives a square, whose runtime is linear in the length of the word. Using this
algorithm, we can also determine whether a total word derives a non-square-
free square, whose runtime is cubic in the length of the word. Our approach is
graph-theoretical.

The contents of our paper are as follows: In Section 2, we recall some basic
concepts of combinatorics on partial words. In Section 3, we consider the set of
all partial words that are squares derivable from a fixed total word w. Since it
is a finite set, it is non-empty if and only if it has a “maximal” element. We
show that there is a one-to-one correspondence between the set of all “maximal”
partial words that are squares derivable from w and the set of 2-colorings of some
graph, associated with w, subject to three conditions. In Section 4 we show that,
aside from the trivial case of having 3-cycles, the associated graph is acyclic with
maximal degree two. The abovementioned one-to-one correspondence allows us
to determine whether or not w is squareable based on the structure of this graph.
Finally in Section 5, we conclude with some remarks.

2 Preliminaries

We denote by [i..j) (respectively, [i..j]) the discrete set of integers {i, . . . , j − 1}
(respectively, {i, . . . , j}), where i ≤ j.

Let A be a non-empty finite alphabet. A total word over A is a sequence
of characters from A. A partial word over A is a sequence of characters from
A� = A ∪ {�}, the alphabet A being extended with the hole character � (a total
word is a partial word that does not contain the � character). The length of a

134 F. Blanchet-Sadri and A. Rashin

0 1 2 3 4 5 0 1 2 3 4 5
a b c a b a � b c � b a
c a c b b b c � c b b �
6 7 8 9 10 11 6 7 8 9 10 11

Fig. 1. The squareable total word w = abcabacacbbb (positions aligned in two rows on
the left) derives the partial word u = �bc�bac�cbb� (positions aligned in two rows on
the right)

partial word u is denoted by |u| and represents the total number of characters
in u (the empty word is the word of length zero). We sometimes abbreviate
the character in position i of u by ui (the labelling of positions starts at 0).
We let H(u) be the set of positions where a partial word u has holes, i.e.,
H(u) = {i | i ∈ [0..|u|) and ui = �}. A partial word u is a factor of a partial
word v if v = xuy for some x, y.

If u and v are two partial words of equal length over A, then u is contained in
v, denoted by u ⊂ v, if ui = vi whenever ui ∈ A. For example, �bc�ba ⊂ abc�ba.
Partial words u and v are compatible, denoted by u ↑ v, if there exists a partial
word w such that u ⊂ w and v ⊂ w. For example, �bc�ba ↑ c�c�b� and �bcaba 	↑
c�c�bb.

A period of a partial word u over A is a positive integer p such that ui = uj

whenever ui, uj ∈ A and i ≡ j mod p. We say that u is p-periodic. The partial
word u = abba�bacba is not 3-periodic since u1 = b and u7 = c.

3 Squareable Words and Colorings of Associated Graphs

We say that a fixed total word w of length 2�, with � ≥ 4, derives a partial word
u of the same length (u is said to be derivable from w) if u can be constructed
by inserting holes into w, subject to the condition that no two holes may be
within distance two. We consider the problem of determining whether or not w
can derive a partial word u that is a square, i.e., u0 · · · u�−1 ↑ u� · · · u2�−1. Any
such w is called squareable. Fig. 1 gives an example of a squareable total word.

It turns out that this problem is easier to tackle if we restrict our attention to
partial words u that are maximal under the ⊂ relation, if any exist. Accordingly,
we define the following.

Definition 1. Let U be the (possibly empty) set of squares u derivable from w.
Call a partial word u in U maximal in U if for all v ∈ U , u ⊂ v implies that
u = v. Let Umax be the set of partial words u that are maximal in U .

Since U is a finite set, it is non-empty if and only if it has a maximal element.
We show that Umax is in bijection with the 2-colorings of a certain graph, subject
to three conditions. This allows us to determine whether or not Umax, and hence
U , is empty based on the structure of this graph.

Let V = {i | i ∈ [0..�) and wi 	= wi+�}. The following lemma gives a charac-
terization of Umax in terms of V .

Squareable Words 135

Lemma 1. Let u be a partial word of length 2� such that w derives u. Then
u ∈ Umax if and only if both of the following conditions hold:

1. for i ∈ V , exactly one of ui or ui+� is a hole,
2. for i ∈ [0..�) \ V , neither ui nor ui+� is a hole.

Proof. First note that by definition, u ∈ U if and only if u is derivable from w
and u0 · · · u�−1 ↑ u� · · · u2�−1. This is true precisely when for every i ∈ V , at least
one of positions i and i + � has been turned into a hole. Now, suppose u ∈ U
and that there is some i ∈ V for which ui = � = ui+�, or some i ∈ [0..�) \ V
for which either ui = � or ui+� = �. Then we can remove one of these holes
(replace it with the corresponding character in w), and the two halves of the
partial word are still compatible. (The resulting partial word is still in U .) Thus
u is not maximal. Therefore Conditions 1 and 2 are necessary and sufficient for
u to be in Umax. ��

Lemma 1 applies to partial words derived from the given total word w. But
because of the restriction that no two holes can be too close together, not every
insertion of holes into w corresponds to a derived word. This condition, however,
corresponds to independence of the hole positions on a certain graph.

Definition 2. For n ∈ N, let Gn be the graph with vertex set [0..n) and an edge
between two vertices i and j if and only if |i − j| ∈ {1, 2}.

Fig. 2 gives an example of such a graph and illustrates Lemma 2 below.

0
1

2

3

4

5
6

7

8

9

10

11
0

3

7

11

Fig. 2. {0, 3, 7, 11} is an independent set of vertices on the graph G12

Lemma 2. Let u be a partial word of length 2�. Then w derives u if and only
if u ⊂ w and H(u) is an independent set of vertices on G2�.

136 F. Blanchet-Sadri and A. Rashin

Proof. This is precisely the condition that w can be transformed into u by insertion
of holes, with no two holes within distance two (the definition of “w derives u”). ��

Now let G be the subgraph of G� induced by V , i.e., the graph with vertex
set V and an edge between i and j if and only if there is such an edge in G�.
Fig. 3 gives an example and illustrates the following theorem.

0

1

2

3

4

5

0

1

3

5

0

3

1 5

Fig. 3. A 2-coloring of the subgraph G (right) of G6 (left) induced by V = {0, 1, 3, 5}

Theorem 1. The set U is non-empty if and only if the graph G has a 2-coloring
(say, grey and white) such that all three of the following conditions hold:

1. if 0, � − 1 ∈ V and 0 is white, then � − 1 is white,
2. if 0, � − 2 ∈ V and 0 is white, then � − 2 is white,
3. if 1, � − 1 ∈ V and 1 is white, then � − 1 is white.

Proof. Recall that U is non-empty if and only if Umax is non-empty. Let C
be the set of {grey, white}-colorings of G satisfying the above conditions. For
every coloring c ∈ C, let f(c) be the word derived from w whose set of holes is
{i | i ∈ V and c(i) = grey} ∪ {i + � | i ∈ V and c(i) = white}.

We claim that f is a bijection from C to Umax. Let c ∈ C. Each of the sets
{i | i ∈ V and c(i) = grey} and {i + � | i ∈ V and c(i) = white} is independent
on G2� since no two grey vertices neighbor in G and no two white vertices
neighbor in G. The union of these two sets is the hole set of f(c), i.e., H(f(c)).
Condition 1 prevents � − 1 and � = 0 + � (which are within distance two) from
both being holes in f(c). Similarly, Condition 2 prevents � − 2 and � from both
being holes in f(c) and Condition 3 prevents �−1 and �+1 from both being holes
in f(c). Together with the independence of each of the two sets that make up
H(f(c)), this suffices to prove that H(f(c)) is independent on G2�. Furthermore,
since each vertex in G has exactly one color under c, Condition 1 of Lemma 1
is satisfied, and since G only has vertices in V , Condition 2 of Lemma 1 is also
satisfied. Therefore, by Lemma 1, f(c) ∈ Umax.

The set of grey-colored vertices in any c ∈ C can be recovered from f(c) as
{i | i ∈ H(f(c)) ∩ [0..�)}. Therefore f is injective.

Squareable Words 137

0 1 2 3 4 5 6 7 8 9 10 11
a b c a b a a b c a b a
c a c b b b c c c b b a
12 13 14 15 16 17 18 19 20 21 22 23

Fig. 4. A non-squareable total word (positions aligned in two rows)

Let u ∈ Umax. Then w derives u. By Lemma 2, u ⊂ w and H(u) is an
independent set of vertices on G2� and by Lemma 1, exactly one of i, i + � is in
H(u) if i ∈ V and precisely zero if i ∈ [0..�)\V . Let c be the coloring of G defined
by c(i) = grey if i ∈ H(u), c(i) = white if i+ � ∈ H(u). Each of these vertices is
colored only by a single color, and the set of grey vertices and the set of white
vertices are each independent on G. Therefore c is a 2-coloring of G. Furthermore,
since � − 1 and � (which are within distance two) are not both in H(u), it is not
the case that both 0 and � − 1 are in V and that � − 1 is colored grey while 0 is
colored white. Therefore Condition 1 is satisfied. Similarly, Conditions 2 and 3
are satisfied. So c ∈ C. Now f(c) = u. Therefore f is surjective.

Therefore Umax (and hence U) is non-empty if and only if C is non-empty,
i.e., there exists a coloring of G satisfying the three conditions above. ��

Fig. 4 gives an example of a non-squareable total word and Fig. 5 shows the
associated induced subgraph G.

0
1

3

5
6

7

9

Fig. 5. The subgraph G of G12 induced by V = {0, 1, 3, 5, 6, 7, 9}; it has no 2-coloring

4 Linear Time Algorithm for Deciding Squareability

To assist in this graph-coloring problem, we first describe the structure of the
graph G. It turns out that aside from a trivial case (having 3-cycles), it is always

138 F. Blanchet-Sadri and A. Rashin

acyclic with maximal degree two. Therefore, unless V contains three consecutive
integers (the only way to have a 3-cycle), G is always 2-colorable, and we need
only determine whether one of these colorings satisfies the three conditions of
Theorem 1.

Lemma 3. Let n ∈ N and let V ′ ⊆ [0..n). Let G′ be the subgraph of Gn induced
by V ′. If V ′ does not contain any three consecutive integers, then the following
hold:

1. G′ is acyclic,
2. every vertex in G′ has degree at most two.

Proof. First, suppose for a later contradiction that there is a vertex i ∈ V ′ of
degree at least 3. Then three of i − 2, i − 1, i + 1 and i + 2 are in V ′, so it must
be the case that either i − 2, i − 1, i ∈ V ′ or i, i + 1, i + 2 ∈ V ′. In either case, V ′

contains three consecutive integers, a contradiction.
Next, suppose for a later contradiction that G′ has cycles, and let i1, . . . , im, i1

be a minimal length cycle in G′. Now let k ∈ [1..m] so that ik ≤ il for all
l ∈ [1..m]. We claim that ik + 1 and ik + 2 are in V ′. To see this, consider the
subgraph H of G′ induced by {j | j ∈ V ′ and j ≥ ik}. Since the above cycle has
no vertex less than ik, it is also a minimal cycle on H. Therefore the vertex ik
must have degree at least two in H, from which it follows that ik + 1 and ik + 2
are in V ′. Therefore V ′ contains three consecutive integers, a contradiction. ��

In other words, unless V contains three consecutive integers (checkable given
w in �-linear time), G simply consists of a union of disjoint paths. Such a graph
admits 2m possible 2-colorings, where m is the number of components.

Lemma 4. Let I = min(V) and J = max(V). Then G is connected if and only
if there is no i ∈ N, I < i < J , for which i /∈ V and i + 1 /∈ V .

Proof. First, suppose that i is an integer between I and J for which i, i+1 /∈ V .
Partition the vertex set V of G into V1 = {j | j ∈ V and j ≤ i} and V2 = {j |
j ∈ V and j ≥ i}. These sets are non-empty because I ∈ V1 and J ∈ V2. But
since i, i + 1 /∈ V , we have for all j1 ∈ V1, j2 ∈ V2 that j1 ≤ i − 1 and j2 ≥ i + 2,
and hence that |j2 − j1| = j2 − j1 > 2. Therefore there are no edges between V1

and V2, so G is not connected.
Second, suppose that G is disconnected. Let V1, . . . , Vr (r ≥ 2) be a partition

of V into components, ranked in increasing order of maximal element. (Each Vk

is connected, no Vk and Vl have an edge between them unless k = l, and for
k < l, max(Vk) < max(Vl).) We claim that J − 1, J /∈ V1. First, J ∈ Vr since it
is maximal in V . Now if J − 1 ∈ V , then there is an edge between J and J − 1,
implying that J − 1 is in Vr, and hence not in V1. If J − 1 /∈ V , then we also
have that J − 1 /∈ V1 ⊂ V . In either case, J − 1 and J are not in V1.

Now let J1 = max(V1). By the above, J1 + 1 < J . We also have that J1 ≥ I
(since J1 ∈ V), so J1 + 1 > I. Also, if J1 + 1 or J1 + 2 is in V , then there is an
edge between J1 and this greater vertex, violating the maximality of J1 in the
component V1. Therefore, since J1 ∈ V , we have that I < J1 + 1 < J and that
J1 + 1, J1 + 2 /∈ V . Hence J1 + 1 satisfies the required properties. ��

Squareable Words 139

We can now prove our necessary and sufficient conditions for a total word of
even length (at least 8) to be squareable.

Theorem 2. The total word w derives a square (i.e., U 	= ∅) if and only if
neither of the following two conditions holds:

1. V contains three consecutive integers,
2. 0, 1, �−2, �−1 ∈ V , [0..�)\V does not contain any two consecutive integers,

and V has an odd number of elements.

Proof. Suppose that Condition 1 holds, i.e., V contains three consecutive inte-
gers. Then these integers form a 3-cycle in G, so G is not bipartite and hence
not 2-colorable. By Theorem 1, w does not derive any squares.

So, suppose that Condition 1 does not hold. By Lemma 3, G consists of a
union of (one or more) disjoint paths. Let m be the number of components, and
let �k be the length of component k for k ∈ [0..m). Also, for k ∈ [0..m) and
l ∈ [0..�k], let ik,l be element l of component k of G, with the ends chosen so
that ik,0 ≤ ik,�k . In this case, G is always 2-colorable. There are two ways to
color each of the m components (each component must have the colors of vertices
alternating along the path), making for 2m possible 2-colorings. The question
is whether any of these colorings satisfies the three additional conditions of
Theorem 1 that none of the three pairs (� − 2, 0), (� − 1, 0), (� − 1, 1) be colored
(grey,white).

First, suppose that Condition 2 holds. Then by Lemma 4, G is connected
since there are no two consecutive integers outside V between 0 = min(V) and
� − 1 = max(V). Thus m = 1, and G is a path i0,0, . . . , i0,�0 of length �0 = |V |,
an odd number by assumption. The first element i0,0 must be 0, since if 0 has
degree two in G, it has both 1 and 2 as neighbors, forming a 3-cycle (but we
assume that Condition 1 does not hold). Similarly, i0,�0 must be � − 1. Also,
since these vertices have unique neighbors, i0,1 = 1 and i0,�0−1 = � − 2. There
are only two ways to 2-color a path, since the colors must be alternating. In one
case, 0, 1, � − 2 and � − 1 are grey, white, white and grey, respectively, violating
Condition 3 of Theorem 1, that � − 1 not be grey when 1 is white. In the other
case, 0, 1, � − 2 and � − 1 are white, grey, grey and white, respectively, violating
Condition 2 of Theorem 1, that � − 2 not be grey when 0 is white. Thus, there
are no appropriate 2-colorings of G (satisfying the conditions of Theorem 1), so
by Theorem 1, w does not derive any squares.

Second, suppose that Condition 2 does not hold. We consider several cases
and show that in each case, there is a 2-coloring of G that satisfies the three
conditions of Theorem 1 (and thus w derives a square).

Assume that G is of even size, connected and includes the first two and last
two elements of [0..�). This is similar to that immediately above, except that the
chain is of odd length. It is easy to verify that the alternating coloring with 0
colored grey satisfies the three conditions of Theorem 1, since it leaves 0, 1, �− 2
and � − 1 colored grey, white, grey and white, respectively, with none of the
three ordered pairs (� − 2, 0), (� − 1, 0), (� − 1, 1) colored (grey,white). (They are
colored (grey,grey), (white,grey), (white,white), instead. The opposite coloring,

140 F. Blanchet-Sadri and A. Rashin

which is the only other coloring of this graph, has (�−1, 0) colored (grey,white),
violating Condition 1 of Theorem 1.)

Now, assume that G includes the first two and last two elements of [0..�) and
is not connected. Then it follows from the reasoning of Lemma 4 that 0 and 1 lie
in a component different from that in which �−2 and �−1 lie. These components
can therefore be colored independently. Color the first component so that 0 is
grey and 1 is white, and color the latter component so that � − 2 is grey and
� − 1 is white. Color the other components (if any more exist) any other way.
Now the pairs (�− 2, 0), (�− 1, 0), (�− 1, 1) are colored (grey,grey), (white,grey),
(white,white), so none of them are colored the forbidden (grey,white).

Consider the case when G lacks at least three of 0, 1, � − 1, � − 2. Then no
three of the conditions of Theorem 1 apply. Any coloring suffices.

Next, consider the case when G includes 0, � − 2 but lacks at least one of
1, � − 1. In this case, Condition 3 of Theorem 1 is already satisfied, since we do
not have that both 1 and � − 1 are in V . Choose a coloring of G in which 0 is
grey. Then neither (� − 2, 0) nor (� − 1, 0) is colored (grey,white).

Finally, consider the case when G includes 1, � − 1 but lacks at least one of
0, � − 2. In this case, Condition 2 of Theorem 1 is already satisfied, since we do
not have that both 0 and � − 2 are in V . Choose a coloring of G in which � − 1
is white. Then neither (� − 1, 0) nor (� − 1, 1) is colored (grey,white). ��

Returning to Figs. 4 and 5, note that the set V contains three consecutive
integers.

When V does not contain three consectutive integers, the proof of Theorem 2
shows that it is impossible to find a coloring satisfying the three conditions of
Theorem 1 exactly when G is a single (connected) path of even length that
includes vertices 0, 1, � − 2 and � − 1. This provides a �-linear time algorithm for
determining whether w derives a square.

Algorithm 1. Deciding Squareability of a Total Word w of Length 2�, � ≥ 4
1: V ← {i | i ∈ [0..�) and wi �= wi+�}
2: if V contains three consective integers then
3: return w is non-squareable
4: G ← the subgraph of G� induced by V
5: if G is a single (connected) path of even length that includes vertices 0, 1, �−2 and

� − 1 then
6: return w is non-squareable
7: return w is squareable

Corollary 1. Algorithm 1 determines whether a total word of length 2�, where
� ≥ 4, derives a square. Its runtime is linear in the length of the word.

Note that the cases for � ∈ {0, 1, 2, 3} are achievable in constant time.
By cycling through possible starting positions and periods and using Algo-

rithm 1, we obtain the following.

Squareable Words 141

Corollary 2. There is an algorithm for determining whether a total word
derives a non-square-free word, whose runtime is cubic in the length of the word.

5 Conclusion

In this paper, we considered the problem of deciding whether or not a given
total word w of length 2�, with � ≥ 4, can be turned into a partial word that is
a square by inserting holes into w, subject to the restriction that no two holes
may be within distance two. We gave a complete characterization of such square-
able words w and as a consequence, we described an algorithm for determining
whether a total word derives a square, whose runtime is linear in the length
of the word. Using this algorithm, we can also determine whether a total word
derives a non-square-free square, whose runtime is cubic in the length of the
word. Our approach was based on the existence of 2-colorings, satisfying some
conditions, of a graph associated with the given total word. It turned out that,
aside from the trivial case of having 3-cycles, this graph is acyclic with maximal
degree two.

Acknowledgements. Project sponsored by the National Security Agency under
Grant Number H98230-15-1-0232. The United States Government is authorized to
reproduce and distribute reprints notwithstanding any copyright notation herein. This
manuscript is submitted for publication with the understanding that the United States
Government is authorized to reproduce and distribute reprints.

Thismaterial is baseduponwork supportedby theNational ScienceFoundationunder
Grant No. DMS–0754154. The Department of Defense is also gratefully acknowledged.

We thank the referees of a preliminary version of this paper for their very valuable
comments and suggestions.

References

1. Berstel, J., Boasson, L.: Partial words and a theorem of Fine and Wilf. Theoretical
Computer Science 218, 135–141 (1999)

2. Blanchet-Sadri, F.: Algorithmic Combinatorics on Partial Words. Chapman &
Hall/CRC Press, Boca Raton (2008)

3. Blanchet-Sadri, F., Mercaş, R., Rashin, A., Willett, E.: Periodicity algorithms and
a conjecture on overlaps in partial words. Theoretical Computer Science 443, 35–45
(2012)

4. Blanchet-Sadri, F., Mercaş, R., Scott, G.: A generalization of Thue freeness for
partial words. Theoretical Computer Science 410, 793–800 (2009)

5. Fischer, M., Paterson, M.: String matching and other products. In: Karp, R. (ed.)
7th SIAM-AMS Complexity of Computation, pp. 113–125 (1974)

6. Halava, V., Harju, T., Kärki, T., Séébold, P.: Overlap-freeness in infinite partial
words. Theoretical Computer Science 410, 943–948 (2009)

7. Manea, F., Mercaş, R.: Freeness of partial words. Theoretical Computer Science
389, 265–277 (2007)

142 F. Blanchet-Sadri and A. Rashin

8. Thue, A.: Über unendliche Zeichenreihen. Norske Vid. Selsk. Skr. I, Mat. Nat. Kl.
Christiana 7, 1–22 (1906). (Reprinted in Selected Mathematical Papers of Axel
Thue, T. Nagell, editor, Universitetsforlaget, Oslo, Norway (1977), pp. 139–158)

9. Thue, A.: Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske
Vid. Selsk. Skr. I, Mat. Nat. Kl. Christiana 1, 1–67 (1912). (Reprinted in Selected
Mathematical Papers of Axel Thue, T. Nagell, editor, Universitetsforlaget, Oslo,
Norway (1977), pp. 413–478)

Complexity Analysis: Transformation Monoids
of Finite Automata

Christian Brandl(B) and Hans Ulrich Simon

Department of Theoretical Computer Science, Faculty of Mathematics,
Ruhr-University Bochum, 44780 Bochum, Germany

{christian.brandl,hans.simon}@rub.de

Abstract. We examine the computational complexity of some problems
from algebraic automata theory and from the field of communication
complexity: testing Green’s relations (relations that are fundamental in
monoid theory), checking the property of a finite monoid to have only
Abelian subgroups, and determining the deterministic communication
complexity of a regular language. By well-known algebraizations, these
problems are closely linked with each other. We show that all of them
are PSPACE-complete.

Keywords: Green’s relations · Finite monoids · Regular languages ·
Communication complexity · PSPACE-completeness

1 Introduction

The Green’s relations L,R,J ,H are ubiquitous tools for studying the buildup
of a (finite) monoid M . For example, the maximal subgroups of M can be char-
acterized as H-classes of M containing an idempotent element (e.g. [7]). Such
H-classes are called regular. As illustrated in [3], there are also important applica-
tions in automata theory: star-free languages, factorization forests, and automata
over infinite words. The former application, due to Schützenberger, characterizes
the star-free languages as regular languages with syntactic monoids having only
trivial subgroups [8]. Finite monoids having only trivial subgroups are called
aperiodic and form a variety denoted as A. In [2], Cho and Huynh prove Stern’s
conjecture from [9] that testing for aperiodicity (star-freedom, alternatively) is
PSPACE-complete if the regular language is given as a minimum DFA. A is
contained in the variety Ab of monoids having only Abelian subgroups (reg-
ular H-classes, alternatively). Ab plays a decisive role for the communication
complexity of a regular language [10]. Since its introduction by Yao [11], commu-
nication complexity has developed to one of the major complexity measures with
plenty of applications (e.g., listed in [6]). In [10], Tesson and Thérien categorize
the communication complexity of an arbitrary regular language L by some prop-
erties of its underlying syntactic monoid M(L). This algebraic classification can
be achieved in the following models of communication: deterministic, random-
ized (bounded error), simultaneous, and Modp-counting. For the deterministic
c© Springer International Publishing Switzerland 2015
I. Potapov (Ed.): DLT 2015, LNCS 9168, pp. 143–154, 2015.
DOI: 10.1007/978-3-319-21500-6 11

144 C. Brandl and H.U. Simon

model, the authors of [10] show that the communication complexity of L can
only be constant, logarithmic, or linear (in the sense of Θ-notation). Thereby,
the condition M(L) �∈ Ab is a sufficient (but not necessary) condition for the
linear case.

In this paper, we focus on monoids which are generated by mappings with
domain and range Q for some finite set Q (like the syntactic monoid where these
mappings are viewed as state transformations). We primarily analyze the compu-
tational complexity of problems related to Green’s relations, the monoid-variety
Ab, and the deterministic communication complexity of regular languages. Our
main contributions are summarized in the following theorem:

Theorem 1. (Main results) Let M be a finite monoid given by the gener-
ators (=state transformations) f1, . . . , fl. Let g, h be 2 elements of M . Let
G ∈ {L,R,J ,H} be one of Green’s relations w.r.t. the monoid M . Let A be
a minimum DFA with syntactic monoid M(A). Let N be an NFA recognizing
language L. Let cc(L) be the deterministic communication complexity of L. With
these notations, the following problems are PSPACE-complete:

Problem Input Question

(i) G-TEST g, h ∈ M and generators f1, . . . , fl g G h ?

(ii) DFA-Ab minimum DFA A M(A) ∈ Ab ?

(iii) NFA-CC NFA N Is cc(L) const., log., or lin.?

This paper is organized as follows. In Section 2, we introduce the necessary
background and notations. In Section 3, we show the PSPACE-hardness of decid-
ing Green’s relations. In Section 4, we show the PSPACE-hardness of the prob-
lem DFA-Ab. In Section 5.1, we show that all problems listed in Theorem 1 are
members of PSPACE even when the underlying monoid is a syntactic monoid of
a regular language that is given by an NFA. In Section 5.2, we show the PSPACE-
hardness of the problem NFA-CC. Moreover, this problem remains PSPACE-hard
even when the language L is given by a regular expression β at the place of the
NFA N .

2 Preliminaries

We assume that the reader is familiar with the basic concepts of computational
complexity (e.g. [4]), communication complexity (e.g. [6]), regular languages (e.g.
[4]), and algebraic automata theory (e.g. [7]). In the sequel, we will briefly recapit-
ulate some definitions and facts from these fields and thereby fix some notation.

A Deterministic Finite Automaton (DFA) is formally given as a 5-tuple A =
(Q,Σ, δ, s, F) where Q denotes the finite set of states, Σ the input alphabet,
δ : Q×Σ → Q the transition function, s ∈ Q the initial state and F ⊆ Q the set
of final (accepting) states. As usual, the mapping δ can be extended by morphism
to δ∗ : Q × Σ∗ → Q. Throughout the paper, we will make use of the notation
q · w := δ∗(q, w). Intuitively, q · w is the state that is reached after A, started in

Complexity Analysis: Transformation Monoids of Finite Automata 145

state q, has completely processed the string w. The change from state q to state
q · w is sometimes called the w-transition from q. The language recognized by
A is given by L(A) = {w ∈ Σ∗ : s · w ∈ F}. Languages recognizable by DFA
are called regular. The DFA with the minimal number of states that recognizes
a regular language L is called the minimum DFA for L. DFA-minimization can
be executed efficiently.

Let L ⊆ Σ∗ be a formal language. We write w1 ∼L w2 iff the equivalence
uw1v ∈ L ⇔ uw2v ∈ L holds for every choice of u, v ∈ Σ∗. ∼L defines a
congruence relation on Σ∗ named syntactic congruence. For every w ∈ Σ∗,
[w]∼L

denotes the equivalence class represented by w. The quotient monoid
Σ∗/ ∼L, denoted as M(L), is called the syntactic monoid of L. M(L) is finite iff
L is regular. Moreover, M(L) coincides with the monoid consisting of the state
transformations fw(q) := q · w of a minimum DFA for L. Clearly, this monoid is
generated by {fa : a ∈ Σ}. If L = L(A) for some DFA A, we often simply write
M(A) instead of M(L(A)). The analogous convention applies to NFA.

Let M be a monoid and a, b ∈ M two arbitrary elements. aJ b :⇔ MaM =
MbM ; aLb :⇔ Ma = Mb; aRb :⇔ aM = bM ; aHb :⇔ aLb ∧ aRb define four
equivalence relations on M named Green’s relations. An element e ∈ M is called
idempotent iff e2 = e. A subgroup of M is a subsemigroup of M that is a group.

We denote by PSPACE the class of all problems that can be solved by a
Deterministic Turing-Machine (DTM) in polynomial space. We use the symbol
M for such a DTM. PSPACE is closed under complement. The following two
decision problems FAI [5] and RENU [1] are known to be complete problems
for PSPACE. FAI: Given DFAs A1, . . . , Ak with a common input alphabet and
unique final states, is there an input word accepted by all of A1, . . . , Ak? RENU:
Given a regular expression β over Σ (i.e., an expression with operands from
Σ ∪ {ε} and operations “+” (for union), “·” (for concatenation) and “∗” (for
Kleene closure)), do we have L(β) �= Σ∗?1

Let L ⊆ Σ∗ be a formal language. Let ε denote the empty string. In the
so-called communication game, 2 parties, say X and Y , exchange bits in order
to decide if the string x1y1 . . . xnyn belongs to L. Thereby, X (resp. Y) only
knows (x1, . . . , xn) ∈ (Σ ∪ {ε})n (resp. (y1, . . . , yn) ∈ (Σ ∪ {ε})n). The com-
munication may depend only on the input of the bit-sending party and the bits
already exchanged. The minimal number of communication bits needed to decide
membership is called deterministic communication complexity and is denoted as
cc(L). By [10], a regular language L has constant communication complexity iff
M(L) is commutative.

The definition of an NFA N = (Q,Σ, δ, s, F) is similar to the definition of a
DFA with the notable exception that δ(q, w) is not an element but a subset of
Q, i.e., an element of the powerset 2Q. Again the mapping δ can be extended by
morphism to a mapping δ : Q×Σ∗ → 2Q or even to a mapping δ∗ : 2Q×Σ∗ → 2Q

by setting
δ∗(R,w) = ∪z∈Rδ∗(z, w) . (1)

1 The language L(β) induced by a regular expression is defined in the obvious manner.

146 C. Brandl and H.U. Simon

3 Testing Green’s Relations

In this section, we prove the PSPACE-hardness of testing Green’s relations (see
Theorem 1,(i)). To this end, we design 2 logspace-reductions that start from the
problem FAI. Recall that an instance of FAI is given by DFA A1, . . . , Ak with a
common input alphabet Σ = {a1, . . . , al} and unique final states.
L-,H-TEST: The instance of FAI is transformed to the mappings

fa1 , . . . , fal
, h0, g+, h+ : Z � {σ0, σ1, σ2, τ0, τ1} → Z � {σ0, σ1, σ2, τ0, τ1} , (2)

which we view as state transformations. Here, Z = �k
j=1Z(Aj) denotes the dis-

joint union of the state sets of the DFAs, and σ0, σ1, σ2, τ0, τ1 are five additional
special states. In the sequel, the notion state diagram refers to the total diagram
that is formed by the disjoint union of the state diagrams for all DFAs whereas
the diagram for a particular DFA Ai is called sub-diagram. On the ordinary states
(as opposed to the special states), the state transformations act as follows:

∀a ∈ Σ : fa(z) = z · a and h0(z) = z0, g+(z) = h+(z) = z+ .

Here, z0 denotes the unique initial state in the sub-diagram containing z. Like-
wise, z+ denotes the unique accepting state in this sub-diagram. The special
states σ0, σ1, σ2 are transformed as follows:

σ0
g+,h+−→ σ1

g+,h+−→ σ2 (3)

Moreover, σ0, σ1 are fix-points for fa1 , . . . , fal
, h0, and σ2 is a fix-point for every

transformation. The analogous interpretation applies to

τ0
h0,h+−→ τ1, τ1

h0,h+−→ τ0 (4)

Concerning the L-TEST (resp. the H-TEST), we ask whether g+Lh+

(resp. g+Hh+) w.r.t. the monoid generated by the mappings in (2). We claim
that the following equivalences are valid:

k⋂
j=1

L(Aj) �= ∅ ⇔ g+Hh+ ⇔ g+Lh+ . (5)

To prove this claim, we first suppose
⋂k

j=1 L(Aj) �= ∅. Now, pick a word w from⋂k
j=1 L(Aj), and observe that the following holds:

h+ = fw ◦ h0 ◦ g+, g+ = fw ◦ h0 ◦ h+ (6)
h+ = g+ ◦ h0, g+ = h+ ◦ h0 (7)

Thus, we have g+Lh+ by (6) and g+Rh+ by (7). Hence, g+Hh+, as required.
The implication from g+Hh+ to g+Lh+ holds for trivial reasons. Now, suppose
g+Lh+. Certainly, this implies that h+ can be written as h+ = P ◦ g+ where

Complexity Analysis: Transformation Monoids of Finite Automata 147

P is a product of generators, i.e., a composition of functions from (2). Since
h+ and g+ are the only generators that do not leave states of type σ fixed and
act on them according to (3), it follows that P neither contains h+ nor g+.
For ease of later reference, we call this kind of reasoning the σ-argument. Since
h+, h0 are the only generators that do not leave states of type τ fixed and act on
them according to (4), the product P must contain h0 an odd number of times.
Focusing on the leftmost occurrence of h0, P can be written as P = P ′ ◦h0 ◦P ′′

where P ′ does not contain h0, and P ′′ contains h0 an even number of times. It
is easily verified that h0 = h0 ◦ P ′′, so P = P ′ ◦ h0 and h+ = P ′ ◦ h0 ◦ g+ where
product P ′ contains exclusively generators from {fa1 , . . . , fal

}. Thus, there exists
a word w ∈ Σ∗ such that P ′ = fw and h+ = fw ◦ h0 ◦ g+. Now, we are done
with the proof of (5) since this implies w ∈ ⋂k

j=1 L(Aj). (5) directly implies the
desired hardness result for the L- and the H-TEST, respectively.
R-,J -TEST: This time, we map A1, . . . , Ak to the following list of generators:

fa1 , . . . , fal
, f0, f, g, g+ : Z � Z ′ � {σ0, σ1, σ2} → Z � Z ′ � {σ0, σ1, σ2} (8)

Here, Z is chosen as in (2), Z ′ = {z′ : z ∈ Z} contains a marked state z′ for every
ordinary state z, and σ0, σ1, σ2 are special states (put into place to apply the σ-
argument). The marked states are fix-points for every mapping. Mappings g, g+
act on states of type σ according to (3) but now with g in the role of h+. The
remaining mappings leave states of type σ fixed. For every a ∈ Σ, fa(z) = z · a
is defined as in the previous logspace-reduction. Mappings f0, f, g, g+ act on
ordinary states (with the same notational conventions as before) as follows:

f0(z) = z0, f(z) = g(z) = z′, g+(z) = z′
+

Concerning the R-TEST (resp. the J -TEST), we ask whether gRg+
(resp. gJ g+) w.r.t. the monoid generated by the mappings in (8). We claim
that the following equivalences are valid:

k⋂
j=1

L(Aj) �= ∅ ⇔ gRg+ ⇔ gJ g+ (9)

To prove this claim, we first suppose
⋂k

j=1 L(Aj) �= ∅. Now, pick a word w from⋂k
j=1 L(Aj), and observe that the following holds:

g = g+ ◦ f , g+ = g ◦ fw ◦ f0

Thus, gRg+, as required. The implication from gRg+ to gJ g+ holds for trivial
reasons. Now, suppose gJ g+. Certainly, this implies that g+ can be written as
g+ = P ◦ g ◦ Q = g ◦ Q where P and Q are products of generators, respectively.
The second equation is valid simply because g marks ordinary states and marked
states are left fixed by all generators (so that P is redundant). It follows from the
σ-argument that neither g nor g+ can occur in Q (or P). We may furthermore
assume that f does not occur in Q because a decomposition of g ◦ Q containing

148 C. Brandl and H.U. Simon

f could be simplified according to g ◦ Q = g ◦ Q′ ◦ f ◦ Q′′ = g ◦ Q′′. The last
equation holds because f (like g) marks ordinary states which are then kept
fixed by all generators. We may conclude that g+ = g ◦Q for some product of Q
that does not contain any factor from {g, g+, f}. Because of the simplification
Q′ ◦f0◦Q′′ = Q′ ◦f0, we may furthermore assume that either Q does not contain
f0, or it contains f0 as the rightmost factor only. Thus, there exists some word
w ∈ Σ∗ such that either g+ = g ◦ Q = g ◦ fw or g+ = g ◦ Q = g ◦ fw ◦ f0. In both
cases, this implies that w ∈ ⋂k

j=1 L(Aj) so that the proof of (9) is now complete.
(9) directly implies the desired hardness result for the R- and the J -TEST,
respectively. ��

4 Finite Monoids: Testing for a Non-Abelian Subgroup

Recall from Section 1 that A denotes the variety of finite monoids with only
trivial subgroups (the so-called aperiodic monoids). Let DFA-A be defined in
analogy to the problem DFA-Ab from Theorem 1. In [2], Cho and Huynh show
the PSPACE-hardness of DFA-A by means of a generic reduction that proceeds
in two stages with the first one ending at a special version of FAI. We will briefly
describe this reduction and, thereafter, we will modify it so as to obtain a generic
reduction to the problem DFA-Ab.

Let M be an arbitrary but fixed polynomially space-bounded DTM with
input word x. In a first stage, Cho and Huynh efficiently transform (M, x) into
a collection of prime p many minimum DFAs A1, . . . , Ap with aperiodic syntactic
monoids M(Ai), initial states si, unique accepting states fi, and unique (non-
accepting) dead states such that L(A1) ∩ . . . ∩ L(Ap) coincides with the strings
that describe an accepting computation of M on x. Consequently, L(A1)∩ . . . ∩
L(Ap) is either empty or the singleton set that contains the (representation of
the) unique accepting computation of M on x. In a second stage, Cho and Huynh
connect A1, . . . , Ap in a cyclic fashion by using a new symbol # that causes a
state-transition from the accepting state fi of Ai to the initial state si+1 of Ai+1

(or, if i = p, from fp to s1). This construction of a single DFA A (with A1, . . . , Ap

as sub-automata) is completed by amalgamating the p dead states, one for every
sub-automaton, to a single dead state, and by declaring s1 as the only initial
state and f1 as the only accepting state. (All #-transitions different from the
just described ones end up in the dead state.) By construction, A is a minimum
DFA. Moreover, M(A) is not aperiodic iff M accepts x. The latter result relies
on the following general observation:

Lemma 1 ([2]). Let B be a minimum DFA: M(B) is not aperiodic iff there is
a state q and an input word u such that u defines a non-trivial cycle starting at
q, i.e., q · u �= q and, for some positive integer r, q · ur = q.

For ease of later reference, we insert the following notation here:

r(q, u) := min ({r ∈ Z : r ≥ 1, q · ur = q})

with the convention that min(∅) = ∞.

Complexity Analysis: Transformation Monoids of Finite Automata 149

Our modification of the reduction by Cho and Huynh is based on the following
general observation:

Lemma 2. Let B be a minimum DFA with state set Q and alphabet Σ: If M(B)
contains a non-Abelian subgroup G, then there exists a state q and a word u with
r(q, u) ≥ 3.

Proof. Since every subgroup whose elements are of order at most 2 is Abelian,
G contains an element u ∈ Σ+ (identified with the element in M(B) that it
represents) of order r at least 3. Because ur fixes the states from Q′ := Q · u,
for every q′ ∈ Q′, u defines a cycle starting at q′. Therefore, we obviously get
r = lcm{r(q′, u) : q′ ∈ Q′}. Because of r ≥ 3, this directly implies the claim. ��

We modify the first stage of the reduction by Cho and Huynh by introducing
2 new symbols �,� (so-called endmarkers). Moreover, each sub-automaton Ai

gets s′
i as its new initial state and f ′

i as its new unique accepting state. We set
s′

i · � = si and fi · � = f ′
i . All other transitions involving s′

i, f
′
i or �,� end into

the dead state of Ai. It is obvious that Ai still satisfies the conditions that are
valid for the construction by Cho and Huynh: it has a unique accepting state
and a unique (non-accepting) dead state; it is a minimum DFA whose syntactic
monoid, M(Ai), is aperiodic so that, within a single sub-automaton Ai, a word
can define a trivial cycle only. In an intermediate step, we perform a duplication
and obtain 2p sub-automata, say A′

1, A
′
2, . . . , A

′
2p−1, A

′
2p such that A′

2i−1 and
A′

2i are state-disjoint duplicates of Ai.
In stage 2, we build a DFA A′ by concatenating the sub-automata

A′
1, A

′
2, . . . , A

′
2p−1, A

′
2p in a cyclic fashion in analogy to the original construc-

tion (using symbol #) but now with s′
i, f

′
i in the role of si, fi. Again in analogy,

we amalgamate the 2p dead states to a single dead state denoted REJ, and we
declare s′

1 as the initial state and f ′
2p as the unique accepting state of A′. The

most significant change to the original construction is the introduction of a new
symbol swap that, as indicated by its naming, causes transitions from s′

2i−1 to
s′
2i and vice versa, and transforms any other state into the unique dead state.

The following result is obvious:

Lemma 3. A′ is a minimum DFA.

The following two results establish the hardness result from Theorem 1,(ii).

Lemma 4. If M accepts x, then M(A′) contains a non-Abelian subgroup.

Proof. Let α denote the string that describes the accepting computation of M
on x. Then, for every i = 1, . . . , 2p − 1 and for every state q �∈ {s′

1, . . . , s
′
2p},

s′
i· � α � # = s′

i+1, s
′
2p· � α � # = s′

1, q· � α � # = REJ .

Thus, string � α � # represents the cyclic permutation 〈s′
1, s

′
2, . . . , s

′
2p−1, s

′
2p〉 in

M(A′). A similar argument shows that the letter swap represents the permuta-
tion 〈s′

1, s
′
2〉 . . . 〈s′

2p−1, s
′
2p〉 in M(A′). The strings � α � # and swap generate a

non-Abelian subgroup of M(A′). ��

150 C. Brandl and H.U. Simon

Lemma 5. If M(A′) contains a non-Abelian subgroup, then M accepts x.

Proof. According to Lemma 2, there exists a state q and a word u such that u
defines a cycle C starting at q and r := r(q, u) ≥ 3. Clearly, q must be different
from the dead state. Let S := {s′

1, . . . , s
′
2p}. Let C(q, u) be the set of states

occurring in the computation that starts (and ends) at q and processes ur letter
by letter. C(q, u)∩S cannot be empty because, otherwise, the cycle C would be
contained in a single sub-automaton A′

i which, however, is impossible because A′
i

is aperiodic. By reasons of symmetry, we may assume that s′
1 ∈ C(q, u). After

applying an appropriate cyclic permutation to the letters of u, we may also
assume that u defines a cycle C starting (and ending) at s′

1 and r = r(s′
1, u) ≥ 3

(the same r as before). Since C(q, u) does not contain the dead state, u must
decompose into segments of two types:
Type 1: segments of the form � α � # with no symbol from {swap,�,�,#}
between the endmarkers
Type 2: segments consisting of the single letter swap
Since r ≥ 3, there must be at least one segment of type 1. Applying again the
argument with the cyclic permutation, we may assume that the first segment in
u, denoted ū1 in what follows, is of type 1. Every segment of type 1 transforms
s′

i into s′
i+1.

2 Every segment of type 2 transforms s′
2i−1 into s′

2i and vice versa.
Now, consider the computation path, say P , that starts at s′

1 and processes u
letter by letter. Let k be the number of segments of type 1 in u, let k′ be the
number of occurrences of swap in u that hit a state s′

i ∈ P for an odd index i, and
finally let k′′ be the number of occurrences of swap in u that hit a state s′

i ∈ P
for an even index i. Thus, s′

2i−1 · u = s′
2i−1+k+k′−k′′ and s′

2i · u = s′
2i+k−k′+k′′ .

Let d := k + k′ − k′′.
Case 1: d is even.
Note that d �≡ 0 (mod 2p) (because, otherwise, s′

1 · u = s′
1 - a contradiction to

r ≥ 3). Since the sequence s′
1, s

′
1 · u, s′

1 · u2, . . . exclusively runs through states of
odd index from S and there are p (prime number) many of them, the sequence
runs through all states of odd index from S. It follows that at some point every
sub-automaton A′

2i−1 will process the first segment ū1 =� α � # of u (which is
of type 1) and so it will reach state f ′

2i−1. We conclude that L(A′
1)∩L(A′

3)∩ . . .∩
L(A′

2p−1) is not empty (as witnessed by ū1). Thus, α represents an accepting
computation of M on input x.
Case 2: d is odd.
Note that, for every i = 1, . . . , 2p, s′

i · u2 = s′
i+2k. Thus, 2k �≡ 0 (mod 2p)

(because, otherwise, s′
1 · u2 = s′

1 - a contradiction to r ≥ 3). Now, the sequence
s′
1, s

′
1 · u2, s′

1 · u4, . . . exclusively runs through states of odd index from S, and
we may proceed as in Case 1. ��

2 Throughout this proof, we identify an index of the form 2pm + i, 1 ≤ i ≤ 2p, with
the index i. For example, s′

2p+1 is identified with s′
1.

Complexity Analysis: Transformation Monoids of Finite Automata 151

5 Complexity of Communication Complexity

5.1 Space-Efficient Algorithms for Syntactic Monoids

Let N = (Z,Σ, δ, z1, F) be an NFA with states Z = {z1, . . . , zn}, alphabet Σ,
initial state z1, final states F ⊆ Z, transition function δ : Z × Σ → 2Z , and let
δ∗ : 2Z × Σ∗ → 2Z be the extension of δ as defined in Section 2. Let L = L(N)
be the language recognized by N , and let A be the minimum DFA for L. It
is well-known that the syntactic monoid M := M(L) of L coincides with the
transformation monoid of A, and that A may have up to 2n states. We aim
at designing space-efficient algorithms that solve questions related to M . These
algorithms will never store a complete description of A (not to speak of M).
Instead, they will make use of the fact that reachable sets R ⊆ Z represent
states of A in the following sense:

• R is called reachable (by w) if there exists w ∈ Σ∗ such that R = δ∗(z1, w).
• Two sets Q,R are called equivalent, denoted as Q ≡ R, if, for all w ∈ Σ∗,

δ∗(Q,w) ∩ F �= ∅ ⇔ δ∗(R,w) ∩ F �= ∅, which is an equivalence relation.
• For reachable R ⊆ Z, [R] denotes the class of reachable sets Q such that

Q ≡ R.

The following should be clear from the power-set construction combined with
DFA-minimization (e.g. [4]): the states of A are in bijection with the equivalence
classes [R] induced by reachable sets. Moreover, the transition function δA of A
satisfies δA([R], a) = [δ∗(R, a)] for every a ∈ Σ (and this is well-defined). The
extension δ∗

A is related to δ∗ according to δ∗
A([R], w) = [δ∗(R,w)] for every

w ∈ Σ∗.
We now move on and turn our attention to M . Since M coincides with the

transformation monoid of A, it precisely contains the mappings

Tw ([R]) := δ∗
A([R], w) = [δ∗(R,w)] , reachable R ⊆ Z (10)

for w ∈ Σ∗. M is generated by {Ta|a ∈ Σ}. Because of (1) and (10), every
transformation Tw is already determined by Aw := (Aw

1 , . . . , Aw
n) where

Aw
i := δ∗(zi, w) ⊆ Z, i = 1, . . . , n . (11)

In particular, the following holds for A := Aw, Ai := Aw
i , and TA := Tw:

TA([R]) =

[⋃
i:zi∈R

δ∗(zi, w)

]
=

[⋃
i:zi∈R

Ai

]
, reachable R ⊆ Z (12)

Thus, given a reachable R and A = Aw, one can time-efficiently calculate a
representant of TA([R]) = Tw([R]) without knowing w. In order to emphasize
this, we prefer the notation TA to Tw in what follows. We call A a transformation-
vector for TA.

The next lemma presents a list of problems some of which can be solved in
polynomial time (p.t.), and all of which can be solved in polynomial space (p.s.):

152 C. Brandl and H.U. Simon

Lemma 6. The NFA N is part of the input of all problems in the following list.

1. Given R ⊆ Z, the reachability of R can be decided in p.s..
2. Given a reachable set R ⊆ Z and a transformation-vector A (for an unknown

Tw), a representant of TA([R]) = Tw([R]) can be computed in p.t..
3. Given a ∈ Σ, a transformation-vector for Ta can be computed in p.t..
4. Given transformation-vectors A (for an unknown Tw), B (for an unknown

Tw′), a transformation-vector for TB ◦TA, denoted as B◦A, can be computed
in p.t..

5. Given a transformation-vector A, its validity (i.e., does there exist w ∈ Σ∗

such that A = Aw) can be decided in p.s..
6. Given Q,R ⊆ Z, it can be decided in p.s. whether Q ≡ R.
7. Given valid transformation-vectors A, B, their equivalence (i.e., TA = TB)

can be decided in p.s..
8. It can be decided in p.s. whether M is commutative.
9. Given a valid transformation-vector A, it can be decided in p.s. whether TA

is idempotent.
10. Given valid transformation-vectors A, B, it can be decided in p.s. whether

TA ∈ MTBM (similarly for TA ∈ MTB, or for TA ∈ TBM).

Proof. By Savitch’s Theorem, membership in PSPACE can be proved by means
of non-deterministic procedure. We shall often make use of this option.

1. Initialize Q to {z1}. While Q �= R do
(a) Guess a letter a ∈ Σ.
(b) Replace Q by δ∗(Q, a).

2. Apply formula (12).
3. Apply formula (11) for i = 1, . . . , n and w = a (so that δ∗ collapses to δ).
4. For i = 1, . . . , n, apply the formula Ci = ∪j:zj∈Ai

Bj . Then TC = Tww′ .
5. Initialize B to ({z1}, . . . , {zn}) which is a transformation-vector for Tε. While

B �= A do
(a) Guess a letter c ∈ Σ. Compute the (canonical) transformation-vector C

for Tc.
(b) Replace B by the (canonical) transformation-vector for TC ◦ TB.

6. It suffices to present a non-deterministic procedure that recognizes inequiv-
alence: While Q ∩ F �= ∅ ⇔ R ∩ F �= ∅ do
(a) Guess a letter a ∈ Σ.
(b) Replace Q by δ∗(Q, a) and R by δ∗(R, a), respectively.

7. It suffices to present a non-deterministic procedure that recognizes inequiv-
alence:
(a) Guess Q ⊆ Z and verify that Q is reachable.
(b) Compute a representant R of TA([Q]).
(c) Compute a representant S of TB([Q]).
(d) Verify that R �≡ S.

8. The syntactic monoid is commutative iff its generators commute. It suffices
to present a non-deterministic procedure that recognizes non-commutativity:
(a) Guess two letters a, b ∈ Σ.

Complexity Analysis: Transformation Monoids of Finite Automata 153

(b) Compute transformation-vectors A for Tab and B for Tba.
(c) Given these transformation-vectors, verify their inequivalence.

9. Compute A ◦ A and decide whether A and A ◦ A are equivalent.
10. Guess two transformations-vectors C,D and verify their validity. Compute

the transformation-vector D ◦ B ◦ C and accept iff it is equivalent to A.
��

Note that the 10th assertion of Lemma 6 is basically saying that Green’s
relations w.r.t. the syntactic monoid of L(N) can be decided in polynomial
space.

Corollary 1. Given NFA N , the deterministic communication complexity
cc(L) of the language L = L(N) can be determined in polynomial space. More-
over, the membership of the syntactic monoid M(L) in Ab can be decided in
polynomial space.

Proof. The following facts are known from [10]: cc(L) is constant iff M(L) is
commutative. If cc(L) is not constant, it is either logarithmic or linear. The linear
case occurs iff there exist a, b, c, d, e ∈ M(L) such that (i) aHbHc, a2 = a, bc �= cb
or (ii) aJ b, a2 = a, b2 = b, (ab)2 �= ab ∨ a �J ab. Condition (i) is equivalent to the
condition M(L) �∈ Ab. The assertion of the corollary is now immediate from
Lemma 6. ��

5.2 Hardness Result for Regular Expressions

Definition 1. Let L be a formal language over an alphabet Σ. Let w = a1 . . . am

be an arbitrary Σ-word of length m. We say that L is invariant under permuta-
tion if

w = a1 . . . am ∈ L =⇒ π(w) := aπ(1) . . . aπ(m) ∈ L

holds for every permutation π of 1, . . . , m.

The following result is folklore:

Lemma 7. Let L be a formal language over an alphabet Σ. Then M(L) is com-
mutative iff L is invariant under permutation.

We are now ready for the main result in this section:

Theorem 2. For every f(n) ∈ {1, log n, n}, the following problem is PSPACE-
hard: given a regular expression β over an alphabet Σ, decide whether L(β) has
deterministic communication complexity Θ(f(n)).

Proof. We know from [10] (see Section 2) that a regular language has constant
deterministic communication complexity iff its syntactic monoid is commutative.
In [1], the authors show (by means of a generic reduction) that the problem of
deciding whether L(β) �= Σ∗ is PSPACE-hard, even if either L(β) = Σ∗ or
L(β) = Σ∗ \ {w} for some word w ∈ Σ∗ that contains at least two distinct
letters. Clearly, Σ∗ is invariant under permutation whereas Σ∗ \ {w} is not.
According to Lemma 7, the syntactic monoid of Σ∗ is commutative whereas the

154 C. Brandl and H.U. Simon

syntactic monoid of Σ∗ \{w} is not. It readily follows that deciding “cc(L(β)) =
O(1)?” is PSPACE-hard. It is easy to show that the deterministic communication
complexity of Σ∗ \ {w} is Θ(log n). Thus, deciding “cc(L(β)) = Θ(log n)?” is
PSPACE-hard, too. It is easy to modify the proof of [1] so as to obtain the
PSPACE-hardness of the problem “L(β) �= Σ∗?” even when either L(β) = Σ∗

or L(β) = Σ∗ \ w∗ for some word w that contains at least two distinct letters.
It is easy to show that the deterministic communication complexity of Σ∗ \ w∗

is Θ(n). Thus, deciding “cc(L(β)) = Θ(n)?” is PSPACE-hard, too. ��

As is well-known, a regular expression can be transformed into an equivalent
NFA in polynomial time. Thus, the decision problems from Theorem 2 remain
PSPACE-hard when the language L is given by an NFA.

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading (1974)

2. Cho, S., Huynh, D.T.: Finite-Automaton Aperiodicity is PSPACE-Complete.
Theor. Comput. Sci. 88(1), 99–116 (1991)

3. Colcombet, T.: Green’s relations and their use in automata theory. In: Dediu, A.-H.,
Inenaga, S., Mart́ın-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638, pp. 1–21. Springer,
Heidelberg (2011)

4. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading (1979)

5. Kozen, D.: Lower bounds for natural proof systems. In: 18th Annual Symposium on
Foundations of Computer Science, pp. 254–266. IEEE Computer Society, Washing-
ton (1977)

6. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University
Press, Cambridge (1997)

7. Pin, J.E.: Varieties of Formal Languages. Plenum Publishing, New York (1986)
8. Schützenberger, M.P.: On Finite Monoids Having Only Trivial Subgroups.

Information and Control 8(2), 190–194 (1965)
9. Stern, J.: Complexity of Some Problems from the Theory of Automata. Information

and Control 66(3), 163–176 (1985)
10. Tesson, P., Thérien, D.: Complete Classifications for the Communication

Complexity of Regular Languages. Theory Comput. Syst. 38(2), 135–159 (2005)
11. Yao, A.C.: Some complexity questions related to distributive computing. In: 11th

Annual Symposium on Theory of Computing, pp. 209–213. ACM, New York (1979)

Palindromic Complexity of Trees

Srečko Brlek1, Nadia Lafrenière1, and Xavier Provençal2(B)

1 Université du Québec à Montréal, Montréal, QC, Canada
brlek.srecko@uqam.ca, lafreniere.nadia.2@courrier.uqam.ca

2 Université de Savoie, Chambéry, France
xavier.provencal@univ-savoie.fr

Abstract. We consider finite trees with edges labeled by letters on a
finite alphabet Σ. Each pair of nodes defines a unique labeled path whose
trace is a word of the free monoid Σ∗. The set of all such words defines
the language of the tree. In this paper, we investigate the palindromic
complexity of trees and provide hints for an upper bound on the number
of distinct palindromes in the language of a tree.

Keywords: Words · Trees · Language · Palindromic complexity · Sidon
sets

1 Introduction

The palindromic language of a word has been extensively investigated recently,
see for instance [1] and more recently [2,5]. In particular, Droubay, Justin and
Pirillo [10] established the following property:

Theorem 1 (Proposition 2 [10]). A word w contains at most |w| + 1 distinct
palindromes.

Several families of words have been studied for their total palindromic complex-
ity, among which periodic words [4], fixed points of morphism [15] and Sturmian
words [10].

Considering words as geometrical objects, we can extend some definitions. For
example, the notion of palindrome appears in the study of multidimensional geo-
metric structures, thus introducing a new characterization. Some known classes
of words are often redefined as digital planes [3,16], and the adjacency graph
of structures obtained by symmetries appeared more recently [9]. In the latter
article, authors show that the obtained graph is a tree and its palindromes have
been described by Domenjoud, Provençal and Vuillon [8]. The trees studied by
Domenjoud and Vuillon [9] are obtained by iterated palindromic closure, just
as Sturmian [7] and episturmian [10,13] words. It has also been shown [8] that
the total number of distinct nonempty palindromes in these trees is equal to the
number of edges in the trees. This property highlights the fact that these trees
form a multidimensional generalization of Sturmian words.
c© Springer International Publishing Switzerland 2015
I. Potapov (Ed.): DLT 2015, LNCS 9168, pp. 155–166, 2015.
DOI: 10.1007/978-3-319-21500-6 12

156 S. Brlek et al.

A finite word is identified with a tree made of only one branch. Therefore,
(undirected) trees appear as generalizations of words and it is natural to look
forward to count the patterns occurring in it. Recent work by Crochemore et
al. [6] showed that the maximum number of squares in a tree of size n is in
Θ(n4/3). This is asymptotically bigger than in the case of words, for which the
number of squares is known to be in Θ(n) [12]. We discuss here the number of
palindromes and show that, as for squares, the number of palindromes in trees is
asymptotically bigger than in words. Figure 1, taken from [8], shows an example
of a tree having more nonempty palindromes than edges, so that Theorem 1 does
not apply to trees.

b a a a b
b

Fig. 1. A tree T with 6 edges and 7 nonempty palindromes, presented in [8]

Indeed, the number of nonempty factors in a tree is at most the ways of
choosing a couple of edges (ei, ej), and these factors correspond to the unique
shortest path from ei to ej . Therefore, the number of nonempty palindromes in
a tree cannot exceed the square of its number of edges. In this article, we exhibit
a family of trees with a number of palindromes substantially larger than the
bound given by Theorem 1. We give a value, up to a constant, for the maximal
number of palindromes in trees having a particular language, and we conjecture
that this value holds for any tree.

2 Preliminaries

Let Σ be a finite alphabet, Σ∗ be the set of finite words over Σ, ε ∈ Σ∗ be
the empty word and Σ+ = Σ∗ \ {ε} be the set of nonempty words over Σ. We
define the language of a word w by L(w) = {f ∈ Σ∗ | w = pfs, p, s ∈ Σ∗}
and its elements are the factors of w. The reverse of w is defined by w̃ =
w|w|w|w|−1 . . . w2w1, where wi is the i-th letter of w and |w|, the length of the
word. The number of occurrences of a given letter a in the word w is denoted |w|a.
A word w is a palindrome if w = w̃. The restriction of L(w) to its palindromes
is denoted Pal(w) = {u ∈ L(w) | u = ũ}.

Some notions are issued from graph theory. We consider a tree to be an
undirected, acyclic and connected graph. It is well known that the number of
nodes in a tree is exactly one more than the number of edges. The degree of a
node is given by the number of edges connected to it. A leaf is a node of degree
1. We consider a tree T whose edges are labeled by letters in Σ. Since in a tree
there exists a unique simple path between any pair of nodes, the function p(x, y)
that returns the list of edges along the path from the node x to the node y is

Palindromic Complexity of Trees 157

well defined, and so is the sequence π(x, y) of its labels. The word π(x, y) is
called a factor of T and the set of all its factors, noted L(T) = {π(x, y) | x, y ∈
Nodes(T)}, is called the language of T . As for words, we define the palindromic
language of a tree T by Pal(T) = {w ∈ L(T) | w = w̃}. Even though the size of
a tree T is usually defined by its nodes, we define it here to be the number of
its edges and denote it by |T |. This emphasizes the analogy with words, where
the length is defined by the number of letters. Observe that, since a nonempty
path is determined by its first and last edges, the size of the language of T is
bounded by:

L(T) ≤ |T |2 + 1. (1)

Using the definitions above, we can associate a threadlike tree W to a pair
of words {w, w̃}. We may assume that x and y are its extremal nodes (the
leaves). Then, w = π(x, y) and w̃ = π(y, x). The size of W is equal to |w| = |w̃|.
Analogously, Pal(W) = Pal(w) = Pal(w̃). The language of W corresponds to
the union of the languages of w and of w̃. For example, Figure 2 shows the word
ababb as a threadlike tree. Any factor of the tree is either a factor of π(x, y), if
the edges are read from left to right, or a factor of π(y, x), otherwise.

a b a b b
x y

Fig. 2. A threadlike tree represents a pair formed by a word and its reverse

For a given word w, we denote by Δ(w) its run-length-encoding, that is the
sequence of constant block lengths. For example, for the French word “appelle”,
Δ(appelle) = 12121. As well, for the sequence of integers w = 11112111211211,
Δ(w) = 4131212. Indeed, each letter of Δ(w) represents the length of a block,
while the length of Δ(w) can be associated with the number of blocks in w.

Given a fixed alphabet Σ, we define an infinite sequence of families of trees

Tk = {tree T | |Δ(f)| ≤ k for all f ∈ L(T)}.

For any positive integer k, we count the maximum number of palindromes of
any tree of Tk according to its size. To do so, we define the function

Pk(n) = max
T∈Tk,|T |≤n

|Pal(T)|.

This value is at least equal to n+1. It is known [10] that each prefix p of a Stur-
mian word contains |p| nonempty palindromes. This implies that P∞(n) ∈ Ω(n).
On the other hand, equation (1) provides a trivial upper bound on the growth
rate of Pk(n) since it implies P∞(n) ∈ O(n2). We point out that Pk(n) is an
increasing function with respect to k. In the following sections we provide the
asymptotic growth, in Θ-notation, of Pk(n), for k ≤ 4. Although we have not
been able to prove the asymptotic growth for k ≥ 5, we explain why we conjec-
ture that P∞(n) ∈ Θ(P4(n)) in section 5.

158 S. Brlek et al.

3 Trees of the Family T2

First recall that, by definition, every nonempty factor of a tree T in T2 has
either one or two blocks of distinct letters. In other terms, up to a renaming of
the letters, every factor in T is of the form a∗b∗. Therefore, any palindrome in
T is on a single letter. From this, we can deduce a value for P2(n) :

Proposition 2. The maximal number of palindromes for the family T2 is
P2(n) = n + 1.

Proof. The number of nonempty palindromes on a letter a is the length of the
longest factor containing only a’s. Thus, the total number of palindromes is at
most the number of edges in T , plus one (for the empty word). This leads directly
to P2(n) ≤ n+1. On the other hand, a word of length n on a single-letter alpha-
bet contains n + 1 palindromes. This word is associated to threadlike tree in T1.
Therefore, P2(n) = n + 1. �

4 Trees of the Families T3 and T4

In this section, we show that {P3(n),P4(n)} ⊆ Θ(n
3
2). To do so, we proceed

in two steps. First, we present a construction that allows to build arbitrary
large trees in T3 such that the number of palindromes in their languages is large
enough to show that P3(n) ∈ Ω(n

3
2). Then, we show that, up to a constant, this

construction is optimal for all trees of T3 and T4.

4.1 A Lower Bound for P3(n).

Some Elements from Additive Combinatorics. An integer sequence is
a Sidon set if the sums (equivalently, the differences) of all distinct pairs of
its elements are distinct. There exists infinitely many of these sequences. For
example, the powers of 2 are an infinite Sidon set. The maximal size of a Sidon
set A ⊆ {1, 2, . . . , n} is only known up to a constant [14]. This bound is easily
obtained since A being Sidon set, there are exactly |A|(|A|+1)

2 sums of pairs of
elements of A and all their sums are less or equal to 2n. Thus,

|A|(|A| + 1)
2

≤ 2n

and |A| ≤ 2
√

n. Erdős and Turán [11] showed that for any prime number p, the
sequence

Ap = (2pk + (k2 mod p))k=1,2,...,p−1, (2)

is a Sidon set. The reader should notice that, since there exists arbitrarily large
prime numbers, there is no maximal size for sequences constructed in this way.

Palindromic Complexity of Trees 159

Moreover, the sequence Ap is, up to a constant, the densest possible. Indeed,
the maximum value of any element of Ap is less than 2p2 and |Ap| = p − 1.
Since a Sidon set in {1, 2, . . . , n} is of size at most 2

√
n, the density of Ap is

√
8

(around 2.83) times smaller, for any large p.

The Hair Comb Construction. Our goal is to describe a tree having a palin-
dromic language of size substantially larger than the size of the tree. In this
section, we build a tree Cp ∈ T3 for any prime p containing a number of palin-
dromes in Θ(|Cp| 3

2).

For each prime number p, let B = (b1, . . . , bp−2) be the sequence defined by
bi = ai+1−ai, where the values ai are taken in the sequence Ap presented above,
equation (2), and let Cp be the tree constructed as follows :

1p 1p 1p 1p 1p 1p 1p 1p 1p 1p

0b1 0b2 0b3 0b4 0b5 0b6 0b7 · · · 0bp−2

Proposition 3. The sums of the terms in each contiguous subsequence of B are
pairwise distinct.

Proof. By contradiction, assume that there exists indexes k, l,m, n such that∑l
i=k bi =

∑n
j=m bj . By definition of B,

l∑
i=k

bi =
l∑

i=k

(ai − ai−1) = al − ak−1 and
n∑

j=m

bj = an − am−1.

This implies that al + am−1 = an + ak−1, which is impossible. �

Lemma 4. The number of palindromes in Cp is in Θ(p3).

Proof. The nonempty palindromes of Cp are of three different forms. Let c0 be
the number of palindromes of the form 0+, c1 be the number of palindromes of
the form 1+ and c101 be the number of palindromes of the form 1+0+1+. The
number of palindromes of Cp is clearly |Pal(Cp)| = c0 + c1 + c101 + 1, where one
is added for the empty word.

c0 = b1 + b2 + · · · + bp−2 = ap−1 − a1 = 2p2 − 4p,

c1 = p,

c101 = |{1x0y1x ∈ Pal(Cp)}|
= |{x | 1 ≤ x ≤ p}| · |{y | y =

∑l
i=k bi for 1 ≤ k ≤ l ≤ p − 2}|

= 1
2p(p − 1)(p − 2).

160 S. Brlek et al.

The last equality comes from the fact that there are (p − 1)(p − 2)/2 possible
choices of pairs (k, l) and proposition 3 guarantees that each choice sums up
to a different value. The asymptotic behavior of the number of palindromes is
determined by the leading term p3. �

Lemma 5. The number of edges in Cp is in Θ(p2).

Proof. The number of edges labeled by 0 is b1 + b2 + . . . + bp−2 = 2p2 − 4p.
For those labeled with 1, there are exactly p−1 sequences of edges labeled with 1’s
and they all have length p. The total number of edges is thus 2p2−4p+p(p−1) =
3p2 − 5p. �

Theorem 6. P3(n) ∈ Ω(n
3
2).

Proof. Lemmas 4 and 5 implies that the number of palindromes in Cp is in
Θ(|Cp| 3

2). Since there are infinitely many trees of the form Cp and since their
size is not bounded, these trees provide a lower bound on the growth rate of
P3(n). �

4.2 The Value of P4(n) is in Θ(n
3
2).

In this subsection, we show that the asymptotic value of P3(n) is reached by the
hair comb construction, given above, and that it is the same value for P4(n).

Theorem 7. P4(n) ∈ Θ(n
3
2).

Before giving a proof of this theorem, we need to explain some arguments. We
first justify why we reduce any tree of T4 to a tree in T3. Then, we present some
properties of the latter trees in order to establish an upper bound on P4(n).

Lemma 8. For any T ∈ T4, there exists a tree S ∈ T3 on a binary alphabet
satisfying |S| ≤ |T |, and with 1

|Σ|2 |Pal(T)| − |T | ≤ |Pal(S)| ≤ |Pal(T)|.

Proof. If there is in T no factor with three blocks starting and ending with the
same letter, this means that all the palindromes are repetitions of a single letter.
We then denote by a the letter on which the longest palindrome is constructed.
It might not be unique, but it does not matter. Let S be the longest path labeled
only with a’s. Then, |Pal(T)| ≤ |Σ||Pal(S)| ≤ |Σ||Pal(T)|.
Otherwise, let a and b be letters of Σ and let (a, b) be a pair of letters for which
|L(T) ∩ Pal(a+b+a+)| is maximal. We define the set

ES = ∪(
p(u, v) | π(u, v) ∈ Pal(a+b+a+)

)
and let S be the subgraph of T containing exactly the edges of ES and the nodes
connected to these edges. Then, there are three things to prove :

Palindromic Complexity of Trees 161

– S is a tree: Since S is a subgraph of T , it cannot contain any cycle. We
however need to prove that S is connected. To do so, assume that S has two
connected components named C1 and C2. Of course, L(C1) ⊆ a∗b∗a∗ and
C1 has at least one factor in a+b+a+. The same holds for C2. Since T is a
tree, there is a unique path in T\S connecting C1 and C2. We call it q.
There are paths in C1 and in C2 starting from an extremity of q and contain-
ing factors in b+a+. Thus, by stating that w is the trace of q, T has a factor
f ∈ a+b+a∗wa∗b+a+. By hypothesis, T ∈ T4 so any factor of T contains at
most four blocks. Then, f has to be in a+b+wb+a+, with w ∈ b∗ and so q is
a path in S. A contradiction.

a+ b+ a+ a+ b+

C1 C2

a+

q

– S ∈ T3 is on a binary alphabet: By construction, S contains only edges
labeled by a or b and has no leaf connected to an edge labeled by b. This
implies that if S contains a factor f ∈ a+b+a+b+, f may be extended to
f ′ ∈ a+b+a+b+a+, which does not appear in T .

– |Pal(S)| ≥ 1
|Σ|2 |Pal(T)| − |T |: We chose (a, b) to be the pair of letters for

which the number of palindromes on an alphabet of size at least 2 was
maximal. The number of palindromes on a single letter is at most |T |. Thus,

1
|Σ|2 |Pal(T)| − |T | ≤ |Pal(S)| ≤ |Pal(T)|.

�

Lemma 9. For any T ∈ T3, T cannot contain both factors of 0+1+0+ and of
1+0+1+.

Proof. We proceed by contradiction. Assume that there exists in T four nodes
u, v, x, y such that π(u, v) ∈ 0+1+0+ and π(x, y) ∈ 1+0+1+. Since T is a tree,
there exists a unique path between two nodes. In particular, there is a path from
w ∈ {u, v} to w′ ∈ {x, y} containing a factor of the form 0+1+0+Σ∗1+, which
contradicts the hypothesis that T ∈ T3. �

We now define the restriction Ra(T) of a tree T to the letter a by keeping from
T only the edges labeled by a and the nodes connected to them.

Lemma 10. Let T be in T3. There exists at least one letter a ∈ Σ such that
Ra(T) is connected.

162 S. Brlek et al.

Proof. If T does not contain a factor on at least two letters that starts and ends
with the same letter, that is of the form b+a+b+, then Ra(T) is connected for
any letter a.
Otherwise, assume that a factor f ∈ b+a+b+ appears in T . Then, Ra(T) must
be connected. By contradiction, suppose there exists an edge labeled with a that
is connected to the sequence of a’s in f , by a word w that contains another
letter than a. Then, there exists a word of the form awa+b+ in L(T) and this
contradicts the hypothesis that T ∈ T3. �

Given a node u in a tree, we say that u is a splitting on the letter a if deg(u) ≥ 3
and there is at least two edges labeled with a connected to u.

Lemma 11. Let T be in T3. Then, there is a tree T ′ of size |T | such that
L(T) ⊆ L(T ′) and there exists a letter a ∈ Σ such that any splitting of T ′ is
on the letter a.

Proof. If T is in T2, we apply the upcoming transformation to every branches.
Otherwise, assume that a factor of the form b+a+c+ appears in T (note that b
might be equal to c). We allow splittings only on the letter a. Let v be a node
of T that is a splitting on b ∈ Σ\{a} (if it does not exist, then T ′ = T). By
the hypothesis on T , this means that there exists, starting from v, at least two
paths labeled only with b’s leading to leaves x and y.

bi
bj· · ·

v x

y

bi bj· · ·
v x y

Fig. 3. The destruction of a splitting on the letter b

We assume that |π(v, x)| ≥ |π(v, y)|. Then, the words having π(v, y) as suffix
are a subset of those for which π(v, x) is suffix. Therefore, the only case where
π(v, y) may contribute to the language of T is when both the edges of π(v, x)
and π(v, y) are used. The words of this form are composed only of b’s and are
of length at most |π(v, x)| + |π(v, y)|. Moving the edges between s and y to the
other extremity of x, we construct a tree for which the language contains L(T)
and having the same number of nodes. Finally, we can apply this procedure until
the only remaining splittings are on the letter a. This leads to T ′. �

We are now ready to prove the main theorem.

Proof. [Theorem 7: P4(n) ∈ Θ(n
3
2).] Let T be in T4. By assumption, each factor

of T contains at most four blocks of distinct letters.

Palindromic Complexity of Trees 163

1. Let S ∈ T3 be such that |S| ≤ |T |, L(S) ⊆ {0, 1}∗ and
|Pal(T)|−|T |

|Σ|2 ≤ |Pal(S)| ≤ |Pal(T)|. Using lemma 8, we know that this exists.
We know by lemma 9 that S may contain factors in 1+0+1+, but not in 0+1+0+.

2. By lemma 11, there exists a tree S′ with |S′| = |S|, such that L(S) ⊆ L(S′),
and with no splitting on the letter 1.

3. Finally, we count the palindromes in S′. The form of these palindromes is
either 0+, 1+ or 1+0+1+. For the palindromes on a one-letter alphabet, their
number is bounded by n, where n is the size of S′. We now focus on the num-
ber of palindromes of the form 1+0+1+. Call c101 this number. We show that
c101 ≤ 2n

√
n.

Since S′ does not admit any splitting on the letter 1, each connected compo-
nent of R1(S′) is a threadlike branch going from a leaf of S′ to a node of R0(S′).
We name these connected components b1, . . . , bm and by lemma 10, we know
that R0(S′) is connected.

Let bi and bj be two distinct branches of S′. By abuse of notation, we note
π(bi, bj) the word defined by the unique path from bi to bj . Let l be such that
π(bi, bj) = 0l and suppose that |bi| ≤ |bj |. Then, for any node u in bi, there exists
a unique node v in bj , such that the word π(u, v) = 1k0l1k is a palindrome.
Moreover, if |bi| < |bj |, then there are nodes in bj that cannot be paired to a
node of bi in order to form a palindrome. From this observation, a first upper
bound is:

c101 ≤
∑

1≤i<j≤m

min(|bi|, |bj |). (3)

Another way to bound c101 is to count the palindromes of the form 1+0+1+

according to the length of the block of 0’s. For each length l from 1 to n, there
might be more than one pair {bi, bj} that produces palindromes with central
factor 0l. This provides a second upper bound:

c101 ≤
n∑

l=1

max
1≤i<j≤m

π(bi,bj)=0l

(min(|bi|, |bj |)) (4)

In order to obtain the desired bound on c101 we combine these two bounds.
Let B′ = {i | |bi| ≥ √

n}. Since n is the size of S′, we have that |B′| ≤ √
n and

that the average size of the branches bi is such that i ∈ B′ is bounded by n/|B′|.
By applying the bound from (3) to the palindromes formed by two branches in
B′, we obtain that the number of such palindromes is:

∑
1≤i<j≤m

{i,j}⊆B′

min(|bi|, |bj |) ≤ |B′|(|B′| − 1)
2

n

|B′| ≤ n
√

n. (5)

164 S. Brlek et al.

Finally, it remains to count the number of palindromes that are defined by
pairs of branches {bi, bj} such that i or j is not in B′. In such case, we always
find that min(|bi|, |bj |) <

√
n. The number of such palindromes is:

n∑
l=1

max
1≤i<j≤m

π(bi,bj)=0l

{i,j}	⊂B′

(min(|bi|, |bj |)) < n
√

n. (6)

Since each palindrome in S′ is counted by equation (5) or (6), we obtain,
summing both, c101 < 2n

√
n = 2|S′| 3

2 . We deduce that, for any tree T in T4, the
number of palindromes is bounded by

|Pal(T)| ≤ |Σ|2|Pal(S)| + |T | < 2|Σ|2|S′| 3
2 + |T | ≤ 2|Σ|2|T | 3

2 + |T |.

Using the fact that the alphabet is fixed (so its size is given by a constant), it is
enough to prove that P4(n) ∈ O(n

3
2). Combining this result with the one given

in section 4.1, one may assert that both P3(n) and P4(n) are in Θ(n
3
2). �

5 Hypotheses for the Construction of Trees with a Lot of
Distinct Palindromes

Let T be a tree that maximizes the number of palindromes for its size. It is likely
that T contains triples of nodes (u, v, w) such that π(u, v), π(u,w) and π(v, w)
are all palindromes. Suppose it is the case, and define T ′ as the restriction of
T to the paths that join u, v and w. We have that either T ′ is a threadlike
tree, or T ′ has three leaves and a unique node of degree 3. The first case is of
no interest here since it is equivalent to words, while the latter case implies a
restrictive structure on the factors π(u, v), π(u,w) and π(v, w). We now focus
on the second case and call x the unique node of T ′ with degree 3.

Let U = π(u, x), V = π(v, x), W = π(w, x) and, without loss of generality,
suppose that |U | ≤ |V | ≤ |W |. Then, as shown in Figure 4, UṼ , UW̃ and V W̃
are all palindromes.

UV

U A

W

UAB

u

v wx

Fig. 4. The structure of the tree T ′. The palindromicity of U ˜V , U˜W and V˜W forces
that V starts with U while W starts with both factors U and V .

Palindromic Complexity of Trees 165

Let A be the suffix of length |V | − |U | of V . Since, by hypothesis, UṼ is a
palindrome, V = UA and A is a palindrome. Similarly, let B be the suffix of
length |W |− |V | of W. This implies that W = V B = UAB and both B and AB
are palindromes. Using a well-known lemma from Lothaire [17], we prove that
AB is periodic.

Lemma 12 (Proposition 1.3.2 in [17]). Two words commute if and only if they
are powers of the same word.

The next proposition states that the word ABA is periodic and that its
period is at most the gcd of the difference of length of the three paths between
u, v and w. More formally, let

p = gcd (|π(u,w)| − |π(u, v)|, |π(v, w)| − |π(u, v)|, |π(v, w)| − |π(u,w)|) .

Proposition 13. There exists a word S and two integers i, j such that |S|
divides p and A = Si and B = Sj.

Proof. Since A, B and AB are palindromes, AB = ÃB = B̃Ã = BA. Thus, by
lemma 12, there exists a word S such that A = Si and B = Sj . This implies
that |S| divides gcd(|A|, |B|) and, by construction, gcd(|A|, |B|) = p. �

From the above proposition, we deduce that a triple of nonaligned nodes with
any path from a node to another being a palindrome forces a local structure
isomorphic to that of the hair comb tree, as illustrated in Figure 5.

UU U

Si Si+j

uv w

Fig. 5. A triple of nodes with palindromes between each pair of them is isomorphic to
a part of a hair comb

In a more general way, suppose that a tree contains m leaves (ui)1≤i≤m, and
that each π(ui, uj) is a palindrome. Let T ′ be the restriction of this tree to the
paths that connect these leaves and, for each i, let vi be the first node of degree
higher than 2 accessible from the leaf ui in T ′. By applying the above proposition
to each triplet (ui, uj , uk), for all i 	= j, the word π(ui, uj) is of the form

π(ui, uj) = US+Ũ ,

where |U | = mini(π(ui, vi)) and |S| divides gcd
i	=j,k 	=l

(∣∣|π(ui, uj)| − |π(uk, ul)|
∣∣).

166 S. Brlek et al.

Moreover, in order to maximize the number of palindromes relatively to the
size of the tree, we can choose S to be a single letter. This is indeed possible
since the only condition on the length of S is that it divides all the differences
of lengths between any palindromic path from a leaf to another.

This gives a tree analogous to those presented in section 4.1, Cp, and for
which we have established that |Pal(Cp)| ∈ Θ(|Cp| 3

2). Therefore, we conjecture
that P∞(n) ∈ Θ(n

3
2).

References

1. Allouche, J.P., Baake, M., Cassaigne, J., Damanik, D.: Palindrome complexity.
Theoretical Computer Science 292(1), 9–31 (2003)

2. Balková, L., Pelantová, E., Starosta, S.: Proof of the Brlek-Reutenauer conjecture.
Theoretical Computer Science 475, 120–125 (2013)

3. Berthé, V., Vuillon, L.: Tilings and rotations on the torus: a two-dimensional gen-
eralization of Sturmian sequences. Discrete Mathematics 223(1–3), 27–53 (2000)

4. Brlek, S., Hamel, S., Nivat, M., Reutenauer, C.: On the palindromic complexity
of infinite words. International Journal on Foundation of Computer Science 15(2),
293–306 (2004)

5. Brlek, S., Reutenauer, C.: Complexity and palindromic defect of infinite words.
Theoretical Computer Science 412(4–5), 493–497 (2011)

6. Crochemore, M., Iliopoulos, C.S., Kociumaka, T., Kubica, M., Radoszewski, J.,
Rytter, W., Tyczyński, W., Waleń, T.: The maximum number of squares in a
tree. In: Kärkkäinen, J., Stoye, J. (eds.) CPM 2012. LNCS, vol. 7354, pp. 27–40.
Springer, Heidelberg (2012)

7. de Luca, A.: Sturmian words: Structure, combinatorics, and their arithmetics.
Theoretical Computer Science 183(1), 45–82 (1997)

8. Domenjoud, E., Provençal, X., Vuillon, L.: Palindromic language of thin discrete
planes (to appear)

9. Domenjoud, E., Vuillon, L.: Geometric palindromic closure. Uniform Distribution
Theory 7(2), 109–140 (2012)

10. Droubay, X., Justin, J., Pirillo, G.: Episturmian words and some constructions of
de Luca and Rauzy. Theoretical Computer Science 255(1–2), 539–553 (2001)

11. Erdös, P., Turán, P.: On a problem of Sidon in additive number theory, and on
some related problems. Journal of the London Mathematical Society. Second Series
16, 212–215 (1941)

12. Fraenkel, A.S., Simpson, J.: How many squares can a string contain? J. Combin.
Theory Ser. A 82(1), 112–120 (1998)

13. Glen, A., Justin, J.: Episturmian words: a survey. Theoretical Informatics and
Applications. Informatique Théorique et Applications 43(3), 403–442 (2009)

14. Gowers, T.: What are dense Sidon subsets of {1, 2, . . . , n} like? (2012).
gowers.wordpress.com/2012/07/13/what-are-dense-sidon-subsets-of-12-n-like/

15. Hof, A., Knill, O., Simon, B.: Singular continuous spectrum for palindromic
Schrödinger operators. Comm. in Mathematical Physics 174(1), 149–159 (1995)

16. Labbé, S., Reutenauer, C.: A d-dimensional extension of Christoffel words. Discrete
& Computational Geometry (2015). http://arxiv.org/abs/1404.4021

17. Lothaire, M.: Combinatorics on Words. Cambridge University Press, Cambridge
(1997)

http://gowers.wordpress.com/2012/07/13/what-are-dense-sidon-subsets-of-12-n-like/
http://arxiv.org/abs/http://arxiv.org/abs/1404.4021

Deciding Proper Conjugacy of Classes
of One-Sided Finite-Type-Dyck Shifts

Marie-Pierre Béal(B) and Pavel Heller(B)

LIGM UMR 8049, Université Paris-Est,
77454 Marne-la-Vallée Cedex 2, France

{marie-pierre.beal,pavel.heller}@u-pem.fr

Abstract. One-sided sofic-Dyck shifts are sets of infinite sequences of
symbols avoiding a visibly pushdown language of finite words. One-sided
finite-type-Dyck shifts constitute a subclass of these sets of sequences.
A (one-sided) finite-type-Dyck shift is defined as the set of infinite
sequences avoiding both some finite set of words and some finite set
of matching patterns. We prove that proper conjugacy is decidable for a
large class of one-sided finite-type-Dyck shifts, the matched-return exten-
sible shifts. This class contains many known non-sofic one-sided shifts
like Dyck shifts and Motzkin shifts. It contains also strictly all extensi-
ble one-sided shifts of finite type. Our result is thus an extension of the
decidability of conjugacy between one-sided shifts of finite type obtained
by Williams.

1 Introduction

A shift of (infinite or bi-infinite) sequences may be defined as the set of sequences
of symbols over a finite alphabet avoiding some set F of finite words. A sequence
belongs to the shift if and only if no finite factor of the sequence belongs to F .
Such a set F defining the shift is called a set of forbidden factors. Several sets
of forbidden factors may define the same shift and their combinatorial nature or
complexity induces some dynamic properties of the shift. For instance, when F
can be chosen regular, the shift is called a sofic shift. When F can be chosen finite,
it is called a shift of finite type. A shift of bi-infinite or left-infinite sequences is
implicitly equipped with the operation of shifting one place to the left.

Sofic-Dyck shifts are generalizations of Dyck shifts introduced by Krieger in
[11] and Markov-Dyck shifts studied by Inoue, Krieger and Matsumoto [12], [9].
They are exactly the sets of sequences avoiding a visibly pushdown language (or
a regular language of nested-words) of finite words (see [6], [7]).

These sequences of symbols are defined over a tri-partitioned alphabet called
a pushdown alphabet. Symbols may be either call, return or internal symbols.

M.-P. Béal and P. Heller—This work is supported by the French National Agency
(ANR) through “Programme d’Investissements d’Avenir” (Project ACRONYME
n◦ANR-10-LABX-58), through the ANR EQINOCS, and by the region of Île-de-
France through the DIM RDM-IdF.

c© Springer International Publishing Switzerland 2015
I. Potapov (Ed.): DLT 2015, LNCS 9168, pp. 167–178, 2015.
DOI: 10.1007/978-3-319-21500-6 13

168 M.-P. Béal and P. Heller

Call symbols correspond to open tags or parentheses and return symbols corre-
spond to close tags or parentheses. Sofic-Dyck shifts are defined as sets of labels
of infinite paths of a labeled directed graph where some symbols have to be
matched with other symbols. Visibly pushdown languages over a tri-partitioned
alphabet were introduced by Alur et al. [1],[2]. Note that the partitioning of the
alphabet is fixed since languages may be visibly pushdown for some partitioning
of their alphabet and no more visibly pushdown with another partitioning of the
same alphabet. These languages are higher than regular languages in the Chom-
sky hierarchy but close to them. Indeed, they share many interesting properties
with regular languages like stability by intersection and complementation. They
are used as models for structured data files like XML files.

A (topological) conjugacy is a bijective continuous map between two shifts
which commutes with the shift transformations. It is a bijective map which
may be defined with a sliding window of bounded length, the inverse being also
defined with a sliding window of bounded length. Conjugate shifts may be seen
as ”recoded” versions of a same shift sharing all its properties. The decidability
of the conjugacy of shifts is thus an interesting problem which was solved only for
one-sided shifts of finite type by Williams [14] (see also [10]). Williams’ theorem
was extended to tree-shifts of finite type in [3]. It is unknown whether conjugacy
between two two-sided shifts of finite-type is decidable (see for instance [13]). It is
also unknown whether conjugacy between two one-sided sofic shifts is decidable
(see [8]).

A notion of conjugacy suitable for sofic-Dyck shifts is the notion of proper
conjugacy. A proper conjugacy between a shift over a tri-partitioned alphabet
A and a shift over a tri-partitioned alphabet B is a conjugacy which maps call
(resp. return, internal) symbols of A to call (resp. return, internal) symbols of
B. It is shown in [7] that the class of sofic-Dyck shifts is stable under proper
conjugacy.

In this paper, we consider one-sided finite-type-Dyck shifts, a subclass of
sofic-Dyck shifts introduced in [6] and [7]. A (one-sided) finite-type-Dyck shift
is defined as the set of (left-infinite) sequences avoiding both some finite set
of words and some finite set of matching patterns. This class contains strictly
the (non-Dyck) shifts of finite type. We consider the subclass of matched-return
extensible shifts for which any block may be extended by a matched-return block,
i.e. a block where every return symbol is matched with a call symbol. This class
contains for instance the Dyck shifts and Motzkin shifts. It contains also strictly
the class of extensible (one-sided) shifts of finite type.

We prove that proper conjugacy between two one-sided finite-type-Dyck
shifts is decidable when these shifts are matched-return extensible.

The proof of Williams for deciding conjugacy between one-sided shifts of
finite type is based on a decomposition theorem which states that every conju-
gacy between the shifts can be decomposed into a finite sequence of splitting and
merging maps. Splitting and merging are elementary operations performed on
automata presenting the two shifts that induce bijections between left-infinite
paths of the two underlying graphs. Since the shifts are one-sided, the splittings

Deciding Proper Conjugacy of Classes of One-Sided Finite-Type-Dyck Shifts 169

may be all input-state splittings and are therefore commuting. This commuta-
tion property guarantees the existence of a common in-amalgamation for two
conjugate shifts. We extend this scheme to one-sided finite-type-Dyck shifts.
The problem is first reduced to deciding proper conjugacy between one-sided
edge-Dyck shifts. A decomposition theorem is obtained for these shifts using
input state-splittings of the one-sided edge-Dyck shifts. State-splitting for two-
sided finite-type-Dyck shifts was introduced in [5]. The matched-return exten-
sible property can be seen as a property guaranteeing the unicity of a minimal
amalgamated presentation of an edge-Dyck shift. In general, the unicity is not
guaranteed, although it holds trivially for one-sided edge-shifts.

Our result is thus an extension of the decidability of conjugacy between one-
sided shifts of finite type obtained by Williams. We prove the decidability of
proper conjugacy for a class of shifts going beyond the regular sets of sequences,
the (left) one-sided finite-type-Dyck shifts which are matched-return extensible.

The paper is organized as follows. Section 2 provides some background on
finite-type-Dyck shifts and introduces the notion of edge-Dyck shifts. In Section
3 we define the notion of state-splitting of Dyck graphs. The decomposition
of proper conjugacy is presented in Section 4 and the decidability of proper
conjugacies is proved in Section 5. Due to space restrictions, some proofs are
omitted in this short version of the paper.

2 One-Sided Finite-Type Dyck Shifts

2.1 Preliminaries

We consider an alphabet A which is a disjoint union of three finite sets of letters,
the set Ac of call letters, the set Ar of return letters, and the set Ai of internal
letters. The set A = Ac�Ar�Ai is called a pushdown alphabet or a tri-partitioned
alphabet.

We denote by MR(A) the set of all finite words over A where every return
symbol is matched with a call symbol, i.e. u ∈ MR(A) if for every prefix u′ of u,
the number of call symbols of u′ is greater than or equal to the number of return
symbols of u′. These words are called matched-return. Similarly, MC(A) denotes
the set of matched-call words where every call symbol is matched with a return
symbol. We say that a word is a Dyck word if it belongs to the intersection of
MC(A) and MR(A). Dyck words are well-parenthesized or well-formed words.
Note that the empty word or all words over Ai are Dyck words. The set of Dyck
words over A is denoted by Dyck(A).

2.2 Finite-Type Dyck Shifts

We consider in this paper one-sided shifts over A which are sets of left-infinite
sequences in A−N avoiding some set of finite words. The reason for consid-
ering left-infinite sequences instead of right-infinite ones is due to the fact
that finite-type-Dyck shifts of left-infinite sequences have natural deterministic
presentations.

170 M.-P. Béal and P. Heller

A shift is implicitly equipped with the shift transformation, denoted by σ,
which maps a left-infinite sequence (xi)i∈−N to σ((xi)i∈−N) = (xi−1)i∈−N.

Let A be a tri-partitioned alphabet. If u and u′ are two words over A, we
note u � u′ if u is a suffix of u′.

Let F ⊆ A∗ and U ⊆ (A∗Ac×A∗Ar). We say that a finite or infinite sequence
x avoids F if, for each finite factor u of x, one has u /∈ F . We say that a finite
or infinite sequence x avoids U if for each finite factor u = vawb of x with
a ∈ Ac, b ∈ Ar, w ∈ Dyck(A), there is no pair (u1a, v1b) in U such that u1 � v
and v1 � vaw. We denote by XF,U the set of left-infinite sequences avoiding F
and U .

A (one-sided) finite-type-Dyck shift over A is a subset X of A−N for which
there are two finite sets F,U such that X = XF,U .

Hence a subset X of A−N is a finite-type Dyck shift if there is a nonnegative
integer m and F ⊆ Am+1, U ⊆ AmAc × AmAr with X = XF,U .

We also define a class of finite automata called Dyck automata accepting a
class of shifts which is larger than the class of finite-type-Dyck shifts. A (finite)
Dyck automaton A over A is a pair (G,M) of an automaton (or a directed
labeled graph) G = (Q,E,A) over A where Q is the finite set of states and
E ⊆ Q×A×Q is the set of edges, and a set M of pairs of edges ((p, a, q), (r, b, s))
such that a ∈ Ac and b ∈ Ar, referred to as matched pairs of edges.

A finite path (a finite sequence of consecutive edges) π of A is said to be an
admissible path if for any factor (p, a, q) · π1 · (r, b, s) of π with a ∈ Ac, b ∈ Ar,
and the label of π1 being a Dyck word on A, ((p, a, q), (r, b, s)) is a matched
pair. Hence any path of length zero is admissible and factors of finite admissible
paths are admissible. An infinite path is admissible if all its finite factors are
admissible. The (left) one-sided shift presented by A is the set of labels of (left)-
infinite admissible paths of A and A is called a presentation of the shift. Shifts
presented by Dyck automata are called sofic-Dyck shifts. Finite-type-Dyck shifts
are sofic-Dyck shifts (see [7]).

If x is a (finite or infinite) sequence of symbols over A, we denote by x[i, j]
its finite factor xi · · · xj for i ≤ j. If X is a shift we denote by B(X) the set of
finite factors of sequences in X. This set is called the set of blocks of X.

Example 1. The (one-sided) Dyck shift X over A = Ac�Ar�Ai with Ac = {(, [},
Ar = {),]} is the set of left-infinite sequences for which the round and square
brackets are open and closed in the right order. For instance the sequences
· · · (([] []) or · · · (([[[[(are legal while the sequence · · · (([] []] (does not
belong to X. It is a one-sided finite-type-Dyck shift since X = XF,U where F is
the empty set and U contains the forbidden pairs {(,]}1 and {[,)}.

Example 2. Consider the Motzkin shift X over A = Ac�Ar�Ai with Ac = {(, [},
Ar = {),]} and Ai = {j}. It is presented by the Dyck automaton on the left
part of Fig. 1. The Motzkin shift over A is X = XF,U where F is empty and U
contains the forbidden pairs {(,]} and {[,)}. The shift Y over B = Bc � Br � Bi

1 Here the curly brackets are used to denote a pair of words in order to avoid confusion
with the symbols of the alphabet.

Deciding Proper Conjugacy of Classes of One-Sided Finite-Type-Dyck Shifts 171

with Bc = {(, [}, Br = {),]} and Bi = {j, k} presented by the Dyck automaton
on the right part of Fig. 1 is a finite-type-Dyck shift too. It is the shift XG,U with
G = {jj, kk, ja, ak | a ∈ Bc � Br} and U containing the forbidden pairs {(,]}
and {[,)}. For instance, the left-infinite sequences · · · (([j k] []) and · · ·)))))
belong to Y while the sequences · · · (([] []] or · · · ([j] []) do not.

1
j

)
(

[]

1 2

j

k
)

(

[]

Fig. 1. A Motzkin shift X (on the left) over A = Ac � Ar � Ai with Ac = {(, [},
Ar = {),]} and Ai = {j}. A finite-type-Dyck shift Y (on the right) overB = Bc�Br�Bi

with Bc = {(, [}, Br = {),]} and Bi = {j, k}. Matched pairs of edges are indicated
with dotted arrows.

Let A and B be two tri-partitioned alphabets. Let X ⊆ A−N be a shift and
let m be a nonnegative integer. A map Φ : X −→ B−N is called an (m + 1)-block
map with memory m if there exists a function φ : Bm+1(X) −→ B such that,
for all x ∈ X and any i ∈ −N, Φ(x)i = φ(xi−m · · · xi−1xi). The map φ extends
naturally to a map from Bm+k(X) → Bk for any positive integer k. A block map
is a map which is an (m + 1)-block map for some nonnegative integer m.

We say that a block-map Φ : AZ −→ BZ is proper if and only if Φ(x)i ∈ Ac

(resp. Ar, Ai) whenever xi ∈ Ac (resp. Ar, Ai). Note that the shift map σ is not
proper.

A conjugacy is a bijective block map between two shifts.

2.3 (One-Sided) Edge-Dyck Shifts

In this section, we use the notation of [4] for graphs (meaning multigraphs) and
graph morphisms. We extend the definitions to Dyck graphs.

A graph G = (Q,E) is a pair composed of a finite set Q of vertices (or states)
and a finite set E of edges. Every graph is equipped with two maps i, t : E → Q
which associate to an edge e its initial and terminal vertex. We say that e starts
in i(e) and ends in t(e). Sometimes, i(e) is called the source and t(e) is called
the target of e.

We also say that e is an incoming edge for t(e), and an outgoing edge for
i(e). Two edges e, e′ ∈ E are consecutive if t(e) = i(e′). A path is a sequence of
consecutive edges.

A Dyck graph G = (G,M) consists of a graph G = (Q,E) equipped with a
set of pairs of edges M . The set of edges E of the graph is partitioned into three
categories: the set of call edges (denoted Ec), the set of return edges (denoted
Er), and the set of internal edges (denoted Ei). Altogether we have E = Ec �

172 M.-P. Béal and P. Heller

Er � Ei. The set M is a set of selected pairs (e, f), with e ∈ Ec, f ∈ Er called
the set of matched edges. Dyck graphs can be seen as Dyck automata where the
labelings are the identity on the edges.

If a path of such graph belongs to Dyck(E), it is called a Dyck path. Less for-
mally, in a Dyck path each call edge is paired against a return edge and vice versa.

A finite path (ei)k≤i≤k+n of G is admissible if whenever ej ∈ Ec, ej+m ∈ Er,
with k ≤ j, j + m ≤ k + n, and e[j + 1, j + m − 1] is path in Dyck(E), we have
(ej , ej+m) ∈ M . An infinite path is admissible if all its finite factor are finite
admissible paths.

A (one-sided) edge-Dyck shift is the set of admissible left-infinite paths of a
Dyck graph. The edge-Dyck shift defined by the Dyck graph G is denoted by XG .

The following proposition shows that each finite-type-Dyck shift is properly
conjugate to an edge-Dyck shift. It also holds for two-sided shifts (see [5]).

Proposition 1. Each finite-type-Dyck shift is properly conjugate to an edge-
Dyck shift.

Proof. The proof is omitted.

3 State-Splitting of Dyck Graphs

We define below the notion of input state-splitting for one-sided edge-Dyck shifts
and Dyck graphs. State splitting was introduced in [5] for two-sided finite-type-
Dyck shifts and Dyck automata.

Let G = (Q,E) and H = (R,F) be two graphs. A pair (h, k) of surjective
maps k : R → Q and h : F → E is called a graph morphism from H onto G if
i ◦ h = k ◦ i and t ◦ h = k ◦ t. We denote by h∞ : F−N → E−N the map defined
by h∞((fi)i∈−N) = (h(fi))i∈−N.

If E = Ec � Er � Ei and F = Fc � Fr � Fi, a graph morphism (h, k) from
H = (R,F) to G = (Q,E) is said to be proper if h maps Fc to Ec (resp. Fr to
Er, Fi to Ei).

Let G and H be two Dyck graphs with G = (G,M) and H = (H,N). A pair
(h, k) is called a Dyck-graph morphism from H onto G if it is a graph morphism
from H to G and if (e, f) ∈ N implies (h(e), h(f)) ∈ M . Hence a Dyck-graph
morphism sends matched edges to matched edges.

For p, q ∈ Q, we denote by Eq
p the set of edges of a graph G = (Q,E) starting

in state p and ending in state q.
Let G = (G,M) and H = (H,N) be two Dyck graphs with G = (Q,E),

H = (R,F). An in-merge from H onto G is a proper Dyck-graph morphism
(h, k) from H onto G such that

– for each p, q ∈ Q there is a partition2 (Eq
p(t))t∈k−1(q) of the set Eq

p such that
for each r ∈ k−1(p) and t ∈ k−1(q), the map h is a bijection from F t

r onto
Eq

p(t),
– for each e, f ∈ E, (e, f) ∈ M if and only if (h−1(e), h−1(f)) ∈ N .

2 A partition of a set X is a family (Xi)i∈I of pairwise disjoint, possibly empty subsets
of X, indexed by a set I, such that X is the union of the sets Xi for i ∈ I.

Deciding Proper Conjugacy of Classes of One-Sided Finite-Type-Dyck Shifts 173

If this holds, then G is called an in-merge of H, and H is an in-split of G.
The map h∞ from XH to XG is called an edge in-merging map and its inverse an
edge in-splitting map. The edge-Dyck shift XG is called an in-merge of XH and
XH is called an in-split of XG .

Thus an in-split H is obtained from a Dyck graph G as follows: each state
q ∈ Q is split into copies which are the states of H in the set k−1(q). Each of
these states t receives a copy of Eq

p(t) starting in r and ending in t for each r
in k−1(p). Each r in k−1(p) has the same number of edges going out of r and
coming in s, for any s ∈ R. Moreover, for any p, q ∈ Q and e ∈ Eq

p , all edges in
h−1(e) have the same terminal vertex, namely the state t such that e ∈ Eq

p(t).

Example 3. Let G and H be the Dyck graphs represented on Fig. 2. Here G =
(Q,E) with Q = {1, 2}, E = Ec �Er �Ei with Ec = {e1, e3}, Er = {e2, e4}, and
Ei = {e5, e6}. The matched pairs of edges of G are (e1, e2) and (e3, e4).

On the right is the Dyck graph H which is an in-split of G. The state 1 of G
is split into two states 3 and 4 of H. Roughly speaking, the edges coming into 1
in G are partitioned into two parts {e1, e2} and {e3, e4, e6}. The edges {e1, e2}
become the edges {e1, e2} coming in 3 in H. The edges {e3, e4, e6} become the
edges {e3, e4, e6} coming in 4 in H. Each edge e1, e2, e3, e4, e5 going out of 1 in
G is duplicated into two edges with the same target going out of 3 and 4 in H.
Hence the edge e1 is duplicated into e1, f1, the edge e2 is duplicated into e2, f2,
the edge e3 is duplicated into e3, f3, the edge e4 is duplicated into e4, f4 and the
edge e5 is duplicated into e5, f5.

More formally, an in-merge (h, k) from XH onto XG can be defined by k(3) =
k(4) = 1 and k(5) = 2. The map h is associated to the following partition of edges
of G: the edges from 1 to 1 are partitioned into two classes E1

1(3) = {e1, e2} and
E1

1(4) = {e3, e4}. The edges from 2 to 1 are partitioned into two classes E1
2(3) = ∅

and E1
2(4) = {e6}. We have h(ei) = h(fi) = ei for i = 1, . . , 5 and h(e6) = e6.

The matched edges of H are (e1, e2), (e1, f2), (f1, e2), (f1, f2), (e3, e4), (e3, f4),
(f3, e4), (f3, f4).

The Dyck graph H is therefore an in-split of the Dyck graph G.

The following result is known for (non-Dyck) graphs (see [13, Theorem 2.4.1]).
It shows that if a Dyck graph H is an in-split of a Dyck graph G, then XG and
XH are conjugate.

Proposition 2. If (h, k) is an in-merge of a Dyck graph H onto a Dyck graph
G, then h∞ is a 1-block proper conjugacy from XH onto XG and its inverse is
2-block.

Proof. The proof is omitted.

The following result shows that the in-merge operations performed on a Dyck
graph are confluent. Roughly speaking, whenever it is possible to in-merge two
states p, q or two states r, s (with s possibly equal to q), one can perform first the
in-merging of p, q and then the in-merging of r, s, or one can perform first the
in-merging of r, s and then the in-merging of p, q getting the same final graph
up to an isomorphism.

174 M.-P. Béal and P. Heller

1 2

e5

e6

e2
e1

e3 e4

3

4

5f4f3

e2
e1

e3
e4

f1 f2

e5

f5

e6

Fig. 2. Two Dyck graphs, G on the left and H on the right. The Dyck graph H is an
in-split of G. Matched edges are linked with a dotted arrow. The edges coming in 1 in
G are partitioned into two parts {e1, e2} (in blue) and {e3, e4, e6} (in red).

Proposition 3. Let G0 be a Dyck graph and G1 and G2 be two in-merges of G0.
Then there exists a Dyck graph G3 which is a common in-merge of G1 and G2.

Proof. The proof is omitted.

We call in-amalgamation of a Dyck graph G a Dyck graph H for which there
is a finite sequence of in-merges from G to H. We call minimal in-amalgamation
of a Dyck graph G an in-amalgamation H such that each in-merge of H is equal
to H up to a Dyck-graph isomorphism. It is a consequence of Proposition 3 that
any Dyck graph has a unique minimal in-amalgamation up to an isomorphism.

4 Decomposition of Proper Conjugacies

In this section, we show that whenever two (left)-one-sided edge-Dyck shifts XG
and XH are conjugate through a proper conjugacy, there are edge-Dyck shifts
XK and XL and sequences of in-merging maps from XK onto XG (resp. from
XH onto XL) such that XK and XL are conjugate through a 0-memory proper
conjugacy whose inverse is also a 0-memory conjugacy. These results are known
for (non-Dyck) edge shifts.

Proposition 4. Let Φ : XG → XH be a proper conjugacy between two edge-Dyck
shifts with memory m ≥ 1 and such that Φ−1 has memory m′. Then there is an
in-split XK of XG, and an in-merging map h∞ : XK → XG such that α = Φ ◦ h∞
is a proper conjugacy from XK onto XH with memory m−1 and α−1 has memory
m′ + 1.

Proof. The proof is omitted.

Corollary 1. Let Φ : XG → XH be a proper conjugacy between two edge-Dyck
shifts with memory m and such that Φ−1 has memory m′. Then there is an

Deciding Proper Conjugacy of Classes of One-Sided Finite-Type-Dyck Shifts 175

edge-Dyck shift XK with a sequence of in-merging maps Ψ : XK → XG such that
α : XK → XH defined by α = Φ ◦ Ψ is a proper conjugacy with memory 0 and
α−1 has memory m′ + m.

Proof. Proposition 4 is applied m times. ��
Proposition 5. Let Φ : XG → XH be a proper conjugacy between two edge-Dyck
shifts with memory 0 and such that Φ−1 has memory m′ ≥ 1. Then there is an
in-split XK of XG, an in-merging map h∞ : XK → XG, an in-split XL of XH, and
an in-merging map h′

∞ : XL → XH, such that α = h′−1
∞ ◦ Φ ◦ h∞ is a proper

conjugacy from XK onto XL with memory 0 and α−1 has memory m′ − 1.

Proof. The proof is omitted.

Corollary 2. Let Φ : XG → XH be a proper conjugacy between two edge-Dyck
shifts with memory m and such that Φ−1 has memory m′. Then there is an
edge-Dyck shift XK with a sequence of in-merging maps Ψ : XK → XG, an edge-
Dyck shift XL with a sequence of in-merging maps Θ : XL → XH, such that
α : XK → XL defined by α = Θ−1 ◦ Φ ◦ Ψ and α−1 are proper conjugacies with
memory 0.

Proof. Corollary 1 composed with m′ + m applications of Proposition 5. ��

5 Decidability of Proper Conjugacy for a Class
of Edge-Dyck Shifts

In this section we prove that proper conjugacy is decidable for the class of (left)
one-sided matched-return extensible finite-type-Dyck shifts.

A shift X is said (right) matched-return extensible if for any block u of X
there is a nonempty block w in MR(X) such that uw is a block of X.

A shift X is said (right) Dyck-extensible if for any block u of X there is a
nonempty block w in Dyck(X) such that uw is a block of X.

Dyck-extensible shifts are also MR-extensible since Dyck(X) ⊆ MR(X) for
any shift X.

Example 4. The Motzkin shift X and the shift Y of Example 2 are both right
(and left) Dyck extensible. Indeed, any block of the shift can be extended by the
Dyck word j or k. The Dyck shifts are also matched-return extensible since any
sequence is right-extensible by a call letter.

Finite-type-Dyck shifts may not have the MR-extensibility property but a
large class of them do. This class contains also the class of (left)-one-sided shifts
of finite type which are extensible. MR-extensible (or Dyck-extensible) shifts are
stable by proper conjugacy as is shown in Proposition 6.

Proposition 6. Let X,Y be two properly conjugate one-sided shifts. If X is
MR-extensible (resp. Dyck-extensible), then Y also.

176 M.-P. Béal and P. Heller

Proof. The proof is omitted.

In order to obtain our decision result we need to work with trim presentations
of the edge-Dyck shifts.

A Dyck graph G is said to be trim if it has no state without an incoming
edge and for any pair (e, f) of matched edges there is an admissible Dyck path
w of G such that ewf is a path of G.

Thus any edge of a trim Dyck graph G is a block of XG . A Dyck graph can
be made trim in an effective way.

The following proposition is a key point to ensure the decidability of proper
conjugacy. It shows how the restriction to matched-return extensible shifts allows
to obtain the result.

Proposition 7. Let Φ : XG → XH be a proper conjugacy between two edge-Dyck
shifts which are matched-return extensible. If both Φ and Φ−1 have memory 0
and G and H are trim, then G and H are equal up to a Dyck-graph isomorphism.

Proof. The proof is omitted.

Proposition 8. Let G and H be two trim Dyck graphs such that XG and XH
are MR-extensible. If XG and XH are properly conjugate, then G and H have a
common in-amalgamation.

Proof. Let Φ : XG → XH be a proper conjugacy between two edge-Dyck shifts
presented by Dyck graphs G and H.

By Corollary 2 and Propositions 6 and 7 there is an edge-Dyck shift XK with
a sequence of in-merging maps Ψ : XK → XG and a sequence of in-merging maps
Θ : XK → XH. Therefore G and H can be seen as two in-amalgamations of
one Dyck graph, K, and repeated application of proposition 3 (the confluency
property) already gives us the result.

��
For (left) one-sided shifts of finite type, being matched-return extensible is equiv-
alent to being right extensible. Left one-sided shifts of finite type may not be
right-extensible. Nevertheless, Proposition 8 is true for these shifts without this
condition of extensibility.

Theorem 1. It is decidable in an effective way whether two one-sided edge-Dyck
shifts which are MR-extensible are properly conjugate.

Proof. Let Φ : XG → XH be a proper conjugacy between two edge-Dyck shifts
presented by Dyck graphs G and H. Without loss of generality, we may also
assume that G and H are trim.

By Proposition 8 the Dyck graphs G and H have a common in-amalgamation.
As a consequence G and H have the same minimal in-amalgamation. Conversely
if G and H have the same minimal in-amalgamation the shifts XG and XH are
properly conjugate.

Deciding Proper Conjugacy of Classes of One-Sided Finite-Type-Dyck Shifts 177

Hence proper conjugacy can be decided as follows. One can show that the
minimal in-amalgamations of the two Dyck graphs can be computed in poly-
nomial time. One then checks the equality of these graphs up to a Dyck-graph
isomorphism. It is however not known whether the last step can be performed
in polynomial time. ��
Example 5. We consider the two trim Dyck graphs G and H of Fig. 3 where
matched edges are indicated with dotted arrows. The edge-Dyck shifts XG and
XH are Dyck-extensible. These two shifts are conjugate since the minimal amal-
gamations of G and H are equal to the Dyck graph L of Fig. 4 with the same
representation of matched edges.

1

2

3··

·
·

·
·

· ·

1

2

3··

·
·

·

·

· ·

Fig. 3. The Dyck graphs G on the left and H on the right. Call edges are colored in
blue, return edges in red and internal edges in black.

1 2

·
·

· ·
Fig. 4. The minimal amalgamation L of G and H

Theorem 2. It is decidable whether two one-sided finite-type-Dyck shifts which
are MR-extensible are properly conjugate.

Proof. By Propositions 1 and 6, we may assume that the two MR-extensible
finite-type-Dyck shifts are edge-Dyck shifts. We then apply Theorem 1. ��

178 M.-P. Béal and P. Heller

Proposition 8 is no more true in general when the edge-Dyck shifts are not
MR-extensible. Indeed, there are examples of edge-Dyck graphs having disctint
numbers of vertices while being minimal in-amalgamations of a same edge-Dyck
shift The decidability of proper conjugacy of edge-Dyck shifts which are not
matched-return extensible is hence open.

References

1. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proceedings of the
36th Annual ACM Symposium on Theory of Computing, pp. 202–211 (electronic).
ACM, New York (2004)

2. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3) (2009)
3. Aubrun, N., Béal, M.-P.: Tree-shifts of finite type. Theoret. Comput. Sci. 459,

16–25 (2012)
4. Béal, M.-P., Berstel, J., Eilers, S., Perrin, D.: Symbolic dynamics. to appear in

Handbook of Automata (2010)
5. Béal, M.-P., Blockelet, M., Dima, C.: Finite-type-Dyck shift spaces. CoRR (2013).

http://arxiv.org/1311.4223
6. Béal, M.-P., Blockelet, M., Dima, C.: Sofic-Dyck shifts. In: Csuhaj-Varjú, E.,

Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part I. LNCS, vol. 8634, pp. 63–74.
Springer, Heidelberg (2014)

7. Béal, M.-P., Blockelet, M., Dima, C.: Sofic-Dyck shifts. CoRR (2014).
http://arxiv.org/1305.7413

8. Fujiwara, M.: Conjugacy for one-sided sofic systems. In: Dynamical Systems and
Singular Phenomena (Kyoto, 1986), World Sci. Adv. Ser. Dynam. Systems, vol. 2,
pp. 189–202. World Sci. Publishing, Singapore (1987)

9. Inoue, K., Krieger, W.: Subshifts from sofic shifts and Dyck shifts, zeta functions
and topological entropy. CoRR (2010). abs/1001.1839

10. Kitchens, B.P.: Symbolic Dynamics, One-sided, two-sided and countable state
Markov shifts. Universitext. Springer, Berlin (1998)

11. Krieger, W.: On the uniqueness of the equilibrium state. Math. Systems Theory
8(2), 97–104 (1974)

12. Krieger, W., Matsumoto, K.: Zeta functions and topological entropy of the Markov-
Dyck shifts. Münster J. Math. 4, 171–183 (2011)

13. Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cam-
bridge University Press, Cambridge (1995)

14. Williams, R.F.: Classification of subshifts of finite type. In: Beck, A. (ed.) Recent
Advances in Topological Dynamics. LNCS, vol. 318, pp. 281–285. Springer, Hei-
delberg (1973)

http://arxiv.org/abs/http://arxiv.org/1311.4223
http://arxiv.org/abs/http://arxiv.org/1305.7413

Transfinite Lyndon Words

Luc Boasson and Olivier Carton(B)

LIAFA, Université Paris Diderot, Paris, France
Olivier.Carton@liafa.univ-paris-diderot.fr

Abstract. In this paper, we extend the notion of Lyndon word to trans-
finite words. We prove two main results. We first show that, given a
transfinite word, there exists a unique factorization in Lyndon words
that are locally decreasing, a relaxation of the condition used in the case
of finite words.

In a second part, we prove that the factorization of a rational word
has a special form and that it can be computed in polynomial time from
a rational expression describing the word.

1 Introduction

Lyndon words were introduced in [6,7] as standard lexicographic sequences in the
study of the derived series of the free group over some alphabet A. These words
can be used to construct a basis of the free Lie algebra over A and their enumera-
tion yields the well-known Witt’s formula for the dimension of the homogeneous
component Ln(A) of this free Lie algebra.

They are several equivalent definitions of these words but they are usually
defined as those words which are primitive and minimal for the lexicographic
ordering in their conjugacy class. The nice properties they enjoy in linear algebra
are actually closely related to their properties in the free monoid. Lyndon words
provide a nice factorization of the free monoid.

Lyndon words can be studied with the tools of the combinatorics on words,
leaving aside the algebraic origin of these words. It then can be proved directly
that each word w of the free monoid A∗ has a unique decomposition as a product
w = u1 · · · un of a non-increasing sequence of Lyndon words u1 � · · · � un for
the lexicographic ordering. This uniqueness of the decomposition of each word
is indeed remarkable. It has lead Knuth to call Lyndon words prime words [4,
p. 305] and we will use this terminology. As usual, such a result raises the two
related following questions: first how to efficiently test whether a given word is
prime and second, more ambitious, how to compute its prime factorization. It
has been shown that this factorization can be computed in linear time in the
size of the given word w [3].

Very often, in the field of combinatorics of words, classical results give rise to an
attempt to some generalization. These can be achieved by adapting the results to
trees or to infinite words. The notion of prime word does not make exception: the
unique prime decomposition has already been extended to ω-words by Siromoney
et al in [11] where it is shown that any ω-word x can be uniquely factorized either
c© Springer International Publishing Switzerland 2015
I. Potapov (Ed.): DLT 2015, LNCS 9168, pp. 179–190, 2015.
DOI: 10.1007/978-3-319-21500-6 14

180 L. Boasson and O. Carton

x = u0u1u2 · · · where (ui)i≥0 is a non-increasing sequence of finite prime words
or x = u0u1 · · · un where u0, . . . , un−1 is a non-increasing sequence of finite prime
words and un is a prime ω-word such that un−1 � un. In [11], prime ω-words are
defined as ω-words having infinitely many prime prefixes but Proposition 2.2 in
the same paper states that an ω-word is prime if and only if it is lexicographically
strictly smaller than all its suffixes. Prime ω-words are also considered in [8,9]
where the prime factorization of some well-known ω-words like the Fibonacci word
is also given. The property that a limit of prime words is still a prime word also
holds in our context and it is stated in Proposition 4.

The goal of this paper is to extend further such results to transfinite words,
that is, words indexed by ordinals. For simplicity, we restrict ourselves to count-
able ordinals. First we extend the factorization theorem to all words and second
we provide an algorithm that computes this factorization for words that can be
finitely described by a rational expression.

The first task is to find a suitable notion of transfinite prime words. This
is not easy as the different equivalent definitions for finite prime words do not
coincide any more on transfinite words. Since the factorization property is pre-
sumably their most remarkable one, it can be used as a gauge to measure the
accuracy of a definition. If a definition allows us to prove that each transfinite
word has a unique decomposition in prime words, it can be considered as the
right one. The two main points are that the factorization should always exist
and that it should be unique. Of course, the definition should also satisfy the
following additional requirement: it has to be an extension of the classical one for
finite words, meaning that it must coincide with the classical definition for finite
words. We introduce such a definition. The existence and uniqueness of the fac-
torization is obtained by relaxing slightly the property of being non-increasing. It
is replaced by the property of being locally non-increasing (see Section 4 for the
precise definition). As requested, the two properties coincide for finite sequences.
Our results extend the ones of Siromoney et al. [11] as we get the same definition
of prime words of length ω and the same decomposition for words of length ω.

The second task is to extend the algorithmic property of the decomposition of
a word in prime words. It is, of course, not possible to compute the factorization
of any transfinite word but we have focused on the so-called rational words, that
is, words which can be described from the letters using product and ω-operations
(possibly nested). We prove that the factorization of these rational words have
a special form. It can be a transfinite sequence of primes, but only finitely many
different ones occur in it. Furthermore, all the prime words occurring are also
rational and the sequence is really non-increasing in that case. We give an algo-
rithm which computes, in polynomial time, the factorization of a rational word
given by an expression involving products and ω-operations.

The paper is organized as follows. Basic definitions of ordinals and transfinite
words are recalled in Section 2. The definition of prime words and some comments
are given in Section 3. The existence and uniqueness of the prime factorization is
stated in Section 4. Section 5 is devoted to rational words and to the algorithm
for computing their prime factorization.

Transfinite Lyndon Words 181

2 Transfinite Words

We refer the reader to [10] for a complete introduction to the theory of ordinals.
An ordinal is a class for isomorphism of well-founded linear orderings.

Let A be a finite set called the alphabet equipped with a linear ordering <. Its
elements are called letters. In the examples, we often assume that A = {a, b} with
a < b. This ordering on A is necessary to define the lexicographic ordering on
words (see below). For an ordinal α, an α-sequence of letters is also called a word
of length α or an α-word over A. The sequence of length 0 which has no element
is called the empty word and it is denoted by ε. The length of a word x is denoted
by |x|. The set of all words of countable length over A is denoted by A#.

Let x be a word (aβ)β<α of length α. For any γ ≤ γ′ ≤ α, we denote by
x[γ, γ′) the word (bβ)β<γ′−γ of length γ′ − γ defined by bβ = aγ+β for any
0 ≤ β < γ′ − γ. It is the empty word if γ′ = γ and it is a single letter if
γ′ = γ +1. Such a word x[γ, γ′) is called a factor of x. A word of the form x[0, γ)
(resp. x[γ, α)) for 0 ≤ γ ≤ α is called a prefix (resp. suffix) of x. The prefix
(resp. suffix) is called proper whenever 0 < γ < α. If x is the word (ab)ω(bc)ω of
length ω ·2, the prefix x[0, ω) is (ab)ω, the suffix x[ω, ω ·2) is (bc)ω and the factor
x[5, ω + 2) is the word (ba)ωbc. Remark that a proper suffix of a word x may be
equal to x. For instance, the proper suffix x[4, ω ·2) of the word x = (ab)ω(bc)ω is
equal to x. Remark however that a proper prefix y of a word x cannot be equal
to x since it satisfies |y| < |x|.

Let (xβ)β<α be an α-sequence of words. The word obtained by concatenating
the words of the sequence (xβ)β<α is denoted by

∏
β<α xβ . Its length is the sum∑

β<α |xβ |. The product
∏

n<ω x for a given word x is denoted by xω. An α-
factorization of a word x is a sequence (xβ)β<α of words such that x =

∏
β<α xβ .

We write x � x′ whenever x is a prefix of x′ and x � x′ whenever x is a prefix
of x′ different from x′. The relation � is an ordering on A#. The ordering ≺ is
defined by x ≺ x′ if there exist two letters a < b and three words y, z and z′

such that x = yaz and x′ = ybz′. The lexicographic ordering � is finally defined
by x � x′ if x � x′ or x ≺ x′. We write x < x′ whenever x � x′ and x �= x′. The
relation < is a linear ordering on A#.

We mostly use Greek letters α, β, . . . to denote ordinals, letters a, b, . . ., to
denote elements of the alphabet, letters x, y, . . . to denote transfinite words and
letters u, v, . . . to denote prime transfinite words.

3 Prime Words

In this section, we introduce the crucial definition of a prime transfinite word.
Recall that a word x is primitive if it is not the power of another word, i.e.,

if the equality x = yα for some ordinal α and some word y implies α = 1 and
y = x. Note that any word x is either primitive or the power yα of some primitive
word y for some ordinal α ≥ 2 [2].

A word w is prime, also called Lyndon, if w is primitive and any proper suf-
fix x of w satisfies w � x. The terminology prime is borrowed from [4, p. 305].

182 L. Boasson and O. Carton

It is justified by Theorem 5 which states that any word has a unique factoriza-
tion in prime words which is almost non-increasing (see Section 4 for a precise
statement).

Example 1. Both finite words a2b and a2bab are prime. Both finite words aba
and abab are not prime. Indeed, the suffix a of aba satisfies a < aba and abab
is not primitive. The ω-words abω and abab2ab3ab4 · · · are prime. Both ω-words
baω and (ab)ω are not prime. Indeed, the suffix aω of baω satisfies aω < baω and
the ω-word (ab)ω is not primitive.

Let us make some comments about this definition. Note firstly that only
proper suffixes are considered since the empty word ε is a suffix of any word w
but does not satisfy w � ε unless w = ε. Secondly, each suffix x of a prime
word w must satisfy w � x, that is either w � x or w ≺ x. Since the length of x
is smaller than the length of w, the relation w � x is impossible since w � x
would imply |w| < |x|. The relation w � x reduces then to w = x. Therefore,
a word w is prime if it is primitive and any proper suffix x of w satisfies either
w = x or w ≺ x.

Our definition of prime words coincides with the classical definition for finite
words [5, Chap. 5]. A finite word is a prime word if it is minimal in its conjugacy
class or, equivalently, if it is strictly smaller than any of its proper suffixes [5,
Prop. 5.1.2]. A proper suffix of a finite word cannot be equal to the whole word
and therefore, it does not matter whether it is required that any proper suffix
is strictly smaller or just smaller than the whole word. For transfinite words,
it does matter since some proper suffix might be equal to the whole word. Our
definition allows indeed a suffix of a prime word to be equal to the whole word.
The word w = aωb of length ω + 1 is prime but some of its proper suffixes like
w[1, ω + 2) or w[2, ω + 2) are equal to w.

Our definition also requires the word to be primitive. It is not needed for finite
words since, in that case, being smaller than all its suffixes implies primitivity.
Indeed, if the finite word x is equal to yn for n ≥ 2, then y is a proper suffix of x
which is strictly smaller than x. Therefore, x cannot be prime. This argument
does not hold anymore for transfinite words. The ω-word x = aω is, of course,
not primitive but none of its proper suffixes is strictly smaller than itself. Each
proper suffix of x is actually equal to x. The same property holds for each word
of the form aα where α is a power of ω, that is, α = ωβ for some ordinal β ≥ 1.

Our definition of prime words also coincides with the definition for ω-words
given in [11] where an ω-word is called prime if it is the limit of finite prime
words. It is also shown in [11, Prop. 2.2] that an ω-word is prime if and only if it
is strictly smaller than any of its suffixes. Requiring that no suffix is equal to the
whole ω-word prevents the ω-word from being periodic, that is, of the form xω

for some finite word x. These last words are the only non-primitive ω-words. Let
us now give a more involved example.

Example 2. Define by induction the sequence (un)n<ω of words by u0 = a and
un+1 = uω

nb. The first words of the sequence are u1 = aωb and u2 = (aωb)ωb.
It can be proved by induction on n that the length of un is ωn + 1 since

Transfinite Lyndon Words 183

(ωn + 1) · ω + 1 = ωn+1 + 1. Let uω be the word u0u1u2 · · · of length ωω.
Note that equality unun+1 = un+1 holds for any n ≥ 0 and that therefore equal-
ity uω = unun+1un+2 · · · also holds for any n ≥ 0. The word uω is actually the
limit of the sequence (un)n<ω. It can be shown that each word un is prime and
that their limit uω is also prime.

In the case of finite words, the existence of the decreasing factorization follows
for the following property: if the prime words u and v satisfy u < v, then the
word uv is also prime [5, Prop 5.1.3]. Proposition 3 states a similar result for
transfinite words. However, the existence of the factorization does not follow
immediately from it. More involved arguments and Proposition 4 about limits
are indeed needed.

Proposition 3. Let u and v be two prime words such that u < v. Then uαv is
a prime word for any ordinal α. Furthermore, if uαv < v, then the word uαvβ

is prime for any ordinal β ≥ 1.

The second proposition states the property that Siromoney [11] uses as the
definition of of prime words for ω-words. It allows us to get prime words of limit
length.

Proposition 4. Let (un)n<ω be an ω-sequence of words such that the product
u0 · · · un is prime for each n < ω. Then the ω-product u0u1u2 · · · is also prime.

4 Factorization in Prime Words

In this section, we present the first main result: that any word has a unique
factorization into prime words which is almost non-increasing. The goal is to
extend to transfinite word the classical result that any finite word is the product
of a non-increasing sequence of prime words [5, Thm 5.1.5]. It turns out that
this extension is not straightforward since some words are not equal to a product
of a non-increasing sequence of prime words. Let us consider the ω-word x =
aba2ba3 · · · and the (ω + 1)-word xb. The word x can be factorized x = ab ·
a2b · a3b · · · and the sequence (anb)n<ω is indeed a non-increasing sequence of
prime words. The word xb, however, cannot be factorized into a non-increasing
sequence of prime words. A naive attempt could be ab · a2b · a3b · · · b but the
sequence (un)n≤ω where un = an+1b for n < ω and uω = b is not non-increasing
since un < uω for each n < ω. To cope with this difficulty, we have introduced
a notion of a locally non-increasing sequence. This is a slightly weaker notion
than the notion of a non-increasing sequence. A locally non-increasing sequence
(uβ)β<α may have some γ < γ′ < α such that uγ < uγ′ but this may only
happen if there exists a limit ordinal γ < γ′′ ≤ γ′ such that the sequence
(uβ)β<α is cofinally decreasing in γ′′. Roughly speaking, an increase is allowed if
it comes after an ω-sequence of strict decreases. The (ω + 1)-sequence (un)n≤ω

where un = anb for n < ω and uω = b is locally non-increasing. One has indeed
un < uω but also un > un+1 for each n < ω.

184 L. Boasson and O. Carton

We introduce now the formal definition of a locally non-increasing sequence.
We will only use this notion for sequences of prime words lexicographically
ordered but we give the definition for an arbitrary ordered set U . Let (U,<)
be a linear ordering and let ū = (uβ)β<α be a sequence of elements of U . The
sequence ū is constant in the interval [γ, γ′) where γ < γ′ ≤ α if uβ = uγ holds
for any γ ≤ β < γ′. As usual, the sequence x is non-increasing if for any β
and β′, β < β′ < α implies uβ ≥ uβ′ . It is locally non-increasing if for any
interval [γ, γ′) where γ < γ′ ≤ α, either it is constant in [γ, γ′) or there exist
two ordinals γ ≤ β < β′ < γ′ such that uβ > uβ′ .

It is clear that a non-increasing sequence is also locally non-increasing. The
converse does not hold as it can be shown by the already considered (ω + 1)-
sequence (uβ)β≤ω defined by un = anb for n < ω and uω = b.

The following theorem is the main result of the paper. It extends the clas-
sical result which states that any finite word can be uniquely written as a non-
increasing product of prime words [5, Thm 5.1.5].

Theorem 5. For any word x ∈ A#, there exists a unique locally non-increasing
sequence (uβ)β<α of prime words such that x =

∏
β<α uβ. This sequence is called

the prime factorization of x.

Example 6. The prime factorization of the finite words aabab and abaab are
aabab and ab · aab since ab, aab and aabab are prime words. The prime fac-
torization of the ω-words and x0 = aba2ba3b · · · and x1 = abab2ab3 · · · are
x0 = ab ·a2b ·a3b · · · and x1 = abab2ab3 · · · since ab, a2b, a3b, . . . are prime words
and x1 = abab2ab3 · · · is also prime by Proposition 4.

The prime factorization of the (ω +1)-word x2 = x0b is the (ω +1)-sequence
(uβ)β≤ω given by un = an+1b for n < ω and uω = b. This factorization is not
non-increasing since u0 = ab < b = uω but it is, of course, locally non-increasing.

We discuss first the existence of the factorization and second its uniqueness.
The existence can be proved in two ways. The first one is based on Zorn’s
lemma while the second one uses a transfinite induction on the length of words.
Surprisingly, this latter one needs the uniqueness of the factorization which can
be proved independently. The former proof is shorter but the latter one provides
a much better insight. We only sketch here the former one.

In the case of finite words, the existence follows easily from the following
property of finite prime words: if u < v are two prime words, then uv is also
prime. A similar result holds for transfinite words (see Proposition 3) but more
involved arguments are needed to conclude.

Let x be a fixed word. Let X be the set of sequences ū = (uβ)β<α of prime
words such that x =

∏
β<α uβ . Note that it is not assumed that the sequence ū

is locally non-increasing. We define an ordering < on the sequences of words
as follows. Two sequences ū = (uβ)β<α and ū′ = (u′

β)β<α satisfy ū < ū′ if ū
refines ū′. This means that there exists a sequence (γβ)β<α′ of ordinals such
that u′

β =
∏

γβ≤η<γβ+1
uη for each β < α′. For any totally ordered non-empty

subset Y of X, there exists a least sequence ū′ = (u′
β)β<α′ such that ū < ū′ for

any sequence ū = (uβ)β<α ∈ Y . Each word u′
β can be shown to be prime and

Transfinite Lyndon Words 185

the sequence ū′ = (u′
β)β<α′ belongs to X. This result follows from non obvious

properties of transfinite prime words and in particular Proposition 3. It is then
possible to apply Zorn’s lemma: the set X has a maximal element v̄ = (vβ)β<α.
It remains to show that this sequence v̄ is indeed locally non-increasing. This
again follows from the closure properties of prime words.

Now we turn to the uniqueness of the factorization. In the case of finite words,
the last prime word of the prime factorization of a word x is the least suffix (for
the lexicographic ordering) of x [5, Prop. 5.1.6]. A similar result does not hold
for transfinite words and thus the uniqueness cannot be proved this way. Indeed,
since the lexicographic ordering is not well founded, a word may not have a least
suffix. Consider, for instance, the ω-word x0 = aba2ba3b · · · . It does not have
a least suffix and its prime factorization x0 = ab · a2b · a3b · · · does not have a
last factor. Even when the prime factorization of x has a last prime factor, the
word x may not have a least suffix. Consider the (ω + 1)-word x2 = x0b. The
prime factorization x2 = ab · a2b · a3b · · · b has a last factor b but this word x2

does not have a least suffix.
On the other hand, in the case of finite words, the first prime word of the

prime factorization is exactly the longest prime prefix [5, Prop. 5.1.5]. This result,
Proposition 7, can be extended to transfinite words. The uniqueness of the prime
factorization follows then easily.

Proposition 7. Let ū = (uβ)β<α be a locally non-increasing sequence of prime
words. The word u0 is the longest prime prefix of the product

∏
β<α uβ.

5 Rational Words

The second half of this paper is devoted to prove that, for a special kind of
transfinite words, the prime factorization can be effectively computed. The class
of rational words is the smallest class of words which contains the empty word ε
and the letters and which is closed under product and the iteration ω. This
means that each letter a is a rational word and that if u and v are two rational
words, then both words uv and uω are also rational. A rational word that can be
described by a rational expression using only concatenation and the ω operator.

The following theorem states that the prime factorization of a rational word
has a very special form, namely it has a finite range made of rational words.

Theorem 8. For any rational word x, there exists a finite decreasing sequence
of rational prime words u1 > · · · > un and ordinals α1, . . . , αn less than ωω such
that x = uα1

1 · · · uαn
n .

Now we introduce special factorizations of x called main and secondary cuts.
Main cuts occur between two different prime factors and secondary cuts occur
between two occurrences of the same prime factor. More formerly, each factor-
ization x = (uα1

1 · · · uαk

k)(uαk+1
k+1 · · · uαn

n) for 1 ≤ k ≤ n − 1 is called a main cut
of x. Each factorization x = (uα1

1 · · · uαk−1
k−1 uβ

k)(uγ
ku

αk+1
k+1 · · · uαn

n) with αk = β + γ
and β, γ �= 0 is called a secondary cut of x.

186 L. Boasson and O. Carton

5.1 Automata

Rational words are described by rational expressions using the product and the
iteration ω. These expressions can be viewed as automata with special transi-
tions for the ω-operation. Having a finite number of states, these automata are
convenient to compute the prime factorization stated in Theorem 8. Besides, it
turns out that these automata are a very special case of finite automata accepting
transfinite words [1]: they just accepts a single word which is then rational.

The algorithm computing the prime factorization of rational word x, actually
processes a finite automaton accepting x. As already mentioned, this automaton
is made of two kinds of transitions corresponding respectively to letters and
ω-powers.

The transitions associated with letters have the form p a−→ q and are called
successor transitions. Transition associated with ω-powers have the form P → q
where P is a subset of states and are called limit transitions. The subset P is
the set of states repeated in the corresponding ω-power.

Consider for instance the rational expression (baω)ωaω. It is first flatten to
give the word (baω)ωaω over the extended alphabet A ∪ {(,), ω}. Let n be the
number of letters in A ∪ {ω} in this word. (parentheses are ignored). In our
example, this number n is equal to 6. The integers from 0 to n−1 are then inserted
before the letters in A∪{ω} and the integer n is added at the end of the word to
obtain the word (0b1a2ω3)ω4a5ω6 over the alphabet A∪{(,), ω}∪{0, 1, . . . , n}.

The automaton is then constructed as follows. For each 0 ≤ i ≤ n − 1, if i
lies just before a letter a ∈ A, there is a successor transition i a−→ (i + 1). If i lies
before a symbol ω, there are a successor transition from i and a limit transition
defined as follows. Let j − 1 be the integer just before the first letter a of the
sub-expression under this ω. Note that j satisfies j ≤ i. The successor transition
is then the transition i a−→ j and the limit transition is {j, j +1, . . . , i} → (i+1).
Note that both transitions (j − 1) a−→ j and i a−→ j enter the same state j and
have the same label.

The automaton obtained from the expression (0b1a2ω3)ω4a5ω6 is pictured
in Figure 1.

0 1 2 3 4 5 6
b a

a

b

a

a

{2} → 3 {1, 2, 3} → 4 {5} → 6

Fig. 1. Automaton for (baω)ωaω

Given the automaton A, we now introduce two families of automata called
iAj and iA#

j built from A. Let 0 ≤ i < j ≤ n be two states such that there
exists no backwards transition k a−→ k′ with k′ ≤ i ≤ k. The automaton iAj is

Transfinite Lyndon Words 187

obtained by restricting the set of states to [i, j], i being the initial state and j the
final state. It accepts a unique transfinite word denoted ixj which is a candidate
for a prime factor.

The automaton iA#
j is built by adding to iAj two transitions: a successor

one and a limit one. The additional successor transition is j a−→ (i + 1) where
a is the label of the transition i a−→ (i + 1). The additional limit transition is
{i + 1, . . . , j} → j. This automaton accepts now the set ix

#
j = {ix

α
j |α ordinal}

of all powers of ixj .

5.2 Algorithm

We first define here a transformation τ on regular expressions. Given a regular
expression e, τ(e) is another regular expression which defines the same word.
This new expression permits the description of the prime factorization. The
transformation τ is defined by induction on the expression as follows.

τ(a) = a τ(ee′) = τ(e)τ(e′) τ(eω) = τ(e)τ(e)ω

Example 9. If e = (baω)ωaω, then τ(e) = baaω(baaω)ωaaω and the correspond-
ing automaton is pictured in Figure 2.

We denote by |e| the size of a regular expression. This size is actually the
number of letters in A∪{ω} used in the expression. We also denote by dp(e) the
depth that is the maximum number of nested ω in e. For any regular expression e,
the relation |τ(e)| ≤ 2dp(e)|e| holds.

0 1 2 3 4 5 6 7 8 9 10 11 12
b a a

a

b a a

a

b

a a

a

{3} → 4 {7} → 8 {5, 6, 7, 8} → 9 {11} → 12

Fig. 2. Automaton for baaω(baaω)ωaaω

Now we present the algorithm which computes the prime factorization of
a rational word x. Such a word is given by a rational expression e. It turns
out that, in general, e cannot be used to describe the prime factorization of x
but the duplicated expression τ(e) can. The factorization is given by marking
main and secondary cuts of x in τ(e) as illustrated in the following example.
Consider the word x given by the expression e = (baω)ωaω. Then the duplicated
expression τ(e) is baaω(baaω)ωaaω. The prime factorization of x is b(aωb)ωaω

that is x = u1u
ω
2 uω

3 where the three prime factors are u1 = b, u2 = aωb and u3 =
a. It can be given by inserting a marker || (respectively |) at main (respectively

188 L. Boasson and O. Carton

secondary) cuts in the expression τ(e) as ||b||aaω(b|aaω)ω||a|(a|)ω||. Note that such
a marking cannot be done in the expression e.

The algorithm given below works actually on the automaton Aτ(e) associated
to the expression τ(e). Rather that inserting markers in the expression, it marks
states of Aτ(e). Indeed it outputs two subsets QM and QS of distinguished states
of the automaton Aτ(e). As the states are in one-to-one correspondence with
the positions in τ(e), distinguishing states is the same as inserting markers.
In the above example, the algorithm produces the sets QM = {0, 1, 9, 12} and
QS = {5, 10, 11}.

Theorem 10. Given a rational word x denoted by a regular expression e, there
are two subsets QM and QS of states of Aτ(e) such that the main and secondary
cuts respectively correspond to states in QM and QS. Furthermore, these subsets
can be computed in polynomial time in the size of τ(e).

The algorithm is essentially inspired by its counterpart used in the classical
case of finite words [3]. In this case, three variables i, j and k representing
positions in the word are used. The variable i contains a position such that the
prefix of the finite word ending at this position is already factorized. The variable
j contains a position greater than i such that the factor between positions given
by i and j is the possible next prime factor. The variable k is greater than j and
contains the current position in the finite word. Moreover, to make the classical
algorithm easier to understand, a fourth variable k′ can be introduced. It contains
a position in the possible next prime factor, this position ranges between the
positions i and j. The classical algorithm is then directed by the comparison of
the letters at positions k and k′. The algorithm for rational transfinite words
proceeds similarly but uses states of automata rather positions in words. This
allows the algorithm to run in a finite number of steps although the words are
infinite. However, the algorithm must now cope with loops in the automata.
This is solved, in our algorithm, by keeping track of already visited states. The
algorithm produces two subsets of states of A, the first one QM contains states
corresponding to main cuts and the second one QS contains states corresponding
to secondary cuts. Now we give a more detailed presentation of the algorithm.

Given a rational word x represented by an expression e, the algorithm, as
already mentioned, works on the automaton Aτ(e) denoted A. The algorithm is
described below. It uses also four variables i, j, k and k′, but theses variables
will not contain positions in the word x but rather states of A for the three first
ones and a state of iA#

j for the last one k′. Variable i contains the greatest state
known to be in QM up to now. Variable j contains a state greater than i such
that ixj is a prime word which is a candidate for a prime factor. States k and k′

are the current states of A and iA#
j respectively. The algorithm simulates a run

of the synchronized product A× iA#
j . It records the list of pairs of visited states

in their appearance order. This list is called the history and its used to detect
cycles. The last pair, called the leading pair, is the pair of states contained in
variables k and k′. Let ak and ak′ be the unique letters labeling the successor

Transfinite Lyndon Words 189

transitions leaving k in A and k′ in iA#
j . There are then three cases. The first

one (Case 1) is ak = ak′ (Line 4 in the algorithm). The algorithm considers the
pair k · ak and k′ · ak′ of states reached by the two successor transitions. If this
pair is not yet in the history, it becomes the new leading pair and it is thus added
to the history. If it is already in the history, both automata use limit transition
giving raise to a new pair of states which becomes the new leading pair (Line 6).
The second case (Case 2) is ak > ak′ (Line 14). The prime factor candidate
ixj has to be extended. Then, a new state is assigned to variable j. This may
need the use of a limit transition in A (Lines 17 and 18). The set QS and the
history are reset. The last case (Case 3) is ak < ak′ (Line 20 in the algorithm).
The prime factor candidate ixj is indeed a prime factor. Its last occurrence in x
becomes the new main cut added to QM (Line 22).

1: Input: automaton ({0, . . . , n}, A,E, {0}, {n}).
2: i ← 0, j ← 1, k ← 1, k′ ← 0, H = (i, j) = (0, 1), QM ← {0}, QS ← ∅

3: while k < n do
4: if ak = ak′ then
5: k ← k · ak in A and k′ ← k′ · ak′ in iA#

j

6: if (k, k′) occurs in H then
7: if j does not occur since the previous visit of (k, k′) then
8: k ← max{q | ∃q′ (q, q′) occurs in H after (k, k′)}
9: k′ ← max{q′ | ∃q (q, q′) occurs in H after (k, k′)}

10: else
11: k ← max{q | ∃q′ (q, q′) occurs in H after (k, k′)}
12: k′ ← j
13: H ← H · (k, k′)
14: else if ak > ak′ then
15: if k · ak does not occur in H then
16: j ← k · ak

17: else
18: j ← max{q | ∃q′ (q, q′) ∈ H} + 1
19: k ← j, k′ ← i, H ← (i, j)
20: else
21: QS ← QS ∪ {j} ∪ {q | (q, j) ∈ H}.
22: i ← maxQS , QS ← QS \ {i}, QM ← QM ∪ {i}
23: j ← i · ai, k ← j, k′ ← i, H ← (i, j)
24: Output QM and QS

Algorithm 1. LyndonFactorize

A complete detailed description of the algorithm is given in the appendix. Its
correctness follows from several invariants given in the appendix. Furthermore
it can be shown that the number of steps of the algorithm is at most n3 where
n is the number of state of the automaton Aτ(e).

190 L. Boasson and O. Carton

6 Conclusion

To conclude, let us sketch a few problems that are raised by our work.
In order to obtain a prime factorization for each transfinite word, we have

only required the sequence of prime words to be locally decreasing. It seems
interesting to characterize those words which have a decreasing factorization.
We have proved in Theorem 8 that rational words do have but they are not the
only ones. The ω-word x = aba2ba3b · · · has also the decreasing factorization
x = ab · a2b · a3b · · · .

The algorithm given in Section 5.2 outputs the factorization of a rational word
given by an expression e by inserting markers in the duplicated expression τ(e).
Even if the complexity of this algorithm is polynomial in the size of τ(e), the
algorithm is indeed exponential in the size of the expression e. This is due to the
exponential blow up generated by the duplication. It could then be interesting
to design a better algorithm: this new algorithm could determine which parts
of the expression e have to be duplicated in order to get a better complexity.
Along the same lines, it seems that it is possible to design an algorithm such
that, given an expression e, it decides if the expression can be used to describe
the factorization of the corresponding rational word without any duplication.

References

1. Büchi, J.R.: Transfinite automata recursions and weak second order theory of
ordinals. In: Proc. Int. Congress Logic, Methodology, and Philosophy of Science,
Jerusalem 1964, North Holland, pp. 2–23 (1965)

2. Carton, O., Choffrut, C.: Periodicity and roots of transfinite strings. Theoret.
Informatics and Applications 35(6), 525–533 (2001)

3. Duval, J.P.: Mots de Lyndon et périodicité. RAIRO Informat. Théor. 14, 181–191
(1980)

4. Knuth, D.E.: Combinatorial Algorithms, The Art of Computer Programming.
Addison-Wesley Professional, vol. 4A (2011)

5. Lothaire, M.: Combinatorics on Words, Encyclopedia of Mathematics and its
Applications, vol. 17. Addison-Wesley, Reading (1983)

6. Lyndon, R.C.: On Burnside problem I. Trans. Am. Math. Soc. 77, 202–215 (1954)
7. Lyndon, R.C.: On Burnside problem II. Trans. Am. Math. Soc. 78, 329–332 (1954)
8. Melançon, G.: Lyndon factorization of infinite words. In: Puech, C., Reischuk, R.

(eds.) STACS 96. LNCS, vol. 1046, pp. 147–154. Springer, Heidelberg (1996)
9. Melançon, G.: Viennot factorization of infinite words. Inf. Process. Lett. 60(2),

53–57 (1996)
10. Rosenstein, J.G.: Linear Ordering. Academic Press, New York (1982)
11. Siromoney, R., Mathew, L., Dare, V.R., Subramanian, K.G.: Infinite Lyndon words.

Inf. Process. Lett. 50(2), 101–104 (1994)

Unary Patterns with Permutations

James Currie1, Florin Manea2, and Dirk Nowotka2(B)

1 Department of Mathematics and Statistics,
University of Winnipeg, Winnipeg, Canada

j.currie@uwinnipeg.ca
2 Department of Computer Science, Kiel University, Kiel, Germany

{flm,dn}@informatik.uni-kiel.de

Abstract. Thue characterized completely the avoidability of unary pat-
terns. Adding function variables gives a general setting capturing avoid-
ance of powers, avoidance of patterns with palindromes, avoidance of
powers under coding, and other questions of recent interest. Unary pat-
terns with permutations have been previously analysed only for lengths
up to 3. Consider a pattern p = πi1(x) . . . πir (x), with r ≥ 4, x a word
variable over an alphabet Σ and πij function variables, to be replaced by
morphic or antimorphic permutations of Σ. If |Σ| ≥ 3, we show the exis-
tence of an infinite word avoiding all pattern instances having |x| ≥ 2.
If |Σ| = 3 and all πij are powers of a single π, the length restriction is
removed. In general, the restriction on x cannot be removed, even for
powers of permutations: for every positive integer n there exists N and a
pattern πi1(x) . . . πin(x) which is unavoidable over all Σ with |Σ| ≥ N .

1 Introduction

The avoidability of patterns by infinite words is a core topic in combinatorics on
words, going back to Thue [7,8]. Important results are surveyed in, e.g., [3,5].

Recently, a natural generalisation of classical patterns, in which functional
dependencies between variables are allowed, has been considered [1,2,6]. More
precisely, patterns consist of word variables, as usual, together with function
variables (standing for either morphic or antimorphic extensions of permutations
on the alphabet) which act on the words. For example, consider the pattern
xπ(x)xπ(x) whose instances are words uvuv that consist of four parts of equal
length, that is, |u| = |v|, where v is the image of u under some permutation of
the alphabet. For example, aab|bba|aab|bba (respectively, aab|abb|aab|abb) is an
instance of xπ(x)xπ(x) for the morphic (respectively, antimorphic) extension of
permutation a �→ b and b �→ a.

We note that, while patterns xk describe all repetitions of some exponent k,
patterns of the type πi1(x) . . . πik(x) describe words that have an intrinsic repet-
itive structure, hidden by the application of the different iterations of the func-
tion π, which encode of the original root of the repetition.

Patterns with involutions were studied in [1,2]; motivation for considering
involutions includes word reversal and DNA/RNA complementation. The main

c© Springer International Publishing Switzerland 2015
I. Potapov (Ed.): DLT 2015, LNCS 9168, pp. 191–202, 2015.
DOI: 10.1007/978-3-319-21500-6 15

192 J. Currie et al.

result obtained was that for each unary pattern with one variable involution, one
can identify all alphabets over which it is avoidable. In the more general setting
of patterns with permutations, the only results obtained so far (see [6]) regarded
cube-like patterns under morphisms or antimorphisms (anti-/morphisms, for
short) which are powers of a single (variable) permutation, i.e., patterns of the
form πi(x)πj(x)πk(x), where i, j, k ≥ 0. The avoidability of such patterns was
completely characterised: for each πi(x)πj(x)πk(x) one can determine exactly
the alphabets over which the pattern is avoidable. Contrary to both the classi-
cal and to the involution settings, where once a pattern is avoidable for some
alphabet size it remains avoidable in larger alphabets, a cubic pattern with per-
mutations may become unavoidable over a larger alphabet.

We extend the results of [6] as follows. First, we construct a ternary word
that avoids all patterns πi1(x) . . . πir

(x) where r ≥ 4, x a word variable over some
alphabet Σ, with |x| ≥ 2 and |Σ| ≥ 3, and the πij

function variables that may
be replaced by anti-/morphic permutations of Σ. This is the first result where
the avoidability of patterns involving more functions, which are not powers of
the same initial variable permutation, has been shown; even more, we do not
restrict these functions so that all have the same type: we can mix both morphic
and antimorphic permutations. On the down side, the result only works when we
restrict the length of x to be at least 2. However, we also show that such a restric-
tion is needed. Indeed, for each n ≥ 1 there exists a unary pattern π1(x) . . . πn(x)
where all functions are powers of the same anti-/morphic permutation π, i.e.,
πj = πij with 1 ≤ j ≤ n, and an integer N such that πi1(x) . . . πin(x) has as
instances all the words of length n over an alphabet of size at least N ; in other
words, πi1(x) . . . πin(x) is unavoidable over all alphabets Σ with |Σ| ≥ N . In
between these two results, we show that for n ≥ 4 all patterns πi1(x) . . . πin(x)
under anti-/morphic permutations are avoidable in Σ3. So, just like in the case of
cubes with permutations, there are patterns under anti-/morphic permutations
(including the eventually unavoidable patterns we construct) which are avoid-
able in small alphabets (here, Σ3) but become unavoidable in larger alphabets.
On the other hand, unlike the case of cubes with permutations, where there exist
patterns unavoidable in Σ2 and Σ3 (e.g., xπ(x)π2(x), see [6]), all unary patterns
of length at least 4 under anti-/morphic permutations are avoidable in both Σ2

(see [1]) and Σ3 (as shown here).

2 Definitions

We freely use the usual notations of combinatorics on words. (See [5], for exam-
ple.) Define alphabets Σk = {0, . . . , k − 1}and Σ′

k = {1, 2, . . . , k}. We use wR,
to denote the reversal of word w.

A morphism f (respectively, antimorphism) of Σ∗
k is defined by its values

on letters; f(uv) = f(u)f(v) (respectively, f(uv) = f(v)f(u)) for all words
u, v ∈ Σ∗

k . When we define an anti-/morphism it is enough to define f(a), for
all a ∈ Σk. If the restriction of f to Σk, is a permutation of Σk, we call f an
anti-/morphic permutation. Denote by ord(f) the order of f , i.e., the minimum

Unary Patterns with Permutations 193

positive integer m such that fm is the identity. If ord(f) = 2, we call f an
involution. If a ∈ Σk is a letter, the order of a with respect to f , denoted
ordf (a), is the minimum number m such that fm(a) = a.

A pattern which involves functional dependencies is a term over (word)
variables and function variables (where concatenation is an implicit functional
constant); a pattern with only one word variable is called unary. For example,
xπ(x)π(π(x))x = xπ(x)π2(x)x is a unary pattern involving the variable x and
the function variable π. An instance of a pattern p in Σk is the result of substi-
tuting every variable by a word in Σ+

k and every function variable by a function
over Σ∗

k . A pattern is avoidable in Σk if there is an infinite word over Σk that
does not contain any instance of the pattern.

In this paper, we consider patterns with morphic and antimorphic permuta-
tions, that is, all function variables are substituted by morphic or antimorphic
permutations only.

Let h be the infinite word defined as h = limn→∞ φn
h(0), where φh : Σ∗

3 → Σ∗
3

is a morphism due to Hall [4], defined by φh(0) = 012, φh(1) = 02 and φh(2) = 1.
For the simplicity of the exposure, if h =

∏∞
i=0 hi with hi ∈ Σ3, we define the

infinite word v over Σ′
3 as v =

∏∞
i=0 vi, with vi = hi + 1. The infinite word v

avoids squares xx and does not contain the factors 121 and 323.
We investigate the factors of an infinite word g that have the form

πi1(x)πi2(x) . . . πir
(x)

with x a non-empty word and each πij
a morphic or antimorphic permutation

for 1 ≤ j ≤ r. Replacing x by π−1
i1

(x) and πij
(x) by πij

(π−1
i1

(x)) for 1 ≤ j ≤ r,
this is equivalent to investigating factors of g of the form xπj1(x) . . . πjr−1(x)
with x a non-empty word, and each πj�

a morphic or antimorphic permutation
for all 1 ≤ � ≤ r − 1.

3 A General Result

We use the word v defined above to define the word u ∈ Σω
3 given by

u =
∞∏

i=0

(0v3i1v3i+12v3i+2).

Theorem 1. The word u has no factor of the form xπi(x)πj(x)πk(x) with |x| ≥
2 and πi, πj and πk are each a morphic or antimorphic permutation.

Proof. (Morphic case) Suppose, to the contrary, that u has a factor w =
xπi(x)πj(x)πk(x) with |x| ≥ 2, where each πr is a morphic permutation. We
consider the block structure of x; that is, we parse x as

x = ak1
1 ak2

2 · · · akn−1
n−1 akn

n

194 J. Currie et al.

where the ai ∈ Σ3, with a� �= a�+1, k� ≥ 1, 1 ≤ � ≤ n. Certainly, πr(x) has the
same block structure for each r:

πr(x) = (πr(a1))k1(πr(a2))k2 · · · (πr(an−1))kn−1(πr(an))kn

and letters πr(a�) and πr(a�+1) are distinct, since πr is a permutation.
We consider several cases based on n, k1 and kn as follows:

Case 1: n = 1. This means that w = ak1
1 (πi(a1))k1(πj(a1))k1(πk(a1))k1 .

Since |x| ≥ 2, we have k1 ≥ 2. If a1 = πi(a1), then w contains the factor
ak1
1 (πi(a1))k1 = a2k1

1 . Since 2k1 ≥ 4, this is impossible; the block lengths in u
are 1, 2 or 3. We conclude that a1 �= πi(a1). Similarly, πi(a1) �= πj(a1), and
πj(a1) �= πk(a1). It follows that, in the context of w, (πi(a1))k1 and (πj(a1))k1

are successive blocks of u; however, this implies that k1k1 is a factor of v. Since
v is square-free, this is impossible.

Case 2a: n > 1, and k1 = 3 or kn = 3 Suppose k1 = 3. This implies that
an �= πi(a1); otherwise w contains a block akn

n (πi(a1))3 = akn+3
n , of length 4 or

greater. Similarly, πi(an) �= πj(a1) and πj(an) �= πk(a1). Each (πi(a�))k� and
(πj(a�))k� is thus a complete block of u, and v contains the factor (k1k2 · · · kn)2.
This is impossible. Similarly, one argues that kn = 3 gives a contradiction.

Case 2b: n > 1, and k1, kn ≤ 2 If an = πi(a1) and πi(an) = πj(a1), then u
contains the factor

an−1akn+k1
n (πi(a2))

k2 . . . (πi(an−1))
kn−1πi(an)

kn+k1 (πj(a2))
k2 . . . (πj(an−1))

kn−1πj(an),

and v contains the square factor ((kn + k1)k2k3 · · · kn−1)2, which is impossible.
Similarly, if an �= πi(a1) and πi(an) �= πj(a1), then v contains the factor

a1a
k2
2 . . . akn

n (πi(a1))k1(πi(a2))k2 . . . (πi(an))kn(πj(a1))k1πj(a2),

and then v contains the factor (k2k3 · · · k1)2, which is again impossible. In con-
clusion, exactly one of the equations an = πi(a1) and πi(an) = πj(a1) holds.
Similarly, exactly one of πi(an) = πj(a1) and πj(an) = πk(a1) holds.
Case 2bi: k1, kn ≤ 2, and n ≥ 3. Suppose that an = πi(a1) and πi(an) �=
πj(a1). (The other case is similar.)

Since πi(an) �= πj(a1), but

πi(an−1)(πi(an))kn(πj(a1))k1πj(a2)

is a factor of u, we see that knk1 is a factor of v, whence kn �= k1. Since we have
already reasoned that k1, kn ≤ 2, we see that k1+kn = 3. Now an−2(an−1)kn−1a3

n

is a factor of u, so that kn−1 �= 3. On the other hand, since

πi(an−2)(πi(an−1))kn−1(πi(an))knπj(a1)

is a factor of u, and πi(an) �= πj(a1), we conclude that kn−1kn is a factor of v;
therefore, kn−1 �= kn, and since kn, kn−1 < 3, we have kn−1 = 3 − kn = k1.

Unary Patterns with Permutations 195

Similar reasoning shows that k2 = kn. But then

πi(an−2)(πi(an−1)kn−1(πi(an))kn(πj(a1))k1(πj(a2))k2πj(a3)

is a factor of u, so that kn−1knk1k2 = (k1kn)2 is a factor of v. This is impossible.
Case 2bii: k1, kn ≤ 2, and n = 2. We make four subcases, depending on
whether (k1, k2) = (1, 2) or (2, 1), and on whether a2 = πi(a1), πi(a2) �= πj(a1)
and πj(a2) = πk(a1), or alternatively, a2 �= πi(a1), πi(a2) = πj(a1) and πj(a2) �=
πk(a1).

1. (k1, k2) = (1, 2), a2 = πi(a1), πi(a2) �= πj(a1), πj(a2) = πk(a1):
In this case, u contains the word

a1a
2
2πi(a1)(πi(a2))2πj(a1)(πj(a2))2πk(a1)(πk(a2))2

= a1a
3
2(πi(a2))2πj(a1)(πj(a2))3(πk(a2))2

so that v contains a word α3213β, α, β ∈ {1, 2, 3}, β ≥ 2. In fact, if β = 3,
then v contains the square 32. Assume then that β = 2. Thus 32132 is a
factor of v; however, 32132 has no right extension in v, since 321321 and
321322 end in squares, while 321323 ends in 323. This is impossible.

2. (k1, k2) = (2, 1), a2 = πi(a1), πi(a2) �= πj(a1), πj(a2) = πk(a1):
In this case, u contains the word

a2
1a2(πi(a1))2πi(a2)(πj(a1))2πj(a2)(πk(a1))2πk(a2)

= a2
1a

3
2πi(a2)(πj(a1))2(πj(a2))3πk(a2)

so that v contains a word α3123β, α, β ∈ {1, 2, 3}, α ≥ 2. In fact, if α = 3,
then v contains 32. Assume then that α = 2, so that v contains 23123.
Since v is recurrent, 23123 must have a left extension in v; however, none of
123123, 223123 and 323123 is a possible factor of v.

3. (k1, k2) = (1, 2), a2 �= πi(a1), πi(a2) = πj(a1), πj(a2) �= πk(a1):
In this case, w contains the word

a1a
2
2πi(a1)(πi(a2))2πj(a1)(πj(a2))2πk(a1)(πk(a2))2

= a1a
2
2πi(a1)(πi(a2))3(πj(a2))2πk(a1)(πk(a2))2

so that v contains a word α21321β. No left extension of this word is a factor
of v.

4. (k1, k2) = (2, 1), a2 �= πi(a1), πi(a2) = πj(a1), πj(a2) �= πk(a1): In this case,
w contains the word

a2
1a2(πi(a1))2πi(a2)(πj(a1))2πj(a2)(πk(a1))2πk(a2)

= a2
1a2(πi(a1))2(πi(a2))3πj(a2)(πk(a1))2πk(a2)

so that v contains a word α12312β. No right extension of this word is a
factor of v.

196 J. Currie et al.

We see that w contains no instance xπi(x)πj(x)πk(x) with |x| ≥ 2 where each
πr is a morphic permutation.

(Antimorphic case). Suppose, for the sake of getting a contradiction, that
u has a factor w = xπi(x)πj(x)πk(x) with |x| ≥ 2, where one of the πr is an
antimorphic permutation.

For notational simplicity, we will suppose that πi is antimorphic; the other
cases are similar.

We consider the block structure of x:

x = ak1
1 ak2

2 · · · akn−1
n−1 akn

n

where the ai ∈ Σ3, with a� �= a�+1, k� ≥ 1, 1 ≤ � ≤ n. Since πi is antimorphic,

πi(x) = (πi(an))kn(πi(an−1))kn−1 · · · (πi(a2))k2(πi(a1))k1 .

If kn = 3, then u has the factor akn
n πi(an)kn , and either u has a block of

length 6 (if an = πi(an)), or v has a factor 33; both cases are impossible.
If kn = 2, we make cases based on n: If n = 1, then w = a2

1πi(a2
1)πj(a2

1)πk(a2
1),

and the factor πi(a2
1)πj(a2

1) of w implies that either u has a block of length 4,
or v has a factor 22; both cases are impossible.

If n > 1, then factor akn−1
n−1 akn

n πi(akn
n)πi(a

kn−1
n−1) gives the same contradiction.

We conclude that kn = 1. Since |x| ≥ 2, we have n ≥ 2. If an �= πi(an), then
the factor a

kn−1
n−1 a1

nπi(a1
n)πi(a

kn−1
n−1) of w implies that 11 is a factor of v, which is

impossible. We conclude that an = πi(an).
Suppose |x| ≥ 3. If kn−1 = 1, then w contains a

kn−2
n−2 a1

n−1a
2
nπi(a1

n−1)πi(an−2),
so that v has the factor 121. This is impossible. Thus kn−1 > 1. This forces u
to contain a block ay

n−1a
2
nπi(az

n−1), where y, z ≥ 2 and y2z is a factor of v.
However, then v has 22 or 323 as a factor, which is impossible. We conclude
that |x| = 2. It follows that n = 2, k1 = k2 = 1.

Write w = a1a2b1b2c1c2d1d2, each ai, bi, ci, di ∈ Σ3, and a1 �= a2, b1 �= b2,
c1 �= c2, d1 �= d2. We have arrived at this case by considering the word xπi(x),
assuming that πi is antimorphic. If, instead, πi is morphic and πj is antimorphic,
(resp., πi and πj are morphic, πk is antimorphic) the same analysis goes through
considering the word πi(x)πj(x) (resp., πj(x)πk(x)).

We must have a2 = b1, or v contains the square 11. Similarly, b2 = c1. Now,
however, v contains the square 22. This is a contradiction. �	

Consequently, u has no factor of the form π�(x)πi(x)πj(x)πk(x) with |x| ≥ 2
and πi, πj and πk are each a morphic or antimorphic permutation. This means
that u has not factor that contains, at its turn, an instance of a pattern
π�(x)πi(x)πj(x)πk(x) with |x| ≥ 2 and πi, πj and πk are each a morphic or
antimorphic permutation. So, the following general theorem follows.

Theorem 2. The word u has no factor of the form πi1(x)πi2(x) . . . πir
(x) with

|x| ≥ 2, r ≥ 4, and πij
is a morphic or antimorphic permutation for 1 ≤ j ≤ r.

Unary Patterns with Permutations 197

4 Avoidability for Ternary Alphabets

We now show that all patterns of length at least 4 under anti-/morphisms which
are powers of the same permutation are avoidable in Σ3. More precisely, we show
that for each pattern P = xπi(x)πj(x)πk(x) there exists an infinite word (that
depends on P) that does not contain any instance of P with π an anti-/morphic
permutation of Σ3.

Let us note from the beginning that the permutations of Σ3 are either cycles
(i.e., ord(a) = 3 for all a ∈ Σ3) or involutions (i.e., ord(a) ≤ 2 for all a ∈ Σ3).

We use as a basic lemma the following corollary of Theorem 1.

Corollary 1. The word u has no factor of the form xπi(x)πj(x)x, where π is
an anti-/morphic permutation of Σ3.

Proof. By Theorem 1 we know that u has no factor of the form xπi(x)πj(x)x
with |x| ≥ 2, by just taking in the statement of the theorem πi = πi, πj = πj ,
and πk the identity on Σ3. We assume, for the sake of a contradiction, that u
has a factor xπi(x)πj(x)x with |x| = 1. Say x = a ∈ Σ3. Due to the form of u we
get that between the two occurrences of the letter x = a we must find the two
other letters of Σ3 (that is, both letters from Σ3 \ {a} = {b, c}). Indeed u does
not contain a block of 4 consecutive identical letters, so the two occurrences of
the letter x = a belong to separate maximal blocks made of letters x = a of the
word u, and between two such blocks the other two letters of Σ3 must occur.
But this would mean that u contains the factor abca, so h should contain the
factor 11, a contradiction. �	

The following lemma is immediate, as v avoids squares.

Lemma 1. The word v has no factor of the form xxπj(x)πk(x), xπi(x)πi(x)x,
xπi(x)πj(x)πj(x) where π is an anti-/morphic permutation and i, j, k are non-
negative integers.

In [6] the following was shown.

Lemma 2. There exists an infinite word vm (respectively, va) over Σ3 that has
no factor of the form xπ(x)x, when π is replaced by a morphic (respectively,
antimorphic) permutation.

The final result we need is from [1].

Lemma 3. For each pattern P = xπi(x)πj(x)πk(x), where i, j, k are non-
negative integers, there exists an infinite word uP ∈ Σω

2 (respectively, u′
P ∈

Σω
2) that does not contain an instance of P when π is replaced by a morphic

(respectively, antimorphic) involution of Σ2.

We can now show the two main results of this section.

Lemma 4. For each pattern P = xπi(x)πj(x)πk(x), where i, j, k are non-
negative integers, there exists an infinite ternary word wP that does not contain
any instance of this pattern with π a morphic permutation of Σ3.

198 J. Currie et al.

Proof. Clearly, each morphic permutation π of Σ3 is either a cycle or an invo-
lution. In all cases, π6 is the identity morphism on Σ∗

3 . Consequently, we can
replace the exponents i, j, k by their values modulo 6.

By Corollary 1 and Lemmas 1 and 2, all the patterns xπi(x)πj(x)πk(x) with
one of i, j, k equal to 0 and π replaced by a morphic permutation are avoidable,
either by v (when i = 0), either by vm (when j = 0), or by u (when k = 0).
Similarly, the patterns xπi(x)πj(x)πk(x) with i = k are avoided by vm, since
this word does not contain instances of any pattern πi(x)πj(x)πi(x), while those
with i = j or j = k are avoided by v.

Consequently, we only have to consider the case when 0, i, j, k are pairwise
distinct, and each is at most 5 in the following.

We look at the reminders of i, j and k modulo 3.
If {i(mod 3), j(mod 3), k(mod 3)} = {1, 2}, we get that when replacing π

with a cycle of Σ3 (e.g., π(0) = 1, π(1) = 2, π(2) = 3), the instance of P =
xπi(x)πj(x)πk(x) will contain all the three letters 0, 1, and 2. It follows that
uP (from Lemma 3) avoids p. Indeed, when π is replaced by an involution of
Σ2 the result follows from the definition of uP , while when π is replaced by any
other permutation of Σ3, its instances will contain the letter 2, so uP canonically
avoids all of them.

So, the only case left to consider is when {i(mod 3), j(mod 3), k(mod 3)} is
either {0, 1} or {0, 2}. If i, j, k are all equal modulo 3 it follows that at least two
of them are actually equal, a contradiction to our earlier assumption that each
two of the exponents are different. So, one of i, j, and k should be 3.

It is not hard to see that xπi(x)π3(x)πk(x) is avoided by v. Indeed, an
instance of this pattern will always contain a square. In the case when π is a
cycle of Σ3 we can only obtain words which have the form xf(x)xf(x) for some
morphic permutation f of Σ3, while for π an involution the words we obtain
definitely contain an instance of either xx or π(x)π(x). So, in all cases, the
instances of xπi(x)π3(x)πk(x) contain squares. By a similar argument, every
pattern xπi(x)πj(x)π3(x) or xπ3(x)πj(x)πk(x) is avoided by v, as each instance
of such a pattern contains a square. �	
Lemma 5. For each pattern P = xπi(x)πj(x)πk(x) , where i, j, k are non-
negative integers, there exists an infinite ternary word wP that does not contain
any instance of this pattern with π an antimorphic permutation of Σ3.

Proof. Just like in the previous proof, for each antimorphic permutation π of Σ3,
we have that π6 is the identical morphism on Σ∗

3 . Consequently, we can replace
the exponents i, j, k by their values modulo 6.

Using Lemma 2, we get that the patterns xπi(x)πj(x)πk(x) with one of i, j, k
equal to 0 and π replaced by a antimorphic permutation are avoidable, either by
v (when i = 0), either by va (when j = 0), or by u (when k = 0). The patterns
xπi(x)πj(x)πk(x) with i = k are avoided by va, while those with i = j or j = k
contain squares, so are avoided by v.

So, just like before, we only have to consider in the following the case when
each two of 0, i, j, k are distinct and each is at most 5. And, again, if we have

Unary Patterns with Permutations 199

that {i(mod 3), j(mod 3), k(mod 3)} = {1, 2}, we get that when replacing π with
a cycle of Σ3 the instance of P = xπi(x)πj(x)πk(x) will contain all the three
letters 0, 1, and 2. So, by Lemma 3, it follows that u′P avoids P.

Hence, the only case left to consider is when {i(mod 3), j(mod 3), k(mod 3)} is
either {0, 1} or {0, 2}. The simple case is again when i, j, k are all equal modulo 3,
as it follows that at least two of them are actually equal, which is a contradiction
to our assumption that each two of the exponents are different. So, one of i, j,
and k should be 3. A more detailed analysis is needed now.

Let us first look at patterns xπ3(x)πj(x)πk(x). Obviously, j and k
are not of the same parity; actually, the pair (j, k) is one of the pairs
(1, 4), (4, 1), (2, 5), (5, 2). Generally, when substituting π with a cycle of Σ3,
the pattern xπ3(x)πj(x)πk(x) equals xxRπj(x)πk(x). But the instances of
xxRπj(x)πk(x) always contain a square: the last letter of x equals the first,
where i, j, k are non-negative integers, letter of xR. When substituting π with
an involution of Σ3, the pattern xπ3(x)πj(x)πk(x) either equals xπ(x)xπ(x)
if j is even and k is odd, or xπ(x)π(x)x if j is odd and k is even. Also in
these cases the instances of the pattern contain squares. So, every instance
of the pattern xπ3(x)πj(x)πk(x) contains a square. This means that v avoids
xπ3(x)πj(x)πk(x).

Next we consider the patterns xπi(x)πj(x)π3(x). Like before, i and j do not
have the same parity as (i, j) must be one of the pairs (1, 4), (4, 1), (2, 5), (5, 2).
Let us assume that i is even and j is odd. If π is a cycle, we have that a factor
of the form xπi(x)πj(x)π3(x) has the form xf(x)f(xR)xR for some morphic
permutation f , which contains the square formed by the last letter of f(x)
and the first letter of f(xR). If π is an involution then each factor of the form
xπi(x)πj(x)π3(x) starts with xx. Therefore, v avoids xπi(x)πj(x)π3(x) with i
even and j odd. Further, we assume that i is odd and j is even. If π is a cycle, we
have that a factor of the form xπi(x)πj(x)π3(x) has the form xf(xR)f(x)xR for
some morphic permutation f , which contains the square formed by the last letter
of f(xR) and the first letter of f(x). If π is an involution then each factor of the
form xπi(x)πj(x)π3(x) is, in fact, xπ(x)xπ(x). So, v avoids xπi(x)πj(x)π3(x)
also for i odd and j even.

Finally, we consider the patterns xπi(x)π3(x)πk(x). Let us assume first that i
is odd; consequently, k is even (the pair (i, k) is either (1, 4) or (2, 5)). By The-
orem 1, the word u contains no instances of xπi(x)π3(x)πk(x) with |x| ≥ 2. We
show that u does not contain instances of this pattern with |x| = 1. Assume
that x = a ∈ Σ3. If π is a cycle then the factors xπi(x)π3(x)πk(x) are, in fact,
abab with b ∈ Σ3 such that πi(x) = b. If π is an involution then the factors
xπi(x)π3(x)πk(x) are abba with b ∈ Σ3 such that π(x) = b. By the structure of
u (which has the form (0+1+2+)ω), we get that it cannot contain such factors.
So u avoids such patterns.

We now consider the case when i is even and k is odd. Let us write the
Thue-Morse word as t =

∏∞
i=0 ti with ti ∈ {0, 1}. Consider the word t′ ∈ {0, 1}ω

(also used in [1]) given by t′ =
∏∞

i=0 01ti+2.

200 J. Currie et al.

We show now that t′ avoids xπi(x)π3(x)πk(x) with i even and k odd. If π is
a cycle then xπi(x)π3(x)πk(x) equals xf(x)xRf(xR) for some morphic permuta-
tion f (which is also a cycle). If x starts with 0, then f(x) starts with 1, xR ends
with 0, and f(xR) ends with 1. But 0101 is not a factor t′ (there are always at
least 2 symbols 1 in a block). Thus, if t′ contains an instance of xf(x)xRf(xR)
with x starting with 0, then |x| ≥ 2. Now, 0 is always followed by an 1, so x
should start with 01. This means that f(x) starts with 10, xR ends with 10, and
f(xR) ends with 01. Clearly, 01100110 is not a factor of t′ (as this infinite word
does not contain consecutive 0 letters), so if t′ contains an instance of our pat-
tern, then |x| ≥ 3. Now, as f(xR) ends with 01 and there are no two consecutive
0’s in t′ we get that f(xR) should end with 101. This means that x should start
with 010, a contradiction, as 1 letters always occur in blocks of length at least 2.
In conclusion t′ contains no instance of xπi(x)π3(x)πk(x) with x starting with
0 and π an antimorphic cycle; analogously, one can show that t′ contains no
instance of xπi(x)π3(x)πk(x) with x starting with 1 and π an antimorphic cycle.
Moreover, by a very similar analysis one can show that t′ does not contain any
instance of xπi(x)π3(x)πk(x) with π an antimorphic involution. We have, thus,
shown that t′ avoids the pattern xπi(x)π3(x)πk(x) with i even and k odd.

This concludes the proof of this lemma. �	
By Lemmas 4 and 5 we obtain the following theorem.

Theorem 3. All patterns xπi(x)πj(x)πk(x), where i, j, k are non-negative inte-
gers, and π is substituted by an anti-/morphic permutation, are avoidable over
Σ3.

We conclude this section with the following result, which follows from the
previous theorem by the arguments already presented in the end of Section 2.

Theorem 4. All patterns πi1(x)πi2(x) . . . πir (x) with r ≥ 4, the ij non-negative
integers, and π an anti-/morphic permutation, are avoidable over Σ3.

5 Eventually Unavoidable Patterns

Let n be a positive integer, and let ij be non-negative integers, 0 ≤ j ≤ n − 1.
Consider the unary pattern of length n given by

P = πi1(x)πi2(x) · · · πin−1(x)πin(x).

We say that P is eventually unavoidable if there exists an integer N such that,
whenever Σ is an alphabet with |Σ| ≥ N , and w ∈ Σn, there is a permutation
π of Σ and a letter a ∈ Σ, such that

w = πi1(a)πi2(a) · · · πin−1(a)πin(a).

Theorem 5. Let n be a non-negative integer. There is an eventually unavoidable
pattern of length n.

Unary Patterns with Permutations 201

Proof. Consider all partitions of {1, 2, . . . , n} into non-empty subsets; there are
Bn of these, where Bn is the nth Bell number. Let the rth such partition be

Pr = 〈A1,r, A2,r, . . . , Ajr,r〉,
where {1, 2, . . . , n} = A1,r∪̇A2,r∪̇ · · · ∪̇Ajr,r. We may assume that the sets A�,r

of the partition are ordered in increasing order of their least element.
For 1 ≤ k ≤ n, 1 ≤ r ≤ Bn, let qk,r be the integer such that k ∈ Aqk,r+1,r.

In other words, k is in the (qk,r + 1)st piece of the rth partition. Let pm denote
the mth prime number.

For 1 ≤ k ≤ n, consider the system of congruences

ik ≡ qk,r(mod pr), 1 ≤ r ≤ Bn.

By the Chinese Remainder Theorem, choose ik satisfying these congruences.
(We remark in passing that i0 = 0 is always possible, since 1 is always in the
first piece of each partition, by our notational choice.) Let

P = πi1(x)πi2(x) · · · πin−1(x)πin(x).

Let N = pBn
. Suppose |Σ| ≥ N , and w ∈ Σn.

Suppose w contains exactly m distinct letters; say w ∈ Tn, where |T | = m.
Let f : T → {1, 2, . . . ,m} be given by f(x) = � if x first occurs in the length �
prefix of w. Thus, for example, the first letter of f(w) is always 1. We will show
that there is a permutation π ∈ SN , such that

f(w) = πi1(1)πi2(1) · · · πin−1(1)πin(1).

The desired result follows, replacing π by f−1πf .
To find permutation π, let P = 〈A1, A2, . . . Am〉, where � ∈ Aj if and only if

the �th letter of f(w) is j. For some r, P = Pr. Since m, pr ≤ pBn
= N , SN will

contain a pr-cycle, π such that π = (1, 2, . . . ,m, . . .). Here the elements other
than the first m can be arbitrary distinct elements of {m + 1,m + 2, . . . , N}.

Now πj(1) = j + 1, j = 0, 1, . . . ,m − 1. Since π is a pr-cycle, if ik ≡
qk,r(modulo pr), then πik(1) = πqk,r (1) = qk,r + 1.

The kth letter of πi1(1)πi2(1) · · · πin−1(1)πin(1) is πik(1), which is qk,r + 1.
However, by definition of the qk,r, this means that k is in the (qk,r +1)st piece of
P . By the definition of P , the kth letter of f(w) is qk,r +1. Since k was arbitrary,
we conclude that πi1(1)πi2(1) · · · πin−1(1)πin(1) = f(w), as claimed. �	
Example 1. Let n = 3. The partitions of {1, 2, 3} are

P1 = 〈{1, 2, 3}〉, P2 = 〈{1}, {2, 3}〉, P3 = 〈{1, 2}, {3}〉,
P4 = 〈{1, 3}, {2}〉, P5 = 〈{1}, {2}, {3}〉.

This gives

q1,1 = 0, q2,1 = 0, q3,1 = 0, q1,2 = 0, q2,2 = 1, q3,2 = 1,

q1,3 = 0, q2,3 = 0, q3,3 = 1, q1,4 = 0, q2,4 = 1, q3,4 = 0,

q1,5 = 0, q2,5 = 1, q3,5 = 2.

202 J. Currie et al.

As mentioned, we can always choose i1 = 0. For i2, we get these congruences:

i2 ≡ 0 (mod 2), i2 ≡ 1 (mod 3), i2 ≡ 0 (mod 5),
i2 ≡ 1 (mod 7), i2 ≡ 1 (mod 11).

and i2 = 2080 is the smallest integer solution.
For i3, we get these congruences:

i3 ≡ 0 (mod 2), i3 ≡ 1 (mod 3), i3 ≡ 1 (mod 5),
i3 ≡ 0 (mod 7), i3 ≡ 2 (mod 11).

and i3 = 1036 is the smallest integer solution.
We conclude that xπ2080(x)π1036(x) is eventually unavoidable. As soon as

|Σ| ≥ 11, any length 3 word encounters this pattern. For example, to see that
w = aba encounters the pattern, we look at f(w) = 121, and the partition
P = 〈{1, 3}, {2}〉 = P4. We thus let π be a 7-cycle π = (1, 2, . . .). Now

π2080(1)=π2080(mod 7)(1)=π(1)=2, while π1036(1)=π1036(mod 7)(1)=π0(1)=1,

so that π0(1)π2080(1)π1036(1) = 121 ∼ aba. �	
By Theorem 5 the following result is immediate.

Theorem 6. Let n be a non-negative integer. There exists a pattern P of length
n and an integer N such that for all alphabets Σ with |Σ| ≥ N , the pattern P
is unavoidable over Σ.

This last theorem highlights the main open problem of this work. Each pat-
tern under anti-/morphic permutations is avoidable in Σ3, but some patterns
become unavoidable for larger alphabets. Is there a way to determine exactly,
for a given pattern P which are the alphabets Σk in which it is avoidable? Note
that such a result was obtained in [6] for cubic patterns.

References

1. Bischoff, B., Currie, J., Nowotka, D.: Unary patterns with involution. Int. J. Found.
Comput. Sci. 23(8), 1641–1652 (2012)

2. Chiniforooshan, E., Kari, L., Xu, Z.: Pseudopower avoidance. Fundam. Inform.
114(1), 55–72 (2012)

3. Currie, J.: Pattern avoidance: themes and variations. Theoret. Comput. Sci. 339(1),
7–18 (2005)

4. Hall, M.: Lectures on Modern Mathematics, vol. 2, chap. Generators and relations
in groups - The Burnside problem, pp. 42–92. Wiley, New York (1964)

5. Lothaire, M.: Combinatorics on Words. Cambridge University Press (1997)
6. Manea, F., Müller, M., Nowotka, D.: The avoidability of cubes under permuta-

tions. In: Yen, H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 416–427.
Springer, Heidelberg (2012)

7. Thue, A.: Über unendliche Zeichenreihen. Norske Vid. Skrifter I. Mat.-Nat. Kl.,
Christiania 7, 1–22 (1906)

8. Thue, A.: Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske
Vid. Skrifter I. Mat.-Nat. Kl., Christiania 1, 1–67 (1912)

Finite Automata Over Infinite Alphabets:
Two Models with Transitions for Local Change

Christopher Czyba, Christopher Spinrath(B), and Wolfgang Thomas

RWTH Aachen University, Aachen, Germany
{christopher.czyba,christopher.spinrath}@rwth-aachen.de,

thomas@informatik.rwth-aachen.de

Abstract. Two models of automata over infinite alphabets are pre-
sented, mainly with a focus on the alphabet N. In the first model, tran-
sitions can refer to logic formulas that connect properties of successive
letters. In the second, the letters are considered as columns of a labeled
grid which an automaton traverses column by column. Thus, both mod-
els focus on the comparison of successive letters, i.e. “local changes”. We
prove closure (and non-closure) properties, show the decidability of the
respective non-emptiness problems, prove limits on decidability results
for extended models, and discuss open issues in the development of a
generalized theory.

1 Introduction

Automata over infinite alphabets have been studied since the 1990’s, starting
with the work of Kaminski and Francez [8] on “register automata”. Further
motivation was added by application areas, e.g. in verification or data base the-
ory. The latter led to the theory of “data words” and “data automata” [4].
Another approach was pursued by Bès [1]. In view of algorithmic applications, a
common interest in these theories is to devise models (in automata theory or in
logic) where satisfiability problems are decidable, in particular the non-emptiness
problem for automata over infinite alphabets.

A fundamental question in this context is the mechanism by which “memory
of past inputs” is realized (over an infinite alphabet of possible inputs). The
models mentioned above differ in the way this memory is implemented. The
technical details in the definitions are not always simple; for example, the access
to the memory of register automata is subject to some constraints which are
subtle and to some extent artificial. The subject as a whole seems far from
finished.

The purpose of this paper is to present two models of automata where the
non-emptiness problem is decidable. Both models follow the intuition that the
relation between successive letters is relevant and has to be controlled by automa-
ton transitions. The results given in this paper are initial; we comment at the
end of the paper on further research questions that are motivated by the present
work.

c© Springer International Publishing Switzerland 2015
I. Potapov (Ed.): DLT 2015, LNCS 9168, pp. 203–214, 2015.
DOI: 10.1007/978-3-319-21500-6 16

204 C. Czyba et al.

The first approach is an extension of the model introduced by A. Bès in [1].
In that paper, the alphabet letters are elements of a relational structure M over
an infinite domain M , and a logic L allows to express conditions on alphabet
letters by formulas ϕ(y). The transition relation of the automaton is specified
by such formulas ϕpq(y) where p, q are from the finite set Q of states. The
automaton can proceed from state p via letter a ∈ M to state q if M |= ϕpq[a],
i.e. a satisfies ϕpq(y) in M. A central weakness of this model is the inability to
connect successive letters, for example to check the property that two identical
successive letters exist (which gives the language

⋃
a∈M M∗aaM∗).

Continuing work of Spelten [12], we study an extension of this model where
this defect is repaired to some extent, due to a description of the relation between
successive letters: We use now formulas ϕpq(x, y) which allow to move from state
p to state q via letter y if state p was reached via x (of course, for the initial
transition of a run one uses a transition formula ϕq0q(y)). We call them “two-
letter transitions”. Since successive letters are subject to conditions expressed in
the considered logic L, we speak of “local change”. In the paradigmatic case of
the alphabet N of the natural numbers, one may express, for example, that in
the step from one letter to the next the value can increase or decrease by 1 (or
by at most by some constant k). But a transition could also specify that odd
and even numbers have to alternate.

The main contribution of the first part of the paper is a proof showing that the
resulting automata have a decidable non-emptiness problem (thereby repairing
an unclear point in [12]), provided that the MSO-theory of the alphabet structure
M is decidable. It is also shown that the result fails for two natural extensions
of the model, namely for the case that alphabet letters are elements of M2, i.e.
pairs of M -elements, and for the case that three successive letters are related in
automaton transitions (by formulas ϕ(x, y, z)).

The second approach is presented here for the case of the alphabet N rather
than an arbitrary structure, in order to allow for a concise presentation (see the
final section for a more general framework). A word n1n2 . . . n� is represented
by a {1,⊥}-labeled grid: we imagine a sequence of grid columns where the i-
th column represents number ni; this column starts from below with ni nodes

...
...

...
...

...
...

...
...

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
1 ⊥ ⊥ 1 ⊥ 1 ⊥ 1

1 ⊥ ⊥ 1 1 1 ⊥ 1

1 1 ⊥ 1 1 1 ⊥ 1

1 1 ⊥ 1 1 1 1 1

#
1 ≤ j ≤ 8

i ∈ N

Fig. 1. Grid representing the word 4 2 0 4 3 4 1 4 ∈ N
∗

Finite Automata Over Infinite Alphabets 205

colored 1, followed by nodes colored ⊥. For technical reasons we add a #-labeled
boundary at the bottom. For instance, Figure 1 shows the grid for the word
4 2 0 4 3 4 1 4. This grid is traversed by a finite automaton in a three-way
mode (hence a special type of the grid-walking automata of Blum, Hewitt and
Rosenfeld [2],[10]). Each column can be traversed in a two-way mode up and
down (which means that an input letter is analyzed), and after a move to the
right via a horizontal edge no return to a previous column is allowed. The move
to the right enables the automaton to check, in the example of the alphabet
N as in the Figure, whether the move to a next letter gives the same value as
before, respectively a larger or smaller value. Thus, again a natural test on “local
change” is possible. But also non-local properties of words can be checked, for
example (in the non-deterministic version) the existence of two equal letters from
N in the input word.

In the second part of the paper we study this model regarding closure proper-
ties, show that the non-emptiness problem is decidable but that the universality
problem is undecidable. The decidability of the emptiness problem resolves a
question of [7], where a weaker model is studied, processing finite grids labeled
with a single letter alphabet.

The paper is structured as follows. The subsequent section is devoted to
automata with two-letter transitions. In order to have a shorter name for
them, we call them “strong automata”, following [12]. After this, we present
the mentioned three-way automata, called “progressive grid automata”. In the
final section we relate these automata, discuss connections to known models of
automata on infinite alphabets, and address a number of open issues.

Throughout we assume that the reader is acquainted with the basics of
automata and logic, in particular first-order logic FO and monadic second-order
logic MSO; see e.g. [14]. Due to lack of space, proofs are outlined; more details
can be found in [5].

2 Automata with Two-Letter Transitions

2.1 Definitions

We allow elements of an arbitrary structure M as alphabet letters. Central
examples are (N,+1) and (N,+, 0). If M is a structure with domain M and L a
logic1 (used with the appropriate signature), we call (M,L) an “alphabet frame”.
We only use logics in which the Boolean connectives are available and where
first-order variables x, y, . . . can be employed to express properties of (tuples of)
M -elements by formulas ϕ(x), ϕ(x, y), etc. We denote the set of formulas with
k free first-order variables by Ψk (note that nevertheless such a formula may
contain quantified second-order variables).

Let (M,L) be an alphabet frame where M is the domain of M. A strong
automaton over (M,L) has the form A = (Q,M, q0,Δ, F) where Q is a finite
set of states, the input alphabet is M (the domain of M), q0 ∈ Q is the initial

1 The term “logic” is used here as in abstract model theory, see [6] Chapter 13.1.

206 C. Czyba et al.

state, Δ ⊆ Q × (Ψ1 ∪ Ψ2) × Q is the finite transition relation, and lastly F ⊆ Q
is the set of accepting states.

A transition for the initial state has the form (q0, ϕ(y), q), other transitions
have the form (p, ϕ(x, y), q). A run ρ of A on the word w = a1...am ∈ M∗ is a
finite sequence ρ = ρ(0)...ρ(m) where

1. ρ(0) = q0,
2. ρ(1) = q with (q0, ϕ(x), q) ∈ Δ such that M |= ϕ[a1],
3. ρ(i) = q where for p = ρ(i−1), (p, ϕ(x, y), q) ∈ Δ such that M |= ϕ[ai−1, ai]

for 1 < i ≤ m.

Note that several transitions from p to q may be condensed into one, by taking
the disjunction of the respective transition formulas. Then one can indicate a
transition just by writing ϕpq(x, y) as done in the Introduction.

A run ρ of A on the word w is successful if ρ(m) ∈ F . We say A accepts
w if there is a successful run of A on w. Furthermore, L(A) := {w ∈ M∗ |
A accepts w}.

Call a strong automaton deterministic if Δ is functional, i.e. for all p ∈ Q and
all a, b ∈ M there is exactly one state q reachable by a corresponding transition.

q1start q2
x = 0

x+ 1 = y

Fig. 2. Strong automaton recognizing {01 · · ·n | n ∈ N}

A very simple example language recognized by a strong automaton is L =
{01 · · · n | n ∈ N} (for the alphabet frame ((N,+1), FO)), as depicted by the
automaton in Figure 2.

The next two subsections lift results of Bès [1] from automata with single-
letter transitions to strong automata (with two-letter transitions).

2.2 Boolean Closure Properties

The languages (over a given alphabet frame) that are recognized by strong
automata form a Boolean algebra. The key for this claim is the following lemma
on determinization, proved in analogy to [1].

Lemma 1. Given a strong automaton A, one can construct a deterministic
strong automaton A′ such that L(A) = L(A′).

Proof. The idea is to take all the (finitely many) formulas ϕi(x, y) (i = 1, . . . , m)
that occur in a given automaton A = (Q,M, q1,Δ, F) over the alphabet frame
(M,L), and to form the Boolean min-terms of the relations R1, . . . , Rm defined

Finite Automata Over Infinite Alphabets 207

by the ϕi. Each of these min-terms is defined by a conjunction of formulas ϕi

and their negations, and each ϕi is equivalent to a disjunction of these min-
terms. The transitions of the given automaton can now be partitioned into sets
of transitions labeled by disjoint properties of letter pairs, each of them given by
a min-term formula (for the initial transitions with formulas ϕ(x) one proceeds
analogously). Now the standard subset construction is applied to the automaton
with these new transitions; whence a deterministic strong automaton as desired
is obtained. Moreover, this construction shows that A′ can be obtained such that
its size is at most exponential in the size of A.

For deterministic strong automata, complementation is shown by exchanging
final with non-final states. Closure of strong automata under union is trivial by
taking the union of given automata and a new initial state. Thus, we obtain the
claim:

Proposition 1. The languages recognized by strong automata (over a given
alphabet frame) form an effective Boolean algebra (where the Boolean operations
are realized by effective constructions of strong automata).

2.3 The Non-Emptiness Problem

Theorem 1. If the MSO-theory of M is decidable, then the non-emptiness prob-
lem for strong automata over the alphabet frame (M, MSO) is decidable.

Proof. The main point in this result is to exploit MSO-logic for expressing a
reachability condition. Given a strong automaton, say A = ({0, . . . , n},M, 0,
Δ, F) over the alphabet frame (M, MSO), we have to express that a successful
run of A exists. Then the existence of a successful run is captured by a path
through the domain M × {0, . . . , n},

1. starting with an arbitrary element (m, 0) succeeded by an element (m′, j′)
such that the triple (0,m′, j′) is an admissible initial transition,

2. continuing with steps from a pair (m, j) to (m′, j′) if (m, j,m′, j′) is an
admissible transition,

3. ending with a pair (m, j) with j ∈ F .

This existence claim can be expressed in MSO-logic over M × {0, . . . , n} by
saying

each set X containing the pairs satisfying condition 1, and closed under
the steps according to condition 2, contains an element according to
condition 3.

It is easy to express all three parts of this statement in MSO, using the fact that
the transition formulas of A are MSO-formulae themselves.

Finally, one employs the assumption that the MSO-theory of M is decidable.
It is well known that this implies that also the MSO-theory of M×{0, . . . , n} is
decidable (see e.g. [3], Prop. 3.12). Alternatively, one can show the claim directly
by working over the domain M and using a tuple of universal set quantifiers over
variables X0, . . . , Xn, rather than using “∀X” over M × {0, . . . , n}.

208 C. Czyba et al.

Due to the effective closure of the class of languages recognized by strong
automata over an alphabet frame (M,MSO) under Boolean operations, we
conclude the following:

Corollary 1. Over an alphabet frame (M,MSO) where the MSO-theory of M
is decidable, the inclusion problem, the equivalence problem, and the universality
problem for strong automata are decidable.

2.4 Extensions and Undecidability Results

There are two natural extensions of the model of strong automaton: First we can
proceed from input letters of M to input letters of M2 when M is the domain of
an alphabet structure, and secondly we can introduce transitions that connect
more than two successive input letters. In both cases, the transition formulae
have more free variables. We show that both extensions cause the non-emptiness
problem to be undecidable, even for the basic alphabet frame ((N,+1), FO).

In these results we use – without going into all details – the obvious extension
of the framework of strong automata to “two-dimensional” input letters. The
transition formulas can now be written as ϕpq(x1, x2, y1, y2), connecting two
successive input letters (x1, x2), (y1, y2) from M ×M , where M is the alphabet.

Theorem 2. The non-emptiness problem for strong automata over N
2 is unde-

cidable when the alphabet frame is ((N,+1), FO).

We use the well-known result that for 2-register machines the reachability
problem is undecidable (cf. [9]). The two registers are x1, x2, and the operations
are INCj (increase the value of xj by one), DECj , IF xj = 0 GOTO m, and GOTO m
with their usual semantics. The last instruction is always the HALT instruction.
A configuration of such a machine R (with k instructions) is a tuple (i, r1, r2) ∈
{1, . . . , k}×N

2 where i is the number of an instruction and rj is the value stored
in xj . The reachability problem for 2-register machines with k instructions asks
if a configuration (k, r1, r2) is reachable from (1, 0, 0).

Proof. Let k be the number of instructions of the given 2-register machine R.
One constructs a strong automaton AR = (Q,N2, q0,Δ, {qk}) whose language
is non-empty iff R terminates from configuration (1, 0, 0). Indeed, it is easy to
build AR such that for a sequence of register contents (0, 0)(m2, n2) · · · (mr, nr)
of a halting computation this word of (N2)∗ is the only word accepted by AR,
while the lack of such a halting computation causes L(AR) to be empty.

Let us turn to strong automata with higher “history extension”, taking the
view that the strong automata defined above have a “1-history” (they are allowed
to look back one letter). Now we use transitions of the form (p, ϕ(x0, x1, x2), q),
allowing to move from p to q via m2 if the previous two letters were m0,m1, in
this order, and M |= ϕ[m0,m1,m2]. We call these automata “strong automata
with 2-history”.

Finite Automata Over Infinite Alphabets 209

Theorem 3. The non-emptiness problem for a strong automaton with 2-history
is undecidable over the alphabet frame ((N,+1), FO).

Proof. From a 2-register machine R we construct a strong automaton AR with
2-history such that R has a terminating computation from (1, 0, 0) iff L(AR) �= ∅.
In order to simulate a computation of R, the strong automaton will in the even
steps take care of simulation for the first register while in the odd steps will do
the simulation for the second register. Since it is possible to look back 2 letters,
an update of the two register contents can be done in two successive steps.

3 Three-Way-Grid Traversal Automata

3.1 Definitions

In this section, we consider automata that accept words whose letters are again
words (over some finite alphabet Σ). We may write a sequence w1w2 . . . wn of
words wi as a sequence of entries in a grid structure, where each wi is noted
in a column, starting from the bottom line of the grid upwards and using the
symbol ⊥ after the last letter of wi is written. In special cases, we use words wi

as unary representations of natural numbers; here each wi is a word on Σ = {1}
(cf. Figure 1).

Let Σ be a finite alphabet and n ∈ N. Formally, a grid word of length n is
given by a function that maps grid positions to letters, i.e. w : N× {1, . . . , n} →
Σ ∪̇{#,⊥} such that for all j ∈ {1, . . . , n} :

1. w(i, j) = # ⇔ i = 0,
2. w(i, j) ∈ Σ ⇒ w(k, j) ∈ Σ for all 1 ≤ k ≤ i,
3. w(i, j) = ⊥ for some i > 0

With G(Σ) := {w : N × {1, . . . , n} → Σ ∪̇{#,⊥} | n ∈ N, w is a grid word}
we denote the set of all grid words on alphabet Σ. Given a subset L ⊆ G(Σ) the
complement of L is defined as L = G(Σ) \ L. Finally, as mentioned above, note
that (G({1}), ·) is isomorphic to (N∗, ·) where “·” is the usual word concatenation
in both cases. For instance, the word 2 1 ∈ N

∗ corresponds to the grid word which
has two 1’s in the first column and a single 1 in the second column.

A progressive grid automaton is a tuple A = (Q,Σ, q0,Δ, F) where Q is a
finite set of states, Σ is the finite grid label alphabet, q0 is the initial state,
Δ ⊆ Q × Σ ∪̇{#,⊥} × Q × {↑, ↓,→} is the transition relation (with Δ ∩ Q ×
{#} × Q × {↓} = ∅), and F ⊆ Q is the set of accepting states.

We call A a deterministic progressive grid automaton if Δ is functional.
A configuration of A is an element in Q × N × N, consisting of the “current”
state of A and its position in a grid word.

Let w ∈ G(Σ). Then a run of A on w is a finite sequence π = c0 . . . cm of
configurations that satisfies the following conditions (which define the three-way
movement through the grid):

210 C. Czyba et al.

1. c0 = (q0, 1, 1),
2. for all 0 ≤ i < m it holds that if ci = (qi, hi, �i) then

– ci+1 = (qi+1, hi, �i + 1) and (qi, w(hi, �i), qi+1,→) ∈ Δ, or
– ci+1 = (qi+1, hi + 1, �i) and (qi, w(hi, �i), qi+1, ↑) ∈ Δ, or
– ci+1 = (qi+1, hi − 1, �i) and (qi, w(hi, �i), qi+1, ↓) ∈ Δ,

3. for all 0 ≤ i < m : ci ∈ Q × N × {0, . . . , |w|},
4. and cm = (qm, hm, |w| + 1) for some qm ∈ Q and hm ∈ N.

If cm ∈ F × N × N then π is called an accepting run. A language L ⊆ G(Σ)
is called grid recognizable, if L is recognized by a progressive grid automaton
A. We will mainly consider words and languages over N, where the automaton
operates on the corresponding grid words in G({1}).

q0 q1 q2 q3
⊥/ ↓

1/ ↑ 1/ →,⊥/ →,#/ →

1/ ↑,#/ ↑ ⊥/ →

⊥/ →

Fig. 3. A progressive grid automaton recognizing L := {n0 . . . np ∈ N
∗ | n0 = np}

Example 1. The progressive grid automaton pictured in Figure 3 recognizes the
language L := {n0 . . . np ∈ N

∗ | n0 = np}. It operates as follows on a grid word
in G({1}). In the beginning, the automaton moves to the “highest” 1 in the first
column (or # if there is none). Afterwards the internal state is q1. Then it moves
non-deterministically to the last column and verifies that it equals the first one.
Indeed, if this is the case, then the current position is labeled 1 (or #) and the
position above is labeled with ⊥. Otherwise, the last letter would be smaller or
greater, respectively. This property is checked in states q2 and q3.

3.2 Closure Properties

Proposition 2. The class of deterministically grid recognizable languages is
effectively closed under complement.

This result can be proven similarly to the complementation proof given in [7].
The basic idea is the introduction of several finite counters to check whether the
automaton halts (i.e. moves to the right infinitely often).

Theorem 4. Neither the class of non-deterministically grid recognizable nor the
class of deterministically grid recognizable languages is closed under intersection
(even over G({1})).

Finite Automata Over Infinite Alphabets 211

Intuitively, theorem 4 can be justified as follows: A progressive grid automaton
(deterministic or not) can only remember one letter (i.e. column) at a time it
has seen before. This can be done by using the vertical position of the automa-
ton upon a move to the right. Moreover, while remembering some letter the
movement of the automaton is restricted.

Proof. We consider the following two languages:

L1 := {n0 . . . nk | k ∈ N,∀i ∈ {2j | 0 ≤ j ≤ �k

2
�} : ni = 0}

L2 := {n0 . . . nk | k ∈ N,∀i0, i1 ∈ {2j + 1 | 0 ≤ j ≤ �k

2
�} : ni0 = ni1}

Both are clearly deterministically grid recognizable. It suffices to show that L :=
L1 ∩L2 is not grid recognizable. Let L′ := {(0m)n | n,m ∈ N, n > 0} ⊆ L. Using
a pumping argument it can be shown that every progressive grid automaton
recognizing a superset of L′ accepts a word not in L. Informally, for sufficient
large m,n the automaton has to forget the value of m to check that every second
column is labeled only with ⊥.

Corollary 2. 1. The class of grid recognizable languages is not closed under
complement.

2. The class of deterministically grid recognizable languages is not closed under
union.

3. The class of deterministically grid recognizable languages is strictly included
in the class of (non-deterministically) grid recognizable languages.

Proof. For claim 1, observe that the class of grid recognizable languages is nat-
urally closed under union (using non-determinism). Suppose it is closed under
complement. Then closure under intersection follows immediately. However, this
contradicts Theorem 4. Claim 2 follows immediately from Theorem 4. Thus, we
also obtain claim 3.

3.3 Decidability of the Non-emptiness Problem

Theorem 5. The non-emptiness problem for progressive grid automata is decid-
able.

To prove this result, we will use the MSO-theory of (N,+1) (known to be
decidable). We describe a run of a progressive grid automaton A on some grid
word w in MSO. W.l.o.g. we can assume A = ({1, . . . , n}, Σ,Δ, 1, F) for some
n ∈ N. At first, a single column of a grid word can be described in MSO-logic
with the help of second order variables. The existence of an accepting run is
certified by a sequence over {1, . . . , n} × N that

212 C. Czyba et al.

1. starts with (1, 1),
2. contains (p, k)(q, �) if and only if there is a well-labeled column (i.e. the

labeling is in #1∗⊥ω) and a tuple (p′, �), such that there is an applicable
transition (p′, a, q,→) and (p′, �) is reachable from (p, k) in the considered
column,

3. and ends with a pair in F × N.

Note that the third component of a configuration, which is the index of the
column, is dropped here. The reachability within a single fixed column used
in the second condition, i.e. if there is a path from a configuration (p, k, i) to
(p′, �, i), can be described by the following least fixed point:

– (p, k) is in the fixed point, and
– if (q,m) is in the fixed point, the m-th row is labeled a, and (q, a, q′, ↑) or

(q, a, q′, ↓) is a transition, then (q′,m + 1) resp. (q′,m − 1) is in the fixed
point.

Then (p′, �, i) is reachable iff (p′, �) is in the fixed point. This fixed point can be
expressed in MSO using universal set quantification as in Theorem 1. Finally,
the conditions 1 to 3 can be formalized in MSO analogously.

3.4 The Non-universality Problem

Since the non-emptiness problem is decidable and deterministic progressive grid
automata are closed under complement, we can immediately conclude that the
non-universality problem is decidable. We show that the situation changes for
progressive grid automata in general.

Theorem 6. The non-universality problem for non-deterministic progressive
grid automata is undecidable.

Proof. We fix Σ = {1} and consider a 2-register machine R. A computation of
R can be encoded in a grid word u. For the i-th computation step the unary
encodings of the first and second register correspond to the (2i−1)-th and 2i-th
column of u, respectively. The claim follows by constructing a progressive grid
automaton B with

L(B) := G({1}) \ {uv | u encodes a terminating computation of R}.

That is, L(B) = G({1}) iff there is no terminating computation of M. To achieve
this property, B needs to accept all grid words that do not have a prefix encoding
a valid computation of R starting in (1, 0, 0). The idea is that B remembers the
current instruction in the state space and guesses if the encoding is wrong at
some point.

Finite Automata Over Infinite Alphabets 213

4 Discussion, Related Work, Perspectives

4.1 Comparison Between the Two Models

The language classes given by strong automata and progressive grid automata
cannot be compared directly since the underlying alphabet structures differ
(alphabet frames involving a logic vs. input letters as sequences (“columns”)).
On the other hand, we can provide a comparison for the fixed alphabet frame
((N,+1),MSO) on one side and the alphabet N on the other: Each language
L ⊆ N

∗ recognized by a strong automaton over ((N,+1), MSO) is non-determi-
nistically grid recognizable.2 The converse fails in general (e.g., using the lan-
guage L presented in Example 1).

4.2 Comparison with Other Models

Let us compare our models with the register automata introduced by Kaminski
and Francez [8] which recognize the “quasi-regular” languages over N. The lan-
guage of words 0123 . . . � is not quasi-regular, but recognizable both by strong
automata and progressive grid automata. On the other hand, the language
L = {(0m)n | m,n ∈ N, n > 0} is quasi-regular, but neither recognizable
by a strong automaton nor by a progressive grid automaton. Also, the “data
automata” of [4] only refer to the equality (and non-equality) of input letters
from an abstract data domain and do not incorporate a possibility of comparison
(as with < over N).

4.3 Extension to Infinite Words

It is not difficult to generalize the main results of this paper to the case of infinite
words. There are technical details that require some care (e.g. in the proofs for
the decidability of the emptiness problem and the complementation of Büchi
automata). We do not present these details here, but refer the reader to [5],[11].

4.4 General Framework of Progressive Grid Automata

In this paper, we considered progressive grid automata over the infinite alphabets
Σ∗ and N. It should be mentioned that the model is easily extensible to all
alphabets whose letters are presentable as labellings of a fixed infinite graph
(i.e. with fixed edge relation). In the cases of the alphabets Σ∗ and N, this
graph is the successor structure of the natural numbers (into which elements of
Σ∗ or N were encoded by vertex labellings). Using the same underlying graph,
one can also handle the alphabet Σω. Using the binary infinite tree instead,
different (finite) labellings code different binary terms. The “columns” of the
present paper are then replaced by different labellings of the infinite binary tree,
and a progressive grid automaton would work through such a labeled tree as a

2 A proof may be found in [5].

214 C. Czyba et al.

tree-walking automaton before jumping (on a certain tree node position) to the
next tree. In this way a theory of recognizable languages over the alphabet of
(binary) terms can be developed. Similarly, one can work with any fixed infinite
graph and its possible labellings as the letters of an infinite alphabet.

Pursuing a different direction (which is subject of current work) we can lift
the idea of progressive grid word automata to progressive grid tree automata,
e.g. working on N-labeled trees.

Acknowledgments. We thank the reviewers of DLT 2015 for their remarks which
led to improvements of the presentation.

References

1. Bès, A.: An application of the feferman-vaught theorem to automata and logics for
words over an infinite alphabet. Logical Methods in Computer Science 4(1) (2008)

2. Blum, M., Hewitt, C.: Automata on a 2-dimensional tape. In: IEEE Conference
Record of the Eighth Annual Symposium on Switching and Automata Theory,
SWAT 1967, pp. 155–160. IEEE (1967)

3. Blumensath, A., Colcombet, T., Löding, C.: Logical theories and compatible oper-
ations. In: Flum, J., et al. (eds.) Logic and Automata: History and Perspectives,
pp. 73–106. Amsterdam Univ. Press (2008)

4. Bojańczyk, M., David, C., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable
logic on data words. ACM Transactions on Computational Logic (TOCL) 12(4),
27 (2011)

5. Czyba, C., Spinrath, C., Thomas, W.: Finite Automata Over Infinite
Alphabets: Two Models with Transitions for Local Change (Full Ver-
sion). RWTH Aachen University (2015). https://www.lii.rwth-aachen.de/en/
86-finite-automata-over-infinite-alphabets.html

6. Ebbinghaus, H.-D., Flum, J., Thomas, W.: Mathematical Logic, 2nd edn. Springer
Undergraduate Texts in Mathematics and Technology. Springer (1996)

7. Inoue, K., Takanami, I.: A note on decision problems for three-way two-dimensional
finite automata. Information Processing Letters 10(4), 245–248 (1980)

8. Kaminski, M., Francez, N.: Finite-memory automata. Theoretical Computer Sci-
ence 134(2), 329–363 (1994)

9. Minsky, M.L.: Computation: finite and infinite machines. Prentice-Hall Inc, Upper
Saddle River (1967)

10. Rosenfeld, A.: Picture languages. Academic Press (1979)
11. Spelten, A., Thomas, W., Winter, S.: Trees over infinite structures and path logics

with synchronization. In: Yu, F., Wang, C. (eds.) Proceedings 13th International
Workshop on Verification of Infinite-State Systems, INFINITY 2011, vol. 73, pp.
20–34. EPTCS, Taipei (2011)

12. Spelten, A.: Paths in Infinite Trees: Logics and Automata. PhD thesis, RWTH-
Aachen University (2013)

13. Thomas, W.: On the bounded monadic theory of well-ordered structures. The
Journal of Symbolic Logic 45(02), 334–338 (1980)

14. Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A.
(eds.) Handbook of Formal Languages, pp. 389–455. Springer, Heidelberg (1997)

https://www.lii.rwth-aachen.de/en/86-finite-automata-over-infinite-alphabets.html
https://www.lii.rwth-aachen.de/en/86-finite-automata-over-infinite-alphabets.html

Enumeration Formulæ in Neutral Sets

Francesco Dolce(B) and Dominique Perrin

LIGM, Université Paris Est, Champs-sur-marne, France
ceskino@gmail.com

Abstract. We present several enumeration results holding in sets of
words called neutral and which satisfy restrictive conditions on the set of
possible extensions of nonempty words. These formulae concern return
words and bifix codes. They generalize formulae previously known for
Sturmian sets or more generally for tree sets. We also give a geometric
example of this class of sets, namely the natural coding of some interval
exchange transformations.

Keywords: Neutral sets · Bifix codes · Interval exchanges

1 Introduction

Sets of words of linear complexity play an important role in combinatorics on
words and symbolic dynamics. This family of sets includes Sturmian sets, interval
exchange sets and primitive morphic sets, that is, sets of factors of fixed points
of primitive morphisms.

We study here a family of sets of linear complexity, called neutral sets. They
are defined by a property of a graph E(x) associated to each word x, called its
extension graph and which expresses the possible extensions of x on both sides
by a letter of the alphabet A. A set S is neutral if the Euler characteristic of the
graph of any nonempty word is equal to 1, as for a tree. The Euler characteristic
of the graph E(ε) is called the characteristic of S and is denoted χ(S). These
sets were first considered in [1] and in [5]. The factor complexity of a neutral set
S on k letters is for n �= 1

pn = n(k − χ(S)) + χ(S). (1)

We prove here several results concerning neutral sets. The first one (Theo-
rem 2) is a formula giving the cardinality of a finite S-maximal bifix code X of
S-degree n in a recurrent neutral set S on k letters as

Card(X) = n(k − χ(S)) + χ(S). (2)

The remarkable feature is that, for fixed S, the cardinality of X depends only
on its S-degree. In the particular case where X is the set of all words of S of
length n, we recover Equation (1). Formula (2) generalizes the formula proved
in [2] for Sturmian sets and in [7] for neutral sets of characteristic 1.
c© Springer International Publishing Switzerland 2015
I. Potapov (Ed.): DLT 2015, LNCS 9168, pp. 215–227, 2015.
DOI: 10.1007/978-3-319-21500-6 17

216 F. Dolce and D. Perrin

The second one concerns return words. The set of right first return words to
a word x in a factorial set S, denoted RS(x), is an important notion. It is the
set of words u such that xu is in S and ends with x for the first time. In several
families of sets of linear complexity, the set of first return words to x is known
to be of fixed cardinality independent of x. This was proved for Sturmian words
in [13], for interval exchange sets in [16] (see also [11]) and for neutral sets of
characteristic zero in [1].

We first prove here (Theorem 3) that the set CRS(X) of complete first return
words to a bifix code X in a uniformly recurrent neutral set S on k letters satisfies
Card(CRS(X)) = Card(X) + k − χ(S). The remarkable feature here is that, for
fixed S, the cardinality of CRS(X) depends only on Card(X). When X is reduced
to one element x, we have CRS(x) = xRS(x) and we recover the result of [1].
When X = S∩An, then CRS(X) = S∩An+1. This implies pn+1 = pn +k−χ(S)
and also gives Equation (1) by induction on n. The proofs of these formulæ use
a probability distribution naturally defined on a neutral set.

A third result concerns the decoding of a neutral set by a bifix code. We
prove that the decoding of any recurrent neutral set S by an S-maximal bifix
code is a neutral set. This property is proved for uniformly recurrent tree sets
in [8].

We finally prove a result which allows one to obtain a large family of neutral
sets of geometric origin, namely using interval exchange transformations. More
precisely, we prove that the natural coding of an interval exchange transforma-
tion without connections of length ≥ 1 is a neutral set. This extends a result
in [6] concerning interval exchange without connections as well as a result of [9]
concerning linear involutions without connection.

2 Extension Graphs

Let A be a finite alphabet. We denote by A∗ the set of all words on A. We denote
by ε or 1 the empty word. A factor of a word x is a word v such that x = uvw. If
both u and w are nonempty, we say that x is an internal factor. A set of words
on the alphabet A is said to be factorial if it contains the factors of its elements
as well as the alphabet A.

Let S be a factorial set on the alphabet A. For w ∈ S, we denote LS(w) =
{a ∈ A | aw ∈ S}, RS(w) = {a ∈ A | wa ∈ S}, ES(w) = {(a, b) ∈ A × A |
awb ∈ S}, and further �S(w) = Card(LS(w)), rS(w) = Card(RS(w)), eS(w) =
Card(ES(w)).

We omit the subscript S when it is clear from the context. A word w is
right-extendable if r(w) > 0, left-extendable if �(w) > 0 and biextendable if
e(w) > 0. A factorial set S is called right-extendable (resp. left-extendable, resp.
biextendable) if every word in S is right-extendable (resp. left-extendable, resp.
biextendable).

A word w is called right-special if r(w) ≥ 2. It is called left-special if �(w) ≥ 2.
It is called bispecial if it is both left-special and right-special. For w ∈ S, we
denote

mS(w) = eS(w) − �S(w) − rS(w) + 1.

Enumeration Formulæ in Neutral Sets 217

A word w is called neutral if mS(w) = 0. We say that a set S is neutral if it
is factorial and every nonempty word w ∈ S is neutral. The characteristic of S
is the integer χ(S) = 1 − mS(ε).

Thus, a neutral set of characteristic 1 is such that all words (including the
empty word) are neutral. This is what is called a neutral set in [5].

The following example of a neutral set is from [5].

Example 1. Let A = {a, b, c, d} and let σ be the morphism from A∗ into itself
defined by σ : a �→ ab, b �→ cda, c �→ cd, d �→ abc. Let S be the set of factors
of the infinite word x = σω(a). One has S ∩ A2 = {ab, ac, bc, ca, cd, da} and thus
m(ε) = −1. It is shown in [5] that every nonempty word is neutral. Thus S is
neutral of characteristic 2.

A set of words S �= {ε} is recurrent if it is factorial and for any u,w ∈ S, there
is a v ∈ S such that uvw ∈ S. An infinite factorial set is said to be uniformly
recurrent if for any word u ∈ S there is an integer n ≥ 1 such that u is a factor
of any word of S of length n. A uniformly recurrent set is recurrent.

The factor complexity of a factorial set S of words on an alphabet A is the
sequence pn = Card(S ∩ An). Let sn = pn+1 − pn and bn = sn+1 − sn be
respectively the first and second order differences sequences of the sequence pn.

The following result is [12, Proposition3.5] (see also [10, Theorem4.5.4]).

Proposition 1. Let S be a factorial set on the alphabet A. One has bn =∑
w∈S∩An m(w) and sn =

∑
w∈S∩An(r(w) − 1) for all n ≥ 0.

One deduces easily from Proposition 1 the following result which shows that
a neutral set has linear complexity.

Proposition 2. The factor complexity of a neutral set on k letters is given by
p0 = 1 and pn = n(k − χ(S)) + χ(S) for every n ≥ 1.

Let S be a biextendable set of words. For w ∈ S, we consider the set E(w)
as an undirected graph on the set of vertices which is the disjoint union of L(w)
and R(w) with edges the pairs (a, b) ∈ E(w). This graph is called the extension
graph of w. We sometimes denote 1 ⊗ L(w) and R(w) ⊗ 1 the copies of L(w)
and R(w) used to define the set of vertices of E(w). We note that since E(w)
has �(w) + r(w) vertices and e(w) edges, the number 1 − mS(w) is the Euler
characteristic of the graph E(w).

A biextendable set S is called a tree set of characteristic c if for any nonempty
w ∈ S, the graph E(w) is a tree and if E(ε) is a union of c trees (the definition
of tree set in [5] corresponds to a tree set of characteristic 1). Note that a tree
set of characteristic c is a neutral set of characteristic c.

Example 2. Let S be the neutral set of Example 1. The graph E(ε) is represented
in Figure 1. It is acyclic with two connected components. It is shown in [5] that
the extension graph of any nonempty word is a tree. Thus S is a tree set of
characteristic 2.

218 F. Dolce and D. Perrin

Fig. 1. The two trees forming the graph E(ε). Vertices correspond to letters, while
edges correspond to words of length 2 in S.

Let S be a factorial set. For x ∈ S, we define

ρS(x) = eS(x) − �S(x), λS(x) = eS(x) − rS(x).

Thus, when x is neutral, ρS(x) = rS(x)−1 and λS(x) = �S(x)−1. The following
result shows that in a biextendable neutral set, ρS is a left probability distri-
bution on S (and λS is a right probability), except for the value on ε which is
ρ(ε) = e(ε) − �(ε) = m(ε) + r(ε) − 1 = Card(A) − χ(S) and can be different of
1 (see [2] for the definition of a right or left probability distribution). We omit
the subscript S when it is clear from the context.

Proposition 3. Let S be a biextendable neutral set. Then for any x ∈ S, one
has λS(x), ρS(x) ≥ 0 and

∑
a∈L(x)

ρS(ax) = ρS(x),
∑

a∈R(x)

λS(xa) = λS(x).

Proof. Since S is biextendable, we have �(x), r(x) ≤ e(x). Thus λ(x), ρ(x) ≥ 0.
Next,

∑
a∈L(x) ρ(ax) =

∑
a∈L(x)(r(ax) − 1) = e(x) − �(x) = ρ(x). The proof for

λ is symmetric.

If ρ(ε) = 0, then ρ(x) = 0 for all x ∈ S. Otherwise, ρ′(x) = ρ(x)/ρ(ε) is a
left probability distribution. A symmetric result holds for λ.

3 Bifix Codes

A prefix code is a set of nonempty words which does not contain any proper
prefix of its elements. A suffix code is defined symmetrically. A bifix code is a
set which is both a prefix code and a suffix code (see [3] for a more detailed
introduction). Let S be a recurrent set. A prefix (resp. bifix) code X ⊂ S is
S-maximal if it is not properly contained in a prefix (resp. bifix) code Y ⊂ S.
Since S is recurrent, a finite S-maximal bifix code is also an S-maximal prefix
code (see [2, Theorem 4.2.2]). For example, for any n ≥ 1, the set X = S ∩ An

is an S-maximal bifix code.
Given a set X, we denote ρ(X) =

∑
x∈X ρ(x). We prove the following result.

It accounts for the fact that, in a Sturmian set S, any finite S-maximal suffix
code contains exactly one right-special word [2, Proposition 5.1.5].

Proposition 4. Let S be a neutral set and let X be a finite S-maximal suffix
code. Then ρ(X) = Card(A) − χ(S).

Enumeration Formulæ in Neutral Sets 219

Proof. If ρ(ε) = 0, then χ(S) = Card(A) and thus the formula holds. Other-
wise, ρ′ is a left probability distribution (as seen at the end of Section 2), and
the formula holds by a well-known property of suffix codes (see [2, Proposition
3.3.4]).

Example 3. Let S be the neutral set of characteristic 2 of Example 1. The set
X = {a, ac, b, bc, d} is an S-maximal suffix code (its reversal is the S̃-maximal
prefix code X̃ = {a, b, ca, cb, d}). The values of ρ on X are represented in Figure 2
on the left. One has ρ(X) = ρ(a) + ρ(bc) = 2, in agreement with Proposition 4.

Fig. 2. An S-maximal suffix code (left) and an S-maximal bifix code represented as a
prefix code (center) and as a suffix code (right)

Let X be a bifix code. Let Q be the set of words without any suffix in X and
let P be the set of words without any prefix in X. A parse of a word w with
respect to a bifix code X is a triple (q, x, p) ∈ Q × X∗ × P such that w = qxp.
We denote by dX(w) the number of parses of a word w with respect to X. The
S-degree of X, denoted dX(S) is the maximal number of parses with respect to
X of a word of S. For example, the set X = S ∩ An has S-degree n.

Example 4. Let S be the neutral set of characteristic 2 of Example 1. The
set X = {ab, acd, bca, bcd, c, da} is an S-maximal bifix code of S-degree 2 (see
Figure 2 on the center and the right).

Let S be a recurrent set and let X be a finite bifix code. By [2, Theorem
4.2.8], X is S-maximal if and only if its S-degree is finite. Moreover, in this case,
a word w ∈ S is such that dX(w) < dX(S) if and only if it is an internal factor
of a word of X. The following is [2, Theorem 4.3.7].

Theorem 1. Let S be a recurrent set and let X be a finite S-maximal bifix code
of S-degree n. The set of nonempty proper prefixes of X is a disjoint union of
n − 1 S-maximal suffix codes.

Example 5. Let S and X be as in Example 4. The set of nonempty proper
prefixes of X is the S-maximal suffix code represented on the left of Figure 2.

220 F. Dolce and D. Perrin

The following statement is closely related with a similar statement concerning
the average length of a bifix code, but which requires an invariant probability
distribution (see [2, Corollary 4.3.8]).

Proposition 5. Let S be a recurrent neutral set and let X be a finite S-maximal
bifix code of S-degree n. The set P of proper prefixes of X satisfies ρS(P) =
n(Card(A) − χ(S)).

Proof. By Theorem 1, we have P \ {ε} = ∪n−1
i=1 Yi, where the Yi are S-maximal

suffix codes. By Proposition 4, we have ρ(Yi) = Card(A)−χ(S) and thus ρ(P) =
ρ(ε) + (n − 1)(Card(A) − χ(S)) = n(Card(A) − χ(S)).

4 Cardinality Theorem for Bifix Codes

The following theorem is a generalization of [7, Theorem 3.6] where it is proved
for a neutral set of characteristic 1. We consider a recurrent set S, and we
implicitly assume that all words of S are on the alphabet A.

Theorem 2. Let S be a neutral recurrent set. For any finite S-maximal bifix
code X of S-degree n, one has

Card(X) = n(Card(A) − χ(S)) + χ(S).

Note that we recover, as a particular case of Theorem 2 applied to the set X of
words of length n in S, the fact that for a set S satisfying the hypotheses of the
theorem, the factor complexity is p0 = 1 and pn = n(Card(A) − χ(S)) + χ(S).
Note that Theorem 2 has a converse (see [4]).

Proof (of Theorem 2). Since X is a finite S-maximal bifix code, it is an S-
maximal prefix code (see Section 3). By a well-known property of trees, this
implies that Card(X) = 1+

∑
p∈P (r(p)−1) where P is the set of proper prefixes

of X. Since ρ(p) = r(p)−1 for p non empty and ρ(ε) = m(ε)+r(ε)−1, we have

Card(X) = 1 +
∑
p∈P

(r(p) − 1) = 1 +
∑
p∈P

ρ(p) − m(ε)

= ρ(P) + χ(S) = n(Card(A) − χ(S)) + χ(S)

since ρ(P) = n(Card(A) − χ(S)) by Proposition 5.

Example 6. Let S be the neutral set of Example 1 and let X be the S-maximal
bifix code of Example 4. We have Card(X) = 2(4 − 2) + 2 = 6 according to
Theorem 2.

Enumeration Formulæ in Neutral Sets 221

5 Cardinality Theorem for Return Words

Let S be a factorial set of words. For a set X ⊂ S of nonempty words, a complete
first return word to X is a word of S which has a proper prefix in X, a proper
suffix in X and no internal factor in X. We denote by CRS(X) the set of complete
first return words to X. The set CRS(X) is a bifix code. If S is uniformly
recurrent, CRS(X) is finite for any finite set X. For x ∈ S, we denote CRS(x)
instead of CRS({x}).

Theorem 3. Let S be a uniformly recurrent neutral set. For any bifix code X ⊂
S, we have

Card(CRS(X)) = Card(X) + Card(A) − χ(S).

Proof. Let P be the set of proper prefixes of CRS(X). For q ∈ P , we denote
α(q) = Card{a ∈ A | qa ∈ P ∪ CRS(X)} − 1 and α(P) =

∑
q∈P α(p).

Since CRS(X) is a finite nonempty prefix code, we have, by a well-known
property of trees, Card(CRS(X)) = 1 + α(P).

Let P ′ be the set of words in P which are proper prefixes of X and let Y =
P \P ′. Since P ′ is the set of proper prefixes of X, we have α(P) = Card(X)−1.

Since S is recurrent, any word of S with a prefix in X is comparable for the
prefix order with a word of CRS(X). This implies that for any q ∈ Y and any
b ∈ RS(q), one has qb ∈ P ∪ CRS(X). Consequently, we have α(q) = ρS(q) for
any q ∈ Y . Thus we have shown that

Card(CRS(X)) = 1 + α(P ′) + ρ(Y) = Card(X) + ρ(Y).

Let us show that Y is an S-maximal suffix code. This will imply our conclusion
by Proposition 4. Suppose that q, uq ∈ Y with u nonempty. Since q is in Y , it
has a proper prefix in X. But this implies that uq has an internal factor in X,
a contradiction. Thus Y is a suffix code. Consider w ∈ S. Since S is recurrent,
there is some u and x ∈ X such that xuw ∈ S. Let y be the shortest suffix
of xuw which has a proper prefix in X. Then y ∈ Y . This shows that Y is an
S-maximal suffix code.

Let S be a factorial set. A right first return word to x in S is a word w
such that xw is a word of S which ends with x and has no internal factor
equal to x (thus xw is a complete first return word to x). We denote by RS(x)
the set of right first return words to x in S. Since CRS(x) = xRS(x), the
sets CRS(x) and RS(x) have the same number of elements. Thus we have the
following consequence of Theorem 3.

Corollary 1. Let S be a uniformly recurrent neutral set. For any x ∈ S, the set
RS(x) has Card(A) − χ(S) + 1 elements.

Example 7. Consider again the neutral set S of Example 1. We have RS(a) =
{bca, bcda, cad}.

222 F. Dolce and D. Perrin

6 Bifix Decoding

Let S be a factorial set and let X be a finite S-maximal bifix code. A coding
morphism for X is a morphism f : B∗ → A∗ which maps bijectively an alphabet
B onto X. The set f−1(S) is called a maximal bifix decoding of S.

Theorem 4. Any maximal bifix decoding of a recurrent neutral set is a neutral
set with the same characteristic.

Let S be a factorial set. For two sets of words X,Y and a word w ∈ S, we
denote LX

S (w) = {x ∈ X | xw ∈ S}, RY
S (w) = {y ∈ Y | wy ∈ S}, EX,Y

S (w) =
{(x, y) ∈ X × Y | xwy ∈ S}, and further

eX,Y
S (w) = Card(EX,Y

S (w)), �X
S (w) = Card(LX

S (w)), rY
S (w) = Card(RY

S (w)).

Finally, for a word w, we denote mX,Y
S (w) = eX,Y

S (w)− �X
S (w)−rY

S (w)+1. Note
that EA,A

S (w) = ES(w), mA,A
S (w) = mS(w), and so on.

Proposition 6. Let S be a neutral set, let X be a finite S-maximal suffix code
and let Y be a finite S-maximal prefix code. Then mX,Y

S (w) = mS(w) for every
w ∈ S.

Proof. We use an induction on the sum of the lengths of the words in X and in
Y .

If X,Y contain only words of length 1, since X (resp. Y) is an S-maximal
suffix (resp. prefix) code, we have X = Y = A and there is nothing to prove.

Assume next that one of them, say Y , contains words of length at least 2. Let
p be a nonempty proper prefix of Y of maximal length. Set Y ′ = (Y \ pA) ∪ p.
If wp /∈ S, then mX,Y (w) = mX,Y ′

(w) and the conclusion follows by induction
hypothesis. Thus we may assume that wp ∈ S. Then

mX,Y (w) − mX,Y ′
(w) = eX,A(wp) − �X(wp) − rA(wp) + 1 = mX,A(wp).

By induction hypothesis, we have mX,Y ′
(w) = m(w) and mX,A(wp) = 0, whence

the conclusion.

Proof (of Theorem 4). Let S be a recurrent neutral set and let f : B∗ → A∗ be
a coding morphism for a finite S-maximal bifix code X. Set U = f−1(S). Let
v ∈ U \ {ε} and let w = f(v). Then mU (v) = mX,X

S (w). Since S is recurrent, X
is an S-maximal suffix code and prefix code. Thus, by Proposition 6, mU (v) =
mS(w), which implies our conclusion.

The following example shows that the maximal decoding of a uniformly recur-
rent neutral set need not be recurrent.

Example 8. Let S be the set of factors of the infinite word (ab)ω. The set X =
{ab, ba} is a bifix code of S-degree 2. Let f : u �→ ab, v �→ ba. The set f−1(S) is
the set of factors of uω ∪ vω and it is not recurrent.

Enumeration Formulæ in Neutral Sets 223

7 Neutral Sets and Interval Exchanges

Let I =]�, r[be a nonempty open interval of the real line and A a finite ordered
alphabet. For two intervals Δ,Γ , we denote Δ < Γ if x < y for any x ∈ Δ and
y ∈ Γ . A partition (Ia)a∈A of I (minus Card(A) − 1 points) in open intervals is
ordered if a < b implies Ia < Ib.

We consider now two total orders <1 and <2 on A and two partitions (Ia)a∈A

and (Ja)a∈A of I in open intervals ordered respectively by <1 and <2 and such
that for every a, Ia and Ja have the same length λa. Let γa =

∑
b<1a λb and

δa =
∑

b<2a λa.
An interval exchange transformation (with flips) relative to (Ia)a∈A and

(Ja)a∈A is a map T : I → I such that for every a ∈ A, its restriction to Ia

is either a translation or a symmetry from Ia to Ja (see for example [6] and [15]
for interval exchanges with flips).

Observe that γa is the left boundary of Ia and that δa is the left boundary
of Ja. If Card(A) = s, we say that T is an s-interval exchange transformation.

Example 9. Let A = {a, b, c}. Consider the rotation of angle α with α irrational
as a 3-transformation relative to the partition (Ia)a∈A of the interval]0, 1[, where
Ia =]0, 1−2α[, Ib =]1−2α, 1−α[and Ic =]1−α, 1[, while Jc =]0, α[, Ja =]α, 1−α[
and Jb =]1 − α, 1[(see Figure 3). Then, for each letter a, the restriction to Ia is
a translation to Ja. Note that one has a <1 b <1 c and c <2 a <2 b.

Fig. 3. A 3-interval exchange transformation

For a word w = b0b1 · · · bm let Iw be the set

Iw = Ib0 ∩ T−1 (Ib1) ∩ · · · ∩ T−m (Ibm) .

Set Jw = T |w| (Iw). We set by convention Iε = Jε =]�, r[. Note that each Iw is
an open interval and so is each Jw (see [6]).

Let T be an interval exchange transformation on I =]�, r[. For a given z ∈ I,
the natural coding of T relative to z is the infinite word ΣT (z) = a0a1 · · · on
the alphabet A defined by an = a if Tn(z) ∈ Ia. We denote by L(T) the set of
factors of the natural codings of T . We also say that L(T) is the natural coding
of T . Note that, for every w ∈ L(T), the interval Iw is the set of points z such
that ΣT (z) starts with w, while the interval Jw is the set of points z such that
ΣT

(
T−|w|(z)

)
starts with w. Moreover, it is easy to prove that a word u is in

L(T) if and only if Iu �= ∅ (and thus if and only if Ju �= ∅).

224 F. Dolce and D. Perrin

Fig. 4. The words of length ≤ 3 of L(T)

Example 10. Let T be the interval exchange transformation of Example 9. The
first element of L(T) are represented in Figure 4 (right-special words are colored).

A connection of an interval exchange transformation T is a triple (x, y, n)
where x is a singularity of T−1, y is a singularity of T , n ≥ 0 and Tn(x) = y.
We also say that (x, y, n) is a connection of length n ending in y. When n = 0,
we say that x = y is a connection.

Interval exchange transformations without connections, also called regu-
lar interval exchange transformations, are well studied (see, for example, [14]
and [6]). The natural coding of a linear involutions without connection (see [9])
is essentially the coding of an interval exchange transformation with exactly one
connection of length 0 ending in the midpoint of the interval.

Example 11. Let T be the transformation of Example 9. The point γc is a con-
nection of length 0. This connection is represented with a dotted line in Figure 3.

Let T be an interval exchange transformation with exactly c connections all
of length 0. Denote γk0 = � and γk1 , . . . , γkc

the c connections of T . For every
0 ≤ i < c the interval]γki

, γki+1 [is called a component of I.

Example 12. Consider again the transformation T of Example 9. The two com-
ponents of]0, 1[are the two intervals]0, 1 − α[and]1 − α, 1[.

In the next statement we generalize a result of [5] and show that the natural
coding of an interval exchange is acyclic.

Theorem 5. Let T be an interval exchange transformation with exactly c con-
nections, all of length 0. Then L(T) is neutral of characteristic c + 1.

Lemma 1. Let T be an interval exchange transformation. For every nonempty
word w and letter a ∈ A, one has

(i) a ∈ L(w) ⇐⇒ Iw ∩ Ja �= ∅,
(ii) a ∈ R(w) ⇐⇒ Ia ∩ Jw �= ∅.
Proof. A letter a is in the set L(w) if and only if aw ∈ L(T). As we have seen
before, this is equivalent to Jaw �= ∅. One has Jaw = T (Iaw) = T (Ia) ∩ Iw =
Ja ∩ Iw, whence point (i). Point (ii) is proved symmetrically.

Enumeration Formulæ in Neutral Sets 225

We say that a path in a graph is reduced if it does not use twice consecutively
the same edge.

Lemma 2. Let T be an interval exchange transformation over I without con-
nection of length ≥ 1. Let w ∈ L(T) and a, b ∈ L(w) (resp. a, b ∈ R(w)). Then
1 ⊗ a, 1 ⊗ b (resp. a ⊗ 1, b ⊗ 1) are in the same connected component of E(w) if
and only if Ja, Jb (resp. Ia, Ib) are in the same component of I.

Proof. Let a ∈ L(w). Since the set L(T) is biextendable, there exists a letter c
such that (1 ⊗ a, c ⊗ 1) ∈ E(w). Using the same reasoning as that in Lemma 1,
one has Ja ∩ Iwc �= ∅. Since Iwc ⊂ Iw, one has in particular Ja ∩ Iw �= ∅. This
proves that Ja and Iw belong to the same component of I for every a ∈ L(w).

Conversely, suppose that a, b ∈ L(w) are such that Ja and Jb belong to the
same component of I. We may assume that a <2 b. Then, there is a reduced
path (1 ⊗ a1, b1 ⊗ 1, . . . , bn−1 ⊗ 1, 1 ⊗ an) in E(w) (see Figure 5) with a = a1,
b = an, a1 <2 · · · <2 an and wb1 <1 · · · <1 wbn1 . Indeed, by hypothesis, we have
no connection of length ≥ 1. Thus, for every 1 ≤ i < n, one has Jai

∩ Iwbi �= ∅
and Jai+1 ∩ Iwbi �= ∅. Therefore, a and b are in the same connected component
of E(w).

The symmetrical statement is proved similarly.

We can now prove the main result of this section.

Proof (of Theorem 5). Let us first prove that for any w ∈ L(T), the graph E(w)
is acyclic. Assume that (1 ⊗ a1, b1 ⊗ 1, . . . , 1 ⊗ an, bn ⊗ 1) is a reduced path in
E(w) with a1, . . . , an ∈ L(w) and b1, . . . , bn ∈ R(w). Suppose that n ≥ 2 and
that a1 <2 a2. Then one has a1 <2 · · · <2 an and wb1 <1 · · · <1 wbn (see
Figure 5). Thus one cannot have an edge (a1, bn) in the graph E(w).

Fig. 5. A path from a1 to an in E(w)

Let us now prove that the extension graph of the empty word is a union of
c + 1 trees. Let a, b ∈ A. If Ja and Jb are in the same component of I, then
1 ⊗ a, 1 ⊗ b are in the same connected component of E(ε) by Lemma 2. Thus
E(ε) is a union of c + 1 trees.

Finally, if w ∈ L(T) is a nonempty word and a, b ∈ L(w), then Ja and Jb

are in the same component of I, by Lemma 1, and thus a and b are in the same
connected component of E(w) by Lemma 2. Thus E(w) is a tree.

226 F. Dolce and D. Perrin

The previous proof shows actually a stronger result: the set L(T) is a tree
set of characteristic c + 1. This result generalizes the corresponding result for
regular interval exchange in [5].

Example 13. Let T be the interval exchange transformation of Example 9. In
Figure 6 are represented the extension graphs of the empty word (left) and of
the letters a (center) and b (right).

Fig. 6. Some extension graphs

Acknowledgments. This work was supported by grants from Région Île-de-France
and ANR project Eqinocs.

References

1. Balková, Ĺ., Pelantová, E., Steiner, W.: Sequences with constant number of return
words. Monatsh. Math. 155(3–4), 251–263 (2008)

2. Berstel, J., De Felice, C., Perrin, D., Reutenauer, C., Rindone, G.: Bifix codes and
Sturmian words. J. Algebra 369, 146–202 (2012)

3. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge University
Press (2009)

4. Berthé, V., De Felice, C., Delecroix, V., Dolce, F., Leroy, J., Perrin, D., Reutenauer,
C., Rindone, G.: Specular sets. In: Preparation (2015). (http://arxiv.org/abs/1505.
00707)

5. Berthé, V., De Felice, C., Dolce, F., Leroy, J., Perrin, D., Reutenauer, C., Rindone,
G.: Acyclic, connected and tree sets. Monatsh. Math. 176(4), 521–550 (2015)

6. Berthé, V., De Felice, C., Dolce, F., Leroy, J., Perrin, D., Reutenauer, C., Rindone,
G.: Bifix codes and interval exchanges. J. Pure Appl. Algebra 219(7), 2781–2798
(2015)

7. Berthé, V., De Felice, C., Dolce, F., Leroy, J., Perrin, D., Reutenauer, C., Rindone,
G.: The finite index basis property. J. Pure Appl. Algebra 219, 2521–2537 (2015)

8. Berthé, V., De Felice, C., Dolce, F., Leroy, J., Perrin, D., Reutenauer, C., Rindone,
G.: Maximal bifix decoding. Discrete Math (2015)

9. Berthé, V., Delecroix, V., Dolce, F., Perrin, D., Reutenauer, C., Rindone, G.:
Return words of linear involutions and fundamental groups (2015). (http://arxiv.
org/abs/1405.3529)

10. Berthé, V., Rigo, M.: Combinatorics, automata and number theory. Encyclopedia
Math. Appl., vol. 135. Cambridge Univ. Press, Cambridge (2010)

http://arxiv.org/abs/1505.00707
http://arxiv.org/abs/1505.00707
http://arxiv.org/abs/1405.3529
http://arxiv.org/abs/1405.3529

Enumeration Formulæ in Neutral Sets 227

11. Massé, A.B., Brlek, S., Labbé, S., Vuillon, L.: Palindromic complexity of codings
of rotations. Theoret. Comput. Sci. 412(46), 6455–6463 (2011)

12. Cassaigne, J.: Complexité et facteurs spéciaux. Bull. Belg. Math. Soc. Simon Stevin
4(1), 67–88 (1997). Journées Montoises (Mons, 1994)

13. Justin, J., Vuillon, L.: Return words in Sturmian and episturmian words. Theor.
Inform. Appl. 34(5), 343–356 (2000)

14. Keane, M.: Interval exchange transformations. Math. Z. 141, 25–31 (1975)
15. Nogueira, A., Pires, B., Troubetzkoy, S.: Orbit structure of interval exchange trans-

formations with flip. Nonlinearity 26(2), 525–537 (2013)
16. Vuillon, L.: On the number of return words in infinite words constructed by interval

exchange transformations. Pure Math. Appl. (PU.M.A.) 18(3–4), 345–355 (2007)

On the Density of Context-Free and Counter
Languages

Joey Eremondi1, Oscar H. Ibarra2, and Ian McQuillan3(B)

1 Department of Information and Computing Sciences, Utrecht University,
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

j.s.eremondi@students.uu.nl
2 Department of Computer Science, University of California,

Santa Barbara, CA 93106, USA
ibarra@cs.ucsb.edu

3 Department of Computer Science, University of Saskatchewan,
Saskatoon, SK S7N 5A9, Canada

mcquillan@cs.usask.ca

Abstract. A language L is said to be dense if every word in the universe
is an infix of some word in L. This notion has been generalized from the
infix operation to arbitrary word operations � in place of the infix oper-
ation (�-dense, with infix-dense being the standard notion of dense). It
is shown here that it is decidable, for a language L accepted by a one-
way nondeterministic reversal-bounded pushdown automaton, whether
L is infix-dense. However, it becomes undecidable for both deterministic
pushdown automata (with no reversal-bound), and for nondeterministic
one-counter automata. When examining suffix-density, it is undecidable
for more restricted families such as deterministic one-counter automata
that make three reversals on the counter, but it is decidable with less
reversals. Other decidability results are also presented on dense lan-
guages, and contrasted with a marked version called �-marked-density.
Also, new languages are demonstrated to be outside various deter-
ministic language families after applying different deletion operations
from smaller families. Lastly, bounded-dense languages are defined and
examined.

1 Introduction

A language L ⊆ Σ∗ is dense if the set of all infixes of L is equal to Σ∗ [3].
This notion is relevant to the theory of codes. Indeed, a language being dense
is connected with the notions of independent sets, maximal independent sets,
codes [11], and disjunctive languages [10,13].

Dense languages have been studied in [10,13] and generalized from density to
�-density [11], where � is an arbitrary word operation used in place of the infix-
operation in the definition. Some common examples are prefix-dense (coinciding

The research of O.H. Ibarra was supported, in part, by NSF Grant CCF-1117708.
The research of I. McQuillan was supported, in part, by the Natural Sciences and
Engineering Research Council of Canada.

c© Springer International Publishing Switzerland 2015
I. Potapov (Ed.): DLT 2015, LNCS 9168, pp. 228–239, 2015.
DOI: 10.1007/978-3-319-21500-6 18

On the Density of Context-Free and Counter Languages 229

with left dense in [10]), suffix dense (coinciding with right dense in [10]), infix
dense (usual notion of density), outfix dense, embedding dense, and others from
[11]. Each type connects with a generalized notion of independent sets and codes.

It has long been known that universality of a language L (is L = Σ∗?) is
undecidable for L accepted by a one-way nondeterministic one-counter automa-
ton whose counter makes only one reversal, i.e., in an accepting computation,
after decreasing the counter, it can no longer increase again [2]. This shows imme-
diately that with the identity operation, it is undecidable if L in this family is
identity-dense. In contrast, the universality problem is known to be decidable
for one-way deterministic reversal-bounded multicounter languages [9], but these
languages are not closed under taking suffix, infix or outfix [5]. However, to decide
the property of infix-density, in this paper we can show contrasting results.

1. Infix-density is decidable for L accepted by a nondeterministic pushdown
automaton where the pushdown is reversal-bounded (there is at most a fixed
number of switches between increasing and decreasing the size of the push-
down).

2. Infix-density is undecidable for L accepted by a nondeterministic one-counter
automaton (with no reversal-bound).

3. Infix-density is undecidable for L accepted by a deterministic pushdown
automaton (with no reversal-bound).

Thus, it is surprisingly possible to decide if the set of all infixes of a nonde-
terministic reversal-bounded pushdown automaton gives universality, when it is
undecidable with the identity operator for much smaller families.

Furthermore, if the question is altered to change the type of density from
infix-density to either suffix-density or prefix-density, then it is undecidable
even for nondeterministic one-counter automata that makes one counter rever-
sal (coinciding with the result for identity-density). Suffix-density is decidable
however for deterministic one-counter automata that makes one counter rever-
sal, but is undecidable when there is either two more reversals, or two counters
that both make one reversal. Thus suffix-density is often impossible to decide
when infix-density is decidable. Prefix density is decidable for all deterministic
reversal-bounded multicounter languages.

Contrasts are made between deciding if applying an operation � to a lan-
guage gives Σ∗ and deciding if $Σ∗$ (with $ /∈ Σ) is a subset of � applied
to L ⊆ (Σ ∪ {$})∗. If this is true, the language is said to be �-marked-dense.
In contrast to infix-density, infix-marked-density is undecidable with only one-
way deterministic one-counter 3-reversal-bounded languages, and for the outfix
operation with many families as well.

In addition, new languages are established that can be accepted by a number
of automata classes (deterministic one-counter machines that are 3-reversal-
bounded, deterministic 2-counter machines that are 1-reversal-bounded, nonde-
terministic one-counter one-reversal-bounded machines), but taking any of the
set of infixes, suffixes or outfixes of L produces languages that cannot be accepted
by deterministic machines with an unrestricted pushdown and a fixed number
of reversal-bounded counters. Hence, these deletion operations can create some

230 J. Eremondi et al.

very complex languages. It has been previously shown in [5] though, that the
set of all infixes or suffixes of all deterministic one-counter one-reversal-bounded
languages only produce deterministic reversal-bounded multicounter languages.
Finally, the notion of �-bounded-dense languages is defined and examined.

2 Definitions

In this section, some preliminary definitions are provided.
The set of non-negative integers is represented by N0. For c ∈ N0, let π(c) be

0 if c = 0, and 1 otherwise.
We use standard notations for formal languages, referring the reader to [7].

The empty word is denoted by λ. We use Σ and Γ to represent finite alphabets,
with Σ∗ as the set of all words over Σ and Σ+ = Σ∗ −{λ}. For a word w ∈ Σ∗,
if w = a1 · · · an where ai ∈ Σ, 1 ≤ i ≤ n, the length of w is denoted by |w| = n,
and the reversal of w is denoted by wR = an · · · a1. Given a language L ⊆ Σ∗,
the complement of L over Σ∗, Σ∗ − L is denoted by L.

The definitions of deterministic and nondeterministic finite automata,
deterministic and nondeterministic pushdown automata, deterministic Turing
Machines, and instantaneous descriptions will be used from [7].

Notation for variations of word operations which we will use throughout the
paper are presented next.

Definition 1. For a language L ⊆ Σ∗, the prefix, suffix, infix, and outfix oper-
ations, respectively, are defined as follows:

pref(L) = {w | wx ∈ L, x ∈ Σ∗} , suff(L) = {w | xw ∈ L, x ∈ Σ∗} ,
inf(L) = {w | xwy ∈ L, x, y ∈ Σ∗} , outf(L) = {xy | xwy ∈ L,w ∈ Σ∗} .

Different types of density are now given.

Definition 2. Let Σ be an alphabet, and � an operation from Σ∗ to Σ∗. Then
L ⊆ Σ∗ is �-dense if �(L) = Σ∗.

The reader is referred to [9] and [2] for a comprehensive introduction to
counter machines. A nondeterministic multicounter machine is an automaton
which, in addition to having a finite set of states, has a fixed number of counters.
At any point, the counters may be incremented, decremented, or queried for
equality to zero. For our purposes, it will accept a word by final state.

Formally, a one-way k-counter machine is a tuple M = (k,Q,Σ,�, δ, q0, F),
where Q,Σ,�, q0, F are respectively the set of states, input alphabet, right input
end-marker, initial state (in Q) and accepting states (a subset of Q). The transi-
tion function δ (defined as in [4]) is a mapping from Q× (Σ ∪{�})×{0, 1}k into
Q×{S,R}×{−1, 0,+1}k, such that if δ(q, a, c1, . . . , ck) contains (p, d, d1, . . . , dk)
and ci = 0 for some i, then di ≥ 0 (to prevent negative values in any counter).
The symbols S and R indicate the direction that the input tape head moves,
either stay or right. Further, M is deterministic if δ is a function. A configu-
ration of M is a k + 2-tuple (q, w�, c1, . . . , ck) representing that M is in state

On the Density of Context-Free and Counter Languages 231

q, with w ∈ Σ∗ still to read as input, and c1, . . . , ck ∈ N0 are the contents of
the k counters. The derivation relation �M is defined between configurations,
where (q, aw, c1, . . . , ck) �M (p,w′, c1 + d1, . . . , ck + dk), if (p, d, d1, . . . , dk) ∈
δ(q, a, π(c1), . . . , π(ck)) where d ∈ {S,R} and w′ = aw if d = S, and w′ = w
if d = R. Let �∗

M be the reflexive, transitive closure of �M . A word w ∈ Σ∗ is
accepted by M if (q0, w�, 0, . . . , 0) �∗

M (q,�, c1, . . . , ck), for some q ∈ F , and
c1, . . . , ck ∈ N0. The language accepted by M , denoted by L(M), is the set of
all words accepted by M . Furthermore, M is l-reversal-bounded if it operates
in such a way that in every accepting computation, the count on each counter
alternates between increasing and decreasing at most l times.

We will denote the following families of languages (and classes of one-way
machines) by: NCM(k, l) for nondeterministic l-reversal-bounded k-counter lan-
guages, NCM =

⋃
k,l≥0 NCM(k, l), NCA for nondeterministic 1-counter languages

(no reversal bound), NPDA for nondeterministic pushdown languages, NPDA(l)
for nondeterministic l-reversal-bounded pushdown languages, and NPCM for lan-
guages accepted by nondeterministic machines with one unrestricted pushdown
and a fixed number of reversal-bounded counters. For each, replacing N with D
gives the deterministic variant.

It is known that for each k ≥ 1, DCM(1, k) ⊆ DCM(�k+1
2 	, 1) [4] and thus

DCM(1, 3) ⊆ DCM(2, 1).

3 Deciding Types of Density

In addition to examining decidability of �-density, a variant is defined called
�-marked-density that differs from �-density only by an end-marker.

Definition 3. Let Σ be an alphabet, $ /∈ Σ, L ⊆ (Σ ∪ {$})∗, and � be an
operation from (Σ ∪ {$})∗ to itself. Then L is �-marked-dense if $Σ∗$ ⊆ �(L).

It is only the marker $ that differs from the usual �-dense (i.e., Σ∗ ⊆ �(L) if and
only if Σ∗ = �(L) for L ⊆ Σ∗). Yet we will see differences, as there are cases
when the marked version is undecidable when the unmarked version is decidable.

First, deciding if languages are prefix-dense will be examined. It was recently
shown in [5] that DCM languages are closed under prefix. The following is a
result in that paper.

Proposition 1. For L ∈ DCM, pref(L) ∈ DCM.

A main result in that paper was in fact far more general, showing that DCM
is closed (with an effective construction) under right quotient with NPCM lan-
guages. Combining this with the known decidability of the inclusion problem for
DCM [9], the following two corollaries are obtained, by testing if Σ∗ ⊆ pref(L):

Corollary 1. For L1, L2 ∈ DCM, it is decidable whether pref(L1) ⊆ L2 and
whether L1 ⊆ pref(L2).

Corollary 2. It is decidable whether a given DCM language is prefix-dense, and
prefix-marked-dense.

232 J. Eremondi et al.

Next, it is shown in [5] that the set of suffixes and infixes of a DCM(1, 1)
language is always in DCM (by sometimes increasing the number of counters).
From this, the following is obtained:

Proposition 2. For L1, L2 ∈ DCM(1, 1), it is decidable whether inf(L1) ⊆ L2

and whether L1 ⊆ inf(L2). It is also decidable whether suff(L1) ⊆ L2 and whether
L1 ⊆ suff(L2).

Corollary 3. It is decidable whether a DCM(1, 1) language is infix-dense, suffix-
dense, infix-marked-dense and suffix-marked-dense.

This result will be improved shortly using a more general machine class for infix-
density, but not for suffix-density, suffix-marked-density, or infix-marked-density.

Most undecidability proofs in this section use the halting problem for Turing
machines. Let U ⊆ {a}∗ be a unary recursively enumerable language that is not
recursive, i.e., not decidable (such a U exists [12]), and let Z be a deterministic
Turing machine accepting U . Assume that Z accepts if and only if Z halts.

Let Q and Γ be the state set and worktape alphabet of Z, and q0 ∈ Q be the
initial state of Z. Note that a is in Γ . Let Σ = Q ∪ Γ ∪ {#}. Assume without
loss of generality that if Z halts, it does so in a unique final state qf
= q0, and
a unique configuration, and that the initial state q0 is never re-entered after the
initial configuration, and that the length of every halting computation is even.

The halting computation of Z on the input ad (if it accepts) can be repre-
sented by the string xd = ID1#IDR

2 # · · · #IDk−1#IDR
k for some k ≥ 2, where

ID1 = q0a
d and IDk are the initial and unique halting configurations of Z,

and (ID1, ID2, · · · , IDk) is a valid sequence of instantaneous descriptions (IDs,
defined in [7]) of Z on input ad, i.e., configuration IDi+1 is a valid successor of
IDi, and k is even.

Let d ≥ 0. Let T be all strings w of the form ID1#IDR
2 # · · · #IDk−1#IDR

k ,
where k ≥ 2, ID1 = q0a

d, and IDk is the halting configuration of Z, and IDi

is any ID of the Turing machine, 1 < i < k. Then T is a regular language, and
thus a DFA MT can be built accepting T , and also one can be built accepting T .
Let Lna be all strings w ∈ T of the form ID1#IDR

2 # · · · #IDk−1#IDR
k , where

there is an i such that IDi+1 is not a valid successor of IDi. Indeed, if IDi+1 is
not a valid successor of IDi, then this is detectable by scanning the state of IDi,
the letter after the state (symbol under the read/write head), and from these,
the transition of Z applied to get the valid successor of IDi can be calculated, as
with whether the ID representing the valid successor to IDi should be shorter or
longer by one symbol. Then, there is some position j of IDi such that examining
positions j − 2, j − 1, j, j + 1, j + 2 of IDi and IDi+1, and the state of IDi+1 is
enough to imply that IDi+1 is not a valid successor. Hence, let Lna(p) be the
set of words w ∈ T of the form w = ID1#IDR

2 # · · · #IDk−1#IDR
k , where the

pth character of w is within the string IDi for some i at position j of IDi and
examining characters j − 2, j − 1, j, j + 1, j + 2 of IDi and IDi+1 (if they exist),
plus the states of both, and the letter after the state, implies that IDi+1 is not
a valid successor of IDi. Thus,

⋃
p≥0 Lna(p) = Lna.

Let Ld = Lna ∪ T . Two lemmas are required for undecidability results.

On the Density of Context-Free and Counter Languages 233

Lemma 1. Ld = Σ∗ if and only if T ⊆ Lna if and only if Z does not halt on
ad.

Proof. If Ld = Σ∗, then T ⊆ Lna, and if T ⊆ Lna then T ∪ T = Σ∗ ⊆ Ld. Thus
the first two are equivalent.

Assume Ld = Σ∗. Thus, every sequence of IDs in T is in Lna, thus there is
no sequence of IDs that halts on ad.

Assume that Z does not halt on ad. Let w ∈ Σ∗. If w /∈ T , then w ∈ Ld. If
w ∈ T , then w does not represent an accepting computation, thus, w ∈ Ld. ��

Let % be a new symbol not in Σ, and let Σ% = Σ ∪ {%}.

Lemma 2.
⋃

p≥0 %pLna(p) and
⋃

p≥0 %p$Lna(p)$ are both in DCM(1, 3) and
DCM(2, 1). Furthermore, Lna, Lna ∈ NCM(1, 1).

Proof. We can construct a DCM(1, 3) machine Mna to accept the strings of⋃
p≥0 %pLna(p) as follows: when given %pw, it reads %p and increments the

counter by p. It then decrements the counter and verifies that when the counter
becomes zero, the input head is within some IDi (or IDR

i if i is even). If i is odd,
Mna then moves the input head incrementing the counter until it reaches the
to the right of IDi. Let j be the value of the counter. Mna then decrements
the counter while moving right on IDR

i+1 and after reaching zero, verifying that
IDi+1 is not a valid successor of IDi (this is possible as IDR

i+1 is reversed).
Similarly when i is even. In the same way, we can construct a DCM(1, 3) machine
to accept

⋃
p≥0 %p$Lna(p)$. Both languages are in DCM(2, 1) as DCM(1, 3) ⊆

DCM(2, 1).
For Lna (and Lna), it is possible to nondeterministically guess the position

p, and then when within IDi, verify using the counter once that IDi+1 is not a
valid successor to IDi. ��
This is similar to the technique from [2] to show undecidability of universality
for NCM(1, 1).

Most of the undecidability results in this section build off of the above two
lemmas, the input ad, the languages T,Lna, etc.

Proposition 3. Let Σ be an alphabet.

1. It is undecidable to determine, given L ∈ NCM(1, 1), whether L is �-marked-
dense, for � ∈ {suff, inf,pref}.

2. It is undecidable to determine, given L ∈ DCM(1, 3), whether L is �-marked-
dense, for � ∈ {suff, inf}.

3. It is undecidable to determine, given L ∈ DCM(2, 1), whether L is �-marked-
dense, for � ∈ {suff, inf}.

Proof. For part 1, we can accept L′ = Lna ∪ T ⊆ (Σ ∪ {$})∗ in NCM(1, 1)
since T is a regular language (the complement is over Σ∗).

Then $Σ∗$ ⊆ inf(L′) (resp., $Σ∗$ ⊆ suff(L′), $Σ$ ⊆ pref(L′)) if and only if
$Σ∗$ = L′ if and only if Ld = Σ∗, which we already know is true if and only if
Z does not halt on ad by Lemma 1, which is undecidable.

234 J. Eremondi et al.

For parts 2 and 3, we instead use L′ =
⋃

p≥0 %p$Lna(p)$ ∪ T, the comple-
ment T is over Σ∗

% = (Σ ∪ {%})∗ here, so it will also contain any word with %
in it to allow for marked-density to be with L′ ⊆ (Σ% ∪ {$})∗ where the goal
is to decide whether $Σ∗

%$ ⊆ inf(L′). Then L′ is in DCM(1, 3) ∩ DCM(2, 1) by
Lemma 2 and since DCM(k, l) is closed under union with regular languages, for
every k, l. And $Σ∗

%$ ⊆ inf(L′) if and only if $Σ∗$ ⊆ inf(L′) (since T contains
all words with at least one %) if and only if Ld = Σ∗. The proof in the case of
the suffix operation is similar. ��

The proof for the outfix operation is similar.

Proposition 4. It is undecidable, given L ∈ NCM(1, 1), whether L is outf-
marked-dense. Similarly with L ∈ DCM(2, 1), and L ∈ DCM(1, 3).

Proof. For L ∈ NCM(1, 1), we modify the language L′ in the proof of Part 1 of
Proposition 3. So L′ = %Lna ∪ %T (T over Σ∗

%). For the other classes, L′

in the proofs of parts 2, 3 also work for outf. ��
It follows from Propositions 3 and 4 that DPDA(3) has an undecidable �-

marked-density problem for suffix, infix, and outfix. The following shows that
they are also undecidable for DPDA(1).

Proposition 5. For � ∈ {suff, inf, outf}, it is undecidable given L ∈ DPDA(1),
whether L is �-marked-dense.

Proof. The problem of whether the intersection of two DPDA(1) languages is
empty is undecidable [2]. Let L1, L2 ∈ DPDA(1). Then L1 ∩ L2 = ∅ if and only
if L1 ∩ L2 = Σ∗ if and only if L1 ∪ L2 = Σ∗ if and only if $Σ∗$ ⊆ $L1$ ∪ $L2$.

Let L′ = %$L1$ ∪ $L2$ ∪ $Σ∗
%%Σ∗

%$ (here, the complements are over Σ∗).
Note that L′ ⊆ (Σ% ∪{$})∗ = (Σ ∪{%, $})∗. L′ is in DPDA(1) since DPDA(1) is
closed under complement, the union of the first two sets is a DPDA(1) language
(if % is the first letter then simulate the first set, otherwise simulate the second),
and the third one is regular and DPDA(1) is closed under union with regular sets.

Then $Σ∗
%$ ⊆ inf(L′) if and only if $Σ∗

%$ ⊆ $L1$∪ $L2$∪ $Σ∗
%%Σ∗

%$ if and
only if $Σ∗$ ⊆ $L1$∪$L2$, which we know is undecidable. The proof is identical
for suffix, as with outfix after preceding each word in L′ by an additional %. ��

Next, �-density instead of �-marked-density will be considered; specifically,
the question of whether it is decidable to determine if a language L is �-dense
(�(L) = Σ∗) for various operations and languages. For suffix-density, undecid-
ability occurs for the same families as for marked-suffix-density. The proofs will
again build on the Turing Machine Z, input ad, and languages Lna, T , etc.

Proposition 6. Let L ∈ DCM(1, 3). It is undecidable to determine if L is suffix-
dense. Similarly for L ∈ DCM(2, 1) and L ∈ NCM(1, 1).

Proof. Let L′
1 = {%pux | u ∈ ΣΣ∗

%, p = |u| + p′, x ∈ Lna(p′)}, L′
2 = Σ∗

%T (over
Σ∗

%), and L′ = L′
1 ∪ L′

2. Then L′ ∈ DCM(1, 3) as one can build M ′ ∈ DCM(1, 3)

On the Density of Context-Free and Counter Languages 235

by adding p to the counter until hitting a letter that is not %. Then as M ′ reads
the remaining input in ΣΣ∗

%, for every character read, it decreases the counter,
and each time M ′ hits state q0 (which could be the beginning of a word in T),
it runs MT (the DFA accepting T) in parallel to check if the suffix starting at
this position is in T . However, it is only required that a suffix of the input is
in T . If the counter empties while MT is running in parallel, then let ux be the
input, where u is the input before reaching q0 in the current run of MT , and x
be the input from q0 to the end. Then M ′ tries to verify that x ∈ Lna(p′), where
p = |u| + p′. When the counter reaches 0, M ′ has subtracted 1 from the counter
the length of u plus p − |u| = p′ times. Thus, M ′ can continue the simulation
of Mna from Lemma 2 from when the counter reaches 0, thereby verifying that
x ∈ Lna(p′) (and x ∈ T). Then also L′ must be in DCM(2, 1).

It will be shown that suff(L′) = Σ∗
% if and only if T ⊆ Lna, which is enough

by Lemma 1.
“⇐” Assume T ⊆ Lna. Let w ∈ Σ∗

%.
Assume that there exists a (potentially not proper) suffix of w in T . Then

w = ux, x ∈ T, u ∈ Σ∗
%. Then x ∈ Lna, by assumption. Then there exists p such

that %px ∈ Lna(p), x ∈ T and so %p′
aux ∈ L′

1, au ∈ ΣΣ∗
%, where p′ = p + |au|.

Thus ux = w ∈ suff(L′
1).

Assume that there does not exist a suffix of w in T . Then w ∈ L′
2, and

w ∈ suff(L′).
“⇒” Assume suff(L′) = Σ∗

%. Let w ∈ T . Then w ∈ suff(L′). Then there
exists %puw ∈ L′

1. This implies there exists p′ such that w ∈ Lna(p′) ⊆ Lna.
The case for NCM(1, 1) is similar except using L′

1 = {ux | x ∈ Lna, u ∈ Σ∗}
and L′

2 = Σ∗T , and L′ = L′
1∪L′

2 ⊆ Σ∗, as u can be nondeterministically guessed
without using the counter. ��
Corollary 4. For L ∈ NCM(1, 1), the question of whether L is prefix-dense is
undecidable.

Proof. It is known that NCM(k, l) is closed under reversal for each k, l. Also,
pref(LR) = Σ∗ if and only if suff(L) = Σ∗. ��

We are able to extend the undecidability results to infix-density, but only by
using one unrestricted counter and with nondeterminism.

Proposition 7. Let L ∈ NCA. The question of whether L is infix-dense is unde-
cidable.

Proof. Let L′ = (Σ∗TΣ∗)(Lna(Σ∗TΣ∗))∗ ⊆ Σ∗. It is clear that L′ ∈ NCA. We
will show that T ⊆ Lna if and only if inf(L′) = Σ∗.

“⇒” Assume T ⊆ Lna. Let w ∈ Σ∗. If w ∈ (Σ∗TΣ∗), then w ∈ L′ ⊆ inf(L′).
Assume w /∈ (Σ∗TΣ∗). Then w ∈ Σ∗TΣ∗. Then w = u0v1u1 · · · un−1vnun,
where n ≥ 1, v1, . . . , vn ∈ T , and u0, . . . , un /∈ Σ∗TΣ∗, and so u0, . . . , un ∈
(Σ∗TΣ∗). Also, T ⊆ Lna, and therefore v1, . . . , vn ∈ Lna and w ∈ L′ ⊆ inf(L′).

“⇐” Assume inf(L′) = Σ∗. Let w ∈ T . Then w ∈ inf(L′). Since w ∈ inf(L′)∩
T , then x = uwv ∈ L′. Then x = u0v1u1 · · · un−1vnun, where n ≥ 1, v1, . . . , vn ∈

236 J. Eremondi et al.

Lna, and u0, . . . , un ∈ Σ∗TΣ∗. If w is an infix of ui, for some i, then ui ∈ Σ∗TΣ∗,
a contradiction. If w overlaps with vi for some i, then it must be exactly one vi
by the structure of T (initial and final states are only used once at beginning
and end of words in T). Then w ∈ Lna. ��

The same undecidability is obtained with determinism, but an unrestricted
pushdown automaton is used.

Proposition 8. Let L ∈ DPDA. The question of whether L is infix-dense is
undecidable.

Proof. Let Σ1 = Σ ∪ {%, e, ¢}. Let

L′ = { rmrm−1 · · · r1¢u0y1u1 · · · ymum | ui ∈ Σ∗
1TΣ∗

1 , 0 ≤ i ≤ m,
yj ∈ T, rj = %pjeqj , qj = |uj−1|, yj ∈ Lna(pj) for 1 ≤ j ≤ m}.

(In the above set, the complementation is over Σ∗
1 .) First, L′ can be accepted

by a DPDA as follows: create M ′ that reads rm · · · r1 and pushes each symbol
onto the pushdown, which is now (with bottom of pushdown marker Z0)

Z0%pmeqm · · · %p1eq1 .

Then for each %pjeqj on the pushdown from 1 to m, M ′ reads one symbol at
a time from the input while popping one e, while in parallel verifying uj−1 ∈
Σ∗

1TΣ∗
1 . Then M ′ verifies that yj ∈ Lna(pj) as in Lemma 2 (by popping %pj

one symbol at a time until zero and then pushing on the pushdown simulating
the counter). Finally M ′ verifies um ∈ Σ∗

1TΣ∗
1 .

We claim that inf(L′) = Σ∗
1 if and only if T ⊆ Lna.

Assume T ⊆ Lna. Let w ∈ Σ∗
1 . We will show w ∈ inf(L′). Let w =

u0y1u1 · · · um−1ymum, where m ≥ 0, y1, . . . , ym ∈ T, u0, . . . , um ∈ Σ∗
1TΣ∗

1 . Then
for each yj , 1 ≤ j ≤ m, yj ∈ Lna(pj), for some pj , and thus there exists qj such
that qj = |uj−1|. Thus, %pmeqm · · · %p1eq1¢w ∈ L′, and w ∈ inf(L′).

Assume inf(L′) = Σ∗
1 . Let w ∈ T . Then there must exist x, y such that z =

xwy ∈ L′. Then z = u0y1u1 · · · um−1ymum, where y1, . . . , ym ∈ T, u0, . . . , um ∈
Σ∗

1TΣ∗
1 . Necessarily, one of y1, . . . , ym, yi say, must be w. This implies w = yi ∈

Lna(pi), for some pi. Hence, w ∈ Lna. ��
In contrast to the undecidability of marked-infix-density and suffix-density for

DCM(1, 3) and NCM(1, 1), for infix-density on reversal-bounded nondeterministic
pushdown automata, it is decidable. The proof is quite lengthy and is omitted
for space reasons. The main tool of the proof is the known fact that the language
of all words over the pushdown alphabet that can appear on the pushdown in
an accepting computation is a regular language [1].

Proposition 9. It is decidable, given L accepted by a one-way reversal-bounded
NPDA, whether L is infix-dense.

Next, we briefly examine the reverse containments when testing if Σ∗ ⊆ �(L)
and $Σ∗$ ⊆ �(L) for density and marked-density. Here, it is checked whether it
is decidable to test �(L) ⊆ R for regular languages R. In fact, we will show a
stronger result (the proof is omitted).

On the Density of Context-Free and Counter Languages 237

Proposition 10. It is decidable, given L1 ∈ NPCM and L2 ∈ DCM, whether
�(L1) ⊆ L2, where � ∈ {suff, inf,pref, outf}.

The languages used in the proofs of Lemmas 1 and 2 are used next to show
that �(L) does not belong in the same family as L, in general.

Proposition 11. There is a language L ∈ DCM(1, 3) (resp., NCM(1, 1),
DCM(2, 1)) such that �(L) is not in DPCM, where � ∈ {suff, inf, outf}.
Proof. We first give a proof for DCM(1, 3). Consider L′ =

⋃
p≥0 %p$Lna(p)$ ∈

DCM(1, 3) by Lemma 2. For � ∈ {suff, inf, outf}, we claim that �(L′) cannot
be accepted by any DPCM. We know Lna ⊆ �(L′). For suppose �(L′) can
be accepted by a DPCM M1. Then, since the family of languages accepted by
DPCMs is closed under complementation [8], we can construct a DPCM M2

accepting L(M1). Now using M2, an algorithm can be constructed to determine
whether T
⊆ Lna, which we know is a subset of �(L′).

1. Consider T , which can be accepted by a DFA M3.
2. Construct a DPCM M4 accepting L(M2) ∩ L(M3).
3. Check if the language accepted by M4 is empty. This is possible since the

emptiness problem for NPCMs (hence also for DPCMs) is decidable [9].

By Lemma 1, ad ∈ L(Z) if and only if T
⊆ Lna if and only if the language
accepted by L(M4) is not empty. It follows that �(L) /∈ DPCM.

Similarly with Lna for NCM(1, 1) for suffix and infix, and %Lna for
outfix. ��
We note that the proof above also shows that if L ∈ NCM(1, 1), then pref(L)
need not be in DPCM.

4 Bounded-Dense Languages

Let � be an operation from Σ∗ to Σ∗. Then a language L is �-bounded-dense over
given words w1, . . . , wk if �(L) = w∗

1 · · · w∗
k. We will show below that determining

bounded-denseness is decidable for NPCM languages.
The following lemma (whose proof is omitted) is a generalization of a similar

result for NPDAs in [6]:

Lemma 3. It is decidable, given two NPCMs M1 and M2, one of which accepts
a bounded language that is a subset of w∗

1 · · · w∗
k (for given non-null words

w1, . . . , wk), whether L(M1) ⊆ L(M2).

Corollary 5. It is decidable, given two NPCMs M1,M2 accepting bounded lan-
guages L(M1), L(M2) ⊆ w∗

1 · · · w∗
k, whether L(M1) ⊆ L(M2) (resp., L(M1) =

L(M2)).

Let � ∈ {suff, inf,pref, outf}. Clearly, if M is an NPCM accepting a language
L(M) ⊆ w∗

1 · · · w∗
k, we can construct an NPCM M ′ such that L(M ′) = �(L(M)),

and L(M ′) is bounded, but over v∗
1 · · · v∗

l , which are effectively constructable
from w1, . . . , wk. From Lemma 3, by testing w∗

1 · · · w∗
k ⊆ L(M ′) we have:

238 J. Eremondi et al.

Proposition 12. Let � ∈ {pref, inf, suff, outf}. It is decidable, given an NPCM
M accepting a language L(M) ⊆ w∗

1 · · · w∗
k (for given w1, . . . , wk), whether L(M)

is �-bounded-dense.

In the proposition above, the words w1, . . . , wk were given in advance. It was
shown in [6] that it is decidable, given an NPDA (or, equivalently, a context-free
grammar), whether the language L it accepts (generates) is bounded, and if so,
to effectively find k and w1, . . . , wk such that L ⊆ w∗

1 · · · w∗
k. We believe that

this also holds for NPCM, but have no proof at this time. However, we can show
that it holds for a special case.

A language L is letter-bounded if there is a k such that L ⊆ a∗
1 · · · a∗

k for
some a1, . . . , ak, where a1, . . . , ak are not-necessarily distinct symbols. So, e.g.,
{an1bn1an2bn2an3bn3 | n1, n2, n3 > 0} is letter-bounded (where k = 6), {ab}∗ is
not letter-bounded but bounded, and {anbn | n > 0}∗ is not bounded.

Proposition 13. It is decidable, given an NPCM M , whether L(M) is letter-
bounded. If it is letter-bounded, we can effectively find a k and not-necessarily
distinct symbols a1, . . . , ak such that L(M) ⊆ a∗

1 · · · a∗
k.

Proof. We construct from M an NPCM M ′ accepting a unary language that is a
subset of 1∗. M ′ has one more counter, C, than M . Then M ′, on input 1k, k ≥ 1,
simulates the computation of M on some input w by guessing the symbols of w
symbol-by-symbol. During the simulation, M ′ increments the counter C if the
next input symbol it guesses is different from the previous symbol it guessed.
When M accepts, M ′ checks and accepts if the value of the counter C is at
least k. Clearly, M is not letter-bounded if and only if L(M ′) is infinite, which
is decidable since the infiniteness problem for NPCMs is decidable [9].

Part 2 follows from part 1 and Lemma 3 by exhaustive search. ��
Let m ≥ 1. A language L is m-bounded if there exist k and not-necessarily

distinct words w1, . . . , wk each of length m such that L(M) ⊆ w∗
1 · · · w∗

k. Note
that 1-bounded is the same as letter-bounded. For example, {ab}∗ is 2-bounded,
but not letter-bounded. We can generalize Proposition 13 as follows:

Proposition 14. Let m ≥ 1. It is decidable, given an NPCM M , whether L(M)
is m-bounded. If it is, we can effectively find k and (not-necessarily distinct)
words w1, . . . , wk each of length m such that L(M) ⊆ w∗

1 · · · w∗
k.

It is an interesting question whether Proposition 14 holds if we do not require
that the (not-necessarily distinct) words w1, . . . , wk of length at most m are of
the same length.

5 Conclusions and Open Questions

This paper studies decidability problems involving testing whether a language L
is �-dense and �-marked-dense, depending on the language family of L. For the
prefix operation, all are decidable for DCM, but undecidable for NCM(1, 1), and

On the Density of Context-Free and Counter Languages 239

thus the problem has been completely characterized in terms of restrictions on
reversal-bounded multicounter machines. For suffix, both density and marked-
density are decidable for DCM(1, 1), but not for DCM(1, 3) and NCM(1, 1), and
therefore this has also been completely characterized. For infix, marked-density
is decidable for DCM(1, 1), but not for DCM(1, 3) and NCM(1, 1). For infix-
density however, it is decidable for nondeterministic reversal-bounded pushdown
automata, but undecidable for deterministic pushdown automata and nondeter-
ministic one-counter automata. It remains open for DCM and NCM when there
are at least two counters, and also for deterministic one-counter automata. For
outfix, marked-density is undecidable for DCM(1, 3),DCM(2, 1) and NCM(1, 1)
but is open for DCM(1, 1) as with all variants for outfix-density.

In Section 4, results on bounded-dense languages are presented where the
words w1, . . . , wk are given. In particular, for each of prefix, infix, suffix and out-
fix, it is decidable for NPCM languages that accept bounded languages, whether
they are �-bounded-dense. But it is still an open problem as to whether or not it
is decidable, given an NPCM (resp., NCM) M , to determine if L(M) is bounded,
and if so, to effectively find k and w1, . . . , wk such that L(M) ⊆ w∗

1 · · · w∗
k.

References

1. Autebert, J., Berstel, J., Boasson, L.: Handbook of Formal Languages, vol. 1, chap.
Context-Free Languages and Pushdown Automata. Springer-Verlag, Berlin (1997)

2. Baker, B.S., Book, R.V.: Reversal-bounded multipushdown machines. Journal of
Computer and System Sciences 8(3), 315–332 (1974)

3. Berstel, J., Perrin, D.: Theory of Codes. Academic Press, Orlando (1985)
4. Chiniforooshan, E., Daley, M., Ibarra, O.H., Kari, L., Seki, S.: One-reversal counter

machines and multihead automata: Revisited. Theoretical Computer Science 454,
81–87 (2012)

5. Eremondi, J., Ibarra, O.H., McQuillan, I.: Deletion operations on deterministic
families of automata. In: Jain, R., Jain, S., Stephan, F. (eds.) TAMC 2015. LNCS,
vol. 9076, pp. 388–399. Springer, Heidelberg (2015)

6. Ginsburg, S.: The Mathematical Theory of Context-Free Languages. McGraw-Hill
Inc., New York (1966)

7. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

8. Ibarra, O., Yen, H.: On the containment and equivalence problems for two-way
transducers. Theoretical Computer Science 429, 155–163 (2012)

9. Ibarra, O.H.: Reversal-bounded multicounter machines and their decision prob-
lems. Journal of the ACM 25(1), 116–133 (1978)

10. Ito, M.: Dense and disjunctive properties of languages. In: Ésik, Z. (ed.) FCT
1993. Lecture Notes in Computer Science, vol. 710, pp. 31–49. Springer, Berlin
Heidelberg (1993)

11. Jürgensen, H., Kari, L., Thierrin, G.: Morphisms preserving densities. International
Journal of Computer Mathematics 78, 165–189 (2001)

12. Minsky, M.L.: Recursive unsolvability of Post’s problem of “tag” and other topics
in theory of Turing Machines. Annals of Mathematics 74(3), 437–455 (1961)

13. Shyr, H.J.: Free Monoids and Languages, 3rd edn. Hon Min Book Company,
Taichung (2001)

*-Continuous Kleene ω-Algebras

Zoltán Ésik1, Uli Fahrenberg2(B), and Axel Legay2

1 University of Szeged, Szeged, Hungary
2 Irisa / Inria Rennes, Rennes, France

ulrich.fahrenberg@irisa.fr

Abstract. We define and study basic properties of ∗-continuous
Kleene ω-algebras that involve a ∗-continuous Kleene algebra with a
∗-continuous action on a semimodule and an infinite product operation
that is also ∗-continuous. We show that ∗-continuous Kleene ω-algebras
give rise to iteration semiring-semimodule pairs, and that for Büchi
automata over ∗-continuous Kleene ω-algebras, one can compute the
associated infinitary power series.

1 Introduction

A continuous (or complete) Kleene algebra is a Kleene algebra in which all
suprema exist and are preserved by products. These have nice algebraic prop-
erties, but not all Kleene algebras are continuous, for example the semiring of
regular languages over some alphabet. Hence a theory of ∗-continuous Kleene
algebras has been developed to cover this and other interesting cases.

For infinite behaviors, complete semiring-semimodule pairs involving an infi-
nite product operation have been developed. Motivated by some examples of
structures which are not complete in this sense, cf. the energy functions of [5], we
generalize here the notion of ∗-continuous Kleene algebra to one of ∗-continuous
Kleene ω-algebra. These are idempotent semiring-semimodule pairs which are
not necessarily complete, but have enough suprema in order to develop a fixed-
point theory and solve weighted Büchi automata (i.e., to compute infinitary
power series).

We will define both a finitary and a non-finitary version of ∗-continuous
Kleene ω-algebras. We then establish several properties of ∗-continuous Kleene
ω-algebras, including the existence of the suprema of certain subsets related to
regular ω-languages. Then we will use these results in our characterization of the
free finitary ∗-continuous Kleene ω-algebras. We also show that each ∗-continuous
Kleene ω-algebra gives rise to an iteration semiring-semimodule pair and that
Büchi automata over ∗-continuous Kleene ω-algebras can be solved algebraically.

The work of the first author was supported by the National Foundation of Hungary
for Scientific Research, Grant no. K 108448. The work of the second and third authors
was supported by ANR MALTHY, grant no. ANR-13-INSE-0003 from the Frenc0h
National Research Foundation.

c© Springer International Publishing Switzerland 2015
I. Potapov (Ed.): DLT 2015, LNCS 9168, pp. 240–251, 2015.
DOI: 10.1007/978-3-319-21500-6 19

*-Continuous Kleene ω-Algebras 241

For proofs of the results in this paper, and also for further motivation and results
related to energy functions, we refer to [4].

A Kleene algebra [12] is an idempotent semiring S = (S,∨, ·,⊥, 1) equipped
with a star operation ∗ : S → S such that for all x, y ∈ S, yx∗ is the least
solution of the fixed point equation z = zx ∨ y and x∗y is the least solution of
the fixed point equation z = xz ∨ y with respect to the natural order.

Examples of Kleene algebras include the language semiring P (A∗) over an
alphabet A, whose elements are the subsets of the set A∗ of all finite words over
A, and whose operations are set union and concatenation, with the languages ∅
and {ε} serving as ⊥ and 1. Here, ε denotes the empty word. The star operation
is the usual Kleene star: X∗ =

⋃
n≥0 Xn = {u1 . . . un : u1, . . . , un ∈ X, n ≥ 0}.

Another example is the Kleene algebra P (A × A) of binary relations over
any set A, whose operations are union, relational composition (written in dia-
grammatic order), and where the empty relation ∅ and the identity relation
id serve as the constants ⊥ and 1. The star operation is the formation of the
reflexive-transitive closure, so that R∗ =

⋃
n≥0 Rn for all R ∈ P (A × A).

The above examples are in fact continuous Kleene algebras, i.e., idempotent
semirings S such that equipped with the natural order, they are all complete
lattices (hence all suprema exist), and the product operation preserves arbitrary
suprema in either argument:

y(
∨

X) =
∨

yX and (
∨

X)y =
∨

Xy

for all X ⊆ S and y ∈ S. The star operation is given by x∗ =
∨

n≥0 xn, so that x∗

is the supremum of the set {xn : n ≥ 0} of all powers of x. It is well-known that
the language semirings P (A∗) may be identified as the free continuous Kleene
algebras (in a suitable category of continuous Kleene algebras).

A larger class of models is given by the ∗-continuous Kleene algebras [12]. By
the definition of a ∗-continuous Kleene algebra S = (S,∨, ·,⊥, 1), only suprema
of sets of the form {xn : n ≥ 0} need to exist, where x is any element of S,
and x∗ is given by this supremum. Moreover, product preserves such suprema
in both of their arguments:

y(
∨
n≥0

xn) =
∨
n≥0

yxn and (
∨
n≥0

xn)y =
∨
n≥0

xny.

For any alphabet A, the collection R(A∗) of all regular languages over A is
an example of a ∗-continuous Kleene algebra which is not a continuous Kleene
algebra. The Kleene algebra R(A∗) may be identified as the free ∗-continuous
Kleene algebra on A. It is also the free Kleene algebra on A, cf. [11]. There
are several other characterizations of R(A∗), the most general of which identifies
R(A∗) as the free iteration semiring on A satisfying the identity 1∗ = 1, cf. [1,13].

For non-idempotent extensions of the notions of continuous Kleene algebras,
∗-continuous Kleene algebras and Kleene algebras, we refer to [6,7].

When A is an alphabet, let Aω denote the set of all ω-words (infinite
sequences) over A. An ω-language over A is a subset of Aω. It is natural to

242 Z. Ésik et al.

consider the set P (Aω) of all languages of ω-words over A, equipped with the
operation of set union as ∨ and the empty language ∅ as ⊥, and the left action of
P (A∗) on P (Aω) defined by XV = {xv : x ∈ X, v ∈ V } for all X ⊆ A∗ and V ⊆
Aω. Then that (P (Aω),∨,⊥) is a P (A∗)-semimodule and thus (P (A∗), P (Aω))
is a semiring-semimodule pair. We may also equip (P (A∗), P (Aω)) with an infi-
nite product operation mapping an ω-sequence (X0,X1, . . .) over P (A∗) to the
ω-language

∏
n≥0 Xn = {x0x1 . . . ∈ Aω : xn ∈ Xn}. (Thus, an infinite number

of the xn must be different from ε. Note that 1ω = ⊥ holds.) The semiring-
semimodule pair so obtained is an example of a continuous Kleene ω-algebra.

More generally, we call a semiring-semimodule pair (S, V) a continuous
Kleene ω-algebra if S is a continuous Kleene algebra (hence S and V are idem-
potent), V is a complete lattice with the natural order, and the action preserves
all suprema in either argument. Moreover, there is an infinite product opera-
tion which is compatible with the action and associative in the sense that the
following hold:

1. For all x0, x1, . . . ∈ S,
∏

n≥0 xn = x0

∏
n≥0 xn+1.

2. Let x0, x1, . . . ∈ S and 0 = n0 ≤ n1 · · · be a sequence which increases without
a bound. Let yk = xnk

· · · xnk+1−1 for all k ≥ 0. Then
∏

n≥0 xn =
∏

k≥0 yk.

Moreover, the infinite product operation preserves all suprema:

3.
∏

n≥0(
∨

Xn) =
∨{∏

n≥0 xn : xn ∈ Xn, n ≥ 0}, for all X0,X1, . . . ⊆ S.

The above notion of continuous Kleene ω-algebra may be seen as a special
case of the not necessarily idempotent complete semiring-semimodule pairs of [9].

Our aim in this paper is to provide an extension of the notion of continu-
ous Kleene ω-algebras to ∗-continuous Kleene ω-algebras, which are semiring-
semimodule pairs (S, V) consisting of a ∗-continuous Kleene algebra S acting on
a necessarily idempotent semimodule V , such that the action preserves certain
suprema in its first argument, and which are equipped with an infinite product
operation satisfying the above compatibility and associativity conditions and
some weaker forms of the last axiom.

2 Free Continuous Kleene ω-Algebras

We have defined continuous Kleene ω-algebras in the introduction as idempotent
semiring-semimodule pairs (S, V) such that S = (S,∨, ·,⊥, 1) is a continuous
Kleene algebra and V = (V,∨,⊥) is a continuous S-semimodule. Thus, equipped
with the natural order ≤ given by x ≤ y iff x ∨ y = y, S and V are complete
lattices and the product and the action preserve all suprema in either argument.
Moreover, there is an infinite product operation, satisfying the compatibility and
associativity conditions, which preserves all suprema.

In this section, we offer descriptions of the free continuous Kleene ω-algebras
and the free continuous Kleene ω-algebras satisfying the identity 1ω = ⊥.

A homomorphism between continuous Kleene algebras preserves all opera-
tions. A homomorphism is continuous if it preserves all suprema. We recall the
following folklore result.

*-Continuous Kleene ω-Algebras 243

Theorem 1. For each set A, the language semiring (P (A∗),∨, ·,⊥, 1) is the free
continuous Kleene algebra on A.

Equivalently, if S is a continuous Kleene algebra and h : A → S is any
function, then there is a unique continuous homomorphism h� : P (A∗) → S
extending h.

In view of Theorem 1, it is not surprising that the free continuous Kleene
ω-algebras can be described using languages of finite and ω-words. Suppose that
A is a set. Let Aω denote the set of all ω-words over A and A∞ = A∗ ∪ Aω. Let
P (A∗) denote the language semiring over A and P (A∞) the semimodule of all
subsets of A∞ equipped with the action of P (A∗) defined by XY = {xy : x ∈
X, y ∈ Y } for all X ⊆ A∗ and Y ⊆ A∞. We also define an infinite product by∏

n≥0 Xn = {u0u1 . . . : un ∈ Xn}.
Homomorphisms between continuous Kleene ω-algebras (S, V) and (S′, V ′)

consist of two functions hS : S → S′, hV : V → V ′ which preserve all operations.
A homomorphism (hS , hV) is continuous if hS and hV preserve all suprema.

Theorem 2. (P (A∗), P (A∞)) is the free continuous Kleene ω-algebra on A.

Consider now (P (A∗), P (Aω)) with infinite product defined, as a restriction
of the above infinite product, by

∏
n≥0 Xn = {u0u1 . . . ∈ Aω : un ∈ Xn, n ≥ 0}.

It is also a continuous Kleene ω-algebra. Moreover, it satisfies 1ω = ⊥.

Theorem 3. For each set A, (P (A∗), P (Aω)) is the free continuous Kleene ω-
algebra satisfying 1ω = ⊥ on A.

3 ∗-Continuous Kleene ω-Algebras

In this section, we define ∗-continuous Kleene ω-algebras and finitary ∗-
continuous Kleene ω-algebras as an extension of the ∗-continuous Kleene algebras
of [11]. We establish several basic properties of these structures, including the
existence of the suprema of certain subsets corresponding to regular ω-languages.

We define a ∗-continuous Kleene ω-algebra (S, V) as a ∗-continuous Kleene
algebra (S,∨, ·,⊥, 1,∗) acting on a (necessarily idempotent) semimodule V =
(V,∨,⊥) subject to the usual laws of unitary action as well as the following
axiom

– Ax0: For all x, y ∈ S and v ∈ V , xy∗v =
∨

n≥0 xynv.

Moreover, there is an infinite product operation mapping an ω-word x0x1 . . . over
S to an element

∏
n≥0 xn of V . Thus, infinite product is a function Sω → V ,

where Sω denotes the set of all ω-words over S.
The infinite product is subject to the following axioms relating it to the other

operations of Kleene ω-algebras and operations on ω-words. The first two axioms
are the same as for continuous Kleene ω-algebras. The last two are weaker forms
of the complete preservation of suprema of continuous Kleene ω-algebras.

Ax1: For all x0, x1, . . . ∈ S,
∏

n≥0 xn = x0

∏
n≥0 xn+1.

244 Z. Ésik et al.

Ax2: Let x0, x1, . . . ∈ S and 0 = n0 ≤ n1 · · · be a sequence which increases
without a bound. Let yk = xnk

· · · xnk+1−1 for all k ≥ 0. Then
∏

n≥0 xn =∏
k≥0 yk.

Ax3: For all x0, x1, . . . and y, z in S,
∏

n≥0(xn(y ∨ z)) =
∨

x′
n∈{y,z}

∏
n≥0 xnx′

n.
Ax4: For all x, y0, y1, . . . ∈ S,

∏
n≥0 x∗yn =

∨
kn≥0

∏
n≥0 xknyn.

It is clear that every continuous Kleene ω-algebra is ∗-continuous.
Some of our results will also hold for weaker structures. We define a finitary

∗-continuous Kleene ω-algebra as a structure (S, V) as above, equipped with a
star operation and an infinite product

∏
n≥0 xn restricted to finitary ω-words

over S, i.e., to sequences x0, x1, . . . such that there is a finite subset F of S
such that each xn is a finite product of elements of F . (Note that F is not fixed
and may depend on the sequence x0, x1, . . .) It is required that the axioms hold
whenever the involved ω-words are finitary.

Finally, a generalized ∗-continuous Kleene algebra (S, V) is defined as a ∗-
continuous Kleene ω-algebra, but without the infinite product (and without Ax1–
Ax4). However, it is assumed that Ax0 holds.

The above axioms have a number of consequences. For example, if
x0, x1, . . . ∈ S and xi = ⊥ for some i, then

∏
n≥0 xn = ⊥. Indeed, if xi = ⊥,

then
∏

n≥0 xn = x0 · · · xi

∏
n≥i+1 xn = ⊥∏

n≥i+1 xn = ⊥. By Ax1 and Ax2, each
∗-continuous Kleene ω-algebra is an ω-semigroup.

Suppose that (S, V) is a ∗-continuous Kleene ω-algebra. For each word w ∈ S∗

there is a corresponding element w of S which is the product of the letters of
w in the semiring S. Similarly, when w ∈ S∗V , there is an element w of V
corresponding to w, and when X ⊆ S∗ or X ⊆ S∗V , then we can associate with
X the set X = {w : w ∈ X}, which is a subset of S or V . Below we will denote w
and X by just w and X, respectively, The following two lemmas are well-known
(and follow from the fact that the semirings of regular languages are the free
∗-continuous Kleene algebras [11] and the free Kleene algebras [12]).

Lemma 4. Suppose that S is a ∗-continuous Kleene algebra. If R ⊆ S∗ is reg-
ular, then

∨
R exists. Moreover, for all x, y ∈ S, x(

∨
R)y =

∨
xRy.

Lemma 5. Let S be a ∗-continuous Kleene algebra. Suppose that R,R1 and R2

are regular subsets of S∗. Then
∨

(R1 ∪ R2) =
∨

R1 ∨ ∨
R2∨

(R1R2) = (
∨

R1)(
∨

R2)∨
(R∗) = (

∨
R)∗.

In a similar way, we can prove:

Lemma 6. Let (S, V) be a generalized ∗-continuous Kleene algebra. If R ⊆ S∗

is regular, x ∈ S and v ∈ V , then x(
∨

R)v =
∨

xRv.

Lemma 7. Let (S, V) be a ∗-continuous Kleene ω-algebra. Suppose that the
languages R0, R1, . . . ⊆ S∗ are regular and that the set {R0, R1, . . . } is finite.
Moreover, let x0, x1, . . . ∈ S. Then

*-Continuous Kleene ω-Algebras 245

∏
n≥0

xn(
∨

Rn) =
∨ ∏

n≥0

xnRn.

Lemma 8. Let (S, V) be a finitary ∗-continuous Kleene ω-algebra. Suppose that
the languages R0, R1, . . . ⊆ S∗ are regular and that the set {R0, R1, . . . } is finite.
Moreover, let x0, x1, . . . be a finitary sequence of elements of S. Then∏

n≥0

xn(
∨

Rn) =
∨ ∏

n≥0

xnRn.

Note that each sequence x0, y0, x1, y1, . . . with yn ∈ Rn is finitary.

Corollary 9. Let (S, V) be a finitary ∗-continuous Kleene ω-algebra. Suppose
that R0, R1, . . . ⊆ S∗ are regular and that the set {R0, R1, . . . } is finite. Then∨ ∏

n≥0 Rn exists and is equal to
∏

n≥0

∨
Rn.

When v = x0x1 . . . ∈ Sω is an ω-word over S, it naturally determines the
element

∏
n≥0 xn of V . Thus, any subset X of Sω determines a subset of V . Using

this convention, Lemma 7 may be rephrased as follows. For any ∗-continuous
Kleene ω-algebra (S, V), x0, x1, . . . ∈ S and regular sets R0, R1, . . . ⊆ S∗ for
which the set {R0, R1, . . . } is finite, it holds that

∏
n≥0 xn(

∨
Rn) =

∨
X where

X ⊆ Sω is the set of all ω-words x0y0x1y1 . . . with yi ∈ Ri for all i ≥ 0, i.e.,
X = x0R0x1R1 . . . Similarly, Corollary 9 asserts that if a subset of V corresponds
to an infinite product over a finite collection of ordinary regular languages in S∗,
then the supremum of this set exists.

In any (finitary or non-finitary) ∗-continuous Kleene ω-algebra (S, V), we
define an ω-power operation S → V by xω =

∏
n≥0 x for all x ∈ S. From the

axioms we immediately have:

Corollary 10. Suppose that (S, V) is a ∗-continuous Kleene ω-algebra or a fini-
tary ∗-continuous Kleene ω-algebra. Then the following hold for all x, y ∈ S:

xω = xxω

(xy)ω = x(yx)ω

xω = (xn)ω, n ≥ 2.

Thus, each ∗-continuous Kleene ω-algebra gives rise to a Wilke algebra [14].

Lemma 11. Let (S, V) be a (finitary or non-finitary) ∗-continuous Kleene ω-
algebra. Suppose that R ⊆ Sω is ω-regular. Then

∨
R exists in V .

Lemma 12. Let (S, V) be a (finitary or non-finitary) ∗-continuous Kleene ω-
algebra. For all ω-regular sets R1, R2 ⊆ Sω and regular sets R ⊆ S∗ it holds
that ∨

(R1 ∪ R2) =
∨

R1 ∨ ∨
R2∨

(RR1) = (
∨

R)(
∨

R1).

And if R does not contain the empty word, then∨
Rω = (

∨
R)ω.

246 Z. Ésik et al.

4 Free Finitary ∗-Continuous Kleene ω-Algebras

Recall that for a set A, R(A∗) denotes the collection of all regular languages
in A∗. It is well-known that R(A∗), equipped with the usual operations, is a
∗-continuous Kleene algebra on A. Actually, R(A∗) is characterized up to iso-
morphism by the following universal property.

Call a function f : S → S′ between ∗-continuous Kleene algebras a ∗-
continuous homomorphism if it preserves all operations including star, so that
it preserves the suprema of subsets of S of the form {xn : n ≥ 0}, where x ∈ S.

Theorem 13 ([12]). For each set A, R(A∗) is the free ∗-continuous Kleene
algebra on A.

Thus, if S is any ∗-continuous Kleene algebra and h : A → S is any mapping
from any set A into S, then h has a unique extension to a ∗-continuous Kleene
algebra homomorphism h� : R(A∗) → S.

Now let R′(A∞) denote the collection of all subsets of A∞ which are finite
unions of finitary infinite products of regular languages, that is, finite unions
of sets of the form

∏
n≥0 Rn, where each Rn ⊆ A∗ is regular, and the set

{R0, R1, . . .} is finite. Note that R′(A∞) contains the empty set and is closed
under finite unions. Moreover, when Y ∈ R′(A∞) and u = a0a1 . . . ∈ Y ∩ Aω,
then the alphabet of u is finite, i.e., the set {an : n ≥ 0} is finite. Also, R′(A∞)
is closed under the action of R(A∗) inherited from (P (A∗), P (A∞)). The infinite
product of a sequence of regular languages in R(A∗) is not necessarily contained
in R′(A∞), but by definition R′(A∞) contains all infinite products of finitary
sequences over R(A∗).

Example 14. Let A = {a, b} and consider the set X = {aba2b . . . anb . . . } ∈
P (A∞) containing a single ω-word. X can be written as an infinite product of
subsets of A∗, but it cannot be written as an infinite product R0R1 . . . of regular
languages in A∗ such that the set {R0, R1, . . .} is finite. Hence X /∈ R′(A∞).

Theorem 15. For each set A, (R(A∗), R′(A∞)) is the free finitary ∗-continuous
Kleene ω-algebra on A.

Consider now (R(A∗), R′(Aω)) equipped with the infinite product operation∏
n≥0 Xn = {u0u1 ∈ Aω : un ∈ Xn, n ≥ 0}, defined on finitary sequences

X0,X1, . . . of languages in R(A∗).

Theorem 16. For each set A, (R(A∗), R′(Aω)) is the free finitary ∗-continuous
Kleene ω-algebra satisfying 1ω = ⊥ on A.

5 ∗-Continuous Kleene ω-Algebras and Iteration
Semiring-Semimodule Pairs

In this section, we will show that every (finitary or non-finitary) ∗-continuous
Kleene ω-algebra is an iteration semiring-semimodule pair.

*-Continuous Kleene ω-Algebras 247

Some definitions are in order. Suppose that S = (S,+, ·, 0, 1) is a semiring.
Following [1], we call S a Conway semiring if S is equipped with a star operation
∗ : S → S satisfying, for all x, y ∈ S,

(x + y)∗ = (x∗y)∗x∗

(xy)∗ = 1 + x(yx)∗y.

It is known [1] that if S is a Conway semiring, then for each n ≥ 1, so is
the semiring Sn×n of all n × n-matrices over S with the usual sum and product
operations and the star operation defined by induction on n so that if n > 1 and
M =

(
a b
c d

)
, where a and d are square matrices of dimension < n, then

M∗ =
(

(a + bd∗c)∗ (a + bd∗c)∗bd∗

(d + ca∗b)∗ca∗ (d + ca∗b)∗

)
.

The above definition does not depend on how M is split into submatrices.
Suppose that S is a Conway semiring and G = {g1, . . . , gn} is a finite group

of order n. For each xg1 , . . . , xgn
∈ S, consider the n × n matrix MG =

MG(xg1 , . . . , xgn
) whose ith row is (xg−1

i g1
, . . . , xg−1

i gn
), for i = 1, . . . , n, so that

each row (and column) is a permutation of the first row. We say that the group
identity [2] associated with G holds in S if for each xg1 , . . . , xgn

, the first (and
then any) row sum of M∗

G is (xg1 + · · · + xgn
)∗. Finally, we call S an iteration

semiring [1,3] if the group identities hold in S for all finite groups of order n.
Classes of examples of (idempotent) iteration semirings are given by the

continuous and the ∗-continuous Kleene algebras defined in the introduction. As
mentioned above, the language semirings P (A∗) and the semirings P (A × A)
of binary relations are continuous and hence also ∗-continuous Kleene algebras,
and the semirings R(A∗) of regular languages are ∗-continuous Kleene algebras.

When S is a ∗-continuous Kleene algebra and n is a nonnegative integer, then
the matrix semiring Sn×n is also a ∗-continuous Kleene algebra and hence an
iteration semiring, cf. [11]. The star operation is defined by

M∗
i,j =

∨
m≥0, 1≤k1,...,km≤n

Mi,k1Mk1,k2 · · · Mkm,j ,

for all M ∈ Sn×n and 1 ≤ i, j ≤ n. It is not trivial to prove that the above supre-
mum exists. The fact that M∗ is well-defined can be established by induction
on n together with the well-known matrix star formula mentioned above.

A semiring-semimodule pair (S, V) is a Conway semiring-semimodule pair if
it is equipped with a star operation ∗ : S → S and an omega operation ω : S → V
such that S is a Conway semiring acting on the semimodule V = (V,+, 0) and
the following hold for all x, y ∈ S:

(x + y)ω = (x∗y)∗xω + (x∗y)ω

(xy)ω = x(yx)ω.

It is known [1] that when (S, V) is a Conway semiring-semimodule pair, then
so is (Sn×n, V n) for each n, where V n denotes the Sn×n-semimodule of all

248 Z. Ésik et al.

n-dimensional (column) vectors over V with the action of Sn×n defined similarly
to matrix-vector product, and where the omega operation is defined by induction
so that when n > 1 and M =

(
a b
c d

)
, where a and d are square matrices of

dimension < n, then

Mω =
(

(a + bd∗c)ω + (a + bd∗c)∗bdω

(d + ca∗b)ω + (d + ca∗b)∗caω

)
.

We also define iteration semiring-semimodule pairs [1,9] as those Conway
semiring-semimodule pairs such that S is an iteration semiring and the omega
operation satisfies the following condition: let MG = MG(xg1 , . . . , xgn

) like
above, with xg1 , . . . , xgn

∈ S for a finite group G = {g1, . . . , gn} of order n,
then the first (and hence any) entry of Mω

G is equal to (xg1 + · · · + xgn
)ω.

Examples of (idempotent) iteration semiring-semimodule pairs include the
semiring-semimodule pairs (P (A∗), P (Aω)) of languages and ω-languages over
an alphabet A, mentioned in the introduction. The omega operation is defined
by Xω =

∏
n≥0 X. More generally, it is known that every continuous Kleene ω-

algebra gives rise to an iteration semiring-semimodule pair. The omega operation
is defined as for languages: xω =

∏
n≥0 xn with xn = x for all n ≥ 0.

Other not necessarily idempotent examples include the complete and the
(symmetric) bi-inductive semiring-semimodule pairs of [8,9].

Suppose now that (S, V) is a ∗-continuous Kleene ω-algebra. Then for each
n ≥ 1, (Sn×n, V n) is a semiring-semimodule pair. The action of Sn×n on V n

is defined similarly to matrix-vector product (viewing the elements of V n as
column vectors). It is easy to see that (Sn×n, V n) is a generalized ∗-continuous
Kleene algebra for each n ≥ 1.

Suppose that n ≥ 2. We would like to define an infinite product operation
(Sn×n)ω → V n on matrices in Sn×n by

(
∏
m≥0

Mm)i =
∨

1≤i1,i2,...≤n

(M0)i,i1(M1)i1,i2 · · ·

for all 1 ≤ i ≤ n. However, unlike in the case of complete semiring-semimodule
pairs [9], the supremum on the right-hand side may not exist. Nevertheless it is
possible to define an omega operation Sn×n → V n and to turn (Sn×n, V n) into
an iteration semiring-semimodule pair.

Lemma 17. Let (S, V) be a (finitary or non-finitary) ∗-continuous Kleene ω-
algebra. Suppose that M ∈ Sn×n, where n ≥ 2. Then for every 1 ≤ i ≤ n,

(
∏
m≥0

M)i =
∨

1≤i1,i2,...≤n

Mi,i1Mi1,i2 · · ·

exists, so that we define Mω by the above equality. Moreover, when M =
(

a b
c d

)
,

where a and d are square matrices of dimension < n, then

Mω =
(

(a ∨ bd∗c)ω ∨ (a ∨ bd∗c)∗bdω

(d ∨ ca∗b)ω ∨ (d ∨ ca∗b)∗caω

)
. (1)

Theorem 18. Every (finitary or non-finitary) ∗-continuous Kleene ω-algebra is
an iteration semiring-semimodule pair.

*-Continuous Kleene ω-Algebras 249

Relation to Bi-Inductive Semiring-Semimodule Pairs. Recall that when
P is a partially ordered set and f is a function P → P , then a pre-fixed point
of f is an element x of P with f(x) ≤ x. Similarly, x ∈ P is a post-fixed point
of f if x ≤ f(x). Suppose that f is monotone and has x as its least pre-fixed
point. Then x is a fixed point, i.e., f(x) = x, and thus the least fixed point of f .
Similarly, when f is monotone, then the greatest post-fixed point of f , whenever
it exists, is the greatest fixed point of f .

When S is a ∗-continuous Kleene algebra, then S is a Kleene algebra [11].
Thus, for all x, y ∈ S, x∗y is the least pre-fixed point (and thus the least fixed
point) of the function S → S defined by z �→ xz∨y for all z ∈ S. Moreover, yx∗ is
the least pre-fixed point and the least fixed point of the function S → S defined
by z �→ zx∨ y, for all z ∈ S. Similarly, when (S, V) is a generalized ∗-continuous
Kleene algebra, then for all x ∈ S and v ∈ V , x∗v is the least pre-fixed point
and the least fixed point of the function V → V defined by z �→ xz ∨ v.

A bi-inductive semiring-semimodule pair is defined as a semiring-semimodule
pair (S, V) for which both S and V are partially ordered by the natural order
relation ≤ such that the semiring and semimodule operations and the action are
monotone, and which is equipped with a star operation ∗ : S → S and an omega
operation ω : S → V such that the following hold for all x, y ∈ S and v ∈ V :

– x∗y is the least pre-fixed point of the function S → S defined by z �→ xz +y,
– x∗v is the least pre-fixed point of the function V → V defined by z �→ xz+v,
– xω + x∗v is the greatest post-fixed point of the function V → V defined by

z �→ xz + v.

A bi-inductive semiring-semimodule pair is said to be symmetric if for all x, y ∈
S, yx∗ is the least pre-fixed point of the functions S → S defined by z �→ zx+y.
It is known that every bi-inductive semiring-semimodule pair is an iteration
semiring-semimodule pair, see [9]. By the above remarks we have:

Proposition 19. Suppose that (S, V) is a finitary ∗-continuous Kleene ω-
algebra. When for all x ∈ S and v ∈ V , xω ∨ x∗v is the greatest post-fixed
point of the function V → V defined by z �→ xz ∨ v, then (S, V) is a symmetric
bi-inductive semiring-semimodule pair.

6 Büchi Automata in ∗-Continuous Kleene ω-Algebras

A generic definition of Büchi automata in Conway semiring-semimodule pairs
was given in [1,8]. In this section, we recall this general definition and apply
it to ∗-continuous Kleene ω-algebras. We give two different definitions of the
behavior of a Büchi automaton, an algebraic and a combinatorial, and show
that these two definitions are equivalent.

Suppose that (S, V) is a Conway semiring-semimodule pair, S0 is a subsemi-
ring of S closed under star, and A is a subset of S. We write S0〈A〉 for the set of
all finite sums s1a1 + · · ·+ smam with si ∈ S0 and ai ∈ A, for each i = 1, . . . , m.

We define a (weighted) Büchi automaton over (S0, A) of dimension n ≥ 1
in (S, V) as a system A = (α,M, k) where α ∈ S1×n

0 is the initial vector,

250 Z. Ésik et al.

M ∈ S0〈A〉n×n is the transition matrix, and k is an integer 0 ≤ k ≤ n. In order
to define the behavior |A| of A, let us split M into 4 parts as above, M =

(
a b
c d

)
,

with a ∈ S0〈A〉k×k the top-left k-by-k submatrix. Then we define

|A| = α

(
(a + bd∗c)ω

d∗c(a + bd∗c)ω

)
.

We give another more combinatorial definition. Let (S, V) be a ∗-continuous
Kleene ω-algebra. A Büchi automaton A = (α,M, k) over (S0, A) of dimension
n may be represented as a transition system whose set of states is {1, . . . , n}.
For any pair of states i, j, the transitions from i to j are determined by the entry
Mi,j of the transition matrix. Let Mi,j = s1a1 ∨ · · · ∨ smam, say, then there are
m transitions from i to j, respectively labeled s1a1, . . . , snan. An accepting run
of the Büchi automaton from state i is an infinite path starting in state i which
infinitely often visits one of the first k states, and the weight of such a run is the
infinite product of the path labels. The behavior of the automaton in state i is
the supremum of the weights of all accepting runs starting in state i. Finally, the
behavior of the automaton is α1w1 ∨ · · · ∨ αnwn, where for each i, αi is the ith
component of α and wi is the behavior in state i. Let |A|′ denote the behavior
of A according to this second definition.

Theorem 20. For every Büchi automaton A over (S0, A) in a (finitary or non-
finitary) ∗-continuous Kleene ω-algebra, it holds that |A| = |A|′.

For completeness we also mention a Kleene theorem for the Büchi automata
introduced above, which is a direct consequence of the Kleene theorem for Con-
way semiring-semimodule pairs, cf. [8,10].

Theorem 21. An element of V is the behavior of a Büchi automaton over
(S0, A) iff it is regular (or rational) over (S0, A), i.e., when it can be gener-
ated from the elements of S0 ∪ A by the semiring and semimodule operations,
the action, and the star and omega operations.

It is a routine matter to show that an element of V is rational over (S0, A)
iff it can be written as

∨n
i=1 xiy

ω
i , where each xi and yi can be generated from

S0 ∪ A by ∨, · and ∗.

7 Conclusion

We have introduced continuous and (finitary and non-finitary) ∗-continuous
Kleene ω-algebras and exposed some of their basic properties. Continuous Kleene
ω-algebras are idempotent complete semiring-semimodule pairs, and conceptu-
ally, ∗-continuous Kleene ω-algebras are a generalization of continuous Kleene
ω-algebras in much the same way as ∗-continuous Kleene algebras are of con-
tinuous Kleene algebras: In ∗-continuous Kleene algebras, suprema of finite sets
and of sets of powers are required to exist and to be preserved by the product; in

*-Continuous Kleene ω-Algebras 251

∗-continuous Kleene ω-algebras these suprema are also required to be preserved
by the infinite product.

It is known that in a Kleene algebra, ∗-continuity is precisely what is required
to be able to compute the reachability value of a weighted automaton (or its
power series) using the matrix star operation. Similarly, we have shown that the
Büchi values of automata over ∗-continuous ω-algebras can be computed using
the matrix omega operation.

We have seen that the sets of finite and infinite languages over an alphabet
are the free continuous Kleene ω-algebras, and that the free finitary ∗-continuous
Kleene ω-algebras are given by the sets of regular languages and of finite unions
of finitary infinite products of regular languages. A characterization of the free
(non-finitary) ∗-continuous Kleene ω-algebras (and whether they even exist) is
left open.

We have seen that every ∗-continuous Kleene ω-algebra is an iteration
semiring-semimodule pair, which permits to compute the behavior of Büchi
automata with weights in a ∗-continuous Kleene ω-algebra using ω-powers of
matrices.

References

1. Bloom, S.L., Ésik, Z.: Iteration Theories: The Equational Logic of Iterative
Processes. EATCS monographs on theoretical computer science. Springer (1993)

2. Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall (1971)
3. Ésik, Z.: Iteration semirings. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS,

vol. 5257, pp. 1–20. Springer, Heidelberg (2008)
4. Ésik, Z., Fahrenberg, U., Legay, A.: ∗-continuous Kleene ω-algebras. CoRR (2015).

http://arxiv.org/abs/1501.01118
5. Ésik, Z., Fahrenberg, U., Legay, A., Quaas, K.: Kleene algebras and semimodules

for energy problems. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS,
vol. 8172, pp. 102–117. Springer, Heidelberg (2013)

6. Ésik, Z., Kuich, W.: Rationally additive semirings. J. Univ. Comput. Sci. 8(2),
173–183 (2002)

7. Ésik, Z., Kuich, W.: Inductive star-semirings. TCS 324(1), 3–33 (2004)
8. Ésik, Z., Kuich, W.: A semiring-semimodule generalization of ω-regular languages,

Parts 1 and 2. J. Aut. Lang. Comb. 10, 203–264 (2005)
9. Ésik, Z., Kuich, W.: On iteration semiring-semimodule pairs. Semigroup Forum

75, 129–159 (2007)
10. Ésik, Z., Kuich, W.: Finite automata. In: Handbook of Weighted Automata.

Springer (2009)
11. Kozen, D.: On kleene algebras and closed semirings. In: Rovan, B. (ed.) MFCS

1990. LNCS, vol. 452, pp. 26–47. Springer, Heidelberg (1990)
12. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular

events. Inf. Comput. 110(2), 366–390 (1994)
13. Krob, D.: Complete systems of B-rational identities. TCS 89(2), 207–343 (1991)
14. Wike, T.: An eilenberg theorem for ∞-languages. In: Albert, J.L., Monien, B.,

Artalejo, M.R. (eds.) ICALP. LNCS, vol. 510, pp. 588–599. Springer, Heidelberg
(1991)

http://arxiv.org/abs/http://arxiv.org/abs/1501.01118

Unary Probabilistic and Quantum Automata
on Promise Problems

Aida Gainutdinova1(B) and Abuzer Yakaryılmaz2

1 Kazan Federal University, Kazan, Russia
aida.ksu@gmail.com

2 National Laboratory for Scientific Computing, Petrópolis, RJ 25651-075, Brazil
abuzer@lncc.br

Abstract. We continue the systematic investigation of probabilistic
and quantum finite automata (PFAs and QFAs) on promise problems
by focusing on unary languages. We show that bounded-error QFAs
are more powerful than PFAs. But, in contrary to the binary prob-
lems, the computational powers of Las-Vegas QFAs and bounded-error
PFAs are equivalent to deterministic finite automata (DFAs). Lastly, we
present a new family of unary promise problems with two parameters
such that when fixing one parameter QFAs can be exponentially more
succinct than PFAs and when fixing the other parameter PFAs can be
exponentially more succinct than DFAs.

1 Introduction

Promise problems are generalizations of language recognition. The aim is, instead
of separating one language from its complement, to separate any two disjoint lan-
guages, i.e. the input is promised to be from the union of these two languages.
Promise problems have served some important roles in the computational com-
plexity. For example, it is not known whether the class BPP (BQP), bounded
error probabilistic (quantum) polynomial time, has a complete problem, but,
the class PromiseBPP (PromiseBQP), defined on promise problems, has some
complete problems (see the surveys by Goldreich [12] and Watrous [27]).

In automata theory, the promise problems has also appeared in many different
forms. For example, in 1989 Condon and Lipton [9] defined a promised version of
emptiness problem for probabilistic finite automata (PFAs), and showed its unde-
cidability by using a promised version of equality language (EQ = {anbn|n > 0}),
solved by two-way bounded-error PFAs, which was also used to show that there
is a weak constant-space interactive proof system for any recursive enumerable
language.

On the other hand, up to our knowledge, some systematic works on promise
problems in automata theory have been started only recently. An initial result

The extended version of the paper that contains the missing proofs is [10].
Abuzer Yakaryılmaz— Yakaryılmaz was partially supported by CAPES with grant
88881.030338/2013-01.

c© Springer International Publishing Switzerland 2015
I. Potapov (Ed.): DLT 2015, LNCS 9168, pp. 252–263, 2015.
DOI: 10.1007/978-3-319-21500-6 20

Unary Probabilistic and Quantum Automata on Promise Problems 253

was given to compare exact quantum and deterministic pushdown automata [20],
the former one was shown to be more powerful (see also [21] and [22] for the
results in this direction). Then, the result given by Ambainis and Yakaryılmaz
[6], the state advantages of exact quantum finite automata (QFAs) over deter-
ministic finite automata (DFAs) cannot be bounded in the case of unary promise
problems, has stimulated the topic and a series of papers appeared on the suc-
cinctness of QFAs and other models [1,8,13,14,30,31]. In parallel, the new results
were given on classical and quantum automata models [11,24]:

– There is a promise problem solved by exact two-way QFAs but not by any
sublogarithmic probabilistic Turing machine (PTM).

– There is a promise problem solved by an exact two-way QFA in quadratic
expected time, but not by any bounded-error o(log log n)-space PTMs in
polynomial expected time.

– There is a promise problem solvable by a Las Vegas realtime QFA, but not
by any bounded-error PFA.

– The computational power of deterministic, nondeterministic, alternating,
and Las Vegas PFAs are the same and two-wayness does not help.

– On the contrary to tight quadratic gap in the case of language recognition,
Las-Vegas PFAs can be exponentially more state efficient than DFAs.

– The state advantages of bound-error unary PFAs over DFAs cannot be
bounded.

– There is a binary promise problem solved by bounded-error PFAs but not
by any DFA.

In this paper, we provide some new results regarding probabilistic and quan-
tum automata on unary promise problems. We show that bounded-error QFAs
are more powerful than PFAs. But, on contrary to the binary problems, the
computational power of Las-Vegas QFAs and bounded-error PFAs are equiva-
lent to DFAs. Lastly, we present a new family of unary promise problems with
two parameters such that when fixing one parameter QFAs can be exponentially
more succinct than PFAs and when fixing the other parameter PFAs can be
exponentially more succinct than DFAs.

2 Preliminaries

In this section, we provide the necessary background to follow the remaining
part. We start with the definitions of models and the notion of promise problems.
Then, we give the basics of Markov chain which will be used in some proofs.

2.1 Definitions

A PFA P is a 5-tuple P = (Q,Σ, {Aσ | σ ∈ Σ}, v0, Qa), where

– Q is the set of (classical) states,
– Σ is the input alphabet,

254 A. Gainutdinova and A. Yakaryılmaz

– v0 is a |Q|-dimensional stochastic initial column vector representing the ini-
tial probability distribution of the states at the beginning of the computation,

– Aσ is a (left) stochastic transition matrix for symbol σ ∈ Σ where Aσ(j, i)
represents the probability of going from the ith state to the jth state after
reading σ, and

– Qa is the set of the accepting states.

The computation of P on the input w ∈ Σ∗ can be traced by a stochastic column
vector, i.e.

vj = Awj
vj−1,

where 1 ≤ j ≤ |w|. After reading the whole input, the final probabilistic state
is v|w|. Based on this, we can calculate the accepting probability of w by P,
denoted fP(w), as follows:

fP(w) =
∑

qj∈Qa

v|w|(j).

If all stochastic elements of a PFA are restricted to have only 0s and 1s, then
we obtain a DFA that starts in a certain state and switches to only one state
in each step, and so the computation ends in only a single state. An input is
accepted by the DFA if the final state is an accepting state.

There are different kinds of quantum finite automata (QFAs) models in the
literature. The general ones (e.g. [3,15,29]) can exactly simulate PFAs (see [26]
for a pedagogical proof). In this paper, we present our results based on the
known simplest QFA model, called Moore-Crutcfield QFA [19]. Therefore, we
only provide its definition. We assume the reader knows the basics of quantum
computation (see [26] for a quick review and [23] for a complete reference).

A MCQFA M is 5-tuple M = (Q,Σ, {Uσ | σ ∈ Σ}, |v0〉, Qa) where, different
from a PFA,

– |v0〉 is a norm-1 complex-valued column initial vector that can be a super-
position of classical states and represents the initial quantum state of M at
the beginning of the computation, and,

– Uσ is a unitary transition matrix for symbol σ ∈ Σ where Uσ(j, i) represents
the amplitude of going from the ith state to the jth state after reading σ.

Traditionally, vectors are represented with “ket” notation (|·〉) in quantum
mechanics and computations. The computation of M on the input w ∈ Σ∗

can be traced by a norm-1 complex-valued column vector, i.e.

|vj〉 = Uwj
|vj−1〉,

where 1 ≤ j ≤ |w|. After reading the whole input, the final quantum state
is |v|w|〉. Based on this, a measurement operator is applied to see whether the
automaton is in an accepting or non-accepting state. The accepting probability
of w by M is calculated as:

fM(w) =
∑

qj∈Qa

||v|w|〉(j)|2.

Unary Probabilistic and Quantum Automata on Promise Problems 255

A Las Vegas PFA (or QFA) never gives a wrong decision, instead giving the
decision of “don’t know”. Formally, its set of states is divided into three disjoint
sets, the set of accepting states (Qa), the set of neutral states (Qn), and the set
of rejecting states (Qr = Q \ Qa ∪ Qn). At the end of the computation, the
decision of “don’t know” is given if the automaton ends with an neutral state.
The probability of giving the decision of “don’t know” (rejection) is calculated
similar to the accepting probability by using Qn (Qr) instead of Qa.

A promise problem P ⊂ Σ∗ is composed by two disjoint languages Pyes and
Pno, where the former one is called the set of yes-instances and the latter one is
called the set of no-instances.

A promise problem is said to be solved by a DFA if any yes-instance is
accepted and any no-instance is rejected. A promise problem is said to be solved
by a PFA or QFA with error bound ε < 1

2 if any yes-instance is accepted with
probability at least 1 − ε and any no-instance is rejected with probability at
least 1 − ε. If all yes-instances are accepted exactly, then it is said the promise
problem is solved with one-sided bounded error. In this case, the error bound
can be greater than 1

2 but it must be less than 1, i.e. ε < 1. Lastly, a promise
problem is said to be solved by a Las Vegas PFA or QFA with success probability
p > 0,

– if any yes-instance is accepted with probability at least p and it is rejected
with probability 0, and,

– if any no-instance is rejected with probability at least p and it is accepted
with probability 0.

In the case of promise problems, we do not care about the decisions on the strings
from Σ∗ \ P.

2.2 The Theory of Markov Chains

The computation of a unary PFA can be described by a Markov chain. Here we
present some basic facts and results from the theory of Markov chains that will
be used in some proofs. We refer the reader to [16] for more details and [5] and
[18] for some similar applications.

The states of a Markov chain are divided into ergodic and transient states.
An ergodic set of states is a set which a process cannot leave once it has entered,
a transient set of states is a set which a process can leave, but cannot return
once it has left. An arbitrary Markov chain has at least one ergodic set. If a
Markov chain C has more than one ergodic set, then there is absolutely no
interaction between these sets. Hence we have two or more unrelated Markov
chains lumped together and can be studied separately. If a Markov chain consists
of a single ergodic set, then the chain is called an ergodic chain. According to
the classification mentioned above, every ergodic chain is either regular or cyclic
(see below).

If an ergodic chain is regular, then for sufficiently high powers of the state
transition matrix, M has only positive elements. Thus, no matter where the

256 A. Gainutdinova and A. Yakaryılmaz

process starts, after a sufficiently large number of steps it can be in any state.
Moreover, there is a limiting vector of probabilities of being in the states of the
chain, that does not depend on the initial state.

If a Markov chain is cyclic, then the chain has a period t and all of its states
are subdivided into t cyclic subsets (t > 1). For a given starting state a process
moves through the cyclic subsets in a definite order, returning to the subset with
the starting state after every t steps. It is known that after sufficient time has
elapsed, the process can be in any state of the cyclic subset appropriate for the
moment. Hence, for each of t cyclic subsets the t-th power of the state transition
matrix M t describes a regular Markov chain. Moreover, if an ergodic chain is a
cyclic chain with the period t, it has at least t states.

Let C1, . . . , Cl be cyclic subsets of states of Markov chain with periods
t1, . . . , tl, respectively, and D be the least common multiple of t1, . . . , tl. For
each cyclic subset C after every D steps, the process can be in any state of C
and the Dth power of M describes a regular Markov chain for this subset. From
the theory of Markov chains it is known that there exists an αacc such that
limr→∞ αr·D

acc = αacc, where αi
acc represents the probability of process being in

accepting state(s) after the ith step. Hence, for any δ > 0, there exists an r0 > 0
such that

|αr·D
acc − αr′·D

acc | < δ

for any r, r′ > r0.
Moreover, since αr·D

acc has a limit point αacc, each αr·D+j
acc has also a limit

point, say αacc(j) for any j ∈ {1, . . . , D − 1}.

3 The Computational Power of Unary PFAs and QFAs

First we show that any unary promise problem solved by a QFA exactly (without
error) can also be solved by DFAs.

Theorem 1. If a unary promise problem P = (Pyes,Pno) is solved by a QFA
exactly, then it is also solved by a DFA.

Proof. Let M be a QFA solving P exactly. The automaton M also defines a
language with cutpoint 0, say L, i.e. any string accepted with a non-zero (zero)
probability is a member (non-member). Then, we can easily obtain the following
two facts:

– Since each yes-instance of P is accepted with probability 1, it is also a member
of L. Thus, Pyes is a subset of L.

– Since each no-instance of P is accepted with probability 0, it is also a member
of L. Thus, Pno is a subset of L.

Any unary language defined by a QFA with cutpoint 0 (or equivalently recog-
nized by a nondeterministic QFA [28]) is a unary exclusive language and it is
known that any such language is regular (Page 89 of [25]). Thus, L is a unary
regular language and there is a DFA, say D, recognizing L. So, D can also solve
promise problem P: D accepts all members of L including all Pyes and it rejects
all members of L including all Pno. ��

Unary Probabilistic and Quantum Automata on Promise Problems 257

We can extend this result also for Las Vegas QFAs.

Theorem 2. If a unary promise problem P = (Pyes, Pno) is solvable by a Las
Vegas QFA with a success probability p > 0, then it is also solvable by a DFA.

Proof. Let M be our Las Vegas QFA solving P with success probability p > 0.
We can obtain a new QFA M′ by modifying M as follows: M′ rejects the
input when entering a neutral state at the end of the computation. Then, any
member of Pyes is accepted by M with probability at least p and any member
of Pno is accepted by M′ with probability 0. After this, we can consider M′ as
a nondeterministic QFA and follow the same reasoning given in the previous
proof. ��

Since Las Vegas QFAs and DFAs define the same class of unary promise
problems, one may ask how much state efficient QFAs can be over DFAs. Due
to the result of Ambainis and Yakaryılmaz [6], we know that the gap (on unary
promise problems) cannot be bounded. (Note that, in the case of language recog-
nition, there is no gap between exact QFA and DFA [17] and the gap can be
at most exponential between bounded-error QFAs and DFAs (see e.g. [2]).) On
the other hand, as mentioned before, over binary promise problems, Las Vegas
QFAs are known to be more powerful than bounded-error PFAs [24]. An open
question here is whether exact QFAs can solve a binary promise problem that
is beyond the capabilities of DFAs.

Las Vegas PFAs and DFAs have the same computational power even on
binary promise problems and the tight gap on the number of states is expo-
nential [11]. Currently we do not know whether this bound can be improved on
unary case and we leave it as a future work. Here we show that making two-
sided errors does not help to solve a unary promise problem that is beyond of the
capability of DFAs. However, remark that, the state efficiency of bounded-error
unary PFAs over unary DFAs also cannot be bounded [11].

Theorem 3. If a unary promise problem P = (Pyes, Pno) is solved by a PFA,
say P, with error bound ε < 1

2 , then it is also solvable by a DFA.

Proof. The computation of P can be modelled as a Markov chain. Let P has n
states and D be the least common multiple of periods of cycles of Markov chain
(see the Section 2.2). So, P has D limiting accepting probabilities as described
in Section 2.2, say

αacc(0), αacc(1), . . . , αacc(D−1).

For any small δ > 0, there is an integer r0 such that, for each j ∈ {0, . . . , D−1},
we have the inequality |fM(ar·D+j) − αacc(j)| < δ for all r ≥ r0. Let’s pick a
δ′ > 0 such that, for any index i ∈ {0, . . . , D − 1}, the interval |αacc(i) − δ′| does
contain at most one of the points 1 − ε and ε, which is always possible since the
gap between these two points (1 − 2ε) is non-zero. For this δ′, we also have a r′

0

such that, for any j ∈ {0, . . . , D − 1}, fM(ar·D+j) is in the interval |αacc(j) − δ′|
for all r ≥ r′

0.
We can classify αacc(j) as follows:

258 A. Gainutdinova and A. Yakaryılmaz

– It is at least 1
2 . Then, fM(ar·D+j) cannot be ε or less than ε for any r ≥ r0.

– It is less than 1
2 . Then, fM(ar·D+j) cannot be 1 − ε or greater than 1 − ε for

any r ≥ r0.

Thus, a D-state cyclic DFA with the following state transitions

q0 → q1 → · · · → qj → · · · → qD−1 → q0

can easily follow the periodicity of P. Moreover, if αacc(j) belongs the first
(second) class of the above, then qj is an accepting (a non-accepting) state.
Thus, our cyclic DFA can give the same decisions of P on the promised strings
with length at least r0 · D. The remaining (and shorter) promised strings form
a finite set and a DFA with (r′

0 · D − 1) states can give appropriate decisions on
them. Therefore, by combining two DFAs, we can get a DFA with r′

0 · D + D
states that solves the promise problem P. ��

Now we show that unary QFAs can define more promise problems than PFAs
when the machines can err. We present our quantum result by a 2-state MCQFA.
Then, we give our impossibility result for unary PFAs.

Let ϕ be a rotation angle which is an irrational fraction of 2π. For any
θ ∈ (0, π

4), we define a unary promise problem Lθ = {Lθ
yes, L

θ
no} as

– Lθ
yes = {ak | kϕ ∈ [lπ − θ, lπ + θ] for some l ≥ 0},

– Lθ
no = {ak | kϕ ∈ [lπ + π

2 − θ, lπ + π
2 + θ] for some l ≥ 0}.

Theorem 4. There is a 2-state MCQFA M solving the promise problem Lθ

with error bound sin2 θ < 1
2 . Moreover, M is defined only with real number

transitions.

Proof. Let {q1, q2} be the set of states of M and q1 be the initial and the only
accepting state. The unitary operation is a rotation on |q1〉− |q2〉 plane with the
angle ϕ. (Note that, there are infinitely many ϕ whose rotation matrices contain
only rational numbers, e.g. arcsin 3

5 , arcsin 5
13 , arcsin 7

25 , etc.). It is straightfor-
ward that, after reading ak, the final quantum state becomes

|vk〉 = cos(kϕ)|q1〉 + sin(kϕ)|q2〉,
and so ak is accepted by M with probability cos2(kϕ). It is clear that M takes
ak and leaves it as |vk〉 before the measurement, which can be seen as a map
from an angle to a point on the unit circle. Therefore, the bounds on kϕ give
similar bounds on |vk〉, that allows M to solve the problem with bounded error.
Now, we show that sin2(θ) < 1

2 can be a bound on the error.
If ak is a yes-instance, we have cos θ ≤ | cos(kϕ)| ≤ 1. Then, the accepting

probability can be bounded as cos2 θ ≤ cos2(kϕ) ≤ 1. That is, any yes-instance
is accepted with probability at least cos2(θ), which is equal to 1 − sin2(θ). In
other word, the error for yes-instances can be at most sin2 θ.

If ak is a no-instance, 0 ≤ | cos(kϕ)| ≤ sin θ. Then, the accepting probability
can be bounded as 0 ≤ cos2(kϕ) ≤ sin2 θ. That is, any no-instance is accepted
with probability at most sin2 θ, i.e. the error can be at most sin2 θ for any no-
instance. ��

Unary Probabilistic and Quantum Automata on Promise Problems 259

Theorem 5. There exists no PFA solving the promise problem Lθ for any error
bound ε < 1

2 , where θ ∈ (0, π
4).

Proof. We prove by contradiction. Let P = (Q, {a},M, v0, Qa) be a PFA solving
Lθ with error bound ε < 1

2 . The computation of P can be described by a Markov
chain and the states of P can be classified as described in Section 2.2. Let
C1, . . . , Cl be cyclic subsets of states of Markov chain with periods t1, . . . , tl,
respectively, and D be the least common multiple of t1, . . . , tl.

We pick a yes-instance an ∈ Lθ
yes and define the set An = {an+kD | k ∈ Z

+}.
Now, we show that An contains some no-instances, i.e. An ∩ Lθ

no �= ∅.

Claim. An ∩ Lθ
no �= ∅.

Proof of the Claim. As verified from the definition of Lθ, each string can be
associated to a point on the unit circle. Let γn be the angle of the point corre-
sponding to our yes-instance an. So we have that γn ∈ [−θ, θ] ∪ [π − θ, π + θ].
From now on, we consider all angles up to 2π and omit the period 2π from
the value of angles. An input aj is a no-instance (aj ∈ Lθ

no) if and only if
γj ∈ [π

2 − θ, π
2 + θ] ∪ [3π

2 − θ, 3π
2 + θ]. We need to show that there is an l ∈ Z

+

such that an+lD ∈ Lθ
no, that means γn+lD ∈ [π

2 − θ, π
2 + θ] ∪ [3π

2 − θ, 3π
2 + θ].

Reading D letters of the input corresponds to a rotation on the circle by the
angle Dϕ. Let β = Dϕ − 2πm for some m ∈ N satisfying β ∈ (0, 2π). Since ϕ
is an irrational multiple of π, β is also an irrational multiple of π. It is a well
known fact that rotations with an angle of irrational multiple of π is dense on
the unit circle. So the points corresponding to {aDk | k ∈ Z

+} are dense on the
unit circle (and none of two strings from this set corresponds to the same point
on the unit circle).

So for each point γn ∈ [−θ, θ] (or for each point γn ∈ [π − θ, π + θ]), there
exists an l ∈ Z

+ such that γn+lD ∈ [π
2 − θ, π

2 + θ] ∪ [3π
2 − θ, 3π

2 + θ]. Therefore,
the set An = {an+kD | k ∈ Z

+} contains some no-instances. This completes the
proof of the claim. �

After reading an, the final state is vn = Mnv0. Since there is no assumption
on the length of an, it can be arbitrarily long. Assume that n is sufficiently big
providing that

|fP (an+rD) − fP (an+r′D)| <
1
2

− ε

for any r, r′. Remember from Section 2.2 that this assumption follows from
Markov chain theory and the bound approaches to 0 when n → ∞. If a promise
problem is solvable with an error bound ε, then the difference between the accept-
ing probabilities of a yes-instance and a no-instance is at least 1 − 2ε. The set
An has at least one no-instance whose accepting probability cannot be less than
1
2 , since (i) the minimal accepting probability for a member is 1 − ε and (ii)
we can obtain at least 1

2 if we go away from 1 − ε with 1
2 − ε. However, this

no-instance must be accepted with a probability at most ε < 1
2 . Therefore, the

PFA P cannot solve the promise problem Lθ with an error bound ε < 1
2 . ��

260 A. Gainutdinova and A. Yakaryılmaz

4 Succinctness

For each n ∈ Z
+, we define a family of unary promise problems Fn = {Lk,n | k ∈

Z
+} as follows. Let pj be the j-th prime, Pk,n = {pn, pn+1, . . . , pn+k−1} be the

set of primes from n-th to (n + k − 1)-th one, and N = pn · pn+1 · · · pn+k−1.
The promise problem Lk,n = {Lk,nyes, L

k,n
no } is defined as

– Lk,nyes = {am | m ≡ 0 mod N } and

– Lk,nno = {am | m mod pj ∈
[

pj

8 ,
3pj

8

]
∪

[
5pj

8 ,
7pj

8

]
for at least 2k

3 different pj

from the set Pk,n}.

Here we can use Chinese remainder theorem to show that the number of no-
instances is infinitely many.

Lemma 1. There are infinitely many strings in Lk,nno .

Proof. If positive integers p1, p2, . . . , pn are pairwise coprime, then for any inte-
gers r1, r2, . . . , rn satisfying 0 ≤ ri < pi (i ∈ {1, 2, . . . , n}), there exists a number
K, such that K = ri (mod pi) for each i ∈ {1, 2, . . . , n}. Moreover, any such K
is congruent modulo the product, N = p1 · · · pn. That is all numbers of the form
K + N · m will satisfy this condition, where m ∈ Z

+. ��
Theorem 6. For any n ∈ Z

+, the promise problem Lk,n can be solvable by a
2k-state MCQFA, say Mk,n, such that yes-instances are accepted exactly and
no-instance are rejected with probability at least 1

3 .

Proof. We use the technique given in [4,5]. The set of states of automaton Mk,n

is {q01 , q
1
1 , . . . , q

0
k, q1k} and the ones with superscript “0” are the accepting states.

The initial quantum state is

|v0〉 =
1√
k

|q01〉 +
1√
k

|q02〉 + · · · +
1√
k

|q0k〉.

During reading the input, the states |q0j 〉 and |q1j 〉 form a small MCQFA isolated
from the others, where 1 ≤ j ≤ k. For each letter a, a rotation with the angle
2π
pj

is applied on {|q0j 〉, |q1j 〉}:

Uj =
(

cos(2π/pj) sin(2π/pj)
− sin(2π/pj) cos(2π/pj)

)
.

Then, the overall transition matrix is

U =

⎛
⎜⎜⎜⎝

U1 0 · · · 0
0 U2 · · · 0
...

...
. . .

...
0 0 · · · Uk

⎞
⎟⎟⎟⎠

where 0 denotes 2 × 2 zero matrix.

Unary Probabilistic and Quantum Automata on Promise Problems 261

For any input am the final state of Mk,n is

|vm〉 =
1√
k

k∑
j=1

(
cos

(
m

2π

pj

)|q0j 〉 + sin(m
2π

pj
)|q1j 〉).

For any yes-instance, m is multiple of N and so each m 2π
pj

will be a multiple
of 2π. Then, the final state is in a superposition of only the accepting states, i.e.

|vm〉 =
1√
k

k∑
j=1

|q0j 〉,

and so the input is accepted with probability 1.
For any no-instance, on the other hand, it holds that (m mod pj) is in[

pj

8 ,
3pj

8

]
∪

[
5pj

8 ,
7pj

8

]
for at least 2k

3 different pj ’s from the set Pk,n. If pj is
one of them, then its contribution to the overall rejecting probability is given by

1√
k

sin2
(
m

2π

pj

)

which takes its minimum value 1
2k when (m mod pj) is equal to one of the

border. Since there are at least 2k
3 of them, the overall rejecting probability is

at least 1
3 . ��

Theorem 7. Any bounded-error PFA solving the promise problem Lk,n needs
Ω(k(n + k) log n) states. (See [10] for the details)

Theorem 8. For any n > 0, there is a O(k(n + k) log(n + k))-state PFA Pk,n

solving the promise problem Lk,n with one-sided error bound 1
3 .

Proof. Let Pk,n, shortly P, be (Q, {a}, {A}, v0, Qa), where

– Q = {qi,j | i = 1, . . . , k, j = 0, . . . , pn+i−1 − 1} and pn, . . . , pn+k−1 are the
primes from the set Pk,n,

– v0 is the initial probabilistic state such that the automaton is in the state
qi,0 with the probability 1

k for each i = 1, . . . , k, and,
– Qa = {qi,0 | i = 1, . . . , k}.

The transitions of P are deterministic: after reading each letter, it switches from
state qi,j to qi,j+1 (mod pn+i−1). In fact, P executes k copies of DFAs with equal
probability. The aim of the i-th DFA is to determine whether the length of
the input is equivalent to zero in mod pn+i−1. By construction it is clear that
P accepts any yes-instance with the probability 1 and any no-instance with
probability at most 1

3 .
The number of states is |Q| = pn + · · ·+pn+k−1. It is known [7] that the n-th

prime number pn satisfies pn = Θ(n log(n)) and so

|Q| =
n+k−1∑

x=n

px ≤ O(k(n + k) log(n + k)).

��

262 A. Gainutdinova and A. Yakaryılmaz

Now, we give a lower and upper bound for DFAs.

Theorem 9. For any n > 0, any DFA solving the promise problem Lk,n needs
Ω(n log(n))

k
3 states. (See [10] for the details)

Theorem 10. For any n > 0, there is a O((n+ k
3) log(n+ k

3))
k
3 -state DFA Dk,n

solving the promise problem Lk,n ∈ Fn. (See [10] for the details)

DFA PFA QFA

lower bounds Ω(n log n)
k
3 Ω(k(n + k) log n) 1

upper bounds O((n + k
3
) log(n + k

3
))

k
3 O(k(n + k) log(n + k)) 2k

Fig. 1. The summary of upper and lower state bounds for Lk,n

We give the summary of the results in Figure 1. The bounds for DFAs and
PFAs are almost tight and currently we do not know any better bound for QFAs.
Moreover, if we pick n = 2k, then we obtain an exponential gap between QFAs
and PFAs. On the other hand, if we pick n = k, then we obtain an exponential
gap between PFAs and DFAs.

References

1. Ablayev, F., Gainutdinova, A., Khadiev, K., Yakaryılmaz, A.: Very narrow quan-
tum OBDDs and width hierarchies for classical OBDDs. In: Jürgensen, H.,
Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS, vol. 8614, pp. 53–64.
Springer, Heidelberg (2014)

2. Ablayev, F., Gainutdinova, A.: On the lower bounds for one-way quantum
automata. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893,
pp. 132–140. Springer, Heidelberg (2000)

3. Ablayev, F., Gainutdinova, A.: Complexity of quantum uniform and nonuniform
automata. In: De Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572,
pp. 78–87. Springer, Heidelberg (2005)

4. Ablayev, F.M., Gainutdinova, A., Karpinski, M., Moore, C., Pollett, C.: On the
computational power of probabilistic and quantum branching program. Informa-
tion Computation 203(2), 145–162 (2005)

5. Ambainis, A., Freivalds, R.: 1-way quantum finite automata: strengths, weaknesses
and generalizations. In: FOCS 1998, pp. 332–341 (1998)

6. Ambainis, A., Yakaryılmaz, A.: Superiority of exact quantum automata for promise
problems. Information Processing Letters 112(7), 289–291 (2012)

7. Apostol, T.M.: Introduction to Analytic Number Theory. Springer (1976)
8. Bianchi, M.P., Mereghetti, C., Palano, B.: Complexity of promise problems on

classical and quantum automata. In: Calude, C.S., Freivalds, R., Kazuo, I. (eds.)
Gruska Festschrift. LNCS, vol. 8808, pp. 161–175. Springer, Heidelberg (2014)

9. Condon, A., Lipton, R.J.: On the complexity of space bounded interactive proofs
(extended abstract). In: FOCS 1989, pp. 462–467 (1989)

10. Gainutdinova, A., Yakaryilmaz, A.: Unary probabilistic and quantum automata on
promise problems. Technical Report arxiv.org/abs/1502.01462, arXiv (2015)

Unary Probabilistic and Quantum Automata on Promise Problems 263

11. Geffert, V., Yakaryılmaz, A.: Classical automata on promise problems. In:
Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS, vol. 8614,
pp. 126–137. Springer, Heidelberg (2014)

12. Goldreich, O.: On promise problems: a survey. In: Goldreich, O., Rosenberg, A.L.,
Selman, A.L. (eds.) Theoretical Computer Science. LNCS, vol. 3895, pp. 254–290.
Springer, Heidelberg (2006)

13. Gruska, J., Qiu, D., Zheng, S.: Generalizations of the distributed Deutsch-Jozsa
promise problem. Technical report, arXiv (2014). arXiv:1402.7254

14. Gruska, J., Qiu, D., Zheng, S.: Potential of quantum finite automata with exact
acceptance. Technical Report arXiv:1404.1689 (2014)

15. Hirvensalo, M.: Quantum automata with open time evolution. International Jour-
nal of Natural Computing 1(1), 70–85 (2010)

16. Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Van Nostrand, Princeton (1960)
17. Klauck, H.: On quantum and probabilistic communication: las vegas and one-way

protocols. In: STOC 2000, pp. 644–651 (2000)
18. Mereghetti, C., Palano, B., Pighizzini, G.: Note on the succinctness of determinis-

tic, nondeterministic, probabilistic and quantum finite automata. Theoretical Infor-
matics and Applications 35(5), 477–490 (2001)

19. Moore, C., Crutchfield, J.P.: Quantum automata and quantum grammars. Theo-
retical Computer Science 237(1–2), 275–306 (2000)

20. Murakami, Y., Nakanishi, M., Yamashita, S., Watanabe, K.: Quantum versus clas-
sical pushdown automata in exact computation. IPSJ Digital Courier 1, 426–435
(2005)

21. Nakanishi, M.: Quantum pushdown automata with a garbage tape. In: Italiano,
G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R. (eds.)
SOFSEM 2015-Testing. LNCS, vol. 8939, pp. 352–363. Springer, Heidelberg (2015)

22. Nakanishi, M., Yakaryılmaz, A.: Classical and quantum counter automata on
promise problems (2014). (arXiv:1412.6761) (Accepted to CIAA2015)

23. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press (2000)

24. Rashid, J., Yakaryılmaz, A.: Implications of quantum automata for contextual-
ity. In: Holzer, M., Kutrib, M. (eds.) CIAA 2014. LNCS, vol. 8587, pp. 318–331.
Springer, Heidelberg (2014)

25. Salomaaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series.
Texts and monographs in computer science. Springer-Verlag (1978)

26. Cem Say, A.C., Yakaryılmaz, A.: Quantum finite automata: a modern introduction.
In: Calude, C.S., Freivalds, R., Kazuo, I. (eds.) Gruska Festschrift. LNCS, vol. 8808,
pp. 208–222. Springer, Heidelberg (2014)

27. Watrous, J.: Encyclopedia of Complexity and System Science. In: Quantum com-
putational complexity (chapter). Springer (2009). arXiv:0804.3401

28. Yakaryılmaz, A., Cem Say, A.C.: Languages recognized by nondeterministic quan-
tum finite automata. Quantum Information and Computation 10(9&10), 747–770
(2010)

29. Yakaryılmaz, A., Cem Say, A.C.: Unbounded-error quantum computation with
small space bounds. Information and Computation 279(6), 873–892 (2011)

30. Zheng, S., Gruska, J., Qiu, D.: On the state complexity of semi-quantum finite
automata. In: Dediu, A.-H., Mart́ın-Vide, C., Sierra-Rodŕıguez, J.-L., Truthe, B.
(eds.) LATA 2014. LNCS, vol. 8370, pp. 601–612. Springer, Heidelberg (2014)

31. Zheng, S., Qiu, D., Gruska, J., Li, L., Mateus, P.: State succinctness of two-way
finite automata with quantum and classical states. Theoretical Computer Science
499, 98–112 (2013)

http://arxiv.org/abs/1402.7254
http://arxiv.org/abs/1404.1689
http://arxiv.org/abs/0804.3401

Generalizations of Code Languages
with Marginal Errors

Yo-Sub Han1(B), Sang-Ki Ko1, and Kai Salomaa2

1 Department of Computer Science, Yonsei University, 50, Yonsei-Ro, Seoul,
Seodaemun-Gu 120-749, Republic of Korea

{emmous,narame7}@cs.yonsei.ac.kr
2 School of Computing, Queen’s University, Kingston, ON K7L 3N6, Canada

ksalomaa@cs.queensu.ca

Abstract. We study k-prefix-free, k-suffix-free and k-infix-free lan-
guages that generalize prefix-free, suffix-free and infix-free languages by
allowing marginal errors. For example, a string x in a k-prefix-free lan-
guage L can be a prefix of up to k different strings in L. Namely, a
code (language) can allow some marginal errors. We also define finitely
prefix-free languages in which a string x can be a prefix of finitely many
strings. We present efficient algorithms that determine whether or not
a given regular language is k-prefix-free, k-suffix-free or k-infix-free, and
analyze their runtime. Lastly, we establish the undecidability results for
(linear) context-free languages.

Keywords: Codes · Marginal errors · Decision algorithms · Undecid-
ability · Regular languages · Context-free languages

1 Introduction

Codes are useful in many areas including information processing, data compres-
sion, cryptography and information transmission [2,12]. Many researchers have
studied various codes such as prefix codes, suffix codes and infix codes. Since a
code is a set of strings—a language, a code property defines a subset of languages
preserving the corresponding property. For instance, for regular langauges, the
prefix-freeness defines a proper subset of regular languages, prefix-free regular
languages. Recently, Kari et al. [13] considered the problem of deciding whether
or not a given regular language is maximal with respect to certain combined
types of code properties.

There are different applications based on different properties subfamilies [1,3,
4,7,9,11]. For example, Huffman codes [11] are prefix-free languages and useful
for lossless data compression; Han [6] proposed an efficient pattern matching
algorithm for the prefix-free regular expressions based on the prefix-freeness of
the input pattern. Infix-free languages have been used in text searching [3] and
computing forbidden words [1,4]. Han et al. [8] observed the structural properties
of FAs for infix-free regular languages and designed a decision algorithm.
c© Springer International Publishing Switzerland 2015
I. Potapov (Ed.): DLT 2015, LNCS 9168, pp. 264–275, 2015.
DOI: 10.1007/978-3-319-21500-6 21

Generalizations of Code Languages with Marginal Errors 265

Table 1. The upper bound for the time complexity of decision algorithms for the
generalizations of prefix-, suffix- and infix-free regular languages, where n is the size of
FAs

DFA NFA

prefix-free O(n) O(n2)
suffix-free O(n2) O(n2)
infix-free O(n2) O(n2)

k-prefix-free O(n2 · log k) PSPACE-complete
k-suffix-free PSPACE-complete PSPACE-complete
k-infix-free PSPACE-hard PSPACE-hard

finitely prefix-free O(n) O(n2)
finitely suffix-free O(n2) O(n2)
finitely infix-free O(n2) O(n2)

When people design a code in practice—for instance, designing a DNA code
by experiments [14,16]—it may not always be successful. There may be a few
number of undesired code words in the resulting code. This motivates us to
examine a relaxed version of codes; in other words, we allow some marginal
errors in the code. We generalize prefix-free, suffix-free and infix-free languages
and define new codes, k-prefix-free, k-suffix-free and k-infix-free languages. Recall
that there is no prefix of any other string in the language L if L is prefix-free [2].
In a k-prefix-free language L, we allow at most k strings in L to have another
string in L as a prefix. We also introduce finitely prefix-free, finitely suffix-free
and finitely infix-free languages in which we allow a finite number of such strings.

Given a family L of languages and a language L, the decision problem of L
with respect to L is to decide whether or not L belongs to L. For the decision
problems of finitely prefix-free, finitely suffix-free and finitely infix-free regular
languages, we use the state-pair graph used for the decision problems of prefix-
free, suffix-free and infix-free regular languages [5]. Table 1 summarizes the time
complexity of the prior algorithms and our algorithms based on the state-pair
graph. Interestingly, we have a polynomial time algorithm only for deciding the
k-prefix-freeness of a language recognized by a DFA. We prove that the complex-
ity for determining whether or not an NFA is k-prefix-free is PSPACE-complete.
For both k-suffix-free cases, it is already PSPACE-hard for DFAs. For the deci-
sion problems of finitely prefix-free, suffix-free and infix-free regular languages,
we present polynomial algorithms based on the state-pair graph construction.
We also establish the undecidability results for context-free languages by the
reduction from the Post’s Correspondence Problem [17].

We define some basic notions in Section 2. We define the generalizations of
prefix-free, suffix-free and infix-free regular languages in Section 3 and observe
the hierarchy between the proposed subfamilies. In Section 4, we present deci-
sion algorithms and complexity results for regular languages. We also establish
undecidability result for context-free languages in Section 5.

266 Y.-S. Han et al.

2 Preliminaries

We briefly present definitions and notations. We refer to the books [10,18] for
more knowledge on automata theory. For more details on coding theory, refer to
Berstel and Perrin [2] or Jürgensen and Konstantinidis [12].

Let Σ be a finite alphabet and Σ∗ be the set of all strings over Σ. A language
over Σ is any subset of Σ∗. The symbol ∅ denotes the empty language, the
symbol λ denotes the null string and Σ+ denotes Σ∗ \{λ}. Let |w| be the length
of w.

For strings x, y and z, we say that x is a prefix of y and z is a suffix of y if
y = xz. For strings x, y, w and z, we say that z is an infix of y if y = xzw. We
define a language L to be prefix-free if a string x ∈ L is not a prefix of any other
strings in L. Similarly, we define a language L to be suffix-free (or infix-free) if a
string x ∈ L is not a suffix (or infix) of any other strings in L. The reversal of a
string w is denoted wR and the reversal of a language L is LR = {wR | w ∈ L}.

A nondeterministic finite automaton with λ-transitions (λ-NFA) is a five-
tuple A = (Q,Σ, δ, s, F), where Q is a finite set of states, Σ is a finite alphabet,
δ is a multi-valued transition function from Q × (Σ ∪ {λ}) into 2Q, s ∈ Q is
the initial state and F ⊆ Q is the set of final states. By an NFA, we mean a
nondeterministic automaton without λ-transitions, that is, A is an NFA if δ is
a function from Q × Σ into 2Q. The automaton A is deterministic (a DFA) if δ
is a single-valued function Q × Σ → Q. The language L(A) recognized by A is
the set of strings w such that some sequence of transitions spelling out w takes
the initial state of A to a final state. We define the size |A| of A to be |Q| + |δ|.
For q ∈ Q, we denote by Aq the NFA that is obtained from A by replacing the
initial state s with q. For q, p ∈ Q, we also denote by Aq,p the NFA that is as
A except has q as the initial state and p as the only final state. We assume that
an FA A has only useful states; that is, each state appears on some path from
the initial state to some final state.

3 k-prefix-free, k-suffix-free and k-infix-freeness

We consider generalizations of prefix-free, suffix-free and infix-free languages.
First, we define a generalization of prefix-free languages called the k-prefix-free
languages.

Definition 1. We define a language L to be k-prefix-free if there is no string x
in L that is a prefix of more than k strings in L \ {x}.

Recently, Konitzer and Simon [15] defined the maximum activity level of a lan-
guage L as follows: Given a language L, the maximum activity level lL of L is

lL = sup{l : (∃w1, . . . , wl ∈ Σ+,∀ = 1, . . . , l : w1 · · · wl ∈ L)}.

Since we consider the number of strings in L that have a common prefix from L
and the activity level is defined as the number of proper prefixes of a string in L,
the k-prefix-freeness is a different concept from the activity level of a language.

Generalizations of Code Languages with Marginal Errors 267

From the definition, we can say that prefix-free languages are in fact, 0-prefix-
free. We define similar generalizations for suffix-free and infix-free languages as
follows:

Definition 2. We define a language L to be k-suffix-free (or k-infix-free) if there
is no string x in L that is a suffix (or an infix) of more than k strings in L\{x}.

We have the following observations from the definition. Note that similar
statements hold for suffix-free and infix-free languages.

Observation 1. If a language L is k-prefix-free, then L is (k+n)-prefix-free for
all n ≥ 1.

Observation 2. If a language L is prefix-free, then L is k-prefix-free for all
k ≥ 1.

We also define the following code properties from the k-prefix (suffix, infix)-
freeness.

Definition 3. We define a language L to be minimally k-prefix (suffix, infix)-
free if L is k-prefix (suffix, infix)-free but not (k−1)-prefix (suffix, infix)-free.

Definition 4. We define a language L to be finitely prefix-free (suffix-free or
infix-free) if L is k-prefix-free (k-suffix-free or k-infix-free) for a constant k.

4 Decision Algorithms

We determine whether or not a regular language given by a DFA is k-prefix-free
or finitely prefix-free. First, we consider decision problems where k is given as
part of the input in Section 4.1 and consider the problem of deciding whether
the property holds for some finite value of k in Section 4.2.

4.1 For k-prefix-free, k-suffix-free and k-infix-free Regular
Languages

Given a DFA A, we can determine whether or not L(A) is k-prefix-free or finitely
prefix-free by examining the following properties:

Lemma 1. Given a DFA A = (Q,Σ, δ, s, F), L(A) is k-prefix-free if and only
if there is no final state f ∈ F satisfying the following conditions:

L(As,f)
= ∅ and |L(Af) \ {λ}| > k. (1)

Proof. (=⇒) We prove that L(A) is k-prefix-free if there is no final state f
satisfying Condition (1). Assume that there is such a final state f satisfying the
condition. This means that there is a string w spelled out by the path from s to
f and

|L(Af) \ {λ}| > k.

268 Y.-S. Han et al.

Since there are more than k different strings that can be computed after
w, there exist more than k strings in L(A) that contain w as a proper prefix.
Therefore, L(A) is not k-prefix-free. We have a contradiction.
(⇐=) We prove that there is no final state f satisfying Condition (1) if L(A)
is k-prefix-free. Assume that L(A) is not k-prefix-free. This implies that there
exist a string w in L and more than k strings—let Pw denote the set of these
strings—that contain w as a prefix in L(A). Since A is a DFA, there is a unique
final state f that we reach by reading w and all the accepting paths for strings in
Pw must pass through f . This guarantees that |L(Af) \ {λ}| > k since |Pw| > k.
Therefore, we have a contradiction.

Lemma 2. Let A be a DFA (or an NFA) over an alphabet Σ with n states such
that L(A) is minimally k-prefix-free. Then

k ≤ |Σ| · |Σ|n−1 − 1
|Σ| − 1

.

Conversely, there exists an n-state DFA A over Σ that is minimally |Σ| ·
|Σ|n−1−1

|Σ|−1 -prefix-free.

From Lemma 1, we can design a quadratic algorithm for deciding whether
or not a language recognized by a DFA is k-prefix-free.

Theorem 1. Given a DFA A and k ∈ N, we can determine whether or not
L(A) is k-prefix-free in O(n2 · log k) time, where n = |A|.

Note that the family of k-prefix-free languages form a proper hierarchy with
respect to k. For example, if a regular language L is k-prefix-free, then L is not
necessarily (k − 1)-prefix-free. This leads us to a new problem that determines
whether or not a regular language L is minimally k-prefix-free.

Theorem 2. Given a DFA A = (Q,Σ, δ, s, F), we can find k ∈ N such that
L(A) is minimally k-prefix-free in O(n3) time, where n = |A|.
Proof. For an arbitrary final state f of A, if Af is not acyclic, then we know
that L(A) is not k-prefix-free for any k ∈ N. Otherwise, based on the property
of Lemma 1, it is possible to compute in polynomial time the cardinality of L(Af),
for each final state f , and pick the maximum value M . Then L(A) is minimally
M -prefix-free. Since M is at most O(|Σ||Q|) by Lemma 2, the runtime is

O(n2 · log |Σ|n) = O(n3)

by assuming |Σ| as a constant. ��
Now we consider the case when the input is specified by an NFA instead of

a DFA.

Lemma 3. Given an NFA A = (Q,Σ, δ, s, F), L(A) is k-prefix-free if and only
if there is no set Q′ ⊆ Q of states satisfying the following conditions:

Generalizations of Code Languages with Marginal Errors 269

(i) Q′ ∩ F
= ∅,
(ii)

⋂
q∈Q′

L(As,q)
= ∅ and
∣∣∣∣

⋃
q∈Q′

L(Aq) \ {λ}
∣∣∣∣ > k.

Proof. (=⇒) We prove that L(A) is k-prefix-free if there is no set Q′ ⊆ Q of
states satisfying the two conditions (i) and (ii). Assume that there is such a set
Q′ satisfying all these conditions. Then, there exists a string w ∈ L(A) such that
Q′ ⊆ δ(s, w) by the conditions. Furthermore, we have more than k non-empty
strings that can be spelled out by a path from a state in Q′ to a final state in F
because of condition (ii). This implies that L(A) has more than k strings that
contain w as a proper prefix. Therefore, L(A) is not k-prefix-free.
(⇐=) We prove that if L(A) is k-prefix-free, then there is no set Q′ of states
satisfying these three conditions. Assume that L(A) is not k-prefix-free. This
implies that there exist a string w in L and more than k strings having w as a
prefix in L(A). Since A accepts w, there should exist a final state f such that
f ∈ δ(s, w). We denote the set of all states that can be reached by reading w
from the initial state s in A by P . Obviously, f is in P . Since there are more than
k strings that have w as a proper prefix, there are also more than k non-empty
strings that can be spelled out by paths from states in P to some final states.
Since P satisfies conditions (i) and (ii), we have a contradiction. ��

Now we show that the problem of determining whether or not a regular
language accepted by an NFA is k-prefix-free is PSPACE-complete.

Theorem 3. Given an NFA A and k ∈ N, it is PSPACE-complete to determine
whether or not L(A) is k-prefix-free.

We also establish that given an NFA A, the problem of finding a non-negative
integer k where L(A) is minimally k-prefix-free is also PSPACE-complete.

Theorem 4. Given an NFA A, the problem of finding k ∈ N where L(A) is
minimally k-prefix-free is PSPACE-complete.

Now we consider the k-suffix-free case. The properties that characterize the
k-suffix-freeness of a language recognized by a DFA turn out to be similar to the
properties that characterize the k-prefix-freeness of an NFA. Intuitively, suffix-
freeness corresponds to the prefix-freeness of the reversed language and reversing
the transitions of a DFA makes it nondeterministic. We present necessary and
sufficient conditions for DFAs to accept k-suffix-free regular languages as follows:

Lemma 4. Given an NFA A = (Q,Σ, δ, s, F), L(A) is k-suffix-free if and only
if there is no set Q′ ⊆ Q of states satisfying the following conditions:

∣∣∣∣
⋃

q∈Q′
L(As,q) \ {λ}

∣∣∣∣ > k and
⋂

q∈Q′∪{s}
L(Aq)
= ∅. (2)

270 Y.-S. Han et al.

Proof. (=⇒) We prove that L(A) is k-suffix-free if there is a set Q′ ⊆ Q of states
satisfying Condition (2). Assume that there is a set Q′ ⊆ Q of states satisfying
the condition. From the condition⋂

q∈Q′∪{s}
L(Aq)
= ∅,

we know that there is a common string w ∈ L(A) that is also spelled out by
paths from the states in Q′ to one of the final states. Since the cardinality of the
set of strings spelled out by the paths from the initial state to the states in Q′ is
greater than k, there are more than k strings that have w as a suffix. Since the
string w is also in L(A), L(A) is not k-suffix-free. We have a contradiction.
(⇐=) We prove that there is no set Q′ ⊆ Q of states satisfying Condition (2)
if L(A) is k-suffix-free. Assume that L(A) is not k-suffix-free. This implies that
there exist a string w ∈ L(A) and more than k strings containing w as a suffix
in L(A). Assume that there exist k1 > k strings that contain w as a suffix and
denote the strings by w1, w2, w3, . . . , wk1 . For all strings wi, 1 ≤ i ≤ k1, we can
decompose wi into w′

iw since they have the common suffix w. Then, the strings
from w′

1 to w′
k1

should be distinct and non-empty since w1, w2, w3, . . . , wk1 are
distinct and properly containing w as a suffix. Let us denote the set of states
that are reachable from the initial state s by reading w′

1, w
′
2, . . . , w

′
k1

by P ⊆ Q.
Therefore, the following inequality holds:∣∣∣∣

⋃
q∈P

L(As,q) \ {λ}
∣∣∣∣ > k.

Moreover, there should be at least one path from each state in P and the
initial state to one of the final states of A spelling out the string w since A accepts
the strings w,w1, w2, w3, . . . , wk1 that are in fact, λ ·w,w′

1 ·w,w′
2 ·w, . . . , w′

k1
·w.

Therefore, the following inequality also holds:⋂
q∈P∪{s}

L(Aq)
= ∅.

Now we have a contradiction since there is a set P ⊆ Q of states satisfy-
ing Condition (2). ��

We discuss the computational complexity of the decision problem for k-suffix-
free regular languages. Interestingly, it turns out to be much more complicated
than the k-prefix-free case even for DFAs.

Theorem 5. Given a DFA (or an NFA) A and k ∈ N, it is PSPACE-complete
to determine whether or not L(A) is k-suffix-free.

Theorem 6. Given a DFA (or an NFA) A, the problem of finding k ∈ N where
L(A) is minimally k-suffix-free is PSPACE-complete.

Moreover, it is immediate from the k-suffix-free case that the problem of
determining whether or not a regular language L(A) is k-infix-free is also
PSPACE-hard.

Generalizations of Code Languages with Marginal Errors 271

Corollary 1. Given a DFA (or an NFA) A and k ∈ N, it is PSPACE-hard to
determine whether or not L(A) is k-infix-free. Given a DFA (or an NFA) A, the
problem of finding k ∈ N where L(A) is minimally k-infix-free is PSPACE-hard.

Proof. We show that the problem of determining whether or not L(A) is k-infix-
free is PSPACE-hard by the reduction from the k-suffix-free case. Let L ⊆ Σ∗

be a regular language. Then, we can check the k-suffix-freeness of L by checking
the k-infix-freeness of L · {$}, where $ /∈ Σ is a new symbol.

It remains open to show that the problem of determining whether or not
L(A) is k-infix-free is in PSPACE.

4.2 For Finitely Prefix-free, Finitely Suffix-free and Finitely
Infix-free Regular Languages

We establish the following corollary in a similar way to the proof of Lemma 1.

Corollary 2. Given a DFA A = (Q,Σ, δ, s, F), L(A) is finitely prefix-free if
and only if there is no final state f ∈ F satisfying the following conditions:

L(As,f)
= ∅ and |L(Af)| = ∞.

By Corollary 2, we can determine whether or not a regular language is finitely
prefix-free in linear time when the regular language is given by a DFA.

Theorem 7. Given a DFA A, we can determine whether or not L(A) is finitely
prefix-free in O(n) time, where n = |A|.

For the NFA case, on the other hand, we need to use algorithms based on the
state-pair graphs [5] to determine whether or not a regular language accepted
by an NFA is finitely prefix-free. For example, for DFAs, we can easily decide
the prefix-freeness (including k-prefix-freeness and finitely prefix-freeness) by
observing the accepting path after the final states since all strings having the
same prefix should share the same path to spell out the prefix. However, in NFAs,
we cannot guarantee such properties. There can be several completely disjoint
paths even for a single string. Han [5] showed that it is possible to determine
whether or not a regular language given by an NFA is prefix-free, suffix-free or
infix-free using the state-pair graph in quadratic time in the size of an input.

Definition 5 (Han [5]). Given an NFA A = (Q,Σ, δ, s, F), we define the state-
pair graph GA = (V,E) of A, where V is a set of nodes and E is a set of labeled
edges, as follows:

– V = {(i, j) | i, j ∈ Q} and
– E = {((i, j), a, (x, y)) | x ∈ δ(i, a), y ∈ δ(j, a) and a ∈ Σ }.

Then, we have |GA| ≤ |Q|2 + |δ|2; namely |GA| = O(|A|2).

272 Y.-S. Han et al.

Without loss of generality, we assume that A has one final state f since we
can always make any NFA to have only one final state by introducing a new final
state f and making f to be the target state of all final states by a λ-transition.

Lemma 5. Given an NFA A = (Q,Σ, δ, s, f) and q, p ∈ Q, L(A) is finitely
prefix-free if and only if there is no path labeled by a string from (s, s) to (f, p)
in GA satisfying |L(Ap,f)| = ∞.

Proof. (=⇒) We first prove that L(A) is finitely prefix-free if there is no such
path. Assume that there is a such path labeled by a string w. By the assumption,
the cardinality of L(Ap,f) is infinite. This implies that A accepts an infinite
number of strings having w as a proper prefix. Since w ∈ L(A) by assumption,
L(A) is not finitely prefix-free.
(⇐=) We prove that if L(A) is finitely prefix-free there is no such path. Assume
that L(A) is not finitely prefix-free. This implies that there are an infinite number
of strings having a prefix w and w is accepted by A. Consider a set Q′ of states
that are reachable by reading w from the initial state of A. Since there are an
infinite number of strings having w as a prefix, there should be an infinite number
of distinct accepting paths starting from the states in Q′. If L(Ap,f) is finite for
all p ∈ Q′, it is impossible to have an infinite number of accepting paths from
the states in Q′. Thus at least one state p ∈ Q′ should have an infinite number
of accepting paths. Now we have a contradiction. ��

From the properties of the state-pair graph observed in Lemma 5, we can
determine whether or not L(A) is finitely prefix-free by exploring the existence
of such paths in the state-pair graph. Since the size of the state-pair graph is
quadratic in the size of the given NFA, the time complexity of the algorithm is
also quadratic.

Theorem 8. Given an NFA A = (Q,Σ, δ, s, f), we can determine whether or
not L(A) is finitely prefix-free in O(n2) time, where n = |A|.
Proof. First, we check whether or not L(Aq) is finite for each q ∈ Q. This
procedure takes O(n2) time since we can check the existence of a cycle of an
NFA in linear time by depth-first traversal. Then, we explore the state-pair
graph to check whether or not there is a path from (s, s) to (f, p) in the state-
pair graph GA when L(Ap) is infinite. As the size of GA is quadratic in the size
of A, the algorithm takes O(n2) time. ��

Note that the decision algorithm for finitely infix-freeness is relatively more
complicated than the finitely prefix-free case.

Lemma 6. Given an NFA A = (Q,Σ, δ, s, f) and q, p ∈ Q, L(A) is finitely
infix-free if and only if there is no path labeled by a string from (s, q) to (f, p)
where f
= p in GA satisfying |L(As,q) ∪ L(Ap,f)| = ∞.

Proof. (=⇒) We prove that L(A) is finitely infix-free if there is no such path.
Assume that there is a such path labeled by a string w. Then, w is in L(A) and

Generalizations of Code Languages with Marginal Errors 273

L(Aq,p). Since the cardinality of L(As,q)∪L(Ap,f) is infinite by assumption, the
cardinality of L(As,q) or L(Ap,f) should be infinite. We can easily see that there
are an infinite number of strings containing w as an infix in L(A). Therefore,
L(A) is not finitely infix-free. We have a contradiction.
(⇐=) Here we prove that if L(A) is finitely infix-free, then there is no such path.
Assume that L(A) is not finitely infix-free. This means that for a string w ∈
L(A), we have an infinite number of strings in L(A) containing w as an infix.
Consider all state pairs q, p where w ∈ L(Aq,p). If L(As,q) ∪ L(Ap,f) is finite for
all state pairs, the number of strings containing w as an infix cannot be infinite.
Therefore, L(As,q) ∪ L(Ap,f) should be infinite. We conclude the proof. ��

Even though the decision algorithm for finitely infix-freeness is a bit more
complicated than the finitely prefix-free case, we still have a quadratic algorithm
for the problem as follows:

Theorem 9. Given an NFA A = (Q,Σ, δ, s, f), we can determine whether or
not L(A) is finitely infix-free in O(n2) time, where n = |A|.
Proof. We first construct a state-pair graph GA of A. Before exploring the exis-
tence of the paths, we first check whether or not L(As,q) and L(Aq,f) is finite.
This procedure takes O(n2) time.

Once we finish the checking procedure, for all states q ∈ Q except s, we
run the depth-first search from (s, q) to (f, p) to check whether or not there
exists a such path. If there exists a such path, then we check whether or not
L(As,q)∪L(Ap,f) is finite by simply checking whether or not both languages are
finite. Then, for all states q ∈ Q except f , we run the depth-first search from
(s, s) to (f, q) to check whether or not there exists a such path. Since the depth-
first search takes O(|V |+|E|) time when we are given a graph G = (V,E), we can
check whether or not there exists a path in O(n2) time. Overall, our algorithm
takes O(n2) time. ��

We note that the finitely suffix-freeness can be checked in a converse way to
the finitely prefix-free case.

Lemma 7. Given an NFA A = (Q,Σ, δ, s, f) and q ∈ Q, L(A) is finitely suffix-
free if and only if there is no path labeled by a string from (s, q) to (f, f) in GA

satisfying |L(As,q)| = ∞.

Proof. The proof is immediate from Lemma 5. We just exchange the initial
state s and the final state f from A, and reverse the directions of all transitions.
Then the new NFA accepts L(A)R—the reverse of L(A). Then, we can decide
whether or not L(A) is finitely suffix-free by testing the finitely prefix-freeness
of L(A)R. ��

Since the finitely suffix-freeness can be tested by reversing the NFA and
testing the finitely prefix-freeness, we establish the following result.

Theorem 10. Given an NFA A, we can determine whether or not L(A) is
finitely suffix-free O(n2) time, where n = |A|.

274 Y.-S. Han et al.

5 Undecidability Results for (Linear) Context-free
Languages

It is known that given a (linear) context-free language L, it is undecidable
whether or not L is prefix-free [12]. We establish similar undecidability results
for the code properties considered here.

Theorem 11. There is no algorithm that determines whether or not a given
linear language L is k-prefix (suffix, infix)-free.

Theorem 12. There is no algorithm that determines whether or not a given
linear language L is finitely prefix (suffix, infix)-free.

6 Conclusions

We have introduced an extension of prefix-free, suffix-free and infix-free lan-
guages by allowing marginal errors. We have defined k-prefix-free, k-suffix-free
and k-infix-free languages. For example, a k-prefix-free language L can have at
most k strings containing any other string w in L as a prefix. We, then, have
considered more general versions of k-prefix-free, k-suffix-free and k-infix-free
languages allowing a finite number of such strings.

We have examined the time complexity of the decision problems for these
subfamilies. Given a DFA, we have a quadratic algorithm for the decision prob-
lem of k-prefix-freeness. However, we have shown that it is PSPACE-complete to
determine whether or not a regular language given by an NFA is k-prefix-free.
For the k-suffix-free and k-infix-free cases, we have shown that it is PSPACE-
hard for both DFAs and NFAs. We have designed polynomial time algorithms
based on the state-pair graph construction that decide whether or not a regu-
lar language (given by an NFA) is finitely prefix- (respectively, suffix- or infix-)
free. We also have established the undecidability results for (linear) context-free
languages. In future, we plan to investigate the state complexity of these new
subfamilies of regular languages.

References

1. Béal, M.P., Crochemore, M., Mignosi, F., Restivo, A., Sciortino, M.: Computing
forbidden words of regular languages. Fundamenta Informaticae 56(1,2), 121–135
(2002)

2. Berstel, J., Perrin, D.: Theory of codes. Academic Press, Inc. (1985)
3. Clarke, C.L.A., Cormack, G.V.: On the use of regular expressions for searching

text. ACM Transactions on Programming Languages and Systems 19(3), 413–426
(1997)

4. Crochemore, M., Mignosi, F., Restivo, A.: Automata and forbidden words.
Information Processing Letters 67(3), 111–117 (1998)

5. Han, Y.S.: Decision algorithms for subfamilies of regular languages using state-pair
graphs. Bulletin of the European Association for Theoretical Computer Science 93,
118–133 (2007)

Generalizations of Code Languages with Marginal Errors 275

6. Han, Y.S.: An improved prefix-free regular-expression matching. International
Journal of Foundations of Computer Science 24(5), 679–687 (2013)

7. Han, Y.S., Salomaa, K., Wood, D.: Intercode regular languages. Fundamenta
Informaticae 76(16), 113–128 (2007)

8. Han, Y.S., Wang, Y., Wood, D.: Infix-free regular expressions and languages.
International Journal of Foundations of Computer Science 17(2), 379–393 (2006)

9. Han, Y.S., Wang, Y., Wood, D.: Prefix-free regular languages and pattern match-
ing. Theoretical Computer Science 389(1–2), 307–317 (2007)

10. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation, 3rd edn. Addison-Wesley Longman Publishing
Company Incorporated (2006)

11. Huffman, D.: A method for the construction of minimum-redundancy codes.
Proceedings of the IRE 40(9), 1098–1101 (1952)

12. Jürgensen, H., Konstantinidis, S.: Codes. Word, Language, Grammar, Handbook
of Formal Languages 1, 511–607 (1997)

13. Kari, L., Konstantinidis, S., Kopecki, S.: On the maximality of languages with
combined types of code properties. Theoretical Computer Science 550, 79–89
(2014)

14. Kari, L., Mahalingam, K.: DNA Codes and Their Properties. In: Mao, C.,
Yokomori, T. (eds.) DNA12. LNCS, vol. 4287, pp. 127–142. Springer, Heidelberg
(2006)

15. Konitzer, M., Simon, H.U.: DFA with a Bounded Activity Level. In: Dediu, A.-H.,
Mart́ın-Vide, C., Sierra-Rodŕıguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol.
8370, pp. 478–489. Springer, Heidelberg (2014)

16. Marathe, A., Condon, A.E., Corn, R.M.: On combinatorial dna word design.
Journal of Computational Biology 8(3), 201–219 (2001)

17. Post, E.L.: A variant of a recursively unsolvable problem. Bulletin of the American
Mathematical Society 52(4), 264–268 (1946)

18. Wood, D.: Theory of Computation. Harper & Row (1987)

Minimal Reversible Deterministic
Finite Automata

Markus Holzer, Sebastian Jakobi, and Martin Kutrib(B)

Institut für Informatik, Universität Giessen,
Arndtstr. 2, 35392 Giessen, Germany

{holzer,sebastian.jakobi,kutrib}@informatik.uni-giessen.de

Abstract. We study reversible deterministic finite automata (REV-
DFAs), that are partial deterministic finite automata whose transition
function induces an injective mapping on the state set for every letter of
the input alphabet. We give a structural characterization of regular lan-
guages that can be accepted by REV-DFAs. This characterization is based
on the absence of a forbidden pattern in the (minimal) deterministic state
graph.Againwitha forbiddenpattern approach,wealso showthat themin-
imality of REV-DFAs among all equivalent REV-DFAs can be decided.
Both forbidden pattern characterizations give rise to NL-complete deci-
sion algorithms. In fact, our techniques allow us to construct the minimal
REV-DFA for a given minimal DFA. These considerations lead to asymp-
totic upper and lower bounds on the conversion from DFAs to REV-DFAs.
Thus, almost all problems that concern uniqueness and the size of minimal
REV-DFAs are solved.

1 Introduction

Reversibility is a fundamental principle in physics. Since abstract computational
models with discrete internal states may serve as prototypes of computing devices
which can be physically constructed, it is interesting to know whether these
abstract models are able to obey physical laws. The observation that loss of
information results in heat dissipation [16] strongly suggests to study compu-
tations without loss of information. Many different formal models have been
studied from this point of view. The reversibility of a computation means in
essence that every configuration has a unique successor configuration and a
unique predecessor configuration. For example, reversible Turing machines have
been introduced in [4], where it turned out that every Turing machine can be
simulated by a reversible one—for improved simulation constructions see [3,20].
Since Rice’s theorem shows that any non-trivial property on languages accepted
by (reversible) Turing machines is undecidable, it is reasonable from a practical
perspective to study reversibility in devices of lower computational capacity. On
the opposite end of the automata hierarchy, reversibility has been studied for
finite automata [1,6,8,11,17,21], pushdown automata [13], queue automata [15],
and even multi-head finite automata [2,14,18,19].

c© Springer International Publishing Switzerland 2015
I. Potapov (Ed.): DLT 2015, LNCS 9168, pp. 276–287, 2015.
DOI: 10.1007/978-3-319-21500-6 22

Minimal Reversible Deterministic Finite Automata 277

Originally, reversible deterministic finite automata have been introduced and
studied in the context of algorithmic learning theory in [1]; see also [11]. Later
this concept was generalized in [21] and [17]. Almost all of these definitions agree
on the fact that the transition function induces a partial injective mapping for
every letter. Nevertheless, there are subtle differences. For instance, in [1] a par-
tial deterministic finite automaton (DFA) M is defined to be reversible if M
and the dual of M , that is the automaton that is obtained from M by reversing
all transitions and interchanging initial and final states, are both deterministic.
In particular, this definition implies that for reversible DFAs in the sense of [1]
only one final state is allowed; hence these devices were called bideterministic
in [21]. Since there are regular languages that are not accepted by any DFA with
a sole accepting state, by definition, there are non-reversible regular languages in
this setting. Then the definition of reversibility has been extended in [21]. Now
multiple accepting as well as multiple initial states are allowed. So, reversible
DFAs in the sense of [21] may have limited nondeterminism plugged in from
the outside world at the outset of the computation. But still, these devices turn
out to be less powerful than general (possibly irreversible) finite automata. An
example is the regular language a∗b∗ which is shown [21] to be not acceptable
by any reversible DFA. In the same paper it is proved that for a given DFA the
existence of an equivalent reversible finite automaton can be decided in polyno-
mial time. A further generalization of reversibility to quasi-reversibility, which
even allows nondeterministic transitions was introduced in [17]—see also [6].
Different aspects of reversibility for classical automata are discussed in [12]. In
view of these results natural questions concern the uniqueness and the size of a
minimal reversible DFA in terms of the size of the equivalent minimal DFA. For
the latter question, in [8], a lower bound of Ω(1.001n) states has been obtained
which, in turn, raises the question for the construction of a minimal reversible
DFA from a given (minimal) DFA. The construction problem has partially been
solved in [6,17], where so-called quasi-reversible automata are constructed. How-
ever, these quasi-reversible DFAs may themselves be exponentially more succinct
than the minimal reversible DFAs. In fact, the witness automata in [8] are already
quasi-reversible.

This is the starting point of our investigation. For our definition of reversibil-
ity we stick to standard definitions. That is, partial DFAs with a unique ini-
tial state and potentially multiple accepting states. Then such an automaton is
reversible if the transition function induces an injective mapping on the state set
for every letter. These basic definitions are given in the next section together with
an introductory example. For these reversible DFAs (REV-DFAs) we are able
to solve the question on uniqueness and size of minimal representations almost
completely. Section 3 is devoted to develop a method to decide the reversibility
of a given regular language. While the notion of reversibility proposed in [21] is
also decidable in polynomial time by an argument on the syntactic monoid of
the language under consideration, here we obtain a structural characterization
of regular languages that can be accepted by REV-DFAs in terms of their min-
imal DFAs. By this characterization an NL-complete decidability algorithm is

278 M. Holzer et al.

shown, which is based on checking for the absence of forbidden patterns in the
state graph. Then in Section 4 we turn to the minimality of REV-DFAs. First
a structural characterization of minimal REV-DFAs is given. Again, this char-
acterization allows to establish an NL-complete algorithm that decides whether
a given DFA is already a minimal REV-DFA among all equivalent REV-DFAs.
A further result is the construction of a minimal REV-DFA out of a given DFA
that accepts a reversible language. Finally, this method is used to reconsider
the example given in [8] and to improve the lower bound derived there to its
maximum. Then we give a new family of binary witness languages that yield
a better lower bound in order of Φn, where Φ is the golden ratio. This bound
can be increased by larger alphabets, it has a limit of Ω(2n−1) as |Σ| tends to
infinity. Finally, our results allow to determine an upper bound of 2n−1 states
for the conversion of DFAs to minimal REV-DFAs, even for arbitrary alphabet
sizes.

2 Preliminaries

An alphabet Σ is a non-empty finite set, its elements are called letters or symbols.
We write Σ∗ for the set of all words over the finite alphabet Σ.

We recall some definitions on finite automata as contained, for example, in [7].
A deterministic finite automaton (DFA) is a system M = 〈S,Σ, δ, s0, F 〉, where S
is the finite set of internal states, Σ is the alphabet of input symbols, s0 ∈ S is
the initial state, F ⊆ S is the set of accepting states, and δ : S × Σ → S is the
partial transition function. Note, that here the transition function is not required
to be total. The language accepted by M is L(M) = {w ∈ Σ∗ | δ(s0, w) ∈ F },
where the transition function is recursively extended to δ : S × Σ∗ → S. By
δR : S × Σ → 2S , with δR(q, a) = { p ∈ S | δ(p, a) = q }, we denote the reverse
transition function of δ. Similarly, also δR can be extended to words instead of
symbols. Two devices M and M ′ are said to be equivalent if they accept the
same language, that is, L(M) = L(M ′). In this case we simply write M ≡ M ′.

Let M = 〈S,Σ, δ, s0, F 〉 be a DFA accepting the language L. The set of
words RM,q = {w ∈ Σ∗ | δ(q, w) ∈ F } refers to the right language of the state q
in M . In case RM,p = RM,q, for some states p, q ∈ S, we say that p and q are
equivalent and write p ≡M q. The equivalence relation ≡M partitions the state
set S of M into equivalence classes, and we denote the equivalence class of q ∈ S
by [q] = { p ∈ S | p ≡M q }. Equivalence can also be defined between states
of different automata: two states p and q of DFAs M and, respectively, M ′ are
equivalent, denoted by p ≡ q, if RM,p = RM ′,q.

A state p ∈ S is accessible in M if there is a word w ∈ Σ∗ such that
δ(s0, w) = p, and it is productive if there is a word w ∈ Σ∗ such that δ(p,w) ∈ F .
If p is both accessible and productive then we say that p is useful. In this paper
we only consider automata with all states useful. Let M and M ′ be two DFAs
with M ≡ M ′. Observe that if p is a useful state in M , then there exists a useful
state p′ in M ′, with p ≡ p′. A DFA is minimal (among all DFAs) if there does
not exist an equivalent DFA with fewer states. It is well known that a DFA is
minimal if and only if all its states are useful and no pair of states is equivalent.

Minimal Reversible Deterministic Finite Automata 279

Next we define reversible DFAs. Let M = 〈S,Σ, δ, s0, F 〉 be a DFA. A
state r ∈ S is said to be irreversible if there are two distinct states p and q
in S and a letter a ∈ Σ such that δ(p, a) = r = δ(q, a). Then a DFA is reversible
if it does not contain any irreversible state. In this case the automaton is said to
be a reversible DFA (REV-DFA). Equivalently the DFA M is reversible, if every
letter a ∈ Σ induces an injective partial mapping from S to itself via the map-
ping δa : S → S with p �→ δ(p, a). In this case, the reverse transition function δR

can then be seen as a (partial) injective function δR : S × Σ → S. Notice that
if p and q are two distinct states in a REV-DFA, then δ(p,w) 	= δ(q, w), for all
words w ∈ Σ∗. Finally, a REV-DFA is minimal (among all REV-DFAs) if there
is no equivalent REV-DFA with a smaller number of states.

Example 1. Consider the finite language L = {aa, ab, ba}. The minimal DFA
and a REV-DFA for this language are shown in Figure 1. Obviously, the minimal
DFA is not reversible, since it contains the irreversible state 3. Moreover, it is
also easy to see that the REV-DFA shown is minimal. Here minimality is meant
with respect to all equivalent REV-DFAs. Note that redirecting the b-transition
connecting state 1 and 3 in the REV-DFA to become a transition from state 1
to 4 results in a minimal REV-DFA as well.
�

0

1

2

3

a

b

a, b

a

0

1

2

3

4

a

b

a, b

a

Fig. 1. The minimal DFA (left) and a minimal REV-DFA (right) for the finite language
L = {aa, ab, ba}. Thus, L is a reversible language.

Finally we need some notations on computational complexity theory. We
classify problems on REV-DFAs with respect to their computational complexity.
Consider the complexity class NL which refers to the set of problems accepted
by nondeterministic logspace bounded Turing machines.

To describe some of our algorithms we make use of nondeterministic space
bounded oracle Turing machines, where the oracle tape is written deterministi-
cally. This oracle mechanism is known as RST-relativization in the literature [22].
If L is a set, we denote by NL〈L〉 the class of languages accepted by nondeter-
ministic logspace bounded RST oracle Turing machines with L oracle, and if C
is a family of language, then NL〈C〉 =

⋃
L∈C NL

〈L〉. Note that whenever C is a
subset of NL, then NL〈C〉 ⊆ NL. This is due to the well-known fact that NL is

280 M. Holzer et al.

closed under complementation [10,23], that is, NL = coNL, where coNL is the
set of complements of languages from NL.

Further, hardness and completeness are always meant with respect to deter-
ministic logspace bounded reducibility, unless otherwise stated.

3 Deciding the Reversibility of a Regular Language

We consider the problem to decide whether a given regular language is reversible,
that is, it is accepted by a REV-DFA. Observe, that the minimal DFA for a lan-
guage need not be reversible, although the language is accepted by a REV-DFA.
This is seen by Example 1. Checking reversibility for the notion of [1] is trivial,
because it boils down to verify the reversibility of the minimal DFA for the lan-
guage, which must have a unique final state. Hence, the language from Example 1
is not reversible in the sense of [1]. On the other hand, the notion of reversibil-
ity proposed in [21] is also decidable, but by a more involved argument on the
syntactic monoid of the language under consideration. We prove the following
structural characterization of regular languages that can be accepted by REV-
DFAs in terms of their minimal DFAs. The conditions of the characterization
are illustrated in Figure 2.

r

p

q

a

a

w

r=q

p
a

a

w

r=p

q

a

a

w

Fig. 2. The “forbidden pattern” of Theorem 2: the language accepted by a minimal
DFA M can be accepted by a REV-DFA if and only if M does not contain the structure
depicted on the left. Here the states p and q must be distinct, but state r could be
equal to state p or state q. The situations where r = q or r = p are shown in the middle
and on the right, respectively—here the word w and its corresponding path are grayed
out because they are not relevant: in the middle, the word w that leads from r to q is
not not relevant since it can be identified with the a-loop on state r = q. Also on the
right hand side, word w is not important because we can simply interchange the roles
of the states q and r = p.

Theorem 2. Let M = 〈S,Σ, δ, s0, F 〉 be a minimal deterministic finite automa-
ton. The language L(M) can be accepted by a reversible deterministic finite
automaton if and only if there do not exist useful states p, q ∈ S, a letter a ∈ Σ,
and a word w ∈ Σ∗ such that p 	= q, δ(p, a) = δ(q, a), and δ(q, aw) = q.

Minimal Reversible Deterministic Finite Automata 281

By this characterization it is now easy to see that, e.g., both languages a∗ba∗

and b∗ab∗ are reversible, but their union is not reversible—obviously this union
is a reversible language in the sense of [21]. Next we prove Theorem 2 by the
upcoming two lemmata,

Lemma 3. Let M = 〈S,Σ, δ, s0, F 〉 be a deterministic finite automaton. If there
exist useful states p, q ∈ S, a letter a ∈ Σ and a word w ∈ Σ∗ such that p 	≡ q,
δ(p, a) ≡ δ(q, a), and δ(q, aw) ≡ q, then the language L(M) cannot be accepted
by a reversible deterministic finite automaton.

Proof. Assume M ′ = 〈S′, Σ, δ′, s′
0, F

′〉 is a REV-DFA with L(M ′) = L(M),
then of course s′

0 ≡ s0. Since the states p and q are useful, there must also
be states p′, q′ ∈ S′ with p′ ≡ p and q′ ≡ q. Thus, the relations p′ 	≡ q′,
δ′(p′, a) ≡ δ′(q′, a), and δ′(q′, aw) ≡ q′ must also hold in the REV-DFA M ′. Let
us now consider the sequence of states δ′(p′, (aw)i), for i ≥ 0. From the equiva-
lences δ′(p′, a) ≡ δ′(q′, a) and δ′(q′, aw) ≡ q′, we conclude δ′(p′, (aw)i) ≡ q′, for
all i ≥ 1. Thus, except for the first state p′, all states of the above sequence are
equivalent to q′. Notice that state p′ cannot be equivalent to the other states of
the sequence since p′ 	≡ q′. Since the number of states of M ′ must be finite, there
must be a loop in the considered state sequence. This means that there must
be integers k ≥ 0 and � ≥ 1 such that δ(p′, (aw)k) = δ(p′, (aw)k+�), and such
that all states in the sequence δ(p′, (aw)0), δ(p′, (aw)1), . . . , δ(p′, (aw)k+�−1) are
pairwise distinct. In fact we know that k ≥ 1 because δ′(p′, (aw)k+�) ≡ q′ can-
not even be equivalent to state δ′(p′, (aw)0) = p′. But now we have found two
distinct states δ′(p′, (aw)k−1) and δ′(p′, (aw)k+�−1) that both map to the same
state δ′(p′, (aw)k) on reading the input aw. This is a contradiction to M ′ being
reversible, hence L(M) cannot be accepted by any REV-DFA.
�

When considering only minimal DFAs, the equivalences between states in
Lemma 3 become equalities, so we obtain one implication of Theorem 2. Now
let us prove that also the reverse implication is true. The idea how to make a
given DFA reversible is very intuitive: as long as there is an irreversible state,
copy this state and all states reachable from it, and distribute the incoming
transitions to the new copies. The absence of the “forbidden pattern” ensures
that this procedure eventually comes to an end.

For the proof of our next result we use the following notion. The state set S
of a DFA M = 〈S,Σ, δ, s0, F 〉 can be partitioned into strongly connected compo-
nents: such a component is an inclusion maximal subset C ⊆ S such that for all
pairs of states (p, q) ∈ C ×C there is a word w ∈ Σ∗ leading from p to q. Notice
that also a single state q may constitute a strongly connected component, even
if there is no looping transition on q.

Lemma 4. Let M = 〈S,Σ, δ, s0, F 〉 be a minimal deterministic finite automa-
ton. If there do not exist useful states p, q ∈ S, a letter a ∈ Σ and a word w ∈ Σ∗

such that p 	= q, δ(p, a) = δ(q, a), and δ(q, aw) = q, then the language L(M) can
be accepted by a reversible deterministic finite automaton.

282 M. Holzer et al.

Proof. We show how to convert the DFA M into an equivalent REV-DFA. First
we build a topological order of the strongly connected components of M ,
such that if C1 C2, for two such components C1 and C2, then no state in C1

can be reached from a state in C2. Consider a minimal (with respect to)
strongly connected component Ck that contains an irreversible state—if no such
component exists then the automaton is reversible. To determine the number of
necessary copies of Ck, compute

α = max{ ∣∣δR(r, a)
∣∣ | r ∈ Ck, a ∈ Σ }. (1)

Now we replace the component Ck by α copies of Ck and redistribute all incoming
transitions among these copies, such that no state in the copies of Ck is the target
of two or more transitions on the same letter. Notice that all transitions that
witness the irreversibility of states in Ck come from outside of Ck, because if
there were states p, q, r ∈ S and a letter a ∈ Σ with δ(p, a) = δ(q, a) = r
and q, r ∈ Ck then M would have the “forbidden pattern” since δ(q, aw) = q for
some w ∈ Σ∗. Therefore, the copies of Ck do not contain irreversible states.

Since also the transitions from states in the component Ck to states outside
of Ck are copied, of course previously reversible states directly “behind” the
copies of Ck could now become irreversible. However, in this way we only intro-
duce irreversible states in components that are of higher rank in the topological
order . Moreover, the obtained automaton is still equivalent to the original one.
Therefore the described procedure can be applied iteratively, each time enlarg-
ing the minimal -rank of components that contain irreversible states, which
eventually leads to a reversible DFA for L(M).
�

For an example explaining the previous construction in further detail we
refer to the upcoming Example 9—there all strongly connected components are
singleton sets, but it is easy to see how the construction works for larger size
components as well. Now we have proven Theorem 2. In fact, we will later see
that the automaton constructed in the proof of Lemma 4 even is a minimal
REV-DFA.

It can be shown that the regular language reversibility problem—given a
DFA M , decide whether L(M) is accepted by any REV-DFA—is NL-complete.
The idea of the proof is to decide in NL whether a given DFA M = 〈S,Σ, δ, s0, F 〉
accepts a non-reversible language with the help of Theorem 2, by witnessing the
forbidden pattern depicted in Figure 2. Since NL is closed under complementation
the containment of the reversibility problem within NL follows.

Theorem 5. The regular language reversibility problem is NL-complete.
�

4 Minimal Reversible Deterministic Finite Automata

We recall that it is well know that the minimal DFA accepting a given regular
language is unique up to isomorphism. So there is the natural question asking
for the relations between minimality and reversibility. It turned out that in

Minimal Reversible Deterministic Finite Automata 283

this connection the different notions of reversibility do matter. For instance,
Example 1 already shows that minimal REV-DFAs are not unique (even not up
to isomorphism) in general. In [21] it is mentioned that a language L is accepted
by a bideterministic finite automaton if and only if the minimal finite automaton
of L is reversible and has a unique final state. This answers the question about
the notion of reversibility in [1]. However, for the other notions of reversibility
considered, the minimal reversible finite automaton for some language can be
exponentially larger than the minimal automaton. In [8] finite witness languages
are given that require 6n + 1 states for a minimal DFA, but Ω(1.001n) states
for a minimal reversible DFA. Before we turn to determine the exact number
of states for this example as well as an improved lower bound, first we derive a
structural characterization of minimal REV-DFAs.

Theorem 6. Let M = 〈S,Σ, δ, s0, F 〉 be a reversible deterministic finite
automaton with all states useful. Then M is minimal if and only if for every
equivalence class [q1] = {q1, q2, . . . , qn} in S, with n > 1, there exists a word w ∈
Σ+ such that δR(qi, w) is defined for 1 ≤ i ≤ n, and δR(qk, w) 	≡ δR(q�, w), for
some k and � with 1 ≤ k, � ≤ n.
�

With the characterization of minimal REV-DFAs as stated in the previous
theorem we are ready to prove that deciding minimality for these devices is
NL-complete, and thus computationally not too complicated.

Theorem 7. Deciding whether a given deterministic finite automaton M is
already a minimal reversible deterministic finite automaton is NL-complete.

Proof. Due to limited space, we only prove containment in NL, which seems the
more interesting here than NL-hardness. Let the DFA M = 〈S,Σ, δ, s0, F 〉 be
given. We will prove minimality with respect to all REV-DFAs using Theorem 6.
Our algorithm uses the following oracle subroutines:

(i) Is state p from the DFA M useful?
(ii) Is p ≡M q in the DFA M?
(iii) Is |[p]| = k in the DFA M?—besides M and p the problem instance contains

also k in binary.

It is not hard to see that these problems and their complements can also be
solved on a nondeterministic Turing machine in logspace.

Now our algorithm proceeds as follows: first the Turing machine verifies that
the input is a REV-DFA, by inspecting all states and checking that for every
letter a there is at most one a-transition leaving and entering the state. If this is
not the case the Turing machine halts and rejects. Next, it is checked whether
all states are useful. Here RST oracle queries are used. If this is not the case,
the computation halts and rejects. Otherwise, we start verifying the conditions
given in Theorem 6. To this end we cycle through all states q ∈ S—note that
we already know that all these states are useful. Then we determine the size
of |[q]|. This is done by cycling through all k with 1 ≤ k ≤ |S| and asking our
oracle subroutine whether |[q]| = k holds in M . If k = 1 nothing has to be

284 M. Holzer et al.

done and the algorithm proceeds with the next q. Otherwise, let k > 1, and the
algorithm has to verify the property stated in Theorem 6. Therefore we nonde-
terministically guess a word w = av in reversed order on the fly letter by letter.
In case v = b1b2 · · · bm with bi ∈ Σ, for 1 ≤ i ≤ m, then the machine guesses bm,
bm−1, . . . , b1 and a in this order. Then for the letter bm we deterministically com-
pute q′ = δR(q, bm) and verify (i) that |[q′]| = k and (ii) that δR(p, bm) is defined
for every state p in [q]. Notice that in this case, every state from the equivalence
class [q′] enters the equivalence class [q] on input bm. Again, both questions can
be answered with the help of oracles on a RST oracle Turing machine. Then
we continue the backward computation of M with state q′ and the letter bm−1

proceeding as just described above. This step by step backward computation
continues until we reach state q′′ with the next to last guessed letter b1. Finally,
reading letter a backward must result in a situation that the condition of The-
orem 6 is fulfilled. This means that δR(q′′, a) is defined and (i) results in an
equivalence class that is strictly smaller than k and (ii) moreover, δR(p, a) is
defined for every state p in [q′′]. As above these questions are answered with the
help of the oracles described above. The Turing machine halts and rejects if any
of these oracle questions is not answered appropriately. Then the equivalence
class [q] satisfies the condition of Theorem 6 via the witness w = av, and the
Turing machine proceeds with the next q in order.

If we have found witnesses for all equivalence classes [q], for all states q
in S, then Turing machine halts and accepts. Otherwise, it halts and rejects.
It is not hard to see that the described algorithm can be implemented on a
nondeterministic logspace bounded RST oracle Turing machine. Thus, we can
decide minimality of REV-DFAs in NL〈NL〉 = NL.
�

A closer look on the construction of a REV-DFA from a given minimal DFA
in the proof of Lemma 4 reveals that the constructed automaton satisfies the
condition given in Theorem 6, and thus, is a minimal REV-DFA.

Lemma 8. Let M = 〈S,Σ, δ, s0, F 〉 be a minimal deterministic finite automa-
ton and M ′ = 〈S′, Σ, δ′, s′

0, F
′〉 the reversible deterministic finite automaton con-

structed from M as in the proof of Lemma 4. Then M ′ is a minimal reversible
deterministic finite automaton.
�

Now we are prepared to derive lower bounds on the number of states for min-
imal reversible DFAs. The currently best known lower bound Ω(1.001n) origi-
nates in [8]. It relies on the 2n-fold concatenation L2n of the finite language
L = {aa, ab, ba}—see Figure 3. Using our technique for constructing a minimal
REV-DFA, one can derive the exact number of states of a minimal REV-DFA for
the language L2n, which is 22n+2 −3. Since the minimal DFA for L2n has 6n+1
states, the blow-up in the number of states is in the order of 2n/3 = (3

√
2)n, which

is approximately 1.259n. In our next example we present a better lower bound
which is related to the Fibonacci numbers, and thus is approximately 1.618n,
the golden ratio Φ to the power of n.

Minimal Reversible Deterministic Finite Automata 285

· · ·0

1

2

3

4

5

6 6n

a

b

a, b

a

a

b

a, b

a

a

b

a, b

a

Fig. 3. The minimal DFA accepting the language L2n, for n ≥ 1

Example 9. Let n ≥ 3 and consider the DFA Mn = 〈S,Σ, δ, s0, F 〉 with state
set Sn = {1, 2, . . . , n}, initial state s0 = 1, final state Fn = {n}, and transition
function δn given through:

δn(s, a) =

{
s + 1 if s ≤ n − 1 and s is odd,
s + 2 if s ≤ n − 2 and s is even,

δn(s, b) =

{
s + 2 if s ≤ n − 2 and s is odd,
s + 1 if s ≤ n − 1 and s is even.

Figure 4 shows an example of the automaton Mn for n = 6. Notice that no tran-
sitions are defined in state n, and only one transition is defined in state n − 1.
Clearly, the DFA Mn is minimal, but not reversible. However, since the lan-
guage L(Mn) is finite, one readily sees that it can be accepted by a REV-DFA.

1

2

3

4

5

6

a

b

b

a

a

b

b

a

a

Fig. 4. The minimal DFA Mn, for n = 6, where the minimal REV-DFA needs
∑n

i=1 F i = Fn+2 −1 states

Let us apply the construction from the proof of Lemma 4 to construct an
equivalent REV-DFA, which, by Lemma 8 is a minimal REV-DFA. The topolog-
ical order of the strongly connected components of Mn clearly is the natural
order 1 2 · · · n. States 1 and 2 do not need to be copied, but we need two
copies of state 3 because of its two predecessor states 1 and 2 by letter b. Then we
need three copies of state 4 because of its three predecessors by letter a, namely

286 M. Holzer et al.

state 2 and two copies of state 3. It is clear how this continues: every state s
of Mn with s ≥ 3 has two predecessors s − 1 and s − 2 either on letter a (if s
is even) or letter b (if s is odd). Therefore the number of copies of state s is the
sum of the number of copies of s − 1 and those of s − 2. Since we start with one
copy of state 1 and one copy of state 2, the number of copies of a state s ∈ Sn

in the minimal REV-DFA for L(Mn) is exactly F s, the s-th Fibonacci number.
Therefore the number of states of the minimal REV-DFA is

∑n
i=1 Fn. This is

equal to Fn+2 −1. From the closed form

Fn =
1√
5

·
(

1 +
√

5
2

)n

− 1√
5

·
(

1 − √
5

2

)n

and the fact that
(

1−√
5

2

)n

tends to zero, for large n, we see that state blow-up

when transforming M into an equivalent REV-DFA is in the order of
(

1+
√
5

2

)n

,
that is, approximately 1.618n.
�

Thus, we have shown the following theorem.

Theorem 10. For every n with n ≥ 3 there is an n-state DFA Mn over a
binary input alphabet accepting a reversible language, such that any equivalent
REV-DFA needs at least Ω(Φn) states with Φ = (1+

√
5)/2, the golden ratio.
�

It is worth mentioning that the lower bound of Example 9 is for a binary
alphabet. It can be increased at the cost of more symbols. For a k-ary
alphabet one can derive the lower bound from the k-ary Fibonacci function
Fn = Fn−1 +Fn−2 + · · · + Fn−k. For k = 3 the lower bound is of order 1.839n

and for k = 4 it is of order 1.927n. For growing alphabet sizes the bound asymp-
totically tends to 2n−1, that is, Ω(2n−1).

Finally, our techniques allow us to determine an upper bound of 2n−1 states
for the conversion from DFAs to equivalent REV-DFAs, even for arbitrary alpha-
bet sizes.

Theorem 11. Let M be a minimal deterministic finite automaton with n states,
that accepts a reversible language. Then a minimal reversible deterministic finite
automaton for L(M) has at most 2n−1 states.
�

References

1. Angluin, D.: Inference of reversible languages. J. ACM 29, 741–765 (1982)
2. Axelsen, H.B.: Reversible Multi-head Finite Automata Characterize Reversible

Logarithmic Space. In: Dediu, A.-H., Mart́ın-Vide, C. (eds.) LATA 2012. LNCS,
vol. 7183, pp. 95–105. Springer, Heidelberg (2012)

3. Axelsen, H.B., Glück, R.: A simple and efficient universal reversible turing machine.
In: Dediu, A.-H., Inenaga, S., Mart́ın-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638,
pp. 117–128. Springer, Heidelberg (2011)

Minimal Reversible Deterministic Finite Automata 287

4. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532
(1973)

5. Cho, S., Huynh, D.T.: The parallel complexity of finite-state automata problems.
Inform. Comput. 97, 1–22 (1992)

6. Garćıa, P., Vázquez de Parga, M., López, D.: On the efficient construction of
quasi-reversible automata for reversible languages. Inform. Process. Lett. 107,
13–17 (2008)

7. Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley (1978)
8. Héam, P.C.: A lower bound for reversible automata. RAIRO Inform. Théor. 34,

331–341 (2000)
9. Holzer, M., Jakobi, S.: Minimal and Hyper-Minimal Biautomata. In: Shur, A.M.,

Volkov, M.V. (eds.) DLT 2014. LNCS, vol. 8633, pp. 291–302. Springer, Heidelberg
(2014)

10. Immerman, N.: Nondeterministic space is closed under complement. SIAM J.
Comput. 17, 935–938 (1988)

11. Kobayashi, S., Yokomori, T.: Learning approximately regular languages with
reversible languages. Theoret. Comput. Sci. 174, 251–257 (1997)

12. Kutrib, M.: Aspects of Reversibility for Classical Automata. In: Calude, C.S.,
Freivalds, R., Kazuo, I. (eds.) Gruska Festschrift. LNCS, vol. 8808, pp. 83–98.
Springer, Heidelberg (2014)

13. Kutrib, M., Malcher, A.: Reversible Pushdown Automata. In: Dediu, A.-H., Fernau,
H., Mart́ın-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 368–379. Springer,
Heidelberg (2010)

14. Kutrib, M., Malcher, A.: One-Way Reversible Multi-head Finite Automata. In:
Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 14–28. Springer,
Heidelberg (2013)

15. Kutrib, M., Malcher, A., Wendlandt, M.: Reversible queue automata. In:
Non-Classical Models of Automata and Applications (NCMA 2014). books@ocg.at,
vol. 304, pp. 163–178. Austrian Computer Society, Vienna (2014)

16. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
J. Res. Dev. 5, 183–191 (1961)

17. Lombardy, S.: On the Construction of Reversible Automata for Reversible
Languages. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M.,
Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 170–182.
Springer, Heidelberg (2002)

18. Morita, K.: Two-way reversible multi-head finite automata. Fund. Inform. 110,
241–254 (2011)

19. Morita, K.: A Deterministic Two-Way Multi-head Finite Automaton Can Be
Converted into a Reversible One with the Same Number of Heads. In: Glück, R.,
Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 29–43. Springer, Heidelberg
(2013)

20. Morita, K., Shirasaki, A., Gono, Y.: A 1-tape 2-symbol reversible Turing machine.
Trans. IEICE E72, 223–228 (1989)

21. Pin, J.E.: On reversible automata. In: Latin 1992: Theoretical Informatics. LNCS,
vol. 583, pp. 401–416. Springer (1992)

22. Ruzzo, W.L., Simon, J., Tompa, M.: Space-bounded hierarchies and probabilistic
computations. J. Comput. System Sci. 28, 216–230 (1984)

23. Szelepcsényi, R.: The method of forced enumeration for nondeterministic
automata. Acta Inform. 26, 279–284 (1988)

24. Wagner, K., Wechsung, G.: Computational Complexity. Reidel (1986)

Multi-sequential Word Relations

Ismaël Jecker(B) and Emmanuel Filiot

Université Libre de Bruxelles, Brussel, Belgium
ijecker@gmaiil.com

Abstract. Rational relations are binary relations of finite words that are
realised by non-deterministic finite state transducers (NFT). A particular
kind of rational relations is the sequential functions. Sequential functions
are the functions that can be realised by input-deterministic transduc-
ers. Some rational functions are not sequential. However, based on a
property on transducers called the twinning property, it is decidable in
PTime whether a rational function given by an NFT is sequential. In this
paper, we investigate the generalisation of this result to multi-sequential
relations, i.e. relations that are equal to a finite union of sequential func-
tions. We show that given an NFT, it is decidable in PTime whether
the relation it defines is multi-sequential, based on a property called the
fork property. If the fork property is not satisfied, we give a procedure
that effectively constructs a finite set of input-deterministic transducers
whose union defines the relation. This procedure generalises to arbitrary
NFT the determinisation procedure of functional NFT.

Finite transducers extend finite automata with output words on transitions.
Any successful computation (called run) of a transducer defines an output word
obtained by concatenating, from left to right, the words occurring along the
transitions of that computation. Since transitions are non-deterministic in gen-
eral, there might be several successful runs on the same input word u, and hence
several output words associated with u. Therefore, finite transducers can define
binary relations of finite words, the so-called class of rational relations [6,9,14].
Unlike finite automata, the equivalence problem, i.e. whether two transducers
define the same relation, is undecidable [10]. This has motivated the study of
different subclasses of rational relations, and their associated definability prob-
lems: given a finite transducer T , does the relation �T � it defines belong to a
given class C of relations? We survey the most important known subclasses of
rational relations.

Rational Functions. An important subclass of rational relations is the class of
rational functions. It enjoys decidable equivalence and moreover, it is decidable
whether a transducer is functional, i.e. defines a function. This latter result was
first shown by Schützenberger with polynomial space complexity [16] and the
complexity has been refined to polynomial time in [5,11].

I. Jecker—Author supported by the ERC inVEST (279499) project.
E. Filiot—F.R.S.-FNRS research associate (chercheur qualifié).

c© Springer International Publishing Switzerland 2015
I. Potapov (Ed.): DLT 2015, LNCS 9168, pp. 288–299, 2015.
DOI: 10.1007/978-3-319-21500-6 23

Multi-sequential Word Relations 289

A subclass of rational functions which enjoys good algorithmic properties
with respect to evaluation is the class of sequential functions. Sequential func-
tions are those functions defined by finite transducers whose underlying input
automaton is deterministic (called sequential transducers). Some rational func-
tions are not sequential. E.g., over the alphabet Σ = {a, b}, the function fswap

mapping any word of the form uσ to σu, where u ∈ Σ∗ and σ ∈ Σ, is rational
but not sequential, because finite transducers process input words from left-to-
right, and therefore any transducer implementing that function should guess
non-deterministically the last symbol of uσ. Given a functional transducer, it
is decidable whether it defines a sequential function [7], based on a structural
property of finite transducers called the twinning property. This property can be
decided in PTime [5] and therefore, deciding whether a functional transducer
defines a sequential function is in PTime. If the twinning property holds, one can
“determinise” the original transducer into an equivalent sequential transducer.

It turns out that many examples of rational functions from the literature
which are not sequential are almost sequential, in the sense that they are equal to
a finite union of sequential functions. Such functions are called multi-sequential.
For instance, the function fswap is multi-sequential, as fswap = fa ∪ fb, where
fa is the partial sequential function mapping all words of the form ua to au
(and similarly for fb). Some rational functions are not multi-sequential, such
as functions that are iterations of non-sequential functions. E.g., the function
mapping u1#u2# . . . #un to fswap(u1) . . . fswap(un) for some separator #, is
not multi-sequential. Multi-sequential functions have been considered by Chof-
frut and Schützenberger in [8], where it is shown that multi-sequentiality for
functional transducers is a decidable problem.

Contribution. We generalise the result of [8] to rational relations and investi-
gate its complexity. Our main result shows that, given a finite transducer, it is
decidable in PTime whether the relation it defines is multi-sequential, i.e. is a
finite union of sequential functions. Our procedure is based on a simple charac-
terisation of non multi-sequential relations by means of a structural property,
called the fork property, on finite transducers. We show that a finite transducer
defines a multi-sequential relation iff it is unforked, i.e., does not satisfy the
fork property. We define a procedure that decomposes into a union of sequential
transducers any finite unforked transducer.

Related Works. As already mentioned, for the particular case of rational func-
tions defined by unambiguous transducers, decidability of multi-sequentiality
was shown in [8] (without complexity result). We generalise this result to arbi-
trary rational relations and show PTime complexity. Restricted to functions,
our decomposition procedure can handle ambiguous functional transducers with-
out extra exponential blow-up (removing ambiguity is worst-case exponential in
state-complexity). Although we apply it in a more general setting than [8], the
fork property is easily seen to be equivalent to that of [8]. It was also recently
used to characterise unambiguous (min,+) automata over reals that define multi-
sequential functions [3] (see also [2] for a generalisation to larger classes).

290 I. Jecker and E. Filiot

Table 1. Definability problems for rational relations given by finite transducers

sequentiality multi-sequentiality functionality multi-sequentiality finite-valuedness
(for functions)

PSpace [7] Decidable [8] PSpace [16] PTime (this paper) PTime [15,17]
PTime [5] PTime (this paper) PTime [5,11]

Finite-valued rational relations are rational relations such that any input
word has at most k images by the relation, for a fixed constant k. Equivalence
of finite-valued rational relations is decidable [11], finite-valuedness (existence
of such a k) is decidable in PTime for rational relations, and any k-valued
rational relation can be expressed as a union of k rational functions [15,17,
18]. This result can be used to decide multi-sequentiality as follows. Given a
rational relation R, we begin by deciding its finite-valuedness. If it is not finite-
valued, it is not multi-sequential. If it is, there exist finitely many functional
transducers such that their union recognises R. If all of them are unforked,
then the functions they define are multi-sequential [8], and so is R. If any of
them is forked, then R is not multi-sequential (this can be proved similarly to
Lemma 11). However, our main result proves that those steps are unnecessary,
as it is enough to check the fork property on the initial transducer.

Finally, finitely-sequential relations have been considered in [1]. They cor-
respond to relations that can be realised by an input-deterministic transducer
whose accepting states can, at the end of the run, output additional words from
a finite set. Such relations are weaker than multi-sequential relations.

The known and new results of this paper are summarised in Table 23. Due
to space restriction, proofs are only sketched. We refer the reader to [13] for an
extended version with proofs.

1 Rational Word Relations

We denote by N the set of natural numbers {0, 1, . . . }, and by P(A) the set of
subsets of a set A, and by Pf (A) the set of finite subsets of A.

Words and Delays. Let Σ be a (finite) alphabet of symbols. The elements of
the free monoid Σ∗ are called words over Σ. The length of a word w is written
|w|. The free monoid Σ∗ is partially ordered by the prefix relation ≤. We denote
by Σ−1 the set of symbols σ−1 for all σ ∈ Σ. Any word u ∈ (Σ ∪ Σ−1)∗ can
be reduced into a unique irreducible word u by the equations σσ−1 = σ−1σ = ε
for all σ ∈ Σ. Let GΣ be the set of irreducible words over Σ ∪ Σ−1. The set
GΣ equipped with concatenation u.v = uv is a group, called the free group
over Σ. We denote by u−1 the inverse of u. E.g. (a−1bc)−1 = c−1b−1a. The
delay between two words v and w is the element Δ(v, w) := v−1w ∈ GΣ . E.g.,
Δ(ab, acd) = b−1cd.

Finite Automata. A (finite) automaton over a monoid M is a tuple A =
(Q,E, I, T) where Q is the finite set of states, I ⊂ Q is the set of initial states,

Multi-sequential Word Relations 291

T ⊂ Q is the set of final states, and E ⊂ Q × M × Q is the finite set of edges,
or transitions, labelled by elements of the monoid M .

For all transitions e = (q1,m, q2) ∈ E, q1 is called the source of e, q2 its target
and m its label. A run of an automaton is a sequence of transitions r = e1 . . . en

such that for every 1 ≤ i < n, the target of ei is equal to the source of ei+1. We
write p

m−→A q (or just p
m−→ q when it is clear from the context) to mean that

there is a run e1 . . . en such that p is the source of e1, q the target of en, and
m is the product of the labels of the ei. A run is called accepting if its source
is an initial state and its target is a final state. An automaton is called trim
if each of its states occurs in at least one accepting run. It is well-known that
any automaton can be trimmed in polynomial time. The language recognised
by an automaton over a monoid M is the set of elements of M labelling its
accepting runs. A Σ-automaton is an automaton over the free monoid Σ∗ such
that each edge is labelled by a single element σ of Σ. A Σ-automaton is called
deterministic if it has a single initial state, and for all q ∈ Q and σ ∈ Σ, there
exists at most one transition labelled σ of source q.

Given two automata A1 and A2 over a monoid M , their disjoint union A1∪A2

is defined as the disjoint union of their set of states, initial states, final states
and transitions. It recognises the union of their respective languages.

Finite Transducers. Let Σ and Γ two alphabets. A (finite) transducer T from
Σ∗ to Γ ∗ is a tuple (Q,E, I, T, fT) such that (Q,E, I, T) is a finite automaton
over the monoid Σ∗ × Γ ∗, called the underlying automaton of T , such that
E ⊆ Q × Σ × Γ ∗ × Q, and fT : T → Γ ∗ is the final output function. In this
paper, the input and output alphabets are always denoted by Σ and Γ . Hence,
we just use the terminology transducer instead of transducer from Σ∗ to Γ ∗.

A run (resp. accepting run) of T is a run (resp. accepting run) of its under-

lying automaton. We write p
u|v−−→ q instead of p

(u,v)−−−→ q. The relation recognised

by T is the set �T � of pairs (v, wfT (t)) such that i
v|w−−→ t for i ∈ I and t ∈ T .

A transducer T is functional if �T � is a function. It is called trim if its underlying
automaton is trim. The input automaton of a transducer is the Σ-automaton
obtained by projecting the labels of its underlying automaton on their first com-
ponent. A transducer is called unambiguous if its input automaton has at most
one accepting run for each word it accepts. Given a transducer T , we denote
by MT the maximal integer |v|, v ∈ Γ ∗, such that v labels a transition of T or
v = fT (q) for some q ∈ Q.

A rational transducer is defined as a transducer, except that its transitions
are labeled in Σ∗ × Γ ∗. Rational transducers are strictly more expressive than

transducers and define the class of rational relations. E.g., by using loops q
ε|w−−→ q,

a word can have infinitely many images by a rational relation. If there is no such
loop, it is easily shown that rational transducers are equivalent to transducers1.

1 Transducers are sometimes called real-time in the literature, and rational transducers
just transducers [14]. To avoid unecessary technical difficulties, we establish our main
result for (real-time) transducers, but, as shown in Remark 9, it still holds for rational
transducers.

292 I. Jecker and E. Filiot

q0

q1 b

a | ε

a | a

(a) Ta

q0

q1

b | εa | ba

a | a

b | ε

(b) Tblank

q0

q1

q2

q3

a | aa a | ε

a | ba b | ε

a | a

a | a

(c) Tswap

q0

q1

q2

q3

a | aa a | ε

a | ba b | ε

a | a

a | a

|

(d) T ∗
swap

Fig. 1. Finite transducers

2 Multi-sequential Relations

In this section, we define multi-sequential relations, and give a decidable property
on transducers that characterise them.

2.1 From Sequential Functions to Multi-sequential Relations

A transducer T = (Q,E, I, T, fT) is sequential if its input automaton is deter-
ministic. A function f : A∗ → B∗ is sequential if it can be realised by a sequential
transducer2, i.e. f = �T � for some sequential transducer T .

Let Σ = Γ = {a, b}. Fig. 1 depicts transducers that implement sequential and
non-sequential functions. All states which is the target of a source-less arrow are
initial, and those which are the source of an arrow without target, or whose target
is a word, are accepting. The function fa that maps any word of the form an,
n > 0, to an−1b, is sequential. It is realised by the transducer of Fig. 1(a). The
function fblank replaces each block of consecutive b by a single b, and deletes
the trailing b’s. E.g. fblank(abbbab) = aba. It is sequential and defined by the
sequential transducer of Fig. 1(b). The function fswap maps any word of the
form anσ to σan, for σ ∈ Σ. It is not sequential, because the transducer has to
guess the last symbol σ. It can be defined by the transducer of Fig. 1(c).

Sequential functions have been characterised by a structural property of the
transducers defining them, called the twinning property. Precisely, a trim trans-
ducers with initial state q0 is twinned iff for all states q1, q2, all words u, v ∈ Σ∗

and u1, v1, u2, v2 ∈ Γ ∗, if q0
u|u1−−−→ q1

v|v1−−→ q1 and q0
u|u2−−−→ q2

v|v2−−→ q2, then
Δ(u1, u2) = Δ(u1v1, u2v2). E.g., by taking u = v = a, u1 = aa, u2 = ba and
v1 = v2 = a, it is easy to see that the transducer of Fig.1(c) is not twinned.

2 These functions are sometimes called subsequential in the literature. We follow the
terminology of [14].

Multi-sequential Word Relations 293

Theorem 1 ([5,7]). Let T be a trim transducer.

1. T is twinned iff �T � is sequential.
2. It is decidable in PTime whether a trim transducer is twinned.

The following result is a folklore result which states that the difference (the
delay) between the outputs of two input words is linearly bounded by the dif-
ference of their input words.

Proposition 2. Let D be a sequential transducer. For all pairs
(u1, v1), (u2, v2) ∈ �D�, |Δ(v1, v2)| ≤ MD(|Δ(u1, u2)| + 2).

Multi-sequential relations. The function fswap is not sequential, but it is multi-
sequential, in the sense that it is the union of two sequential functions f1, f2
such that f1 is the restriction of fswap to words in a+a and f2 its restriction to
words in a+b. Precisely:

Definition 3 (Multi-sequential relations). A relation R ⊆ Σ∗×Γ ∗ is multi-
sequential if there exist k sequential functions f1, . . . , fk such that R =

⋃k
i=1 fi.

The multi-sequentiality problem asks, given a transducer T , whether �T �
is multi-sequential. It should be clear that the answer to this problem is not
always positive. Indeed, even some rational functions are not multi-sequential.
It is the case for instance for the function f∗

swap that maps any word of the
form u1#u2# . . . #un to fswap(u1)#fswap(u2)# . . . #fswap(un), where ui ∈ Σ∗

and # �∈ Σ is a fresh symbol. This function is rational, as it can be defined by
the transducer of Fig. 1(d). In this paper, we investigate the intrinsic reasons
making a rational relation like fswap multi-sequential and a rational relation like
f∗

swap not. In particular, we define a weaker variant of the twinning property
that characterises the multi-sequential relations by structural properties of the
transducers which define them.

2.2 Fork Property

Definition 4. Let T be a trim transducer and q1, q2 be two states of T . We say
that q1 forks to q2 if there exist words u, v ∈ Σ∗ and u1, u2, v1, v2 ∈ Γ ∗, such

that q1
u|u1−−−→ q1

v|v1−−→ q1
u|u2−−−→ q2

v|v2−−→ q2, or graphically

q1 q2 , and Δ(u1, u2) �= Δ(u1v1, u2v2).

v | v1

u | u1

u | u2

v | v2

T satisfies the fork property if there are two states q1 and q2 of T such that q1
forks to q2. T is forked if it satisfies the fork property, otherwise it is unforked.

294 I. Jecker and E. Filiot

Remark 5. Any transducer satisfying the twinning property is unforked. Indeed,
suppose that T satisfies the twinning property. We show that in any pattern
depicted in Definition 4, we immediately get Δ(u1, u2) = Δ(u1v1, u2v2). Indeed,

since T is trim, there exist words (x, x′) ∈ Σ∗ × Γ ∗ such that q0
x|x′
−−→ q1,

where q0 is the initial state of T . Then, we have q0
xu|x′u1−−−−−→ q1

v|v1−−→ q1 and

q0
xu|x′u2−−−−−→ q2

v|v2−−→ q2. Since T satisfies the twinning property, we get that
Δ(x′u1, x

′u2) = Δ(x′u1v1, x
′u2v2), and therefore Δ(u1, u2) = Δ(u1v1, u2v2).

Theorem 6 (Choffrut, Schützenberger [8]). Let T be a (functional) unam-
biguous trim transducer. Then �T � is multi-sequential iff T is unforked.

2.3 Main Result

We generalise Theorem 6 to arbitrary transducers, and show the fork property
to be decidable in polynomial time.

Theorem 7 (Main Result). Let T be a trim transducer.

1. �T � is multi-sequential iff T is unforked.
2. It is decidable in PTime whether a trim transducer is forked.

Deciding the fork property is done with a reversal-bounded counter machine,
whose emptiness is known to be decidable in PTime [12] (see [13]). The proof of
Theorem 7.1 is done via two lemmas, Lemma 10 and 12, that are shown in the
rest of this paper. An immediate consequence of this theorem and the fact that
any transducer can be trimmed in polynomial time, is the following corollary:

Corollary 8. It is decidable in PTime whether a transducer defines a multi-
sequential relation.

Remark 9. Theorem 7 is also true when T is a rational transducer. Indeed, if
�T � is multi-sequential, then it is finite-valued, and therefore there is no loop

of the form q
ε|w−−→ q. Then T can be transformed into an equivalent real-time

transducer, while preserving the fork property. Conversely, if T is unforked,

then there is no loop of the form q
ε|w−−→ q, otherwise by taking q1 = q2 = q,

u = v = u1 = v1 = ε and u2 = v2 = w in the definition of the fork property,
one would raise a contradiction. As before, one can transform T into a real-time
transducer while preserving the fork property.

Lemma 10. Let T be a trim transducer. If T is unforked, then �T � is multi-
sequential.

The proof of this lemma is the goal of Sec. 3 which provides a procedure
that decomposes a transducer T into a union of sequential transducers. This
procedure generalises to relations the determinisation procedure of functional
transducers. In particular, it is based on a subset construction extended with

Multi-sequential Word Relations 295

delays, and a careful analysis of the strongly connected components of T .

The following lemma is a key result to prove the other direction of Theorem
7.1. It states that the fork property is preserved by transducer equivalence, and
therefore is independent from the transducer that realises the relation.

Lemma 11. Let T1, T2 be two trim transducers.

1. If �T1� ⊆ �T2� and T1 is forked, then T2 is forked.
2. If �T1� = �T2�, then T1 is forked iff T2 is forked.

Proof. Clearly, 2 is a consequence of 1. Let us prove 1 by contradiction. Since

T1 is forked, there exist two states q1 and q2 of T1, an accepting run q0
x|x′
−−→T1

q1
u|u2−−−→T1 q2

y|y′
−−→T1 qf and loops q1

u|u1−−−→T1 q1
v|v1−−→T1 q1 and q2

v|v2−−→T1 q2 such
that for every n ∈ N, |Δ(u1v

n
1 , u2v

n
2)| ≥ n (see [13]).

Suppose that T2 is unforked. Then, by Lemma 10, there exist sequential
transducers D1, . . . ,Dk such that �T2� =

⋃k
i=1�Di�. Let M = max{|u|, |v|, |y|}.

Let b be the maximal MDi
, 1 ≤ i ≤ k. Let r = 4b(k + 1)(M + 1). For every

1 ≤ i ≤ k + 1, consider the pair (wi, w
′
i) in �T1� defined by

wi = xvrk

uvrk−1
. . . uvri+1

uvri

y, w′
i = x′vrk

1 u1v
rk−1

1 . . . u1v
ri+1

1 u2v
ri

2 y′.

Since �T1� ⊆ �T2�, and (wi, w
′
i) ∈ �T1�, we have (wi, w

′
i) ∈ �T2�, hence there

exists 1 ≤ j ≤ k such that (wi, w
′
i) ∈ �Dj�. As there are k different Dj and k + 1

pairs (wi, w
′
i), there exist k ≥ i1 > i2 ≥ 0 such that (wi1 , w

′
i1

), (wi2 , w
′
i2

) ∈ �Dj�.
By Proposition 2, |Δ(w′

i1
, w′

i2
)| ≤ b(|Δ(wi1 , wi2)| + 2). However,

b(|Δ(wi1 , wi2)| + 2) |Δ(w′
i1

, w′
i2

)|
= b|y−1uvri1−1

. . . uvri2 y| + 2b = |(u2vri1
2 y′)−1u1vri1

1 . . . u1vri2+1
1 u2vri2

2 y′|
≤ b|uvri1−1

. . . uvy| + 2b ≥ |(u2vri1
2)−1u1vri1

1 |
= i1b|u| + b|y| + ri1−1

r−1 b|v| + 2b −|u1vri1−1
1 . . . u1vri2+1

1 u2vri2
2 y′|

≤ b(k+1)(M+1)+2bM(ri1−1−1) ≥ ri1 − b|y| − b|uvri1−1
. . . uvy|

≤ r
4 + ri1−1

4 < ri1
2 > ri1 − ri1

2

< ri1
2 = ri1

2

which is a contradiction. �

Lemma 12. Let T be a trim transducer. If �T � is multi-sequential, then T is
unforked.

Proof. If �T � is multi-sequential, then T is equivalent to a transducer T ′ given
as a union of k sequential transducers Di for some k ≥ 0 with disjoint sets of
states. Clearly, if each Di is unforked, then so is T ′. Since the Di are sequential,
they satisfy the twinning property, and therefore they are unforked by Remark
5. Hence, T ′ is unforked. By Lemma 11 and since T ′ and T are equivalent, T is
also unforked. �

The following result implies that, in order to show that a rational relation is
not multi-sequential, it suffices to exhibit a function contained in that relation,
which is not multi-sequential.

296 I. Jecker and E. Filiot

Corollary 13. Let R be a rational relation, and f a rational function such that
f ⊆ R and f is not multi-sequential. Then R is not multi-sequential.

Proof. We assume that R and f are defined by transducers T and Tf . The result
still holds for rational transducers, for the same reasons as the one explained in
Remark 9. Since f is not multi-sequential, by Theorem 7.1, Tf is forked. Since
f ⊆ R, by Lemma 11 it implies that T is forked, and hence not multi-sequential,
again by Theorem 7.1. �

3 Decomposition Procedure

In this section, we show how to decompose an unforked transducer into a union
of sequential transducers, via a series of constructions. For simplicity, we some-
times consider multi-transducers, i.e. transducers such that the function fT maps
any final state to a finite set of output words. Let T = (Q,E, I, T, fT) be a trans-
ducer. Let ∼⊆ Q2 defined by q1 ∼ q2 if q1 and q2 are strongly connected, i.e. if
there exist a run from q1 to q2 and a run from q2 to q1. The equivalence classes
of ∼ are called the strongly connected components (SCC) of T . An edge of T
is called transient if its source and target are in distinct SCC, or equivalently,
if there exist no run from its target to its source. The condensation of T is the
directed acyclic graph Ψ(T) whose vertices are the SCC of T and whose edges
are the transient edges of T . A transducer is called separable if it has a sin-
gle initial state and any two edges of same source and same input symbol are
transient.

Split. Let T = (Q,E, I, T, fT) be a transducer. Let P be the paths of the
condensation Ψ(T) starting in an SCC containing an initial state. Note that P
is finite as Ψ(T) is a DAG. For each path p ∈ P , let Tp be the subtransducer of
T obtained by removing all the transient edges of T but the ones occurring in
p. The split of T is the transducer split(T) =

⋃
p∈P Tp. Clearly,

Lemma 14. The transducer split(T) is equivalent to T , i.e. �split(T)� = �T �.

If T is separable, then split(T) is a decomposition of T into sequential trans-
ducers. Since any multi-transducer can be transformed into an equivalent union
of transducers over the same underlying automaton while preserving separability,
we get the following result:

Lemma 15. Let T be a separable multi-transducer with a single initial state.
Then �T � is multi-sequential.

Determinisation. We recall the determinisation procedure for transducers, for
instance presented in [4]. It extends the subset construction with delays between
output words, and outputs the longest common prefix of all the output words pro-
duced on transitions on the same input symbol, and keep the remaining suffixes

Multi-sequential Word Relations 297

q0

q1

q2

q3

q4

a | a

a | b

a | b

b | ε

a | a

a | a

a | a

(a) T

(q0, ε)

(q1, a)
(q2, b)

(q2, ab)
(q3, ba)

(q3, aba)
(q4, baa)

(q4, abaa)
(q4, baaa)

· · ·

a | ε a | ε a | εb | b

b | ab

a | ε

(b) D(T)

Fig. 2. Non determinisable transducer

(delays) in the states. Precisely, let T = (Q,E, I, T, fT) be a trim transducer.
For every U ∈ Pf (Q × Γ ∗), for every σ ∈ Σ, let

RU,σ = {(q, w) ∈ Q × Γ ∗|∃(p, u) ∈ U,∃(p, σ|v, q) ∈ E s.t. w = uv},
wU,σ be the largest common prefix of the words {w|∃q ∈ Q s.t. (q, w) ∈ RU,σ},
PU,σ = {(q, w)|(q, wU,σw) ∈ RU,σ}.

Let D̄(T) be the infinite-state multi-transducer over the set of states Pf (Q×Γ ∗),
with set of edges {(U, σ|wU,σ, PU,σ)|U ∈ Pf (Q × Γ ∗), σ ∈ Σ}, initial state U0 =
I ×{ε}, set of final states {U ∈ Pf (Q×Γ ∗)|U ∩ (T ×Γ ∗) �= ∅}, and final output
relation that maps each final state U to {wfT (q)|q ∈ T and (q, w) ∈ U}. Note
that D̄(T) has a deterministic (potentially infinite) input-automaton.

The determinisation of T , written D(T), is the trim part of D̄(T). The trans-
ducer D(T) is equivalent to T (see [13]). It is well-known that D(T) is a (finite)
sequential transducer iff T satisfies the twinning property.

Example 16. Fig. 2(a) depicts an unforked transducer that does not satisfy the
twinning property. As a consequence, D(T) is infinite (a part of D(T) can be
seen on Fig. 2(b)). The non satisfaction of the twinning property is witnessed

by the two runs q0
aaaa|abaa−−−−−−→ q4

a|a−−→ q4 and q0
aaaa|baaa−−−−−−→ q4

a|a−−→ q4. Note that
these runs do not create an instance of the fork property. The idea of the next
construction, called the weak determinisation, is to keep some well-chosen non-
deterministic transitions, and reset the determinisation whenever it definitively
leaves an SCC (the SCC {q0, q1, q2} in this example). We explain this procedure
when there is a single initial state, as any transducer can be easily transformed
into a finite union of transducers with single initial states.

Weak Determinisation. Let T = (Q,E, I, T, fT) be a trim transducer with
a single initial state. For every U ∈ Pf (Q × Γ ∗), let the rank nU of U be the set
containing all the SCC of T accessible from the states q components of an element
of U . The multi-transducer W̄(T) is obtained from D̄(T) by splitting the edges

298 I. Jecker and E. Filiot

(q0, ε)

(q1, a)
(q2, b)

(q2, ab)
(q3, ba)

(q3, ε)

(q4, ε)

a | ε a | ε a | aba

a | baa

b | b

b | ab

a | a

a | a

(a) W(T)

(q0, ε)

(q1, a)
(q2, b)

(q2, ab)
(q3, ba)

(q3, ε)

(q4, ε)

a | ε a | ε
a | aba

b | b

b | ab

a | a

a | a

(q0, ε)

(q1, a)
(q2, b)

(q2, ab)
(q3, ba)

(q4, ε)

a | ε
a | ε

a | baa

b | b

b | ab

a | a

(b) trim(split(W(T)))

Fig. 3. Weak determinisation and split

that do not preserve the rank, as follows. If (U, u|v, U ′) is an edge of D̄(T) such
that nU ′ is strictly included in nU , it is removed, and replaced by the set of edges

{(U, u|vw, {(q, ε)})|(q, w) ∈ U ′}. Any pair of distinct edges of the form U
a|v1−−→ U1

and U
a|v2−−→ U2 in W̄(T) have necessarily been created by this transformation, as

everything stays input-deterministic otherwise. Therefore, since the rank strictly
decreases (nU2 � nU and nU1 � nU) and can never increase in W̄(T), there is no
run from U2 to U , nor from U1 to U in W̄(T), and the two edges are transient.
As a consequence,

Lemma 17. The infinite transducer W̄(T) is separable.

The weak determinisation of T , written W(T), is the trim part of W̄(T).

Proposition 18. W(T) and T are equivalent. Moreover, if T is unforked,
W(T) is finite, and it is a multi-transducer.

The main idea of the proof is that as long as the fork property is not satisfied,
the length of the words present in the states of W(T) can be bounded (see [13]).

Proof of Lemma 10. We can finally prove that every unforked transducer is
multi-sequential. Let T = (Q,E, I, T, fT) be an unforked transducer. Then T
is equivalent to

⋃
i∈I Ti, where Ti is the transducer obtained by keeping only i

as initial state. Given i ∈ I, as we just saw, W(Ti) is a transducer equivalent
to Ti. Moreover, as W̄(Ti) is separable, so is W(Ti),hence, by Lemma 15, it is
multi-sequential. The desired result follows.

Example 19. Let us illustrate the weak determinisation on the transducer T of
Fig. 2(a). Consider the determinisation D(T) of T of Fig. 2(b). When it is in state
U1 = {(q2, ab), (q3, ba)}, on input a, it moves to state U2 = {(q3, aba), (q4, baa)},
definitely leaving the SCC {q0, q1, q2} of T (the rank nU2 of U2 is strictly included
in the rank nU1 of U1). As a result, this transition is removed from D̄(T), and

replaced by the transitions U2
a|aba−−−→ {(q3, ε)} and U2

a|baa−−−→ {(q4, ε)}. The result-
ing transducer WT is depicted on Fig. 3(a) (where the new transitions are dot-
ted). Fig. 3(b) shows how the latter transducer is split into a union.

Multi-sequential Word Relations 299

References

1. Allauzen, C., Mohri, M.: Finitely subsequential transducers. Int. J. Found. Com-
put. Sci. 14(6), 983–994 (2003)

2. Bala, S.: Which Finitely Ambiguous Automata Recognize Finitely Sequential Func-
tions? In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 86–97.
Springer, Heidelberg (2013)

3. Bala, S., Koniński, A.: Unambiguous Automata Denoting Finitely Sequential Func-
tions. In: Dediu, A.-H., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2013. LNCS, vol.
7810, pp. 104–115. Springer, Heidelberg (2013)

4. Béal, M.-P., Carton, O.: Determinization of transducers over finite and infinite
words. Theoretical Computer Science 289(1), 225–251 (2002)

5. Béal, M.-P., Carton, O., Prieur, C., Sakarovitch, J.: Squaring transducers: an effi-
cient procedure for deciding functionality and sequentiality. Theoretical Computer
Science 292(1), 45–63 (2003)

6. Berstel, J.: Transductions and context-free languages. http://www-igm.univ-mlv.
fr/berstel/ (December 2009)

7. Choffrut, C.: Une caractérisation des fonctions séquentielles et des fonctions sous-
suentielles en tant que relations rationnelles. TCS 5(3), 325–337 (1977)

8. Choffrut, C., Schützenberger, M.P.: Décomposition de fonctions rationnelles. In:
STACS, pp. 213–226 (1986)

9. Elgot, C.C., Mezei, J.E.: On relations defined by generalized finite automata. IBM
Journal of Research and Development 9, 47–68 (1965)

10. Griffiths, T.V.: The unsolvability of the equivalence problem for lambda-free non-
deterministic generalized machines. Journal of the ACM 15(3), 409–413 (1968)

11. Gurari, E.M., Ibarra, O.H.: A note on finite-valued and finitely ambiguous trans-
ducers. Theory of Computing Systems 16(1), 61–66 (1983)

12. Ibarra, O.H.: Reversal-bounded multicounter machines and their decision prob-
lems. Journal of the ACM 25(1), 116–133 (1978)

13. Jecker, I., Filiot, E.: Multi-sequential word relations. CoRR, abs/1504.03864 (2015)
14. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press (2009)
15. Sakarovitch, J., de Souza, R.: Lexicographic decomposition of k -valued transduc-

ers. Theory of Computing Systems 47(3), 758–785 (2010)
16. Schützenberger, M.P.: Sur les relations rationnelles. In Automata Theory and For-

mal Languages. LNCS, vol. 33, pp. 209–213 (1975)
17. Weber, A.: On the valuedness of finite transducers. Acta Informatica 27(8), 749–

780 (1989)
18. Weber, A.: Decomposing finite-valued transducers and deciding their equivalence.

SIAM Journal on Computing 22(1), 175–202 (1993)

http://www-igm.univ-mlv.fr/ berstel/
http://www-igm.univ-mlv.fr/ berstel/

The Boundary of Prefix-Free Languages

Jozef Jirásek1 and Galina Jirásková2(B)

1 Institute of Computer Science, Faculty of Science, P.J. Šafárik University,
Jesenná 5, 04001 Košice, Slovakia

jozef.jirasek@upjs.sk
2 Mathematical Institute, Slovak Academy of Sciences,

Grešákova 6, 04001 Košice, Slovakia
jiraskov@saske.sk

Abstract. We investigate the boundary operation on the class of prefix-
free regular languages. We show that if a prefix-free language is recog-
nized by a deterministic finite automaton of n states, then its boundary is
recognized by a deterministic automaton of at most (n−1) ·2n−4+n+1
states. We prove that this bound is tight, and to describe worst-case
examples, we use a three-letter alphabet. Next we show that the tight
bound for boundary on binary prefix-free languages is 2n − 2, and that
in the unary case, the tight bound is n − 2.

1 Introduction

Boundary is a combined operation on languages defined to be bd(L) = L∗∩(Lc)∗,
where L∗ is the Kleene star of L, and Lc is the complement of L [1,8,9]. We
investigated the boundary operation on regular languages in [6]. We proved
that the boundary of a regular language recognized by a deterministic finite
automaton (DFA) of n states can be accepted by a deterministic automaton
of at most 3/8 · 4n + 2n−2 − 2 · 3n−2 − n + 2 states. We also proved that this
upper bound is tight, and to describe worst-case examples, we used a five-letter
alphabet. Then we showed that this bound cannot be met by any quaternary
language, and we obtained asymptotically tight bound Θ(4n) in the binary case.
This completely solved Open Problem 15 in [9].

In this paper, we study the boundary operation on the class of prefix-free
regular languages. A language is prefix-free if it does not contain two distinct
strings, one of which is a prefix of the other. In prefix codes, like variable-length
Huffman codes or country calling codes, there is no codeword that is a proper
prefix of any other codeword. Hence a receiver can identify each codeword with-
out any special marker between words. Motivated by prefix codes, the class of
prefix-free regular languages has been recently investigated [2,3,4,5].

A minimal DFA recognizes a prefix-free language if and only if it has exactly
one final state from which only the empty string is accepted [5]. Next, the Kleene

J. Jirásek—Research supported by VEGA grant 1/0142/15.
G. Jirásková—Research supported by VEGA grant 2/0084/15.

c© Springer International Publishing Switzerland 2015
I. Potapov (Ed.): DLT 2015, LNCS 9168, pp. 300–312, 2015.
DOI: 10.1007/978-3-319-21500-6 24

The Boundary of Prefix-Free Languages 301

star of an n-state DFA prefix-free language is accepted by a DFA which has at
most n states. Moreover, a DFA for the complement of a prefix-free language
has a specific structure — all but one states are final, and there is a final state
which has a loop on every input symbol. We use these two facts to get the exact
complexity of the boundary operation.

First, we prove that the boundary of an n-state DFA prefix-free language can
be accepted by a DFA of at most (n − 1) · 2n−4 + n + 1 states. We also prove
that this upper bound is tight, and to describe worst-case examples, we use a
three-letter alphabet. Then, we show that this upper bound cannot be met by
any binary prefix-free language. Moreover, we get the tight bound 2n − 2 in the
binary case, and the tight bound n−2 in the unary case. Thus, our results show
that the complexity of the boundary operation on prefix-free languages is given
by an exponential function for every alphabet with at least three symbols, but
it is given by a linear function otherwise.

2 Preliminaries

We assume that the reader is familiar with basic concepts of regular languages
and finite automata. For details or unexplained notions we refer to [7,10,11].

A nondeterministic finite automaton (NFA) is a tuple M = (Q,Σ, ·, s, F),
where Q is a finite non-empty set of states, Σ is an input alphabet, · : Q×Σ → 2Q

is the transition function which can be extended to the domain 2Q × Σ∗ in a
natural way, s ∈ Q is the initial state, and F ⊆ Q is the set of final states. The
language accepted by NFA M is L(M) = {w ∈ Σ∗ | s · w ∩ F �= ∅}.

An NFA A is a deterministic finite automaton (DFA), if |q · a| = 1 for each
q in Q and each a in Σ; then we write q · a = q′ instead of q · a = {q′}.

The state complexity of a regular language L, sc(L), is the number of states
in the minimal DFA recognizing the language L. It is well-known that a DFA is
minimal if all of its states are reachable and pairwise distinguishable.

Every NFA A = (Q,Σ, ·, s, F) can be converted to an equivalent deterministic
automaton A′ = (2Q, Σ, ·′, {s}, F ′), where R ·′ a = R · a and F ′ = {R ∈ 2Q |
R ∩ F �= ∅}. We call the resulting DFA A′ the subset automaton of the NFA A.

The product automaton for the intersection of two languages recognized by
DFAs A = (QA, Σ, ·A, sA, FA) and B = (QB , Σ, ·B , sB , FB), is the DFA A×B =
(QA × QB , Σ, ·, (sA, sB), F), where (p, q) · a = (p ·A a, q ·B a) and F = FA × FB.

If L is a regular language accepted by a DFA A = (Q,Σ, ·, s, F), then we can
construct an NFA N for the language L∗ from the DFA A as follows: First, we
add a new initial and final state q0 going on an input a to {s · a} if s · a /∈ F ,
and to {s · a, s} if s · a ∈ F . Then, for each state q and each symbol a such that
q ·a ∈ F , we add the transition from q to s on a. To get an NFA for Lc∗, we first
interchange the final and non-final states in the DFA A, to get a DFA Ac for the
language Lc, and then we construct an NFA N ′ for the language Lc∗ from the
DFA Ac as described above. Let D and D′ be the subset automata of the NFAs
N and N ′, respectively. Then the boundary of L, that is, the language L∗ ∩Lc∗,
is accepted by the product automaton D × D′.

302 J. Jirásek and G. Jirásková

3 Construction of DFA for Boundary on PF Languages

If L is a prefix-free language, then we can simplify the construction of a DFA
for L∗ ∩ Lc∗. First, if a prefix-free language is accepted by a 1-state or a 2-state
minimal DFA, then it is empty or it equals {ε}, respectively, and its boundary
is equal to {ε}. Therefore in what follows, we assume that sc(L) ≥ 3. Moreover,
the minimal DFA for L has exactly one final state which goes to the dead state
on every input symbol [5].

Thus let L be a prefix-free language accepted by a minimal DFA A =
(Q,Σ, ·, s, {f}), where Q = {1, 2, . . . , n − 3} ∪ {s, f, d}, and d is the dead state;
if n = 3, then Q = {s, f, d}.

We can construct a DFA D for the language L∗ from the DFA A by making
the state f initial, and by replacing every transition f

a−→ d by the transition
f

a−→ s · a [5]. Formally, we have D = (Q,Σ, ◦, f, {f}), where

q ◦ a =

{
q · a, if q �= f,

s · a, if q = f.
(1)

The language Lc is accepted by the DFA Ac = (Q,Σ, ·, s,Q \ {f}). Since we
assume that |Q| ≥ 3, the initial state s is final in Ac. Next, the state d is final in
Ac, and it goes to itself on every input symbol. It follows that to get an NFA N ′

for the language Lc∗, we do not need to add a new initial state, and moreover,
we do not need to add any new transition q

a−→ s if q · a = d. Formally, we have
N ′ = (Q,Σ, •, s,Q \ {f}), where

q • a =

{
{q · a}, if q · a ∈ {f, d}
{q · a, s}, if q · a ∈ {s, 1, 2, . . . , n − 3}.

(2)

Since we added only those transitions that are added also in a general construc-
tion for L∗, we have L(N ′) ⊆ Lc∗. Let us show that Lc∗ ⊆ L(N ′). The empty
string is in L(N ′). Next, if a non-empty string w is in Lc∗, then w = w1w2 · · · wk,
where k ≥ 1 and wi ∈ Lc for i = 1, 2, . . . , k. If each wi is accepted in Ac in
a state qi which is different from d, then w is accepted by N ′ since we have
s

w1−−→ s
w2−−→ s

w3−−→ · · · wk−1−−−→ s
wk−−→ qk in N ′. Let there be an i such that

wi is accepted by Ac in the state d, and assume that i is the smallest such
index. Then in the NFA N ′, we have the following accepting computation on w:
s

w1−−→ s
w2−−→ s

w3−−→ · · · wi−1−−−→ s
wi−→ d

wi+1wi+2···wk−−−−−−−−−→ d. Hence N ′ accepts Lc∗.
Let D′ be the subset automaton of the NFA N ′. Then the language L∗ ∩Lc∗

is accepted by the product automaton D × D′ whose states are pairs (q, T),
where q ∈ Q and T ⊆ Q. The initial state of the product automaton is the pair
(f, {s}). A state (q, T) is final if q = f and T ∩ {s, 1, 2, . . . , n − 3, d} �= ∅. Next,
on input a, a state (q, T) goes to the state (q ◦ a, T • a), where

q ◦ a =

{
q · a if q �= f ,
s · a if q = f ,

T • a =

{
T · a, if T · a ⊆ {f, d},
T · a ∪ {s}, if T · a ∩ {s, 1, . . . , n − 3} �=∅.

The Boundary of Prefix-Free Languages 303

4 State Complexity of Boundary on PF Languages

Let us start with an upper bound on the state complexity of the boundary
operation on prefix-free languages. We will need the following observation.

Proposition 1. Let q ∈ Q, S ⊆ {s, 1, 2, . . . , n − 3, f}, ∅ �= T ⊆
{s, 1, 2, . . . , n− 3}. Then in the product automaton D×D′ described in Section 3,

(i) (q, S ∪ {d}) is equivalent to (q, {d});
(ii) (f, {f}) is equivalent to (s, {d});
(iii) (q, T ∪ {f}) is equivalent to (q, {d}).

Lemma 2 (Upper Bound). Let L be a prefix-free language with sc(L) = n,
where n ≥ 3. Then sc(L∗ ∩ Lc∗) ≤ (n − 1) · 2n−4 + n + 1.

Proof. Let D × D′ be the product automaton for L∗ ∩ Lc∗ from Section 3. Let
R1 = {(q, {d}) | q ∈ Q},
R2 = {(q, T) | q ∈ {s, 1, . . . , n − 3}, T ⊆ {s, 1, . . . , n − 3}, and {s, q} ⊆ T}.

Let (q, T) be a state of D × D′ which is reached from the initial state (f, {s})
by a non-empty string w. We will show that either (q, T) is equivalent to a state
in R1, or (q, T) is in R2. The proof is by induction on |w|.

The base case is w = a for some a in Σ. On symbol a, the initial state (f, {s})
goes to the state (f ◦ a, {s} • a) = (s · a, {s} • a). We have three cases:

(i) If s · a = d, then (s · a, {s} • a) = (d, {d}), which is a state in R1.
(ii) If s · a = f , then (s · a, {s} • a) = (f, {f}). By Proposition 1, the state

(f, {f}) is equivalent to the state (s, {d}) which is in R1.
(iii) If s · a ∈ {s, 1, . . . , n − 3}, then (s · a, {s} • a) = (s · a, {s · a, s}) which is a

state in R2.

Assume that our claim holds for all states that are reachable by strings of
length k, and let w = va, where a ∈ Σ, be a string of length k + 1. Then, by
the induction hypothesis, the state (q, T) that is reached after reading v is either
equivalent to a state (p, {d}) in R1, or it is in R2. In the first case, on symbol a,
the state (p, {d}) goes to the state (p◦a, {d}) which is in R1. In the second case,
we have q ∈ {s, 1, 2, . . . , n−3}, T ⊆ {s, 1, 2, . . . , n−3}, and {s, q} ⊆ T , therefore
on symbol a, the state (q, T) goes to the state (q · a, T • a). We have three cases:

(i) If q · a = d, then (q · a, T • a) = (d, T • a), and d ∈ T • a since q ∈ T .
By Proposition 1, the resulting state is equivalent to (d, {d}).

(ii) If q · a = f , then (q · a, T • a) = (f, T • a), and f ∈ T • a since q ∈ T .
By Proposition 1, the resulting state is equivalent to (s, {d}) if T •a = {f},
and it is equivalent to (f, {d}) otherwise.

(iii) If q ·a ∈ {s, 1, . . . , n−3}, then (q ·a, T •a) = (q ·a, T ·a∪{s}). Now, if d ∈ T ·a
or f ∈ T ·a, then (q·a, T ·a∪{s}) is equivalent to (q·a, {d}) by Proposition 1.
Otherwise, T · a ∪ {s} ⊆ {s, 1, 2, . . . , n − 3} and {s, q · a} ⊆ T · a ∪ {s},
so the resulting state (q · a, T · a ∪ {s}) is in R2.

Thus, including the initial state (f, {s}), the product automaton has at most
|R2| + |R1| + 1 = (n − 1) · 2n−4 + n + 1 reachable and distinguishable states. �

304 J. Jirásek and G. Jirásková

Fig. 1. The DFA of a ternary prefix-free witness for boundary meeting the upper bound
(n − 1) · 2n−4 + n+ 1

Now we prove that the upper bound given in Lemma 2 is tight. Our witness
languages are defined over a three-letter alphabet.

Lemma 3 (Lower Bound). Let n ≥ 3. There exists a ternary prefix-free lan-
guage with sc(L) = n such that sc(L∗ ∩ Lc∗) = (n − 1) · 2n−4 + n + 1.

Proof. If n = 3, then the language b∗a over the ternary alphabet {a, b, c} meets
the upper bound (n − 1) · 2n−4 + n + 1 = 5.

Let n ≥ 4. Let L be the ternary prefix-free language accepted by the DFA
A = (Q,Σ, ·, 0, {f}) shown in Fig. 1 Construct the product automaton D × D′

as described in Section 3; the DFA D and the NFA N ′ are shown in Fig. 2 and 3,
respectively. Let us show that the product automaton has (n − 1) · 2n−4 + n + 1
reachable and pairwise distinguishable states.

We first prove reachability. The initial state of the product automaton is the
state (f, {0}). Next we have

(f, {0}) c−→ (f, {f}) c−→ (f, {d}) b−→ (0, {d}),

(0, {d}) ai

−→ (i, {d}) for i = 1, 2, . . . , n − 3, and

(n − 3, {d}) c−→ (d, {d}),

thus each state (q, {d}) with q ∈ Q is reachable. Now we are going to prove the
reachability of each state (i, T) such that 0 ≤ i ≤ n − 3, T ⊆ {0, 1, . . . , n − 3},
and {0, i} ⊆ T . The proof is by induction on the size of T . The basis, |T | ≤ 2,
holds since we have

(f, {0}) b−→ (0, {0}) a−→ (1, {0, 1}),

(1, {0, 1}) bi−1

−−−→ (i, {0, i}) for i = 2, 3, . . . , n − 3,

(n − 3, {0, n − 3}) a−→ (0, {0, 1}),

(0, {0, 1}) bi−1

−−−→ (0, {0, i}) for i = 2, 3, . . . , n − 3.
Now assume that 2 ≤ k ≤ n − 3, and that for each i with 0 ≤ i ≤ n − 3 and

each subset T of {0, 1, . . . , n − 3} with |T | = k and {0, i} ⊆ T , the state (i, T) is

The Boundary of Prefix-Free Languages 305

Fig. 2. The DFA D for the language L∗

Fig. 3. The NFA N ′ for the language Lc∗

reachable in the product automaton. Let 0 ≤ i ≤ n−3. Let T = {0, j1, j2, . . . , jk},
where 1 ≤ j1 < j2 < · · · < jk ≤ n− 3, be a set of size k +1 such that {0, i} ⊆ T .
Our aim is to show that the state (i, T) is reachable. Consider two cases:

(i) First, let i �= 0. Then, since i ∈ T , we have i = j� for some � with
1 ≤ � ≤ k. Take T ′ = {0, j2−j1, . . . , jk −j1}. Then |T ′| = k and {0, j�−j1} ⊆ T ′.
It follows that (j� − j1, T

′) is reachable by the induction hypothesis. Next,

(j� − j1, T
′) a−→ (j� − j1 + 1, {0, 1, j2 − j1 + 1, . . . , jk − j1 + 1})

bj1−1

−−−→ (j�, {0, j1, j2, . . . , jk}) = (j�, T) = (i, T),

and therefore, the state (i, T) is reachable.
(ii) Now, let i = 0. Take T ′ = {0, j2−j1, . . . , jk −j1, n−3}. Then |T ′| = k+1

and {0, n − 3} ⊆ T ′, so the state (n − 3, T ′) is reachable as shown in case (i);
notice that n − 3 �= 0 since n ≥ 4. Next we have

(n − 3, T ′) a−→ (0, {0, 1, j2 − j1 + 1, . . . , jk − j1 + 1})
bj1−1

−−−→ (0, {0, j1, j2, . . . , jk}) = (0, T),

and therefore, the state (0, T) is reachable.

306 J. Jirásek and G. Jirásková

Hence we have shown the reachability of (n − 1) · 2n−4 + n + 1 states in the
product automaton D × D′. Now we prove distinguishability. Denote by R the
family of all the reachable states, that is,

R =
{
(f, {0})

} ∪ {
(q, {d}) | q ∈ Q

}
∪ {

(i, T) | 0 ≤ i ≤ n − 3, T ⊆ {0, 1, . . . , n − 3}, {0, i} ⊆ T
}
.

Let (p, S) and (q, T) be two distinct states in R. Consider several cases:

(i) Let (p, S) = (f, {0}). The state (f, {0}) is accepting, so it is distinguishable
from every rejecting state (q, T) with q �= f . Moreover, it can be distin-
guished from (f, {d}) by c since c is rejected from (f, {0}) and accepted
from (f, {d}).

(ii) Let (p, S) = (d, {d}). The state (d, {d}) is the only dead state since every
other state (q, T) with q �= d accepts the string bncc; notice that q ·bn = 0 if
q ∈ {0, 1, . . . , n − 3}. Thus (d, {d}) is distinguishable from any other state.

(iii) Let (p, S) = (f, {d}). The state (f, {d}) is accepting, so it is distinguishable
from every rejecting state (q, T) with 0 ≤ q ≤ n − 3.

(iv) Let (p, S) = (i, {d}) and (q, T) = (j, {d}) where 0 ≤ i < j ≤ n − 3. Then
an−3−jc is rejected from (j, {d}) and accepted from (i, {d}) since we have

(j, {d}) an−3−j

−−−−−→ (n − 3, {d}) c−→ (d, {d}), and

(i, {d}) an−3−j

−−−−−→ (n − 3 − (j − i), {d}) c−→ (f, {d}).

(v) Let (p, S) = (i, {d}) with 0 ≤ i ≤ n − 3. Let 0 ≤ q ≤ n − 3,
T ⊆ {0, 1, . . . , n − 3}, and {0, q} ⊆ T . Then bnc is accepted from (i, {d})
and rejected from (q, T) since we have

(i, {d}) bn−→ (0, {d}) c−→ (f, {d}), and

(q, T) bn−→ (0, {0}) c−→ (f, {f}).

(vi) Let 0 ≤ p, q ≤ n − 3, S, T ⊆ {0, 1, . . . , n − 3}, {0, p} ⊆ S, {0, q} ⊆ T , and
let p < q. Then by an−3−qc, the state (q, T) goes to the dead state while
(p, S) goes to a non-dead state since we have

(q, T) an−3−q

−−−−−→ (n − 3, T • an−3−q) c−→ (d, {d}) since (n − 3) ∈ T • an−3−q,

(p, S) an−3−q

−−−−−→ (n − 3 − (q − p), S • an−3−q) c−→ (f, S • an−3−qc).

(vii) Finally, let 0 ≤ p, q ≤ n−3, S, T ⊆ {0, 1, . . . , n−3}, {0, p} ⊆ S, {0, q} ⊆ T ,
and p = q. Then S �= T . Without loss of generality, there is a state i with
i ≥ 1 and i �= p such that i ∈ S and i /∈ T . Let us show that an−3−ic
is accepted from (p, S) and rejected from (q, T). Since i ∈ S and i /∈ T ,
we have (n − 3) ∈ S • an−3−i and T • an−3−i ⊆ {0, 1, . . . , n − 4}. Let
p′ = (p+n−3− i) mod (n−2). Since i �= p, we have p′ �= n−3. Therefore,

The Boundary of Prefix-Free Languages 307

(p, S) an−3−i

−−−−−→ (p′, S • an−3−i) c−→ (f, {d}),

(p, T) an−3−i

−−−−−→ (p′, T • an−3−i) c−→ (f, {f}). �
As a corollary of the two lemmata above, we get the following result.

Theorem 4 (Boundary on Prefix-Free Languages: State Complexity).
Let L be a prefix-free language over an alphabet Σ with sc(L) = n. If n ∈ {1, 2},
then sc(L∗ ∩ Lc∗) = 2. If n ≥ 3, then sc(L∗ ∩ Lc∗) ≤ (n − 1) · 2n−4 + n + 1, and
the bound is tight if |Σ| ≥ 3. �

Fig. 4. The DFA of a binary prefix-free language L with sc(L∗ ∩ Lc∗) = 2n − 2

4.1 Binary Case

Now we consider the binary case. Our aim is to show that the upper bound
(n − 1) · 2n−4 + n + 1 given in Lemma 2 cannot be met by any binary prefix-free
language. Moreover, we will show that the tight bound for boundary on binary
prefix-free languages is 2n − 2. Let us start with a lower bound.

Lemma 5 (Binary Case: Lower Bound). Let n ≥ 3. There exists a binary
prefix-free language L with sc(L) = n such that sc(L∗ ∩ Lc∗) = 2n − 2.

Proof. Let L be the binary prefix-free language accepted by the DFA A shown
in Fig. 4; if n = 3, then we have s · a = d and s · b = f . Construct the product
automaton D ×D′ as described in Section 3. The product automaton has 2n−2
reachable states as shown in Fig. 5. All these states are pairwise distinguishable.
Hence sc(L∗ ∩ Lc∗) = 2n − 2. �

Now we are going to show that 2n − 2 is also an upper bound on the state
complexity of the boundary operation on binary prefix-free languages. We will
also show that the language L accepted by the DFA shown in Fig. 4 is the only
binary prefix-free language, up to renaming the input symbols, with sc(L) = n
and sc(L∗ ∩ Lc∗) = 2n − 2. First, we need the following technical lemma.

Lemma 6. Let n ≥ 4 and 1 ≤ k ≤ n − 3. Let L be a binary prefix-free language
accepted by a DFA A = ({s, 1, 2, . . . , n − 3, f, d}, {a, b}, ·, s, {f}), in which

s · a = 1 and i · a = i + 1 for i = 1, 2, . . . , k − 1;
s · b = f and i · b = f for i = 1, 2, . . . , k − 1.

If akb ∈ Lc, then L∗ ∩Lc∗ = L∗ \{aib | 0 ≤ i ≤ k −1}, and sc(L∗ ∩Lc∗) ≤ n+k.

308 J. Jirásek and G. Jirásková

Fig. 5. The reachable states of the product automaton for L∗∩Lc∗, where L is accepted
by the DFA in Fig. 4

Proof. Notice that we have
(1) a ∈ Lc and akb ∈ Lc;
(2) aib /∈ Lc for i = 0, 1, 2, . . . , k − 1;
(3) if w �= ε and 0 ≤ i ≤ k − 1, then aibw ∈ Lc.

It follows that every string bw with w �= ε is in Lc, so it is also in Lc∗. Next,
every string in a∗ is in Lc∗. Let u = a�bw where � ≥ 1.

If w �= ε, then u can be partitioned as u = a · a · · · · · a · bw, so u ∈ Lc∗.
Let w = ε. If � ≥ k, then u can be partitioned as u = a · · · · · a · akb, so u ∈ Lc∗.
If � ≤ k − 1, then a�b /∈ Lc, and since aib /∈ Lc for i = 0, 1, . . . , k − 1, we have
a�b /∈ Lc∗. Hence we have Lc∗ = Σ∗ \ {aib | 0 ≤ i ≤ k − 1}, and therefore
L∗ ∩ Lc∗ = L∗ \ {aib | 0 ≤ i ≤ k − 1}.

Now let us construct an (n + k)-state DFA for L∗ ∩ Lc∗. We start with the
DFA D for the language L∗. Recall that the DFA D can be obtained from the
DFA A by making the state f initial, and by redirecting the transitions on a
and b from the state f to the states s · a and s · b, respectively. The resulting
DFA D, shown in Fig. 6, has at most n states and accepts L∗.

To get a DFA B for L∗ ∩ Lc∗ = L∗ \ {aib | 0 ≤ i ≤ k − 1} from the
DFA D, we first add a new initial and final state s′, and new non-final states
1′, 2′, . . . , (k − 1)′. Next, we add the transitions on a and b for the new states as
follows:

s′ a−→ 1′ a−→ 2′ a−→ · · · a−→ (k − 1)′ a−→ k,

s′ b−→ s and i′ b−→ s for i = 1, 2, . . . , k − 1;

the transitions are shown in Fig 7. Notice that the state s is not reachable in
the DFA D for the language L∗. Next, we have s · a = f ◦ a in the DFA D.
Finally, the strings ai with 1 ≤ i ≤ k − 1 are rejected in the DFA D. It follows
that the DFA B accepts the language L∗ ∩ Lc∗ = L∗ \ {aib | 0 ≤ i ≤ k − 1}.
Hence sc(L∗ ∩ Lc∗) ≤ n + k. �

Now we are ready to get a tight bound on the state complexity of boundary
on binary prefix-free languages.

The Boundary of Prefix-Free Languages 309

Fig. 6. The DFA D for the language L∗

a(

Fig. 7. The DFA B for the language L∗ ∩ Lc∗ = L∗ \ {aib | 0 ≤ i ≤ k − 1}

Theorem 7 (Binary Case: Tight Bound). Let n ≥ 4. Let L be a binary
prefix-free regular language with sc(L) = n. Then sc(L∗ ∩ Lc∗) ≤ 2n − 2. Next,
there exists exactly one binary prefix-free language, up to renaming the input
symbols, such that sc(L) = n and sc(L∗ ∩ Lc∗) = 2n − 2, and this language is
accepted by the DFA shown in Fig. 4.

Proof. Let n ≥ 4. Let L be a binary prefix-free regular language accepted by a
minimal DFA A = ({s, 1, 2, . . . , n − 3, f, d}, {a, b}, ·, s, {f}).

If both a and b are in Lc, then Lc∗ = {a, b}∗ and L∗ ∩ Lc∗ = L∗. Therefore
in this case we have sc(L∗ ∩ Lc∗) = sc(L∗) ≤ n.

Without loss of generality, we assume that a ∈ Lc and b /∈ Lc. Then we must
have s · b = f and since we need to reach the states 1, 2, . . . , n − 3, without loss
of generality, let s · a = 1.

Now assume by induction on k (2 ≤ k ≤ n − 3), that to get sufficiently large
complexity of boundary of L, we have defined the transitions on a and b in states
s, 1, 2, . . . , k − 1 as in Lemma 6, that is, as follows:

s · a = 1 and i · a = i + 1 for i = 1, 2, . . . , k − 1,
s · b = f and i · b = f for i = 1, 2, . . . , k − 1.

If akb ∈ Lc, then by Lemma 6, we have sc(L∗ ∩ Lc∗) ≤ n + k ≤ 2n − 3. To get a
larger complexity, we must have akb /∈ Lc, so k · b = f . Now consider two cases:

310 J. Jirásek and G. Jirásková

(1) Let k ≤ n − 4. Then we still have to reach states k + 1, k + 2,. . . , n − 3
so, without loss of generality, we must have k · a = k + 1, and we continue by
the next step of induction.

(2) Let k = n−3. Then we have already reached all states in {1, 2, . . . , n−3}.
For defining the transition on a in the state n − 3, we have three possibilities:

(2a) Let (n−3)·a ∈ {s, 1, 2, . . . , n−3}. Then, all states in {s, 1, 2, . . . , n−3}
of the DFA A would be equivalent, so we would have sc(L) < n since n ≥ 4.

(2b) Let (n − 3) · a = f . Then, by a similar argument as in Lemma 6,
sc(L∗ ∩ Lc∗) ≤ n + (n − 2). However, in the DFAs D and B, described in the
proof of Lemma 6, the state d would not be reachable, which would result in a
(2n − 3)-state DFA B for L∗ ∩ Lc∗.

(2c) Let (n − 3) · a = d. Then the DFA A is the same as the DFA shown
in Fig. 4, and sc(L∗ ∩ Lc∗) = 2n − 2. �

4.2 Unary Case

Recall that a unary language is prefix-free if it is empty, or if it contains exactly
one string. The following observation follows immediately from this fact.

Proposition 8. Let L be a unary prefix-free language with sc(L) = n. Then

sc(L∗ ∩ Lc∗) =

⎧⎪⎨
⎪⎩

2, if n = 1 or n = 2,
3, if n = 3,
n − 2, if n ≥ 4.

Proof. If n = 1, then L = ∅. If n = 2, then L = ε. In both cases, we get
L∗ ∩ Lc∗ = ε, so sc(L∗ ∩ Lc∗) = 2.

If n = 3, then L = a, and L∗ ∩ Lc∗ = a∗ \ {a}, so sc(L∗ ∩ Lc∗) = 3.
If n ≥ 4, then L = an−2. Since a ∈ Lc, we have Lc∗ = a∗. Hence L∗ ∩ Lc∗ =

(an−2)∗, so sc(L∗ ∩ Lc∗) = n − 2. �
We summarize the results of our paper in the following theorem.

Theorem 9 (Boundary on Prefix-Free Languages). Let fk(n) be the state
complexity of the boundary operation on prefix-free languages over a k-letter
alphabet defined to be

fk(n) = max{sc(L∗ ∩ Lc∗) | L ⊆ Σ∗, |Σ| = k, sc(L) = n, and L is prefix-free}.

Then

(i) fk(1) = fk(2) = 2;

(ii) fk(n) = (n − 1) · 2n−4 + n + 1 if k ≥ 3 and n ≥ 3;

(iii) f2(n) = 2n − 2, if n ≥ 3;

(iv) f1(n) =

{
3, if n = 3,
n − 2, if n ≥ 4.

The Boundary of Prefix-Free Languages 311

Proof. (i) If L is a prefix-free language with sc(L) = 1 or sc(L) = 2, then L = ∅
or L = ε, respectively. In both cases, we have L∗ ∩ Lc∗ = ε, so sc(L∗ ∩ Lc∗) = 2.

(ii) The state complexity of boundary on prefix-free languages over an alpha-
bet of at least three symbols is given by Theorem 4.

The tight bounds in (iii) and (iv) are given by Theorem 7 and Proposition 8,
respectively; direct computations in the case of n = 3 give two binary witness
languages b and a∗b meeting the bound 2n − 2 = 4. �

5 Conclusions

We investigated the boundary operation, defined as bd(L) = L∗ ∩ (Lc)∗, on the
class of prefix-free regular languages. We proved that if a prefix-free language
is recognized by an n-state deterministic finite automaton, then its boundary is
recognized by a deterministic automaton of at most (n− 1) · 2n−4 +n+1 states.
We also proved that this upper bound is tight. To describe worst-case examples,
we used a three-letter alphabet.

Then we showed that the tight bound on the state complexity of boundary
on binary prefix-free languages is 2n−2. This is quite an interesting result which
not only shows that a ternary alphabet is optimal for defining witness languages
meeting the upper bound (n − 1) · 2n−4 + n + 1 for boundary, but it also gives
the exact complexity of boundary on binary prefix-free languages. Finally, we
obtained the tight bound n − 2 for boundary on unary prefix-free languages.

Hence we proved that the state complexity of the boundary operation on
the class of prefix-free regular languages is given by an exponential function for
an alphabet which contains at least three symbols, and it is given by a linear
function otherwise.

References

1. Brzozowski, J.A., Grant, E., Shallit, J.: Closures in formal languages and
Kuratowski’s theorem. Internat. J. Found. Comput. Sci. 22(2), 301–321 (2011)

2. Eom, H.-S., Han, Y.-S., Salomaa, K.: State Complexity of k -Union and
k -Intersection for Prefix-Free Regular Languages. In: Jurgensen, H., Reis, R. (eds.)
DCFS 2013. LNCS, vol. 8031, pp. 78–89. Springer, Heidelberg (2013)

3. Eom, H., Han, Y., Salomaa, K., Yu, S.: State complexity of combined operations
for prefix-free regular languages. In: Paun, G., Rozenberg, G., Salomaa, A. (eds.)
Discrete Mathematics and Computer Science, pp. 137–151 (2014)

4. Han, Y., Salomaa, K., Wood, D.: Nondeterministic state complexity of basic
operations for prefix-free regular languages. Fundam. Inform. 90(1–2), 93–106
(2009)

5. Han, Y., Salomaa, K., Wood, D.: Operational state complexity of prefix-free regular
languages. In: Ésik, Z., Fülöp, Z. (eds.) Automata, Formal Languages, and Related
Topics, pp. 99–115. University of Szeged, Hungary, Institute of Informatics (2009)

6. Jirásek, J., Jirásková, G.: On the boundary of regular languages. Theoret. Comput.
Sci. 578, 42–57 (2015)

312 J. Jirásek and G. Jirásková

7. Maslov, A.: Estimates of the number of states of finite automata. Soviet
Mathematics Doklady 11, 1373–1375 (1970)

8. Salomaa, A., Salomaa, K., Yu, S.: State complexity of combined operations.
Theoret. Comput. Sci. 383(2–3), 140–152 (2007)

9. Shallit, J.: Open problems in automata theory and formal languages. https://cs.
uwaterloo.ca/shallit/Talks/open10r.pdf

10. Sipser, M.: Introduction to the theory of computation. PWS Publishing Company,
Boston (1997)

11. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theoret. Comput. Sci. 125(2), 315–328 (1994)

https://cs.uwaterloo.ca/shallit/Talks/open10r.pdf
https://cs.uwaterloo.ca/shallit/Talks/open10r.pdf

A Connected 3-State Reversible Mealy
Automaton Cannot Generate an Infinite

Burnside Group

Ines Klimann1, Matthieu Picantin1(B), and Dmytro Savchuk2

1 University Paris Diderot, Sorbonne Paris Cité, LIAFA, UMR 7089 CNRS,
F-75013 Paris, France

{klimann,picantin}@liafa.univ-paris-diderot.fr
2 Department of Mathematics and Statistics, University of South Florida,

4202 E Fowler Ave, Tampa, FL 33620-5700, USA
savchuk@usf.edu

Abstract. The class of automaton groups is a rich source of the simplest
examples of infinite Burnside groups. However, no such examples have
been constructed in some classes, as groups generated by non reversible
automata. It was recently shown that 2-state reversible Mealy automata
cannot generate infinite Burnside groups. Here we extend this result to
connected 3-state reversible Mealy automata, using new original tech-
niques. The results rely on a fine analysis of associated orbit trees and a
new characterization of the existence of elements of infinite order.

Keywords: Burnside groups · Reversible mealy automata · Automaton
groups

1 Mealy Automata and the General Burnside Problem

In 1902, Burnside has introduced a question which would become highly influ-
ential in group theory [6]:

Is a finitely generated group whose elements have finite order necessarily finite?

This problem is now known as the General Burnside Problem. A group is
commonly called a Burnside group if it is finitely generated and all its elements
have finite order.

In 1964, Golod and Shafarevich [14] were the first ones to give a negative
answer to the general Burnside problem and around the same time Glushkov
suggested that groups generated by automata could serve as a different source
of counterexamples [12]. In 1972, Aleshin gave an answer as a subgroup of an
automaton group [2], and then in 1980, Grigorchuk exhibited the first and the

This work was partially supported by the French Agence Nationale de la Recherche,
through the Project MealyM ANR-JS02-012-01. The third author was partially
supported by the New Researcher Grant from the USF Internal Awards Program.

c© Springer International Publishing Switzerland 2015
I. Potapov (Ed.): DLT 2015, LNCS 9168, pp. 313–325, 2015.
DOI: 10.1007/978-3-319-21500-6 25

314 I. Klimann et al.

simplest by now example of an infinite Burnside automaton group [15]. Since
then many infinite Burnside automaton groups have been constructed [4,16,18,
24]. Even by now, the simplest examples of infinite Burnside groups are still
automaton groups.

All the examples of infinite Burnside automaton groups in the literature
happen to be generated by non-reversible Mealy automata (where all the letters
do not act as permutations on the stateset). It was proved in [19] that a 2-state
reversible Mealy automaton cannot generate an infinite Burnside group, but the
techniques were strongly based on the size of the stateset. Here we address this
problem for a larger class, the connected 3-state reversible automata, and prove:

Theorem 1. A connected 3-state reversible Mealy automaton cannot generate
an infinite Burnside group.

To this end we develop new techniques, centered on the orbit tree of the dual of a
Mealy automaton. In particular, we give a new characterization of the existence
of elements of infinite order in a reversible automaton semigroup (Theorem 17).
Although not stated in full generality, such a characterization has already been
applied successfully in various situations (see [13,20]). We hope that these tech-
niques could be further extended to attack similar problems for bigger automata.

The class of automaton groups is very interesting from an algorithmic point of
view. Even though the word problem is decidable, most of other basic algorithmic
questions, including finiteness, order, and conjugacy problems, are either known
to be undecidable, or their decidability is unknown. For example, it was proved
recently that the order problem is undecidable for automaton semigroups [11]
and for groups generated by, so called, asynchronous Mealy automata [5]. But
this problem still remains open for the class of all automaton groups. There are
many partial methods to find elements of infinite order in such groups, but the
class of reversible automata is known as the class for which most of these algo-
rithms do not work or perform poorly. The proof of Theorem 1 is completely
constructive and gives a uniform algorithm to produce many elements of infi-
nite order in infinite groups generated by 3-state invertible reversible automata.
Unfortunately, it does not provide an algorithm that can determine if the group
itself is infinite, however, it is known that any invertible reversible not bire-
versible automaton generates an infinite group [1].

The paper is organized as follows. In Section 2, we recall basics about automa-
ton groups and rooted trees. In Sections 3 and 4, we introduce crucial construc-
tions: the labeled orbit tree of a Mealy automaton and its self-liftable subtrees.
Section 5 is devoted to the new characterization of the existence of elements of
infinite order. Section 6 contains the proof of our main result (Theorem 1).

A Connected 3-State Reversible Mealy Automaton 315

2 Basic Notions

2.1 Groups Generated by Mealy Automata

We first recall the formal definition of an automaton. A (finite, deterministic,
and complete) automaton is a triple

(
Q,Σ, δ = (δi : Q → Q)i∈Σ

)
, where the

stateset Q and the alphabet Σ are non-empty finite sets, and the δi are functions.
A Mealy automaton is a quadruple (Q,Σ, δ, ρ), such that (Q,Σ, δ)

and (Σ,Q, ρ) are both automata. In other terms, a Mealy automaton is a com-
plete, deterministic, letter-to-letter transducer with the same input and output
alphabet.

The graphical representation of a Mealy automaton is standard, see
Figure 1 left.

1
2

1

1
2

2

3

0|1, 1|0

0|0

1|1

1|1
0|0

Fig. 1. The Bellaterra automaton B and four levels of the orbit tree t(B)
A Mealy automaton (Q,Σ, δ, ρ) is invertible if the functions ρx are permuta-

tions of Σ and reversible if the functions δi are permutations of Q.
In a Mealy automaton A = (Q,Σ, δ, ρ), the sets Q and Σ play dual roles.

So we may consider the dual (Mealy) automaton defined by d(A) = (Σ,Q, ρ, δ).
Obviously, a Mealy automaton is reversible if and only if its dual is invertible.

Let A = (Q,Σ, δ, ρ) be a Mealy automaton. Each state x ∈ Q defines a
mapping from Σ∗ into itself recursively defined by:

∀i ∈ Σ, ∀s ∈ Σ∗, ρx(is) = ρx(i)ρδi(x)(s) .

The image of the empty word is itself. The mapping ρx for each x ∈ Q is
length-preserving and prefix-preserving. We say that ρx is the function induced
by x. For x = x1 · · · xn ∈ Qn with n > 0, set ρx : Σ∗ → Σ∗, ρx = ρxn

◦ · · · ◦ ρx1 .
Denote dually by δi : Q∗ → Q∗, i ∈ Σ, the functions induced by the states

of d(A). For s = s1 · · · sn ∈ Σn with n > 0, set δs : Q∗ → Q∗, δs = δsn
◦ · · · ◦ δs1 .

The semigroup of mappings from Σ∗ to Σ∗ generated by {ρx, x ∈ Q} is called
the semigroup generated by A and is denoted by 〈A〉+. When A is invertible, the
functions induced by its states are permutations on words of the same length

316 I. Klimann et al.

and thus we may consider the group of mappings from Σ∗ to Σ∗ generated by
{ρx, x ∈ Q}. This group is called the group generated by A and is denoted by 〈A〉.

Let us recall some known results that will be used in our proofs.

Proposition 2 (see, for example, [1]). An invertible Mealy automaton gen-
erates a finite group if and only if it generates a finite semigroup. �	
Proposition 3 ([1,22,23]). A Mealy automaton generates a finite (semi)group
if and only if so does its dual. �	

2.2 Terminology on Trees

Throughout this paper, we will use different sorts of labeled trees. Here we set
up some terminology that are common for all of them.

All our trees are rooted, i.e. with a selected vertex called the root. We will
visualize the trees traditionally as growing down from the root. A path is a
(possibly infinite) sequence of adjacent edges without backtracking from top to
bottom. A path is said to be initial if it starts at the root of the tree. A branch
is an infinite initial path. The initial vertex of a non-empty path e is denoted
by
(e) and its terminal vertex by ⊥(e) whenever the path is finite.

The level of a vertex is its distance to the root and the level of an edge or a
path is the level of its initial vertex. For V a vertex in a tree T , by section of T
at V (denoted by T|V) we mean the subtree of T with root V consisting of all
those vertices of T that are descendant of V . Additionally, for e an initial finite
path of T , we also call T|⊥(e) the section of T at e and denote it by T|e.

If the edges of a rooted tree are labeled by elements of some finite set, the
label of a (possibly infinite) path is the ordered sequence of labels of its edges.

3 Connected Components of the Powers of an Automaton

In this section we detail the basic properties of the connected components of the
powers of a reversible Mealy automaton. The link between these components is
central in our construction.

Let A = (Q,Σ, δ, ρ) be a reversible Mealy automaton. By reversibility, all the
connected components of its underlying graph are strongly connected. Consider
the powers of A: for n > 0, its n-th power An is the Mealy automaton

An =
(

Qn, Σ, (δi : Qn → Qn)i∈Σ , (ρx : Σ → Σ)x∈Qn

)
.

By convention, A0 is the trivial automaton on the alphabet Σ.
As A is reversible, so are its powers and the connected components of An

coincide with the orbits of the action of 〈d(A)〉 on Qn.

Definition 4. The connection degree �(A) of A is the largest n such that An is
connected: it is 0 if A is disconnected, and infinite if all its powers are connected.

A Connected 3-State Reversible Mealy Automaton 317

Since A is reversible, there is a very particular connection between the con-
nected components of An and those of An+1 as highlighted in [19]. More pre-
cisely, take a connected component C of some An, and let u ∈ Qn be a state
of C. Take also x ∈ Q a state of A, and let D be the connected component of
An+1 containing the state ux. Then, for any state v of C, there exists a state
of D prefixed with v:

∃s ∈ Σ∗ | δs(u) = v and so δs(ux) = vδρu(s)(x) .

Furthermore, if uy is a state of D, for some state y ∈ Q different from x, then
δs(ux) and δs(uy) are two different states of D prefixed with v, because of the
reversibility of An+1: the transition function δρu(s) is a permutation. Hence D
can be seen as consisting of several copies of C and #C divides #D. They have the
same size if and only if, for each state u of C and any different states x, y ∈ Q,
ux and uy cannot simultaneously lie in D. If from a connected component C
of An, we obtain several connected components of An+1, we say that C splits up.

The connected components of the powers of a Mealy automaton and the
finiteness of the generated group or of a monogenic subgroup are closely related,
as shown in the following propositions (obtained also independently in [8]).

Proposition 5. A reversible Mealy automaton generates a finite group if and
only if the connected components of its powers have bounded size.

Proposition 6. Let A = (Q,Σ, δ, ρ) be an invertible reversible Mealy automa-
ton and let u ∈ Q+ be a non-empty word. The following conditions are equivalent:

(i) ρu has finite order,
(ii) the sizes of the connected components of (un)n∈N are bounded,
(iii) there exists a word v such that the sizes of the connected components

of (vun)n∈N are bounded,
(iv) for any word v, the sizes of the connected components of (vun)n∈N are

bounded.

Proof. (ii)⇒(iii), (iv)⇒(ii), and (iv)⇒(iii) are immediate.
(i)⇒(ii) is a direct consequence of Proposition 5: let k be the order of ρu;

it means that uk acts as the identity, and so do all the states of its connected
component (as it is in fact strongly connected by reversibility of the automaton).
By Proposition 5, the connected components of the (ukn)n have bounded size,
which leads to (ii).

(iii)⇒(i): for each n, denote by Cn the connected component of vun. As the
sizes of these components are bounded, the sequence (Cn)n admits a subsequence
whose all elements are the same, up to state numbering. Within this subsequence,
there are two elements such that two different words in vu∗ name the same state,
say vup and vuq, which means that ρvup = ρvuq , and ρu has finite order.

(ii)⇒(iv): the size of the connected component of vun is at most #Σ|v| times
the size of the connected component of un. �	

318 I. Klimann et al.

4 The Labeled Orbit Tree

In this section, we build a tree capturing the links between the connected compo-
nents of consecutive powers of a Mealy automaton. See an example in Figure 1.

Let A = (Q,Σ, δ, ρ) be an invertible reversible Mealy automaton. Consider
the tree with vertices the connected components of the powers of A, and the
incidence relation built by adding an element of Q: for any n ≥ 0, the connected
component of u ∈ Qn is linked to the connected component(s) of ux, for any x ∈
Q. This tree is called the orbit tree of d(A) [10,17]. It can be seen as the quotient
of the tree Q∗ under the action of the group 〈d(A)〉.

We label any edge C → D of the orbit tree by the ratio #D
#C , which is always

an integer by the reversibility of A. We call this labeled tree the labeled orbit tree
of d(A). In [10], in the definition of the labeled orbit tree, each vertex is labeled
by the size of the associated connected component, which encodes exactly the
same information as our relative labeling. We denote by t(A) the labeled orbit
tree of d(A). Note that for each vertex of t(A) the sum of the labels of all edges
going down from this vertex always equals to the number of states in A.

Let u be a (possibly infinite) word over Q. The path of u in the orbit tree t(A)
is the unique initial path going from the root through the connected components
of the prefixes of u; u can be called a representative of this initial path.

Definition 7. Let e and f be two edges in the orbit tree t(A). We say that e is
liftable to f if each word of ⊥(e) admits some word of ⊥(f) as a suffix.

Consider u in
(e) and its suffix v in
(f): any state x ∈ Q such that
ux ∈ ⊥(e) satisfies vx ∈ ⊥(f). Informally, “e liftable to f” means that what
can happen after
(e) by following e can also happen after
(f) by following f .
This condition is equivalent to a weaker one:

Lemma 8. Let A be a reversible Mealy automaton, and let e and f be two edges
in the orbit tree t(A). If there exists a word of ⊥(e) which admits a word of ⊥(f)
as suffix, then e is liftable to f .

Proof. Let A = (Q,Σ, δ, ρ). Assume uv ∈ ⊥(e) with v ∈ ⊥(f). By reversibility,
for any word w in the connected component ⊥(e), there exists s ∈ Σ∗ satis-
fying w = δs(uv), which can also be written w = δs(u)δt(v) with t = ρu(s).
Hence the suffix δt(v) of w belongs to the connected component ⊥(f) of v. �	

Obviously if e is liftable to f , then f is closer to the root of the orbit tree.
The fact that an edge is liftable to another one reflects a deeper relation stated
below. The following lemma is one of the key observations.

Lemma 9. Let e and f be two edges in the orbit tree t(A). If e is liftable to f ,
then the label of e is less than or equal to the label of f .

Proof. Since e is liftable to f , each word in ⊥(e) has a form vux for some ux ∈
⊥(f). Suppose that vux and vuy are in the same connected component: there
exists s ∈ Σ∗ such that δs moves vux to vuy. In this case, ρv(s) moves ux to uy.

A Connected 3-State Reversible Mealy Automaton 319

Thus, the number of children of vu in the connected component of vux (which
is equal to the label of e) is less than or equal to the number of children of u in
the connected component of ux (which is equal to the label of f). �	

The notion of liftability can be generalized to paths:

Definition 10. Let e = (ei)i∈I and f = (fi)i∈I be two paths of the same (pos-
sibly infinite) length in the orbit tree t(A). The path e is liftable to the path f if,
for any i ∈ I, the edge ei is liftable to the edge fi.

As each word u ∈ Q∗ is a state in a connected component of A|u|, we can
notice the following fact which is crucial for all our forthcoming proofs.

Lemma 11. Let e be a path at level k in the orbit tree t(A). Then, for any � < k,
e is liftable to some path at level �. In particular, e is liftable to some initial path.

Proposition 12. If for some n, a connected component of An does not split up,
then the connection degree of A is at least n + 1.

Proof. Suppose that A has m states. If an edge at level n in the orbit tree t(A)
has label m, by Lemma 11, it is liftable to some edge at any level above n, and
by Lemma 9 this edge is labeled by m. Now, by going from top to bottom, we
can conclude that there is only one edge at each level above n + 1 in t(A). �	
Proposition 13. If all edges coming down from the only connected component
at vertex A�(A) are labeled by 1, the group generated by A is finite.

Definition 14. Let A be a reversible Mealy automaton and r be a (possibly
infinite) path or subtree of t(A). For k > 0, r is k-self-liftable whenever any path
in r starting at level i+k is liftable to a path in r starting at level i, for any i ≥ 0.
A path or a subtree is self-liftable if it is k-self-liftable for some k > 0.

5 Existence of Elements of Infinite Order

Here we provide a new characterization of the existence of elements of infinite
order in the semigroup generated by a reversible Mealy automaton A in terms
of path properties of the associated orbit tree t(A).

Let us start with a straightforward observation: any periodic word u over
the stateset of a reversible Mealy automaton A is the representative of a |u|-
self-liftable branch in the orbit tree t(A). The following gives the converse.

Proposition 15. Let A be a reversible Mealy automaton with stateset Q. Every
self-liftable branch in the orbit tree t(A) admits a periodic representative, i.e. of
the form uω for some u ∈ Q+.

320 I. Klimann et al.

Proof. Let e = e0e1e2 · · · be a k-self-liftable branch in t(A). By self-liftability, it
is enough to prove that e admits an ultimately periodic representative: removing
first k letters in any representative of e produces another representative.

Put the natural partial order on N
k: (f1, . . . , fk) � (g1, . . . , gk) ⇔ ∀i, fi ≤ gi.

By Lemma 9 an infinite sequence {Ln = (lnk, lnk+1, . . . , lnk+k−1)}n≥0 over
N

k, where lj is the label of the edge ej , is �-decreasing and, thus, ultimately
constant: let N be a number satisfying Ln = Ln+1 for all n ≥ N . For each word
u representing a vertex in e, consider the set

F (u) = {v : uv is a representative of a vertex in e}
of words that can follow u without leaving the path e. Then for each n ≥ N and
each word wu in ⊥(en+k) with |w| = k we have

F (wu) = F (u). (1)

Indeed, by k-self-liftability of e we get F (wu) ⊂ F (u). On the other hand, the
cardinalities of these sets are equal to

ln+k+1ln+k+2 · · · ln+k+|v| and ln+1ln+2 · · · ln+|v|

respectively. But these two numbers are equal due to the choice of n ≥ N .
Now we can construct an ultimately periodic representative of e as follows.

Choose words w1,w2, . . . of length kM for some M such that kM > N arbitrarily
in such a way that w1w2 · · ·wi is a representative of a vertex in e. Since there is
only finite number of choices for wj ’s, there will be 1 < i < j such that wi = wj .
For u = w1w2 · · ·wi−1 and v = wi+1wi+2 · · ·wj−1, applying (1) twice, we get

F (uwivwi) = F (wi) = F (uwi).

Therefore, the word uwi(vwi)ω is an ultimately periodic representative of e. �	
Definition 16. Any branch labeled by a word not suffixed by 1ω is called active.

Theorem 17. The semigroup generated by an invertible reversible automaton A
admits elements of infinite order if and only if the orbit tree t(A) admits an active
self-liftable branch.

6 The Connected 3-State Case

We study here the case where A is a connected invertible reversible 3-state Mealy
automaton, which means that the orbit tree t(A) has a unique edge adjacent to
the root, labeled by 3. We prove that if A generates an infinite group, then the
orbit tree t(A) admits a (necessarily unique) active 1-self-liftable branch, more
precisely a branch labeled by either 3ω or 3n2ω. The conclusion comes then from
Theorem 17: A cannot generate an infinite Burnside group.

Note that there exist disconnected 3-state invertible reversible Mealy
automata with no active 1-self-liftable branch in the associated orbit tree.

A Connected 3-State Reversible Mealy Automaton 321

6.1 Reducing the Scope

If the connection degree of such an automaton A is infinite, the semigroup 〈A〉+
is free of rank 3 [19, Prop. 14], and A cannot generate an infinite Burnside group.
So from now on, we assume 0 < �(A) < ∞. The orbit tree t(A) has a prefix
linear part until the level �(A) and, below this level, all the vertices split up.

Definition 18. Let i be a (possibly infinite) word over an alphabet F . For j ∈ F ,
a j-block j of i is a maximal factor of i in j∗ ∪{jω}, that is, i = kjl holds, where
the last letter of k and the first letter of l, if not empty, are not j.

Lemma 19. If the lengths of the 2-blocks in the orbit tree t(A) are not bounded,
then t(A) admits a branch labeled by 3�(A)2ω. If the lengths of the 2-blocks are
bounded with supremum N , then t(A) admits an initial path labeled by 3�(A)2N

(and none labeled by 3�(A)2N+1). In both cases, the branch (or path) is unique.

Proof. As there is at most one path starting at A�(A) with a maximal prefix
in 2ω because the stateset has size 3, Lemma 11 leads to the conclusion. �	

By Proposition 12, no edge can be labeled by 3 below the connection degree
of A. On the other hand, the case when all edges going down from the unique
vertex on the level �(A) are labeled by 1 does not produce infinite Burnside
groups by to Proposition 13.

From now on, we assume that the only connected component at
vertex A�(A) splits up in two connected components. Below we will put
the emphasis on the larger one.

6.2 Self-liftable Subtrees and s-Words

Let A be a 3-state invertible reversible Mealy automaton with the stateset Q
satisfying the above conditions.

Definition 20. At level �(A) there are two edges, say e1 labeled by 1 and e2
labeled by 2. Denote by s the restriction of the tree t(A) containing the linear
part until the level �(A) and then all the edges which are liftable to e2.

It is straightforward to see that s is the maximal 1-self-liftable subtree of t(A)
containing e2 but not containing e1. Let W (s) be the set of all words over Q
representing the initial paths of s (we will call them s-words). Any edge of such
a path below level �(A) + 1 is liftable to e2. In particular, W (s) is prefix-stable
and hence can be seen as a rooted tree whose edges are labeled by elements of Q
(called also orbital tree in [20]). Note that W (s) is also suffix-stable.

The edge e2 and the tree s allow us to structure our vision of the orbit tree
t(A).

Lemma 21. Each vertex of t(A) below the level �(A)+1 is the initial vertex of
one edge which is not liftable to e2, and either one or two edges which are. �	

322 I. Klimann et al.

Lemma 22. For any two s-words u and v, there exists an infinite word r ∈ Qω

such that ur and vr are s-words.

Lemma 23. Let x ∈ Q and u ∈ Q�(A). The set of length �(A) suffixes of all
words in the connected component of xu is the whole Q�(A).

Proof. Since A is reversible and A�(A) is connected, for each v ∈ Q�(A), there
exists s ∈ Σ∗ such that δs(u) = v. By the invertibility of A, t = ρ−1

x (s) is well
defined and we have: δt(xu) = δt(x)δρx(t)(u) = δt(x)δs(u) = δt(x)v. �	
Proposition 24. For any s-word u, there are infinitely many edges in W (s)|u
labeled by each state of the automaton.

Proof. Denote the stateset Q = {x, y, z} and let u be an s-word such that no
edge of W (s)|u is labeled by z (we have |u| ≥ �(A), otherwise it is impossible).

As each word of W (s) can be extended in W (s) by two different states, x
and y belong to W (s)|u. By induction: {x, y}∗ ⊆ W (s)|u; and, as W (s) is suffix-
closed: {x, y}∗ ⊆ W (s). Let v ∈ {x, y}�(A)−1: xv and yv are s-words and xvx,
xvy, yvx, and yvy are in ⊥(e2). Hence xvz and yvz have length �(A) + 1 and
belong to ⊥(e1), which is of size 3�(A).

By Lemma 23, the connected component of xvz has at least 3�(A) words
with different suffixes starting from position 2. Therefore, as yvz is also in this
component, this latter has size at least 3�(A) + 1. Contradiction. �	

6.3 Cyclic s-words and Elements of Infinite Order

In this subsection, we exhibit a family of words whose induced actions have finite
bounded orders. Then we prove that each word admits a bounded power which
induces the same action as some word in this family.

Definition 25. A word over Q is a cyclic s-word if all its powers are s-words
(equivalently, if it is an s-word viewed as a cyclic word).

Note that the existence of such cyclic s-words is ensured by the simple fact
that any s-word of length �(A) × (1 + #Q�(A)) admits a cyclic s-word as a
factor.

Proposition 26. If the lengths of the 2-blocks in t(A) are bounded by N , then
any edge at level �(A) + N or below in s is followed by three edges.

Proof. From Lemma 19, there is a unique initial path labeled by 3�(A)2N (and
none labeled by 3�(A)2N+1), call it e: ⊥(e) is the initial vertex of 3 edges, two
of which belong to s by Lemma 21. By Lemmas 11 and 21, each path of s
is either a prefix of e or prefixed with e. Suppose that an edge of s below
level |e|+1 is labeled by 2 and consider an initial branch f in s which minimizes
the length of the 1-block from ⊥(e): its label has prefix 3�(A)2N1k2 for some k >
0. Consider the (non-initial) path in t(A) obtained from f by erasing its first edge:
by Lemma 11, it is liftable to an initial path, say g. As f is in s, so is g, hence g

A Connected 3-State Reversible Mealy Automaton 323

and e coincide until level �(A) + N ; so the label of g has prefix 3�(A)2N . By
Lemmas 11 and 9, it has also a prefix whose label is greater than or equal to
(coordinatewise) 3�(A)−12N1k2. Hence the label of g has a prefix greater than
or equal to 3�(A)2N1k−12, contradicting to the choice of f . �	
Proposition 27. If the lengths of the 2-blocks in t(A) are bounded, every cyclic
s-word induces an action of finite order, bounded by a uniform constant.

Proof. Let u be a cyclic s-word and n be an integer such that |un| > �(A): un is
an s-word. So, by Proposition 26, the label of the path of uω is ultimately 1 and,
by Proposition 5, the action induced by u has finite order, bounded by a con-
stant which depends on �(A) (more precisely on the number of output labelings
of ⊥(e), where e is the path of t(A) defined in the proof of Proposition 26). �	
Proposition 28. If the 2-blocks in t(A) are bounded, every non-empty word
over Q admits a non-empty bounded power equivalent to some cyclic s-word.

Proof. Let � = �(A) be the connection degree of A. For a (possibly infinite)
s-word w, let fact�(w) denote the (finite) set of its length � factors.

Consider an infinite s-word u, that we assume to be maximal in the sense that
there is no other infinite s-word u′ satisfying fact�(u) � fact�(u′). Let fix a finite
prefix v of u satisfying fact�(u) = fact�(v). From the maximality assumption
on u, we deduce that each word w such that vw is an s-word satisfies fact�(w) ⊆
fact�(v). We will refer to this property as Property (�).

Let a1a2 . . . an ∈ Q+. By Proposition 24, a1 appears infinitely many often in
the tree W (s)|v. Therefore there is some word u0 satisfying u0a1 ∈ W (s)|v. The
goal is to build a word u1 satisfying u0a1u1a2 ∈ W (s)|v. If u0a1a2 ∈ W (s)|v,
then take the empty word for u1. Otherwise, as in Figure 2, choose some word v0

satisfying v0a2 ∈ W (s)|v. By Lemma 22 and Property (�), there exists a word
r ∈ fact�(v) such that both u0a1r ∈ W (s)|v and v0r ∈ W (s)|v hold. Let vr be a
word such that vrr is a prefix of v and let u′

1 be the word satisfying vru′
1 = vv0.

Then u′
1 is a cyclic s-word, since its length � prefix r satisfies vru′

1r ∈ W (s).
By Proposition 27, u′

1 has finite order q. Set u1 = u′
1

q: a1u1a2 ∈ W (s)|vu0
.

The same method produces words (ui)1≤i≤n of length at least � that induce
the trivial action and such that the word w(0) = a1u1a2 · · · an−1un−1anun sat-
isfies w(0)a1 ∈ S1|vu0

and induces the same action as a1 · · · an. For i ≥ 0, we
analogously define a word w(i+1) inducing the same action as a1 · · · an such
that w(i+1)a1 ∈ S1|vu0w(0)···w(i) . Eventually, there exist i < j such that u(i)

1

and u(j+1)
1 have the same prefix of length �, hence w(i) · · ·w(j) is a cyclic s-

word and induces the same action as (a1 · · · an)j−i. Note that j − i is bounded
by a constant depending on �(A) and #Q. �	
Corollary 29. If A generates an infinite group, the orbit tree t(A) admits an
active self-liftable branch, which is labeled either by 3ω or by 3n2ω for some n.

Proof. If the lengths of the 2-blocks are bounded, any non-empty word has a non-
empty bounded power which is equivalent to a cyclic s-word by Proposition 28,

324 I. Klimann et al.

u′
1

u′
1

r

vr

v0

u0

a1

r

a2

a2

r

v

W (s)|v

Fig. 2. Proof of Proposition 28: building a word u′
1 satisfying u0a1u

′
1a2 ∈ W (s)|v

so the order of the action it induces is finite and bounded by a constant from
Propositions 27 and 28. From Zelmanov’s solution to the restricted Burnside
problem (see [7] for a simpler proof in our framework) the group 〈A〉 is finite,
which contradicts the hypothesis. Proposition 26 leads to the conclusion. �	

Our main result (Theorem 1) immediately follows now from Theorem 17. Note
that in the case when the group is infinite the proof of the existence of elements
of infinite order is completely constructive. Indeed, such elements are constructed
from Proposition 15 where all bounds are known. In particular, Theorem 1 allows
us to detect some infinite order elements, undetectable by the existing pack-
ages FR [3] and automgrp [21] for GAP system [9], dedicated to automaton
(semi)groups.

References

1. Akhavi, A., Klimann, I., Lombardy, S., Mairesse, J., Picantin, M.: On the finiteness
problem for automaton (semi)groups. Int. J. Algebr. Comput. 22(6) (2012)

2. Alešin, S.V.: Finite automata and the Burnside problem for periodic groups. Mat.
Zametki 11, 319–328 (1972)

3. Bartholdi, L.: FR functionally recursive groups, self-similar groups, GAP package
for computation in self-similar groups and semigroups, V. 2.2.1 (2015)

4. Bartholdi, L., Šuniḱ, Z.: On the word and period growth of some groups of tree
automorphisms. Comm. Algebra 29–11, 4923–4964 (2001)

5. Belk, J., Bleak, C.: Some undecidability results for asynchronous transducers and
the Brin-Thompson group 2V . ArXiv:1405.0982

6. Burnside, W.: On an unsettled question in the theory of discontinuous groups.
Quart. J. Math. 33, 230–238 (1902)

7. D’Angeli, D., Rodaro, E.: Freeness of automata groups vs boundary dynamics.
ArXiv:1410.6097v2

8. D’Angeli, D., Rodaro, E.: A geometric approach to (semi)-groups defined by
automata via dual transducers. Geometriae Dedicata 174(1), 375–400 (2015)

http://arxiv.org/abs/+1405.0982
http://arxiv.org/abs/1405.0982
http://arxiv.org/abs/1405.0982
http://arxiv.org/abs/+1410.6097v2
http://arxiv.org/abs/1410.6097v2
http://arxiv.org/abs/1410.6097v2

A Connected 3-State Reversible Mealy Automaton 325

9. The GAP Group: GAP Groups, Algorithms, and Programming (2015)
10. Gawron, P.W., Nekrashevych, V.V., Sushchansky, V.I.: Conjugation in tree auto-

morphism groups. Internat. J. Algebr. Comput. 11–5, 529–547 (2001)
11. Gillibert, P.: The finiteness problem for automaton semigroups is undecidable.

Internat. J. Algebr. Comput. 24–1, 1–9 (2014)
12. Gluškov, V.M.: Abstract theory of automata. Uspehi Mat. Nauk 16(5), 3–62 (1961)
13. Godin, T., Klimann, I., Picantin, M.: On Torsion-Free Semigroups Gener-

ated by Invertible Reversible Mealy Automata. In: Dediu, A.-H., Formenti, E.,
Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2015. LNCS, vol. 8977, pp. 328–339.
Springer, Heidelberg (2015)

14. Golod, E.S., Shafarevich, I.: On the class field tower. Izv. Akad. Nauk SSSR Ser.
Mat. 28, 261–272 (1964)

15. Grigorchuk, R.: On Burnside’s problem on periodic groups. Funktsional. Anal. i
Prilozhen 14(1), 53–54 (1980)

16. Grigorchuk, R.: Degrees of growth of finitely generated groups and the theory of
invariant means. Izv. Akad. Nauk SSSR Ser. Mat. 48(5), 939–985 (1984)

17. Grigorchuk, R., Savchuk, D.: Ergodic decomposition of group actions on rooted
trees. In: Proc. of Steklov Inst. of Math. (to appear, 2015)

18. Gupta, N., Sidki, S.: On the Burnside problem for periodic groups. Math. Z. 182–3,
385–388 (1983)

19. Klimann, I.: Automaton semigroups: The two-state case. Theor. Comput. Syst.,
1–17 (special issue STACS 2013) (2014)

20. Klimann, I., Picantin, M., Savchuk, D.: Orbit automata as a new tool to attack
the order problem in automaton groups. ArXiv:1411.0158v2

21. Muntyan, Y., Savchuk, D.: automgrp automata groups, GAP package for compu-
tation in self-similar groups and semigroups, V. 1.2.4 (2014)

22. Nekrashevych, V.: Self-similar groups, Mathematical Surveys and Monographs,
vol. 117. American Mathematical Society, Providence (2005)

23. Savchuk, D., Vorobets, Y.: Automata generating free products of groups of order
2. J. Algebra 336–1, 53–66 (2011)

24. Sushchansky, V.I.: Periodic permutation p-groups and the unrestricted Burnside
problem. DAN SSSR. 247(3), 557–562 (1979). (in Russian)

http://arxiv.org/abs/+1411.0158v2
http://arxiv.org/abs/1411.0158v2
http://arxiv.org/abs/1411.0158v2

Path Checking for MTL and TPTL
over Data Words

Shiguang Feng1(B), Markus Lohrey2, and Karin Quaas1

1 Institut für Informatik, Universität Leipzig, Leipzig, Germany
2 Department für Elektrotechnik und Informatik,

Universität Siegen, Siegen, Germany
shig.feng@gmail.com

Abstract. Precise complexity results are derived for the model checking
problems for MTL and TPTL on (in)finite data words and deterministic
one-counter machines. Depending on the number of register variables and
the encoding of constraint numbers (unary or binary), the complexity
is P-complete or PSPACE-complete. Proofs can be found in the long
version [10].

1 Introduction

Linear time temporal logic (LTL) is nowadays of the main logical formalisms for
describing system behaviour Triggered by real time applications, various timed
extensions of LTL have been invented. Two of the most prominent examples
are MTL (metric temporal logic) [13] and TPTL (timed propositional temporal
logic) [2]. In MTL, the operators next (X) and until (U) are indexed by time
intervals. For instance, the formula pU[2,3) q holds at time t, if there is a time t′ ∈
[t+2, t+3), where q holds, and p holds during the interval [t, t′). TPTL is a more
powerful logic that is equipped with a freeze formalism. It uses register variables,
which can be set to the current time value and later these register variables can
be compared with the current time value. For instance, the above MTL-formula
pU[2,3) q is equivalent to the TPTL-formula x.(pU (q ∧ 2 ≤ x < 3)). Here, the
constraint 2 ≤ x < 3 should be read as: The difference of the current time
value and the value stored in x is in the interval [2, 3). In this paper, we always
use the discrete semantics (opposed to the continuous semantics), where formulae
are interpreted over (in)finite timed sequences (P0, d0)(P1, d1) . . . , where the di

are time stamps and the Pi are sets of atomic propositions.
The freeze mechanism from TPTL has also received attention in connection

with data words. A data word is a finite or infinite sequence (P0, d0)(P1, d1) . . .
of the above form, where we do not require the data values di to be monotonic,
and we speak of non-monotonic data words. As for TPTL, freezeLTL can store
the current data value in a register x. But in contrast to TPTL, the value of x
can only be compared for equality with the current data value.

S. Feng—The author is supported by the German Research Foundation (DFG), GRK
1763.

c© Springer International Publishing Switzerland 2015
I. Potapov (Ed.): DLT 2015, LNCS 9168, pp. 326–339, 2015.
DOI: 10.1007/978-3-319-21500-6 26

Path Checking for MTL and TPTL over Data Words 327

Satisfiability and model checking for MTL, TPTL and freezeLTL have been
studied intensively in the past [2–4,7,8,15–17]. For model checking freezeLTL the
authors of [8] consider one-counter machines (OCM) as a mechanism for gener-
ating infinite non-monotonic data words, where the data values are the counter
values along the unique computation path. Whereas freezeLTL model checking for
non-deterministic OCM is Σ1

1 -complete, the problem becomes PSPACE-complete
for deterministic OCM [8].

In this paper, we study MTL and TPTL over non-monotonic data words. The
latter logic extends both freezeLTL over non-monotonic data words and TPTL
over monotonic data words: As for freezeLTL, data values are natural numbers
that can vary arbitrarily over time. In contrast to the latter, one can express
that the difference of the current data value and the value stored in a register
belongs to a certain interval, whereas freezeLTL only allows to say that this
difference is zero. Applications for TPTL over non-monotonic data values can
be seen in areas, where data streams of discrete values have to be analyzed
and the focus is on the dynamic variation of the values (e.g. streams of discrete
sensor data or stock charts). Recently, it has been shown that (in contrast to
the monotonic setting [1]) in the non-monotonic setting, TPTL is strictly more
powerful than MTL [5].

We investigate the complexity of model checking problems for TPTL over
non-monotonic data words. These data words can be either finite or infinite
periodic; in the latter case the data word is specified by an initial part, a period,
and an offset number, which is added to the data values in the period after each
repetition of the period. For periodic words without data values (i.e., ω-words
of the form uvω), the complexity of LTL model checking (also known as LTL
path checking) belongs to AC1(LogDCFL) (a subclass of NC) [14]. This result
solved a long standing open problem. For finite monotonic data words, the same
complexity bound has been shown for MTL in [4].

We show that the latter result of [4] is quite sharp in the following sense:
Path checking for MTL over non-monotonic (finite or infinite) data words as
well as path checking for TPTL with one register variable over monotonic (finite
or infinite) data words is P-complete. Moreover, path checking for TPTL (with
an arbitrary number of register variables) over finite as well as infinite periodic
data words becomes PSPACE-complete. We also show that PSPACE-hardness
already holds (i) for the fragment of TPTL with only two register variables and
(ii) for full TPTL, where all interval borders are encoded in unary (the latter
result can be shown by a straightforward adaptation of the PSPACE-hardness
proof in [8]). These results yield a rather complete picture on the complexity of
path checking for MTL and TPTL, see Fig. 5.

2 Temporal Logics over Data Words

Let P be a finite set of atomic propositions. A data word over P is a finite
or infinite sequence (P0, d0)(P1, d1) · · · of pairs from 2P × N. It is monotonic
(strictly monotonic), if di ≤ di+1 (di < di+1) for all appropriate i. It is pure,

328 S. Feng et al.

if Pi = ∅ for all i ≥ 0. A pure data word is just written as a sequence of
natural numbers. We denote with (2P × N)∗ and (2P × N)ω, respectively, the
set of finite and infinite, respectively, data words over P. The length of a data
word u is denoted by |u|, where we set |u| = ∞ for the case that u is infinite.
For the data word u = (P0, d0)(P1, d1) · · · , we use the notations u[i] = (Pi, di),
u[: i] = (P0, d0)(P1, d1) · · · (Pi, di), u[i :] = (Pi, di)(Pi+1, di+1) · · · , and u+k =
(P0, d0+k)(P1, d1+k) · · · , where k ∈ N. We use u1u2 to denote the concatenation
of two data words u1 and u2, where u1 has to be finite. For finite data words u1,
u2 and k ∈ N, let

u1(u2)ω
+k = u1u2(u2)+k(u2)+2k(u2)+3k · · · .

For complexity considerations, the encoding of the data values and the offset
number k (in an infinite data word) makes a difference. We speak of unary (resp.,
binary) encoded data words if all these numbers are given in unary (resp., binary)
encoding.

The set of formulae of the logic MTL is built up from P by Boolean connec-
tives, the next and the until modality using the following grammar, where p ∈ P
and I ⊆ Z is an interval with endpoints in Z ∪ {−∞,+∞}:

ϕ ····= p | ¬ϕ | ϕ ∧ ϕ | XIϕ | ϕUIϕ

Formulae of MTL are interpreted over data words. Let w = (P0, d0)(P1, d1) · · ·
be a data word, and let i ≤ |w|. We define the satisfaction relation for MTL
inductively as follows (we omit the obvious cases for ¬ and ∧):

– (w, i) |= p if and only if p ∈ Pi

– (w, i) |= XIϕ if and only if i + 1 ≤ |w|, di+1 − di ∈ I and (w, i + 1) |= ϕ
– (w, i) |= ϕ1UIϕ2 if and only if there exists a position j with i ≤ j ≤ |w|,

(w, j) |= ϕ2, dj − di ∈ I, and (w, t) |= ϕ1 for all t ∈ [i, j).

We say that a data word satisfies an MTL-formula ϕ, written w |= ϕ, if (w, 0) |=
ϕ. We use the following standard abbreviations: ϕ1 ∨ϕ2 ··= ¬(¬ϕ1 ∧¬ϕ2), ϕ1 →
ϕ2 ··= ¬ϕ1 ∨ ϕ2, true ··= p ∨ ¬p, false ··= ¬true, FIϕ ··= trueUIϕ, GIϕ ··= ¬FI¬ϕ.

Next we define formulae of the logic TPTL. For this, let V be a countable
set of register variables. The set of TPTL-formulae is given by the following
grammar, where p ∈ P, x ∈ V , c ∈ Z, and ∼∈ {<,≤,=,≥, >}:

ϕ ····= p | x ∼ c | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ | x.ϕ (1)

We use the same syntactical abbreviations as for MTL. The fragment freezeLTL
is obtained by restricting ∼ in (1) to =. Ordinary LTL is obtained by disallowing
the use of register variables. Given r ≥ 1, we use TPTLr (resp., freezeLTLr) to
denote the fragment of TPTL (resp., freezeLTL) that uses at most r different
register variables.

A register valuation ν is a function from V to Z. Given a register valuation ν,
a data value d ∈ Z, and a variable x ∈ V , we define the register valuations ν + d

Path Checking for MTL and TPTL over Data Words 329

and ν[x → d] as follows: (ν + d)(y) = ν(y) + d for every y ∈ V , (ν[x → d])(y) =
ν(y) for every y ∈ V \{x}, and (ν[x → d])(x) = d.

Let w = (P0, d0)(P1, d1) · · · be a data word, let ν be a register valuation, and
let i ∈ N. The satisfaction relation for TPTL is inductively defined in a similar
way as for MTL; we only give the definitions for the new formulae:

– (w, i, ν) |= Xϕ if and only if i + 1 ≤ |w| and (w, i + 1, ν) |= ϕ
– (w, i, ν) |= ϕ1Uϕ2 if and only if there exists a position j with i ≤ j ≤ |w|,

(w, j, ν) |= ϕ2, and (w, t, ν) |= ϕ1 for all t ∈ [i, j)
– (w, i, ν) |= x.ϕ if and only if (w, i, ν[x → di]) |= ϕ
– (w, i, ν) |= x ∼ c if and only if di − ν(x) ∼ c.

Note that x ∼ c does not mean that the current value v = ν(x) of x satisfies
v ∼ c, but expresses that di − v ∼ c, where di is the current data value. We say
that a data word w satisfies a TPTL-formula ϕ, written w |= ϕ, if (w, 0, 0̄) |= ϕ,
where 0̄ denotes the valuation that maps all variables to the initial data value d0.

For complexity considerations, it makes a difference, whether the numbers c
in constraints x ∼ c are binary or unary encoded, and similarly for the interval
borders in MTL. We write TPTLr

u, TPTLu, MTLu (resp., TPTLr
b , TPTLb, MTLb)

if we want to emphasize that numbers are encoded in unary (resp., binary)
notation. The length of a (TPTL or MTL) formula ψ, denoted by |ψ|, is the
number of symbols occurring in ψ.

3 Path Checking Problems for TPTL and MTL

In this section, we study the path checking problems for our logics over data
words. Data words can be (i) finite or infinite, (ii) monotonic or non-monotonic,
(iii) pure or non-pure, and (iv) unary encoded or binary encoded. For one of our
logics L and a class of data words C, we consider the path checking problem for L
over C. It asks whether for a given data word w ∈ C and a given formula ϕ ∈ L,
w |= ϕ holds.

3.1 Upper Bounds

In this section we prove our upper complexity bounds. All bounds hold for non-
monotonic and non-pure data words (and we will not mention this explicitly in
the theorems). But we have to distinguish whether (i) data words are unary or
binary encoded, and (ii) whether data words are finite or infinite. For the most
general path checking problem (TPTLb over infinite binary encoded data words)
we can devise an alternating polynomial time algorithm (and hence a polynomial
space algorithm). The only technical difficulty is to bound the position in the
infinite data word and the values of the register valuation, so that they can be
stored in polynomial space, see [10] for details.

Theorem 1. Path checking for TPTLb over infinite binary encoded data words
is in PSPACE.

330 S. Feng et al.

If the number of register variables is fixed and all data values are unary encoded,
then the alternating Turing-machine in the proof of Theorem 1 works in loga-
rithmic space. Since ALOGSPACE = P, we obtain the following statement for (i).
For (ii) we show that an infinite binary encoded monotonic data word can be
replaced by an infinite unary encoded data word, which allows to apply (i).

Theorem 2. For every fixed r ∈ N, path checking for TPTLr
u over (i) infinite

unary encoded data words or (ii) infinite binary encoded monotonic data words
is in P.

Actually, for finite data words, we obtain a polynomial time algorithm also for
binary encoded data words (assuming again a fixed number of register variables):

Theorem 3. For every fixed r ∈ N, path checking for TPTLr
b over finite binary

encoded data words is in P.

For infinite data words we have to reduce the number of register variables to one
in order to get a polynomial time complexity for binary encoded numbers:

Theorem 4. Path checking for TPTL1b over infinite binary encoded data words
is in P.

For the proof of Theorem 4 we need the following two lemmas.

Lemma 5. For a given LTL-formula ψ, words u1, . . . , uk, u ∈ (2P)∗ and binary
encoded numbers N1, . . . , Nk ∈ N, the question whether uN1

1 uN2
2 · · · uNk

k uω |= ψ
holds, belongs to P (actually, AC1(LogDCFL)).

The crucial point is that for all finite words u, v ∈ (2P)∗, every infinite word
w ∈ (2P)ω and every number N ≥ |ψ|, we have uvNw |= ψ if and only if
uv|ψ|w |= ψ. This can be shown by using the Ehrenfeucht-Fräıssé game for LTL
from [9]. Hence, one can replace all exponents Ni by small numbers of size at
most |ψ|. Then, one can use a polynomial time algorithm (or AC1(LogDCFL)
algorithm) for LTL path checking [14].

Lemma 6. Path checking for TPTLb-formulae, which do not contain subformu-
lae of the form x.θ for a register variable x, over infinite binary encoded data
words is in P (in fact, AC1(LogDCFL)).

Proof. We reduce the question, whether w |= ψ in logspace to an instance of the
succinct LTL path checking problem from Lemma 5. Let w = u1(u2)ω

+k and let
w[i] = (Pi, di) ∈ 2P × N. Let n1 = |u1| and n2 = |u2|. We can assume that only
one register variable x appears in ψ (since we do not use the freeze construct
x.() in ψ all register variables remain at the initial value d0).

In order to construct an LTL-formula from ψ, it remains to eliminate occur-
rences of constraints x ∼ c in ψ. W.l.o.g. all constraints are of the form
x < c or x > c. Let x ∼1 c1, . . . , x ∼m cm be a list of all constraints that
appear in ψ. We introduce for every 1 ≤ j ≤ m a new atomic proposition
pj and let P ′ = P ∪ {p1, . . . , pm}. Let ψ′ be obtained from ψ by replacing

Path Checking for MTL and TPTL over Data Words 331

every occurrence of x ∼j cj by pj , and let w′ ∈ (2P′
)ω be the ω-word with

w′[i] = Pi ∪ {pj | 1 ≤ j ≤ m, di − d0 ∼j cj}. Clearly w |= ψ if and only if
w′ |= ψ′. We will show that the word w′ can be written in the form considered
in Lemma 5.

First of all, we can write w′ as w′ = u′
1u

′
2,0u

′
2,1u

′
2,2 · · · , where |u′

1| = n1

and |u′
2,i| = n2. The word u′

1 can be computed in logspace by evaluating all
constraints at all positions of u1. Moreover, every word u′

2,i is obtained from u2

(without the data values) by adding the new propositions pj at the appropriate
positions. Consider the equivalence relation ≡ on N with a ≡ b if and only if
u′
2,a = u′

2,b. The crucial observations are that (i) every equivalence class of ≡ is
an interval, and (ii) the index of ≡ is bounded by 1 + n2 · m (one plus length of
u2 times number of constraints). To see this, consider a position 0 ≤ i ≤ n2 − 1
in the word u2 and a constraint x ∼j cj (1 ≤ j ≤ m). Then, the truth value of
“proposition pj is present at the ith position of u′

2,x” switches (from true to false
or from false to true) at most once when x grows. The reason for this is that the
data value at position n1 + i + n2 · x is dn1+i+n2·x = dn1+i + k · x for x ≥ 0, i.e.,
it grows monotonically with x. Hence, the truth value of dn1+i + k · x − d0 ∼j cj

switches at most once, when x grows. So, we get at most n2 ·m many “switching
points” in N which produce at most 1 + n2 · m many intervals.

Let I1, . . . , Il be a list of all ≡-classes (intervals), where a < b whenever
a ∈ Ii, b ∈ Ij and i < j. The borders of these intervals can be computed in
logspace using arithmetic on binary encoded numbers (addition, multiplication
and division with remainder can be carried out in logspace on binary encoded
numbers [12]). Hence, we can compute in logspace the lengths Ni = |Ii| of the
intervals, where Nl = ω. Also, for all 1 ≤ i ≤ l we can compute in logspace the
unique word vi such that vi = u′

2,a for all a ∈ Ii. Hence, w′ = u′
1v

N1
1 · · · vNl

l .
We can now apply Lemma 5. ��
Proof of Theorem 4. Consider an infinite binary encoded data word w = u1(u2)ω

+k

and a TPTL1b-formula ψ. Let n = |u1|+|u2|. We check in polynomial time whether
w |= ψ. A TPTL-formula ϕ is closed if every occurrence of a register variable x
in ϕ appears within a subformula of the form x.θ. The following two claims are
straightforward:
Claim 1 : If ϕ is closed, then for all valuations ν, ν′, (w, i, ν) |= ϕ iff (w, i, ν′) |= ϕ.
Claim 2 : If ϕ is closed and i ≥ |u1|, then for every valuation ν, (w, i, ν) |= ϕ iff
(w, i + |u2|, ν) |= ϕ.
By Claim 1 we can write (w, i) |= ϕ for (w, i, ν) |= ϕ. It suffices to compute for
every (necessarily closed) subformula x.ϕ of ψ the set of all positions i ∈ [0, n−1]
such that (w, i) |= x.ϕ, or equivalently w[i :] |= ϕ. We do this in a bottom-up
process. Consider a subformula x.ϕ of ψ and a position i ∈ [0, n−1]. We have to
check whether w[i :] |= ϕ. Let x.ϕ1, . . . , x.ϕl be all maximal (with respect to the
subformula relation) subformulae of ϕ of the form x.θ. We can assume that for
every 1 ≤ s ≤ l we have already determined the set of positions j ∈ [0, n−1] such
that (w, j) |= x.ϕs. We can therefore replace every subformula x.ϕs of ϕ by a new
atomic proposition ps and add in the data words u1 (resp., u2) the proposition

332 S. Feng et al.

a1 a2 a3 a4 a5

b1 b2 b3 b4 b5

c1 c2 c3 c4 c5

level 1 (∧)

level 2 (∨)

level 3 (∧)

Fig. 1. An SAM2-circuit

ps to all positions j (resp., j −|u1|) such that (w, j) |= x.ϕs, where j ∈ [0, n−1].
Here, we make use of Claim 2. We denote the resulting formula and the resulting
data word with ϕ′ and w′ = u′

1(u
′
2)

ω
+k, respectively. Next, it is easy to compute

from u′
1 and u′

2 new finite data words v1 and v2 such that v1(v2)ω
+k = w′[i :]: If

i < |u′
1| then we take v1 = u′

1[i :] and v2 = u′
2. If |u′

1| ≤ i ≤ n − 1, then we take
v1 = ε and v2 = u′

2[i :](u′
2[: i − 1] + k). Finally, using Lemma 6 we can check in

polynomial time whether w′[i :] |= ϕ′. ��

3.2 Lower Bounds

We prove several P-hardness and PSPACE-hardness results for path checking.

P-Hardness. We prove our P-hardness results by a reduction from a restricted
version of the Boolean circuit value problem. A synchronous alternating mono-
tone circuit with fanin 2 and fanout 2 (briefly, SAM2-circuit) is a Boolean circuit
divided into levels 1, . . . , l (l ≥ 2) such that the following properties hold:

– All wires go from a gate in level i + 1 to a gate from level i (1 ≤ i ≤ l − 1).
– All output gates are in level 1 and all input gates are in level l, and the latter

are labelled with input bits. Moreover, there is a distinguished output gate
on level 1.

– All gates in the same level 1 ≤ i ≤ l − 1 are of the same type (∧ or ∨) and
the levels alternate between ∧-levels and ∨-levels.

– All gates except the output gates have fanout 2 and all gates except the
input gates have fanin 2. The two input gates for a gate at level i ≤ l − 1
are different.

By the restriction to fanin 2 and fanout 2, we know that each level contains the
same number of gates. Fig. 1 shows an example of an SAM2-circuit (the node
names ai, bi, ci will be needed later). The circuit value problem for SAM2-circuits
(i.e., the question whether the distinguished output gate of a given SAM2-circuit
evaluates to 1), which is called SAM2CVP, is P-complete [11].

Recall that finite path checking for MTL (a fragment of TPTL1) over mono-
tonic data words is in the parallel complexity class AC1(LogDCFL) [4]. We will
show that for both (i) MTLu over non-monotonic data words and (ii) TPTL1u over
monotonic data words the path checking problem becomes P-hard (and hence
P-complete).

Path Checking for MTL and TPTL over Data Words 333

a1,1 a1,2 a1,j1

b1,1 b1,2 b1,j1

a2,1 a2,2 a2,j2

b2,1 b2,2 b2,j2

ah,1 ah,2 ah,jh

level i

bh,1 bh,2 bh,jh
level i+1

Fig. 2. The induced subgraph between level i and i + 1

Theorem 7. Path checking for MTLu over finite unary encoded pure data words
is P-hard.

Proof. We reduce from SAM2CVP. Let α be the input circuit. We first encode
each two consecutive levels of α into a data word, and combine these data words
into a data word w, which is the encoding of the whole circuit. Then we construct
a formula ψ such that w |= ψ if and only if α evaluates to 1. The data word
w that we are constructing contains gate names of α (and some copies of the
gates) as atomic propositions. These propositions will be only needed for the
construction. At the end, we can remove all propositions from the data word
w and hence obtain a pure data word. The whole construction can be done in
logspace. The reader might look at the example in [10], where the construction
is carried out for the circuit from Fig. 1.

Let α be an SAM2-circuit with l ≥ 2 levels and n gates in each level. By
the restriction to fanin 2 and fanout 2, the induced undirected subgraph which
contains the nodes in level i and i + 1 (1 ≤ i < l) consists of several cycles; see
Fig. 2. For instance, for the circuit in Fig. 1 the number of cycles between level
1 and 2 (resp., 2 and 3) is 2.

We can enumerate in logspace the gates of level i and i + 1 such that they
occur in the order shown in Fig. 2. For this, let a1, . . . , an (resp., b1, . . . , bn) be
the nodes in level i (resp., i + 1) in the order in which they occur in the input
description. We start with a1 and enumerate the nodes in the cycle containing a1

(from a1 we go to the smaller neighbor among b1, . . . , bn, then the next node on
the cycle is uniquely determined since the graph has degree 2). Thereby we store
the current node in the cycle and the starting node a1. As soon as we return to
a1, we know that the first cycle is completed. To find the next cycle, we search
for the first node from a2, . . . , an that is not reachable from a1 (reachability in
undirected graphs is in logspace), and continue this way.

So, assume that the nodes in layer i and i + 1 are ordered as in Fig. 2. In
particular, we have h cycles. For each 1 ≤ t ≤ h, we add a new node a′

t,1 (resp.,
b′
t,1) after at,jt (resp., bt,jt). Then we replace the edge (at,jt , bt,1) by the edge

(at,jt , b
′
t,1) (1 ≤ t ≤ h). In this way we obtain the graph from Fig. 3. Again, the

construction can be done in logspace by adding the new nodes and new edges
once a cycle was completed in the enumeration procedure from the previous
paragraph.

334 S. Feng et al.

a1,1 a1,2 a1,j1 a′
1,1

b1,1 b1,2 b1,j1 b′
1,1

a2,1 a2,2 a2,j2 a′
2,1

b2,1 b2,2 b2,j2 b′
2,1

ah,1 ah,2 ah,jh
a′
h,1

bh,1 bh,2 bh,jh b′
h,1

Fig. 3. The graph obtained from the induced subgraph

d d+1 · · · d+j1

d′ d′ + 1 · · · d′ +j1

· · · d+j1+j2+1

· · · d′+j1+j2+1

· · · d+m−1

· · · d′+m−1

Fig. 4. Labeling the new graph

By adding dummy nodes, we can assume that for every 1 ≤ i ≤ l − 1, the
subgraph between level i and i + 1 has the same number (say h) of cycles. We
still denote by n the number of nodes in each level. Thus, after the above step we
have m = n+h nodes in each level. Let d = (i−1) ·2m and d′ = d+m. In Fig. 3,
we label the nodes in level i (resp., i+1) with the numbers d, d+1, . . . , d+m−1
(resp. d′, d′ + 1 . . . , d′ + m − 1) in this order, see Fig. 4. By this labeling, the
difference between two connected nodes in level i and level i + 1 is always m or
m + 1. So we can use the modality F[m,m+1] (resp., G[m,m+1]) to jump from an
∨-gate (resp., ∧-gate) in level i to a successor gate in level i + 1. We now obtain
in logspace the data word wi = wi,1wi,2, where

wi,1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(a1,1, d)(a1,2, d + 1) · · · (a1,j1 , d + j1 − 1)
(a2,1, d + j1 + 1)(a2,2, d + j1 + 2) · · · (a2,j2 , d + j1 + j2) · · ·

(ah,1, d +
h−1∑
t=1

jt + h − 1)(ah,2, d +
h−1∑
t=1

jt + h) · · · (ah,jh , d + m − 2)

wi,2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(b1,1, d
′) · · · (b1,j1 , d

′ + j1 − 1)(b′
1,1, d

′ + j1)
(b2,1, d

′ + j1 + 1) · · · (b2,j2 , d
′ + j1 + j2)(b′

2,1, d
′ + j1 + j2 + 1) · · ·

(bh,1, d
′ +

h−1∑
t=1

jt + h − 1) · · · (bh,jh , d′ + m − 2)(b′
h,1, d

′ + m − 1)

which is the encoding of the wires between level i and level i + 1 from Fig. 4.
Note that the new nodes a′

1,1, a
′
2,1, . . . , a

′
h,1 in level i of the graph in Fig. 3 do

not occur in wi,1.
Suppose now that all data words wi (1 ≤ i ≤ l − 1) are constructed. We

then combine them to obtain the data word w for the whole circuit as follows.

Path Checking for MTL and TPTL over Data Words 335

Suppose that

wi,2 = (b̃1, y1) · · · (b̃m, ym) and wi+1,1 = (b1, z1) · · · (bn, zn).

Note that every b̃i is either one of the bj or b′
j (the copy of bj). Let

vi+1,1 = (b̃1, z′
1) · · · (b̃m, z′

m),

where the data values z′
i are determined as follows: If b̃i = bj or b̃i = b′

j , then
z′
i = zj . Then, the data word w is w = w1,1w1,2v2,1w2,2 · · · vl−1,1wl−1,2.

Let us explain the idea. Consider a gate aj of level 2 ≤ i ≤ l − 1, and assume
that level i consists of ∨-gates. Let bj1 and bj2 (from level i + 1) be the two
input gates for aj . In the above data word vi,1 there is a unique position where
the proposition aj occurs, and possibly a position where the copy a′

j occurs. If
both positions exist, then they carry the same data value. Let us point to one of
these positions. Using an MTL formula, we want to branch (existentially) to the
positions in the factor vi+1,1, where the propositions bj1 , b

′
j1

, bj2 , b
′
j2

occur (where
b′
j1

and b′
j2

possibly do not exist). For this, we use the modality F[m,m+1]. By the
construction, this modality branches existentially to positions in the factor wi,2,
where the propositions bj1 , b

′
j1

, bj2 , b
′
j2

occur. Then, using the iterated modality
Xm (which is an abbreviation for m copies of the MTL-modality XZ), we jump
to the corresponding positions in vi+1,1.

In the above argument, we assumed that 2 ≤ i ≤ l − 1. If i = 1, then we
can argue similarly, if we assume that we are pointing to the unique aj-labeled
position of the prefix w1,1 of w. Now consider level l − 1. Suppose that

wl−1,2 = (d̃1, v1) . . . (d̃m, vm).

Let d1, . . . , dn be the original gates of level l, which all belong to {d̃1, . . . , d̃m},
and let xi ∈ {0, 1} be the input value for gate di. Define

I = {j | j ∈ [1,m],∃i ∈ [1, n] : d̃j ∈ {di, d
′
i}, xi = 1}. (2)

Let the designated output gate be the kth node in level 1. We construct the
MTL-formula ψ = Xk−1ϕ1, where ϕi (1 ≤ i ≤ l − 1) is defined inductively as
follows:

ϕi =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

F[m,m+1]X
mϕi+1 if i < l − 1 and level i is a ∨-level,

G[m,m+1]X
mϕi+1 if i < l − 1 and level i is a ∧-level,

F[m,m+1](
∨

j∈I X
m−j¬X true) if i = l − 1 and level i is a ∨-level,

G[m,m+1](
∨

j∈I X
m−j¬X true) if i = l − 1 and level i is a ∧-level.

Note that the formula ¬X true is only true in the last position of a data word.
Suppose data word w is the encoding of the circuit. From the above considera-
tion, it follows that w |= ψ if and only if the circuit α evaluates to 1. Note that
we do not use any propositional variables in the formula ψ. So we can ignore the
propositional part in the data word w to get a pure data word. ��

336 S. Feng et al.

Note that the above construction uses non-monotonic data words. This is
unavoidable since finite path checking for MTL over monotonic data words is
in NC [4]. On the other hand, for the extension TPTL1u of MTLu we can show,
using again a reduction from SAM2CVP (see [10]), P-hardness also for mono-
tonic data words:

Theorem 8. Path checking for TPTL1u over finite unary encoded strictly mono-
tonic pure data words is P-hard.

PSPACE-Hardness. In [10], we prove three PSPACE lower bounds, which com-
plete our complexity picture. The first one is shown by a reduction from QBF,
whereas the latter two results are shown by a reduction from a quantified variant
of the subset sum problem [19].

Theorem 9. Path checking for TPTLu over finite unary encoded strictly mono-
tonic pure data words is PSPACE-hard.

Theorem 10. Path checking for TPTL2b over the infinite strictly monotonic
pure data word w = 0(1)ω

+1 = 0, 1, 2, 3, 4, . . . is PSPACE-hard.

Theorem 11. Path checking for freezeLTL2 (and hence TPTL2u) over infinite
binary encoded pure data words is PSPACE-hard.

Recall from Theorem 2 that for every fixed r, path checking for TPTLr
u over

infinite binary encoded monotonic data words can be solved in polynomial time.
Hence, Theorem 11 shows that monotonicity is important for Theorem 2.

3.3 Summary of the Results

Figure 5 collects our complexity results for path checking problems (here the
superscript <∞ is a place holder for any number r ≥ 2). Whether data words
are pure or not does not influence the complexity in all cases. Moreover, for
finite data words, the complexity does not depend upon the encoding of data
words (unary or binary) and the fact whether data words are monotonic or non-
monotonic. On the other hand, for infinite data words, these distinctions influ-
ence the complexity: For binary and non-monotonic data words we get another
picture than or unary encoded or (quasi-)monotonic data words. Note that for
MTLb and MTLu the complexity is P-complete for all classes of data words (since
MTL translates in logspace into TPTL1).

One may also study the complexity of path checking problems for various
fragments of MTL and TPTL. In this context, it is interesting to note that all
lower bounds already hold for the corresponding unary fragments (where the
until-operator is replaced by F and G) with only one exception: Our proof for
Theorem 11 in [10] for freezeLTL2 needs the until operator. It is not clear, whether
path checking for the unary fragment of freezeLTL2 over infinite binary encoded
data words is still PSPACE-complete.

Path Checking for MTL and TPTL over Data Words 337

Fig. 5. Complexity results for path checking

Our complexity results for infinite unary encoded data words also hold for
deterministic one-counter machines (DOCMs), see [10] for a precise definition.
A DOCM produces in general an infinite data word, where the sequence of
atomic propositions is the sequence of states of the machine, and the sequence
of data values is the sequence of counter values produced by the DOCM (the
DOCM can block in which case it produces a finite data word). It is an easy
observation that the data word produced by a DOCM A is periodic in case it
is infinite, and one can in fact compute in logspace from A two unary encoded
finite data words u1 and u2 and a unary encoded number k such that u1(u2)ω

+k

is the data word produced by A, see also [8, Lemma 9]. For this it is crucial

338 S. Feng et al.

that the counter can be incremented or decremented in each step by at most
one (or, more general, a unary encoded number). This, in turn implies that for
each of the logics L considered in this paper, the model checking problem for
L over DOCM (i.e., the question, whether a given formula ϕ ∈ L holds in the
data word produced by a given DOCM) is equivalent with respect to logspace
reductions to the path checking problem for L over infinite unary encoded data
words. Hence, the upper left diagram from Figure 5 also shows the complexity
results for TPTL model checking over DOCM. In particular we strengthen the
third author’s recent decidability result for model checking non-monotonic TPTL
over DOCMs [18]. Our results also generalizes the PSPACE-completeness result
for freezeLTL over DOCMs from [8].

References

1. Alur, R., Henzinger, T.A.: Real-Time Logics: Complexity and Expressiveness. Inf.
Comput. 104(1), 35–77 (1993)

2. Alur, R., Henzinger, T.A.: A really temporal logic. J. ACM 41(1), 181–204 (1994)
3. Bouyer, P., Larsen, K.G., Markey. Model checking one-clock priced timed

automata. Log. Meth. Comput. Sci. 4(2) (2008)
4. Bundala, D., Ouaknine, J.: On the complexity of temporal-logic path checking. In:

Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part
II. LNCS, vol. 8573, pp. 86–97. Springer, Heidelberg (2014)

5. Carapelle, C., Feng, S., Gil, O.F., Quaas, K.: On the expressiveness of TPTL and
MTL over ω-data words. In: Proc. AFL 2014. EPTCS, vol. 151, pp. 174–187 (2014)

6. Carapelle, C., Feng, S., Fernández Gil, O., Quaas, K.: Satisfiability for MTL
and TPTL over non-monotonic data words. In: Dediu, A.-H., Mart́ın-Vide, C.,
Sierra-Rodŕıguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370,
pp. 248–259. Springer, Heidelberg (2014)

7. Demri, S., Lazić, R.: LTL with the freeze quantifier and register automata. ACM
Trans. Comput. Log. 10(3) (2009)

8. Demri, S., Lazić, R., Sangnier, A.: Model checking memoryful linear-time logics
over one-counter automata. Theor. Comput. Sci. 411(22–24), 2298–2316 (2010)

9. Etessami, K., Wilke, T.: An until hierarchy and other applications of an
Ehrenfeucht-Fräıssé game for temporal logic. Inf. Comput. 160(1–2), 88–108 (2000)

10. Feng, S., Lohrey, M., Quaas, K.: Path-Checking for MTL and TPTL, arXiv.org
1412.3644 (2014)

11. Greenlaw, R., Hoover, H.J., Ruzzo, W.L.: Limits to Parallel Computation:
P-completeness Theory. Oxford University Press (1995)

12. Hesse, W., Allender, E., Barrington, D.A.M.: Uniform constant-depth threshold cir-
cuits for division and iterated multiplication. J. Comput. System Sci. 65, 695–716
(2002)

13. Koymans, R.: Specifying real-time properties with metric temporal logic.
Real-Time Systems 2(4), 255–299 (1990)

14. Kuhtz, L., Finkbeiner, B.: Efficient parallel path checking for linear-time temporal
logic with past and bounds. Log. Meth. Comput. Sci. 8(4) (2012)

15. Laroussinie, F., Markey, N., Schnoebelen, P.: On model checking durational kripke
structures. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303,
pp. 264–279. Springer, Heidelberg (2002)

http://arxiv.org/abs/1412.3644

Path Checking for MTL and TPTL over Data Words 339

16. Ouaknine, J., Worrell, J.B.: On metric temporal logic and faulty turing
machines. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921,
pp. 217–230. Springer, Heidelberg (2006)

17. Ouaknine, J., Worrell, J.: On the decidability and complexity of metric temporal
logic over finite words. Log. Meth. Comput. Sci. 3(1) (2007)

18. Quaas, K.: Model checking metric temporal logic over automata with one counter.
In: Dediu, A.-H., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2013. LNCS, vol. 7810,
pp. 468–479. Springer, Heidelberg (2013)

19. Travers, S.: The complexity of membership problems for circuits over sets of
integers. Theor. Comput. Sci. 369(1), 211–229 (2006)

On Distinguishing NC1 and NL

Andreas Krebs, Klaus-Jörn Lange(B), and Michael Ludwig

WSI - University of Tübingen, Sand 13, 72076 Tübingen, Germany
{krebs,lange,ludwigm}@informatik.uni-tuebingen.de

Abstract. We obtain results within the area of dense completeness,
which describes a close relation between families of formal languages
and complexity classes. Previously we were able show that this relation
exists between counter languages and NL but not between the regular
languages and NC1.

We narrow the gap between the regular languages and the counter
languages by considering visibly counter languages. It turns out that
they are not densely complete for NC1. At the same time we found a
restricted counter automaton model which is densely complete for NL.

Besides counter automata we show more positive examples in terms
of L-systems.

1 Introduction

Turing machines are the key model for computation and the most general as
well. A consequence however is for example the undecidability of the word prob-
lem. Two of the major areas of theory can be understood as different branches
originating from the concept of the Turing machine. One branch limits Turing
machines in terms of resources like space and time which led to what we know
as complexity theory, the study of complexity classes. In the other branch we
are in a way limiting the functionality of Turing machines resulting e.g. in push-
down or finite automata. We want to name the objects of the second branch
families of formal languages. It turned out that complexity classes and families
of formal languages have very different properties but they are also connected in
many ways. The present work is a contribution to understanding the relationship
between complexity classes and families of formal languages. We hope that this
leads to new insights to complexity as it is much harder to analyze compared to
families of formal languages.

The term complexity class is clear, the term family of formal languages how-
ever needs clarification. Certainly one can interpret formal language in a way,
that every subset of Σ∗ is a formal language but we understand it, as outlined
above, as languages which are accepted or generated by certain objects like
automata or grammars. Finding a final definition of what we want to consider a
family of formal languages is part of our ongoing work.

The regular languages represent a very basic example of a large abundance of
families of formal languages, coined by pumping theorems and built on that deci-
sion properties, which distinguish them from complexity classes. Nevertheless,
most of them exhibit very close relationships to complexity classes.
c© Springer International Publishing Switzerland 2015
I. Potapov (Ed.): DLT 2015, LNCS 9168, pp. 340–351, 2015.
DOI: 10.1007/978-3-319-21500-6 27

On Distinguishing NC1 and NL 341

General algorithms in terms of Turing machines or circuit families are
immune to a combinatorial or algebraic analysis. This makes families of formal
languages interesting as they contain problems complete for complexity classes
and thus in their word problems exhibit close connections to complexity theory.
At the same time they are restricted in a way which makes them open for a
combinatorial and even algebraic analysis.

It indeed is often the case that a family of formal languages F is complete
for a complexity class C in the sense that F is contained in C, and F contains a
C-complete problem. Examples for this situation abound in circuit complexity,
e.g., with the regular languages and NC1, or the context-free languages and
SAC1. Strengthening this link, the notion of dense completeness [KL12] further
requires that each C ∈ C corresponds to a formal language F ∈ F of the same
complexity, i.e. such that C and F are reducible to each other.

While it is usual to have a complete family of formal languages corresponding
to some complexity class, the picture is different for dense completeness. Up to
now we only found dense completeness in non-deterministic classes. Also the
proofs heavily rely on non-determinism. Our working hypothesis is that only
non-deterministic classes have a densely complete family of formal languages.
The first examples established in [KL12] are the following:

– The index languages are densely complete for NP.
– The context-free languages are densely complete for SAC1.
– The nondeterministic one-counter languages are densely complete for NL.
– The regular languages are not densely complete for NC1.

We are especially interested in non-denseness results. In the instance of the
regular languages the proof relies on the gap result of [BCST92]. In [KLL15] we
were able to derive a corresponding gap result for the family of visibly counter
languages, which we will use in this paper to show unconditionally that even the
visibly counter languages are not densely complete in NC1.

Our results lead to an interesting situation: We have a counter-based family
which is densely complete for NL and one which is not densely complete for
NC1. The next logical step of course would be to find out whether the deter-
ministic one-counter languages are densely complete for L.

A different direction is to look at the visibly pushdown languages which
are also NC1 complete [Dym88]. We cannot rule out the possibility that NC1

contains indeed a dense family of formal languages. However it seems easier to
show non-denseness for NC1. On the other hand it seems easy to show denseness
results for non-deterministic classes. We present examples of families of formal
languages which are densely complete for certain complexity classes in terms of
L-systems. This underlines our assumption that dense completeness captures an
inherent and important property.

Due to space restriction, we omit some of the proofs.
We thank the anonymous referees.

342 A. Krebs et al.

2 Families of Formal Languages

In this section we recollect some notions and results of classes which we will
call families of formal languages. They have in commen that the complexities
of their word problems typically range between AC0 and NP. In contrast to
complexity classes they exhibit pumping or iteration properties which lead to
the decidability of emptiness and finiteness of their members, but typically not
to that of equivalence or universality.

At present, we have no finished definition of a family F to be a family of
formal languages. What we assume as minimum requirements are:

Recursive Presentability: There is recursively enumerable set R ⊆ Σ∗ and a
mapping φ from R into the powerset of Σ∗. Each x ∈ R represents a language
generating device, e.g.: a grammar or an automaton, which generates the
language φ(x) and we have F = {φ(x)|x ∈ R}.

Decidabilities: The emptiness and the finiteness of elements of F , i.e. the sets
{x ∈ R|φ(x) �= ∅} and {x ∈ R|φ(x) is finite}, are decidable.

Closure Properties: F is constructively closed under intersection with regular
sets and under inverse morphisms. These closures are constructively in the
sense, that from x ∈ R, morphism h, or given finite automaton A a y ∈ R is
computable, such that φ(y) = φ(x) ∩ L(A) resp. h−1(φ(x)).

Unfortunately, we can construct language families, which we do not regard as
family of formal languages, but which in fact fulfill these properties. Thus we
go by well-known examples like the family of regular set, that of context-free
languages and some of their various subfamilies, and some families of context-
free Lindenmayer languages, which all fulfill the requirements mentioned above.

Notation. We fix a finite alphabet Σ. By Σ∗ we denote the set of words over Σ.
A language over Σ is a subset of Σ∗. For w ∈ L ⊆ Σ∗, by |w| we denote the
length of w and ε is the word of length 0. For A ⊆ Σ we denote by |w|A the
number positions in w having a letter in A. For a word, wi is the letter in
position i.

Regular Languages. The regular languages are a prime example for a family
of formal languages and indeed fulfill all the requirements we proposed for some-
thing being called a family of formal languages. They can be defined in terms
of finite automata (DFA and NFA), logic (MSO), and algebra (finite syntactic
monoid).

Context-Free Languages. Context-free languages (CFL) correspond to those
accepted by pushdown automata (PDA). The deterministic variant is strictly
weaker. The same goes for counter languages. Here only one stack symbol may
be pushed by the accepting automaton. We write NOCA for non-deterministic
one-counter automata and DOCA for the deterministic variant.

Visibly Pushdown Languages. Context-free languages are accepted by push-
down automata. A way to restrict pushdown automata has received much atten-
tion in the last ten years. The visibility restriction for pushdown automata leads

On Distinguishing NC1 and NL 343

to the class of visibly pushdown languages (a.k.a. input-driven pushdown lan-
guages), short: Vpl. Here, the input symbol determines the stack operation, i.e.
if a symbol is pushed or popped. This leads to a partition of Σ into call, return
and internal letters: Σ = Σcall ∪ Σret ∪ Σint. Then Σ̂ = (Σcall, Σret, Σint) is a
visibly alphabet. In the rest of the paper we always assume that there is a visibly
alphabet for Σ if we speak about Vpl.

We define a function Δ : Σ∗ → Z which gives us the height of a word by
Δ(w) = |w|Σcall −|w|Σret . Each word w over a visibly alphabet can be assigned its
height profile wΔ, which is a map {0, . . . , |w|} → Z with wΔ(i) = Δ(w1 · · · wi).
Mehlhorn [Meh80] and independently also Alur and Madhusudan [AM04] intro-
duced input-driven or visibly pushdown automata (VPDA). In these automata
the input letter determines the kind of stack operation. We omit a formal defi-
nition for VPDA here, as we are actually interested in a more restricted model.

The family of languages which are accepted by some VPDA is called Vpl.
This family enjoys many constructive closure and decision properties.

In [BLS06], a reasonable restriction of VPDA was introduced by visibly
counter automata (VCA). That is a counter automaton which obeys the vis-
ibly restriction. In [BLS06] this model was used as a tool for showing a certain
problem concerning Vpl to be decidable. In particular they showed that given
a VPDA, it is decidable if the language is accepted by some VCA. The follow-
ing definition exhibits a natural m which we will call threshold. It allows the
automaton to have a limited access to the current stack height.

Definition 1 (m-VCA). An m-VCA A over Σ̂ = (Σcall, Σret, Σint) is a tuple
A = (Q, q0, F, Σ̂, δ0, . . . , δm), where m ≥ 0 is the threshold, Q is the set of states,
q0 the initial state, F the set of final states, and δi : Q×Σ → Q are the transition
functions.

A configuration is an element of Q×N. Note that m-VCAs, similar to VPDAs,
can only recognize words where the height profile is non-negative. All other words
are rejected. An m-VCA A performs the following transition when a letter σ ∈ Σ
is read: (q, k) σ→ (δmin(m,k)(q, σ), k+Δ(σ)). Then w ∈ L(A) iff (q0, 0) w→ (f, δ(w))
for f ∈ F .

The class of the visibly counter languages (Vcl) contains the languages rec-
ognized by an m-VCA for some m.

As previously argued, Vpl has many nice properties and is still expressible
enough for many applications. The class Vcl is even simpler and can function
as an intermediate step if we want to extend results form the regular domain to,
say, Vpl.

Lindenmayer Systems. The models we looked at so far are automata-based.
Lindenmayer introduced a formal rewriting system similar to grammars whose
purpose was to model growth of plants. The main difference is that each leaf
in the derivation tree of L-Systems has to have the same depth in contrast
to ordinary grammars. One can see the resulting objects as fractals. Besides
describing biological processes, L-systems have gotten applied in other fields like

344 A. Krebs et al.

computer graphics. L-systems have also found their way in the theory of formal
languages. Refer e.g. Rozenberg and Salomaa [RS80].

We call a map h : Σ → 2Σ∗
a substitution if h(ε) = ε and h(uv) = h(u)h(v).

Definition 2. The following are L-systems:

– An 0L system is a tuple G = (Σ, h,w) where Σ is the alphabet, h : Σ → 2Σ∗

a substitution and w ∈ Σ∗ is a word we call axiom. The language of G is
L(G) =

⋃
k hk(w).

– An E0L system is a tuple G = (Σ, h,w,Δ) where (Σ, h,w) is a 0L system
and Δ ⊆ Σ is a set of terminals. The language of G is L(G) =

⋃
k hk(w)∩Δ∗.

– An ET0L system is a tuple G = (Σ,H,w,Δ), where H is a finite set of
substitutions and for every h ∈ H, (Σ, h,w) is a 0L system. The language
of G is L(G) = {xΔ∗ | ∃k ∈ N∃h1, . . . , hk ∈ H : x ∈ h1(h2(. . . hk(w) . . .))}.

– An ET0L system G = (Σ,H,w,Δ) is an EDT0L system if for all h ∈ H
and for all a ∈ Σ holds that |h(a)| = 1, i.e. h is an endomorphism.

– An EDT0L system G = (Σ,H,w,Δ) is an ED0L system, if |H| = 1.

3 Complexity Classes

In complexity theory we are interested in the amount of resources needed for
solving the word problem. Turing machines are the standard model resulting in
the resource measures time, space and (non-)determinism.

Using the logarithmic space bound, we get the nondeterministic class NL
and using polynomial time bound, we get NP.

Circuits. When considering very low complexity classes, other models of com-
putations are needed. A circuit is a directed acyclic graph where the nodes are
labeled with Boolean functions unless it is an input node. A word over {0, 1}
is accepted by the circuit if the output gate results to 1, whereas the result is
computed in the obvious way. We only consider {0, 1} as an input alphabet;
other alphabets can be simulated. If we want to accept languages we naturally
want to accept words ob arbitrary length. To achieve this we speak of families of
circuits (Cn)n∈N. Here there is one circuit of each input length. If there is some
resource-bounded machine computing (Cn)n∈N, we speak of uniformity. If we do
not require such a machine, we say, that the circuit family is non-uniform. If not
stated otherwise, circuit families are assumed to be non-uniform

Typical complexity measures in circuits are size, depth, fan-in of the gates,
type of the gates and uniformity. We get for example the following classes:

– ACi: circuits of polynomial size, depth in O(logi(n)), unbounded fan-in and
Boolean gates.

– ACCi: circuits of polynomial size, depth in O(logi(n)), unbounded fan-in
and Boolean and modulo gates. If we want to emphasize the modulus k, we
denote this by using the notation ACCi

k.
– TCi: circuits of polynomial size, depth in O(logi(n)), unbounded fan-in and

threshold gates.

On Distinguishing NC1 and NL 345

– NCi: circuits of polynomial size, depth in O(logi(n)), bounded fan-in and
Boolean gates.

– SACi: circuits of polynomial size, depth in O(logi(n)), semi-unbounded fan-
in and Boolean gates.

In particular we are interested in the following classes: AC0 ⊂ ACC0 ⊆ TC0 ⊆
NC1 ⊆ L ⊆ NL ⊆ SAC1 ⊆ P. Note that the classes AC0 and ACC0 are
seperated. All other inclusions are unknown whether they are strict. Refer e.g.
to [Vol99].

Complexities of Families of Formal Languages. The various families men-
tioned so far, have the following connections to complexity classes in terms of
completeness results. When we say that a family F is complete for C, we mean
that both F ⊂ C and that F contains a C-complete problem.

– The ETOL-languages are NP-complete.
– Both the context-free languages and the EOL-languages are SAC1-

complete.
– Both the nondeterministic counter languages and the EDTOL-languages are
NL-complete.

– the regular languages, the visibly counter languages, and the visibly push-
down languages are NC1-complete.

– The EDOL-languages are AC0-complete (which is rather the case because
of the AC0 reductions we chose).

Dense Completeness. Finally we state the definition of dense completeness
as it is introduced in [KL12]. In our setting we use many-one-reductions. If a
language A is reducible to B we write A ≤ B. If A ≤ B and B ≤ A we write
A ≈m B and say A and B are many-one-equivalent. The reductions we use are
all DLOGTIME-uniform AC0 reductions, so we write e.g. A ≈AC0

m B.

Definition 3. Let F and C be sets of languages. We say F is densely complete
in C if

– F ⊆ C and
– for all C ∈ C there exists a language F ∈ F such that C ≈AC0

m F .

The gist of the definition is that we can say that a family of formal languages
is densely complete in some complexity class. However in the definition we do
not require F and C to be restricted in any way. Like that we get transitivity of
the dense completeness property which is desirable.

4 Negative Instances for NC1

As all the examples we know, where a densely complete family of formal lan-
guages exists correspond to a (more or less) non-deterministic complexity class,
it is rather interesting to consider deterministic classes. For its closeness to L we

346 A. Krebs et al.

consider NC1 as a deterministic class, and hence would like to show that there
is no densely complete family of formal languages in it.

Our approach to prove that a family of formal languages is not densely com-
plete will show that the class is too sparse inside of NC1. We have shown this
before for the regular languages using finite monoids, and it was not clear this
approach would ever work for any family of formal languages outside the regular
languages. Using a result from a recent paper [KLL15] we are now able to break
this barrier and show a family of formal languages outside the regular language
that is not densely complete in NC1. In this section we will show that Vcl is
not densely complete in NC1. This also narrows the gap between the counter
languages which are densely complete in a complexity class and the regular lan-
guages which are not densely complete in a complexity class to counter languages
vs. visibly counter languages.

Theorem 4. The visibly counter languages are not densely complete in NC1.

Proof. We show the statement by contradiction. The contradiction will be
achieved by using two facts:

– Ladner’s theorem in the generalized version by Vollmer [Vol90] shows us how
to get arbitrarily long lists of languages Li for which Li ≤ Lj iff i ≤ j. That
means that complexity classes in a way have infinitely many ascending levels
of complexity inside.

– Visibly counter languages (and regular languages as well) exhibit a kind
of dichotomy [KLL15] when it comes to the membership of a language to
AC0. Either a visibly counter language is in AC0 or it is hard for a proper
superclass of AC0.

So it seems likely that those to facts contradict each other and this is what we
will prove.

Assume Vcl to be densely complete in NC1. Then for all languages L
in NC1 there exists a language V in Vcl such that L and V are many-one-
equivalent under AC0-reductions.

The language PARITY= {w ∈ {0, 1} | |w| ≡ 0 (mod 2)} is not in AC0 but
ACC0

2-complete [FSS84]. Using Ladner’s theorem we choose L to be a language
whose complexity lies strictly between AC0 and ACC0

2, i.e. L ≤ PARITY,
PARITY �≤ L and L �∈ AC0 [H̊as86]. The construction for L basically takes a
subset of PARITY by only allowing certain word lengths.

Having L we look at V , which must be many-one-equivalent to L:

– If V is in AC0 then we have a contradiction, since L is not in AC0.
– If V is not in AC0 then according to [KLL15], we have to consider again two

cases for the two different reasons a visibly counter languages can be outside
AC0. One reason is that the height behavior is too complex, resulting in V
being TC0-hard. The other reason concerns the regular part of the language
and is related to the case for regular languages, resulting in V being ACC0

k-
hard for some k. So in both cases, V is hard for a proper superclass.

• V is hard for TC0. This is a contradiction, since L is not ACC0
2-hard.

On Distinguishing NC1 and NL 347

• V is hard for ACC0
k-hard. If k is even then again we have the con-

tradiction because L is not ACC0
2-hard. If k is odd then this implied

ACC0
k ⊆ ACC0

2. Due to [Smo87] we know that this is contradictory
also. �

Since the regular languages are visibly counter languages and NC1-complete,
we get the following.

Corollary 5. The regular languages are not densely complete in NC1.

This completes a proof from the previous paper on dense completeness
[KL12]. The statement for the non-denseness of the regular languages was true,
but the proof was incomplete by not considering the case that the syntactic
monoid of a regular language in AC0 might contain in fact a nontrivial group.

As we saw in the proof, we used Ladner’s theorem on the one hand and some
kind of dichotomy on the other. Up to now we do not know any other proof
strategy for showing that a formal language class is not densely complete in
some complexity class.

5 Positive Instances for NL

We introduce a restricted counter-based automaton model being densely com-
plete in NL. It can then be used to demonstrate that a certain type of L-system
is also densely complete in NL.

The automaton model we introduce is a non-deterministic counter automaton
with the restriction that once the automaton performs a pop action on the
stack, it has to pop until it is empty. See figure 1. We call it a sweeping counter
automaton (SCA) and the corresponding family of formal languages we call Scl.

Definition 6. A nondeterministic sweeping counter automaton (SCA) is a tuple

A = (Q↑, Q↓, Σ, q0, F, δ, δ0), where Q = Q↑ ·∪ Q↓ and Q↑ is a set of push-states,
Q↓ a set of pop-states, q0 ∈ Q↑ is the initial state, F ⊆ Q↓ a set of final states and
δ ⊆ (Q↑ ×Σ ×Q)∪ (Q↓ ×Σ ×Q↓) and δ0 ⊆ Q↓ ×Σ ×Q are transition functions.
The transition δ0 is applied if the counter is 0 and δ is applied otherwise.

A configuration of a SCA A is an element of Q ×N. The transition relations
δ and δ0 take an input word and define a run through configurations. The initial
configuration is (q0, 0). Further if q ∈ Q↑ and k > 0 then (q, k) a∈Σ→ (δ(q, a), k+1)
and (q, k) a∈Σ→ (δ(q, a), k − 1) in the case of q ∈ Q↓. If k = 0 then (q, k) a∈Σ→
(δ0(q, a), k′) where k′=0 iff δ0(q, a) ∈ Q↓; otherwise k′ = 1. Then: L(A) = {w ∈
Σ∗ | (q0, 0) w→ (f, 0), f ∈ F}. Note that there are some similar ways to define a
SCA but the present definition serves our purpose.

Scl is closed under union, intersection, Kleene star and inverse homomor-
phisms but not under complement. The regular languages are contained in Scl.
Further the decidabilities of NOCA translate to Scl. SCA cannot be deter-
minized.

348 A. Krebs et al.

stack height

w ∈ Σ∗

Fig. 1. Characterizing stack height behavior for an SCA

Theorem 7. Scl is densely complete for NL.

We can use this result to prove denseness of the L-system EDT0L. It is
sufficient to show that a densely complete family is a subset of EDT0L and that
EDT0L lies within NL. The latter is known to be true [RS80].

Lemma 8. Scl ⊆ EDT0L

Proof. We are given an SCA A = (Q↑, Q↓, Σ, q0, F, δ, δ0) and construct an
EDT0L system G = (ΣG,H,w,Δ) with Δ = Σ. For convenience we assume
ε �∈ L(A). We set ΣG = {(q1, q2) | q1, q2 ∈ Q↓} ∪ {(q, ∗) | q ∈ Q↓} ∪ Δ.

The idea is to let G generate a letter for each push-pop-cycle of the SCA and
then extend each of those letters to the actual word the automaton reads. Hence
we set w = (q0, ∗). We need a first set of substitutions for extending one more
push-pop-cycle. Hence

hq
1((q

′, ∗)) = (q′, q)(q, ∗)

for all q′ ∈ Q↓. In general for all substitutions: On letters not specified the map
is the identity. For the final state we need the following variant:

h′q
1((q

′, ∗)) = (q′, q)

for all q ∈ F . Next we have to build the word as the counter in- and decreases.

ha,b
2 ((q, q′)) = a(q′′, q′′′)b

if q ∈ Q, q′, q′′′ ∈ Q↓, q′′ ∈ Q↑ and q′ ∈ δ(q′′′, b). Further if q ∈ Q↓ it must hold
that q′′ ∈ δ0(q, a) and q′′ ∈ δ(q, a) else. Finally if the final stack height is reached
we have to terminate: h3((q, q)) = ε. Now H is the set of all substitutions we
just described.

We verify that the construction is correct. Each word w = w(1) . . . w(k) is
accepted by A where every w(i) corresponds to one push-pop-cycle of the automa-
ton. If A is in q after w(1) then we use the derivation (q0, ∗) → (q0, q)(q, ∗).
If w(1) = aw′b, then we can apply ha,b

2 and so on. It is easy to see that we
can derivate as such: (q0, ∗) → (q0, q)(q, ∗) → · · · → w(1)(q, ∗). After that we
can proceed with w(2) etc. until the whole word is derivated. Conversely every

On Distinguishing NC1 and NL 349

word we get by the grammar is also a word accepted by the automaton. The
only thing we have to note is that if we derivate like this (q0, ∗) → · · · →
(q0, q)(q, q′)(q′, q′′)(q′′, ∗) instead of building the word for each cycle first, we
just get additional ways to derivate words. �

In conclusion we get the result:

Theorem 9. EDT0L is densely complete for NL.

6 More Densely Complete L-Systems

An easy case is ED0L, which is densely complete for AC0 because of the reduc-
tions. Further since CFL ⊆ E0L ⊆ SAC1, we get that E0L is densely complete
for SAC1.

In the previous section we showed that EDT0L is densely complete for NL.
It is natural to ask whether e.g. the NP-complete L-system ET0L is in fact
densely complete for NP. Using the so-called checking-stack pushdown automata
characterization of ET0L [vL76], we can translate proofs from [KL12] to this case.
There we showed that PDA are densely complete for SAC1.

Checking-stack pushdown automata (CS-PDA) are a well researched model
[vL76,RS80] in the context of L-systems. A CS-PDA is basically a PDA equipped
with a checking stack. This additional stack is nondeterministically filled with
some word and after that the checking stack is read only. Further the head
for the checking stack is synchronized with the normal stack. This enables the
automaton to perform tasks, a usual pushdown automaton cannot do. The check-
ing stack can be used for synchronization of different parts of the computation.
E.g. the language {ww | w ∈ Σ∗} is an easy example which is accepted by an
CS-PDA, but by no PDA.

For PDA we have the two-way-variant 2-PDA and also we can use k input
heads, which is denoted by 2 − PDA(k). We always restrict such automata to
polynomial time and write 2 − PDA(k)poly-time. Using the same notation we get
the corresponding CS-PDA models.

Theorem 10 ([vL76]). ET0L equals CS-PDA and is NP-complete.

Also by [vL75] it is easy to see that:

Lemma 11. 2-CS-PDA(k) equals NP.

The proof strategy is very similar to the case of PDA and SAC1. We first
show that going from two-way to one-way preserves denseness and then that the
number of heads can be reduced without losing denseness. In conclusion we get:

Theorem 12. ET0L is densely complete for NP.

350 A. Krebs et al.

7 Discussion

In this paper we primarily inspected aspects of the relationship between NC1

and NL, using the notion of dense completeness. We developed further the the-
ory of dense completeness and gathered evidence that strengthens our confi-
dence that dense completeness capturs an essential property of nondeterministic
complexity.

Dense completeness might offer new angles to separate complexity classes.
For instance if NC1 has no densely complete family of formal languages, we
know the class to be strictly contained in NL. We could also try to show that
every complete family of formal languages in NL is already densely complete. We
conjecture that dense completeness is a feature of nondeterministic classes. Of
course this should be hard to show since such a result would separate determin-
ism from nondeterminism. To obtain such arguments we need a formal definition
of what a family of formal languages should be. In the present work we exhibited
one possibility, which is our first contribution.

Our second contribution is showing concrete denseness and non-denseness
results. We want to narrow the gap between NC1 and NL. Hence we want to
find large families in NC1 and show that they are not densely complete. In NL
we want to achieve the opposite and find small families being densely complete.
For the NC1 case we performed this with Vcl. In the NL case we proposed
(to our best knowledge) new variant of counter languages, namely sweeping
counter languages. As a byproduct we could show the L-system of EDT0L to be
densely complete in NL and ET0L to be densely complete in NP. Also E0L is
densely complete for SAC1 and E0L for AC0.

There are some interesting questions arising from this work which we will
pursue. One of them: Can we show that the deterministic counter languages
are not densely complete in L? We are also interested in showing non-denseness
of the visibly pushdown languages for NC1. This would relate rather to the
context-free languages which are densely complete for SAC1.

The only way we know to show non-denseness is using some kind of dichotomy
of the family of formal languages regarding AC0. The regular languages for
instance are either in AC0 or hard for ACCk

0 . Not having this dichotomy is
actually a weaker property than dense completeness. It is worth investigating
how denseness is related to this dichotomy.

The dichotomy for Vcl relies on two properties: The regular part must be
quasi-aperiodic and the height behavior of the language must be simple. The
second one is interesting if we compare this to our new found SCA. In the visibly
case, the property of being sweeping would be sufficient for the language to have
simple stack behavior. So in the case of visibly sweeping automata, only the
regular part determines whether the language is in AC0. Hence we will continue
investigating height behavior properties of counter languages.

On Distinguishing NC1 and NL 351

References

AM04. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Babai, L. (ed.)
Proceedings of the 36th Annual ACM Symposium on Theory of Computing,
June 13–16, pp. 202–211. ACM, Chicago (2004)

BCST92. Barrington, D.A.M., Compton, K.J., Straubing, H., Thérien, D.: Regular
Languages in NC1. J. Comput. Syst. Sci. 44(3), 478–499 (1992)

BLS06. Bárány, V., Löding, C., Serre, O.: Regularity problems for visibly pushdown
languages. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884,
pp. 420–431. Springer, Heidelberg (2006)

Dym88. Dymond, P.W.: Input-Driven Languages are in log n Depth. Inf. Process.
Lett. 26(5), 247–250 (1988)

FSS84. Furst, M.L., Saxe, J.B., Sipser, M.: Parity, Circuits, and the Polynomial-
Time Hierarchy. Mathematical Systems Theory 17(1), 13–27 (1984)

H̊as86. H̊astad, J.: Almost optimal lower bounds for small depth circuits. In:
Hartmanis, J. (ed.) Proceedings of the 18th Annual ACM Symposium on
Theory of Computing, May 28–30, pp. 6–20. ACM, Berkeley (1986)

KL12. Krebs, A., Lange, K.-J.: Dense completeness. In: Yen, H.-C., Ibarra, O.H.
(eds.) DLT 2012. LNCS, vol. 7410, pp. 178–189. Springer, Heidelberg (2012)

KLL15. Krebs, A., Lange, K.-L., Ludwig, M.: Visibly counter languages and
constant depth circuits. In: Mayr, E.W., Ollinger, N. (eds) 32nd Interna-
tional Symposium on Theoretical Aspects of Computer Science, STACS
2015, March 4–7. LIPIcs, vol. 30, pp. 594–607. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, Garching (2015)

Meh80. Mehlhorn, K.: Pebbling moutain ranges and its application of
DCFL-Recognition. In: de Bakker, J.W., van Leeuwen, J. (eds) Pro-
ceedings of the Automata, Languages and Programming, 7th Colloquium,
Noordweijkerhout, July 14–18, The Netherland. LNCS, vol. 85, pp. 422–435.
Springer, Heidelberg (1980)

RS80. Rozenberg, G., Salomaa, A.: Mathematical Theory of L Systems. Academic
Press Inc., Orlando (1980)

Smo87. Smolensky, R.: Algebraic methods in the theory of lower bounds for boolean
circuit complexity. In: Aho, A.V. (ed.) Proceedings of the 19th Annual ACM
Symposium on Theory of Computing, pp. 77–82. ACM, New York (1987)

vL75. van Leeuwen, J.: The Membership Question for ET0L-Languages is
Polynomially Complete. Inf. Process. Lett. 3(5), 138–143 (1975)

vL76. van Leeuwen, J.: Variations of a new machine model. In: 17th
Annual Symposium on Foundations of Computer Science, October 25–27,
pp. 228–235. IEEE Computer Society, Texas (1976)

Vol90. Vollmer, H.: The gap-language-technique revisited. In: Börger, E., Böuning,
H.K., Richter, M.M., Schönfeld, W. (eds) CSL 1990. LNCS, vol. 533,
pp. 389–399. Springer, Heidelberg (1990)

Vol99. Vollmer, H.: Introduction to circuit complexity - a uniform approach. Texts
in theoretical computer science. Springer (1999)

Surminimisation of Automata

Victor Marsault(B)

Telecom-ParisTech, 46 rue Barrault, 75013 Paris, France
marsault@telecom-paristech.fr

Abstract. We introduce the notion of surminimisation of a finite
deterministic automaton; it consists in performing a transition rela-
belling before executing the minimisation and it produces an automaton
smaller than a sole minimisation would. While the classical minimisa-
tion process preserves the accepted language, the surminimisation pro-
cess preserves its underlying ordered tree only. Surminimisation induces
on languages and on Abstract Rational Numeration Systems (ARNS) a
transformation that we call label reduction. We prove that all positional
numeration systems are label-irreducible and that an ARNS and its label
reduction are very close, in the sense that converting the integer repre-
sentations from one system into the other is done by a simple Mealy
machine.

1 Introduction

The classical notion of minimisation (cf. for instance [7]) is a transformation of
deterministic finite automata and is associated with the automaton equivalence.
Two automata are equivalent if they accept the same language L and minimising
any automaton accepting L produces the automaton accepting L with the fewest
amount of states. Hence, the invariant of minimisation is the accepted language.

In this article, we assume that the alphabet (of every automaton) is equipped
with a total order. We then define another automaton transformation called
surminimisation that produces an automaton with fewer states than the one
resulting from a sole minimisation. The invariant of this new transformation is
no longer the accepted language, but its underlying ordered tree.

For each state p of a given automaton, the order on the alphabet induces
a (total) order on the outgoing transitions of p: a transition is smaller if it is
labelled by a smaller letter. The surminimisation process consists in two steps.
First, it relabels the outgoing transitions of each state p, such that their order is
preserved: the smallest transition is relabelled by the letter 0, the second smallest
is relabelled by 1, and so on. The second step simply consists in a minimisation.

Surminimisation induces on automata an equivalence relation that we call
T-equivalence: two automata are T-equivalent if their surminimisations are iso-
morphic. Moreover, the surminimisation process is idempotent1, hence each T-
equivalence class features a canonical representative computed by surminimising
any member of the class.
1 Two successive surminimisations produce the same result as only one.

c© Springer International Publishing Switzerland 2015
I. Potapov (Ed.): DLT 2015, LNCS 9168, pp. 352–363, 2015.
DOI: 10.1007/978-3-319-21500-6 28

Surminimisation of Automata 353

We then lift T-equivalence to regular languages (over ordered alphabets). We
prove that if two trim automata are equivalent, then their surminimisations are
equivalent as well. Hence, we say that two languages are T-equivalent if they are
accepted by two T-equivalent (trim) automata and we call label reduction of a
regular language L, the language accepted by the surminimisation of any trim
automaton accepting L.

A regular language over an ordered alphabet is nothing else than an Abstract
Regular Numeration System (ARNS, cf. [9]). It consists in ordering a language L
by the radix, or genealogical order: a longer word is always genealogically greater
than a shorter word, and the genealogical ordering of two words of equal length
coincides with their lexicographical ordering. The representation of an integer n
in the ARNS L is then defined as the (n+1)-th word of L according to the radix
order. The two notions are so close that we use for ARNS’s every notion defined
for regular languages (such as T-equivalence, label reduction, etc.).

Two T-equivalent ARNS’s are very close, in the sense that the function con-
verting one system into the other is realised by a Mealy machine, as stated below.

Theorem 1. The function that maps the representation of an integer n in an
ARNS into the representation of n in an T-equivalent ARNS is realised by a
Mealy machine.

The converse to Theorem 1 is false in the general case. Indeed there exist
ARNS’s that are not T-equivalent but such that the conversion from one to
another is realised by a Mealy machine. We call locally increasing a Mealy
machine that is locally preserving the order of letters and prove the following
statement, a weak converse to Theorem 1 .

Theorem 2. If the function that maps the representation of an integer n in
an ARNS into the representation of n in another ARNS is realised by a locally-
increasing Mealy machine, then the ARNS’s are T-equivalent.

ARNS’s form the most general class of numeration systems. In particular,
all (reasonable) positional numeration systems (or U-systems, cf. [5]) and all
Substitution Numeration Systems (SNS, cf. [3]) are ARNS’s.

We first prove that 0∗L is label-irreducible if L denotes the representation
language of any positional numeration system. It has quite a significance when
comparing the class of ARNS’s to the class of label-irreducible ARNS’s: the
former contains the latter, but 1) brings no supplementary expressive power and
2) contains no additional concrete examples.

We also prove that every prefix-closed ARNS is T-equivalent to some SNS,
by using classical transformations from substitutions into automata (cf. [11] or
even [2]). It is known that every SNS is a prefix-closed ARNS (cf. [1]), and the
previous results induce a weak converse to this statement: every prefix-closed
ARNS is very close to some SNS (in the sense of Theorem 1).

The paper is organised as follows. In Section 2 , we define in details the notions
of surminimisation, label reduction, etc. The following Section 3 is dedicated to
the proof of Theorems 1 and 2 . Finally, Section 4 consists in a discussion of
label reduction within numeration system theory.

354 V. Marsault

2 Label Reduction and Surminimisation

For every integer k of N, we write �k� for the set of the k smallest non-negative
integers: �k� = {0, 1, . . . , k−1}. An alphabet is a set of letters and in the following
we consider ordered alphabets only, that is, alphabets (implicitly) equipped
with a total order, denoted by <. The set �k� will be considered both as an integer
interval and as a digit alphabet naturally ordered by 0 < 1 < · · · < (k − 1).

Automata are directed labelled graphs and in the following we consider
deterministic automata only, written as a 5-tuple A = 〈 Q,A, δ, i, F 〉
where Q is a finite set of states; A is a finite (ordered) alphabet; δ is the tran-
sition function, a partial function Q × A → Q; i ∈ Q is called the initial
state; and F ⊆ Q is the set of final states. As usual, δ is extended to Q × A∗

by δ(p, u a) = δ(δ(p, u), a) and we write p u−−→A p′ if δ(p, u) = p′.
The automaton A is said to be trim if each state of A may reach a final state

and is reachable from the initial state. The language accepted by A, denoted
by L(A), is the set of the words u such that δ(i, u) is a final state. Two automata
are said equivalent if they accept the same language.

We also denote by OutA(p) the set of the transitions going out from p.
We write od(p), or more often kp, for |OutA(p)| the out-degree of the state p,
and od(A) = max{od(p) | p ∈ Q}. For every state p of Q, the order on A induces
an order on OutA(p); we enumerate OutA(p) w.r.t. this order as follows:

∀i ∈ �kp� p ai−−→ pi with a0 < a1 < · · · < a(kp−1) .

We call (i+1)-th transition of OutA(p) the transition p ai−−→ pi, as defined above.

We first define the label reduction of an automaton. It consists in relabelling,
for each state p, the transitions of OutA(p) using the alphabet �kp� and such
that the order of OutA(p) is preserved. More precisely.

Definition 1. Let A = 〈 Q,A, δ, i, F 〉 be a (deterministic) automaton. We call
label reduction of A, denoted by lred(A) the automaton:

lred(A) = 〈 Q, �od(A)�, δ′, i, F 〉 ,

where δ′ is such that, for every state p of Q, if p ai−−→A pi is the (i+1)-th transition

of OutA(p) then p i−−−−→
lred(A)

pi is a transition of lred(A).

Figure 1 shows an automaton A1 and its label reduction. The label-reduction
process commutes with quotient (cf. Definition 2 , below), as stated at Lemma 1 .

Definition 2. Let A = 〈 QA, A, δA, iA, FA 〉 and M = 〈 QM, A, δM, iM, FM 〉
be two automata. An automaton morphism φ : A → M is a surjective func-
tion QA → QM meeting the three following conditions.
1. φ(iA) = iM;
2. p a−−→A p′ is a transition of A ⇐⇒ φ(p) a−−→M φ(p′) is a transition of M;
3. FA = φ−1(FM).

Surminimisation of Automata 355

α β γ
c

b b

a

b

(a) An automaton L1

α β γ
1

0 0

0

1

(b) lred(L1)

Fig. 1. Label reduction of an automaton L1

In this case, M is called a quotient of A. If in addition, M is a quotient of
another automaton B, then A and B are said bisimilar. Every regular language L
is canonically associated with a minimal trim automaton ML; it is a quotient
of every trim automaton accepting L.

Lemma 1. Let A and M be two automata. If M is a quotient of A,
then lred(M) is a quotient of lred(A).

Proof. We denote by φ : A → M the automaton morphism associated with the
quotient. Note that the state set of A and of lred(A) are identical (and similarly
for M and lred(M)), hence φ also maps states of lred(A) to states of lred(M);
let us prove that φ is an automaton morphism from lred(A) to lred(M).

Let p be a state of lred(A). We enumerate the outgoing transitions of p in A
as follows: ∀i ∈ �kp�, p ai−−→ pi with a0 < a1 < · · · < a(kp−1), where kp = od(p).
It follows that the enumeration of the outgoing transitions of φ(p) in M
are ∀i ∈ �kp�, φ(p) ai−−→ φ(pi) with a0 < a1 < · · · < a(kp−1).

Hence, from Definition 1 , Outlred(A)(p) consists of p i−−→ pi, ∀i ∈ �kp�. Sim-
ilarly, Outlred(M)(φ(p)) consists of the transitions φ(p) i−−→ φ(pi), ∀i ∈ �kp�.

The next proposition, follows almost immediately.

Proposition 1. Let A and B be two trim automata. If A and B are equivalent
then so are lred(A) and lred(B).

The hypothesis trim in Proposition 1 is crucial. Indeed the complete automa-
ton accepting 1∗ is equivalent to the trim automaton accepting 1∗ whereas their
label reductions are not.

In the following, we consider trim automata only. Hence, Proposition 1
allows to lift label reduction to regular languages: the label reduction2 lred(L) of
a regular language L is the language L(lred(A)) where A is any trim automaton
accepting L. For instance, the label reduction of ((a + b∗)c)∗ is (00 + 10∗1 + 2)∗.

Definition 3 (T-equivalent automata). Two automata A and B are said
tree-equivalent (or for short T-equivalent), denoted by A T∼ B, if their label
reductions are equivalent: L(lred(A)) = L(lred(B)). Similarly, two regular lan-
guages L and K are said T-equivalent if their label reductions are equal.
2 Label reduction may be defined directly on language; cf. Remark 2 , page 362.

356 V. Marsault

A B C D
x

x

y y

y

z

(a) An automaton A2

A B C D
0

0

1 0

0

1

(b) lred(A2)

Fig. 2. Label reduction of another automaton A2

1

0

0

Fig. 3. The surminimisation either of A1 or of A2

Figure 2 shows the automaton A2 and its label reduction. This automaton
is T-equivalent to the automaton A1 (previously shown at Figure 1a). Indeed,
their respective label-reductions lred(A1) and lred(A2) are equivalent: they have
the same minimisation, shown at Figure 3 . This method is a good way to decide
whether two automata are T-equivalent, as formalised below.

Definition 4. We call surminimisation of an automaton A, the minimisation
of the label reduction of A: surmin(A) = minim(lred(A)).

Figure 3 shows the surminimisation either of A1 or of A2. The next propo-
sition follows directly from the definitions; it gives both a characterisation and
an efficient decision algorithm for T-equivalence.

Proposition 2. Two automata are T-equivalent if and only if their respective
surminimisations are isomorphic.

Remark 1. Surminimisation (or label reduction) removes the meaning of the let-
ters (if there is any) and retains their order only. For instance the language 0∗1∗

may be described as 0’s followed by 1’s while its label reduction is 0∗+0∗10∗ that
may be described as words with at most one 1. In particular, surminimisation
also removes the complexity due to an arbitrary choice of letters: for instance
the label reduction of the language L3 = arbi(trary)∗ is 04

(
05

)∗ and the label
reduction of3 Pre (L3) is 0∗; this example highlights that the question of the
succinctness of surminimisation is meaningless.

The classical notions of equivalence and minimisation feature a natural
invariant: they preserve the accepted language. We have already seen that T-
equivalence and surminimisation do not preserve the language; however they
feature another invariant: the underlying (ordered) tree.

3 Pre (L) is the set of prefixes of words of L: Pre (L) = {u | u v ∈ L for some word v }.

Surminimisation of Automata 357

α

β

α

γ

β

α

β

α

γ

β

α

γ

β

α

β

α

γ

β

α

b

c

b

b

c

a

b

b

b

c

b

b
c

a
b

b

b
c

(a) The labelled tree TL1

B

A

C

B

D

C

A

C

B

D

C

B

D

C

A

C

B

D

C

x

y

x

y

z

x

y

y

y

z

x

y
z

x
y

y

y
z

(b) The labelled tree TL2

Fig. 4. The unfolding of two T-equivalent automata

Definition 5. A language L over an alphabet A may be represented as an infi-
nite labelled tree (or infinite acyclic automaton) as follows: TL = (V,A,E, F).
The vertex set is V = Pre (L) ; the edge labels are taken in the alphabet A; the
edge set is E = {(u, a, ua) | ua ∈ V } ⊆ V ×A×V ; the set of final vertices F = L.

If L is a regular language, an isomorphic tree may be obtained by unfolding
a (trim) automaton accepting L.

Figure 4 shows the tree representations of L1 = L(A1) and L2 = L(A2); in
the figure, a vertex is labelled by the corresponding state of the automaton, and
is drawn with a double line if it is final. These two trees, TL1 and TL2 , coincide
up to labelling; it is a consequence of the fact that L1 and L2 are T-equivalent,
as stated in the next Proposition 3 . It is a direct consequence of Lemma 2 .

Proposition 3. Let A and B be two automata. If A T∼B, then their respective
unfoldings differ only by the labellings.

Lemma 2. Let A be an automaton and M = surmin(A). Then the respective
unfoldings of A and M differ only by the labellings.

Proof (Sketch). Let φ be the automaton morphism lred(A) → M. It is also a
function from QA to QM which is not an automaton morphism A → M: it
does not meet the condition 2 of Definition 2 . However, φ satisfies the next
condition.

p a−−→A q is the (i + 1)-th transition of OutA(p) ⇐⇒ φ(p) i−−→M φ(q)

The function φ may be extended to a bijection that maps vertices of TL(A) to
vertices of TL(M), and satisfies an analogous condition.

358 V. Marsault

3 T-equivalent Languages Define the Same ARNS

An ordered alphabet A induces two orders on words of A∗, the classical lexico-
graphic order <lex and the radix order <rad defined as follows: u <rad v either
if |u| < |v| or if |u| = |v| and u <lex v. Ordering a language L with the radix
order defines the Abstract Numeration System (ANS, cf. [9]) associated with L:
every integer n is represented by the (n + 1)-th word of L in the radix order
which is denoted by 〈n〉L. If L is a regular language, it defines an Abstract Reg-
ular Numeration System (ARNS). Let K be another ANS; we call conversion
function from L into K the function that maps 〈n〉L to 〈n〉K , for every integer n.

A Mealy machine is a graph labelled with pair of letters (cf. [6]); it is written
as a 6-tuple T = 〈 Q,A,B, τ, i, F 〉, where Q, A, i and F are defined as in
an automaton, B is the output alphabet and τ is a function Q × A → B × Q,
extended as usual to Q × A∗ → B∗ × Q. We write p u | v−−−−→T q if τ(p, u) = (v, q)
and the pair u | v is said to be accepted by T if in addition p = i and q ∈ F . The
function realised by T maps u to v for all pairs u | v accepted by T . 4

Let A and B be two (trim) automata. We now define a Mealy machine A�B;
it is a variant of the well-known automaton product (used for regular-language
intersection). The underlying graphs of A � B and lred(A) × lred(B) coincide,
but the transitions of A � B are labelled using the labels of A and B. 5

Definition 6. Let A = 〈 QA, A, δA, iA, FA 〉 and B = 〈 QB, B, δB, iB, FB 〉 be two
automata. We denote by A � B the Mealy machine

A � B = 〈 QA × QB, A, B, τ, (iA, iB), FA × FB 〉 ,

where the transition function τ is defined as follows. If p ai−−→A pi and q bi−−→B qi

are respectively the (i+1)-th transitions of OutA(p) and of OutB(q), then A�B
features the transition (p, q) ai | bi−−−−−→A�B (pi, qi).

We say that a state (p, q) is inconsistent if either 1) p or q is final but the
other is not; or 2) the out-degrees of p and q are not equal: odA(p) �= odB(q).

Figure 5 shows the automaton A1�A2; in the figure, inconsistent states are
drawn in dotted lines and their outgoing transitions are omitted and inaccessible
but consistent states are drawn in dashed lines. We can now state Theorem 1
under the more precise following form.

Theorem 1. Let A and B be two trim automata. If A and B are associated with
two T-equivalent ARNS’s L and K, then A � B realises the conversion function
from L into K.

4 According to transducer terminology, a Mealy machine is a pure sequential and
letter-to-letter transducer cf. [5,12]. Mealy machines have the same expressive power
as Moore Machines, also called deterministic finite automata with output (DFAO).

5 In the classical automaton product, transitions are matched using transition labels,
hence lred(A) × lred(B) and A × B have different underlying graphs.

Surminimisation of Automata 359

x

x

y y

y

z

c

b

b
a

b

c | y

b |x

c |x

b | y

b |x

a |x

b | y

b | y
a | y

b | z

Fig. 5. The Mealy machine A1 � A2

The proof of Theorem 1 breaks down into Lemmas 3 and 4 . First, we
give a few properties following directly from Definition 6 .

Property 1. Let A, B be two automata and u | v, u′ | v′ be accepted by A � B.
a. u = u′ ⇔ v = v′.
b. u <rad u′ ⇔ v <rad v′.
c. Let (p, q) a | b−−−→ (p′, q′) be a transition of A�B. Then p a−−→ p′ is a transition

of A and q b−−→ q′ is a transition of B.
d. Let p a−−→ p′ be a transition of A and q be a state of B. If (p, q) is consistent,

then (p, q) a | b−−−→ (p′, q′) is a transition of A � B, for some q′ and b. 6

Lemma 3. Let A and B be two automata. If A�B has no inconsistent accessible
states, then it realises the conversion function from L(A) into L(B)

Proof. Let us denote by A′ the trim of the input automaton of A � B. If A � B
has no inconsistent accessible states then it follows from Properties 1 .c and
1 .d that A is a quotient of A′ (through the projection (p, q) → p). It follows

that the input language of A � B is L(A); symmetrically, the output language
of A � B is L(B). Since A � B realises a bijection (from Property 1 .a) and
preserves the order (from Property 1 .b), it follows that A � B maps 〈n〉A
to 〈n〉B.

Lemma 4. Let A and B be two automata. If A T∼B, then every inconsistent
state of A � B is not accessible.

6 For concision, we omitted the symmetrical statement.

360 V. Marsault

0 | 1
1 | 0 0 | 0

0 | 0

Fig. 6. A Mealy machine which is not locally increasing

Proof. Since they are T-equivalent, A and B have the same surminimisation,
denoted by M; it is a quotient both of lred(A) and of lred(B) realised by the
automaton morphisms φ : lred(A) → M and ψ : lred(B) → M. The proof of the
next claim consists in an induction over a traversal of A�B and is omitted here.
Claim. Every accessible state (p, q) of A � B meets the condition φ(p) = ψ(q).

Let (p, q) be an accessible state of A � B. It follows that φ(p) = ψ(q) (from
the claim), hence that p and q are both final or both non-final and that p and q
have the same amount of outgoing transitions. Hence (p, q) is not an inconsistent
state.

Theorem 1 follows directly from Lemmas 3 and 4 . However, its converse
is false in the general case: the Mealy machine shown at Figure 6 realises the
conversion from 0+10+ into 1+00+, two distinct and label-irreducible languages
hence not T-equivalent.

We say that a Mealy machine T is locally increasing if it locally preserves
the order of labels or, more formally, if it satisfies the following condition.

For every pair of transitions of T
p a | b−−−→T q

p c | d−−−→T q′
a < c ⇔ b < d (1)

For instance, the Mealy machine A � B is always locally increasing whereas
the one shown at Figure 6 is not: the two outgoing transitions of the initial
state reverse the order of the letters.

Theorem 2. Let T be a locally increasing Mealy machine, A and B its respective
input and output automata. Then A and B are T-equivalent.

Proof. Note that A, B, T have the same state set and that since T is locally
increasing, then B is deterministic. Let p be a state of A, B and T . We
enumerate the outgoing transitions of p in T : ∀i ∈ �kp� p ai | bi−−−−−→T pi

where kp = odT (p) and a0 < a1 < · · · < akp−1; since T is locally increasing,
then b0 < b1 < · · · < bkp−1.

We fix i in �kp�. The transitions p ai−−→A pi and p bi−−→B pi are respectively
the (i+1)-th transitions of OutA(p) and OutB(p). It follows that both transitions
are relabelled by the same digit i in lred(A) and lred(B), hence coincide. Since A
and B differ only by their transition labels, lred(A) and lred(B) are isomorphic.

Surminimisation of Automata 361

4 Label Reduction Within Numeration System Theory

We briefly recall here basic definitions and notations for positional numera-
tion system; see for instance Section 2.3.3 of [5] for more details. A basis is
a strictly increasing sequence of integers (Ui)i∈N with U0 = 1 defining the
positional numeration system U . The U -evaluation function πU maps a finite
word dk dk−1 · · · d0 over a digit alphabet to the integer πU (dk dk−1 · · · d0) =∑k

i=0 di Ui. The Rényi greedy algorithm (cf. for instance [10, Chapter 7]) com-
putes a word whose evaluation is n; it is called the U -representation of n and is
denoted by 〈n〉U . We also denote by L(U) the language L(U) = {〈n〉U | n ∈ N}.

In the following, we always assume that the ratio Un+1/Un is bounded by
an integer constant M = sup{ �Un+1/Un� | n ∈ N }, in which case the digits of
each U -representation belong to the alphabet AU = �M�. The next two classical
propositions follow.

Proposition 4 ([5, Proposition 2.3.44]). Let u be a word of AU
∗. If u does

not start with the letter 0 then u ≤rad 〈n〉U , where n = πU (u).

Proposition 5 ([5, Proposition 2.3.45]). Let n and m be two positive inte-
gers. Then n < m if and only if 〈n〉U <rad 〈m〉U .

The next proposition (together with the remark following it) is the main
result from this section.

Proposition 6. Let U be a positional numeration system. If L(U) is a regular
language, then 0∗L(U) is label-irreducible. 7

Proof. For concision, we write 〈 〉 and π() instead of 〈 〉U and πU () in this
proof. The whole statement follows from the next claim.
Claim. Let m be an integer u, v be two words of A ∗

U and (d + 1) be a positive
digit. If 〈m〉 = u(d + 1)v and (u, d) �= (ε, 0), then there exists an integer n such
that 〈n〉 = udv′, for some v′.
Proof of the Claim. Without loss of generality, we may assume that v is the
smallest word in the radix order such that u(d + 1)v is the representation of an
integer (Assumption (∗)). Let k = |v|, we denote by n the value of u d v: that
is n = π(u d v) = (m − Uk). Note that (since it is a prefix of 〈m〉,) u may not
start with the letter zero; since (u, d) �= (ε, 0), it follows that udv does not start
with the letter 0 either and applying Propositions 4 and 5 yields the two
following inequations: u d v ≤rad 〈n〉 <rad u (d + 1) v .
It follows that 〈n〉 is of one of the three following forms.

• 〈n〉 = u d w with v <rad w and π(v) = π(w). It follows that u (d + 1) v <rad

u (d + 1)w and that π(u (d + 1)w) = m, hence the representation of m
cannot be equal to u (d + 1) v, a contradiction to Proposition 4 .

• 〈n〉 = u(d + 1)w for some w <rad v, a contradiction to Assumption (∗).
• 〈n〉 = u d v yielding the proof of the claim.

7 A language is said label-irreducible if it is equal to its label reduction.

362 V. Marsault

Remark 2. Proposition 6 could be made substantially stronger if label reduction
were defined directly on languages (ie. independently of automata). The label
reduction of a language would be defined as lred(L) = {fL(u) | u ∈ L} with

fL(ε) = ε
fL(u b) = fL(u) gL(u, b) where gL(u, b) = |{ua | a < b and ua ∈ Pre (L)}| .

A language L is label-irreducible if ∀ub, ub ∈ Pre (L) ⇒ ∀a < b, ua ∈ Pre (L).
The statement every positional numeration system is label-irreducible is then an
immediate consequence of the Claim of the previous proof.

Remark 3. Let us compare the classes of ARNS’s and label-irreducible ARNS’s.
– Every ARNS is T-equivalent to some label-irreducible ARNS, hence from

Theorem 1 , one may be converted into the other by means of a Mealy
machine. It follows that both systems will share the same properties

– Within an T-equivalence class, the unique label-irreducible ARNS is associ-
ated with an automaton with the smallest amount of states.

– All concrete numeration systems seem to be label-irreducible. 8

In the remainder of this section, we prove that every T-equivalence class
contains a Substitution Numeration System (SNS, cf. [3]). It is known that an
SNS is a particular ARNS (cf. [1]) and we use this result to give here a very brief
description of SNS’s as ARNS’s.

Let X be an alphabet and let σ : X∗ → X∗ be a monoid morphism. We
assume that σ is prolongable on x ∈ X, that is, 1) σ(x) starts with an x
and 2) limn→∞(|σn(x)|) = ∞. In the following, we manipulate the alpha-
bet Bσ (defined below) whose letters are words over the alphabet X. If u
or x0x1 · · · xk denotes a word of X∗, the corresponding letter of Bσ is denoted
by [u] or [x0x1 · · · xk]. Bσ = { [u] | u is a strict prefix of σ(y) for some y ∈ A } .

The prefix automaton Aσ = 〈 X,Bσ, δ, x,X 〉 is defined as follows. Its state
set is X (ie. the alphabet of σ), its initial state is x and all states are accepting.
The transition function δ is defined such that Aσ features the transition y [u]−−−→Aσ

z

if and only if uz is a prefix of σ(y). The SNS σ is then the ARNS L, where L
consists of the words of L(Aσ) that do not start with the letter [ε].

If every ARNS is not necessarily an SNS, it is pretty close to be the case, as
stated by the Corollary 1 of the next proposition. The proof of this statement is
omitted here, and consists in a thorough examination of classical transformations
from automaton to substitution (cf. [8,11]).

Proposition 7. Every prefix-closed ARNS is T-equivalent to an SNS.

Corollary 1. Every prefix-closed ARNS can be converted into an SNS through
a Mealy machine.
8 We call here concrete the numeration systems that may be defined by an evaluation

function, by opposition to those defined by their representation language.
To the best of our knowledge, the only label-reducible concrete numeration sys-

tems are the rational base numeration systems (cf. Section 2.5 of [5]) and, even in
this case, it happens to exist a variant which is label-irreducible (cf. [4]).

Surminimisation of Automata 363

5 Conclusion

We introduced the notion of surminimisation of automata, a transformation
producing an automata smaller than the one resulting from the classical min-
imisation. While minimisation preserves the language (that is, a labelled tree),
surminimisation preserves the underlying unlabelled tree only.

Surminimisation induces on Abstract Regular Numeration Systems (ARNS)
a transformation, called label reduction, and an equivalence relation; each equiva-
lence class features a canonical representative: the label reduction of any element
of the class. We proved that members of the same equivalence class are essen-
tially the same (ie. may be converted from one into another by a Mealy machine)
and, conversely, that if the conversion from one ARNS into another is realised
by a locally increasing Mealy machine, then the ARNS’s are T-equivalent.

Moreover, a simple verification yields that all positional numeration systems
are label-irreducible. In summary, label reduction allows to simplify ARNS’s
without excluding any concrete cases.

Acknowledgments. The author thanks Michel Rigo and Émilie Charlier for their
invitation to Liège and the discussions he had with them about this work.

References

1. Berthé, V., Rigo, M.: Odometers on regular languages. Theory Comput. Syst.
40(1), 1–31 (2007)

2. Cobham, A.: Uniform tag sequences. Math. Systems Theory 6, 164–192 (1972)
3. Dumont, J.-M., Thomas, A.: Digital sum problems and substitutions on a finite

alphabet. Journal of Number Theory 39(3), 351–366 (1991)
4. Frougny, C., Klouda, K.: Rational base number systems for p-adic numbers.

RAIRO - Theor. Inf. and Applic. 46(1), 87–106 (2012)
5. Frougny, C., Sakarovitch, J.: Number representation and finite automata. In:

Berthé, V., Rigo, M. (eds) Combinatorics, Automata and Number Theory. Ency-
clopedia of Mathematics and its Applications 135, pp. 34–107. Cambridge Univ.
Press (2010)

6. Mealy, G.H.: A method for synthesizing sequential circuits. Bell Syst. Tech. J. 34,
1045–1079 (1955)

7. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley (1979)

8. Lecomte, P., Rigo, M.: Abstract numeration systems. In: Berthé, V., Rigo, M. (eds.)
Combinatorics, Automata and Number Theory. Encyclopedia of Mathematics and
its Applications 135, pp. 108–162. Cambridge Univ. Press (2010)

9. Lecomte, P., Rigo, M.: Numeration systems on a regular language. Theory Comput.
Syst. 34, 27–44 (2001)

10. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press
(2002)

11. Rigo, M., Maes, A.: More on generalized automatic sequences. Journal of
Automata, Languages and Combinatorics 7(3), 351–376 (2002)

12. Sakarovitch, J.: Eléments de théorie des automates. Vuibert, 2003. Corrected
English translation: Elements of Automata Theory. Cambridge University Press
(2009)

On the Complexity of k-Piecewise Testability
and the Depth of Automata

Tomáš Masopust(B) and Michaël Thomazo

TU Dresden, Dresden, Germany
{tomas.masopust,michael.thomazo}@tu-dresden.de

Abstract. For a non-negative integer k, a language is k-piecewise test-
able (k-PT) if it is a finite boolean combination of languages of the form
Σ∗a1Σ

∗ · · · Σ∗anΣ∗ for ai ∈ Σ and 0 ≤ n ≤ k. We study the following
problem: Given a DFA recognizing a piecewise testable language, decide
whether the language is k-PT. We provide a complexity bound and a
detailed analysis for small k’s. The result can be used to find the minimal
k for which the language is k-PT. We show that the upper bound on k
given by the depth of the minimal DFA can be exponentially bigger than
the minimal possible k, and provide a tight upper bound on the depth
of the minimal DFA recognizing a k-PT language.

1 Introduction

A regular language is piecewise testable (PT) if it is a finite boolean combination
of languages of the form Σ∗a1Σ

∗a2Σ
∗ · · · Σ∗anΣ∗, where ai ∈ Σ and n ≥ 0.

It is k-piecewise testable (k-PT) if n ≤ k. These languages were introduced
by Simon in his PhD thesis [13]. Simon proved that PT languages are exactly
those regular languages whose syntactic monoid is J -trivial. He provided various
characterizations of PT languages in terms of monoids, automata, etc.

In this paper, we study the k-piecewise testability problem, that is, to decide
whether a PT language is k-PT.

Name: k-PiecewiseTestability
Input: an automaton (minimal DFA or NFA) A
Output: Yes if and only if L(A) is k-piecewise testable

Note that the problem is trivially decidable, since there is only a finite number
of k-PT languages over the input alphabet of A.

It is not hard to see that if a language is k-PT, it is also (k + 1)-PT. It was
shown in [10] that if the depth of a minimal DFA recognizing a PT language is
k, then the language is k-PT. However, the opposite implication does not hold.
To the best of our knowledge, no efficient algorithm to find the minimal k for
which a PT language is k-PT nor an algorithm to decide whether a language is
k-PT has been published so far.1

T. Masopust—Research supported by the DFG in grant KR 4381/1-1.
M. Thomazo—Research supported by the Alexander von Humboldt Foundation.

1 Very recently, a co-NP upper bound appeared in [5] in terms of separability.

c© Springer International Publishing Switzerland 2015
I. Potapov (Ed.): DLT 2015, LNCS 9168, pp. 364–376, 2015.
DOI: 10.1007/978-3-319-21500-6 29

On the Complexity of k-Piecewise Testability and the Depth of Automata 365

We first show a co-NP upper bound to decide whether a minimal DFA recog-
nizes a k-PT language for a fixed k (Theorem 1), which results in an algorithm
to find the minimal k that runs in the time single exponential with respect to
the size of the DFA and double exponential with respect to the resulting k. We
then provide a detailed complexity analysis for small k’s. In particular, the prob-
lem is trivial for k = 0, decidable in deterministic logarithmic space for k = 1
(Theorem 2), and NL-complete for k = 2, 3 (Theorems 3 and 4). As a result, we
obtain a PSPACE upper bound to decide whether an NFA recognizes a k-PT
language for a fixed k. Recall that it is PSPACE-complete to decide whether an
NFA recognizes a PT language, and it is actually PSPACE-complete to decide
whether an NFA recognizes a 0-PT language (Theorem 5).

Since the depth of the minimal DFAs plays a role of an upper bound on k,
we investigate the relationship between the depth of an NFA and k-piecewise
testability of its language. We show that, for every k ≥ 0, there exists a k-PT
language with an NFA of depth k−1 and with the minimal DFA of depth 2k −1
(Theorem 7). Although it is well known that DFAs can be exponentially larger
than NFAs, a by-product of our result is that all the exponential number of
states of the DFA form a simple path. Finally, we investigate the opposite impli-
cation and show that the tight upper bound on the depth of the minimal DFA
recognizing a k-PT language over an n-letter alphabet is

(
k+n

k

)−1 (Theorem 8).
For the missing proofs, the reader is referred to [11].

2 Preliminaries and Definitions

We assume that the reader is familiar with automata theory. To fix the notation,
the cardinality of a set A is denoted by |A| and the power set of A by 2A. An
alphabet Σ is a finite nonempty set. The free monoid generated by Σ is denoted
by Σ∗. A word over Σ is any element of Σ∗; the empty word is denoted by ε.
For a word w ∈ Σ∗, alph(w) ⊆ Σ denotes the set of all letters occurring in w,
and |w|a denotes the number of occurrences of letter a in w. A language over Σ
is a subset of Σ∗.

A nondeterministic finite automaton (NFA) is a quintuple A = (Q,Σ, ·, I, F),
where Q is a finite nonempty set of states, Σ is an input alphabet, I ⊆ Q is a
set of initial states, F ⊆ Q is a set of accepting states, and · : Q×Σ → 2Q is the
transition function that can be extended to the domain 2Q × Σ∗. The language
accepted by A is the set L(A) = {w ∈ Σ∗ | I ·w∩F �= ∅}. We usually omit · and
write simply Iw instead of I · w. A path π from a state q0 to a state qn under
a word a1a2 · · · an, for some n ≥ 0, is a sequence of states and input symbols
q0a1q1a2 . . . qn−1anqn such that qi+1 ∈ qi · ai+1, for all i = 0, 1, . . . , n − 1. The
path π is accepting if q0 ∈ I and qn ∈ F . We use the notation q0

a1a2···an−−−−−−→ qn

to denote that there exists a path from q0 to qn under the word a1a2 · · · an. A
path is simple if all states of the path are pairwise different. The number of
states on the longest simple path of A decreased by one is called the depth of
the automaton A, denoted by depth(A).

366 T. Masopust and M. Thomazo

The reachability relation ≤ on the set of states is defined by p ≤ q if there
exists a word w in Σ∗ such that q ∈ p · w. The NFA A is partially ordered if the
reachability relation ≤ is a partial order. For two states p and q of A, we write
p < q if p ≤ q and p �= q. A state p is maximal if there is no state q such that
p < q. Partially ordered automata are also called acyclic automata.

The NFA A is deterministic (DFA) if |I| = 1 and |q · a| = 1 for every q in Q
and a in Σ. Then the transition function · is a map from Q×Σ to Q that can be
extended to the domain Q × Σ∗. Two states p1, p2 of a DFA are distinguishable
if there exists a word w and states f ∈ F and r ∈ Q \ F such that p1 · w = f
and p2 · w = r, that is, w is accepted from one of them and rejected from the
other. A DFA is minimal if all its states are reachable from the initial state and
pairwise distinguishable.

The notion of confluent DFAs was introduced in [10]. Let A = (Q,Σ, ·, q0, F)
be a DFA and Γ ⊆ Σ be a subalphabet. The DFA A is Γ -confluent if, for
every state q in Q and every pair of words u, v in Γ ∗, there exists a word w in
Γ ∗ such that (qu)w = (qv)w. The DFA A is confluent if it is Γ -confluent for
every subalphabet Γ . The DFA A is locally confluent if, for every state q in Q
and every pair of letters a, b in Σ, there exists a word w in {a, b}∗ such that
(qa)w = (qb)w.

An NFA A = (Q,Σ, ·, I, F) can be turned into a directed graph G(A) with
the set of vertices Q, where a pair (p, q) in Q × Q is an edge in G(A) if there is
a transition from p to q in A. For Γ ⊆ Σ, we define the directed graph G(A, Γ)
with the set of vertices Q by considering all those transitions that correspond
to letters in Γ . For a state p, let Σ(p) = {a ∈ Σ | p ∈ p · a} denote the set
of all letters under which the NFA A has a self-loop in the state p. Let A be a
partially ordered NFA. If for every state p of A, state p is the unique maximal
state of the connected component of G(A, Σ(p)) containing p, then we say that
the NFA satisfies the unique maximal state (UMS) property.

A regular language is k-piecewise testable if it is a finite boolean combination
of languages of the form Σ∗a1Σ

∗a2Σ
∗ · · · Σ∗anΣ∗, where 0 ≤ n ≤ k and ai ∈ Σ.

A regular language is piecewise testable if it is k-piecewise testable for some k ≥ 0.
We adopt the notation La1a2···an

= Σ∗a1Σ
∗a2Σ

∗ · · · Σ∗anΣ∗ from [10]. For two
words v = a1a2 · · · an and w ∈ Lv, we say that v is a subword of w, denoted by
v � w. For k ≥ 0, let subk(v) = {u ∈ Σ∗ | u � v, |u| ≤ k}. For words w1, w2, we
define w1 ∼k w2 if and only if subk(w1) = subk(w2). If w1 ∼k w2, we say that
w1 and w2 are k-equivalent . Note that ∼k is a congruence with finite index.

Fact 1 ([13]). Let L be a regular language, and let ∼L denote the Myhill con-
gruence. A language L is k-PT if and only if ∼k⊆∼L. Moreover, L is a finite
union of ∼k classes.

Fact 2. Let L be a language recognized by the minimal DFA A. The following
is equivalent.

1. The language L is PT.
2. The minimal DFA A is partially ordered and (locally) confluent [10].
3. The minimal DFA A is partially ordered and satisfies the UMS property [15].

On the Complexity of k-Piecewise Testability and the Depth of Automata 367

3 Complexity of k-Piecewise Testability for DFAs

The k-piecewise testability problem for DFAs asks whether, given a minimal DFA
A, the language L(A) is k-PT. We show that it belongs to co-NP, which can be
used to compute the minimal k for which the language is k-PT in the time single
exponential with respect to the size of A and double exponential with respect
to the resulting k. For small k’s we then provide precise complexity analyses.

Theorem 1. The following problem belongs to co-NP:

Name: k-PiecewiseTestability
Input: a minimal DFA A
Output: Yes if and only if L(A) is k-PT

Proof (sketch). One first checks that the automaton A over Σ recognizes a PT
language. If L(A) is not k-PT, then there exist two k-equivalent words w1 and
w2. It can be shown that the length of w1 is at most k|Σ|k, w1 is a subword of
w2, and w1 and w2 lead the automaton to two different states. In addition, it can
be shown that one can choose w2 of length at most depth(A) bigger than the
length of w1. A polynomial certificate for non k-piecewise testability can thus
be given by providing such w1 and w2, which are indeed of polynomial length in
the size of A and Σ. ��

If we search for the minimal k for which the language is k-PT, we can first
check whether it is 0-PT. If not, we check whether it is 1-PT and so on until
we find the required k. In this case, the bounds k|Σ|k and k|Σ|k + depth(A)
on the length of words w1 and w2 that need to be investigated are exponential
with respect to k. To investigate all the words up to these lengths then gives an
algorithm that is exponential with respect to the size of the minimal DFA and
double exponential with respect to the desired k.

Proposition 1. Let A be a minimal DFA that is partially ordered and confluent.
To find the minimal k for which the language L(A) is k-PT can be done it time
exponential with respect to the size of A and double exponential with respect to
the resulting k.

Theorem 1 gives an upper bound on the complexity to decide whether a
language is k-PT for a fixed k. We now show that for k ≤ 3, the complexity is
much simpler.

0-Piecewise Testability The language L(A) of a minimal DFA A over Σ is 0-PT
if and only if it has a single state, that is, it recognizes either Σ∗ or ∅. Thus,
given a minimal DFA, it is decidable in O(1) whether its language is 0-PT.

1-Piecewise Testability Let A = (Q,Σ, ·, q0, F) be a minimal DFA. It can be
shown that the language L(A) is 1-PT if and only if (1) for every p ∈ Q and
a ∈ Σ, pa = q implies qa = q, and (2) for every p ∈ Q and a, b ∈ Σ, pab = pba.
Since this property can be verified locally in the DFA, we have the following.

Theorem 2. The problem to decide whether a minimal DFA recognizes a 1-PT
language is in LOGSPACE.

368 T. Masopust and M. Thomazo

2-Piecewise Testability We show that the problem to decide whether a mini-
mal DFA recognizes a 2-PT language is NL-complete. This coincides with the
complexity to decide whether the language is PT.

Theorem 3. The problem to decide whether a minimal DFA recognizes a 2-PT
language is NL-complete.

We prove this theorem by a sequence of lemmas.

Lemma 1. Let A = (Q,Σ, ·, q0, F) be a minimal DFA. For every k ≥ 0, if
w1 ∼k w2 and q0w1 �= q0w2, then there exist two words w and w′ such that
w ∼k w′, w′ is obtained from w by adding a single letter at some place, and
q0w �= q0w

′.

Proof. Let w1, w2 be such that w1 ∼k w2 and q0w1 �= q0w2. By [12, Theo-
rem 6.2.6], there is w3 such that w1, w2 are subwords of w3 and w1 ∼k w2 ∼k w3.
Either w1 and w3, or w2 and w3, do not lead to the same state. Denote that pair
by v, v′ with v � v′. Let v = u0, u1, . . . , un = v′ be a sequence such that uj+1 is
obtained from uj by adding a letter at some place. There must be j such that
uj and uj+1 lead to two different states. Set w = uj and w′ = uj+1. ��
Lemma 2. Let A = (Q,Σ, ·, q0, F) be a minimal partially ordered and confluent
DFA. The language L(A) is 2-PT if and only if for every a ∈ Σ and every states
p such that there exists w with |w|a ≥ 1, pua = paua, for every u ∈ Σ∗.

Proof. (⇒) By contraposition. Assume that there exists u ∈ Σ∗ and a state
p such that q0w = p for some w ∈ Σ∗ containing a and such that pua �=
paua. By the assumption, w = w1aw2, for some w1, w2 ∈ Σ∗ such that a /∈
alph(w1), and we want to show that w1aw2ua ∼2 w1aw2aua. However, for any
c ∈ alph(w1aw2), if ca � w1aw2aua, then ca � w1aw2ua. Similarly for d ∈
alph(ua) and ad � w1aw2aua. Since q0 · wua �= q0 · waua, the minimality of A
gives that there exists a word v such that wuav ∈ L(A) if and only if wauav /∈
L(A). Since ∼2 is a congruence, wuav ∼2 wauav, which violates Fact 1, hence
L(A) is not 2-PT.

(⇐) Let w1 and w2 be two words such that w1 ∼2 w2. We want to show that
q0w1 = q0w2. By Lemma 1, it is sufficient to show this direction of the theorem
for two words w and w′ such that w′ is obtained from w by adding a single letter
at some place. Thus, let a be the letter, and let

w = a1 . . . akak+1 . . . an and w′ = a1 . . . akaak+1 . . . an

for 0 ≤ k ≤ n. Let wi,j = aiai+1 . . . aj . We distinguish two cases.
(A) Assume that a does not appear in w1,k. Then a must appear in wk+1,n.

Consider the first occurrence of a in wk+1,n. Then wk+1,n = u1au2, where a does
not appear in u1. Let B = alph(u1a). Then B ⊆ alph(u2), because if there is no
a in w1,ku1, any subword ax, for x ∈ B, that appears in w′ = w1,kau1au2 must
also appear in the subword au2 of w = w1,ku1au2.

On the Complexity of k-Piecewise Testability and the Depth of Automata 369

Let u2 = x1b1x2b2x3 . . . x�b�x�+1, where B = {b1, b2, . . . , b�} and bj does not
appear in x1b1x2 . . . xj , j = 1, 2, . . . , �. Let v = b1b2 . . . b�. Let z ∈ {q0 · w1,ku1a,
q0 · w1,kau1a}. We prove (by induction on j) that for every j = 1, 2, . . . , �, there
exists a word yj such that z · (b1b2 . . . bj)Ryj = z · x1b1x2b2x3 . . . xjbjxj+1. Since
b1 appears in u1, we use the assumption from the statement of the theorem to
obtain (z · x1b1) · x2 = (z · b1x1b1) · x2. Assume that it holds for j < k. We prove
it for j + 1. Again, bj+1 appears in u1 implies that

z · x1b1x2b2x3 . . . xjbjxj+1bj+1xj+2 = ((z · x1b1x2b2x3 . . . xjbjxj+1)bj+1)xj+2

= ((z · bj . . . b2b1yj)bj+1)xj+2

= z · bj+1bj . . . b2b1yjbj+1xj+2

where the second equality is by the induction hypothesis and the third is by the
assumption from the statement of the theorem applied to the underlined part.
Thus, in particular, there exists a word y such that q0 · w1,ku1avRy = q0 · w and
q0 · w1,kau1avRy = q0 · w′.

Finally, let z1 = q0 · w1,ku1a and z2 = q0 · w1,kau1a. We prove that z1 · vR =
z2 · vR, which then concludes the proof since it implies that q0 · w = q0 · w′. To
prove this, we make use of the following claim, presented without proof.

Claim (Commutativity). For every a, b ∈ Σ and every state p such that q0 ·w = p
and a and b appear in w, p · ab = p · ba.

We can now finish the proof by induction on the length of vR = b� . . . b2b1
by showing that the state z′

i = zi · b� . . . b2b1 has self-loops under B, i = 1, 2. Let

zi
b�...b2b1−−−−−→ z′

i = qi,�+1b�qi,�b�−1qi,�−1 . . . qi,2b1qi,1 denote the path defined by the
word vR from the state zi, i = 1, 2. We state the following claim without proof.

Claim. Both states z′
1 and z′

2 have self-loops under all letters of the alphabet B.

Thus, since no other states are reachable from z′
1 and z′

2 under B, and z′
1 and

z′
2 are reachable from q0 · w1,k by words over B, confluency of the automaton

implies that z′
1 = z′

2, which completes the proof of part (A).
(B) If a = ai for some i ≤ k, we consider two cases. First, assume that for

every c ∈ Σ ∪ {ε}, ca is a subword of w1,ka implies that ca is a subword of w1,k.
Then aa is a subword of w1,k. Let w1,k = w3aw4, where a does not appear in
w4. Let q = q0 · w3a, and let B = alph(w4). Note that B ⊆ alph(w3), since
if xa is a subword of w1,ka, then it is also in w3a. By the assumption of the
theorem, q = q0 · w3a = q0 · w3aa, hence we get that there is a self-loop in q
under a. Now, by the self-loop under a in q and commutativity (the claim above),
q · w4 = q · aw4 = q · w4a. Thus, q0 · w1,k = q0 · w1,ka.

Second, assume that there exists c in w1,k such that ca � w1,ka is not a
subword of w1,k. Then a must appear in wk+1,n. Together, there exist i ≤ k < j
such that ai = aj = a. By the assumption of the theorem, we obtain that
q0 · w1,kawk+1,j = q0 · w1,kwk+1,j , since wk+1,j = xa, for some x ∈ Σ∗. This
implies that q0 · w = q0 · w′, which completes the proof of part (B). ��

370 T. Masopust and M. Thomazo

Lemma 3. Let A = (Q,Σ, ·, q0, F) be a DFA. Then the following is equivalent:

1. For every a ∈ Σ and every state s such that q0w = s for some w ∈ Σ∗ with
|w|a ≥ 1, sua = saua, for every u ∈ Σ∗.

2. For every a ∈ Σ and every state s such that q0w = s for some w ∈ Σ∗ with
|w|a ≥ 1, sba = saba for every b ∈ Σ ∪ {ε}.

Lemma 4. For every k ≥ 2, the k-PT problem is NL-hard.

Proof. We reduce monotone graph accessibility (2MGAP) [3] to the k-PT prob-
lem. An instance of 2MGAP is a graph (G, s, g), where G = (V,E) is a graph
with the set of vertices V = {1, 2, . . . , n}, the source vertex s = 1 and the target
vertex g = n, the out-degree of each vertex is bounded by 2 and for all edges
(u, v), v is greater than u (the vertices are linearly ordered).

We construct the automaton A = (V ∪ {q0, f1, f2, . . . , fk−1, d}, Σ, ·, q0,
{fk−1}) as follows. For every edge (u, v), we construct a transition u · auv = v
over a fresh letter auv. Moreover, we add the transitions q0 · a = s, g · a = f1
and fi · a = fi+1, i = 1, 2, . . . , k − 2, over a fresh letter a. The automaton is
deterministic, but not necessarily minimal, since some of the states may not be
reachable from the initial state, or some states may be equivalent. To ensure
minimality, we add, for each state v ∈ V \ {s}, new transitions from q0 to v
under fresh letters, and for each state v ∈ V \ {g}, new transitions from v to
fk−1 under fresh letters. All undefined transitions go to the sink state d. Then
the automaton A is deterministic and minimal, and the language L(A) is finite.

Claim. Let w be a word over Σ. If every a from Σ appears at most once in w,
that is, |w|a ≤ 1, then the language {w} is 2-PT.

Proof. Since {w} is PT, the minimal DFA is partially ordered and confluent.
Then the condition of Lemma 2 is trivially satisfied, since, after the second
occurrence of the same letter, the minimal DFA accepting {w} is in the unique
maximal non-accepting state. �

We now show that the language L(A) is k-PT if and only if g is not reachable
from s.

Assume that g is reachable from s. Let w be a sequence of labels of such a
path from s to g in A. Then the word awak−1 belongs to L(A) and awak does
not. However, awak−1 ∼k awak, which proves that L(A) is not k-PT.

If g is not reachable from s, then L(A) = {au1, au2, . . . , au�, u�+1, . . . , u�+s}∪
{w1a

k−1, w2a
k−1, . . . , wmak−1}, where uj and wj are words over Σ \ {a} that

do not contain any letter twice. Then the first part is 2-PT by the previous
claim, as well as the second part for k = 2. It remains to show that, for any
k ≥ 3, the second part of L(A) is k-PT. Assume that wja

k−1 ∼k w, for some
1 ≤ j ≤ m and w ∈ Σ∗. Then w = v1av2a . . . avk for some v1, v2, . . . , vk such
that |v1 . . . vk|a = 0. Since |wj |a = 0 and, for any letter c of v2 · · · vk−1 (resp.
vk), the word aca (resp. ak−1c) is a subword of wja

k−1, that is, of ak−1, we
have that v2 · · · vk = ε, i.e., w = v1a

k−1. Since wja
k−1 ∼k v1a

k−1, we have that

On the Complexity of k-Piecewise Testability and the Depth of Automata 371

wja = v1a; hence, wja
k−1 and w lead to the same state, which concludes the

proof. ��
Proof (of Theorem 3). To check whether a minimal DFA is not confluent or does
not satisfy condition 2 of Lemma 3 can be done in NL; the reader is referred to [3]
for a proof how to check confluency in NL. Since NL=co-NL [7,14], we have an
NL algorithm to check 2-PT of a minimal DFA. NL-hardness then follows from
the previous lemma. ��

It was shown in [1] that the syntactic monoids of 1-PT languages are defined
by equations x = x2 and xy = yx, and those of 2-PT languages by equations
xyzx = xyxzx and (xy)2 = (yx)2. These equations can be used to achieve NL
algorithms. However, our characterizations improve these results and show that,
for 1-PT languages, it is sufficient to verify the equations x = x2 and xy = yx
on letters (generators), and that, for 2-PT languages, equation xyzx = xyxzx
can be verified on letters (generators) up to the element y, which is a general
element of the monoid. It decreases the complexity of the problems. Moreover,
the partial order and (local) confluency properties can be checked instead of the
equation (xy)2 = (yx)2.

3-Piecewise Testability The equations (xy)3 = (yx)3, xzyxvxwy = xzxyxvxwy
and ywxvxyzx = ywxvxyxzx characterize the variety of 3-PT languages [1].
Non-satisfiability of any of these equations can be checked in the DFA in NL
by guessing a finite number of states and the right sequences of transitions
between them (in parallel, when labeled with the same labels). Thus, we have
the following.

Theorem 4. The problem to decide whether a minimal DFA recognizes a 3-PT
language is NL-complete.

k-Piecewise Testability Even though [2] provides a finite sequence of equations
to define the k-PT languages over a fixed alphabet for any k ≥ 4, the equations
are more involved and it is not clear whether they can be used to obtain the
precise complexity. So far, the k-PT problem can be shown to be NL-hard (for
k ≥ 2) and in co-NP, and it is open whether it tends rather to NL or to co-NP.2

4 Complexity of k-Piecewise Testability for NFAs

The k-piecewise testability problem for NFAs asks whether, given an NFA A,
the language L(A) is k-PT. A language is 0-PT if and only if it is either empty
or universal. Since the universality problem for NFAs is PSPACE-complete [4],
the 0-PT problem for NFAs is PSPACE-complete. Using the same argument as
in [6] then gives that, for every integer k ≥ 0, the problem to decide whether an
NFA recognizes a k-PT language is PSPACE-hard.

2 See the acknowledgement for the recent development.

372 T. Masopust and M. Thomazo

Since k is fixed, we can make use of the idea of Theorem 1 to decide whether
an NFA recognizes a k-PT language. The length of the word w2 is now bounded
by 2n, where n is the number of states of the NFA. Guessing the word w2 on-the-
fly then gives that the k-piecewise testability problem for NFAs is in PSPACE.

Theorem 5. The following problem is PSPACE-complete:

Name: k-PiecewiseTestabilityNFA
Input: an NFA A
Output: Yes if and only if L(A) is k-PT

The problem to find the minimal k for which the language recognized by an
NFA is k-PT is PSPACE-hard, since a language is PT if and only if there exists
a minimal k ≥ 0 for which it is PT.

5 Piecewise Testability and the Depth of NFAs

We generalize a result valid for DFAs to NFAs and investigate the relationship
between the depth of an NFA and the minimal k for which its language is k-PT.

Recall that a regular language is PT if and only if its minimal DFA satisfies
some properties that can be tested in a quadratic time, cf. Fact 2. We now show
that this characterization generalizes to NFAs. An NFA A over an alphabet Σ
is complete if for every state q of A and every letter a in Σ, the set q · a is
nonempty, i.e., in every state, a transition under every letter is defined.

Theorem 6. A regular language is PT if and only if there exists a complete
NFA that is partially ordered and satisfies the UMS property.

As it is PSPACE-complete to decide whether an NFA defines a PT language,
it is PSPACE-complete to decide whether, given an NFA, there is an equivalent
complete NFA that is partially ordered and satisfies the UMS property.

It was shown in [10] that the depth of minimal DFAs does not correspond to
the minimal k for which the language is k-PT. Namely, an example of (4�−1)-PT
languages with the minimal DFA of depth 4�2, for � > 1, has been presented.
We now show that there is an exponential gap between the minimal k for which
the language is k-PT and the depth of a minimal DFA.

Theorem 7. For every n ≥ 2, there exists an n-PT language that is not (n−1)-
PT, it is recognized by an NFA of depth n−1, and the minimal DFA recognizing
it has depth 2n − 1.

Proof (sketch). For k ≥ 0, let Ak = (Ik, {a0, a1, . . . , ak}, ·, Ik, {0}) be an NFA
with Ik = {0, 1, . . . , k} and the transition function consisting of the self-loops
under ai in all states j > i and transitions under ai from the state i to all states
j < i as depicted in Fig. 1.

Every NFA Ak has depth k. Using Theorem 6 or noticing that the reversed
automata are deterministic, we can show that it accepts a (k + 1)-PT language.
It can be shown that the language is not k-PT and that its minimal DFA has
depth 2k+1 − 1. ��

On the Complexity of k-Piecewise Testability and the Depth of Automata 373

012 a1

a0a0, a1

a2

a2 0123 a3 a2 a1

a3

a3

a2

a0, a1, a2 a0, a1 a0

Fig. 1. Automata A2 and A3

Although it is well known that DFAs can be exponentially larger than NFAs,
an interesting by-product of this result is that there are NFAs such that all the
exponential number of states of their minimal DFAs form a simple path.

It could seem that NFAs are more convenient to provide upper bounds on k.
However, the following simple example shows that even for 1-PT languages, the
depth of an NFA depends on the size of the input alphabet. Specifically, for any
alphabet Σ, the language L =

⋂
a∈Σ La of all words containing all letters of Σ

is a 1-PT language such that any NFA recognizing it requires at least 2|Σ| states
and has depth |Σ|.

We now show that, given a k-PT language over an n-letter alphabet, the
depth of the minimal DFA recognizing it is at most

(
k+n

k

) − 1. To this end, we
first investigate the following problem.

Problem 1. Let Σ be an alphabet of cardinality n ≥ 1 and let k ≥ 1. What is the
length of a longest word, w, such that (i) subk(w) = Σ≤k = {v ∈ Σ∗ | |v| ≤ k}
and, (ii) for any two distinct prefixes w1 and w2 of w, subk(w1) �= subk(w2)?

The answer is formulated in the following proposition.

Proposition 2. Let Σ be an alphabet of cardinality n. The length of a longest
word, w, satisfying the requirements of Problem 1 is given by the recursive for-
mula |w| = Pk,n = Pk−1,n + Pk,n−1 + 1, where P1,m = m = Pm,1, for m ≥ 1.

The following two lemmas prove the proposition.

Lemma 5. Let k and n be given, and let w′ be any word over an n-letter alphabet
satisfying the requirements of Problem 1. Then |w′| ≤ Pk,n.

Proof. Let w′ = w1zw2, where z is a letter, | alph(w1)| = n−1 and | alph(w1z)| =
n. Since w1 satisfies the second requirement of Problem 1, |w1| ≤ Pk,n−1. On
the other hand, since | alph(w1z)| = n, any nonempty prefix of w2 extends the
set of subwords with a subword of length at least 2. Thus, w2 cannot be longer
than the longest word over Σ containing all subwords up to length k − 1, that
is, |w2| ≤ Pk−1,n. ��
Lemma 6. For any positive integers k and n, there exists a word w of length
Pk,n satisfying the requirements of Problem 1.

374 T. Masopust and M. Thomazo

Proof. Let Σn = {a1, a2, . . . , an} with the order ai < aj if i < j. For n = 1 and
k ≥ 1, the word Wk,1 = ak is of length Pk,1 and satisfies the requirements, as well
as the word W1,n = a1a2 . . . an of length P1,n for k = 1 and n ≥ 1. Assume that
we have constructed the words Wi,j of length Pi,j for all i < k and j < n, Wi,n

of length Pi,n for all i < k, and Wk,j of length Pk,j for all j < n. We construct
the word Wk,n of length Pk,n over Σn as follows: Wk,n = Wk,n−1 an Wk−1,n .

It remains to show that Wk,n satisfies the requirements of Problem 1. How-
ever, the set of subwords of Wk−1,n is Σ≤k−1

n . Since alph(Wk,n−1an) = Σ, we
obtain that the set of subwords of Wk,n is Σ≤k

n . Let w1 and w2 be two different
prefixes of Wk,n. Without loss of generality, we may assume that w1 is a prefix
of w2. If they are both prefixes of Wk,n−1, the second requirement of Problem 1
follows by induction. If w1 is a prefix of Wk,n−1 and w2 contains an, then the sec-
ond requirement of Problem 1 is satisfied, because w1 does not contain an. Thus,
assume that both w1 and w2 contain an, that is, they both contain Wk,n−1an as
a prefix. Let w1 = Wk,n−1anw′

1 and w2 = Wk,n−1anw′
1w

′
2. Since, by induction,

subk−1(w′
1) � subk−1(w′

1w
′
2), there exists v ∈ subk−1(w′

1w
′
2)\ subk−1(w′

1). Then
anv belongs to subk(w2), but not to subk(w1), which completes the proof. ��

It follows by induction that for any positive integers k and n

Pk,n =
(

k + n

k

)
− 1 .

We now use this result to show that the depth of the minimal DFA recognizing
a k-PT language over an n-letter alphabet is Pk,n in the worst case.

Theorem 8. For any natural numbers k and n, the depth of the minimal DFA
recognizing a k-PT language over an n-letter alphabet is at most Pk,n. Moreover,
the bound is tight for any k and n.

Proof. Let Lk,n be a k-PT language over an n-letter alphabet. Since Lk,n is a
finite union of ∼k classes [13], there exists F such that the ∼k-canonical DFA3

A = (Q,Σ, ·, [ε], F) recognizes Lk,n. The depth of A is Pk,n. Let min(A) be the
minimal DFA obtained from A. Since the minimization does not increase the
depth, the depth of min(A) is at most Pk,n.

To show that the bound is tight, let w denote a fixed word of length Pk,n,
which exists by Lemma 6. Consider the ∼k-canonical DFA A′ = (Q,Σ, ·, [ε], F),
where F = {[w′] | w′ is a prefix of w of even length}. Then w defines a path
πw = [ε] −→ [w1] −→ [w2] . . . −→ [w] in A′ of length Pk,n, where wi denotes
the prefix of w of length i and accepting and non-accepting states alternate.
Let min(A′) be the minimal DFA obtained from A′. If there were two equivalent
states in πw, then they must be of the same acceptance status. However, between
any two states with the same acceptance status, there is a state with the opposite
acceptance status. Thus, joining the two states creates a cycle in min(A′), which
is a contradiction with Fact 2, since the DFA A′ recognizes a PT language. ��

3 The ∼k-canonical DFA is a DFA whose states are ∼k classes.

On the Complexity of k-Piecewise Testability and the Depth of Automata 375

Finally, we present several consequences. (1) Note that it follows from the
formula that Pk,n = Pn,k. This gives and interesting observation that increasing
the length of the considered subwords has exactly the same effect as increasing
the size of the alphabet. (2) Equivalently stated, Problem 1 asks what is the
depth of the ∼k-canonical DFA. The number of equivalence classes of ∼k, i.e.,
the number of states, has recently been investigated in [8]. (3) It provides a
precise bound on the length of w1 of Theorem 1. However, it does not improve
the statement of the theorem. (4) To provide a relationship of Pk,n with Stirling
cyclic numbers, it can be shown that, for any positive integers k and n, Pk,n =
1
k!

∑k
i=1

[
k+1
i+1

]
ni where

[
k
n

]
denotes the Stirling cyclic numbers.

Acknowledgments. We would like to thank an anonymous reviewer for informing us
about the unpublished manuscript [9] and its authors for providing it. It turns out that
we have independently obtained two results—the bound of Theorem 8 and the co-NP
bound on the k-PT problem for DFAs. Furthermore, it is shown in [9] that the k-PT
problem is co-NP-complete for k ≥ 4. It also provides a smaller bound on the length
of the witnesses, which results in a single exponential algorithm to find the minimal k.
On the other hand, for k ≤ 3, that paper only says that the k-PT problem belongs to
P . The authors are grateful to Sebastian Rudolph for a fruitful discussion.

References

1. Blanchet-Sadri, F.: Games, equations and the dot-depth hierarchy. Comput. Math.
Appl. 18(9), 809–822 (1989)

2. Blanchet-Sadri, F.: Equations and monoid varieties of dot-depth one and two.
Theoret. Comput. Sci. 123(2), 239–258 (1994)

3. Cho, S., Huynh, D.T.: Finite-automaton aperiodicity is PSPACE-complete. Theor.
Comput. Sci. 88(1), 99–116 (1991)

4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman (1979)

5. Hofman, P., Martens, W.: Separability by short subsequences and subwords. In:
ICDT. LIPIcs, vol. 31, pp. 230–246 (2015)

6. Holub, Š., Masopust, T., Thomazo, M.: Alternating towers and piecewise testable
separators. CoRR abs/1409.3943 (2014). 1409.3943

7. Immerman, N.: Nondeterministic space is closed under complementation. SIAM J.
Comput. 17(5), 935–938 (1988)

8. Karandikar, P., Kufleitner, M., Schnoebelen, P.: On the index of Simon’s congru-
ence for piecewise testability. Inform. Process. Lett. 115(4), 515–519 (2015)

9. Kĺıma, O., Kunc, M., Polák, L.: Deciding k-piecewise testability (manuscript)
10. Kĺıma, O., Polák, L.: Alternative automata characterization of piecewise testable

languages. In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907,
pp. 289–300. Springer, Heidelberg (2013)

11. Masopust, T., Thomazo, M.: On k-piecewise testability (preliminary report). CoRR
abs/1412.1641 (2014), 1412.1641

http://arxiv.org/abs/1409.3943
http://arxiv.org/abs/1412.1641

376 T. Masopust and M. Thomazo

12. Sakarovitch, J., Simon, I.: Subwords. In: Lothaire, M. (ed.) Combinatorics on
Words, pp. 105–142. Cambridge University Press (1997)

13. Simon, I.: Hierarchies of Events with Dot-Depth One. Ph.D. thesis, Department of
Applied Analysis and Computer Science. University of Waterloo, Canada (1972)

14. Szelepcsényi, R.: The method of forced enumeration for nondeterministic
automata. Acta Inf. 26(3), 279–284 (1988)

15. Trahtman, A.N.: Piecewise and local threshold testability of DFA. In: Freivalds,
R. (ed.) FCT 2001. LNCS, vol. 2138, pp. 347–358. Springer, Heidelberg (2001)

Interval Exchange Words and the Question
of Hof, Knill, and Simon

Zuzana Masáková1, Edita Pelantová1, and Štěpán Starosta2(B)

1 Faculty of Nuclear Sciences and Physical Engineering,
Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2, Czech Republic

2 Faculty of Information Technology, Czech Technical University in Prague,
Thákurova 9, 160 00 Praha 6, Czech Republic

stepan.starosta@fit.cvut.cz

Abstract. We consider words coding non-degenerate 3 interval
exchange transformation. It is known that such words contain infinitely
many palindromic factors. We show that for any morphism ξ fixing such
a word, either ξ or ξ2 is conjugate to a class P morphism. By this, we pro-
vide a new family of palindromic infinite words satisfying the conjecture
of Hof, Knill and Simon, as formulated by Tan.

Keywords: Palindrome · Morphism · Interval exchange

1 Introduction

Palindromes, i.e., words which read the same from the left as from the right,
are source of amusement in natural languages. The reader can surely identify
languages which contain the following palindromes: kuulilennuteetunneliluuk,
kakak, onorarono, elevele, icipici or ailihphilia. In the theory of formal languages
and stringology, palindromes and their various generalizations represent interest-
ing objects of research. To illustrate diverse perspectives on palindromes, let us
point out some recently published papers. In [2], the authors study equations on
words where constants or variables are palindromes. Algorithms finding general-
ized repetitions, in particular finding palindromes and generalized palindromes,
are studied in [5]. The definition of generalized palindromes over the alphabet
{A,C,G, T} in [7] was inspired by applications in genetics and DNA computing.

Our work is devoted to a question coming from another field, namely math-
ematical physics, where palindromes can also be found. The question is from
paper [6], where Hof, Knill and Simon study spectra of Schrödinger operators
associated to infinite sequences. These sequences are generated by a substitution
over a finite alphabet. The authors show in their paper that if a sequence contains
infinitely many palindromic factors (such sequences are called palindromic), then
the associated operator has a purely singular continuous spectrum. In the same
paper, the authors define a class of substitutions, called class P (see Section 5 for
the exact definition) and they ask the following question: “Are there (minimal)
sequences containing arbitrarily long palindromes that arise from substitutions
none of which belongs to class P?” A discussion on how to transform this ques-
tion into a mathematical formalism can be found in [9].
c© Springer International Publishing Switzerland 2015
I. Potapov (Ed.): DLT 2015, LNCS 9168, pp. 377–388, 2015.
DOI: 10.1007/978-3-319-21500-6 30

378 Z. Masáková et al.

The first result concerning class P was given by Tan in [13]. The author
extended class P by morphisms conjugated to the elements of class P , since it
is well-known that fixed points of conjugated morphisms have the same set of
factors. This extended class is denoted by P ′. In [13], it is shown that if a fixed
point of a primitive substitution ϕ over a binary alphabet is palindromic, then
the substitution ϕ or ϕ2 belongs to class P ′. The conjecture, stemming from
the question of Hof, Knill and Simon, states that every (minimal) palindromic
sequence is a fixed point of a morphism of class P ′. It is referred to as Class P
conjecture.

In [10], Labbé shows that the assumption of a binary alphabet in the theorem
of Tan is essential. The author exhibited a palindromic fixed point of a morphism
ϕ over a ternary alphabet which is not a fixed point of any morphism belonging
to P ′. It can be shown that the counterexample is a sequence coding a 3 interval
exchange transformation with permutation (321). However, it is degenerated,
i.e., it is a morphic image of a Sturmian word. For details, see Section 6.

In this paper, we study sequences that code non-degenerated 3 interval
exchange transformation with the same permutation (321). It is known that
such sequences are palindromic. We show that a ternary analogue of the theo-
rem of Tan holds in this context. Let us note that another analogue is already
known: in [9] it is shown for marked morphisms. These two analogues do not
overlap: a morphism fixing a coding of a non-degenerate 3 interval exchange
transformation is never marked.

The article is organized as follows. Section 2 contains the necessary notions.
Interval exchange transformations and their properties are treated in Section 3.
In Section 4 we focus on substitution invariance of words coding interval
exchange transformations. The proof of the main result stated as Theorem 2 is
provided in Section 5. Let us mention that the key Lemma 1 is given without
proof in this contribution. The demonstration of this lemma requires some other
notions. It is given in Section 5 in the full version of this paper on arXiv [12].

2 Preliminaries

Let us recall necessary notions and notation from combinatorics on words. For
a basic overview we refer to [11]. An alphabet is a finite set of symbols, called
letters. A finite word w over an alphabet A of length |w| = n is a concatenation
w = w0 · · · wn−1 of letters wi ∈ A. The set of all finite words over A equipped
with the operation of concatenation and the empty word ε is a monoid denoted
by A∗. For a fixed letter a ∈ A, we denote by |w|a the number of occurrences of a
in w, i.e., the number of indices i such that wi = a. The reversal or mirror image
of the word w is the word w = wn−1 · · · w0. A word w for which w = w is called a
palindrome. An infinite word u is an infinite concatenation u = u0u1u2 . . . ∈ AN.
An infinite word u = wvvv . . . with w, v ∈ A∗ is said to be eventually periodic;
it is said to be aperiodic if it is not of such form. We say that w ∈ A∗ is a factor
of v ∈ A∗ ∪ AN if v = w′ww′′ for some w′ ∈ A∗ and w′′ ∈ A∗ ∪ AN. If w′ = ε or
w′′ = ε, then w is a prefix or suffix of v, respectively. If v = wu, then we write
u = w−1v and w = vu−1.

Interval Exchange Words and the Question of Hof, Knill, and Simon 379

The set L(u) of all finite factors of an infinite word u is called the language
of u. The factor complexity Cu is the function N → N counting the number of
factors of u of length n. It is known that the factor complexity of an aperiodic
infinite word u satisfies Cu(n) ≥ n + 1 for all n. Aperiodic infinite words having
the minimal complexity Cu(n) = n+1 for all n are called Sturmian words. Since
Cu(1) = 2, they are binary words. Sturmian words can be equivalently defined in
many different frameworks, one of them is coding of an exchange of two intervals.

Let A and B be alphabets. Let ϕ : A∗ → B∗ be a morphism, i.e., ϕ(wv) =
ϕ(w)ϕ(v) for all w, v ∈ A∗. We say that ϕ is non-erasing if ϕ(b) �= ε for every
b ∈ A. The action of ϕ can be naturally extended to infinite words u ∈ AN

by setting ϕ(u) = ϕ(u0)ϕ(u1)ϕ(u2) If A = B and ϕ(u) = u, then u is
said to be a fixed point of ϕ. A non-erasing morphism ϕ : A∗ → A∗ such that
there is a letter a ∈ A satisfying ϕ(a) = aw for some non-empty word w is
called a substitution. Obviously, a substitution has always a fixed point, namely
limn→∞ ϕn(a) where the limit is taken over the product topology. Let A =
{a1, . . . , ak} and B = {b1, . . . , b�}. One associates to every morphism ϕ : A → B
its incidence matrix Mϕ ∈ N

k×� defined by

(Mϕ)ij = |ϕ(ai)|bj
, for 1 ≤ i ≤ k, 1 ≤ j ≤ �.

A morphism ϕ : A∗ → A∗ is said to be primitive if all elements of some power
of its incidence matrix Mϕ ∈ N

k×k are positive.

3 Itineraries in Symmetric Exchange of Intervals

For disjoint intervals K and K ′ we write K < K ′ if for x ∈ K and x′ ∈ K ′ we
have x < x′. Let J be a semi-closed interval. Consider a partition J = J0 ∪ · · · ∪
Jk−1 of J into a disjoint union of semi-closed subintervals J0 < J1 < · · · < Jk−1.
A bijection T : J → J is called an exchange of k intervals with permutation π if
there exist numbers c0, . . . , ck−1 such that for 0 ≤ i < k one has

T (x) = x + ci for x ∈ Ji , (1)

where π is a permutation of {0, 1, . . . , k − 1} such that T (Jπ−1(i)) < T (Jπ−1(j))
for i < j. In other words, the permutation π determines the order of intervals
T (Ji). If π is the permutation i �→ k− i+1, then T is called a symmetric interval
exchange.

An exchange of intervals satisfies the minimality condition if the orbit of
any given ρ ∈ [0, 1), i.e, the sequence ρ, T (ρ), T 2(ρ), T 3(ρ), . . . , is dense in J .
An orbit can be coded by an aperiodic infinite word uρ = u0u1u2 . . . over the
alphabet {0, 1, . . . , k − 1} given by

un = X if Tn(ρ) ∈ JX for X ∈ {0, 1, . . . , k − 1}.

The point ρ is called the intercept of uρ. The complexity of such infinite words
is known to satisfy Cuρ

(n) ≤ (k − 1)n + 1 (see [4]). If for every n ∈ N we have

380 Z. Masáková et al.

Cuρ
(n) = (k−1)n+1, then the word uρ is said to be non-degenerate. If T satisfies

the minimality condition and the coding of one of its orbits is non-degenerate,
then coding of any orbit is non-degenerate and we call such T a non-degenerate
interval exchange.

Definition 1. Let T be an exchange of k intervals satisfying the minimality
condition. Given a subinterval I ⊂ J , we define the mapping rI : I → Z

+ =
{1, 2, 3, . . . } by

rI(x) = min{n ∈ Z
+ : Tn(x) ∈ I} ,

the so-called return time to I. The prefix of length rI(x) of the word u coding the
orbit of the point x ∈ I is called the I-itinerary of x and denoted RI(x). The set
of all I-itineraries is denoted by ItI = {RI(x) : x ∈ I}. The mapping TI : I → I
defined by

TI(x) = T rI(x)(x)

is said to be the first return map of T to I, or induced map of T on I.

Throughout the paper, when it is clear from the context, we sometimes omit
the index I in rI or RI . It is known from Keane [8] that if T is an exchange of
k intervals and I ⊂ J , then ItI has at most k + 2 elements, and, consequently,
TI is an exchange of at most k + 2 intervals.

Remark 1. If I ⊂ JX , then T (I) is an interval. We have

R is an I-itinerary ⇔ X−1RX is a T (I)-itinerary.

Similarly, if I ⊂ T (JX), then T−1(I) is an interval and we have

R is an I-itinerary ⇔ XRX−1 is a T−1(I)-itinerary.

We will use another fact about itineraries of an interval exchange. Without
loss of generality, we consider J = [0, 1). The intervals JX are left-closed right-
open for all X ∈ {0, 1 . . . , k − 1}. Such interval exchange T is right-continuous.
Therefore, if I = [γ, δ), then every word w ∈ ItI = {R(x) : x ∈ I} is an I-
itinerary R(x) for infinitely many x ∈ I, which form an interval, again left-closed
right-open.

For the rest of the section, we consider only symmetric interval exchange. In
order to state a property of such interval exchanges, for an interval K = [c, d) ⊂
[0, 1) we denote K = [1 − d, 1 − c).

Proposition 1. Let T : [0, 1) → [0, 1) be a symmetric exchange of k intervals
satisfying the minimality condition. Let I ⊂ [0, 1) and let R1, . . . , Rm be the I-
itineraries. The I-itineraries are the mirror images of the I-itneraries, namely
R1, . . . , Rm. Moreover, if

[γj , δj) := {x ∈ I : RI(x) = Rj} and [γ′
j , δ

′
j) := TI [γj , δj) ,

for j = 1, . . . , m, then

{x ∈ I : RI(x) = Rj} = [1 − δ′
j , 1 − γ′

j) .

Interval Exchange Words and the Question of Hof, Knill, and Simon 381

Proof. Consider the restriction of the transformation T to the set

S = [0, 1) \ {T j(α) : j ∈ Z, α is a discontinuity of T} .

Such a restriction is a bijection S → S. We will show by induction that for any
i ≥ 1 and y ∈ S

T−i(y) = 1 − T i(1 − y) . (2)

Let y ∈ S and j ∈ {0, . . . , k − 1} such that y ∈ Ij . Since T is symmetric, we
have

1 − y ∈ Ij ⇔ y ∈ T (Ij).

The last equivalence and the definition of T imply

T (1 − y) = 1 − y + cj and

T−1(y) = y − cj .

Summing the last two equalities we obtain

T−1(y) = 1 − T (1 − y).

Then, using the induction hypothesis, we have for y ∈ S that

T−(i+1)(y)=T−1
(
T−i(y)

)
= 1−T

(
1−T−i(y)

)
=1−T

(
T i(1−y)

)
=1−T i+1(1−y) ,

which proves (2).
Since T (JX) = JX for any letter X ∈ {0, 1, . . . , k−1}, we can write for y ∈ S

T−1(y) ∈ JX ⇔ y ∈ T (JX) ⇔ 1 − y ∈ JX . (3)

More generally,

T−i(y) = T−1
(
T−(i−1)(y)

) ∈ JX ⇔ 1 − T−(i−1)(y) = T i−1(1 − y) ∈ JX , (4)

where we have first used (3) and then (2).
Now we show that if Rj is an I-itinerary, then its mirror image Rj is an I-

itinerary. Consider ρ ∈ (γj , δj)∩S and let RI(ρ) = a0a1 · · · an−1 be its I-itinerary,
i.e., ai = X if and only if T i(ρ) ∈ JX . Moreover, T i(ρ) /∈ I for 1 ≤ i < n, and
Tn(ρ) ∈ I. Let

ρ′ := 1 − Tn(ρ) = 1 − TI(ρ) ∈ (1 − δ′
j , 1 − γ′

j) ∩ S ⊂ I . (5)

By (2), we have ρ′ = T−n(1−ρ), and therefore again by (2), T i(ρ′) = T−(n−i)(1−
ρ) = 1 − Tn−i(ρ) /∈ I for 0 < i < n. On the other hand, Tn(ρ′) = 1 − ρ ∈ I.
By (4), we have for i = 0, 1, . . . , n − 1 that

JX � T i(ρ′) = T−(n−i)(1 − ρ) ⇔ Tn−i−1(ρ) ∈ JX ,

which implies that the I-itinerary of ρ′ is RI(ρ
′) = an−1an−2 · · · a0, as we wanted

to show.
By right continuity of T , all points from [1 − δ′

j , 1 − γ′
j) have the same I-

itinerary as ρ′ ∈ (1 − δ′
j , 1 − γ′

j) ∩ S. �

382 Z. Masáková et al.

We will be particularly interested in exchanges of three intervals. For con-
venience, we prefer to use for its coding the ternary alphabet {A,B,C} instead
of {0, 1, 2}. Without loss of generality let 0 < α < β < 1. Let T : [0, 1) → [0, 1)
be given by

T (x) =

⎧⎪⎨
⎪⎩

x + 1 − α if x ∈ [0, α) =: JA ,

x + 1 − α − β if x ∈ [α, β) =: JB ,

x − β if x ∈ [β, 1) =: JC .

(6)

The transformation T is an exchange of three intervals with the permutation
(321). It is often called a 3iet for short. The infinite word uρ coding the orbit of
a point ρ ∈ [0, 1) under a 3iet is called a 3iet word.

We require that 1−α and β be linearly independent over Q, which is known
to be a necessary and sufficient condition for minimality of the 3iet T . Non-
degeneracy of T is equivalent to the condition

1 /∈ (1 − α)Z + βZ , (7)

see [4]. This means that the 3iet word u has complexity Cu(n) = 2n + 1 if and
only if the parameters α and β of the corresponding 3iet T satisfy (7).

From the general result of Keane, one can derive that for a given subinterval
I ⊂ [0, 1) there exist at most five I-itineraries under a 3iet T .
Convention: For the rest of the paper, let T be a non-degenerate exchange of
three intervals with the permutation (321) given by (6).

4 Substitution Invariance and Conjugation of
Substitutions

Let us recall the relation of induction to a subinterval I to substitution invariance
of 3iet words. Let I be an interval I ⊂ [0, 1) such that the set ItI of I-itineraries
has three elements, say RA, RB and RC . For every ρ ∈ I, the infinite word
uρ can be written as a concatenation of words RA, RB and RC . For a letter
Y ∈ {A,B,C} denote IY = {x ∈ I : R(x) = RY }. Obviously, I = IA ∪ IB ∪ IC ,
and the induced mapping TI is an exchange of these three intervals. The order of
the words RA, RB and RC in the concatenation is determined by the iterations
of TI(ρ).

Suppose that TI is homothetic to T . Recall that mappings f : If → If and
g : Ig → Ig are homothetic if there exists an affine bijection Φ : If → Ig with
Φ(x) = λx + μ such that

Φf(x) = gΦ(x) for all x ∈ If . (8)

This means that f and g behave in the same way, up to a scaling factor λ and a
shift by μ of the domains If and Ig. In other words, the graphs of the mappings
f and g are the same, up to their scale and placing. The homothety of T and

Interval Exchange Words and the Question of Hof, Knill, and Simon 383

TI implies that Φ(JY) = IY for all Y ∈ {A,B,C}. From (8), we derive for every
k ∈ N that ΦT k(x) = T k

I Φ(x) for x ∈ [0, 1), and thus ΦT k(ρ) = T k
I (ρ) whenever

Φ(ρ) = ρ , (9)

i.e., ρ is the homothety center. From the relation Φ(JY) = IY it follows that
the k-th element in the concatenation of itineraries RA, RB and RC is equal to
RY if and only if the k-th letter in the infinite word uρ is equal to Y . This is
equivalent to saying that the infinite word uρ is invariant under the substitution
η given by

η(A) = RA, η(B) = RB, η(C) = RC . (10)

We conclude that the existence of an interval I with three itineraries and
TI homothetic to T leads to a substitution fixing a 3iet word whose intercept
is the homothety center ρ. In fact, the converse holds, too, as shown in [1]. We
summarize both statements as follows.

Theorem 1 ([1]). Let ξ be a primitive substitution over {A,B,C} with inci-
dence matrix M and let T be a non-degenerate 3iet. The substitution ξ fixes
the word uρ coding the orbit of a point ρ ∈ [0, 1) under T if and only if there
exists an interval I ⊂ [0, 1) with I-itineraries ItI = {RA, RB , RC} such that TI

is homothetic to T , ρ is the homothety center, and the substitution η given by

η =

{
ξ if no eigenvalue of M belongs to (−1, 0),
ξ2 otherwise,

satisfies η(A) = RA, η(B) = RB and η(C) = RC .

Let us mention that the scaling factor λ ∈ (0, 1) in the homothety mapping
Φ(x) = λx+μ is equal to the length of the interval I = [γ, δ), i.e., λ = δ−γ, and
the shift μ is equal to the left end-point of the interval I, namely γ. Moreover, it
is related to the intercept ρ of an infinite word uρ in the following way: one has
μ = γ = ρ(1−λ), as follows from (9). In fact, λ is an eigenvalue of the incidence
matrix of η. It follows from [1] that if ξ has such an eigenvalue, then the choice
η = ξ is sufficient. Otherwise, the incidence matrix of ξ2 has such an eigenvalue.

By Theorem 1, if uρ is invariant under a substitution, we find an interval
I such that TI is homothetic to T . If I ′ = T (I) is again an interval, then TI′

is also homothetic to T , and the I ′-itineraries change with respect to the I-
itineraries, as described in Remark 1. To show the relation of the corresponding
substitutions, we need the following definition.

Definition 2. Let ϕ and ψ be morphisms over A∗ and let w ∈ A∗ be a word
such that wϕ(a) = ψ(a)w for every letter a ∈ A. The morphism ϕ is said to be
a left conjugate of ψ and ψ is said to be a right conjugate of ϕ. If ϕ is a left or
right conjugate of ψ, then we say ϕ is conjugate to ψ. If the only left conjugate of
ϕ is ϕ itself, then ϕ is called the leftmost conjugate of ψ and we write ϕ = ψL. If
the only right conjugate of ψ is ψ itself, then ψ is called the rightmost conjugate
of ϕ and we write ψ = ϕR.

384 Z. Masáková et al.

Note that given a substitution ξ, its leftmost and rightmost conjugates ξL

and ξR may not exist. If this happens, it can be shown that its fixed point is a
periodic word. All the substitutions considered here thus possess their leftmost
and rightmost conjugates.

Proposition 2. Let uρ be a 3iet word coding the orbit of the point ρ ∈ [0, 1)
under a non-degenerate 3iet T . Moreover, assume that uρ is a fixed point of a
primitive substitution η such that the corresponding interval I of Theorem 1 is
of length λ. Let η′ be a left conjugate of η, i.e., η(a)w = wη′(a) for some word
w ∈ A∗. The morphism η′ fixes the infinite word uρ′ with ρ′ satisfying

(1 − λ)ρ′ = Tn
(
(1 − λ)ρ

)
, where n = |w|. (11)

Moreover, the interval I ′ corresponding to η′ by Theorem 1 satisfies I ′ = Tn(I).

Proof. Suppose that w is a letter, i.e., w = X ∈ A. Necessarily, the words
η(a) start with the letter X for all a ∈ A. This means for the interval I that
I ⊂ JX . According to Remark 1, the interval I ′ = T (I) has three I ′-itineraries.
Moreover, the induced mapping TI′ is also homothetic to T . Denote I = [γ, δ).
The homothety between the transformations T and TI is achieved by the map
Φ(x) = λx+γ. The homothety between T and TI′ is the map Φ′(x) = λx+T (γ).
Since the intercepts ρ and ρ′ are by (9) fixed by the homotheties Φ and Φ′,
respectively, we have

Φ(ρ) = λρ + γ = ρ and Φ′(ρ′) = λρ′ + T (γ) = ρ′ .

Eliminating γ, we obtain

(1 − λ)ρ′ = T (γ) = T
(
(1 − λ)ρ

)
.

Since conjugation by any word w can be performed letter by letter, the proof is
finished. �

We will also need to see the relation of the substitution η corresponding
to the interval I = [γ, δ) with the substitution corresponding to the interval
I = [1 − δ, 1 − γ). It turns out that it is the mirror substitution of η, defined
in general as follows. For a morphism ξ : A → A, we define the morphism
ξ : A → A by ξ(a) = ξ(a) for a ∈ A.

Proposition 3. Let I ⊂ [0, 1) be a left-closed right-open interval such that
#ItI = 3 and TI is an exchange of three intervals with the permutation (321).
The interval I satisfies #ItI = 3 and the induced map TI is homothetic to TI .
If, moreover, TI is homothetic to T and the substitution η corresponding to I
fixes the infinite word uρ, then the substitution corresponding to I is η and fixes
the infinite word uρ, where ρ = 1 − ρ.

Proof. Denote ItI = {R1, R2, R3} and Ij = {x ∈ I : RI(x) = Rj} = [γj , δj) for
j = 1, 2, 3 so that I1 < I2 < I3. By Proposition 1, the I-itineraries are R1, R2

and R3, where

I ′
j = {x ∈ I : RI(x) = Rj} = [1 − δ′

j , 1 − γ′
j) ,

Interval Exchange Words and the Question of Hof, Knill, and Simon 385

where [γ′
j , δ

′
j) = TI [γj , δj). Since TI is an exchange of three intervals with the

permutation (321) we have

TI [γ1, δ1) > TI [γ2, δ2) > TI [γ3, δ3) ,

and therefore I ′
1 < I ′

2 < I ′
3. The induced map TI is therefore an exchange of three

intervals I ′
1, I

′
2 and I ′

3 with permutation (321) and since |I ′
j | = |Ij | for j = 1, 2, 3,

the transformation TI is homothetic to TI .
Suppose that TI is homothetic to the original 3iet T . By Theorem 1, there

is a substitution η corresponding to the interval I and satisfying η(A) = R1,
η(B) = R2 and η(C) = R3. The mapping TI is homothetic to TI and thus also
to T , the corresponding substitution η′ satisfies η′(A) = R1, η′(B) = R2 and
η′(C) = R3. We can see that η′ = η.

Let ρ be the intercept of the infinite word which is fixed by the substitution
η. It is the center of homothety between TI and T , i.e., it is the fixed point of
the mapping Φ(x) = (δ − γ)x + γ. We have ρ = (δ − γ)ρ + γ, which implies

ρ =
γ

1 − δ + γ
.

Similarly, the intercept ρ of the substitution η satisfies ρ = (δ − γ)ρ + 1 − δ,
whence

ρ =
1 − δ

1 − δ + γ
= 1 − ρ . �

For a finite word w, we denote by Fst(w) and Lst(w) the first and last letters
of w, respectively.

Remark 2. Let η be a primitive substitution given by Theorem 1 fixing a 3iet
word. Necessarily, the first and the last letters of η(A), η(B) and η(C) satisfy

Fst
(
η(A)

) ≤ Fst
(
η(B)

) ≤ Fst
(
η(C)

)
and Lst

(
η(A)

) ≤ Lst
(
η(B)

) ≤ Lst
(
η(C)

)
,

where we consider the order A < B < C. The inequalities for the first letters
follow from the definition of an exchange of intervals, namely from the fact that
the words η(A), η(B) and η(C) are given as I-itineraries. By Proposition 3, the
last letters of the words η(A), η(B) and η(C) are the first letters of the words
η(A), η(B) and η(C) which proves the second set of inequalities.

For the proof of the main Theorem 2, we need the following lemma. Its proof
is a technical one and necessitates some facts about the relation of morphisms
fixing 3iet words and Sturmian morphisms. All the details can be found in the
full version of this contribution in [12].

Lemma 1. Let η be a primitive substitution given by Theorem 1 fixing a 3iet
word. We have(

Fst
(
ηL(A)

)
,Fst

(
ηL(B)

)
,Fst

(
ηL(C)

))
=(

Lst
(
ηR(A)

)
,Lst

(
ηR(B)

)
,Lst

(
ηR(C)

)) ∈ {
(A,B,B), (B,B,C)

}
.

386 Z. Masáková et al.

Corollary 1. Let η be a primitive substitution given by Theorem 1 fixing a 3iet
word uρ. If

(
Fst

(
η(A)

)
,Fst

(
η(B)

)
,Fst

(
η(C)

))
= (A,B,B), then ρ = α, and if(

Fst
(
η(A)

)
,Fst

(
η(B)

)
,Fst

(
η(C)

))
= (B,B,C), then ρ = β.

Proof. Let I be the interval corresponding to η such that TI is homothetic to
T . Denote IX = {x ∈ I : RI(x) = X}. If

(
Fst

(
η(A)

)
,Fst

(
η(B)

)
,Fst

(
η(C)

))
=

(A,B,B), then the boundary between intervals IA and IB, i.e., the discontinuity
point of TI , is equal to the point α. Since TI is homothetic to T , the homothety
map Φ maps the discontinuity points of T to the discontinuity points of TI , i.e.,
Φ(α) = α. Since the fixed point of the homothety is equal to the intercept of the
infinite word coded by η, we have ρ = α. The other case is analogous. �

5 Class P Conjecture for Non-degenerate 3iet

The main result of this section is Theorem 2, which states that a substitution
fixing a non-degenerate 3iet word is of class P ′.

Definition 3. Let ϕ be a substitution over an alphabet A. We say that ϕ belongs
to the class P if there exists a palindrome p such that for every a ∈ A one has
ϕ(a) = ppa where pa is a palindrome. We say that ϕ is of class P ′ if it is
conjugate to some morphism in class P .

The following lemma is a generalization of a result obtained for binary alpha-
bets by Tan [13], also shown in [9]. We provide a different proof.

Proposition 4. Let ϕ : A → A be a non-erasing morphism. The morphism ϕ
is conjugate to ϕ if and only if ϕ is of class P ′.

Proof. (⇐): Since ϕ is of class P ′, there exists a morphism ϕ′ of class P which
is conjugate to ϕ, i.e., there exists a word w such that wϕ(a) = ϕ′(a)w or
ϕ(a)w = wϕ′(a) for every letter a.

We can suppose that wϕ(a) = ϕ′(a)w for every letter a as the other case
is analogous. It implies ϕ(a) = w−1ppaw for some palindromes pa and p. Thus,
ϕ(a) = wpap(w)−1 for every letter a. In other words, the morphism ϕ is conjugate
to ϕ′. Since ϕ′ is clearly conjugate to ϕ, we conclude that ϕ is conjugate to ϕ.

(⇒): Since ϕ is conjugate to ϕ, there exists a word w ∈ B∗ such that for
every a ∈ A, we have

ϕ(a)w = wϕ(a) or wϕ(a) = ϕ(a)w .

Suppose first that ϕ(a)w = wϕ(a) holds. By Lemma 1 in [3], this implies that
w is a palindrome. Let u ∈ A∗ and c ∈ {ε} ∪ A be such that w = ucu. We can
thus write

ϕ(a)ucu = ucuϕ(a) .

By applying (uc)−1 from the left and (cu)−1 from the right, we obtain for any
a ∈ A

c−1u−1ϕ(a)u = uϕ(a)u−1c−1 = c−1u−1ϕ(a)u .

Interval Exchange Words and the Question of Hof, Knill, and Simon 387

This means that the word pa := c−1u−1ϕ(a)u is a palindrome. Set p := c. Denote
by ϕ′ the morphism defined for all a ∈ A by ϕ′(a) = ppa = u−1ϕ(a)u. Obviously,
ϕ is conjugate to ϕ′ which is of class P . Therefore ϕ ∈ P ′.

The case wϕ(a) = ϕ(a)w is analogous. �
We are now in position to complete the proof the main theorem.

Theorem 2. If ξ is a primitive substitution fixing a non-degenerate 3iet word,
then ξ or ξ2 belongs to class P ′.

Proof. Denote by η ∈ {ξ, ξ2} the substitution from Theorem 1. There exist
intervals IL and IR ⊂ [0, 1) such that ηL(A), ηL(B) and ηL(C) are the IL-
itineraries, ηR(A), ηR(B) and ηR(C) are the IR-itineraries, and such that TIL

and TIR
are 3iets homothetic to T .

Lemma 1 implies that
(
Fst

(
ηL(A)

)
,Fst

(
ηL(B)

)
,Fst

(
ηL(C)

))
=

(
Lst

(
ηR(A)

)
,Lst

(
ηR(B)

)
,Lst

(
ηR(C)

))

and this triple of letters equals (A,B,B) or (B,B,C). Suppose it is equal to
(A,B,B). Note that by Corollary 1, ηL fixes the infinite word uα.

According to Proposition 3, the induced transformation TIR
is again homo-

thetic to T and the corresponding substitution is ηR. Since it is the mirror sub-
stitution to ηR, we have

(
Fst

(
ηR(A)

)
,Fst

(
ηR(B)

)
,Fst

(
ηR(C)

))
= (A,B,B).

By Corollary 1, the substitution ηR also fixes the infinite word uα. Since the
intervals IL and IR are of the same length and are homothetic to the interval
[0, 1) with the same homothety center α, necessarily IL = IR and thus ηR = ηL.
Consequently, ηR is conjugate to its mirror image. We apply Proposition 4 to
finish the proof.

In case that
(
Fst

(
ηL(A)

)
,Fst

(
ηL(B)

)
,Fst

(
ηL(C)

))
= (B,B,C), we proceed

in a similar way. In this case, the center of the homothety of the intervals IL = IR

and [0, 1) is β. �

6 Comments

Recall that a substitution ξ over an alphabet A is called marked if its leftmost
conjugate ξL and its rightmost conjugate ξR satisfy

Fst
(
ξL(a)

) �= Fst
(
ξL(b)

)
and Lst

(
ξR(a)

) �= Lst
(
ξR(b)

)

for distinct a, b ∈ A. It can be shown that if ξ is marked, then all its powers
are marked. In [9], it is shown that for a marked morphism ξ with fixed point u
having infinitely many palindromes, some power ξk belongs to class P ′.

Our Lemma 1 shows that a substitution fixing a non-degenerated 3iet word
cannot be marked. Theorem 2 thus provides a new class of substitutions satis-
fying the conjecture.

388 Z. Masáková et al.

Let us mention that substitutions fixing degenerate 3iet words are not nec-
essarily in class P ′. In fact, a counterexample to the conjecture given by Labbé
in [10] is the substitution

A �→ ABA, B �→ C, C �→ BAC,

which has, as a fixed point, a degenerate 3iet word coding the orbit of ρ = 2−√
2

4

under the 3iet with parameters α = 1
2 and β = 3−√

2
2 .

Acknowledgements. Z.M. and E.P. acknowledge financial support by the Czech Sci-
ence Foundation grant GAČR 13-03538S, Š.S. acknowledges financial support by the
Czech Science Foundation grant GAČR 13-35273P.

References

1. Arnoux, P., Berthé, V., Masáková, Z., Pelantová, E.: Sturm numbers and substi-
tution invariance of 3iet words. Integers 8 (Article A14) (2008)

2. Blondin Massé, A., Brlek, S., Garon, A., Labbé, S.: Equations on palindromes and
circular words. Theoret. Comput. Sci. 412, 2922–2930 (2011)

3. Blondin Massé, A., Brlek, S., Labbé, S.: Palindromic lacunas of the Thue-Morse
word. In: Proc. GASCom 2008, pp. 53–67 (2008)

4. Ferenczi, S., Holton, C., Zamboni, L.: Structure of three-interval exchange trans-
formations II: a combinatorial description of the tranjectories. J. Anal. Math. 89,
239–276 (2003)

5. Gawrychowski, P., Manea, F., Nowotka, D.: Testing generalised freeness of words.
In: Mayr, E.W., Portier, N. (eds.) 31st International Symposium on Theoreti-
cal Aspects of Computer Science (STACS 2014). (LIPIcs), vol. 25, pp. 337–349.
Dagstuhl, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Germany (2014)

6. Hof, A., Knill, O., Simon, B.: Singular continuous spectrum for palindromic
Schrödinger operators. Comm. Math. Phys. 174, 149–159 (1995)

7. Kari, L., Mahalingam, K.: Watson-crick conjugate and commutative words. In:
Garzon, M.H., Yan, H. (eds.) DNA 2007. LNCS, vol. 4848, pp. 273–283. Springer,
Heidelberg (2008)

8. Keane, M.: Interval exchange transformations. Math. Z. 141, 25–31 (1975)
9. Labbé, S., Pelantová, E.: Palindromic sequences generated from marked mor-

phisms. Eur. J. Comb. 51, 200–214 (2016)
10. Labbé, S.: A counterexample to a question of Hof, Knill and Simon. Electron. J.

Comb. 21 (2014)
11. Lothaire, M.: Algebraic combinatorics on words. Encyclopedia of Mathematics and

its Applications, vol. 90. Cambridge University Press (2002)
12. Masáková, Z., Pelantová, E., Starosta, Š: Interval exchange words and

the question of Hof, Knill, and Simon (2015). (preprint available at)
http://arxiv.org/abs/1503.03376

13. Tan, B.: Mirror substitutions and palindromic sequences. Theoret. Comput. Sci.
389, 118–124 (2007)

http://arxiv.org/abs/http://arxiv.org/abs/1503.03376

State Complexity of Neighbourhoods
and Approximate Pattern Matching

Timothy Ng, David Rappaport, and Kai Salomaa(B)

School of Computing, Queen’s University, Kingston, ON K7L 3N6, Canada
{ng,daver,ksalomaa}@cs.queensu.ca

Abstract. The neighbourhood of a language L with respect to an addi-
tive distance consists of all strings that have distance at most the given
radius from some string of L. We show that the worst case (deterministic)
state complexity of a radius r neighbourhood of a language recognized
by an n state nondeterministic finite automaton A is (r+2)n. The lower
bound construction uses an alphabet of size linear in n. We show that the
worst case state complexity of the set of strings that contain a substring
within distance r from a string recognized by A is (r + 2)n−2 + 1.

Keywords: Regular languages · State complexity · Lower bounds ·
Additive distance

1 Introduction

The similarity of strings is often defined using the edit distance [11,16], also
known as the Levenshtein distance [14]. The edit distance is particularly useful
for error-correction and error-detection applications [7–10,12]. A useful property
is that the edit distance is additive with respect to concatenation of strings in
the sense defined by Calude et al. [4].

If the distance of any two distinct strings of a language L is greater than r, the
language L can detect up to r errors [9,11,13] (assuming the errors have unit
weight). Alternatively we can consider what the shortest distance is between
strings in languages L1 and L2, that is, what is the smallest number errors
that transform a string of L1 into a string of L2. Calude at al. [4] showed that
the neighbourhood of a regular language with respect to an additive distance is
always regular. Additive quasi-distances preserve regularity as well [4]. This gives
rise to the question how large is the deterministic finite automaton (DFA) needed
to recognize the neigbourhood of a regular language. Informally, determining the
optimal size of the DFA for the neighbourhood gives the state complexity of error
detection. Note that since complementation does not change the size of a DFA,
the size of the minimal DFA for the neighbourhood of L of radius r equals to
the state complexity of the set of strings that have distance at least r + 1 from
any string in L.

Povarov [17] showed that the Hamming neighbourhood of radius one of an
n-state DFA language can be recognized by a DFA of size n · 2n−1 + 1 and also
c© Springer International Publishing Switzerland 2015
I. Potapov (Ed.): DLT 2015, LNCS 9168, pp. 389–400, 2015.
DOI: 10.1007/978-3-319-21500-6 31

390 T. Ng et al.

gave a lower bound 3
8n · 2n − 2n−4 +n for its state complexity. Using a weighted

finite automaton construction the third author and Schofield [18] gave an upper
bound of (r+2)n for the neighbourhood of radius r of an n-state DFA-language.
No good lower bounds are known for neighbourhoods of radius at least two.

The string matching problem consists of finding occurrences of a particular
string in a text [2]. El-Mabrouk [6] considers the problem of pattern matching
with r mismatches from a descriptional complexity point of view. Given a pattern
P of length m and a text T , the problem is to determine whether T contains
substrings of length m having characters differing from P in at most r positions,
that is, substrings having Hamming distance at most r from P . For a pattern
P = am consisting of occurrences of only one character, the state complexity
was shown to be

(
m+1
r+1

)
[6].

The state complexity of Σ∗LΣ∗ was considered by Brzozowski, Jirásková,
and Li [3] and was shown to have a tight bound of 2n−2 + 1. A DFA recogniz-
ing Σ∗LΣ∗ can be viewed to solve the exact string matching problem. In the
terminology of Brzozowski et al. [3], Σ∗LΣ∗ is a two-sided ideal and the descrip-
tional complexity of related subregular language families was studied recently
by Bordihn et al. [1].

This paper studies the descriptional complexity of neighbourhoods and of
approximate string matching. As our main result we give a lower bound (r+2)n

for the size of a DFA recognizing the radius r neighbourhood of an n-state regular
language. The lower bound matches the previously known upper bound [18]. The
bound can be reached either using a neighbourhood of an n-state DFA language
with respect to an additive quasi-distance or using a neighbourhood of an n state
NFA (nondeterministic finite automaton) language using an additive distance.

The lower bound constructions use an alphabet of size linear in n. A further
limitation is that the (quasi-)distance associates different values to different edit
operations. The precise state complexity of the edit distance with unit error costs
remains open.

We also show that if L is recognized by an n-state NFA the set of strings
that contain a substring within distance r from a string in L with respect to
an additive (quasi-)distance is recognized by a DFA of size (r + 2)n−2 + 1 and
that this bound cannot be improved in the worst case. When r is zero the result
coincides with the state complexity of two-sided ideals [3].

2 Preliminaries

Here we briefly recall some definitions and notation used in the paper. For all
unexplained notions on finite automata and regular languages the reader may
consult the textbook by Shallit [19] or the survey by Yu [20]. A survey of distances
is given by Deza and Deza [5] and the notion of quasi-distance is from Calude
et al. [4].

We denote by Σ a finite alphabet, Σ∗ the set of words over Σ, and ε the empty
word. A nondeterministic finite automaton (NFA) is a tuple A = (Q,Σ, δ, q0, F)
where Q is a finite set of states, Σ is an alphabet, δ is a multi-valued transition

State Complexity of Neighbourhoods and Approximate Pattern Matching 391

function δ : Q × Σ → 2Q, q0 ∈ Q is the initial state, and F ⊆ Q is a set of final
states. We extend the transition function δ to Q × Σ∗ → 2Q in the usual way.
A word w ∈ Σ∗ is accepted by A if δ(q0, w)∩F �= ∅ and the language recognized
by A consists of all strings accepted by A. The automaton A is a deterministic
finite automaton (DFA) if, for all q ∈ Q and a ∈ Σ, δ(q, a) either consists of one
state or is undefined. The DFA A is complete if δ(q, a) is defined for all q ∈ Q
and a ∈ Σ. Two states p and q of a DFA A are equivalent if δ(p,w) ∈ F if
and only if δ(q, w) ∈ F for every string w ∈ Σ∗. A complete DFA A is minimal
if each state q ∈ Q is reachable from the initial state and no two states are
equivalent. The (right) Kleene congruence of a language L ⊆ Σ∗ is the relation
≡L⊆ Σ∗ × Σ∗ defined by setting

x ≡L y iff [(∀z ∈ Σ∗) xz ∈ L ⇔ yz ∈ L].

The language L is regular if and only if the index of ≡L is finite and, in this case,
the index of ≡L is equal to the size of the minimal DFA for L [19]. The minimal
DFA for a regular language L is unique. The state complexity of L, sc(L), is the
size of the minimal complete DFA recognizing L.

A function d : Σ∗ ×Σ∗ → [0,∞) is a distance if it satisfies for all x, y, z ∈ Σ∗

the conditions d(x, y) = 0 if and only if x = y, d(x, y) = d(y, x), and d(x, z) ≤
d(x, y) + d(y, z). The function d is a quasi-distance [4] if it satisfies conditions
2 and 3 and d(x, y) = 0 if x = y; that is, a quasi-distance between two distinct
elements can be zero. In the following, unless otherwise mentioned, we consider
only integral (quasi-)distances; that is, d is always a function Σ∗ × Σ∗ → IN0.

The neighbourhood of a language L of radius r is the set

E(L, d, r) = {x ∈ Σ∗ | (∃w ∈ L)d(x,w) ≤ r}.

A distance d is finite if for all nonnegative integers r the neighbourhood of radius
r of any string with respect to d is finite. A distance d is additive [4] if for every
factorization of a string w = w1w2 and radius r ≥ 0,

E(w, d, r) =
⋃

r1+r2=r

E(w1, d, r1) · E(w2, d, r2).

A neighbourhood of a regular language with respect to an additive quasi-distance
is regular [4].

The following upper bound for the state complexity of the neighbourhood
of a regular language with respect to additive distances is known by [18] and
by [15] for additive quasi-distances. The results are stated in terms of weighted
finite automata.

Proposition 2.1 ([15,18]). If A is an n-state NFA and d an additive quasi-
distance, then for any r ∈ IN, sc(E(L(A), d, r)) ≤ (r + 2)n.

We will use also the NFA construction for a neighbourhood due to
Povarov [17]. Informally, the construction makes r +1 copies of an NFA A, with
each copy corresponding to a cumulative error ranging from 0 to r. A transition

392 T. Ng et al.

from a level i to a level i′ > i occurs when there is a transition that does not
exist in A. There are r+1 such copies of A to allow for at most r errors. Strictly
speaking, [17] deals with additive distances but exactly the same construction
works for quasi-distances.

Proposition 2.2 ([17]). If A is an NFA with n states and d is an additive
quasi-distance, then E(L(A), d, r) has an NFA of size n · (r + 1).

3 State Complexity of Additive Neighbourhoods

As the main result of this section we give a tight lower bound for the state com-
plexity of a neighbourhood of a regular language given by a DFA (respectively,
by an NFA) with respect to an additive quasi-distance (respectively, an additive
distance).

For n ∈ IN we consider an alphabet

Σn = {a1, . . . , an−1, b1, . . . , bn, c1, . . . , cn−1}. (1)

For r ∈ IN, we define a quasi-distance dr : Σ∗
n × Σ∗

n → IN0 by the conditions:

– dr(ai, aj) = r + 1 for i �= j
– dr(bi, bj) = 1 for i �= j
– dr(ai, bj) = dr(ci, bj) = r + 1 for all 1 ≤ i, j ≤ n
– dr(ai, ci) = 0 for 1 ≤ i ≤ n − 1
– dr(ci, cj) = r + 1 for all 1 ≤ i, j ≤ n
– dr(ai, cj) = r + 1 for all i �= j
– dr(σ, ε) = r + 1 for all σ ∈ Σ.

Note that the value dr(σ, ε) denotes the cost of the deletion and insertion oper-
ations and that the listed substitution, insertion, and deletion operations on
elements of Σn define a unique additive quasi-distance of Σ∗

n [4].

Lemma 3.1. The function dr is an additive quasi-distance.

We define the following family of incomplete DFAs. Let An =
(Qn, Σn, δ, 1, {n}) be a DFA with n states where Qn = {1, . . . , n} and Σn is
as in (1). The transition function δ is defined by setting

– δ(i, ai) = i + 1 for 1 ≤ i ≤ n − 1
– δ(i, aj) = i for 1 ≤ i ≤ n − 2 and i + 1 ≤ j ≤ n − 1
– δ(i, bj) = i for 1 ≤ i ≤ n − 1 and j = i − 1 or i + 1 ≤ j ≤ n
– δ(i, ci) = i for 1 ≤ i ≤ n − 1

All transitions not listed are undefined. The DFA An is depicted in Figure 1.
The quasi-distance dr identifies the symbols ai and ci, 1 ≤ i ≤ n. By using

two different symbols that have distance zero in our quasi-distance allows us
to define An to be deterministic. By identifying ai and ci we can later modify

State Complexity of Neighbourhoods and Approximate Pattern Matching 393

1start 2 · · · n− 1 n
a1 a2 an−2 an−1

c1, a2, . . . , an−1

b2, b3, . . . , bn

c2, a3, . . . , an−1

b1, b3, . . . , bn
cn−1, bn−2, bn

bn−1

Fig. 1. The DFA An

the construction to give a lower bound for the neighbourhood of a language
recognized by an NFA with respect to a distance (see Lemma 3.4).

To establish a lower bound for the state complexity of the neighbourhood
E(L(An), dr, r) we define a set S of strings that are all pairwise inequivalent
with respect to the Kleene congruence of the neighbourhood. First we construct
an NFA Bn,r for E(L(An), dr, r) and the inequivalence of the strings in S is
verified using properties of Bn,r.

Suppose we have a DFA A = (Q,Σ, δ, q0, F). Using Proposition 2.2 (due
to [17]), an NFA B = (Q′, Σ, δ′, q′

0, F
′) which recognizes the neighbourhood

of radius r of L(A) with respect to a quasi-distance d is defined by setting
Q′ = Q × {0, . . . , r}, q′

0 = (q0, 0), F ′ = F × {0, . . . , r} and the transitions of δ′

for q ∈ Q, 0 ≤ k ≤ r and a ∈ Σ are defined as

δ′((q, k), a) = (δ(q, a), k) ∪
⋃

b∈(Σ∪{ε})\{a}
{(δ(q, b), k + d(a, b)) | k + d(a, b) ≤ r}.

Now as described above we construct the NFA

Bn,r = (Q′
n, Σn, δ′, q′

0, F
′), (2)

shown in Figure 2, which recognizes the neighbourhood of L(An) of radius r with
respect to the quasi-distance dr, where Q′

n = Qn × {0, 1, . . . , r}, q′
0 = (q0, 0),

F ′ = F × {0, 1, . . . , r} and the transition function δ′ is defined by

– δ′((q, j), aq) = {(q, j), (q + 1, j)} for 1 ≤ q ≤ n − 1,
– δ′((q, j), aq′) = {(q, j)} for all 1 ≤ q ≤ n − 1 and q ≤ q′ ≤ n − 1,
– δ′((q, j), bi) = {(q, j + 1)} for 1 ≤ q ≤ n and i = 1, . . . , q − 2, q,
– δ′((q, j), bi) = {(q, j)} for 1 ≤ q ≤ n and i = q − 1, q + 1, . . . , n,
– δ′((q, j), cq) = {(q, j), (q + 1, j)} for 1 ≤ q ≤ n − 1.

All transitions not listed above are undefined. Note that since in the distance dr

the cost of inserting/deleting a symbol is r + 1 and Bn,r recognizes a neigh-
bourhood of radius r there are no error transitions corresponding to inser-
tion/deletion. For the same reason the only error transitions for substitution
correspond to substituting bi with bj , i �= j. The distance between ai and ci is
zero (no error), and all other substitutions have cost r + 1.

For 0 ≤ ki ≤ r + 1, 1 ≤ i ≤ n, we define the string

w(k1, . . . , kn) = a1b
k1
1 a2b

k2
2 · · · an−1b

kn−1
n−1 bkn

n . (3)

394 T. Ng et al.

Fig. 2. The NFA Bn,r

The next lemma establishes a technical property of the computations of the NFA
Bn,r on the strings w(k1, . . . , kn). The property is then used to establish that
the strings are pairwise inequivalent with respect to the language recognized by
Bn,r.

Lemma 3.2. If ki ≤ r, then there exists a computation Ci of the NFA Bn,r

which reaches the state (i, ki) at the end of the input w(k1, . . . , kn), 1 ≤ i ≤ n.
There is no computation of Bn,r on w(k1, . . . , kn) that reaches a state (i, k′

i) with
k′

i < ki. Furthermore, if ki = r + 1, no computation of Bn,r reaches at the end
of w(k1, . . . , kn) a state where the first component is i.

Proof. We verify that a computation Ci can reach state (i, ki), ki ≤ r. First
consider the case i < n. For j = 1, . . . , i−1, aj takes state (j, 0) to (j +1, 0) and
the next kj symbols bj are read using the self-loop in state (j +1, 0). In this way
the computation reaches state (i, 0) where we read ai using the self-loop and
then reading the ki symbols bi the computation reaches (i, ki). In state (i, ki)
the remaining suffix ai+1b

ki+1
i+1 · · · an−1b

kn−1
n−1 bkn

n is consumed using the self-loops.
Second, in the case i = n similarly as above the computation after symbol an−1

reaches state (n, 0), the symbols bn−1 are read using self-loops and reading the
kn symbols bn takes us to state (n, kn).

To verify the second part of the lemma we first observe the following. The
only transitions of Bn,r which move from a state (i, j) to a state of the form
(i + 1, j′), 0 ≤ j ≤ r, are on symbols ai and ci. Note that since the distance dr

State Complexity of Neighbourhoods and Approximate Pattern Matching 395

associates cost r + 1 to insertions and deletions, as well as to replacing ai or ci

by any other symbol, the NFA Bn,r does not have error transitions that change
the first component of a state. Since dr(ai, ci) = 0, we can treat them as the
same letter and for convenience, we refer only to ai. Thus, the only way to reach
a state (q, j) for any j ≤ r, is by taking transitions ((i, j), ai, (i + 1, j)) on each
occurrence of ai in w(k1, . . . , kn) for i < q. Otherwise, the computation remains
in some state (i′, j) for i′ < q.

Now we show that there is no computation of w(k1, . . . , kn) that can reach a
state (j, k′

j) with k′
j < kj . As discussed above, the only way for the computation

to end in a state (j, i), 0 ≤ i ≤ r, is by reaching the state (j, 0) when consuming
the prefix a1b

k1
1 · · · aj−1b

kj−1
j−1 and then reading aj using a self-loop. There is no

other way to reach a state (j, i) for any i, since exiting the states with second
components zero (corresponding to the original DFA) requires reading some aj′

with a self-loop, after which there is no transition which can be taken to move to
a state (j′ + 1, i). If in the state (j, 0) the symbol aj is not read with a self-loop
then the first component becomes j + 1 and we cannot reach a state (j, i) with
the remaining suffix. Thus, from (j, 0) the NFA is forced to read the following kj

symbols bj with error transitions, ending in the kj-th level in the state (j, kj).
Exactly the same argument verifies that in the case kj = r+1, no computation

can end in a state where the first component is j. As above it is seen that to
do this we must in the state (j, 0) read the symbol aj with a self-loop and after
attempting to read the following r + 1 symbols bj with an error transition the
computation becomes undefined. ��

With the previous lemma we can now establish a lower bound for the state
complexity of the neighbourhood of L(An).

Lemma 3.3. Let An be the DFA as in Figure 1. The strings w(k1, . . . , kn),
0 ≤ ki ≤ r+1, 1 ≤ i ≤ n, are all pairwise inequivalent with respect to the Kleene
congruence of E(L(An), dr, r).

Proof. We consider two distinct strings w(k1, . . . , kn) and w(k′
1, . . . , k

′
n) with

0 ≤ ki, k
′
i ≤ r + 1 for i = 1, . . . , n. There exists an index j such that kj �=

k′
j and without loss of generality, we have kj < k′

j . To distinguish the strings

w(k1, . . . , kn) and w(k′
1, . . . , k

′
n) consider the word z = b

r−kj

j aj+1 · · · an−1. The
string z is well-defined since kj < k′

j ≤ r + 1 and so r − kj ≥ 0.
Let Bn,r be the NFA constructed for E(L(A), dr, r) as in (2). We claim that

w(k1, . . . , kn) · z ∈ L(Bn,r) but w(k′
1, . . . , k

′
n) · z �∈ L(Bn,r). We note that by

Lemma 3.2, Bn,r has a computation on w(k1, . . . , kn) that ends in state (j, kj).
Note that kj ≤ r. When continuing the computation on the string z, by reading
the r − kj symbols bj ’s, the machine is taken to the state (j, r). Then, reading
the suffix aj+1 · · · an−1 takes the machine to the accepting state (n, r).

To show w(k′
1, . . . , k

′
n) · z �∈ L(Bn,r), we consider from which states of Bn,r

an accepting state, that is, a state with first component n is reachable on the
string z. We recall that in Bn,r the transitions on bj cannot change the first com-
ponent of the state. (According to the definition of Bn,r the reason for this is that
dr associates cost r+1 to insertion/deletion or to subsitute a symbol ai, ci by bj .)

396 T. Ng et al.

Thus, for Bn,r to reach an accepting state (with first component n) on the
string w(k′

1, . . . , k
′
n)·z, a computation must reach a state of the form (j, �j) on the

prefix w(k′
1, . . . , k

′
n). By Lemma 3.2, this is possible only if �j ≥ k′

j . From state

(j, �j), �j ≥ k′
j , reading the substring b

r−kj

j takes the machine to an undefined
state, as it is not possible to make r − kj error transitions on bj in a state where
the second component is �j > kj . This means that Bn,r cannot accept the string
w(k′

1, . . . , k
′
n) · z.

Thus, each string w(k1, . . . , kn), 0 ≤ i ≤ r + 1, 1 ≤ i ≤ n, defines a distinct
equivalence class of ≡E(L(A),dr,r). ��

As a corollary of the proof of the previous lemma we get also a lower bound
for the state complexity of the neighbourhood of an NFA-language with respect
to an additive distance.

Lemma 3.4. For n, r ∈ IN there exists an additive distance d′
r and an NFA A′

n

over an alphabet Σ′
n of size 2n − 1 such that

sc(E(L(A′
n), d′

r, r)) ≥ (r + 2)n.

Proof. Choose Σ′
n = {a1, . . . , an−1, b1, . . . , bn} and d′

r is the restriction of dr to
the alphabet Σ′

n (where dr is the quasi-distance of Lemma 3.1). The function d′
r

does not assign distance zero to any pair of distinct elements.
The NFA A′

n is obtained from the DFA An in Figure 1 by replacing all ci-
transitions by ai-transitions, 1 ≤ i ≤ n − 1. Thus, A′

n is nondeterministic. An
NFA B′

n,r for the neighbourhood E(L(A′
n), d′

r, r) is obtained from the NFA Bn,r

in (2) simply by omitting all transitions on ci, 1 ≤ i ≤ n − 1. Note that in Bn,r

the transitions on ci exactly coincide with the transitions on ai, 1 ≤ i ≤ n − 1,
reflecting the situation that dr(ai, ci) = 0.

The strings w(k1, . . . , kn) (as in (3)) did not involve any symbols ci, and the
proof of Lemma 3.3 remains the same, word for word, just by replacing Bn,r

with B′
n,r. ��

Now putting together Lemma 3.3, Lemma 3.4 and Proposition 2.1, we have:

Theorem 3.1. If d is an additive quasi-distance, A is an NFA with n states
and r ∈ IN,

sc(E(L(A), d, r) ≤ (r + 2)n).

There exists an additive quasi-distance dr and a DFA A with n states over an
alphabet of size 3n − 2 such that sc(E(L(A), dr, r) = (r + 2)n.

There exists an additive distance d′
r and an NFA A′ with n states over an

alphabet of size 2n − 1 such that sc(E(L(A′), d′
r, r) = (r + 2)n.

The lower bound construction has the trade-off of either using a DFA and a
quasi-distance or an NFA and a distance, respectively. It would be interesting to
know whether or not the general upper bound can be improved in cases where
we are using a distance and the language is specified by a DFA.

State Complexity of Neighbourhoods and Approximate Pattern Matching 397

4 State Complexity of Pattern Matching

We consider an extension of the pattern matching problem with mismatches in
the sense of El-Mabrouk [6]. For a given finite automaton A and an additive
quasi-distance d we construct a DFA for the language Σ∗E(L(A), d, r)Σ∗, that
is, the set of strings that contain a substring within distance r from a string of
L(A). The construction gives an upper bound for the pattern matching problem
and using a modification of the constructions in the previous section we show
that the upper bound is optimal.

Lemma 4.1. Let A = (Q,Σ, δ, q0, FA) be an n-state NFA with k ≥ 1 final states
and d is an additive quasi-distance. Then the language

L1 = Σ∗E(L(A), d, r)Σ∗

can be recognized by a DFA B with (r + 2)n−1−k + 1 states.

Proof. Let Q = {q0, q1, . . . , qn−1}. If q0 ∈ FA, then L1 = Σ∗ and there
is nothing to prove. Thus, in the following we can assume that F =
{qn−k, qn−k+1, . . . , qn−1}, 1 ≤ k ≤ n−1. Furthermore, without loss of generality
we assume that

(∀w ∈ Σ∗) δ(q0, w) ∩ FA �= ∅ implies d(ε, w) > r. (4)

If the above condition does not hold, ε ∈ E(L(A), d, r) and there is nothing to
prove.

The DFA B recognizing L1 operates as follows. Roughly speaking, B is look-
ing for a substring of the input that belongs to E(L(A), d, r). For this purpose,
for all non-final states qz of A, the deterministic computation of B keeps track
of the smallest cumulative error between a string that takes q0 to qz and any
suffix of the input processed thus far. Note that for the initial state q0 this value
is always zero and, hence, the states of P store the cumulative error only for
the nonfinal states q1, . . . , qn−k−1. When B has found a substring belonging to
E(L(A), d, r) the computation goes to the final state pf and after that accepts
an arbitrary suffix. Next we give the definition of B and after that include a
brief correctness argument.

Define B = (P,Σ, γ, p0, FB) with set of states

P = {(i1, . . . , in−k−1) | 0 ≤ ij ≤ r + 1, j = 1, . . . , n − k − 1} ∪ {pf},

the initial state is p0 = (h1, . . . , hn−k+1) where

hz = inf{d(ε, w) | qz ∈ δ(q0, w)}, 1 ≤ z ≤ n − k − 1,

and the set of final states is defined as FB = {pf}. Note that by (4) we know
that ε �∈ L1. Next we define the transitions of B. First, γ(pf , b) = pf for all
b ∈ Σ. For p = (i1, . . . , in−k−1) ∈ P , 0 ≤ iz ≤ r + 1, z = 1, . . . , n − k − 1, and
b ∈ Σ we define

398 T. Ng et al.

(i) γ(p, b) = pf if (∃1 ≤ z ≤ n − k − 1)(∃w ∈ Σ∗) δ(qz, w) ∩ FA �= ∅ and iz +
d(b, w) ≤ r;

(ii) and if the conditions in (i) do not hold, then γ(p, b) = (j1, . . . , jn−k−1),
where, for x = 1, . . . , n − k − 1,

jx = inf[{iz + d(b, w) | qx ∈ δ(qz, w), 1 ≤ z ≤ n − k − 1}
∪ {d(b, w) | qx ∈ δ(q0, w)}].

In a state of the form (i1, . . . , in−k−1) ∈ P , the component iz, 1 ≤ z ≤ n−k−1,
keeps track of the smallest distance d(usuf , w) where usuf is a suffix of the input
processed up to that point and w is a string that in A takes the initial state q0 to
state qz. The smallest error between the suffix ε and a string that in A reaches q0
is always zero and this value is not stored in the state of B. If the computation has
found a substring in E(L(A), d, r), the state of B will be pf . ��

By modifying the construction used in the proof of Lemma 3.4 (and
Lemma 3.3) we give a lower bound that matches the upper bound from
Lemma 4.1.

Lemma 4.2. For n, r ∈ IN, there exist an additive distance d and an NFA A
with n states defined over an alphabet Σ of size 2n − 1 such that the minimal
DFA for Σ∗E(L(A), d, r)Σ∗ must have at least (r + 2)n−2 + 1 states.

Proof. Choose Σn = {a1, . . . , an−1, b1, . . . , bn} and let A′
n and d′

r be as in the
proof of Lemma 3.4. Let B′

n,r be the NFA constructed for E(L(A′
n), d′

r, r) in the
proof of Lemma 3.4.1 For 0 ≤ ki ≤ r + 1, i = 1, 2, . . . , n − 2, define

u(k1, k2, . . . , kn−2) = a1b
k1
1 a2b

k2
2 · · · an−2b

kn−2
n−2 .

Using the notations of (3) we have u(k1, . . . , kn−2) · an−1 = w(k1, k2, . . . , kn−2,
0, 0).

We claim that the strings u(k1, . . . , kn−2) are all pairwise inequivalent with
respect to the Kleene congruence of Σ∗

nE(L(A′
n), d′

r, r)Σ
∗
n. Consider two strings

u(k1, . . . , kn−2) and u(k′
1, . . . , k

′
n−2) where for some 1 ≤ j ≤ n − 2, kj < k′

j .

Choose z = b
r−kj

j aj+1 · · · an−1. As in the proof of Lemma 3.2 it is observed
that B′

n,r has a computation on u(k1, . . . , kn−2) that reaches state (j, kj), and a
computation started from state (j, kj) on input z can reach the accepting state
(n, r). Thus, u(k1, . . . , kn−2) · z ∈ L(B′

n,r) = E(L(A′
n), d′

r, r). We claim that

u(k′
1, . . . , k

′
n−2) · z �∈ Σ∗

nE(L(A′
n), d′

r, r)Σ
∗
n. (5)

Note that the string u(k′
1, . . . , k

′
n−2)·z contains exactly one occurrence of both a1

and an−1 and these are, respectively, the first and the last symbol of the string.
Since the distance d′

r associates cost r + 1 to any operation that substitutes,
deletes or inserts a symbol ai, if the negation of (5) holds then the only possibility
is that u(k′

1, . . . , k
′
n−2) · z must be in E(L(A′

n), d′
r, r). This, in turn, is possible

1 B′
n,r is obtained from the NFA of Fig. 2 by omitting all the transitions on ci’s.

State Complexity of Neighbourhoods and Approximate Pattern Matching 399

only if the computation of B′
n,r on the prefix u(k′

1, . . . , k
′
n−2) ends in a state of

the form (j, x), 0 ≤ x ≤ r. Now Lemma 3.2 implies that the second component
x must be at least k′

j and it follows that the computation on the suffix z cannot
end in an accepting state. (Lemma 3.2 uses Bn,r but the same argument applies
here because Bn,r equals B′

n,r when we omit the ci-transitions.)
Finally we note that none of the strings u(k1, . . . , kn−2), 0 ≤ ki ≤ r + 1,

is in Σ∗
nE(L(A′

n), d′
r, r)Σ

∗
n and hence they are not equivalent with a1a2 · · · an−1

which then gives the one additional equivalence class. ��
Combining the previous lemmas we can state the main result of this section.

Theorem 4.1. Let d be an additive quasi-distance on Σ∗. For any n-state NFA
A and r ∈ IN we have

sc(Σ∗ · E(L(A), d, r) · Σ∗) ≤ (r + 2)n−2 + 1).

For given n, r ∈ IN there exists an additive distance dr and an n-state NFA
A defined over an alphabet of size 2n − 1 such that sc(Σ∗E(L(A), dr, r)Σ∗ =
(r + 2)n−2 + 1.

Proof. The upper bound of Lemma 4.1 is maximized by an NFA with one final
state as (r + 2)n−2 + 1. The lower bound follows by Lemma 4.2. ��

Recall that Brzozowski et al. [3] have shown that, for an n-state DFA language
L, the worst case state complexity of the two-sided ideal Σ∗LΣ∗ is 2n−2 + 1.
This corresponds to the case of having error radius zero (r = 0) in Theorem 4.1.
Lemma 4.2 requires a linear size alphabet whereas the lower bound for the error
free case is obtained with a three letter alphabet [3]. As in Theorem 3.1 in the
lower bound result of Lemma 4.2 we can select A to be a DFA if we allow d to
be a quasi-distance.

5 Conclusion

We have given a tight lower bound construction for the state complexity of a
neighbourhood of a regular language. The construction uses a variable alphabet
of size linear in the number of states of the NFA. The main open problem
for further work is to develop lower bounds for neighbourhoods of languages
over a fixed alphabet. For radius one Hamming neighbourhoods an improved
upper bound and a good lower bound using a binary alphabet were given by
Povarov [17].

Our lower bound for the approximate pattern matching problem was obtained
by modifying the lower bound construction for neighbourhoods of a regular lan-
guage. This was, roughly speaking, made possible by the choice of the distance
function and the language definition where the strings must contain the sym-
bols a1, . . . , an−1 in this particular order. Similar constructions will be more
challenging if restricted to a fixed alphabet.

400 T. Ng et al.

References

1. Bordihn, H., Holzer, M., Kutrib, M.: Determination of finite automata accepting
subregular languages. Theoretical Computer Science 410, 3209–3249 (2009)

2. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Communications of
ACM 20, 762–772 (1977)

3. Brzozowski, J., Jirásková, G., Li, B.: Quotient complexity of ideal languages.
In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 208–221. Springer,
Heidelberg (2010)

4. Calude, C.S., Salomaa, K., Yu, S.: Additive Distances and Quasi-Distances
Between Words. Journal of Universal Computer Science 8(2), 141–152 (2002)

5. Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer-Verlag, Heidelberg
(2009)

6. El-Mabrouk, N.: On the size of minimal automata for approximate string matching.
Technical report, Institut Gaspard Monge, Université de Marne la Vallée, Paris
(1997)

7. Han, Y.-S., Ko, S.-K., Salomaa, K.: The edit distance between a regular language
and a context-free language. International Journal of Foundations of Computer
Science 24, 1067–1082 (2013)

8. Kari, L., Konstantinidis, S.: Descriptional complexity of error/edit systems. Jour-
nal of Automata, Languages, and Combinatorics 9, 293–309 (2004)

9. Kari, L., Konstantinidis, S., Kopecki, S., Yang, M.: An efficient algorithm for com-
puting the edit distance of a regular language via input-altering transducers. CoRR
abs/1406.1041 (2014)

10. Konstantinidis, S.: Transducers and the properties of error detection, error-
correction, and finite-delay decodability. Journal of Universal Computer Science
8, 278–291 (2002)

11. Konstantinidis, S.: Computing the edit distance of a regular language. Information
and Computation 205, 1307–1316 (2007)

12. Konstantinidis, S., Silva, P.: Maximal error-detecting capabilities of formal lan-
guages. J. Automata, Languages and Combinatorics 13, 55–71 (2008)

13. Konstantinidis, S., Silva, P.: Computing maximal error-detecting capabilities and
distances of regular languages. Fundamenta Informaticae 101, 257–270 (2010)

14. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady 10(8), 707–710 (1966)

15. Ng, T., Rappaport, D., Salomaa, K.: Quasi-distances and weighted finite automata.
In: Shallit, J., Okhotin, A. (eds.) DCFS 2015. LNCS, vol. 9118, pp. 209–219.
Springer, Heidelberg (2015)

16. Pighizzini, G.: How hard is computing the edit distance? Information and Com-
putation 165, 1–13 (2001)

17. Povarov, G.: Descriptive complexity of the hamming neighborhood of a regular lan-
guage. In: Language and Automata Theory and Applications, pp. 509–520 (2007)

18. Salomaa, K., Schofield, P.: State Complexity of Additive Weighted Finite
Automata. International Journal of Foundations of Computer Science 18(06),
1407–1416 (2007)

19. Shallit, J.: A Second Course in Formal Languages and Automata Theory. Cam-
bridge University Press (2009)

20. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (Eds.) Handbook of
Formal Languages, vol. I, pp. 41–110. Springer (1997)

Deterministic Ordered Restarting Automata
that Compute Functions

Friedrich Otto(B) and Kent Kwee

Fachbereich Elektrotechnik/Informatik, Universität Kassel, 34109 Kassel, Germany
{otto,kwee}@theory.informatik.uni-kassel.de

Abstract. We present three methods for using deterministic ordered
restarting automata to compute relations and functions. In the most gen-
eral setting we obtain succinct representations for all rational relations,
and in the most restricted setting we derive a succinct description for
all rational functions that map the empty word to itself. In addition, we
study the deterministic ordered restarting transducer that characterizes
a proper superclass of the rational functions.

Keywords: Ordered restarting automaton · Rational function ·
Descriptional complexity

1 Introduction

The deterministic ordered restarting automaton (or det-ORWW-automaton) was
introduced in [7] in the setting of picture languages. Such an automaton has a
finite-state control, a tape with end markers that initially contains the input,
and a window of size three. Based on its state and the content of its window,
the automaton can either perform a move-right step, which shifts the window
one position to the right and changes the state, or a rewrite/restart step, which
replaces the symbol in the middle of the window by a symbol that is strictly
smaller with respect to a predefined ordering on the working alphabet, moves
the window back to the left end of the tape, and resets the state to the ini-
tial state, or an accept step, which causes the automaton to halt and accept.
While the nondeterministic variant of this type of automaton even accepts some
languages that are not context-free, the deterministic variant characterizes the
regular languages.

In [8] an investigation of the descriptional complexity of the det-ORWW-
automaton was initiated. Each det-ORWW-automaton can be simulated by an
automaton of the same type that has only a single state, which means that for
these automata, states are actually not needed. Accordingly, such an automaton
is called a stateless det-ORWW-automaton (stl-det-ORWW-automaton). For
these automata, the size of their working alphabets can be taken as a measure
for their descriptional complexity, and it has been shown that these automata
are polynomially related in size to the weight-reducing Hennie machines studied
by Pr̊uša in [10]. For n ≥ 1, there exists a regular language that is accepted
c© Springer International Publishing Switzerland 2015
I. Potapov (Ed.): DLT 2015, LNCS 9168, pp. 401–412, 2015.
DOI: 10.1007/978-3-319-21500-6 32

402 F. Otto and K. Kwee

by a stl-det-ORWW-automaton of size O(n) such that each deterministic finite-
state acceptor (DFA) for this language has at least 22

n

many states. On the
other hand, each stl-det-ORWW-automaton of size n can be simulated by an
unambiguous nondeterministic finite-state acceptor (NFA) with 2O(n) states [6],
and therewith by a DFA with 22

O(n)
states. Thus, the stl-det-ORWW-automaton

is a deterministic device that is exponentially more succinct than NFAs.
Here we study det-ORWW-automata in the setting of relations and func-

tions. First, we associate with such an automaton an input-output relation. It
turns out that in this way we obtain succinct representations of all rational
relations. In his PhD dissertation [4], Hundeshagen extended various types of
restarting automata into restarting transducers by associating an output opera-
tion with each restart and each accept transition (see also [5]). Here we apply this
concept to det-ORWW-automata showing that in this way we obtain a device
that computes a proper superclass of the rational functions. Finally, we propose
a way of associating transductions to det-ORWW-automata by using the result
that is obtained by an accepting computation to determine the generated output
directly. In this way we obtain a succint representation of all rational functions
τ that satisfy the equality τ(λ) = λ (here λ denotes the empty word).

The paper is structured as follows. In Section 2 we recall the definition of the
det-ORWW-automaton in short and summarize the main results on its descrip-
tional complexity. In the next three sections we consider the three ways of asso-
ciating relations and/or functions to det-ORWW-automata in turn. The paper
closes with a short summary and some open problems.

2 Deterministic ORWW-Automata

A det-ORWW-automaton is given by an 8-tuple M = (Q,Σ, Γ,�,�, q0, δ, >),
where Q is a finite set of states, Σ is a finite input alphabet, Γ is a finite tape
alphabet containing Σ, the symbols �,� �∈ Γ serve as markers for the left and
right border of the work space, respectively, q0 ∈ Q is the initial state,

δ : Q × (((Γ ∪ {�}) · Γ · (Γ ∪ {�})) ∪ {��}) ��� (Q × {MVR}) ∪ Γ ∪ {Accept}
is the (partial) transition function, and > is a partial ordering on Γ . The tran-
sition function describes three different types of transition steps:

(1) A move-right step has the form δ(q, a1a2a3) = (q′,MVR), where q, q′ ∈ Q,
a1 ∈ Γ ∪{�} and a2, a3 ∈ Γ . It causes M to shift the window one position to
the right and to enter state q′. Observe that no move-right step is possible,
if the window contains the right sentinel �.

(2) A rewrite/restart step has the form δ(q, a1a2a3) = b, where q ∈ Q, a1 ∈
Γ ∪ {�}, a2, b ∈ Γ , and a3 ∈ Γ ∪ {�} such that a2 > b holds. It causes M
to replace the symbol a2 in the middle of its window by the symbol b and
to restart.

(3) An accept step δ(q, a1a2a3) = Accept, where q ∈ Q, a1 ∈ Γ ∪ {�}, a2 ∈ Γ ,
and a3 ∈ Γ ∪ {�}, causes M to halt and accept. In addition, we allow an
accept step of the form δ(q0,��) = Accept.

Deterministic Ordered Restarting Automata that Compute Functions 403

If δ(q, u) is undefined for some q ∈ Q and u ∈ ((Γ∪{�})·Γ ·(Γ∪{�}))∪{��},
then M necessarily halts, when it is in state q with u in its window, and we say
that M rejects in this situation. The letters in Γ �Σ are called auxiliary symbols.

The det-ORWW-automaton M is called stateless if Q = {q0}, that is, the
initial state q0 is the only state of M . For a stateless det-ORWW-automaton,
we drop the components Q and q0 from its description to simplify the notation.
By stl-det-ORWW we denote the stateless det-ORWW-automata.

A configuration of a det-ORWW-automaton M is a pair of strings (α, qβ),
where q ∈ Q and |β| ≥ 3, and either α = λ and β ∈ {�} · Γ+ · {�} or α ∈
{�} · Γ ∗ and β ∈ Γ · Γ+ · {�}; here q ∈ Q represents the current state, αβ
is the current content of the tape, and it is understood that the window of M
contains the first three symbols of β. In addition, we admit the configuration
(λ, q0��). A restarting configuration has the form (λ, q0�w �); if w ∈ Σ∗, then
the configuration (λ, q0 �w �) is an initial configuration. Further, we use Accept
to denote the accepting configurations, which are those configurations that M
reaches by executing an accept step.

We observe that any computation of a det-ORWW-automaton M consists of
certain phases. A phase, called a cycle, starts in a restarting configuration, the
head moves along the tape performing MVR operations until a rewrite/restart
operation is performed and thus, a new restarting configuration is reached. If
no further rewrite operation is performed, any computation necessarily finishes
in a halting configuration – such a phase is called a tail. By �c

M we denote the
execution of a complete cycle, and �c∗

M is the reflexive transitive closure of this
relation. It can be seen as the rewrite relation that is realized by M on the set
of restarting configurations.

An input w ∈ Σ∗ is accepted by M , if the computation of M which starts
with the initial configuration (λ, q0 � w �) ends with an Accept instruction.
The language consisting of all input words that are accepted by M is denoted
by L(M).

As each cycle ends with a rewrite operation, which replaces a symbol a by
a symbol b that is strictly smaller than a with respect to the given ordering >,
we see that each computation of M on an input of length n consists of at most
(|Γ |−1) ·n many cycles and a tail. Thus, M can be simulated by a deterministic
single-tape Turing machine in time O(n2). Concerning the expressive power of
det-ORWW-automata, the following results have been obtained (see [6,8]).

Proposition 1. For each DFA A = (Q,Σ, q0, F, ϕ), there exists a stl-det-
ORWW-automaton M = (Σ,Γ,�,�, δ, >) such that L(M) = L(A) and |Γ | =
|Q| + |Σ|.
Proposition 2. For each det-ORWW-automaton M = (Q,Σ, Γ,�,�, q0, δ, >),
there exists a stateless det-ORWW-automaton M ′ = (Σ,Δ,�,�, δ′, >′) such
that L(M ′) = L(M) and |Δ| = |Q| · |Γ |2 + 2 · |Γ |.
Theorem 3. Let M = (Σ,Γ,�,�, δM , >) be a stl-det-ORWW-automaton.
Then an unambiguous NFA A = (Q,Σ,ΔA, q0, F) can be constructed from M
such that L(A) = L(M) and |Q| ∈ 2O(|Γ |).

404 F. Otto and K. Kwee

Thus, we have the following characterization.

Corollary 4. [7,8] REG = L(stl-det-ORWW) = L(det-ORWW).

Concerning the descriptional complexity of stl-det-ORWW-automata, the fol-
lowing results have been obtained, where we use the number of letters in the
tape alphabet as the complexity measure for a stl-det-ORWW-automaton and
the number of states as the complexity measure for NFAs and DFAs.

Corollary 5. For converting a stl-det-ORWW-automaton with n letters into an
equivalent NFA, 2O(n) states are sufficient, and there are cases in which these
many states are also necessary.

Corollary 6. For converting a stl-det-ORWW-automaton with n letters into an
equivalent DFA, 22

O(n)
states are sufficient, and there are cases in which these

many states are also necessary.

3 Relations Associated to det-ORWW-Automata

Let Γ be a finite alphabet, let Σ1 and Σ2 be two disjoint subalphabets of Γ ,
and let PrΣ1 and PrΣ2 denote the projections from Γ ∗ onto Σ∗

1 and Σ∗
2 . With

a det-ORWW-automaton M = (Q,Σ1 ∪ Σ2, Γ,�,�, q0, δ, >) we associate the
(input-output) relation Relio(M) ⊆ Σ∗

1 × Σ∗
2 that is defined as follows:

Relio(M) := { (u, v) ∈ Σ∗
1 × Σ∗

2 | ∃w ∈ L(M) : PrΣ1(w) = u and PrΣ2(w) = v }.

Thus, a pair (u, v) ∈ Σ∗
1 × Σ∗

2 belongs to the relation Relio(M) if and only if
there exists a word w in the shuffle of u and v such that w belongs to L(M).
We say that M recognizes the relation Relio(M). A relation R ⊆ Σ∗

1 × Σ∗
2 is

a det-ORWW-io-relation if there exists a det-ORWW-automaton M such that
Relio(M) = R holds.

A rational transducer is defined as T = (Q,Σ,Δ, q0, F,E), where Q is a finite
set of states, Σ is a finite input alphabet, Δ is a finite output alphabet, q0 ∈ Q is
the initial state, F ⊆ Q is the set of final states, and E ⊂ Q×(Σ∪{λ})×Δ∗ ×Q is
a finite set of transitions. The relation Rel(T) computed by T consists of all pairs
(u, v) ∈ Σ∗ ×Δ∗ such that there exists a computation of T that, starting from the
initial state q0, reaches a final state q ∈ F reading the word u and producing the
output v. By RatRel we denote the set of all rational relations, which is the set of
binary relations that are computed by rational transducers (see, e.g., [2]).

Proposition 7. Let Σ1 and Σ2 be two finite alphabets that are disjoint. Then
a relation R ⊆ Σ∗

1 × Σ∗
2 is a det-ORWW-io-relation if and only if it is a stl-det-

ORWW-io-relation if and only if it is a rational relation.

Proof. By a theorem of Nivat (see, e.g., [1]) a binary relation R ⊆ Σ∗
1 × Σ∗

2 is
rational if and only if there exists a regular language L ⊆ (Σ1 ∪ Σ2)∗ such that
R = { (PrΣ1(w),PrΣ2(w)) | w ∈ L }. By Corollary 4 the class of regular languages
coincides with the class of languages that are accepted by det-ORWW- and by
stl-det-ORWW-automata. Thus, if M is an automaton of one of these two types
such that L(M) = L, then R coincides with the relation Relio(M).
�

Deterministic Ordered Restarting Automata that Compute Functions 405

Actually, from the simulation result of [6] we can derive the following result.

Theorem 8. From a given stl-det-ORWW-automaton M on an alphabet of
size n one can effectively construct a rational transducer with 2O(n) states that
computes the relation Relio(M).

Proof. From M we can construct an NFA A of size 2O(n) for the language L(M)
by Theorem 3. As the subalphabets Σ1 and Σ2 are disjoint, we can transform
A into a transducer T of the same size by replacing each transition that reads a
letter a ∈ Σ1 by a transition that reads a and outputs λ, and by replacing each
transition that reads a letter b ∈ Σ2 by a transition that reads λ and outputs b.
Obviously, T computes the relation Relio(M).
�

The language Un = {a2n} is accepted by a stl-det-ORWW-automaton Mn

with O(n) letters [6], and hence, the transduction Ûn = {(a2n , λ)} coincides with
the relation Relio(Mn). On the other hand, each NFA for Un, and therewith each
rational transducer for Ûn, has at least 2n +1 states. This means that the upper
bound in Theorem 8 is sharp with respect to its order of magnitude.

4 Transductions Computed by det-ORWW-Transducers

Next we use the notion of restarting transducer as defined in [4].

Definition 9. A det-ORWW-transducer T = (Q,Σ, Γ,Δ,�,�, q0, δ, >) is
obtained from a det-ORWW-automaton M = (Q,Σ, Γ,�,�, q0, δM , >) by intro-
ducing an output alphabet Δ and by extending the transition function into a
(partial) function

δ : Q × (((Γ ∪ {�}) · Γ · (Γ ∪ {�})) ∪ {��})
��� (Q × {MVR}) ∪ ((Γ ∪ {Accept}) × Δ∗),

that is, each rewrite and accept step is extended by some output word from Δ∗.
The det-ORWW-transducer T is called proper if, for each accept step, the

associated output word is the empty word λ, that is, nonempty output can only
be generated during rewrite/restart steps.

A configuration of T is described by a triple (α, qβ, z), where (α, qβ) is
a configuration of the underlying det-ORWW-automaton M and z ∈ Δ∗

is an output word. If (α, qβ) = (�x, qa1a2a3y�) such that δ(q, a1a2a3) =
(b, v), then (α, qβ, z) �T (λ, q0 �xa1ba3y�, zv), that is, T rewrites a2 into b,
restarts, and produces the output v. Further, if δ(q, a1a2a3) = (Accept, v′), then
(α, qa1a2a3y�, z) �T (Accept, zv′), that is, T halts and accepts producing the
output v′. An accepting computation of T consists of a finite sequence of cycles
that is followed by an accepting tail computation, that is, it can be described as

(λ, q0�w�, λ) �c
T (λ, q0�w1�, v1) �c

T · · · �c
T (λ, q0�wm�, v1 · · · vm)

�∗
T (Accept, v1 · · · vmvm+1).

406 F. Otto and K. Kwee

With T we associate the following (input-output) relation

Rel(T) = { (w, z) ∈ Σ∗ × Δ∗ | (λ, q0 � w�, λ) �∗
T (Accept, z) }.

As T is deterministic, Rel(T) is obviously the graph of a (partial) function fT

with domain L(M). This function fT is called the function computed by T .

We continue by presenting two examples.

Example 10. Let T = (Σ,Γ,Δ,�,�, δ, >) be the stl-det-ORWW-transducer
that is defined by taking Σ = {a, b}, Γ = Σ ∪ {a′, b′}, and Δ = {a, b}, the
ordering > is given through a > a′ and b > b′, and the transition function is
defined as follows, where c, d, e ∈ Σ:

δ(��) = (Accept, λ), δ(�c�) = (c′, c), δ(�c′�) = (Accept, λ),
δ(�cd) = MVR, δ(cde) = MVR, δ(cd�) = (d′, d),
δ(cde′) = (d′, d), δ(�cd′) = (c′, c), δ(�c′d′) = (Accept, λ).

Given a word w = a1a2 . . . an as input, where a1, . . . , an ∈ Σ, T executes the
following accepting computation:

(λ,�a1a2 . . . an�, λ) �T (�, a1a2 . . . an�, λ) �n−2
T

(�a1 . . . an−2, an−1an�, λ) �T (λ,�a1 . . . an−1a
′
n�, an) �n−2

T

(�a1 . . . an−3, an−2an−1a
′
n�, an) �T (λ,�a1 . . . an−2a

′
n−1a

′
n�, anan−1) �∗

T

(λ,�a1a
′
2 . . . a′

n�, an . . . a2) �T (λ,�a′
1a

′
2 . . . a′

n�, an . . . a2a1) �T

(Accept, an . . . a2a1) = (Accept, wR),

which shows that T computes the function R : Σ∗ → Δ∗ that sends a word w to
its mirror image wR.

Observe that the stl-det-ORWW-transducer in the example above is proper,
and that the relation { (w,wR) | w ∈ {a, b}∗ } is not rational.

Example 11. Let τ1 : {a}∗ → {b, c}∗ be defined by τ1(a2n) = b2n and
τ1(a2n+1) = c2n+1 for all n ≥ 0. In [4] it is shown that τ1 is computed by a
proper monotone deterministic nf-RR(1)-transducer, but that it cannot be com-
puted by any det-RR(1)-, nor by any R(1)-, nor by any monotone deterministic
nf-R(1)-transducer. However, τ1 is computed by the following proper stl-det-
ORWW-transducer T1 = ({a}, Γ, {b, c},�,�, δ, >), where Γ = {a, a0, a1, b2, c2},
the ordering > is given through a > a0 > a1 > b2 and a1 > c2, and the transition
function δ is defined as follows for all i ∈ {0, 1}:

δ(��) = (Accept, λ), δ(�a�) = (c2, c), δ(�c2�) = (Accept, λ),

Deterministic Ordered Restarting Automata that Compute Functions 407

δ(�aa) = MVR, δ(aaa) = MVR, δ(aa�) = (a1, λ),
δ(aaa1) = (a0, λ), δ(aaa0) = (a1, λ), δ(�aa1) = (a0, λ),
δ(�aa0) = (a1, λ), δ(�a0a1) = (b2, b), δ(�a1a0) = (c2, c),

δ(�b2a1) = MVR, δ(�c2a0) = MVR, δ(b2aia1−i) = (b2, b),
δ(�b2b2) = MVR, δ(b2b2b2) = MVR, δ(b2b2ai) = MVR,
δ(b2a1�) = (b2, b), δ(c2aia1−i) = (c2, c), δ(�c2c2) = MVR,
δ(c2c2c2) = MVR, δ(c2c2ai) = MVR, δ(c2a1�) = (c2, c),
δ(b2b2�) = (Accept, λ), δ(c2c2�) = (Accept, λ).

Given w = an as input, T1 first rewrites an into the word a0a1a0a1 . . . a0a1,
if n is even, and it rewrites w into the word a1a0a1 . . . a0a1, if n is odd. Then T1

rewrites this word again, letter by letter, from left to right. If the first letter is a0,
then T1 replaces each letter by b2, producing an output letter b for each such
rewrite, and if the first letter is a1, then T1 replaces each letter by c2, producing
an output letter c for each such rewrite. It follows that T1 does indeed compute
the function τ1.

Actually, stateless det-ORWW-transducers are just as expressive as det-
ORWW-transducers, as shown by the following result, which can be shown by
an adaptation of the proof of Theorem 2 of [8].

Theorem 12. From a given det-ORWW-transducer T one can effectively con-
struct a stl-det-ORWW-transducer T ′ that computes the same function as T .

Thus, even the stl-det-ORWW-transducers are quite expressive. In fact, we
have the following result on their expressive power, where RatF denotes the class
of rational functions. These functions form an important subclass of RatRel as
they are the rational relations that are partial functions. By RatF0 we denote
the class of all rational functions τ that satisfy the condition that τ(λ) = λ. To
prove our next result we need a characterization of this class that is due to Elgot
and Mezei [3]. For stating it we introduce the following notions.

A (left) sequential transducer is a rational transducer T = (Q,Σ,Δ, q0, Q,E)
for which E ⊂ Q × Σ × Δ∗ × Q is a partial function from Q × Σ into Δ∗ × Q.
Observe that all states of a sequential transducer are final, and that in each step
it reads a single symbol. Then the relation Rel(T) is obviously a partial func-
tion. It is called a (left) sequential function, and by SeqF we denote the class of
all sequential functions. By definition (λ, λ) ∈ Rel(T) holds for each sequential
transducer T . It is well known that SeqF is a proper subclass of RatF0. Finally,
a (right) sequential transducer is defined like a left sequential transducer that,
however, processes its input from right to left, and that, accordingly, also pro-
duces its output from right to left. The relation computed by a right sequential
transducer is called a right sequential function. According to [3], a partial func-
tion τ : Σ∗ → Δ∗ with τ(λ) = λ is a rational function if and only if there are a
left sequential function ρ : Σ∗ → Θ∗ that is total and length-preserving and a
right sequential function σ : Θ∗ → Γ ∗ such that τ = σ ◦ ρ (see also [1]).

408 F. Otto and K. Kwee

Theorem 13. Each rational function is computed by a stl-det-ORWW-
transducer.

Proof. Let τ : Σ∗ → Δ∗ be a rational function such that τ(λ) = λ. Then by
the result of Elgot and Mezei mentioned above, there exists a (left) sequential
transducer Tl = (Q,Σ,Θ, q0, Q,E) that computes a total and length-preserving
function ρ : Σ∗ → Θ∗, and there exists a right sequential transducer Tr =
(P,Θ,Δ, p0, P, F) that computes a partial function σ : Θ∗ → Δ∗ such that
τ = σ ◦ ρ. As ρ is total and length-preserving, we see that, for each q ∈ Q
and each letter a ∈ Σ, E contains a unique 4-tuple of the form (q, a, b, q′) for
some letter b ∈ Θ and a state q′ ∈ Q. The transducer Tl reads a given input
w = a1a2 . . . an from Σ+ letter by letter, from left to right, and it outputs a
word z = b1b2 . . . bn = ρ(w) from Θ+ in this process. Then the transducer Tr is
given z = b1b2 . . . bn as input, and it reads z letter by letter from right to left,
generating an output word v = vn . . . v2v1 ∈ Δ∗ from right to left. If Tr succeeds,
then v = σ(z) = τ(w), otherwise, that is, if Tr gets stuck while reading z from
right to left, σ(z) is undefined, and accordingly, so is τ(w).

We now define a stl-det-ORWW-transducer M = (Σ,Γ,Δ,�,�, δ, >) as fol-
lows, where V = { v ∈ Δ∗ | ∃p, p′ ∈ P, b ∈ Θ : (p, b, v, p′) ∈ F }:

– Γ = Σ ∪ { [q, b] | q ∈ Q, b ∈ Θ } ∪ { [p, v], [p, v]′ | p ∈ P, v ∈ V }, where we
assume (w.l.o.g.) that P and Q are disjoint,

– the ordering > is given through a > [q, b] > [p, v] > [p, v]′ for all a ∈ Σ,
q ∈ Q, b ∈ Θ, p ∈ P , and v ∈ V , and

– the transition function δ is defined as follows, where a, a1, a2 ∈ Σ, q, q1, q2 ∈
Q, b, b1, b2 ∈ Θ, p, p1 ∈ P , and v, v1, v2 ∈ V :

δ(��) = (Accept, λ),
δ(�a�) = ([q, b], λ), if (q0, a, b, q) ∈ E,
δ(�aa1) = ([q, b], λ), if (q0, a, b, q) ∈ E,

δ(�[q, b]a) = MVR,
δ([q, b]a1a2) = ([q1, b1], λ), if (q, a1, b1, q1) ∈ E,

δ(�[q1, b1][q2, b2]) = MVR,
δ([q, b][q1, b1][q2, b2]) = MVR,

δ([q1, b1][q2, b2]a) = MVR,
δ([q, b]a�) = ([q1, b1], λ), if (q, a, b1, q1) ∈ E,
δ(�[q, b]�) = ([p, v], λ), if (p0, b, v, p) ∈ F,
δ(�[p, v]�) = ([p, v]′, v),
δ(�[p, v]′�) = (Accept, λ),

δ([q1, b1][q, b]�) = ([p, v], λ), if (p0, b, v, p) ∈ F,
δ([q1, b1][q, b][p, v]) = ([p1, v1], λ), if (p, b, v1, p1) ∈ F,

δ(�[q, b][p, v]) = ([p1, v1], λ), if (p, b, v1, p1) ∈ F,
δ(�[p, v][p1, v1]) = ([p, v]′, v),
δ(�[p, v]′[p1, v1]) = MVR,
δ(�[p, v]′[p1, v1]′) = MVR,

δ([p, v]′[p1, v1][p2, v2]) = ([p1, v1]′, v1),
δ([p, v]′[p1, v1]′[p2, v2]) = MVR,
δ([p, v]′[p1, v1]′[p2, v2]′) = MVR,

Deterministic Ordered Restarting Automata that Compute Functions 409

δ([p, v]′[p1, v1]�) = ([p1, v1]′, v1),
δ([p, v]′[p1, v1]′�) = (Accept, λ).

Given a word w = a1a2 . . . an ∈ Σn, where n ≥ 1, M first rewrites w from
left to right into the word [q1, b1][q2, b2] . . . [qn, bn], where (qi−1, ai, bi, qi) ∈ E for
all i = 1, . . . , n, that is, M simulates the left sequential transducer Tl on input w,
replacing each input letter ai by the pair [qi, bi], where qi is the state that Tl

reaches after reading the prefix a1 . . . ai of w, and bi is the letter that Tl outputs
during this computation when it reads the letter ai. Thus, b1b2 . . . bn = ρ(w).

Then M rewrites the word [q1, b1][q2, b2] . . . [qn, bn] from right to left into
the word [pn, vn] . . . [p2, v2][p1, v1], where (pi−1, bn+1−i, vi, pi) ∈ F for all i =
1, . . . , n, that is, M simulates the right sequential transducer Tr on input
ρ(w), and M succeeds if and only if Tr can read ρ(w) completely. It follows
that vn . . . v2v1 = σ(b1b2 . . . bn) = σ(ρ(w)) = τ(w). Finally, M rewrites the
word [pn, vn] . . . [p2, v2][p1, v1] letter by letter, from left to right, into the word
[pn, vn]′ . . . [p2, v2]′[p1, v1]′ thereby producing the output vn . . . v2v1 = τ(w).
Thus, M is a proper stl-det-ORWW-transducer that computies the function τ .

Finally, if τ(λ) = w �= λ, then we can simply change M by using the transition
δ(��) = (Accept, w). In this case, M is obviously not proper.
�

5 Transductions Computed by det-ORWW-Automata

Finally, we use the rewriting process of a det-ORWW-automaton itself to obtain
a transduction.

Definition 14. Let M = (Q,Σ, Γ,�,�, q0, δ, >) be a det-ORWW-automaton,
let Δ be a finite output alphabet, and let ϕ : Γ ∗ → Δ∗ be a morphism. For
w ∈ L(M), let ŵ denote the tape inscription that M produces during its accepting
computation on input w, that is, this accepting computation has the following
form:

(λ, q0 � w�) �c∗
M (λ, q0 � ŵ�) �∗

M (�û, qv̂�) �M Accept,

where ŵ = ûv̂ holds. Then we associate with w the output word ϕ(ŵ), in this way
defining a transduction ϕM : L(M) → Δ∗. We say that ϕM is the transduction
that is defined by the pair (M,ϕ).

By F(det-ORWW) we denote the class of all partial functions that can be
realized by det-ORWW-automata (and morphisms) in the way described above,
and by F(stl-det-ORWW) we denote the class of all partial functions that can be
realized by stl-det-ORWW-automata (and morphisms).

Example 15. By removing the output part from the transition function of
the stl-det-ORWW-transducer T1 in Example 11, we obtain a stl-det-ORWW-
automaton M1 such that L(M1) = a∗. In fact, for each n ≥ 1, M2 rewrites an

into bn
2 (if n is even) or into cn

2 (if n is odd).
Now let ϕ1 : {b2, c2}∗ → {b, c}∗ be the morphism that is given though b2 �→ b

and c2 �→ c. Then ϕM1(a
n) = τ1(an) for all n ≥ 0.

410 F. Otto and K. Kwee

Concerning the functions that are computed by det-ORWW-automata with
the aid of morphisms we have the following characterization.

Theorem 16. RatF0 = F(stl-det-ORWW) = F(det-ORWW).

The proof will be split into three lemmas.

Lemma 17. RatF0 ⊆ F(stl-det-ORWW).

Proof. If τ : Σ∗ → Δ∗ is a rational function such that τ(λ) = λ, then we can
construct a stl-det-ORWW-automaton M that rewrites a given input word w =
a1a2 . . . an into the word [pn, vn]′ . . . [p2, v2]′[p1, v1]′, where τ(w) = vn . . . v2v1
(see the proof of Theorem 13). Now we define a morphism ϕ as follows:

ϕ([p, v]′) = v for all p ∈ P and v ∈ V,
ϕ(A) = λ for all other letters.

Then it follows immediately that the pair (M,ϕ) defines the function τ .
�
Lemma 18. F(stl-det-ORWW) ⊆ RatF0.

Proof. Let M = (Σ,Γ,�,�, δ, >) be a stl-det-ORWW-automaton, let ϕ : Γ ∗ →
Δ∗ be a morphism, and let τ : Σ∗ → Δ∗ be the transduction that is defined by
the pair (M,ϕ). Then τ is a partial function, and by definition, τ(λ) = λ holds.

In [6] an algorithm is described that turns the stl-det-ORWW-automaton M
into an equivalent unambiguous NFA B = (Q,Σ,ΔB , q0, F), where the set of
states Q contains the initial state q0, a designated final state qF , and pairs of
triples of the form ((L1,W1, R1), (L2,W2, R2)), where, for i = 1, 2,

– Wi is a sequence of letters Wi = (wi,1, . . . , wi,ki
) from Γ of length 1 ≤ ki ≤ n

such that wi,1 > wi,2 > · · · > wi,ki
, or Wi = (�) and ki = 1,

– Li is a sequence of positive integers Li = (li,1, . . . , li,ki−1) of length ki − 1
such that li,1 ≤ li,2 ≤ · · · ≤ li,ki−1 ≤ n,

– Ri is a sequence of positive integers Ri = (ri,1, . . . , ri,ki−1) of length ki − 1
such that ri,1 ≤ ri,2 ≤ · · · ≤ ri,ki−1 ≤ n,

– the sequences R1 and L2 are consistent, that is, order(R1, L2) =
{1, 2, . . . , k1 + k2 − 2}.

Given a word w ∈ Σ∗ as input, B guesses the corresponding states in such a
way that the triples describe an accepting computation of M on input w. B is
nondeterministic, but it is unambiguous as, for each word w ∈ L(B) = L(M),
it has only a single accepting computation. If in this computation, B enters
the state ((Λ, (�), Λ), (L1,W1, R1)) from its initial state q0 on reading the first
input letter a1, then W1 = (a1, A2, . . . , Ak) encodes the information that during
the accepting computation of M on input w, the first letter is first rewritten
into A2, then later into A3, and so on, and that Ak is the final letter in this

Deterministic Ordered Restarting Automata that Compute Functions 411

position when M accepts. Accordingly, we obtain a transducer from B by sim-
ply adding the output component ϕ(An) to the above transition of B. Anal-
ogously, if ΔB (((L1,W1, R1), (L2,W2, R2)), x) � ((L2,W2, R2), (L3,W3, R3)),
where x ∈ Σ and W3 = (a,C2, . . . , Cr), then we add the output component
ϕ(Cr) to this particular transition. Finally, to the final transitions of the form
qF ∈ ΔB(((L1,W1, R1), (L2,W2, R2)), λ), we add the output component λ. Then
it is easily seen that, on input w ∈ Σ∗, the transducer obtained from B accepts
if and only if w ∈ L(M), and in this case it produces the output τ(w). Thus, τ
is a rational relation, and so, it is a rational function from RatF0.
�

Lemmas 17 and 18 together show that the stl-det-ORWW-automata realize
exactly the rational functions from RatF0. In order to complete the proof of
Theorem 16 it suffices to derive the following result (proof omitted).

Lemma 19. For each det-ORWW-automaton M and each morphism ϕ, there
exist a stateless det-ORWW-automaton M ′ and a morphism ϕ′ such that the
pair (M ′, ϕ′) defines the same transduction as (M,ϕ).

Let Σ = {0, 1,#, $}. For n ≥ 3, let Bn be the following regular language:

Bn = { v1#v2# . . . #vm$u | m ≥ 1, v1, . . . , vm, u ∈ {0, 1}n, ∃ i : vi = u }.

It can easily be shown that every NFA for Bn has at least 2n states, and every
DFA for Bn has at least 22

n

states. On the other hand, Bn is accepted by a
stl-det-ORWW-automaton with O(n) letters [8]. Now let B̂n be the function

B̂n = { (v1# . . . #vm$u, vi1 . . . vir) | v1# . . . #vm$u ∈ Bn and
vij �= u, 1 ≤ i1 < · · · < ir ≤ m },

that is, the function B̂n outputs the sequence of factors from v1 to vm that
differ from the last factor u. In [9] a stl-det-ORWW-automaton Mn for the
language Bn is presented that is of size O(n) and that is reversible, which means
that it also has a reverse transition function that can be used to undo cycles.
In particular, this means that Mn keeps the information on the input letters
encoded in the new letters whenever it performs a rewrite. At the end of an
accepting computation, all syllables vi for which vi = u holds are marked in one
way (by a +), and the syllables vj for which vj �= u are marked in a different way
(by a −). Now we can define a morphism that maps each letter containing the
sign − to its corresponding input letter (which is encoded in this auxiliary letter)
and by mapping all other letters to λ. As each rational transducer for computing
this relation entails an NFA for the language Bn, it is of size at least 2n.

Proposition 20. The function B̂n is computed by a pair (Mn, ϕ), where Mn

is a stl-det-ORWW-automaton that has a working alphabet of size O(n), while
each rational transducer for computing this function has at least 2n states.

On the other hand, it can be shown that from a pair (M,ϕ) computing a
transduction τ one can effectively construct a rational transducer for τ that is
of size 2O(n) (see the proof of Lemma 18). Thus, we have an exponential trade-
off for turning a stl-det-ORWW-automaton into a rational transducer, and this
bound is sharp as witnessed by the functions B̂n.

412 F. Otto and K. Kwee

6 Conclusion

We have presented three different ways of computing relations (or functions) by
det-ORWW-automata. By using the input-output relations of these automata,
we obtain succinct representations of all rational relations, but combining a det-
ORWW-automaton with a morphism, we obtain succinct representations of all
rational functions that map the empty word to itself, and by extending the
det-ORWW-automaton into a transducer, we obtain a device that computes all
rational functions and even some non-rational functions. For future work the
following open problems remain:

– Which functions can be computed by det-ORWW-transducers?
– What is the descriptional complexity of operations on rational relations when

expressed in terms of input-output relations of (stl-) det-ORWW-automata?
– What is the descriptional complexity of various operations on rational func-

tions in terms of (stl-) det-ORWW-automata that compute them?

References

1. Berstel, J.: Transductions and Context-Free Languages. Teubner, Stuttgart (1979)
2. Choffrut, C., Culik II, K.: Properties of finite and pushdown transducers. SIAM J.

Comput. 12, 300–315 (1983)
3. Elgot, C.C., Mezei, G.: On relations defined by generalized finite automata. IBM

Journal of Research and Development 9, 47–65 (1965)
4. Hundeshagen, N.: Relations and Transductions Realized by RestartingAutomata.

PhD thesis, Fachbereich Elektrotechnik/Informatik, Universität Kassel (2013)
5. Hundeshagen, N., Otto, F.: Characterizing the rational functions by restarting

transducers. In: Dediu, A.-H., Mart́ın-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183,
pp. 325–336. Springer, Heidelberg (2012)

6. Kwee, K., Otto, F.: On some decision problems for stateless deterministic ordered
restarting automata. In: Shallit, J., Okhotin, A. (eds.) DCFS 2015. LNCS, vol.
9118, pp. 165–176. Springer, Heidelberg (2015)

7. Mráz, F., Otto, F.: Ordered restarting automata for picture languages. In: Geffert,
V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS,
vol. 8327, pp. 431–442. Springer, Heidelberg (2014)

8. Otto, F.: On the descriptional complexity of deterministic ordered restarting auto-
mata. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS,
vol. 8614, pp. 318–329. Springer, Heidelberg (2014)

9. Otto, F., Wendlandt, M., Kwee, K.: Reversible ordered restarting automata. In:
Krevine, J., Stefani, J.-B. (eds.) RC 2015. LNCS, vol. 9138, pp. 60–75. Springer,
Heidelberg (2015)

10. Pr̊uša, D.: Weight-reducing Hennie machines and their descriptional complexity.
In: Dediu, A.-H., Mart́ın-Vide, C., Sierra-Rodŕıguez, J.-L., Truthe, B. (eds.) LATA
2014. LNCS, vol. 8370, pp. 553–564. Springer, Heidelberg (2014)

Weight Assignment Logic

Vitaly Perevoshchikov(B)

Institut für Informatik, Universität Leipzig, 04109 Leipzig, Germany
perev@informatik.uni-leipzig.de

Abstract. We introduce a weight assignment logic for reasoning about
quantitative languages of infinite words. This logic is an extension of
the classical MSO logic and permits to describe quantitative proper-
ties of systems with multiple weight parameters, e.g., the ratio between
rewards and costs. We show that this logic is expressively equivalent to
unambiguous weighted Büchi automata. We also consider an extension
of weight assignment logic which is expressively equivalent to nondeter-
ministic weighted Büchi automata.

Keywords: Quantitative omega-languages · Quantitative logic · Multi-
weighted automata · Büchi automata · Unambiguous automata

1 Introduction

Since the seminal Büchi theorem [5] about the expressive equivalence of finite
automata and monadic second-order logic, a significant field of research inves-
tigates logical characterizations of language classes appearing from practically
relevant automata models. In this paper we introduce a new approach to the
logical characterization of quantitative languages of infinite words where every
infinite word carries a value, e.g., a real number.

Quantitative languages of infinite words and various weighted automata for
them were investigated by Chatterjee, Doyen and Henzinger in [7] as models
for verification of quantitative properties of systems. Their weighted automata
are automata with a single weight parameter where a computation is evaluated
using measures like the limit average or discounted sum. Recently, the prob-
lem of analysis and verification of systems with multiple weight parameters, e.g.
time, costs and energy consumption, has received much attention in the literature
[3,5,16,17,20]. For instance, the setting where a computation is evaluated as the
ratio between accumulated rewards and costs was considered in [3,5,17]. Another
example is a model of energy automata with several energy storages [16].

Related Work. Droste and Gastin [9] introduced weighted MSO logic on finite
words with constants from a semiring. In the semantics of their logic (which
is a quantitative language of finite words) disjunction is extended by the sum
operation of the semiring and conjunction is extended by the product. They show

Supported by DFG Research Training Group 1763 (QuantLA).

c© Springer International Publishing Switzerland 2015
I. Potapov (Ed.): DLT 2015, LNCS 9168, pp. 413–425, 2015.
DOI: 10.1007/978-3-319-21500-6 33

414 V. Perevoshchikov

that weighted MSO logic is more expressive than weighted automata [10] (the
unrestricted use of weighted conjunction and weighted universal quantifiers leads
to unrecognizability) and provide a syntactically restricted fragment which is
expressively equivalent to weighted automata. This result was extended in [15]
to the setting of infinite words. A logical characterization of the quantitative
languages of Chatterjee, Doyen and Henzinger was given in [12] (again by a
restricted fragment of weighted MSO logic). In [13], a multi-weighted extension
of weighted MSO logic of [12] with the multiset-based semantics was considered.

Our Contribution. In this paper, we introduce a new approach to logic for
quantitative languages, different from [9,12,13,15]. We develop a so-called weight
assignment logic (WAL) on infinite words, an extension of the classical MSO
logic to the quantitative setting. This logic allows us to assign weights (or multi-
weights) to positions of an ω-word. Using WAL, we can, for instance, express
that whenever a position of an input word is labelled by letter a, then the weight
of this position is 2. As a weighted extension of the logical conjunction, we use
the merging of partially defined ω-words. In order to evaluate a partially defined
ω-word, we introduce a default weight, assign it to all positions with undefined
weight, and evaluate the obtained totally defined ω-word, e.g., as the reward-cost
ratio or discounted sum.

As opposed to the weighted MSO logic of [9], the weighted conjunction-like
operators of WAL capture recognizability by weighted Büchi automata. We show
that WAL is expressively equivalent to unambiguous weighted Büchi automata
where, for every input ω-word, there exists at most one accepting computa-
tion. Unambiguous automata are of considerable interest for automata theory
as they can have better decidability properties. For instance, in the setting of
finite words, the equivalence problem for unambiguous max-plus automata is
decidable [18] whereas, for nondeterministic max-plus automata, this problem is
undecidable [19].

We also consider an extended version of WAL which captures nondetermin-
istic weighted Büchi automata. In extended WAL we allow existential quantifi-
cation over first-order and second-order variables in the prefix of a formula. The
structure of extended WAL is similar to the structure of unweighted logics for,
e.g., timed automata [22] and data automata [4].

For the proof of our expressiveness equivalence result, we establish a Nivat
decomposition theorem for nondeterministic and unambiguous weighted Büchi
automata. Recall that Nivat’s theorem [21] is one of the fundamental charac-
terizations of rational transductions and shows a connection between rational
transductions and rational language. Recently, Nivat’s theorem was proved for
semiring-weighted automata on finite words [11], weighted multioperator tree
automata [22] and weighted timed automata [14]. We obtain similar decompo-
sitions for WAL and extended WAL and deduce our results from the classical
Büchi theorem [6]. Our proof is constructive and hence decidability properties
for WAL and extended WAL can be transferred into decidability properties of
weighted Büchi automata. As a side application of our Nivat theorem, we can

Weight Assignment Logic 415

easily show that weighted Büchi automata and weighted Muller automata are
expressively equivalent.

Outline. In Sect. 2 we introduce a general framework for weighted Büchi
automata and consider several examples. In Sect. 3 we prove a Nivat decompo-
sition theorem for weighted Büchi automata. In Sect. 4 we define weight assign-
ment logic and its extension. In Sect. 5 we state our main result and give a sketch
of its proof for the unambiguous and nondeterministic cases.

2 Weighted Büchi Automata

Let N = {0, 1, ...} denote the set of all natural numbers. For an arbitrary set X,
an ω-word over X is an infinite sequence (xi)i∈N where xi ∈ X for all i ∈ N.
Let Xω denote the set of all ω-words over X. Any set L ⊆ Xω is called an
ω-language over X.

A Büchi automaton over an alphabet Σ is a tuple A = (Q, I, T, F) where Q
is a finite set of states, Σ is an alphabet (i.e. a finite non-empty set), I, F ⊆ Q
are sets of initial resp. accepting states, and T ⊆ Q × Σ × Q is a transition
relation. An (accepting) run ρ = (ti)i∈N ∈ Tω of A is defined as an infinite
sequence of matching transitions which starts in an initial state and visits
some accepting state infinitely often, i.e., ti = (qi, ai, qi+1) for each i ∈ N,
such that q0 ∈ I and {q ∈ Q | q = qi for infinitely many i ∈ N} ∩ F �= ∅. Let
label(ρ) := (ai)i∈N ∈ Σω, the label of ρ. We denote by RunA the set of all runs of
A and, for each w ∈ Σω, we denote by RunA(w) the set of all runs ρ of A with
label(ρ) = w. Let L(A) = {w ∈ Σω | RunA(w) �= ∅}, the ω-language accepted by
A. We call an ω-language L ⊆ Σω recognizable if there exists a Büchi automaton
A over Σ such that L(A) = L.

We say that a monoid K = (K,+,0) is complete (cf., e.g., [15]) if it is equipped
with infinitary sum operations

∑
I : KI → K for any index set I, such that, for

all I and all families (ki)i∈I of elements of K, the following hold:

–
∑

i∈∅ ki = 0,
∑

i∈{j} ki = kj ,
∑

i∈{p,q} ki = kp + kq for p �= q;
–

∑
j∈J(

∑
i∈Ij

ki) =
∑

i∈I ki, if
⋃

j∈J Ij = I and Ij ∩ Ij′ = ∅ for j �= j′.

Let R = R∪{−∞,∞}. Then, R equipped with infinitary operations like infinum
or supremum forms a complete monoid. Now we introduce an algebraic structure
for weighted Büchi automata which is an extension of totally complete semirings
[15] and valuation monoids [12] and covers various multi-weighted measures.

Definition 2.1. A valuation structure V = (M,K, val) consists of a non-empty
set M , a complete monoid K = (K,+,0) and a mapping val : Mω → K called
henceforth a valuation function.

In the definition of a valuation structure we have two weight domains M and
K. Here M is the set of transition weights which in the multi-weighted examples
can be tuples of weights (e.g., a reward-cost pair) and K is the set of weights
of computations which can be single values (e.g., the ratio between rewards and
costs).

416 V. Perevoshchikov

Definition 2.2. Let Σ be an alphabet and V = (M, (K,+,0), val) a valua-
tion structure. A weighted Büchi automaton (WBA) over V is a tuple A =
(Q, I, T, F,wt) where (Q, I, T, F) is a Büchi automaton over Σ and wt : T → M
is a transition weight function.

The behavior of WBA is defined as follows. Given a run ρ of this automa-
ton, we evaluate the ω-sequence of transition weights of ρ (which is in Mω)
using the valuation function val and then resolve the nondeterminism on the
weights of runs using the complete monoid K. Formally, let ρ = (ti)i∈N ∈ Tω be
a run of A. Then, the weight of ρ is defined as wtA(ρ) = val((wt(ti))i∈N) ∈ K.
The behavior of A is a mapping [[A]] : Σω → K defined for all w ∈ Σω by
[[A]](w) =

∑
(wtA(ρ) | ρ ∈ RunA(w)). Note that the sum in the equation above

can be infinite. Therefore we consider a complete monoid (K,+,0). A mapping
L : Σω → K is called a quantitative ω-language. We say that L is (nondetermin-
istically) recognizable over V if there exists a WBA A over Σ and V such that
[[A]] = L.

We say that a WBA A over Σ and V is unambiguous if |RunA(w)| ≤ 1 for
every w ∈ Σω. We call a quantitative ω-language L : Σω → K unambiguously
recognizable over V if there exists an unambiguous WBA A over Σ and V such
that [[A]] = L.

Example 2.3. (a) The ratio measure was introduced in [5], e.g., for the modeling
of the average costs in timed systems. In the setting of ω-words, we consider
the model with two weight parameters: the cost and the reward. The rewards
and costs of transitions are accumulated along every finite prefix of a run
and their ratio is taken. Then, the weight of an infinite run is defined as
the limit superior (or limit inferior) of the sequence of the computed ratios
for all finite prefixes. To describe the behavior of these double-priced ratio
Büchi automata, we consider the valuation structure VRatio = (M,K, val)
where M = Q × Q≥0 models the reward-cost pairs, K = (R, sup,−∞) and
val : Mω → R is defined for every sequence u = ((ri, ci))i∈N ∈ Mω by
val(u) = lim supn→∞

r1+...+rn

c1+...+cn
. Here, we assume that r

0 = −∞.
(b) Discounting [1,7] is a well-known principle which is used in, e.g., eco-

nomics and psychology. In this example, we consider WBA with transition-
dependent discounting, i.e., are two weight parameters: the cost and the
discounting factor (which is not fixed and depends on a transition). In order
to define WBA with discounting formally, we consider the valuation struc-
ture VDisc = (M,K, val) where M = Q≥0 × ((0, 1] ∩ Q) models the pairs of a
cost and a discounting factor, K = (R≥0 ∪ {∞}, inf,∞), and val is defined
for all u = ((ci, di))i∈N ∈ Mω as val(u) = c0 +

∑∞
i=1 ci · ∏i−1

j=0 dj .
(c) Since a valuation monoid (K, (K,+,0), val) of Droste and Meinecke [12] is

a special case of valuation structures, all examples considered there also fit
into our framework. ��

Weight Assignment Logic 417

3 Decomposition of WBA

In this section, we establish a Nivat decomposition theorem for WBA. We will
need it for the proof of our main result. However, it also could be of independent
interest.

Let Σ be an alphabet and V = (M, (K,+,0), val) a valuation structure. For
a (possibly different from Σ) alphabet Γ , we introduce the following operations.
Let Δ be an arbitrary non-empty set and h : Γ → Δ a mapping called henceforth
a renaming. For any ω-word u = (γi)i∈N ∈ Γω, we let h(u) = (h(γi))i∈N ∈
Δω. Now let h : Γ → Σ be a renaming and L : Γω → K a quantitative ω-
language. We define the renaming h(L) : Σω → K for all w ∈ Σω by h(L)(w) =∑(

L(u) | u ∈ Γω and h(u) = w
)
. For a renaming g : Γ → M , the composition

val ◦g : Γω → K is defined for all u ∈ Γω by (val ◦g)(u) = val(g(u)). Given a
quantitative ω-language L : Γω → K and an ω-language L ⊆ Γω, the intersection
L∩L : Γω → K is defined for all u ∈ L as (L∩L)(u) = L(u) and for all u ∈ Γω\L
as (L ∩ L)(u) = 0. Given a renaming h : Γ → Σ , we say that an ω-language
L ⊆ Γω is h-unambiguous if for all w ∈ Σω there exists at most one u ∈ L such
that h(u) = w.

Our Nivat decomposition theorem for WBA is the following.

Theorem 3.1. Let Σ be an alphabet, V = (M, (K,+,0), val) a valuation struc-
ture, and L : Σω → K a quantitative ω-language. Then

(a) L is unambiguously recognizable over V iff there exist an alphabet Γ , renam-
ings h : Γ → Σ and g : Γ → M , and a recognizable and h-unambiguous
ω-language L ⊆ Γω such that L = h((val ◦g) ∩ L).

(b) L is nondeterministically recognizable over V iff there exist an alphabet Γ ,
renamings h : Γ → Σ and g : Γ → M , and a recognizable ω-language
L ⊆ Γω such that L = h((val ◦g) ∩ L).

The proof idea is the following. To prove the recognizability of h((val ◦g)∩L),
one can show that recognizable quantitative ω-languages are closed under renam-
ing, composition and intersection. For the converse direction, i.e., a decomposi-
tion of the behavior [[A]] of a WBA A, one can use a similar idea as in [11]. We
let Γ be the set of all transitions of A, h and g mappings assigning labels and
weights, resp., to each transition and let L be the regular ω-language of words
over Γ describing runs of A.

Since Büchi automata are not determinizable, the most challenging part of
the proof of Theorem 3.1 is to show that recognizable ω-languages are stable
under intersection with ω-languages. To show this, we apply the result of [8]
which states that every ω-recognizable language is accepted by an unambiguous
Büchi automaton.

As a first application of Theorem 3.1 we show that WBA are equivalent to
weighted Muller automata which are defined as WBA with the difference that a
set of accepting states F ⊆ Q is replaced by a set F ⊆ 2Q of sets of accepting
states. Then, for an accepting run ρ, the set of all states, which are visited in
ρ infinitely often, must be in F . Our expressiveness equivalence result extends

418 V. Perevoshchikov

the result of [15] for totally complete semirings. Whereas the proof of [15] was
given by direct non-trivial automata transformation, our proof is based on the
fact that weighted Muller automata permit the same decomposition as stated in
Theorem 3.1 for WBA.

4 Weight Assignment Logic

4.1 Partial ω-words

Before we give a definition of the syntax and semantics of our new logic, we
introduce some auxiliary notions about partial ω-words. Let X be an arbitrary
non-empty set. A partial ω-word over X is a partial mapping u : N ��� X, i.e.,
u : U → X for some U ⊆ N. Let dom(u) = U , the domain of u. We denote by
X↑ the set of all partial ω-words over X. Clearly, Xω ⊆ X↑. A trivial ω-word
� ∈ X↑ is the partial ω-word with dom(�) = ∅. For u ∈ X↑, i ∈ N and x ∈ X,
the update u[i/x] ∈ X↑ is defined as dom(u[i/x]) = dom(u) ∪ {i}, u[i/x](i) = x
and u[i/x](i′) = u(i′) for all i′ ∈ dom(u) \ {i}. Let θ = (uj)j∈J be an arbitrary
family of partial ω-words uj ∈ X↑ where J is an arbitrary index set. We say
that θ is compatible if, for all j, j′ ∈ J and i ∈ dom(uj) ∩ dom(uj′), we have
uj(i) = uj′(i). If θ is compatible, then we define the merging u := (

�
j∈J uj) ∈

X↑ as dom(u) =
⋃

j∈J dom(uj) and, for all i ∈ dom(u), u(i) = uj(i) whenever
i ∈ dom(uj) for some j ∈ J . Let θ = {uj}j∈{1,2} be compatible. Then, we write
u1 ↑ u2. Clearly, the relation ↑ is reflexive and symmetric. In the case u1 ↑ u2,
for

�
j∈{1,2} uj we will also use notation u1 � u2.

Example 4.1. Let X = {a, b} with a �= b and u1 = aω ∈ X↑. Let u2 ∈ X↑ be
the partial ω-word whose domain dom(u2) is the set of all odd natural numbers
and u2(i) = a for all i ∈ dom(u2). Let u3 ∈ X↑ be the partial ω-word such that
dom(u3) is the set of all even natural numbers and u3(i) = b for all i ∈ dom(u3).
Then u1 ↑ u2 and u2 ↑ u3, but ¬(u1 ↑ u3). This shows in particular that the
relation ↑ is not transitive if X is not a singleton set. Then, u1 � u2 = aω and
u2 � u3 = (ba)ω.

4.2 WAL: Syntax and Semantics

Let V1 be a countable set of first-order variables and V2 a countable set of second-
order variables such that V1 ∩ V2 = ∅. Let V = V1 ∪ V2. Let Σ be an alphabet
and V = (M, (K,+,0), val) a valuation structure. We also consider a designated
element 1 ∈ M which we call the default weight. We denote the pair (V,1) by
V1. The set WAL(Σ,V1) of formulas of weight assignment logic over Σ and V1

is given by the grammar

ϕ ::= Pa(x) | x = y | x < y | X(x) | x �→ m | ϕ ⇒ ϕ | ϕ � ϕ | �x.ϕ | �X.ϕ

where a ∈ Σ, x, y ∈ V1, X ∈ V2 and m ∈ M . Such a formula ϕ is called a weight
assignment formula.

Weight Assignment Logic 419

Table 1. The auxiliary semantics of WAL-formulas

〈〈Pa(x)〉〉(wσ) =

{

�, aσ(x) = a

⊥, otherwise

〈〈x = y〉〉(wσ) =

{

�, σ(x) = σ(y)

⊥, otherwise

〈〈x < y〉〉(wσ) =

{

�, σ(x) < σ(y)

⊥, otherwise

〈〈X(x)〉〉(wσ) =

{

�, σ(x) ∈ σ(X)

⊥, otherwise

〈〈x �→ m〉〉(wσ) = �[σ(x)/m]

〈〈ϕ1 ⇒ ϕ2〉〉(wσ)=

{

〈〈ϕ2〉〉(wσ), 〈〈ϕ1〉〉(wσ)=�
�, otherwise

〈〈ϕ1
 ϕ2〉〉(wσ) = 〈〈ϕ1〉〉(wσ)
 〈〈ϕ2〉〉(wσ)
〈〈
x.ϕ〉〉(wσ) =

�
i∈dom(w)〈〈ϕ〉〉(wσ[x/i])

〈〈
X.ϕ〉〉(wσ) =
�

I⊆dom(w)〈〈ϕ〉〉(wσ[X/I])

Let ϕ ∈ WAL(Σ,V1). We denote by Const(ϕ) ⊆ M the set of all weights
m ∈ M occurring in ϕ. The set Free(ϕ) ⊆ V of free variables of ϕ is defined to
be the set of all variables X ∈ V which appear in ϕ and are not bound by any
quantifier �X . We say that ϕ is a sentence if Free(ϕ) = ∅.

Note that the merging as defined before is a partially defined operation, i.e.,
it is defined only for compatible families of partial ω-words. In order to extend
it to a totally defined operation, we fix an element ⊥ /∈ M↑ which will mean the
undefined value. Let M↑

⊥ = M↑ ∪ {⊥}. Then, for any family θ = (uj)j∈J with
uj ∈ M↑

⊥, such that either θ ∈ (M↑)J is not compatible or θ ∈ (M↑
⊥)J \ (M↑)J ,

we let
�

j∈J uj = ⊥.
For any ω-word w ∈ Σω, a w-assignment is a mapping σ : V → dom(w) ∪

2dom(w) mapping first-order variables to elements in dom(w) and second-order
variables to subsets of dom(w). For a first-order variable x and a position i ∈ N,
the w-assignment σ[x/i] is defined on V \ {x} as σ, and we let σ[x/i](x) = i.
For a second-order variable X and a subset I ⊆ N, the w-assignment σ[X/I] is
defined similarly. Let Σω

V denote the set of all pairs (w, σ) where w ∈ Σω and σ
is a w-assignment. We will denote such pairs (w, σ) by wσ.

The semantics of WAL-formulas is defined in two steps: by means of the
auxiliary and proper semantics. Let ϕ ∈ WAL(Σ,V1). The auxiliary semantics
of ϕ is the mapping 〈〈ϕ〉〉 : Σω

V → M↑
⊥ defined for all wσ ∈ Σω

V with w = (ai)i∈N

as shown in Table 1. Note that the definition of 〈〈..〉〉 does not employ + and
val. The proper semantics [[ϕ]] : Σω

V → K operates on the auxiliary semantics
〈〈ϕ〉〉 as follows. Let wσ ∈ Σω

V . If 〈〈ϕ〉〉(wσ) ∈ M↑, then we assign the default
weight to all undefined positions in dom(〈〈ϕ〉〉(wσ)) and evaluate the obtained
sequence using val. Otherwise, if 〈〈ϕ〉〉(wσ) = ⊥, we put [[ϕ]](wσ) = 0. Note that
if ϕ ∈ WAL(Σ,V1) is a sentence, then the values 〈〈ϕ〉〉(wσ) and [[ϕ]](wσ) do
not depend on σ and we consider the auxiliary semantics of ϕ as the mapping
〈〈ϕ〉〉 : Σω → M↑

⊥ and the proper semantics of ϕ as the quantitative ω-language
[[ϕ]] : Σω → K. Note that + was not needed for the semantics of WAL-formulas.
This operation will be needed in the next section for the extension of WAL. We
say that a quantitative ω-language L : Σω → K is WAL-definable over V if
there exist a default weight 1 ∈ M and a sentence ϕ ∈ WAL(Σ,V1) such that
[[ϕ]] = L.

420 V. Perevoshchikov

Example 4.2. Consider a valuation structure V = (M, (K,+,0), val) and a
default weight 1 ∈ M . Consider an alphabet Σ = {a, b, ...} of actions. We assume
that the cost of a is c(a) ∈ M , the cost of b is c(b) ∈ M , and the costs of all other
actions x in Σ are equal to c(x) = 1 (which can mean, e.g., that these actions
do not invoke any costs). Then every ω-word w induces the ω-word of costs. We
want to construct a sentence of our WAL which for every such an ω-word will
evaluate its sequence of costs using val. The desired sentence ϕ ∈ WAL(Σ,V1)
is ϕ = �x.([Pa(x) ⇒ (x �→ c(a))] � [Pb(x) ⇒ (x �→ c(b))]). Then, for every w =
(ai)i∈N ∈ Σω, the auxiliary semantics 〈〈ϕ〉〉(w) is the partial ω-word over M
where all positions i ∈ N with ai = a are labelled by c(a), all positions with
ai = b are labelled by c(b), and the labels of all other positions are undefined.
Then, the proper semantics [[ϕ]](w) assigns 1 to all positions with undefined
labels and evaluates it by means of val.

4.3 WAL: Relation to MSO Logic

Let Σ be an alphabet. We consider monadic second-order logic MSO(Σ) over
ω-words to be the set of formulas

ϕ ::= Pa(x) | x = y | x < y | X(x) | ϕ ∧ ϕ | ¬ϕ | ∀x.ϕ | ∀X.ϕ

where a ∈ Σ, x, y ∈ V1 and X ∈ V2. For wσ ∈ Σω
V , the satisfaction relation

wσ |= ϕ is defined as usual. The usual formulas of the form ϕ1 ∨ ϕ2, ∃X .ϕ with
X ∈ V , ϕ1 ⇒ ϕ2 and ϕ1 ⇔ ϕ2 can be expressed using MSO-formulas.

For any formula ϕ ∈ MSO(Σ), let W (ϕ) denote the WAL-formula obtained
from ϕ by replacing ∧ by �, ∀X (with X ∈ V) by �X , and every subformula
¬ψ by ψ ⇒ false. Here false can be considered as abbreviation of the sentence
�x.(x < x). Note that W (ϕ) does not contain any assignment formulas x �→ m
and 〈〈W (ϕ)〉〉(wσ) ∈ {�,⊥} for every wσ ∈ Σω

V . Moreover, it can be easily
shown by induction on the structure of ϕ that, for all wσ ∈ Σω

V : wσ |= ϕ iff
〈〈W (ϕ)〉〉(wσ) = �. This shows that MSO logic on infinite words is subsumed by
WAL. For the formulas which do not contain any assignments of the form x �→
m, the merging � can be considered as the usual conjunction and the merging
quantifiers �X as the usual universal quantifiers ∀X . Moreover, � corresponds
to the boolean true value and ⊥ to the boolean false value. For a WAL-formula
ϕ, we will consider ¬ϕ as abbreviation for ϕ ⇒ false.

4.4 Extended WAL

Here we extend WAL with weighted existential quantification over free variables
in WAL-formulas. Let Σ be an alphabet, V = (M, (K,+,0), val) a valuation
structure and 1 ∈ M a default weight. The set eWAL(Σ,V1) of formulas of
extended weight assignment logic over Σ and V1 consists of all formulas of the
form �X1. ... �Xk.ϕ where k ≥ 0, X1, ...,Xk ∈ V and ϕ ∈ WAL(Σ,V1). Given
a formula ϕ ∈ eWAL(Σ,V1), the semantics of ϕ is the mapping [[ϕ]] : Σω

V → K
defined inductively as follows. If ϕ ∈ WAL(Σ,V1), then [[ϕ]] is defined as the

Weight Assignment Logic 421

proper semantics for WAL. If ϕ contains a prefix �x with x ∈ V1 or �X with
X ∈ V2, then, for all wσ ∈ Σω

V , [[ϕ]](wσ) is defined inductively as follows:

[[�x.ϕ]](wσ) =
∑(

[[ϕ]](wσ[x/i]) | i ∈ dom(w)
)

[[�X.ϕ]](wσ) =
∑(

[[ϕ]](wσ[X/I]) | I ⊆ dom(w)
)

Again, if ϕ is a sentence, then we can consider its semantics as the quantitative
ω-language [[ϕ]] : Σω → K. We say that a quantitative ω-language L : Σω → K
is eWAL-recognizable over V if there exist a default weight 1 ∈ M and a sentence
ϕ ∈ eWAL(Σ,V1) such that [[ϕ]] = L.

Example 4.3. Let Σ = {a} be a singleton alphabet, V = VDisc as defined
in Example 2.3(b). Assume that, for every position of an ω-word, we
can either assign to this position the cost 5 and the discounting fac-
tor 0.5 or we assign the cost the smaller cost 2 and the bigger dis-
counting factor 0.75. After that we compute the discounted sum using
the valuation function of VDisc. We are interested in the infimal value of
this discounted sum. We can express it by means of the eWAL-formula
ϕ = �X.�x.([X(x) ⇒ (x �→ (5, 0.5))] � [(¬X(x)) ⇒ (x �→ (2, 0.75))]) i.e. [[ϕ]]
(aω) is the desired infimal value.

5 Expressiveness Equivalence Result

In this section we state and prove the main result of this paper.

Theorem 5.1. Let Σ be an alphabet, V = (M, (K,+,0), val) a valuation struc-
ture and L : Σω → K a quantitative ω-language. Then

(a) L is WAL-definable over V iff L is unambiguously recognizable over V.
(b) L is eWAL-definable over V iff L is recognizable over V.

5.1 Unambiguous Case

In this subsection, we sketch the proof of Theorem 5.1 (a). First we show WAL-
definability implies unambiguous recognizability. We establish a decomposition
of WAL-formulas in a similar manner as it was done for unambiguous WBA
in Theorem 3.1 (a). Assume that L = [[ϕ]] where ϕ ∈ WAL(Σ,V1). We show
that there exist an alphabet Γ , renamings h : Γ → Σ and g : Γ → M , and a
sentence β ∈ MSO(Γ) such that [[ϕ]] = h((val ◦g) ∩ L(β)) where L(β) ⊆ Γω is
the h-unambiguous ω-language defined by β. Then, applying the classical Büchi
theorem (which states that L(β) is recognizable) and our Nivat Theorem 3.1(a),
we obtain that L is recognizable over V. Let # /∈ M be a symbol which we will
use to mark all positions whose labels are undefined in the auxiliary semantics
of WAL-formulas. Let Δϕ = Const(ϕ)∪{#}. Then our extended alphabet will
be Γ = Σ × Δϕ. We define the renamings h, g as follows. For all u = (a, b) ∈ Γ ,
we let h(u) = a, g(u) = b if b ∈ M , and g(u) = 1 if m = #. The main

422 V. Perevoshchikov

difficulty is to construct the sentence β. For any ω-word w = (ai)i∈N ∈ Σω

and any partial ω-word η ∈ (Const(ϕ))↑, we encode the pair (w, η) as the ω-
word code(w, η) = ((ai, bi))i∈N ∈ Γω where, for all i ∈ dom(η), bi = η(i) and,
for all i ∈ N \ dom(η), bi = #. In other words, we will consider ω-words of
Γ as convolutions of ω-words over Σ with the encoding of the auxiliary
semantics of ϕ.

Lemma 5.2. For every subformula ζ of ϕ, there exists a formula
Φ(ζ) ∈ MSO(Σ × Δϕ) such that Free(Φ(ζ)) = Free(ζ) and, for all wσ ∈ Σω

V

and η ∈ (Const(ϕ))↑, we have: 〈〈ζ〉〉(wσ) = η iff (code(w, η))σ |= Φ(ζ).

Proof (Sketch). Let Y ∈ V2 be a fresh variable which does not occur in ϕ.
First, we define inductively the formula ΦY (ζ) ∈ MSO(Γ) with Free(ΦY (ζ)) =
Free(ζ)∪{Y } which describes the connection between the input ω-word w and
the output partial ω-word η; here the variable Y keeps track of the domain of η.

– For ζ = Pa(x), we let ΦY (ζ) =
∨

b∈Δϕ
P(a,b)(x) ∧ Y (∅) where Y (∅) is abbre-

viation for ∀y.¬Y (y). Here we demand that the first component of the letter
at position x is a and the second component is an arbitrary letter from Δϕ

and that the auxiliary semantics of ζ is the trivial partial ω-word �.
– Let ζ be one of the formulas of the form x = y, x < y or X(x). Then, we let

ΦY (ζ) = ζ ∧ Y (∅).
– For ζ = (x �→ m), we let ΦY (ζ) =

∨
a∈Σ P(a,m)(x) ∧ ∀y.(Y (y) ⇔ x = y).

This formula describes that position x of η must be labelled by m and all
other positions are unlabelled.

– Let ζ = (ζ1 ⇒ ζ2). Let Z ∈ V2 be a fresh variable. Consider the for-
mula κ = ∃Z.[ΦZ(ζ1) ∧ Z(∅)] which checks whether the value of the auxiliary
semantics of ζ1 is �. Then, we let ΦY (ζ) = (κ ∧ ΦY (ζ2)) ∨ (¬κ ∧ Y (∅)).

– Let ζ = ζ1 � ζ2. Let Y1, Y2 ∈ V2 be two fresh distinct variables. Then, we let
ΦY (ζ) = ∃Y1.∃Y2.(ΦY1(ζ1)∧ΦY2(ζ2)∧ [Y = Y1 ∪Y2]). Note that the property
Y = Y1 ∪ Y2 is MSO-definable.

– The most interesting case is a formula of the form ζ = �X .ζ ′ with X ∈ V .
Here, every value of X induces its own value of Y (X) and we have to merge
infinitely many partial ω-words, i.e., to express that Y is the infinite union
of Y (X) over all sets X . We can show that Y must be the minimal set which
satisfies the formula ξ(Y) = ∀X .∃Y ′.(ΦY ′(ζ ′) ∧ (Y ′ ⊆ Y)) where Y ′ ∈ V2 is
a fresh variable. Then, we let ΦY (ζ) = ξ(Y) ∧ ∀Z.(ξ(Z) ⇒ (Y ⊆ Z)).

Finally, we construct Φ(ζ) from ΦY (ζ) by labelling all positions not in Y by #:
Φ(ζ) = ∃Y.(ΦY (ζ) ∧ ∀x.(Y (x) ∨ ∨

a∈Σ P(a,#)(x))). ��
Now we apply Lemma 5.2 to the case ζ = ϕ. Then, Φ(ϕ) is a sentence and
L(Φ(ϕ)) = {code(w, η) | 〈〈ϕ〉〉(w) = η �= ⊥}.Note thatL(Φ(ϕ)) ish-unambiguous,
since for every w ∈ Σω there exists at most one u ∈ L(Φ(ϕ)) with h(u) = w. If we
let β = Φ(ϕ), then we obtain the desired decomposition [[ϕ]] = h((val ◦g) ∩ L(β)).
Hence WAL-definability implies unambiguous recognizability.

Now we show the converse part of Theorem 5.1 (a), i.e., we show that unam-
biguous recognizability implies WAL-definability. Let A = (Q, I, T, F,wt) be an

Weight Assignment Logic 423

unambiguous WBA over Σ and V. First, using the standard approach, we describe
runs of A by means of MSO-formulas. For this, we fix an enumeration (ti)1≤i≤m

of T and associate with every transition ti a second-order variable Xi which keeps
track of positions where t is taken. Then, a run of A can be described using a for-
mula β ∈ MSO(Σ) with Free(β) = {X1, ...,Xm} which demands that values
of the variables X1, ...,Xm form a partition of the domain of an input word, the
transitions of a run are matching, the labels of transitions of a run are compatible
with an input word, a run starts in I and visits some state in F infinitely often.
Let 1 ∈ M be an arbitrary default weight. Consider the WAL(Σ,V1)-sentence

ϕ=W (∃X1...∃Xm.β) � (�X1...�Xm.[W (β) ⇒ �x.
�m

i=1Xi(x) ⇒ (x �→ wt(ti))]
)
.

It can be shown that [[ϕ]] = [[A]]. Hence unambiguous recognizability implies
WAL-definability.

5.2 Nondeterministic Case

Now we sketch of the proof of Theorem 5.1 (b). First we show that eWAL-
definability implies nondeterministic recognizability. The idea of our proof is
similar to the unambiguous case, i.e., via a decomposition of a eWAL-sentence.
Let 1 ∈ M be a default weight and ψ ∈ eWAL(Σ,V1) a sentence. We may
assume that ψ = �x1...�xk.�X1...�Xl.ϕ where ϕ ∈ WAL(Σ,V1) and x1, ..., xk,
X1, ..., Xl are pairwise distinct variables. Again, we will establish a decompo-
sition [[ϕ]] = h((val ◦g) ∩ L(β)) for some alphabet Γ , renamings h : Γ → Σ
and g : Γ → M , and an MSO-sentence β over Γ . Note that, as opposed to the
unambiguous case, the ω-language L(β) is not necessarily h-unambiguous. Then,
the quantitative ω-language L is recognizable over V by Theorem 3.1 (b) and the
classical Büchi theorem (which states that L(β) is a recognizable ω-language). As
opposed to the unambiguous case, the extended alphabet Γ must also keep track
of the values of the variables x1, ..., xk,X1, ...,Xl. Let V = {x1, ..., xk,X1, ...,Xl}
and Δϕ be defined as in the unambiguous case. Then we let Γ = Σ × Δϕ × 2V

and define h, g as in the unambiguous case ignoring the new component 2V .
Finally we construct the MSO-sentence β over Γ . The construction of β will be
based on Lemma 5.2. Let Φ(ϕ) ∈ MSO(Σ × Δϕ) be the formula constructed in
Lemma 5.2 for ζ = ϕ. By simple manipulations with the predicates P(a,b)(x) of
Φ(ϕ) (describing that the 2V -component is arbitrary), we transform Φ(ϕ) to the
formula Φ(ϕ) ∈ MSO(Γ). Using the standard Büchi encoding technique we con-
struct a formula φ ∈ MSO(Γ) which encodes the values of V-variables in the 2V -
component of an ω-word over Γ . Then we let β = ∃x1...∃xk.∃X1...∃Xl.(φ∧Φ(ϕ)).
It can be shown that [[ϕ]] = h((val ◦g)∩L(β)). Hence eWAL-definability implies
recognizability.

Now we show that recognizability implies eWAL-definability. Our proof
is a slight modification of our proof for the unambiguous case. Let
A = (Q, I, T, F,wt) be a nondeterministic WBA. Adopting the notations from
the corresponding proof of Subsect. 5.1, we construct the eWAL(Σ,V1)-sentence

424 V. Perevoshchikov

ϕ = �X1...�Xm.
(
W (β) ⇒ �x.

�m
i=1Xi(x) ⇒ (x �→ wt(ti))

)
.

It can be shown that [[ϕ]] = [[A]]. Hence recognizabilty implies eWAL-
definability.

6 Discussion

In this paper we introduced a weight assignment logic which is a simple and
intuitive logical formalism for reasoning about quantitative ω-languages. More-
over, it works with arbitrary valuation functions whereas in weighted logics of
[12], [14] some additional restrictions on valuation functions were added. We
showed that WAL is expressively equivalent to unambiguous weighted Büchi
automata. We also considered an extension of WAL which is equivalent to non-
deterministic Büchi automata. Our expressiveness equivalence results can be
helpful to obtain decidability properties for our new logics. The future research
should investigate decidability properties of nondeterministic and unambigu-
ous weighted Büchi automata with the practically relevant valuation functions.
Although the weighted ω-automata models [7] do not have a Büchi acceptance
condition, it seems likely that their decidability results about the threshold prob-
lems hold for Büchi acceptance condition as well. It could be also interesting to
study our weight assignment technique in the context of temporal logic like
LTL. Our results obtained for ω-words can be easily adopted to the structures
like finite words and trees.

References

1. Andersson, D.: Improved combinatorial algorithms for discounted payoff games.
Master’s thesis, Uppsala University, Department of Information Technology (2006)

2. Bloem, R., Greimel, K., Henzinger, T.A., Jobstmann, B.: Synthesizing robust
systems. In: FMCAD 2009, pp. 85–92. IEEE (2009)

3. Bouyer, P.: A logical characterization of data languages. Inf. Process. Lett. 84(2),
75–85 (2002)

4. Bouyer, P., Brinksma, E., Larsen, K.G.: Optimal infinite scheduling for
multi-priced timed automata. Formal Methods in System Design 32, 3–23 (2008)

5. Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Logik
und Grundl. Math. 6, 66–92 (1960)

6. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. In:
Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 385–400. Springer,
Heidelberg (2008)

7. Carton, O., Michel, M.: Unambiguous Büchi automata. In: Gonnet, G.H., Viola,
A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 407–416. Springer, Heidelberg (2000)

8. Droste, M., Gastin, P.: Weighted automata and weighted logics. Theoret. Comp.
Sci. 380(1–2), 69–86 (2007)

9. Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata.
EATCS Monographs on Theoretical Computer Science. Springer (2009)

Weight Assignment Logic 425

10. Droste, M., Kuske, D.: Weighted automata. In: Pin, J.-E. (ed.) Handbook:
“Automata: from Mathematics to Applications”. European Mathematical Society
(to appear)

11. Droste, M., Meinecke, I.: Weighted automata and weighted MSO logics for average
and long-time behaviors. Inf. Comput. 220–221, 44–59 (2012)

12. Droste, M., Perevoshchikov, V.: Multi-weighted automata and MSO logic. In:
Bulatov, A.A., Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp. 418–430.
Springer, Heidelberg (2013)

13. Droste, M., Perevoshchikov, V.: A Nivat theorem for weighted timed automata
and weighted relative distance logic. In: Esparza, J., Fraigniaud, P., Husfeldt, T.,
Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 171–182.
Springer, Heidelberg (2014)

14. Droste, M., Rahonis, G.: Weighted automata and weighted logics on infinite words.
In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 49–58. Springer,
Heidelberg (2006)

15. Fahrenberg, U., Juhl, L., Larsen, K.G., Srba, J.: Energy games in multiweighted
automata. In: Cerone, A., Pihlajasaari, P. (eds.) ICTAC 2011. LNCS, vol. 6916,
pp. 95–115. Springer, Heidelberg (2011)

16. Filiot, E., Gentilini, R., Raskin, J.-F.: Quantitative languages defined by functional
automata. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454,
pp. 132–146. Springer, Heidelberg (2012)

17. Hashiguchi, K., Ishiguro, K., Jimbo, S.: Decidability of the equivalence problem
for finitely ambiguous finance automata. Int. Journal of Algebra and Computation
12(3), 445–461 (2002)

18. Krob, D.: The equality problem for rational series with multiplicities in the tropical
semiring is undecidable. International Journal of Algebra and Computation 4(3),
405–425 (1994)

19. Larsen, K.G., Rasmussen, J.I.: Optimal conditional reachability for multi-priced
timed automata. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441,
pp. 234–249. Springer, Heidelberg (2005)

20. Nivat, M.: Transductions des langages de Chomsky. Ann. de l’Inst. Fourier 18,
339–456 (1968)

21. Stüber, T., Vogler, H., Fülöp, Z.: Decomposition of weighted multioperator tree
automata. Int. J. Foundations of Computer Sci. 20(2), 221–245 (2009)

22. Wilke, T.: Specifying timed state sequences in powerful decidable logics and timed
automata. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994
and ProCoS 1994. LNCS, vol. 863, pp. 694–715. Springer, Heidelberg (1994)

Complexity Bounds of Constant-Space Quantum
Computation

(Extended Abstract)

Tomoyuki Yamakami(B)

Department of Information Science, University of Fukui,
3-9-1 Bunkyo, Fukui 910-8507, Japan

tomoyukiyamakami@gmail.com

Abstract. We model constant-space quantum computation as measure-
many two-way quantum finite automata and evaluate their language
recognition power by analyzing their behaviors and explore their prop-
erties. In particular, when the automata halt “in finite steps,” they must
terminate in worst-case liner time. Even if all computation paths of
bounded-error automata do not terminate, it suffices to focus only on
computation paths that terminate after exponentially many steps. We
present a classical simulation of those automata on multi-head probabilis-
tic finite automata with cut points. Moreover, we discuss how the power
of the automata varies as the automata’s acceptance criteria change to
error free, one-sided error, bounded error, and unbounded error.

1 Quick Overview

Computer scientists have primarily concerned with “resources” used up to exe-
cute desired computations on a given computing device. Particularly, we are
keen to memory space that stores information or data necessary to carry out a
carefully designed single protocol on the device. In quantum computing, when
a protocol requires only a constant amount of memory space (independent of
input size), we are used to view such device as quantum finite automata (qfa),
mainly because they are still capable of storing useful information by way of
manipulating a few number of “inner states” without equipping an additional
memory tape. A qfa proceeds its computation by applying a finite-dimensional
unitary transition matrix and projective measurements. Such simplicity of the
fundamental structure of qfa’s is ideal for us to conduct a deeper analysis on
their algorithmic procedures. In this extended abstract, we are focused mostly
on measure-many two-way quantum finite automata (or 2qfa’s, for brevity) of
Kondacs and Watrous [4] because of the simplicity of their definition.

A computation of the 2qfa evolves linearly by applying a transition matrix
to a superposition of configurations in a finite-dimensional Hilbert space (called
a configuration space). Unlike a model in [8], Kondacs and Watrous’ qfa model
further uses a classical operation of observing halting inner states at every step.
Allowing its tape head to move in all directions, in fact, enables the 2qfa’s to
c© Springer International Publishing Switzerland 2015
I. Potapov (Ed.): DLT 2015, LNCS 9168, pp. 426–438, 2015.
DOI: 10.1007/978-3-319-21500-6 34

Complexity Bounds of Constant-Space Quantum 427

attain a significant increase of computational power over 2-way deterministic
finite automata [4]. Despite our efforts over the past 20 years, the behaviors
of 2qfa’s have been largely enigmatic and the 2qfa’s are still awaiting for full
investigation.

There are three important issues that we wish to address in depth.
(1) Acceptance criteria issue. The first issue is that, in traditional automata

theory, the language recognition has been concerned with a threshold of the
acceptance probability of underlying automata under the term of “(isolated)
cut point.” In quantum automata theory, on the contrary, qfa’s were origi-
nally defined in terms of “bounded-error probability.” The family of languages
recognized by such bounded-error 2qfa’s is shorthandedly denoted by 2BQFA.
When we further modify 2qfa’s error probability, we obtain 2EQFA, 2PQFA,
and 2C=QFA for the language families1 induced by 2qfa’s with error-free (or
exact), unbounded-error, and equal probabilities, respectively. Here, we present
in Section 3 various inclusion and collapsing relationships among those families.

(2) Termination issue. In the literature, space-bounded quantum computa-
tion has been discussed mostly in the case of absolutely halting (i.e., eventual
termination of all computation paths) [12]. Bounded-error 2qfa’s that halt abso-
lutely define a language family 2BQFA(abs-halt); in contrast, 2qfa’s whose com-
putation paths terminate with probability 1 (i.e., the probability of non-halting
computation is 0) are said to halt completely and induce 2BQFA(comp-halt).
Here, we demonstrate in Section 4 that, when a 2qfa makes bounded errors,
most computation paths of the 2qfa can terminate after exponentially many
steps. A key to the proof of this result is the Dimension Lemma of Yao [16],
presented in Section 3. This is a direct consequence of an analysis of 2qfa’s tran-
sition matrices. In particular, when 2qfa’s halt absolutely, we can upper-bound
the “worst case” running time of the 2qfa’s by O(n), where n is the input length.

(3) Classical simulation issue. Watrous [12] gave a general procedure of sim-
ulating space-bounded unbounded-error quantum Turing machines. As noted
in [9], this simulation leads to the containment 2BQFAA ⊆ PL, where PL is
the family of all languages recognized by unbounded-error probabilistic Tur-
ing machines with {0, 1/2, 1}-transition probabilities using O(log n) space. In
Section 5, we give a better complexity upper bound to 2PQFA (and therefore
2BQFA) using multi-head 2-way probabilistic finite automata with cut points.
For this purpose, we make an appropriate implementation of a GapL-algorithm
of [7, Theorem 4] that computes integer determinants. For our implementation,
we need to make various changes to the original algorithm. Such changes are
necessary because a target matrix is given as “input” in [7]; however, in our
case, we must generate “probabilities” to express the desired determinants.

1 These notations are analogous to EQP, PP, and C=P in complexity theory.

428 T. Yamakami

2 Basic Notions and Notation

2.1 General Definitions

Let N be the set of all natural numbers (that is, nonnegative integers) and set
N

+ = N − {0}. Moreover, let Z, Q, R, and C be the sets of all integers, of all
rational numbers, of all real numbers, and of all complex numbers, respectively.
The notation A stands for the set of all algebraic complex numbers. We write ı
for

√−1. Given two numbers m,n ∈ Z with m ≤ n, [m,n]Z expresses an integer
interval between m and n; i.e., the set {m,m+1,m+2, . . . , n}. For any finite set
Q, |Q| denotes the cardinality of Q. All vectors in C

n are expressed as column
vectors. Given a number n ∈ N

+, Mn(C) stands for the set of all n × n complex
matrices. For any complex matrix A, the notation AT and A† respectively denote
the transpose and the Hermitian adjoint of A.

2.2 Classical Finite Automata and Cut Point Formulation

We assume the reader’s familiarity with 2-way probabilistic finite automata (or
2pfa’s) with real transition probabilities. Here, we formulate such 2pfa’s as M =
(Q,Σ, δ, q0, Qacc, Qrej) by including Qrej , which was not in the original definition
of Rabin [10]. When all transition probabilities of M are drawn from a designated
set K (K ⊆ R), we say that a 2pfa takes K-transition probabilities. Implicitly, we
always assume that {0, 1/2, 1} ⊆ K. Given a 2pfa M , pM,acc(x) and pM,rej(x)
respectively denote the acceptance probability and the rejection probability of
M on input x.

As a variant of 2pfa’s, we also define a k-head two-way probabilistic finite
automaton (or a khead-2pfa, in short) by allowing a 2pfa to use k tape heads that
move separately along a single input tape [6]. The notation 2PPFAK(k-head)
denotes the family of all languages recognized with “cut points” in K ∩ [0, 1] by
khead-2pfa’s. In a similar way, 2C=PFAK(k-head) is defined using “exact cut
points”2 in place of “cut points.”

The notation #2PFAK denotes the collection of stochastic functions, which
are of the form pM,acc for certain 2pfa’s M with K-transition probabilities. (See
[5] for the case of 1pfa’s.)

2.3 Quantum Finite Automata and Bounded Error Formulation

We briefly give the formal definition of 2-way quantum finite automata (or 2qfa’s,
in short). Formally, a 2qfa M is described as a sextuple (Q,Σ, δ, q0, Qacc, Qrej),
where Q is a finite set of inner states with Qacc ∪Qrej ⊆ Q and Qacc ∩Qrej = Ø,
Σ is a finite alphabet, q0 is the initial inner state, and δ is a transition function
mapping from Q × Σ̌ × Q × D to C, where Σ̌ = Σ ∪ {|c, $} and D = {−1, 0,+1}.
The transition function δ specifies transitions whose output values δ(p, σ, q, d)

2 A number η ∈ [0, 1] is an exact cut point for L if the following condition holds: for
all x ∈ Σ∗, x ∈ L if and only if pM,acc(x) = η.

Complexity Bounds of Constant-Space Quantum 429

are called amplitudes). Each transition δ(p, σ, q, d) = γ indicates that, assuming
that the 2qfa M is in inner state p scanning a symbol σ, M at the next step
changes its inner state to q and moves its head in direction d with amplitude γ.
The set Q is partitioned into three sets: Qacc, Qrej , and Qnon. Inner states in
Qacc (resp., in Qrej) are called accepting states (resp., rejecting states). A halting
state refers to an inner state in Qacc ∪Qrej . The rest of inner states, denoted by
Qnon, are non-halting states. We say that M has K-amplitudes if all amplitudes
of M are in set K (⊆ C), provided that {0, 1/2, 1} ⊆ K.

An input tape has two endmarkers |c and $ and is indexed by integers between
0 and n + 1, including the endmarkers, when an input of length n is given. For
technical convenience, we assume that the input tape is circular (as originally
defined in [4]). A computation of M is a series of superpositions of (classical)
configurations, each of which evolves by an application of δ to its predecessor
(if not the initial configuration) and by an application of a projective (or von
Neumann) measurement. From δ and input x ∈ Σn, we define a time-evolution
operator U

(x)
δ as a linear operator acting on span{|q, �〉 | q ∈ Q, � ∈ [0, n + 1]Z}

(called a configuration space) in the following way: for each (p, i) ∈ Q×[0, n+1]Z,
U

(x)
δ |p, i〉 equals

∑
(q,d)∈Q×{0,±1} δ(p, xi, q, d)|q, i + d (mod n + 2)〉, where x0 = |c,

xn+1 = $, and xi is the ith symbol of x for each index i ∈ [1, n]Z. Throughout
this extended abstract, we always assume U

(x)
δ to be unitary for any x. Three

projections Πacc, Πrej , and Πnon are linear maps that project onto Wacc =
span{|q〉 | q ∈ Qacc}, Wrej = span{|q〉 | q ∈ Qrej}, and Wnon = span{|q〉 | q ∈
Qnon}, respectively. A computation of M on input x proceeds as follows. The
2qfa M starts with its initial configuration |φ0〉 = |q0〉|0〉 (where 0 means the
head is scanning |c). At Step i, M applies U

(x)
δ to |φi−1〉 and then applies Πacc ⊕

Πrej ⊕ Πnon. We say that M accepts (resp., rejects) at Step i with probability
pM,acc,i(x) = ‖ΠaccU

(x)
δ |φi−1〉‖2 (resp., pM,rej,i(x) = ‖ΠrejU

(x)
δ |φi−1〉‖2). The

ith unnormalized quantum state |φi〉 becomes ΠnonU
(x)
δ |φi−1〉. The acceptance

probability of M on x is pM,acc(x) =
∑∞

i=1 pM,acc,i(x). The rejection probability
is defined similarly and is denoted by pM,rej(x).

Let ε be any constant in [0, 1/2) and let L be any language over alphabet
Σ. We say that a 2qfa M recognizes L with error probability at most ε if (i)
for every x ∈ L, pM,acc(x) ≥ 1 − ε and (ii) for every x ∈ L (= Σ∗ − L),
pM,rej(x) ≥ 1 − ε. When such an ε exists, we also say that M recognizes L with
bounded-error probability. We define 2BQFAK as the family of all languages that
can be recognized by bounded-error 2qfa’s with K-amplitudes.

We say that a 2qfa halts completely if its halting probability equals 1, whereas
a 2qfa halts absolutely if all the computation paths of the 2qfa eventually ter-
minate in halting inner states. If a 2qfa halts absolutely, then it must halt com-
pletely, but the converse is not always true since a 2qfa that halts completely
might possibly have a few computation paths that do not terminate.

When we place various restrictions specified as 〈restrictions〉 on 2qfa’s, we
intend to use a conventional notation of the form 2BQFAK(restrictions). Let

430 T. Yamakami

〈comp-halt〉 and 〈abs-halt〉 respectively mean that a target 2qfa halts completely
and absolutely. We often drop the subscript K whenever K = C.

We discuss four more language families. The error-free language family
2EQFAK is obtained from 2BQFAK by always setting ε = 0 (i.e., either
pM,acc(x) = 1 or pM,rej(x) = 1 for all x ∈ Σ∗). We also obtain the unbounded-
error language family 2PQFAK by requiring that pM,acc(x) > 1/2 for all x ∈ L
and pM,rej(x) ≥ 1/2 for all x ∈ L. Similarly, the equality language family
2C=QFAK is derived from 2BQFAK by demanding that, for all x, x ∈ L iff
pM,acc(x) = 1/2. In contrast, the one-sided error language family 2RQFAK

requires the existence of a constant ε ∈ [0, 1/2] satisfying that pM,acc(x) = 1
for all x ∈ L and pM,rej(x) ≥ 1 − ε for all x ∈ L.

By the definitions of the aforementioned language families, the following
properties hold. Recall that {0, 1/2, 1} ⊆ K is implicitly assumed.

Lemma 1. Let K be any subset of C.
1. 2EQFAK ⊆ 2RQFAK ⊆ 2BQFAK ⊆ 2PQFAK .
2. 2EQFAK = co-2EQFAK and 2BQFAK = co-2BQFAK .
3. 2EQFAK = 2EQFAK(comp-halt) ⊆

2C=QFAK(comp-halt) ∩ co-2C=QFAK(comp-halt).
4. 2RQFAK ∪ co-2RQFAK ⊆ 2BQFAK if K ⊇ Q ∩ [0, 1].
5. 2C=QFAK ⊆ co-2PQFAK .

The notion of quantum functions given in [14] generated by quantum Turing
machines is quite useful in describing various language families. Similarly to
the notation #BQP used in [14], we define #2QFAK to be the set of quantum
functions pM,acc : Σ∗ → [0, 1] for any K-amplitude 2qfa M . This can be seen as
an extension of #2PFAK of stochastic functions in Section 2.2. Note that, by
exchanging Qacc and Qrej of M , the function pM,rej also belongs to #2QFAK .

3 Behaviors of Absolutely Halting QFAs

We will discuss an issue on termination criteria of 2qfa’s. We begin with the
case where 2qfa’s halt absolutely (that is, all computation paths of M halt on
all inputs within a finite number of steps). Since those 2qfa’s are relatively
easy to handle, we obtain several intriguing properties of them. In what fol-
lows, the notation REG represents the collection of all regular languages. We
write AM(2pfa, poly-time) for the family of all languages recognized by Dwork-
Stockmeyer interactive proof systems using 2pfa verifiers with Q-transition prob-
abilities running in expected polynomial time [3].

Proposition 2. REG ⊆ 2EQFAQ(abs-halt) ⊆ 2RQFAQ(abs-halt) �

AM(2pfa, poly-time).

Next, we will give a precise bound on the running time of the 2qfa’s when they
halt absolutely. For convenience, we say that a 2qfa halts in worst-case linear
time if every computation path terminates within time linear in input size. In

Complexity Bounds of Constant-Space Quantum 431

this case, we use another notation 2BQFAK [lin-time] to differentiate it from
the case of expected liner-time computation. As before, we omit the subscript K
whenever K = C. We introduce similar notations for 2EQFA, 2RQFA, 2C=QFA,
and 2PQFA. In the following theorem, we prove that every absolutely-halting
2qfa terminates in worst-case linear time.

Theorem 3. For any set K ⊆ C, 2BQFAK(abs-halt) = 2BQFAK [lin-time].
The same is true for 2EQFA, 2RQFA, 2C=QFA, and 2PQFA.

For the proof of Theorem 3, we need to observe the behaviors of 2qfa’s that
halt absolutely. Back in 1998, Yao [16] made the following observation.

Lemma 4. Any C-amplitude 2qfa with a set Q of inner states should halt
within worst-case |Q|(n + 2) + 1 steps if all (non-zero amplitude) computation
paths of the 2qfa eventually terminate, where n is input length.

Proof of Theorem 3. This theorem directly follows from Lemma 4 as fol-
lows. Let L be any language in 2BQFAK(abs-halt) recognized by a certain K-
amplitude 2qfa, say, M with bounded-error probability. Assume that M halts
absolutely. By Lemma 4, we conclude that M halts within worst-case O(n)
steps. This indicates that L belongs to 2BQFAK [lin-time]. Thus, we immedi-
ately obtain 2BQFAK(abs-halt) ⊆ 2BQFAK [lin-time]. Since the converse con-
tainment is trivial, it follows that 2BQFAK(abs-halt) = 2BQFAK [lin-time]. �

Lemma 4 also leads to various consequences. We denote by REC the family
of all recursive languages.

Corollary 5. 1. 2PQFAA(abs-halt) = co-2PQFAA(abs-halt).
2. 2C=QFAA(abs-halt) ∪ co-2C=QFAA(abs-halt) ⊆ 2PQFAA(abs-halt).
3. 2EQFAC(abs-halt) = 2EQFAA∩R(abs-halt) ⊆ REC.

In Corollary 5(1–2), we do not know whether the amplitude set A can be
replaced by C. Here, we want to prove this corollary.

Proof Sketch of Corollary 5. (1) Let L
be any language in 2PQFAA(abs-halt) witnessed by a certain 2qfa M of the
form (Q,Σ, δ, q0, Qacc, Qrej). Lemma 4 shows that all computation paths of M
on inputs of length n terminate within |Q|(n + 2) + 1 steps. Let FM be a set of
all amplitudes used by M . Since FM ⊆ A, choose α1, α2, . . . , αe ∈ A such that
FM ⊆ Q(α1, . . . , αe)/Q, where e ≤ |Q||Σ̌||D|. Let αx = pM,acc(x)−1/2 if x ∈ L;
pM,rej(x) − 1/2 otherwise. It is possible to express αx as a certain polynomial
in (α1, . . . , αe) whose degree is at most 2|Q|(n + 2) + 2.

Next, we use the following known result taken from Stolarsky’s textbook [11].

Lemma 6. Let α1, . . . , αe ∈ A. Let h be the degree of Q(α1, . . . , αe)/Q. There
exists a constant c > 0 that satisfies the following statement: for any complex
number α of the form

∑
k ak

(∏e
i=1 αki

i

)
, where k = (k1, . . . , ke) ranges over

432 T. Yamakami

Z[N1] × · · · × Z[Ne], (N1, . . . , Ne) ∈ N
e, and ak ∈ Z, if α �= 0, then |α| ≥

(
∑

k |ak|)1−h ∏e
i=1 c−hNi .

Apply Lemma 6 and we then obtain a constant c with 0 < c < 1 satisfying
that αx ≥ c|x|+1 for all x with αx �= 0. Using a standard technique used for
the complexity class PP, we can build a new 2qfa N that forces L to fall into
co-2PQFAA(abs-halt).

(2) It follows from (the proof of) Lemma 1(5) that (*) 2C=QFAA(abs-halt) ⊆
co-2PQFAA(abs-halt). Since 2PQFAA(abs-halt) is closed under complementation
by (1), we conclude from (*) that 2C=QFAA(abs-halt) ⊆ 2PQFAA(abs-halt).
Moreover, (*) implies that co-2C=QFAA(abs-halt) ⊆ 2PQFAA(abs-halt). Thus,
the desired result follows.

(3) This claim can be proven in a similar argument as in [1]. �

Hereafter, we will discuss how to prove Lemma 4. The core of the proof of
this lemma is the Dimension Lemma (Lemma 7), which relates to the eventual
behavior of each 2qfa, which performs a series of unitary operations and projec-
tive measurements. This lemma is an important ingredient in proving Lemma
9 in Section 4 and we thus need to zero in to the lemma. To state this lemma,
nonetheless, we need to introduce a few notions. Let V = C

N be a Hilbert space
and let U be any N×N unitary matrix over V . Let W be any fixed nonempty sub-
space of V and let W⊥ be its dual space; namely, V = W ⊕W⊥. Let PW ⊥ be the
projection operator onto W⊥. Obviously, PW ⊥(W) = {0} because of W⊥W⊥.
Let us consider the operation UW =def UPW ⊥ . Moreover, let U0

W (w) = w and
let U i+1

W (w) = UW (U i
W (w)) for any i ∈ N and any w ∈ V . Given each i ∈ N,

define Wi = {w ∈ V | U i+1
W (w) = 0} and set Wmax =

⋃
i∈N

Wi; in other words,
Wmax = {w ∈ V | ∃i ∈ N [U i+1

W (w) = 0]}.

Lemma 7. [Dimension Lemma] There exists a number d ∈ [0, N]Z for which
Wmax = Wd.

Proof of Lemma 4. Let M = (Q,Σ, δ, q0, Qacc, Qrej) be any C-amplitude
2qfa that halts absolutely. Let x ∈ Σn and define CONFn = Q × [0, n + 1]Z.

Consider a time-evolution matrix U
(x)
δ induced from δ and a halting config-

uration space W = span{|q〉|h〉 | q ∈ Qacc ∪ Qrej , h ∈ [0, n + 1]Z}. Let V = C
N ,

where N = |CONFn|. Since PW ⊥ = Πnon, it follows that UW = U
(x)
δ Πnon.

Hence, Wi = {w ∈ V | (U (x)
δ Πnon)i+1(w) = 0}. set w0 = |q0〉|0〉. Since all com-

putation paths of M on x terminate eventually, we obtain w0 ∈ Wmax. Lemma 7
implies that Wmax = Wd for a certain index d ∈ [0, N]Z. Thus, w0 ∈ Wd ⊆ WN .
This means that all the computation paths terminate within N + 1 steps. �

4 Runtime Bounds of 2qfa’s

We have shown in Section 3 a runtime upper bound of absolutely-halting 2qfa’s.
Here, we want to show that, although certain computation paths of general

Complexity Bounds of Constant-Space Quantum 433

bounded-error 2qfa’s may not even terminate, it suffices to consider only com-
putation paths that actually terminate in exponential time.

To state our result formally, we need to define a restricted form of 2qfa’s.
A t(n) time-bounded 2qfa M is a variant of 2qfa that satisfies the following
condition: we force M to “halt” after exactly t(n) steps (unless it halts earlier)
and ignore any computation step after this point, where any computation path
that does not enter a halting state within t(n) steps is considered “unhalting”
and excluded from any calculation of acceptance/rejection probability.

Theorem 8. Any language in 2BQFAA can be recognized by a certain 2O(n)

time-bounded 2qfa with bounded-error probability.

We show how to estimate the runtime of a given 2qfa by evaluating eigen-
values, which are associated with its time-evolution matrix.

Lemma 9. Let M be any A-amplitude 2qfa with a set Q of inner states with
error probability at most ε, where ε ∈ [0, 1/2]. Let ε′ = (1 − 2ε)/4. There exist
a constant c > 0 and a c|Q|(n+2) time-bounded 2qfa N that satisfy the following:
for any input x, (i) M accepts (resp., rejects) x with probability at least 1 − ε if
and only if N accepts (resp., rejects) x with probability at least 1 − ε′.

Proof of Theorem 8. Consider a language L in 2BQFAA and take an A-
amplitude 2qfa M that recognizes L with error probability at most ε ∈ [0, 1/2).
By Lemma 9, there is another 2qfa, say, N that is c|Q|(n+2) time-bounded and
pM,e(x) ≥ 1 − ε iff pN,e(x) ≥ 1 − ε′ for each type e ∈ {acc, rej}, where ε′ =
(1 − 2ε)/4. Since ε′ ∈ [0, 1/2), L can be recognized by N with bounded-error
probability. �

To complete the proof of Theorem 8, hereafter, we intend to prove Lemma 9.
In the following proof of the lemma, we will use the same terminology introduced
in Section 3.

Proof Sketch of Lemma 9. First, let M = (Q,Σ, δ, q0, Qacc, Qrej) denote
any 2qfa with A-amplitudes with error probability at most ε ∈ [0, 1/2]. In what
follows, fix n ∈ N and let N be the total number of configurations of M on
inputs of length n; that is, N = |Q|(n + 2). For simplicity, let V = C

N be the
configuration space of M on inputs of length n. Hereafter, we fix x in Σn and
abbreviate U

(x)
δ as U . Recall the notations Wacc, Wrej , and Wnon from Section

2.3. By setting W = Wacc ⊕ Wrej and W⊥ = Wnon, we obtain UW , Wi and
Wmax, stated in Section 3. By Lemma 7, there exists a number d′ ∈ [0, N]Z
satisfying that Wmax = Wd′ . In other words, any element v ∈ Wmax is mapped
to W within d′ + 1 steps. In what follows, we set ŨW = Ud′+1

W .
Without loss of generality, we assume that ŨW =

(
A O
B O

)
, using an m × m

matrix A and an (N − m) × m matrix B. For any v = (w, 0, . . . , 0)T ∈ W⊥
max

with w ∈ C
m, we obtain ŨW (v) = (Aw,Bw)T . More generally, for each k ∈ N

+,
it follows that Ũk

W (v) = (Akw,BAk−1w)T . Notice that (Akw, 0, . . . , 0)T ∈ W⊥
max

434 T. Yamakami

and (0, . . . , 0, BAk−1w)T ∈ Wmax. Since ŨW maps (0, · · · , 0, BAk−1w)T to W ,
the vector (0, . . . , 0, BAk−1w)T must be mapped by M to W within N +1 steps.

Since A is diagonalizable in C, we denote by {λ1, . . . , λm} the set of all eigen-
values of A and let {v1, . . . , vm} be the set of their corresponding unit-length
eigenvectors. For convenience, we first sort these eigenvalues in increasing order
according to their absolute values. Let i0 be the maximal index such that |λi| < 1
for all i ≤ i0 and |λi| = 1 for all i > i0. Take an appropriate unitary matrix
P forcing A = P †CP with a diagonal matrix C composed of the eigenvalues
λ1, . . . , λm. Consider the undetermined space Dund = span{v1, v2, . . . , vi0} and
the stationary space Dsta = span{vi0+1, vi0+2, . . . , vm}. Obviously, C

m = Dund⊕
Dsta. Note also that if w ∈ Dsta then ‖Aw‖ = ‖w‖, implying Bw = 0. This
means that, once w falls in Dsta, ŨW ((w, 0, . . . , 0)T) is also in Dsta ⊗ {0}m−i0 .
However, when w ∈ Dund, since w is of the form

∑
1≤j≤i0

αjvj for certain coef-
ficients α1, . . . , αi0 , it follows that Aw =

∑
j αjλjvj . Let λmax be one such that

|λmax| = max1≤j≤i0{|λj |}. By the choice of {λj}j , we obtain |λmax| < 1. Thus, it
follows that ‖Aw‖2 ≤ |λmax|2 ∑

j |αj |2 = |λmax|2‖w‖2 (since ‖vj‖ = 1), imply-
ing ‖Aw‖ ≤ |λmax|‖w‖. From this fact, we conclude that ‖Akw‖ ≤ |λmax|k‖w‖
for any k ≥ 1. This implies that limk→∞ ‖Akw‖ ≤ limk→∞ |λmax|k‖w‖ = 0.

Let ε′ = 1
2 (12 − ε) > 0. Note that ε′ is a constant because so is ε. Since our

2qfa M halts with probability at least 1−ε, we conclude that, for any sufficiently
large k, ‖Ãkv‖2 = ‖Akw‖2 ≤ |λmax|2k ≤ ε′ for all v = (w, 0, . . . , 0)T ∈ W⊥

max.
Such a k must satisfy that k ≤ (log ε′)/(2 log |λmax|).

Next, we need to show the desired upper-bound on the value |λmax|. By the
definition of λmax, the value |λmax| must be described by O(N) applications
of arithmetic operations. Letting α = 1 − |λmax|, since α �= 0, we conclude by
Lemma 6 that |α| ≥ c−N holds for a suitable constant c > 0; in other words,
|λmax| ≤ 1−c−N holds. This implies that log |λmax|−1 ≥ log(1−c−N)−1 ≥ c−N .
Hence, we have k ≤ (log ε′)/(2 log |λmax|) = (log (ε′)−1)/(2 log |λmax|−1) ≤ c′cN

for another appropriate constant c′ > 0. �

5 Classical Simulations of 2qfa’s

We wish to present two classical-complexity upper-bounds of 2PQFA and
2C=QFA for any amplitude set K. As noted in Section 2.2, {0, 1/2, 1} ⊆ K

is assumed. Given such a subset K of R, the notation K̂ denotes the minimal
set that contains K and is closed under multiplication and addition. Recall that
the notation “[t(n)-time]” refers to a worst-case time bound t(n).

Theorem 10. There exists an integer k ≥ 2 such that, for any set K ⊆ R, the
following statements hold.
1. 2PQFAK ⊆ 2PPFA

̂K(k-head)[poly-time].
2. 2C=QFAK ⊆ 2C=PFA

̂K(k-head)[poly-time].

An immediate corollary of Theorem 10 is given below, using Lemma 1.

Complexity Bounds of Constant-Space Quantum 435

Corollary 11. There is a constant k ≥ 2 such that, for any set K ⊆ C,
2EQFAK ⊆ 2C=PFA

̂K(k-head)[poly-time] ∩ co-2C=PFA
̂K(k-head)[poly-time]

and 2BQFAK ⊆ 2PPFA
̂K(k-head)[poly-time]∩co-2PPFA

̂K(k-head)[poly-time].

From [6, Lemmas 1–2&Theorem 2], it follows that the language family
2PPFAQ(k-head)[poly-time] is properly contained within PL. Since it is already
known that 2BQFAA ⊆ PL [9,12], we obtain the following separation.

Corollary 12. 2BQFAQ � PL.

Theorem 10 is a direct consequence of the following technical lemma regard-
ing a classical simulation of 2qfa’s on multi-head 2pfa’s.

Lemma 13. Let K be any subset of R. There exists an index k ≥ 2 that satisfies
the following. Given a K-amplitude 2qfa M , there exist two khead-2pfa’s N1 and
N2 such that (i) N1 and N2 have nonnegative K̂-transition probabilities, (ii)
N1 and N2 halt in worst-case nO(1) time, and (iii) it holds that, for every x,
(pN1,acc(x) − pN1,rej(x))pM,acc(x) = pN2,acc(x) − pN2,rej(x).

Concerning each quantum function f in #2QFAK generated by an appropri-
ate 2qfa M , we apply Lemma 13 and then obtain two khead-2pfa’s N1 and N2. By
setting g1(x) = pN1,acc(x), g2(x) = pN1,rej(x), h1(x) = pN2,acc(x), and h2(x) =
pN2,rej(x), it immediately follows that (g1(x) − g2(x))f(x) = h1(x) − h2(x).
Clearly, g1, g2, h1, h2 all belong to #2PFA

̂K(k-head)[poly-time]. This further
yields the next corollary.

Corollary 14. Let K ⊆ C. There exists an index k ≥ 2 such that, for any f ∈
#2QFAK , there are four functions g1, g2, h1, h2 ∈ #2PFA

̂K(k-head)[poly-time]
satisfying (g1(x) − g2(x))f(x) = h1(x) − h2(x) for every x.

Assuming that Lemma 13 is true, let us prove Theorem 10 firstly.

Proof Sketch of Theorem 10. Here, we plan to prove only the first con-
tainment 2PQFAK ⊆ 2PPFA

̂K(k-head)[poly-time]. Take an arbitrary language
L in 2PQFAK , witnessed by a certain K-amplitude 2qfa, say, M . By Lemma
13, there are two appropriate khead-2pfa’s N1 and N2 that satisfy Conditions
(i)–(iii) of the lemma. Define a new khead-2pfa N as follows. On input x, from
q0, enter q2 with probability 1/2, and q1 and q3 with probability 1/4 each. From
q1, run N1 on x. From q2, simulate N2 but flips its outcome (i.e., either accept-
ing or rejecting states). From q3, enter qacc and qrej with equal probability 1/2.
By the definition, it follows that pN,acc(x) = 1

4pN1,acc(x) + 1
2pN2,rej(x) + 1

8 and
pN,rej(x) = 1

4pN1,rej(x)+ 1
2pN2,acc(x)+ 1

8 . From those equalities, it is not difficult
to show that x ∈ L iff pN,acc(x) > 1/2. We therefore conclude that L belongs to
2PPFA

̂K(k-head)[poly-time]. �

Finally, let us return to Lemma 13. Our proof of this lemma is based on
a dextrous implementation of the Mahajan-Vinay algorithm [7] that efficiently
computes an integer determinant on multi-head 2pfa’s.

Proof Sketch of Lemma 13. Let L be any language and let n be any number
in N. Let M be any R-amplitude 2qfa having acceptance probability pM,acc(x)

436 T. Yamakami

and rejection probability pM,rej(x) on each input x. In what follows, let M be
of the form (Q,Σ, δ, q0, Qacc, Qrej). Assuming Q = {q0, q1, . . . , qc}, define two
index sets A and R for which Qacc = {qj | j ∈ A} and Qrej = {qj | j ∈ R}.
For later use, we set δ+1(q, σ, p, h) = δ(q, σ, p, h) if δ(q, σ, p, h) > 0; 0 otherwise.
Similarly, let δ−1(q, σ, p, h) = −δ(q, σ, p, h) if δ(q, σ, p, h) < 0; 0 otherwise. Note
that δ(q, σ, p, h) =

∑
e∈{±1} δe(q, σ, p, h).

We denote by x an arbitrary input of length n. Let CONFn = Q× [0, n+1]Z
and N = |CONFn|. First, we review how to evaluate the acceptance probability
pM,acc(x) of M on x. Recall that each ((q, �), (p,m))-entry of U

(x)
δ is exactly

δ(q, x�, p,m−�), provided that |m−�] ≤ 1. Let Pnon denote the projection oper-
ator onto the space spanned by non-halting configurations. Let Dx = U

(x)
δ Pnon,

which describes one step of M ’s move on this input x unless its inner state is a
halting state.

It is easy to see that the acceptance probability of M on input x obtained at
time k (i.e.,

∑
q,� |〈q, �|Dk

x|q0, 0〉|2) equals

∑
q,�

〈q, �|Dk
x|q0, 0〉〈q, 0|Dk

x|q0, 0〉 =
∑
q,�

〈(q, �), (q, �)|(Dk
x ⊗ Dk

x)|(q0, 0), (q0, 0)〉,

where q ∈ Qacc and � ∈ [0, n+1]Z. Take the vector yini = |q0, 0〉|q0, 0〉 associated
with the initial configuration and, for each j ∈ A, let yacc,j,� denote the vector
of the form |qj , �〉|qj , �〉. Since (Dx ⊗ Dx)k = Dk

x ⊗ Dk
x for any k ∈ N, the total

acceptance probability pM,acc(x) of M on x exactly matches

∞∑
k=0

⎛
⎝∑

j∈A

∑
�∈[0,n+1]Z

yT
acc,j,�(Dx ⊗ Dx)kyini

⎞
⎠ = yT

acc

(∞∑
k=0

(Dk
x ⊗ Dk

x)

)
yini,

where yacc =
∑

j∈A

∑
�∈[0,n+1]Z

yacc,j,�.
We are now focused on the term

∑∞
k=0(D

k
x ⊗ Dk

x). Let us express Dx as a
difference of two nonnegative real matrices. We first define D+

x [i, j] = Dx[i, j]
if Dx[i, j] > 0; D+

x [i, j] = 0 otherwise. Similarly, let D−
x [i, j] = −Dx[i, j] if

Dx[i, j] < 0; D−
x [i, j] = 0 otherwise. In addition, we set D̃x =

(
D+

x D−
x

D−
x D+

x

)
. To

specify each entry in D̃x, we conveniently use an index set Q×[0, n+1]Z×{±1} so
that, for any (p,m, b), (q, �, a) ∈ Q×[0, n+1]Z×{±1}, D̃x[(p,m, b), (q, �, a)] equals
δab(q, x�, p,m− �) if |m− �| ≤ 1; 0 otherwise. Let CONF∗ = (CONFn ×{±1})2.

Since the infinite sum
∑∞

k=0(D̃x ⊗ D̃x)k converges and ‖D̃x ⊗ D̃x‖ < 1 for a
suitable matric norm, it follows that I − D̃x ⊗ D̃x is invertible and, moreover,
(I − D̃x ⊗ D̃x)−1 =

∑∞
k=0(D̃x ⊗ D̃x)k. Let i0,a = ((q0, 0, a), (q0, 0, a)) and ĵa,� =

((qj , �, a), (qj , �, a)) for j ∈ A, � ∈ [0, n + 1]Z, and a ∈ {±1}. For simplicity, we
assume an appropriate ordering on CONF∗ and identify each element in CONF∗
with its index specified by this ordering. We therefore obtain that pM,acc(x) =∑

a∈{±1}
∑

j∈A(I −D̃x ⊗D̃x)−1[ĵa,�, i0,a]. By Laplace’s formula (i.e., C−1 equals

Complexity Bounds of Constant-Space Quantum 437

the adjugate of C divided by det(C)), pM,acc(x) equals
∑

a∈{±1}

∑
j∈A

∑
�∈[0,n+1]Z

(−1)i0,a+ĵa,�det[(I−D̃x⊗D̃x)i0,a,ĵa,�
]/det(I−D̃x⊗D̃x), (1)

where “Ci,j” is obtained from matrix C by deleting row i and column j.
Let us state our key lemma. In the lemma, f denotes a function defined by

f(x) = (1
2|A|2

−2�log2(n+2)�)(1
4|Q|2 2−2�log2(n+2)�)8|Q|2(n+2)2−1 for every x ∈ Σ∗.

Lemma 15. There exist a k ≥ 2 and a khead-2pfa N1 such that det[I − D̃x ⊗
D̃x] = f(x)[pN1,acc(x) − pN1,rej(x)] for all x. Similarly, a certain khead-2pfa N2

satisfies that
∑

a∈{±1}
∑

j∈A

∑
�∈[0,n+1]Z

(−1)i0,a+ĵa,�det[(I − D̃x ⊗ D̃x)i0,a,ĵa,�
] =

f(x)[pN2,acc(x) − pN2,rej(x)] for all x.

Using Lemma 15, we can complete the proof of Lemma 13 as follows.
Take khead-2pfa’s N1 and N2 given in Lemma 15. By Eq.(1), it follows that
pM,acc(x) = (pN2,acc(x) − pN2,rej(x))/(pN1,acc(x) − pN1,rej(x)), as requested.

To prove Lemma 15, we wish to use an elegant algorithm of Mahajan and
Vinay [7], who demonstrated how to compute the determinant of an integer
matrix using “closed walk (clow).” We intend to implement on khead-2pfa’s a
GapL-algorithm given in the proof of [7, Theorem 4], which produces a nonde-
terministic computation tree whose accepting/rejecting computation paths con-
tribute to the calculation of the determinant of a given integer matrix. As noted
in Section 1, our implementation, nevertheless, requires significant changes to
the original algorithm, because the original algorithm takes a target matrix as
“input,” whereas we must deal probabilistically with elements of the matrix. �

(*) All omitted or abridged proofs in this extended abstract will appear in a
forthcoming full paper.

References

1. Adleman, L.M., DeMarrais, J., Huang, M.A.: Quantum computability. SIAM J.
Comput. 26, 1524–1540 (1997)

2. Ambainis, A., Freivalds, R.: 1-way quantum finite automata: strengths, weaknesses
and generalizations. In: FOCS 1998, pp. 332–341 (1998)

3. Dwork, C., Stockmeyer, L.: Finite state verifier I: the power of interaction. J. ACM
39, 800–828 (1992)

4. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In:
FOCS 1997, pp. 66–75 (1997)

5. Macarie, I.: Closure properties of stochastic languages. Technical Report No.441,
Computer Science Department, University of Rochester (1993)

6. Macarie, I.I.: Multihead two-way probabilistic finite automata. Theory Comput.
Syst. 30, 91–109 (1997)

7. Mahajan, M., Vinay, V.: Determinant: combinatorics, algorithms, and complexity.
Chicago J. Theoret. Comput. Sci. 1997, Article no. 1997–5 (1997)

438 T. Yamakami

8. Moore, C., Crutchfield, J.: Quantum automata and quantum grammar. Theor.
Comput. Sci. 237, 275–306 (2000)

9. Nishimura, H., Yamakami, T.: An application of quantum finite automata to inter-
active proof systems. J. Comput. System Sci. 75, 255–269 (2009)

10. Rabin, M.O.: Probabilistic automata. Inform. Control 6, 230–244 (1963)
11. Stolarsky, K.B.: Algebraic Numbers and Diophantine Approximations. Marcel

Dekker (1974)
12. Watrous, J.: On the complexity of simulating space-bounded quantum computa-

tions. Computational Complexity 12, 48–84 (2003)
13. Yakaryilmaz, A., Say, A.C.C.: Unbounded-error quantum computation with small

space bounds. Inf. Comput. 209, 873–892 (2011)
14. Yamakami, T.: Analysis of quantum functions. Internat. J. Found. Comput. Sci.

14, 815–852 (2003)
15. Yamakami, T., Yao, A.C.: NQPC = co-C=P. Inf. Process. Lett. 71, 63–69 (1999)
16. Yao, A.C.: Class Note. Unpublished. Princeton University (1998)

Author Index

Almeida, Jorge 58
Avgustinovich, Sergey V. 71

Bannai, Hideo 85
Bartoňová, Jana 58
Béal, Marie-Pierre 167
Bell, Paul C. 97
Berwanger, Dietmar 108
Bianchi, Maria Paola 120
Blanchet-Sadri, Francine 132
Boasson, Luc 179
Bojańczyk, Mikołaj 1
Brandl, Christian 143
Brlek, Srečko 155

Carton, Olivier 179
Currie, James 191
Czyba, Christopher 203

Dehornoy, Patrick 14
Dolce, Francesco 215

Eremondi, Joey 228
Ésik, Zoltán 240

Fahrenberg, Uli 240
Feng, Shiguang 326
Filiot, Emmanuel 288
Frid, Anna E. 71

Gagie, Travis 85
Gainutdinova, Aida 252

Han, Yo-Sub 264
Heller, Pavel 167
Holzer, Markus 276
Hromkovič, Juraj 120

Ibarra, Oscar H. 228
Inenaga, Shunsuke 85

Jakobi, Sebastian 276
Jecker, Ismaël 288

Jirásek, Jozef 300
Jirásková, Galina 300

Kärkkäinen, Juha 85
Kempa, Dominik 85
Klíma, Ondřej 58
Klimann, Ines 313
Ko, Sang-Ki 264
Kováč, Ivan 120
Krebs, Andreas 340
Kunc, Michal 58
Kutrib, Martin 276
Kwee, Kent 401

Lafrenière, Nadia 155
Lange, Klaus-Jörn 340
Legay, Axel 240
Lohrey, Markus 46, 326
Ludwig, Michael 340

Manea, Florin 191
Marsault, Victor 352
Masáková, Zuzana 377
Masopust, Tomáš 364
McQuillan, Ian 228

Ng, Timothy 389
Nowotka, Dirk 191

Otto, Friedrich 401

Pelantová, Edita 377
Perevoshchikov, Vitaly 413
Perrin, Dominique 215
Piątkowski, Marcin 85
Picantin, Matthieu 313
Provençal, Xavier 155
Puglisi, Simon J. 85
Puzynina, Svetlana 71

Quaas, Karin 326

Rappaport, David 389
Rashin, Abraham 132
Reidenbach, Daniel 97

Salomaa, Kai 264, 389
Savchuk, Dmytro 313
Shallit, Jeffrey 97
Simon, Hans Ulrich 143
Spinrath, Christopher 203

Starosta, Štěpán 377
Sugimoto, Shiho 85

Thomas, Wolfgang 203
Thomazo, Michaël 364
van den Bogaard, Marie 108

Yakaryılmaz, Abuzer 252
Yamakami, Tomoyuki 426

440 Author Index

	Preface
	Organization
	Abstracts of Invited Talks
	Recognisable Languages Over Monads
	Grammar-Based Tree Compression
	Garside and Quadratic Normalisation: A Survey
	Proofs of UndecidabilityExtended Abstract
	Finite Automata and Transitive Closure Logic

	Contents
	Recognisable Languages over Monads
	1 Monads and Their Algebras
	2 Deciding Monadic Second-Order Logic
	3 Profinite Monads
	References

	Garside and Quadratic Normalisation: A Survey
	1 Two Examples
	1.1 Free Abelian Monoids
	1.2 Braid Monoids

	2 The -Normal Form in a Garside Monoid
	2.1 Garside Monoids
	2.2 Computing the -Normal Form
	2.3 The Right Counterpart

	3 The S-Normal Form Associated with a Garside Family
	3.1 The Notion of a Garside Family
	3.2 Computing S-Normal Decompositions
	3.3 Existence of S-Normal Decompositions

	4 Quadratic Normalisation
	4.1 Normalisations and Geodesic Normal Forms
	4.2 The Class of a Quadratic Normalisation
	4.3 Quadratic Normalisations of Class (4, 3)
	4.4 Characterising Garside Normalisations
	4.5 Connection with Rewriting Systems

	References

	Grammar-Based Tree Compression
	1 Introduction
	2 Tree Straight-Line Programs
	3 Constructing Small TSLPs
	4 Algorithmic Problems for TSLP-Compressed Trees
	References

	On Decidability of Intermediate Levels of Concatenation Hierarchies
	1 Introduction
	2 Basic Concepts
	2.1 Concatenation Hierarchies of Regular Languages
	2.2 Ordered Monoids
	2.3 Pseudovarieties and Pseudoidentities

	3 Bases of Inequalities for Polynomial Closure
	4 Testing the Inequalities in an Ordered Monoid
	5 Polynomial Reduction of the Membership Problem
	6 Conclusion
	References

	Ergodic Infinite Permutations of Minimal Complexity
	1 Introduction
	2 Basic Definitions
	3 Sturmian Words and Sturmian Permutations
	4 Ergodic Permutations
	5 Minimal Complexity of Ergodic Permutations
	References

	Diverse Palindromic Factorization Is NP-complete
	1 Introduction
	2 Outline
	3 Adding a Wire
	4 Splitting a Wire
	5 Adding a NAND Gate
	6 Conclusion
	References

	Factorization in Formal Languages
	1 Introduction
	2 Unique Factorizations
	3 Semi-unique Factorizations
	4 Permutationally Unique Factorization
	5 Subset-Invariant Factorization
	References

	Consensus Game Acceptors
	1 Introduction
	2 Preliminaries
	2.1 Consensus Game Acceptors

	3 Describing Languages by Games
	3.1 Domino Frontier Languages
	3.2 Uniform Encoding of Domino Problems in Games

	4 Characterising Context-Sensitive Languages
	5 Games for Weaker Language Classes
	References

	On the Size of Two-Way Reasonable Automata for the Liveness Problem
	1 Introduction and Preliminaries
	1.1 Liveness Problem and Reasonable Automata

	2 Main Results
	References

	Squareable Words
	1 Introduction
	2 Preliminaries
	3 Squareable Words and Colorings of Associated Graphs
	4 Linear Time Algorithm for Deciding Squareability
	5 Conclusion
	References

	Complexity Analysis: Transformation Monoids of Finite Automata
	1 Introduction
	2 Preliminaries
	3 Testing Green's Relations
	4 Finite Monoids: Testing for a Non-Abelian Subgroup
	5 Complexity of Communication Complexity
	5.1 Space-Efficient Algorithms for Syntactic Monoids
	5.2 Hardness Result for Regular Expressions

	References

	Palindromic Complexity of Trees
	1 Introduction
	2 Preliminaries
	3 Trees of the Family T2
	4 Trees of the Families T3 and T4
	4.1 A Lower Bound for ¶3(n).
	4.2 The Value of ¶4(n) is in (n32).

	5 Hypotheses for the Construction of Trees with a Lot of Distinct Palindromes
	References

	Deciding Proper Conjugacy of Classes of One-Sided Finite-Type-Dyck Shifts
	1 Introduction
	2 One-Sided Finite-Type Dyck Shifts
	2.1 Preliminaries
	2.2 Finite-Type Dyck Shifts
	2.3 (One-Sided) Edge-Dyck Shifts

	3 State-Splitting of Dyck Graphs
	4 Decomposition of Proper Conjugacies
	5 Decidability of Proper Conjugacy for a Classof Edge-Dyck Shifts
	References

	Transfinite Lyndon Words
	1 Introduction
	2 Transfinite Words
	3 Prime Words
	4 Factorization in Prime Words
	5 Rational Words
	5.1 Automata
	5.2 Algorithm

	6 Conclusion
	References

	Unary Patterns with Permutations
	1 Introduction
	2 Definitions
	3 A General Result
	4 Avoidability for Ternary Alphabets
	5 Eventually Unavoidable Patterns
	References

	Finite Automata Over Infinite Alphabets: Two Models with Transitions for Local Change
	1 Introduction
	2 Automata with Two-Letter Transitions
	2.1 Definitions
	2.2 Boolean Closure Properties
	2.3 The Non-Emptiness Problem
	2.4 Extensions and Undecidability Results

	3 Three-Way-Grid Traversal Automata
	3.1 Definitions
	3.2 Closure Properties
	3.3 Decidability of the Non-emptiness Problem
	3.4 The Non-universality Problem

	4 Discussion, Related Work, Perspectives
	4.1 Comparison Between the Two Models
	4.2 Comparison with Other Models
	4.3 Extension to Infinite Words
	4.4 General Framework of Progressive Grid Automata

	References

	Enumeration Formulæ in Neutral Sets
	1 Introduction
	2 Extension Graphs
	3 Bifix Codes
	4 Cardinality Theorem for Bifix Codes
	5 Cardinality Theorem for Return Words
	6 Bifix Decoding
	7 Neutral Sets and Interval Exchanges
	References

	On the Density of Context-Free and Counter Languages
	1 Introduction
	2 Definitions
	3 Deciding Types of Density
	4 Bounded-Dense Languages
	5 Conclusions and Open Questions
	References

	*-Continuous Kleene -Algebras
	1 Introduction
	2 Free Continuous Kleene -Algebras
	3 *-Continuous Kleene -Algebras
	4 Free Finitary *-Continuous Kleene -Algebras
	5 *-Continuous Kleene -Algebras and Iteration Semiring-Semimodule Pairs
	6 Büchi Automata in *-Continuous Kleene -Algebras
	7 Conclusion
	References

	Unary Probabilistic and Quantum Automata on Promise Problems
	1 Introduction
	2 Preliminaries
	2.1 Definitions
	2.2 The Theory of Markov Chains

	3 The Computational Power of Unary PFAs and QFAs
	4 Succinctness
	References

	Generalizations of Code Languages with Marginal Errors
	1 Introduction
	2 Preliminaries
	3 k-prefix-free, k-suffix-free and k-infix-freeness
	4 Decision Algorithms
	4.1 For k-prefix-free, k-suffix-free and k-infix-free Regular Languages
	4.2 For Finitely Prefix-free, Finitely Suffix-free and Finitely Infix-free Regular Languages

	5 Undecidability Results for (Linear) Context-free Languages
	6 Conclusions
	References

	Minimal Reversible Deterministic Finite Automata
	1 Introduction
	2 Preliminaries
	3 Deciding the Reversibility of a Regular Language
	4 Minimal Reversible Deterministic Finite Automata
	References

	Multi-sequential Word Relations
	1 Rational Word Relations
	2 Multi-sequential Relations
	2.1 From Sequential Functions to Multi-sequential Relations
	2.2 Fork Property
	2.3 Main Result

	3 Decomposition Procedure
	References

	The Boundary of Prefix-Free Languages
	1 Introduction
	2 Preliminaries
	3 Construction of DFA for Boundary on PF Languages
	4 State Complexity of Boundary on PF Languages
	4.1 Binary Case
	4.2 Unary Case

	5 Conclusions

	A Connected 3-State Reversible Mealy Automaton Cannot Generate an Infinite Burnside Group
	1 Mealy Automata and the General Burnside Problem
	2 Basic Notions
	2.1 Groups Generated by Mealy Automata
	2.2 Terminology on Trees

	3 Connected Components of the Powers of an Automaton
	4 The Labeled Orbit Tree
	5 Existence of Elements of Infinite Order
	6 The Connected 3-State Case
	6.1 Reducing the Scope
	6.2 Self-liftable Subtrees and s-Words
	6.3 Cyclic s-words and Elements of Infinite Order

	References

	Path Checking for MTL and TPTL over Data Words
	1 Introduction
	2 Temporal Logics over Data Words
	3 Path Checking Problems for TPTL and MTL
	3.1 Upper Bounds
	3.2 Lower Bounds
	3.3 Summary of the Results

	References

	On Distinguishing NC1 and NL
	1 Introduction
	2 Families of Formal Languages
	3 Complexity Classes
	4 Negative Instances for NC1
	5 Positive Instances for NL
	6 More Densely Complete L-Systems
	7 Discussion
	References

	Surminimisation of Automata
	1 Introduction
	2 Label Reduction and Surminimisation
	3 T-equivalent Languages Define the Same ARNS
	4 Label Reduction Within Numeration System Theory
	5 Conclusion
	References

	On the Complexity of k-Piecewise Testability and the Depth of Automata
	1 Introduction
	2 Preliminaries and Definitions
	3 Complexity of k-Piecewise Testability for DFAs
	4 Complexity of k-Piecewise Testability for NFAs
	5 Piecewise Testability and the Depth of NFAs
	References

	Interval Exchange Words and the Question of Hof, Knill, and Simon
	1 Introduction
	2 Preliminaries
	3 Itineraries in Symmetric Exchange of Intervals
	4 Substitution Invariance and Conjugation of Substitutions
	5 Class P Conjecture for Non-degenerate 3iet
	6 Comments
	References

	State Complexity of Neighbourhoods and Approximate Pattern Matching
	1 Introduction
	2 Preliminaries
	3 State Complexity of Additive Neighbourhoods
	4 State Complexity of Pattern Matching
	5 Conclusion
	References

	Deterministic Ordered Restarting Automata that Compute Functions
	1 Introduction
	2 Deterministic ORWW-Automata
	3 Relations Associated to det-ORWW-Automata
	4 Transductions Computed by det-ORWW-Transducers
	5 Transductions Computed by det-ORWW-Automata
	6 Conclusion
	References

	Weight Assignment Logic
	1 Introduction
	2 Weighted Büchi Automata
	3 Decomposition of WBA
	4 Weight Assignment Logic
	4.1 Partial -words
	4.2 WAL: Syntax and Semantics
	4.3 WAL: Relation to MSO Logic
	4.4 Extended WAL

	5 Expressiveness Equivalence Result
	5.1 Unambiguous Case
	5.2 Nondeterministic Case

	6 Discussion
	References

	Complexity Bounds of Constant-Space Quantum Computation
	1 Quick Overview
	2 Basic Notions and Notation
	2.1 General Definitions
	2.2 Classical Finite Automata and Cut Point Formulation
	2.3 Quantum Finite Automata and Bounded Error Formulation

	3 Behaviors of Absolutely Halting QFAs
	4 Runtime Bounds of 2qfa's
	5 Classical Simulations of 2qfa's
	References

	Author Index

