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Preface

A material can be defined as complex because of the presence of heterogeneous
and discontinuous internal structure, which can be detected at different (meso,
micro/nano, atomic, electronic) length scales, and because of its non-linear con-
stitutive behaviours, such as plasticity, damage, fracture, growth. Based on their
internal structure the materials can be classified as particulate or fibre–reinforced
composites, polycrystals with interfaces, materials with voids or defects, etc.

The possibility of designing and/or testing materials with internal structure,
addressing the wider technological applications in engineering, is closely related to
the ability of deriving their constitutive relationships taking into account the internal
structure: shape, spatial distribution, orientation and size of the constituents, which
may presents several orders of magnitude starting from the submicron scale up to
larger meso and macro scales. A basic issue of the mechanics of such structured
materials, from modern nanoscience to structural engineering, is then to deduce
properties and relations at a given macro-scale by bridging information at proper
underlying micro-levels using multiscale approaches, balancing accuracy of the
description with computational burden.

This volume presents a series of papers by expert researchers specialized in var-
ious fields of continuum and computational mechanics, as well as material science.
The focus is on principles and strategies for multiscale modelling and simulation
of complex heterogeneous materials, with periodic or random microstructure, sub-
jected to various types of mechanical, thermal, chemical loadings and environmental
effects. A wide overview of complex behaviour of materials is provided.

Among the various approaches, attention is particularly addressed to non–local
field descriptions, which are characterized by the presence of internal lengths and
spatial dispersion in wave propagations. These descriptions allow us to circumvent
physical inadequacies and the well known theoretical/computational problems of
the classical local models, related to the ill–posedness of field equations and the
consequent loss of objectivity of the numerical solutions as dependent on the
discretization. In such a framework, various kinds of advanced continuum models
are presented which, provided by constitutive characterization for the internal
and external actions, constitute a very powerful frame for the gross mechanical
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vi Preface

description of complex material behaviours, without the restrictions of classical
coarse–graining multiscale approaches.

Entering in some details, the chapters deals with:

– homogenization methods aimed at deducing the overall properties of poly-
cristalline aggregates in the elastic–plastic and elastic–visco–plastic regime;

– phase–field approaches proposed to describe both brittle and cohesive fracture
phenomena;

– effective material properties of nanostructures material derived accounting for
surface/interface properties;

– simulation the fatigue crack nucleation process in polycrystals through effective
microstructural parameters for plastic flow;

– development of second order homogenization methods, including second gradi-
ent and gradient Cosserat, for granular material descriptions basing on general-
ized macrohomogeneity conditions of Hill’s type;

– stochastic continuum thermomechanics involving tensor random fields for the
representation of spatially varying material properties;

– design of composite materials basing on structural stochasticity with reference to
elastic–plastic and damping behaviour;

– guidelines for deriving scale–dependent continuum formulations starting from
discrete material descriptions and basing on the virtual power equivalence.

Several recent books are published on a similar topic, which is of central interest
in the community of material science and structural engineering. This volume
in particular will be an opportunity, offered by researchers active in different
fields (continuum mechanics, computational mechanics, experimental mechanics),
to provide a forum for the presentation of fundamental, theoretical, experimental and
practical aspects of mechanical modelling of materials with complex microstruc-
tures and complex behaviour oriented at bridging the gap between mechanical
engineering and material science. The book is addressed to an advanced, but not
strictly specialized, audience stimulating a general understanding of interactions
among different approaches and conceptions. This should be useful for having a
general overview of the matter which can inspire new research directions.
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Scale Transition Rules Applied to Crystal
Plasticity

Georges Cailletaud and Florent Coudon

Abstract Homogenization methods adapted to polycrystalline aggregates are dis-
cussed. The description of the transition rule using the self-consistent scheme and
based on the assumption of time-independent plasticity are first detailed. A few
alternative propositions that simplify the general rate form of the relation given by
Hill are also presented, with their limitations. A second part recalls several key ideas
used to transfer the problem to time-dependent behavior. A final part is devoted to
the comparison of several mean-field models and CPFEM simulations in the case
of an equiaxed polycrystalline aggregate with an uniform or heterogeneous local
elastic behavior. A significant effect of non-uniform elastic properties is exhibited
on the macroscopic behavior, specifically on the apparent yield stress, and also on
stress and strain fields.

1 Introduction

In this chapter, polycrystals relate to aggregates, natural or man-made, composed
of randomly oriented and distributed grains, seen as single crystals. Depending
on microstructure characteristics, different strategies are developed to deduce the
overall mechanical behavior of these materials. (1) If no local information is
available at the grain scale, Level 1’s strategy consists in using a thermodynamical
framework to derive evolution rules of a series of state variables that will represent
the behavior of the material element, considered as a “black box.” The local
phenomena are averaged, and the material parameters have to be calibrated from
macroscopic experimental tests. As a consequence, the domain of validity of the
macroscopic models is usually restricted to the loading zone used for the calibration.
(2) The opposite solution consists in an explicit representation of the 3D geometry
of the aggregates. This can be made either by taking experimental geometries, or
by generating synthetic aggregates using tessellation algorithms. In this so-called
Level 3 approach, the constitutive equations are then solved at the grain scale, for
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2 G. Cailletaud and F. Coudon

instance by finite element method (FEM). Each Gauss point is assigned a crystal
plasticity (CP) behavior and a given crystallographic orientation. The purpose of
such an approach is to capture the heterogeneities of the local stress and strain
fields, and to have an access to local mechanisms responsible for deformation and
damage development. The weakness of the method is that the characterization of
the real 3D microstructure is a very difficult task, and that crystal plasticity finite
element method (CPFEM) is time-consuming. (3) This is why the present chapter
deals with an intermediate level of modelling (Level 2) where the stress equilibrium
is solved at the macroscopical scale and the constitutive equations are expressed
at the grain scale. Homogenization methods adapted to polycrystalline aggregates
are now well studied, specifically using the self-consistent scheme proposed by
Kröner [18], and Hill [15]. The approach considers “grains” as inclusions embedded
in a HEM, the properties of which are searched as a weighted average of each
grain contribution. For linear elastic behavior, the inclusion problem was solved
by Eshelby [13]. For ellipsoidal shapes, the problem can be solved by introducing
an analytical expression of the “stress-free” strain coming from the heterogeneity,
which is uniform within the inclusion. A long-standing problem was the extension of
this method to elastoplasticity, particularly due to the nonlinear form of constitutive
equations. The question comes to the definition of interactions between grains: How
the plastic accommodation and even more the viscoplastic accommodation could be
introduced in models to obtain a realistic response? To solve the problem, a first
step consists in approximating the local mechanical behavior of each phase by a
linear relation between local stress and strain. The solution is then obtained by
applying the self-consistent (SC) approach to build the effective tensors. Most of
the recent homogenization theories have been developed for composite materials,
where only two phases (matrix and fibers) come into play. In such a case, the Mori–
Tanaka scheme [30], defines fibers/particles as inclusions embedded in the matrix,
with predefined properties. In theory, the development of mean-field theories could
be applied for both Mori–Tanaka and SC schemes, changing the definition of local
tensors to crystal plasticity. In practice, the presence of numerous phases within
polycrystalline aggregates may be a first drag to implement complex interaction
theories used for composite materials: CPU times would be widely increased.
Otherwise, the heterogeneous elastic response, varying locally with respect to
crystallographic orientations, appears to have a significant impact on the effective
yield stress and local scattered EVP responses [40]. The purpose of this paper is to
briefly summarize the main theories in the field of homogenization methods and to
highlight first and second order effects on the local level. After this introduction,
the next part is devoted to time-independent plastic behavior, and the last one to the
elasto-viscoplastic case.
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2 Time-Independent Elastic–Plastic Behavior

In the landmark contributions due to Budiansky and Wu [5] and Kröner [18], a
first approach of the polycrystal behavior (called the KBW model in this paper)
assumes that the HEM is linear elastic, so that the Eshelby solution can be directly
applied. The solution of the inclusion problem that is initially used for non-uniform
elasticity can be extended to elastoplasticity by considering plastic strain as an
initial “eigenstrain” that will produce intergranular residual stresses. In the case of
isotropic materials, the local stress �

�

g of the grain g is then expressed as:

�
�

g D
�̇

C 2�.1� ˇ/.E
�

p � "
�

gp/ (1)

where � is the shear modulus and ˇ only depends on Poisson’s ratio � of the HEM.
The KBW model has been widely used due to its easy implementation and the
reasonable CPU time needed to solve mechanical problems, not that far from purely
macroscopic models [49]. However, the model overestimates the effective stress
of the polycrystal, and finally, for large deformations, it almost reaches Taylor’s
upper bound that originates from an assumption of uniform plastic strain [44]. The
exaggerated value of the internal stresses have been explained by the presence
of an elastic accommodation rule [47]. To account for both elastic and plastic
accommodation of grains, Hill proposed a rate formulation, introducing a local
tangent tensor L

�

g which links local stress and strain rates [15]:

P�
�

g D L
�

g W P"
�

g (2)

The linear form of the relation gives the opportunity to define an additional “stress-
free” strain rate, uniform within the inclusion for ellipsoidal shapes. The effective
mechanical behavior is assumed to have the same linear form as the local ones,
linked by an effective tangent tensor L

�

eff . In this context, the concentration rule is

also expressed under rate form:

P�
�

g D Ṗ
�

C L
�

eff W .S
�

�1 � I
�

/ W . PE
�

� P"
�

g/ (3)

where the Eshelby tensor S
�

now depends on the effective elastic–plastic tangent

tensor. A difficulty of the method comes from the implicit form of the approach:
The expression of local stress rates uses the effective tangent tensor, which depends
itself from the local tensor L

�

g. For a given load increment, an iterative procedure

has to be achieved, in order to get converged local stress rates. Note that, in the
ideal case of time-independent plasticity, Schmid’s law commonly used into crystal
plasticity models induces multiple slip, so that the stress state goes on a vertex of
the yield surface (see, e.g., [6]). It is also well known that the unicity of the solution
concerning the set of active slip system has to be enforced by an additional condition
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[4] or through a regularization procedure, for instance by means of a viscoplastic
formulation [32] or a regularized Schmid law (RSL). This local treatment of the
constitutive equations may lead to an overestimation of the effective stress for large
plastic strain [46]. Otherwise, the Hill self-consistent scheme has been simplified by
Berveiller and Zaoui [3] in the case of isotropic elastic–plastic local tangent tensors.
The decomposition of the tensors into an hydrostatic and a deviatoric part and the
assumption of a zero trace of the local and overall plastic strains simplify the Hill
concentration equation:

P�
�

g D Ṗ
�

C .1� ˇ/
2��L

�ˇ C �L.1 � ˇ/
. PE

�

p � P"
�

gp/ (4)

where �L represents the elastic–plastic shear modulus of the HEM. The expression
can be integrated, so that the scale transition rule has an explicit formulation, so-
called the secant self-consistent approach:

�
�

g D
�̇

C 2�˛.1 � ˇ/.E
�

p � "
�

gp/

˛ D 15.1� �/��.7 � 5��/
.7 � 5�/.2�.4� 5��/C ��.7 � 5��//

(5)

where ��, �� are respectively the secant elastoplastic shear modulus and Poisson’s
ratio. For monotonic uniaxial loadings, the following approximation of ˛ is
commonly used:

1

˛
D 1C 3

2
�

jjE
�

pjj
J.

�̇

/
(6)

where jjE
�

pjj is the equivalent cumulated plastic strain and J.
�̇

/ represents the
overall von Mises equivalent stress. The model ends with a concentration relation
close to KBWs but, in practice, the value of ˛ quickly decreases from unity to
a few percent during plastic flow. The secant approach was recently used and
modified to simulate the mechanical behavior of refractory mortarless masonry
[36]. However, the domain of applications is restricted due to the assumptions
on material (isotropic) and loadings (monotonic unidirectional). To extend the
secant procedure to cyclic loads, the model must be able to discriminate between
loading and unloading regimes, and to have a memory of the recent strain path.
A pragmatic solution consists in describing nonlinear plastic accommodation by
means of intergranular “kinematic like” variables, as proposed by the so-called “ˇ
-model” [7]. In this approach, KBW’s form is recovered, but the shear modulus
dependent term acts on a saturating variable set, ˇ

�

and ˇ
�

g, instead of global and
local plastic strains [8]:

�
�

g D
�̇

C 2�.1 � ˇ/.ˇ
�

� ˇ
�

g/ (7)
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The set of internal variables at the grain scale ˇg involves parameters directly linked
to the mechanical behavior of grains and the geometry of phases. They can be
seen as “scale transition” parameters, and can be calibrated by means of FECP
simulations in order to fulfill the self-consistency condition. The global plastic
accommodation variable ˇ is calculated according to:

ˇ
�

D
X

g

f gˇg

�

D hˇ
�

gi (8)

The model can be seen as a phenomenological self-consistent model, where
the scale transition variables offer a large choice to define inter-phase plastic
contributions, introducing various terms observed for a given materials [9]. In
particular, a first extension of the initial model to an anisotropic inelastic behavior
has been proposed in [39], which generalizes the scale transition rule to:

�
�

g D
�̇

C C
�

eff W . I
�

� S
�

/ W .ˇ
�

� ˇ
�

g/ (9)

Both Eshelby’s and the effective elasticity tensor are introduced into the anisotropic
form of the ˇ-rule, known a priori at the beginning of the computation. The stiffness
of the mechanical response is adjusted by introducing a fourth order anisotropic
tensor to track the “neighbourhood” hardening effect as, for example in [38]:

P̌
�

g D P"
�

gp � D
�

W ˇ
�

gjj P"
�

gpjj (10)

The model was compared with a “full-field” simulation of a directionally solid-
ified polycrystalline aggregate, using a grain distribution obtained by a Voronoï
tessellation (more details in [39]). Results on the overall inelastic response show
a good agreement between the two approaches for one-dimensional tensile loadings
in axial and transverse directions, and for shear tests. This version of the ˇ rule
is constructed with an assumption of uniform isotropic elasticity in the aggregate,
so that C

�

eff D C
�

g. For two-phase polymers, an extension of the ˇ rule has been

proposed in [2], in order to introduce different elastic behaviors for the matrix and
particles. The same scheme can be applied to polycrystals. For that purpose, the
incremental approach due to Hill is first considered in its general anisotropic form,
introducing an additive decomposition of the strain rate between elastic and plastic
parts. For a random distribution of grains with a cubic symmetry, the macroscopic
elastic tensor is isotropic, and Eshelby’s tensor as well. The resulting expression is
then:

P�
�

g D ŒS
�

C L
�

� W C
�

g�1��1 W Ṗ
�

C ŒS
�

C L
�

� W C
�

g�1��1 W L
�

� W . PE
�

� P"
�

g/ (11)
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where L
�

� D L
�

eff W . I
�

� S
�

/ represents the elastic–plastic accommodation tensor.

It is then assumed that the local elastic behavior of each phase does not depend on
plastic activity of the other phases. The shape chosen for the accommodation tensor
L
�

� can then be deduced from an elastic estimation, so that L
�

�
E

D C
�

eff W . I
�

� S
�

/

in the first term of Eq. (11). For the second term, the plastic contribution of L
�

� is

represented by means of the internal variable ˇg. Doing so, an integration of the
incremental transition rule can be achieved, and an explicit form of the transition
rule is retrieved:

�
�

g D ŒS
�

C L
�

�
E

W C
�

g�1��1 W Œ
�̇

C L
�

�
E

W .ˇ
�

� ˇ
�

g/� (12)

Applying self-consistency provides relations for the effective elasticity tensor, the
global plastic strain and accommodation variables:

C
�

eff D
�
A
�

g

E
W C

�

g

�

PE
�

p D
�
A
�

g

E
W P"

�

gp
�

(13)

ˇ
�

D
�
A
�

g

E
W L

�

�
E

� �
A
�

g

E
W L

�

�
E

W ˇ
�

g

�

where A
�

g

E
D ŒI

�

� S
�

W . I
�

� C
�

eff �1 W C
�

g/�
�1

represents the elastic localization tensor.

There is still an implicit form for the effective elasticity tensor, induced by the
expression of A

�

g. Nevertheless, unlike the case of Hill model, it is sufficient to

calculate this tensor once: At the initialization step of the model, an iterative
procedure with a first value of C

�

eff equal to Voigt’s bound is used (e.g., in [25]).

3 Homogenization Methods Applied to EVP Behavior

The time-dependent case has been initially addressed as a pure viscoplastic behav-
ior. In this context, the first studies were made with the assumption of a “rigid
viscoplastic” behavior, which consists in neglecting the (supposed small) elastic part
of the total strain. The existence of a stress dissipative potential u.�

�

g/ is commonly
assumed and the strain rate writes:

P"
�

g D ıu.�
�

g/

ı�
�

g
(14)
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The Hill incremental procedure was extended to the study of steady creep of face
centered cubic polycrystals (FCC) by Hutchinson [16], considering a power law to
represent viscosity effects. The linearization procedure consists in defining secant
moduli as follows:

P"
�

g D P"
�

gvp D M
�

g

sec
W �

�

g (15)

M
�

g

sec
D 1

n

ı2u.�
�

g/

ı2�
�

g
(16)

where n is the exponent ratio of the power law and M
�

g is a fourth rank tensor

called the “creep compliances tensor.” The limitation of the model is observed when
the mechanical behavior tends to time-independent behavior. The response reaches
the upper bound of Hashin–Strickman [14] (more restrictive than Taylor’s one). A
softest model was developed by Molinari [29], introducing a Taylor decomposition
of the local behavior at an applied stress �

�

0 according to:

P"
�

g D M
�

g W �
�

g C P"
�

g0

M
�

g

tg
D nM

�

g

sec
(17)

P"
�

g0 D g.�
�

0; ::/ � M
�

g

tg
.�

�

0/ W �
�

0

where P"
�

g0 represents a prestrain which is “stress free,” such as asked to solve
the inclusion problem. Applying the SC scheme, the authors supposed the same
power law on the effective mechanical behavior, so that the overall moduli are
“tangent” on each increment to the overall response. The tangent formulation has
been implemented for finite strain by Lebensohn and Tomé [20] as the so-called
VPSC method [21]. The self-consistent method applied to the homogenization of
elasto-viscoplastic materials has still pending questions. The problem has been
highlighted by Suquet [41], who showed that the homogenization of a set of
incompressible Maxwell linear viscoelastic phases does not generally provide a
Maxwell type behavior. Since that time, numerous mean-field models have been
proposed to solve the elasto-viscoplastic case, but with divergent results. Indeed, a
“simple” elasto-viscoplastic tangent tensor cannot be defined any more due to the
simultaneous occurrence of time derivatives at different orders of stress and strain:

P"
�

g D S
�

g W P�
�

g C g.�
�

g; ::/ (18)

First, authors decided to keep Kröner’s elastic definition of the “stress-free” strain.
A first attempt was performed by Weng [45] for steady creep of polycrystalline
aggregates. The approximation was justified by a physical analysis: During steady
creep tests, plastic strain for a time increment depends only on stress/strain at this
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time, so that the viscoplastic strain rate can be assumed as “stress-free” in the sense
of Eshelby. In practice, the method consists in replacing plastic strain by viscoplastic
strain in KBW’s expression, written in terms of rate. Similarly, Nemat-Nasser [31]
attempted to extend time-dependent behavior to the large strain formalism. As
pointed out by Zaoui [26], the definition of a “stress free” strain or strain rate is
not rigorously possible. Due to the nonlinear form of the equations at local scale,
the inclusion problem can be solved only after a linearization stage of the local
behavior. In fact, the interaction defined by Weng’s model does not differ from
KBW’s result, which reveals an elastic type interaction. To prevent the hypothesis
of a similar tangent formulation for the effective behavior, the homogenization
procedure was modified in order to generate an “affine” model [27, 48]. The
procedure provides intermediate results compared to the stiff secant and the soft
tangent linearization responses. Otherwise, a second-order Taylor decomposition of
the stress dissipative potential was introduced for polycrystalline aggregates by Liu
and Ponte Castaneda [23], which allows to estimate the intraphase heterogeneity.
The variational approach proposed by Ponte-Castaneda [34] is used, so that a
linear comparison homogeneous media (LCHM) is defined through a first order
linearization method [35] with an effective stress potential:

UT.
�̇

/ D 1

2 �̇

W M
�

eff W
�̇

C P"
�

g0
eff W

�̇

C 1

2
p (19)

where p represents an effective energy under zero applied stress. This approach
gives the opportunity to estimate per-phase average field fluctuations:

h�
�

˝ �
�

ig D 2

f g

ıUT.
�̇

/

ıM
�

g (20)

Thus, the basic concept consists in introducing field fluctuations in the concentration
relation by means of new linearization tensors [22].Now, the combination of previ-
ous homogenization methods with elastic effects is discussed. A first proposition
is to consider polycrystals with an incompressible elastic behavior, having in mind
that the coupling between elastic and viscoplastic contributions is taken into account
[17]. The idea was extended to compressible elastic materials and multi-axial
loadings [1] and applied to FCC polycrystals [10]. In parallel, other contributions
proposed to build the strain field by means of two asymptotic solutions, a purely
elastic and a viscoplastic one, and to introduce additional terms to deal with coupling
effects [33]. Both the use of specific Kunin projectors and the definition of a
“translated field” produces a new rule for strain rate localization. The method was
initially proposed with a symmetric construction of elastic and plastic solutions [33].
A second version, starting from the viscoplastic solution, leads to a simpler scale
transition rule [37]:

P�
�

g D C
�

g W A
�

g

E
W S

�

W Ṗ
�

C C
�

g W A
�

g

E
W .S

�

� I
�

/ W . P"
�

gvp � A
�

b

B
W PE

�

vp/ (21)



Scale Transition Rules Applied to Crystal Plasticity 9

where A
�

b

B
D ŒI

�

� S
�

W . I
�

� B
�

eff

sec

�1 W B
�

g

sec
/�

�1
and B

�

g

sec
D M

�

g

sec

�1. The “translated

field” method was recently extended using the affine linearization (instead of the
secant one) for the viscoplastic solution part in [24]. For others authors, the dual
occurrence of the stress at different time derivatives generates a dependence of the
effective behavior to the loading path: The approach is called “hereditary”. Even if
the local behavior can be turned into a fictitious thermo-elastic one, the effective
constitutive equations must be completed by a long memory effect [42]. A solution
was proposed in [48] based on both the affine linearization of the viscoplastic strain
rates and the convolution product of Stieljes, so that a thermo-elastic type equation
is found:

P"
�

.t/ D Œs
�

�

˝ P�
�

�.�; t/C P"
�

0.�; t/ (22)

s
�

�

D S
�

C M
�

.�/t (23)

where the operator Œs
�

�

˝ P�
�

�.�; t/ D d

dt
Œ
R t
0 s

�

�

.�; t�u/ W �
�

.u/du� preserves from time

dependency. By means of a Laplace–Carson, or z transform, a fictitious inclusion
problem can be solved in the sense of Eshelby [27]. However, this approach
generates complex and time-consuming calculations, particularly during the inverse
transform from Laplace–Carson space to time [11]. A pure numerical approach has
been proposed to avoid the dual dependence in time and space of the problem [11].
For a given (small) time increment, a linear relation between a stress increment and
the total strain increment, called “incrementally affine” by authors, can be defined
as:

��
�

g D C
�

g;alg.tnC1/ W .�"
�

g ��"
�

g;alg/ (24)

Following this way, an inclusion problem can be solved, for each increment. To
reduce the sensitivity to the time increment of both C

�

g;alg.tn C 1/ and �"
�

g;alg, a

regularization procedure has been introduced and tested for a two-phase polymer
with J2 elasto-viscoplasticity. The time discretization was also applied to the second
order linearization method in [19, 43], coupling the dissipative potential with a free-
energy function for reversible phenomena. Otherwise, the general “incrementally
affine” linearization method was extended to second order estimations in [12] to
account for local field fluctuations.
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4 Effect of a Heterogeneous Elasticity on Both Local
and Global Responses of Non-textured Polycrystalline
Aggregates

This section is focused on the impact of a heterogeneous elastic behavior into the
mechanical response of FCC equiaxed polycrystals. As seen before, several models
assume a uniform elasticity within the polycrystalline aggregate for the sake of
simplicity. However, in the case of FCC materials with a cubic local elasticity,
it is well known that the elastic behavior of a given grain is directly linked to
its crystallographic orientation. Although an isotropic effective elasticity tensor
can be calculated which is similar in the isotropic case, the local stresses and,
by consequence, the onset of the plasticity remain different. To better understand
this phenomena, an equiaxed polycrystal composed of 200 grains generated by
Voronoï tessellation is considered. This aggregate involves periodic relations on the
geometry, mesh, and boundary conditions. At the local scale, two types of elasticity
are investigated: Isotropic (IE) or cubic (CE) symmetry of the elasticity tensor. For
the plastic activity of grains, a single crystal model with cubic symmetry developed
by Meric and Cailletaud [28] is used with a nonlinear isotropic hardening and no
kinematic hardening. The equations of the model are recalled for a given slip system
s of the 12 octahedral ones:

P� s D
� j� s j � � c � rs

K

�n

sign.� s / D Pvssign.� s / (25)

rs D Q
X

r

Hrs.1 � e�bvr
/ (26)

P"
�

gp D
X

s

m
�

s P� s (27)

where � s is the resolved shear stress, � c is the critical resolved shear stress, and m
�

s

is the orientation tensor. The value of material parameters is presented in Table 1.
Results are presented for a tensile test in direction 1. The macroscopical strain rate
PE11 is 10�4 s�1 and the final value of E11 is 0.02. Six calculations using the same
polycrystalline aggregate with different sets of random crystallographic orientations
assigned to the 200 grains have been done. Figure 1 shows, for one of these
realizations, the equivalent von Mises stress field for the two kinds of elasticity

Table 1 Value of the material parameters of the single crystal model with two forms of the
elasticity tensor: isotropic and cubic

E (MPa) � C1111 (MPa) C1122 (MPa) C1212 (MPa)

100,000 0.3 90,300 45,150 63,200

� c (MPa) K (MPa) n Q b

200 2000 4 100 10
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Fig. 1 Comparative results of uniform and non-uniform local elastic behavior of a 200 grain non-
textured polycrystalline aggregate. (a, b) Elastic response with respectively a uniform and non-
uniform elasticity (von Mises equivalent stress). (c, d) Plastic response with respectively a uniform
and non-uniform elasticity (von Mises equivalent stress). (e, f) Plastic response with respectively a
uniform and non-uniform elasticity (cumulated plastic strain)
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tensor with no plasticity (E11 D 0:004) and at the end of the load. For the purely
elastic part of the load, a uniform stress field is observed for the IE case whereas
a highly scattered local stress field with more than 200 MPa is obtained in the CE
case. Consequently, for the IE model, the first grain becoming plastically active is
the grain with the higher Schmid factor. For the CE model, a competition between
the orientation tensor and the elasticity tensor takes place, so that the plastic activity
does not start necessarily within the same grain and for the same global stress
than the IE case. This difference is highlighted in Fig. 2, where the macroscopical
responses of both mean-field models presented before and full-field simulations
are compared. Several models as Lin and Taylor model as well as Berveiller and
Zaoui model or KBW model are based on the assumption of a uniform elastic
behavior. This is mainly traduced by a dependence of their scale transition rule only

Fig. 2 Macroscopical response of a tensile test E11 D 0:02 for various mean-field models (1000
grains with random crystallographical orientations) and the average of the six FE simulations
(equivalent to 1200 grains with random crystallographical orientations). Top: isotropic local
elasticity. Bottom: cubic local elasticity
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on the effective elastic behavior which is isotropic in both cases. For the CE case,
this kind of models well known to overestimate the global stress then provides an
overall stress lower than CPFEM simulations. This is directly linked to a different
value of the overall yield stress, much larger for CE than IE case, while values
estimated with these Level 2 models are similar. By contrast, others models, for
example, the ˇ rule or the translated field model, are developed in the general case
of heterogeneous local elastic behavior. These models provide decent predictions of
the overall behavior in both cases. It is worth noting that the ˇ rules are constructed
on the assumption of time-independent plasticity (the viscosity is taken into account
only at the local scale) whereas translated field models introduce viscous effects
in the scale relation. The fact that the macroscopical curves of the two mean-field
models are collapsed could suggest that viscoplastic accommodations have a second
order impact in this kind of test. Future works must be conducted to study the
orientation and neighboring effects on the local behavior. Otherwise, even if the
macroscopical test is unidirectional, grains are exposed to multi-axial loadings. It
could be interesting to study locally the predictive capabilities of mean-field models
on the residual stress and strain evolution.
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A Numerical Assessment of Phase-Field Models
for Fracture

René de Borst, Stefan May, and Julien Vignollet

Abstract We first give a concise description of phase-field models for the brittle
and the cohesive approach to fracture. For brittle fracture we will address issues
like the impact of the internal length scale parameter and the degradation function
that are prominent in the model, and whether the functional that describes the
smeared crack approaches that of the discrete crack in the limiting case that the
internal length scale parameter vanishes. By an example we will show that this
� -convergence is not necessarily attained numerically. For cohesive fracture the
crack opening must be explicitly available as input for the cohesive traction-relative
displacement relation. The resulting three-field problem can be solved properly
on structured meshes when using a balanced interpolation of the field variables:
displacements, phase field, and crack opening. A patch test shows that this does not
necessarily extend to unstructured meshes.

1 Introduction

Basically, two methods exist to capture discontinuities: one can either distribute
them over a finite width, or handle them as true discontinuities, i.e. in a discrete
sense. When a discontinuity has a stationary character it is straightforward to
describe it in a discrete manner. An evolving or moving discontinuity is more
difficult to capture. One possibility is to adapt the mesh upon every change in the
topology, as was done by Ingraffea and co-workers in the context of linear elastic
fracture mechanics [1], and later for cohesive fracture [2].

The other approach to fracture is to model it within the framework of con-
tinuum mechanics. A fundamental problem then emerges, namely that standard
continuum models do not furnish a non-zero internal length scale. To remedy
this deficiency, regularisation methods have been proposed, including nonlocal
averaging, the addition of viscosity or rate dependency, or the inclusion of couple
stresses or higher-order strain gradients [3]. The effect of these strategies is that
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the discontinuity is transformed into a continuous displacement distribution. The
internal length scale is set by the constitutive model, and for a sufficiently fine
discretisation, the numerically calculated results are objective with respect to mesh
refinement. Particularly in damage mechanics, gradient approaches have gained
popularity [4].

Not unrelated to gradient damage approaches are the phase-field models for
fracture. However, the point of departure is different. In gradient damage models
intrinsically a mechanical approach is adopted, and the damage model is regularised
by adding gradients to restore well-posedness of the boundary value problem in the
post-peak regime. The basic idea of phase-field models, on the other hand, is to
replace the zero-width discontinuity by a small, but finite zone with sharp gradients
in a mathematically consistent manner. Indeed, the latter requirement inevitably
leads to spatial derivatives in the energy functional, similar to gradient damage
models. The first attempts to apply phase-field models for fracture have focused
on brittle fracture. Pioneering work has been done in [5–7], where a phase-field
approximation was proposed for the variational approach to brittle fracture.

An extension of the variational formulation for brittle fracture to cohesive
fracture has been considered in [6], and a phase-field approximation has been
developed in [8], with a focus on the application to adhesive fracture, i.e. debonding
along a predefined interface. As pointed out in [8], models for brittle and cohesive
fracture rely on very different concepts, and the development of a cohesive phase-
field model that works for arbitrary configurations and loading conditions is a
non-trivial task.

2 Phase-Field Representation for a Crack

The basic idea of phase-field models is to approximate a discontinuity � by a
smeared surface �`. In a one-dimensional setting the exponential function

d.x/ D e� jxj

2` (1)

is used to approximate the discontinuous function of Fig. 1a, with ` the internal
length scale parameter. The phase-field variable d 2 Œ0; 1� describes the phase field.
Herein, d is defined such that d D 0 characterises the intact state of the material,
while d D 1 represents the fully broken material, similar to the definition commonly
adopted in damage mechanics. For the one-dimensional case, Eq. (1) is the solution
to the differential equation

d � 4`2d;xx D 0; (2)

where a comma denotes differentiation, and which is subject to the boundary
conditions: d.0/ D 1 and d.˙1/ D 0. This can be demonstrated simply by
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Fig. 1 (a) A sharp crack, and (b) smeared crack modelled with the length scale parameter `

applying the Ansatz function d D e�j	jjxj to Eq. (2), solving for 	 and subsequently
using the boundary conditions to determine the constant parameter.

Using Eq. (2) the discontinuity � can be approximated by the functional �`

�` D
Z

˝

1

4`

�
d2 C 4`2d;x

2
�

„ ƒ‚ …
�`

dV; (3)

with �` the crack surface density function, see [9] for details. In a multi-dimensional
setting �` can be expanded as follows:

�` D 1

4`

�
d2 C 4`2d;id;i

�
: (4)

3 Brittle Fracture

3.1 Derivation

We consider a volume ˝ with an internal discontinuity boundary �d. As a starting
point we consider the potential energy for the case of a discrete description of brittle
fracture in the Griffith sense [7]:


pot D
Z

˝

 e."/ dV C
Z

�d

Gc dA (5)

with the elastic energy density e a function of the infinitesimal strain tensor ". The
elastic energy density is expressed by Hooke’s law for an isotropic linear elastic
material as:

 e."/ D 1

2
	"ii"jj C �"ij"ij (6)
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with 	 and � the Lamé constants, and the summation convention applies. In Eq. (5)
the fracture energy, i.e. the amount of energy dissipated upon the creation of a unit
of fracture surface, is denoted by Gc. The potential energy 
pot governs the balance
between elastic energy in the bulk material and the fracture energy.

In the spirit of the regularised crack topology introduced in Sect. 2, the work
required to create a unit crack area is now expressed as a volume integral which
depends on the phase-field variable d and the fracture energy Gc:

Z

�d

GcdA D
Z

˝

Gc�`.d;rd/ dV: (7)

The next step is inspired by damage mechanics concepts and relies on the assump-
tion that the evolution of the phase field is directly related to crack growth. As such,
it can be thought of as a way to model the loss of stiffness of the bulk of the solid.
For this purpose a degradation function g D g.d/ is introduced, which must satisfy
the following conditions: g W Œ0; 1� ! Œ0; 1�; g.1/ D 0; g0.0/ < 0; g0.1/ D 0. These
properties ensure damage propagation and provide an upper bound to the phase-field
d variable of one [10]. A quadratic polynomial is widely used:

g.d/ D .1 � d/2: (8)

Recently, Borden [11] has introduced a cubic degradation function:

gs.d/ D s..1 � d/3 � .1 � d/2/C 3.1� d/2 � 2.1� d/3; (9)

which has the advantage that it better mimics linear elastic-brittle behaviour.
In [5] the degradation function g was multiplied with the elastic energy density

of the undamaged state,  0, such that the elastic energy density of the damaged state
reads:

 e."; d/ D g.d/ 0."/: (10)

This formulation was subsequently refined to account for the fact that damage
evolution occurs under different straining modes [11, 12], and it was assumed that
the elastic energy of the undamaged state can be additively decomposed into a
damaged and an intact part,  0 D  d

0 C  i
0, such that the degradation function

g only acts on the damaged part:

 e."; d/ D g.d/ d
0 ."/C  i

0."/: (11)

Substituting Eqs. (7) and (11) into Eq. (5) yields the total potential energy of the
smeared form for brittle fracture:


 D
Z

˝

�
g.d/ d

0 ."/C  i
0."/C Gc�l.d;rd/

�
dV: (12)
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Minimisation of 
 and introduction of a history field H to enforce irreversibil-
ity [10] lead to the strong form:

div � ."; d/ D 0 x 2 ˝ (13a)

Gc

� d

2`2
� 2�d

�
D g0H x 2 ˝ (13b)

subject to the boundary conditions n � � D Nt, u D Nu, n � rd D 0, with Nt and Nu the
prescribed boundary tractions and displacements, respectively. The Cauchy stress �

and history field H read:

� ."; d/ D g.d/
@ d

0

@"
C @ i

0

@"
(14)

H .t/ D max
t
 d
0 .t/: (15)

3.2 Analysis of a One-Dimensional Bar

Now, the one-dimensional bar of Fig. 2 is considered. The bar has a reduced
thickness in the centre and is loaded at the right edge by a force 	Of . The Young’s
modulus is E D 10MPa and the fracture toughness Gc D 0:1N/mm. The bar has a
length L D 1mm and a thickness b D 1mm. The length scale parameter is chosen
to be ` D L

20
. Since the problem is one-dimensional,  d

0 D E and  i
0 D 0, so that

the degradation function g directly acts on the Young’s modulus E.
Inspection of the strong form, Eq. (13b), shows that at the onset of loading the

“driving force” term g0H D g0 d
0 ."/ starts to grow, forcing the phase field, and

consequently also the crack density �`, to increase along the entire bar. As shown
by Eq. (7), this process dissipates energy, which explains the early departure from
linearity of the force-displacement curve in Fig. 3.

Next, the importance of using a monolithic solver for this nonlinear problem is
studied. For a constant mesh size (150 elements, h D 0:0067mm) and a length
scale ` D 0:05mm, the response of the system for the staggered and the monolithic
schemes is compared. Figure 3 shows that the staggered scheme is very sensitive to
the size of the load increments, and has not converged for the smallest step size.

Fig. 2 1D tension test for a
bar with a reduced thickness
in the centre λf̂

h h
2 h

L

L
3

L
3

L
3
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Fig. 3 Left: mesh refinement study for a constant length scale ` D 0:05mm. Right: comparison
of the monolithic and the staggered approaches for ` D 0:05mm with a constant mesh size (150
elements, h D 0:0067mm)

Fig. 4 Left: influence of the length scale parameter ` for a constant mesh size (150 elements,
h D 0:0067mm). Right: comparison of the quadratic and cubic degradation functions

The dependence on the length scale ` is shown in Fig. 4 for a constant mesh
size (150 elements, h D 0:0067mm), which respects the rule of thumb h < ` to
accurately approximate the crack topology proposed in [9], which implies that there
are at least four elements over the smeared crack width, see Fig. 1b. Clearly, an
increasing length scale results in a decreasing peak force. This makes it difficult
to interpret the length scale parameter for the brittle model. On the one hand, ` has
been introduced on mathematical grounds, Sect. 2, independent from the mechanical
field problem. On the other hand, when linking the phase field and the mechanical
field, the length scale parameter behaves like a material parameter, cf. [12].

From Figs. 3 and 4 it appears that the brittle model does not exhibit linear elastic
behaviour prior to softening. Instead, the curves show nonlinearity from the very
beginning. Therefore, a cubic degradation function has been proposed in [11], which
results in a linear behaviour up to the peak force. The drawback of this function is
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that an additional parameter s is introduced, cf. Eq. (9). The quadratic and the cubic
degradation functions are compared in Fig. 4 using different parameters s. For s ! 0

the peak force converges to a unique value.
Next, a convergence study has been carried out with respect to the final crack

surface �`. The purpose is to check whether �` converges to � in a non-linear
computation. The theoretical final crack surface for the bar of Fig. 2 is � D A=2,
which is equal to the cross section of the segment in the centre of the bar. The
numerically obtained final crack surface �` can be calculated using Eq. (3) with �`
evaluated when max d > 0:99, and the error �E is defined according to:

�E D j�` � � j
�

: (16)

Figure 5 gives the convergence study of the final crack surface �` when using
the quadratic degradation function for different values of the length scale parameter
`. In this convergence study the correction factor to the fracture energy proposed in
[6] has been taken into account. Three mesh sizes h have been used, and the internal
length scale ` has been varied for each mesh size. Figure 5 shows that all results give
a rather poor approximation of the theoretical final crack surface � , since invariably
the error �E > 0:1. Below a certain value of the ratio `=h, a further decrease results
in an increase of the error �E. The minimum occurs for the same value of the internal
length scale, ` D 0:05mm. It is remarkable that for finer meshes the error �E does
not decrease.

Fig. 5 Convergence study for the final crack surface �` for a one-dimensional bar. The squares
correspond to ` D 0:05mm
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4 Phase-Field Model for Cohesive Fracture

4.1 Continuum Formulation

For cohesive zone models the fracture energy Gc is released gradually and governed
by the fracture energy function

G D G .ŒŒui��/: (17)

The fracture energy function G depends on the crack opening ŒŒui�� at the interface
and equals the fracture energyGc at full crack opening. The traction ti in the cohesive
zone is evaluated as:

ti.ŒŒuj��/ D @G .ŒŒuj��/

@ŒŒui��
: (18)

In the phase-field model for cohesive fracture, the crack is distributed over the
solid, again by employing Eq. (3):

Z

�

G .ŒŒui��/ dA D
Z

˝

G .ŒŒui��/�` dV: (19)

The spatial distribution in Eq. (19) should not affect G .ŒŒui��/ in the direction normal
to the crack since, for any quantity B,

R
�
B dA D R

˝
B�` dV . The crack opening

ŒŒui��, and therefore G .ŒŒui��/, only exists at the crack surface � . For this reason, an
auxiliary field vi is introduced when distributing the crack, which is defined over
the volume˝ . Since G .vi/must not change in the direction normal to the crack, the
following constraint is enforced on the auxiliary field vi:

@vi

@n
D 0: (20)

Evidently, vi being constant in the direction normal to the crack implies that G .vi/

is constant as well. The expression for Eq. (19) thus becomes:

Z

�

G .ŒŒui��/ dA D
Z

˝

G .vi/�` dV subject to
@vi

@n
D 0: (21)

The phase-field model for cohesive fracture assumes a split of the strain tensor
into an elastic component and a component that accounts for damage:

"ij D "el
ij C "d

ij (22)
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such that in Eq. (6) "ij needs to be replaced by "el
ij , which finally yields for the stress:

�ij D @ el

@"ij
D @ el

@"el
kl

@"el
kl

@"ij
D @ el

@"el
kl

ıkiılj D @ el

@"el
ij

: (23)

The tensor "d
ij that accounts for damage can be derived from thermodynamical

considerations. The second law of thermodynamics gives [13]:

PD D �ij P"ij � P el D �ij.P"el
ij C P"d

ij/ � @ el

@"el
ij

P"el
ij D �ij.P"el

ij C P"d
ij/ � �ij P"el

ij D �ij P"d
ij � 0:

(24)

The dissipation PD for the distributed form in Eq. (21) can be evaluated explicitly
from

PD D d

dt

�
�`.d/G .vi/

� D G
@�`

@d
Pd C �`

@G .vj/

@vi
Pvi D G

@�`

@d
Pd C �`ti Pvi: (25)

The first term in Eq. (25) corresponds to the energy that is dissipated when
advancing the cohesive zone by Pd. Assuming that the smeared jump vi is initially
zero in the newly created cohesive zone, the first term does not contribute to
dissipation of energy, since G .0/ D 0. The second term in Eq. (25) represents the
energy dissipation as the result of further crack opening by Pvi. Substituting Eq. (25)
into Eq. (24)

�`ti Pvi D �ij�`sym. Pvinj/ D �ij P"d
ij (26)

yields "d
ij, the contribution of the strain tensor that accounts for damage:

"d
ij D �`sym.vinj/: (27)

The potential of the phase-field model for cohesive fracture now reads:


 D
Z

˝

 
 el C G .vi/�` C ˛

2

ˇ̌
ˇ̌@vi

@n

ˇ̌
ˇ̌
2
!

dV (28)

where the last term has been introduced in order to enforce Eq. (20). Minimising 

yields:

�ij;i D 0 in ˝; (29)

�`Œti.vj/� �ijnj� D ˛
@2vi

@n2
in �` (30)

subject to the boundary conditions �ijnj D Nti on @˝h, ui D Nui on @˝u and @vi
@n D 0

on @�`.
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4.2 Numerical Examples for the Phase-Field Model
for Cohesive Fracture

In what follows, a constant phase field d is considered, i.e. an interface is modelled.
For this purpose a one-dimensional bar is considered with an elastic interface, Fig. 6.
First, the bar is modelled with one-dimensional bar elements. The Young’s modulus
is E D 10MPa, the stiffness of the interface k D 10N mm�3, the length L D 1mm
and the length scale parameter is ` D L=10. The penalty parameter is set ˛ D 1,
and d D 1 is prescribed at the elastic interface, i.e. at the node in the centre of the
bar. The bar consists of ten elements with five elements in each segment, so that the
mesh size is h D 0:1mm. The prescribed displacement is Nux D 0:1mm.

Application of linear shape functions for the displacement ux, the smeared jump
vx and the phase field d results in stress oscillations, Fig. 7a, as was also observed in
[8]. In one dimension, Eq. (22) can be rewritten using Eq. (3) as follows:

"el
xx D "xx � "d

xx D dux

dx
� �`vx D dux

dx
� 1

4`
.d2 C 4`2d;x

2/vx: (31)

ūx

L
2

L
2

G([[ux]]) = 1
2k[[ux]]2

x

Fig. 6 Bar with an elastic interface G D 1
2
kŒŒux��D 1

2
kv2x in the centre; with Eq. (18) the cohesive

traction becomes tx DkŒŒux��Dkvx

Fig. 7 Stress distribution along the bar in Fig. 6 for (a) linear shape functions for ux, vx, d and (b)
cubic shape functions for ux and linear shape functions for vx, d; the dashed lines mark element
boundaries
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Fig. 8 For the unstructured mesh in (a) stress oscillations can be observed along the line y D
0:51mm in (b). Dashed lines correspond to element boundaries

Since vx is enforced to be constant, the strain "d
xx that accounts for damage has

a quadratic distribution when linear shape functions are used for d. Therefore, the
total strain "xx must have a quadratic distribution as well. This can be achieved when
cubic shape functions are used for the displacement ux. Figure 7b shows that this is
a good solution.

Keeping the interpolation of the displacement of the third order while those for
the phase field and the crack opening remain linear, the bar is now reconsidered in
a two-dimensional setting by putting Poisson’s ratio � D 0 and by prescribing all
vy D 0. A structured mesh with 10 � 10 elements is used. The width is c D 1mm
and d D 1 is prescribed at all nodes for which x D L=2. The other parameters are
the same as in the purely one-dimensional case. No stress oscillations are observed.

Next, the nodes are slightly displaced in a patch of four elements, Fig. 8a, and
stress oscillations result along the line y D 0:51mm, see Fig. 8b, cf. [14], where the
use of unstructured meshes for a peel test also resulted in stress oscillations. The
present simulation can be considered as a patch test, since a homogeneous stress
state should be obtained when prescribing a uniform traction or displacement at the
boundary, irrespective of the mesh lay-out. Unfortunately, this is not obtained for
the present three-field formulation of the cohesive phase-field fracture model.

5 Concluding Remarks

One-dimensional numerical studies have been discussed for the phase-field
approach to brittle fracture. They indicate that monolithic solution strategies, in
which the mechanical problem and the phase field are solved for simultaneously,
are more accurate than staggered solution schemes. The simulations also show the
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internal length scale parameter ` takes on the role of a material parameter, quite
similar to the internal length scale parameter in gradient damage models [4]. The
same holds for the degradation function g.d/, which turns out to have the physical
meaning of a material degradation function. Furthermore, the numerical results
indicate that, when the internal length scale ` ! 0, the length of the smeared crack
does not converge towards the true crack length in the phase-field models for brittle
fracture. Loosely speaking, this implies that this numerical experiment suggests that
the so-called � -convergence is not necessarily attained.

Next, the cohesive phase-field model proposed in [8] was examined numerically.
A simple patch test was devised in a two-dimensional setting, with boundary con-
ditions such that a uniform, uniaxial stress state should be obtained. Unfortunately
stress oscillations were found when displacing the nodes in a patch of four elements.
This renders the current state of the cohesive phase-field approach to fracture not yet
applicable to arbitrary loading configurations and discretisations.
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On the Effective Properties of Elastic Materials
and Structures at the Micro- and Nano-Scale
Considering Various Models of Surface
Elasticity

Victor A. Eremeyev

Abstract We discuss influence of surface properties on effective (apparent) proper-
ties of materials and structures such as Young’s modulus of a porous rod or bending
stiffness of a nanosized plate. We consider various models of surface elasticity
by Gurtin–Murdoch, Steigman–Ogden, and its generalizations. Difference between
models is discussed, and formulas for some effective properties are given.

1 Introduction

The development of nanotechnologies has recently led to the appearance of
new materials with very promising physical properties. A reliable understanding
of their mechanical properties is by now of crucial importance. The aim of
the paper is to discuss material properties of nanostructured materials at the
macroscale considering surface/interface properties. Nowadays it is well established
that unusual and sometimes very promising properties of nanomaterials relate with
surface/interfacial properties. For example, one can observe the so-called size-
effect, that is dependency of material properties on the size of considered specimen,
see for example [11, 31] where Young’s modulus of nanobeams made of Ag, Pb
is presented. Unlike in classical mechanics where the size-effects can be explained
by various mechanisms, such as size of grains and subgrains, dislocations density,
microcracks, etc., see, for example, [7], at the nanoscale surface effects are the
main reason for them. Nanoobjects such as nanowires, nanotubes, nanofibers,
etc., can be used as working elements of various nanoelectromechanical systems
(NEMS), see [8, 10, 17, 54, 56]. Often nanoelements form thin coatings with
regular inner microstructure on a substrate. As an example of such regular coating
one can consider arrays of ordered nanowires or nanotubes grown on a substrate
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[8, 40, 44, 50, 53, 54]. Besides coatings with regular and sometimes periodical
inner microstructure there are more interesting modifications of material surfaces
based on highly irregular structures similar to classical cellular or fabric materials.
Among them there are the so-called self-cleaning and bactericide coatings. The
latter are based on recent progresses in the production of superhydrophobic and
superoleophobic coatings, see [9, 12, 21, 32, 38] and reference therein. Such coating
can nowadays be applied to relatively rigid material such as glass or metal but also
to flexible materials such as textile.

The coatings discussed above dramatically change the surface physical properties
of the material and the material properties at all. These very promising materials
can be called surface metamaterials since their properties is almost determined
by inner microstructure and interaction forces acting between elements of coating.
Detailed description of surface nanostructures like those shown in is not possible, in
general, and even not required. This results in the necessity to develop new models
of surface-enhanced materials at the nano- and macro-scale.

The origin of mechanics of surface phenomena relates with the pioneer works
by Laplace [36, 37], Young [58], Poisson [15] where the surface tension for fluids
was introduced and the corresponding boundary-value problems are considered.
For recent state of the art of the theory of capillarity we refer to books [23, 45].
Later Gibbs generalized the notion of surface tension in the case of solids [39]. The
model of surface elasticity for elastic solids under large deformations was proposed
by Gurtin and Murdoch [25]. From the physical point of view the model can be
considered as nonlinear solid with attached on its surface an elastic membrane. The
stress resultant tensor acting in the membrane can be interpreted as a surface stress.
As a result, the constitutive equations for bulk and surface behavior are required,
thus for the surface elasticity model, in addition to the three-dimensional constitutive
equations, the two-dimensional constitutive relations are also formulated, where
the surface stress tensor depends on the surface strain measure. Recently Gurtin–
Murdoch model found many applications in micro- and nanomechanics [16, 28, 57].
In particular, the surface stresses are used for the explanation of the aforementioned
size-effect [55]. The key problem of the theory is the determination of surface elastic
moduli. For determination of the latter, molecular dynamics methods were applied
in [41, 49] while in [11] the measurement by atom force microscopy with analysis
of size-effect is used.

This model is generalized in [52] where bending stiffness of the attached film is
taken into account. For further generalizations we refer to [27, 28] and the references
therein. The presence of surface enhancements leads to non-classical mathematical
problems. For example, it changes the behavior of solutions near singularities
(cracks, holes, notches), see [33, 43]. Mathematical study of the boundary-value
problems of the linear elasticity with surface stresses are provided through various
methods in [3, 4, 47], see also [20]. The surface elasticity influences the actual
(apparent) properties of materials [1, 16, 19, 34, 35, 57]. It was shown that the
action of surface stresses leads to the stiffening of the material, see, for example,
[4, 16, 55, 57]. Finite element analysis of solids with surface stresses is developed
in [28–30].
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Other methods of considering of surface elasticity are also known. Among them
we mention ab initio methods and other atomistic simulations, see for example [6,
41, 48, 49]. Since we focus on mechanical behavior of surface-enhanced materials
we restrict ourselves to continuum methods referring to discrete models only for
comparison of results. A different model of surface elasticity was introduced in [26].
Here surface energy was introduced through estimation of excess of bulk energy
near the surface. Finally, after the seminal work of Mindlin [42] the surface stresses
can be modeled within the framework of the second-gradient theory of elasticity,
see for example [13, 14, 22, 45] and references therein.

The paper is organized as follows. Using variational approach in Sect. 2 we
briefly discuss some models of surface elasticity. Here we present the basic equa-
tions of Gurtin–Murdoch, Steigmann–Ogden models, and further generalizations.
Section 3 is devoted to effective properties of materials and structures considering
surface phenomena.

2 Models of Surface Elasticity

Using the principle of virtual work here we discuss few models of surface elasticity.
For the sake of simplicity we are restricted ourselves by the case of infinitesimal
deformations. Let an elastic solid with surface stresses occupies the volume V � R

3

with the boundary A. The general form of the principle of virtual work is given by
the variational equation

ıE D A; (1)

where E is the functional of total energy and A the virtual work of external loads,
ı stands for the variation symbol. For the surface elasticity models E is a sum of
volumetric and surface parts

E D
•

V

W dv C
“

As

U da; (2)

where W and U are the bulk and surface strain energy functions, respectively. As is
the part of A D @V where the surface energy is defined, see Fig. 1a.

For small deformations of an isotropic body we have the following constitutive
equations in the bulk

W D �e W e C 1

2
	tr 2e; ��� � @W

@e
D 2�e C 	Itr e; e D 1

2

�ru C .ru/T
�
;

(3)

where e is the strain tensor, u is the displacement vector, 	 and � are Lamé moduli,
� > 0, 3	C 2� > 0, and r is the 3D nabla operator.



32 V.A. Eremeyev
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Fig. 1 Material with surface stresses (a) and with surface layer (b)

In addition to u, we introduce the surface displacement vector v which describes
the displacements of As. In this theory the following assumption is usually used that:

v D u
ˇ̌
As
: (4)

This compatibility condition plays an important role in the theory. Obviously, it is
valid for perfect surfaces while for coatings with complex inner structures it should
be replaced by more general relation

v D A

h
u
ˇ̌
As

i
; (5)

where A is an operator which depends on inner microstructure of coating, see
comments in [1]. Indeed, for thin coating v describes averaged through-the-
thickness (mean) displacements attributed to the coating and it does not coincide
with u

ˇ̌
As

, in general.
In what follows we consider various forms of surface energy density U which

specifies the model of surface elasticity.

2.1 Gurtin–Murdoch Model of Surface Elasticity

Following [25] let us recall the basic equations of Gurtin–Murdoch model of surface
elasticity in the case of infinitesimal deformations. The surface strain energy density
of an isotropic material is given by

U D �S��� W ��� C 1

2
	Str 2���; ��� D 1

2

�rSv � A C A � .rSv/T
�
; (6)

where 	S and �S are the surface Lamé moduli, rS is the surface nabla operator, I
and A � I � n ˝ n are the 3D and surface unit tensors, respectively, n is the unit
vector of normal to As. In the theory of Gurtin and Murdoch the tensor of surface
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stresses ��� is an analogue of membrane stress resultants. It is given by the relation

��� � @U

@���
D �S��� C 	SAtr���:

The key problem of the theory is the determination of surface Lamé moduli 	S

and �S. There are restrictions for 	S and �S of mathematical nature, see [3] for
details,

�S > 0; 	S C �S > 0: (7)

Methods of molecular dynamics for determination of 	S and �S were applied in
[41, 49] while in [11] the measurement by atom force microscopy with size-effect
is used.

Comparison of deformations of a three-layered plate and plate with surface
stresses gives us another interpretations of 	S and�S, see [2]. Let us consider tension
and bending of a three-layered plate with two thin faces (skins) of thickness hf with
Lamé moduli �f and 	f. For hf ! 0 with accuracy up to O.h2f / from comparison
of the tangential and bending stiffness parameters of the tree-layered plate and the
plate with surface stresses it follows that, see [2],

�S D lim
hf!0

�fhf; 	S D lim
hf!0

	f
1 � 2�f

1 � �f
hf: (8)

Assuming A in the form

A D
•

V

f � ıu dv C
“

Af

t � ıu da;

where f and t are the body force and surface loads vectors, respectively, Af is the
surface where the external surface loads f act, As � Af , and taking into account
kinematic boundary conditions u

ˇ̌
Au

D 0 and (4), from variational equation (1)
with constitutive relations (3) and (6) we obtain the equilibrium equations and static
boundary conditions for solids with surface stresses

r � ��� C f D 0 in V; .n � ��� � rS � ���/jAs
D t ; n � ��� jAt

D t : (9)

We assume that the part of body surface Au is fixed, while on At � Af nAs the
surface stresses are absent, see Fig. 1a. The vector of surface forces ts at As consist
of external surface traction t and vector rs � ��� , so (9)2 takes the form n � ��� jAs

D ts:
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2.2 Steigmann–Ogden Model of Surface Reinforcements

Steigman and Ogden extended the model of surface elasticity taking into account the
bending stiffness of surface film first for plane problems [51] and then for general
3D case [52]. For infinitesimal deformations of an isotropic material the surface
strain energy is now given by the formula

U D �S��� W ��� C 1

2
	Str 2��� C ��� W ��� C 1

2
�tr 2���; (10)

��� D �1
2

�rS### � A C A � .rS###/
T
�
; ### D rSw C B � u;

where ��� is defined in (6), ��� is the bending strain measure called also the tensor of
changes of curvature, w � n �u is the displacement normal to surface As, B � �rSn
is the curvature tensor, � and  are additional material parameters describing the
bending stiffness of material surface As.

For Steigmann–Ogden model A may include surface moments and edge forces
and moments. So, the boundary conditions have also more complex form, see [52]
for details.

2.3 Classic Approach

It is worse to mention that surface phenomena can be also modeled using classical
approach considering thin surface layer with another material properties than in the
bulk, see Fig. 1b. In this case the functional of total energy take the form

E D
•

VnVı

W dv C
•

Vı

Wı dv; (11)

where Vı is the volume of the surface layer and Wı is the stain energy density. In
other words, Eq. (11) relates with non-homogeneous solid where non-homogeneity
located near the surface or its part. As a result, the mechanics of composites or
theories of laminates can be used for modeling of deformations of solids with
surface stresses.

Obviously, one can combine models of surface elasticity using the total energy
functional in the form

E D
•

VnVı

W dv C
•

Vı

Wı dv C
“

As

U da: (12)
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In the literature are known further generalizations of surface/interface elasticity,
see for example [46] where the Cosserat-type model suggested for description of
interfacial elasticity.

3 On Effective Properties of Nanomaterials Considering
Surface Stresses

The analysis of influence of surface stresses on the effective material properties is
given in many works, see [16, 28, 57] and reference therein. To illustrate the possible
approach let us discuss the simplest example of tension of a nanoporous rod.

3.1 Stiffness of a Nanoporous Rod

Following [19] in this section we discuss the effective stiffness of a nanoporous rod.
We consider a rod with circular cross-section of radius R and n identical pores of
radius r which are uniformly distributed parallel to the rod axis. We denote the area
of pores in the rod cross-section as S D �nr2 and introduce the porosity � by the
relation � D S=F, F D �R2, � 2 Œ0; 1/. Further, assuming the porosity is fixed we
consider how the effective Young’s modulus depends on the number of pores.

The theory of strength of materials results in elementary formula

E�ı D E .1 � '/ : (13)

Obviously, there is no influence of surface effects.
Theory of surface stresses leads to

E�
S D E.1� '/C ES

2
p

Sp
�F

p
n D E�ı C ES

2
p

Sp
�F

p
n: (14)

Here ES is the surface Young modulus.
Mechanics of composites results in

E�
f D E

�
1 � S C Sı

F

	
C Ef

Sı
F

D E�ı C .Ef � E/
Sı
F
; (15)

where Sı.n/ D �nŒ.r C ı/2 � r2� is the total area of the surface layers of thickness
ı or to

E�
f D E�ı C .Ef � E/

2ı
p
�S

F

p
n: (16)
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And, finally, we have the combined formula

E� D E�ı C ES
2
p

Sp
�F

p
n C .Ef � E/

Sı.n/

F
: (17)

Here E� depends on the values of hf, R, ES, and E. d D 2ES=E is the characteristic
length parameter introduced in [55].

In a similar way we obtained formulae for effective stiffness parameters for plates
and shells [2, 5].

3.2 Scaling Law

In [16, 55] the following scaling law was discussed for nano-structured materials.
Let F be some material property, i.e., Young’s modulus, temperature of melting, etc.
We denote F.L/ the value of F for a nano-specimen with characteristic size L and
F.1/ for material in the bulk. According to scaling law [55] we have

F.L/

F.1/
D 1C lin

L
C O

�
lin
L

	2
: (18)

Here lin is a characteristic length, usually lin D 2–20 nm. Among examples of
application of (18) is the size-effect observed in [11, 31]. In particular, the effective
Young modulus of a rod with circular cross-section of radius R and with surface
stresses is given by the formula

E�
S

E
D 1C lin

R
(19)

with lin D 2ES=E, which entirely coincides with the scaling law (18).

3.3 On Spectrum of Eigen-Oscillations of Solids with Surface
Stresses

General mathematical analysis of boundary-value problems of free vibrations
of solids with surface stresses performed in [3, 4] using Rayleigh and Courant
variational principles. As a result, the following theorem can be proved.

Theorem 1 Let !GM
k be eigenfrequencies of a bounded elastic body with surface

stresses according to Gurtin–Murdoch model enumerated in increasing order as
!GM
0 � !GM

1 � !GM
2 ; : : :, let !SO

k be eigenfrequencies of a bounded elastic body
with surface stresses according to Steigmann–Ogden model, and let !f

k and !ı
k be
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correspondingly ordered eigenfrequencies of the elastic body with free boundary AS

and with fixed boundary, respectively. Then

!
f
k � !GM

k � !SO
k � !ı

k ; k D 1; 2; 3; : : : : (20)

The increase in the eigenfrequencies for the elastic body with surface stresses,
in comparison with the same body with free boundary, can be interpreted as the
increase in the stiffness. So, in this sense the solids with surface stresses described
within Steigmann–Ogden model are stiffer then ones described within Gurtin–
Murdoch model.

3.4 On Effective Properties of Solids with Coatings of Complex
Inner Structure

For coatings with complex inner microstructure, mentioned in the “Introduction” we
propose two steps of homogenization for taking into account the surface properties.
The main idea consists of replacing thin coating by material surface with effective
properties and then using these properties for determination of material properties
at the macrolevel. So we propose to find 2D effective (apparent) material properties
and then using these 2D properties obtain 3D effective material properties.

To illustrate the idea let us discuss the effective properties for “foam-like”
surfaces such as discussed in [12, 21, 32]. Instead of detailed description of
geometry of these structures simple idealized models of cell structures is often used
in the mechanics of open-cell foams [24], see Fig. 2. Considering the deformation
of the cell shown in Fig. 2 the following relations between elastic properties of foam
and bulk material which is used for foam manufacturing were derived:

Ef

E
	 'm;

�f

�
	 'm:

Fig. 2 Simple idealization of
open-cell structures: the cubic
model [24]
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Here ' is the porosity, index f stands for foam properties, m 
 2, �f 
 0:3. So Ef

and �f are Young’s and shear moduli of foam, respectively, while E and � are their
bulk counterparts.

Applying the scaling law (18) or formula (19) we obtain Young’s modulus En at
the nanoscale

En D E

�
1C lin

R

	
;

where R is the width of struts in Fig. 2 while lin is an intrinsic length scale parameter
given by lin D 2ES=E. Repeating the calculations of [24] we modify the dependence
of the elastic moduli of a nanofoam on the porosity according to the following rule

Enf

E
	
�
1C lin

R

	
'm;

�nf

�
	
�
1C lin

R

	
'm;

where Enf and �nf are Young’s and shear moduli of a nanofoam, respectively.
Finally, using formulae (8) we estimate the surface elastic moduli as follows

�S 
 �nfhf; ES 
 Enfhf; (21)

where hf is the thickness of “foam-like” coating. Having in hands more general
formulae for effective properties at the nanoscale such as (17) we obtain another
approximations for surface elastic moduli, for example, the relation

ES 
 E�'mhf (22)

can be used. Let us also note that for this coating v does not coincide with u
as formulated in (4) and compatibility equation (5) should be used. Indeed, here
v corresponds to averaged though the thickness displacement of nanofoam and
includes shear deformations as well as thickness changes of the coating.

4 Conclusions

We briefly discuss various models of surface elasticity as well as influence of surface
stresses on the effective (apparent) properties of materials. As an example, stiffness
of nanoporous rod is presented. We have shown that depending on the model of
surface effects the surface elasticity may make a rod stiffer or softer in comparison
with the rod without surface stresses. We discuss effective (apparent) properties of
solids with imperfect surfaces/interfaces or coatings with inner microstructure such
as foam-like coating. The new approximated formulae for surface elastic moduli
of this coating are proposed. For further details we refer to [18]. As a result,
we conclude that the surface properties play an important role at the nano- and
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microscales as well as for materials with great ratio of surface layer volume to the
volume of material in the bulk.
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Microstructure Sensitive Fatigue Crack
Nucleation in Titanium Alloys Using Accelerated
Crystal Plasticity FE Simulations

Somnath Ghosh and Pritam Chakraborty

Abstract This chapter investigates microstructure and load sensitive fatigue behav-
ior of Ti-6242 using cyclic crystal plasticity finite element (CPFE) simulations
of statistically equivalent image-based microstructures. A wavelet transformation
induced multi-time scaling (WATMUS) method (Joseph et al., Comput Methods
Appl Mech Eng 199:2177–2194, 2010; Chakraborty et al., Finite Elem Anal Des
47:610–618, 2011; Chakraborty and Ghosh, Int J Numer Methods Eng 93:1425–
1454, 2013; Ghosh and Chakraborty, Int J Fatigue 48:231–246, 2013) is used
to perform accelerated cyclic CPFE simulations till crack nucleation, otherwise
infeasible using conventional time integration schemes. A physically motivated
crack nucleation model in terms of crystal plasticity variables (Anahid et al., J
Mech Phys Solids 59(10):2157–2176, 2011) is extended in this work to predict
nucleation. The dependence of yield strength on the underlying grain orientations
and sizes is developed through the introduction of an effective microstructural
parameter Plastic Flow Index or PFI. To determine the effects of the microstructure
on crack nucleation, a local microstructural variable is defined in terms of the surface
area fraction of soft grains surrounding each hard grain or SAFSSG. Simulations
with different cyclic load patterns suggest that fatigue crack nucleation in Ti-6242
strongly depends on the dwell cycle hold time at maximum stress.

1 Introduction

The fatigue life and number of cycles to crack nucleation in commercially used
titanium alloys, such as Ti-6242, exhibit considerable variation at room temperature
due to the heterogeneity of the underlying microstructure [2, 16, 17]. Mechanistic
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approaches, implementing crystal plasticity-based finite element (CPFE) simula-
tions of polycrystalline microstructures, have been pursued in the literature [3, 8,
13–16] to develop fatigue life models. At room temperature, inelastic deformation
in Ti-6242 commences predominantly by slip on different slip systems in individual
grains of the microstructure [2, 17]. The number of slip systems and their resistance
to slip depends on the morphological and crystallographic characteristics. In the
hcp phase of Ti-6242, the three basal and prismatic hai slip systems have much
lower slip resistances in comparison with the 6 hai pyramidal, 12 hc C ai first order
pyramidal and 6 hc C ai second order pyramidal slip systems [6, 11]. Consequently,
grains with orientations that induce higher resolved shear stresses on the basal or
prismatic systems have more plastic deformation than those activating the pyramidal
systems. This material anisotropy due to the large difference in critical resolved
shear stress in different slip systems results in large heterogeneity in the plastic
deformation in polycrystalline aggregates. It leads to significant load-shedding
induced stress concentration at grain boundaries. This is perceived to be the primary
driver of microstructure-dependent crack nucleation [2].

The present work uses a size and rate-dependent CPFE model of Ti-6242
developed in [6, 11, 19] to capture this load-shedding induced stress rise in the
microstructure leading to crack nucleation. Particularly vulnerable are boundaries
between grains having large time-dependent plastic deformation (soft grain) and
those with little or no plasticity (hard grain) owing to their orientation with
respect to the loading direction. Morphological and crystallographic features of
the polycrystalline alloy are statistically represented in the CPFE models using
methods developed in [9, 10]. The use of such a statistical description not only
reduces the number of grains in the FE simulations but also captures the key
features of the microstructure that affect its macroscopic and microscopic response.
A non-local crack nucleation model has been developed in [1] to study early
crack nucleation in polycrystalline Ti-alloys under dwell fatigue cyclic loading.
The crack nucleation criterion is functionally dependent on stress concentration and
dislocation pile-up at grain boundaries. These variables are obtained from CPFEM
simulations. A combination of CPFE simulations and ultrasonic testing of dwell
fatigue Ti-6242 samples has been used in [1] for calibrating and validating the
nucleation model. This model is adopted in the present work to study microstructure
and load-dependent crack nucleation in Ti-6242.

Although CPFE simulations accurately capture the deformation behavior of
polycrystalline alloys, they require very small time steps when conventional time
integration schemes are used to march forward in time. In cyclic loading and defor-
mation, small time steps in every cycle of the loading process leads to prohibitively
large computations, when analysis is performed for a large number of cycles to
fatigue failure. The wavelet transformation induced multi-time scaling or WATMUS
method, developed in [4, 5, 7, 12], has shown significant computational benefits
in rapidly traversing a high number of cycles. This chapter discusses the effects
of microstructure and cyclic loading conditions on grain-level crack nucleation.
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The WATMUS method based cyclic CPFE simulations of polycrystalline Ti-6242
microstructures are used to accomplish this mechanistic approach. A detailed
numerical study of the different factors affecting fatigue crack nucleation in Ti-6242
is executed in Sect. 5. In Sect. 5.1, relations between crystallographic features and
cycles to crack nucleation are developed. The dependence on the number of cycles
to crack nucleation on characteristics of the applied load is studied in Sect. 5.2.

2 Rate-Dependent Crystal Plasticity and Nonlocal Crack
Evolution Models for Ti-6242

The rate and size-dependent crystal plasticity constitutive laws governing deforma-
tion in polycrystalline, bi-phasic Ti-6242 alloys have been detailed in [6, 11, 19]. A
power law model is used to determine the slip-rate on different slip systems as:

P�˛ D Pa
ˇ̌
ˇ̌�
˛ � �˛

g˛

ˇ̌
ˇ̌
1
m

sign.�˛ � �˛/ (1)

where Pa is a reference slip rate, �˛ is the resolved shear stress on the slip system, �˛

is a back stress, g˛ is the slip system resistance, and m is the power law exponent.
The resolved shear stress on a slip system is obtained from the relation

�˛ D FeTFeT� W S˛0 (2)

where T� is the second Piola–Kirchoff (PK2) stress. The back stress evolution on a
slip system follows the law:

P�˛ D c P�˛ � d�˛
ˇ̌ P�˛ ˇ̌ (3)

where c and d are the direct hardening and dynamic recovery coefficients, respec-
tively. The evolution of slip system deformation resistance is controlled by two
types of dislocations, viz., statistically stored dislocations (SSDs) and geometrically
necessary dislocations (GNDs) [1]. The corresponding deformation resistance rate
is expressed as:

Pg˛ D
X

ˇ

h˛ˇj P�ˇj C k0 Ǫ 2G2b

2.g˛ � g˛0 /

X

ˇ

	ˇj P�ˇj (4)

The modulus h˛ˇ D q˛ˇhˇ .no sum on ˇ/ is the strain hardening rate due to self
and latent hardening on the ˛-th slip system by slip on the ˇ-th slip system,
respectively. Here, hˇ is the self hardening coefficient and q˛ˇ is a matrix describing
latent hardening. Different self hardening relationships are used for modeling the ˛
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and ˇ phases [6]. The evolution of self hardening for the ˛ phase is modeled as:

h˛ D h˛0

ˇ̌
ˇ̌1 � g˛

g˛s

ˇ̌
ˇ̌
r

sign

�
1 � g˛

g˛s

	
; g˛s D Qg

ˇ̌
ˇ̌ P�˛

Pa
ˇ̌
ˇ̌
c

(5)

where h˛0 is a reference self hardening parameter and g˛s is the saturation value of
slip system resistance. Self hardening rate of the ˇ phase is given as:

h˛ D h˛s C sech2
"

h˛0 � h˛s
�˛s � �ˇ0

�acc

#
�
h˛0 � h˛s

�
where �acc D

tZ

0

X

˛

ˇ̌ P�˛ ˇ̌ dt (6)

h˛0 and h˛s are the initial and the asymptotic hardening rates, �˛s represents the
saturation value of shear stress when h˛s D 0, and �acc is the accumulated
plastic slip. The second term in Eq. (4) accounts for the effect of GNDs on work
hardening. Here, k0 is a dimensionless material constant, G is the elastic shear
modulus, b is the Burgers vector, g˛0 is the initial deformation resistance, and Ǫ is
a non-dimensional constant. Ǫ is taken to be 1

3
in [1]. 	ˇ is a measure of slip plane

lattice incompatibility, which can be expressed for each slip system as a function of
slip plane normal nˇ and an incompatibility tensor� as:

	ˇ D �nˇ W �nˇ/
1
2 (7)

The dislocation density tensor � can be expressed using the curl of plastic
deformation gradient tensor FP.

The effect of grain size and lath thickness on the slip system resistance is also
considered in the crystal plasticity model in [19]. A Hall Petch type relation is
used to modify the initial slip system resistances g˛.t D 0/ to capture size effect
according to the relation:

g˛.t D 0/ D g˛0 C K˛

p
D˛

(8)

where g˛0 is the homogeneous slip system resistance, D˛ is a characteristic length
parameter that corresponds to the mean-free path of the dislocations in a grain. For
globular ˛ grains, the transmission of dislocations to adjacent grains is resisted by
grain boundaries and hence grain diameter is considered as characteristic length in
Eq. (8). For transformed ˇ colonies, dislocation motions can be impeded either by
the colony boundary or lath boundary depending on the Burger’s orientation relation
between ˛ and ˇ laths [6, 11]. Hence either colony size or lath thickness is used for
D˛ in Eq. (8) for slip system resistances of the transformed ˇ colonies. K˛ is a
constant that depends on the Poisson’s ratio, shear modulus, Burgers vector, and
barrier strength.
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A crack nucleation model, developed in [1], is used in this work to model
grain-level nucleation in a polycrystalline ensemble. Experimentally extracted
crystallographic features of grains at failure sites suggest that regions of hard
grains surrounded by soft grains are susceptible to initiate a crack. Contiguous hard
grains with less-favorably oriented for < a >-type slip (< c >-axis parallel to
the deformation direction), experience large local stress concentrations, especially
near the shared grain boundary. This is a consequence of compatible, large elastic
strains in the hard grains near the shared boundary. The phenomenon of rising
stress-concentration with evolving creep strains in dwell cycles has been called load
shedding [1, 11]. The hard grain crack nucleation criterion, ahead of dislocation
pile-ups in adjacent soft grain has been derived to be [1]:

Teff D
q
< Tn >2 CˇT2t � Kcp

�c
(9)

or equivalently

R D Teff � p
c � Rc ; where Rc D Kcp

�
(10)

In Eqs. (9) and (10), Teff is an effective traction on the hard grain basal plane for
mixed mode crack nucleation. It is expressed in terms of the stress component
normal to the crack surface Tn D �ijnb

i nb
j and the tangential stress component

Tt D kT � Tnnbk. Here T is the stress vector on the crack surface, �ij is the Cauchy
stress tensor, and nb

i are the components of unit outward normal to the crack surface.
Only the tensile normal stress < Tn >, represented by the McCauley bracket <>,
contributes to the effective stress responsible for crack opening. Kc is the critical
mixed-mode stress intensity factor and ˇ 
 Knc=Ktc is a shear stress factor used
to assign different weights to the normal and shear traction components for mixed-
mode. A value of ˇ D 0:7071 is used for Ti-64 alloys in this study. c is the length
of a wedge micro-defect or crack on the basal plane of the hard grain caused by
dislocation pile-up in the adjacent soft grain. The micro-crack length c in Eq. (10)
is obtained from the relation proposed in [18] as:

c D G

8�.1 � �/�s
B2 (11)

where B is the crack opening displacement, G is the shear modulus, � is the
Poisson’s ratio, and �s is the surface energy. The crack opening displacement
B D kBk is a non-local variable. The critical crack nucleation parameter Rc in
Eq. (10) is a material property, which is calibrated from experiments.
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3 Wavelet Transformation Based Multi-time Scale Method
for Accelerated Cyclic CPFEM Simulations

Fatigue life predictions in polycrystalline metallic microstructures involve cyclic
crystal plasticity FEM simulations till crack nucleation. Depending on the
microstructure and load profile, this may involve simulations for large number
of cycles. Such simulations may become computationally prohibitive using
conventional time integration schemes in FEM codes. In [4, 5, 7, 12], a wavelet
transformation based multi-time scale or WATMUS method has been developed to
reduce the problem to a set of low frequency, coarse time-scale governing equations.
In the WATMUS scheme, any time-dependent variable v�.t/ is expressed as:

v�.t/ D v.N; �/ D
nX

kD1
vk.N/ k.�/ 8 � 2 Œ0;T� (12)

The superscript � corresponds to the dependence of the variable on the two
time-scales, which for this problem correspond to a cycle scale N and an intra-
cycle fine time-scale � .  k.�/ are wavelet basis functions that capture the high
frequency response within each cycle, n is the number of basis functions required
for accurate representation of the waveform. The finite support of the wavelet basis
functions eliminates spurious oscillations that may arise with truncation of terms in
infinitely supported basis functions such as the spectral basis functions. vk.N/ are
the associated coefficients that evolve monotonically in the cycle (N)-scale. Using
orthogonality property, they may be expressed as:

vk.N/ D 1

T

TZ

0

v.N; �/ k.�/d� (13)

where T is the time period of the applied load. Wavelet transformation facilitates
numerical integration of the CPFEM equations in the cycle-scale traversing several
cycles in each step. This leads to significant efficiency gain.

The oscillatory stress response �ji.N; �/ depends on the oscillatory deformation
gradient Fij.N; �/ and internal variables ym.N; �/. Fij.N; �/ at each integration point
in any cycle is obtained from the coefficients of nodal displacements C˛

i;k.N/ using
the relation:

Fij.N; �/ D ıij C @P˛

@Xj

nX

kD1
C˛

i;k.N/ k.�/ (14)

In crystal plasticity, the evolution of internal variables is governed by first order rate
equations of the type

Py�m.t/ D fm.y
�
m;F

�
ij; t/ (15)
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Here y�m are internal variables represented in a single time-scale, t and fm are non-
linear functions. The oscillatory evolution of the dual-scale variable ym.N; �/ in any
cycle may be obtained from the fine-scale time integration as:

ym.N; �/ D ym0.N/C
�Z

0

fm.ym;Fij;N; �/d� (16)

where ym0.N/ D ym.N; � D 0/ are values of internal variables at the beginning of a
cycle. This forms a new cycle-scale variable, corresponding to the initial values of
internal variables ym0, which have a monotonic evolution in the cycle-scale. Cycle-
scale rate equations are numerically defined for ym0 as [12]:

@ym0

@N
D ym0.N C 1/� ym0.N/ D ym.N;T/ � ym0.N/ (17)

where

ym.N;T/ D ym0.N/C
TZ

0

fm.ym;Fij;N; �/d� (18)

Since fm are non-linear functions, numerical time-integration using the backward
Euler scheme is performed on Eq. (18). The cycle-scale internal variables are
integrated using a second order backward difference formula, expressed as:

ym0.N/ D ˇ1ym0.N ��N/ � ˇ2ym0.N ��N ��Np/C ˇ3
@ym0

@N

ˇ̌
ˇ
N
�N

where ˇ1 D .r C 1/2

.r C 1/2 � 1
ˇ2 D 1

.r C 1/2 � 1 ˇ3 D .r C 1/2 � .r C 1/

.r C 1/2 � 1

and r D �Np

�N
(19)

The Newton–Raphson iterative scheme is used to solve Eq. (19).
The accuracy of the WATMUS method is demonstrated by comparing the

evolution of crystal plasticity variables obtained from (1) single time-scale, and (2)
WATMUS method-enhanced dual time-scale simulations of a statistically equivalent
virtual polycrystalline Ti-6242 microstructure [9, 10]. In Fig. 1, the microstructure
is subjected to a triangular cyclic load on the y-face with a maximum and minimum
normal traction of 869 MPa and 0 MPa respectively, and a time period of 2 s. The
WATMUS method-enhanced CPFEM simulation is performed for 300,000 cycles
and the evolutionary variables, e.g. set of wavelet coefficients of nodal displace-

ments C˛
i;k and the history of coarse scale internal variables y˛=ˇ0 D

n
Fp

ij;0; g
˛
0 ; �

˛
0

o

are compared with a single time-scale simulation. The single time-scale simulation
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Fig. 1 FE model of a polycrystalline microstructure and loading conditions to demonstrate the
accuracy and efficiency of the WATMUS method: (a) microstructure with < c >-axis orientation
and mesh, (b) boundary conditions, and (c) cyclic loading profile
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Fig. 2 Comparison of the evolution of the cycle-scale with averaged single time-scale internal
variables at an integration point in the FE model of the polycrystalline microstructure for: (a) Fp

0;22,
(b) g˛0

suffers from a large computational overhead, and the simulation is performed for
215 cycles only. A comparison of the evolution of coarse internal variables at an
integration point in the microstructure is shown in Fig. 2.

The distribution of the loading direction stress �22 along a specified material
line in the microstructure, as obtained by the WATMUS and single time-scale
simulations is compared in the Fig. 3. These comparisons conclusively show that
the WATMUS method is able to capture the evolution of the local microstructural
variables very accurately. Finally to demonstrate the power of the WATMUS method
in traversing a large number of cycles, the evolution of plastic deformation gradient
Fp
0;22 with advancing cycles are shown in Fig. 4 for up to 300,000 cycles. To evaluate

the computational efficiency, the CPU time to perform 215 cycles for the single
time-scale CPFEM simulation is extrapolated to 300,000 cycles and compared
with the CPU time taken to perform 300,000 cycles of WATMUS simulation. A
computational speedup of 	100 times is obtained for this problem.
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Fig. 3 Comparison of distribution of stress �22 along a material line in the microstructure at N D
211 and � D 1 s, by the WATMUS and single time-scale CPFEM simulations for �22

Fig. 4 Evolution of Fp
0;22 with cycles by WATMUS-based CPFEM simulation: (a) volume

averaged Fp
0;22, (b) distribution of Fp

0;22 at the 10,000th cycle, and (c) distribution of Fp
0;22 at the

300,000th cycle
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3.1 WATMUS Method Based Dwell Fatigue Simulation
of Ti-6242 Microstructure

The ability of the WATMUS method in handling large time periods is demonstrated
through a dwell fatigue simulation for the polycrystalline microstructure shown
in Fig. 1. A schematic of the dwell load with 2 min hold and the corresponding
segments are shown in Fig. 5a, b, respectively.

The cycle-scale evolution of Fp
0;22 and g˛0 for a slip system at an integration point

in the microstructure by the WATMUS method-enhanced CPFEM simulation is
shown in Fig. 6. The evolution of �22 along a material line in the microstructure
is evaluated for the cycles 21 and 500, at � D 121 s, and is depicted in Fig. 7.
Large stresses develop in the hard grains adjacent to soft grains due to anisotropy,
leading to orientation dependent rate of plastic deformation and load-shedding. The
stress peak rises with advancing cycles of the load, thus enhancing the probability

Fig. 5 Schematic of cyclic dwell loading: (a) dwell load profile applied on y-face of the
polycrystalline microstructure (b) segments with different maximum resolution
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Fig. 6 Evolution of cycle-scale internal variables at an integration point in the microstructure:
(a) Fp

0;22 (b) one of the slip system resistances g˛0
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Fig. 7 Evolution of loading direction stress component �22 along a material line in the microstruc-
ture evaluated at cycles N D 21 and N D 500 and � D 121 s

of crack nucleation in these hard grains. The WATMUS method-enhanced CPFE
simulations are used in conjunction with the crack nucleation model to study the
fatigue nucleation behavior of Ti-alloys.

4 Calibration and Validation of Critical Crack Nucleation
Parameter Rc

The critical crack nucleation parameter Rc should be calibrated prior to conducting
crack nucleation sensitivity analyses using CPFE simulations. Validation studies
are performed using two different specimens of the Ti-6242 alloy, subject to dwell
fatigue load with a hold time of 2 min, and loading and unloading time of 1 s each.
The maximum stress in a loading cycle is 869 MPa, which is 95 % of the yield
strength, while the minimum stress is 0 MPa. Subsurface crack propagation has
been monitored by using micro-radiographic images from interrupted experiments
in [20]. From dwell fatigue experiments, it has been observed that crack nucleation
occurs at 80–85 % of the total number of cycles to failure Nf . The overall yield
strengths of the specimens 1 and 2 in the loading direction are evaluated from
constant strain rate simulations prior to dwell fatigue simulations. Corresponding
to 0:2% elastic strain, an yield strength value of 	915 MPa is assessed for these
specimens.

The WATMUS method-enhanced CPFEM simulations are performed under
dwell loading for validating the crack nucleation model. Consistent with experimen-
tal procedures, a maximum applied stress of 869 MPa, which corresponds to 95 %
of the yield stress, and a stress ratio �R D �min=�max D 0 is applied. Following the
procedure described in [1], the crack nucleation parameter R˛ at every node on grain
interfaces is evaluated at � D 121 s in each cycle for the 2-min dwell. Experimental
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results of specimen 1, which fails after 352 cycles, are used to calibrate Rc. From the
conclusions of experimental studies in [20], the minimum and maximum number of
cycles to crack nucleation for the specimen 1 is estimated as Nc.80%/ D 282 (80%
of Nf ) and Nc.85%/ D 300 (85% of Nf ). The evolution of the nodal R˛ at the grain
boundaries is obtained from CPFE simulations of specimen 1. The maximum R˛
values at Nc.80%/ D 282 and Nc.80%/ D 300 are considered as the lower and upper
limits of Rc, respectively.

Rc.80%/ D max
˛

R˛.N D 282; � D 121 s/ D 6:54MPa
p
�m

Rc.85%/ D max
˛

R˛.N D 300; � D 121 s/ D 6:80MPa
p
�m (20)

Experimental results of specimen 2 are used to validate the crack nucleation
model for the calibrated Rc value. The number of cycles to crack nucleation from
interrupted dwell fatigue experiments is 550 cycles. From the CPFE simulations, the
number of cycles to crack nucleation is predicted for 80 % and 85 %, respectively of
the total life as:

Nc.80%/ W max
˛

R˛.N; � D 121 s/ D Rc.80%/ ) Nc.80%/ D 620

Nc.85%/ W max
˛

R˛.N; � D 121 s/ D Rc.85%/ ) Nc.85%/ D 694 (21)

The evolution of maximum R˛ at a grain boundary node with crack nucleation is
shown in Fig. 8.

Fig. 8 Evolution of maximum R˛ with N in specimen 2 at a crack nucleation site under dwell
cyclic loading, evaluated at � D 121 s
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Table 1 Comparison of the number of cycles to crack nucleation predicted by the model with
experimental results for specimen 2

Cycles to crack nucleation Cycles to crack nucleation (Predicted) % Relative error

(Experiment) 80 % of life 85 % of life 80 % of life 85 % of life

550 620 694 12.7 25.4

Table 2 Crystallographic features of the crack nucleation site predicted by the model and
experiments for specimens 1 and 2

Microstructural parameters Experiments Specimen 1 Specimen 2

�c 0–30ı 38:5ı 25:2ı

Prismatic Schmid factor 0:0–0:1 0.17 0.09

Basal Schmid factor 0:3–0:45 0.48 0.38

The predicted number of cycles to crack nucleation for specimen 2 along with
the associated error are summarized in Table 1. The crystallographic features of
the predicted crack nucleation site for both the specimens are compared with
experimentally observed characteristics in Table 2.

5 Influence of Microstructural and Loading Characteristics
on Crack Nucleation in Ti-6242

In this section, room temperature crack nucleation in Ti-6242 is related
to microstructural features and loading profile under cyclic loading using
the WATMUS method-enhanced CPFE simulations. The yield strength of a
polycrystalline alloy depends on the plastic flow behavior of the individual grains.
Room temperature plastic deformation in Ti-6242 is primarily due to slip in
individual grains. Consequently, factors affecting initiation of slip are used to
study the sensitivity of yield strength to the underlying microstructure. Plastic
deformation in a grain of a given size and orientation with the loading direction, is
represented by a parameter termed as the Plastic Flow Index or PFI, defined as:

PFI D max
˛

 ˇ̌
cos �˛n cos �˛m

ˇ̌

0:5

! 
gprismatic
0

g˛

!
(22)

where �˛n and �˛m are the angles made by the slip plane normals and the correspond-
ing slip directions with the loading direction. gprismatic

0 is the slip system resistance
of the prismatic hai slip system in Eq. (8). The calibrated value of g0 in [19] is the
smallest for the prismatic hai slip system. Hence, it is considered as a reference
in Eq. (22) since it implies least resistance to slip. A crystal oriented with the
maximum Schmid factor 0:5 along the prismatic hai slip system has the minimum
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yield strength and maximum plastic flow, compared to any other grain orientation.
Thus the PFI is considered to provide an effective measure of plastic flow in the
grain. It also depends on the loading direction or Schmid factor of individual slip
systems in the grain. The PFI has characteristics similar to the Taylor factor in [17]
in that it uses a measure of the slip rate to determine the degree of plasticity in each
grain of the polycrystalline microstructure. However there are also some distinct
differences, viz.

• The maximum ratio from all the slip systems in a grain is considered in PFI.
• The microstructure with maximum slip activity (single crystal with SF D 0:5 on

prismatic slip system) is considered to obtain the relative measure PFI.
• The distribution of PFI instead of a volume average is used to obtain a relative

measure of yield strength for polycrystalline alloys.

For a grain, the value of PFI can vary between 0 and 1, i.e., 0 � PFI < 1. A higher
value of PFI, i.e., PFI ! 1 indicates higher plastic flow and lower strength for
the grain. The yield strengths of specimens 1 and 2 in the y-direction are related to
the underlying grain sizes and orientations by considering the PFI distribution of
individual grains in the microstructure. The distributions are compared in Fig. 9.
The distributions show that both specimens 1 and 2 have similar high volume
fractions (VF 
 0.2) in the range 0:7 � PFI < 0:8. The PFI distribution provides
an effective metric in relating the yield strength to the underlying grain sizes and
orientations. To validate this postulate, a third virtual microstructure (specimen 3)
is constructed by randomly assigning orientations to grains in the FE model of
Fig. 1a. The orientations are chosen from the set of orientations in specimen 1. The
grain sizes of specimen 3 are the same as for specimen 1. The PFI distribution for
specimen 3 is compared with those for specimens 1 and 2 in Fig. 9. This has a lower
volume fraction in the range 0:7 � PFI < 0:8. Correspondingly, specimen 3 is

Fig. 9 Plastic flow index (PFI) distribution for specimens 1–3
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expected to have a higher yield strength. This is corroborated by constant strain-rate
CPFE simulation results, for which the yield strength is 940 MPa.

5.1 Sensitivity of Crack Nucleation to Microstructural Features

Crystallographic features at the crack nucleation site, obtained from fatigue exper-
iments on Ti-6242 in [17] are reported in Table 2. This data can be used to capture
the effect of local variations in microstructural features on the number of cycles to
fatigue crack nucleation. Grains are distinguished as hard or soft, based on their
< c >-axis orientation with respect to the loading axis. Orientations between 0ı
and 30ı ensures that the maximum prismatic and basal < a > Schmid factors are in
the range 0.0–0.1 and 0.3–0.45, respectively.

The < c >-axis orientation at the crack nucleation site for specimen 1 is
predicted to be 38:5ı by the crack nucleation model. Consequently, a < c >-axis
orientation range of 0–40ı is used here to identify hard and soft grains. A grain is
assumed to be hard when its < c >-axis orientation with respect to the loading
direction is less than 40ı. Since hard grains surrounded by soft grains are more
susceptible to crack nucleation, the surface area fraction of soft grains surrounding
each hard grain or SAFSSG is examined as a potential metric. The distribution of
SAFSSG for specimens 1–3 is shown in Fig. 10.

The number of cycles to crack nucleation depends on the extreme values of the
distribution in Fig. 10. This implies that a microstructure with a higher volume
fraction of hard grains with high SAFSSG is likely to nucleate cracks earlier.
Figure 10 illustrates that specimen 2 should have the longest nucleation life and
specimen 3 should have the shortest life. This observation is supported by dwell

Fig. 10 Volume fraction
distribution of hard grains and
corresponding surface area
fractions of surrounding soft
grains (SAFSSG) in
specimens 1–3
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Fig. 11 Comparison of number of cycles to crack nucleation for different volume fraction (VF) of
hard grains with surface area fraction of surrounding soft grains (SAFSSG) between 0.9 and 1

fatigue simulations and experiments for specimens 1 and 2. A comparison of cycles
to crack nucleation for different volume fraction (VF) of hard grains with increasing
surface area fraction SAFSSG between 0.9 and 1 is shown in Fig. 11.

5.2 Sensitivity of Crack Nucleation to Characteristics
of Applied Loading

Specimen 3 is subjected to four different loading cases for this sensitivity study,
viz.:

• Case A: �max D 894MPa, �r D 0, Tload D Tunload D 1 s and Thold D 120 s
• Case B: �max D 847MPa, �r D 0, Tload D Tunload D 1 s and Thold D 120 s
• Case C: �max D 894MPa, �r D 0, Tload D Tunload D 61 s and Thold D 0 s
• Case D: �max D 894MPa, �r D 0, Tload D Tunload D 1 s and Thold D 0 s

The maximum applied stress �max is 95% of yield strength for cases A, C, and
D, while it is 90% for case B. Dwell load with 2 min hold is applied in cases A
and B. Triangular loading with time periods T D 122 s and T D 2 s are respectively
applied for cases C and D. The WATMUS method is used to perform cyclic CPFEM
simulations and the crack nucleation parameter R˛ is evaluated at nodes on the grain
boundaries. Within a cycle, R˛ is evaluated at the beginning of unloading. This
corresponds to � D 121 s for cases A and B, � D 61 s for case C and � D 1 s
for case D. The evolution of R˛ at the node, where crack nucleation is predicted, is
shown in Fig. 12. The predicted number of cycles to crack nucleation based on the
calibrated Rc values are summarized in Table 3. The microstructure has a shorter life
when subjected to dwell loading cases A and B in comparison with normal cyclic
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Fig. 12 Evolution of R˛ with cycles at the predicted crack nucleation site for specimen 3, under
four different fatigue loading cases described in Sect. 5.2

Table 3 Comparison of
number of cycles to crack
nucleation in specimen 3 for
different cyclic loadings

Cycles to crack nucleation

Case no. 80 % of life 85 % of life

A 167 177

B 2945 3172

C 9191 9734

D 51,997 55,195

loading cases C and D. For the latter cases, a decrease in loading frequency reduces
life. The number of cycles to crack nucleation for dwell case A and normal fatigue
case D at 95 % of yield strength shows the same trend as observed experimentally
in [2, 17].

In every dwell cycle, the microstructure is held at the maximum stress level
for a longer period of time than in the normal cyclic loading. This results in a
larger inelastic deformation and strain accumulation in the microstructure within
each dwell cycle. Stress concentration and micro-crack growth at the hard soft
grain interface are more pronounced in every cycle for the dwell loading. This
explains the reduction in life to crack nucleation under dwell load of case A when
compared to normal cyclic load of case D. A reduction in the maximum applied
stress in dwell loading for case B reduces the cyclic strain accumulation and the
accompanying stress rise. Consequently, it shows a longer life than case A. When the
frequency of normal cyclic loading is reduced in case C, ramping to the maximum
applied stress in every cycle happens slowly. This results in increased plastic strain
accumulation and stress rise, compared to the higher frequency case D. Thus,
frequency reduction for the same maximum stress level decreases the nucleation
life of the microstructure.
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The number of cycles to crack nucleation for specimen 3 for different hold,
loading, and unloading times in dwell cyclic loading are also compared. The applied
stress levels are kept at �max D 894MPa and �min D 0MPa, while the total period
of loading is T D 122 s. The WATMUS based CPFEM simulations are performed
for three different cases, viz.:

• Case E: Tload D Tunload D 16 s and Thold D 90 s
• Case F: Tload D Tunload D 31 s and Thold D 60 s
• Case G: Tload D Tunload D 46 s and Thold D 30 s

The number of cycles to nucleate a crack is evaluated and the nodal R˛ at the
predicted crack nucleation site is evaluated at � D 106 s, 91 s, and 76 s, respectively
within the cyclic increments. The number of cycles to crack nucleation for cases E,
F and G are summarized in Table 4. A comparison of the number of cycles to crack
nucleation for different hold times is shown in Fig. 13.

Table 4 Number of cycles to
crack nucleation in specimen
3 for dwell cyclic load with
different hold times

Cycles to crack nucleation

Case no. 80 % of life 85% of life

E 247 261

F 364 394

G 690 755

Fig. 13 Number of cycles to crack nucleation in specimen 3 for different hold times
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6 Conclusion

This chapter investigates the effects of critical morphological and crystallographic
characteristics of the microstructure and loading conditions on grain-level crack
nucleation in polycrystalline Ti-6242 microstructures. Crystal plasticity FEM sim-
ulations of statistically equivalent microstructures, in conjunction with a physically
motivated crack nucleation model, are used to provide a mechanistic approach
towards predicting this behavior. A non-local crack nucleation model in terms of
the local stresses near the hard grain boundary and the piled-up dislocations in the
adjacent soft grain is implemented to predict nucleation in the hard grain. Crack
nucleates when a parameter R at any node on hard soft grain interfaces exceeds a
critical value Rc for the material. A necessary ingredient of cyclic simulations is
the wavelet transformation induced multi-time scaling or WATMUS algorithm for
accelerated cyclic CPFEM simulations.

Crack nucleation studies are performed for cyclic loads with the maximum
applied stress levels at 90–95 % of the macroscopic yield strength. To understand
the effect of microstructural characteristics on the fatigue crack nucleation behavior,
the dependence of yield strength on the underlying grain orientations and sizes is
developed through the introduction of an effective microstructural parameter Plastic
Flow Index or PFI. The PFI distribution is found to provide a good measure of
the yield strength for a microstructure. However, this distribution is not suitable
to undermine the effects of the microstructure on crack nucleation, since it is
a local event. Hence a local microstructural variable is defined in terms of the
neighborhood of the hard grains. Specifically the surface area fraction of soft grains
surrounding each hard grain or SAFSSG is used to establish the microstructural
sensitivity of cycles to crack nucleation. The WATMUS-based CPFEM simulations
of three representative microstructures are performed under cyclic dwell loading and
the cycles to crack nucleation are predicted. The results confirm the effectiveness
of the SAFSSG in capturing the influence of microstructure on cycles to crack
nucleation. Furthermore, simulations with different cyclic load patterns suggest that
fatigue crack nucleation in Ti-6242 strongly depends on the dwell cycle hold time
at maximum stress. This is in compliance with experimental observations.
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Advances in Multiscale Modeling of Granular
Materials

Xikui Li, Yuanbo Liang, Youyao Du, and Bernhard Schrefler

Abstract The paper reports recent advances in multiscale modeling of granular
materials, particularly in the second-order computational homogenization method
and corresponding global–local mixed FEM-DEM nested analysis scheme. The
gradient Cosserat continuum and the classical Cosserat continuum are assumed for
modelling granular media at the macro- and meso- scales, respectively. According
to the generalized Hill’s lemma formulated for the adopted meso-macro contin-
uum modeling the non-uniform macroscopic strain field with macroscopic strain
gradients is downscaled to each representative volume element (RVE), while
satisfaction of the generalized Hill–Mandel condition is ensured. The advantage of
the gradient Cosserat continuum model in capturing the meso-structural size effect
and the performance of the proposed second-order computational homogenization
in the simulation of strain softening and localization phenomena are demonstrated,
without need to specify macroscopic phenomenological constitutive relationship
and material failure model.

1 Introduction

Granular materials are highly heterogeneous and discontinuous media at the grain
scale. Multiscale methods have been proposed to bridge their two distinct scales
ranging from particle scale to continuum scale. The main objective of these methods
is to construct a continuum-based constitutive model in terms of properties and
responses of the meso-structure of granular materials assigned to the material point,
without resorting to macroscopic phenomenological constitutive model [1–6].
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Equivalent material properties of heterogeneous media, which are modelled as
elastic Cauchy or Cosserat continua at the macro-scale, have been obtained as
results of analytical or semi-analytical homogenization techniques [7–11]. When
significant meso-structural evolution in the granular material develops, severe
dissipative sliding and rolling frictions and loss of contacts among immediate
neighboring particles occur and the irreversible energy dissipation of effective
continuum, such as damage-plastic one, is to be taken into account [12, 13]. Then
computational multiscale approaches [14–23] should be adopted to establish the
meso-mechanically informed non-linear macroscopic constitutive relationships.

One promising method among computational multiscale approaches is the
computational homogenization approach (the global–local nested analysis scheme)
[21–26] under the category of concurrent methods [14]. The approach enables
incorporating large deformations and upscaling nonlinear material behaviors of
well-characterized meso-structure evolving with the load history, while not requir-
ing the macroscopic constitutive relationship to be specified a priori at selected
macroscopic points.

In the frame of computational homogenization, granular material is homogenized
with the Cosserat continuum rather than the Cauchy continuum due to the nature of
the granular medium as a discrete particle assembly at the meso-scale [1–5, 23,
27–29]. Although a high-order continuum structure is introduced into the classical
Cosserat continuum, the admissible meso-scale boundary conditions derived from
the generalized Hill’s lemma [30] are still prescribed by a uniform macroscopic
strain field attributed to each RVE if the classical Cosserat continuum is assumed
for both the macro-scale and all RVEs in the macro-meso homogenization [31, 23].
It implies that the macroscopic strain field scaled down to each RVE is restricted
to be uniform, and no high-order modes such as bending deformation modes of the
RVE due to gradients of the macroscopic strain field over the spatial length scale
associated to the RVE size can be represented. The macroscopic energy product may
be incorrectly predicted due to the absence of the high-order deformation modes
in a homogenization procedure using the classical Cosserat continuum model at
the macroscopic level. Indeed, the rationality of the uniform macroscopic strain
field attributed to each RVE relies on the concept of separation of scales. The
uniformity assumption is not appropriate in critical regions of high strain gradients.
As a consequence, the first-order computational homogenization methods are not
suited for the analysis of strain localization. It is remarked that satisfaction of the
generalized Hill–Mandel condition in the homogenization is ensured if and only
if the meso-scale boundary conditions attributed to each meso-structural RVE are
enforced by the macroscopic strain (or stress) field so that the boundary integrals at
the right-hand side of the corresponding Hill’s lemma equal null.

To remedy the defects of the first-order homogenization scheme mentioned
above it is required to develop the second-order computational homogenization
for granular materials, in which the gradient Cosserat continuum model and the
classical Cosserat continuum model are adopted for both the macro-scale and
all RVEs, respectively [32]. The inclusion of gradients would also introduce an
internal length scale [33, 34] which is effective for localization analysis in all
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situations. According to the generalized Hill’s lemma derived for the second-
order computational homogenization the non-uniform macroscopic strain field with
macroscopic strain gradients may be transferred to each RVE, while satisfaction
of the generalized Hill–Mandel condition is ensured. The macroscopic strain field
is no longer restricted to be uniform over the spatial length scale associated to
the RVE size, and the high-order (bending) deformation modes of the RVE may
be represented. Consequently, the second-order computational homogenization is
appropriate in critical regions of high strain gradients.

To formulate the generalized Hill’s lemma each RVE is modelled as a classical
Cosserat continuum. On the other hand, the RVE is also modelled as a discrete
particle assembly for a detailed description of the RVE meso-structure and its evolu-
tions. Equivalence between the discrete particle assembly and the classical Cosserat
continuum at the RVE scale was established by Chang and Kuhn [2] in the sense of
the equivalence between the virtual work of the discrete system and the virtual work
of the classical Cosserat continuum approximately restricted to continuous virtual
displacement fields with a polynomial series containing quadratic terms.

With this equivalence the non-uniform macroscopic strain field derived from the
generalized Hill’s lemma is imposed to deform the peripheral particles of the RVE of
discrete particle assembly. The second-order computational homogenization method
and the global–local FEM-DEM nested analysis scheme for granular material are
developed as in [35, 36]. In the method the material is modelled as a gradient
Cosserat continuum using the mixed FEM [36] and a discrete particle assembly
using the DEM [37, 38] at the macro- and meso-scales, respectively.

A key issue in the development of the FEM-DEM nested analysis scheme
is to construct a displacement-based finite element (FE) attaining C1-continuity
of the interpolation of displacement for the gradient Cosserat continuum, or
alternatively, a mixed FE based on the Hu-Washizu generalized variational principle
to circumvent the C1-continuity requirement [36]. A potential promising approach
to numerically perform the boundary value problem (BVP) of the gradient Cosserat
continuum is the element-free Galerkin (EFG) method with high-order interpolation
approximations, and keeping at the same time high computational efficiency and
accuracy [39].

The BVP for the RVE of discrete particle assembly is well determined and
performed by the DEM. The meso-mechanical behavior is then identified with
the DEM solutions for the BVP of the RVE, in which the discontinuity (loss and
re-generation of contacts) and dissipative inter-particle movement involved at the
meso-scale and their evolutions with respect to the loading history are taken into
account.

To develop the second-order computational homogenization for granular mate-
rial, downscaling and upscaling rules to perform the two-way coupling should
be specified. The downscaling determines the meso-scale BVP of the RVE in
light of the Hill’s lemma. On the other hand, the upscaling transits back the
meso-mechanically informed macroscopic stress variables and rate stress–strain
constitutive equations to the macro-scale from volume average of DEM solutions
for the BVP of the RVE at each incremental load step.
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2 Gradient Cosserat Continuum Model

The independent kinematic degrees of freedom in Cosserat continuum are the
displacement ui and microrotation !i [40]. In addition to the strain variables "ji

and � ji defined by

"ji D ui;j � ekji!k; �ji D !i;j (1)

the strain gradient Eljk is defined in the gradient-enhanced Cosserat continuum
model and can be decomposed into two parts, expressed as

Eljk D @"jk

@xl
D uk;jl � eijk!i;l D OEljk C LEljk (2)

Accordingly, in addition to independent classical Cauchy stress � ji and couple stress
�ji, the stress moment †ljk is introduced and decomposed into symmetric part O†ljk

and skew-symmetric part Q†ljk

†ljk D O†ljk C Q†ljk (3)

The equilibrium equations for the gradient Cosserat continuum are

�
�ji �†kji;k

�
;j

D bf
i ; �ji;j C eijk

�
�jk �†ljk;l

� D bm
i (4)

Equilibrium on the surface of the body gives

ti D �
�ji �†kji;k

�
nj; mi D �

�ji � eilk†jlk
�

nj; gji D †kjink (5)

where ti, mi, and gji are the surface traction, the surface couple, and the surface
high-order traction, nj is the unit vector normal to the surface. Due to the existence
of curved surfaces, ti and gji are replaced by the generalized surface traction t*

i and
the double stress traction ri on the surface given by

t�i D ti C nknj†kji
�
Dpnp

� � Dj
�
nk†kji

�
; ri D nknj†kji (6)

with Dj D �
ıji � njni

�
@
@xi
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3 Generalized Hill’s Lemma and RVE Boundary Conditions:
Downscaling

The derived generalized Hill’s lemma for the second-order computational homoge-
nization of the gradient Cosserat continuum is written as

�ji"ji C �ji�ji � � ji"ji � �ji� ji �†ljiElji

D 1
V

�
Sr

.nk�ki � nk� ki/
�
ui � ui;jxj � 1

2
ui;jlxjxl

�
dSr

C 1
V

�
Sr

.nk�ki � nk�ki/ .!i � !i � ! i;lxl/ dSr

(7)

where xj(xl) are the coordinates of a point on the boundary Sr of the RVE with
the volume V, �ji"ji and �ji�ji are defined as volume averages of the meso-scopic
products � ji"ji and �ji� ji over the RVE, respectively.

The Hill–Mandel energy condition for the gradient Cosserat continuum can be
directly extracted from the Hill’s lemma (7) and given in the form

�ji"ji C �ji�ji D � ji"ji C �ji�ji C†ljiElji (8)

provided that the RVE boundary conditions are prescribed so that the following two
boundary integrals for the RVE are enforced to vanish

1

V

�
Sr

.nk�ki � nk�ki/

�
ui � ui;jxj � 1

2
ui;jlxjxl

	
dSr D 0 (9)

1

V

�
Sr

.nk�ki � nk�ki/ .!i � !i � ! i;lxl/ dSr D 0 (10)

To solve the RVE boundary value problem for average stress variables and to
derive the meso-mechanically informed macroscopic constitutive equations, the
displacement boundary conditions at the RVE are prescribed as

uijSr
D ui;jxj C 1

2
ui;jlxjxl; !ijSr

D !i C !i;lxl (11)

4 Meso-Mechanically Informed Macroscopic Stress
Variables and Constitutive Model: Upscaling

The Hill–Mandel condition (8) can be re-written in two forms:

�ji"ji C �ji�ji D � ji� ji C Tk!k C �0ji�ji C O†jlkEjlk (12)

�ji"ji C �ji�ji D � ji� ji C Tk!k C ��
ji� ji C O†jlk

OEjlk (13)
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where the macro internal torque Tk and derivatives of translational displacements
� ji are defined as

Tk D �ekji� ji; � ji D 1

V

�
V

ui;jdV (14)

and the generalized couple stresses are defined as

�0ji D �ji � eikl
Q†jkl; ��

ji D �0ji � eikl
O†jkl D �ji � eikl†jkl (15)

The boldfaced forms of macroscopic stress measures � ji;Tk;
O†jkl; �

0
ji; �

�
ji can be

expressed below in the form of boundary integrals along the RVE boundary. With
the equivalence between the classical Cosserat and the discrete particle assembly at
the RVE scale [2], those boundary integrals are discretized into discrete quantities
assigned at the Nc contact points of the peripheral particles of the particle assembly
with the RVE boundary, i.e.,

¢ D 1

V

�
Sr

x ˝ tdS D 1

V

NcX

iD1
xc

i ˝ tc
i�Sr;i D 1

V

NcX

iD1
xc

i ˝ fc
i (16)

O
† D 1

2V

�
Sr

x ˝ x ˝ tdS D 1

2V

NcX

iD1
xc

i ˝ xc
i ˝ fc

i (17)

�0 D 1

V

�
Sr

x ˝ mdS C 1

2V

�
Sr

x ˝ x ˝ tdS W e

D 1

V

NcX

iD1
xc

i ˝ mext
i C 1

2V

NcX

iD1
xc

i ˝ xc
i ˝ fc

i W e
(18)

�� D 1

V

NcX

iD1
xc

i ˝ mext
i ; T D �e W ¢ D � 1

V
e W

NcX

iD1
xc

i ˝ fc
i (19)

where xc
i , tc

i , and mc
i are the position vector, surface traction, and couple vectors,

respectively, defined at the ith contact point of peripheral particles with the outside
material, fc

i and mext
i are the traction force and couple moment applied to the

peripheral particle via the ith contact point by the outside material, respectively,
�Sr,i is the length of the boundary segment associated with the ith contact point,
and e is the boldfaced form of the third-order permutation tensor ekji.
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The discrete counterpart of the boundary conditions given by Eq. (11), which are
prescribed on the Nc peripheral particles through their contacting points with the
RVE boundary, can be written in the rate form for a typical contacting point b as

Puc
b D xc

b � P
� C 1

2

�
xc

b ˝ xc
b

� W POE; P̈ b D P̈ C xc
b � P› (20)

where P
� ;

POE; P̈ ; P› are boldfaced forms of P� ji;
POElji
�Pui;jl

�
; P!i; P� ji

� P! i;j

�
, respectively,

Puc
b is the rate translational displacement of the contact point with the position xc

b of
peripheral particle xb, and P̈ b is the microrotation rate of the peripheral particle b
contacting with the RVE boundary.

Equations (11) and (20) transfer the macroscopic strain measures and their
gradients down to each RVE via its boundary in the downscaling process. The
DEM solver is used to solve for the BVP of the discrete particle assembly within
each meso-structural RVE. The non-linear meso-mechanical behavior of the well-
determinate meso-structure is identified with the DEM solutions for the BVP of the
RVE, in which the discontinuity and dissipative relative movements between each
two immediate neighboring particles at the meso-scale are taken into account.

The upscale transition for the macroscopic stress measures is fulfilled by Eqs.
(16)–(19). With the transformation of the RVE boundary conditions from the
contact points of the peripheral particles on the RVE boundary to their centers,
substitution of RVE boundary conditions Eq. (20) into the rate forms of Eqs. (16)–
(19) results in meso-mechanically informed macroscopic constitutive relationships
for the gradient-enhanced Cosserat continuum of granular materials as follows:

P¢ D D¢� W P
� C D¢¨ � P̈ C D¢ OE

:::
POE C D¢› W P› (21)

PT D DT� W P
� C DT¨ � P̈ C DT OE

:::
POE C DT› W P› (22)

PO† D D O†� W P
� C D O†¨ � P̈ C D O† OE

:::
POE C D O†› W P› (23)

P�0 D D�� W P
� C D�¨ � P̈ C D� OE

:::
POE C D�› W P› (24)

The 16 meso-mechanically informed macroscopic tangent modular tensors shown in
Eqs. (21)–(24) and their dependence on the meso-structure of the RVE of discrete
particle assembly and its evolution are formulated in [35] and not be given here
owing to the limitation of space.
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5 Numerical Results

An advantage of the second-order computational homogenization approach over
the first-order one is the capability of taking into account the absolute size of the
meso-structure and subsequently exhibiting the meso-structural size effects. The
capability is particularly demonstrated via an example composed of a set of RVEs
with the same meso-structure. Each RVE consists of 40 uniform round particles
collocated with the same regular pattern but different absolute sizes. The material
parameters for the round particles are listed in [36]. The four terms on the right side
of Eq. (13) are divided into two parts denoted by J1 D � ji � ji C Tk !k C ��

ji� ji and

J2 D O†kji
OEkji. They are used as indices for the low- and high-order energy densities

of the RVE respectively, in the gradient Cosserat continuum. Figure 1 plots J1 and
J2 of the RVE versus the radius of the particle obtained by the first-order and the
proposed second-order homogenization schemes as the RVEs are subjected to a
varying macroscopic strain gradient.

The square panel shown in Fig. 2a is subjected to uniaxial compression between
two rigid plates. The compression is applied by a vertical prescribed displacement
control. From the symmetry condition, which holds because gravity forces are
neglected, the calculation is performed for only one fourth of the panel of size
L � L(L D 30 m). The panel is discretized by the regular 20 � 20 mixed FE
mesh. The RVEs assigned at all integrating points of the FE mesh are initially
morphologically identical with the same regular meso-structure. To investigate the
influence of the RVE size on the macroscopic mechanical behaviors, the example
is performed by using the three different samples of RVE. The three samples of
RVE are assumed to have the same meso-structure but different RVE sizes. Each
sample of RVE possesses the square shape of the effective Cosserat continuum with
size l � l and consists of nr uniform round discrete particles of radius r D 0:02m
collocated with the same regular pattern. The three samples of RVE used in the
example are: RVE24: l D 0:2097m nr D 24I RVE40: l D 0:2663m nr D 40I
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Fig. 1 Energy products versus the particle radius of the RVEs subjected to different macro-strain
gradients: (a) J1; (b) J2
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Fig. 2 Compression problem of a square panel. (a) Sizes and the vertical load applied by two
rigid plates; (b) Load–displacement curves using the same 20 � 20 regular element mesh for three
samples of RVE with the same meso-structure but different RVE sizes

RVE60: l D 0:3228m nr D 60. The material parameters for the round particles
are listed in [36]. The load–displacement curves obtained for the three samples
of RVE are plotted in Fig. 2b. It demonstrates the performance of the second-
order computational homogenization method and corresponding global–local mixed
FEM-DEM nested analysis scheme in the simulation of strain softening, without any
need to specify the macroscopic phenomenological constitutive relationship and
material failure model. In addition, the influence of the window size of RVE on
macroscopic mechanical behaviors of the panel, i.e., on the load-carrying capability
and the softening behavior is also observed.

6 Concluding Remarks

1. In the frame of computational homogenization granular medium should be
modeled as Cosserat continuum instead of Cauchy continuum at the macro-scale
due to its nature as a discrete particle assembly at the meso-scale.

2. To be suitable for the localization problem, the RVE boundary condition in com-
putational homogenization should be prescribed by non-uniform macroscopic
strain field with macroscopic strain gradients.

3. To downscale the non-uniform macroscopic strain field with macroscopic strain
gradients to each RVE the second-order computational homogenization with
gradient-enhanced macroscopic continuum model should be adopted.
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Tensor-Valued Random Fields in Continuum
Physics

Anatoliy Malyarenko and Martin Ostoja-Starzewski

Abstract This article reports progress on homogeneous isotropic tensor ran-
dom fields (TRFs) for continuum mechanics. The basic thrust is on determining
most general representations of the correlation functions as well as their spectral
expansions. Once this is accomplished, the second step is finding the restric-
tions dictated by a particular physical application. Thus, in the case of fields of
material properties (like conductivity and stiffness), the restriction resides in the
positive-definiteness, whereby a connection to experiments and/or computational
micromechanics can be established. On the other hand, in the case of fields of
dependent properties (e.g., stress, strain and displacement), restrictions are due to
the respective field equations.

1 Introduction

Many fields arising in continuum physics take values in linear spaces of tensors
overR3, the three-dimensional Euclidean space. For example, the heat flux and fluid
velocity fields take values in the space of rank 1 tensors, whereas the stress, strain,
rotation, and curvature-torsion fields take values in the space of rank 2 tensors.
These are examples of dependent quantities as opposed to those of constitutive
response which are typically independent of the loading: thermal conductivity,
piezoelectricity, stiffness, viscosity. . . , which are either rank 2 or higher. Given the
(nearly) ever present randomness of continuum physical phenomena, all of these
fields are tensors of random nature. Thus, stochastic continuum physics involves
tensor random fields (TRFs). While the mathematics of scalar RFs is very advanced,
the tensor case poses many challenges. In the first place, a researcher in stochastic
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mechanics needs a more explicit way of representing and generating vector and
TRFs, and, secondly, (s)he needs to consider restrictions imposed by the actual
physics on any such field. The principal restrictions stem from the field equations in
the case of dependent TRFs and the non-negativeness of energy density and entropy
production in the case of independent TRFs.

As background, the theories of first rank TRFs (i.e., vector RFs), date back to
turbulence (von Kármán and Horwath [15]; Robertson [11]; Batchelor [1]; Monin
and Yaglom [8]), and cosmology (Malyarenko [4]). It is by extending these vector
RFs, that some advances were made in theories of second rank TRFs (Lomakin
[2, 3]; Shermergor [12]). However, the subject of higher rank TRFs has been touched
only in a few restricted settings. In this paper we review our recent work on rank 1,
2, and 4 TRFs, all in the context of wide-sense homogeneous fields, with particular
focus on isotropic correlation functions having generally anisotropic realizations.
The key role is played here by the theory of invariants and the O.n/ group theory.

2 Representations of Rank 1 and Rank 2 TRFs

We begin with V , a finite-dimensional real Hilbert space with norm k � k. Then,
we let T.x/, x 2 R

3 be a random field taking values in (a subset of) V: there is a
probability space .˝;F ;P/, and T is a function of two variables

T.x; !/ W E �˝ ! V;

such that for any fixed x0 2 E the function T.x0; !/ W ˝ ! V is measurable. We
assume that EŒkT.x/k2� < 1 and T.x/ is mean-square continuous, i.e.

lim
kx�x0k!0

EŒkT.x/ � T.x0/k2� D 0 8x0 2 R
3:

Next, we let E.x/ D EŒT.x/� be the expectation of the field and let B.x; y/ D
EŒT.x/˝ T.y/� be the two-point correlation function of the random field T.x/. The
groupR3 acts on itself by translations. Assume that the above functions are invariant
with respect to this action, i.e., for all x, y, z 2 R

3,

E.x C z/ D E.x/;
B.x C z; y C z/ D B.x; y/:

8x; y; z 2 R
3:

It follows that E.x/ D E 2 V is constant, while B.x; y/ 2 V ˝ V depends only on
the difference x � y.
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Let K D O.3/ be the group of rotations and reflections in R
3, and let .V; �/ be

an orthogonal representation of K. Suppose that for all k 2 K and for all x 2 R
3 we

have

E.kx/ D �.k/E.x/;
B.kx/ D �.k/B.x/��1.k/:

Our first objective is to find a general form for the expectation and two-point
correlation function of such a field. We now consider two particular cases.

2.1 Rank 1 TRF

V has dimension 3, �.k/ D k. Then �.k/ D k, E.x/ D 0 and

Bij.x; y/ WD Ef ŒTi.x/� hTi.x/i�


Tj.y/� ˝

Tj.x/
˛�g

is represented in terms of two continuous functions K0, K2 W Œ0;1/ ! R with
K2.0/ D 0, such that

Bij.x/ D ıijK0.kxk/C xixjK2.kxk/: (1)

This representation has been known since the classical paper by Robertson [11],
where it was proved using the invariants. This line of research goes back to Sir
Geoffrey Ingram Taylor [14].

2.2 Rank 2 TRF

V is the space of all symmetric second-rank tensors over R3, and the representation
is �.k/T D kTk�1. Then Eij.x/ D Cıij with C 2 R. Using the theory of invariants
(see, e.g., Spencer [13]), Lomakin [2] proved that

Bijlm.x; y/ WD Ef 
Tij.x/� ˝
Tij.x/

˛�
ŒTlm.y/� hTlm.x/i�g

is represented in terms of five continuous functions K1, . . . , K5 W Œ0;1/ ! R with
K3.0/ D K4.0/ D K5.0/ D 0, such that

Bij`m.x/ D
5X

nD1
Ln

ij`m.x/Kn.kxk/: (2)
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Here

L1ij`m.x/ D ıijı`m;

L2ij`m.x/ D ıi`ıjm C ıimıjl;

L3ij`m.x/ D xjx`
kxk2 ıim C xixm

kxk2 ıj` C xix`
kxk2 ıjm C xjxm

kxk2 ıi`;

L4ij`m.x/ D xixj

kxk2 ı`m C x`xm

kxk2 ıij;

L5ij`m.x/ D xixjx`xm

kxk4 :

(3)

Malyarenko and Ostoja-Starzewski [7] found five functions M1
ij`m.x/ such that

M1
ij`m.x/ D 1

3
L1ij`m.x/;

M2
ij`m.x/ D � 1

3
p
5

L1ij`m.x/C 1

2
p
5

L2ij`m.x/;

M3
ij`m.x/ D �1

3
L1ij`m.x/C 1

2
L4ij`m.x/;

M4
ij`m.x/ D 2

p
2

3
p
7

L1ij`m.x/� 1p
14

L2ij`m.x/C 3

2
p
14

L3ij`m.x/�
p
2p
7

L4ij`m.x/;

M5
ij`m.x/ D 1

2
p
70

L1ij`m.x/C 1

2
p
70

L2ij`m.x/�
p
5

2
p
14

L3ij`m.x/

�
p
5

2
p
14

L4ij`m.x/C
p
35

2
p
2

L5ij`m.x/:

(4)

and the representation

Bij`m.x/ D
5X

nD1
Mn

ij`m.x/Kn.kxk/: (5)

It has been proved in the aforementioned reference that the representation (5) is
equivalent to (2), according to the transformation (4).

Note: On the one hand, Lomakin’s functions (3) are simpler than functions (4).
On the other hand, (3) lead to spectral expansions (Malyarenko and Ostoja-
Starzewski, [6]) of tensor-valued homogeneous and isotropic random fields similar
to those in Yaglom [16].

Note: Given that T has diagonal and off-diagonal components, there are five
special cases of Bijkl which shed light on the physical meaning of Kn’s:

1. EŒTij.0/Tkl.x/�jiDjDkDl; i.e. auto-correlations of diagonal terms:

EŒT11.0/T11.x/� D K1 C 2K2 C 2x21K3 C 4x21K4 C x41K5 (6)
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and then EŒT22.0/T22.x/� and EŒT33.0/T33.x/� by cyclic permutations 1 ! 2

! 3.
2. EŒTij.0/Tkl.x/�jiDj¤kDl; i.e. cross-correlations of diagonal terms:

EŒT11.0/T22.x/� D K1 C �
x22 C x21

�
K3 C x22x

2
1K5 (7)

and then EŒT22.0/T33.x/� and EŒT33.0/T11.x/� by cyclic permutations 1 ! 2

! 3.
3. EŒTij.0/Tkl.x/�jiDk¤jDl; i.e. auto-correlations of off-diagonal terms:

EŒT12.0/T12.x/� D K2 C �
x21 C x22

�
K4 C x21x

2
2K5 (8)

and then EŒT23.0/T23.x/� and EŒT31.0/T31.x/� by cyclic permutations 1 ! 2

! 3.
4. EŒTij.0/Tkl.x/�jj¤iDk¤l¤j; i.e. cross-correlations of off-diagonal terms:

EŒT12.0/T13.x/� D x2x3K4 C x21x2x3K5 (9)

and then EŒT13.0/T32.x/� and EŒT32.0/T12.x/� by cyclic permutations 1 ! 2

! 3.
5. EŒTij.0/Tkl.x/�jiDjDk¤l¤j; i.e. cross-correlations of diagonal with off-diagonal

terms: such as

EŒT11.0/T12.x/� D x1x2 .K3 C 2K4/C x1x
3
2K5 (10)

and

EŒT12.0/T13.x/� D x2x3K3 C x21x2x3K5 (11)

and the other ones by cyclic permutations 1 ! 2 ! 3.

In principle, we can determine these five correlations for a specific phys-
ical situation. For example, when T is the anti-plane elasticity tensor for a
given resolution (or mesoscale), we can use micromechanics or experiments
(Ostoja-Starzewski [9]), and then determine the best fits of Kn (n D 1; : : : ; 5)
coefficients.
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3 Spectral Expansions of Homogeneous and Isotropic TRFs

In a line of research different from that introduced above, Yaglom [16] proved that
the correlation tensor (1) has the following spectral expansion:

Rij.�/ D
Z 1

0

�
j1.	�/

	�
ıij � j2.	�/

�i�j

�2


d˚1.	/

C
Z 1

0

��
j0.	�/ � j1.	�/

	�

	
ıij C j2.	�/

�i�j

�2


d˚2.	/; (12)

where ˚1 and ˚2 are two finite measures on Œ0;1/ with ˚1.f0g/ D ˚2.f0g/ and
where ji.t/ are spherical Bessel functions. In particular, Robertson’s functions A.�/
and B.�/ [i.e., our K0 and K1 in (1)] have the form

A.�/ D 1
�2

�R1
0

j2.	�/ d˚2.	/ � R1
0

j1.	�/ d˚1.	/
�
;

B.�/ D R1
0

j1.	�/
	�

d˚1.	/C R1
0

�
j0.	�/ � j1.	�/

	�

�
d˚2.	/:

In [6] we have established spectral expansions of homogeneous and isotropic
random fields taking values in the three-dimensional Euclidean space R

3 and in
the space S2.R3/ of symmetric rank 2 tensors over R3, whereby we found a link
between the theory of random fields and the theory of finite-dimensional convex
compacta.

4 The Spectral Expansion of the Elasticity Random Field

Here we consider planar classical elasticity. Let E D R
2 be a two -dimensional

Euclidean space with an inner product .�; �/ (the space domain). The Hooke law in
the theory of elasticity says that �.x/ D H.x/".x/, where �.x/ is the stress tensor of
a deformable body, ".x/ its strain tensor, and where H.x/ is a symmetric linear
operator on the space S2.E/ of the symmetric rank 2 tensors over E called the
elasticity (or stiffness) tensor. It is taken as a random field: there is a probability
space .˝;F ;P/, and H is a function of two variables

H.x; !/ W E �˝ ! S2.S2.E//;

such that for any fixed x0 2 E the function H.x0; !/ W ˝ ! S2.S2.E// is
measurable. In [5] we have reported two results:

1. The expected value of the elasticity random field H.x/ is

Eij`m.x/ D C1ıijı`m C C2.ıi`ıjm C ıimıj`/; C1;C2 2 R;
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where C1 and C2 are recognized as the Lamé constants 	 and �, respectively. The
correlation tensor of the above field has the form

Ri���m0.�; 'r/ D
2X

tD1

Z 1

0

4X

nD0
i2nJ2n.	�/

m2nX

qD1
N2n;q;t.	/M

2n;q
i���m0

.'r/ d˚t.	/;

where ˚1 and ˚2 are two finite measures on Œ0;1/ satisfying the condition

˚1.f0g/ � 2˚2.f0g/:

Here J2n.	�/ are the Bessel function of the first kind of order 2n, m0 D 5, m2 D
m4 D 3, m6 D M8 D 1, N2n;q;t.	/ (0 � n � 4, 1 � q � m2n, t D 1, 2) are the
functions given in Table 2 in [5], and M2n;q

i���m0
.'r/ are tensor-valued functions similar

to (4).

2. The elasticity random field H.x/ has the spectral expansion

Hij`m.�; 'r/ D C1ıijı`m C C2.ıi`ıjm C ıimıj`/

CP4
nD0

Pm2n
qD1

P1
sD0

P2
tD1

�R1
0

p
N2n;q;t.	/Js.	�/ sin.2s'r/ dZnqst�

ij`m .	/

C R1
0

p
N2n;q;t.	/Js.	�/ cos.2s'r/ dZnqstC

ij`m .	/
�
;

(13)

where the centred scattered random measures Znqst˙
ij`m are defined by

Znqst˙
ij`m .A/ D

X

.i0j0`0m0n0q0s0˙0/�.ij`mnqs˙/
.Lt/

i0 j0`0m0n0q0s0˙0

ij`mnqs˙ Wnqst˙
ij`m .A/;

where Wnqst˙
ij`m is the sequence of uncorrelated scattered random measures with ˚t

as their control measures, i.e.,

EŒWnqst˙
ij`m .A/Wnqst˙

ij`m .B/� D ˚t.A \ B/:

5 TRFs Dependent Fields

5.1 Fourier Conductivity

5.1.1 Correlation of Heat Flux TRF

Consider a thermal conductivity problem in 3d: q D �K � rT, where the tempera-
ture T is a scalar, q D qiei is the heat flux, K D Kijeiej is the thermal conductivity,
with i; j D 1; 2; 3; ei and ej are the unit vectors. Denoting the random fluctuation
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about the statistical mean by q0i .r/ D qi.r/ � E Œqi.r/�, the correlation function of
heat flux field is

Sj
i.r/ WD E



q0i .r C r1/q0j .r1/

�
:

For an isotropic field, on account of the equilibrium condition in steady-state heat
conduction

r � q D 0 .qi;i D 0/ ;

and the representation (1) written as A.r/ninj CB.r/ıij (i.e. A D K2=r2 and B D K1),
we find

0 D @Sj
i.r/
@�i

D @A.r/

@�i
�i�j C A.r/

@�i

@�i
�j C A.r/�i

@�j

@�i
C @B.r/

@�i
ıij

D A0.r/
�i

r
�i�j C A.r/ıii�j C A.r/�iıij C B0.r/

�i

r
ıij;

where the prime denotes d=dr. This implies in 2d

A0.r/r C 3A.r/C B0=r D 0; (14)

and in 3d

A0.r/r C 4A.r/C B0=r D 0: (15)

Recalling the continuity equation vi;i D 0 in incompressible 3d flows, (15) agrees
with Eq. (3.4.2) in Batchelor [1] for the correlation of velocity field. As briefly
reviewed below, analogous constraints can be determined for correlation functions
in several other TRF problems [10, 12].

5.1.2 Correlation of Temperature Gradient TRF

Denoting by T0;i .r/ D T;i .r/ � E ŒT;i .r/� the random fluctuation of temperature
gradient about its mean E ŒT;i .r/�, we have

Ej
i;k .r/ D E



T0;i .r C r1/T0;j .r1/

�
;k D E



T;0k .r C r1/T0;j .r1/

�
;i D Ej

k;i .r/;

from which we obtain the condition

C.r/ D D0.r/r: (16)
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5.2 Anti-plane Elasticity

5.2.1 Correlation of Stress TRF

In the anti-plane elasticity problem, the second-rank stress and strain tensors can be
mapped into vectors as

�i D �i3; "i D "i3; i D 1; 2;

so that the Hooke law reads

�
�1
�2

�
D
� QC11 QC12

QC21 QC22
 �

2"1
2"2

�
or �i D QCij2"j;

with QC11 D C44; QC22 D C55; whereas the symmetry of QCij implies: QC12 D
C54; QC21 D C45. Also, we use the position vector r D .x1; x2/; with r D p

r � r.
Incidentally, this model is mathematically equivalent to planar heat conduction.

Now, define the correlation function of a zero-mean stress field

Sj
i.r/ WD E



�0i .r C r1/�0j .r1/

�
; i D 1; 2;

where �0i .r/ D �i.r/ � E Œ�i.r/� is the random fluctuation of stress field about its
mean E Œ�i.r/�. The static equilibrium in 3d implies

�i;i .r/ D 0;

so that

Sj
i;i .r/ D 0: (17)

For the isotropic second-rank tensor, again in view of (1), we can write

Sj
i.r/ D A.r/ninj C B.r/ıij;

so that, for j D 1; 2, we have

0 D @Sj
i.r/
@xi

D A0.r/nininj C A.r/nj=r C B0.r/niıij;

where the prime denotes d=dr. That is

A0.r/C A.r/=r C B0 D 0: (18)
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5.2.2 Correlation of Strain TRF

Turning to the strain field, define the second-rank tensor

Ej
i.r/ WD E



�0i .r C r1/�0j .r1/

�
;

where �0i .r/ D �i.r/� E Œ�i.r/�. For the anti-plane problem, u3.r/ ¤ 0 and u1.r/ D
u2.r/ D 0 for 8r. From the strain-displacement compatibility �ij D u.i;j/ we observe
that

Ej
i.r/ D �1

4

@2U33

@xi@xj
; (19)

where U33.r/ D E


u03.r C r1/u03.r1/

�
with u03.r/ D u3.r/� E Œu3.r/�. This implies

E11.r/ D �1
4

@2U33

@x21
E21.r/ D �1

4

@2U33

@x1@x2
E22.r/ D �1

4

@2U33

@x22
;

so that

@E11.r/

@x2
D @E21.r/

@x1
;
@E22.r/

@x1
D @E21.r/

@x2
:

Taking Ej
i.r/ to be a statistically isotropic tensor, and setting C D K2=r2 and

D D K1, we can write its representation (1) as

Ej
i.r/ D C.r/ninj C D.r/ıij:

The relations between the gradients of correlations of strain field imply

C0n2n21 � 2Cn112=r C D0n2 D C0n1n1n2 C C.n2 � 2n112/=r;
C0n1n22 � 2Cn221=r C D0n1 D C0n2n1n2 C C.n1 � 2n212/=r;

resulting in

C D D0r: (20)

5.3 3d Classical Elasticity

First, we note that, in view of "ij D u.i;j/, "ij is a potential tensor field, with ui being
its potential. On the other hand, the balance of linear momentum in the absence of
body forces �ij;j D 0, indicates that �ij is birotational.
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5.3.1 Correlation of Stress TRF

For the in-plane elasticity problem, the Hooke law reads

�ij D QCijkl"kl; i; j; k; l D 1; 2:

Now, the correlation function of the zero-mean stress field

Skl
ij .r/ WD E



�0ij .r C r1/�0kl.r1/

�
; i; j; k; l D 1; 2; 3;

where �0ij .r/ D �ij.r/ � E


�ij.r/

�
, on account of the static equilibrium, leads to

Skl
ij;j.r/ D 0:

Assuming Skl
ij .r/ to be a statistically isotropic TRF, its representation is (2), which

leads to a system of three differential equations

8S1111 D .R C 2/.R C 4/S2222
4S1212 D .R C 2/S2222 � 2S2211

8S3322 D 8.R C 1/S2211 � R.R C 2/S2222

R � r
d

dr
: (21)

This implies that S2222 and S2211 should be chosen first (i.e. before other Skl
ij ) in modeling

such a stress TRF.

5.3.2 Correlations of Strain, Rotation, and Curvature-Torsion TRFs

Consider a correlation function of a second-rank TRF of strain

Ekl
ij .x1; x2/ WD Eh
"ij.x1/"kl.x2/

�
;

and also a correlation tensor of the displacement field

Uj
i.x1; x2/ WD E



ui.x1/uj.x2/

�
:

Assuming homogeneity, we have Uj
i.x1 � x2/, so that, on account of the strain

displacement relation and using a slightly different notation Uij.x/ � Uj
i.x/, we

can write

Ekl
ij D �r.iUi/.k;l/:
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In view of the representations (1) and (2) for Uj
i and Ekl

ij when both TRFs are taken
as isotropic, Shermergor [12] obtained a system of three differential equations

E2222 D .R C 1/E1111 C R.R C 1/E3322
E1212 D .R C 2/E1111 C .R � 2/E3322

E2211 D .R C 1/E3322

R � r
d

dr
; (22)

implying that E1111 and E3322 should be chosen first (i.e. before other Ekl
ij ). Once the

correlation tensors of stress and strain fields are known, one can also assess the field
of rotations of grains.

Proceeding in the same manner, one can consider TRFs in micropolar linear
elasticity, so as to establish similar restrictions on asymmetric force and couple
stress fields as well as those on displacement, rotation, and strain fields.

6 Conclusion

This article reports progress on homogeneous isotropic TRFs for continuum
mechanics. The basic thrust is on determining most general representations of
correlation functions such as (1), (2) and (5), as well as their spectral expansions
such as (12) and (13). The second step is finding the restrictions dictated by a
particular physical application. Thus, in the case of fields of material properties
(like conductivity and stiffness), the restriction resides in the positive-definiteness,
whereby (6)–(11) give a connection to experiments and/or computational microme-
chanics. On the other hand, in the case of fields of dependent properties (e.g.,
stress, strain and displacement), restrictions (14)–(22) are due to the respective field
equations.
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Abstract A new perspective on structural design of particulate composites is
presented in this chapter. The central concept is that by controlling multiple
parameters describing the stochastic microstructure, such as allowing the filler
properties to vary from filler to filler, or constructing spatially correlated filler
distributions, significantly expands the design space which, in turn, is likely to lead
to the development of more performant composites. We investigate the effect of
two such parameters on the elastic-plastic and damping behavior of the composite.
First, we consider microstructures containing fillers of same properties but which
are spatially distributed in a correlated way. It is observed that composites with
spatially correlated filler distributions are stiffer, strain harden more and lead to
larger damping ratios relative to microstructures with random, uncorrelated filler
distributions of same volume fraction. In the second part of the study we consider
composites in which filler properties vary from filler to filler. It is observed that
the composite modulus and its strain hardening rate decrease as the variance of
the probability distribution function of filler elastic constants increases, while the
mean of the distribution is kept constant. The damping ratio of the composite is not
sensitive to the higher moments of the distribution function of damping coefficients
within inclusions.
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1 Introduction

Structural composites are a broad class of materials with increasing range of
applications and market share. These are made from several constituents distributed
spatially in pre-defined ways. Particulate composites are typically made by dispers-
ing a filler phase in a matrix. Fiber composites are constructed either in a manner
similar to particulate composites, by distributing short fibers at random in a matrix,
or by weaving long fibers in pre-defined patterns and embedding the resulting
plies in the matrix. Woven and non-woven composites have significantly different
properties. For example, woven carbon fiber composites are highly anisotropic,
while short fiber reinforced plastics, e.g., fiberglass, are isotropic on the macroscopic
scale [1].

Most biological materials are composites. Bone is a hierarchically structured
mixture of mineral (hydroxyapatite) and proteins [2] and, based on the classification
mentioned above can be considered a particulate composite since the mineral phase
is discontinuous. Most types of soft tissue are made from long fibers of collagen
and elastin which form the extracellular strength-providing structure, embedded in
a “matrix” made from cells, water, and large molecules [3].

The distribution of the reinforcing phase in man-made composites is either
random or regular. Random distributions result by simply mixing the filler phase
in the matrix, followed by matrix solidification. The actual filler distribution is not
controlled in any particular way and agglomeration may occur. In woven composites
the microstructure is more regular as the reinforcing fiber bundles are placed in
pre-defined patterns. Furthermore, the stacking of fibrous plies is also controlled to
insure unidirectional, bi-directional or isotropic in-plane stiffness and strength.

Regular microstructures are only a designer concept since variability introduced
by the manufacturing methods unavoidably leads to some degree of randomness of
the structure even in the most controlled cases. Specifically, in woven composites
fiber bundles do not contain exactly the same number of fibers and the weaves
are not identical down to the micrometer scale. Clearly, biological materials are
stochastic and have some degree of regularity only in the average sense.

Design of composite materials usually does not account for variability. In
fact, in composites with regular microstructure, variability is undesirable and is
considered to lead to premature damage nucleation and failure. Therefore, standard
composite design and manufacturing aims to minimize structural variability such
to, presumably, maximize macroscopic properties. In manufacturing of composites
with random distribution of reinforcements, it is usually sought to create truly
random microstructures and any clustering is considered undesirable.

Likewise, poor dispersion and/or distribution of fillers is considered the key rea-
son for poor performance of nanocomposite materials [4]. In these cases, nanoscale
fillers, such as nanoparticles and nanofilaments, are dispersed in a polymer matrix.
The interesting properties of these composites result from the “interphase” polymer
layer, i.e., the region of the polymeric matrix located in the close vicinity of the
filler surface. This volume of polymer has modified physical properties due to the
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confinement constraint imposed by the presence of the filler. In nanocomposite
manufacturing, a distribution of fillers that allows for these modified polymer layers
to percolate through the volume of the composite is considered ideal. In such cases,
the unusual properties of the interphase become measurable on the macroscale. Let
us note that this, by now customary, concept does not require the fillers spatial
distribution to be uniform. In fact, percolated paths of fillers may lead to the desired
macroscopic effects, and this is used in automobile tires, which are nanocomposites
of carbon black particles dispersed in rubber [5].

At the current stage of development of the composite technology, and particularly
with the advent of additive manufacturing which makes possible the fabrication of
composites with precise control of the microstructure, it is useful to inquire about
the validity of the established concept that keeping variability to a minimum leads to
optimal macroscopic properties of composites. These emerging technologies offer
new ways to build such materials and a much broader design space over which
property optimization can be performed.

1.1 Structural Stochasticity in Composite Materials
and Formulation of the Problem

Stochasticity influences the material behavior in multiple ways. The most obvious
source of stochasticity are thermal fluctuations which are prevalent on the nanoscale.
The effect of these fluctuations is observed often on the macroscopic scale, an exam-
ple being the strain rate sensitivity of engineering materials [6]. The dependence
of the flow stress on the deformation strain rate is due to thermal activation of
nanoscale deformation processes, which is controlled by thermal fluctuations. Creep
and slow crack growth are also phenomena controlled by thermal activation which
therefore inherit the effect of small-scale fluctuations.

Kinetics of a process evolving on a complex energy surface is stochastic. Kinetics
is driven by thermal fluctuations, but is controlled by the shape of the energy surface
of the system. Since such energy landscapes are defined in a multidimensional
space and have complex geometries with many minima and many barriers of similar
height, the path taken by a system may be highly degenerate. The system can take a
range of phase space trajectories which correspond in physical space to diverse sets
of successive configurations.

One of the main sources of stochasticity in composites is structural. To outline
the central idea of this chapter, let us consider the simplest particulate composite
possible: a mixture of a matrix, phase A, and inclusions, phase B. The two phases
have different material properties. The problem is defined identically in 2D (films,
membranes) and in 3D (bulk). In standard composite design, the central parameter
in such cases is the volume fraction of phase B, fB.

Here we propose to expand the design phase space by considering ways to
introduce stochasticity in this problem. Once the problem is defined, the effect of



92 C.R. Picu et al.

the various parameters describing structural stochasticity will be analyzed. In order
to focus on these parameters, it is useful to keep the volume fraction constant for
the reminder of the discussion.

Stochastic microstructures can be generated by considering that one (or multiple)
of the material properties, say Young’s modulus, is defined as E(x, �), i.e., it is a
function of position, which is a deterministic variable, x, and of a stochastic variable,
�. The distribution function p(E) can be specified in terms of a set of parameters such
as, for example, a finite number of its moments. Let us denote these moments as
mE. In the usual case, in which all inclusions are made from the same material, p(E)
is composed from two delta functions located at the values of Young’s modulus
of phases A and B, respectively. In general, inclusions of different types can be
considered and p(E) may have any functional form.

The size and shape of inclusions may be also considered stochastic variables
and likewise may be defined by distribution functions described by a finite set of
moments, mS. Particles may be randomly distributed in the matrix, or distributed in
a spatially correlated way. This property can be described by using the two-point
autocorrelation function ACF .y/ D E .x C y/E.x/� , where the average < > is
taken over multiple origins and replicas, �. Multipoint correlation functions can also
be used for this purpose. ACF includes the information about the size and shape of
inclusions in an averaged way. If vectors x and y are sampled on a scale comparable
with or larger than the inclusion size, ACF loses the particle size information. In
this limit and for a random composite, the ACF becomes a delta function. Most real
microstructures are not perfectly random and have some degree of clustering. Then,
the ACF function is longer ranged. The characteristic correlation length 	 associated
with ACF defines the mean cluster size.

Let us collect all variables defining these distributions and correlation functions
into a vector, v D fmE;mS; 	g. These variables define the space of stochastic
variables over which composite properties should be explored and optimized.

To render the discussion specific, let us consider the two types of 2D (plane
strain) microstructures shown in Fig. 1. These have randomly distributed inclusions
(Fig. 1a) and inclusions which are distributed in a spatially correlated way (Fig. 1b).
The spatial correlation, ACF, is exponential in this case and does not depend on the
direction, i.e., ACF(y), is only a function of the modulus of vector y. This renders
the material isotropic. Figure 1c shows the autocorrelation functions for the two
realizations, with the variable y sampled with resolution " which is taken to be
equal to the size of inclusions. All inclusions are of the same size in this problem.
The random microstructure is delta correlated and hence no parameter is needed
to describe its ACF. The correlated microstructure has a characteristic correlation
length 	. Since all inclusions are of the same size, the distribution function of
inclusion sizes is also a delta function and set mS is empty. One of the material
properties of inclusions is considered a stochastic variable. For example, Young’s
modulus of inclusions is sampled from a log-normal distribution. Figure 2 shows
p(E) for this case, with the modulus of phase A (matrix) being set at E D 1, and
the mean of the phase B modulus being set at 6. The coefficient of variance of
the phase B modulus is 0.3 in this example. Set mE includes the mean of phase B
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Fig. 1 Realizations of particulate composites with (a) random and (b) exponentially correlated
distributions of fillers. The autocorrelation function for the microstructures in (a) and (b) are shown
in (c)

modulus (normalized by the modulus of phase A), and the coefficient of variance
of the distribution of Phase B modulus: mE D ˚

EB; �B=EB
�
. In Sects. 3 and 4

of this chapter, we explore the effect of parameters in set v D fmE; 	g on the
macroscopic properties of the composite, in particular on the elastic-plastic and
damping responses.

1.2 Background

The problem of microstructural design of composites is usually not defined in terms
of the variables describing the stochasticity of the microstructure. An exception is
the effect of the distribution of inclusions, or parameter 	 defined above, which has
been considered in a number of works. Let us note that if the composite is made from
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Fig. 2 Probability distribution functions for matrix (phase A) and inclusions (phase B) properties.
In this design filler properties are allowed to vary from filler to filler in the same realization of the
composite

two materials, A and B, and all fillers are identical, the filler distribution/dispersion
is the only stochastic variable.

Reviews on the homogenization of random composites are presented in [7–9].
Remarkable results have been obtained regarding the bounds on the elastic moduli
of such composites. These expressions are generally given in terms of the volume
fraction of the constituents. The closest bounds for the bulk modulus which take
into account only the volume fraction have been derived by Hashin and Shtrikman
[10]. A family of higher order bounds, which take into account statistical measures
of the microstructure geometry, have been proposed more recently with the purpose
of reducing the separation between the upper and lower bounds (e.g., [11–16]). The
n-point bounds are written in terms of n-point microstructural correlation functions
which define the probability that n points with specified relative positions are all
located in a certain phase of the composite. A review of the higher order bounds and
the geometric parameters required for their evaluation is provided in [8].

A particularly interesting type of microstructure is that in which fillers form a
fractal structure. This differs from the cases discussed in the publications mentioned
above through the fact that ACF is a power function of y. The upper and lower scales
that bound the range of self-similar scaling are the size of the composite sample and
the size of individual fillers, respectively. The power law ACF lacks a characteristic
length scale and hence, correlations extend throughout the entire composite domain.
The rate of decay of the correlation function, or the exponent of the power function,
depends on the fractal dimension. A particularly interesting aspect of such problems
is the fact that size effects are inherent in the definition of the microstructure. This
follows from the lack of characteristic length scale of the microstructure; its spatial
correlations extend to the boundaries of the problem domain. The usual wisdom
in composites is that design should be performed at scales large enough for the
size effect to be absent or negligible. This is not possible when the microstructure
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is fractal. However, such situations offer the possibility to take advantage of the
inherent size effect to enhance the properties of interest.

The elastic moduli of deterministic fractal structures have been predicted using
standard finite element models and renormalization group concepts [17]. Dyskin
applied the differential self-consistent method (initiated in [18]) for media contain-
ing self-similar distributions of spherical/ellipsoidal pores or cracks [19]. Tarasov
studied porous materials having pores with a broad range of sizes and in which
the mass of the material within a volume of dimension R scales as m.R/ � RQ,
with Q non-integer [20, 21]. This method was further developed recently in [22,
23] to represent the mechanics of heterogeneous bodies with fractal microstructure.
Carpinteri et al. studied the deformation of a bar in which the strain is localized in
a subset of cross-sections forming a Cantor set [24]. These authors use fractional
operators to rewrite the balance equations, although in one dimension this is not
immediately necessary. The deformation of a two-dimensional composite with
Cantor-like inclusion distribution was studied in [25]. In [26] fractional calculus
based on local fractional operators introduced by Kolwankar and Gangal [27, 28]
were used to formulate the balance equations on the fractal support. The formulation
was applied to modeling the deformation of two-dimensional composites containing
a fractal distribution of inclusions in a matrix.

In [29], the mechanical behavior of particulate composites with fractal
microstructure was compared with that of composites with random and
exponentially correlated microstructures of identical volume fraction and filler
size. It was concluded that strong spatial correlations (as in the fractal case) have
a weak effect on the elastic-plastic response, but a strong effect on cavitation and
damping behavior. Section 3 of this chapter is based in part on results presented in
reference [29].

2 Models and Methods

In this section we review the methods used in this work to solve mechanics boundary
value problems defined on domains with stochastic microstructure. The objective of
solving such problems is to infer the fields (stress, strain) over the entire problem
domain. The fields are used to evaluate a property of interest (PoI) whose optimum
is sought. These methods can be used to solve other types of problems as well,
including transport and electromagnetic problems.

The PoI is a generic quantity which is evaluated based on the solution. It can
be expressed in the integral sense as a mean, or it can be related to the value of
the fields at specified locations. For example, the PoI can be the average modulus
of the composite, case in which it is defined as the ratio of the mean stress to the
mean strain, which are integral quantities. In fatigue or other problems in which
damage nucleation and growth are important, the PoI can be the maximum values
of the stress distribution. In this case, the PoI is evaluated based on the tails of the
distribution function of stress field values.
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Fig. 3 Models of a composite with (a) uncorrelated and with (b) power law correlated (fractal)
distribution of fillers. The meshes shown are coarser than used in the simulation to allow
visualization

Two PoI, both of integral form, are used in this discussion: the stress-strain
behavior of the composite, and its damping response. The stress-strain curve is
obtained by loading the composite in uniaxial tension in direction x2 (Fig. 3) under
displacement control, with free boundaries in the direction perpendicular to the
loading direction. To study the damping response, a similar uniaxial deformation
is considered. The motion of the system in free vibrations is represented by

M Ru C C Pu C Ku D 0 (1)

where M, C, and K are the mass, damping, and stiffness matrices. In these models it
is considered that damping takes place within inclusions, while the matrix is linear
elastic without damping.

In the modal analysis, the solution of this system of equations is sought in the
form u D ' exp.ht/, where the eigenvalues h are (for the undamped modes) complex
conjugates, hj D sj C i!j, with j representing the index of the respective eigenvalue.
sj characterizes the damping factor on the scale of the composite, while !j is the
damped frequency. The parameter of interest here is the damping ratio,

�j D � sjq
s2j C$2

j

(2)

which indicates the damping of mode j relative to the critical damping. We focus
on, �1, the damping ratio corresponding to the axial vibration mode of the structure.

Figure 3 shows two of the models used. Figure 3a shows a model with random
microstructure and filler volume fraction fB D 20 %, while Fig. 3b shows a model
with fractal microstructure and approximately the same filler volume fraction,
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fB D 19.75 %. The fractal dimension of the model in (b) is D D 1.63. Both models
are shown with a rather coarse mesh to facilitate visualization. The real mesh used
in simulations had at least four elements per filler, even for the fractal structures
with finest resolution.

The fractal microstructures are generated based on the Cantor set in 2D.
The microstructure is constructed hierarchically by iteratively applying a set of
transformation rules. The first generation is obtained by starting with an Euclidean
domain, dividing it in M equal cells and selecting randomly P of them which are to
be filled with the inclusion material, B. The characteristic size of these cells is "1.
The number of possible configurations at the first step of the generation process
is MŠ= .PŠ .M � P/Š/. The next generations are obtained by dividing again each
of the B material cells in M equal parts from which M-P are transformed into
matrix cells, A. At any step of the generation, the problem domain is composed
from Mn cells of characteristic dimension "n of which Pn are occupied by the
inclusion material, phase B. The remaining Mn- Pn cells are occupied by the matrix
material, phase A. The dimension of the resulting fractal microstructure is evaluated
as D D 2 log.P/= log.M/. Obviously, many realizations of the microstructure
are possible. The number of possible configurations at iteration (or scale) n is
ŒMŠ= .PŠ .M � P/Š/�p

n�1C���CpC1. The microstructure shown in Fig. 3b corresponds
to the set with M D 9, P D 6, and fractal generation step n D 4.

The solution of the boundary value problems described above can be obtained
in several ways. In addition to Monte Carlo (MC) methods [30], various systematic
ways of approaching numerically partial differential equations defined on single-
scale stochastic domains were proposed in the literature. Methods based on prob-
abilistic finite elements (second order perturbation PFEM) [31, 32], or the spectral
approach for stochastic finite elements (SSFEM) [33] are relevant examples. These
methods were applied to various problems in solid and fluid mechanics such as to
study transport through porous media [34] and elastic deformation [35]. The elastic
deformation of composites with fractal microstructure was represented using the
stochastic finite element method in [36] based on an approximation of the spectral
decomposition of the representation of the fractal microstructure presented in [37].

In this work we use a Monte Carlo type method in which many replicas of the
system are generated and solved independently under the same boundary conditions.
In all examples shown in the next sections, between 60 and 100 replicas are
considered for each case. For fractal structures we also use a method similar to
that presented in [36], which is based on the stochastic finite element method [33]
and the spectral decomposition of the covariance matrix of the stiffness presented
in [37]. For completeness, this second method is briefly reviewed here. The Monte
Carlo method does not require further discussion.

The balance equations can be cast in the variational form:

*�
bD

ui;j .x; —/ L�1
ijkl .x; —/ vk;l .x; —/ dx

+
D
*�
�

t0i vi .s; —/ ds

+
(3)
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where u is the displacement field defined over the entire problem domain, OD, v is
a probing field, t are tractions acting along the boundary � of domain OD, and L is
the stiffness tensor. The stiffness depends on position, x, and a stochastic variable,
�. This represents the fact that the position of inclusions is stochastic. The random
position of inclusions which leads to the stochastic nature of L also implies that the
solution, u, is stochastic. The variational form is written in the average sense with
the average < > being taken over the random variable �. The equality in Eq. (3)
should hold for any probing field v(x, —).

Equation (3) is solved using a procedure similar to that of the usual finite
elements. The deterministic part of the solution is approximated using a set
of generic shape functions Nm(x). The stochastic component of the solution is
approximated by a superposition of chaos polynomials  q(�) [38] having the
orthogonality property <  i .�/ j .�/ >D ıij. In the probabilistic space, the chaos
polynomials play the role Hermite polynomials have in the deterministic space [39,
40]. The decomposition in chaos polynomials is generally used as an alternative
to the Karhunen–Loève decomposition in situations in which the covariance is not
known a priori, which is the case here with the solution u.

The approximation of the displacement field is written in the separable form:

u .x; —/ D
X

m

X

q

umqNm .x/§q .—/ (4)

such that finding the solution amounts to identifying the set of coefficients umq.
The stiffness tensor is written as a Karhunen–Loève decomposition [41–43].

According to this, the random field is written as:

L .x; —/ D hL .x; —/i— C
X

k

p
’.k/#.k/ .—/F.k/ .x/ (5)

where ’(k) and F(k) are the eigenvalues and eigenvectors of the covariance of L,
and ª(k) is a set of random variables of mean zero, which are uncorrelated but not
necessarily independent.

The discrete solution (4) and the expansion (5) are replaced in Eq. (3) and
test functions of the form vi .x; —/ D Ni .x/ .—/ are used. The average operator
is switched with the integral operator and applied directly to the integrand. The
resulting average can be treated analytically for a finite number of terms in (5).
The remaining terms on the left hand side of (3) produce a stiffness matrix which
is independent of stochastic parameters. The right hand side of (3) represents
the deterministic boundary conditions and is also independent of the stochastic
variable after averaging. Therefore, problem (3) reduces to a deterministic system
of equations which is solved once for the unknown coefficients umq of Eq. (4). The
solution of this system of equations leads to the mean and variance of the field u.
Further details are found in the publications referenced above.
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3 Effect of Filler Distribution

Let us analyze first the effect of the non-uniform spatial distribution of fillers at
constant filler volume fraction on the response to monotonic deformation and to
vibrations of structures of the type shown in Figs. 1 and 3 [29].

3.1 The Elastic-Plastic Behavior

As discussed above, composites with an elastic-plastic matrix and linear elastic
inclusions are considered. The matrix constitutive behavior is bilinear, with Young’s
modulus E1 and constant tangent stiffness in the plastic range equal to E1/10.
Inclusions are identical, with Young’s modulus six times larger than that of the
matrix, E2=E1 D 6. The matrix and inclusions have the same Poisson ratio,
equal to 0.3. Inclusions are distributed uncorrelated (random) or in a correlated
way, with spatial correlations ACF(y) either of exponential or power law form.
The exponential ACF(y) has a characteristic length scale, while the power law
correlations, which characterize fractal structures, lack a characteristic length scale.

It results from the analysis that the effective behavior of the composite is
also bilinear and can be characterized by two moduli, one describing the elastic
range, Ee, and the other representing the tangent stiffness in the plastic range,
Ep. Figure 4 shows the stress-strain curves corresponding to two composites with
fractal microstructures (filled symbols) and composites with random microstructure
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Fig. 4 Stress-strain curves for composites with fractal microstructure (filled symbols) and random
microstructures of same volume fraction (open symbols), with M D 9, P D 5, n D 2 (circles) and
M D 9, P D 5, n D 3 (squares). The continuous line represents the mechanical behavior of the
matrix material. The dashed lines define slopes Ee/E1 and Ep/E1
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Fig. 5 Variation of (a) the elastic modulus (Ee/E1), and (b) strain hardening rate (Ep/E1) with
the volume fraction, for microstructures with randomly distributed inclusions (open symbols and
continuous thin line), and for various fractal microstructures having M D 9, P D 5, and n D 2, 3,
4 and 5 (blue circles), M D 4, P D 3, n D 7 and 8, M D 9, P D 6, n D 4 and 5 (green squares),
M D 81, P D 42, n D 2 and 3 (red triangles). Data for microstructures with exponential correlation
function (Fig. 1b) are shown in (b) with crosses and dashed–dot line. The thick orange continuous
lines in (a) represent the 2D Hashin–Shtrikman bounds. The thin continuous line and the dashed
line in both (a) and (b) represent the best fit to the random structures data and to the fractal
structures with M D 9, P D 5, respectively

and same volume fraction (open symbols). The continuous line represents the
constitutive behavior of the matrix material. To characterize the effect of correlations
on the constitutive behavior of the composite, we refer next to the two parameters
Ee and Ep (normalized by matrix stiffness, E1).

Figure 5a shows the variation of the elastic modulus, Ee/E1, with the filler volume
fraction, f, for random structures (open symbols), and various fractal structures. Data
are shown for M D 9, P D 5, and n D 2, 3, 4 and 5 (blue circles), which all have
D D 1.46, for M D 4, P D 3, n D 7 and 8 (green squares), which have D D 1.58,
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and for M D 81, P D 42, n D 2 and 3 (red triangles), which have D D 1.7. The
thick continuous orange lines represent the Hashin–Shtrikman bounds for the two-
dimensional case [10].

The data points for the random, uncorrelated microstructures (open circles) align
on a curve shown by the continuous thin line in Fig. 5a. The four data points
corresponding to fractal structures with M D 9, P D 5, D D 1.46 (filled circles), are
well represented by a similar curve, which is shown by the dashed line in Fig. 5a.
Similar trends are observed in Fig. 5b for the strain hardening rate of the composite,
Ep/E1.

It results that the volume fraction has the dominant effect, but the spatial
distribution of fillers contributes to stiffening. The effect becomes more pro-
nounced as the range of correlations increases, or, in the fractal case, as the
fractal dimension, D, increases. Clearly, the effect is more pronounced in frac-
tal microstructures compared with exponentially correlated microstructures and
with random microstructures of same volume fraction. The observed stiffening
is attributed to the stronger interaction of inclusions in the spatially correlated
microstructures.

The influence of the internal architecture of the composite on the global behavior
can be predicted using some of the recently developed homogenization techniques
that take into account the higher order, multi-point correlation functions that
describe the microstructure [8]. The comparison of such predictions with the
numerical data shown in Fig. 5 is presented in [29].

3.2 The Damping Behavior

Let us consider now both matrix and inclusions to be linear elastic, while allowing
for dissipation to take place within inclusions. The elastic constants of the matrix
and inclusions are identical to those specified above for the elastic-plastic problem.
All inclusions have identical elastic and damping properties. The overall damping
ratio of the composite, �1, Eq. (2), is evaluated numerically as described in the
Methods section. Attention is focused on evaluating the effect of the correlated
distribution of inclusions on �1.

Figure 6 shows the damping ratio for the axial eigenmode, �1, function of
the volume fraction of inclusions for various systems. The open symbols and the
thick line correspond to the random distribution of inclusions, while other symbols
correspond to fractal microstructures with various fractal dimensions. The dashed
line is fitted to the blue filled circles which correspond to fractal structures with
M D 9, P D 5, and various n values. The error bars are evaluated from sets of 100
replicas for each configuration.

As the fractal dimension increases, the departure from the random case is more
pronounced. For the fractal structure with the largest fractal dimension considered,
M D 81, P D 42, n D 3, D D 1.701, the damping ratio is 53 % larger than that for
the random microstructure of same volume fraction. This significant increase is
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Fig. 6 Variation of the damping ratio, Eq. (2), with the volume fraction for composites with
random (open circles) and fractal microstructures. The continuous and dashed lines are fitted to
the results for random and fractal (M D 9, P D 5, blue circles) microstructures. The other filled
symbols correspond to fractal microstructures with M D 4, P D 3, n D 7 and 8, M D 9, P D 6,
n D 4 and 5 (green squares), M D 81, P D 42, n D 2 (red triangles), M D 36, P D 10, n D 2,
M D 49, P D 14, n D 2, M D 64, P D 18, n D 2 (grey circles)

due to the interaction between inclusions which is enhanced by their hierarchical
distribution.

All fractal structures considered exhibit enhancements relative to the correspond-
ing random cases, the increase being function of D. Gains close to 100 % can be
obtained for fractal dimensions close to 1.9 [29].

4 Effect of Fluctuations of Filler Properties

We consider now composites in which the properties of inclusions are allowed to
vary from inclusion to inclusion. We consider the elastic-plastic deformation and
damping behavior of composites similar to those shown in Figs. 1 and 3.

4.1 The Elastic-Plastic Behavior

In these models, the composite matrix has a bilinear constitutive equation with
Young’s modulus E1 and constant tangent stiffness in the plastic range equal to
E1/10. Inclusions are linear elastic. Their modulus is sampled from a log-normal
distribution with mean E2 D 7E1 and coefficient of variance, cE D �E2=E2, which
is kept as variable. Both matrix and inclusions have Poisson ratio 0.3.
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The spatial distribution of inclusions is either random, or power law correlated
(fractal), as considered in Sect. 3. In the spatially correlated case, the effect of
the non-uniform spatial distribution is superimposed to the effect of fluctuations
of inclusion properties. The random variables defining the spatial distribution of
inclusions and the values of the respective elastic constants are not cross-correlated.

Standard homogenization theory suggests that for a random distribution of
inclusions, the composite modulus should depend on the mean of the stiffness of
inclusions and on the filler volume fraction. In this section we investigate to what
extent variability in the elastic constants of inclusions matters.

Figure 7 shows the probability distribution functions of the elastic moduli of
the composite for several values of the coefficient of variance of the distribution
of elastic moduli of inclusions, cE D 0; 1; 3. The mean of the distribution
of elastic moduli of inclusions, NE2, is the same in all these models. The case
cE D 0 corresponds to the situation in which all inclusions are identical and
have E2 D 7E1. The spatial distribution of inclusions in this example is fractal,
with M D 9, P D 5, and n D 5, the volume fraction of fillers being f D 5.29 %. The
probability distributions for the case of uncorrelated, random spatial distribution of
fillers overlap those presented in Fig. 7.

Interestingly, the composite softens as cE increases, even though the mean of
the distribution of inclusion elastic constants is kept invariant. The variance of the
overall composite modulus increases with cE as well.

Fig. 7 Probability distribution functions of Young’s modulus of composites with fractal distribu-
tion of fillers and filler elastic moduli that vary from inclusion to inclusion. The blue distribution
(cE D 0) corresponds to the case in which all fillers are identical. The other distributions (green and
red) correspond to composites with distributions of filler elastic constants of increasing coefficient
of variance, cE , and same mean. The mean of the composite modulus decreases as cE increases.
The composite modulus is normalized by the matrix elastic modulus E1
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Fig. 8 Variation of the mean of the distribution function of the (a) composite modulus and (b)
strain hardening rate with the coefficient of variance of the distribution function of filler Young’s
modulus. The distribution functions of filler moduli for all cases shown have the same mean and
different cE . The open symbols corresponds to spatially uncorrelated filler distributions (random),
while the filled symbols correspond to fractal microstructures with M D 9, P D 5, n D 5. Circles
and squares correspond to filler volume fraction of 5.29 % and 17.15 %, respectively. The vertical
axes are normalized by the value of the respective variables corresponding to the case in which all
inclusions are identical, cE D 0

Figure 8 quantifies the softening effect. Figure 8a shows the variation of the
normalized mean composite modulus, NEe/E1, with the coefficient of variance cE.
The vertical axis is normalized with the value of NEe/E1 corresponding to the case in
which all inclusions are identical, i.e., cE D 0. The variation is linear in the range of
parameters considered. The difference between the random structures and structures
with fractal distribution of inclusions is small. The effect is more pronounced
as the volume fraction of inclusions, f, increases due to the enhanced filler–filler
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interaction. The maximum effect obtained is a decrease of the composite modulus
of 10 % relative to the reference case of a composite with identical inclusions.

Figure 8b shows data for the mean strain hardening rate, NEp/E1. This parameter
decreases with increasing cE, but the rate of decrease is slightly smaller compared
with that in Fig. 8a. Overall, the composite becomes softer both elastically and
plastically due to the fluctuation of the elastic constants of inclusions.

It is interesting to note that a similar effect has been obtained in random fiber
networks. These are systems of fibers which are bonded to each other to form
a three-dimensional network with non-zero global stiffness. Fibers are athermal
and have both bending and axial stiffness. In the study reported in [44], fibers are
not identical, rather their axial and bending stiffness are sampled from log-normal
distribution functions. A comparison is performed between networks characterized
by distributions of fiber properties that have the same mean and various coefficients
of variance. It is observed that the overall network stiffness decreases as the
coefficient of variance increases. The magnitude of the softening effect is similar
to that reported in Fig. 8a for the same range of cE. An analytic argument justifying
the numerical results is presented in reference [44].

4.2 The Damping Behavior

A similar analysis is performed for the damping behavior of the composite. As in
Sect. 3, composites with linear elastic matrix and inclusion materials are considered,
with damping being allowed within fillers. The Young’s modulus has the same value
in all fillers and the ratio of filler modulus to matrix modulus is 6. The damping
matrix of the filler material, C [Eq. (1)], is multiplied by a stochastic variable C’
which is sampled from a log-normal distribution of mean C’ and coefficient of
variance cC’ D �C’=C’. The overall energy dissipation rate on the scale of the
composite, characterized by the damping ratio for the axial vibration mode, �1

[Eq. (2)], is evaluated for systems with same C’ and increasing cC ’. As above, we
investigate whether or not the overall behavior depends exclusively on the mean
damping coefficient, C

0
.

Figure 9 shows the results of this study. It is seen that increasing the value of
cC ’ does not change the mean damping ratio measured on the composite scale, �1.
Therefore, higher moments of the distribution function of C’ are inconsequential for
the composite level behavior. This conclusion is opposite to that described above
for the elastic-plastic behavior. This indicates that each of these effects should be
studied individually and extrapolation of one type of behavior to other physical
parameters is not warranted.
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Fig. 9 Variation of the mean of the distribution function of damping ratio of the composite with
the coefficient of variance of the distribution function of damping coefficients within inclusions,
cC ’. The vertical axis is normalized by the value of the variable corresponding to the case in which
all inclusions are identical, cC’ D 0. Open and filled symbols correspond to uncorrelated and fractal
microstructures, respectively. Circles and squares correspond to filler volume fractions of 5.29 %
and 17.15 %, respectively

5 Conclusions

The results presented in this chapter indicate that composite design can benefit
significantly from the enlargement of the design space associated with controlling
the stochasticity of the microstructure. This is made possible by the advent of 3D
printing technologies which offer unprecedented control of the material composition
and spatial distribution of inclusions in composites. This numerical work shows
that spatially correlated distributions of inclusions lead to stiffer composites that
strain harden more than the equivalent composites of same volume fraction and
with random distribution of inclusions. If energy dissipation takes place within
inclusions, the global damping on the composite scale increases as the distribution
of inclusions becomes spatially correlated over larger distances. Additional effects
can be obtained if filler properties are allowed to be stochastic. Composites in
which the elastic constants of inclusions are sampled from distributions of given
mean and with increasing variance exhibit an interesting decrease of stiffness and
strain hardening rate as the respective variance increases. However, when energy
dissipation is allowed within inclusions and the damping coefficient varies from
filler to filler, the damping on the scale of the composite is insensitive to the higher
moments of the distribution function of filler damping coefficients.

Additional effects of this type are expected when other parameters describing
the stochastic microstructure are controlled and varied. This opens new directions
of study in composite design and should lead to materials with unprecedented
combinations of properties.
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Discrete to Scale-Dependent Continua
for Complex Materials: A Generalized Voigt
Approach Using the Virtual Power Equivalence

Patrizia Trovalusci

Abstract The mechanical behaviour of complex materials, characterized at finer
scales by the presence of heterogeneities of significant size and texture, strongly
depends on their microstructural features. By lacking in material internal scale
parameters, the classical continuum does not always seem appropriate for describing
the macroscopic behaviour of such materials, taking into account the size, the
orientation and the disposition of the heterogeneities. This often calls for the need
of non-classical continuum descriptions, which can be obtained through multiscale
approaches aimed at deducing properties and relations by bridging information at
different levels of material descriptions.

Current researches in solid state physics as well as in mechanics of materials
show that energy-equivalent continua obtained by defining direct links with lattice
systems, as widely investigated by the corpuscular-continuous approaches of nine-
teenth century, are still among the most promising approaches in material science.
The aim is here to point out the suitability of adopting discrete to scale-dependent
continuous models, based on a generalization of the so-called Cauchy–Born (Voigt)
rule used in crystal elasticity and in classical molecular theory of elasticity, in order
to identify continua with additional degrees of freedom (micromorphic, multifield,
etc.) which are essentially non-local models with internal length and dispersive
properties. It is shown that, within the general framework of the principle of virtual
powers, the correspondence map relating the finite number of degrees of freedom
of discrete models to the continuum kinematical fields provides a guidance on the
choice of the most appropriate continuum approximation for heterogeneous media.
Some applications of the mentioned approach to ceramic matrix composites and
masonry-like materials are discussed.
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1 Introduction

This contribution focuses on constitutive theories for continuous models originated
from refined discontinuous descriptions of materials. The classical molecular theory
of elasticity, as developed by Navier [25], Cauchy [7] and Poisson [30] in the
nineteenth century, represents the first attempt to derive the field equations of an
elastic body basing on the definition of microscopic laws for systems of point-like
particles (“molecules”) close together and interacting through attractive forces. In
these mechanistic descriptions, inspired to Newton’s idea of coherence of elastic
bodies [26], the molecules, are perceived as ultimate particles without extension,
inside which no forces are accounted for, that interact in pairs through forces
depending on their mutual distance and directed along the line connecting their
centres (“central-force” scheme). A kinematic corresponding map between the
discrete degrees of freedom and the continuous fields guarantees the transition from
the fine to the gross description. Macroscopic stress measures are then derived as
averages of molecular material quantities over a convenient volume element, called
“molecular sphere of action”, outside which intermolecular forces are negligible.

The central-force description led to experimental discrepancies concerning the
number of elastic constants, that were less than those needed to represent the
behaviour of materials belonging to various symmetry classes. Successively, Voigt
and Poincaré introduced mixed energetic/mechanistic approaches providing refined
molecular models that circumvented the problem of the underestimation of the
number of the material constants related to the central-force scheme [2, 3, 31, 33].
In particular, Voigt introduced a potential of force and moment interactions exerted
between pairs of rigid bodies, while Poincaré proposed a multibody potential
description [29, 35, 36]. Both Voigt and Poincaré removed the local character of the
Cauchy description by modifying the central-force scheme thus obtaining continua
which could be classifiable as “implicitly” or “weakly” non-local [10, 18, 20],
because of the presence of internal lengths and dispersion properties that can
be there recognized [31]; although they finally led back to classical continua by
introducing internal constraints: Voigt by imposing the same uniform rotation to the
particles and Poincaré by considering only pair-interaction terms. However, even if
both Voigt and Poincaré, on using the refinement of non-local descriptions, offered
a good solution to the controversy about the elastic constants, the mechanistic-
molecular approach was abandoned in favour of the energetic-continuum approach
by Green, and their works have been neglected for long time [3].

Now these ideas found a renewed interest with particular reference to the problem
of constitutive modelling of composite materials. The mechanical behaviour of
materials characterized at finer scales by the presence of heterogeneities of signifi-
cant size and texture strongly depends on their internal structure that is intrinsically
heterogeneous and discrete because interfaces (grain boundaries, thin layers, etc.)
dominate the gross behaviour. By lacking in material internal scale parameters,
moreover, the classical continuum does not always seem appropriate to describe
the macroscopic behaviour of such materials taking into account the size, the
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orientation and the disposition of the heterogeneities. This calls for the need of non-
local continuum descriptions which can still be obtained through homogenization
approaches aimed at deducing properties and relations by bridging information
at proper underlying discrete micro-levels via energy equivalence criteria. Thus,
providing that the original lattice models were refined by extending the concept
of molecule in order to describe different internal phases (rigid inclusions, voids,
etc.) and taking into account of non-central inter-molecular actions, or by enriching
the potential descriptions introducing multibody interaction terms, discrete-to-
scale-dependent non-local continua could be naturally derived. As sample models
nonlocal continua with additional degrees of freedom are reported. These continua
are non-classical continua, of the kind described in [1, 5, 10, 14, 22], derived from
lattice systems made of rigid particles and distributed voids (pores, microcracks,
etc.) and adopted for the description of ceramic matrix composites or masonry-like
materials.

2 Corpuscular Micro-Model

The discrete model adopted for the fine description of the reference composite
material is made of kind of structured molecules broadly representing the internal
phases of the material: the fibres, described as rigid particles of polygonal shape,
and the flaws, perceived as slits of arbitrary shape and a predominant dimension.
The slits are considered opened, stationary and with blunt edges (no tip effects
accounted for). The particles interact in pairs through forces and couples, while the
slits interact through forces directed along the line connecting their centres. Particles
and slits also interact each other by forces. The slits must be considered as devices
for transmitting to the matrix additional forces due to the presence of defects. In
this sense they represent the microcracks/pores. Their stiffness depends on the
surrounding elastic field. In this paragraph the analysis is conducted within the
linearised framework, where the velocity fields stand for infinitesimal displacement
fields and the power stands for work.

Let A and B be two rigid particles, respectively centred at the positions a and
b, and H and K two slits located at the positions h and k. The vectors wa and wb

respectively denote the velocity of a and b and the skew-symmetric tensors Wa and
Wb the angular velocities of the two particles. For each pair of adjacent particles the
strain measures of the lattice are defined as:

wi D wa
i � wb

i D Œwa C Wa.pa � a/�� Œwb C Wb.pb � b/� ;

Wi D Wa � Wb ; (1)

where pa and pb are two test points, on A and B, through which the particles
interact, and wa

i and wb
i their velocities. Further lattice strain measures for each slit

H , each pair of interacting slits (H , K ) and each pair of interacting particle-slit
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(A , H ) are:

dh ; dj D dh � dk ; wl D wa
i � .wh C dh/ ; (2)

where: the vector dh (dk) represents the half-crack opening displacement onH (K )
and wh (wk) is the velocity vector of h .k/ on the external boundary of H (K ).

The forces and the couples that B (A ) exerts on A (B) are respectively
represented by the vector ta (tb) and the skew-symmetric tensor Ca.Cb/. The force
due to dh on H is represented by the vector zh

o. Due to dh, the slit interacts with the
adjacent particles and the neighbouring slits. The vector zh (zk) is the force that K
(H ) exerts on H (K ), while the vector rh (ra) represents the force transmitted by
H (A ) to A (H ).

If the material can be considered periodic, or at least statistically homogeneous,
a representative volume element, M�, referred as the module, can be individuated.
Taking into account the balance equations of the internal actions of the module the
mean power of the internal actions over the volume of the module, V.M�/, can be
written:

N̆
� D 1

V.M�/
f
X

i

fti � Œwi � Wa.pa � pb/�C 1

2
Ci � Wig

C
X

h

zh
o � dh C

X

j

zj � dj C
X

l

frl � Œwl � Wa.pa � h/�gg ; (3)

where it has been put: ta D �tb D ti ; zh D �zk D zj ; rh D �ra D rl ;

Ca D �Cb CŒ.pa �pb/˝ ta �ta ˝ .pa �pb/�CŒ.pa �h/˝ rh �rh ˝ .pa �h/� D Ci;

and where the summations are respectively extended to each pair .A ;B/, .H ;K /,
.A ;H / in M�.

The selection of linear elastic response functions for the interactions between par-
ticles and for the forces due to the crack opening displacements; non-linear elastic
functions for the interactions between slits, described as continuous distributions of
dislocations with Burgers’ vector parallel to the opening directions; other non-linear
phenomenological functions for the interactions between slits and particles:

ti D KiŒwi � Wa.pa � pb/� ; Ci D KiWi ; zh
o D Dhdh ;

zj D Dj
k dh kk dk k
k h � k k2 .h � k/ ; rl D f1.a/f2.h/

k a � h k2 .a � h/ ; (4)

here assumes a purely paradigmatic meaning for the procedure reported in Sect. 3
and it can at any time be modified in order to meet the needs of finer constitutive
descriptions. In Eqs. (4) the components of the second order Ki, Dh and fourth order
Ki tensors; the constant Dj and the scalar functions f1 and f2 (two approximately



Discrete to Scale-Dependent Continua 113

Gaussian functions describing respectively the local force field around a particle
(A ) and a slit (H ) [19]) depend on the elastic constants of the matrix and the
geometry of the two kinds of inclusions.

3 Micro–Macro Transition via Virtual Power Equivalence

In order to identify the equivalent continuum model, hypotheses of regularity of
the kinematical descriptors introduced in Sect. 2 are given. According to discrete-
continuum coarse-graining approaches described in [31], kinematical maps relating
discrete-to-continuous kinematical fields are introduced. These maps are given by
Taylor expansions up to the second order of the macro velocity vector w.x/, the
skew-symmetric micro angular velocity tensor W.x/, and the independent micro
velocity vector d.x/:

wa D w.x/C rw.x/.a � x/C 1

2
Œr2 w.x/.a � x/�.a � x/C o .a � x/

Wa D W.x/C rW.x/.a � x/C 1

2
Œr2W.x/.a � x/�.a � x/C o .a � x/

dh D d.x/C rd.x/.h � x/C 1

2
Œr2 d.x/.h � x/�.a � x/C o .h � x/ ; (5)

for any A ; H 2 M�, where x is the centre of the module and where, from now on,
the term “macro” stands for standard and “micro” for non-standard fields. Assuming
that a continuous neighbourhood M of x, occupying the same Euclidean region of
M�, is well defined, these maps impose that the continuum locally undergoes the
same deformations as the lattice system. Eqs. (5) provide a generalization of Cauchy,
Voigt or Poincaré’s homogenization rules reported in [31]. From now on, the explicit
dependence of any field on x will be undertaken.

Basing on the maps (5) various kinds of continua can be identified that are in
general non-classical, as described in [31]. By expanding the series up to higher
orders refined descriptions allowing to take into account long-range interactions
can be obtained. Specific continuous models can also be derived by imposing
proper internal constraints to the lattice model, as in the cases studied by Voigt and
Poincaré, obtaining continua that can be defined continua with latent microstruc-
ture [4].

3.1 First Order Continuum Approximation: Continuum
with Rigid and Affine Local Structure

Using Eqs. (5) with rw, rW and rd constant the strain measures of the lattice
system (1), (2) can be expressed in terms of the smooth fields rw � W, rW, d and
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rd as:

wi D .rw � W/ .a � b/C rW Œ.pa � a/˝ .a � x/� .pb � b/˝ .a � x/� ;

Wi D rW .a � b/ ; (6)

dj D rd .h � k/ ;

where the explicit dependence of any field on x has been undertaken.
After some algebra, the mean power of the contact actions (3) can be also

expressed as function of these strain fields:

N̆
� D 1

V.M�/
ff
X

i

ti ˝ .a � b/C
X

i

rl ˝ .a � h/g � .rw � W/

Cf
X

i

ti ˝ Œ.pa � a/˝ .a � x/� .pb � b/˝ .b � x/�C 1

2
Ci ˝ .a � b/g � rW

Cf
X

h

zh
o C

X

l

rlg � d

Cf
X

h

zh
o ˝ .h � x/C

X

j

zj ˝ .h � k/C
X

l

rl ˝ .h � x/g � rdg : (7)

It can be now assumed that a continuum scalar field representing the internal
power density of a multifield continuum, in a neighbourhood of x occupying the
same region of the module M � M�, exists as a function of the primal strain fields
rw � W, rW, d, rd:

�.rw � W;d;rd/ D S � .rw � W/C 1

2
S � rW C z � d C Z � rd; (8)

where the second order tensor S, the third order tensor S, the vector z and the second
order tensor Z are the dual stress fields power-conjugate to the strain measures rw�
W, rW, d, rd, respectively.

The requirement that the internal power is preserved in the transition from
the fine to the gross description for any rw � W, rW, d and rd, through the
localization theorem, gives:

N̆
�.rw � W;d;rd/ D �.rw � W;d;rd/ : (9)

Then the continuum stress measures are identified as functions of the internal actions
and of the fabric vector and tensors of the module (i.e. size, shape and disposition
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of inclusions):

S D 1
V.M�/

f
X

i

ti ˝ .a � b/C
X

l

rl ˝ .a � h/g ;

S D 1
V.M�/

f
X

i

2ti ˝ Œ.pa � a/˝ .a � x/ � .pb � b/˝ .b � x/�C Ci ˝ .a � b/g ;

z D 1
V.M�/

f
X

h

zh
o C

X

l

rlg ;

Z D 1
V.M�/

f
X

h

zh
o ˝ .h � x/C

X

j

zj ˝ .h � k/C
X

l

rl ˝ .h � x/g : (10)

In the virtual power setting delineated, non variational, the results apply regard-
less of the material response. Once the constitutive equations for the lattice system
are defined, for instance those of Eqs. (4), by identifying the actual strain rates
of the discrete model using again the maps (5), always under the hypothesis of
homogeneous deformations, the continuum constitutive relations for all the stress
measures introduced are derived in the following form:

S D A.rw � W/C BrW C Cd C Drd C 
S.d2;rd2; k d kk rd k/ ;
S D E.rw � W/C FrW ;

z D I.rw � W/C Md C Nrd C 
z.d2;rd2; k d kk rd k/ ;
Z D O.rw � W/C Qd C Rrd C 
Z.d2;rd2; k d kk rd k/ : (11)

In Eqs. (11) the constitutive tensors of the second (M), third (C, I, N, Q), fourth
(A, D, O, R), fifth (B, E) and sixth (F) order have components depending on the
elastic constants and the geometrical parameters of the material phases, as well
as the non-linear vector (
z) and second order tensor (
S ; 
Z) functions. If the
discrete system is hyperelastic, also the equivalent continuum is hyperelastic and the
following symmetry relations between constitutive tensors hold: BT � T D T � ET,
for any third order tensor T and second order tensor T; Cv � T D v � IT, for any
vector v and second order tensor T; DT � V D T � OV, for any second order tensor
T and V; NT � v D T � Qv, for any second order tensor T and vector v. If the
material microstructure is arranged respecting the central symmetry the odd order
tensors B, C, N, and the corresponding transposed tensors defined by the above
relations, are null. Moreover, the tensors B, C, F, M, N, as well as the corresponding
transposed tensors, contain internal length parameters and then, even in this case of
homogeneous deformations, the non-local character of the description is guaranteed.

The lattice system described in Sect. 2 can be then replaced by an equivalent
multifield continuum with additional degrees of freedom endowed with a rigid
local structure (Cosserat, e.g. [10]) plus a deformable (affine) structure, of the kind
described in [5] or also in [14], encoded in the power formula (8). This continuum
undergo microdeformations independent of the local macroscopic deformation and
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a detailed description of the basics can be found in [31, 34]. This description can be
contextualized within the more general frameworks delineated in [8, 11, 16, 27].

In the case in which d D 0, using Eqs. (11) where no-interaction between particle
and slits are accounted for (C D 0 ; I D 0 and D D 0 ;O D 0), the internal power
density (8) can be written:

� D ŒA.rw � W/C BrW� � .rw � W/C 1

2
ŒE.rw � W/C FrW� � rW ; (12)

that is the power density formula of a micropolar continuum equivalent to an
assembly of rigid particles, without slits, undergoing independent rotations one each
other, Wa, and interacting through forces and couples, ta, Ca (8A in M�).

In order to make comparisons with other continuous models, it is useful to
distinguish in the expression (12) the contributions of the symmetric and the skew-
symmetric part of the strain and stress tensors. By decomposing the displacement
gradient rw D E C R, with E D symŒrw� and R D skwŒrw�, where the operators
sym and skw, respectively, extract the symmetric and the skew-symmetric part of a
tensor, it is:

� D symŒA.E C R � W/C BrW� � E C skwŒA.E C R � W/C BrW� � .R � W/

C 1

2
ŒE.E C R � W/C FrW� � rW : (13)

By putting:

�YY D symŒAE� � E

�YK D symŒA.R � W/� � E D skwŒAE� � .R � W/ D �KY

�KK D skwŒA.R � W/� � .R � W/

�YC D symŒBrW� � E D 1

2
EE � rW D �CY

�KC D skwŒBrW� � .R � W/ D 1

2
E.R � W/ � rW D �CK

�CC D 1

2
FrW � rW : (14)

Equation (13) can be written:

� D �YY C �KK C �CC C 2.�YK C �YC C �KC/ : (15)

It can be noticed that the term �YY corresponds to the classical term. The terms
�KK and �CC are characteristic to the Cosserat continuum. The mixed terms �CY D
�YC and �CK D �KC are null in the case of materials belonging to the class of
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centrosymmetric materials or more restricted symmetry classes, while the mixed
term �YK D �KY is null in the case of orthotetragonal materials or more restricted
material symmetry classes.

3.2 Second Order Continuum Approximation

Let us now consider the case in which, in the maps (5), d D 0 and W D skwŒrw� D
R, with r2 w ¤ 0. Referring to the original lattice system, these constraints connote
a system without slits and with particles constrained to undergo the same local rigid
rotation of the continuum (Wa D R, 8.A / 2 M�), as in the Voigt model described
in [31]. This implies that: rw � W D E (E D symŒrw�) and, for negligible
distances pa � pb, the strain measures of the lattice reduce to:

wi D E.a � b/C 1

2
r2wŒ.a � x/˝ .a � x/� .b � x/˝ .b � x/� ; (16)

where the explicit dependence of any field on x is undertaken. Hence, the mean
power of the contact actions over M� (3) can be written as:

N̆
� D 1

V.M�/
f
X

i

ti ˝ .a � b/ � E

C 1

2

X

i

ti ˝ Œ.a � x/˝ .a � x/� .b � x/˝ .b � x/� � r2wg :

(17)

This formula corresponds to the mean power of the internal action of the module
of a lattice system whose particles, as mentioned above, are locally constrained to
have the same rotation and to (non-locally) interact through forces and moments of
forces, but no couples. It can be shown in fact that, for pa � pb approaching to zero,
constitutive and balance considerations imply that the interaction couple Ci is null
(as assumed by Voigt [36], p. 599).

Considering a continuous neighbourhood, M � M�, of a second-gradient
continuum of the kind described in [23, 24], which has the fields E and r2w as
primal strain fields, the equivalence between the mean internal power of the module
(Eq. 17) and the internal power density formula of the continuum

� D T � E C T � r2w ; (18)
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for any E and r2w, through the localization theorem, gives the dual stress measures
as functions of the contact actions and of the fabric quantities of the module:

T D 1
V.M�/

X

i

symŒti ˝ .a � b/�

T D 1
2V.M�/

X

i

ti ˝ Œ.a � x/˝ .a � x/� .b � x/˝ .b � x/� : (19)

Assuming that the interactions between the pairs of particles (A ;B) are linear
elastic forces: ti D Kiwi, with Ki the second order stiffness tensor for the ith pair,
and assuming that the discrete-continuum maps (5), under the mentioned kinemat-
ical constraints, also hold for the actual kinematical descriptors, the constitutive
relationships of the equivalent second-gradient continuum can be obtained in the
form:

T D AE C Br2w

T D EE C Fr2w ; (20)

where the elastic tensors of order four (A), five (B, E) and six .F) have components
depending on the elastic constants of the matrix and on the geometry of the
inclusions. For these tensors the same symbols as those used for the first order
continuum are used in order to underline the similarities in the identification process,
although their components in general differ. Their explicit expressions are reported
in [32]. In the case of hyperelastic materials the transposition relation holds:
BA � B D A � EB, for any pair of second order tensors A and B. In the case of
central symmetry the odd order tensors B and E are null. These tensors and the
tensor F contain material internal lengths.

Then, the power density of the internal actions of the equivalent second gradient
continuum can be written:

� D ŒAE C Br2w� � E C ŒEE C Fr2w� � r2w : (21)

It is useful to separate the different terms:

�YY D AE � E

�rr D Fr2w � r2w

�rY D Br2w � E D EE � r2w D �Yr ; (22)

in such a way that:

� D �YY C �rr C 2�Yr : (23)

The term �YY corresponds to the classical term. The term �rr is characteristic
to the second gradient continuum. The mixed term �Yr is null in the case of
centrosymmetric materials.
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3.3 Classical Continum Approximation

Under both the constraints d D 0 and W D R, assuming homogeneous discrete-
continuum maps, that is, Eqs. (5) with r2 w D 0, it is:

wi D E.a � b/ : (24)

and the mean internal power (Eq. (17)) reads:

N̆
� D 1

V.M�/

X

i

ti ˝ .a � b/ � E : (25)

The kinematic map (24) corresponds to the so-called Cauchy–Born rule used in
crystal elasticity.

Superimposing the continuous neighbourhood of x, M , to the module, M�, the
tensor E can be interpreted as the smooth field representing the symmetric strain
measure of a Cauchy continuum. By requiring the equivalence between N̆

� and the
internal power density of the classical continuum

� D T � E ; (26)

for any E, always basing on the localization theorem, the classical dual stress tensor
T is identified as:

T D 1
V.M�/

symŒti ˝ .a � b/� : (27)

Assuming the linear elastic response functions for the contact actions as in
Sect. 3.2 and assuming that the discrete-continuum maps (5), under the given kine-
matical constraints, also hold for the actual kinematical descriptors, the constitutive
relationships of the equivalent classical continuum can be expressed in the form:

T D AE ; (28)

where A is the fourth order classical elastic tensor, which does not contain any
material length, and:

� D �YY : (29)

The Cauchy model is equivalent in terms of power to a discrete system of rigid
particles locally constrained to have the same rotation which locally interact through
forces.
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4 Structure of External Power and Balance Equations
for Bulk and Contact Actions of the Equivalent
Non-Classical Continua

The structure of a non-local, scale-dependent, non-classical continuum is encoded
in its internal power formula. In Sect. 3 it has been shown that the power equivalence
between complex lattice systems and non-classical continua with additional degrees
of freedom, together with the selection of response functions for the discrete model,
leads to the identification of the constitutive functions for all the, standard and non-
standard, internal actions. This is a key critical point for such kind of continua.

Other critical points are the derivation of the whole set of balance equations
and the identification of the external actions [5, 6, 15]. In this Section it is shown
how starting from the power density formula of continua as those identified in
Sect. 3, using the divergence theorem and applying the virtual power principle the
structure of the corresponding external power can be defined, as well as the kinds of
bulk and contact actions (macro and micro tractions). Moreover, in agreement with
the axiomatic framework delineated in [9, 13], the local balance equations for the
standard and non-standard actions are derived.

4.1 Continuum with Rigid and Affine Microstructure

Let us now consider the internal power of the continuum identified in Sect. 3.1 over
a control region P � C , C being the Euclidean region occupied by a body, with
smooth boundary @P and outward normal n:

˘ D
Z

P
ŒS � .rw � W/C 1

2
S � rW C z � d C Z � rd� dV : (30)

The divergence theorem gives:

˘ D
Z

P
Œdiv S � w C .

1

2
div S C skw S/ � W C .div Z � z/ � d� dV

C
Z

@P
.S n � w C 1

2
S n � W C Z n � d/ dA : (31)

Then the power equivalence between the internal and external power required for
any w, W, and d, provides the structure of the external power as:

˘ e D
Z

P
b � w dV C

Z

@P
.t � w C 1

2
C � W C p � d/ dA ; (32)

for any P � C , where, for the sake of simplicity, neither volume terms dual to
W nor volume terms dual to d (external volume microforces) are considered. By
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localization, the balance equations for the bulk:

div S C b D 0 ;

div S C 2 skw S D 0 ; in P

div Z � z D 0 ; (33)

and the contact actions (macrotractions, surface microcouples, microtractions):

Sn D t ; Sn D C ; Zn D p ; on @P (34)

are then derived. In Eqs. (33) and (34): b is the vector of the external volume forces;
t and C 2 Skw are the vector and tensor (Skw being the set of second order skew-
symmetric tensors) of surface forces and couples on @P, respectively; p is the vector
of surface microforces exerted through @P .

Equation (33a) expresses the classical linear momentum balance, (33b) the
angular momentum balance and (33c) the micro linear momentum balance. It
is worth noting that this last balance equation, obtained via the virtual power
equivalence, is not obtainable via the standard invariance under Galilean changes
of observers [15]. In Eqs. (33) and (34), S represents the second order macrostress
tensor, S the third order couple-stress tensor, while z and Z are respectively
the vector of the internal volume microstructural actions and the second order
microstress tensor. These last terms account for the additional state of stress on
the body due to the presence of defects and to their interactions. In particular,
the internal force z can be interpreted as an auto-force accounting for the internal
changes of the material configurations due to the presence of defects, while it can
be shown that the stress tensor Z, due to the relative deformation between defects,
is related to the so-called configurational, or material, tensor [14, 21].

It can be shown that the microstrain measures d and rd are non-null under a
rigid micromotion. According to the axiomatic description in [9], it must be then
required that the internal power under rigid macro and micro motions:

˘� D
Z

P
ŒS � .rw � W/� C 1

2
S � rW� C z � d� C Z � rd�� dV (35)

is null for any strain field defined as in [31]: .rw �W/� D 0, rW� D 0, d� D Rd,
rd� D Rrd, where the symbol “” stands for the attribute “rigid”. Then applying
the divergence theorem it is:

˘� D
Z

P

.z � Rd � C Z � Rrd/ dV

D �
Z

P
Rz � d dV C

Z

P
div .R Z/ � d dV �

Z

P
R Z n � d dV

D
Z

P

R � .div Z � z/˝ d dV C
Z

@P
R � Zn ˝ d dA D 0 ; (36)
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and, accounting for the microforce balance, Eq. (33c), it is:

skw.Z n ˝ d/ D 0 ; on @P : (37)

Equation (37) is a micromoment balance equation, playing the role of a constitutive
prescription [9], which implies that the microtraction p is parallel to d.

If only the rigid microstructure is present (d D 0), the internal power is zero for
any rigid velocity field, and no equation must be added to Eqs. (33). In this case the
bulk balance equations obtained using the principle of virtual power correspond to
those of a micropolar continuum (33a, b), with the surface balance (34a, b).

4.2 Second Gradient Continuum

The internal power of a second-gradient continuum (Sect. 3.2) writes:

˘ D
Z

P
T � rw dV C

Z

P
T � r2w dV ; (38)

where P � C is the control volume with boundary @P and outward normal n, C
being the Euclidean region occupied by a body.

Applying the divergence theorem to the term related to the microtraction T it is:

Z

P
T � r2w dV D �

Z

P
divT � rw dV C

Z

@P
Tn � rw dA ; (39)

and, by putting QT D T � divT, Eq. (38) can be rewritten as follows:

˘ D
Z

P

QT � rw dV C
Z

@P
Tn � rw dA: (40)

Then, applying the divergence theorem to the first term of Eq. (40), it is:

Z

P

QT � rw dV D �
Z

P
div QT � w dV C

Z

@P

QTn � w dA: (41)

By decomposing rw as: rw D rsw C @nw ˝ n, with rsw D rw .I � n ˝ n/ and
@nw D rw n, I being the identity tensor, the expression of the internal power (40)
becomes:

˘ D �
Z

P
div QT � w dV C

Z

@P

QTn � w dA C
Z

@P
Tn � rsw dA C

Z

@P
.Tn/n � @nw dA :

(42)
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The theorem of divergence can also be applied to the term of Eq. (42) related to the
surface velocity gradient in several ways [12, 23, 28]. One way consists in exploiting
the surface divergence theorem [12]:

Z

@P

Tn � rsw dA D �
Z

@P
Œdivs.Tn/C 2k.Tn/n� � w dA ; (43)

and then:

˘ D �
Z

@P
div QT � w C

Z

@P
Œ QTn � divs.Tn/� 2k.Tn/n� � w dA

C
Z

@P

.Tn/n � @nw dA ; (44)

where k D � 1
2
trrsn is the mean curvature of @P . In this case the power equivalence

between internal and external power required for any w, W and d, and any P � C ,
provides the structure of the external power as:

˘ e D
Z

P

b � w dV C
Z

@P

.f � w C h � @nw/ dA ; (45)

where b is the body force, f and h are the diffused traction and microtractions on
@P , respectively. By localization the balance equations for the bulk and contact
actions become:

div QT C b D 0 in P ; (46)

with:

QT n � divsTn � 2k.Tn/n D f ;

.Tn/n D h on @P : (47)

Another way of applying the divergence theorem [28] accounts for the presence of
contact actions distributed along lines @.@P/ in such a way that:

Z

@P

Tn � rsw dA D �
Z

@P
divs.Tn/ � w dA C

Z

@.@P/

.Tn/m � w dl ; (48)

where m is a unit vector, orthogonal to both n and to the tangent direction of @.@P/,
pointing outward from the interior of @P. Considering and edge b@P with outwards
normals n and m are not univocally defined it is assumed that:

Z

@.@P/

.Tn/m � w dl D
Z

c@P
< .Tn/m > �w dl ; (49)
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where < .Tn/m > denotes the edge average of .T n/m over the tangent and the
normal vectors of the two surfaces connecting at b@P . Then the internal power can
be rewritten as:

˘ D �
Z

P
div QT � w dV C

Z

@P

h QTn � divs.Tn/
i

� w dA

C
Z

@P

.Tn/n � @nw dA C
Z

c@P
< .Tn/m > dl (50)

Applying the virtual power principle the external power can be written as:

˘ ext D
Z

P
b � w dV C

Z

@P
.f � w C h � @nw/ dA C

Z

c@P
hl � w dl : (51)

where b is the body force, f and h are the diffused traction and microtraction on
@P , respectively, and hl is the traction concentrated at the edge b@P. By localizing,
the local balance equations derived are:

div QT C b D 0 in P ; (52)

with:

QTn � divs.T n/ D f ;

.Tn/n D h on @P ;

< .Tn/m > D hl on b@P : (53)

In the case of the internal power of the continuum of Sect. 3.3, the virtual power
principle gives the balance equations of the Cauchy continuum:

div T C b D 0 in P : (54)

Tn D f on @P : (55)

5 Numerical Simulations

In this paragraph some results of numerical simulations, obtained using COMSOL
Multiphysics© finite element code, are mentioned for highlighting the potentiality
of the non-classical continua described in Sects. 3 and 4.
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5.1 Porous Fibre Reinforced Composites

The main features of the non-classical continua described above, here also called
multifield continua because of the presence of additional degrees of freedom, are
the presence of internal lengths in the material description and spatial dispersion in
wave propagation. For these reasons such continua can be classified as “implicitly”
non-local models [10, 18].

In the continuum with rigid and affine microstructure of Sects. 3.1 and 4.1
dispersion properties are related to the presence of the microvelocity term d in
the equations of motion, that is not a derivative nor in space neither in time. In
the works [31, 34] a one-dimensional problem, a bar with continuous distribution
of microcracks, has been analysed under the effect of free and forced oscillations.
In both cases, the variation of the phase velocity of propagating waves with the
frequency, or the wave number, showed that the additional descriptor d reveals the
presence of the microcrack as a disturbance spread along the bar which alters the
shape and the velocity of the waves, and the that the kind of this disturbance strongly
depends on the microcrack density per unit lengths.

Here the results of a two dimensional panel made of an orthotetragonal porous
ceramic material in tension has been reported in order to show another peculiarity
of the multifield continuum of Sects. 3.1 and 4.1 that is the reduction in stiffness
obtained as an effect of the additional stress/strain state introduced in the multifield
model.

The panel, of length L D 100�m, is simply supported and has different levels
of porosity, evaluated with a pore density factor p (pores area/panel area). In
the multifield model this factor enters into the constitutive tensors M and R of
Eqs. (11) (Fig. 1). It is made of Al2O3 hexagonal grains, of side 22:5 �m, and Co
interfaces, of thickness 1–2�m, with Youngs’ modulus and Poisson’s coefficients:
Eg D 410;000 MPa, �g D 0:25 and Ei D 210;000 MPa, �i D 0:235, respectively.
The grains are not rigid and their deformability has be taken into account in terms of
energy equivalent stiffness at the interfaces: AiEiEg=.EiAi C EgAg/, Ag and Ai being
the grain and interface areas, respectively. The multifield solution has been obtained
and compared with a finite element solution for: p D 0:039 .1/, p D 0:11 .2/,

Fig. 1 Sketch of the ceramic panel
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Fig. 2 Vertical component of displacement along the vertical direction of the panel for different
pore density: .1/ p D 0:039, .2/ p D 0:11, .3/ p D 0:192, .4/ p D 0:254

Fig. 3 Orthotropic block assemblies with different scale and aspect ratios. Left, systems with
interlocking (from top to bottom and left to right: schemes a1–a9). Right, systems without
interlocking (from top to bottom and left to right: schemes b1–b9)

p D 0:192 .3/, p D 0:254 .1/. The two solutions show that the vertical component
of the displacement increases with the increase of the porosity (Fig. 2), confirming
that in such a multifield model the presence of damage can be accounted for as an
additional state of stress and strain rather than a reduction in stiffness, like in internal
variables models with which these results have been compared [17].

5.2 Masonry-Like Materials

Here some results of a parametric study conducted for various schemes of
orthotropic block assemblies is reported. A square panel of side L, made of blocks
of length b and height h, simply supported and subjected to shear load has been
analysed by varying the scale (�1 D b=L, �2 D h=L) and aspect (� D h=b) ratios
(Fig. 3). The panel has been described as a discrete model made of rigid bodies
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Fig. 4 Contour lines of the angular strain component in the discrete, Cosserat (Œrw � W�12),
second gradient and Cauchy (ŒE�12) model. Cases: a1; a4; b7 [32]

interacting by linear elastic springs and as a Cosserat, a second gradient and a
Cauchy model, as identified in Sects. 3 and 4.

Figure 4 shows the contours lines of the angular component of the strain tensors,
in the discrete, Cosserat, (Œrw � W�12 D rw � W � e1 ˝ e2), second gradient and
Cauchy (ŒE�12 D E � e1 ˝ e2), e1, e2 being the unit vectors defining the horizontal
and vertical direction, respectively, obtained for the cases: a1 (�1 D 0:2, �2 D 0:05,
� D 0:25); a4 (�1 D 0:2, �2 D 0:1, � D 0:5); b7 (�1 D 0:2, �2 D 0:2, � D 1). It can
be noted that the Cosserat continuum solution is always in good agreement with the
discrete solution. Differently, the second gradient and Cauchy continua fit well the
response of the discrete model only in the orthotetragonal case (square blocks with
no-interlocking: case b7).

The cases of Fig. 5: a3 (�1 D 0:025, �2 D 0:0125, � D 0:25); a6 (�1 D 0:025,
�2 D 0:025, � D 0:5); b9 (�1 D 0:025, �2 D 0:025, � D 1) show that the
same occurs at finer scales: the differences between the Cauchy/second gradient
and discrete/Cosserat solutions are reduced, but still remain. The correspondence of
all the solutions is obtained only in the orthotetragonal case.

The reason for which second gradient and Cauchy models fail in representing the
behaviour of the discrete systems for orthotropic materials relies in the strong non-
symmetries of the strain and stress tensors. In the discrete as in the Cosserat models
in fact the power term �KK due to relative rotation, which corresponds to the skew-
symmetric part of the strain, plays an important role. Note that in the orthotetragonal
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Fig. 5 Contour lines of the angular strain component in the discrete, Cosserat (Œrw � W�12),
second gradient and Cauchy (ŒE�12) model. Cases: a3; a6; b9 [32]

case it is always �YK D �KY D 0 (see Eqs. (14)). In the second gradient and Cauchy
continua instead the strain, as well as the stress, is symmetric and the relative
rotation term is not present (Eqs. (22)). This can be also confirmed by the results
of Fig. 6 showing the contour lines of the sole non-null component of the relative
rotation in the Cosserat model (ŒR � W�12 D .R � W/ � e1 ˝ e2=�ŒR � W�12 D
.R � W/ � e2 ˝ e1). Here the cases shown are: a1 (�1 D 0:2, �2 D 0:05, � D 0:25);
a7 (�1 D 0:2, �2 D 0:2, � D 1); b7 (�1 D 0:2, �2 D 0:2, � D 1); a3 (�1 D 0:025,
�2 D 0:0125, � D 0:25); a9 (�1 D 0:025, �2 D 0:025, � D 1); b9 (�1 D 0:025,
�2 D 0:025, � D 1). This component reduces with the loss of interlocking becoming
null in the orthotetragonal case (b7, b9).

Overall, this parametric study shows that the Cosserat continuum works well both
in case of particles of significant size and when it is necessary to account for strong
non-symmetries in strain and stress, like in orthotetragonal assemblies. The second
gradient continuum, differently from the classical continuum, can represent the scale
effects but, as the Cauchy continuum, lacks of the descriptor for the relative rotation
(i.e. strain non-symmetry) that can be predominant in orthotropic assemblies.
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Fig. 6 Contour lines of the relative rotation in the Cosserat model. Cases: a1; a7; b7; a3; a9; b9
(courtesy of A. Pau)

6 Final Remarks

The discrete modelling of materials, crucial in the past for building constitutive the-
ories for solids, can still be of help in determining physically plausible constitutive
models for complex materials. The most significant suggestion, in a sense derived
by Voigt and Poincaré, is the idea to build-up a refined non-local intermolecular
potential based on appropriate, physically based, complex discrete systems to define
case by case. Where refined here means to extend the concept of “molecule” for
representing the various internal phases and to use generalized correspondence maps
between discrete and continuum descriptors.

Scale-dependent continuous macro models have been unambiguously identi-
fied from complex discrete micro-models using the power equivalence procedure
described in Sect. 3 using generalized correspondence laws between the large set of
degrees of freedom of the discrete and the continuum field descriptors. In this way
the macroscopic stress measures have been identified in terms of the constitutive
constants and the geometry of the micro-model. In order to provide physical
consistency to multifield continua, the constitutive relations have been finally
derived assuming physically-based response functions for the lattice interactions.

These continua retains memory of the fine organization of the material by means
of additional field descriptors and satisfy the basic requirements for the mechanical
modelling of complex materials, that is: the presence of internal lengths and spatial
dispersion in wave propagation, which in turn define the non-local character of the
material description.
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