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Abstract. Template attacks and machine learning are two popular
approaches to profiled side-channel analysis. In this paper, we aim to con-
tribute to the understanding of their respective strengths and weaknesses,
with a particular focus on their curse of dimensionality. For this purpose,
we take advantage of a well-controlled simulated experimental setting in
order to put forward two important intuitions. First and from a theoretical
point of view, the data complexity of template attacks is not sensitive to
the dimension increase in side-channel traces given that their profiling is
perfect. Second and from a practical point of view, concrete attacks are
always affected by (estimation and assumption) errors during profiling.
As these errors increase, machine learning gains interest compared to tem-
plate attacks, especially when based on random forests.

1 Introduction

In a side-channel attack, an adversary targets a cryptographic device that emits
a measurable leakage depending on the manipulated data and/or the executed
operations. Typical examples of physical leakages include the power consump-
tion [15], the processing time [14] and the electromagnetic emanation [9].

Evaluating the security level of cryptographic implementations is an impor-
tant concern, e.g. for modern smart cards. In this respect, profiled attacks
are useful tools, since they can be used to approach their worst-case security
level [24]. Such attacks essentially work in two steps: first a leakage model is esti-
mated during a so-called profiling phase, then the leakage model is exploited to
extract key-dependent information in an online phase. Many different approaches
to profiling have been introduced in the literature. Template Attacks (TA),
e.g. based on a Gaussian assumption [4], are a typical example. The stochastic
approach exploiting Linear Regression (LR) is a frequently considered alterna-
tive [22]. More recently, solutions relying on Machine Learning (ML) have also
been investigated [2,11–13,16,17,19]. These previous works support the claim
that ML-based attacks are effective and lead to successful key recoveries. This
is natural since they essentially exploit the same discriminating criteria as TA
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and LR (i.e. a difference in the mean traces corresponding to different interme-
diate computations if an unprotected implementation is targeted – a difference
in higher-order statistical moments if the device is protected with masking).
By contrast, it remains unclear whether ML can lead to more efficient attacks,
either in terms of profiling or in terms of online key recovery. Previous publica-
tions conclude in one or the other direction, depending on the implementation
scenario considered, which is inherent to such experimental studies.

In this paper, we aim to complement these previous works with a more sys-
tematic investigation of the conditions under which ML-based attacks may out-
perform TA (or not)1. For this purpose, we start with the general intuition that
ML-based approaches are generally useful in order to deal with high-dimensional
data spaces. Following, our contributions are twofold. First, we tackle the (the-
oretical) question whether the addition of useless (i.e. non-informative) leakage
samples in leakage traces has an impact on their informativeness if a perfect
profiling phase is achieved. We show that the (mutual) information leakage esti-
mated with a TA exploiting such a perfect model is independent of the number
of useless dimensions if the useless leakage samples are independent of the useful
ones. This implies that ML-based attacks cannot be more efficient than tem-
plate attacks in the online phase if the profiling is sufficient. Second, we study
the practical counterpart of this question, and analyze the impact of imperfect
profiling on our conclusions. For this purpose, we rely on a simulated experimen-
tal setting, where the number of (informative and useless) dimensions is used
as a parameter. Using this setting, we evaluate the curse of dimensionality for
concrete TA and compare it with ML-based attacks exploiting Support Vector
Machines (SVM) and Random Forests (RF). That is, we considered SVM as
a popular tool in the field of side-channel analysis, and RF as an interesting
alternative (since its random feature selection makes its behavior quite differ-
ent than TA and SVM). Our experiments essentially conclude that TA outper-
form ML-based attacks whenever the number of dimensions can be kept reason-
ably low, e.g. thanks to a selection of Points of Interests (POI), and that ML
(and RF in particular) become(s) interesting in “extreme” profiling conditions
(i.e. with large traces and a small profiling sets) – which possibly arise when
little information about the target device is available to the adversary.

As a side remark, we also observe that most current ML-based attacks rate key
candidates according to (heuristic) scores rather than probabilities. This prevents
the computation of probability-based metrics (such as the mutual/perceived infor-
mation [20]). It may also have an impact on the efficiency of key enumeration [25],
which is an interesting scope for further investigation.

The rest of the paper is organized as follows. Section 2 contains notations, the
attacks considered, our experimental setting and evaluation metrics. Section 3
presents our theoretical result on the impact of non-informative leakage samples in
perfect profiling conditions. Section 4 discusses practical (simulated) experiments

1 Note that the gain of LR-based attacks over TA is known and has been analyzed,
e.g. in [10,23]. Namely, it essentially depends on the size of the basis used in LR.
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in imperfectprofiling conditions, indifferent contexts.Eventually, Sect. 5 concludes
the paper and discusses perspectives of future work.

2 Background

2.1 Notations

We use capital letters for random variables and small caps for their realiza-
tions. We use sans serif font for functions (e.g. F) and calligraphic fonts for sets
(e.g. A). We denote the conditional probability of a random variable A given B
with Pr [A|B] and use the acronym SNR for the signal-to-noise ratio.

2.2 Template Attacks

Let lx,k be a leakage trace measured on a cryptographic device that manipulates
a target intermediate value v = f(x, k) associated to a known plaintext (byte) x
and a secret key (byte) k. In a TA, the adversary first uses a set of profiling traces
Lp in order to estimate a leakage model, next denoted as P̂rmodel

[
lx,k | θ̂x,k

]
,

where θ̂x,k represents the (estimated) parameters of the leakage Probability Den-
sity Function (PDF). The set of profiling traces is typically obtained by mea-
suring a device that is similar to the target, yet under control of the adversary.
Next, during the online phase, the adversary uses a set of new attack traces
La (obtained by measuring the target device) and selects the secret key (byte)
k̃ maximizing the product of posterior probabilities:

k̃ = argmax
k∗

∏
lx,k∈La

P̂rmodel

[
lx,k | θ̂x,k∗

]
· Pr[k∗]

P̂rmodel[lx,k]
· (1)

Concretely, the seminal TA paper suggested to use Gaussian estimations for the
leakage PDF [4]. We will follow a similar approach and consider a Gaussian
(simulated) experimental setting. It implies that the parameters θ̂x,k correspond
to mean vectors μ̂x,k and covariance matrices Σ̂x,k. However, we note that
any other PDF estimation could be considered by the adversary/evaluator [8].
We will further consider two types of TA: in the Naive Template Attack (NTA),
we will indeed estimate one covariance matrix per intermediate value; in the Effi-
cient Template Attack (ETA), we will pool the covariance estimates (assumed
to be equal) across all intermediate values, as previously suggested in [5].

In the following, we will keep the lx,k and v notations for leakage traces and
intermediate values, and sometimes omit the subscripts for simplicity.

2.3 Support Vector Machines

In their basic (two-classes) context, SVM essentially aims at estimating Boolean
functions [6]. For this purpose, it first performs a supervised learning with labels
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(e.g. v = −1 or v = 1), annotating each sample of the profiling set. The binary
SVM estimates a hyperplane y = ŵ�l + b̂ that separates the two classes with
the largest possible margin, in the geometrical space of the vectors. Then in the
attack phase, any new trace l will be assigned a label ṽ as follows:

ṽ =

{
1 (ŵ�l + b̂) ≥ 1,

−1 otherwise.
(2)

Mathematically, SVM finds the parameters ŵ ∈ R
ns (where ns is the number of

time samples per trace) and b̂ ∈ R by solving the convex optimization problem:

min
w,b

1
2 (w�w),

subject to v(w�φ(lv) + b) ≥ 1,
(3)

where φ denotes a projection function that maps the data into a higher (some-
times infinite) dimensional space usually denoted as the feature space. Our
experiments considered a Radial Basis kernel Function φ (RBF), which is a
commonly encountered solution, both in the machine learning field and the side-
channel communities. The RBF kernel maps the traces into an infinite dimen-
sional Hilbert space in order to find a hyperplane that efficiently discriminate the
traces. It is defined by a parameter γ that essentially relates to the “variance”
of the model. Roughly, the variance of a model is a measure on the variance of
its output in function of the variance of the profiling set. The higher the value
of γ, the lower the variance of the model is. Intuitively, the variance of a model
therefore relates to its complexity (e.g. the higher the number of points per trace,
the higher the variance of the model). We always selected the value of γ as one
over the number of points per trace, which is a natural choice to compensate
the increase of the model variance due to the increase of the number of points
per trace. Future works could focus on other strategies to select this parameter,
although we do not expect them to have a strong impact on our conclusions.

When the problem of Eq. 3 is feasible with respect to the constraints, the data is
said to be linearly separable in the feature space.As the problem is convex, there is a
guarantee to find a unique global minimum. SVM can be generalized to multi-class
problems (whichwill be useful in our contextwith typically 256 target intermediate
values) and produce scores for intermediate values based on the distance to the
hyperplane. In our experiments, we considered the “one-against-one” approach.
In a one-against-one strategy, the adversary builds one SVM for each possible pair
of target values. During the attack phase, the adversary selects the target value
with a majority vote among the set of SVMs. Because of place constraints, we refer
to [7] for a complete explanation.

2.4 Random Forests

Decision trees are classification models that use a set of binary rules to calculate
a target value. They are structured as diagrams made of nodes and directed
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edges, where nodes can be of three types: root (i.e. the top node in the tree),
internal (represented by a circle in Fig. 1) and leaf (represented by a square in
Fig. 1). In our side-channel context, we typically consider decision trees in which
(1) the value associated to a leaf is a class label corresponding to the target to
be recovered, (2) each edge is associated to a test on the value of a time sample
in the leakage traces, and (3) each internal node has one incoming edge from a
node called the parent node, as also represented in Fig. 1.

In the profiling phase, learning data is used to build the model. For this pur-
pose, the learning set is first associated to the root. Then, this set is split based
on a time sample that most effectively discriminates the sets of traces associated
to different target intermediate values. Each subset newly created is associated
with a child node. The tree generator repeats this process on each derived sub-
set in a recursive manner, until the child node contains traces associated to the
same target value or the gain to split the subset is less than some threshold.
That is, it essentially determines at which time sample to split, the value of the
split, and the decision to stop or to split again. It then assigns terminal nodes
to a class (i.e. intermediate value). Next, in the attack phase, the model simply
predicts the target intermediate value by applying the classification rules to the
new traces to classify. We refer to [21] for more details on decision trees.

t1 t2 t3

3.1

3.2

3.3

l(t1) < 3.4

t4

1
l(t1) < 3.2

0

rootclass: 0
           13.4

l(t3) < 3.23

1 0
time

le
ak

ag
e

Fig. 1. Decision tree with two classes (l(t1) is the leakage at time t1).

The Random Forests (RF) introduced by Breiman can be seen as a collection
of classifiers using many (unbiased) decision trees as models [3]. It relies on model
averaging (aka bagging) that leads to have a low variance of the resulting model.
After the profiling phase, RF returns the most consensual prediction for a target
value through a majority vote among the set of trees. RF are based on three
main principles. First, each tree is constructed with a different learning set by
re-sampling (with replacement) the original dataset. Secondly, the nodes of the
trees are split using the best time sample among a subset of randomly chosen
ones (by contrast to conventional trees where all the time samples are used).
The size of this subset was set to the square of the number of time samples
(i.e.

√
ns) as suggested by Breiman. These features allow obtaining decorrelated

trees, which improves the accuracy of the resulting RF model. Finally, and unlike
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conventional decision trees as well, the trees of a RF are fully grown and are not
pruned, which possibly leads to overfitting (i.e. each tree has a low bias but a high
variance) that is reduced by averaging the trees. The main (meta-) parameters
of a RF are the number of trees. Intuitively, increasing the number of trees
reduces the instability (aka variance) of the models. We set this number to 500
by default, which was sufficient in our experiments in order to show the strength
of this model compared to template attack. We leave the detailed investigation
of these parameters as an interesting scope for further research.

2.5 Experimental Setting

Let lp,k (t) be the t-th time sample of the leakage trace lp,k. We consider contexts
where each trace lp,k represents a vector of ns samples, that is:

lp,k = {lp,k (t) ∈ R | t ∈ [1;ns]} . (4)

Each sample represents the output of a leakage function. The adversary has access
to a profiling set of Np traces per target intermediate value, in which each trace has
d informative samples and u uninformative samples (with d + u = ns).
The informative samples are defined as the sum of a deterministic part represent-
ing the useful signal (denoted as δ) and a random Gaussian part representing the
noise (denoted as ε), that is:

lp,k (t) = δt (p, k) + εt, (5)

where the noise is independent and identically distributed for all t’s. In our
experiments, the deterministic part δ corresponds to the output of the AES
S-box, iterated for each time sample and sent through a function G, that is:

δt (p, k) = G
(
SBoxt (p ⊕ k)

)
, (6)

where:

SBox1 (p ⊕ k) = SBox (p ⊕ k) ,

SBoxt (p ⊕ k) = SBox
(
SBoxt−1 (p ⊕ k)

)
.

Concretely, we considered a function G that is a weighted sum of the S-box out-
put bits. However, all our results can be generalized to other functions (prelim-
inary experiments did not exhibit any deviation with highly non-linear leakage
functions – which is expected in a first-order setting where the leakage infor-
mativeness essentially depends on the SNR [18]). We set our signal variance to
1 and used Gaussian distributed noise variables εt with mean 0 and variance
σ2 (i.e. the SNR was set to 1

σ2 ). Eventually, uninformative samples were simply
generated with only a noisy part. This simulated setting is represented in Fig. 2
and its main parameters can be summarized as follows:

– Number of informative points per trace (denoted as d),
– Number of uninformative points per trace (denoted as u),
– Number of profiling traces per intermediate value (denoted as Np),
– Number of traces in the attack step (noted Na),
– Noise variance (denoted as σ2) and SNR.
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Fig. 2. Simulated leaking implementations.

2.6 Evaluation Metrics

The efficiency of side-channel attacks can be quantified according to various
metrics. We will use information theoretic and security metrics advocated in [24].

Success Rate (SR). For an attack targeting a subkey (e.g. a key byte) and
allowing to sort the different candidates, we define the success rate of order o as
the probability that the correct subkey is ranked among the first o candidates.
The success rate is generally computed in function of the number of attack traces
Na (given a model that has been profiled using Np traces). In the rest of this
paper, we focus on the success rate of order 1 (i.e. the correct key rated first).

Perceived/Mutual Information (PI/MI). Let X,K,L be random variables
representing a target key byte, a known plaintext and a leakage trace. The
perceived information between the key and the leakage is defined as [20]:

P̂I(K;X,L) = H(K) +
∑
k∈K

Pr[k]
∑
x∈X

Pr[x]
∑
l∈L

Prchip[l|x, k] · log2 P̂rmodel[k|x, l].

The PI measures the adversary’s ability to interpret measurements coming from
the true (unknown) chip distribution Prchip[l|x, k] with an estimated model
P̂rmodel[l|x, k]. Prchip[l|x, k] is generally obtained by sampling the chip distribu-
tion (i.e. making measurement). Of particular interest for the next section will
be the context of perfect profiling, where we assume that the adversary’s model
and the chip distribution are identical (which, strictly speaking, can only happen
in simulated experimental settings since any profiling based on real traces will
at least be imperfect because of small estimation errors [8]). In this context, the
estimated PI will exactly correspond to the (worst-case) estimated MI.

Information theoretic metrics such as the MI/PI are especially interesting for
the comparison of profiled side-channel attacks as we envision here. This is because
they can generally be estimated based on a single plaintext (i.e. with Na = 1)
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whereas the success rate is generally estimated for varying Na’s. In other words,
their scalar value provides a very similar intuition as the SR curves [23]. Unfortu-
nately, the estimation of information theoretic metrics requires distinguishers pro-
viding probabilities, which is not the case of ML-based attacks2. As a result, our
concrete experiments comparing TA, SVM and RF will be based on estimations of
the success rate for a number of representative parameters.

3 Perfect Profiling

In this section, we study the impact of useless samples in leakage traces on
the performances of TA with perfect profiling (i.e. the evaluator perfectly knows
the leakages’ PDF). In this context, we will use Pr for both Prmodel and Prchip
(since they are equal) and omit subscripts for the leakages l to lighten notations.

Proposition 1. Let us assume two TA with perfect models using two different
attack traces l1 and l2 associated to the same plaintext x: l1 is composed of d
samples providing information and l2 = [l1||ε] (where ε = [ε1, ..., εu] represents
noise variables independent of l1 and the key.). Then the mutual information
leakage MI(K;X,L) estimated with their (perfect) leakage models is the same.

Proof. As clear from the definitions in Sect. 2.6, the mutual/perceived informa-
tion estimated thanks to TA only depend on Pr[k|l]. So we need to show that
these conditional probabilities Pr[k|l2] and Pr[k|l1] are equal. Let k and k′ rep-
resent two key guesses. Since ε is independent of l1 and k, we have:

Pr[l2|k′]
Pr[l2|k]

=
Pr[l1|k′] · Pr[ε|k′]
Pr[l1|k] · Pr[ε|k]

,

=
Pr[l1|k′] · Pr[ε]
Pr[l1|k] · Pr[ε]

,

=
Pr[l1|k′]
Pr[l1|k]

. (7)

This directly leads to:
∑

k′∈K Pr[l2|k′]
Pr[l2|k]

=
∑

k′∈K Pr[l1|k′]
Pr[l1|k]

,

Pr[l2|k]∑
k′∈K Pr[l2|k′]

=
Pr[l1|k]∑

k′∈K Pr[l1|k′]
,

Pr[k|l2] = Pr[k|l1], (8)

which concludes the proof.
2 There are indeed variants of SVM and RF that aim to remedy to this issue. Yet, the

“probability-like” scores they output are not directly exploitable in the estimation of
information theoretic metrics either. For example, we could exhibit examples where
probability-like scores of one do not correspond to a success rate of one.
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Quite naturally, this proof does not hold as soon as there are dependencies
between the d first samples in l1 and the u latter ones. This would typically
happen in contexts where the noise at different time samples is correlated (which
could then be exploited to improve the attack). Intuitively, this simple result
suggests that in case of perfect profiling, the detection of POI is not necessary
for a TA, since useless points will not have any impact on the attack’s success.
Since TA are optimal from an information theoretic point-of-view, it also means
that the ML-based approaches cannot be more efficient in this context.

Note that the main reason why we need a perfect model for the result to hold
is that we need the independence between the informative and non-informative
samples to be reflected in these models as well. For example, in the case of
Gaussian templates, we need the covariance terms that corresponds to the cor-
relation between informative and non-informative samples to be null (which will
not happen for imperfectly estimated templates). In fact, the result would also
hold for imperfect models, as long as these imperfections do not suggest signifi-
cant correlation between these informative and non-informative samples. But of
course, we could not state that TA necessarily perform better than ML-based
attacks in this case. Overall, this conclusion naturally suggests a more prag-
matic question. Namely, perfect profiling never occurs in practice. So how does
this theoretical intuition regarding the curse of dimensionality for TA extend
to concrete profiled attack (with bounded profiling phases)? We study it in the
next section.

4 Experiments with Imperfect Profiling

We now consider examples of TA, SVM- and RF-based attacks in order to gain
intuition about their behavior in concrete profiling conditions. As detailed in
Sect. 2, we will use a simulated experimental setting with various number of
informative and uninformative samples in the leakage traces for this purpose.

4.1 Nearly Perfect Profiling

As a first experiment, we considered the case where the profiling is “sufficient” –
which should essentially confirm the result of Proposition 1. For this purpose, we
analyzed simulated leakage traces with 2 informative points (i.e. d = 2), u = 0
and u = 15 useless samples, and a SNR of 1, in function of the number of traces
per intermediate value in the profiling set Np. As illustrated in Fig. 3, we indeed
observe that (e.g.) the PI is independent of u if the number of traces in the profil-
ing set is “sufficient” (i.e. all attacks converge towards the same PI in this case).
By contrast, we notice that this “sufficient” number depends on u (i.e. the more
useless samples, the largerNp needs to be). Besides,we also observe that the impact
of increasing u is stronger for NTA than ETA, since the first one has to deal with
a more complex estimation. Indeed, the ETA has 256 times more traces than the
NTA to estimate the covariance matrice. So overall, and as expected, as long a the
profiling set is large enough and the assumptions used to build the model capture
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the leakage samples sufficiently accurately, TA are indeed optimal, independent of
the number of samples they actually profile. So there is little gain to expect from
ML-based approaches in this context.
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Fig. 3. Perceived information for NTA and ETA in function of Np with SNR=1.

4.2 Imperfect Profiling

We now move to the more concrete case were profiling is imperfect. In our simu-
lated setting, imperfections naturally arise from limited profiling (i.e. estimation
errors): we will investigate their impact next and believe they are sufficient to put
forward some useful intuitions regarding the curse of dimensionality in (profiled)
side-channel attacks. Yet, we note that in general, assumption errors can also
lead to imperfect models, that are more difficult to deal with (see, e.g. [8]) and
are certainly worth further investigations. Besides, and as already mentioned,
since we now want to compare TA, SVM and RF, we need to evaluate and com-
pare them with security metrics (since the two latter ones do not output the
probabilities required to estimate information theoretic metrics).

In our first experiment, we set again the number of useful dimensions to d = 2
and evaluated the success rate of the different attacks in function of the number
of non-informative samples in the leakages traces (i.e. u), for different sizes of
the profiling set. As illustrated in Fig. 4, we indeed observe that for a sufficient
profiling, ETA is the most efficient solution. Yet, it is also worth observing that
NTA provides the worst results overall, which already suggests that comparisons
are quite sensitive to the adversary/evaluator’s assumptions. Quite surprisingly,
our experimental results show that up to a certain level, the success rate of RF
increases with the number of points without information. The reason is intrinsic
to the RF algorithm in which the trees need to be as decorrelated as possible.
As a result, increasing the number of points in the leakage traces leads to a better
independence between trees and improves the success rate. Besides, the most
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interesting observation relates to RF in high dimensionality, which remarkably
resists the addition of useless samples (compared to SVM and TA). The main
reason for this behavior is the random feature selection embedded into this tool.
That is, for a sufficient number of trees, RF eventually detects the informative
POI in the traces, which makes it less sensitive to the increase of u. By contrast,
TA and SVM face a more and more difficult estimation problem in this case.

0 50 100 150 200 250

0.0

0.2

0.4

0.6

0.8

1.0

1.2

number of non−informative points

su
cc

es
s 

ra
te

RF_Np=50
RF_Np=100
SVM_Np=50

SVM_Np=100
ETA_Np=50
ETA_Np=100

ETA_Np=1000
NTA_Np=50
NTA_Np=1000

Fig. 4. Success rate for NTA, ETA, SVM and RF in fct. of the number of useless
samples u, for various sizes of the profiling set Np, with d = 2, SNR=1, Na = 15.

Another noticeable element of Fig. 4 is that SVM and RF seem to be bounded
to lower success rates than TA. But this is mainly an artifact of using the success
rate as evaluation metric. As illustrated in Fig. 5 increasing either the number of
informative dimensions in the traces d or the number of attack traces Na leads
to improved success rates for the ML-based approaches as well. For the rest, the
latter figure does not bring significantly new elements. We essentially notice that
RF becomes interesting over ETA for very large number of useless dimensions
and that ETA is most efficient otherwise.

Eventually, the interest of the random feature selection in RF-based models
raises the question of the time complexity for these different attacks. That is,
such a random feature selection essentially works because there is a large enough
number of trees in our RF models. But increasing this number naturally increases
the time complexity of the attacks. For this purpose, we report some results
regarding the time complexity of our attacks in Fig. 6. As a preliminary note, we
mention that those results are based on prototype implementations in different
programming languages (C for TA, R for SVM and RF). So they should only
be taken as a rough indication. Essentially, we observe an overhead for the time
complexity of ML-based attacks, which vanishes as the size of the leakage traces
increases. Yet, and most importantly, this overhead remains comparable for SVM
and RF in our experiments (mainly due to the fact that the number of trees was
set to a constant 500). So despite the computational cost of these attacks is not
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Fig. 5. (a) Success rate for NTA, ETA, SVM and RF in function of the number of
useless samples u, with parameters Np = 25, d = 5, SNR=1 and Na = 15. (b) Similar
experiment with parameters Np = 50 d = 2, SNR=1 and Na = 30.
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Fig. 6. Time complexity for ETA, SVM and RF in fct. of the number of useless samples,
for d = [2, 12] and Np = 25. (a) Profiling phase. (b) Attack phase.

negligible, it remains tractable for the experimental parameters we considered
(and could certainly be optimized in future works).

5 Conclusion

Our results provide interesting insights on the curse of dimensionality for side-
channel attacks. From a theoretical point of view, we first showed that as long as
a limited number of POI can be identified in leakage traces and contain most of
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the information, TA are the method of choice. Such a conclusion extends to any
scenario where the profiling can be considered as “nearly perfect”. By contrast,
we also observed that as the number of useless samples in leakage traces increases
and/or the size of the profiling set becomes too limited, ML-based attacks gain
interest. In our simulated setting, the most interesting gain is exhibited for RF-
based models, thanks to their random feature selection. Interestingly, the recent
work of Banciu et al. reached a similar conclusion in a different context, namely,
Simple Power Analysis and Algebraic Side-Channel Analysis [1].

Besides, and admittedly, the simulated setting we investigated is probably
most favorable to TA, since only estimation errors can decrease the accuracy of
the adversary/evaluator models in this case. One can reasonably expect that real
devices with harder to model noise distributions would improve the interest of
SVM compared to ETA – as has been suggested in previously published works.
As a result, the extension of our experiments towards other distributions is an
interesting avenue for further research. In particular, the study of leakage traces
with correlated noise could be worth additional investigations in this respect.
Meanwhile, we conclude with the interesting intuition that TA are most effi-
cient for well understood devices, with sufficient profiling, as they can approach
the worst-case security level of an implementation in such context. By contrast,
ML-based attacks (especially RF) are promising alternative(s) in black box set-
tings, with only limited understanding of the target implementation.
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