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Preface

The 6th International Workshop on Constructive Side-Channel Analysis and Secure
Design (COSADE) was held in Berlin, Germany, during April 13–14, 2015. This
workshop each year brings together researchers and experts from academia, industry,
and government who are working on cryptographic implementations and secure design.

COSADE 2015 received 48 submissions in the domain of side-channel analysis,
fault attacks, and secure design, out of which 17 papers were selected. Each paper was
reviewed by at least four independent reviewers. The Program Committee consisted of
33 members from 12 countries in America, Asia, and Europe who were carefully
selected to represent a balanced view of both academia and industry. The members
of the Program Committee were supported in their challenging task by 82 external
reviewers. We would like to thank all committee members and reviewers for their hard
work. The submission and reviewing process was done using the EasyChair system.

We were excited that Ross Anderson and Emmanuel Prouff accepted our invitations
to give invited talks. Ross Anderson provided an excellent overview on “Why Cryp-
tosystems Still Fail”, while Emmanuel Prouff expounded on “Algorithmic Approaches
to Defeat Side Channel Analysis”. Beside the invited talks and the accepted papers, an
update of the current state of the DPA Contest v4 was also presented at COSADE
2015. The paper “Side-Channel Security Analysis of Ultra-Low-Power FRAM-based
MCUs” by Amir Moradi and Gesine Hinterwaelder received the best paper award.

We would like to thank the local organizers, in particular Claudia Petzsch and
Matthias Petschik, as well as the general chair Jean-Pierre Seifert, for their support and
for making this great event possible. On behalf of the COSADE community we would
also like to thank the COSADE 2015 sponsors. Finally and most importantly, we
would like to thank the authors for their excellent contributions.

May 2015 Stefan Mangard
Axel Y. Poschmann
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Improving Non-profiled Attacks
on Exponentiations Based on Clustering

and Extracting Leakage from Multi-channel
High-Resolution EM Measurements

Robert Specht1(B), Johann Heyszl1, Martin Kleinsteuber2, and Georg Sigl2

1 Fraunhofer Institute AISEC, Munich, Germany
{robert.specht,johann.heyszl}@aisec.fraunhofer.de

2 Technische Universität München, Munich, Germany
{kleinsteuber,sigl}@tum.de

Abstract. The success probability of side-channel attacks depends on
the used measurement techniques as well as the algorithmic process-
ing to exploit available leakage. This is particularly critical in case of
asymmetric cryptography, where attackers are only allowed single side-
channel observations because secrets are either ephemeral or blinded
by countermeasures. We focus on non-profiled attacks which require
less attacker privileges and cannot be prevented easily. We significantly
improve the algorithmic processing in non-profiled attacks based on clus-
tering against exponentiation-based implementations compared to previ-
ous contributions. This improvement is mainly due to PCA and a strat-
egy to select few mid-ranked components where exploitable, low-variance
leakage is concentrated. As a result from a practical experiment using
single-channel high-resolution magnetic field measurements, we report a
significant improvement in the number of successful attacks. Further, we
present the first practical results from using three such channels simul-
taneously. The combination of three channels leads to further improved
results over the best individual channel when applying a profiled template
attack. The clustering-based algorithmic approach for the non-profiled
attack, however, does not show improvements from the combination.

1 Introduction

The side-channel information leakage about secret-dependent internal values is
usually limited. Attackers who target implementations of symmetric ciphers may
repeat measurements many times to collect sufficient leakage information while
the secret remains unchanged. In case of asymmetric algorithms, however, the
secret is either ephemeral or blinded through countermeasures and attackers
are only allowed one side-channel observation. Hence, it is crucial to record and
exploit as much leakage as possible. Profiled attacks, e.g. template attacks, are
powerful in exploiting leakage efficiently, however, can be prevented by blind-
ing or by preventing attackers from gaining full access for profiling. Non-profiled

c© Springer International Publishing Switzerland 2015
S. Mangard and A.Y. Poschmann (Eds.): COSADE 2015, LNCS 9064, pp. 3–19, 2015.
DOI: 10.1007/978-3-319-21476-4 1



4 R. Specht et al.

attacks cannot be prevented in this way, because they do not require profiles
and hence, are a much bigger threat to devices. Heyszl et al. [8] proposed to use
well-established clustering algorithms for non-profiled attacks. They use k-means
clustering after a simple sum-of-squares pre-processing of the measurement data
in their practical experiments.

We follow their proposal and significantly improve the algorithmic approach.
Principal Component Analysis (PCA) has been used for pre-processing and data
reduction in other side-channel attacks [2,3,5,15,22]. Also, strategies to select
only certain principal components have previously been mentioned [3]. We apply
(PCA) to clustering-based, non-profiled attacks on exponentiation algorithms
and performed practical experiments on an FPGA-based implementation of
Elliptic Curve Cryptography (ECC) by using high-resolution electromagnetic
measurements as side-channel. We find that PCA concentrates exploitable leak-
age with comparably low variance into few components which are not the highest-
ranked ones. Hence, as an important step after transformation, we discard high-
ranked as well as many low-ranked components during a parametrized selection.
In our non-profiled setting, this requires some testing for the right selection
parameters, hence, brute-force by the attacker. However, significantly improved
attack results clearly justify this. For cluster classification, we use the expecta-
tion maximization algorithm instead of the k-means algorithm [8]. The resulting
attack is successful with single-channel measurements in significantly more cases
than if using the algorithmic approach by Heyszl et al. [8]. Most of the achieved
algorithmic improvement can be attributed on using PCA and the component
selection as pre-processing technique before clustering. Like expected, a profiled
template attack still outperforms the improved non-profiled attack.

Another way to improve attacks in single-execution settings is to use mul-
tiple simultaneous channels and combine their leakage. Previous contributions
have tested the combination of (low-resolution) magnetic field measurements
and current consumption measurements [1,22] using template attacks. High-
resolution magnetic field measurements should generally provide better signal
qualities [10] and allow to capture multiple independent channels because the
signals highly depend on measurement locations [9]. We present the first practi-
cal results from using three high-resolution magnetic field probes simultaneously
and combine them in the clustering-based non-profiled attack. However, we find
that the combination of three channels does not improve the results using the
non-profiled PCA- and clustering-based attack compared to the best individ-
ual channel. We conclude that in the non-profiled setting, our approach seems
unsuitable for combining multi-channel data. The profiled template attack, how-
ever, leads to a significant improvement through the combination of channels. In
profiled settings, attackers are able to find the best measurement positions for
single channels. Hence, the additional cost for multi-channel equipment is only
reasonable in profiled settings and if the available leakage is still insufficient.

We first explain the background and related work of (non-profiled) attacks
against exponentiations in Sect. 2.1. In Sect. 2.2, we cover the background and
related work of magnetic field side-channels and multi-channel measurements.
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In our first main Sect. 3, we describe our algorithmic approach to improve
clustering-based attacks on exponentiations and to handle multi-channel data.
We back these considerations by practical experiments in Sect. 4 and discuss the
results. We summarize our contribution and findings in Sect. 5.

2 Preliminaries

2.1 Non-profiled Attacks Against Exponentiations

The main computation in public key cryptosystems is modular integer expo-
nentiation with secret exponents (e.g. RSA, DSA) or elliptic curve scalar mul-
tiplication (e.g. ECDSA) with secret scalars. In this contribution, we use the
generalized terms ‘exponentiation algorithms’ and ‘secret exponents’. The secret
exponent is usually either ephemeral by design (e.g. ECDSA) or blinded through
countermeasures (e.g. exponent blinding in RSA, or in ECDSA to prevent pro-
filing). Therefore, it is different for every execution and side-channel attackers
may only exploit single executions. The first single-execution attack on exponen-
tiations was presented by Kocher [13] who exploits data-dependent execution
times of algorithms. To avoid this, improved algorithms like the square-and-
multiply-always, double-and-add-always or the Montgomery ladder algorithm
have constant operation sequences (e.g. side-channel atomic routines) to avoid
such simple side-channel attacks. In all those algorithms, exponents are scanned
bit- or digit-wise (depending on whether it is a binary, m-ary, or sliding window
exponentiation) and the computation is performed in a loop iterating a con-
stant sequence of operations. (We will continue to refer to the binary case in this
contribution.) Nonetheless, some side-channel leakage about the processed expo-
nent remains in many cases which can be referred to as single-execution leakage.
Examples include data-dependent leakage from using pre-computed multiples in
digit-wise multiplications [25], address-bit leakage [12], location-dependent leak-
age from accessing different storage locations [9], or operation-dependent leakage,
e.g., when square and multiply operations can be distinguished [4].

Attacks against an exponentiation are carried out by partitioning side-
channel measurements into trace-segments with each segment corresponding to
an independently processed bit of the secret exponent. The segmentation borders
are either known a priori, or can often be derived from visual inspection or com-
parison of shifted trace parts. The trace for measuring n exponent bits consists
of n trace-segments td = (t1+(d−1)·l, ..., td·l) with d ∈ [1, n], each of which is of
length l (time-samples) which is referred to as its dimensionality (of features). For
analyzing and attacking the measurement data, a n× l matrix M is constructed
by placing each segment in one row. The contained leakage is exploited to find
a structure, or partitioning of the rows due to secret exponent values. Template
attacks use a profiling step to create templates of the segments for different
values. Profiling can be prevented in many cases by blinding countermeasures
or not allowing attackers full access to devices for profiling. We concentrate on
non-profiled attacks because they are more powerful and threatening.
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There have been several published attacks on exponentiations which do not
require profiling. Walter [25] was the first to describe an attack by using a cus-
tom algorithm (resembling a clustering algorithm) to partition the segments
into buckets. Messerges et al. [16], Clavier et al. [6], and Witteman et al. [26]
use cross-correlation in non-profiled single-execution attacks on exponentiations.
We pursue the approach by Heyszl et al. [8] who promote the use of estab-
lished clustering algorithms (such as e.g. k-means) for non-profiled attacks due
to the generality of their approach and support for the combination of multiple
channels. A correct classification of trace-segments equals the recovery of the
secret exponent. (Later, Perin et al. [18] described a similar but heavily cus-
tomized two-stage approach which seems tailored to their case and unreasonable
for generalization.) We extend and significantly improve previous work by using
Principal Component Analysis (PCA) and expectation maximization clustering
(instead of k-means and simple pre-processing).

2.2 Multi-probe Measurements of Magnetic Fields

Using multiple side-channels concurrently, and combining them in an attack is an
important way of increasing the exploitable leakage in single-execution attacks.
Agrawal et al. [1] first, and later Standaert et Archambeau [22], describe the
combination of current consumption with magnetic field measurements in pro-
filed attacks through concatenation of traces. Standaert and Archambeau [22]
report better results from magnetic field than current measurements and report
an improvement from the combination of both channels. Souissi et al. [21] first
presented results from combining two simultaneous measurements of the mag-
netic field. They measure the field close to two different supply capacitors of an
FPGA. In this way they measure the supply of two different parts of the FPGA.

We find that in many cases, side-channel measurements of the magnetic field
are closely related to the consumption of an entire device because comparably
large coil diameters (>500 um) are used at large distances to the integrated cir-
cuits (>300 um) [1,7,17,20,22]. Such measurements often capture the magnetic
field of supply wires (bonding wires) which is directly proportional to the cur-
rent consumption of the entire integrated circuit (including noise sources from
within the device). In our opinion, it is unreasonable to simultaneously record
more than one magnetic field channels in such cases due to this global charac-
ter. Lately, high-resolution magnetic field measurements at close distances to an
integrated circuit die have been investigated extensively by Heyszl et al. [9,10].
Such high-resolution measurements require magnetic field probes with diame-
ters of ≈ 150µm at close distances to an integrated circuit die (<100µm). In
our opinion, the capturing of multiple simultaneous magnetic field side-channels
only makes sense in case of such high-resolution measurements which can be
restricted to parts of integrated circuits because they will convey sufficiently dif-
ferent information (e.g. localized leakage [9]). Heyszl et al. [8] mention the com-
bination of multiple high-resolution channels for non-profiled single-execution
attacks, however, did not perform actual simultaneous measurements. We extent
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their work and present first results from an extensive practical study using three
high-resolution micro-coil magnetic field channels.

3 Improving Clustering-Based Attacks

In this section, we describe our algorithmic approach to clustering-based non-
profiled attacks on exponentiations which improves previous work [8]. We explain
how we use Principal Component Analysis (PCA) as a pre-processing step for
dimensionality reduction and feature selection in Sect. 3.1. We continue and
describe how expectation maximization clustering can be used to attack single-
and multi-channel measurements in Sect. 3.2. Finally, we describe how classifi-
cation errors can be handled and derive the brute-force complexity as a measure
to assess attack outcomes in Sect. 3.3.

3.1 PCA for Dimensionality Reduction and Feature Selection

Side-channel measurements usually lead to big amounts of data, especially when
high sampling rates for magnetic field measurements are required. This increases
required computational power and memory consumption during subsequent data
analysis. Only a small part of the data will contain exploitable leakage informa-
tion. Hence, feature selection to discard other parts is desirable.

Simple trace compression [14] is commonly used and usually justified by
electrical properties. This includes extracting the peak values or computing the
sum-of-squares (such as Heyszl et al. [8]) during the time-period of one clock
cycle. Another popular method is the selection of so-called points-of-interest.
This subset is usually identified through profiling with known secrets.

We concentrate on powerful non-profiled, unsupervised methods, specifically,
on PCA. PCA has been applied to side-channel analysis for data reduction in
several contributions [2,3,5,15,22] for different attacks of which Archambeau
et al. [2] were the first to describe the use of PCA in the context of template
attacks. Standaert and Archambeau [22] later compare PCA and Linear Dis-
criminant Analysis (LDA) in the context of template attacks and confirm that
LDA leads to superior results. We disregard LDA because training data from
profiling is used to achieve a representation which maximizes cluster separation.

PCA is based on Singular Value Decomposition (SVD) and transforms the
data into another coordinate system subspace with linearly uncorrelated coor-
dinates by using the variance as score function, hence, maximizing the retained
variance of the data. As described in Sect. 2.1, recorded side-channel measure-
ments are cut into trace-segments corresponding to exponent bits. This leads to
the real matrix M of measurement data, with the shape n × l for every probe
(see Sect. 2.1). The SVD of M = U ∗ Σ ∗ V ∗ and the transformation into the
orthogonal subspace of M equals U ∗ Σ. This matrix U ∗ Σ consists of col-
umn vectors (PC1, ...,PCr) with r being the number of row-vectors and PCj

being a column-vector of shape n × 1, which is called a principal component.
The maximum number of components equals the number of trace-segments n of
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the original data, max |PC| = min(n, l), because the segment-length l is usually
much larger than n. After applying PCA, the components are ordered by their
variance which can be found in the diagonal matrix Σ. In our experiments, we
normalize the variances of the principal components to one, i.e. we directly use
MPCA = U instead of U ∗ Σ. Before applying PCA, we removed the mean of
every trace-segment as a standard measure.

Ideally, a transformation into a reduced subspace should maintain the ‘use-
ful’ information while neglecting ‘not useful’ information, which is difficult with-
out supervision. PCA combines correlating input dimensions into single princi-
pal components. Archambeau et al. [2] propose to only retain the first-ranked
components assuming that the leakage is contained there, while discarding the
remaining low-variance ones, assuming only noise is contained. Batina et al. [3]
found in their practical experiments, that results of correlation-based Differential
Power Analysis (DPA) improved when removing first-ranked components. There
are several reasons for high variances of the trace segments, e.g. data-dependent
signal influences and noise, which are irrelevant to the desired classification. We
suspect that relevant and irrelevant signal parts will aggregate within separate
components. Also, from our experience, the ‘interesting’ leakage signal parts are
rather low-variance in the case of single-execution attacks.

Hence, we propose a selection strategy which discards several highest-ranked
as well as many low-ranked components because they either contain noise or
information which we are not interested in. We either select single principal
components or a number of consecutive components (random choices of multi-
ple components will lead most likely to an untestable amount of possibilities).
Reduced trace-segments MPCA,k:k+i = (PCk, ...,PCk+i) are derived with k
the first selected component and i ≥ 1 the number of consecutive components
retained. We trialled values of k ∈ [1, 20] and i ∈ {1, 2, 4, 6, 9} in our practi-
cal experiments and found that using only one single component i = 1 leads
to the best results in our attack on average, and that the k ≤ 3 first-ranked
components should be discarded. This selection strategy reflects the approach
of an attacker who is unable to perform profiling. An optimal selection of com-
ponents can certainly not be determined a priori because it is highly device-
and application-specific (general issue in machine learning [27]). Hence, without
a priori-knowledge, an attacker has to trial different values for k and i. This,
however, only requires an additional brute-force complexity of a few bits and
improved attack outcomes clearly justify this.

3.2 Expectation-Maximization Clustering of Multi-channel Data

Clustering algorithms can generally be split into supervised, semi-supervised
and unsupervised algorithms. Our focus on non-profiled attacks restricts the
choice to unsupervised algorithms. Heyszl et al. [8] first describe how unsuper-
vised clustering algorithms can be used in a non-profiled attack to partition n
trace-segments into classes according to their secret exponent values. An unsu-
pervised cluster classification is equivalent to estimating the free parameters of
the classes’ assumed distribution model. The choice of the algorithm and free
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parameters depends on the assumed probability distribution model, hence shape
of the clusters. While Heyszl et al. use k-means clustering, we improve this by
using the expectation maximization algorithm while keeping the Gaussian dis-
tribution assumption which both algorithms are based on.

Expectation-maximization clustering provides more free parameters which
leads to a generally improved approximation of the cluster distributions, which
usually leads to better classification results. The algorithm is based on repeated
expectation and maximization steps. During these iterations the maximum like-
lihood means and covariances for the Gaussian distribution are derived. The
result is a classification and a class-membership probability which indicates the
reliability of correct classification for each segment (resp. secret exponent bit).
The number of free parameters in the clustering algorithm can be chosen. We
assume that the cluster shapes are mainly defined by Gaussian distributed noise.
Additionally, we assume the noise being independent of the processed bit value.
Hence, we chose to estimate two means and one joint full covariance matrix.

Multiple simultaneous measurements channels are combined by concatenat-
ing the trace-segments from different channels which correspond to the same
exponent bits [1,8]. PCA is applied to all side-channel measurement channels
separately before concatenation. For example, segments M1

PCA,k:k+i from mea-
surement channel 1 are combined with segments M2

PCA,k:k+i from measurement
2 leading to combined segments M combined

PCA,k:k+i = (M1
PCA,k:k+i,M

2
PCA,k:k+i). An

attacker would rather use the same values for k and i in all channels because
it significantly increases the attack complexity to test different k-s and i-s for
every channel without profiling (e.g. repeat clustering process (20 ∗ 5)3 times).

3.3 Classification Errors and Required Brute-Force Complexity

If the recovered exponent is incorrect, faulty bits need to be identified, which
is usually hard. As described by Heyszl et al. [8], an attacker can use the bits’
probabilities of correctness to judge which need to be trialled for correctness
and follow a simple strategy to enumerate possible keys. This strategy leads to
an estimated remaining brute-force complexity which we use to assess practical
attack outcomes. Better, even optimal, key enumeration strategies [23,24] will
result in a lower amount of required brute-force if the attacker applies them.
However, the typically large key sizes in asymmetric cryptography make the
application of such algorithms challenging for attackers as well as evaluators.
The said brute-force complexity which is used instead can be seen as an upper
bound for the rank of the correct key as derived from an optimal enumeration.

We chose to use the silhouette index score [19] for the bits’ error probability.
It is based on the cumulative distance of each trace-segment to other trace-
segments of each cluster. The silhouette index is calculated for every mPCA,
which corresponds to one row of MPCA,k:k+i, with C1 being the set of trace
segments td of the same cluster like mPCA (determined by the expectation
maximization algorithm) and C2 being the set of trace segments belonging to
other clusters. With the distance function dist(a, b) (we use Euclidean distance
due to the Gaussian noise assumption) the silhouette index s is computed as:
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s(mPCA, C1, C2) =
f(C1,mPCA) − f(C2,mPCA)

max(f(C1,mPCA), f(C2,mPCA))
(1)

f(C,mPCA) =
1
|C|

∑

x∈C
dist(x,mPCA) (2)

After calculating the score for all n segments, the ones with the lowest s
are brute-forced in repetitions while including an increasing number of bits [8].
Let q be the last bit which is trialled until the correct exponent is found, then
2(q+1+1) different exponents have to be tested at maximum which can be referred
to as remaining brute-force complexity after the attack [8]. One additional bit
is included for both possibilities to assign labels to the two classes. It equals
2(n+1+1) at maximum and 21 at minimum.

4 Practical Evaluation

We present the first practical results from the simultaneous use of three high-
resolution magnetic field probes. We chose a fixed geometric arrangement of the
measurement probes close to the surface of an FPGA die and performed 400
measurements at different positions to gain conclusive insights from a high num-
ber of tests. We succeed in demonstrating the algorithmic improvement from our
approach and derive conclusions about the benefit from using multiple channels
simultaneously.

4.1 Design-Under-Test and Multi-probe Setup

As a device under test, we use a Xilinx Spartan 3A FPGA chip (see Fig. 1a) which
is configured with an Elliptic Curve Cryptography (ECC) design and performs
an 163 bit elliptic curve scalar multiplication using a Montgomery ladder. This
algorithm is a classical candidate for attacks against exponentiation algorithms

Fig. 1. Geometric arrangement of measurement-probes on FPGA die surface



Improving Non-profiled Attacks on Exponentiations 11

since it processes the secret exponent bit-wise in n constant time segments. As
a single-execution side-channel leakage about the consecutively processed expo-
nent bits we exploit location-based leakage which is revealed by high-resolution
measurements of the electromagnetic field [9].

After decapsulating the FPGA die (see Fig. 1a), we use an area of 1700µm×
1700µm on the surface of the die between bonding wires to place probes. We
arrange three probes in a fixed formation, and place them on 400 (20 × 20)
different positions within this area to able to evaluate 400 data sets by our
analysis. Figure 1 depicts the geometric arrangement of the probes from the side
and from the top. The distance of the probes to the die surface is approximately
100µm. We used three near-H-field (magnetic) probes with coil diameters of
250µm, 150µm and 100µm which we had available in our laboratory. The
bandwidth of the probes is 6GHz with a built-in 30 dB amplifier. The signal
is sampled synchronously to the device’s clock at 2.5GS/s. Contrary to other
contributions [8,18] no simple compression or pre-proccessing (e.g. averaging,
maximum extraction or sum-of-squares during clock cycles) is applied before
(PCA) and clustering. Such simple trace pre-processing techniques have been
shown to have negative effects on results [10].

4.2 Quality of Principal Components

Our algorithmic approach includes the selection of principal components after
PCA as a first step before clustering. The selection can be described by two
parameters, k the first selected component, and, i ≥ 1 the number of consecu-
tively selected components after the k-th one as described in Sect. 3.1. In this
section we investigate the quality of different parameter choices. We executed
the clustering-based attack on every single measurement from all 3 probes and
400 positions with choices of k ∈ [1, 20] and i ∈ {1, 2, 4, 6, 9} and assess the
quality using the remaining brute-force complexity explained in Sect. 3.3.

Fig. 2. Mean brute-force complexity for different selected principal components (k and
i) over all measurement positions including standard deviation as bars



12 R. Specht et al.

We show the means over 3 ∗ 400 results for the resulting brute-force com-
plexities for each combination of parameters k and i in Fig. 2. Hence we are able
to equally compare the results of different probes and show some fundamental
properties of our measurements. These high mean brute-force complexities of
>100 bits are certainly not within the range of realistic computing capabilities.
They result from including many low-scoring results. The standard deviations
are shown as vertical bars and indicate that there are multiple results with sig-
nificantly lower brute-force complexities (the diagram does not include +1 bits
for assigning labels to classes). As an important observation, low-ranked compo-
nents (k < 10) seem preferable overall and first-ranked principal components do
not contain exploitable leakage (see curve with i = 1 or i = 2 in Fig. 2). This con-
firms our assumptions from Sect. 3.1 as well as similar observations from Batina
et al. [3]. Thus, we discard first-ranked as well as low-ranked principal com-
ponents before further analysis and achieve significantly improved brute-force
complexities.

In Fig. 2 it can also be noted that the component number k = 4 seems
to contain the most leakage on average, reaching the lowest mean brute-force
complexities. It seems that PCA concentrates most of the exploitable leakage
information into a single principal component. This means that a choice of i = 1
for the number of selected consecutive principal components led to the best
results in our circumstances. We used this choice in the practical evaluation in the
next Sect. 4.3. As another observation, curves with i > 2 lead to low complexities
as soon as component 4 is included in the consecutively selected components.
For illustrative purposes, we show the resulting principal components after PCA
transformation of an examples trace in the AppendixA.1.

4.3 Analyzing Separate Channels

For every probe, we have 400 measurements from different positions. We analyze
the data from the three available channels separately: Firstly we perform pre-
processing by applying PCA, secondly we perform clustering using the expecta-
tion maximization algorithm and thirdly we compute the remaining brute-force
complexity. For every probe separately, and for every selection of principal com-
ponents (for every k ∈ [1, 20] while i = 1), we summarize the results from 400
tests in Fig. 3a, 3b, and 3c. Figure 3a shows results for the 250µm coil probe,
Fig. 3b for the 150µm coil probe and Fig. 3c for the 100µm coil probe. The
figures show, how many of the 400 measurements of each probe, and for every
selection of k, lead to which brute-force complexities. The occurrence rate is
visually indicated by the size of the respective dots. Bigger dots mean that the
corresponding brute-force complexity has occurred more often. For example, in
Fig. 3a, almost all of the 400 measurements lead to a maximum brute-force com-
plexity of 163 for k < 5 and k > 10. For k = 5, however, many measurements
lead to lower resulting brute-force complexities, some even of the minimum. The
red dashed line highlights the 32 bit complexity level up to which all outcomes
are easily manageable for attackers through computation.
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(a) Single probe 1 ( 250 µm Ø) (b) Single probe 2 ( 150 µm Ø)

(c) Single probe 3 ( 100 µm Ø) (d) Combined probes

Fig. 3. Brute force complexity occurrences over different principal components (Color
Figure Online)

As an important finding, it can be observed, that the probe with the 150µm
coil diameter depicted in Fig. 3b leads to the best results by far. For the prin-
cipal component k = 4, an astonishing percentage of 56% out of the 400 mea-
surements led to a remaining brute-force complexity ≤32 bit (summing up all
outcomes equal or lower the red dashed line). This high number was unexpected
and means that with the improved algorithmic, more than half of all measure-
ment positions exhibited sufficient leakage for a complete break. The 100µm
probe depicted in Fig. 3a leads to only 3 % ≤32 bit for k = 5. Also the 250µm
probe depicted in Fig. 3c only leads to 3 % ≤32 bit for k = 8. Hence, the 150µm
coil probe seems to work best under our circumstances. Since finding suitable
measurement positions is rather easy (using the best probe), attackers should
test different measurement positions instead of employing extensive computa-
tional brute-force, testing is comparably easy in case of single-execution attacks
because only single measurements need to be analyzed at every position.

Without knowing k = 4 and i = 1 a priori, attackers could make minimal
heuristic assumptions like k ∈ [3, 10] and i ∈ [1, 4, 9] which could fit similar cir-
cumstances. This would result in an additional brute-force complexity of +4 bits
which is not included in Fig. 3 and justified by significantly improved results.
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To demonstrate the improvement of our proposal, we performed the original
attack of Heyszl et al. [8] on the same measurements. A remaining brute-force
complexity ≤32 bit is reached in none (0 %) of the 400 measurement cases using
the 150µm coil probe. Compared to 56 % from the improved attack, this means
that we achieve astonishingly improved results from applying PCA and expec-
tation maximization clustering. (Only the 250µm coil probe led to marginally
better results using the previous method, i.e., 8 % instead of 3 % of the cases
≤32 bit, however, this does not invalidate the previous statement in our opinion.)

We compared the performance of the k-means versus the expectation max-
imization clustering algorithm in the context of single channels. Since we only
select single components (i = 1) after PCA, channels only consist of single
dimensions and there is not much benefit from more free parameters in the clus-
tering algorithm. This is confirmed by the fact that expectation maximization
and k-means clustering lead to almost equal results. This means that our reported
improvement is mainly due to the PCA transformation and the selection of com-
ponents. In the multi-channel case, however, more dimensions aggregate from
separate channels making expectation maximization more eligible.

As benchmark for high-resolution magnetic field measurements, we tested the
improved non-profiled attack on a current consumption measurement. We use a
1 Ohm measurement resistor and a differential probe at unchanged sampling
rate. To cancel one-time effects such as disturbances or noise, we repeated this
12 times and averaged the results. The outcome is a significantly high brute-force
complexity of 152 bits. Hence, it is completely impossible to exploit leakage from
such current measurements. This underlines that high-resolution magnetic field
measurements are clearly superior in leakage signal quality in our circumstances.

4.4 Combining Multiple Channels

After the individual analysis of the three measurement channels, we combined
the channels for analysis as described in Sect. 3.2. The motivation for attackers
to combine channels is to increase the exploitable leakage to improve attack
outcomes, e.g. instead of trying to find better measurement positions.

Figure 3d shows the brute-force complexity results for the combined measure-
ments in the same way as described in the previous Sect. 4.3. A visual comparison
of the combined results in Fig. 3d to the individual results in Fig. 3a, b, and c
gives the impression, that the overall result is comparable to Fig. 3b. However,
expressed quantitatively in the same way as before, the combined channels lead
to a remaining brute-force complexity of ≤32 bit in only 52 % of the cases for
k = 4. Hence, as an important result, instead of an improvement, we observe a
slight degradation compared to the best individual case which led to 56 % of cases
≤32 bit. This means that the described clustering-based non-profiled attack is
unable to benefit from a combination of channels (in our circumstances).

We suspect that this is due to the fact that our selection strategy selects
equal values k and i to pre-process all three channels in the same way using
PCA in case of combined attacks. This should be a significant disadvantage in
our case where different k are best for different channels (see results in Sect. 4.3).
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Unfortunately, it would significantly increase the complexity to test different k-s
for every channel (e.g. repeat clustering 203 times). Increasing the number of
selected components i to prevent this would include more noise, in our circum-
stances, which in turn would degrade classification results significantly (see how
curves with i > 1 result in higher mean-values in Fig. 2).

We compared the improved non-profiled attack against a profiled template
attack. This requires one additional trace for profiling at each position and for
every probe. Templates consist of two means and a single full covariance matrix.
To derive the remaining brute-force complexity as described in Sect. 3.3, we use
bit-wise template matching results. For a fair comparison, we also apply PCA
including the selection strategy for k and i. A higher number of 61% of positions
(compared to the 56 % from the non-profiled attack) lead to remaining brute-
force complexities ≤32 bit for the 150µm coil probe, with i = 1 and k = 4. The
profiled template attack outperforms the non-profiled attack. As the most impor-
tant observation, we find that the combination of channels leads to an improved
66% of the cases with a remaining brute-force complexity of ≤32 bit, with i = 9
and k = 3. This clearly demonstrates the gain of combining channels in the profiled
setting.

In a profiled setting, attackers are able to test and find the ‘best’ measurement
positions. This means that, in our circumstances, the use of multiple channels is
only reasonable if the leakage of such best single channels is insufficient which
diminishes the good results to a certain extent.

5 Conclusion

We significantly improved the algorithmic approach for non-profiled attacks
against exponentiation by applying (PCA) and disregarding high- as well as
low-ranked ones following a simple strategy. This selection strategy requires
some trying-out (additional brute-force), but this is highly rewarded by improved
attack outcomes in terms of low brute-force complexities. With this approach, the
unsupervised attack using a single-channel high-resolution magnetic field mea-
surement is remarkably threatening and leads to manageable brute-force levels
in over half of the tested measurement positions. This emphasizes the need to
prevent all possible cause for exploitable single-execution leakage. Regarding our
results from three simultaneous channels, we find that the combination of chan-
nels only significantly improves the attack results, if a profiled attack is used. In
case of the clustering-based, non profiled attack, the results from the combina-
tion are only comparable to the best individual one. In profiled settings attackers
are also able to look for the ‘best’ measurement positions. Hence, multi-channel
attacks are only reasonable if the exploitable leakage is insufficient at such best
positions.

Acknowledgements. This work was partly funded by the German Federal Ministry
of Education and Research in the project SIBASE through grant number 01IS13020.
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A Appendix

A.1 Illustration of Principal Components After Transformation

Fig. 4. Example of an original trace-segment (topmost) and its high-ranked principal
components below. The 4-th (bottom) component contains signal leakage

Figure 4 depicts principal components after Principal Component Analysis
(PCA) transformation for illustrative purposes. We used an example measure-
ment where the side-channel leakage is sufficient for the attack to succeed with-
out false classifications when selecting the k = 4-th component for expectation
maximization clustering. The topmost diagram depicts one trace-segment in its
original form. Below this, the four highest-ranked principal components of this
segment are depicted. From the previous analysis we know that the exploitable
leakage seems concentrated in component k = 4 which is depicted in the bottom
diagram. The time-samples with higher values represent the times of exploitable
leakage information in this component. The sparse occurrence fits to the descrip-
tion of data-dependent register accesses as source of this leakage [9]. A compar-
ison to the other components in Fig. 4 clearly shows that the leakage is small
compared to the remaining signal parts.
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A.2 Countermeasures

As previously described by Heyszl et al. [8], countermeasures such as expo-
nent blinding do not protect against non-profiled attacks. Many countermea-
sures address individual single-execution leakage sources of implementation (e.g.
address-bit, or localized leakage).

As a conclusion from this contribution, we must emphasize the necessity to
reduce all possible single-execution leakage sources as much as possible.

Homma et al. [11] present a general countermeasure against high-resolution
magnetic field measurements. They describe an on-chip sensor which detects
magnetic field probes in close distance to die surfaces. However, in our opin-
ion this will not help since measurement probes are typically placed close to
an integrated circuit before power-up. Hence, necessary calibration routines of
the sensor will likely not be able to distinguish the static probes from other
environmental influences.
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2010. LNCS, vol. 6476, pp. 46–61. Springer, Heidelberg (2010)
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Abstract. Template attacks and machine learning are two popular
approaches to profiled side-channel analysis. In this paper, we aim to con-
tribute to the understanding of their respective strengths and weaknesses,
with a particular focus on their curse of dimensionality. For this purpose,
we take advantage of a well-controlled simulated experimental setting in
order to put forward two important intuitions. First and from a theoretical
point of view, the data complexity of template attacks is not sensitive to
the dimension increase in side-channel traces given that their profiling is
perfect. Second and from a practical point of view, concrete attacks are
always affected by (estimation and assumption) errors during profiling.
As these errors increase, machine learning gains interest compared to tem-
plate attacks, especially when based on random forests.

1 Introduction

In a side-channel attack, an adversary targets a cryptographic device that emits
a measurable leakage depending on the manipulated data and/or the executed
operations. Typical examples of physical leakages include the power consump-
tion [15], the processing time [14] and the electromagnetic emanation [9].

Evaluating the security level of cryptographic implementations is an impor-
tant concern, e.g. for modern smart cards. In this respect, profiled attacks
are useful tools, since they can be used to approach their worst-case security
level [24]. Such attacks essentially work in two steps: first a leakage model is esti-
mated during a so-called profiling phase, then the leakage model is exploited to
extract key-dependent information in an online phase. Many different approaches
to profiling have been introduced in the literature. Template Attacks (TA),
e.g. based on a Gaussian assumption [4], are a typical example. The stochastic
approach exploiting Linear Regression (LR) is a frequently considered alterna-
tive [22]. More recently, solutions relying on Machine Learning (ML) have also
been investigated [2,11–13,16,17,19]. These previous works support the claim
that ML-based attacks are effective and lead to successful key recoveries. This
is natural since they essentially exploit the same discriminating criteria as TA
c© Springer International Publishing Switzerland 2015
S. Mangard and A.Y. Poschmann (Eds.): COSADE 2015, LNCS 9064, pp. 20–33, 2015.
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and LR (i.e. a difference in the mean traces corresponding to different interme-
diate computations if an unprotected implementation is targeted – a difference
in higher-order statistical moments if the device is protected with masking).
By contrast, it remains unclear whether ML can lead to more efficient attacks,
either in terms of profiling or in terms of online key recovery. Previous publica-
tions conclude in one or the other direction, depending on the implementation
scenario considered, which is inherent to such experimental studies.

In this paper, we aim to complement these previous works with a more sys-
tematic investigation of the conditions under which ML-based attacks may out-
perform TA (or not)1. For this purpose, we start with the general intuition that
ML-based approaches are generally useful in order to deal with high-dimensional
data spaces. Following, our contributions are twofold. First, we tackle the (the-
oretical) question whether the addition of useless (i.e. non-informative) leakage
samples in leakage traces has an impact on their informativeness if a perfect
profiling phase is achieved. We show that the (mutual) information leakage esti-
mated with a TA exploiting such a perfect model is independent of the number
of useless dimensions if the useless leakage samples are independent of the useful
ones. This implies that ML-based attacks cannot be more efficient than tem-
plate attacks in the online phase if the profiling is sufficient. Second, we study
the practical counterpart of this question, and analyze the impact of imperfect
profiling on our conclusions. For this purpose, we rely on a simulated experimen-
tal setting, where the number of (informative and useless) dimensions is used
as a parameter. Using this setting, we evaluate the curse of dimensionality for
concrete TA and compare it with ML-based attacks exploiting Support Vector
Machines (SVM) and Random Forests (RF). That is, we considered SVM as
a popular tool in the field of side-channel analysis, and RF as an interesting
alternative (since its random feature selection makes its behavior quite differ-
ent than TA and SVM). Our experiments essentially conclude that TA outper-
form ML-based attacks whenever the number of dimensions can be kept reason-
ably low, e.g. thanks to a selection of Points of Interests (POI), and that ML
(and RF in particular) become(s) interesting in “extreme” profiling conditions
(i.e. with large traces and a small profiling sets) – which possibly arise when
little information about the target device is available to the adversary.

As a side remark, we also observe that most current ML-based attacks rate key
candidates according to (heuristic) scores rather than probabilities. This prevents
the computation of probability-based metrics (such as the mutual/perceived infor-
mation [20]). It may also have an impact on the efficiency of key enumeration [25],
which is an interesting scope for further investigation.

The rest of the paper is organized as follows. Section 2 contains notations, the
attacks considered, our experimental setting and evaluation metrics. Section 3
presents our theoretical result on the impact of non-informative leakage samples in
perfect profiling conditions. Section 4 discusses practical (simulated) experiments

1 Note that the gain of LR-based attacks over TA is known and has been analyzed,
e.g. in [10,23]. Namely, it essentially depends on the size of the basis used in LR.
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in imperfectprofiling conditions, indifferent contexts.Eventually, Sect. 5 concludes
the paper and discusses perspectives of future work.

2 Background

2.1 Notations

We use capital letters for random variables and small caps for their realiza-
tions. We use sans serif font for functions (e.g. F) and calligraphic fonts for sets
(e.g. A). We denote the conditional probability of a random variable A given B
with Pr [A|B] and use the acronym SNR for the signal-to-noise ratio.

2.2 Template Attacks

Let lx,k be a leakage trace measured on a cryptographic device that manipulates
a target intermediate value v = f(x, k) associated to a known plaintext (byte) x
and a secret key (byte) k. In a TA, the adversary first uses a set of profiling traces
Lp in order to estimate a leakage model, next denoted as P̂rmodel

[
lx,k | θ̂x,k

]
,

where θ̂x,k represents the (estimated) parameters of the leakage Probability Den-
sity Function (PDF). The set of profiling traces is typically obtained by mea-
suring a device that is similar to the target, yet under control of the adversary.
Next, during the online phase, the adversary uses a set of new attack traces
La (obtained by measuring the target device) and selects the secret key (byte)
k̃ maximizing the product of posterior probabilities:

k̃ = argmax
k∗

∏

lx,k∈La

P̂rmodel

[
lx,k | θ̂x,k∗

]
· Pr[k∗]

P̂rmodel[lx,k]
· (1)

Concretely, the seminal TA paper suggested to use Gaussian estimations for the
leakage PDF [4]. We will follow a similar approach and consider a Gaussian
(simulated) experimental setting. It implies that the parameters θ̂x,k correspond
to mean vectors μ̂x,k and covariance matrices Σ̂x,k. However, we note that
any other PDF estimation could be considered by the adversary/evaluator [8].
We will further consider two types of TA: in the Naive Template Attack (NTA),
we will indeed estimate one covariance matrix per intermediate value; in the Effi-
cient Template Attack (ETA), we will pool the covariance estimates (assumed
to be equal) across all intermediate values, as previously suggested in [5].

In the following, we will keep the lx,k and v notations for leakage traces and
intermediate values, and sometimes omit the subscripts for simplicity.

2.3 Support Vector Machines

In their basic (two-classes) context, SVM essentially aims at estimating Boolean
functions [6]. For this purpose, it first performs a supervised learning with labels
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(e.g. v = −1 or v = 1), annotating each sample of the profiling set. The binary
SVM estimates a hyperplane y = ŵ�l + b̂ that separates the two classes with
the largest possible margin, in the geometrical space of the vectors. Then in the
attack phase, any new trace l will be assigned a label ṽ as follows:

ṽ =

{
1 (ŵ�l + b̂) ≥ 1,

−1 otherwise.
(2)

Mathematically, SVM finds the parameters ŵ ∈ R
ns (where ns is the number of

time samples per trace) and b̂ ∈ R by solving the convex optimization problem:

min
w,b

1
2 (w�w),

subject to v(w�φ(lv) + b) ≥ 1,
(3)

where φ denotes a projection function that maps the data into a higher (some-
times infinite) dimensional space usually denoted as the feature space. Our
experiments considered a Radial Basis kernel Function φ (RBF), which is a
commonly encountered solution, both in the machine learning field and the side-
channel communities. The RBF kernel maps the traces into an infinite dimen-
sional Hilbert space in order to find a hyperplane that efficiently discriminate the
traces. It is defined by a parameter γ that essentially relates to the “variance”
of the model. Roughly, the variance of a model is a measure on the variance of
its output in function of the variance of the profiling set. The higher the value
of γ, the lower the variance of the model is. Intuitively, the variance of a model
therefore relates to its complexity (e.g. the higher the number of points per trace,
the higher the variance of the model). We always selected the value of γ as one
over the number of points per trace, which is a natural choice to compensate
the increase of the model variance due to the increase of the number of points
per trace. Future works could focus on other strategies to select this parameter,
although we do not expect them to have a strong impact on our conclusions.

When the problem of Eq. 3 is feasible with respect to the constraints, the data is
said to be linearly separable in the feature space.As the problem is convex, there is a
guarantee to find a unique global minimum. SVM can be generalized to multi-class
problems (whichwill be useful in our contextwith typically 256 target intermediate
values) and produce scores for intermediate values based on the distance to the
hyperplane. In our experiments, we considered the “one-against-one” approach.
In a one-against-one strategy, the adversary builds one SVM for each possible pair
of target values. During the attack phase, the adversary selects the target value
with a majority vote among the set of SVMs. Because of place constraints, we refer
to [7] for a complete explanation.

2.4 Random Forests

Decision trees are classification models that use a set of binary rules to calculate
a target value. They are structured as diagrams made of nodes and directed
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edges, where nodes can be of three types: root (i.e. the top node in the tree),
internal (represented by a circle in Fig. 1) and leaf (represented by a square in
Fig. 1). In our side-channel context, we typically consider decision trees in which
(1) the value associated to a leaf is a class label corresponding to the target to
be recovered, (2) each edge is associated to a test on the value of a time sample
in the leakage traces, and (3) each internal node has one incoming edge from a
node called the parent node, as also represented in Fig. 1.

In the profiling phase, learning data is used to build the model. For this pur-
pose, the learning set is first associated to the root. Then, this set is split based
on a time sample that most effectively discriminates the sets of traces associated
to different target intermediate values. Each subset newly created is associated
with a child node. The tree generator repeats this process on each derived sub-
set in a recursive manner, until the child node contains traces associated to the
same target value or the gain to split the subset is less than some threshold.
That is, it essentially determines at which time sample to split, the value of the
split, and the decision to stop or to split again. It then assigns terminal nodes
to a class (i.e. intermediate value). Next, in the attack phase, the model simply
predicts the target intermediate value by applying the classification rules to the
new traces to classify. We refer to [21] for more details on decision trees.

t1 t2 t3

3.1

3.2

3.3

l(t1) < 3.4

t4

1
l(t1) < 3.2

0

rootclass: 0
           13.4

l(t3) < 3.23

1 0
time

le
ak

ag
e

Fig. 1. Decision tree with two classes (l(t1) is the leakage at time t1).

The Random Forests (RF) introduced by Breiman can be seen as a collection
of classifiers using many (unbiased) decision trees as models [3]. It relies on model
averaging (aka bagging) that leads to have a low variance of the resulting model.
After the profiling phase, RF returns the most consensual prediction for a target
value through a majority vote among the set of trees. RF are based on three
main principles. First, each tree is constructed with a different learning set by
re-sampling (with replacement) the original dataset. Secondly, the nodes of the
trees are split using the best time sample among a subset of randomly chosen
ones (by contrast to conventional trees where all the time samples are used).
The size of this subset was set to the square of the number of time samples
(i.e.

√
ns) as suggested by Breiman. These features allow obtaining decorrelated

trees, which improves the accuracy of the resulting RF model. Finally, and unlike
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conventional decision trees as well, the trees of a RF are fully grown and are not
pruned, which possibly leads to overfitting (i.e. each tree has a low bias but a high
variance) that is reduced by averaging the trees. The main (meta-) parameters
of a RF are the number of trees. Intuitively, increasing the number of trees
reduces the instability (aka variance) of the models. We set this number to 500
by default, which was sufficient in our experiments in order to show the strength
of this model compared to template attack. We leave the detailed investigation
of these parameters as an interesting scope for further research.

2.5 Experimental Setting

Let lp,k (t) be the t-th time sample of the leakage trace lp,k. We consider contexts
where each trace lp,k represents a vector of ns samples, that is:

lp,k = {lp,k (t) ∈ R | t ∈ [1;ns]} . (4)

Each sample represents the output of a leakage function. The adversary has access
to a profiling set of Np traces per target intermediate value, in which each trace has
d informative samples and u uninformative samples (with d + u = ns).
The informative samples are defined as the sum of a deterministic part represent-
ing the useful signal (denoted as δ) and a random Gaussian part representing the
noise (denoted as ε), that is:

lp,k (t) = δt (p, k) + εt, (5)

where the noise is independent and identically distributed for all t’s. In our
experiments, the deterministic part δ corresponds to the output of the AES
S-box, iterated for each time sample and sent through a function G, that is:

δt (p, k) = G
(
SBoxt (p ⊕ k)

)
, (6)

where:

SBox1 (p ⊕ k) = SBox (p ⊕ k) ,

SBoxt (p ⊕ k) = SBox
(
SBoxt−1 (p ⊕ k)

)
.

Concretely, we considered a function G that is a weighted sum of the S-box out-
put bits. However, all our results can be generalized to other functions (prelim-
inary experiments did not exhibit any deviation with highly non-linear leakage
functions – which is expected in a first-order setting where the leakage infor-
mativeness essentially depends on the SNR [18]). We set our signal variance to
1 and used Gaussian distributed noise variables εt with mean 0 and variance
σ2 (i.e. the SNR was set to 1

σ2 ). Eventually, uninformative samples were simply
generated with only a noisy part. This simulated setting is represented in Fig. 2
and its main parameters can be summarized as follows:

– Number of informative points per trace (denoted as d),
– Number of uninformative points per trace (denoted as u),
– Number of profiling traces per intermediate value (denoted as Np),
– Number of traces in the attack step (noted Na),
– Noise variance (denoted as σ2) and SNR.
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Fig. 2. Simulated leaking implementations.

2.6 Evaluation Metrics

The efficiency of side-channel attacks can be quantified according to various
metrics. We will use information theoretic and security metrics advocated in [24].

Success Rate (SR). For an attack targeting a subkey (e.g. a key byte) and
allowing to sort the different candidates, we define the success rate of order o as
the probability that the correct subkey is ranked among the first o candidates.
The success rate is generally computed in function of the number of attack traces
Na (given a model that has been profiled using Np traces). In the rest of this
paper, we focus on the success rate of order 1 (i.e. the correct key rated first).

Perceived/Mutual Information (PI/MI). Let X,K,L be random variables
representing a target key byte, a known plaintext and a leakage trace. The
perceived information between the key and the leakage is defined as [20]:

P̂I(K;X,L) = H(K) +
∑

k∈K
Pr[k]

∑

x∈X
Pr[x]

∑

l∈L
Prchip[l|x, k] · log2 P̂rmodel[k|x, l].

The PI measures the adversary’s ability to interpret measurements coming from
the true (unknown) chip distribution Prchip[l|x, k] with an estimated model
P̂rmodel[l|x, k]. Prchip[l|x, k] is generally obtained by sampling the chip distribu-
tion (i.e. making measurement). Of particular interest for the next section will
be the context of perfect profiling, where we assume that the adversary’s model
and the chip distribution are identical (which, strictly speaking, can only happen
in simulated experimental settings since any profiling based on real traces will
at least be imperfect because of small estimation errors [8]). In this context, the
estimated PI will exactly correspond to the (worst-case) estimated MI.

Information theoretic metrics such as the MI/PI are especially interesting for
the comparison of profiled side-channel attacks as we envision here. This is because
they can generally be estimated based on a single plaintext (i.e. with Na = 1)
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whereas the success rate is generally estimated for varying Na’s. In other words,
their scalar value provides a very similar intuition as the SR curves [23]. Unfortu-
nately, the estimation of information theoretic metrics requires distinguishers pro-
viding probabilities, which is not the case of ML-based attacks2. As a result, our
concrete experiments comparing TA, SVM and RF will be based on estimations of
the success rate for a number of representative parameters.

3 Perfect Profiling

In this section, we study the impact of useless samples in leakage traces on
the performances of TA with perfect profiling (i.e. the evaluator perfectly knows
the leakages’ PDF). In this context, we will use Pr for both Prmodel and Prchip
(since they are equal) and omit subscripts for the leakages l to lighten notations.

Proposition 1. Let us assume two TA with perfect models using two different
attack traces l1 and l2 associated to the same plaintext x: l1 is composed of d
samples providing information and l2 = [l1||ε] (where ε = [ε1, ..., εu] represents
noise variables independent of l1 and the key.). Then the mutual information
leakage MI(K;X,L) estimated with their (perfect) leakage models is the same.

Proof. As clear from the definitions in Sect. 2.6, the mutual/perceived informa-
tion estimated thanks to TA only depend on Pr[k|l]. So we need to show that
these conditional probabilities Pr[k|l2] and Pr[k|l1] are equal. Let k and k′ rep-
resent two key guesses. Since ε is independent of l1 and k, we have:

Pr[l2|k′]
Pr[l2|k]

=
Pr[l1|k′] · Pr[ε|k′]
Pr[l1|k] · Pr[ε|k]

,

=
Pr[l1|k′] · Pr[ε]
Pr[l1|k] · Pr[ε]

,

=
Pr[l1|k′]
Pr[l1|k]

. (7)

This directly leads to:
∑

k′∈K Pr[l2|k′]
Pr[l2|k]

=
∑

k′∈K Pr[l1|k′]
Pr[l1|k]

,

Pr[l2|k]∑
k′∈K Pr[l2|k′]

=
Pr[l1|k]∑

k′∈K Pr[l1|k′]
,

Pr[k|l2] = Pr[k|l1], (8)

which concludes the proof.
2 There are indeed variants of SVM and RF that aim to remedy to this issue. Yet, the

“probability-like” scores they output are not directly exploitable in the estimation of
information theoretic metrics either. For example, we could exhibit examples where
probability-like scores of one do not correspond to a success rate of one.
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Quite naturally, this proof does not hold as soon as there are dependencies
between the d first samples in l1 and the u latter ones. This would typically
happen in contexts where the noise at different time samples is correlated (which
could then be exploited to improve the attack). Intuitively, this simple result
suggests that in case of perfect profiling, the detection of POI is not necessary
for a TA, since useless points will not have any impact on the attack’s success.
Since TA are optimal from an information theoretic point-of-view, it also means
that the ML-based approaches cannot be more efficient in this context.

Note that the main reason why we need a perfect model for the result to hold
is that we need the independence between the informative and non-informative
samples to be reflected in these models as well. For example, in the case of
Gaussian templates, we need the covariance terms that corresponds to the cor-
relation between informative and non-informative samples to be null (which will
not happen for imperfectly estimated templates). In fact, the result would also
hold for imperfect models, as long as these imperfections do not suggest signifi-
cant correlation between these informative and non-informative samples. But of
course, we could not state that TA necessarily perform better than ML-based
attacks in this case. Overall, this conclusion naturally suggests a more prag-
matic question. Namely, perfect profiling never occurs in practice. So how does
this theoretical intuition regarding the curse of dimensionality for TA extend
to concrete profiled attack (with bounded profiling phases)? We study it in the
next section.

4 Experiments with Imperfect Profiling

We now consider examples of TA, SVM- and RF-based attacks in order to gain
intuition about their behavior in concrete profiling conditions. As detailed in
Sect. 2, we will use a simulated experimental setting with various number of
informative and uninformative samples in the leakage traces for this purpose.

4.1 Nearly Perfect Profiling

As a first experiment, we considered the case where the profiling is “sufficient” –
which should essentially confirm the result of Proposition 1. For this purpose, we
analyzed simulated leakage traces with 2 informative points (i.e. d = 2), u = 0
and u = 15 useless samples, and a SNR of 1, in function of the number of traces
per intermediate value in the profiling set Np. As illustrated in Fig. 3, we indeed
observe that (e.g.) the PI is independent of u if the number of traces in the profil-
ing set is “sufficient” (i.e. all attacks converge towards the same PI in this case).
By contrast, we notice that this “sufficient” number depends on u (i.e. the more
useless samples, the largerNp needs to be). Besides,we also observe that the impact
of increasing u is stronger for NTA than ETA, since the first one has to deal with
a more complex estimation. Indeed, the ETA has 256 times more traces than the
NTA to estimate the covariance matrice. So overall, and as expected, as long a the
profiling set is large enough and the assumptions used to build the model capture
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the leakage samples sufficiently accurately, TA are indeed optimal, independent of
the number of samples they actually profile. So there is little gain to expect from
ML-based approaches in this context.
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Fig. 3. Perceived information for NTA and ETA in function of Np with SNR=1.

4.2 Imperfect Profiling

We now move to the more concrete case were profiling is imperfect. In our simu-
lated setting, imperfections naturally arise from limited profiling (i.e. estimation
errors): we will investigate their impact next and believe they are sufficient to put
forward some useful intuitions regarding the curse of dimensionality in (profiled)
side-channel attacks. Yet, we note that in general, assumption errors can also
lead to imperfect models, that are more difficult to deal with (see, e.g. [8]) and
are certainly worth further investigations. Besides, and as already mentioned,
since we now want to compare TA, SVM and RF, we need to evaluate and com-
pare them with security metrics (since the two latter ones do not output the
probabilities required to estimate information theoretic metrics).

In our first experiment, we set again the number of useful dimensions to d = 2
and evaluated the success rate of the different attacks in function of the number
of non-informative samples in the leakages traces (i.e. u), for different sizes of
the profiling set. As illustrated in Fig. 4, we indeed observe that for a sufficient
profiling, ETA is the most efficient solution. Yet, it is also worth observing that
NTA provides the worst results overall, which already suggests that comparisons
are quite sensitive to the adversary/evaluator’s assumptions. Quite surprisingly,
our experimental results show that up to a certain level, the success rate of RF
increases with the number of points without information. The reason is intrinsic
to the RF algorithm in which the trees need to be as decorrelated as possible.
As a result, increasing the number of points in the leakage traces leads to a better
independence between trees and improves the success rate. Besides, the most
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interesting observation relates to RF in high dimensionality, which remarkably
resists the addition of useless samples (compared to SVM and TA). The main
reason for this behavior is the random feature selection embedded into this tool.
That is, for a sufficient number of trees, RF eventually detects the informative
POI in the traces, which makes it less sensitive to the increase of u. By contrast,
TA and SVM face a more and more difficult estimation problem in this case.
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Fig. 4. Success rate for NTA, ETA, SVM and RF in fct. of the number of useless
samples u, for various sizes of the profiling set Np, with d = 2, SNR=1, Na = 15.

Another noticeable element of Fig. 4 is that SVM and RF seem to be bounded
to lower success rates than TA. But this is mainly an artifact of using the success
rate as evaluation metric. As illustrated in Fig. 5 increasing either the number of
informative dimensions in the traces d or the number of attack traces Na leads
to improved success rates for the ML-based approaches as well. For the rest, the
latter figure does not bring significantly new elements. We essentially notice that
RF becomes interesting over ETA for very large number of useless dimensions
and that ETA is most efficient otherwise.

Eventually, the interest of the random feature selection in RF-based models
raises the question of the time complexity for these different attacks. That is,
such a random feature selection essentially works because there is a large enough
number of trees in our RF models. But increasing this number naturally increases
the time complexity of the attacks. For this purpose, we report some results
regarding the time complexity of our attacks in Fig. 6. As a preliminary note, we
mention that those results are based on prototype implementations in different
programming languages (C for TA, R for SVM and RF). So they should only
be taken as a rough indication. Essentially, we observe an overhead for the time
complexity of ML-based attacks, which vanishes as the size of the leakage traces
increases. Yet, and most importantly, this overhead remains comparable for SVM
and RF in our experiments (mainly due to the fact that the number of trees was
set to a constant 500). So despite the computational cost of these attacks is not
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Fig. 5. (a) Success rate for NTA, ETA, SVM and RF in function of the number of
useless samples u, with parameters Np = 25, d = 5, SNR=1 and Na = 15. (b) Similar
experiment with parameters Np = 50 d = 2, SNR=1 and Na = 30.
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Fig. 6. Time complexity for ETA, SVM and RF in fct. of the number of useless samples,
for d = [2, 12] and Np = 25. (a) Profiling phase. (b) Attack phase.

negligible, it remains tractable for the experimental parameters we considered
(and could certainly be optimized in future works).

5 Conclusion

Our results provide interesting insights on the curse of dimensionality for side-
channel attacks. From a theoretical point of view, we first showed that as long as
a limited number of POI can be identified in leakage traces and contain most of
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the information, TA are the method of choice. Such a conclusion extends to any
scenario where the profiling can be considered as “nearly perfect”. By contrast,
we also observed that as the number of useless samples in leakage traces increases
and/or the size of the profiling set becomes too limited, ML-based attacks gain
interest. In our simulated setting, the most interesting gain is exhibited for RF-
based models, thanks to their random feature selection. Interestingly, the recent
work of Banciu et al. reached a similar conclusion in a different context, namely,
Simple Power Analysis and Algebraic Side-Channel Analysis [1].

Besides, and admittedly, the simulated setting we investigated is probably
most favorable to TA, since only estimation errors can decrease the accuracy of
the adversary/evaluator models in this case. One can reasonably expect that real
devices with harder to model noise distributions would improve the interest of
SVM compared to ETA – as has been suggested in previously published works.
As a result, the extension of our experiments towards other distributions is an
interesting avenue for further research. In particular, the study of leakage traces
with correlated noise could be worth additional investigations in this respect.
Meanwhile, we conclude with the interesting intuition that TA are most effi-
cient for well understood devices, with sufficient profiling, as they can approach
the worst-case security level of an implementation in such context. By contrast,
ML-based attacks (especially RF) are promising alternative(s) in black box set-
tings, with only limited understanding of the target implementation.
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Abstract. The selection of points-of-interest in leakage traces is a fre-
quently neglected problem in the side-channel literature. However, it can
become the bottleneck of practical adversaries/evaluators as the size of
the measurement traces increases, especially in the challenging context
of masked implementations, where only a combination of multiple shares
reveals information in higher-order statistical moments. In this paper,
we describe new (black box) tools for efficiently dealing with this prob-
lem. The proposed techniques exploit projection pursuits and specialized
local search algorithms, work with minimum memory requirements and
practical time complexity. We validate them with two case-studies of
unprotected and first-order masked implementations in an 8-bit device,
the latter one being hard to analyze with previously known methods.

1 Introduction

The selection of Points-Of-Interest (POIs) in leakage traces is an important (and
not very discussed) problem in the application of Side-Channel Analysis (SCA)
attacks. When targeting unprotected implementations, the naive strategy that
is commonly used in the literature is to test all the time samples independently.
It raises two important challenges. First, how to combine these time samples
efficiently, in order to maximize the amount of information extracted from each
leakage trace? Second, how to extend this technique in the context of masked
implementations where the sensitive data is split into d shares manipulated in
different clock cycles (as it is typically the case in software), and only the combi-
nation of these shares’ leakage reveals key-dependent information – which makes
the complexity of an exhaustive analysis grow combinatorially with d?

Solutions to the first problem typically include dimensionality reduction tech-
niques such as PCA and LDA. These tools (introduced to SCA in [1,23] and
recently revisited in [3,5]) essentially project the leakage traces into a lower-
dimensional subspace that optimizes some objective function. Namely, PCA usu-
ally maximizes the variance between the mean leakage traces – i.e. the signal of

c© Springer International Publishing Switzerland 2015
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a first-order DPA, while LDA maximizes the ratio between inter-class and intra-
class variances – i.e. its Signal-to-Noise Ratio (SNR), essentially. Their main
advantage is to provide a principled and intuitive solution to the problem, since
the projection (i.e. eigenvectors) they produce indicate the POIs. Yet, they are
somewhat limited when moving to masked implementations for which the infor-
mation lies in high-order statistical moments, since their objective function is
based on a definition of signal that primarily captures first-order leakages1.

Solutions to the second problem are even sparser. To the best of our knowl-
edge, the usual reference for selecting POIs for masked implementations is the
educated guess proposed by Oswald et al. in [13] (i.e. an exhaustive search over
all d-tuples of time samples in a window selected based on engineering intuition).
Next, Reparaz et al. proposed an alternative solution exploiting Mutual Infor-
mation Analysis (MIA) [8], that allows gaining a constant (but practically mean-
ingful) factor corresponding the number of key hypotheses in the attack [20]. In
both cases, the proposed tools do not output a projection but a list of the most
useful POIs (i.e. d-tuples) in function of the (non-profiled) attack considered.

In this paper, we investigate the use of Projection Pursuits (PPs), as alterna-
tive tools for the selection of POIs in leakage traces [7]. Intuitively, PPs machine-
pick “interesting” low-dimensional projections of a high-dimensional data space
by numerically maximizing a certain objective function. They essentially work
by tracking the improvements (or lack thereof) of the projection when modifying
it with small random perturbations. Their main advantage in our context is that
they can deal with any objective function, which naturally fits to the problem
of higher-order SCA. Their main drawback is (in general) their heuristic nature,
since the convergence of the method is not guaranteed and its complexity is
context-dependent. As a result, and in order to validate the interest of PPs in
our SCA context, we first applied them to the simple case of an unprotected
implementation of the AES. We show that different objective functions can be
efficiently used for this purpose, leading to powerful subspace-based attacks, with
similar informativeness as previous solutions such as LDA.

Next, we moved to the more challenging context of masking. In this case, we
combined the (linear) projection with an objective function exploiting higher-
order statistical moments. Initial experiments suggest that the straightforward
implementation of a PP algorithm is not efficient in detecting the POIs of such
protected implementations (especially as the number of useless dimensions in
the traces increases). The main reason is that as long as a d-tuple of POIs is
not present in the projection, the objective function essentially returns random
indications. Interestingly, we then show that a specialized PP algorithm exploit-
ing an improved local search could give excellent results even in this challenging
context. Intuitively, it works by looking for the best size and position of d win-
dows covering parts of the traces, again by iterating small random perturbations.
Our experiments suggest that we can recover POIs with significantly less calls to

1 Of course, a trivial solution would be to apply PCA/LDA to “product traces” con-
taining all the possible products of d-tuples, but this rapidly leads to unrealistic
memory requirements in the masked software context that we consider next.
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the objective function than a exhaustive analysis. We further discuss the main
parameters influencing the success of such a detection method, and detail the
time vs. measurement complexity tradeoff resulting from these parameters.

2 Background

Notations. We use capital letters for random variables, small caps for their
realizations, sans serif fonts for functions and calligraphic letters for sets.

2.1 Measurement Setups

Our experiments are based on measurements of an AES implementation run by
an 8-bit Atmel AVR (ATMega644P) microcontroller at a 20 MHz clock frequency.
We monitored the voltage variations across a 22 Ω resistor introduced in the
supply circuit of our target chip. Acquisitions were performed using a Lecroy
HRO66ZI oscilloscope running at 200 MHz and providing 8-bit samples. For con-
creteness, our evaluations focused on the leakage of the first AES master key byte
(but would apply identically to any other enumerable target). Leakage traces were
produced according to the following procedure. Let x and s be our target input
plaintext byte and subkey, and y = x ⊕ s denote a key addition. For each of
the 256 values of y, we generated 1000 unprotected encryption traces (resp. 500
for masked traces), where the rest of the plaintext and key was random, i.e. we
generated 256 000 (resp. 128 000) traces in total, with plaintexts of the shape
p = x||r1|| . . . ||r15, keys of the shape k = s||r16|| . . . ||r30, and the ri’s denot-
ing uniformly random bytes. In case of masked implementations, additional uni-
form randomness was used to generate the shares. In order to reduce the mem-
ory cost of our evaluations, we only stored the leakages corresponding to the 2
first AES rounds in the unprotected case (as the dependencies in our target byte
y = x ⊕ s typically vanish after the first round, because of the strong diffusion
properties of the AES). As for the protected case, we only considered a single S-
box, for which the precomputation of a masked table alreay implies large traces
with Ns = 30, 000 time samples (vs. Ns = 1500 for the unprotected one). As
will be clear next, these sets of measurements were large enough to emphasize the
interest of our projection pursuit algorithms. In the following, we will denote the
1000 (resp. 500) encryption traces obtained from a plaintext p including the target
byte x under a key k including the subkey s as: AESks

(px) � liy, with i ∈ [1; 1000]
(resp. i ∈ [1; 500]). Whenever accessing the points of these traces, we will addi-
tionally use an argument t (for time), leading to liy(t). Our goal is to generate pro-
jections exhibiting the time samples that contain information about y. Note that
since we assume the plaintext to be known by the adversary (as usual in SCAs),
it directly translates into information about s – which typically occurs during the
key addition y = x ⊕ s and S-box execution z = S(x ⊕ s).

2.2 Objective Functions (Aka Evaluation Metrics)

In order to “guide” the PP, we need to define criteria to determine whether some
modification of the projection is positive. Any SCA evaluation metric can be used
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for this purpose. We list a few candidates in this section. In order to guarantee
their soundness, we focused on objective functions based on profiled distinguish-
ers (which allows mitigating biases due to incorrect a-priori choices of models –
given that the profiles are well estimated and based on sound assumptions).

CPA [4]. In a profiled Correlation Power Analysis, the adversary first estimates
the first-order moments corresponding to each value y from a vector of Np pro-
filing traces lpy, that we denote as m̂1

y = Ê(lpy), with Ê the sample mean operator.
This step is performed for each time sample independently, leading to m̂1

y(t).
Since there are 256 y values in our AES case study, it amounts to compute
256 × Ns means, with Ns the number of samples per trace. Then, he computes
the correlation between these mean values and the samples coming from a vector
of test traces lty, leading to ρ̂(m̂1

y(t), l
t
y(t)) with ρ̂ denoting Pearson’s coefficient.

SNR [10]. An alternative to CPA is the SNR defined at CT-RSA 2004 as:

ˆSNR(t) =
v̂ary

(
Ê
(
lty(t)

))

Êy

(
v̂ar

(
lty(t)

)) ,

with v̂ar the sample variance operator. Similarly to the correlation coefficient,
such a criteria is discriminant for first-order information (i.e. information lying in
the first-order moments of the leakage distribution). In order to deal with masked
implementations, we also need objective functions that capture more general
dependencies. In this context, a natural option is the information theoretic metric
introduced in [25] and later refined in [19]. Its sample definition is given by:

Î(S;X,L) = H[S] +
∑

s∈S
Pr[s]

∑

x∈X
Pr[x]

∑

liy∈Lt
Y

Prchip[liy|s, x]. log2 P̂rmodel[s|x, liy],

where P̂rmodel is a probabilistic model estimated thanks to the set of profiling
traces (just as the 256 × Ns mean values in the correlation case). Computing
such an objective function implies (constant but significant) performance over-
heads, because it requires applying Bayes’ law and marginalizing over the key
hypotheses. Since the objective function will typically be applied after projection
in the following sections (i.e. in a univariate context), a cheaper alternative is to
exploit the following “Moments-Correlating Profiled DPA” (MCP-DPA):

MCP-DPA [12]. The attack features essentially the same steps as a profiled
CPA. The only difference is that the adversary will estimate dth-order moments
m̂d

y(t) with the profiling traces. In the following, we will be particularly interested
in the Moments against Moments Profiled Correlation (MMPC) criteria:

MMPC(t) = ρ̂(m̂d
y(t), m̃

d
y(t)),

where m̃d
y(t) are another vector of moments, estimated with the test traces.

As detailed in [12], MCP-DPA is able to capture information in any statistical
moment, while enjoying the implementation efficiency of CPA (which is highly
beneficial in our context where the objective function is intensively used).
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3 Projection Pursuit Against Unprotected Devices

In this section we investigate the application of PPs to the simple case of the
(unprotected) AES furious implementation available as open source from [15].
In this context, our goal is to find a projection vector α that will convert the Ns

samples of a leakage vector lty to a single (projected) sample λi
y, that is:

λi
y =

Ns−1∑

t=0

α(t) · liy(t),

such that univariate attacks exploiting the λi
y’s will be most efficient. This essen-

tially requires to define an objective function that measures the “informative-
ness” of these samples. As mentioned in the previous section, this task is quite
easy when first-order information is available in the leakage traces: Pearson’s
correlation coefficient obtained from a CPA and Mangard’s SNR are natural
candidates – we will try them both in the next subsection. Following the equiva-
lence results in [11], they should provide similar results in this case (also similar
to the ones that would be obtained with an information theoretic metric).

3.1 Projection Pursuit Algorithm

The pseudo-code of our projection pursuit algorithm is given in Algorithm1.

Algorithm 1. Projection Pursuit.

basic PP(Nr,Nit)
α = initialize();
repeat Nr times

r = rand index(Ns);
αnew = max search(@fobj ,Lp,α, r,Nit);
α = αnew;

end

It essentially repeats (Nr times) the selection of a random index r followed by a
maximization of the objective function for the corresponding time sample, based
on the set of profiling traces Lp (which contains traces for all the intermediate
values y). For this purpose, the max search() function consists in successive
parabolic interpolations (illustrated in the long version of this work [6]), which
work in two iterated steps. We first look for samples that enclose the extremum
as follows. From a starting point x1, we add a Δ in the direction that increases
fobj to get x2. Then, we keep adding Δ’s until finding x3 such that y3 < y2.
As the weights assigned to each time sample are between 0 and 1, we typically
take Δ’s corresponding to a couple of percents (e.g. 0.1 in our experiments) and
repeat such additions at most 1/Δ times. Then, based on these three points,
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we start interpolating. This process is iterated Nit times, during which we replace
the “oldest” x-point by the x-coordinate (xv) of the parabola vertex (y-values
are re-computed accordingly). The new α(t) gets its value from the median x-
value at the end of the last iteration. In our experiments, Nit = 3 iterations
were enough to get a good approximation of the maximum. This method has
the advantage of being very fast to compute and to converge. Note finally that
the number of repetitions Nr should ideally be larger than the number of samples
Ns (e.g. twice, typically), because some weights benefit from being re-adjusted
after the modification of other α(t)’s. Yet, when applied in the context of an
unprotected implementation, the time complexity of Algorithm1 was never a
practical limitation in our experiments (i.e. a few minutes of computations).

3.2 Experimental Results

We implemented the PP algorithm for both the CPA and SNR objective func-
tions, and targeted the first AES key byte for illustration. For each of the 256
values of y = x ⊕ s, we measured Np = Nt = 50 traces for the CPA objec-
tive function, and Nt = 100 traces for the SNR one, each of them made of
Ns = 1500 time samples. We set Nr, Nit and Δ as just explained (to 3000, 3
and 0.1, respectively). We then computed success rates to compare the quality
of the projections obtained with the most informative sample, by performing
2000 experimental univariate Template Attacks (TA). These results show the
effectiveness of the projections as they need only 7 traces to get a 90% success
rate, against 28 traces for the univariate TA. It also confirms that both objective
functions are indeed equivalent in this case. It is finally interesting to compare
our findings with the results in [24] that target a similar implementation (with
very similar success rate for the univariate TA). In particular, we see that the
univariate attack based on the single sample provided by our projections leads
to approximately the same data complexities as the hexavariate template attack
taking (heuristic) advantage of all the POIs in this previous work (Fig. 1).
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Fig. 1. Template attack success rates against unprotected device



40 F. Durvaux et al.

4 Projection Pursuit Against Masked Implementations

In contrast with the previous section, detecting POIs in leakage traces of masked
implementations is a quite challenging task. From the complexity point-of-view,
exhaustive approaches may grow exponentially with the number of shares (if
these shares are manipulated at different time samples), making them unprac-
tical for long traces. Furthermore, the information in the leakages of masked
implementation lies in higher-order moments of their probability distribution,
which are harder to estimate. As a result, the direct application of Algorithm 1
with the previous objective functions in this context does not provide successful
results. In the (simple) case where the shares of a masking scheme are manipu-
lated in parallel, adapting the objective function may be sufficient to deal with
this problem. But in case of software implementations, where the shares are
manipulated at different time samples, it is the algorithm itself that has to be
adapted. Intuitively, this is because it works by modifying time samples one at a
time, while for such masked implementation, we require at least one meaningful
d-tuple of samples to be active in the projection for an objective function to
output relevant information. We now describe how to specialize PPs to take this
constraint into account, and detect POIs for masked implementations.

4.1 Specialized Projection Pursuit Algorithm

The main tool used in our following optimization is local search, which is a col-
lection of iterative methods that are efficient for quickly finding good solutions
to optimization problems (note that the previous PP algorithm can be viewed as
a simple local search). Despite heuristic, it generally works more efficiently than
exhaustive analyses. Furthermore, local search has very limited storage require-
ments. For example, in our context, it exploits the leakage traces directly – which
is a significant advantage compared to heuristics exploiting “product traces” as
mentioned in footnote 1. A good reference to these methods is [9]. Their work-
ing principle is simple: they always keep a solution (called the current solution)
as well as the best solution found since the beginning of the search. At each itera-
tion of the algorithm, the current solution is perturbed, giving a set of new solu-
tions, called its neighborhood. One of the neighboring solutions is then selected
and replaces the current solution. The algorithm terminates when its convergence
criterion is met (e.g. number of iterations without improvement, time limit, etc.).
Intuitively, such an approach to optimization exploits diversification and intensi-
fication. The former aims at exploring a large and diverse search space, while the
latter intends to improve the current solution. Their combination is expected to
avoid being trapped into local optima.

When applied to masking, one key element has to be taken into account by
optimizations. Namely, the sensitive variables are split into d shares and the
objective function should not be informative as long as a meaningful d-tuple of
shares is not present in the projection. Besides, in practice it frequently happens
that dimensions near a POI also contain valuable information. These two facts
motivate the way we designed our improved search algorithm as follows. First,
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we consider a projection vector containing d windows of non-zero weights (all
the others being zero) and denote a group of successive dimensions as a window.
The weights inside these windows are uniform. In this context, and since local
search only considers local modifications of the current solution, the information
given by the objective function will return essentially random indications (so no
reliable information) if this current solution does not cover the d shares. On the
contrary, when the windows spans a d-tuple of shares, the objective function
can be used to refine the current solution. For this reason, our specialized PP
algorithm will be split into two parts next denoted as find sol and improve sol.
The find sol phase probes the search space with large windows and a lot of
randomness until it has good indication that the windows span the d-tuples of
shares. In order to detect that the windows span these d-tuples, we use two sets of
profiling traces (Lp

tr and Lp
va, where tr stands for training and va for validation).

Then, the improve sol phase refines those windows. The find sol phase thus
puts more emphasis on diversification and the improve sol, on intensification.

Algorithm 2. Specialized projection pursuit algorithm using local search.

specialized PP Local Search(d,Wlen, Tdet,TP:=TP’∪ TP’’)
α = find sol phase(d,Wlen, Tdet,TP’);
if(α �= null)

return improve sol phase(α,TP’’);
end

The pseudocodes of the specialized PP algorithm using local search are given
in Algorithms 2, 3 and 4. These algorithms depend on various parameters: some
of them will be explicitly discussed as they hold important intuitions, the remain-
ing ones – next denoted as technical parameters (TP) – will be fixed according to
state-of-the-art strategies. Our main tool is the specialized PP Local Search
function (Algorithm2). As just explained, it organizes the search in two main
steps. The first one is the find sol phase which returns a first candidate pro-
jection α (after Nf

r repetitions). If this first step is successful, the improve sol
phase is repeated N i

r times to refine the solution. The find sol phase is
described in Algorithm 3. At each iteration, it randomly selects d windows of
length Wlen with non-zero weights (function random window). All the neighbors
of the solution are then computed with the function get neighbors FS. Each
neighbor is constructed by moving one of the windows left or right (if we see
the projection vector as a row vector). The lengths of the moves considered are
small multiples of the window length (as set by the num hops parameter). Dur-
ing the computation of the neighbors, the collisions between windows are avoided
in order to keep d distinct windows. Next, the best neighbor is selected as the
neighbor having the maximal evaluation of fobj on the set Lp

tr. This best neigh-
bor is finally tested to detect if a d-tuple of shares is spanned by the windows.
The detection is based on a threshold Tdet on the objective function that will be
carefully discussed in the next section. In order to dodge the randomness of the
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objective function when the d shares are not spanned, this threshold has to be
exceeded on both the training and validation sets of traces Lp

tr, Lp
va. If those two

conditions are met, the projection vector is returned by the algorithm.

Algorithm 3. Find solution phase.

find sol phase(d,Wlen, Tdet,TP’)

TP’:={Nf
r ,num hops}

i=0;

repeat Nf
r times

α = random window(d,Wlen);
neighborhood = get neighbors FS(α,num hops);
best neighbor = max(@fobj ,neighborhood ,Lp

tr);
if fobj(best neighbor ,Lp

tr) > Tdet & fobj(best neighbor ,Lp
va) > Tdet

return (i + 1, best neighbor);
end
i++;

end
end

If the find sol phase was able to find a solution spanning the d shares,
the objective function is informative enough to allow a second (intensifica-
tion) step, and the improve sol phase (in Algorithm 4) is run for N i

r itera-
tions. At each iteration, the entire neighborhood is constructed with the func-
tion get neighbors IS. Each neighbor results from the shift (left or right) of
one window or the resizing of all the windows (we keep the same size for all
windows). The move steps considered are given in move steps, and the resize
steps in resize steps. The size of the windows is constrained to remain between
min WS and max WS. The selection of the neighbor is then performed by
select neighbor, as a random neighbor amongst the Nn best neighbors. Using
this selection strategy allows the search to avoid being trapped into local optima,
ensuring a sufficient diversification. The search also memorizes the best projec-
tion obtained since the beginning of the phase in αbest. This is mandatory as
it is allowed to select projection vectors that decrease the objective function.
Eventually, the variable num stagn records the number of iterations without
improvement of the best solution. Once num stagn is larger than max stagn or
when the number of iterations reaches Nr = Nf

r + N i
r, the search returns the

best solution αbest.
As far as the technical parameters are concerned, we first set the number of

hops (num hops) in the find sol phase to allow the windows covering all the
dimensions of the traces. It enables an iteration to find a covering set of windows
when one window is incorrectly placed. Next, in the improve sol phase, the
more move steps (move steps) and resize steps (resize steps), the quicker the
algorithm converges towards the optimal windows, but the longer each iteration
is. We found that a good tradeoff in our context was to use move steps of 1,
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Algorithm 4. Improve solution phase.

improve sol phase(α,TP’’)

TP’’:={N i
r,move steps, resize steps,minWS ,maxWS , Nn,max stagn}

αbest = α;

Repeat N i
r times

neighborhood = get neighbors IS(α,move steps, resize steps,minWS ,maxWS);
α = select neighbor(@fobj ,Lp

tr, Nn);
if fobj(α,Lp

tr) > fobj(αbest,Lp
tr)

αbest = α;
num stagn = 0;

else
num stagn + +;

end

if num stagn > max stagn
return αbest;

end
end
return αbest;

end

3 or 5 dimensions and resize steps of 1 dimension. Those settings allow the
iterations to be fast while still covering a large part of the search space around
the solution found by the find sol phase. The min WS parameter typically
depends on the sampling rate of the oscilloscope used in the attack: we set it to
5 which corresponds to half a cycle in our experiments, based on the intuition
that dimensions next to a POI may also contain information. max WS was then
chosen as 2*Wlen, reflecting that this information can be spread on multiple
clock cycles. Finally, a max stagn value of 50 allows the local search to stop
when it is unlikely to further improve the quality of the windows. And given
the low span of the moves and the resizes, an exploration parameter Nn of 3 is
enough to escape local optima and still converge towards the optimal solution.

4.2 Simulated Experiments

We now discuss the setting of the more intuitive parameters Wlen and Tdet

together with the performance gains obtained thanks to our specialized PP algo-
rithm. In view of their heuristic nature, these questions are best investigated
with simulated examples, where we can play with some important parameters of
leaking implementations. For this purpose, we will consider a first-order masked
S-box where the adversary receives Ni pairs of leakage variables of the form:

L1
i = HW(S(x ⊕ s) ⊕ m) + R1

i ,

L2
i = HW(m) + R2

i , (1)
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where HW is the Hamming weight function, S the AES S-box, x a plaintext byte,
s a key byte, m a secret random mask, and R1

i , R2
i are normally distributed noise

variables with variance σ2
n (1 < i ≤ Ni). For simplicity, we make sure that the

Ni samples corresponding to the two shares are not overlapping. Next to these
2 × Ni informative samples, we finally add Ns − 2 × Ni random samples Nj , so
that Ns is the total number of samples in our simulated traces.

Setting the Detection Threshold. An important parameter in Algorithm3
is the threshold value used to decide whether an improvement of the objective
function is significant. In this context, a particularly convenient feature of the
MMPC criteria (defined in Sect. 2.2) is that it gradually tends to one as the num-
ber of measurements used in the detection increases. That is, given that the order
of the statistical moment (e.g. d = 2 in our current simulations) and number of
measurements used in the detection is sufficient, this criteria always reaches high
values. Intuitively, it is because the MMPC relates to the statistical confidence
we have in our estimated moments rather than their informativeness (see [12] for
a discussion). As a result, and using such an objective function, we are able to set
the detection threshold Tdet in a completely black box manner (i.e. independent
of the implementation details). Indeed, the only thing we have to guarantee is
that the MMPC as computed by the objective function is significant in front of
the one that would be obtained by chance, for non-informative samples. But this
essentially depends on the size of the target operations. For example, the corre-
lation between random 256-element vectors is (roughly) Gaussian-distributed2

with mean zero. And the probability that MMPC > 0.2 by chance in this case
is already below the one corresponding to three σ’s (i.e. below 0.1 %). Of course,
one can expect slight deviations from such an ideal behavior (e.g. so-called ghost
peaks leading to non-zero mean MMPC for non-informative samples), but our
next experiments will confirm that setting Tdet to 0.2 is generally good.

Impact of Wlen, σ2
n and Ni on the Detection Success. Given a detection

threshold set as just explained, we can now evaluate the impact of different
parameters on the success of our find sol phase. In particular, the noise variance
σ2
n, number of informative pairs of samples in the traces Ni and window length

Wlen are important in this respect. As just explained, we know that given a large
enough number of measurements, the MMPC criteria should become larger than
0.2 for the informative samples. But it also means that if this number of measure-
ments is not sufficient, the moments used in MCP-DPA will not be sufficiently
well estimated and the detection may fail. As usual, the main parameter influ-
encing the estimation complexity is the noise variance σ2

n. Yet, since we apply
the objective function after projection in our PP algorithm, the size of the win-
dow Wlen also matters here. Indeed, adding Wlen samples with noise variance
σ2
n implies a larger noise variance Wlen × σ2

n after projection. This is typically
illustrated in the left part of Fig. 2, where we see the impact of increasing Wlen

for two noise levels (σ2
n = 0.1 in the top figure, σ2

n = 2 in the bottom one).
That is, for too large noise variances or window lengths, the estimation of the

2 More precise estimates can be obtained with Fisher’s Z transform.
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MMPC criteria is not good enough to take good decisions (i.e. is below Tdet). In
other words, more measurements are needed in this case for the PP algorithm
to output meaningful results. Interestingly, we also see in the right part of the
figure that adding meaningful samples in the traces (i.e. increasing Ni) quite
significantly mitigates the impact of large window lengths. So intuitively, traces
with multiples POIs available will better benefit from our proposed method.
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Fig. 2. Incidence of the window length Wlen on the information detection.

Time Complexity. The previous results suggest that the complexity of PP
algorithms is essentially a tradeoff between time and measurement complexities.
That is, increasing the windows length should decrease their time complexity3,
but increases the noise after projection, and so the number of measurements
needed to estimate the MMPC criteria with sufficient confidence. This is typically
illustrated in the left part of Table 1, where we also see the benefit of having
more informative samples in the traces (i.e. increasing Ni). Furthermore, the
right part of the table highlights the impact of increasing the size of the traces
Ns. As in a combinatorial search, the time complexity of the PP algorithm
should increase quadratically with it (more generally, it depend on Nd

s with d the
number of shares in the masking scheme). Yet, increasing Wlen or Ni can make
this increase quasi-linear for some (not too large) values of Ns. Besides, note that
Table 1 includes all the constant factors related to the technical parameters in the

3 At most linearly since the benefit of increasing the window length Wlen saturates
whenever it is not negligible in front of the number of samples in the traces Ns.
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previous section, which sometimes amortizes these asymptotic predictions. Note
also that this table counts the calls to the objective function for readability, but
this count is not fully reflective of the PP’s time complexity when changing the
size of the profiling sets Lp

tr and Lp
va, since larger sets also increase the complexity

of each evaluation of the objective function. Yet, thanks to the parallelism of
MCP-DPA attacks, the impact of these increases was limited in our experiments,
leaving us with strong concrete results, as the next section will show.

Table 1. Impact of Wlen, Ni and Ns on the average number of fobj calls.

Ns = 1000
Ni

5 10

Wlen

10 7306 4681
20 3920 3008
30 3266 2782
50 - 2138
100 - 1020
150 - -

Ns

500 1000 2000

Wlen = 50, Ni = 10 905 2138 4673

4.3 Measured Experiments

The previous simulated experiments suggest that a specialized PP algorithm
can be an efficient way to find POIs in the leakage traces of masked implemen-
tations. We now would like to confirm this hope in front of a real case-study. For
this purpose, we will consider the actual measurements of a first-order masked
AES S-box based on table lookups [17,22]. For every pair of input/output masks
(m, q), it pre-computes an S-box S∗ such that S∗(x⊕s⊕m) = S(x⊕s)⊕ q Since
this pre-computation is part of the adversary’s measurements, it leads to quite
memory-consuming traces of Ns = 30, 000 samples (which would be a challeng-
ing target for a combinatorial search). Furthermore, we verified empirically that
our implementation does not lead to any (easy-to-detect) first-order informa-
tion leakage, by running template attacks for all the time samples, and making
sure that the success rate remained negligible (which should be guaranteed by
the use of independent masks m and q, in order to prevent leakages based on
the transitions between the the S-box input and output). Our motivation for
using this setup was twofold. First, we selected a masking countermeasure based
on pre-computed tables in view of the difficulty to obtain a first-order secure
implementation based on other standard masking schemes such as [21] – see [2]
for a recent discussion of this problem. Second, we purposely put ourselves in
a challenging scenario with large traces, without trying to compress them (e.g.
by reducing the sampling frequency or through educated guess). While we agree
that concrete adversaries would try to exploit these possibilities, we assume that
they would not always be able to compress traces up to feasible combinatorial
search, and the experiments in this section aim to reflect this possibility.
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We then analyzed our set of profiling and test traces, in order to evaluate
the success and efficiency of our POI detection tool. We used the same MMPC
criteria and detection threshold of 0.2 as previously discussed, and selected a win-
dow length Wlen of 25, corresponding to approximately two clock cycles in our
measurements: this is the only physical intuition used in our experiments. With
these parameters, it turned out that the estimation of the objective function was
sufficiently accurate (for our detection threshold to make sense) with 50 profiling
traces per template (i.e. 50× 256 among the 500× 256 measured). Based on our
1500 test traces, we then evaluated that the local search algorithm was able to
return a solution within an average of 12 000 calls to fobj (roughly correspond-
ing to 7 min of execution time on our desktop computer). We then repeated this
search multiple times in order to find several pairs of informative windows. We
finally used these windows to launch multivariate (Gaussian) template attacks
using 2, 4 and 8 dimensions. For this purpose, we selected the smallest windows
(which turned out to contain 5 samples) and built templates for their mean val-
ues (so that each pair of window provided us with 2 dimensions). The results
of these attacks are illustrated in Fig. 3 and confirm that our tool successfully
detected POIs in this challenging case4. Interestingly, we see that the gain due
to increased dimensionalities vanishes when moving from 4-dimension templates
to 8-dimension ones. We conjecture that this mainly relates to template esti-
mation issues. Note anyway that, as mentioned in introduction, these attacks
are not aimed to be optimal from the data complexity point-of-view (since we
have no guarantee to find the most informative samples). Our main goal was to
provide a time-efficient POI detection tool, in a black box setting. To the best of
our knowledge, previous methods for this purpose would not have been able to
deal with 30,000-sample traces without an educated guess (For illustration, the
product traces mentioned in footnote 1 would correspond to 900.106 samples).

5 Conclusions

In this work we proposed an efficient method for finding POIs in the leakage
traces of cryptographic implementations. We exploit a combination of PP and
local search for this purpose, and discussed the how to adapt it to the side-
channel cryptanalysis problem. One of the main advantages of the method is its
genericity, as it can be applied to any implementation, by simply adapting its
objective function. Besides, it has very low memory requirements compared to
state-of-the-art solutions and (although heuristic) works in practical time com-
plexity. We applied our basic and specialized PP algorithms to two case stud-
ies of unprotected and 2-share masked implementations to validate our claims.
Extending the specialized version to more shares would be straightforward, since
this number of shares (i.e. d) is a parameter in our search algorithms.

Among the interesting open problems, we believe investigating the informa-
tiveness of the projected samples obtained with PPs in the context of protected
4 For convenience, and in order to limit our measurement needs, we estimated a 4th-

order success rate which corresponds to an adversary able to enumerate 232 keys.
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Fig. 3. 4th-order success rates of multivariate template attacks.

implementations is promising – it was essentially left out of our analysis so far.
Different approaches could be considered for this purpose. One would be to
refine the projection vectors, possibly based on an information theoretic objec-
tive function that would better reflect the resulting attacks’ data complexity.
An alternative one would be to exploit non-linear projections, e.g. inspired by
the “product combining” frequently used in second-order DPA [18,26]. Yet, pre-
liminary results suggest that non-linear projections may be hard(er) to exploit
because the addition of non-informative samples when computing the objective
function has higher impact on the (non-Gaussian) noise in this case. Besides,
testing new objective functions that are cheap to compute and estimate, in the
profiled and non-profiled settings, is another interesting research direction.

Note finally that the long version of this work includes two additional sub-
sections with detailed discussions and comparisons with related works [6].
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Abstract. This paper compares attack outcomes w.r.t. profiled single
trace attacks of four different lightweight ciphers in order to investigate
which of their properties, if any, contribute to attack success. We show
that mainly the diffusion properties of both the round function and the
key schedule play a role. In particular, the more (reasonably statistically
independent) intermediate values are produced in a target implementa-
tion, the better attacks succeed. A crucial aspect for lightweight ciphers
is hence the key schedule which is often designed to be particularly light.
This design choice implies that information from all round keys can be
easily combined which results in attacks that succeed with ease.

1 Introduction

In our increasingly digitally interconnected world developing secure crypto-
graphic software is a key challenge in practice. The stakes at hand are
considerable: with the advent of ‘smart devices’ (e.g. smart meters, smart
appliances) cryptography becomes deeply embedded in consumers’ everyday
lives. Such devices’ primary functionalities are to provide commodities to con-
sumers. Consequently, despite the importance of cryptography, the resources
remaining to implement it may be very limited. This requirement for lightweight
cryptography has inspired many new designs, such as PRESENT [3] (recently
standardised as ISO/IEC 29192-2:2012), KLEIN [8] and LED [9] among many
others. Some were designed with suitability for hardware implementations in
mind (such as PRESENT), but by and large all of them are also considered for
implementations in software on small microprocessors as found in typical smart
devices.

Deeply embedded systems are by nature very exposed to side-channel adver-
saries: their market is such that millions of these devices can be found ‘in
the wild’ as part of applications, but many of the processors that are used in
smart devices can be picked up off the shelf for only a small cost. This makes
them ideal targets for the most sophisticated side-channel attacks, which are
based on profiling. Profiling can be used both in simple and differential style
attacks. Differential style attacks exploit leaking information associated with
different plaintext data but a fixed key and it is well understood that the choice
of e.g. the substitution function has an important impact on the vulnerability of
a cipher [14].
c© Springer International Publishing Switzerland 2015
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In this paper we aim to investigate the security of specific implementations
of lightweight ciphers against profiled single trace attacks. In particular, we are
interested to discover which properties, if any, contribute to the general vulner-
ability of a lightweight cipher against this particular type of adversary.

Our Contribution. Using a pragmatic approach to assess the resilience of
ciphers against profiled single trace attacks, we conduct several experiments for
four ciphers: AES (to provide a well-known baseline for comparison), PRESENT
(to see how ciphers which are attractive for hardware implementations fare when
implemented in software), KLEIN and LED (sharing some features with AES
and PRESENT while aiming at resource minimisation). All experiments assume
the same underlying architecture (8-bit) and are based on publicly available
implementations of the investigated ciphers [7]. Apart from providing a common
denominator, we regard this suite as relevant to a high proportion of real-life
cases since algorithm implementations are done in a ‘natural’ way. Note that we
work with simulated traces, which however does not imply perfect measurements
(see Sect. 3 for details on how inherent noise is taken into account).

Our method, which we describe in Sect. 4.1, can be regarded as a basic tool for
evaluating the resilience of specific cipher implementations against single trace
attacks. As such, we draw inspiration from [1,10] which independently suggested
using a pragmatic key enumeration approach. However, instead of enumerating
single subkeys we test multiple candidates at the same time, thus achieving 100%
success rate and running time of under 5 min for all test cases, which represent
significant improvements.

We can show that the impact of choice of substitution boxes is negligible
w.r.t. profiled single trace attacks and equally the impact of the global diffusion
characteristics over a single round have shown no impact in the case of the
four studied ciphers. We find however that simply the number of statistically
independent intermediate steps (i.e. the ‘attack surface’) that are required on the
architecture is a good predictor for the vulnerability of a cipher against profiled
single trace attacks. This shows that ciphers that can be elegantly described on
a variety of architectures will be most resilient to such attacks as they provide
a smaller attack surface.

Related Work. As mentioned above, this work is strongly linked to [1,10],
but introduces significant improvements in terms of running time and success
rate. As such, and because the output of our attack is a reduced key space,
our method represents an uncostly means of evaluating the worst-case sce-
nario of single-trace attacks such as solver-aided algebraic side-channel attacks
[4,13,16]. The cited papers focus on AES and PRESENT encryption, under
the Hamming weight leakage model. Further leakage models are considered in
[12,15]. We are not aware of single trace attacks on KLEIN and LED. The
security of the (unprotected) AES key schedule algorithm has been studied in
[11,17]. More recently, [5] described attacks on masked implementations in an
ideal scenario where noise is practically negligible. We are not aware of single
trace attacks on the KLEIN or PRESENT key schedule.
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2 Overview of Ciphers, Notation and Implementation
Characteristics

The ciphers in our suite are instances of substitution-permutation networks
(SPN), and therefore have similar components in their encryption functions.
In particular, three common types of operations are utilised by all four ciphers:

– the key addition (bitwise xor between the round key and current state),
denoted by AddRoundKey;

– the n-bit substitution (a highly non-linear transformation which acts upon
groups of n bits substituting them via a lookup table called the S-box, with
n ∈ {4, 8} fixed), represented by SubBytes, SubNibbles, sBoxLayer and
SubCells;

– finally, the byte mixing (a linear transformation acting on sets of bits), namely
MixColumns, MixNibbles, pLayer and MixColumnsSerial.

Except PRESENT, the chosen ciphers utilise explicit byte (or 4-bit)
renumbering functions, i.e. ShiftRows and ShiftNibbles. Additionally, the
AddRoundConstant of LED xors the state with a round constant (can be done
at the same time as the key addition).

AES. The Advanced Encryption Standard (AES) is a symmetric block cipher
with a fixed block size of 128 bits and a variable key size of 128, 192, or 256 bits
respectively corresponding to 10, 12 and 14 encryption rounds. Throughout this
document we refer to the 128-bit key variant simply as AES. At the beginning of
the encryption process, the plaintext is xor-ed with the secret key. Subsequently,
each encryption round bar the last one consists of the successive application of
SubBytes, ShiftRows, MixColumns and AddRoundKey; the last encryption round
skips MixColumns. The key expansion is elegant. It reuses components from the
round function and operates on so-called ‘words’.

KLEIN. KLEIN is an AES-like lightweight block cipher, supporting a fixed 64-
bit state and 64, 80, or 96-bit keys for 12, 16, respectively 20 rounds. Throughout
this document we refer to the 64-bit key variant simply as KLEIN. Each encryp-
tion round consists of the successive application of AddRoundKey, SubNibbles,
RotNibbles and MixNibbles. A final key addition is performed after the encryp-
tion rounds. Although the order of operations inside an encryption round is dif-
ferent, their succession starting from the beginning of the encryption process is
the same as with AES; moreover, the MixNibbles of KLEIN is identical to the
MixColumns of AES. The key expansion process is fairly simple, each new key
byte depending on exactly two bytes from a previous key.

PRESENT. PRESENT consists of 31 rounds, has a 64-bit block size and 80 or
128-bit keys. Throughout this document we refer to the 80-bit key variant simply
as PRESENT. An encryption round consists of the key addition AddRoundKey,
followed by the substitution and permutation layers, sBoxLayer and pLayer. The
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permutation layer is designed to match the effects of the combination between
ShiftRows and MixColumns of AES. A final key addition is performed after the
encryption rounds. The key schedule is fairly minimal: each new round key is
derived from the previous key via a bit rotation, a single application of the S-box
and a single xor with a round constant.

LED. LED accepts a 64-bit block and 64-bit or 128-bit keys, and consists of
32, respectively 48 rounds. Throughout this document we refer to the 64-bit key
variant simply as LED. The structure of an encryption round is the succession of
AddRoundConstant, SubCells, ShiftRows and MixColumnsSerial. Then, four
rounds make a step, and the encryption process consists of adding the round key
and performing a step for a total of 8 times, followed by a final key addition.
LED has no key expansion algorithm, and the secret key is used as a round key
in each round.

As can be observed, the structure of the encryption algorithms is highly
similar: first, because homologous subroutines are used, and second, because
the order of the subroutines is virtually the same. We note that the first
AddRoundConstant of LED can be performed before the key addition, i.e. directly
on the plaintext.

2.1 Implementation Characteristics

SPA attacks are usually studied in the context of software implementations on
serial microprocessors. Typical power models that are found in practice are the
Hamming weight (HW) and the Hamming distance (HD). Leakages of this kind
are observed mainly because of intermediate values being written to or read from
memory.

For AES, KLEIN and PRESENT, we target publicly available 8-bit
implementations, available at http://perso.uclouvain.be/fstandae/lightweight
ciphers/. In the case of LED, the publicly available implementations can be
found at http://led.crypto.sg/software. In the remainder of this section, we fur-
ther discuss implementation details of the substitution and byte mixing lay-
ers; we consider that implementing the key or round constant addition is fairly
straightforward and does not require clarification.

The Byte Substitution Layer. As described in Sect. 2, KLEIN, PRESENT
and LED use 4-bit lookup tables. In order to optimally fit on 8-bit architectures
two consecutive nibbles (2× 4 bits) are considered a unit and new lookup tables
are built [7].

The Byte Mixing Layer. For all ciphers this is the most demanding compo-
nent w.r.t. efficient implementations on an 8-bit platform. We briefly explain the
approaches taken by the different ciphers in turn.

MixColumns (used in AES and KLEIN). The implementation that we are tar-
geting [7] follows the specification of the original AES proposal [6], and is given

http://perso.uclouvain.be/fstandae/lightweight_ciphers/
http://perso.uclouvain.be/fstandae/lightweight_ciphers/
http://led.crypto.sg/software
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in Algorithm 1, where the index i wraps around 1 . . . 4, i.e. i+ 1 = 1 if i = 4. As
mentioned before, KLEIN uses the same component but calls it MixNibbles.

pLayer (used in PRESENT). A näıve implementation of pLayer would consist of
storing a table that describes the bit-level permutation. However, this takes up a
considerable amount of memory and is unnecessary because the pLayer permu-
tation is highly structured. The targeted implementation [7] uses this property
and does not require any table-lookup. Algorithm 2 shows how the implementa-
tion that we attack applies the permutation to half of the state.

MixColumnsSerial (used in LED). In the specification paper of LED [9] the
authors suggest an 8-bit implementation of MixColumnsSerial using lookup
tables, see Algorithm 4. Each element is regarded as part of GF(24) with the
underlying polynomial for field multiplication given by x4 + x + 1.

3 Assessing the Vulnerability to Profiled Single Trace
Attacks

Profiling can be used in both differential and simple side-channel analysis, and
it is well understood that in general it improves attack efficiency. However, for
some methods it is considered essential: so-called single trace attacks such as e.g.
SPA against the AES key schedule [11] or algebraic side-channel attacks (ASCA,
[16]) require the extraction of leakage values from traces and their assignment to
specific intermediate values in a cipher’s implementation. This is a demanding
requirement which by and large can only be satisfied by profiling an implemen-
tation, i.e. by extracting leakage models for all exploitable intermediate values,
and then using them during attacks. Such profiles hence contain information
about ‘when’ an intermediate leaks (i.e. they have information about the timing
of instructions) as well as ‘how’ (i.e. the leakage model itself).

Whilst it remains an open problem to deal with errors related to when leak-
ages occur in profiling attacks, there has been some progress w.r.t. dealing with
errors that result from matching the profiling information to new traces. For
the two approaches to single trace attacks (which we call pragmatic SPA and
ASCA) previous work introduced the notion of a ‘set size’ [1,12,13] to capture
the impact of noise on attacks using profiling information. The larger the set size,
the less certain we are about the assignment of a leakage value to an intermedi-
ate, e.g. a set size of three implies that for a certain intermediate we have three
possible leakage values as a result of using the profiling information. To assess
then the vulnerability to profiled single trace attacks we are hence interested to
experiment with different set sizes. For a study on the practical requirements of
extracting side-channel information to this end, we refer the reader to [2].

As previously mentioned there are broadly two types of single trace attacks
in the literature at present. Pragmatic SPA-style attacks were described early
on [11] and essentially consist of enumerating key candidates by exploiting the
leakage information across a single trace. This enumeration is by and large man-
ually implemented and the result of such attacks is hence information about the
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Algorithm 1. MixColumns 8-bit implementation algorithm
Input: in1, in2, in3, in4

Output: out1, out2, out3, out4
1: Tmp ← in1 ⊕ in2 ⊕ in3 ⊕ in4;
2: for i = 1 → 4 do
3: Tm ← ini ⊕ ini+1;
4: Tm ← xtime(Tm);
5: outi ← ini ⊕ Tm ⊕ Tmp;
6: end for

Algorithm 2. pLayer (permuting 32 bits)
Input: in1, in2, in3, in4

Output: out1, out2, out3, out4
1: carry1 ← 0; carry2 ← 0;
2: out1 ← 0; out2 ← 0; out3 ← 0; out4 ← 0;
3: for i = 4 → 1 do
4: iTmp ← ini;
5: pLayerByte(iTmp, out1, out2, out3, out4, carry2);
6: carry2 ← carry1;
7: end for

Algorithm 3. pLayerByte(iTmp, out1, out2, out3, out4, carry2)
Input: iTmp, out1, out2, out3, out4, carry2
Output: out1, out2, out3, out4, carry1
1: carry1 = mod(iTmp, 2);
2: iTmp = floor(iTmp/2) + carry2 × 128;
3: for repeat = 1 → 2 do
4: for i = 1 → 4 do
5: carry2 = mod(outi, 2);
6: outi = floor(outi/2) + carry1 ∗ 128;
7: carry1 = mod(iTmp, 2);
8: iTmp = floor(iTmp/2) + carry2 ∗ 128;
9: end for

10: end for

Algorithm 4. MixColumnsSerial 8-bit implementation algorithm
Input: in1, in2, in3, in4

Output: out1, out2, out3, out4
1: out1 ← 4 × in1 ⊕ 1 × in2 ⊕ 2 × in3 ⊕ 2 × in4;
2: out2 ← 8 × in1 ⊕ 6 × in2 ⊕ 5 × in3 ⊕ 6 × in4;
3: out3 ← B × in1 ⊕ E × in2 ⊕ A × in3 ⊕ 9 × in4;
4: out4 ← 2 × in1 ⊕ 2 × in2 ⊕ F × in3 ⊕ B × in4;
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size of the key space left to search through to find the secret key. In contrast,
ASCA was developed later [16] and essentially feeds side-channel information in
addition to plain and ciphertext to a solver which will then return the secret key
unless it halts. ASCA was hoped to be more efficient as solvers are sophisticated
software tools. It should be evident however that to assess the vulnerability of
ciphers they are less suitable than pragmatic attacks: they either return the key
or produce no information. In contrast pragmatic attacks allow to assess the size
of the remaining key space (i.e. remaining after all side-channel information has
been used to prune the overall key space) and so give us some information about
how much the side-channel information has helped. This becomes particularly
useful when considering larger set sizes: recent work [1] shows how pragmatic
attacks can produce useful information for set sizes up to 5, whereas ASCA is
unable to cope with such large set sizes. Consequently it seems most appropri-
ate to use pragmatic attacks as an evaluation tool with increasing set sizes (we
report results for set sizes up to 5).

In the following sections we investigate three important characteristics in
turn. Firstly, is there any high level difference between the round functions of
ciphers w.r.t. profiled single trace attacks? This means we look at attacks that
only use some selected intermediates corresponding to the key components of
any substitution-permutation network. Next, we investigate how the inclusion
of additional intermediate leakages changes attack outcomes. Thirdly, we study
how key schedule characteristics impact on the vulnerability.

For these attacks, we generated a set of 100 random 16-byte plaintext and
ciphertext pairs, which are the fixed inputs for the cipher suite; when a smaller
block is required, the pairs are truncated (i.e., for e.g. KLEIN the secret keys will
consist of the first 8 bytes of each 16-byte key). Note that our attack actually
utilises a single trace, thus the reported results are in fact averaged over 100
experiments.

4 Attacking Selected Intermediates from a Single
Encryption Round

There are four steps across all ciphers in which side-channel relevant computa-
tions occur:

– Loading the secret key from memory (we assume the plaintext is always
known);

– Performing the key addition (and the xor-ing with the round constant if the
case);

– Performing the substitution;
– Computing the output of the byte mixing layer (i.e., MixColumns, MixNibbles,
pLayer, MixColumnsSerial).

In the remainder of this section we describe our attack methodology and
show how the side-channel information reduces the key space when considering
these four steps for a single encryption round. Because all ciphers effectively act
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on the state in some block-wise manner we first explain what our basic ‘block’
is. In AES all but MixColumns act on individual bytes of the state. MixColumns
operates on columns which implies that a suitable block would be a column (i.e.
4 bytes). Studying how a pragmatic SPA reduces the key space with regards to
this block allows us to conclude on the result of the entire key because the blocks
are independent. It is easy to see that such a 4-byte block is also an appropriate
unit for the other ciphers when implemented on an 8-bit platform. Consequently
we settled for this choice and the tables in this section show the reduction of
the subkey space for a block (i.e. from 232). Note that this definition overrides
the one in Sect. 2 without contradicting or hindering any of the inherent cipher
properties.

4.1 Attack Strategy

As mentioned in Sect. 1, our attack is derived from [1] and therefore similarly
consists of two phases: first, extracting four independent sets of key (byte) values
based on the side-channel information up to the byte mixing layer, and second,
linking the extracted key bytes into 4-byte keys based on the information from
the byte mixing layer. Indeed, we also bui ld and use 8-bit tables that enable us
to directly extract possible key values based on the known plaintext and side-
channel information from the S-box for all ciphers. However, for the second part,
instead of then enumerating the (4-byte) keys and testing each one sequentially
as in [1], we generate all possible keys (corresponding to a block) as the Cartesian
product of the previously derived sets and simulate their action on the inputs.
With this we are able to reject several key candidates at the same time based
on the side-channel information, which allows us to report a short running time
for our attacks (under 5 min, but under one second for set sizes up to 2) and
a success rate of 100% (previous attacks were liable to run out of memory, or
to fail to complete within a fixed time interval, e.g. 48 h). This is a significant
improvement to previous work.

All our experiments ran on a regular PC equipped with a Intel Core i7-2600s
processor at 2.80 GHz and 4 GB of RAM.

4.2 Exploiting the ‘Basic’ Attack Surface

We first consider that the sole available side-channel information is related to
the input and output values of the four steps outlined at the beginning of this
section. Then, Table 2a summarizes the reduced subkey space for a block of the
ciphers. It appears that the size of the reduced subkey space strongly depends
on the set size, and less so on the specific cipher particularities (i.e. the quality
of the S-box or byte mixing function are by and large irrelevant). Of course
the overall key space of the ciphers is different and hence there is an additional
penalty for AES as it requires to replicate the attack for more subkeys than the
other ciphers.
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4.3 Exploring the Impact of Increased Numbers of Intermediates

A natural question to ask is whether more leaking intermediate values will make an
implementation more vulnerable, and if so, whether there is any clear relationship
between the number of leaking intermediates and the increase in vulnerability. We
hence took all of the intermediate values that occur in our implementations into
account (i.e., the ‘maximum’ attack surface). Previous work (e.g., [15]) studied the
impact of using more intermediate values by targeting more encryption rounds.
Note that we are still focusing on a single round. We now explain for each of the
ciphers in turn what and how many intermediates our implementations offer.

The implementation of MixColumns given in Algorithm 1 leads to a set of
17 intermediate values, as follows: 4 corresponding to computing ini ⊕ ini+1,
4 corresponding to computing xtime(Tm), 8 corresponding to computing iv =
ini ⊕ Tm and iv ⊕ Tmp (where iv is an auxiliary intermediate value), and
finally one corresponding to computing Tmp (n.b.: ini ⊕ ini+1 have already
been computed, therefore a single new value is leaked when computing Tmp).

The implementation of pLayer given in Algorithm 2 leaks as follows: the
pLayerByte procedure leaks 2 + 2 × 4 × 4 byte values, and is repeated a total of
4 times, therefore leading to 116 intermediate values. Note, however, that this
set consists of values that differ in a single bit. This implies that although many
intermediate values are produced, they are highly correlated. Consequently, given
the 8-bit architecture that we work on, we effectively observe multiple copies of
only 8 intermediates.

The implementation of MixColumns given in Algorithm 4 leaks 7 intermediate
values (4 for the table lookup, and 3 for computing the binary xor operations)
for each output byte, thus leaking a total of 28 leakage points.

Table 1 gives an overview of the number of leaking intermediates per cipher.
We listed only 8 intermediates for PRESENT because of the evident high corre-
lation between the intermediates. We note that also for MixColumns there will be
some correlated intermediates due to the fact that e.g. the final sum is computed
by xor-ing. From this table, we would expect to see that LED should suffer most
from including these additional intermediates, followed by AES and KLEIN.

Table 2b shows the results when incorporating the additional intermediates
into the attack. All ciphers show that the simple intuition that more statistically
independent intermediates provide more efficient attacks is true. The results for
PRESENT also provide a clear example for the importance of having statistically
independent intermediate values: although the total number of used intermedi-
ates is almost 7 times as large as with AES and KLEIN, the sizes of the respective
reduced key spaces remain comparable.

It is thus evident that the relationship between the number of intermediates
and the attack efficiency does not follow a simple linear rule. This is most likely
because different intermediates are not entirely independent from each other and
so they do not equally contribute additional information.
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Table 1. Size of the attack surface (i.e., number of leaked intermediate values)
corresponding to the diffusion layer

Table 2. Reduced key space when targeting the encryption function

5 Attacking the Key Expansion

The key expansion algorithms are substantially different w.r.t. their diffusion
properties. We hence briefly run through them in turn to explain what attack
strategies are possible. Let the shorthand RK stand for round key. We use RKi(j)
for the j-th byte of the i-th round key.

Our principal contribution in this section is describing single trace attacks on
the key schedule of KLEIN and PRESENT. We remind the reader that the first
attack on the key schedule of AES (which we reproduce here as well, considering
larger set sizes) has been described in [11]. As mentioned in Sect. 2, LED uses
the same secret key for all encryption rounds.
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5.1 Attack Strategies

AES. The particularities of AES make it possible to target 5-byte subkeys and a
set of 5 consecutive round keys, as first described in [11]. Thus, the results that we
report are on one round key (as in [1]) and on 5 rounds (as in [11]) considering
sets of up to 5 values. Because of the properties of the AES key expansion,
attacks utilising all 10 round keys become computationally demanding for larger
set sizes [17].

KLEIN. The KLEIN key schedule is relatively simple to attack. One can target
2-byte subkeys and use as many round keys as available (see Fig. 1). Thus, we
list results for the attack utilising one round key, all round keys and half of the
round keys.

RKi+1(1) RKi+1(2) RKi+1(3) RKi+1(4) RKi+1(5) RKi+1(6) RKi+1(7) RKi+1(8)

RKi(1) RKi(2) RKi(3) RKi(4) RKi(5) RKi(6) RKi(7) RKi(8)

update key update key update key update key

update key update key update key update key

Fig. 1. Targeted KLEIN subkey

PRESENT. The key expansion of PRESENT is almost non-existent: each
round key is derived from the previous via a cyclic shift of bits, a single applica-
tion of the 4-bit S-box and an xor-ing with a round constant. Thus, reporting
an attack on a single round key makes no sense, and we give the results on the
full key schedule.

5.2 Attack Outcomes

Table 3 contains the outcomes of all attacks following the previously outlined
attack strategies. We can observe that the diffusion properties, which impact
on how much information from the key schedule we can incorporate given our
computational abilities, play a significant role in attack outcomes. Consider AES
for example: for larger set sizes we can only utilise the leakages from the first five
round keys. Consequently the remaining key space is considerable, albeit much
reduced. KLEIN in contrast is very vulnerable as we can effectively utilise all
leakages across the key schedule and so we can tolerate high set sizes. PRESENT
not only has a weak diffusion but also highly correlated intermediates in its key
schedule and hence suffers much less from the lack of diffusion: it remains more
resilient to attacks utilising leaks from the key expansion.
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Table 3. Reduced key space when targeting the key expansion

6 Conclusion

In this paper we investigated, using pragmatic SPA attacks as an evaluation tool,
how different lightweight ciphers compare with regards to their vulnerability
against profiled single trace attacks. The aim was to tease out which of their
properties, if any, have an influence on the efficiency of such attacks.

We found that for both the encryption round function and the key schedule
the diffusion properties were decisive for attack success: the more reasonably
statistically independent intermediate values occur in a concrete implementation,
the better a profiled single trace attack could fare. This means that such attacks
not only reduce the key space further for a subsequent brute force search, but
also cope better with erroneous side-channel information i.e. they can tolerate
larger set sizes. The fact that most lightweight ciphers feature a particularly
lightweight key schedule with little diffusion means that attacks can easily exploit
the information from all round keys; this implies stronger attacks.
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Abstract. The single-shot collision attack on RSA proposed by Han-
ley et al. is studied focusing on the difference between two operands
of multipliers. There are two consequences. Firstly, designing order of
operands can be a cost-effective countermeasure.We show a concrete
example in which operand order determines success and failure of the
attack. Secondly, countermeasures can be ineffective if the asymmetric
leakage is considered. In addition to the main results, the attack by Han-
ley et al. is extended using the signal-processing technique of the big mac
attack. An experimental result to successfully analyze an FPGA imple-
mentation of RSA with the multiply-always method is also presented.

Keywords: RSA · Side-channel attack · Collision attack · Montgomery
multiplication

1 Introduction

Side-channel attacks use unintentional information leakage from secure chips to
compromise their security. New attacks and countermeasures have been studied
for years since the first attack was discovered in 90s [1].

Side-channel attacks are divided into multiple- and single-shot attacks depend-
ing on the number of traces used. The first side-channel attack of RSA presented
by Kocher et al. is a single-shot attack [1]. A typical modular exponentiation algo-
rithm makes conditional branch between multiplication and squaring depending
on a bit of the secret exponent. Kocher et al. showed that the multiplication and
squaring are distinguishable by analyzing a power trace, and thus the secret expo-
nent can be revealed.

Conditional branch is easily exploitable and thus should be removed. The
multiply-always method in Algorithm1 is a well-known method to implement
RSA without data-dependent branch. Even after data-dependent branch is
removed, there is residual side-channel leakage correlated to the operands of
the multiplication and squaring [4]. The residual leakage is weak [5], but the
emerging new attacks can exploit it. Recently, successful single-shot attacks on
FPGA implementations were reported [6–8]. The successful single-shot attacks
have a large impact in designing secure implementations. That is because sup-
pressing the residual leakage requires a lot of effort. Hanley et al. suggest that
c© Springer International Publishing Switzerland 2015
S. Mangard and A.Y. Poschmann (Eds.): COSADE 2015, LNCS 9064, pp. 64–78, 2015.
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a multiplier-level countermeasure [9–11] is needed for the suppression. In this
paper, leakage from multipliers is studied. In contrast to the previous works on
leakage from multipliers [9,12,13], asymmetry between operands of multipliers
is focused. The contributions of this paper are summarized as follows.

A1 The single-shot collision attack on RSA proposed by Hanley et al. is studied
focusing on the difference between two operands of multipliers. The asym-
metry is reasoned by the Booth recoding and operand scanning.

A2 It is shown that designing order of operands can be a cost-effective counter-
measure.

A3 It is shown that some countermeasure become ineffective when the asym-
metric leakage is considered.

In addition to the above main results, there are two additional contributions.

B1 The single-shot attack by Hanley et al. [8] is extended using the technique
of the big mac attack [12].

B2 An experimental result to successfully analyze an FPGA implementation of
RSA with the multiply-always method is presented.

The paper is organized as follows. The conventional internal collision attacks
are reviewed in Sect. 2, followed by the proposed extension of the attack by
Hanley et al. Difference of operands of multipliers is discussed in Sect. 3. The
experimental results are shown in Sect. 4. In the section, the attack in Sect. 2 is
applied to an FPGA implementation with various operand orders. The experi-
mental result are discussed in Sect. 5. Section 6 is a concluding remark.

2 Single-Shot Collision Attack

Firstly, conventional attacks are briefly reviewed. Then, the two most relevant
attacks namely (i) the multiple-shot attack by Witteman et al. [14] and (ii)
the single-shot attack by Hanley et al. [8] are described in detail. Finally, the
proposed extension of the attack by Hanley et al. is described.

2.1 Conventional Single-Shot Attacks

Simple Power Analysis (SPA) [1]. As described in the introduction, Kocher
et al. proposed the first single-shot attack on RSA. The binary method used for
modular exponentiation is targeted. In the binary method, there is a branch
between square and multiplication depending a bit of the secret exponent.
Kocher et al. showed that the path taken in the branch can be distinguished
by analyzing a power trace.

Big Mac Attack (BMA) [12]. Walter proposed BMA to attack another mod-
ular exponentiation algorithm called the window method [12]. The idea is to
compare two segments of a power trace in order to find collision. In addition,
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Algorithm 1. Multiply-Always Method with Left-To-Right Scanning
Input: Message M , Modulo N , Secret exponent d = (dt−1, · · · , d0)2
Output: Ciphertext Md

1: R0 ← 1
2: for j = t − 1 downto 0 do
3: dj ← 1 − dj
4: R0 ← R2

0 mod N
5: Rdj

← R0 × M mod N

6: end for
7: Return R0

a sophisticated signal-processing technique is introduced to improve the perfor-
mance of the comparison. Firstly, the segment is split into multiple sub-traces.
Then the sub-traces are averaged together to make a processed segment. Signal-
to-noise ratio (SNR) is improved by the processing. Finally the processed seg-
ments are compared. The feasibility of the attack is proved with simulation [12].
However, no practical result has been reported as described in [15].

Horizontal Correlation Power Analysis (HCPA) [9]. HCPA proposed by
Clavier et al. is a successor of BMA [9]. In the attack, a single trace is split into
many sub-traces in the same manner as BMA. Then, a multiple-shot attack is
mounted to the virtual multiple traces. There are experimental results success-
fully attacking software implementations [9].

Clustering-Based Attacks [6]. Heyszl et al. proposed an attack using the k-
means clustering [6]. That is then improved by Perin et al. [7]. In those attacks,
segments of traces are classified into two groups using the k-means algorithm.
The two groups expectedly correspond to 0 and 1 of secret bits. FPGA imple-
mentations are defeated by the attacks [6,7]. Notably, Perin et al. successfully
attacked an FPGA implementation with a multiplier-level countermeasure (the
leak resilient arithmetic [11]) by exploiting the remaining first-order leakage.

2.2 Multiple-Shot Internal Collision Attack by Witteman et al. [14]

Witteman et al. proposed a new multiple-shot attack which exploits collision
between consecutive operations i.e., internal collision [14]. The attack on the
multiply-always method (Algorithm1) is described.

The consecutive multiplication and squaring in Algorithm1 are considered.
For clarity they are rewritten as

R′
dj

← R0 × M mod N (1)

R′′
0 ← R′2

0 mod N. (2)

If dj = 1, the memory R0 is not updated in Eq. (1) and thus R0 = R′
0. Therefore,

the multiplication and squaring collide. Alternatively when dj = 0, R0 �= R′
0 and
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there is no collision. As a result, one bit of the secret exponent is revealed by
sensing the collision.

Suppose N different messages are encrypted with the same exponent. The
multiplication and squaring traces for the i-the message are denoted by mi

x and
six, respectively. The subscript x represents time. In order to find the collision,
mi

x and six are compared. More specifically, the correlation coefficient matrix
Cx,y is calculated as:

Cx,y = Fj [mj
x, s

j
y]. (3)

Here, Fj is the correlation-coefficient operator defined as follows:

Fj [tj , sj ] :=
1
N

N−1∑

j=0

(tj − Ej [tj ]) · (sj − Ej [sj ])√
(Ej [tj ]2 − Ej [(tj)2]) · (Ej [sj ]2 − Ej [(sj)2])

, (4)

Ej [tj ] :=
1
N

N−1∑

j=0

tj . (5)

If there is a collision, Cx,y contains a non-zero value. Therefore, the collision
can be found by looking at the matrix.

2.3 Single-Shot Collision Attacks by Hanley et al. [8]

Hanley et al. proposed a single-shot attack against various addition-chain algo-
rithms. In the following description, we focus on the one for the multiply-always
method.

The attack uses internal collision similarly to the one by Witteman et al.
However, the correlation coefficient in Eq. (4) is meaningless when N = 1 i.e.,
under a single-shot attack1. Instead, the two time-domain traces m0

x and s0x are
directly compared. Hanley et al. presented two different ways to measure the
similarity: the Euclidean distance and the time-domain correlation coefficient
given by Fx[m0

x, s
0
x].

Hanley et al. applied the attack to a software implementation and successfully
recovered 99 % of the exponent bits. They also applied the attack to an FPGA
implementation, however, the attempt was unsuccessful with the one with the
multiply-always method. That is explained by the fact that (i) single-shot attacks
are susceptible to SNR and (ii) SNR is usually low in FPGAs because of higher
parallelism.

The attack uses multiple points of interest. That is the advantage of the
attack over the clustering-based attacks [7]. Therefore, the multiply-always
method can be defeated even if there is no first-order leakage [7]. In addition,
the attack is advantageous to HCPA on the point the known message is not
needed. In other words, the attack by Hanley et al. defeats the message-blinding
countermeasure.
1 Clavier et al. proposed another single-shot extension [15]. The purpose of the attack

is to distinguish multiplication and squaring. There is a practical result on a software
implementation.
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Fig. 1. Distinguisher

2.4 Proposed Extension of the Attack by Hanley et al.

An extension of the attack by Hanley et al. is described. The extension is on mea-
suring the similarity between the traces. The idea is simple: the signal processing
of BMA is applied to the traces before comparison2.

Long-integer multiplication A×B is considered. A and B are composed of s
words. They are denoted by A = {as−1, · · · , a0} and B = {bs−1, · · · , b0} where
aj and bi are words. The long-integer multiplication comprises generation of
partial products aj × bi. The leakage of aj × bi is denoted by l(j, i).

The trace l(j, i) is processed before comparison. Figure 1 illustrates the
process. Firstly, l(j, i) is compressed into s-dimensional vectors la(j) and lb(i).
They are defined as:

la(j) =
1
s

s−1∑

i=0

l(j, i), (6)

lb(i) =
1
s

s−1∑

j=0

l(j, i). (7)

la(j) and lb(i) are called the compressed vectors. By the compression, the
effect of one operand is removed thereby SNR of another operand is improved.
The compressed vectors la(j) and lb(i) correlate to aj and bi, respectively.

Finally, the compressed vectors from multiplication and squaring traces are
compared in the same manner as the original attack. The measured traces of
multiplication and squaring are denoted by l(j, i) and l′(j, i), respectively. The
corresponding compressed vectors are denoted by la(j), l′a(j), lb(i), and l′b(i).
If the time-domain correlation coefficient is used for measurement, they are
expressed as:

2 The method can be thought as a missing variant with “regular algorithm + unknown
message” in the categorization by Bauer et al. [10].
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Fj [la(j), l′a(j)] ∈ [−1, 1], (8)
Fi[lb(i), l′b(i)] ∈ [−1, 1]. (9)

The correlation coefficients become high if there is collision.
In order to conduct the attack, the attacker needs to get l(j, i) from a raw

trace in the same manner as BMA and HCPA. Even if the prior knowledge is
unavailable, the attacker can possibly reverse-engineer the points of l(j, i) by
analyzing the correlation matrix in Eq. (3). That is because the patterns on
the matrix reflect the underlying long-integer multiplication algorithm. That is
explained in Sect. 4.2 with experimental results. Note that in order to get a
meaningful correlation matrix, the exponent blinding should be disabled. Such
a requirement is satisfied in two cases. Firstly, the attacker with an open sample
can possibly profile the device while disabling the countermeasure. Secondly, the
same co-processor for modular exponentiation may be used for another purpose
without the exponent blinding. One such example is signature verification in
which no secret is involved.

3 Asymmetric Leakage

Difference between two operands of multipliers is discussed in (i) integer multi-
plier and (ii) long-integer multiplication (LIM) levels.

3.1 Asymmetry at Integer Multiplier Level

In the paper of BMA, Walter showed that two operands of a simple multiplier
are symmetric in terms of side-channel leakage [12]. However, sophisticated mul-
tipliers can be asymmetric as described below.

The Booth recoding is a common technique for partial product generation
(PPG)3 [17]. The technique enables to reduce the total number of partial prod-
ucts thereby improving the performance of integer multiplication. Figure 2 shows
a circuit for generating one partial product using the radix-4 Booth recoding.
Firstly, the multiplicand A is expanded to {2A, A, 0, A, 2A}. The expansion
is efficiently implemented using shifts and NOT gates. Then, one out of the
five candidates is selected at the 5:1 selector. The selector output is the partial
product. The selector is controlled by a 3-bit chunk of the multiplier namely
{xi+1, xi, xi−1}.

The circuit in Fig. 2 is asymmetric between operands. Therefore, asymmetric
leakage is expected. Leakage from a 32-bit integer multiplier with the radix-4
Booth recoding is simulated. The multiplier is synthesized and post-synthesis
logic simulation is conducted. While the logic simulation, the number of signal-
transition events i.e., toggles is measured.

3 Note that Walter and Samyde noticed that leakage from the Booth recoding is not the
one by the Hamming-weight model [13]. However, the difference between operands
was not discussed.
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Fig. 2. A circuit for generating a partial product in the radix-4 Booth recoding

Two sets of test-vectors are used to drive the circuit. They are c × xi and
xi×c where c and xi are 32-bit integers. The test-vectors are designed to measure
toggles from one operand by fixing another to a constant.

Histograms of the measured toggle counts are shown in Fig. 3. The black and
white bars correspond to the two sets of test-vectors. The two sets show clearly
different histograms. As shown in the histograms, more toggles are observed
when the multiplicand is fixed. That means the multiplier port makes more
toggles. The result is explained by an empirical fact that a selector signal has
stronger effect on toggle counts. More specifically, toggles at the 3-bit control
signal is amplified to N bits at the selector output.

Fig. 3. Toggle counts of a 32-bit multiplier

3.2 Asymmetry at Long-Integer Multiplication Level

Difference of operands at the LIM level is discussed. There are many options at
this level. The Montgomery multiplication with the coarsely integrated operand
scanning (CIOS) shown in Algorithm2 is considered.

The long integers are represented by A = {as−1, · · · , a0} and B = {bs−1, · · · ,
b0} where aj and bi are words. The core operation is aj × bi at the line 4 of
Algorithm 2 in which partial products are generated. LIM is commonly imple-
mented with a circuit shown in Fig. 4. The circuit uses a multiply-and-accumulate
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Algorithm 2. Coarsely Integrated Operand Scanning [16]
Input: Word A = {as−1, · · · , a0} and B = {bs−1, · · · , b0}
Output: Product ti for i ∈ [0, s − 1]
1: for i = 0 to s − 1 do
2: C ← 0
3: for j = 0 to s − 1 do
4: (C, S) ← tj + aj × bi + C
5: tj ← S
6: end for
7: (C, S) ← ts + C
8: ts ← S
9: ts+1 ← C

10: C ← 0
11: # Lines for the Montgomery reduction are not displayed for clarity.
12: # See the literature [16] for the complete list.
13: end for
14: Return tj

(MAC) unit. The words aj and bi are read from the memory and fed to the MAC
unit via temporal registers labeled regA and regB.

Suppose regA and regB store the long integers A and B, respectively. Figure 4
also shows an operation sequence describing the contents of the registers. As
shown in the table, regB is updated less frequently because the stored variables
bi is scanned at the outer loop in Algorithm2. For s-word long integers, regA
and regB are updated s2 and s times, respectively.

CMOS circuits make data-dependent power consumption when their inputs
are changed [2]. As a result, the operand scanned at the inner loop (i.e., A) has
stronger leakage. This LIM-level asymmetry is verified through experiments in
Sect. 4.

4 Experiments

Traces are captured from an FPGA implementation of the Montgomery multi-
plication. Firstly, the traces are analyzed using the attack by Witteman et al.
Then, the single-shot attack in Sect. 2.4 is applied. The purpose of the experi-
ment is twofold. Firstly, feasibility of the attack in Sect. 2.4 is verified. Secondly,
the effects of the asymmetric leakage are examined.

4.1 Setup

A circuit implementing the 1024-bit Montgomery multiplication is examined.
The circuit uses the MAC-based architecture in Fig. 4. The MAC unit has a
64-bit integer multiplier and thus the number of words s = 16 = 1024/64. The
words are scanned with the CIOS method in Algorithm2. The two operands to
the integer multiplier can be swapped by an external signal in order to evaluate
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Fig. 4. A common circuit architecture for LIM

the asymmetry at the integer-multiplier level. The target circuit is implemented
on Virtex-II Pro FPGA on SASEBO [20].

The FPGA is measured by putting a magnetic-field probe on the chip sur-
face [18]. The probe is 0.1 mm in diameter. Traces are captured using an oscil-
loscope with the bandwidth of 12.5 GHz and the sampling rate of 25.0 GSa/s.

Test-vectors are designed to emulate RSA with the multiply-always method
(see Algorithm 1). Firstly, 1024-bit random numbers xk, yk, and zk are generated
for 0 ≤ k < 1000. For each triplet (xk, yk, zk), the Montgomery multiplication
is called in five ways as summarized in Table 1. Note that the Montgomery
multiplication is denoted by M(·, ·) in the table.

The five Montgomery multiplications are denoted by (XY1), (XY2), (XX),
(YY), and (ZZ). The Montgomery multiplication M(xk, yk), which corresponds
to the multiplication in Algorithm1, is conducted in (XY1) and (XY2). (XY1)
and (XY2) are different in the order of operands to the 64-bit integer mul-
tiplier. See Table 1 for the operands in the LIM and integer-multiplier levels.
The remaining Montgomery multiplications namely M(xk, xk), M(yk, yk), and
M(zk, zk) correspond to the squaring in Algorithm1.

The traces are examined in pair. Six pairs namely

{(XY1), (XY2)} × {(XX), (YY), (ZZ)}.
are evaluated. The pairs are referred to as (i)-(vi) as summarized in Table 2.
There are collisions in the pairs (i)-(iv). Colliding operands, both at the LIM
and integer-multiplier levels, are also shown in Table 2. In (i) and (iii), there
is a collision between the LIM-level operands scanned at the inner loop of
Algorithm 2. On the other hand, the operands scanned at the outer loop col-
lide in (ii) and (iv). At the integer-multiplier level, the multiplicands collide in
(i) and (iv). Alternatively the multipliers collide in (ii) and (iii). There is no
collision in (v) and (vi).

The pairs are compared under the multiple- and single-shot attacks in the
following sections.
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Table 1. Test-vectors of the Montgomery multiplication

LIM level Integer-multiplier level

Identifier Operation Inner loop (aj) Outer loop (bi) multiplier multiplicand

(XY1) M(xk, yk) xk yk yk xk

(XY2) M(xk, yk) xk yk xk yk

(XX) M(xk, xk) xk xk xk xk

(YY) M(yk, yk) yk yk yk yk

(ZZ) M(zk, zk) zk zk zk zk

Table 2. Examined pairs of traces

Multiplication Squaring LIM-level Integer-multiplier-level

Identifier mj
x sjy collision Collision

(i) (XY1) (XX) inner (aj) multiplicand

(ii) (XY1) (YY) outer (bi) multiplier

(iii) (XY2) (XX) inner (aj) multiplier

(iv) (XY2) (YY) outer (bi) multiplicand

(v) (XY1) (ZZ) — —

(vi) (XY2) (ZZ) — —

4.2 Multiple-Shot Leakage Using the Attack by Witteman et al.

As a preliminary experiment, the pairs of the traces are analyzed using the attack
by Witteman et al. The correlation matrices in Eq. (3) are calculated for the
pairs (i)-(iv) in Table 2. The matrices are visualized as bitmap images in Fig. 5.

The bitmap images show different patterns depending on the colliding
operands at the LIM level. There are repeated slash lines on Fig. 5-(i) and -(iii)
in which there are collisions at the inner loop. On the other hand, collision at the
outer loop makes rectangle patterns as shown in Fig. 5-(ii).

The bitmap images also show the difference caused by the asymmetry at
the integer-multiplier level. The multiplier (cf. the multiplicand) shows higher
correlation as expected in Sect. 3.1. The slash lines are more clear in Fig. 5-(iii)
compared to the ones in Fig. 5-(i). Similarly, the rectangle patterns are more
distinct in Fig. 5-(ii).

The bitmap images are intuitive but unsuitable for quantitative comparison.
More concrete comparison is conducted in the next section.

As described in Sect. 2.4, the attacker can get the points of interest for l(j, i)
by interpreting the bitmap images. The above-mentioned slash-line and rectangle
patterns are commonly found in many implementations. The attacker can sample
the clock cycles with high correlation for l(j, i).



74 T. Sugawara et al.

Fig. 5. Correlation coefficient matrices

4.3 Single-Shot Attack

The pairs of traces are analyzed with the method described in Sect. 2.4. The cor-
relation coefficients are evaluated for the pairs (i)–(vi) in Table 2. The processing
is chosen considering the patterns on the bitmap images. For the pairs (i) and
(iii) with collisions at the inner loop, Eq. (8) is used. Alternatively, Eq. (9) is
used for the pairs (ii) and (iv).

The results are shown as histograms of the correlation coefficients in Fig. 6.
Figure 6-(i) to -(iv) correspond to the pairs (i)-(iv) in Table 2. The pairs (v) and
(vi), that have no collision, are also shown for comparison.

In the real attack, the black and white histograms are not separated. There-
fore, the attacker should set a threshold to make a decision. In this experiment,
the measured correlation coefficients are split into upper and lower halves. In
other words, median is used as a threshold. Finally, the rate of successful deci-
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Fig. 6. Histograms of correlation coefficients

sion is calculated. The success rates are (i) 98.3 %, (ii) 93.0 %, (iii) 99.5 %, and
(iv) 52.7 %, respectively. The pairs (iii) is the most distinguishable. This is the
first successful single-shot collision attack of the multiply-always method on
FPGA. In contrast, the attack is unsuccessful in (iv). The result show that
operand order has a significant impact on the success rate of the attack.

5 Discussion

The experimental results indicate that the operand order has a considerable
impact on side-channel leakage. The results are discussed from countermeasure
and attack view points.

5.1 Leak Reduction by Designing Operand Order

The experimental results show that the operand order determines success and
failure of the attack. Therefore, the amount of leakage can be reduced by appro-
priately designing the order of operands. The pair (iv) in Table 2 is the best
option (see Fig. 6-(iv)). The operand order can be changed at almost no cost.
In addition to the cost effectiveness, the proposed method can easily be com-
bined with other conventional countermeasures (e.g., the randomized operand
scanning [9,10]).
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The target implementation discussed in the paper, the multiply-always
method using the Montgomery multiplication with CIOS, is one of many possi-
ble designs. It is worth discussing how the operand order can be designed in other
cases.

Firstly, the same idea can be easily extended to many other methods. That
is because the causes of asymmetry, the partial-product generation and operand
scanning, are essential in long-integer multiplication.

However, there is always an exception. A notable exception is the Finely
Integrated Operand Scanning (FIOS) instead of CIOS [16]. In FIOS, the reg-
ister containing the variable scanned at the outer cannot be kept while the
outer loop. That is because another word-wise multiplication, needed for the
Montgomery reduction, should be interleaved. As a result, the leakage from the
operand scanned at outer loop is not necessarily smaller.

Alternatively, the operand order can be determined using the conventional
toggle simulation. As shown in Sect. 3.1, the asymmetry at the integer multiplier
can be simulated. The LIM-level asymmetry is not simulated in the paper, how-
ever, the frequency of register update can be covered by the toggle simulation.

5.2 Attack on Montgomery Powering Ladder

In contrast to the previous result, the asymmetric leakage can make some coun-
termeasures ineffective. Algorithm 3 shows the Montgomery powering ladder
(MPL). We focus on collisions between inputs4.

In MPL, there is always collision between consecutive operations:

Ra ← R0 × R1 mod N, (10)
Ra ← Ra × Ra mod N. (11)

Therefore, the presence of collision does not leak kj . However, the colliding
operand depends on kj . If kj = a = 0, the first operands in Eqs. (10) and (11)
collide. On the other hand, the second operands collide if kj = a = 1. If the
attacker can distinguish the collisions at first and second operands, the secret
parameter kj = a is revealed.

Interestingly, if Eqs. (10) and (11) are replaced with the following statements
without changing the result of the algorithm, the attack is no longer effective:

Ra ← Ra × Ra mod N, (12)
Ra ← Ra × Ra mod N. (13)

The algorithm appear in the work by Hanley et al. [8]. Now, collision is always
occurred at the first operand. Therefore, the colliding operand becomes inde-
pendent of kj . This is another example showing the importance of designing
operand order.

4 Hanley et al. considered more general cases considering a collision between input
and output. However, the input-output collision was very weak in our setup.
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Algorithm 3. Montgomery Powering Ladder
Input: Message M , scalar k = (kt−1, · · · , k0)2
Output: Ciphertext Md

1: R0 ← 1; R1 ← M
2: for j = t − 1 downto 0 do
3: a ← kj ; a ← 1 − a
4: Ra ← R0 × R1 mod N
5: Ra ← Ra × Ra mod N
6: end for
7: Return R0

6 Conclusion

Two operands of multipliers are asymmetric in terms of side-channel leakage.
The reason can be explained by asymmetries at arithmetic-circuit and micro-
architecture levels. The leakage can be suppressed by appropriately designing
the order of operands. On the other hand, some countermeasure can be defeated
if the leakages from first and second operands are distinguishable.

Many problems are remained open. The attack using input-to-output collision
is an interesting challenge. Another important open problem is on incomplete
exponent recovery. The successful rate more than 99 % is clearly dangerous. The
ideal goal is 50.0 %, however, it could possibly be relaxed.

Acknowledgement. The authors would like to thank the anonymous reviewers at
COSADE 2015 for their valuable comments. The study was conducted as a part of the
CREST Dependable VLSI Systems Project funded by the Japan Science and Technol-
ogy Agency.

References

1. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

2. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer-Verlag, New York (2007)

3. Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryp-
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Abstract. Power-equalization schemes for digital circuits aim to harden
cryptographic designs against power analysis attacks. With respect to
dual-rail logics most of these schemes have originally been designed for
ASIC platforms, but much efforts have been spent to map them to
FPGAs as well. A particular challenge is here to apply those schemes
to the predefined logic structures of FPGAs (i.e., slices, LUTs, FFs, and
routing switch boxes) for which special tools are required. Due to the
absence of such routing tools Yu and Schaumont presented the idea of
duplicating (i.e., dualizing) a fully-placed-and-routed dual-rail precharge
circuit with equivalent routing structures on an FPGA. They adopted
such architecture from WDDL providing the Double WDDL (DWDDL)
scheme.

In this work we show that this general technique – regardless of the
underlying dual-rail logic – is incapable to properly prevent side-channel
leakages. Besides theoretical investigations on this issue we present prac-
tical evaluations on a Spartan-6 FPGA to demonstrate the flaws in such
an approach. In detail, we consider an AES-128 encryption module real-
ized by three dual-rail precharge logic styles as a case study and show
that none of those schemes can provide the desired level of protection.

1 Introduction

Side-Channel Analysis (SCA) is of major challenges for secure-hardware
designers. The most popular techniques to harden a design are hiding, mask-
ing and leakage resilient architectures. The goal of power equalization schemes,
which are a part of the hiding category, is to equalize the power consumption of
a cryptographic circuit independent of the processed data. In hardware devices
such schemes often follow the Dual-rail Precharge Logic (DPL) concept like
SABL [21], WDDL [22], DRSL [6], MDPL [18] and iMDPL [17]. Most of the
dual-rail schemes have been developed to be implemented in ASICs. The fixed
architecture as well as limited wire routings on FPGAs does not allow a straight-
forward porting of those schemes.

1.1 Related Work

During the last years, much effort was put in the direction of bringing the DPL
concept to FPGAs. Nassar et al. [16] introduced Balanced Cell-based Dual-rail
c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-21476-4 6



82 A. Wild et al.

Logic (BCDL) that connects a global precharge signal with all gate inputs to a
rendezvous box which is placed in front of each gate. The rendezvous box triggers
an evaluation signal for the corresponding gate in case of stable input signals.
This work did not consider the routing of the true and false networks. So the
wire capacities of their dual-rail networks will be different. He et al. followed
an approximately similar approach [8]. In their work the evaluation of a gate is
triggered by two global signals that are directly connected to the gates. Lomné
et al. [11] followed a triple-rail approach where an artificially delayed asynchro-
nous control signal is used. The additional delay guarantees the latest arriving
of the control signal which triggers the gate evaluation and therefore prevents
the gate from early propagation (EP).

In a more recent work [9] He et al. applied duplication while minimizing the
area overhead. They duplicated a fully placed and routed circuit to realize the
dualization. The original and duplicated circuit can be interleaved, which may
leads to routing conflicts. Hence, a method has been developed to detect and
correct these routing conflicts. As a result, the circuits are differently routed at
some points which lead to side-channel information leakage.

In [19], Sauvage et al. evaluated different placement strategies to support the
router in finding routes for the dual networks with minimal delay differences.
The strategies they followed were first, placing the components of the original
circuit as close as possible together as well as the components of the dual circuit
and second, placing the related components of the original and dual circuit as
close as possible together. It turned out that the placement did not have the
desired impact on the routing.

Bhasin et al. introduced in their work [3] an improved version of WDDL
called DPL-noEE. Since it has been shown that WDDL suffers from the early
propagation effect [20], DPL-noEE connects the signals of the true and false
network to the same gate and evaluates the gate output with the arrival of the
last incoming signal. According to the authors’ report, compared to WDDL the
leakage is approximately halved by means of DPL-noEE. It has been pointed out
in [15] that DPL-noEE just solves the early propagation effect in the evaluation
phase of the circuit but not in the precharge phase. They introduced a logic style
called AWDDL that solved this problem. An AWDDL gate switches to precharge
state when the last input signal turns to precharge. Additionally, a customized
router was developed that tries to find routes with minimal delay differences for
the true and false network by moving the routing process into a Satisfiability
(SAT) solvable problem. It is also noted by the authors that the router could
minimize the leakage of the circuit but did not completely remove it due to the
nonexistence of perfectly-identical dual-rail routes.

To deal with routing imbalances, Yu and Schaumont had formerly proposed
to duplicate a fully-placed-and-routed WDDL circuit [24] (known as DWDDL).
As a result, two equivalently routed WDDL circuits with swapped true and false
networks (dualized) were placed on the same device. With investment of doubled
resources, the leakage of a WDDL circuit was drastically reduced.
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1.2 Motivation and Contribution

Power-equalization schemes place a circuit C and the dual of the circuit C on
the same device. Ideally, the total power consumption of both circuits cancel
out the data dependency in the power traces. This idea implies that the logic
gates of C and C have to be synchronized and switch at the same point in time.
This synchronization can be achieved by a global or asynchronous control signal
connected to the gates like in [8,11,16] or with the arrival of the input signals at
the gate like in [3,15,22]. To use the input signals as a trigger for the evaluation,
the signals of the dualized circuit C must show exactly the same delays as their
pendant signals in C. Beside the synchronization aspect, the signal delays are
strongly correlated with the capacity of the used wires so that even in a control
signal synchronized circuit the signal delays of both circuits shall be equivalent
to minimize the data-dependent side-channel leakage. The task of placing two
circuits with the same signal delays is hard to achieve in FPGAs due to the static
routing structure. Some logic styles, e.g., the most popular one WDDL, require
the interconnection of both C and C circuits. In such cases the task to place and
route the logic gates in such a way that the routing delays of coupled signals are
equivalent is challenging. In [15] this task was addressed with a custom router
based on a SAT solver.

As stated, in DWDDL [24] the fully-routed-and-interconnected original cir-
cuit (C,C) is additionally placed with inverted logic on the same device (C ′, C ′).
The cloning process was performed in a way that the routing information is
transferred to the cloned circuit. According to the report of the Xilinx design
tools, the signal delays of the original circuits (C,C) and the cloned circuits
(C ′, C ′) are equivalent. So this method turned out to be the best way to imple-
ment two circuits of equivalent routing delays without any routing restrictions or
any custom routers. The drawback of the technique is clearly the high resource
overhead.

In this work we thoroughly investigate the duplication scheme of [24]. Since
the early propagation issue of WDDL makes it still vulnerable to the state-of-
the-art attacks, we consider its successors DPL-noEE and AWDDL as well to
examine the benefit of the duplication. We show that even in case of AWDDL,
where early propagation at both phases is avoided, applying the duplication
does not prevent data-dependent time of evaluation. By means of a Spartan-
6 evaluation platform (SAKURA-G [1]) we provide practical evidences to our
findings that a DWDDL circuit and the equivalent ones realized by DPL-noEE
as well as AWDDL still have leakage.

2 Logic Styles

Each of WDDL, DPL-noEE and AWDDL consists of gates with two outputs, Ot

and Of . In the precharge phase both outputs have the same value (Ot = 0, Of =
0), while in the evaluation phase only one output changes its state so that exactly
one transition per evaluation phase is guaranteed. Ot presents the true value
while Of the false pendant. The true outputs form a network we address as



84 A. Wild et al.

true network (respectively false network made by the false outputs). In case of a
negative gate, e.g., NAND or NOR, the corresponding non-negative gate (resp.
AND or OR) is instantiated with switched output signals. Clearly, an inverter
gate is realized by a connection switch swapping the dual rails. Hence such
logic styles form two logical circuits that are interconnected. We further refer
to this dual-rail circuit as the original circuit (C,C). Following the duplication
scheme of [24], we clone the original circuit, invert the logic and place it at a
different location on the FPGA. The circuit made by this process is denoted as
the duplicated circuit (C ′, C ′). Below we shortly recall the specification of each
of our considered logic styles.

WDDL is one of the most common DPL styles and mainly designed for ASICs.
In WDDL only AND/NAND and OR/NOR gates are allowed. An XOR/XNOR
gate is constructed by two AND/NAND and one OR/NOR WDDL gates. As
stated, our evaluation platform is a SAKRURA-G where a Xilinx Spartan-6
FPGA is plugged that is equipped with 6-to-2 LUTs. This gives the advantage
to realize each WDDL gate by one LUT. The building blocks of WDDL – with
respect to 6-to-2 LUTs – can be seen in Fig. 1(a).

DPL-noEE is unofficially the successor of WDDL. As stated in [20] and in [3],
a WDDL gate evaluates its output at different points in time depending on the
input data. For example, Ot of a WDDL OR gate is derived from two signals
of the true network. Regardless of the other input, Ot goes high once one of
its inputs of the true network goes high. This phenomena is known as early
propagation effect and causes data-dependent power consumption and hence
side-channel leakage.

This issue is addressed by the DPL-noEE logic style. As shown in Fig. 1(b),
Ot of a DPL-noEE OR gate depends on all four input signals, so that the gate
evaluates when all signals are available. Due to the consideration of the true
and false signals in each gate – contrary to WDDL – a DPL-noEE XOR/XNOR
gate can be constructed by a single LUT. This results in less LUT utilization
particularly in designs with high number of XOR gates.

The authors of [15] noted in their work that DPL-noEE prevents the early
propagation at the beginning of the evaluation phase. It is shown that the output
of DPL-noEE gates fall back into precharge as soon as one of the input signals
changes; hence the propagation in the precharge phase is faster. Although such
an issue is not data dependent, it has been shown in [15] that the amount of power
consumption (resp. amount of side-channel leakage) at the precharge phase is
higher than that of the evaluation phase.

AWDDL emulates an SR-Latch inside each gate by looping the gate output
to its input. Hence an AWDDL gate does not change its state until all input
signals are in the evaluation or all in the precharge phase. Figure 1(c) shows the
internal structure of AWDDL gates. In comparison to WDDL and DPL-noEE,
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Fig. 1. Logic style gates

one AWDDL gate should be realized by two 6-to-1 LUTs. In fact, a true 6-to-2
LUT would suffice to make both outputs of a gate. However, as shown by Fig. 2
the 6-to-2 LUT available in Xilinx FPGAs are made of two multiplexed 5-to-1
LUTs [23].

The necessity of employing two 6-to-1 LUTs per AWDDL gate as well as the
gate loop paths increase the resource utilization and routing complexity com-
pared to DPL-noEE. The authors of [15] have proposed to place both LUTs of
each gate at the same slice to minimize the delay difference between the true
and false outputs. Further, a customized router have been developed which tries
to find equivalent routes for the true and false signals. The authors reported
that the router improves the result but does not fully avoid the leakage asso-
ciated to the signal delay differences. Table 1 summarizes the properties of the
aforementioned logic styles.
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Table 1. Properties of the in this work underlying logic style.

Logic style Native gates LUT/Gate Address routing EP

WDDL AND, OR 1 in Eval. &Prech

DPL-noEE AND, OR, XOR 1 in Prech

AWDDL AND, OR, XOR 2 (�) -

LUT5

LUT5

I5
I4
I3
I2
I1
I0

O6

O5

1

0

Fig. 2. 6-to-2 LUT Fig. 3. Example of a fully routed circuit and
its duplication.

3 Duplicating Circuits

This section deals with the idea proposed in [24] to duplicate a dual-rail cir-
cuit. Figure 3 shows an overview of an exemplary circuit and its duplicated
counterpart. Due to the copied structure the signal routings and correspond-
ing delays t1 . . . t4 are transferred from the original to the duplicated circuit and
just the logic gates are replaced. Attended by the gate replacement, the true and
false networks are swapped in the duplicated circuit. Thus, the true network of
the original circuit and the false network of the duplicated circuit (respectively
the false network of the original circuit and the true network of the duplicated
circuit) are equivalently routed that hence results in an overall design with very
balanced true and false networks to minimize the leakage caused by different
wire capacitances.

As stated before, DPL-noEE and AWDDL avoid the early propagation issue
in contrast to WDDL. Along the same lines, the term data-dependent time of
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evaluation is defined as the cases when the gate evaluates its output at different
time instances depending on its input values [12]. The duplication concept pro-
posed in [24] (DWDDL) aims at mainly avoiding such a data-dependent time of
evaluation caused by difference in routing of dual-rail signals. In the following we
show that such a scheme cannot avoid data-dependent time of evaluation even
if the underlying logic style prevents the early propagation.

3.1 Data-Dependent Time of Evaluation

In order to explain the concept we focus on the example given in Fig. 3. We just
consider the start of the evaluation phase of an AND gate in both original and
duplicated circuit (Ot and Of in Fig. 3). Further, due to the early propagation
issue of WDDL, we suppose that the gates in these circuits are realized by DPL-
noEE or AWDDL (there is no difference in this example since both avoid early
evaluation).

As marked in Fig. 3, we denote the delay of the input signals of the considered
AND gate as t1 to t4, which stay the same for the corresponding OR gate in the
duplicated circuit. We should highlight that no customized router is employed to
route the signals in the original circuit. Indeed, the idea of duplication [24] is to
avoid such a necessity. Therefore, the signal delays t1 to t4 can have any arbitrary
value, and there is no guarantee to keep them the same or even approximately
the same.

We first suppose that t1 > t2 > t3 > t4, and draw the timing diagram of
the output signals (Ot and Of ) of both original and duplicated circuits for all
four possible input values, e.g., 11, 10, 01, and 00. The corresponding timing
diagram is shown by Fig. 4(a), where the black waveform belongs to the AND
gate of original circuit (Fig. 3(a)) and the red waveform to its complementary
OR gate of the duplicated circuit (Fig. 3(b)). Under such a condition the AND
gate evaluates when the last input signal arrives. In case of 11 and 10 the out-
put is evaluated at t1 (when At arrives). For other input cases 01 and 00 t2
defines the evaluation time (when Af arrives). The duplicated OR gate shows a
complementary behavior for the time of evaluation. That is, independent of the
input value one gate always evaluates at t1 and the other one at t2. Hence, the
overall power consumption is then ideally independent of the given input value.
It should be noted that exchanging the values of t1 by t2 and/or t3 by t4 as well
as (t1, t2) by (t3, t4) (i.e., providing another condition e.g., t3 > t4 > t2 > t1)
has no effect on the shown balanced behavior.

Figure 4(b) gives the waveforms under a different condition t1 > t3 > t2 > t4.
For the given condition the gates evaluate the outputs at t1, t2 or t3. In case of 11
and 00, t1 and t2 defines the evaluation time, while for 01 and 10 the evaluation
time depends on t1 and t3. In other words, one gate either in the original circuit
or in the duplicated one evaluates at t1, but the other gate evaluates at t2 or
at t3 depending on the input value. This clearly shows a data-dependent time
of evaluation and should lead to a leakage exploitable by an attack. Again we
should note that exchanging t1 by t3 and/or t2 by t4 as well as (t1, t3) by (t2, t4)
does not show any difference on the presented data-dependent time of evaluation.
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Fig. 4. Timing diagrams of the circuit of Fig. 3.

Remarks: In case of DWDDL the situation is much worse. That is, for every
condition (except t1 = t3, t2 = t4) there is a data-dependent time of evaluation
due to the early propagation of WDDL. The same issue holds true at the start of
the precharge phase for all three considered logic styles. As a result, since in the
certain conditions the duplication can be beneficial, we expect the duplication
scheme to reduce but not fully avoid the leakage.

3.2 Duplication Tool

As our target platform is a Spartan-6 FPGA, we developed a tool to realize
the duplication procedure. The tool clones the structure of the original circuit
(in Xilinx Spartan-6 netlist format) and changes the LUTs content. It is indeed
based on the same concept as the one introduced in [24]. Below a detailed descrip-
tion of the developed tool is given.

Xilinx netlists are stored in a proprietary file format (NCD). For low-level
access Xilinx provides a tool to convert the proprietary netlist file format into
(and back from) a human-readable format called Xilinx Design Language (XDL).
This tool offers the ability to access and manipulate a fully-routed circuit on
netlist level. Note that the XDL structure may change between FPGA families
caused by technological progress in FPGA structure. The duplication tool was
written with the help of RapidSmith [10] which is a Java-based Application
Programming Interface (API) to read, write and edit XDL files. The reader
interested in detailed information of the XDL file format is referred to [2].

The XDL file format is organized in instances and nets. An instance is an
instantiated component on the device, e.g., a slice. The configuration of an
instance is given by its attributes. These attributes also contain the LUT con-
tent. By changing the LUT content of an instance, the logic gates of a circuit
can easily be changed. In case of the circuit duplication, an AND gate of the
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original circuit needs to be converted to an OR gate in the duplicated circuit, a
NAND to a NOR and an XOR to an XNOR gate and vice versa. The physical
location of an instance is defined in the instance header. Components of the
Xilinx FPGAs are organized in a grid and can be identified by their X and Y
coordinates. Hence, cloning a slice instance of the original circuit with manipu-
lated LUT and placement coordinates adds a complementary-behaving instance
to the design.

The routing of the signals is organized in a quite similar manner. The nets
are routed via switch boxes that are able to interconnect different wires and
are identifiable via their X and Y coordinates. A switch matrix configuration is
called Programmable Interconnect Point (PIP). Hence, all PIPs used to route
a net are written to the configuration part of that net. Copying the net with
the edited PIP coordinates adds a net which is equivalently routed to a design.
So, this process is performed for all nets of the original circuit. As an exception,
the circuit I/O signals have to be handled differently. These nets cannot and
are not needed to be duplicated. It is assumed, that the I/O signals (related to
e.g., plaintext and ciphertext) do not leak any information. To route the I/O
signals of the duplicated circuit, the standard Xilinx ISE routing tool cannot be
used. In some cases it changes the already-routed nets, which may destroy the
symmetry between the original and duplicated circuits. To route the I/O nets,
the FPGA Editor which is also a part of the Xilinx ISE design suite offers the
possibility to only route the specified signals. It is an adequate scenario for the
low number of I/O signals.

To guarantee that the physical area, at which the cloned circuit should be
placed, is unused by the remaining design, the Xilinx ISE synthesizer can be
parametrized with the prohibit constraint to avoid placing any instance in that
specified area. Another constraint we used is area group to keep the original
circuit in a specified area as well. We also made sure that no routing resources
of the prohibited area is used by other logics.

4 Analysis

We implemented three AES-128 encryption cores using WDDL, DPL-noEE, and
AWDDL gates. Following the scenario explained in Sect. 3.2, each of these cores
is duplicated to realize the DWDDL, DDPL-noEE and DAWDDL AES cores.
Hence, in total we analyze six full AES encryption cores. In general, for a fair
comparison the best would be to keep the placement and routing of all these cores
the same. However, WDDL has no defined native XOR gate; so a DPL-noEE cir-
cuit cannot be converted to a corresponding WDDL one. Also, AWDDL requires
feedback loops as well as two LUTs per gate, hence converting an AWDDL cir-
cuit to a corresponding DPL-noEE one would be not fair with respect to resource
utilization. Therefore, an identical placement and routing for these three logic
styles is not possible.

For the AES core we implemented a round-based architecture with a com-
posite field Sbox of [5] (see Fig. 5). Due to the known issue of register cells
in dual-rail logics [14], we followed the master-slave fashion for the registers,
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i.e., two register stages in each rail. Therefore, every cipher round is operated
in two clock cycles: one for the precharge and the other one for the evaluation.
Indeed, in an interleaved fashion one of the round register stages holds the AES
state and the other one the precharge 0 value.
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Key 
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Fig. 5. Architecture of the full AES encryption with key expansion and control logic.

As we do not target any template attacks and ignore the leakage solely asso-
ciated to the process on the key, the key expansion unit is implemented normally
without using any secure logic style. As shown in Fig. 5, plaintext and round key
(the output of the key expansion) are converted to a dual-rail precharge form and
stored in dual-rail master-slave registers. For the sake of simplicity, we have not
shown the key expansion and the control unit, which we kept equal regardless
of the used logic style. The area which is marked (by a red dashed line) in Fig. 5
is the only part of the circuit that is implemented by WDDL, DPL-noEE, or
AWDDL. Further, only this area is duplicated to realize DWDDL, DDPL-noEE,
and DAWDDL circuits. The resource consumption of each core can be seen in
Table 2.

Table 2. Overview of the implemented AES cores.

Logic style Utilized resources

Slice LUT FF

WDDL 3,214 8,154 1,672

DWDDL 6,428 16,308 3,344

DPL-noEE 3,712 3,834 1,672

DDPL-noEE 7,424 7,668 3,344

AWDDL 3,724 7,146 1,672

DAWDDL 7,448 14,292 3,344

Control Logic 15 30 20

Key Expansion 83 307 132
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4.1 Side-Channel Evaluation

For the practical evaluations we used SAKURA-G [1] as a side-channel evaluation
board which is equipped with a Xilinx Spartan-6 FPGA. The power traces have
been collected by monitoring the voltage drop over a 1Ω resistor at Vdd path.
The target FPGA operated at a frequency of 3MHz; power traces have been
obtained by means of a digital oscilloscope at a sampling rate of 1GS/s. We also
made use of the amplifier embedded on the SAKURA-G board and limited the
acquisition bandwidth to 20MHz to achieve high quality signals.

As the evaluation metric we used the leakage assessment methodology (t-
test) presented in [7]. In a non-specific t-test (known also as fix vs. random test)
a fix input (here plaintext) is selected, and during the measurements the fix
or a random input is given to the target device1. The traces are categorized
into two groups based on the associated fix or random input. Then, the Welch’s
(two-tailed) t-test is computed based on the mean and variance of each group
of the traces (at each sample point independently). The outcome gives a level
of confidence to reject a hypothesis as the traces of these two groups are drawn
from the same population. If so (i.e., |t| > 4.5), it can be confidently concluded
that a first-order leakage can be exploited from the device under evaluation.

Such a fix vs. random test is useful particularly to evaluate masked imple-
mentations. For instance, the same scheme has been used to examine the leakage
of a higher-order attack resistant implementation of KATAN block cipher in [4].
However, in case of our designs where no masking is involved we cannot easily
apply such a test. That is because the plaintext, which is not masked, is sent dur-
ing the communication (between the FPGAs of the SAKURA-G) and processed
by the target FPGA. Therefore, regardless of the protection that the AES core
provides the leakage associated to the plaintext is observable at every sample
point of the traces2.

As a solution, a semi fix vs. random test can be performed. In such a scenario,
a set of plaintexts are selected, all of which lead to the partially same intermedi-
ate value. We have precomputed 1024 plaintexts, in such a way that the first 64
bits of the cipher state at the start of the round 5 of the AES encryption are 0 (a
similar scheme has been introduced in [7]). During the measurements a random
plaintext or one of the precomputed plaintexts (again randomly) is taken. The
rest of the evaluation stays the same as that of a fix vs. random test.

A sample trace of the WDDL design is shown at the top of Fig. 6. The first
high peaks are related to the conversion and synchronization of the plaintext and
the roundkey to the dual-rail precharge form (see Fig. 5). The trace of the other
designs – particularly the duplicated ones – look like the same but with higher
peak-to-peak value. For each of the six designs we collected 1 000 000 traces
following the scenario explained above. It means that approximately 500 000
traces with random plaintext and the rest with a randomly-chosen plaintext
amongst the 1024 precomputed ones. The result of the tests on all six designs
are shown by Fig. 6.
1 Note that such a selection should also be randomized.
2 One reason is also related to the static leakage [13].
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Fig. 6. A sample trace and the t-test results using 1 000 000 traces.
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It can be seen that none of the designs is able to avoid the leakage, and
the tests strongly confirm the existence of a leakage. However, as we expected –
stated in Sect. 3.1 – the duplicated designs can reduce the leakage, but due to
the flaw (i.e., data-dependent time of evaluation for certain conditions) it cannot
be prevented. It is noteworthy that the evaluation scheme which we performed is
a “leakage assessment methodology” on one of the middle rounds of the cipher.
Although we have not performed any key-recovery attack, and have not provided
any information about the simplicity/hardness of such an attack, the result of
the presented tests indicate the failure of the underlying design methodologies
to prevent the leakages.

5 Conclusion

Regardless of its significant area overhead, duplicating a dual-rail precharge cir-
cuit (DWDDL) was considered as the only scheme that can be used for power
equalization on FPGAs. In this work we have shown that this scheme is not flaw-
less. By an extensive evaluation we found situations where the time of evaluation
(of the gates in a double dual-rail precharge circuit) still depends on the input
values. Such a data-dependent time of evaluation is caused by the difference
between the signal delay of the gate inputs that cannot be avoided. Our the-
ory is supported by practical analysis that we conducted on a Xilinx Spartan-6
FPGA. Although DPL-noEE and AWDDL avoid the well-known early propaga-
tion issue of WDDL, we have shown that still none of them can be considered
as a potential solution to prevent the side-channel leakage.

Acknowledgment. This work was partially funded by the European Horizon 2020
project SAFEcrypto (grant no. 644729), German Research Foundation (DFG), and
DFG Research Training Group GRK 1817/1.

References

1. Side-channel AttacK User Reference Architecture. http://satoh.cs.uec.ac.jp/SAK
URA/index.html

2. Beckhoff, C., Koch, D., Tørresen, J.: The Xilinx Design Language (XDL): tutorial
and use cases. In: ReCoSoC 2011, pp. 1–8. IEEE (2011)

3. Bhasin, S., Guilley, S., Flament, F., Selmane, N., Danger, J.: Countering early
evaluation: an approach towards robust dual-rail precharge logic. In: WESS 2010,
pp. 6. ACM (2010)

4. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold
implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS,
vol. 8874, pp. 326–343. Springer, Heidelberg (2014)

5. Canright, D.: A very compact s-box for AES. In: Rao, J.R., Sunar, B. (eds.) CHES
2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005)

6. Chen, Z., Zhou, Y.: Dual-rail random switching logic: a countermeasure to reduce
side channel leakage. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol.
4249, pp. 242–254. Springer, Heidelberg (2006)

http://satoh.cs.uec.ac.jp/SAKURA/index.html
http://satoh.cs.uec.ac.jp/SAKURA/index.html


94 A. Wild et al.

7. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for side-channel
resistance validation. In: NIST Non-Invasive Attack Testing Workshop (2011)

8. He, W., de la Torre, E., Riesgo, T.: A precharge-absorbed DPL logic for reducing
early propagation effects on FPGA implementations. In: ReConFig 2011, pp. 217–
222. IEEE Computer Society (2011)

9. He, W., Otero, A., de la Torre, E., Riesgo, T.: Automatic generation of identical
routing pairs for FPGA implemented DPL logic. In: ReConFig 2012, pp. 1–6. IEEE
Computer Society (2012)

10. Lavin, C., Padilla, M., Lamprecht, J., Lundrigan, P., Nelson, B., Hutchings, B.,
Wirthlin, M.: RapidSmith - A Library for Low-level Manipulation of Partially
Placed-and-Routed FPGA Designs. Technical report, Brigham Young University,
September 2012
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Abstract. Block Memory Content Scrambling (BMS), presented at
CHES 2011, enables an effective way of first-order side-channel protection
for cryptographic primitives at the cost of a significant reconfiguration time
for the mask update. In this work we analyze alternative ways to imple-
ment dynamic first-order masking of AES with randomized look-up tables
that can reduce this mask update time. The memory primitives we con-
sider in this work include three distributed RAM components (RAM32M,
RAM64M, andRAM256X1S) andoneBRAMprimitive (RAMB8BWER).
We provide a detailed study of the area and time overheads of each imple-
mentation technique with respect to the operation (encryption) as well as
reconfiguration (mask update) phase. We further compare the achieved
security of each technique to prevent first-order side-channel leakages. Our
evaluation is based on one of the most general forms of leakage assess-
ment methodology known as non-specific t-test. Practical SCA evaluations
(using a Spartan-6 FPGA platform) demonstrate that solely the BRAM
primitive but none of the distributed RAM elements can be used to realize
an SCA-protected implementation.

1 Introduction

Side-channel analysis (SCA) exploits information leakage related to the device
internals, for example by inspecting its power consumption [6]. Hence, the secu-
rity provided by a cryptographic primitive can be easily overcome if the device
is not equipped with any SCA countermeasures. Many different countermea-
sures against SCA attacks have been proposed in the past and can typically
be classified as either masking or hiding [7]. With respect to signal-to-noise
ratio hiding countermeasures aim at either increasing the noise by introducing
noise generation resources [4,7] or reducing the signal by e.g., equalizing the
power consumption [11]. The main concept behind masking is to randomize
the processed values by adding random masks so that it should become impossi-
ble for an attacker to predict intermediate values. Despite many proposals, most
fail to achieve the desired level of security due to the presence of glitches inside
c© Springer International Publishing Switzerland 2015
S. Mangard and A.Y. Poschmann (Eds.): COSADE 2015, LNCS 9064, pp. 95–107, 2015.
DOI: 10.1007/978-3-319-21476-4 7



96 P. Sasdrich et al.

the combinatorial masked circuits (for example see [8,9]). Instead of masking
combinatorial circuits, critical elements such as S-boxes can be realized as look-
up tables that are dynamically randomized in memory. A realization of such
an approach on FPGAs which randomizes the content of block RAMs (BRAM)
has been presented in [4] and is known as Block Memory Content Scrambling
(BMS).

Contribution: In this work we analyze the suitability of different Xilinx FPGA
memory primitives to prevent first-order side-channel leakage by masked look-up
tables. Besides using larger dual-port BRAM primitives (as used in the original
BMS publication [4]), it is also possible to use smaller single-port BRAMs as well
as distributed RAM elements which are realized in SLICE-M LUTs of modern
Xilinx FPGAs [12]. With the introduction of Xilinx’ Virtex-5 platform SLICE-
M have become capable to hold 256 bits of memory that is a perfect fit for an
8× 256-bit AES S-box. In particular RAM32M, RAM64M, and RAM256X1S are
the primitives which can be used to build a randomly permuted (masked) S-box.
Although reconfiguration time becomes notably shorter for smaller RAM module
sizes, the total area requirements of each masked S-box increases.

For evaluation we apply the non-specific t-test as a general leakage assessment
methodology [3] to analyze the SCA resistance of each scheme. We show that due
to their intrinsic multi-LUT design, the distributed RAM elements still exhibit a
first-order leakage so that they should not be used to implement masked designs.
We conclude our work with presenting an efficient implementation of a small
single-port BRAM-based design that achieves almost double the throughput of
the original BMS scheme and still prevents first-order leakages.

Outline: This work is organized as follows: Sect. 2 introduces the underlying
FPGA primitives, explains how they can be employed to realize randomized look-
up tables and recalls the BMS scheme. In Sect. 3 our masked AES encryption
designs are presented and their reconfiguration time, resource requirements, and
throughput are compared. Practical evaluation of all implementation profiles is
given in Sect. 4, before we conclude our work in Sect. 5.

2 Preliminaries

In this section we briefly describe memory primitives provided by Xilinx FPGAs
and their application in order to build randomized look-up tables to protect cipher
implementations against first-order DPA attacks. Afterwards, we restate the con-
cept of Block Memory Content Scrambling (BMS) initially introduced in [4].

2.1 Memory Primitives

Modern Xilinx FPGAs provide several different memory primitives, e.g., dis-
tributed memory and general purpose block memory, that can be used to build
randomly permuted look-up tables. Distributed memories are enabled only at
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special Slices (SLICE-M) by using the configuration registers within the Look-
Up Tables (LUTs) as general purpose memory cells. Since this memory is usually
constrained by the configuration size (between 16 and 64 bits), up to 4 LUTs of
a single SLICE-M can be combined in order to build larger RAMs. For designs
requiring even larger amounts of memory, FPGAs provide general purpose block
memory (BRAM) with memory sizes between 8 Kbits and 32 Kbits. In the fol-
lowing we describe these memory primitives and their modes of operation in
detail, focusing on their application as a randomized look-up table (see [12] for
more information).

RAM32M. The RAM32M memory primitive is a multi-port random access
memory with synchronous write but asynchronous read capability imple-
mented in distributed memory using the configuration memory of all LUTs
(and both outputs O6 and O5) of a single SLICE-M. It is organized as an
8-bit wide by 32 deep memory providing 4 individual read ports (each 2-bit
wide) and a single write port (8-bit wide). If all read addresses are tied to
the same value, this memory primitive becomes an 8 × 32 single port RAM.

RAM64M. In contrast to the RAM32M primitive, the RAM64M module is a
multi-port random access memory with synchronous write and asynchronous
read capability organized as 4-bit by 64 deep memory. This memory primitive
also occupies 4 LUTs of a SLICE-M but only uses the outputs O6 of the
LUTs. If all 6-bit wide address ports are tied to the same value, this memory
becomes a 4 × 64 single port RAM.

RAM256X1S. Another option for distributed memory is RAM256X1S. This
primitive is a single-port random access memory with synchronous write and
asynchronous read capability placed in a single SLICE-M using all LUTs
(combined by subsequent MUXF7 and MUXF8 multiplexer instances).
A RAM256X1S provides an 8-bit wide address port and a 1-bit wide read
and write port and is organized as a 1 × 256 single port RAM.

RAMB8BWER. The RAMB8BWER primitive is a true dual-port random
access memory with synchronous read and write capability. Instead of using
configuration memory of special LUTs as distributed memory, this RAM
instance occupies a dedicated block memory primitive and offers 8 Kbits data
storage in addition to a 1 Kbit parity memory. It is possible to define differ-
ent options and widths for the read and write ports changing the memory
configuration from 1×8 Kbits up to 9×1 Kbit. The embedded input register
causes this primitive to always require a clock cycle to read from an address
(synchronous). In addition, the output port can use an additional embedded
register in order to buffer the memory output leading to two clock cycles
latency for a read operation.

2.2 Randomized Look-Up Tables

Many symmetric ciphers use S-boxes, often represented by simple look-up tables,
in order to include non-linearity into the encryption scheme. In FPGAs, this
S-boxes can efficiently be realized either using LUTs (as well as distributed
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memories) or block memories depending on their size as well as the available
resources.

SCA attacks target an intermediate value of a cipher, e.g., a part of the
non-linear layer. The predicted intermediate values, usually the input or output
of a known S-box, in addition to a hypothetical power model contribute in a
statistical analysis of e.g., power consumption traces in order to reveal the asso-
ciated secret. In order to avoid side-channel leakages, hardware designers need
to apply dedicated countermeasures e.g., masking. These countermeasures aim
at randomizing intermediate values of a cipher implementation using uniformly-
distributed random data (masks). In particular, the non-linear layer in terms of
look-up tables such as S-boxes (or T-Tables) has to be adapted depending on
the taken random mask. Usually this is done by scrambling the S-box content
based on an input mask m and adding an output mask n to the content (Boolean
masking), so that the masked S-box S′ is precomputed as:

S′(x ⊕ m) = S(x) ⊕ n

As mentioned before, look-up table based S-boxes can be implemented using
distributed or block memories. Due to their reconfiguration feature, the above-
presented memory primitives can be employed to implement randomized look-
up tables as well. Figure 1 exemplarily shows a part of the structure of an AES
S-box using RAM32M (Fig. 1a), RAM64M (Fig. 1b), RAM256X1S (Fig. 1c) and
RAMB8BWER (Fig. 1d) memory primitives.

Each of the distributed memory designs presented in Fig. 1 realizes one bit
of the AES S-box. Each of them receives an 8-bit input Sin, and provides one
output bit Sout. Depending on their read/write port width the configuration
to update the look-up table is defined. For example, the content of 8 bits of a
RAM32M can be updated in one clock cycle (Fig. 1a) while at most 4 bits of
RAM64M and 1 bit of RAM256X1S can be simultaneously updated. This clearly
affects the efficiency of the update (reconfiguration) process. Respectively, extra
components, i.e., the multiplexers in Fig. 1, have to be placed out of the SLICE-
M to build a 1 × 256 memory. With respect to this issue RAM256X1S is the
most efficient one while the time required to update its content is considerably
higher than the other distributed memory primitives.

2.3 Block Memory Content Scrambling

The main idea of BMS is to store two S-/T-Tables in parallel into a dual-port
block memory where one is called active context and the other one passive.
While the active context is used for the encryption process via one port of the
BRAM, the passive context is scrambled by means of the other port. During
the scrambling process the already masked data is read from the active context,
and updated by a given fresh mask before it is written to the passive context.
After the encryption and the memory content scrambling process finished, the
contexts are swapped i.e., the passive context becomes active and is used for
the encryption process while the active context becomes passive and is updated
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Fig. 1. Randomized look-up tables using different memory primitives
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using a new (random) mask. This scrambling scheme exploits the true dual-port
capability of BRAM in order to randomize look-up tables such as S-boxes or
T-Tables without affecting the throughput of the encryption scheme. Despite
many advantages, this scheme comes with

– Area overhead, since it doubles the memory requirements because every look-
up table has to be stored twice (active and passive), and

– Additional latency for a mask update process, as the scrambling (updating)
process needs 512 clock cycles. Hence it often happens that the consecutive
encryptions share the masks since the scrambling process is not finished when
the second plaintext is given.

3 Design

This section briefly explains the underlying masking scheme of our AES imple-
mentation and its basic hardware architecture. Afterwards, different approaches
using the distributed memory and the block memory primitives are compared.

3.1 Masking Architecture

The architecture of our design of the AES-128 encryption function (for a
Spartan-6 FPGA) is shown in Fig 2. We opted to implement an incremental and
round-based architecture and derive the round keys on the fly. The data path has
a width of 128 bits, and the SubBytes layer consists of 16 parallel reconfigurable
S-boxes. ShiftRows and MixColumns (in parallel on all 4 columns) are applied
jointly at one clock cycle.

In contrast to the originally proposed BMS scheme, our design follows an app-
roach based on an update-prior-to-encryption fashion. Thus, before each encryp-
tion the randomized look-up tables are regenerated. During each encryption the
masks stay constant. In other words, the same masks are used for all cipher
rounds during one encryption. The initial plaintext is masked with (m ⊕ m′)
while all round keys are masked with m′ (m and m′ independent of each other
and each 128-bit). Therefore, after the key addition the SubBytes input mask
is m (see Fig. 2). The randomized look-up tables (masked SubBytes) are con-
figured with m as the input mask and SR−1(MC−1(m ⊕ m′)) as the output
mask. Applying the ShiftRows and MixColumns operations transforms the mask
again to (m + m′) as the mask of the round output. Hence, after each cipher
round the input to the next round is masked with (m ⊕ m′) and no mask cor-
rection (see [2,10]) is required. For the last round, the MixColumns operation is
omitted and the returned ciphertext is masked with MC−1(m ⊕ m′) ⊕ m′.

Reusing the masks for all cipher rounds has a known drawback if the round
register consecutively stores the intermediate values with the same mask. In such
a case, the leakage associated to the register update, e.g., a Hamming distance
(HD) model, is easily extractable. If x ⊕ m and y ⊕ m are consecutively stored
in a register,

HD(x ⊕ m, y ⊕ m) = HW (x ⊕ y)
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Fig. 2. Round-based AES implementation with randomized look-up tables

is independent of the mask. Hence, we avoid such an issue by surrounding each
S-box with two register stages, one before and one after the SubBytes operation
(see Fig. 2). At power-up both registers are precharged with 0, and at only one
clock cycle the input multiplexer passes the masked plaintext (p⊕m⊕m′). Since
one of the register stages therefore holds some value depending on a random
mask of a previous encryption, the correct encryption rounds are interleaved
with random (dummy) operations.

Employing this technique leads to reduced throughput due to the prior look-
up table update phase as well as the fact that each cipher round requires two
clock cycles. However, compared to BMS [4] our design reduces the area overhead
as well as the amount of required randomness to 256-bit per encryption (m and
m′). Further, this scheme is suitable for the distributed memory primitives as
well as for the block memory which allows a fair comparison. In case the block
memory is used, the registers (before and after the SubBytes) are removed.
Instead, the input and output registers of the block memory are employed as
the two-stage state registers.

3.2 Comparison of S-box Designs

Table 1 provides a comparison of area and time requirements of the randomized
look-up tables using different memory primitives and the associated configuration
logic and in Table 2 we give an overview of the resource requirements of the entire
AES encryption as well as an estimation of the maximum frequency and through-
put.Compared to theoriginallyproposedBMSscheme, ourmaskeddesignbasedon
the block memory (RAMB8BWER) halves the reconfiguration time, hence nearly
doubling the maximum throughput. In case the distributed memory primitives are
employed, the maximum frequency can even be increased except for the RAM32M
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Table 1. Comparison of S-boxes for different memory primitives

Memory primitive Subbytes Configuration

Logic Dist. mem. Block mem. Logic Memory

(LUT) (LUT) (BRAM16) (LUT) (FF)

BRAM (BMS) none none 16 1706* 1169*

RAMB8BWER none none 8 298 8

RAM256X1S 128 512 none 298 8

RAM64M 768 512 none 727 6

RAM32M 1920 512 none 1222 5
* These values are based on a Virtex-II Pro implementation and taken from [4].
For a Spartan-6 the resulting design would be slightly smaller.

Table 2. Time and resource requirements of entire AES (encryption only)

Memory primitive AES (Encryption only) Reconfig. Maximum Maximum

Logic Memory Time Frequency Throughput

(LUT) (FF) (BRAM) (Cycles) (MHz) (MBit/s)

BRAM (BMS) 2888 2351 16 512* 147.0 35.4

RAMB8BWER 1284 415 8 256 148.0 68.6

RAM256X1S 1796 543 0 256 166.1 77.0

RAM64M 2849 541 0 64 162.3 247.3

RAM32M 4512 540 0 32 147.6 363.3

* Reconfiguration can be done in parallel when reusing the mask for multiple encryp-
tions without affecting the throughput. For a fair comparison we avoid the mask reuse
in BMS as well.

due to its more complex reconfiguration circuit. Besides, the RAM32M leads to the
highest throughput as its reconfiguration time is extremely shorter than the others.
Note that in the reported performance figures we omitted the area required for the
generation of the random masks.

4 Evaluation

We employed a SAKURA-G platform [5], i.e., a Spartan-6 FPGA, for practical
side-channel evaluations. The power consumption traces have been measured
by means of a LeCroy WaveRunner HRO 66Zi oscilloscope with a 1Ω resistor
in the Vdd path capturing the embedded amplifier output of the SAKURA-G.
We recorded the traces at a sampling rate of 1GS/s and the bandwidth limit
of 20MHz while the design was running at a low clock frequency of 3 MHz to
reduce the noise caused by the overlap of the power traces.

4.1 Non-Specific Statistical t-test

In order to examine the resistance of our designs we applied the leakage assess-
ment methodology (t-test) of [3]. The most general form of such a test – known
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as non-specific t-test – investigates the existence of a first-order leakage inde-
pendent of any power model as well as any intermediate value. In such a test a
certain plaintext is selected, and during the measurements the chosen plaintext
or a random one is given to the encryption module in a randomly-interleaved
fashion. For all the measurements the key is kept constant. Therefore, this test
is also called fix vs. random t-test. As the next step the traces are categorized
into two groups G1 and G2 based on their associated (fix or random) plaintext.
By comparing the means of these groups, we can examine the dependency of the
traces (leakages) to the processed values related to the given plaintexts. Such a
comparison can be fairly performed by means of a Welch’s (two-tailed) t-test as

t =
μ(T ∈ G1) − μ(T ∈ G2)√

δ2(T∈G1)
|G1| + δ2(T∈G2)

|G2|
,

where μ and δ2 denote the sample mean and the sample variance respectively,
and |.| the cardinality.

As the final step the obtained t with the corresponding degree of freedom1 is
given to the cumulative Student’s t distribution function to achieve a quantita-
tive value as the probability of the null hypothesis being valid. Such a hypothesis
is the assumption that the samples in the groups G1 and G2 were drawn from the
same population, i.e., the two groups are not distinguishable. However, for sim-
plicity a threshold for the t-test result as |t| > 4.5 is usually selected to reject the
null hypothesis and conclude that the means of the groups are distinguishable,
hence there exists a leakage.

It is noteworthy that the scenario explained above should be repeated at each
sample point of the power traces independently, hence a first-order univariate
evaluation. On one hand, when the result of a test is positive, the value of the
t statistic gives the level of confidence that there exist a first-order leakage,
but it does not provide any information about the difficulty or easiness of an
attack exploiting such a leakage. On the other hand, in case a non-specific t-test
reports no leakage, such a conclusion is only correct with respect to the selected
fix plaintext as well as the number of used traces. Changing the fix plaintext
and increasing the number of traces can change the result of the test. The same
evaluation scheme has also been applied in [1].

4.2 Results

In the following we present the results of the security evaluation concerning side-
channel resistance of randomized look-up tables using the introduced memory
primitives by applying the above-explained non-specific t-test. Since we identified
four potential memory elements (see Sect. 2.1), the evaluations are grouped into
four different profiles respectively.

A sample trace of the profile built from RAM64M modules is shown in Fig. 3.
Note that all our measurements cover only the time period related to the encryp-
1 see [1] and [3].
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tion, and we ignored to measure the power consumption when the reconfigura-
tion of the look-up tables is in process (prior to each encryption). As explained
in Sect. 3, we kept the design architecture of all profiles the same. Hence the
power traces of other profiles look like the same, but for the design profile with
RAM32M the traces show slightly higher peak-to-peak amplitude due to its more
complex architecture regarding the extra multiplexers out of the RAM slices.
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Fig. 3. Sample trace

For each profile we collected at least 1 million traces for a non-specific t-test.
During all the measurements fresh masks are randomly generated by means of
an AES engine running in counter mode prior to each encryption, i.e., no mask
is reused. The masked plaintext in addition to the corresponding masks are sent
from the control FPGA to the target FPGA (SAKURA-G). After finishing the
look-up table reconfiguration followed by the encryption process on the target
FPGA, the masked ciphertext is sent back to the control FPGA, where it is
unmasked for a consistency check.

Profile A: Tiny RAM (RAM32M). By means of this profile we evaluate the
leakage of the randomized look-up table realized by RAM32M memory primi-
tives. Although this variant has the highest resource consumption, it offers the
best throughput. Figure 4a shows the result of the corresponding non-specific
t-test using 1 million traces (i.e., about 500 000 traces of encrypting the fix
plaintext and the rest for the random ones). Unexpectedly the test exhibits
first-order leakages. Indeed, the t statistics are much higher than the threshold,
that confidently argue the vulnerability of the design.

Profile B: Small RAM (RAM64M). The result of the same test on the
second profile, i.e., the one where the randomized look-up tables are implemented
by RAM64M instances, is shown in Fig. 4b. We observed the same issue, i.e.,
unexpected first-order leakages. Interestingly, the amount of leakage is higher
compared to that of Profile A, although its S-box design is more compact.
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Fig. 4. First-order non-specific t-test results
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Profile C: Large RAM (RAM256X1S). The most compact and dense
implementation for a randomized look-up table using Distributed Memory (i.e.,
the RAM256X1S memory primitives) on a Spartan-6 FPGA, places the a com-
plete single AES S-box and the subsequent registers into only 8 slices. However,
the same as the two former design profiles a first-order leakage is still detectable
which can be seen in Fig. 4c.

Profile D: Block RAM (RAMB8BWER). As the last profile we evaluated
the application of block RAMs instead of the Distributed Memory. Since each
block RAM internally has a register stage for the input and an optional one for
the output, by employing a RAMB8BWER instance for each S-box we used also
both internal registers of the block RAM and avoided the external registers used
in the other profiles (see Fig. 2). Since we did not observe any first-order leakage
using the same number of traces as used for the other profiles, we performed the
evaluation using 10 million traces. The corresponding result is shown in Fig. 4d
indicating the ability of the design to prevent any first-order leakage.

In fact, the results we presented above infer the pitfall of using distributed
memories (of FPGAs) to realize randomized (masked) look-up tables. While the
internal architecture of such memory primitives is not completely clear to us, we
are confident that the observed leakage is due to the internal multiplexers of such
memory modules. We should highlight that the randomized look-up tables (in
our designs) receive only the masked inputs and provide the masked outputs.
Neither the input mask nor the output mask is given to the memory mod-
ule. Further, the input masks and output masks are independent of each other.
As a result – also confirmed by the evaluation result of Profile D – the exhibited
leakage is purely related to the internal architecture of the distributed memory
modules.

5 Conclusion

In this work we have given a comparative study on the suitability of Xilinx FPGA
memory primitives to implement a side-channel countermeasure based on ran-
domized (masked) look-up tables. We have shown that the use of distributed
RAM primitives like RAM32M, RAM64M, and RAM256X1S causes an other-
wise secure scheme to exhibit first-order side-channel leakage. Such unexpected
leakage is due the internal architecture of the distributed memory primitives
(SLICE-M). Since except [12] there is no other public document on the details
of such modules, we cannot localize the source of such leakage. When keeping
the very same design but only replacing the distributed RAMs by small BRAMs
to store the masked tables, no leakages were detected applying the general non-
specific leakage assessment methodology on 10 million captured power traces.

Our design solution using block memory (RAMB8BWER) achieves almost
double the throughput compared to the original BMS mainly because of the
reduced reconfiguration time of the masked S-boxes. It also requires less ran-
domness. The BMS scheme is a T-table implementation which requires 16 × 32
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random bits to mask the T-tables output while we only require 2 × 128 bits of
randomness. The reason for this difference is that we are only implementing the
8×8 AES S-box as masked tables (compared to 8×32 T-tables) while the other
parts (all linear) of the encryption are implemented by combinatorial logic.
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Abstract. Cloud’s unrivaled cost effectiveness and on the fly opera-
tion versatility is attractive to enterprise and personal users. However,
the cloud inherits a dangerous behavior from virtualization systems that
poses a serious security risk: resource sharing. This work exploits a shared
resource optimization technique called memory deduplication to mount
a powerful known-ciphertext only cache side-channel attack on a popu-
lar OpenSSL implementation of AES. In contrast to the other cross-VM
cache attacks, our attack does not require synchronization with the tar-
get server and is fully asynchronous, working in a more realistic scenario
with much weaker assumption. Also, our attack succeeds in just 15 sec-
onds working across cores in the cross-VM setting. Our results show that
there is strong information leakage through cache in virtualized systems
and the memory deduplication should be approached with caution.

Keywords: Asynchronouos cross-VM attack · Memory deduplication ·
Flush and reload · Known ciphertext attack · Cache attacks

1 Introduction

Cloud computing and virtualization is popular more than ever with large compa-
nies like Microsoft, Google, Amazon, IBM, Oracle, Rackspace and many others
investing billions of dollars trying to get a foothold in this new area of lucrative
business. This rapid increase in the number of cloud service providers is directly
related to the emergence of server-less companies like Netflix, Dropbox, Insta-
gram, Pinterest, Reddit, Imgur and many others that are using commercial cloud
infrastructure [10]. Instead of buying expensive servers without knowing exactly
how many of them they need, and then hiring IT personnel to maintain those
servers, these fast growing companies have chosen to use public cloud systems
to maintain their software and services.

The opportunities of using the commercial cloud are fairly obvious however,
threats are not. Sharing a physical system between users reduces the cost while
increasing the utilization hence the productivity. The isolation between the Vir-
tual Machines (VM) in these systems is maintained by the Virtual Machine
Manager (VMM) at the software level. However, software layer confinement
c© Springer International Publishing Switzerland 2015
S. Mangard and A.Y. Poschmann (Eds.): COSADE 2015, LNCS 9064, pp. 111–126, 2015.
DOI: 10.1007/978-3-319-21476-4 8
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techniques that force the sandboxing does not guarantee complete isolation and
cannot ensure the prevention of data leakage from one VM to the other. The
most common source of information leakage across VM boundaries is the shared
cache and the memory of the underlying physical system. Particularly memory
deduplication allowed researchers to mount attacks that threaten both the user
privacy and the security of the cryptographic systems.

In 2009, Ristenpart et al. [24] showed that it is possible to co-locate with
a target on a cloud environment, namely Amazon EC2, and extract keystrokes
from the co-located VM. In 2011, by exploiting the Kernel Samepage Merging
(KSM), Suzaki et al. [25] was able to detect processes like sshd, apache2, IE6
and Firefox running on a co-resident VM. The significance of this study is that
it is possible to not just detect the existence of a target VM, but also detect
running processes.

Recently in 2013 Yarom et al. [29] applied the Flush+Reload attack across
VMware VMs to recover a RSA key. Later in 2014, Irazoqui et al. [14] used
Bernstein’s AES cache timing attack to partially recover an AES key from vari-
ous AES crypto library implementations in a cross-VM setting under XEN and
VMware ESXI hypervisors. Also in 2014, Irazoqui et al. [15] implemented a
cross-VM access driven cache attack on AES in a VMware ESXI system using
the Flush+Reload attack.

Our Contribution. In this work, we implement for the first time a known-
ciphertext cross-VM attack on AES using the Flush+Reload method and use
three distinct data analysis methods to fully recover the secret key with varying
encryption observations for different scenarios. For the attack, we take advantage
of VMware ESXI’ s memory deduplication mechanism called the Transparent
Page Sharing. The attack is mounted on a multi-core high-end server, a specifi-
cation found commonly on commercial cloud systems and does not require the
attacker and the victim to be running on the same physical CPU core. Com-
pared to the attack in [12], our attack is minimally invasive and works with
less assumptions since the attacker does not need to control or exploit in any
way the target process execution. Also compared to [15], the new attack does
not assume to have access to the encryption server and works only by listening
to the encryption server via cache covert channel and obtaining the ciphertexts
from the network channel.
In summary, this work

– For the first time, mounts a cross-VM, known-ciphertext only AES key
recovery attack using the Flush+Reload technique

– Improves upon the previous cross-VM AES cache attacks by flushing in
between the encryption rounds

– Presents three distinct analysis methods that can be adapted to any table-
based block ciphers
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2 Cache Side-Channel Attacks

Cache side-channel attacks exploit microarchitectural leakages stemming from
memory access time variations, e.g. when the data is retrieved from small faster
memories called caches as opposed to slow bulk memories. Caches are useful due
to two main principles, i.e. the temporal and spatial locality. Temporal locality
predicts that recently accessed memory locations are likely to be accessed soon
again, while spatial locality predicts that data located nearby the accessed mem-
ory locations are also likely to be accessed soon. In general, caches hold not only
recently accessed data, but also an entire cache line containing data in nearby
locations. In modern CPUs, caches are organized into multiple levels L1, L2 and
L3 where the first two levels are smaller and core exclusive, while the last level
is considerably larger and is shared across cores. While retrieving data from any
level of the cache is faster than retrieving the same data from the main memory,
higher levels of the cache are even faster than lower levels. L1 being the fastest,
L3 the slowest, different cache levels have different access times which enable
attacks like Prime+Probe to distinguish between accesses to the L1 cache and
to the L3 cache. In addition, the last level of cache is shared between all cores,
giving the attackers the opportunity to use it as a covert channel between cores
and mount attacks such as Flush+Reload.

2.1 Related Work

The first theoretical consideration on the extraction of information via cache
memories was demonstrated by Hu [13], whereas 6 years later Kelsey et al. [18]
expanded this consideration by suggesting the presence of cache leakage due
to the hit/miss ratio. Following up Kelsey’s work, Page described a theoretical
chosen plaintext attack based on the collection of cache profiles [23]. One year
later Tsunoo et al. [26] proposed the first practical implementation of cache
attacks on the DES cryptographic algorithm.

The first practical cache side-channel attack on AES appeared in 2005 by
Bernstein [7] showing that the table look up operations from different cache lines
have different access times in an AES encryption. Further, he showed that using
this cache access time information, an adversary can recover secret encryption
key from a popular AES implementation, i.e. the OpenSSL cryptographic library.
In a similar attack, Osvik et al. [22] presented two spy processes that are able to
monitor the cache usage: evict+prime and prime+probe. Although the latter
one proved to be significantly more efficient, both spy processes recovered the
AES encryption key used by an OpenSSL server. A few months later, Bonneau and
Mironov [8] and Acıiçmez and Koç [5] presented new attacks targeting AES that
exploited internal table look up collisions in the cache during the last and first
rounds respectively. In spite of the prominent successful attacks on symmetric
key cryptography, public key cryptography was also considered a popular target
for cache side-channel attacks. Indeed in 2007, Acıiçmez demonstrated the usage
of the prime and probe spy process in the instruction cache against a RSA
encryption.
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Cloud computing systems became the next challenge for side-channel attack
researchers. In 2009, after Ristenpart et al. [24] demonstrated that they were
able to co-locate an attacker’s virtual machine (VM) with a potential victim’s
VM with a success probability of 40 % in the Amazon EC2 cloud. Even further,
the authors managed to recover keystrokes from the co-resident victim’s VM,
showing that the cache side-channel attacks are both practical and applicable to
real world scenarios. The possibility of co-location fueled further research on new
cache side-channel techniques and cache leakages in VMs. For instance, in 2011
Chen et al. improved over the previous RSA attacks in the instruction cache [9]
while Gullasch et al. discovered a new side-channel technique that would later
be called the Flush+Reload [12]. The Flush+Reload attack recovered AES secret
keys by taking control of the Completely Fair Scheduler (CFS) [3,16]. At the
same time, previous side-channel techniques such as Prime+Probe were also
adapted to work in virtualized settings by Zhang et al. [30,31]. They utilized a
spy process to detect co-resident tenants and to recover El Gamal encryptions
keys. More recently, Yarom and Falkner [29] applied the Flush+Reload tech-
nique to recover, for the first time, RSA encryption keys across VMware and
KVM VMs. Shortly later Benger et al. [6] demonstrated the viability of the
Flush+Reload technique to recover ECDSA encryption keys. Finally, Irazoqui
et al. [14,15] recovered AES keys in virtualized environments with Bernstein’s
attack and the Flush+Reload technique.

2.2 Memory Deduplication

Memory deduplication is an OS memory optimization technique that allows the
OS to keep only a single copy of a data in the memory when multiple processes
are using the same data. While this feature is useful in native execution, it is
even more useful in virtualized setting where many VMs use the same OS and/or
the same software.

Hence, to reap the benefits of the deduplication, VMMs have also imple-
mented memory deduplication techniques to allow more VMs to run on the
same physical machine. For this, the VMM recognizes identical and redundant
memory copies by first checking their hash values and then performs a bit-by-
bit comparison. If the memory content is determined to be shared by more than
one process/VM the memory manager removes multiple copies from the memory.
Note that even though this deduplication process is only performed on shareable
memory pages like shared libraries, shared libraries are used in many software
packages. Memory deduplication methods are especially effective when hosting
multiple processes, as is the case in virtualized systems. Consequently, VMMs
like VMware [27,28] and KVM [4,17] implement variations of memory deduplica-
tion, i.e. Transparent Page Sharing (TPS) and Kernel Samepage Merging (KSM),
respectively. While the memory saving optimization techniques improve the per-
formance they also create a covert channel that a malicious VM can exploit. In
fact, memory disclosure attacks [25] and side-channel attacks [6,15,29] have been
proposed taking advantage of memory deduplication techniques in the cloud.
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Fig. 1. Data access time in hardware cycles when the data is located in the cache and
in the memory

2.3 The Flush+Reload Side-Channel Attack

The Flush+Reload is a trace driven cache side-channel attack that was first used
in [12], but acquired its name in [29]. The attack is based on shared memory
leakage coming from deduplication processes. One of the main advantages of the
Flush+Reload spy process is that it does not require the attacker to be core co-
resident with the victim and works in a cross-core scenario as long as a shared
last level cache exists. The attack is carried out in 3 main stages:

Flush Stage: In this stage the attacker flushes one or more of the desired
memory locations from the cache using the clflush command. More precisely,
clflush evicts the desired memory locations from the entire cache hierarchy,
i.e. even from the non-shared cache hierarchies if the last shared level cache
is inclusive. Indeed this is the main reason why the attack is applicable across
cores.

Victim Access Stage: In this stage, the attacker waits for sufficient time for
the victim to use (or not use) the memory locations that he has flushed in the
previous stage.

Reloading Stage: In the final stage, the attacker reloads the previously flushed
memory locations, measuring the reload time for each one of them. If the victim
accessed one of the flushed memory lines, due to the inclusiveness of the shared
level cache, they will not only be loaded in the upper level caches but also in the
shared level cache. Thus, the attacker will measure a lower reload time compared
to data accesses to the main memory since the line will be retrieved from the
cache. However if the victim did not access to the data flushed in the first stage,
the data will still reside in the memory, causing a higher reload time in this
reload stage. The different distributions for a memory block accessed from the
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L1 cache and a memory block accessed from the main memory can be observed in
Fig. 1. It can be concluded that Flush+Reload offers a high distinguishable covert
channel due to the significantly different distributions. However, the execution
of microarchitectural side-channel techniques can suffer from multiple sources
of noise that can be observed in two different ways. The first is a measurement
inaccuracy: noise can be introduced by the microarchitecture, by the OS and
by the VMM. Often, this noise results in a moderate increase in the number
of cycles. However, if e.g. a context switch happens during start and end of a
measurement, the value might be off several orders of magnitude. This can be
handled by introducing a threshold. Note that such outliers have a significant
impact on higher order statistical moments if not filtered out. This said, even
with a reasonable threshold, the noise is definitely not Gaussian, possible better
described by ExGaussian distributions. The second effect of noise is independent
of the measurement process. This happens if a cache line is loaded or evicted by
another process. In this case, the source of the timing changes, in addition to
the noise introduced during measurement.

3 Attack Description

Our attack uses the side-channel technique known as Flush+Reload to monitor
accesses to memory blocks. The Flush+Reload is applicable in the cross-VM
setting if deduplication is enabled by the hypervisor and the monitored part of
the memory is deduplicated. The latter is true if the monitored data is marked
as shared (as is the common case for all crypto libraries) and the hypervisor has
detected the duplicated data referenced from within both VMs. Also, different
than the attack in [15], we utilize a separate AES detection step to detect the
AES execution on the co-located target VM and eliminate the synchronization
requirement with the server through the plaintext generation. This makes the
proposed attack much more practical. We access the AES function memory
address to detect the beginning of AES execution by Flush+Reload method.
The reason why we access the memory location instead of simply running AES
is that accessing a single memory location is much faster than running AES,
allowing a higher attack resolution.

3.1 A Single Cache Line Attack on AES

The adversary monitors accesses to a single block of one of the T tables used
in the last round of AES. In addition to the information t whether the T Table
was accessed, the adversary needs to know the corresponding ciphertext c (or
plaintext for a first-round attack). That is, we assume the adversary is able
to collect several tuples 〈c, t〉. The monitored memory block corresponds to n
T table entries T known to the adversary. For a monitored ciphertext byte Ci,
these entries correspond to n T table outputs Si, which are mapped one-to-one to
n ciphertext byte values through addition with the key. Hence, ci,j = ki ⊕ si,j ,
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Fig. 2. Leakage distributions f0 and f1 if hypotheses H0 and H1 are correct. The
measurements were taken in an intel i5 2430M CPU in SSA scenario.

where i is a byte position (ignoring the shift rows operation) and j indicates
different values. If si,j is equal to one of the values of the monitored T table
memory block, i.e. si,j ∈ T, then the monitored memory block will be accessed
hence loaded to the cache. We will refer to this case as H0. However, if si,j /∈ T,
i.e. si,j takes a value stored in a different memory block, then the monitored
memory block is not loaded. Nevertheless, since each T table is accessed l times,
there is still a high probability that the memory block was loaded by any of
the other accesses. In fact, the probability that a memory block is not accessed
during an encryption is given as: Pr [no access to Tj ] = (1 − n/256)l. We will
refer to this event as H1.

For AES-128 in OpenSSL 1.0.1g, n = 16 and l = 40 per Tj , and therefore
100% − ε0 of reloads are expected to come from the cache in H0, and only
92% + ε1 for H1, where εi are noise terms. Hence, a side-channel containing
information about memory/cache accesses will feature differing leakage distri-
butions f0 and f1 for cases H0 and H1, respectively. To distinguish H0 from
H1 the Flush+Reload method can be applied. In fact, using the Flush+Reload
method, one can, with high probability, distinguish a cache access from a mem-
ory access as seen in Fig. 1. In our scenario (as described in Sect. 4) the leakage
distributions f0 and f1 are depicted in Fig. 2. The distributions are derived from
the reload times measured by the Flush+Reload attack. The first peak in both
distributions (at around 35 cycles) corresponds to a noisy cache reload, and the
second peak (at around 220 cycles) corresponds to a memory reload. Since f0
corresponds to H0 and hence has more cache reloads than f1, these distributions
are distinguishable. This leakage was successfully exploited in [15].

3.2 Distinguishers for the AES Attack

To process the side-channel data, we describe and compare three distinguishers.
The distinguishers we present here analyze one byte of the ciphertext c together
with the access time t to the corresponding T table block to recover one byte k
of the last round key.

As described earlier, our observations are split into two sets according to
a hypothesis. If this hypothesis is correct, the resulting leakage distributions
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f0 and f1 for the two sets differ and hence—with sufficiently many observations—
become distinguishable. For wrong key guesses, however, the hypotheses will be
invalid, and both sets will sample from the same mixed distribution, making
them indistinguishable. To detect whether samples for hypotheses H0 and H1

are actually from different distributions, we can apply several distinguishers. In
the following we propose three distinguishers. The probably most common dis-
tinguisher is based on the difference of the means of the two distributions [11,20].
As for the zero-value DPA [21], our hypothesis deviates from a single-bit predic-
tion, yet, the test still just distinguishes two cases. Similarly, the variance test
uses a statistical moment to distinguish the two distributions [11,19,20]. The last
distinguisher applies a miss counter, as in [15]. The list is neither exhaustive,
nor do we make an optimality claim. The latter is interesting future work that
needs to be preceded by a better understanding and analysis of the underlying
noise characterization, as noise can come from several different sources and is
far from being Gaussian.

For the following descriptions we refer to the average miss counter value
for Hi as ctrHi

, whereas we refer to the difference of means and difference of
variances for fi as τHi

and var τHi
, respectively.

Miss-counter Based Distinguisher. This distinguisher counts and compares
the memory block misses for the two cases H0 and H1. Ideally, there should be
no misses for H0, as the memory block must have been accessed by the AES
execution. To establish a miss counter, reload timings are converted to either
a hit (0) or a miss (1), depending on whether the value is above or below a
threshold access time. As seen in Fig. 1, a good threshold for our processor and
probing code is 130 cycles. Since H1 contains significantly more values than H0,
we compare the relative counters instead of absolute ones. Our distinguisher
becomes:

Dmiss ctr = arg max
k̂

(
ctrH1 − ctrH0

)

Difference of Means Distinguisher. The difference of means distinguisher
approximates the means of the two distributions and outputs their difference in
cycles.

Dmeans = arg max
k̂

(τH1 − τH0)

Since H0 should feature more cache accesses than H1, τH0 is expected to be
smaller, i.e. the biggest positive difference corresponds to the most likely key
hypothesis. Welch’s t-test distinguisher (which divides the means with their
respective variance) can be equally well applied to guess the correct key. Indeed,
Welch’s t-test is commonly applied to check two hypothesis where two gaussian
distributions have different means and variances. In this work, we studied Welch’s
t-test and did not obtain an improvement over the difference of means. Thus,
we use the difference of means distinguisher due to its simplicity.



A Faster and More Realistic Flush+Reload Attack on AES 119

Variance Based Distinguisher. The difference of variances distinguisher out-
puts the difference of variances in cycles.

Dvars = arg max
k̂

(var τH1 − var τH0)

Note that, as before, the variance of H0 should be smaller than that of H1.
However, outliers can badly affect this distinguisher. In cache attacks, signifi-
cant outliers that can be orders of magnitude larger than regular data are not
uncommon and need to be filtered to make this distinguisher work. Since Hi is
key dependent, the guessed key k̂ that maximizes the difference is the most likely
to be correct. Note that the sign carries information in all three tests. In fact,
the case H0 and its leakage f0 correspond to fewer cache misses, hence a lower
miss counter, a lower average (mean) access time, and also a lower variance.
The results will show that taking the sign into account derives a much better
distinguisher.

When the three distinguishers are compared, the miss counter approach has
the most interesting properties: It is quite intuitive, as cache misses and hits are
what we are looking for. Furthermore, the method is only marginally affected by
outliers. The main disadvantage of this method is the requirement of a threshold,
which is processor-dependent and requires some minimal profiling. The other two
methods are more affected by outliers.

All three distinguishers can easily be converted to a correlation method.
Indeed, by correlating the right term (e.g. τH0) to 0 for H0 (a guaranteed cache
hit with low reload time) and 1 for H1 (a possible cache miss with higher reload
time), the most likely key k̂ features the highest correlation.

3.3 Attack Scenarios

Next, we describe the principles of our new Flush+Reload attack as well as the
original and the improved versions of the attack in [15]. We will refer to the attack
in [15] as the Fully Synchronous Attack (FSA) and the improved version of it
with the additional AES detection step as the Semi-Synchronous Attack (SSA).
Finally, the attack scenario where the attacker requires no synchronization with
the server will be referred as the Asynchronous Attack (ASA). In the following,
we explain and compare these attacks in detail, listing challenges and advantages
of each version.

FSA. This is the original attack used in [15] where the attacker first flushes
the T tables, then sends a plaintext to the encryption server to trigger an AES
encryption. The server receives the plaintext from the attacker, and sends the
ciphertext back. Upon receipt of the ciphertext, the attacker reloads the moni-
tored T table blocks to learn which entries were accessed by the encryption.

SSA. In this version of the attack, we improved over the FSA by detecting the
AES encryption using the Flush+Reload method but there is still a need for
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trigger event by the adversary. The advantage of this attack is the usage of an
AES encryption detector that detects whether the victim is performing an AES
encryption. Once the AES encryption function call is detected, the attacker
flushes the monitored T table blocks during the AES execution in between
AES rounds. Flushing in between rounds reduces the number l − 1 of unrelated
accesses to the T table accesses, hence increasing the number of memory accesses
for case H1. In addition, we know that the detection algorithm takes half of the
timing of an AES encryption. Therefore, at least half of the rounds of the AES
encryption is eliminated by this detection mechanism. This results in a more
biased distribution f1, i.e. a stronger leakage. Consequently, the attack succeeds
with fewer encryptions.

ASA. In the ASA, we improve over the previous two attacks by not requiring
any trigger event by the adversary. Instead, plaintexts are generated by the
server in regular intervals of 5M cycles. The adversary uses an AES detector to
detect the AES function call and perform the Flush+Reload attack on the fly.
In addition the network is monitored to recover transmitted ciphertexts. Unlike
the previous attacks, this attack is a true ciphertext-only attack.

Note that the ASA presents a more realistic attack scenario than those pre-
sented in [12,15]. In [12] Gullasch et al. described a Flush+Reload attack on
AES implementation of the OpenSSL library where they overload the CPU and
suspend the AES encryption by controlling CFS. In [15] authors require synchro-
nization with the server through the plaintext generation. In contrast to these
previous attacks, our attack differs in the following ways:

– Our attack flushes the T tables during the AES encryption rather than
before;

– CFS exploitation or any other type of CPU overloading is not necessary;
– Synchronization through the plaintext is no longer required, but the AES

encryption call is detected instead;
– Improved side-channel data analysis/key recovery methods recover the key

with fewer encryptions.

4 Experiment Setup

For the experiments, we have used the following two setups;

• Native Execution: In this setup, the AES encryption process and the
attacker run on a native Ubuntu 12.04 LTS version with no virtualization. In
this setting, we have used a two core Intel i5-2430M CPU clocked at 2.4 GHz.
The purpose of this scenario is to run the attack in an environment with
minimal noise and to achieve comparability to former non cross-VM cache
attacks.

• Cross-VM Execution: In this setup, two up-to-date Ubuntu VMs, VM1
and VM2 are launched and managed by VMware ESXI 5.5 baremetal hyper-
visor. The attacks are then performed across hypervisor isolation boundaries.
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The first VM is used as the target that does the AES encryption while the
second VM acts as the attacker and executes the Flush+Reload attack, trying
to recover the secret key. The experiments in this setting were performed on
an Intel Xeon E5-2670 v2 CPU. This setup reflects a realistic attack scenario
by using a modern CPU commonly used in commercial cloud systems [1,2]. In
this setup, data access from the cache takes 30 cycles and the memory takes
233 cycles on average. Also in the same specification, single AES encryption
without and with pre-flushed T-tables requires 257 and 659 cycles, respec-
tively. As the Fig. 1 shows, the timing separation between the CPU cache
and the main memory is clear with very few outliers. We further observe in
Fig. 1 that the AES execution time changes greatly depending on whether or
not the T-tables used for the encryption are loaded in the cache.

Note that all the timing measurements in the experiments are gathered using
the Read Time Stamp Counter and Processor ID (RDTSCP) instruction. The
usage of the RDTSCP instruction is allowed in VMware user mode, but not
in KVM. Moreover, this instruction is not emulated by the VMM but exe-
cuted directly, unlike other serializing instructions like CPUID used in [15]. Also,
the flushing operation is performed using the Cache Line Flush (CLFLUSH)
instruction.

In all experiments, one target process executes AES encryption while the
attacker process tries to recover the secret key by monitoring the T-tables with
the Flush+Reload technique. In order to clearly show the the attack success
under different assumptions, we have used two distinct attack environments.

5 Results

We performed the experiments for all three attack scenarios, i.e. FSA, SSA and
ASA in both native and virtualized environments. Furthermore, we analyze the
timing behavior to show the improvement on the success rate by using the three
different distinguishers mentioned in Sect. 3.2: the miss counter distinguisher, the
difference of means distinguisher and the difference of variances distinguisher.

At first we present and compare the scores of the key guesses using the three
different distinguishers in native execution in Fig. 3. The difference of means
and variances distinguishers suffer more from noise due to heavy outliers stem-
ming from different microarchitectural sources of noise. However the experiments
shown in Fig. 3 were taken cutting off outliers with an outlier threshold value
of 5 times the memory access time. It can be seen that for 10,000 encryptions
the three distinguishers clearly maximize the score for the correct key, i.e. 180
in this case.

Then, the results of the three different attack scenarios is presented in Table 1
by comparing the ratio between cache accesses and memory accesses for cases
H0 and H1. The precise distribution for the SSA scenario was given in Fig. 2.
Recall that without noise, the ratio should be 100 %/0 % for H0 vs. 92 %/8 %
for H1 for the FSA scenario and even more biased for the SSA scenario. The
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(a) Ctr Dist. (b) Mean Dist. (c) Var. Dist.

Fig. 3. Comparison of the scores of key guesses in the natively executed FSA scenario
for three different distinguishers based on the miss counter (a), difference of means (b)
and difference of variances (c), applied to 10000 traces. The correct key is 180 and
clearly distinguishable in all three cases.

probability distribution shows that for H0 approximately 95 % of the reload
values are coming from L3 cache while only the 5 % come from the main memory.
In H1 however, the reload values coming from L3 cache are down to 88 %, while
the values coming from the main memory increase to 12 %. Also, it can be seen
from the Table 1 that there is a significant improvement in the distinguishability
for SSA scenario due to flushing during AES encryption. Flushing during the
encryption translates into lower noise in the T table measured access times and
an improved success rate. However, the increased number of detected memory
accesses for SSA is likely caused by flushes occurring after AES encryption has
terminated. Thus, although the more realistic ASA scenario decreases the success
rate, in comparison to the SSA scenario due to the difficulty of the AES detection.
Hence, SSA is the most efficient way to decrease the noise and have a good
resolution to find the correct key with a small number of encryptions.

Table 1. Distribution of cache accesses vs. memory accesses for the two hypotheses
over the three attack scenarios. SSA provides the best distinguishability.

Attack scenarios H0 H1

Cache Memory Cache Memory

Ideal case 100 % 0 % 92 % 8 %

FSA 99 % 1 % 97 % 3 %

SSA 95 % 5 % 88 % 12 %

ASA 97 % 3 % 96 % 4 %

Finally the number of traces needed for the recovery of the key are presented
in Figs. 4 and 5. As for the attack scenario success rates, our experiments in the
native execution setting show that the SSA yields higher success rate than the
FSA and the ASA which require 3,000, 25,000 and 30,000 encryptions, respec-
tively. Also, the variance distinguisher works better in native setting than the
other two distinguishers. For other attack scenarios e.g. the ASA, the mean dis-
tinguisher works the best, see Fig. 5(b). Note that, since ASA is the most realistic
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(a) Ctr Dist. (b) Mean Dist. (c) Var. Dist.

Fig. 4. Comparison of results in native execution for FSA scenario for different dis-
tinguishers based on the miss counter (a), difference of means (b) and difference of
variances (c).

(a) Ctr Dist. (b) Mean Dist. (c) Var. Dist.

Fig. 5. Comparison of results in native execution for the SSA for different distinguishers
based on the miss counter (a), difference of means (b) and difference of variances (c).

scenario, it requires more encryption samples than the other two, most notably
compared to the SSA where only 3,000 encryption samples are needed.

5.1 Cross-VM Execution Results

In the cross-VM setting, the FSA scenario requires 30,000 encryptions to recover
the full key using the miss counter hypothesis as seen in Fig. 6(a). In the same
setting, 50,000 encryptions are needed when the difference of means distinguisher
is used as in Fig. 6(d). As for the SSA, only 10,000 encryptions are enough to
recover the full key using the mean distinguisher in Fig. 6(b). If the miss counter
distinguisher is used instead of the mean distinguisher, 40,000 encryptions are
needed as seen in Fig. 6(e).

For the ASA scenario, 30,000 encryptions are enough to recover the full key
using miss-counter and mean distinguishers as seen in Fig. 6(c) and (f). Also,
when we compare different distinguisher methods in the cross-VM setting for
different attack scenarios, we see that the difference of means distinguisher works
better than the miss-counter distinguisher for the most successful attack which
is the SSA. While the miss-counter distinguisher gives better results for the FSA,
the two distinguishers have the same impact on the results for the ASA which is
the most realistic attack scenario.

We would like to note that the difference of means and the difference of vari-
ances distinguishers work better in the SSA and ASA scenarios, whereas the miss
counter yields better results for the FSA. Moreover, the main advantage of using
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(a) FSA (b) SSA (c) ASA

(d) FSA (e) SSA (f) ASA

Fig. 6. Results in cross-VM execution for different attack scenarios using the miss
counter distinguisher FSA (a) SSA (b) ASA (c) and the means distinguisher FSA (d)
SSA (e) and ASA (f).

the variance and mean distinguishers is that they do not need an architecture
dependent threshold, whereas the miss counter approach needs the access time
distribution of the cache hierarchy.

Also note that the improvement of SSA is due to flushing during the AES
execution which yields lower noise in the reloading stage. As for the ASA, we
would like to emphasize that the higher number of encryptions requirement is due
to the more realistic nature of the attack setting i.e. the lack of synchronization
between the server and the spy process. Finally, we would like to remark that
only 15 s are enough to recover the whole key in SSA scenario, which to the
best of our knowledge is the fastest working attack in a realistic cross-VM setting
without the scheduler exploitation.

6 Conclusion

In conclusion, we would like to remark that in this work, for the first time we have
accomplished a cache side-channel attack on AES by flushing in between rounds.
We also used an additional AES detection stage to create an asynchronous attack
setting. In addition to that, we improved upon the previous work on cross-
VM AES attacks by utilizing three different distinguishers for the key recovery.
Finally, our experiments show that among three attack scenarios, SSA works
with the minimum number of encryptions, requiring only 3,000 in the native
and 10,000 in the cross-VM setting.

Acknowledgements. This work is supported by the National Science Foundation,
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A Faster and More Realistic Flush+Reload Attack on AES 125

References

1. Amazon EC2 Instances. http://aws.amazon.com/ec2/instance-types/
2. Google Compute Engine Instance Types. https://cloud.google.com/compute/

docs/machine-types
3. CFS scheduler, April 2014. https://www.kernel.org/doc/Documentation/scheduler/

sched-design-CFS.txt
4. Kernel Samepage Merging, April 2014. http://kernelnewbies.org/Linux 2 6 32#

head-d3f32e41df508090810388a57efce73f52660ccb/
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Abstract. GLV curves (Gallant et al.) have performance advantages
over standard elliptic curves, using half the number of point doublings
for scalar multiplication. Despite their introduction in 2001, implemen-
tations of the GLV method have yet to permeate widespread software
libraries. Furthermore, side-channel vulnerabilities, specifically cache-
timing attacks, remain unpatched in the OpenSSL code base since the
first attack in 2009 (Brumley and Hakala) even still after the most recent
attack in 2014 (Benger et al.). This work reports on the integration of
the GLV method in OpenSSL for curves from 160 to 256 bits, as well as
deploying and evaluating two side-channel defenses. Performance gains
are up to 51 %, and with these improvements GLV curves are now the
fastest elliptic curves in OpenSSL for these bit sizes.

Keywords: Elliptic curve cryptography · GLV curves · Side-channel
analysis · Timing attacks · Cache-timing attacks · OpenSSL

1 Introduction

With respect to performance, the most critical operation in an elliptic curve
cryptography (ECC) implementation is scalar multiplication. The most common
methods for scalar multiplication are analogous to modular exponentiation, but
with signed digit sets since inverting elliptic curve points is simple. However, the
number of elliptic curve point doublings in all of these methods is essentially the
same, and bounded by the bit length of the scalar.

In 2001, Gallant et al. show how to halve the number of point doublings
through clever choice of elliptic curve parameters [9]. These so-called “GLV
curves” can exploit a fast curve endomorphism that can be computed on-the-fly
and splits a single scalar multiplication into a 2-dimension multi-scalar multipli-
cation with both arguments of roughly half the bit length.

While the theoretical gains from the GLV method are well understood, unfor-
tunately it has yet to find its way into elliptic curve software libraries. For exam-
ple, OpenSSL supports a number of GLV curves as named curves with bit sizes
ranging from 160 to 256 bits but treats them as generic elliptic curves – that is,
the software does not exploit the fast endomorphism for efficient scalar multi-
plication.

c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-21476-4 9
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Adding to the list of deficiencies, the elliptic curve portion of OpenSSL has
known side-channel vulnerabilities. In 2009, Brumley and Hakala present the first
public cache-timing attack against ECC in OpenSSL – using the vulnerability to
recover a 160-bit ECC private key [5]. In 2014, Benger et al. build on that work
and recover a 256-bit ECC private key with less queries [2]. The vulnerabilities
remain unpatched to this day.

Motivated by these deficiencies, this work reports results of integrating the
GLV method into the OpenSSL code base (Sect. 3). The performance numbers
in Sect. 4 show up to a 51 % improvement. Furthermore, results of integrating
two side-channel defenses show that up to 33 % improvement can be retained in
tandem with the GLV method. Lastly, this work also evaluates said side-channel
defenses to assess their effectiveness against data and instruction cache-timing
attacks.

2 Background

This section contains background on GLV curves, OpenSSL’s implementation of
ECC and supported standard curves, and side-channel attacks on said imple-
mentation.

2.1 GLV Curves

The speed at which an ECC software library performs scalar multiplication is an
extremely important metric. Most of the methods are some variant of a left-to-
right double-and-add algorithm, perhaps with large (signed) digit sets. While the
average number of point additions will vary depending on the specific method
chosen, the number of point doublings is essentially the same – the bit length of
the scalar.

In 2001, Gallant et al. show that clever choice of curve parameters can actu-
ally halve the number of point doublings [9]. While the authors consider a num-
ber of different curve types, their Example 4 is the most relevant to this paper
[9, Sect. 2]. Let p = 1 mod 3 and consider the following curve.

E(IFp) : y2 = x3 + b

For this choice of p, there exists β ∈ IF∗
p where ord(β) = 3. Observe (x1, y1) ∈ E

implies (βx1, y1) ∈ E. Denote this as a curve endomorphism φ : E → E by
φ : (x, y) �→ (βx, y). Denote n = #E. Then φ(P ) = λP for some λ ∈ IF∗

n where
λ2 + λ + 1 = 0 mod n.

While this is all very rigorous, it is not obvious how it is at all useful for scalar
multiplication. The trick is to write k = k1 + k2λ mod n for some k1, k2 ≈ √

n.
Then kP = k1P + k2λP = k1P + k2φ(P ) and when applying φ on-the-fly and
with k1, k2 half the bit length of k, this computation takes half the doublings
with a 2-dimension multi-scalar multiplication method. The authors also give an
algorithm to decompose scalars accordingly [9, Sect. 4]. A number of important
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standards feature GLV curves, details of which will be discussed later in this
paper.

The number of curves for which the GLV method applies is fairly limited.
More recently, Galbraith et al. show how to apply it to larger classes of curves [8].
The key idea for these GLS curves is to work over small extension fields – oth-
erwise the scalar multiplication methods are analogous to those used in GLV.
While GLS is certainly a design trend for high-speed ECC [7], unfortunately it
has not seen standards adoption yet.

2.2 ECC in OpenSSL

OpenSSL first featured support for ECC in 2005. What follows is a discussion
on the range of curve support in OpenSSL, some of the internal algorithms (e.g.,
scalar multiplication), and the side-channel weaknesses of the library.

Standardized Curves. While the OpenSSL library has support for arbitrary
elliptic curves in short Weierstrass form, the ones most commonly used are the
so-called “named curves”. For the purposes of this work, the most interesting
standardized curves supported by OpenSSL are secp160r1, nistp192, nistp224,
nistp256, secp160k1, secp192k1, secp224k1, and secp256k1. These are accord-
ingly curves from NIST or SECG. The first four are curves over prime fields in
short Weierstrass form with A = −3 and the latter four similar but with A = 0
and p = 1 mod 3, i.e., GLV curves. For the NIST curves OpenSSL has dedicated
code for fast modular reduction – the others it uses Montgomery reduction.

Scalar Multiplication. In OpenSSL, the low level scalar multiplication algo-
rithm used depends on many factors. Each curve has an associated method
structure, that contains function pointers to common ECC operations, one of
these being a fully generalized multi-scalar multiplication:

int EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *n,

size_t num, const EC_POINT *p[], const BIGNUM *m[], BN_CTX *ctx);

where r stores the result, n is the scalar to multiply the generator by, p is an
array of num points, and m is an array of corresponding scalars to multiply said
points by.

But this is just the API. The actual algorithm used varies depending on the
curve by setting this function pointer when instantiating curves. For example,
for all curves over binary fields the called function is an iterated implementation
of Montgomery’s powering ladder, in fact explicitly the algorithm given by López
and Dahab [12].

For curves over prime fields and of particular interest to this work, the default
method uses modified windowed Non-Adjacent Form (NAF) for scalar represen-
tation. The path through the code depends on several runtime factors. OpenSSL
includes functionality for precomputing limited multiples of fixed points such as
generators. The simplest case is when this precomputation is not available or
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not particularly helpful (e.g., no n given or num is non-zero). In this case, the
algorithm is Möller’s interleaved scalar multiplication [13]. The code computes
NAF for each scalar, calculates small multiples for each point depending on the
digit set, then proceeds MSD to LSD doubling an accumulator point at each
step, then looking at each scalar’s digit in that position and adding the cor-
responding point to the accumulator for non-zero digits. That is, with respect
to the precomputation each scalar is considered independently from others and
omits linear combinations of the points across scalars. To be concrete, this is the
traversed code path in the following cases:

– ECDSA signature verification.
– ECDSA signature generation if no precomputation is available.
– ECDH for unknown points.
– ECDH for fixed points if no precomputation is available.

In principle, the same code applies when precomputation is available. The pre-
computation strategy is to reduce the number of point doublings by computed
small multiples of 2jP for various values of j that allow scalar NAFs to be split
into smaller chunks – Möller calls this NAF splitting [14]. For example, with
secp256k1 a 256-bit scalar gets split up into roughly 32 chunks with 8 digits
each. Comparing the two methods, when no precomputation is available each
step performs one point doubling and looks at one or two NAF digits (depend-
ing on the number of scalars involved), whereas with precomputation each step
looks at a large number of digits (e.g., 32) and in total there are only a handful
of point doublings (e.g., 7). To be concrete, this is the traversed code path in
the following cases:

– ECDSA signature generation when precomputation is available.
– ECDH for fixed points when precomputation is available.

Implementation Attacks. OpenSSL is a popular academic target for side-
channel attacks. With respect to this paper, there are two existing works that
are particularly relevant.

In 2009, Brumley and Hakala show a vulnerability in OpenSSL’s ECC imple-
mentation that leads to ECDSA private key recovery [5]. It is an access-driven
data cache-timing attack that utilizes a local spy process that is polluting the L1
data cache in parallel (yet in a different user space) to the digital signature com-
putation. The attack works by recovering the sequence of point doublings and
additions, then filtering out very specific digital signatures for which the scalar
(nonce) contains long runs of doublings, hence many consecutive zero digits in
NAF representation. The authors are able to succeed in recovering an secp160r1
private key with a lattice attack after querying as few as 1 K digital signatures [5,
Sect. 6]. The authors describe some countermeasures [5, Sect. 7], but there is no
record of source code patches on the OpenSSL development mailing list. In fact,
their “Shared Context” countermeasure was later shown to be ineffective [6].

The previous attack throws away the majority of digital signatures, side-
channel trace data, and potential scalar digit information. Also the spy process
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targets the L1 data cache on microprocessors supporting Simultaneous Multi-
Threading (SMT) through HyperThreading (HT) on Intel chips, hence does
not immediately carry over to non-SMT chips. Building on this previous result,
Benger et al. develop a Flush+Reload cache-timing attack in 2014 that targets
the last level cache (LLC) [2]. They recover a larger private key from secp256k1
with a lattice attack after querying as few as 200 digital signatures [2, Sect.
4.1]. Furthermore, SMT or HT are not prerequisites – only a multi-core setting,
hence the attack has a wider range of application. The authors describe some
countermeasures [2, Sect. 5], but there is no record of source code patches on
the OpenSSL development mailing list.

3 Fast and Secure Software

For elliptic curves that admit a fast endomorphism, it is clear that the GLV
method provides significant performance gains. Furthermore, a number of GLV
curves are already present in various standards – good examples are RFC44921

for TLS and the Bitcoin protocol specification2. Further still, widespread libraries
like OpenSSL support these curves.

Yet the fact remains that the GLV method has yet to permeate these imple-
mentations. Filling the gap, This section describes integrating the GLV method
in OpenSSL. At the same time, it addresses side-channel attacks by integrating
two specific countermeasures in OpenSSL.

3.1 GLV in OpenSSL

OpenSSL treats GLV curves as “normal” curves and does not exploit their fast
endomorphisms in any way. Having said that, there are at least two important
use cases for the GLV method of scalar multiplication where OpenSSL could
potentially benefit.

– For ECDH operations, splitting a single scalar multiplication into a 2-dimen-
sion multi-scalar multiplication with scalars of half the bit length (hence point
doublings).

– For ECDSA signature verification, splitting a 2-dimension multi-scalar mul-
tiplication into a 4-dimension multi-scalar multiplication with scalars of half
the bit length (hence point doublings).

In situations where OpenSSL has precomputation available at runtime, the GLV
method is not useful because OpenSSL will already use interleaving, exploiting
the endomorphism P �→ 2jP . Indeed, the novelty of the GLV method lies in
exploiting a fast endomorphism, i.e., one that is computationally efficient at
runtime.

The OpenSSL code base has a few features that make implementing the GLV
method quite modular and non-intrusive. The first is the fact that it already
1 https://tools.ietf.org/html/rfc4492.
2 https://en.bitcoin.it/wiki/Protocol specification#Signatures.

https://tools.ietf.org/html/rfc4492
https://en.bitcoin.it/wiki/Protocol_specification#Signatures
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contains a fully generalized multi-scalar multiplication algorithm. The second is
the fact that the scalar multiplication method is controlled by a function pointer
when instantiating the curve. With these observations, this work implements a
new method in OpenSSL and assigns the function pointer for the GLV curves
accordingly. Said function is essentially just a wrapper around the generalized
multi-scalar multiplication algorithm – it decomposes each scalar into two scalars
and applies the fast curve endomorphism to the corresponding points.

The above description is exactly how the implementation meets the two men-
tioned use cases. The exception is when precomputation exists – in that case,
the code falls back to the default method since the GLV method is of no benefit.
For example, in OpenSSL this might occur in ECDSA signature generation.

3.2 Regular Scalar Encodings

Side-channel attacks such as data and instruction cache-timing attacks can
exploit implementations where the sequence of elliptic curve operations depends
on the key. Ideally, as the scalar multiplication algorithm is executing it presents
a consistent view through these caches that is independent of the key, i.e., the
sequence of point additions and doublings is fixed regardless of the scalar. One
way to do this, especially with GLV in mind, would be a multi-scalar version
of Montgomery’s ladder (see, e.g., Bernstein [4]) – but this would have quite a
large performance penalty for OpenSSL. An ideal solution with respect to the
OpenSSL code base, to retain performance and for easy integration, has the
following characteristics:

– Leaves the multi-scalar multiplication algorithm largely in tact.
– Uses the same digit set as NAF.
– Does not affect the precomputation strategy.

With these goals, perhaps the most elegant solution is simply a “zero-free”
scalar encoding that can serve as a drop-in replacement for OpenSSL’s NAF
encoding function. This work uses the “(Odd) Signed-Digit Recoding Algorithm”
described by Joye and Tunstall [10, Sect. 3.2]:

The goal is to rewrite the exponent into digits that take odd values in
{−(2w − 1), . . . , 1, 1, . . . , 2w − 1}

and note this digit set is exactly the same as NAF but contains no zeros.
The authors accomplish this intuitively by choosing signed digits such that the
remaining integer to be expanded is always odd. For brevity, this work refers
to this encoding as Regular NAF (RNAF). Modifying OpenSSL’s multi-scalar
multiplication algorithm to utilize this encoding requires only a two line change
in the function, hence is minimally invasive.

3.3 Software Multiplexing

Encoding the scalar to produce a fixed sequence of point additions and doublings
is enough to thwart instruction cache-timing attacks. An instruction cache-
timing trace will reveal this sequence to an attacker, but it is already known a
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priori. On the other hand, data cache-timing attacks are still a concern. Specif-
ically, each point addition is a table lookup where the index is a scalar digit.
A data cache-timing trace can reveal these digits to an attacker.

Software multiplexing is a tool that can be leveraged to remove these tradi-
tional table lookups. In general, the approach is useful for removing any kind of
conditional branch in software, including if statements and table lookups. Soft-
ware multiplexing is a well-understood method to cryptographers – two examples
from the literature are particularly relevant for this work.

For Curve25519 [3] finite field arithmetic, Bernstein works in an equiva-
lence class using a representation that is not necessarily the canonical smallest
non-negative residue. This allows easier modular reductions without conditional
statements – better for security, better for performance to not stall the pipeline,
and better for parallelization. However, at the end of scalar multiplication the
resulting point must have coordinates that are the smallest non-negative residue.
Bernstein does this by subtraction and building a mask from the sign, then
selecting the proper value with bitwise operations.

However, table lookups slightly differ. The best example from the literature
is Käsper’s work for the nistp224 elliptic curve [11, Sect. 3.4]:

We loop through the whole precomputation table in a fixed order. While
the execution time is still dependent on cache behaviour, the timing vari-
ance is independent of the secret lookup index, thus leaking no valuable
timing information.

That means for each table lookup, the code traverses the entire table, and the cor-
rect value extracted from the table with bitwise operations. The mask in this case
gets built from the actual lookup table index. This work uses (index^target)-1
and a signed right shift to build the mask. It is critically important to work on
the data values and not the pointers.

Integrating software multiplexing into OpenSSL’s generalized scalar multi-
plication routine is minimally intrusive. Preceding the point addition step, the
select function gets called to prepare the argument for the point addition step.
Then the argument for the point addition step is the output from the select
function instead of the point directly from the lookup table.

4 Results

This section looks at the performance of the code after the aforementioned mod-
ifications to OpenSSL 1.0.1l. It closes with a side-channel evaluation of the code
to assess the effectiveness of the countermeasures against data and instruction
cache-timing attacks.

4.1 Performance

The two ECC primitives of interest here are ECDH and ECDSA. The perfor-
mance numbers compare four different bit lengths ranging from 160 to 256-bit
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Table 1. ECDH operations per second. The ∗ denotes “where applicable”.

Curve Stock GLV GLV∗+RNAF GLV∗+MUX GLV∗+RNAF+MUX

secp160r1 6824.1 — 6222.6 6171.9 6204.4 (−9.1%)

nistp192 5707.6 — 5317.4 5280.6 5198.8 (−8.9%)

nistp224 4077.2 — 3739.0 3785.5 3753.0 (−8.0%)

nistp256 3651.3 — 3296.1 3317.2 3319.5 (−9.1%)

secp160k1 6156.4 9292.0 (50.9%) 8173.8 8214.4 8175.9 (32.8%)

secp192k1 5181.2 7826.9 (51.1%) 6880.4 6864.7 6721.2 (29.7%)

secp224k1 3784.0 5527.7 (46.1%) 4955.4 5004.3 4891.6 (29.3%)

secp256k1 3265.8 4851.1 (48.5%) 4253.3 4276.7 4357.6 (33.4%)

curves, and also compares each GLV curve with a non-GLV curve for a baseline.
The benchmarking environment is an Intel Core i5-4570 (Haswell-DT, 22 nm)
clocked at 3.2 GHz with 16 GB memory running 64-bit Red Hat 6.6 “Santiago”.
The metric is operations per second, not clock cycles per operation. The reason
for this is that OpenSSL’s internal benchmarking does it that way, and that is
what produced the performance numbers (specifically openssl speed ecdh and
openssl speed ecdsa).

Key Agreement Performance. For ECDH operations, the OpenSSL speed
utility measures the time to compute the ECDH shared secret from the private
scalar and the public point. Hence it is essentially benchmarking the speed of
unknown point scalar multiplication – no precomputation is available. Table 1
lists the results. The modifications to support the GLV method bring between
46 − 51% performance improvement – when comparing each GLV curve to the
corresponding non-GLV curve, the former is now significantly faster in all cases.
The remaining columns quantify the cost of the side-channel countermeasures,
both separately and in tandem. For the non-GLV curves the cost is between
8 − 9%. One of the most interesting observations is that with the GLV and
side-channel defense modifications, the GLV curves still outperform the stock
non-GLV curves with no such defenses.

Digital Signature Performance. For ECDSA signature generation, the
OpenSSL speed utility utilizes precomputation. Hence the code path for the
GLV method will not be exercised, and the only numbers to collect are the costs
of the side-channel defenses. Table 2 holds the results. In tandem, the total cost
of the side-channel defenses ranges between 15 − 20%. As expected, generally
each GLV curve has similar performance to the corresponding non-GLV curve.

On the other hand, for ECDSA verifications OpenSSL will not use the pre-
computation. Also there is no need for side-channel defenses on the verification
path because all the inputs are public. Table 3 holds the results. The improve-
ments for the GLV curves, ranging from 29 − 34%, are due to splitting the
2-dimension multi-scalar multiplication to a 4-dimension one. When comparing
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Table 2. ECDSA signatures generated per second.

Curve Stock RNAF MUX RNAF+MUX

secp160r1 19256.8 16247.6 16278.3 16244.6 (−15.6 %)

nistp192 15968.0 13089.3 13099.0 13079.3 (−18.1 %)

nistp224 12954.2 10259.1 10326.3 10348.5 (−20.1 %)

nistp256 11067.5 8881.7 8896.7 8872.9 (−19.8 %)

secp160k1 18970.1 16131.7 16118.3 16121.2 (−15.0 %)

secp192k1 15629.7 12834.8 12819.6 12814.7 (−18.0 %)

secp224k1 12676.9 10441.1 10383.2 10352.5 (−18.3 %)

secp256k1 10760.9 8708.1 8687.7 8682.9 (−19.3 %)

Table 3. ECDSA signatures verified per second.

Curve Stock GLV

secp160r1 5526.9 —

nistp192 4623.8 —

nistp224 3353.6 —

nistp256 2912.5 —

secp160k1 5131.7 6676.5 (30.1 %)

secp192k1 4251.0 5484.0 (29.0 %)

secp224k1 3202.3 4175.2 (30.4 %)

secp256k1 2730.8 3672.9 (34.5 %)

each GLV curve to the corresponding non-GLV curve, the former is now signifi-
cantly faster in all cases.

4.2 Security

The goal of this section is to provide some evidence that the side-channel defenses
are effective. To this end, what follows is trace analysis for data (see [6] for the spy
code) and instruction (see [1] for the spy code) cache-timing traces procured by
spy processes on a microprocessor with HT. These are L1 traces for a cache with
64 sets. The spy process is executing in parallel with an OpenSSL application
performing either ECDH or ECDSA signature generation for curve secp256k1.
The unprotected version in the ECDH case is inclusive of the GLV method, but
with no side-channel defenses. As previously discussed, GLV method does not
apply to the code path for ECDSA signature generation.

ECDH Analysis. Figure 1 shows the instruction cache traces. With no defenses
(top), the red annotation shows a number of point doublings while the blue
annotation shows two point additions separated by a point doubling – this leak
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Fig. 1. ECDH through the instruction cache: with (bottom) and without (top) side-
channel mitigations. y-axis: cache set index. x-axis: time. Gradient: latency from black
(low) to white (high).

Fig. 2. ECDH through the data cache: with (bottom) and without (top) side-channel
mitigations. y-axis: cache set index. x-axis: time. Gradient: latency from white (low)
to black (high).
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Fig. 3. ECDSA through the instruction cache: with (bottom) and without (top) side-
channel mitigations. y-axis: cache set index. x-axis: time. Gradient: latency from black
(low) to white (high).

Fig. 4. ECDSA through the data cache: with (bottom) and without (top) side-channel
mitigations. y-axis: cache set index. x-axis: time. Gradient: latency from white (low)
to black (high).



138 B.B. Brumley

reveals key material. With defenses (bottom), the red annotation shows two
consecutive point additions while the blue annotation shows a number of point
doublings. This sequence repeats throughout the trace, showing the effectiveness
of the RNAF defense.

Figure 2 shows the data cache traces. With no defenses (top), the red anno-
tation shows two point additions separated by a point doubling. The blue anno-
tation shows two consecutive point additions. These leaks reveal key material.
The trace shows the digits used in the lookup table are different because of the
varying latency in many of the cache sets. With defenses (bottom), the trace is
quite different. Two point additions, annotated in red, clobber a large number of
cache sets. This is then followed by a number of point doublings in blue. What
this suggests is the effectiveness of the MUX defense since the code traverses the
entire table and has a big footprint on the cache, and furthermore the effective-
ness of the RNAF defense since this sequence is essentially repeated throughout
the trace.

ECDSA Analysis. Figure 3 shows the instruction cache traces. With no
defenses (top), the red annotation shows all 7 point doublings – with the inter-
leaving method in this case there are 32 chunks with 8 digits each, so exactly
7 point doublings occur. Between these, some annotated in blue, are a varying
number of point additions – this leak reveals key material. With defenses (bot-
tom), the red annotation shows four of the 7 consecutive point doublings: RNAF
fixes the sequence, so the other 3 doublings appear consecutively towards the
beginning of the trace (not shown). while the blue annotation shows a number
of point doublings. Everything that remains is point additions. This sequence
of operations reveals nothing to the attacker – the RNAF defense is working as
expected.

Figure 4 shows the data cache traces. With no defenses (top), the red annota-
tion shows one of the point doubling while the blue annotation shows a number
of consecutive point additions. Observe the number of point additions between
doublings varies and the latency of many of the lower cache sets reveals distinct
digits used in the lookup table – this leak directly reveals key material. With
defenses (bottom), the red annotation simply shows a number of point additions
and highlights the fact that essentially all cache sets get clobbered as a result of
the MUX defense – it is working as intended.

5 Conclusion

Using OpenSSL as a case study3, the goal of this work is to give concrete numbers
on the performance improvement realized with the GLV method, as well as to
address the known side-channel vulnerabilities in OpenSSL ECC. To that end,
the contributions of this work are as follows:
3 http://rt.openssl.org/Ticket/Display.html?id=3667\&user=guest\&pass=guest.

http://rt.openssl.org/Ticket/Display.html?id=3667&user=guest&pass=guest
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– Up to 51 % performance improvement for GLV curves without side-channel
defenses.

– Up to 33 % performance improvement for GLV curves with side-channel
defenses.

– GLV curves with side-channel defenses now outperform non-GLV curves with-
out side-channel defenses.

– First concrete solution (i.e., source code patch) for OpenSSL’s known ECC
side-channel vulnerabilities.

– Concrete evaluation of ECC software side-channel defenses, in contrast to
other works that rather design for side-channel security without a platform
evaluation.

– Within OpenSSL, the first application of multi-scalar multiplication for more
than two scalars – better utilizing the generalized multi-scalar multiplication
algorithm already present in the library.

In conclusion, this work shows that fast and secure ECC is possible for a widely-
deployed software library – the concepts are not mutually exclusive.

One last subtle observation resulting from this work is that the side-channel
methods to attack ECDSA depend heavily on the target application. Both pub-
lished attacks [2,5] target only applications where ECDSA precomputation is
not available – most likely not a conscience choice by the authors, but a prac-
tical difference nonetheless. This work highlights that the methods to attack
applications with precomputation are likely very different than those without –
neither of the previous attacks observe this nuance.

References
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Abstract. We analyse the security regarding timing attacks of imple-
mentations of the decryption in McEliece PKC with binary Goppa codes.
First, we review and extend the existing attacks, both on the messages
and on the keys. We show that, until now, no satisfactory countermea-
sure could erase all the timing leakages in the Extended Euclidean Algo-
rithm (EEA) step. Then, we describe a version of the EEA never used
for McEliece so far. It uses a constant number of operations for given
public parameters. In particular, the operation flow does not depend on
the input of the decryption, and thus closes all previous timing attacks.
We end up with what should become a central tool toward a secure
implementation of McEliece decryption.

1 Introduction

Context of this work. Code-based cryptography relies on the hardness of decoding,
that is recovering m and e when given only c = mG+e and G (for m ∈ F

k
q ,G ∈

F
k×n
q and e ∈ F

n
q ). Indeed, decoding has a complexity exponential when k and

the error weight grow linearly in n and no structure is known on G [2]. However,
the error weight is critical for security for another reason: contrary to the public
parameters of the code which are fixed at set by an external entity, the error
may vary at each encryption, and may even be chosen by any public user (in
some situations).

Therefore, a problem arises in most of the implementations of McEliece pro-
posed (e.g. in [5,6,13,14]) because the operation flow of the decryption is strongly
influenced by the error vector, but no information is known about the error vec-
tor when starting decryption. From an attacker’s point of view, this is a favorable
situation. It means that the observed or manipulated device may leak informa-
tion before any detection of the attack. These security aspects were addressed
by various authors, who explained that a device implementing an unprotected
decryption is prone to attacks on the messages [1,12] and on the key [15,16].

c© Springer International Publishing Switzerland 2015
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Although countermeasures were proposed against some of the leakages, the sit-
uation is still unsatisfactory, as it is noticed in the conclusion of [16]. In partic-
ular, to the best of our knowledge, no decryption algorithm requiring a number
of steps independent of the error weight was described. The work of Bernstein
et al. in [4] claims to achieve this goal, but some steps of the decryption (includ-
ing the extended Euclidean algorithm (EEA) in the decoding) are skipped in the
description, and no implementation is publicly available.

Our contributions. First, we gather the different weaknesses from [1,12,15,16].
Those attacks targeted only one of the two known methods for decoding a binary
Goppa code (namely Patterson Algorithm). We evaluate how/if those threats
transpose to the other decoding method (i.e. the alternant decoder). We detail
the attacks of Strenzke and show that they can be extended to bypass the coun-
termeasure of [15]. Our central contribution consists in describing an EEA tai-
lored for the alternant decoder which has a flow of operations independent of
the error vectors (Algorithm 8). It was inspired by a work of Berlekamp [3]. We
explain step-by-step the construction of the algorithm, and provide complete-
ness proofs (which we could not find in the literature) in the full version of this
article.

2 McEliece Public-Key Encryption

We recall in Algorithm 1 the encryption and decryption in McElice PKC instan-
tiated with a binary Goppa code, that is q = 2. The public key is G a k × n
matrix over Fq whose rows generate a Goppa code described by the secret ele-
ments x ∈ F

n
qm and g(z) ∈ Fqm [z] of degree t.

We detail the two possible methods for decoding a binary Goppa code. One
uses the fact that Goppa codes belong to the larger class of alternant codes, so
we call it the Alternant Decoder. The other one, called Patterson Algorithm, is
specific to binary Goppa codes. For both, the inputs are is c an encoded message
m ∈ F

k
q with unkown error e: c = mG + e, where the Hamming weight of

Algorithm 1. McEliece Cryptosystem
Parameters : Field size q, code length n and dimension k, parameters m, t such that
n − mt � 0. Plaintext space: Fk

q . Ciphertext space: F
n
q .

KeyGen : Pick a support x ∈ F
n
qm , a polynomial g ∈ Fqm [x] of degree t, G a generator

matrix of G (x, g).
Public key : Gpub = SGP, t the correction capacity of the code G (x, g).
Private key : Tt a t-decoder for G (x, g) , S a random full rank (n − k) × (n − k)
matrix , P a random n × n permutation matrix.

Encrypt :

1: Input m ∈ F
k
q .

2: Generate random e ∈ F
n
q with

wH(e) = t.
3: Output c = mGpub + e.

Decrypt :

1: Input c ∈ F
n
q .

2: Compute m̄ = Tt(cP
−1)).

3: If decoding succeeds, output S−1m̄, else
output ⊥.
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Polynomial syndrome

SAlt,e(z) =
∑2t−1

�=0

(∑n−1
i=0 cig(xi)−2x�

i

)
z�.

Polynomials to be recovered

σinv,e(z) =
w∏

j=1

(1 − zxij ),

ωinv,e(z) =
w∑

j=1

eijg(xij )
−1

w∏
s=1
s�=j

(1 − zxis).

Key equation
(σinv,e, ωinv,e) unique solution of{

ωinv,e(z) = σinv(z)SAlt,e(z) mod z2t,

deg(σinv) � �t/2�, deg(ωinv) < �t/2�.

Resolution
EEA(z2t, SAlt,e, t) outputs
(μσinv, (−1)Nμωinv), μ ∈ F

∗
qm , N � 0.

Error recovery
σe(z) = zwσinv(1/z).
Find the roots of σe.

Fig. 1. Alternant decoder

Polynomial syndrome

SGop,e(z) =
∑n−1

i=0
ci

z−xi
mod g(z).

Polynomials to be recovered

σe(z) =
w∏

j=1

(z − xij ),

ωe(z) =
w∑

j=1

w∏
s=1
s�=j

(z − xis).

Key equation
(σ1, σ2) unique solution of{

τ(z)σ2(z) = σ1(z) mod g(z),
deg(σ1) � �t/2�, deg(σ2) < �t/2�,

τ(z) =
√

SGop,e(z)−1 + z mod g(z).

Resolution
1.EEA(g(z), SGop,e(z), 0)
outputs (S−1

Gop,e mod g),
2.EEA(g(z), τ, �t/2�)
outputs (σ1, σ2).
Error recovery
σe(z) = σ1(z)2 + zσ2(z)2,
ωe = σeSe mod g.
Find the roots of σe.

Fig. 2. Patterson algorithm

e (denoted in the rest of this article by wH(e)) satisfies wH(e) � t, and the
secret x, g(z). The output is e. The main steps are:

1. Compute the polynomial syndrome S(z), a univariate polynomial deduced
from c, but depending only on e.

2. Solve the key equation, which is an equation whose unkowns are univariate
polynomials, using an EEA. The solutions give access to the error locator
polynomial σe(z), whose roots are related to the support elements xij

in
the error positions ij . It also the yields the error evaluator polynomial
ωe(z) (helpful to find the values of the errors).

3. Find the roots of σe(z). Here e ∈ F
n
2 , so eij

�= 0 implies that eij
= 1.

The polynomial syndromes and key equations are specific to each method.
Completeness proofs are classic coding theory literature. For details, see for

instance [7, Chap. 12, Sect. 9] for the Alternant Decoder and [9,18] for Patter-
son Algorithm.

The EEA which is used in all the available implementations (see [5,6,13,14])
consists in successive Euclidean divisions as in Algorithm2. Its complexity is



144 M. Georgieva and F. de Portzamparc

Algorithm 2. Extended Euclidean Algorithm (EEA)
Input: a(z), b(z), deg(a) � deg(b), dfin � 0
Output: u(z), r(z) with b(z)u(z) = r(z) mod a(z) and deg(r) � d

1: r−1(z) ← a(z), r0(z) ← b(z),u−1(z) ← 1, u0(z) ← 0,
2: i ← 0
3: while deg(ri(z)) > dfin do
4: i ← i + 1
5: qi ← ri−2(z)/ri−1(z), quotient of the Euclidean division of ri−2(z) by ri−1(z)
6: ri ← ri−2(z)− qi(z)ri−1(z), rest of the Euclidean division of ri−2(z) by ri−1(z)
7: ui ← ui−2(z) − qi(z)ui−1(z)
8: end while
9: N ← i
10: return uN (z), rN (z)

O(deg(a)2) field multiplications. Asymptotically better algorithms exist, gen-
erally referred to as Fast EEA or HGCD (for Half-GCD), with complexity
O(deg(a) log deg(a)). The reason not to use them here is that constants are
hidden in the O (see for details [19]), so that for practical McEliece parameters
(t � 200), those are not more efficient than Algorithm2.

The EEA executions solving the key equations have complexities of 7.5twH(e)
(Alternant decoder) and 3.5twH(e) (Patterson Algorithm), as shown in [18,
Sect. 5]. The complexity of the syndrome polynomial inversion (first EEA in
Patterson Algorithm) can be bounded by 2t2. We obtain, for a weight t error,
a cost in field multiplications of 7.5t2 for the Alternant decoder and 5.5t2 for
Patterson algorithm. This is why Patterson algorithm is generally preferred.

3 Decryption Oracle Attacks

3.1 Plaintext-Recovery Attacks

The attacker has a ciphertext c and has decryption oracle: he can request and
observe the decryption of any message c′ �= c. In [1,12,15,17], the authors
described attacks using the same idea (Algorithm 3).

Algorithm 3. Framework for message-recovery attacks on a decryption device.
Input: A valid ciphertext c = mGpub + e, a decryption device D.
Output: The error vector e.

1: for i = 0, . . . , n − 1 do
2: Modify c into c�i = c+ (0, . . . , 0, 1

︸︷︷︸

i−th bit

, 0, . . . ) and request decryption D(c�i).

3: Deduce by timing analysis or power consumption of D whether ei = 0 or ei = 1.
4: end for
5: return Error e.
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They exploit a decryption oracle to recover the plaintext from an
encrypted message c. They focus on Patterson algorithm (Fig. 2) and propose
[12, Algorithm 5, p. 171], a modified EEA which takes same execution time both
on the ciphertext c and on the twisted c�i.

EEA leakages in the Alternant Decoder. We adapt the framework of Algorithm3
to the alternant decoder. The alternant decoder, as Patterson one, resorts to an
EEA (Fig. 1) prone to leak information, since it execution time depends on the
degree of the output, so on the error weight. Table @@reftablespsoutputspsalt
gives the link of the weight of the error vector with the degree of the output of
the EEA in Algorithm1.

Table 1. Degrees of the output σinv of EEA(zt, Se(z), �t/2�). (α denotes the position
of the support such that xα = 0)

deg(σinv) if eα = 0 deg(σinv) if eα = 1

wH(e) = t t t − 1

wH(e�) = t + 1(ei = 0) t t − 1

wH(e�) = t − 1(ei = 1) t − 1 t − 2

After computing a polynomial σinv(z) of degree d, if 0 belongs to the support,
there are two possibilities, either the index α such that xα = 0 is not an error
position, σe is not divisible by z, then deg(σe) = deg(σinv) and σe(z) is equal to
zdeg(σinv)σinv(z−1), or α is an error position, and σe(z) = zdeg(σinv)+1σinv(z−1).
So in this case, looking at deg(σinv) does not distinguish manipulated ciphertexts
from correct ones, and the EEA cannot be correctly protected by this method
(Table 1).

Countermeasure. Building up on the countermeasure for Patterson decoding
described in [12], we propose the following adaptation (Algorithm4) to the alter-
nant decoder. It always detects ciphertext manipulation provided that 0 is not an
element of the support, and somehow restores a usual behavior of the EEA (that
is, that of a valid ciphertext). The final output will not be the correct plaintext,
but this is not a problem as long as the attacker cannot extract information from
this result. However, we note that this protection has the same drawbacks as its
Patterson equivalent: each while execution does not have same execution time.

Algorithm 4. Protected EEA for Alternant decoder (completes Algorithm 2)
7: vi ← vi−2(z) − qi(z)vi−1(z)
8: if deg(ri) < t then
9: Manipulate ri so that deg(ri) = deg(ri−1) − 1 (e.g. ri ← ri + zdeg(ri−1)−1).
10: end if
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3.2 Secret Decryption Key Recovery Attacks

We address physical attacks initiated by Strenzke in [15,16] against McEliece
encryption using Patterson decoding. It aims at recovering the secret key.

Generic attack scenario. The attack scenario is the following. The attacker has
acces to a decryption device D on which he can perform physical measurements.
He also knows a public encryption key, so that he can generate codewords with
errors of his choice. By observing the decryption phase (more precisely, the EEA
execution), Strenzke shows that one can deduce information on the support
elements corresponding to the error positions. Roughly, the reason is that when
a polynomial condition on those elements is satisfied, the number of iterations
of the while loop in Algorithm 2 is reduced compared to the average number of
iterations necessary to perform the EEA for error vectors of same weight. The
attack consists in scanning a lot of error positions and collect sufficiently many
polynomial relations so that the algebraic system obtained can be solved.

Algorithm 5 sums up the global attack framework arising from [16]. In prac-
tice, the polynomials Pw will be, for an error e = (0, . . . , ei1 , . . . , eiw

, . . . , 0) with
wH(e) = w and j � 0, the evaluation of the jth elementary symmetric polyno-
mial in w variables in (xi1 , . . . , xiw

), that is:

ωj(e) =
∑

1��1<···<�j�w

xi�1
. . . xi�j

.

Algorithm 5. Framework for key-recovery attacks on a decryption device.
Input: A decryption device D, public encryption key Gpub.
Output: The secret support x.

1: for w well-chosen error weights do
2: for (i1, . . . , iw) subset of {0, . . . , n − 1} do
3: Pick an error vector e = (0, . . . , ei1 , . . . , eiw , . . . , 0) with wH(e) = w.
4: Request decryption D(e) and perform timing or power consumption analysis.

5: if EEA execution faster than average (precise conditions in this Section) then
6: Deduce a polynomial condition on xi1 , . . . , xiw (Pw is a polynomial depend-

ing only on w):

Pw(xi1 , . . . , xiw ) = 0 (1)

7: end if
8: end for
9: end for
10: Solve the non-linear system of all the collected equations (1).
11: return Secret support x = (x0, . . . , xn−1).

State-of-the-art. More precisely, Strenzke uses errors of weights w = 1, w = 4
and w = 6. For w = 6, errors such that Eq. (1) is satisfied are harder to find
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than for w = 4. For this reason, his strategy consists in collecting as many
Eq. (1) with w = 1 and w = 4 as possible. He obtains a linear system of rank
n−m in the n elements of the support. Then, he selects subsets of errors of weight
w = 6 to look for Eq. (1). These subsets are chosen so as help the polynomial
system solving. According to Strenzke, for an encryption scheme with parameters
m = 10, n = 2m, t = 40, it takes about 15,000,000 decryption queries to collect
enough equations and 28 hours to solve the algebraic system. Eventually, the full
secret support x is recovered by the attacker, and then the Goppa polynomial is
easy to find. Indeed, it is well explained in [8, p. 125] how, given the public key,
it is possible to recover one from the other in polynomial time.

First Example of Leakage Exploitable by Framework 5. The first attack
resorting to the method of Algorithm5 was proposed by Strenzke in [15]. It
focuses on the second EEA of Patterson Algorithm with errors of weight w = 4.
In this case, Se(z) =

∑4
j=1

1
z−xij

= ωe(z)
σe(z)

, and

ωe(z) = (xi1 + xi2 + xi3 + xi4 )
︸ ︷︷ ︸

ω1(e)

z2 + xi1xi2xi3 + xi1xi2xi4 + xi1xi3xi4 + xi2xi3xi4
︸ ︷︷ ︸

ω3(e)

.

If ω1(e) = 0, then Se(z) = ω3(e)
σe(z)

, and S−1
e mod g = ω3(e)−1σe(z) therefore

τ(z) =
√

S−1
e (z) + z mod g(z) =

√
ω3(e)−1σe(z) + z and τ(z) has degree lower

than �t/2� (for w = 4 we have deg(τ(z)) = 2). As a consequence, the while test
in EEA(g(z), τ(z), �t/2�) is never fulfilled and the number of iterations N is equal
to 0. When ω1(e) �= 0, deg(τ(z)) > �t/2� with overwhelming probability (τ(z)
is a reduction modulo a polynomial of degree t), so that N > 0. This allows to
collect many equations of the form xi1 +xi2 +xi3 +xi4 = 0. As Strenzke explains,
the final system’s rank never exceeds n − m. So it is not sufficient in practice to
fully recover the private key. Still, he proposes a counter-measure.

Counter-measure to protect Second EEA by Strenzke. [15, Sect. 5], Strenzke pro-
poses to detect the polynomials τ(z) leading to this leakage by checking if
deg(τ(z)) < �t/2�. This can be done just after the determination of τ(z). If
so, manipulate τ(z) so that is has degree t−1. This countermeasure avoids leak-
ing information only in the second EEA, only when decoding errors of weight 4.
Exploitable leakages remain, as shown in the next paragraph.

Leakage in the First EEA of Patterson Decoding. In order to complete
the attack initiated in [15], Strenzke proposed in [16] to apply Algorithm 5 by
focusing on time leakages in both EEA’s of Patterson decoding. In [16, Corol-
lary 1], he gives the number of iterations of the while loop in the first EEA. We
recall it here, and complete it with the analogous result for the second EEA.

Lemma 1. Let C = G (x, g(z)) be a binary Goppa code and Se(z) the polynomial
syndrome associated to an error e with wH(e) � deg(g)/2 − 1. Write Se(z) =
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ωe(z)
σe(z)

mod g(z). Let NI and NK be the number of iterations of the while loop
respectively in EEA(g(z), Se(z), 0) and EEA(g(z), τ(z), �t/2�). Then

NI � deg(ωe(z)) + deg(σe(z)) and NK � deg(ωe(z))/2. (2)

Proof. The result on NI is proved in [16, Corollary 1]. Regarding NK , observe
that v0 has degree 0 and vNK

= σ2(z) has degree deg(ωe)/2 (since by derivating
the relation σ = σ2

1 + zσ2
2 we obtain ωe = σ2

2). As the degrees are raised at least
by one at each iteration, we obtain NK � deg(ωe)/2.

Errors weights w = 4. Pick e = (0, . . . , ei1 , . . . , ei4 , . . . , 0). We have ωe(z) =
ω1(e)z2 + ω3(e). According to Lemma 1, NI satisfies

xi1 + xi2 + xi3 + xi4 �= 0 =⇒ NI = 6,
xi1 + xi2 + xi3 + xi4 = 0 =⇒ NI = 4.

Therefore, even if the second EEA has been protected with Strenzke’s counter-
measure, errors of weight w = 4 leak the same information in the first EEA.
Other equations are found by using error with weight w = 6.

Error weights w = 6. For e = (0, . . . , ei1 , . . . , ei6 , . . . , 0), we have for
SGop,e(z):

SGop,e(z) =
ω1(e)z4 + ω3(e)z2 + ω5(e)

σe(z)
.

Strenzke’s purpose is to detect for which e is holds that ω3(e) = ω1(e) = 0.
These cases are exactly those with Se(z)−1 = ω5(e)−1σe(z) and hence
deg(τ(z)) < �t/2�, so that NK = 0 provided that Strenzke’s counter-measure is
not applied. This is a somehow surprising proposition, since this criterion can
be rendered useless by a counter-measure already proposed by the same author.

Table 2. Overview of small- error-weight message attacks. Cases marked with a* or a
+ are proposed resp. in [15,16].

EEA(g, Se, 0) EEA(g, τ, �t/2�)
wH(e) = 4 ω1(e) �= 0 NI � 6 NK � 1

ω1(e) = 0 NI � 4* NK = 0+ CM deg(τ) < �t/2�+
wH(e) = 6 ω1(e) �= 0, ω3(e) �= 0 NI � 10 NK � 2

ω1(e) = 0, ω3(e) �= 0 NI � 8 NK � 1

ω1(e) = 0, ω3(e) = 0 NI � 6 NK = 0* CM deg(τ) < �t/2�
wH(e) = 2w′ ω1(e) �= 0, ω3(e) �= 0 NI � 4w′ − 2 NK � w′ − 1

ω1(e) = 0, ω3(e) �= 0 NI � 4w′ − 4 NK � w′ − 2

ω1(e) = 0, ω3(e) = 0 NI � 4w′ − 6 NK � w′ − 3
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Combination of First and Second EEA. When using error weights w � 6,
the attacker will encounter problems due to the fact that all the values given
in Table 2 (on page 7) are only bounds (except in the cases N � 0). Indeed,
it may happen that one of the Euclidean divisions entails a degree fall greater
than 1 independantly of the degree of ωe. For example, with w = 6, the attacker
may observe NK = 1 whereas ω1(e) is not zero. This remark leads Strenzke
to discard those cases for an attack as long as no way of distinguishing thoses
cases is found. We propose such distinguisher, by using NI to determine if ω1(e)
is zero, as ω1(e) = 0 implies NI � 8. Indeed, an attacker observing the errors
e with (NI , NK) = (10, 1) can conclude that ω1(e) �= 0 (Table 2). We may
have (NI , NK) = (8, 1) when ω1(e) �= 0 if three cancellations occur in the 12
intermediate polynomials, which has probability p3 =

(
12
3

)
2−3m(1 − 2−m)9 ≈

2.10−7 for m = 10 (we model the leading coefficients as random elements of
F2m). When sampling x error vectors, we expect to find p3x such misleading
cases. With the numbers of samples from [16, Table 2], the probability to find
one is not negligible. If at least one wrong equation is deduced, the system to
solve has no solution and the attack fails. We propose to avoid this problem by
using errors with w � 8.

Error weights w = 8. We sampled randomly 10,000,000 errors e of weight 8
and collected the couples (NI , NK) in Table 3. When wH(e) = 8, there are
more possibilities than with w = 6. Samples with (NI � 12, NK � 2) do not
necessarily have ω1(e) = 0: this happens with probability p′

3 =
(
17
3

)
2−3m(1 −

2−m)14 ≈ 6.10−7 for m = 10 (we found 3). In particular, the case marked with a
∗ in Table 3 would make the attacker to think erroneously that the corresponding
error vector satisfies ω1(e) = 0. However, the number of parasitic cancellations
necessary to provide values (NI , NK) compatible with (ω1(e), ω3(e)) = (0, 0) is 6,
which happens with probability p′

3 =
(
17
6

)
2−6m(1 − 2−m)11 ≈ 10−14 for m = 10.

If ω1(e) = 0 but ω3(e) �= 0, then a couple (10, 1) is found if 3 cancellations
occur. This has probability 2−mp′

3 ≈ 6.10−10 (as ω1 takes all the values of F2m

Table 3. Number of samples for each (NI , NK) for 10,000,000 error vectors with w = 8.
Code parameters: m = 10, n = 2m, t = 40. See text for explanation on ∗.

No parasitic 1 parasitic 2 parasitic 3 parasitic

cancellation cancellation cancellations cancellations

ω1(e) �= 0 (14,3): 9855087 (13,3): 115439 (12,3): 614 (12,2): 1 ∗

ω3(e) �= 0 (14,2): 18916 (13,2): 248 (11,3): 2

(14,1): 8

ω1(e) = 0 (12,2): 9570 (11,2): 96 (10,2): 0

ω3(e) �= 0 (12,1): 8 (11,1): 0

ω1(e) = 0 (10,1): 10 (9,1): 0 (8,1): 0

ω3(e) = 0
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with same probability). Therefore, we are able to say without ambiguity when
(ω1(e), ω3(e)) = (0, 0) on a considerable amount of samples. We deduce from our
samples 10 equations ω1(e) = 0 which are correct with proba. (1− 10−7) and 10
equations ω3(e) = 0 correct with proba. (1 − 10−3). To conclude, although our
method requires more samples than the previous one (around 109 to collect some
thousands equations with ω1, and dozens with ω3), we can recover information
on the support even if the countermeasure deg(τ) < �t/2� is implemented.

Small Weight Error Messages in Alternant Decoder. We determine if an
attacker can retrieve any information by applying Algorithm5 if the Alternant
decoder is implemented. First, we give in Lemma 2 the analogous of Lemma 1.

Lemma 2. Let e be an error with wH(e) � t. Then SAlt,e(z) = ωinv,e(z)
σinv,e(z)

mod z2t and the number of iterations N of the while loop of the Alternant
decoder in the EEA satisfies

N � Nmax = min(deg(σinv,e),deg(SAlt,e) − deg(ωinv)). (3)

Specific case of weight 1 errors. If w = 1, we always have deg(ωinv) = 0 and
deg(σinv) = 1 except if xi1 = 0. Indeed, in this case, the polynomial syndrome
is a constant: Se(z) = 1

g(0)2 and the while loop is never executed (Table 3).

Error weights w > 1. We suppose that no error occurred in the zero element of
the support so that deg(σinv) = wH(e) always holds (the coefficient of zw in σinv

is xi1 . . . xiw
). Therefore, faster decryptions indicate the cancellation of a leading

coefficient in the intermediate values, but in the alternant decoder we found no
way of determining which intermediate value was concerned. If by any chance
a power analysis can ensure that it is the first intermediate polynomial (that
is, the syndrome polynomial SAlt,e(z)) that has a degree smaller than expected,
then the information recovered would be:

w∑

j=1

g(xij
)−2

w∑

j=1

x2t−1
ij

= 0. (4)

We observe that the equations written thanks to this method are more com-
plex than with Patterson algorithm, at least for two reasons. First, they are not
directly polynomial, and the degrees implied are much higher. Second, as both
x and g have to be unknown ([8, p. 125]), additive unknowns are necessary:
either t + 1 to describe the secret polynomial’s coefficients, or n if we introduce
new equations yi = g(xi)−2. We conclude that the alternant decoder is intrinsi-
cally more resistant to Strenzke’s attacks. However, the overall security is still
not clear due to the uncertainty on the countermeasure (Algorithm 4) against
Algorithm 3.
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4 Extended Euclidean Algorithm with Constant Flow

We expose a way of implementing the EEA algorithm unused so far for McEliece
decryption. It has the very interesting property of requiring a number of opera-
tions depending only on the Goppa polynomial degree t and not on the weight
of the error introduced in the ciphertext. Therefore, the attacks of Sects. 3.1 and
3.2 are not possible.

It is inspired by Berlekamp’s work in [3] (which as followed by other works of
optimization in the VLSI community, amongst many others [10,11]). We could
find no reference to it in any paper related to McEliece. On the contrary, design-
ing such an algorithm is desirable goal according to the conclusion of [16]. The
reason may be that [3] has a very limited access, and we could find no complete-
ness proofs of the algorithm proposed. Here, we transform smoothly the original
EEA (Algorithm 2) into successive version gaining in regularity (Algorithms 6
and 7). We end up with Algorithm8, which is simpler and more regular than all
the previous ones. At each step, we give and prove (in the full version of this
article) the form of the outputs and intermediate values. Finally, each execution
of Algorithm 8 costs, in field multiplications, exactly 16t2 (2t times a loop costing
4 × 2t).

In the rest of this article we will set N be the number of Euclidean divisions
performed during EEA(z2t, SAlt(z), t) in Algorithm 2, di = deg(ri(z)), and δi =
deg(qi(z)) = deg(ri−2)−deg(ri−1). For any polynomial P (z) ∈ Fqm [z], we denote
its coefficients by Pj even for j > deg(P ) (in which case Pj = 0), so that

P (z) =
+∞∑

j=0

Pjz
j = Pdeg(P )z

deg(P ) + · · · + P0.

Regarding the δi’s, we have:

N∑

i=1

δi = deg(uN (z)) = deg(ωinv,e) = wH(e) − 1.

Unrolling Euclidean Divisions. In Algorithm 6, we decompose each Euclid-
ean division into a number of polynomial subtractions depending only on δi the
degrees of the quotients. We explicit the intermediate values of the Euclidean
division of Ri−2(z) by Ri−1(z), that we denote by R

(0)
i (z), . . . , R(δi+1)

i (z). To do
so, we eliminate in each R

(j)
i (z) (for 0 � j � δi + 1) the term zdi−2−j , whether

the associated coefficient is zero or not. This is why we perform the Euclidean
divisions in a way to avoid the divisions by a field elements (Steps 7 to 10 of
Algorithm 6). Consequently, the outputs are multiple of the outputs of
Algorithm 2.

Proposition 1 (Comparison of Algorithms 2 and 6). Let a(z) and b(z)
be two polynomials with deg(a(z)) � deg(b(z)), and d a non-negative inte-
ger. ui(z), vi(z), ri(z), qi(z) are the intermediate values in Algorithm2, and
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Algorithm 6. EEA with unrolled Euclidean Division
Input: a(z) = z2t, b(z) = Se(z).
Output: U(z) = λNσe(z), R(z) = λNωe(z) (for some λN ∈ F

∗
qm).

1: R−1(z) ← a(z), R0(z) ← b(z),U−1(z) ← 1, U0(z) ← 0, i ← 0.
2: while deg(Ri(z)) > t do
3: i ← i + 1
4: R

(0)
i−2(z) ← Ri−2(z),U

(0)
i−2(z) ← Ui−2(z)

5: Δi ← deg(Ri−2) − deg(Ri−1)
6: βi ← LC(Ri−1(z)).
7: for j = 0, . . . , Δi do
8: αi,j ← R

(j)
i,di−2−j ,

9: R
(j+1)
i−2 (z) ← βiR

(j)
i−2(z) − αi,jz

Δi−jRi−1(z)

10: U
(j+1)
i−2 (z) ← βiU

(j)
i−2(z) − αi,jz

Δi−jUi−1(z)
11: end for
12: Ri(z) ← R

(Δi+1)
i−2 (z),Ui(z) ← U

(Δi+1)
i−2 (z)

13: end while
14: N ← i.
15: return UN (z), RN (z)

Ui(z), Vi(z), Ri(z) are the intermediate values in Algorithm6. It holds that, for
all i = −1, . . . , N , there exists λi ∈ F

∗
qm such that:

Ri(z) = λiri(z),
Ui(z) = λiui(z).

Hence, Δi = deg(Ri−2) − deg(Ri−1) = deg(ri−2) − deg(ri−1) = δi for all i.

There are two problems with Algorithm6. The first one is that the inner
for loop (Steps 7 to 11) has a variable length, and contains a multiplication
zδi−(j−1)Ri(z) which depends on the iteration, which will produce a recogniz-
able pattern. The second problem is that the while loop leads to a number of
operations depending on the input. Algorithm7 is a first step towards the res-
olution of the second problem. It is not realistic (it requires to know the δi’s),
but it eases the proofs of completeness of Algorithm8, which solves both issues.

Regular Polynomial Shift Pattern. In Algorithm7, we perform the Euclid-
ean division in such a way that we only multiply the operand by z at each for
iteration. This can be done by splitting in two phases each Euclidean divisions.
The first phase (Steps 4 to 7) “re-aligns” the operands R̃i−2 and R̃i−1 so that
they both have same degree d = deg(R−1(z))(= 2t). Doing so, the second phase
(Steps 8 to 12) compute the polynomial subtractions (corresponding to Steps
9-10 of Algorithm 6) and perform a shift “re-aligning” the operands. A conse-
quence is that the polynomials R̃i(z) are of the form zkiRi(z) and the degrees
di are lost.
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Algorithm 7. Toy EEA with regular shift pattern
Input: a(z) = z2t, b(z) = Se(z), d = 2t
Output: ŨN (z) = zd−dN−1+1σe(z), R̃N (z) = zd−dN−1+1ωe(z).

1: R̃−1(z) ← a(z), R̃0(z) ← zb(z),Ũ−1(z) ← 1, Ũ0(z) ← 0.
2: for i = 1, . . . , N do
3: R̃

(0)
i−2(z) ← R̃i−2(z),Ũ

(0)
i−2(z) ← Ũi−2(z)

4: for j = 1, . . . , Δi − 1 do
5: R̃i−1(z) ← zR̃i−1(z)

⎫

⎬

⎭

L1

6: Ũi−1(z) ← zŨi−1(z)
7: end for
8: for j = 0, . . . , Δi do
9: α̃i,j ← R̃

(j)
i,d , β̃i ← R̃i−1,d.

10: R̃
(j+1)
i−2 (z) ← z

(

β̃iR̃
(j)
i−2(z) − α̃i,jR̃i−1(z)

)

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎭

L2

11: Ũ
(j+1)
i−2 (z) ← z

(

β̃iŨ
(j)
i−2(z) − α̃i,jŨi−1(z)

)

12: end for
13: R̃i(z) ← R̃

(Δi+1)
i−2 (z),Ũi(z) ← Ũ

(Δi+1)
i−2 (z)

14: end for
15: return ŨN (z), R̃N (z)

Proposition 2 (Comparison of Algorithms 6 and 7). For each i =
1, . . . , N , after Step 13 of Algorithm7, it holds that

(R̃i−1(z), R̃i(z)) = (zd−di−1Ri−1(z), zd−di−1+1Ri(z)),
(Ũi−1(z), Ũi(z)) = (zd−di−1Ui−1(z), zd−di−1+1Ui(z)).

Complete Regular Flow EEA. To design a real constant flow algorithm, we
merge the loops L1 and L2 in a common pattern so as to be indistinguishable
(Steps 5 to 7 of Algorithm 8). They differenciate by the assignements which are
performed in Steps 14-15 and 18-19. To know when polynomials substractions
have to be stopped, we collect in a counter δ the number of shifts necessary to
re-align the operands. Finally, when the polynomials σinv and ωinv have been
computed, the extra executions of the main loop (Steps 4 to 22) consist in
shifting the operands. therefore, the number of iterations can be safely set to the
maximum value (i.e. 2t to decode the errors with wH(e) = t)), and the while
loop is replaced by for.

Proposition 3 (Comparison of Algorithms 6 and 8). For each i =
1, . . . , N , after steps 21, it holds that:

R̂2(δ1+···+δi)(z) = zd−di−1+1Ri(z),
Û2(δ1+···+δi)(z) = zd−di−1+1Ui(z).

The outputs of Algorithm8 are, for some μ ∈ F
∗
qm :

R̂d(z) = zd−wH(e)+1RN (z) = μzd−wH(e)+1ωinv(z),
Ûd(z) = zd−wH(e)+1UN (z) = μzd−wH(e)+1σinv(z).
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Algorithm 8. EEA with regular flow
Input: a(z) = z2t, b(z) = Se(z), d = 2t
Output: Ûd(z) = μzd−wH (e)+1σinv(z),R̂d(z) = μzd−wH (e)+1ωe(z) for some μ ∈ F

∗
qm .

1: R̂−1(z) ← a(z), R̂0(z) ← zb(z),
2: Û−1(z) ← 1, Û0(z) ← 0,
3: δ ← −1.
4: for j = 1, . . . , d do
5: αj ← R̂j−1,d, βj ← R̂j−2,d.

6: tempR(z) ← z
(

αjR̂j−2(z) − βjR̂j−1(z)
)

.

7: tempU (z) ← z
(

αjÛj−2(z) − βjÛj−1(z)
)

.

8: if αj = 0 (i.e. deg(R̂j−1) < deg(R̂j−2)) then
9: δ ← δ + 1.
10: else
11: δ ← δ − 1.
12: end if

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

L
13: if δ < 0 then
14: (R̂j(z), R̂j−1(z)) ← (R̂j−1(z), tempR)
15: (Ûj(z), Ûj−1(z)) ← (Ûj−1(z), tempU )
16: δ ← 0.
17: else
18: (R̂j(z), R̂j−1(z)) ← (tempR, R̂j−2(z))
19: (Ûj(z), Ûj−1(z)) ← (tempU , Ûj−2(z))
20: δ ← δ.
21: end if
22: end for
23: return Ûd(z), R̂d(z)

Therefore, provided 0 is not an element of x, Ûd(z) allows to recover the
error positions without ambiguity. Transposing this result to Patterson decoding
requires to adapt both EEA’s. The adaptation of the second one is straightfor-
ward. For the first one (syndrome inversion), a problem arises: the analogous of
Proposition 3 would yield ÛNI

(z) = μzki(S−1
Gop,e mod g) for some ki > 0, and

we found no way of determining when z is a factor of S−1
Gop,e mod g. However,

we can protect the second EEA to avoid the attack of 3.2.

5 Conclusion

We proposed an algorithm determining the error-locator polynomial costing
always 16t2 field multiplications on any input. It contains a test depending on
secret data, followed by two balanced branches. The indistinguishability of those
branches by an attacker is crucial for the security of the decryption, and depends
on the architecture of the implementation.
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Abstract. During recent years we observe an arms race between new
creative methods for inserting effective faults and designing new coun-
termeasures against such threats. Yet, even analyses of an unprotected
smart card pose a problem for an analyst assuming constraints in time
(or consequently, in a feasible number of measurements). In this paper we
present a new kind of algorithm capable of finding faults in the black box
test scenario - memetic algorithm. This algorithm combines the strengths
of the following three algorithms: genetic algorithm, tabu search and
local search. Furthermore, the same algorithm can be used if the goal
is simply a rapid characterization of the search space. We compare our
algorithm with random search and exhaustive search approaches. Exper-
imental results show that our memetic algorithm is substantially more
successful in both, locating faults and characterizing search space, than
the other known methods. In reaching both goals, our memetic algorithm
uses less than 300 measurements.

Keywords: Fault analysis · Glitches · Smart cards · Memetic algo-
rithms

1 Introduction

Smart cards and other small pervasive devices such as RFID tags are used daily
by billions of users for applications such as public transportation, Internet bank-
ing, online shopping, etc. The exposure to numerous threats, mainly coming
from the adversary aiming at physical security, have led to this becoming one of
the most actively researched topics by both academia and industry in the past
two decades.

Anderson and Kuhn [1] put some doubt on the claimed tamper-resistance of
smart cards almost two decades ago. This paper was shortly followed by the set
of techniques for tampering with smart cards by Kömmerling and Kuhn [2].

In general, the techniques for tampering can be classified as passive or
active [3]. In passive techniques some side-channel information is monitored
c© Springer International Publishing Switzerland 2015
S. Mangard and A.Y. Poschmann (Eds.): COSADE 2015, LNCS 9064, pp. 159–173, 2015.
DOI: 10.1007/978-3-319-21476-4 11
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while the card is supposed to work “normally”. An example of these passive tech-
niques is the analysis of power consumption, as introduced by Kocher et al. [4]
or electromagnetic radiation [5]. In the case of active techniques, the device is
not only monitored but also external interferences affect the normal behavior of
the device. An example is Fault Injection (FI) attack. These interferences, the
so-called glitches, can be of different nature: optical (laser pulses) and electrical
glitches (voltage, clock), temperature changes, electromagnetic (EM) radiation,
etc. They are used to cause malfunctioning, resulting in some cases in secret key
recovery. Fault injection techniques by glitching are typically non-invasive tech-
niques, in the sense that the smart card is not physically modified (in contrast
to other invasive techniques that require hardware modifications).

A fault injection attack is considered to be successful if after exposing the
device under attack to a specially crafted external interference, the device shows
an unexpected behavior, which can be exploited by an attacker (e.g. leaking of
sensitive information, bypassing security checks, etc.). However, this external
insertion of signals has to be precisely tuned for the fault injection to succeed.
As an example, a complete characterization of a clock signal glitch requires from
the security analyst to define more than 10 parameters (related to clock signal
voltage levels, time offset of the glitch, etc.,).

Finding the correct parameters for a successful FI can be considered as a
search problem where one aims to find, within minimum time, the parameter
configurations which result in a successful fault injection [6]. The search space,
considering all possible combinations of the values of interest for the fault injec-
tion is typically too large to perform an exhaustive search.

Heuristic search algorithms can reduce the search time considerably. In this
paper we investigate the feasibility of genetic algorithms (GAs) in this applica-
tion domain. More specifically, we compare a standard GA with an enhanced
GA called a memetic algorithm (MA), which adds local search iterations to the
process. The motivation behind MA is the fact that GAs are generally good
at exploration of the search space, but can often be improved in terms of the
exploitation aspect.

Apart from introducing a GA framework to the FI domain we also make a
distinction between the aim of finding as many glitches as possible on one hand,
and characterizing the parameter space on the other (with characterization we
consider identifying promising parameter regions). By finding these promising
parameter regions and focusing the search on those values we increase the prob-
ability of the glitch candidates producing a successful glitch.

1.1 Related Work

The concept of fault analysis-based attacks is known in the research commu-
nity for around twenty years. Boneh, DeMillo and Lipton published an attack
on RSA where they exploit hardware faults for cryptanalysis [7,8]. Kömmerling
and Kuhn present an extensive overview of techniques for fault injection and
other tampering techniques and give ideas on how to mitigate some of them [2].
The paper highlights the case of power supply (VCC) fault injection (referred
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to as glitch attacks) and emphasizes those as the ones most useful in practice.
Aumüller et al. performed one of the first practical works on fault analysis, in
which they describe a real-life scenario of the impact of injecting glitches in
the VCC and clock lines of an IC [9]. They also suggest some countermeasures
applicable in this specific case. Approximately at the same time, Skoroboga-
tov and Anderson introduce optical (laser) fault injection, where they describe
injecting faults with a laser on a decapsulated IC [10]. This technique is still very
successful nowadays for defeating the security of many protected devices, but it
is out of scope for this work. Van Woudenberg et al. describe a real attack sce-
nario for an Optical Fault Injection attack [11]. The practical problem of setting
the parameters for fault injection is introduced in their work and the authors
briefly discuss the lack of methodology to solve it as the main direction they
rely on is based on heuristics. In addition, the paper gives a nice overview of all
the practical issues that arise during a real execution of the FI attacks on actual
hardware. Balasch et al. explore the effects of glitches injected in the clock line
of an IC [12]. This work is very interesting for identifying various effects that
a glitch can cause on real hardware in terms of defining all possible outcomes
of a successful fault injection. However, it has to be noted that current smart
cards usually run on an internal clock which makes this FI technique infeasi-
ble. The work of Boix Carpi et al. deals with a similar problem to ours but the
authors take a different approach [6]. They use a self-adapting search algorithm
that shows some potential when considering only two parameters, glitch shape
and length. As a future direction they mention one could try genetic algorithms.
Additionally, the same authors present preliminary work with genetic algorithms
in [13]. As an extension to this work, we consider three parameters and take the
analysis to the next level by unleashing the full power of evolutionary computa-
tion in combination with other search techniques.

1.2 Our Contribution

There are two main contributions in this paper. As far as we know, we are the
first to use a hybrid (memetic) algorithm [14] to look for successful glitches. Our
memetic algorithm combines techniques from genetic algorithms, local search
and tabu search. The second contribution is that we use the same algorithm not
only to find faults, but also for the characterization of the search space with a
minimal number of measurements.

The remainder of this paper is organized as follows: in Sect. 2 we give our
problem statement and relevant properties of the search space as well as smart
card details. In Sect. 3 we present description of algorithms we use, and in Sect. 4
we give experimental results and a discussion. Finally, in Sect. 5 we offer conclu-
sions and future work directions.

2 Preliminaries

In this section we start with a short introduction to the smart card used.
Afterwards, we give information about possible verdict classes and search space
parameters.
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2.1 Smart Card Details

In all our experiments we use smart cards that are based on ATMega163+24C256
IC, realized in CMOS technology. Those cards do not deploy any side-channel
or fault injection countermeasure. All processing on the card is performed in
software, and cards are running on an external 1 MHz clock frequency.

For the experimental purposes, we attack a vulnerable PIN authentication
mechanism. The PIN authentication mechanism is implemented as follows:

for (i = 0; i < 4; i++)

{

if (pin[i] == input[i])

ok_digits++;

}

if (ok_digits == 4) //LOCATION FOR ATTACK

respond_code(0x00, SW_NO_ERROR_msb, SW_NO_ERROR_lsb); //PIN IS CORRECT

else

respond_code(0x00, 0x69, 0x85); //PIN IS WRONG

In the above code we want to glitch the target (smart card) while it is execut-
ing the second if-statement. However, we want to emphasize that our approach
makes no assumptions on the software that runs on the smart card. First of all,
we regard the target as a black box and only hypothesize that there exists a
weakness in the implementation and that we can roughly estimate its location
in time. Secondly, the most difficult part of finding good FI parameters are the
electrical properties like glitch voltage and length. The right values for these
two dimensions will make the target physically behave in an unspecified way,
and most importantly, they will do so on any smart card of the same make (or
production batch), regardless of the implemented software.

2.2 Verdict Classes and Boundaries

Fault injection testing equipment can output only verdict classes that correspond
to successful measurements. There exist several possible classes for classifying a
single measurement (i.e. attack attempt):

1. NORMAL: smart card behaves as expected and the glitch is ignored
2. RESET: smart card resets as a result of the glitch
3. MUTE: smart card stops all communication as a result of the glitch
4. INCONCLUSIVE: smart card responds in a way that cannot be classified in

any other class
5. SUCCESS: smart card response is a specific, predetermined value that does

not happen under normal operation

In the rest of this paper, we will consider RESET and MUTE classes as
equivalent when interpreting the results. Additionally, when depicting graphs
with measurement results, for each of classes we allocate a color. When the
card responds NORMAL, we depict a green dot in the search space, for
RESET/MUTE we depict a blue color, for INCONCLUSIVE yellow color and
finally, for SUCCESS red color.
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2.3 Search Space Parameters

There are multiple search space parameters that need to be set in the fault
injection process. We informally divide those parameters into two groups. The
first group consists of parameters that we influence with an external search space
algorithm and are therefore of primary interest. The second group consists of
parameters that we leave for fault injection framework to set randomly.

In the first group we include the following parameters: glitch length, glitch
voltage and glitch offset. The glitch length refers to the time (ns) that the VCC
line is perturbed. The glitch voltage is the number of miliVolts (mV) that is
added to the VCC line. The glitch offset is the start time (ns) of the perturbation
relative to the start of the clock cycle.

For example, suppose that the glitch length is 100 ns, the glitch voltage is
-3 500 mV, the glitch offset is 250 ns, and the supplied VCC is 5 V. What will
happen is that 250 ns after the start of the clock cycle the VCC line will be
pulled down to 1.5 V for 100 ns, after which it will be restored to 5 V.

Those three parameters determine the electrical effect on the target: roughly
speaking the product of glitch length and glitch voltage represents the amount of
energy that is exerted on (or withheld from) the target. Since the current prop-
agation within a clock cycle is not constant the offset timing is also important.
We refer to the three parameters as the “shape” of the glitch. Note that this is
a physical effect: if the glitch is too strong the target will “mute” or reset. On
the other hand, if the glitch is too weak the target will not be disturbed, but
if the glitch is of an appropriate shape the target will behave in an unspecified
way. This is unrelated to the logical effect, which refers to the exact instruction
that is being glitched.

The second parameter group covers the logical effect and it consists of the
number of wait cycles and the number of glitch cycles. The wait cycles parameter
refers to the number of clock cycles that are skipped before the glitch attack is
performed, counting from the sending of the smart card command. The glitch
cycles parameter specifies the number of successive clock cycles that are glitched.

For example, we could wait for 800 clock cycles and then apply the glitch
in the next 5 cycles, assuming the relevant instruction is executed close to the
foreseen time frame. The fact that the electrical effects can be observed inde-
pendently of the logical effects allows the security analyst to work in two phases.
First he will find a glitch “shape” that triggers the target to behave in an unspec-
ified way. In the second phase he can search for the right wait cycles and glitch
cycles values while applying the right glitch. In this paper we disregard the
logical parameters. We assume reasonable ranges for the wait/glitch cycles and
select uniformly at random from these ranges.

A useful property of the glitch shape parameters is that they display locality.
The glitch offset has only a small range of values that “work”. On top of that, the
glitch voltage and the glitch length shows a monotonic behavior: once a glitch
voltage is strong enough to force a card reset, then bigger values will also force
a reset. The same goes for the glitch length. In practice this means that there
is a clear phase transition in the voltage/length dimensions between NORMAL
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results and RESET/MUTE results. Also, the class of SUCCESS results (when
offset is also guessed correctly) is often located around this phase transition. Note
however that the exact effect of a glitch is stochastic and a perfect separation of
parameter regions is impossible.

3 Approach and Methods

Looking for spots that lead to the successful fault injection can be considered as
an optimization problem where we want to find as much “good” spots as possible
in the minimal amount of time. The complexity of the problem depends on the
number of considered parameters. However, before trying to give an answer about
appropriate methods, we offer an illustration of the difficulty of the problem.

In a realistic setting that we consider, the glitch voltage parameter ranges
from -5 000 mV to -50 mV, with a minimal step of 50 mV. The second parameter,
glitch length, ranges from 2 ns to 150 ns with a step of 2 ns. If we conduct exper-
iments where we are interested in only those two parameters and do exhaustive
search, we need 7 400 measurements. If we assume that each measurement lasts
one second, this gives us total time of two hours. However, if we add just one
more parameter, e.g., glitch offset that goes from 100 ns to 400 ns with the 1 ns
step, then we have in total 2.2 million measurements. This equals to more than
600 hrs of measurement time. Naturally, one also needs to take into account
possible consequences for a smart card if it is tested for more than 600 hrs and
the fact there are several more parameters of interest not even mentioned in this
calculation.

The first objective targets at finding as many successful parameter combina-
tions as possible, without regarding their values and their relation to each other.
The second objective, on the other hand, aims to map the parameter space into
regions with the same behavior outcome of the smart card. It is expected that
the parameter combinations that result in the same behavior form regions in
the search space which are adjacent to regions with different target behavior.
Our experiments show that the region boundaries cannot be described with lin-
ear functions, and it is exactly along the boundaries that the successful attacks
could be performed. Therefore, the objective of the search space characterization
is to provide boundaries between different regions with as few measurements as
possible.

When looking for faults we can expect that more attempts should be made
with parameter values that resemble those that led to a fault, but from the other
perspective, the analysis will use more measurements and will result in other
regions less analyzed. On the other hand, when looking for a region of interest,
we can expect that the algorithm will also find faults, but that behavior should
not be specially rewarded.

3.1 Genetic Algorithm

Genetic Algorithms (GAs) belong to a subclass of evolutionary algorithms where
the elements of the search space S are arrays of elementary types [15].



Fault Injection with a New Flavor: Memetic Algorithms Make a Difference 165

In our approach we need to change several parts of a standard GA in order to
work with this specific problem setting. A ‘standard’ GA assigns fitness values
to different points in the search space (individuals or potential solutions) and
maintains a population of those, usually initialized randomly. A potential solu-
tion in this context represents the values of the three parameters in our search
space. In each iteration (generation) it selects the better ones and eliminates the
worse, combines different individuals to produce new ones (using the crossover
operator) which replace the eliminated ones and randomly changes parts of new
individuals (using mutation).

First, we need to map verdict classes to fitness values. Since the objective is
to maximize the value of fitness function, we give higher values to verdict classes
that are of a bigger importance. Observing that we are looking for parameters that
behave differently from NORMAL behavior, for NORMAL class we give the small-
est value of 1. RESET and MUTE classes we consider the same and we give them
a value 2 since we expect to find faults in areas between NORMAL and RESET.
Finally, for SUCCESS class we give a value 3. Since we are not able to define the
INCONCLUSIVE class, we also assign it the same value as for the RESET/MUTE
class.

Next, instead of a standard crossover operator we use the custom version -
local crossover (LC). In this operator, the first crossover point (potential solu-
tion) is chosen randomly. The second point is chosen so the LC operator crosses
two points that belong to different classes, and it generates a new offspring point
between the parents. The position of the offspring point is chosen on the basis
of the number of solutions in complete population that belong to the parents
classes: a child is proportionally closer to the parent with the class that is less
represented, i.e., the class with the smaller number of individuals in the popu-
lation. Only in the case when the first parent belongs to SUCCESS class, this
operator tries to find a second parent in the same class. A mutation is con-
ducted by adding some random value to the parameters. We present a GA with
aforementioned modifications as Algorithm 1.

3.2 Tabu Search

Since there exist only a few different verdict classes (and consequently, only a
limited number of different fitness values) it is expected that a number of same
solutions will emerge that may be tested repeatedly. Since each such solution
leads to a unnecessary measurement, we adopt a technique from Tabu Search
(TS) optimization method. Tabu Search works by declaring certain solution
candidates that have already been visited as tabu and therefore not to be visited
again [15]. The advantage of using the TS method is twofold in our case: first,
we lower the total number of measurements performed and second, when not
revisiting already visited locations, the algorithm is less likely to get stuck in
a local optimum. We implement Tabu Search by using a list which stores all
the solutions that have been already measured and allocated fitness values. If
a new solution is created that is on the list, it is not measured but discarded
immediately. Note that we do not implement all TS functionalities, but only
those related with keeping the tabu list.
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Algorithm 1 Genetic Algorithm.
Require: crx count = 0, mut count = 0

repeat
select first parent
if first parent of SUCCESS class then

try to find matching second parent
else

try to find second parent of different class
end if
perform crossover (depending on parent classes)
copy child to new generation
crx count = crx count + 1

until pc ∗ N �= crx count
repeat

select random individuals for tournament
copy best of tournament to new generation
mut count = mut count + 1

until (1 − pc) ∗ N �= mut count
perform mutation on new generation with probability pm
evaluate population

3.3 Local Search

Local search (LS) is a metaheuristic method for solving computationally hard
optimization problems [14]. Local search algorithms work on a single solution
(instead of multiple solutions) and generally transcend only to neighbors of the
current solution. It moves in the space of candidate solutions by applying local
changes until it finds an optimal solution or the time bound is elapsed [14]. In
our experiments we use one version of the divide-and-conquer algorithm where
each new solution is located in the middle of parent solutions (binary search).
In order to behave in such a manner, we need to define what is the space of
candidate solution, i.e. in what neighborhood it can operate. To this end, we
need to define an appropriate distance metric.

Two solutions are neighbors if they are at the distance smaller than d. In
this paper we experiment with Euclidean [16] and Manhattan [17] distance met-
rics. Since the search space parameters are of different magnitudes, we use a
normalized search range of [0,1].

Euclidean distance between two points a and b in an n-dimensional space
is equals d(a, b) =

√∑n
i=1(ai − bi)2 [16].

Manhattan distance between two points is the sum of absolute differences
of their Cartesian coordinates and it equals d(a, b) =

∑n
i=1 |ai − bi|. [17].

In our experiments we use a local search algorithm after each GA genera-
tion. The local search works on all pairs of individuals that are closer than the
distance d and it runs while the distance between solutions is larger than the
resolution r. With the resolution parameter we control how precise the charac-
terization of the search space should be. We note that it was necessary to add
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two parameters to control the local search algorithm. The distance parameter
d ensures that only individuals that are closer than d can participate in local
search. The resolution parameter r controls when the LS should stop operating
on each pair of individuals. Pseudocode for the LS is given in Algorithm 2.

Algorithm 2 Local Search algorithm.
create pool with all individuals ind
for all ind in the pool do

select ind tmp from the pool
d = distance (ind, ind tmp)
if d > resolution and d < distance and class (ind) != class (ind tmp) then

make pair
remove individuals from pool

end if
end for
for all pairs do

d = distance (ind 1, ind 2)
if d > resolution then

create point in between points
call evaluator
replace parent from the same class as offspring

else
remove pair

end if
end for

3.4 Memetic Algorithm

Memetic Algorithms (MAs) represent a synergy between evolutionary algorithms
(or any other population-based algorithm) and local improvement algorithms [15].
Most MAs can be interpreted as search strategies in which a population of solu-
tions cooperate and compete [14].

In our experiments, the memetic algorithm is a combination of three afore-
mentioned algorithms: genetic algorithm, tabu search and local search. Each of
those algorithms should lend its strength to obtain a new, synergistic one that
is more powerful than any of them individually. Genetic algorithms give their
strength when finding promising regions in search space. Local search improves
the convergence speed when looking for SUCCESS points (or regions between
two verdict classes) and tabu search reduces the number of measurements by
avoiding duplicate measurements.

4 Experiments and Results

In this section we present details about our experimental setup and the parame-
ters considered. Afterwards, we present our results and give a short discussion.
Common parameters for all experiments are given in Table 1.
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Table 1. Common parameters.

Parameter Parameter Value

Tournament size 3

Population size 30

Stopping criterion 10 generations

Mutation rate 0.1

Glitch length [2, 150] ns

Glitch voltage [-5 000, -50] mV

Glitch offset [100, 400] ns

Glitch cycles random from [1, 10]

Wait cycles random from [750, 850]

As it can be observed in Table 1 we use a small number of generations and
a small population size since we are interested in a rapid characterization or
finding faults. Indeed, if one has sufficient time at his disposal no method can
outperform exhaustive search.

4.1 Experimental Results

When conducting experiments, we compare our results with random search and
exhaustive search methods. Here we give the results for the two methods.

Random Search. In this method search space parameters are chosen uniformly
at random. Figure 1(a) displays random search with 2 500 measurements.

Exhaustive Search. In order to check the full characterization of search space
we also run an exhaustive search algorithm. Here, parameters of interest are
glitch voltage, length and offset. Since there are too many possible solutions for
any realistic exhaustive search we conduct exhaustive search for glitch length
and voltage while other parameters are chosen uniformly at random. Figure 1(b)
shows the results of 7500 measurements.

Next, we present results of our new algorithms separately for the case where
the goal is to find as many faults as possible and for the case where the goal is
the characterization of search space. After a short tuning phase we set distance
d parameter to the value of 0.3 and resolution r parameter to the value of 0.1
since with those values we observe the best behavior. However, our experiments
also show that these parameters are quite robust and small changes in values do
not significantly change algorithm performance.

4.2 Finding Faults

When the goal is finding faults, we conduct several runs of different algorithm
versions and then we present averaged values. Columns Normal, Reset and
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(a) Random search, 2 500 measurements (b) Exhaustive search, 7 500 measure-
ments

Fig. 1. Measurements for random and exhaustive search methods.

Success show average number of NORMAL, RESET/MUTE and SUCCESS
measurements. In Table 2 we give the results for three different versions of our
algorithm where we can see that GA+TS+LS algorithm with Euclidean distance
metric finds the most SUCCESS points on average.

In Figs. 2(a) and 2(b) we give an example of one run of GA+TS+LS algorithm
with Euclidean distance and 250 measurements. In this experiment, with 250
measurements in total, we found 21 glitches which represents 8.5 % of total
measured points.

Table 2. Average results of experiments.

Algorithm Normal (%) Reset (%) Success (%)

GA+TS 58.08 39.97 1.94

GA+TS+LS, Euclidean 55.29 41.87 2.84

GA+TS+LS, Manhattan 62.76 36.45 0.78

(a) Glitch voltage vs. Glitch length (b) Glitch offset vs. Glitch length

Fig. 2. GA+TS+LS, 250 measurements.
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4.3 Search Space Characterization

When the goal is to characterize the search space, or more precisely the region
between NORMAL and RESET/MUTE classes, we are not interested in SUC-
CESS points. Therefore, we can treat them as NORMAL or RESET/MUTE
points (and give them fitness values 1 or 2, respectively). Again in this case, the
number of measurements is set to 250. In Figs. 3(a) to 3(d) we present results
for search space characterization with four different algorithms.

(a) Random search (b) GA + TS

(c) GA + TS + LS, Manhattan (d) GA + TS + LS, Euclidean

Fig. 3. Algorithms for the space characterization, 250 measurements.

We see that random search is not capable to characterize interesting regions
with a small number of measurements. A combination of GA, TS and LS algo-
rithms with Manhattan distance performs best since it accurately describes the
longest part of the interesting region.

When observing differences in regards to distance metrics, we see that Euclid-
ean distance gives better results when finding faults while Manhattan distance
is better in space characterization scenario. However, this observation should be
considered cum grano salis since we use the same distance value in both cases.
It can be concluded that the smaller distances are better when looking for spe-
cific points (smaller distances are to be expected in Euclidean metric due to the
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squaring operation of normalized values) while bigger distance values can cover
more space and characterize it better as it can be seen from the case where we
use Manhattan distance. As evident from the results, the memetic algorithm
behaves much better than the genetic algorithm considered (although, the GA
we use is specialized and already behaves much better than the standard GA).

It is very difficult to give a meaningful comparison between the efficiency
of our algorithm and for instance algorithms presented in [6,13] due to several
reasons. First, we add one more dimension (glitch offset) to the search space and
thus we render some of the operators from previous works non applicable. More-
over, our problem is much more difficult due to the extra dimension. Although
exhaustive search in two dimensions (with some parameter steps) would take
several hours we still consider it to be a realistic approach while with three
parameter dimensions this problem becomes completely non practical in a real-
istic environment. With the increase of the number of parameters, the methods
presented here need no additional adjustment and should prove even more effi-
cient with regard to random search, which remains to be addressed.

Next, in our approach we set strict constraints on the available number of
measurements which was not the case in previous works (there the goal was a
minimal number of measurements without explicitly stating the minimal num-
ber). Furthermore, as GAs use information from known solutions in future gen-
erations, after finding several faults we can expect to find asymptotically more
faults in future generations and that probability increases with the number of
generations. In related work there is also a distinction that they conduct three
measurements per point to check for CHANGING class [6]. In our approach we
do not consider CHANGING class and consequently we do not conduct multiple
measurements of the same points.

Lastly, based on the results in [6] it seems that some of the SUCCESS points
that are found and taken into account in statistics are actually repeated mea-
surements of the same points. Since in our approach Tabu Search renders that
impossible, it would not be possible to compare those results without removing
TS constraint from our algorithm. As evident from our results, TS on average
reduces the total number of measurements by more than 20 % which results in
more unique points our algorithm can generate.

5 Conclusions and Future Work

In this work we revisit the problem of fiddling with multiple parameters for
successful fault injection. Our experiments with the memetic algorithm show
that one can successfully find faults with a limited number of measurements.
Additionally, our algorithm can be used to characterize interesting search space
regions. Both scenarios are explored with a “small” i.e. feasible number of mea-
surements. By adding more measurements (and therefore GA generations) we
obtain even better results since the GA works by using existing solutions to
find new, better solutions. We do not claim that the GA (or the memetic algo-
rithm) is the best possible method, but we demonstrate there are nature-inspired
algorithms that can significantly improve the FI process.
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Glitch testing in this work has only been performed on a target with no
countermeasures. Since it is expected that the search space is affected by such
countermeasures, e.g. glitch sensors, the applicability of this approach in a real
world attack scenario remains to be assessed. A possible step in our research is
therefore to experiment with smart cards on which countermeasures against FI
are implemented.
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Abstract. Differential Fault Intensity Analysis (DFIA) is a recently
introduced fault analysis technique. This technique is based on the obser-
vation that faults are biased and thus are non-uniformly distributed over
the cipher state variables. The adversary uses the fault bias as a source of
leakage by controlling the intensity of fault injection. DFIA exploits sta-
tistical analysis to correlate the secret key to the biased fault behavior.
In this work, we show a DFIA attack on two lightweight block ciphers:
PRESENT and LED. For each algorithm, our research analyzes the effi-
ciency of DFIA on a round-serial implementation and on a nibble-serial
implementation.We show that all algorithms and all implementation vari-
ants can be broken with 10 to 36 fault intensity levels, depending on the
case. We also analyze the factors that affect the convergence of DFIA.
We show that there is a trade-off between the number of required plain-
texts, and the resolution of the fault-injection equipment. Thus, an adver-
sary with lower-quality fault-injection equipment may still be as effective
as an adversary with high-quality fault-injection equipment, simply by
using additional encryptions. This confirms that DFIA is effective against
a range of algorithms using a range of fault injection techniques.

Keywords: Differential attack · Fault intensity · Light-weight block
cipher · PRESENT · LED

1 Introduction

Nowadays, lightweight cryptographic primitives are recommended to be used
to secure various resource-constrained systems such as RFID tags and sensor
networks [1,2]. The security of a cryptographic primitive relies on both its algo-
rithmic features and on its physical implementation.

Physical attacks are divided into two groups. Side Channel Attacks retrieve
the secret key by using statistical tests on the information leaked from the crypto-
graphic device during its execution [3]. Fault attacks, first, intentionally disturb
a cryptographic device by means of fault injection to induce errors in the out-
put of the device. Then, they exploit the erroneous outputs to mathematically
reverse-engineer the secret key [4].
c© Springer International Publishing Switzerland 2015
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Differential Fault Intensity Analysis (DFIA) is a recently introduced fault
analysis technique [5]. In DFIA, the attacker injects faults by means of inten-
tional variation of the fault intensity. Using this fault injection technique, he
induces biased faults in the intermediate state of the cryptographic algorithm.
Under the biased fault model, a gradual change in the fault intensity will cause a
small change in the faulty state variable. Using the faulty ciphertext, the attacker
computes the key-dependent secret state variable under each key hypothesis.
Finally, he performs statistical tests on each of the computed state variables and
selects the key guess that is most likely under the biased fault model. Due to
the non-linear transformations of the cipher, the correct key hypothesis shows
only small changes on the variable, while the wrong key guesses show a random
behavior. This attack combines the principles of Differential Power Analysis and
fault injection.

In this paper, we demonstrate a DFIA attack on two lightweight crypto-
graphic algorithms: PRESENT [6] and LED [7]. In contrast to AES, PRESENT
and LED are nibble-oriented (4-bit). This makes the observation and exploitation
of biased faults more difficult. We therefore investigate the feasibility of DFIA
on both nibble-serial and round-serial implementations of PRESENT and LED.
We evaluate the practicality of the biased fault model and the attack strategies
on both nibble-serial and round-serial implementations of the algorithms.

Our results show that a single plaintext and 10 fault intensity levels are
sufficient to extract the key of a nibble-serial PRESENT-80 design. We also show
that 12 fault intensity levels are sufficient to extract the key of a round-serial
PRESENT-80 design. Besides a DFIA on PRESENT-80, the paper also provides
the attack results for PRESENT-128, LED-80, and LED-128. We confirm that
all these designs can be broken.

We also demonstrate that DFIA [5] can be easily extended over multiple
plaintexts, and that this increases the efficiency of the attack in narrowing down
the key search space. We show that using multiple plaintexts can compensate for
the low-resolution fault injection equipments. Therefore, DFIA can still retrieve
the correct key efficiently, even if the attacker is not in possession of a high-
quality fault injection tool.

The paper is organized as follows. Section 2 describes the DFIA and its fault
model requirements. In this section, we also explain the PRESENT and LED
algorithms and the nibble-serial and round-serial implementations of these algo-
rithms. Section 3 explains the DFIA attack procedure on the PRESENT and
LED algorithms. Section 4 shows the required number of fault injections for a
DFIA attack on the PRESENT and LED. In this section, we also show the effi-
ciency of the extended version of the DFIA. Section 5 covers the previous work
that relies on fault bias. Section 6 concludes the paper.

2 Background and Notation

This section explains the principles of the DFIA method. We will first explain
the concept of biased fault and an easy way to control it.
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Table 1. Symbols of DFIA attack procedure

P Plaintext

Q Total number of injected faults with different intensities

q A specific fault intensity

C′
q Faulty ciphertext under fault intensity q

S Correct state

k Key hypothesis

S′
k,q,P Faulty state under hypothesis K = k, fault q, S′

k,q,P = f(C′
q, k) and input P

2.1 Fault Model

The fault model is a combination of three factors. These factors are fault location,
fault timing and fault type. Fault location and fault timing define the spatial
and temporal location of the fault in a hardware circuit, respectively. The fault
type describes the behavior of the injected fault, and can be stuck-at, set-reset,
random bit-flip, or biased fault respectively. Throughout this paper, we refer to
following terms and definitions:

– Fault Intensity: Fault intensity is the strength by which a circuit is pushed
outside of its nominal operating conditions with the intent of inducing a fault.
For example, when faults are introduced using clock glitches, then the fault
intensity corresponds to the shortened clock cycle that is obtained as a result
of the glitches.

– Fault Sensitivity: The fault sensitivity is the fault intensity at which a hard-
ware circuit reflects faulty behavior [8]. For example, when faults are injected
by means of clock glitches, then fault sensitivity generally corresponds to the
critical path of the circuit.

– Biased Fault: A biased fault is the incremental fault behavior obtained as
a result of gradual increase in fault intensity. For DFIA, we are especially
interested in using minimal fault bias (e.g. changes of one or two bits in a
state variable), although other authors have shown that any fault bias is a
source of leakage [9].

One of the cheapest and most convenient methods of injecting biased faults into
a hardware device is clock glitching. In this method, the attacker creates biased
faults via injecting glitches into the clock signal of the device. To make a circuit
fail its timing constraints,the attacker gradually increases the fault intensity by
decreasing the clock period via glitch injection. As a result, he can obtain biased
faults because of the existing non-uniformity in the path delays of the circuit.

2.2 Differential Fault Intensity Analysis Using Multiple Plaintexts

This section summarizes Differential Fault Intensity Analysis. Algorithm 1
describes the attack procedure, and Table 1 lists the symbols used in this paper.
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Algorithm 1. DFIA Attack Procedure using Multiple Plaintext
Assume Cryptographic Algorithm, Fault Injection Tool ;
Result Correct Key Guess ;
foreach Plaintext P do

foreach Faultintensity q, 1 ≤ q ≤ Q do
Obtain faulty ciphertext C′

q;
foreach Key Hypothesis k do

Compute faulty state hypothesis S′
k,q,P = f(C′

q, k);

//Post-processing phase ;
foreach Key Hypothesis k do

Calculate ρk =
∑

P

∑Q
n=1

∑n−1
m=1 HD(S

′
k,n,P , S

′
k,m,P );

K = min ρk;

DFIA starts by applying a fault intensity q into an intermediate value S. The
attacker next observes the faulty ciphertext C ′

q, and derives the faulty interme-
diate value S′

k,q,P = f(C ′
q, k) under a key hypothesis k. The attacker repeats

these two steps for Q different fault intensities by gradually increasing the fault
intensity each time. In the post-processing step, for each key hypothesis, he com-
putes the cumulative Hamming Distance among all faulty intermediate values.
Finally, the attacker selects the key hypothesis that corresponds to the mini-
mum cumulative Hamming Distance. The reason of looking for minimum is that
for the correct key hypothesis, the cumulative Hamming Distance is correlated
with the fault intensity, and thus, it is minimal. A wrong key hypothesis infers
a larger, random cumulative Hamming Distance due to the non-linear diffusion
and confusion properties of the attacked cipher. Hence, the correct key results
in the minimum cumulative Hamming Distance as long as the applied fault
intensities induce biased faults. Ghalaty et al. [5] show this behavior on AES
for different biased fault injection scenarios. They draw two conclusions. First,
DFIA converges for any given set of biased faults. Second, DFIA converges faster
for strongly-biased faults (e.g. 1-bit faults) than it does for weakly-biased faults
(e.g. 4-bit faults).

The original DFIA is applied using a single plaintext value [5]. However,
DFIA can be easily extended to multiple plaintexts, by repeating the above
steps for each plaintext, and by accumulating the resulting Hamming Distance
values for each key hypothesis. Again, the global minimum will be obtained only
under the correct key hypothesis. In this paper, we make use of this feature, and
we show that it can be used to improve the efficiency of DFIA when few biased
faults are available, or when the fault injection equipment has limited resolution.

2.3 PRESENT Block Cipher

We make a brief overview of PRESENT and our implementations of it.
PRESENT is a lightweight block cipher that was recently standardized by
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Fig. 1. Nibble-serial implementation of PRESENT

IEEE [6]. It uses an SP-network structure, and loosely follows the structure
of AES, with the following important differences. It has 31 rounds, and uses a
block-length of 64 bits. It uses a selectable key size of 80 bit or 128 bit, and both
versions are distinguished through their name (PRESENT-80 or PRESENT-
128). Each round consists of three steps, including a roundkey addition layer,
a nonlinear substitution layer with sixteen 4-bit Sbox, and a permutation layer.
After the last round, an additional post-whitening step is included by adding a
final roundkey.

The 64-bit roundkey is extracted from the upper part of the key register, and
each round the key is updated with a key-size dependent key scheduling algo-
rithm. The key schedule for PRESENT-80 is shown in Eqs. (1a) through (1c).
The key schedule for PRESENT-128 is slightly more complex, and can be con-
sulted in [6].

K79K78....K0 = K18K17....K19 (1a)
K79K78K77K76 = Sbox[K79K78K77K76] (1b)
K19K18K17K16K15 = K19K18K17K16K15 ⊕ round counter (1c)

In this work, we studied both a round-serial and a nibble-serial implementa-
tion. The reason for this is to show the feasibility of DFIA on different imple-
mentations of the same cipher. The round-serial implementation computes an
entire round of a complete block in a single clock cycle. This implementation
is straightforward and follows the design of the original PRESENT paper [6].
We also developed a nibble-serial design, as shown in Fig. 1. In this case, one
round for a single nibble (4 bits) from a block is computed in a single clock
cycle, and this requires sequentialization of the round operations. This is easy
to achieve for the roundkey addition and the Sbox substitution. For the permu-
tation layer, we make use of the property that PRESENT’s permutation is a
4-bit by 16-bit transpose operation: 4 bits of the permutation output are taken
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Fig. 2. Nibble-serial implementation of LED

from a column of 4-bits of an input block, when the block is arranged as a 4-bit
by 16-bit matrix. In Fig. 1, we implement the permutation using serial/parallel
FIFO modules, which consist of four 4-bit FIFO’s that either operate as a single
16-bit FIFO (serial mode) or else as four parallel 4-bit FIFO’s (parallel mode).
A complete block is stored in four serial/parallel FIFOs. Using two such struc-
tures, which store either the odd or even round states, a compact nibble-serial
version of PRESENT is obtained.

Of particular note for our fault analysis is the critical path in these structures.
The critical path runs through the Sbox and roundkey addition operations. For
the round-serial design, all Sbox operations will be in the critical path in a given
clock cycle. For the nibble-serial design, on the other hand, only a single Sbox
operation will be in the critical path in a given clock cycle.

2.4 LED Block Cipher

The Light Encryption Device (LED) is a compact block cipher that was devel-
oped after PRESENT, and that integrates further insight into the lightweight
cipher design process [7]. This block cipher, too, is an SPN structure, with a
64-bit block size. It supports two different key sizes, 64-bit or 128-bit, and the
notation LED-64 and LED-128 is used to distinguish these cases. LED-64 has
8 steps of 4 rounds each, for a total of 32 rounds. In between steps, roundkeys
are added. Each of the rounds includes operations similar to AES (AddCon-
stants(AC), SubCells(Sbox), ShiftRows(SR), MixColumnSerial(MC)), but each
of these steps is specifically optimized towards lightweight encryption. LED orga-
nizes the state as a four by four matrix of nibbles, and the round operations
operate on these nibbles.

The LED cipher does not use a key scheduling algorithm. Rather, it reuses
the same key for every step. In the case of 128-bit key, the key bits are divided
into two groups and each round uses one of them alternatively. LED includes a
post-whitening step with a final addroundkey.

As with PRESENT, we developed a round-serial and a nibble serial version
of LED for DFIA analysis. Figure 2 shows the architecture of the nibble-serial
design. It follows the design guidelines of the original LED paper [7]. The State



180 N.F. Ghalaty et al.

is organized in a FIFO-like structure of 16 nibbles. The structure can rotate
the first column to compute MixColumnSerial, and it can rotate rows to com-
pute ShiftRows. SubCells and AddRoundKey rotate the entire matrix through
an Sbox and round-key addition respectively. The critical path runs through
the MixColumnSerial. This is true for either the nibble-serial as well as the
round-serial design. Fault injection using glitches will directly affect the vari-
ables computed in the critical path.

2.5 Implementations of the Block Ciphers

We wrote Verilog codes for our block cipher designs, namely, round-serial LED
(LED-rs), nibble-serial LED (LED-ns), round-serial PRESENT (PRE-rs), and
nibble-serial PRESENT (PRE-ns). We choose the key size as 128-bit in our
implementations. We also generated gate-level netlist files for an Altera Cyclone
IV FPGA (60 nm Technology). We use these netlists for gate-level simulations,
which are carried out using Modelsim-Altera 10.1d [10] software, to verify our
claims throughout the paper.

3 DFIA Attack on PRESENT and LED

In this section, we explain the DFIA attack on nibble-serial and round-serial
implementations of PRESENT and LED block ciphers. To get the full key, the
attacker must perform DFIA for the last two rounds of PRESENT-80 (i.e. round
30 and 31) and the last three rounds of PRESENT-128 [11]. The LED cipher
has a very simple key scheduling method, and thus, we can retrieve the key by
attacking the last round of LED-64. For LED-128, we have to attack the last
two rounds to retrieve the key.

DFIA has two phases: Injecting biased faults into the intermediate state of the
block cipher and post-processing the faulty ciphertexts to retrieve the key. The
biased fault injection is nibble-wise (i.e., 4-bit) for nibble-serial implementations,
while it is state-wise (i.e., 64-bit) for round-serial implementations. Regardless
of DFIA on round-serial or nibble-serial designs, the post-processing is always
applied on a single key nibble at a time.

3.1 Biased Fault Injection in PRESENT and LED

The proposed DFIA attacks build upon injecting biased faults in the inputs of
Sbox blocks. One can use a clock glitch injection method such as in Fig. 3(a) for
this purpose. This method generates an input clock signal for the circuit as a
combination of two clock signals, namely, glitch clock (clk g) and nominal clock
(clk o). As it is seen in Fig. 3(b), we inject glitches in the clk o via an enable
signal (g en). To inject a biased fault in the input of an Sbox, we set the g en
signal just before the clock cycle, in which the Sbox is employed. Such a glitch
injection makes some timing paths fail and causes a biased fault in the input of
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Fig. 3. (a) Block diagram of experimental setup (b) Timing diagram of experimental
setup

(a) Nibble-serial PRESENT (b) Round-serial PRESENT

(c) Nibble-serial LED (d) Round-serial LED

Fig. 4. Biased fault in the PRESENT and LED implementations

the Sbox. We control the fault intensity by increasing/decreasing the frequency
of the clk g signal.

The target block of DFIA is different for each implementation. For LED-
ns, the target block is MixColumnSerial (MC) logic. We create biased faults
in the outputs of the MC logic by violating its timing paths. Then, the biased
faults are transferred to the inputs of Sbox blocks via linear AddConstants (AC)
layer. The target block of PRE-ns is the roundkey addition and substitution
blocks. For LED-rs and PRE-rs the target blocks are the whole round logic of
the corresponding algorithms.

3.2 Biased Faults in PRESENT and LED Exist

In this section, we present a set of experimental results to verify that fault
bias is a feasible fault source. We demonstrated biased faults through gate-level
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(a) (b)

Fig. 5. Biased fault injection on state of (a) PRESENT and (b) LED

(post-place-and-route) simulation of the four block cipher implementations. In
Fig. 4, we present the results for Sbox of the four implementations for a single
plaintext.

Figure 4 shows the relationship between the clock glitch width and obtained
faults in the Sbox inputs at the last round of the corresponding implementation.
For each subgraph of Fig. 4, the horizontal axis is the clock glitch width and the
vertical axis is the bit position. We mark a faulty bit position with the symbol (X)
and mark a fault-free position with the symbol (-). In each subgraph of Fig. 4,
we observe a minimal Hamming Distance between two neighbor columns. This
behavior verifies the existence of fault bias in our implementations.

In Figs. 5(a) and 5(b), we show the number of faulty bits that are induced
in the 64-bit state with respect to the clock glitch width for PRE-rs and LED-
rs, respectively. These two graphs show that the fault bias exists for the 64-bit
state as well. The PRE-rs will fail at higher fault intensity (i.e. at a narrower
glitch width) than LED-rs. The reason is that the critical path of PRE-rs is
shorter compared to the LED-rs. Thus, the attacker needs higher-capability fault
injection tool to inject fault into PRE-rs.

3.3 Post-processing of DFIA on PRESENT

In this section, we describe the procedure to retrieve the key for PRE-ns and
PRE-rs implementations. To obtain the 80-bit key of PRESENT-80, we first
retrieve the round key of round 31 to get the 64 most significant bits of the key.
Then, to retrieve the remaining key bits, we retrieve the round key of round
30. Similarly, for PRESENT-128, the attacker must retrieve the round keys of
rounds 31, 30, and 29.

We can retrieve each nibble of a round key separately. Therefore, the key
retrieval procedure for nibble-serial and round-serial implementations is the
same. Following is the procedure to retrieve the 80-bit key for PRESENT-80.
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Fig. 6. DFIA steps to retrieve 4-bit key of PRESENT

We assume that the attacker has already collected the required amount of faulty
ciphertexts to retrieve the key (using the method in Sect. 3.1).

The DFIA attack on PRESENT-80 follows Algorithm 1 as explained earlier.
The faulty state variable is computed using Eq. 2. By repeating this process for all
nibbles of round 31, the attacker can retrieve the correct value for K79K78....K16.
In order to retrieve K16K15....K0, the attacker has to process 4 least significant
nibbles of round 30 as well.

S′
k,C′ = PlayerInv(SboxInv(C ′ ⊕ K)) (2)

Figure 6 shows an example DFIA attack to guess a nibble of a key. In this
figure, the attacker injects four fault intensities: no injection, 1-bit fault injection,
2-bit fault injection and 3-bit fault injection. In this example, we retrieve one
nibble of the round key with three fault injections. The bottom section of the
bar chart shows the Hamming Distance between the first two intensities. The
candidates for the correct key guess are the key guesses that show the minimum
Hamming Distance, which is the set G1 = {0, 2, 4, 7, 9, 10, 13, 15} after the 1-bit
fault injection. The middle section of the bar chart shows the Hamming Distance
between 1-bit fault injection and 2-bit fault injection. As it is seen, the set of
key candidates for correct key guess reduces to the set G2 = {9, 10, 15} after
the 2-bit fault injection. The top section of the bar chart shows the Hamming
Distance between 2-bit fault injection and 3-bit fault injection. The last fault
injection gives us the unique key guess, which is G3 = {10}.

3.4 Post-processing of DFIA on LED

In this section, we describe the procedure to retrieve the key for LED algorithm
for nibble-serial and round-serial implementations. As the LED uses a very sim-
ple key scheduling method, the key can be retrieved by attacking the last round
of LED-64. For LED-128, the attacker can retrieve the most significant 64-bit of
the key by attacking the round 31. Then, he can retrieve the remaining bits by
attacking the round 30.
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The post-processing step of LED is different than the post-processing of
PRESENT because LED includes a MixColumnSerial operation in its last round.
The MixColumnSerial operation spreads the single faulty nibble in the interme-
diate state (S) to four nibbles of the faulty ciphertext (C ′). Therefore, the recon-
struction of the hypothesized faulty intermediate state now requires a hypothesis
on 16 key bits, which means that we have 216 different hypotheses. We can solve
this problem via a method proposed by Jeong et al. [12]. The solution relies
on peeling off the MixColumnSerial operation of the last round by using an
equivalent ciphertext (C

′∗), and retrieving an equivalent key (K∗) instead of the
actual key (K). The equivalent key and ciphertext satisfy the Eqs. 3a and 3b,
respectively.

K∗ = MCInv(K) (3a)

C
′∗ = MCInv(C ′) (3b)

As Eq. 3b removes the effect of MixColumnSerial operation on C ′, one faulty
nibble in S corresponds to one faulty nibble in C

′∗. Therefore, we can use the
C

′∗ to retrieve each nibble of the K∗ with 4-bit key hypotheses. Using S′ and
C

′∗, we can perform DFIA (Algorithm 1) to retrieve four bits of the K∗ using
Eq. 4. By repeating the procedure for 16 nibbles of the C

′∗, we retrieve all 16
nibbles of the K∗. Then, we apply the MixColumnSerial operation on the K∗ to
retrieve the actual key K.

S
′
= SboxInv(SRInv(C

′∗ ⊕ K
′∗)) (4)

The validity of the described solution can be seen from Eqs. 5a through 5d.
The faulty ciphertext C ′ is computed by Eq. 5a. Equation 5b is obtained by
applying the MixColumnsInverse operation to both sides of Eq. 5a. Using the dis-
tributive property of the MixColumnsSerial over the XOR operation, we obtain
Eq. 5b. Using Eqs. 3b and 3a we obtain Eq. 5d.

C ′ = MC(SR(Sbox(S′))) ⊕ K (5a)
MCInv(C ′) = MCInv(MC(SR(Sbox(S′))) ⊕ K) (5b)
MCInv(C ′) = MCInv(MC(SR(Sbox(S′)))) ⊕ MCInv(K) (5c)

C
′∗ = SR(Sbox(S′)) ⊕ K∗ (5d)

4 Results

We evaluated the proposed DFIA attacks using gate-level simulation. In our
gate-level simulations, we first generated 50 random plaintexts. Then, for each
of the four implementations, we obtained the ciphertexts for different clock glitch
widths. In this experiment, we gradually decreased the clock glitch width from
4.6 ns to 0.6 ns with 100 ps step size. At the end, we obtained 40 ciphertexts for
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Table 2. Required Number of Physical Fault Intensity Levels and Glitched Clock
Cycles for DFIA Attack on PRESENT and LED with 100 ps Fault Injection Resolution

# of Fault intensity levels # of Glitched clock cycles

Nibble-serial Round-serial Nibble-serial Round-serial

PRESENT-80 10 12 160 12

PRESENT-128 16 18 256 18

LED-64 14 18 224 18

LED-128 28 36 448 36

each plaintext and each implementation. As it can be seen from previous work,
the selected step size is a reasonable value [13]. We present the analysis of our
results in the following subsections. We also study the trade-off between glitch
resolution and using multiple plaintexts in DFIA.

4.1 Results of DFIA on PRESENT and LED

Table 2 shows the results of a DFIA attack on PRESENT and LED implemen-
tations. The first two columns in Table 2 show the maximum number of required
fault intensity levels for each implementation to get enough faulty ciphertexts in
each nibble. For example, in nibble-serial PRESENT-80, the attacker is required
to increase the fault intensity 10 times to get enough faulty ciphertexts in each
nibble. The obtained numbers depend on the critical path of the target block
for each implementation.

Column 3 and 4 in Table 2 show the maximum number of glitched clock cycles
to obtain enough faulty ciphertexts for each implementation. As discussed in
Sects. 2.3 and 2.4, in the nibble-serial implementation of the block ciphers, each
nibble is processed in one clock cycle, while in the round-serial implementation
of block ciphers, all 16 nibbles are processed at the same clock cycle. Thus, in
the nibble-serial implementations, the attacker is required to inject clock glitch
in 16 cycles to affect all nibbles, while in round-serial implementations, injecting
the glitch in one cycle can affect all nibbles.

Compared to the previous fault attacks on PRESENT, we inject more faults.
The attack in [11] needs up to 150 faulty ciphertexts to retrieve the unique key.
The attack proposed in [14] require 48 faulty ciphertext to retrieve the last round
key of the algorithm. While the number of required fault injections in the DFIA
attack is bigger compared to the mentioned previous works, we provide practical
results with less restrictions of the fault model.

The previous DFA attacks on LED [12], requires a random faulty nibble to
decrease the key search space to 28 candidates. Also, the methodology proposed
in [15] is based on algebraic equations and injects a single fault to reduce the
key search space to 26 ∼ 217 key guesses. The proposed DFIA attack on LED
finds the unique correct key guess using additional fault injections. However, the
biased fault model is practical and easy to achieve for the attacker.
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(a) PRESENT (b) LED

Fig. 7. Trade-off between fault injection resolution and number of plaintexts used for
(a)PRESENT and (b)LED

4.2 Trade-Off Between Fault Injection Resolution and Number of
Plaintexts

In this section, we provide the experimental results to verify the efficiency of
the extended version of DFIA. We investigate the relationship between fault
injection resolution and the number of plaintexts that DFIA needs to retrieve the
key. As our fault injection means is clock glitching, our fault injection resolution
is the minimum increment or decrement in the clock glitch width that we can
achieve. In this experiment, we apply DFIA attacks (Algorithm 1) on our PRE-rs
and LED-ns implementations for different fault injection resolutions, from 20 ps
to 500 ps, and for different number of plaintexts, which ranges from 2 to 50.
Then, we count the number of the key nibbles that DFIA cannot retrieve under
a given fault injection resolution and a given number of plaintexts. We call such
nibbles as unknown nibbles throughout this section.

Figures 7(a) and 7(b) present the results for PRE-rs and LED-rs implemen-
tations, respectively. In these figures, the Y axis shows the number of unknown
nibbles out of 16 nibbles and the X axis shows clock glitch resolutions. Each
data line in the graphs corresponds to a different number of applied plaintexts
(PTs). Figures 7(a) and 7(b) show two important behaviors for both LED-rs and
PRE-rs. For a given fault injection resolution, using more plaintexts decreases
the number of unknown nibbles. For a fixed number of plaintexts, the number of
unknown nibbles decreases as the fault injection resolution increases (i.e., clock
glitch step size decreases). An adversary can decrease the number of unknown
nibbles either by increasing the fault injection resolution or by increasing the
number of plaintexts (i.e., encryptions). Therefore, we can conclude that there
is a trade-off between the fault injection resolution and the number of required
plaintexts. Due to this trade-off, DFIA can still efficiently retrieve the key when
the fault injection equipment has a low resolution or when few biased faults are
available.
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5 Related Work

Ghalaty et al. [5] have a discussion on the differences of the DFIA attack with
other types of attack such as DFA [4], FSA [8] and DPA [3]. In this section, we
will talk about the previous types of fault attacks that use the concept of biased
fault and explain their differences with DFIA. Although DFIA [5] is not the first
work that utilizes the fault bias as a fault model [9,11,16,17], it is the first work
that defines biased fault just beyond the fault sensitivity.

Lashermes et al. [9] assume a biased fault model and use the concept of
hypothesis test on a distinguisher (i.e. Shannon entropy). However, in order for
their method to converge in a practical time, they need a method to quantify the
characteristic error distribution of the fault injection means. For this purpose,
they need to profile the device under attack for different data sets. On the other
hand, DFIA does not require any profiling phase.

Li et al. [16] and De Santis et al. [11] apply similar methodology to AES and
PRESENT algorithms. They assume that faults will cause bias in the interme-
diate values, for example because of stuck-at faults in the intermediate value.
In contrast, DFIA assumes that the fault itself is biased: The faulty intermediate
values must differ in a small number of bits from the non-faulty value. But the
faulty intermediate values do not have to be biased.

Jarvinen et al. [18] also propose DFA attack based on biased fault injection
model. However, their method is more similar to the DFA attacks. Their defini-
tion of fault model is also different from DFIA’s fault model. In this paper, the
author defines the biased fault as the fact that the probability of stuck-at-1 or
stuck-at-0 is higher compared to the other one. They assume that based on the
fault injection method, the attacker knows the value of faulty bit and can use
mathematical equation to reverse the faulty ciphertext and get the key.

6 Conclusion

In this paper, we propose a DFIA on round-serial and nibble-serial implementa-
tions of PRESENT and LED. Based on our result, we can retrieve the unique
key guess for each algorithm with a reasonable number of fault injections. Our
method of fault injection is the clock glitching in this paper which is a very
cheap and easy way of attacking for the adversary. We also study the relation
between the number of plaintexts (encryptions) used, and the resolution of the
fault injection equipment.
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Abstract. In this paper we propose the first practical fault attack on
the time redundancy countermeasure for AES using a biased fault model.
We develop a scheme to show the effectiveness of a biased fault model in
the analysis of the time redundancy countermeasure. Our attack requires
only faulty ciphertexts and does not assume strong adversarial powers.
We successfully demonstrate our attack on simulated data and 128-bit
time redundant AES implemented on Xilinx Spartan-3A FPGA.

Keywords: Cryptanalysis · Time redundancy · Biased faults · AES

1 Introduction

Implementation attacks on secure embedded systems come in different flavors.
One of these is the Side-Channel Analysis (SCA) such as Differential Power
Analysis [8]. The other popular variety is the active Fault Analysis (FA) involving
injection of faults into cryptographic systems and analysis under different fault
models [2]. Attacks such as the Differential Fault Intensity Analysis (DFIA)
[4] have in fact combined DPA with fault injection principles to obtain biased
fault models. The advantage of a biased fault model lies in the ability of the
adversary to derive an intermediate key-dependent state variable under several
key hypotheses. The correct key hypothesis produces small changes to the faulty
state while incorrect ones infer big, random changes.

This work attacks the time redundancy countermeasure using a biased fault
model. The model is not as strict as some proposed earlier, such as stuck-at-zero
or stuck-at-one faults [3]. The time redundancy technique is as an effective coun-
termeasure, in which an encryption is followed by a redundant encryption, and
in the event of a mismatch, the faulty ciphertext is either suppressed or replaced
by a random ciphertext. Literature proposes time redundancy as a classical fault
tolerance technique [10,11] with the assumption of a uniform unbiased fault dis-
tribution. For a time redundant AES, in order to obtain the faulty ciphertext,
the adversary must introduce exactly the same fault in both the actual and
redundant round cycles. When the fault distribution is unbiased (as classically
assumed) the probability of occurrence of this event is very low. But a biased
c© Springer International Publishing Switzerland 2015
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Fig. 1. Time redundancy

fault model augments this probability to the extent that it is feasible to obtain
sufficient number of faulty ciphertexts to recover the key, while using a prac-
tical number of fault injections, even in the presence of the time redundancy
countermeasure.

This work also assumes that we are operating only on faulty ciphertexts
unlike traditional DFA which requires fault-free ciphertexts as well [1,6,9,12,14].
The proposed attack, like Differential Fault Intensity Analysis (DFIA) [4] tar-
gets an affected state variable by a biased fault injection methodology to retrieve
the key. Our contributions are threefold: First, we develop a formulation for the
degree of biasness in the fault distribution. Second, we propose fault models for
biased faults and demonstrate actual fault attacks on a real life AES implemen-
tation with the time redundancy countermeasure. Finally, we establish through
simulations and real life experiments that the number of fault injections required
to defeat the time redundancy countermeasure is inversely proportional to the
biasness of the fault induced.

2 Related Work

2.1 The Time Redundancy Countermeasure

Figure 1 illustrates the use of time redundancy in fault detection. Time redun-
dancy is a fault tolerance technique that uses additional time to perform the
functions of a system multiple times and compares the results to detect faults if
any. A particular advantage of this approach is its low area overhead. The basic
time redundancy technique has essentially three important aspects - repetition
of function computation, storage of results of original and redundant computa-
tions and comparison of results for fault detection. In ciphers, time redundancy
is often used for concurrent error detection(CED) against DFA by repeating
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each round twice and comparing the results. Previous research has proposed
some countermeasures to fault attacks using time redundancy. These include
re-computation [11] as well as double data rate computation [10].

2.2 Fault Attacks on AES

Recent research has focused on two broad categories of fault analysis of AES -
attacks that require correct and faulty ciphertext pairs, and attacks that require
faulty ciphertexts only. The first category principally includes Differential Fault
Analysis(DFA). In DFA, the adversary compares the response of the cipher with
and without fault injections [1,6,12,14]. The other category of fault attacks on
AES require only faulty ciphertexts to retrieve the key, as proposed by Fuhr
et al. [3]. The attack uses stuck-at fault models and depends on the degree of
control the adversary has on the distribution of the injected fault. A very similar
approach proposed by Ghalaty et al. is the Differential Fault Intensity Analysis
(DFIA) [4] that uses a biased but slightly less restrictive single byte fault model.
Both these approaches make several key hypotheses on the affected state bytes
in order to retrieve a hypothetical value whose distribution is strongly biased.

Our proposed attack uses a biased fault model to attack the time redun-
dancy countermeasure for AES-128 using faulty ciphertexts only. The reason is
that recovering the key using only faulty ciphertexts is widely believed to be
more challenging. However, similar attack procedure using biased fault models
can also be developed for the former scenario since we can always obtain fault
free ciphertext as well. Biased fault models expose a significant vulnerability
of the classical time redundancy countermeasure. Unlike in a uniform fault dis-
tribution, a biased fault distribution implies that the adversary can introduce
the same fault in both the normal and the redundant computation cycles with
high probability. This reduces the number of fault injections required per faulty
ciphertext. As in DFIA, our attack achieves the desired fault distribution using
clock glitches at various frequencies.

3 Fault Model and Fault Injection Set up

In this section, we describe the fault model used for our attack and the fault
injection set up employed to achieve this fault model.

3.1 Fault Model

Depending on the type and method of fault injection, different types of faults may
occur with varying granularity such as single bit upsets, multi bit upsets, single
and multi byte upsets, and diagonal upsets. Some previous works have considered
random effect on one byte, where a single state byte may have changed to any
random value [1,5,7,14]. However, such a fault model has a uniform distribution.
More recent work [4] has demonstrated that single-bit, two-bit, three-bit and
four-bit upsets are achievable using clock glitches, and that one can control the
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Table 1. Fault model description

(a) The Fault Model

Symbol Fault Model

FF Fault Free
SBU Single Bit Upset

SBDBU Single Byte Double Bit Upset
SBTBU Single Byte Triple Bit Upset
SBQBU Single Byte Quadruple Bit Upset

OSB Other Single Byte Faults
MB Multiple Byte Faults

(b) Impact of fault location precision

Fault Model
Faults Possible(n) Faults Possible(n)

(Situation-1) (Situation-2)

SBU 8 128
SBDBU 28 448
SBTBU 56 896
SBQBU 70 1120

OSB 93 744

granularity of fault injection by varying the fault intensity. We have ourselves
verified that such faults can be achieved in hardware implementations of AES-
128 via introduction of clock glitches at varying frequencies (refer Sect. 3.2).

For further discussions in this paper , we distinguish between major classes
of faults that covers the entire possible fault state. Table 1a summarizes these
categories. Our experiments have shown that SBU is the most suitable fault
model for our attacks on time-redundant AES implementations. However, we
also present results for SBDBU, SBTBU and SBQBU to show the impact of
fault model granularity on the performance of our attacks. Note that the degree
of control that the attacker has on the fault location impacts the fault models in
terms of the number of possible fault (N) under that fault model. We distinguish
between the following two situations - Situation-1 when the attacker has perfect
control over the faulty byte and Situation-2 when the attacker does not have
control over the faulty byte.

In the case of single byte faults, if k be the number of bit upsets in the
target byte, then the number of possible faults in either scenario is different. In
Situation-1, any k bits of the fixed target byte is affected, so number of possible
faults is

(
8
k

)
. In Situation-2, however k bits of any target byte could be affected, so

number of possible faults is 16
(
8
k

)
, which is 16 times greater than in Situation-1.

Table 1b captures the number of possible faults under various fault models
in both situations. Evidently, precision in terms of fault location restricts the
set of possible faults under a fault model significantly. Note that n is the total
number of faults possible under the fault model.

3.2 Fault Injection Set up

Figure 2 describes our set up for fault injection in time redundant AES-128.
The set up consists of an FPGA (Spartan-3A XC3S400A), a PC and an

external arbitrary function generator (Tektronix AFG3252). The FPGA has a
DUT (Device Under Test) block, which is a time-redundant AES implementa-
tion. Faults are injected using clock glitches and the fault intensity is controlled
by increasing/decreasing the glitch frequency. The system has two clock signals -
clkslow and clkfast, derived from an external clock signal clkext via a Xilinx Digital
Clock Manager (DCM) module. The clkext is generated by the external function
generator and can take frequency values up to 120 MHz. The clkslow signal has
the same frequency as clkext and is used for fault-free operation of the DUT. The
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Fig. 2. Fault injection setup

clkfast signal has a frequency equal to twice the frequency of clkext and is used
to create the glitches for fault injection. The appropriate signal is fed to the DUT
via a MUX. The select line of the MUX is the clksel signal which is output by the
trigger generator and is set to high when clkfast is to be fed to the DUT. The
faulty states of the registers were monitored using Chipscope Pro 12.3 analyzer.

We injected faults in both the original and redundant rounds of time-
redundant AES-128 by varying the clkext over a wide range of frequencies. Since
the Chipscope pro 12.3 Analyzer limits the number of observable samples at a
given frequency to 1024, we observed 512 samples for the original round and
512 samples for the redundant round. Tables 2a and b summarize the fault pat-
terns obtained in either round. Table 3 summarizes the common frequency ranges
between either round where each type of fault model is predominant.

4 Effectiveness of the Biased Fault Model

In this section, we demonstrate the effectiveness of the biased fault model in
our attack. We quantify the biasness of a given fault model using the variance
of the fault probability distribution. We assume that the set of faults that can
occur under the fault model is given by F = {f1, . . . , fi, . . . , fn}, where n is
the total number of faults possible under the fault model. Let F be a random
variable that denotes the outcome of random occurrence of a single fault under
this fault model. So the probability of occurrence of fault fi is given by pi =
Pr[F = fi]. Evidently, the fault model follows the probability distribution P =
{p1, . . . , pi, . . . , pn}.

In order to get a faulty ciphertext in time redundant AES, the same
fault fi must occur in both the original and redundant rounds of com-
putation. Let Forg and Fred be the random variables denoting the out-
come of fault injections in the original and redundant rounds respectively.
Since the fault injection in the original and redundant rounds are indepen-
dent, we have Pr[Forg = fi, Fred = fj ] = pipj . We focus on the event
where Forg = Fred. Let the probability of this event be denoted by p̃.



194 S. Patranabis et al.

Table 2. Fault Distribution

(a) Fault Distribution Pattern - Original Round

Fast Clock Frequency
FF SBU SBDBU SBTBU SBQBU OSB MB

(MHz)

125.0 512 0 0 0 0 0 0

125.1 503 9 0 0 0 0 0

125.2 489 22 1 0 0 0 0

125.3 456 50 6 0 0 0 0

125.4 425 59 22 6 0 0 0

125.5 396 45 43 28 0 0 0

125.6 354 34 112 32 0 0 0

125.7 303 23 101 85 0 0 0

125.8 260 11 55 86 0 0 0

125.9 208 5 46 147 6 0 0

126.0 176 1 39 228 68 0 0

126.1 143 0 18 211 136 4 0

126.2 115 0 10 94 178 15 0

126.3 101 0 8 95 251 49 8

126.4 65 0 9 45 232 141 20

126.5 32 0 5 16 131 187 141

126.6 13 0 3 8 98 101 289

126.7 5 0 1 4 32 112 358

126.8 0 0 1 2 5 105 399

126.9 0 0 1 2 3 88 421

127.0 0 0 0 1 2 33 476

127.1 0 0 0 0 1 12 499

127.2 0 0 0 0 0 0 512

127.3 0 0 0 0 0 0 512

127.4 0 0 0 0 0 0 512

127.5 0 0 0 0 0 0 512

(b) Fault Distribution Pattern - Redundant round

Fast Clock Frequency
FF SBU SBDBU SBTBU SBQBU OSB MB

(MHz)

125.0 512 0 0 0 0 0 0

125.1 512 0 0 0 0 0 0

125.2 507 5 0 0 0 0 0

125.3 479 32 1 0 0 0 0

125.4 456 50 8 4 0 0 0

125.5 416 63 29 4 0 0 0

125.6 375 41 67 29 0 0 0

125.7 345 29 120 32 0 0 0

125.8 303 23 158 28 0 0 0

125.9 255 11 121 123 2 0 0

126.0 215 3 51 251 2 0 0

126.1 192 1 39 214 66 0 0

126.2 131 0 11 187 177 25 0

126.3 105 0 10 104 278 15 0

126.4 87 0 8 64 231 98 24

126.5 50 0 8 46 157 162 90

126.6 27 0 5 16 113 125 226

126.7 21 0 4 10 98 118 261

126.8 13 0 3 6 50 103 337

126.9 7 0 3 5 21 107 369

127.0 3 0 3 2 12 91 401

127.1 2 0 1 1 8 44 456

127.2 0 0 0 1 7 17 487

127.3 0 0 0 0 3 8 501

127.4 0 0 0 0 1 3 508

127.5 0 0 0 0 0 0 512

Table 3. Fault Models and Corresponding Frequency Ranges

Fault Model Frequency Range (Original and Redundant Rounds) (MHz)

FF < 125.3

SBU 125.3-125.4

SBDBU 125.6-125.7

SBTBU 126.0-126.1

SBQBU 126.3-126.4

OSB 126.5

MB > 127.2

p̃ =
n∑

i=1

Pr[Forg = fi, Fred = fi] =
n∑

i=1

pi
2. (1)

Evidently, this is also the probability of leakage of faulty ciphertexts. Our objec-
tive is to find if there is a correlation between the biased nature of the fault
distribution and this probability of fault co-occurrence. Given the fault model F
and the corresponding probability distribution P, let V ar denote that variance
of P. From the standard definition of variance of a probability distribution is
given by V ar =

∑n
i=1 pi

2

n − 1
n2 .
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Table 4. Notations Used

P Plaintext

C Fault-free ciphertext

fi A specific fault instance

n The number of possible faults under the fault model

NC The total number of faulty ciphertexts obtained

(excluding random ciphertexts generated by the countermeasure)

NF The total number of fault injections

C′
fi The faulty ciphertext under fault fi

r A round of AES

k A key hypothesis

K The correct key

Sr
K The fault free cipher state in round r for key K

S′r
k,fi A guess for the faulty cipher state before the SubBytes of round r under

fault fi and key hypothesis k

Note that the value of V ar is 0 for a uniform fault distribution and increases
with increase in non-uniformity. This justifies using the variance of the fault
probability distribution as a measure for quantifying the biasness of the fault
model. Finally, we have the following relation.

p̃ = nV ar +
1
n

(2)

Thus, by using a biased fault model, one could greatly enhance the probability
of occurrence of identical faults in consecutive rounds of computation in a time
redundant circuit. The significance of this is as follows:

– If the countermeasure suppresses the ciphertext on fault detection, a biased
fault model will warrant much fewer fault injections to get a faulty ciphertext.

– If the countermeasure produces a random ciphertext on fault detection that
does not contribute to hypothesis testing, a biased fault model will require
fewer ciphertexts and hence fewer fault injections.

In either scenario, the countermeasure is weakened.

5 Description of the Attack

In this section, we describe the detailed procedure of the performed attacks on
a time redundant version of AES. The attack procedure introduces the fault
into either round 8 or round 9 of AES, and exploits the biased nature of the
introduced fault to decipher the key.

Please refer to Table 4 for the notations used for describing the attack pro-
cedure. Note that our fault model for the attack only comprises SBU, SBDBU,
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Fig. 3. Attack steps

SBTBU and SBQBU (refer Table 1a), i.e., all the fault models are single byte
fault models.

5.1 General Attack Procedure

We now present the general steps of the attack, irrespective of the round in
which the fault is introduced. A more round-specific treatment of the attack
is presented following the general discussion. Table 4 summarizes the notations
used in describing the attack procedure. The steps are also elucidated in Fig. 3.

Step 1: In this step the adversary induces faults fi and fj in both the normal and
redundant computation of the target round r. However, the adversary can get
the desired faulty ciphertext C ′

fi
only if fi and fj are identical; otherwise the

ciphertext is suppressed. Note that alternatively, if the countermeasure pro-
duces random ciphertexts on fault detection instead of suppressing, the attack
procedure does not change. The random ciphertext cannot distinguish between
correct and incorrect key hypotheses and so, does not contribute to key hypothe-
sis testing. This only increases the number of fault injections required to recover
the key, as in the case of suppression. For the purpose of a general treatment
that encompasses both the scenarios, we considerNC to be the number of non-
random faulty ciphertexts and NF to be the overall number of fault injections.

Step 2: Once the adversary collects the value of faulty ciphertext C ′
fi

, he can
compute the value of faulty state S′r

k,fi
under key hypothesis k. He com-

putes this value for every possible key hypothesis k.(Note that it is sufficient
to hypothesize only those bytes of k that affect the faulty byte of S′r

k,fi

since our fault model allows only single byte faults). After doing this for
several collected ciphertexts, the adversary uses a distinguisher to identify
the correct key hypothesis.

Step 3: The adversary chooses the key hypothesis k that minimizes/maximizes
the appropriate distinguisher function for the chosen fault model. A detailed
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description of the distinguisher functions is presented in Sect. 5.2. If no satis-
factory key guess can be made, NC is to be increased and the test repeated.
Note that in time redundant AES with suppression, the number of fault
injections NF is greater than NC as not all fault injections yield a faulty
ciphertext.

5.2 Distinguisher Functions

Distinguisher functions are used by the adversary to decide on the correct key
byte(s) by selecting the key hypothesis that corresponds to the expected bias in
the faulty state. For our attacks, we use two well known distinguisher functions -
Hamming Distance [4] and Squared Euclidean Imbalance [3,13]. Eqs. 3 and 4
describe these functions, with k as the key hypothesis and b as the affected byte
of the AES state.

H(k) =

NC∑

i=1

i−1∑

j=1

HD(S
′r

k,fi
, S

′r
k,fj

) (3)

S(k) =
255∑

δ=1

(
#{b | S′r

k,fi
[b] = δ}

NC

− 1

256
)
2 (4)

5.3 The Attack on Time Redundant AES-128

We describe the fault attack procedure where the faults are introduced in rounds
8 and 9 of AES, and the choice of distinguisher function is made accordingly.

Attack on the 8th Round

Fault Location: The fault fi is injected just after the ante-penultimate
AddRoundKey operation of the AES, modifying a random byte b of S8

K

[3]. The injection occurs in both the original and redundant rounds of com-
putation.

Attack Procedure: Eq. 6 summarizes the relation between the faulty cipher-
text and the faulty state. The adversary can hypothesize on 4 bytes of K10

and one byte of K9 to get the corresponding states and then use the SEI
distinguisher to identify the correct key hypothesis, because the Hamming
Distance is found to require more faulty ciphertexts in this case to arrive at
the key hypothesis.

Attack Complexity: The attack requires 232 key hypotheses for recovering 4
bytes of the key [3], and a total of 4 such sets for recovering the entire key,
leading to an overall requirement of 4 × 232 = 234 hypotheses. Once again,
time redundancy demands that the actual number of attacks be greater than
the required number of faulty ciphertexts.

S
′9

K,fi
= SB

−1
(SR

−1
(C

′
fi

⊕ K10)) (5)

S
′8

K,fi
= SB

−1
(SR

−1
((MC

−1
((SB

−1
(SR

−1
(C

′
fi

⊕ K10)) ⊕ K9)))) (6)
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Attack on the 9th Round

Fault Location: The fault fi is injected just after the penultimate AddRound-
Key operation of the AES, modifying a random byte b of S9

K [3]. The
injection occurs in both the original and redundant rounds of computation.

Attack Procedure: Since the last round involves no MixColumns operation,
we have Eq. 7. The adversary collects several faulty ciphertexts C ′

1, . . . , C
′
N

on the same P and hypothesizes on one byte of the key to obtain 256 guesses
of the faulty state S′9

k,fi
- one for each key hypothesis k. This is followed by

the computation of H(k) to identify the correct key hypothesis. It should be
noted that the SEI distinguisher is useless in this context, as the distance to
the uniform distribution will be the same for each hypothesis [3].

Attack Complexity: The attack requires 256 key hypotheses for recovering
each byte of the key.

S
′9

K,fi
= SB

−1
(SR

−1
(C

′
fi

⊕ K10)) (7)

6 Simulated Results

In this section, we present results of simulations of attacks on AES-128 with
time-redundancy countermeasure. The attack simulations were carried out on a
software implementation of the time-redundant AES-128.

We divide the simulation into two major halves. In the first half, we assume
the same fault for the original and redundant rounds so that each fault injection
gives us a faulty ciphertext, i.e., NC is same as NF . Our aim here is to estimate
the number of faulty ciphertexts required to recover the full key under different
fault models. In the second half, we vary the probability distribution for each
fault model to confirm the correlation of the bias with the number of fault
injections required per faulty ciphertext, as described by Eq. 2. Here, NC is less
than NF as the suppressions are simulated.

6.1 Simulation: Part-1

In this part of the simulation, we assume identical faults in both the original
and redundant computation rounds and aim to estimate the average number of
faulty ciphertexts required to recover the entire key.

In the simulation, a byte of the state at the desired attack point is chosen at
random and then fault is introduced into a certain number of bits belonging to
that byte, varying from 1 to 4. Note that these bits are also chosen at random.We
simulate the attacks in rounds 8 and 9 respectively. In each case, the appropriate
distinguisher function is used to choose the key hypothesis. Table 5 summarizes
the number of faulty ciphertexts required for each fault model to guess the entire
128-bit key with 99% accuracy for the attacks on rounds 8 and 9.
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Table 5. Number Of Faulty Ciphertexts Required To Guess the Entire Key With 99 %
Probability

Round Fault Model NC

8 SBU 320-340

SBDBU 580-600

SBTBU 1000-1040

SBQBU 1900-2000

9 SBU 288-320

SBDBU 608-640

SBTBU 832-880

SBQBU 1360-1440

6.2 Simulation: Part-2

In the second half of the simulation, we varied the degree of bias for each
fault model by controlling the variance of the fault probability distribution for
each model and observed the average number of fault injections required per
faulty ciphertext, computed over a set of 100 ciphertexts. In this experiment,
the assumption was that the countermeasure suppresses the ciphertext on fault
injection. Our experiment considered two distinct scenarios, in which the adver-
sary has perfect and no control respectively over the target byte in which the
fault is to be induced. For the first scenario, the fault was injected only in the
fixed target byte, while in second scenario, the target byte was randomly chosen.
In either scenario, we simulated the fault probability variance using a normal
distribution with mean 1/n and the desired variance, where n is the total num-
ber of faults achievable under the corresponding fault model. Figures 4a and b
summarize the simulation observations over a wide range of fault distribution
variances, in both scenarios. These observations show that with increase in bias
of the fault distribution, the number of fault injections that are required per
faulty ciphertext drops rapidly. Thus, using a fault model with high variance
indeed weakens the time redundancy countermeasure.

We also simulated another experiment with the same fault model, but with
the assumption that the countermeasure produces a random ciphertext instead
of suppressing it. Figure 4c shows, for the attack on round 9 where the adver-
sary has perfect control over the target byte, how the required number of fault
injections varies with the variance of the probability distribution. Clearly, even
in this scenario, the total number of fault injections decreases with increase in
the variance of the fault probability distribution.

7 Experimental Results

In this experiment, we evaluate the proposed attack on a time-redundant hard-
ware implementation of AES on Spartan-3A FPGA . The implementation is a
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(a) Adversary has perfect control over target byte

(b) Adversary has no control over target byte

(c) Countermeasure produces random ciphertexts

Fig. 4. Number of fault attacks per faulty ciphertext vs variance of fault probability
distribution
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Fig. 5. Modified fault injection setup: adversary has control over affected byte

register-transfer level Verilog definition of AES with each round duplicated by
a re-computation round that helps achieve time redundancy. Thus a total of
20 rounds of computation are necessary. The plaintext and key are randomly
chosen 128 bit values. If the output of original and redundant round of compu-
tations is different, i.e., if a fault is detected by the countermeasure, the output
is immediately suppressed.

7.1 Experimental Procedure

Attack on Round-8: A total of 4 bytes of the AES state were affected one
by one after the anti-penultimate AddRoundKey operation, since each byte of
the faulty state can be guessed by hypothesizing 4 bytes of the Round 10 key
K10. Again, the external clkfast was increased gradually from 125.3 MHz to
126.4 MHz to achieve the for different fault models. Once sufficient number of
faulty ciphertexts had been collected for each of the 4 bytes, the entire key was
deciphered using the appropriate Squared Euclidean Imbalance computation for
each byte for all the key hypotheses.

Attack on Round-9: Each of the 16 bytes of the AES state were affected one by
one after the penultimate AddRoundKey operation to guess the 16 bytes of the
Round 10 key K10. The external clkfast was increased gradually from 125.3 MHz
to 126.4 MHz to achieve the four different fault models. Once sufficient number of
faulty ciphertexts had been collected for each byte, the entire key was deciphered
using the appropriate Hamming Weight computation for each byte for all the
key hypotheses.

7.2 Fault Location Precision

We performed 2 types of attacks - Type-1 in which the adversary has perfect
control over the byte in which the fault is to be introduced and Type-2 in which
the adversary only knows that the fault injected is a single byte fault without
any knowledge of the byte affected. The second type of experiments demands
much lesser control over the actual fault injection, but is weaker as observed
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Table 6. Experimental Results

Round Fault Model Fault Variance NC NF (simulation) NF (experimental)

Type-1 Type-2 Type-1 Type-2 Type-1 Type-2

8 SBU 9.5 × 10−2 3.6 × 10−3 304.75 340.48 647.52 387.67 687.91

SBDBU 1.4 × 10−2 9.2 × 10−4 625.12 1456.25 1506.25 1448.45 1652.30

SBTBU 9.7 × 10−3 4.9 × 10−4 1020.49 1815.60 2315.40 1974.86 2395.83

SBQBU 3.2 × 10−3 5.9 × 10−5 1878.55 7868.82 28038.54 8003.14 30201.41

9 SBU 9.2 × 10−2 3.5 × 10−3 304.24 385.88 603.11 387.98 632.71

SBDBU 8.8 × 10−2 7.9 × 10−4 624.65 641.18 1487.36 647.82 1556.69

SBTBU 8.1 × 10−2 6.7 × 10−4 832.32 873.56 2054.00 878.23 2489.25

SBQBU 7.5 × 10−2 3.5 × 10−5 1328.22 1788.84 17239.10 1809.25 20145.66

in the experimental results, and demands a significantly larger number of fault
injections. For the first type, only the target byte should be affected by the clock
glitch while in the second, the entire AES state should be subjected to the clock
glitch. We describe the set up changes to be made for either scenario in greater
detail. Suppose that the adversary wishes to affect only byte w of the AES state.
She can achieve this precision by modifying the fault injection set up slightly to
allow clkfast to affect only byte w while all other bytes are driven by clkslow.
This ensures that in the event of a clock glitch, only byte w is affected. This is
illustrated in Fig. 5. Type-2 is the normal fault injection scenario where all bytes
are allowed to be affected by clkfast.

For each scenario, we repeated the experiment 100 times, with the same
randomly chosen key and the randomly chosen plaintext and took the average
values for the number of faulty ciphertexts as well as the number of fault injec-
tions required to recover the key as well. Table 6 demonstrates the number of
faulty ciphertexts and the number of fault attacks required for recovering the
entire key under the attack on rounds 8 and 9, for both the scenarios where the
adversary has and does not have control over the fault location. The variance of
fault distribution presented for each model was experimentally observed. In both
tables, we compare the experimentally required number of fault injections with
the expected number of fault injections according to the simulation. It is evident
that the experimentally obtained data corroborates the simulation results very
well, thus confirming the hypothesis that with more bias, our proposed fault
attack can break the time redundancy countermeasure with very less number of
fault injections, as compared to unbiased faults.

8 Conclusions

This paper presents the first successful practical fault attack on the time redun-
dancy countermeasure for AES-128 using biased fault models. The proposed
attack requires neither precise fault injection techniques nor strong adversar-
ial powers. The attack involves fault injection in either round 8 or round 9 of
time redundant AES-128 using clock glitches. Our attack has been successfully
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demonstrated on simulated data as well as on 128-bit time redundant AES imple-
mented on Xilinx Spartan-3A FPGA. The paper also develops a scheme to show
the effectiveness of a biased fault model in the analysis of the time redundancy
countermeasure. We conclude that the usage of the countermeasures in secure
systems based on uniform fault distribution should be reconsidered in the pres-
ence of biased fault models. Our future work is to apply our proposed attack to
the hardware redundancy countermeasure.
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Abstract. Masking is an effective and widely-used countermeasure to
thwart Differential Power Analysis (DPA) attacks on symmetric crypto-
systems. When a symmetric cipher involves a combination of Boolean
and arithmetic operations, it is necessary to convert the masks from one
form to the other. There exist algorithms for mask conversion that are
secure against first-order attacks, but they can not be generalized to
higher orders. At CHES 2014, Coron, Großschädl and Vadnala (CGV)
introduced a secure conversion scheme between Boolean and arithmetic
masking of any order, but their approach requires d = 2t + 1 shares to
protect against attacks of order t. In the present paper, we improve the
algorithms for second-order conversion with the help of lookup tables so
that only three shares instead of five are needed, which is the minimal
number for second-order resistance. Furthermore, we also improve the
first-order secure addition method proposed by Karroumi, Richard and
Joye, again with lookup tables. We prove the security of all presented
algorithms using well established assumptions and models. Finally, we
provide experimental evidence of our improved mask conversion applied
to HMAC-SHA-1. Simulation results show that our algorithms improve
the execution time by 85 % at the expense of little memory overhead.

Keywords: Side-Channel Analysis (SCA) · Arithmetic masking · Boolean
masking · Provably secure masking · HMAC-SHA-1

1 Introduction

Ever since the introduction of Side-Channel Analysis (SCA) attacks in the late
1990s, there has been much interest in finding countermeasures to thwart this
form of “physical cryptanalysis,” in particular the Differential Power Analysis
(DPA) attacks [8]. From a high-level perspective, DPA countermeasures aim to
either randomize the power consumption (which can be done in both the time
and amplitude domain) or make it completely independent from the processed
data. The goal of both approaches is to eliminate (or, at least, reduce) the cor-
relation between the power consumption and the key-dependent intermediate
variables processed during the execution of a cryptographic algorithm. Concrete
examples for randomization in the time domain include various “hiding”-style
countermeasures like the insertion of random delays or shuffling of operations
c© Springer International Publishing Switzerland 2015
S. Mangard and A.Y. Poschmann (Eds.): COSADE 2015, LNCS 9064, pp. 207–221, 2015.
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[9]. On the other hand, a classical example of randomization in the amplitude
domain is masking, which aims to conceal each sensitive intermediate variable
x with a random value x2, called mask [2,9]. This means that x is represented
by two shares, namely the masked variable x1 = x ⊕ x2 and the mask x2. The
two shares need to be manipulated separately throughout the execution of the
algorithm to ensure that the instantaneous power consumption of the device
does not leak any information about x. A conventional DPA attack may reveal
x1 or x2 (both of which appear as random numbers to the attacker), but the
knowledge of x1 alone or x2 alone does not give the attacker any information
about the sensitive variable x.

One of the major challenges when applying masking to a block cipher is to
implement the round functions in such a way that the shares can be processed
independently from each other, while it still must be possible to recombine them
at the end of the execution to get the correct result. This is fairly easy for all
linear operations, but can introduce massive overheads for the non-linear parts
of a cipher, i.e. the S-boxes. In addition, all round transformations need to be
executed twice (namely for x1 and for x2, where x = x1 ⊕ x2), which entails a
further performance penalty. Another problem is that a basic masking scheme
as described above is vulnerable to a so-called second-order DPA attack where
an attacker combines information from two leakage points (i.e. he exploits the
side-channel leakage originating from x1 and x2 simultaneously [11]). Such a
second-order DPA attack can, in turn, be thwarted by second-order masking, in
which each sensitive variable is concealed with two random masks and, conse-
quently, represented by three shares. In general, a d-th order masking scheme
uses d random masks to split a sensitive intermediate variable into d + 1 shares
x1, x2, . . . , xd+1 satisfying x1 ⊕ x2 ⊕ · · · ⊕ xd+1 = x, which are then processed
independently. In this way, it is guaranteed that the joint leakage of any sub-
set of up to d shares is independent of the secret key. Only a combination of all
d + 1 shares (i.e. the masked variable x1 = x ⊕ x2 ⊕ · · · ⊕ xd+1 and the d masks
x2, . . . , xd+1) is jointly dependent on the sensitive variable. However, given the
presence of noise, the cost for attacking a higher-order masked implementation
increases exponentially with d [2].

Depending on the algorithmic properties of a cipher, a masking scheme can
have to protect Boolean operations (e.g. xors, shifts) or arithmetic operations
(e.g. modular additions). When a cipher involves both Boolean and arithmetic
operations, it is necessary to convert the masks from one form to the other to
obtain the correct ciphertext (or plaintext). Examples of symmetric algorithms
that involve arithmetic as well as Boolean operations include the widely-used
hash functions SHA-1, SHA-2, Blake and Skein, some ARX-based block ciphers
(e.g. XTEA, Threefish) and all four finalists for the eSTREAM software port-
folio. Given the widespread deployment of these cryptosystems in various kinds
of application (including some with a need for sophisticated countermeasures
against DPA), it is important to develop efficient techniques for the conversion
between Boolean and arithmetic masks. However, almost all secure conversion
techniques reported in the literature are only applicable to first-order masking
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[4–7,10]. Among the few exceptions is the second-order conversion scheme due
to Vadnala and Großschädl [13] and the recent higher-order conversion scheme
by Coron, Großschädl and Vadnala [3]. We outline both schemes below.

Vadnala-Großschädl Scheme [13]. The foundation of this technique is the
generic second-order countermeasure that Rivain, Dottax and Prouff proposed
at FSE 2008 [12]. We recall their algorithm for computing a second-order secure
masked S-box output from a second-order secure masked input below.

Algorithm 1. Sec2O-masking [12]

Input: Three input shares: (x1 = x ⊕ x2 ⊕ x3, x2, x3) ∈ F2n , two output shares:
(y1, y2) ∈ F2m , and an (n, m) S-box lookup function S

Output: Masked S-box output: S(x) ⊕ y1 ⊕ y2

1: r ← Rand(n)
2: r′ ← (r ⊕ x2) ⊕ x3

3: for a := 0 to 2n − 1 do
4: a′ ← a ⊕ r′

5: T [a′] ← ((S(x1 ⊕ a) ⊕ y1) ⊕ y2)
6: end for
7: return T [r]

In Algorithm 1, a lookup table is generated for all possible values of x. The
index to the lookup table is masked using a random number r. Then, the cor-
rect value of the share is obtained by retrieving the table entry corresponding
to the index r. The main idea here is that the actual computation of the third
arithmetic share is hidden among other dummy calculations for all the possible
values. Since the value of r changes for every iteration, the attacker is not able
to guess the point in time at which the actual value of x is being leaked. The
authors of [12] proved the security of the algorithm by demonstrating that no
pair of intermediate variables leaks any sensitive information.

The goal of a second-order Boolean to arithmetic conversion is to compute
arithmetic shares from a set of Boolean shares without introducing any second
or first-order leakage. In order to achieve second-order DPA resistance, we need
three Boolean shares x1, x2, and x3 so that the sensitive variable x is given as
x = x1 ⊕ x2 ⊕ x3. The goal is to find three arithmetic shares A1, A2, A3 satis-
fying x = A1 + A2 + A3 without leaking any first or second-order information
about x. The solution given by Vadnala and Großschädl [13] is to modify the
masked lookup table in Algorithm 1 to store ((x1 ⊕ a) − A2) − A3 instead of a
masked S-box output; the rest of the algorithm is very similar to the original
one. They followed the same approach for arithmetic to Boolean conversion.

Coron-Großschädl-Vadnala Scheme [3]. Recently, Coron, Großschädl and
Vadnala proposed conversion algorithms that are secure against attacks of any
order [3]. They first proposed a secure solution to add Boolean shares directly
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by generalizing Goubin’s recursion formula [6]. Their solution has a complexity
O(d2 · n) to secure against t-th order attacks, where d ≥ 2t + 1 and n is the size
of the masks. Then, they used this addition as subroutine to derive algorithms
for conversion between Boolean and arithmetic masking, again with complexity
O(d2 · n).

Our Contributions. The generic solution of Coron, Großschädl and Vadnala
[3] requires five shares to protect against second-order attacks, which entails a sig-
nificant overhead in terms of the required amount of random numbers and execu-
tion time. Although the algorithms proposed by Vadnala and Großschädl
[13] require only three shares to achieve second-order resistance, they become infea-
sible for implementation on low-resource devices (e.g. smart cards) when n > 10
(the additions are performed modulo 2n), as they require a lookup table of size 2n.

In the present paper, we propose second-order secure conversion algorithms
that overcome said limitations and can, thus, be easily applied to cryptographic
constructions with arbitrary n, e.g. HMAC-SHA-1 with n = 32. The proposed
algorithms use only three shares and are, therefore, significantly faster than the
state-of-the-art. Our solution follows the basic idea of Vadnala and Großschädl
(which, in turn, is based on work of Rivain, Dottax and Prouff [12]), but uses
a divide and conquer approach to prevent that the lookup tables become pro-
hibitively large. In the case of Boolean to arithmetic conversion, we divide the
Boolean shares into words of l ≤ 8 bits each and then compute the words of the
corresponding arithmetic shares independently in a word-by-word fashion. Part
of this procedure is to handle all the carries propagating from less to more sig-
nificant words, which also need to be protected by masking to prevent any first
or second-order leakage. We show that this can be achieved in an efficient and
secure fashion by using separate lookup tables for the carries. Furthermore, we
prove the security of our conversion schemes in the same model as [12]. Using
similar techniques, we show that the efficiency of the first-order secure masked
addition due to Karroumi, Richard and Joye [7] can be improved as well.

2 Efficient Second-Order Secure Boolean to Arithmetic
Masking

In this section, we give the efficient Boolean to arithmetic conversion algorithm
secure against attacks of second-order. The idea is to split the n-bit shares into
p words (of l bits each) and convert each word independently.

2.1 Boolean to Arithmetic Masking of Second-Order

We are given three Boolean shares x1, x2, x3 so that the sensitive variable x is
obtained through x = x1 ⊕ x2 ⊕ x3. The goal is to find three arithmetic shares
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A1, A2, A3 that satisfy x = A1 + A2 + A3 without leaking any first or second-
order information on x. This can be achieved by generating two shares A2 and
A3 randomly and computing the third share as A1 = x − A2 − A3, as done in
[13] using the approach of Rivain, Dottax and Prouff from [12]. But as stated
earlier, this scheme becomes infeasible for use in practice when n > 10 since it
requires a lookup table of size 2n. To obtain a solution for n > 10, we apply a
divide and conquer approach. That is, we split each share into p words of l bits
each and compute (Ai

1)(0≤i≤p−1) independently, where A1 = Ap−1
1 || · · · ||A0

1. In
this case, we also need to handle the carries propagating from word i to word
i + 1 properly. More precisely, these carries must be protected by masking, as
otherwise they would leak information about the sensitive variable. Below, we
describe our method to protect the sensitive variables along with carries and
demonstrate its security with a formal proof.

We differentiate between two sets of carries: input carries (i.e. carries used
for the computation of Ai

1) and output carries (i.e. carries generated while com-
puting Ai

1). Since the computation of Ai
1 involves two subtractions, there are

two output carries from each word Ai
1, which become input carries for the word

Ai+1
1 . For the first word A0

1, the input carries are initialized to 0, i.e. c01 = 0 and
c02 = 0. We compute Ai

1 from the input xi and carries ci1, c
i
2 as follows:

Ai
1 = (xi −l ci1 −l Ai

2 −l ci2 −l Ai
3)

An operation of the form a −l b represents a − b mod 2l. Similarly, the output
carries ci+1

1 , ci+1
2 are computed as follows:

ci+1
1 = Carry(xi, ci1) ⊕ Carry(xi −l ci1, A

i
2) (1)

ci+1
2 = Carry(xi −l ci1 −l Ai

2, c
i
2) ⊕ Carry(xi −l ci1 −l Ai

2 −l ci2, A
i
3) (2)

where Carry(a, b) represents the carry from the subtraction a− b. As specified by
Eqs. (1) and (2), each carry computation involves two subtractions: one with the
input carry (ci1, ci2) and the other with a random share (Ai

2, Ai
3). In the simplest

case, a subtraction a− b produces a carry when a < b. However, in our scenario,
we have operations of the form (a −l c) −l b, whereby a and b are l-bit integers
and c is either 0 or 1. In the case of c = 0, the above operation generates a carry
if a < b. On the other hand, when c = 1, we have to take into account another
case, namely a < c, which can only happen when a = 0 and c = 1. In this special
case, the difference a−lc becomes 2l−1 and a carry is generated that needs to be
processed as well. However, the second subtraction can not generate a carry as
b ≤ 2l−1. Namely, the carries from these two cases are mutually exclusive; hence,
the output carry is set to 1 when either of them produces a carry as shown in
Eqs. (1) and (2). For simplicity, we define the functions F1 : {0, 1}l+1 → {0, 1}l+1

and F2 : {0, 1}2l → {0, 1}l+1 as follows.

F1(a, b) = a −l b || (Carry(a, b)) (3)
F2(a, b) = a −l b || (Carry(a, b)) (4)
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For a given word with index i, we can compute Ai
1 as well as the output carries

ci+1
1 , ci+1

2 using F1 and F2 according to the following equations:

(Bi
1||di1) = F1(xi, ci1)

(Bi
2||di2) = F2(Bi

1, A
i
2)

(Bi
3||di3) = F1(Bi

2, c
i
2)

(Bi
4||di4) = F2(Bi

3, A
i
3)

where Ai
1 = Bi

4 and ci+1
1 = di1 ⊕ di2, ci+1

2 = di3 ⊕ di4. As pointed out in [12], the
S-box in Rivain, Dottax and Prouff’s scheme must be balanced in order to be
secure1. In our case, the function F1 plays the same role and is balanced; con-
sequently, the security guarantee is preserved. We first present non-randomized
version of our solution below for simplicity.

Algorithm 2. Insecure 20B→A
Input: Sensitive variable: x = x1 ⊕ x2 ⊕ x3

Output: Arithmetic shares: x = A1 + A2 + A3

1: c01, c
0
2 ← 0 � Initially carry is zero

2: for i := 0 to p − 1 do
3: Ai

2, A
i
3 ← Rand(l) � Generate output masks randomly

4: (Bi
1, d

i
1) ← F1(x

i, ci1)
5: (Bi

2, d
i
2) ← F2(B

i
1, A

i
2)

6: (Bi
3, d

i
3) ← F1(B

i
2, c

i
2)

7: (Bi
4, d

i
4) ← F2(B

i
3, A

i
3)

8: (Ai
1, c

i+1
1 , ci+1

2 ) ← (Bi
4, d

i
1 ⊕ di

2, d
i
3 ⊕ di

4)
9: end for

10: return A1, A2, A3

The challenge is to implement Algorithm 2 so that it does not leak any first
or second-order information about the sensitive variable x as well as the carries
ci1, ci2 for 0 ≤ i ≤ p − 1. We present our solution in two parts: we fist give the
algorithm to securely compute the result for one word (namely Ai

1), and then
we use this as a “subroutine” to compute A1. Our solution, given in Algorithm
3, employs a similar technique as [12] (recalled in Algorithm 1) in combination
with Algorithm 2. Algorithm 3 expects as input three Boolean shares, six input
carry shares (three each for the two carries), two output arithmetic shares, and
four output carry shares. It returns as result the third arithmetic share and the
remaining two output carry shares. Similar to Algorithm 1, we create a lookup
table T for all the possible values in [0, 2l+2 − 1]. Here, l bits are used to store
Ai

1 and two bits for the two carries correspondingly. The rest of the algorithm
is very similar to the original one, except that we have to handle two extra bits
for the carry2.
1 An S-box S : {0, 1}n → {0, 1}m is said to be balanced if every element in {0, 1}m is

image of exactly 2n−m elements in {0, 1}n under S.
2 We use different tables to store the actual value and the carries so that the security

proof can be easily obtained as in [12].
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Algorithm 3. Sec20B→A Word

Input: Three input shares: (xi
1 = xi ⊕ xi

2 ⊕ xi
3, x

i
2, x

i
3) ∈ F2l , Six input carry shares:

gi
1 = ci1 ⊕ gi

2 ⊕ gi
3, g

i
2, g

i
3, gi

4 = ci2 ⊕ gi
5 ⊕ gi

6, g
i
5, g

i
6 ∈ F2, Output arithmetic shares:

Ai
2, A

i
3, Output carry shares: hi

1, h
i
2, h

i
3, h

i
4

Output: Masked Arithmetic share: (xi −l Ai
2) −l Ai

3 and masked output carries
1: r1 ← Rand(l); r2 ← Rand(1); r3 ← Rand(1)
2: r′

1 ← (r1 ⊕ xi
2) ⊕ xi

3; r′
2 ← (r2 ⊕ gi

2) ⊕ gi
3; r′

3 ← (r3 ⊕ gi
5) ⊕ gi

6;
3: for a1 := 0 to 2l − 1, a2 := 0 to 1, a3 := 0 to 1 do
4: a′

1 ← a1 ⊕ r′
1; a′

2 ← a2 ⊕ r′
2; a′

3 ← a3 ⊕ r′
3

5: (Bi
1, d

i
1) ← F1((x

i
1 ⊕ a1), (g

i
1 ⊕ a2))

6: (Bi
2, d

i
2) ← F2(B

i
1, A

i
2)

7: (Bi
3, d

i
3) ← F1(B

i
2, (g

i
4 ⊕ a3))

8: (Bi
4, d

i
4) ← F2(B

i
3, A

i
3)

9: ei1 ← ((di
1 ⊕ hi

1) ⊕ di
2) ⊕ hi

2

10: ei2 ← ((di
3 ⊕ hi

3) ⊕ di
4) ⊕ hi

4

11: (T1[a
′
1||a′

2||a′
3], T2[a

′
1||a′

2||a′
3], T3[a

′
1||a′

2||a′
3]) ← (Bi

4, e
i
1, e

i
2)

12: end for
13: return T1[r1||r2||r3], T2[r1||r2||r3], T3[r1||r2||r3]

Finally, we give our second-order secure technique to obtain three arithmetic
shares corresponding to the three Boolean shares in Algorithm 4. For the first
word (i.e. i = 0), there are no input carries and, consequently, the three shares
for both carries are set to zero (Step 1), i.e. we have g01 = g02 = g03 = c01 = 0 and
g04 = g05 = g06 = c02 = 0. To protect the output carries, we use four uniformly
generated random bits: hi

1, hi
2, hi

3, hi
4; two each for the two carries. The third

share for the carries as well as Ai
1 are computed recursively using the function

Sec20B→A Word (Algorithm 3)3. Note that for word i, gi1 ⊕ gi2 ⊕ gi3 = ci1 and
gi4 ⊕ gi5 ⊕ gi6 = ci2. The time complexity of the overall solution is O(2l+2 · p) and
the memory requirements amount to (2l+2 · (l + 2)) bits.

Algorithm 4. Sec20B→A
Input: Boolean shares: x1 = x ⊕ x2 ⊕ x3, x2, x3

Output: Arithmetic shares: A1, A2, A3 so that x = A1 + A2 + A3

1: g0
1 , g0

2 , g0
3 , g0

4 , g0
5 , g0

6 ← 0 � Initially carry is zero
2: for i := 0 to p − 1 do
3: Ai

2, A
i
3 ← Rand(l) � Generate output masks randomly

4: hi
1, h

i
2, h

i
3, h

i
4 ← Rand(1)

5: (Ai
1, g

i+1
1 , gi+1

4 ) ← Sec20B→A Word ((xi
j)1≤j≤3, (g

i
j)1≤j≤6, A

i
2, A

i
3, (h

i
j)1≤j≤4)

6: gi+1
2 , gi+1

3 , gi+1
5 , gi+1

6 ← hi
1, h

i
2, h

i
3, h

i
4

7: end for
8: return A1, A2, A3

3 Every call to the function Sec20B→A Word creates a new table and is useful for that
particular word only. Hence, unlike the original method in [12], we do not reuse the
table.
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2.2 Security Analysis

For an algorithm to be secure against second-order DPA attacks, no pair of
intermediate variables appearing in the algorithm should jointly leak the sen-
sitive variable. In [12], the authors prove the security by enumerating all the
possible pairs of intermediate variables and showing that the joint distribution
of none of these pairs is dependent on the distribution of the sensitive variable.
We use a similar method to prove the security of Algorithm 3. Thereafter, we
prove the security of Algorithm 4 through induction.

Lemma 1. Algorithm 3 is secure against second-order DPA.

Proof. We list all intermediate variables used in Algorithm 1 and Algorithm 3
in Table 1. The intermediate variables computed through a similar technique
appear in the same row. The only difference is that we have three intermediate
variables instead of one for each row4. Hence, the security of Algorithm 3 can
be derived from the same arguments as in the case of Algorithm 1. �

Table 1. Comparison of intermediate variables used in Algorithm 1 and Algorithm 3

Intermediate variables in Intermediate variables in
Algorithm 1 Algorithm 3

x2 xi
2, g

i
2, g

i
5

x3 xi
3, g

i
3, g

i
6

y1 Ai
2, h

i
1, h

i
3

y2 Ai
3, h

i
2, h

i
4

r r1, r2, r3
x2 ⊕ r xi

2 ⊕ r1, g
i
2 ⊕ r2, g

i
5 ⊕ r3

x2 ⊕ r ⊕ x3 xi
2 ⊕ r1 ⊕ xi

3, g
i
2 ⊕ r2 ⊕ gi

3, g
i
5 ⊕ r3 ⊕ gi

5
a a1, a2, a3

a ⊕ r ⊕ x2 ⊕ x3 a1 ⊕ r′
1, a2 ⊕ r′

2, a3 ⊕ r′
3

x1 = x ⊕ x2 ⊕ x3 xi
1 = xi ⊕ xi

2 ⊕ xi
3, g

i
1 = ci1 ⊕ gi

2 ⊕ gi
3, g

i
4 = ci2 ⊕ gi

3 ⊕ gi
6

x1 ⊕ a xi
1 ⊕ a, gi

1 ⊕ a2, g
i
4 ⊕ a3

S(x1 ⊕ a) (Bi
1||di

1) = F1((x
i
1 ⊕ a), gi

1 ⊕ a2)
(Bi

3||di
3) = F1((x

i
1 ⊕ a) −l g

i
1 ⊕ a2 −l A

i
2, g

i
4 ⊕ a3)

di
2 = Carry((xi

1 ⊕ a) −l (g
i
1 ⊕ a2), A

i
2)

di
4 = Carry((xi

1 ⊕ a) −l (g
i
1 ⊕ a2) −l A

i
2 −l (g

i
4 ⊕ a3), A

i
3)

S(x1 ⊕ a) ⊕ y1 Bi
2 = (xi

1 ⊕ a) −l (g
i
1 ⊕ a2) −l A

i
2,

di
1 ⊕ hi

1 ⊕ di
2, d

i
3 ⊕ hi

3 ⊕ di
4

S(x1 ⊕ a) ⊕ y1 ⊕ y2 Bi
4 = (xi

1 ⊕ a) −l (g
i
1 ⊕ a2) −l A

i
2 −l (g

i
4 ⊕ a3) −l A

i
3,

di
1 ⊕ hi

1 ⊕ di
2 ⊕ hi

2, d
i
3 ⊕ hi

3 ⊕ di
4 ⊕ hi

4

S(x) ⊕ y1 ⊕ y2 xi −l c
i
1 −l A

i
2 −l c

i
2 −l A

i
3,

ci+1
1 ⊕ hi

1 ⊕ hi
2, c

i+1
2 ⊕ hi

3 ⊕ hi
4

Theorem 1. Algorithm 4 is secure against second-order DPA.

Proof. To prove the security of Algorithm 4, we apply mathematical induction
on the number of words p. When p = 1, we already know that the algorithm is
secure due to the proof of Lemma 1. Now, assume that the algorithm is secure
4 The only exception is for the row S(x1 ⊕ a), where we have four variables.
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for p = n. Let Ei be the set that represents the collection of all intermediate
variables corresponding to the word i. Then, by the induction hypothesis, the
set {E1, · · · En}×{E1, · · · En} is independent of the sensitive variables x, c1 and
c2. For the algorithm to be secure when p = n + 1, the set {E1, · · · En, En+1} ×
{E1, · · · En, En+1} should be independent of the sensitive variables x, c1 and
c2. Without loss of generality, we divide this set into three subsets as follows:
{En+1 × En+1}, {E1, · · · En} × {E1, · · · En}, and {En+1} × {E1, · · · En}. The
security of {En+1 × En+1} can be established directly from the base case, and
the security of {E1, · · · En} × {E1, · · · En} follows from the induction hypothesis
(see above). All the intermediate variables in En+1 fall into two categories: (i)
the variables that are generated randomly and are independent of any variables
in {E1, · · · En}, and (ii) the variables that are a function of one or more of
the following: xn+1, cn+1

1 , cn+1
2 . Any pair of intermediate variables involving the

former category is independent of the sensitive variables by definition and the
first-order resistance of the set {E1, · · · En}. The two carry shares for the word
n + 1, namely (cn+1

i )1≤i≤2, are computed from the word n. Thus, the security
of (cn+1

i )1≤i≤3 × {E1, · · · En} is already established in {En} × {E1, · · · En}. One
can easy see that the set (xn+1) × {E1, · · · En} is independent of any sensitive
variable. Hence, the set {En+1} × {E1, · · · En} is also independent of any sen-
sitive variable, which proves the theorem. �

3 Efficient Second-Order Secure Arithmetic to Boolean
Masking

In arithmetic to Boolean conversion, the problem is to find three shares x1, x2, x3

satisfying x = x1⊕x2⊕x3, where the sensitive variable x is represented by three
arithmetic shares A1, A2, A3 with x = A1 + A2 + A3. To solve this problem,
we follow the same strategy as in Section 2.1. We generate two Boolean shares
x2 and x3 randomly, and compute the third share by using the relation x1 =
((A1 + A2 + A3) ⊕ x2 ⊕ x3), without leaking the value of x to first or second-
order DPA. We use the following approach: we first obtain a method to convert a
single arithmetic share word; then we apply this procedure recursively to all the
words. For each word, we have to deal with two carries corresponding to the two
additions, i.e., the carry from the addition of the shares corresponding to A2, A3

and its subsequent addition with A1. Our solution is described in Algorithm 5
and Algorithm 6 .

Algorithm 5 gives the solution for converting one word of Boolean shares to
corresponding arithmetic shares. We again use the technique from Algorithm 1
as in Algorithm 3. As the input shares here are masked using arithmetic mask-
ing instead of Boolean masking, we have to modify the operations accordingly.
Hence, the computation of r′

1 (Step 2) and a′
1 (Step 5) are replaced with addi-

tive operations. However, we can still mask the carries using Boolean masking
as previously and hence the corresponding operations do not change (Step 3,
Step 7). We create a table for all possible values in [0, 2l+2 − 1], where l bits are
used for xi

1 and the extra two bits for the carries. From a′
1 = a1 −l r′

1, we have
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Algorithm 5. Sec20A→B Word

Input: Three input shares: (Ai
1 = (xi−Ai

2)−Ai
3, A

i
2, A

i
3) ∈ F2l , Six input carry shares:

gi
1 = ci1 ⊕ gi

2 ⊕ gi
3, g

i
2, g

i
3, gi

4 = ci2 ⊕ gi
5 ⊕ gi

6, g
i
5, g

i
6 ∈ F2, Output Boolean shares:

xi
2, x

i
3, Output carry shares: hi

1, h
i
2, h

i
3, h

i
4

Output: Third Boolean share: xi
1 = xi ⊕ xi

2 ⊕ xi
3 and masked output carries

1: r1 ← Rand(l); r2 ← Rand(1); r3 ← Rand(1)
2: r′

1 ← (Ai
2 − r1) + Ai

3 � Mask two arithmetic shares
3: r′

2 ← (r2 ⊕ gi
2) ⊕ gi

3; r′
3 ← (r3 ⊕ gi

5) ⊕ gi
6

4: for a1 := 0 to 2l − 1 do
5: a′

1 ← a1 −l r′
1 � a′

1 = r1 =⇒ a1 = r1 +l ((Ai
2 − r1) + Ai

3)
6: for a2 := 0 to 1, a3 := 0 to 1 do
7: a′

2 ← a2 ⊕ r′
2; a′

3 ← a3 ⊕ r′
3

8: (Bi
1||di

2) ← F3(A
i
1 + (a3 ⊕ gi

4) + ((a2 ⊕ gi
1) +l a1))

9: di
1 ← Carry(a1, r

′
1) ⊕ Carry(a1, (−(a2 ⊕ gi

1)))
10: xi

1 ← (Bi
1 ⊕ xi

2) ⊕ xi
3 � Apply Boolean masking to the result

11: ei1 ← (di
1 ⊕ hi

1) ⊕ hi
2 � Apply masking to the carries

12: ei2 ← (di
2 ⊕ hi

3) ⊕ hi
4

13: T1[a
′
1||a′

2||a′
3], T2[a

′
1||a′

2||a′
3], T3[a

′
1||a′

2||a′
3] ← (xi

1, e
i
1, e

i
2)

14: end for
15: end for
16: return T1[r1||r2||r3], T2[r1||r2||r3], T3[r1||r2||r3]

a1 = a′
1 +l r′

1. However, a1 − r′
1 could generate a carry, which needs to be taken

care while computing xi
1. Hence, we add the previous carry (a2 ⊕ gi2) to a1 to

get Ai
2 +l Ai

3 as follows:

a1 +l (a2 ⊕ gi1) = (r1 +l ((Ai
2 − r1) + Ai

3) +l ci1) = Ai
2 +l Ai

3

when a′
1 = r1 and a′

2 = r2. The out carry di1 (which becomes ci+1
1 for the next

word) can occur in two scenarios: when a1 < r′
1 or when (a1 + (a2 ⊕ gi1)) ≥ 2l

(Step 9). It is easy to see that these two cases are mutually exclusive. Now to
compute xi

1, we use function F3 : {0, 1}l+1 → {0, 1}l+1, which is defined as:

F3(a) = a mod 2l||Carry(2l, a)

We then call F3 with (Ai
1 + (a3 ⊕ gi4) + ((a2 ⊕ gi1) +l a1)) where a3 represents

two shares of the second carry. In this case, the first part returned by F3 gives
xi, and the second part corresponds to the second carry which becomes ci+1

2 for
the next word 5. Namely, when a′

1 = r1, a′
2 = r2 and a′

3 = r3 we have:

F3(Ai
1 + (a3 ⊕ gi4) + ((a2 ⊕ gi1) +l a1)) = (xi + (a3 ⊕ gi4)) mod 2l||

Carry(2l, (xi + (a3 ⊕ gi4)))

5 Note here that even though xi and the carries are computed in clear, they are
hidden among 2l+2 − 1 dummy computations, which is the main basis for Rivain et
al’s original algorithm.
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Once we have xi and the carries di
1, d

i
2, we can simply apply Boolean masks on

them to obtain xi
1 and the masked carries (Steps 10, 11 and 12).

Finally we give the full algorithm to convert from arithmetic to Boolean
masking in Algorithm 6. It is similar to Algorithm 4 except that the Boolean
shares and arithmetic shares are interchanged.

Algorithm 6. Sec20A→B
Input: Arithmetic shares: A1 = x − A2 − A3, A2, A3

Output: Boolean shares: x1, x2, x3 so that x = x1 ⊕ x2 ⊕ x3

1: g0
1 , g0

2 , g0
3 , g0

4 , g0
5 , g0

6 ← 0 � Initially carry is zero
2: for i := 0 to p − 1 do
3: xi

2, x
i
3 ← Rand(l) � Generate output masks randomly

4: hi
1, h

i
2, h

i
3, h

i
4 ← Rand(1)

5: (xi
1, g

i+1
1 , gi+1

4 ) ← Sec20A→B Word ((Ai
j)1≤j≤3, (g

i
j)1≤j≤6, x

i
2, x

i
3, (h

i
j)1≤j≤4)

6: gi+1
2 , gi+1

3 , gi+1
5 , gi+1

6 ← hi
1, h

i
2, h

i
3, h

i
4

7: end for
8: return x1, x2, x3

Theorem 2. Algorithm 6 is secure against second-order DPA.

Proof. The proof of Algorithm 6 can be obtained similar to Algorithm 4 and is
omitted.

4 Efficient First-Order Secure Masked Addition

This paper considers the general problem of dealing with arithmetic operations
on Boolean masks. Till now, we solved this problem by converting the Boolean
masks to arithmetic masks. The basic idea is that, once we have the arithmetic
masks, we can perform any arithmetic operation directly and then convert the
result back to Boolean masks. But there also exists an alternative approach to
the original problem, namely to perform an arithmetic operation (e.g. addition)
directly on Boolean masks. This idea was first studied for first-order masking in
[1] and then detailed in [7]. In this section, we provide a more efficient method
using lookup tables based on the conversion technique by Debraize [5].

The problem here can be described as follows: we are given Boolean shares
of two n-bit sensitive variables x: x1, r and y: y1, s. We need to compute z1 so
that z1 ⊕ r ⊕ s = x + y, without any first-order leakage of x and y. To achieve
this, we follow the same divide-and-conquer strategy we used in Sects. 2 and 3.
Namely, we divide n-bit shares into p words of l-bit each and perform addition
on the words independently. Furthermore, our method also masks the carry from
word i to word i + 1. The addition of each word is carried out with the help of
a lookup table, which can be reused for all the words6.
6 We use different tables in the case of second-order masking, but we can re-use the

table for first-order masking.
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Our method to generate the lookup table is given in Algorithm 7. It creates
a table with 22l+1 entries, each requiring l + 1 bit of memory. Here, 2l bits are
used for two l-bit inputs xi, yi and one bit for the input carry. The output con-
sists of l-bit zi and one bit carry. We run through all the possible 22l+1 values
and store the masked value of sum and carry in the lookup table. Note that the
inputs masks are t1, t2 and ρ (carry), and out masks are t1 and ρ (carry).

Algorithm 7. GenTable
Input:
Output: Table T , t1, t2, ρ
1: t1, t2 ← Rand(l); ρ ← Rand(1)
2: for A = 0 to 2l − 1 do
3: for B = 0 to 2l − 1 do
4: T [ρ||A||B] ← ((A ⊕ t1) + (B ⊕ t2)) ⊕ (ρ||t1)
5: T [ρ ⊕ 1||A||B] ← ((A ⊕ t1) + (B ⊕ t2) + 1) ⊕ (ρ||t1)
6: end for
7: end for
8: return T, t1, t2, ρ

The full technique to compute addition on Boolean shares is given in Algo-
rithm 8. Initially, the carry is zero, which is masked with the carry mask ρ from
Algorithm 7. We distinguish between carry and no-carry cases as follows: when
β = ρ, then there is no carry; otherwise, β = ρ ⊕ 1. Before accessing the lookup
table, we change the input masks to t1 and t2 (step 3, 4). After we obtain the
masked sum, we change the mask back to ri ⊕ si from t1 (step 6). Finally, the
output can be obtained as z1 = zp−1

1 || · · · ||z01 = (x + y) ⊕ r ⊕ s.

Algorithm 8. Sec10A
Input: x1 = x ⊕ r, r, y1 = y ⊕ s, s, T, t1, t2, ρ
Output: z1 = (x + y) ⊕ r ⊕ s
1: β ← ρ
2: for i = 0 to p − 1 do
3: xi

1 ← xi
1 ⊕ t1 ⊕ ri

4: yi
1 ← yi

1 ⊕ t2 ⊕ si

5: (β||zi
1) ← T [β||xi

1||yi
1]

6: zi
1 ← (zi

1 ⊕ ri ⊕ si) ⊕ (t1)
7: end for
8: return z1

Lemma 2. Algorithm 8 is secure against first-order DPA.

Proof. It is easy to see that the distribution of all the intermediate variables in
Algorithm 8 is independent of the sensitive variables x and y. Consequently, the
proof is straightforward. �
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5 Implementation Results

We implemented all the proposed algorithms in ANSI C and executed them on
a 32-bit ARM microcontroller. The results are summarized in Table 2. We used
three different word sizes (namely l = 1, 2, 4) for the second-order conversion
algorithm and a word size of l = 4 for first-order masked addition7. In order to
compare our results with that of existing techniques, we also implemented the
Coron-Großschädl-Vadnala (CGV) method [3] for second-order conversion and
the Karroumi-Richard-Joye (KRJ) method [7] for first-order secure addition. As
expected, the improvement in case of the second-order conversion algorithms is
significant due to the reduction of the number of shares from five to three. We
notice that the conversion algorithms perform best when l = 2. Our Boolean to
arithmetic conversion algorithm with negligible memory requirements (between
8 and 64 bytes) is some 86 % faster than the CGV method. Similarly, our arith-
metic to Boolean conversion algorithm improves the running time by 83 %, with
equivalent memory footprint. On the other hand, we improve the performance
of the first-order algorithms by roughly 20 %.

Table 2. Implementation results for n = 32 on a 32-bit microcontroller. The column
Time specifies the running time in clock cycles, rand gives the number of calls to the
random number generator function, while column l and Memory refer to the word size
and memory (in bytes) required for the table-based algorithms.

Algorithm l Time Memory rand

second-order conversion

Algorithm 4 1 12186 8 226

Algorithm 4 2 11030 16 114

Algorithm 4 4 19244 64 58

Algorithm 6 1 10557 8 226

Algorithm 6 2 9059 16 114

Algorithm 6 4 15370 64 58

CGV A → B [3] - 54060 - 484

CGV B → A [3] - 81005 - 822

first-order addition

KRJ addition [7] - 371 - 1

Algorithm 8 4 294 512 3

To study the implications of our new techniques in practice, we applied them
to secure HMAC-SHA-1. The achieved results are summarized in Table 3. We
can see that, in the best case scenario (i.e. l = 2), our new algorithms perform
85 % better than the existing approaches. In the case of first-order masking, the
7 We observed that, for l < 4, the algorithm from [7] performs better than ours.
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Table 3. Running time (in thousands of clock cycles) and penalty factor compared to
the unmasked HMAC-SHA-1 implementation

Algorithm l Time PF

HMAC-SHA-1 - 104 1

second-order conversion

Algorithm 4, 6 1 9715 95

Algorithm 4, 6 2 8917 85

Algorithm 4, 6 4 15329 147

CGV [3] - 62051 596

first-order addition

KRJ addition [7] - 328 3.1

Algorithm 8 4 308 2.9

improvement amounts to roughly 6 %, taking into account the pre-computation
time spent on the generation of the table.

6 Conclusions

In this paper, we presented new time-memory trade-off solutions for conversion
between Boolean and arithmetic masking for first and second-order. In the case
of second-order conversion, we reduced the number of required shares from five
to three compared to the CGV method. We demonstrated that, with negligible
memory consumption (up to 64 bytes), we can improve the performance of the
existing algorithms by up to 85 %.

An open research problem is to find a way to perform additions on Boolean
shares directly that is secure against attacks of second-order. We can not apply
the generic method of [12] in this case since the S-box is not balanced. Such an
S-box would require an input of size 2l + 1 bits (i.e. l bits for each of the two
arguments to add and one bit for input carry) and output the (l + 1)-bit sum
including the carry. For this function to be balanced, each of the 2l+1 possible
outputs must be an image of exactly 2l elements. However, this is not the case
and, consequently, a second-order attack can be mounted. Finding a solution to
this problem could further improve the efficiency of second-order masking.
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Abstract. We present Zorro, a taped-out ASIC hosting three distinct
authenticated encryption architectures based on the SpongeWrap con-
struction. All designs target resource-constrained environments such as
smart cards or embedded devices and therefore, have been protected
against DPA attacks while keeping low-area as the most important design
goal in mind. Each of the three architectures contains masking and hid-
ing countermeasures. They solely differ with regard to the implemented
secret-sharing scheme. While the first design is based on a 3-share thresh-
old implementation (TI), which does not fulfill the uniformity property,
the other two make use of the 3-share approach with re-masking and
the 4-share approach as proposed by Bilgin et al. Our smallest, provable
first-order DPA secure Keccak implementation requires only 14.5 kGE
(which is less than half of the size of related work) and contains both
front-end and back-end design overheads. Moreover, we present first DPA
results of the Zorro ASIC by comparing hiding and masking counter-
measures. We were able to recover the cipherkey from a masking-secured
TI implementation based on three shares with about 70 000 power traces.

Keywords: Duplex construction · SpongeWrap · Threshold imple-
mentation · Side-channel attacks · DPA · Low-area hardware · ASIC

1 Introduction

Confidentiality and authenticity of data are among the most important cryp-
tographic services required to transfer data securely over public communication
channels. The former is commonly achieved by symmetric encryption algorithms
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while the latter is often obtained by message authentication codes (MACs).
These cryptographic primitives have been treated independently in the past,
which led to inefficient solutions and severe security problems [9,11]. For this
reason, researchers have started to develop new hybrid algorithms that offer the
desired service of authenticated encryption (AE), for instance, as part of the
on-going CAESAR competition [1].

The SpongeWrap construction [3] uses the underlying permutation of Kec-
cak—the winner of the NIST SHA-3 competition [6] in 2012—in order to real-
ize an AE system. Implementations using Keccak-f in a keyed mode1 such as
SpongeWrap, necessarily require protection against implementation attacks
such as Differential Power Analysis (DPA) [15]. Since especially smart cards and
embedded systems are usually accessible by a broader mass of people, counter-
measures like hiding or masking techniques are mandatory for such devices nowa-
days. The authors of Keccak proposed to implement a secret sharing technique
to protect keyed Keccak instances [2,7]. This technique is based on the idea to
divide key-dependent intermediate values into unique parts (so-called shares)
and to re-combine them after the processing. In order to achieve first-order
DPA resistance, this sharing needs to fulfill three properties: correctness, non-
completeness, and uniformity [17]. Interestingly, Bilgin et al. [8] reported that the
implementation in [2,7] does not fulfill the uniformity property and is therefore
not provable secure against first-order DPA attacks. As a countermeasure, they
proposed to inject fresh random bits in a 3-share implementation or to add an
additional share (4-share version) that avoids the need of fresh randomness.

This work presents first results of an actually “taped-out” application-specific
integrated circuit (ASIC), called Zorro (our chip is not to confuse with the
block-cipher of Gérard et al. [12] proposed at CHES 2013). Zorro hosts three
distinct hardware architectures for SpongeWrap-based authenticated encryp-
tion, secured against DPA. The chip is intended to be used as a fully flexible
evaluation platform for determining the effectiveness of hiding and masking coun-
termeasures in a real ASIC. Therefore, the three architectures solely differ with
regard to the realized masking technique. While the first design makes use of
the 3-share approach proposed by Bertoni et al. [2,7], the latter two utilize the
3-share implementation with re-masking and the 4-share approach presented by
Bilgin et al. [8], which both fulfill the uniformity property. Moreover, each of the
three architectures contains hiding countermeasures, which can be switched on
and off at will. The main fields of application for Zorro are resource-limited
environments such as smart cards, embedded systems, or RFID-based devices,
which is why low-area was our most important design goal. Zorro was fabri-
cated in a 180 nm CMOS process technology by UMC and the smallest of the
three architectures requires only 14.5 kGE. This represents the smallest reported
masked Keccak ASIC implementation to date. Beside the un-keyed Keccak
implementations available in literature [4,14,20], the smallest reported masking-
secured designs so far require more than 30 kGE [2,7,8].

1 This mode involves a secret key that needs to be protected against implementation
attacks. It is used in, e.g., stream encryption or authenticated encryption modes.
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Moreover, we are the first to present DPA results targeting Keccak imple-
mentations on a fabricated ASIC chip. We provide first DPA results of the
unprotected, the hiding-secured, and the three share threshold implementation
(TI). A higher-order DPA attack against the masked implementation succeeds
with about 70 000 measurements. In order to reach a comparable security level
with the hiding countermeasure, an impractical number of 240 dummy rounds
needs to be inserted, what equals ten times the number of rounds (24) for one
Keccak-f permutation. Future work will consist in a detailed comparison of
the three threshold implementations on the ASIC, requiring a huge amount of
measurements which are not available yet.

The remainder of this paper is structured as follows. In Sect. 2, we give
a brief introduction to the authenticated encryption mode SpongeWrap.
Section 3 presents the hardware architecture of Zorro. Implementation and
power-analysis results are given in Sect. 4 and finally a discussion about the
results and future work is provided in Sect. 5.

2 The SpongeWrap Construction

The core element of SpongeWrap is the Keccak-f permutation [6]. The most
prominent application of Keccak-f is its use in a sponge construction [5] to
build the hash algorithm Keccak, which has recently been presented as a new
draft for the upcoming SHA-3 standard by NIST [19]. However, Keccak-f can
also be used to form several other cryptographic primitives [3], including the AE
mode SpongeWrap. In the following, a brief introduction to the SpongeWrap
construction and the Keccak-f permutation is given. For an in-depth discussion
about the two primitives, we refer the reader to [3] and [6].

The SpongeWrap Construction. Figure 1 illustrates the SpongeWrap
mode, which uses a duplex construction [3] to create an AE scheme. It can be
subdivided into four phases: an initialization phase, an associated-data process-
ing phase, an encryption phase, and a tag-generation phase. During the initial-
ization, the state is cleared and loaded with the cipherkey K by a call to the
permutation f . After that, the SpongeWrap object is able to receive data for
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wrapping associated data blocks Ai (authenticated only) and plaintext blocks
Mj (authenticated and encrypted) to retrieve the ciphertext blocks Cj and the
corresponding authentication tag T . The respective decryption process is known
as unwrapping and basically swaps plaintext and ciphertext blocks and compares
the received authentication tag with the recomputed one. If the two tags do not
match, an error will be dumped, but no plaintext will be provided.

The Keccak-f Permutation. Keccak-f operates on a state with a fixed size
of b bits. This state consists of two parts: r (bitrate) and c (capacity), where
r specifies the number of input bits, which are processed in one iteration and
therefore relates to the speed of the computation. The last c bits of the state
determine the attainable security level of the construction, i.e., c = b − r. The
authors of Keccak defined Keccak-f for the following seven state sizes: b =
25×w, where w = 2� and � ranges from 0 to 6. The state is organized as a 5×5×w
matrix with three dimension coordinates (x,y,z). We call a set of w bits with
given (x,y) coordinates a lane, a set of 5 bits with given (y,z) coordinates a row,
5 bits with given (x,z) coordinates a column, and the 5 × 5 matrix for a given
(z) coordinate a slice (see Fig. 2). The Keccak-f function further consists of
12 + 2� rounds that are made up of five steps:

θ : Used to integrate diffusion by a linear mixing layer (the parity of two nearby
columns is added to each column).

ρ : Inter-slice dispersion (all lanes are rotated by a defined offset).
π : Breaking horizontal/vertical alignment (the 25 lanes are transposed in a

fixed pattern).
χ : The non-linearity part of Keccak-f (the 5 bits of each row are combined

using AND gates and inverters and the shifted result is added to the row).
ι : A w-bit round constant is added (XORed) to a single lane.

3 Hardware Architecture of Zorro

We intend to use Zorro as an evaluation platform for investigating the quality of
DPA countermeasures for an AE system based on the Keccak-f [1600] permuta-
tion. Our main goal was to build an ASIC, providing different types of masking
and hiding techniques. As pointed out by Bilgin et al. [8], a first-order DPA-
secure Keccak design, which is based on a three-share threshold implementa-
tion (without re-masking), does not fulfill the uniformity property [17,18] and
thus, is not provable secure against first-order DPA attacks. Hence, we decided
to place three distinct architectures on Zorro, which only differ with regard to
the implemented masking scheme. The first design is based on a three-share app-
roach as proposed by Bertoni et al. [7]. The second and third architectures make
use of the threshold implementation improvements presented by Bilgin et al. [8],
namely a three-share design using re-masking and a four-share architecture.
Figure 3 shows a block diagram of the top-level design entity, including the three
distinct architectures named 3-Share, 3-Share∗, and 4-Share.
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Fig. 3. Top-level architecture of Zorro.
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In order to assure that meaningful power measurements can be taken from
each distinct architecture separately, the Clock Enable entity contains clock gat-
ing cells, which enable the clock only for the actually selected entity. Moreover,
the Input Controller forwards the input signals solely to the currently activated
entity, thereby avoiding any logical changes in combinational paths within the
deactivated architectures. With this setup, we are able to obtain meaningful
power measurements of each design without significant noise from the deacti-
vated units with regard to their dynamic power consumption. The Output Con-
troller is responsible for forwarding the output signals of the respective unit once
an input data block has been processed. Using a couple of debug outputs, Zorro
provides additional information about currently ongoing internal processes. Data
to and from the chip can be transmitted via an eight bit data bus, controlled
by a four way handshaking protocol. Each of the three architectures by itself
can either operate in encryption or decryption and offers four different modes of
operation:

Normal Mode: The normal mode represents the default mode in which no
DPA countermeasures are activated. Hence, only one third (for the three-
share based architectures) respectively one fourth (for the four-share based
design) of the state-storing RAMs is actually used. Measurements based on
this mode serve as a reference for the protected alternatives.

Hiding Mode: Running in this mode, Zorro uses two hiding countermeasures
in order to circumvent DPA attacks. First, the user can choose how many
dummy operations should be executed during processing a single input block.
Using a control signal, up to 15 dummy operations can be initiated, each of
them representing a full round of the Keccak-f [1600] permutation. Second,
all three architectures can shuffle their computations by varying between
eight different read/write addresses when accessing the RAM.

Masked Mode: When operating Zorro in this mode, en-/decryption is per-
formed using masking countermeasures in order to prevent DPA attacks.

Secure Masked Mode: In this mode, both hiding and masking countermea-
sures are activated and hence, this represents the most secure way on how
to operate Zorro with regard to its DPA security.
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3.1 3-Share, 3-Share∗, and 4-Share Architectures

Since the 3-Share, 3-Share∗, and 4-Share hardware architectures differ only very
slightly, we will further on solely discuss the 3-Share version and point out the
differences to the other two architectures if necessary.

We aimed to design a low-area, DPA-secure authenticated encryption sys-
tem based on Keccak. Because of these goals, the area density of the memory
required to store the Keccak state is of utmost importance. Moreover, the
implemented secret sharing countermeasure works on the algorithmic level, and
thus the required memory for the state increases with each share. Therefore,
we favored a random-access memory (RAM) macro cell over their standard cell
counterparts to store the state, which offers a better bit-per-area density. We
store both the round constants of the ι function and the shift offsets of the ρ
function in look-up tables (LUTs). Figure 4 illustrates the uppermost hierarchy
level of the 3-Share entity, including the state RAM, the LUTs, and the data-
path entity, which gets controlled by a finite-state machine (FSM). Moreover,
Fig. 4 shows the linear-feedback shift register (LFSR), which is constructed by
the primitive polynomial x32 + x7 + x3 + x2 + 1. The initialization of the LFSR
is done with an external seed. Its output is used on the one hand for determin-
ing whether to perform a dummy operation or not, and on the other hand for
generating the random bits required for the re-masking in the 3-Share∗ archi-
tecture. Overall, 42 random bits are required per input block (39 for the dummy
operation conditions and three for the shuffling of the RAM addresses).

The 3-Share architecture contains a 608 × 8 RAM (cf. Fig. 4) for storing the
state and the shares. Basically, a secret sharing scheme for Keccak based on
three shares would require only 4 800 bits (three times the state size). We use the
additional eight bytes of the RAM as inputs for the dummy operations during the
hiding mode and therefore, keep these memory locations uninitialized. Thereby,
none of the dummy operations computes on the actual payload of the chip and
hence, no correlated power figures should be observed.

For the initial masking of the 3-Share (4-Share) entity, the chip receives 3 200
(4 800) random bits to initialize two (three) shares followed by the plaintext.
The last share equals the XOR-sum of the already initialized shares with the
plaintext. The implementation of the Keccak-f [1600] permutation is based on
a combined lane and slice processing, similar to that proposed by Pessl and
Hutter [20]. Figure 5 shows the architecture of the Datapath unit of the 3-Share
entity. We use the SubState register to buffer lanes and slices currently being
processed.

RAM Allocation. As proposed by Bertoni et al. [4], storing the bits of lanes and
slices in an interleaved form allows efficient processing of the data when choosing
a small datapath width, meanwhile keeping the size of the required buffer register
at a minimum. We also make use of this technique and store four bits of two slices
in each RAM word (i.e., two bits of four lanes). Since we need four lanes at a
time, this results in a buffer register of 256 bits. Unfortunately, the state consists
of 25 lanes and thus, not all lanes can be stored in this interleaved form. We
decided to store the first lane in a linear way, as this lane is not influenced by the
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ρ operation and hence, can be skipped for this function. Although, based on this
memory allocation we waste a negligible amount of clock cycles when loading
data of the first lane, we can keep the size of the SubState register comparatively
small. In order to avoid switching back and forth between slice-based and lane-
based operations as much as possible, we make use of the same rescheduling
approach proposed in [20], where they distinguish between the following three
different types of “rounds”:

R1 = θ × ρ R2...24 = π × χ × ι × θ × ρ R25 = π × χ × ι (1)

Round Operations. When Zorro operates in normal mode, the four slice-
based round functions of Keccak-f (θ, π, χ, and ι) are exclusively calculated in
the SliceUnitLin within a single clock cycle for a whole slice. The applied round
schedule requires to calculate the result of θ, π × χ × ι × θ, and π × χ × ι. As
illustrated on the bottom-right of Fig. 5, all three operations can be accomplished
within the SliceUnitLin with the use of bypass multiplexers. Calculations of the
linear round functions of the Keccak-f permutation are equal for both the
normal mode and the masking-secured modes. Here, each share can be computed
in sequential order (e.g., in R1 the theta step is performed three (four) times
sequentially in order to process the three (four) shares). Due to the fact that the
non-linear χ function requires inputs from more than one share, the processing
of this function slightly differs. For the hardware implementation of the 3-Share
architecture, we follow the approach presented by Bertoni et al. [7] and compute
the result for two input slices in a single cycle within the SliceUnitUnlin entity.
For the lane-based operation (ρ), we aimed at calculating its output byte-by-
byte. This allows us to combine it with the RAM write operation. Thanks to the
chosen RAM allocation, multiples of two-bit-wide shift operations of lanes can
easily be accomplished with the addressing of the memory. The special storage
structure provides information about four lanes per RAM word (byte) and the
SubState register can hold up to four lanes simultaneously. Unfortunately, each
lane has a different shift offset. Hence, different bit couples of the buffered lanes
must be taken to compensate the differences between the offsets. The different
compensation offsets can be precalculated and are stored in the LUTS entity
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Fig. 6. AT plot of Zorro’s three different
architectures obtained after synthesis.

Table 1. Area breakdown of the Zorro
ASIC (synthesis results at 5 ns).

Component Area [GE] Area [%]

3-Share 13 370 30.5

Datapath &FSM 7 300 16.7

RAM 4 680 10.7

LFSR 300 0.7

SliceUnitLin 480 1.1

Others 610 1.3

3-Share∗ 13 940 31.8

4-Share 16 190 37.0

I/O Interface 320 0.7

Zorro Total 43 820 100.0

(see Fig. 4) for each lane quadruple. With these precalculated values, multiples
of two-bit-wide shift operations, and the offset between the different lanes can
be compensated. The leftover is a possible shift by one bit. Therefore, 4 one-bit-
registers with surrounding multiplexers are used. If a lane is shifted by one bit,
the high bit of the chosen bit couple is stored in the one bit register. The low
bit is shifted one bit to the left and the old content of the one bit register is used
as the new low bit. This is done for each bit couple of the buffered lanes. The
result is stored back to the RAM in interleaved form. The responsible unit for
the lane-based operation is called LaneUnit (cf. Fig. 5).

4 Results

The results of our work are twofold. First, we present our implementation results
of Zorro and provide actual ASIC performance numbers of the 3-Share, 3-
Share∗, and 4-Share design. Second, we present first practical results of DPA
investigations on our AE system using power traces obtained from the real chip.

4.1 Hardware Figures of Zorro

We used VHDL in order to code the RTL model of Zorro and Mentor Graphics’
ModelSim version 10.2a to verify its functional correctness. Synthesis results were
obtained from Synopsys’ Design Compiler version 2012.06 for a mature 180 nm
CMOS technology by UMC. The designs were synthesized using a standard cell
library by Faraday Technologies under typical case conditions and backend design
steps were accomplished using SoC Encounter from Cadence. Area results will be
given in terms of gate equivalents (GEs), for which one GE equals the size of a
two-input NAND gate of the utilized standard cell library (= 9.3744 µm2).

In order to provide a fair comparison between the results of Zorro and
related work as well as meaningful numbers for an actual chip to be taped out,
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Table 2. Comparison of Zorro with related ASIC designs (synthesis results).

Source Techn. Area fmax Perf.a

[nm] [GE] [MHz] [Cycles]

Designs w/o DPA Countermeasures

Pessl and Hutter [20]b 130 5 522 61 22 570

Bilgin et al. [8]c 180 10 800 555 1 600

Zorro in Normal Modeb 180 13 370 200 21 888

3-Share-Secured Designs w/o Re-Masking

Bertoni et al. [7]c 130 95 000 200 72

Zorro 3-Share Architectureb 180 13 370 200 113 184

3-Share-Secured Designs w/ Re-Masking

Bilgin et al. [8]c 180 33 100 553 1 625

Zorro 3-Share∗ Architectureb 180 13 940 200 113 184

4-Share-Secured Designs

Bilgin et al. [8]c 180 43 100 572 1 600

Zorro 4-Share Architectureb 180 16 190 200 149 640
a Keccak-f permutation
b Block size of 1088 bits
c Block size of 1024 bits

we present two different area numbers. On the one hand, we provide synthesis
results without considering any Design for Testability (DFT) techniques.2 On
the other hand, we include the area numbers after all backend design steps have
been successfully accomplished and therefore the designs include DFT circuitries
for RAM tests as well as scan flip-flops to enable automated test pattern gener-
ation (ATPG). Figure 6 provides an area/time (AT) plot of the synthesis results
of the three different architectures. Based on the isolines, indicating a constant
AT product, it can be observed that for a clock period below 4 ns, the resulting
area of each architecture increases significantly. Moreover, we decided to spend
some room for the upcoming backend run and therefore, chose a maximum fre-
quency of 200 MHz for Zorro. The critical path of the design runs through the
SliceUnitLin entity, highlighted using a dashed line in Fig. 5. From Fig. 6 it can
be seen that the area differences between the three architectures remains quite
constant. This was expected since a major part of the overall area is occupied
by the RAM. Other differences between the three designs with regard to their
logic components are almost negligible. Table 1 lists an area breakdown of the
Zorro ASIC after synthesis for 5 ns. It shows that our 3-Share, 3-Share∗, and
4-Share architectures require 13.4 kGE, 13.9 kGE, and 16.2 kGE, respectively.
Table 2 lists a comparison between Zorro and related Keccak-based ASIC
designs in the field of low-area and DPA-security.

2 Note that such numbers can vary significantly compared to the actual area figures
of a finalized chip ready for tapeout, depending on the implemented design.
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Fig. 7. Chip layout and photo of Zorro.

Table 3. Datasheet of Zorro.

Property

Technology (UMC) 0.180 µm

Supply Volt. (Core/Pad) 1.8 V/3.3 V

Max. Frequency (fmax) 200 MHz

Required Area 46.0 kGE

Est. Power Cons. @ fmax

3-Share 17.3 mW

3-Share∗ 19.7 mW

4-Share 20.8 mW

Crypt. Perf. (Normal/Masked)a

3-Share 21 888/113 184

3-Share∗ 21 888/113 184

4-Share 21 888/149 640
a Requ. cycles for one Keccak-f perm.

For the actual tapeout-version of Zorro, we added a couple of DFT cir-
cuitries in order to provide suitable testing possibilities. This, the insertion of
the required buffers, and the fact that after the backend design a realistic wire-
load model was available, lead to an increase in area to 14 kGE, 14.5 kGE, and
17 kGE for the 3-Share, 3-Share∗, and 4-Share architectures, respectively.

Figure 7 shows the final layout of Zorro as well as a photo of the chip.
Table 3 provides a datasheet for some of Zorro’s final specifications.

4.2 Power-Analysis Results

In order to validate our design regarding power-analysis resistance, we performed
power measurements and applied a standard Correlation Power Analysis (CPA)
based on the Pearson correlation coefficient [10] on the measured power traces
as a first step. Furthermore, higher-order CPA attacks were performed targeting
the 3-Share and 3-Share* implementations. For the rest of this section, ρc indi-
cates the correlation coefficient of the correct key guess. Another procedure to
rate the power-analysis resistance of an implementation is the method presented
in [13] based on the statistical t-test. The advantage of the t-test is that no
leakage model has to be defined. We have observed Hamming-distance leakage
of intermediate values during simulation runs, so we decided to perform CPA
attacks as a first step. For future work we will also investigate the t-test method-
ology and compare the outcome with the results presented in this work. Due to
the time-consuming measurement process and the huge number of required mea-
surements, we did not investigate the 4-Share implementation so far.

We used a Picoscope 6404c oscilloscope to capture the power traces from the
Zorro ASIC. The voltage drop across a 1 Ω resistor in the core supply line was
measured by applying a LeCroyAP033 differential probe. This setup allows to
minimize the noise created by, for instance, I/O activity of the chip because the
chip has a separate supply line for the I/O part. The traces were recorded with a
sampling rate of 1 GS/s and the clock frequency of the ASIC was set to 10 MHz.
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Fig. 8. Power trace of an entire Keccak-f permutation while Zorro is running in
normal mode (left plot). Zoom into the first round, computing θ and ρ (right plot).

The First Power Trace. The left plot in Fig. 8 shows a measured power trace of
an entire Keccak-f permutation of Zorro running in normal mode. It shows
all 24 rounds (including one additional round at the end where ρ is skipped)
separated by a dotted vertical line. The right plot in Fig. 8 shows a zoom into
the first round. We separated the slice and lane processing phases with a dashed
vertical line as well as the eight slice-processing iterations (Zorro processes the
64 slices in eight blocks) by dotted vertical lines. The same was done for the six
lane-processing iterations (Zorro processes all 24 lanes in blocks of four). The
time interval where the θ step of the first round takes place is of special interest
because the power-analysis attacks presented in the following target the θ step.
Only the first θ step was recorded for the power analysis attacks in order to keep
the amount of data small.

Performing CPA. CPA attacks presented in this work focus on the first round
of Keccak-f . In particular, we targeted a storage operation of the 256-bit Sub-
State register that stores key-dependent intermediate values during the θ step.
The decision to target the θ transformation and not the non-linear χ transforma-
tion was motivated by the modified round schedule. In the first round, θ is the
only slice-based transformation leading to a simple power model. We target a
(unknown but constant) 256-bit key that gets concatenated with the (known and
random) associated data. Thus, each targeted slice operation reveals information
about four key bits. Since θ processes two slices in parallel, we can efficiently
target 8 key bits by evaluating 256 key hypotheses. θ is a linear function, so not
only the correct key will result in a high correlation, but shifted key variants will
correlate too. Therefore, this attack does not only reveal the correct key but it
will also reveal a small set of other possible key candidates (in our experiment
we will get up to eight out of 256 possible key candidates). Due to the fact that
we can attack all 64 slices and four bits of the key of two subsequent slice pairs
must be similar, only eight key candidates with a length of 256 bits remain for
a brute-force attack, what is within computational bounds (e.g., when attacking
the slice pair (1, 2) followed by the slice pair (2, 3), only key candidates where
the key bits of slice two are similar need to be considered). First experiments
showed that Zorro leaks the information according to the Hamming distance
power model [16]. As a reference, preliminary attacks target Zorro running in
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Table 4. Results for the power-analysis attacks
on Zorro running in hiding mode (HM).

Mode ti Windowing ρc,theory ρc,pract

HM1 16 no 0.044 0.049

HM1 16 yes 0.176 0.237

HM2 24 no 0.029 0.031

HM2 24 yes 0.152 0.160

HM15 128 no 0.005 -

HM15 128 yes 0.062 0.057

Table 5. Min. number of
measurements required.

Mode Nmeas

NM < 100

HM1 285

HM2 625

HM15 4 925

HM240a 70 000

MM 3-share 70 000
a not supported by Zorro

normal mode (NM, no countermeasures enabled). After the initial attacks, we
have activated the DPA countermeasures one after the other in order to evaluate
their impact on the power-analysis attacks. We first evaluate the hiding mode
(HM) followed by the masked mode (MM).

Normal Mode: The CPA attack was performed with 1 000 power traces leading
to ρc = 0.73. This ρc value indicates that less than 50 measurements are sufficient
to distinguish the correct key hypothesis from the wrong key hypotheses [16].

Hiding Mode: Next, we have activated hiding on the Zorro ASIC. The num-
ber of dummy rounds (Ndr) has been set to 1 (HM1 ), which means that zero
or one dummy operation is randomly inserted in front of the first Keccak-f
permutation working on the real data. Moreover, as soon as the hiding mode
is activated, the execution order during each slice-processing operation is ran-
domized. As a result, the targeted operation can appear at 16 different time
instances ti. According to [16], ρc should decrease by a factor of 1

ti compared
to the unprotected case. When taking into account ρc of 0.7 for the unpro-
tected case and ti = 16, this leads to an expected ρc,theory value for the pro-
tected implementation of 0.7

16 = 0.044. Attacks on the protected implementa-
tion yield ρc,pract = 0.049, what fits well with theory. Next, windowing has been
applied combining all the 16 time instances. According to [16], windowing should
increase ρc by a factor of

√
16 for our attack. With windowing applied, our prac-

tical attacks yield ρc,pract= 0.237, what is significantly higher than the expected
value ρc,theory= 0.176. Further practical experiments have been performed with
Ndr = 2 (HM2 ) leading to a ρc,pract value of 0.031 without and 0.160 with
windowing applied. Again, these values fit well with theory. Zorro allows a
maximum Ndr of 15 (HM15 ), here practical results with windowing applied
yield ρc,pract= 0.057 what is again close to ρc,theory= 0.062. Without windowing
applied, no significant results can be observed with 100 000 measurements. Due
to that reason, for HM15 without windowing we can only give ρc,theory= 0.005.
Table 4 summarizes the results with regard to the hiding mode.

3 The confidence interval of the coefficient, where 99.99 % of all samples (4-σ border)
are located in the normal distribution model for 1 000 traces, is about 0.12.
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Fig. 9. 3rd-order CPA result for the
correct key guess using 100 000 ASIC
traces (Zorro running in masked
mode).
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ficient of Zorro running in masked
mode (3rd-order CPA).

Masked mode: In a next experiment we performed power-analysis attacks target-
ing the first θ step on Zorro running in masked mode (hiding was deactivated
for this experiment). 1st-order CPA attacks using 100 000 power traces cap-
tured from the ASIC did not succeed. No significant correlation peaks could be
observed in the result. Due to the clear patterns in the power traces, the time
instances, where the first θ steps of each share are performed, can be identified
with small effort. By combining the revealed time instances, a 3rd-order CPA
attack has been mounted. The centralized product combining has been used as
combination function, as suggested by Prouff et al. [21]. As shown in Fig. 9, this
attack results in a significant correlation peak for the correct key hypothesis
with ρc = 0.016. Figure 10 shows the course of the correlation coefficients for all
key guesses. With less than 70 000 measurements the correct key hypothesis can
be distinguished from the wrong key hypotheses. Note that since the modifica-
tions between the 3-Share and 3-Share* implementation solely affect the χ step
(and not the herein targeted θ operation), the results of the 3rd-order CPA are
identical for both three-share based architectures.

Comparison masking mode and hiding mode: Our first attack results show that
both hiding as well as masking increase the effort for an attack. Attacks on the
implementation using hiding also succeed without any modification of the traces
(e.g., windowing). But, if windowing is applied, ρc only decreases by a factor
of 1√

ti
instead of 1

ti . That means, windowing drastically reduces the number of
required measurements Nmeas for performing a successful attack. Attacks on
the masked implementation do not succeed without combination of the traces,
at least not if the shares are calculated sequentially during the first θ step,
as it is the case with Zorro. In order to reach the same security level with
hiding as with masking, 240 dummy rounds would be required. Each additional
dummy round leads to eight additional time instances for the targeted operation
to appear, so ti = 240 · 8 = 1920 for 240 dummy rounds. As a consequence, ρc

decreases to 0.7√
1920

= 0.016. This is now equal to ρc achieved with a 3rd-order
CPA targeting the masked implementation. However, with 240 dummy rounds,
the runtime of the implementation running in hiding mode exceeds the runtime of
the implementation running in masked mode. Table 5 summarizes the number of
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required measurements Nmeas for a successful key recovery. For the unprotected
case (NM ), less than 100 measurements are sufficient, for the hiding mode with
the weakest protection (HM1 ), Nmeas = 285, and for the hiding mode with
the highest protection (HM15 ), Nmeas = 4925 respectively. Note that Nmeas

for HM1, HM2, and HM15 all assume that windowing is applied. Successful
attacks targeting the masked mode (MM3-share) require 70 000 measurements.
240 dummy rounds (HM240 ) would also yield Nmeas = 70 000 but this mode is
not supported by Zorro since 15 is the maximum number of dummy rounds.

5 Conclusions and Future Work

Zorro represents the first actually taped-out ASIC, hosting Keccak-based
authenticated encryption systems secured against DPA attacks. It contains three
distinct architectures, which solely differ with regard to the implemented secret-
sharing technique. In addition to the DPA-secure designs, we aimed at low-area
hardware architectures, targeting resource-constrained applications.

As future work, we are looking forward to investigate more DPA attacks
targeting different intermediates of Keccak. In addition to target the output of
the θ step, we want to target the output of the χ step as effects like glitches or
early-propagation might allow successful DPA attacks with a lower order than 3.
This will also enable a comparison of the three masking-secured implementations.
Furthermore, we want to increase the number of traces up to several millions to
identify unintended leaks. Finally, we plan to apply powerful Test Vector Leakage
Assessment (TVLA) tests (including the fixed-vs-random t-test) to detect non-
specific leakages and to verify the DPA resistance of our cores.
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Abstract. By shrinking the technology and reducing the energy require-
ments of integrated circuits, producing ultra-low-power devices has prac-
tically become possible. Texas Instruments as a pioneer in developing
FRAM-based products announced a couple of different microcontroller
(MCU) families based on the low-power and fast Ferroelectric RAM tech-
nology. Such MCUs come with embedded cryptographic module(s) as
well as the assertion that – due to the underlying ultra-low-power tech-
nology – mounting successful side-channel analysis (SCA) attacks has
become very difficult. In this work we practically evaluate this claimed
hardness by means of state-of-the-art power analysis attacks. The leak-
age sources and corresponding attacks are presented in order to give
an overview on the potential risks of making use of such platforms in
security-related applications. In short, we partially confirm the given
assertion. Some modules, e.g., the embedded cryptographic accelerator,
can still be attacked but with slightly immoderate effort. On the contrary,
the other leakage sources are easily exploitable leading to straightforward
attacks being able to recover the secrets.

1 Introduction

Side-Channel Analysis (SCA) attacks have become a serious threat to cryp-
tographic implementations. Regardless of the theoretical robustness of a cryp-
tographic primitive, secret materials used by its implementation can easily be
recovered in case of absence of SCA-dedicated countermeasures. Case studies
like [1,4,11–13] confirmed the effectiveness of such attacks to overcome the secu-
rity of commercial products. Hence, the producers of security-related applica-
tions have moved towards integrating SCA countermeasures. For example the
FPGA architecture UltraScale [18] – recently announced by Xilinx – offers many
security features including DPA-protected bitstream encryption. Along the same
lines, Microsemi has integrated many solutions to improve physical security of
Actel’s FPGA family SmartFusion2 [10].

Texas Instruments (TI) has introduced ultra-low power FRAM-based micro-
controllers (MCUs) with a couple of security features [15,16]. Ferroelectric RAM
(FRAM) technology enables large-scale non-volatile memories that offer faster
write operations, much larger tolerated number of write cycles, and a much lower
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power consumption compared to equivalent flash memories. The low power con-
sumption as well as the embedded cryptographic modules (e.g., an AES core)
are the key factors of the offered security. It is claimed that due to the ultra-
low-power feature of such MCUs and their low operating voltage (1.5 V) SCA
attacks become extremely difficult to mount.

This article deals with the aforementioned features and presents practical
investigation results with respect to the claimed hardnesses. The results of our
analyses on an MSP430FR5969 MCU are summarized as:

– A couple of different power analysis attacks are feasible on the embedded AES
module. We should highlight that such attacks are not as straightforward as
those mounted on crypto engines of other MCUs e.g., Atmel’s XMEGA [8].
That difference is mainly due to the low-power feature of the integrated AES
module.

– Regardless of the underlying low-power architecture, software implementa-
tions of cryptographic algorithms executed on the underlying MCU are victims
of power analysis attacks. Unsurprisingly, the secrets of such implementations
can be easily revealed by means of straightforward state-of-the-art attacks.

– Due to the restricted speed of the FRAM technology, TI integrated a dedicated
cache to be used when the MCU operates at a higher frequency than the access
frequency of FRAM. As a known issue, the cache (miss/hit) can be a source
of SCA leakage. We report case studies, which make use of this feature to
launch effective SCA attacks.

– The internal architecture of MCUs is usually not known to end users. Such
architectures can turn an implementation of a sound masking scheme to a vul-
nerable design. In order to examine such issues we consider an implementation
of the masking with randomized look-up table countermeasure [14] which has
particularly been developed for FRAM-based MCUs [7]. Our analysis shows
that the unknown internal architecture of the underlying MCU causes the
provably-secure masked design to have a first-order leakage, while it is sup-
posed to provide security at all orders.

2 Features

Here we shortly recall a couple of features of TI’s FRAM-based MCUs. We focus
on those specifications, which are related to our security analyses.

2.1 AES Accelerator

In many of TI’s FRAM-based MCUs – including the MSP430FR59xx family – an
AES accelerator module is embedded. It supports both encryption and decryp-
tion for all key lengths (128, 192, and 256). Further, on-the-fly as well as offline
round key generation scenarios are supported, and it is facilitated to be used in
ECB, CBC, OFB, and CFB modes of operation. It should be highlighted that
the AES module has not been designed for speed-critical applications although



Side-Channel Security Analysis of Ultra-Low-Power FRAM-Based MCUs 241

Table 1. AES accelerator performance figures

Key length Encryption Decryption

(clock cycles) (clock cycles)

128 bits 168 168

192 bits 204 206

256 bits 234 234

it can perform a complete encryption and decryption much faster than corre-
sponding software on the same MCU. Table 1 shows the number of clock cycles
the AES module requires to complete the respective operations.

As it is a stand-alone module, the MCU can perform other operations while
the AES module is busy. It is noteworthy that the numbers given in this table are
with respect to the on-the-fly computation of round keys while the decryption
module requires to receive the last round key. The interested reader is referred
to [17] for more detailed information including the performance of the other
modes.

2.2 FRAM Architecture

As a promising alternative to non-volatile storage such as flash, FRAM technol-
ogy offers many advantages. It avoids the long delays as well as the high current
supply required for programming (writing). The advantageous features of the
FRAM technology focus mainly on write operations. High speed (125 ns delay),
low power (82µA/MHz), and super high (1015) write cycles have been reported
for the 130 nm MSP430FR family of TI’s MCUs.

As a disadvantage we should refer to the fact that FRAM reads are destruc-
tive. That is, every read must be followed by a write operation (with the same
data). However, this is automatically handled by the FRAM controller, and the
end user does not need to pay any attention to this. Therefore, the frequency of
FRAM read operations are limited to the write speed. Due to this limit, TI has
integrated a read cache in front of the FRAM to accelerate the operations in case
the MCU operates at a higher frequency than the FRAM. In the MSP430FR
family, the FRAM can be operated at up to 8MHz without use of this cache.
When the MCU operates at a frequency of 16MHz (the maximum operation
frequency of the MSP430FR family), the cache is utilized.

The integrated cache is a two-way associative cache containing two cache
sets [17]. Each of these sets consists of two lines of four words (64 bits). The cache
controller selects one of the cache lines to preload FRAM data and preserves
recently-accessed data in the other cache line. If one of the four words stored in
one of the cache lines is requested (a cache hit), no FRAM access occurs, and
the requested data is read from the cache with full system speed. However, if
none of the words that are available in the cache is requested (a cache miss),
a wait state (one clock cycle at 16MHz) controls the CPU to ensure proper
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Fig. 1. Structure of the two-way associative cache

FRAM access. Therefore, memory read accesses on consecutive addresses can be
executed without wait states when they are within the same cache line.

Each 64-bit location in FRAM can be cached in only one of the two sets in the
cache. As shown in Fig. 1, the most common scheme is to use the least significant
bit of the FRAM location’s address as the indicator to the corresponding cache
set. We should emphasize that FRAM contains both program code and data,
e.g., look-up tables, which are to be stored in the non-volatile memory. Hence,
frequent jumps and frequent accesses to the pre-stored tables in FRAM can
negatively affect the cache performance.

3 Analyses

In this section we present various analyses that we performed on an FRAM-
based MCU. We first present the framework that we used, and then describe
each analysis in detail.

3.1 Setup

The practical analyses have been conducted on an MSP-EXP430FR5969 Launch-
pad Evaluation Kit, and we used IAR Embedded Workbench IDE as well as
Code Composer Studio to develop and compile the codes. This evaluation plat-
form has been developed to facilitate power measurements. As shown in Fig. 2,
we could easily place a 1.8Ω resistor at the VCC path of the MSP430FR5969
MCU while no stabilizing capacitor was placed between the measurement point
and the MCU. We monitored the current passing through the MCU by means
of a LeCroy WaveRunner HRO 66Zi digital oscilloscope at a sampling rate of
1GS/s. We also used an I/O pin of the MSP-EXP430FR5969 Launchpad Eval-
uation Kit as trigger signal to align the collected traces. We provided a 16MHz
crystal oscillator as external clock source, and by clock source configurations
drove the MCU at our desired frequency (explained below for each target).

Due to the very low power consumption of the MCU, we employed a DC
blocker (BLK-89-S+ from Mini-Circuits) and an AC amplifier (ZFL-1000LN+
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Fig. 2. Measurement setup

from Mini-Circuits) to collect the power traces with a considerably high quality.
Further, we limited the oscilloscope bandwidth to 20MHz to reduce the electrical
noise.

Metrics: For the side-channel analysis we mainly used correlation power analy-
sis (CPA) [3] to mount key-recovery attacks. However, in some cases we applied
a statistical t-test [5]. The goal of such a scheme is not to examine a key-recovery
attack, but rather it provides an overview of the existence of a leakage which
might be exploited by an attack. The concept of t-test is based on the classical
DPA attack of [9].

Following the concept of DPA, the traces t ∈ T are categorized into two
groups g1 and g2. Recall that Welch’s (two-tailed) t-test is computed as

t =
μ(t ∈ g1) − μ(t ∈ g2)√

δ2(t∈g1)
|g1| + δ2(t∈g2)

|g2|
,

where μ and δ2 denote the sample mean and the sample variance respectively,
and |.| stands for the cardinality. The t-test indeed examines the validity of
the z as the samples in both groups (g1 and g2) were drawn from the same
population. If the null hypothesis is correct, it can be concluded with a high
level of confidence that a corresponding DPA attack cannot exploit the leakage.

For such a conclusion the Student’s t-distribution density function in addition
to the degree of freedom is applied to determine the probability of rejecting the
aforementioned hypothesis (for more information see [5]). For typical evaluations,
a threshold for |t| as > 4.5 is defined to reject the null hypothesis and conclude
that the device exhibits a first-order leakage. This process is repeated at each
sample point independently.

The remaining point to mention is the way that the categorization of traces
into the groups g1 and g2 is performed. For a specific t-test this classification is
done based on a chosen intermediate value. During the measurements the input
(plaintext) is taken randomly while the key is kept constant for all the collected
traces. With respect to the corresponding DPA attack – for example – an Sbox
output bit directs the classification. Many intermediate values should be con-
sidered in the evaluations to examine the feasibility of each corresponding DPA
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attack. Instead, a non-specific t-test can be performed, which can examine the
existence of leakage without any required intermediate value. In such a test, a
fixed input (plaintext) is selected, and the measurements are randomly inter-
leaved between the fixed and random inputs. So the non-specific t-test is also
called fixed vs. random t-test. Hence, based on the given input (fixed or random)
the traces are categorized into g1 and g2. It is noteworthy that such a leakage
assessment scheme has been also used in [2].

3.2 AES Hardware Accelerator

As the first target we focus on the AES accelerator. As stated in Sect. 2.1, the
AES module can perform the encryption and decryption functions in a couple of
different settings. We evaluate only the AES-128 encryption function with on-
the-fly round key computation, which takes 168 clock cycles. Following the con-
figurations given in [17] we developed assembly code (in IAR Embedded Work-
bench IDE) to activate the aforementioned function. We intentionally wrote the
code in such a way that it waits in a loop till the operation of the requested
encryption is finished. It allows us to observe only the leakage of the AES
accelerator module. Further, we configured the MCU to operate at a frequency
of 2MHz.

Figure 3(a) shows an exemplary power trace confirming its ultra-low power
consumption. In order to examine the vulnerability of such a module to power
analysis attacks, we first performed a couple of specific t-tests with intermediate
values including i) the cipher round output bits (128 cases), ii) XOR between
the cipher input and output bits (128 cases), iii) the SubBytes output bits (128
cases), iv) XOR between the SubBytes input and output bits (128 cases), v) the
SubBytes output bytes (16 × 256 cases), and vi) XOR between different Sbox
output bits (

(
16
2

) × 8 cases). The best results have been achieved considering
the SubBytes output bits as well as the XOR between the SubBytes input and
output bits (cases iii and iv). As a proof of concept we performed CPA attacks
with the corresponding power models. For instance, Fig. 3 presents the results of
two CPA attacks using 100 000 traces. The power models have been chosen as i)
an Sbox output bit and ii) a bit of the XOR result of an Sbox input and output.
It is noteworthy that the attacks with common power models like Hamming
weight (HW) models are also feasible, but not as efficient as those mentioned
above.

We should stress here that although the AES accelerator is vulnerable to
these state-of-the-art attacks, the effort an attacker needs to put in to recover the
key is higher compared to e.g., the cases of Atmel’s XMEGA [8] and KeeLoq [4].
This hardness results mainly from the low-power feature of the underlying tech-
nology. Further, as stated, we kept the MCU in an idle state to be able to observe
the leakage of the AES module. The power consumption peaks related to the
normal operation of the MCU are actually much higher than that of the AES
module (see Fig. 4(a)). Such high power peaks are due to the FRAM reads (as
stated followed automatically by a write) as the program code (instructions) has



Side-Channel Security Analysis of Ultra-Low-Power FRAM-Based MCUs 245

0 20 40 60 80
−40

0

40

80

Time [µs]

V
ol

ta
ge

 [m
V

]

(a)

(b) model: an Sbox output bit (c) model: a bit of Sbox input XOR output

Fig. 3. AES in hardware: (a) a sample trace (full AES), (b) and (c) CPA attack results
using 100 000 traces

been stored in FRAM. In short, when the MCU operates simultaneously with
the AES accelerator, the above-presented attacks become harder.

3.3 AES in Software

As a case study to examine the leakage of the normal operation of the MCU, we
took the AES-128 implementation recommended by TI and publicly available
at http://www.ti.com/tool/AES-128. Both encryption and decryption functions
are written in C, and we used IAR Embedded Workbench IDE to compile the
encryption code and ran it on our evaluation kit at a frequency of 8MHz. We first
realized that the length of the traces is not constant, and the implementation
needs different number of clock cycles depending on the plaintext. The source of
this issue was found in the way that multiply by 2 (used for MixColumns) has
been implemented:

1 unsigned char galois_mul2(unsigned char value)

{

3 if (value >>7)

{

5 return ((value << 1)^0x1b);

} else

7 return (value << 1);}

http://www.ti.com/tool/AES-128
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Fig. 4. AES in software @ 8 MHz: (a) a sample trace (first round), (b) and (c) CPA
attack results using 100 000 traces

As a result the implementation is vulnerable to a classical timing attack by
predicting whether the extra reduction (XOR by the polynomial) is required or
not. We have implemented such an attack and could easily recover the key using
less than 5000 timing measurements (of the full encryption). Further, such an
implementation is trivially vulnerable to a simple power analysis attack, where
by observing each power trace the adversary can conclude whether the extra
reduction was performed or not directly leading to a shrink in the key space.

Regardless of this issue we examined the efficiency of the start-of-the-art
power analysis attacks. A sample trace covering the first round of the encryption
is shown in Fig. 4(a). In short, several attacks by different hypothetical power
models are feasible, as expected. The results of two CPA attacks predicting a
bit of an Sbox output as well as the HW of the Sbox output are shown in Fig. 4.
It is noteworthy that compared to the AES accelerator, the leakages associated
with the execution of the MCU instructions are an order of magnitude easier
to exploit. In fact, the ultra-low-power feature of the underlying MCU does not
play an important role to harden the attacks.

3.4 Cache

As explained in Sect. 2, the FRAM is equipped with a cache to accelerate the
access to consecutive memory locations when the MCU runs at a higher speed
than the FRAM. In order to examine the effect of cache miss/hits we consid-
ered the AES encryption function in software (the case study of Sect. 3.3). To
enable the cache we adjusted the clock source settings to operate the MCU at



Side-Channel Security Analysis of Ultra-Low-Power FRAM-Based MCUs 247

16 17 18 19 20
Time [µs]

miss

hit

Fig. 5. AES in software @ 16 MHz: detection of cache miss/hit through power traces

a frequency of 16MHz. Figure 5 shows a couple of traces during the SubBytes
operation (one Sbox call). It can be seen that the traces belonging to cache hit
and cache miss are clearly distinguishable. Therefore, a trace-driven cache attack
is possible. In other words, by comparing a couple of traces the attacker would
be able to detect whether each Sbox call caused a cache miss or not.

For an attack scenario let us consider two consecutive Sbox calls S(p1 ⊕ k1)
and S(p2 ⊕ k2). If by observing the power traces the attacker detects a cache
hit during the second Sbox call, it can be directly concluded that the two Sbox
calls accessed nearby memory locations. Therefore, the attacker can gain certain
information about Δk = k1 ⊕ k2 = p1 ⊕ p2. With respect to the underlying
cache architecture, i.e., 64-bit lines (8 bytes), the five most significant bits of
Δk can be recovered by the attacker. This is true, if the Sbox table starts at a
location in FRAM corresponding to the first byte of a cache line. In other words,
the first entry of the Sbox table needs to be stored in a location with address
xx...xx000. Otherwise, the recovered bits of Δk is reduced to the four most
significant bits.

As a proof of concept we developed a scenario to perform such an attack.
In such a scenario we collected 256 power traces Ti∈{0,...,255} where the first
plaintext byte p1 is constantly set to an arbitrary value, e.g., 0, and the second
one p2 = i. The rest of the plaintext bytes can be arbitrarily selected. By
observing the power traces and detecting a cache hit with p2 = p′

2, a part of
k1 ⊕ k2 = p′

2 is recovered. Indeed, it is not required to collect all 256 traces;
once a cache hit is detected the process can be terminated. For the second phase
of the attack, again at most 256 traces are collected with plaintext bytes p1 = 0,
p2 = p′

2, and p3 = i. The same process is repeated to find the colliding case
for p3 = p′

3 and recovering a part of k1 ⊕ k3 = p′
3. The selection of p2 = p′

2 is
necessary to avoid replacing the part of the cache filled during the first Sbox call.
This process is repeated for the other plaintext bytes. At the end of the attack,
the key space is limited to 25 · 23×16 = 253 or to 24 · 24×16 = 268 depending on
the location the Sbox table is stored in. However, the attack can be extended to
the second round and recover more relations to again shrink the key space.

An important issue, which should be mentioned, is that since the program
code is also stored in FRAM, the execution of the instructions (fetching them
from FRAM) by the MCU also affects the cache misses/hits. In the above-given
example all 16 Sbox calls are trivially performed in a loop. If this is not the
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case, the instructions performed between two consecutive Sbox calls can already
replace the interesting line of the cache and avoid any cache hit by the second
call. The presented attack scenario is only an example of a common scheme in
the presence of a cache. It should also be emphasized that since the cache is
shared between the program and data memory, exploiting the leakage by timing
attacks (as a time-driven cache attack) is not trivial. In general, we show the
leakage sources which should be taken into account when using such an MCU in
a security-related application.

3.5 Internal Architecture

As the last case study we considered a masking scheme, which has been developed
to provide security against side-channel attacks at any order. The scheme, which
is based on the work presented in [14] has been implemented on an FRAM-based
MCU as a proof of concept [7]. Therefore, we could easily integrate the same
program code on our platform and perform the evaluations.

With respect to Fig. 6, we restate the underlying scheme. In a classical first-
order Boolean masking (Fig. 6(a)), x and m (resp. input and random mask)
are given to the device, which generates two outputs as S(x ⊕ m ⊕ k) and q :
S(x⊕m⊕k)⊕S(x⊕k) as a shared representation of S(x⊕k). Such a scheme is
certainly vulnerable to a second-order attack combining the leakages associated
with the output shares. The concept followed in [7,14] is to involve more random
data in the computations in such a way that the look-up tables g1, R, and RC are
precomputed based on the predefined key k and random data a1, a2, and a3 in a
secure environment (see Fig. 6(b)). During the operation (similar to the classical
Boolean masking) x and m are given to the device, and all the operations are
performed by the aforementioned look-up tables. As each of the look-up tables
involves a random ai which is independent of the others, the adversary should
not be able to recover any information by combining the leakage of the look-up
tables and/or the output shares.

After a random selection of a1, a2, and a3, the precomputations (Algorithm 1)
are supposed to be performed in a secure environment, i.e., no side-channel
measurement is permitted. After finishing all operations in the operational phase,
e.g., for an Sbox as shown in Algorithm 2, g2(·, ·) can be applied on (s1, s2) to
obtain the unmasked result (in this case S(x ⊕ k)).

Fig. 6. (a) Classical Boolean masking, (b) The scheme of [7]
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Algorithm 1. Look-up Table Precomputation
input : k, a1, a2, and a3

output: g1(·, ·), R(·), RC(·, ·), and g2(·, ·)
∀i, j; g1(i, j) = i ⊕ j ⊕ a1

∀i; R(i) = S(i ⊕ k) ⊕ a2

∀i, j; RC(i, j) = S(i ⊕ k) ⊕ a2 ⊕ S(i ⊕ j ⊕ k ⊕ a1) ⊕ a3

∀i, j; g2(i, j) = i ⊕ j ⊕ a3

Algorithm 2. Operation
input : x, m, g1(·, ·), R(·), and RC(·, ·)
output: (s1, s2)

g = g1(x,m) ; /* :x ⊕ m ⊕ a1 */
s1 = R(g) ; /* :S(x ⊕ m ⊕ a1 ⊕ k) ⊕ a2 */
s2 = RC(g,m) ; /* :S(x ⊕ m ⊕ a1 ⊕ k) ⊕ a2 ⊕ S(x ⊕ k) ⊕ a3 */

A simplified and reduced version of the LED cipher [6] has been considered
in [7] as an example to be implemented by the above-restated scheme. This
reduced LED consists of only four rounds (cf. Fig. 7) and a 16-bit (4 × 4) data
width (i.e., it works only on the first column of the full LED state). We integrated
the corresponding code and ran the MCU at a frequency of 8MHz. It should
be noted that before each encryption the look-up tables g1, g2, R, and RC
are recomputed, i.e., there is no mask reuse in the whole scheme. By means
of appropriate trigger signals as well as inserting a large enough gap between
the precomputation phase and the operational phase we made sure to measure
the power consumption of the MCU only during the operational phase. As we
planned to perform a non-specific t-test, we collected 150 000 traces while a fixed
value (as 0) or a random one – in a randomly interleaved fashion – was given
to the MCU as plaintext. The result of both first- and second-order univariate
t-tests are shown in Fig. 8. Unexpectedly, the tests report both first- and second-
order leakages.

Fig. 7. Reduced LED (taken from [7])
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Fig. 8. Reduced LED @ 8 MHz: (a) sample trace (operational phase), (b) and (c) t-test
results first- and second-order respectively using 150 000 traces

As stated, the scheme is supposed to provide resistance against the attacks at
any order. The exploitable leakage, that we presented, is not due to the underly-
ing scheme. In other words, we do not report any flaws in the algorithm or in the
implementation of [7]. Instead, we show that even theoretically-sound counter-
measures can fall into failure because of the internal architecture of the under-
lying platform. By slightly changing the program code and performing many
measurements and analyses, we found out that the instructions which perform
the table look-ups are the source of the observed leakages. More precisely, the
exemplary instruction

1 mov.b @pointer , m0

which implements the call to the look-up table RC(g,m) (see Fig. 6(b) and
Algorithm 2) causes such a leakage. Since the details of the MCU architecture
are not publicly available, the reason of the observed leakage cannot be easily



Side-Channel Security Analysis of Ultra-Low-Power FRAM-Based MCUs 251

pinpointed. Further, although we showed an exploitable leakage, the evaluation
we performed (non-specific t-test) cannot give a clear assessment on the hardness
of an attack exploiting such leakage.

We give an example to show the strong effect of the MCU’s internal archi-
tecture on the side-channel vulnerability. We observed that if a random value is
written to a location in FRAM the leakage associated with this write operation
depends on the value which has been previously stored in that location. In other
words, suppose that x has been stored at location address. A write operation,
which stores a random value m at location address, leads to a leakage associ-
ated with the value of x as well. We observed such leakage during the evaluation
of the above-expressed reduced LED implementation. At one point in the code
(during the operational phase) a masked intermediate value is stored at a loca-
tion where the unmasked plaintext had been stored before (at lines 4 and 7 of
the below code):

1 mov #STATE , pointer

rlam #4, st0

3 add st1 , st0

mov.b st0 , 0( pointer)

5 rlam #4, st2

add st3 , st2

7 mov.b st2 , 1( pointer)

In order to avoid such a strong leakage (shown in Fig. 9) we cleared the contents
of this location during the precomputation phase by:

1 mov #STATE , pointer

mov.b #0x00 ,0( pointer)

3 mov.b #0x00 ,1( pointer)

This indeed is an evidence to the statement given above. We believe that such
leakage is due to the FRAM architecture as well as the way a write operation is
performed.
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Time [µs]

Fig. 9. Reduced LED (uncleared #STATE) @ 8 MHz: first-order t-test result using
35 000 traces
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4 Conclusions

In this work we have extensively examined the side-channel vulnerability of
FRAM-based MCUs of Texas Instruments as a platform for cryptographic appli-
cations. The motivation of this work is related to the relevant announcements
dealing with the ultra-low-power feature of such MCUs and the claims on the
hardness of power analysis attacks. Hence, we focused only on the power con-
sumption of the underlying device and presented the corresponding evaluation
results. The covered targets include the embedded AES accelerator (hardware),
ordinary instructions of the MCU (software), FRAM cache, and the MCU inter-
nal architecture. In short, by means of practical investigations we confirm the
hardness (but still feasibility) of the attacks on the embedded AES accelera-
tor compared to similar targets of such attacks, e.g., the embedded AES core of
Atmel’s XMEGA MCUs. Such a hardness is mainly due to its low-power technol-
ogy which leads to a high noise level in the measurements. However, when a cryp-
tographic algorithm is implemented by the general-purpose MCU instructions,
our practical results showed feasibility of straightforward and common DPA
attacks without any serious difficulties. The cache, which has been integrated to
accelerate the FRAM accesses, also comes with known security issues. Since an
FRAM read must be followed by an FRAM write with the same value due to
its destructive nature, an FRAM access consumes much more energy compared
to a cache access. Hence, cache hit/miss can be clearly distinguished by observ-
ing the power traces. Although the cache is shared between the program and
data memory (in MSP430FR5xxx family), we have shown that the trace-driven
cache attacks (which exploit the sequence of cache misses/hits) are expectedly
feasible. We also took a masking scheme into account, that has been developed
in particular for platforms with a large non-volatile memory, e.g., FRAM-based
MCUs. The scheme is based on precomputed randomized look-up tables and is
expected to provide security against side-channel attacks of any order. Although
there are no theoretical flaws in its developments, we have demonstrated that
its implementation cannot pass a general leakage assessment test. The reason
for such a failure lies in the details of the implementation platform (the MCU)
regardless of the soundness of the underlying masking scheme.

On the one hand, the results we presented here are more or less expected as we
targeted an unprotected platform where side-channel analysis should be feasible.
On the other hand, this work gives an overview about the feasibility of exploit-
ing various leakage sources of the underlying platform. Such information spreads
awareness of the available leakage sources, and is certainly useful for cryptographic
engineers, who deal with such a platform for security-related applications.

Acknowledgment. The authors would like to thank Stéphanie Kerckhof and
François-Xavier Standaert from Université catholique de Louvain for their kindness
in providing the source code of the masked implementation of the reduced LED of [7].
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Abstract. Side Channel Attacks are a powerful instrument to break
cryptographic algorithms by measuring physical quantities during the
execution of these algorithms on electronic devices. In this paper, the
electromagnetic emanations of smartphones and embedded devices will
be used to extract secret keys of public key cryptosystems. This will
be done using standard radio equipment in combination with far-field
antennas. While such attacks have been shown previously, the details
of how to find relevant emanations and the limits of the attack remain
largely unknown. Therefore, this paper will present all the required steps
to find emanations of devices, implement a side channel attack exploiting
ultra high frequency emanations and discuss different test setups. The
result is a test setup which enables an attacker to mount a side channel
attack for less than 30 Euros.

1 Introduction

Side Channel Attacks (SCA) on processors of cryptographic algorithms, which
are known for more than a decade now, are a very strong measure to break
cryptographic algorithms. The basic idea of all side channel attacks is to mea-
sure a physical quantity of a processor during the processing of cryptographic
algorithms and then extract information about the secrets of the algorithms
out of these measurements. Such quantities can be the timing [1], the power
consumption [2], electromagnetic emanations or even sound [3]. While most
of these attacks require the attacker to have physical access to the device for
these measurements (e.g. power consumption), recently also side channels were
found where the attacker can make the measurements from a certain distance
(e.g. sound, electromagnetic emanations, time). These attacks can be mounted
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remotely, so that the attacked device need not be in the possession of the
attacker.

A side channel which offers a lot of possibilities is the electromagnetic ema-
nation of a device. This is especially true for modern devices, with processors
that run at frequencies in the high MHz or even GHz range. At these frequen-
cies, each signal line which carries such high frequency components can act as
an antenna, and possibly emanate secrets which can then be measured using
antennas or near-field probes. This can be wires connected to the processor, or
even signal lines inside the processor [5].

In this paper, it shall be researched if such emanations can be measured
using standard radio equipment. The sensors connected to the radio receivers are
primarily far-field antennas, but also near-field probes are considered. Although
primarily a smartphone will be used during the experiments, other smartphones
as well as single-board computers will be examined, too.

The possibility of side channel attacks using electromagnetic radiation, or
more generally the possibility that circuits emanate high-frequency signals that
possibly leak secret information is already known since 1982, when the NSA
TEMPEST program internally published the “NACSIM 5000” handbook [4].
This classified handbook gives advice on the design of devices which are shielded
against such attacks and describes the attacks themselves. The documents were
released in December 2000, which led to numerous publications in the field of
side channel attacks.

In 2003, Agrawal et al. published a comprehensive paper about the possibility
to use electromagnetic leakage for side channel attacks (see [5]). They evaluated
the emanations of several devices, including smartcards and a PCI bus based
SSL accelerator. They found emanations using near-field probes as well as a far-
field log-periodic antenna. Most of these signals were on frequencies which were
harmonics of the clock frequency of the evaluated devices.

Aboulkassimi et al. showed in 2011 [6] and 2013 [7] that it is possible to
extract the key of an AES encryption executed on a Java-based mobile phone
using an electromagnetic near-field probe. They used a differential side channel
analysis approach and their attack succeeded with only 250 traces.

In 2013, Montminy et al. [8] succeeded in extracting the key of an AES
encryption running on a 32-bit processor with a clock frequency of 50 MHz using
a setup consisting of a near-field probe and a software defined radio. Using
a differential side channel attack, they were able to extract all keybits using
100000 traces.

In 2012, Jun et al. and Kenworthy et al. introduced the possibility to attack
smartphones and tablets using near-field and far-field probes in combination
with radio receivers, software defined radios and oscilloscopes. They succeeded
in extracting keys of RSA and ECC and showed the possibility of a differential
side channel attack against AES (see [9–11]).

This paper will introduce several approaches for mounting a side channel
attack using standard radio equipment with different types of test setups. The
different components of the test setups are introduced in Sect. 2, which is followed
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by Sect. 3 where we explain how to find the right frequencies where signals are
emanated. In Sect. 4, a practical attack on a smartphone using a far-field antenna
is implemented, evaluated and also tested with different devices. This is followed
by Sect. 5, where a very low-cost setup for mounting the presented attack is
evaluated.

2 Experimental Setup

In general, the different hardware-setups used for finding emanations and con-
ducting the attack are based on the same layout (see Fig. 1). This layout consists
of an antenna/near-field probe to receive the signal, a radio device which trans-
lates the analog signals into digital samples and a laptop which is responsible
for signal and data processing. This makes it possible to scan a wide range of
frequencies, use different antennas or sensors for different experiments, quickly
change parts of the signal processing structure and save data for later analysis.

Fig. 1. Layout of the test setup (gray elements signify analog parts of the setup)

2.1 Sensors

Depending on the experiment, different antennas with different characteristics
have to be used. To evaluate the emanations of the device under test (DUT),
the antenna has to offer a high antenna gain over a large bandwidth, which
can be achieved with a log-periodic antenna such as the HyperLOG 4025 by
Aaronia AG. For the evaluation of the found emanations, the antenna should
have a high antenna gain, but the bandwidth only needs to cover the found
emanations. A high-gain-narrow-bandwidth antenna like a bi-quad type offer a
good performance for these tasks, and can be built with very basic components
(Fig. 2).

Alternatively, near-field probes can be used to capture emanations. While
the far-field antennas in general have to be specifically designed for a certain
bandwidth, these probes work over a very large range of frequencies. However,
they have to be placed very near to the device, and the emanations can only be
measured if the probe is directly above the source. Since this paper is focused
on attacks using far-field antennas and at the frequencies at which the device
under test is running, a near-field probe was only used to find emanations. The
probe used was a Langer ICR HV 150-27 with a frequency range from 1.5 MHz
to 6 GHz.
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Fig. 2. Different sensors: Bi-Quad antenna and Langer ICR HV 150-27

2.2 Radio Device

There are two devices responsible for the radio reception, an analog radio receiver
and a software defined radio (SDR). A SDR is a radio device where most of
the signal processing is done using digital algorithms rather than analog filters.
By combining it with a high-end analog radio receiver, the advantages of both
systems can be taken. For the analog part, a ESN test receiver by Rohde &
Schwarz was used. It offers a frequency range from 9 kHz to 1 GHz and tools to
analyze the signals within this spectrum. To combine this receiver with a digital
signal processing system, a USRP N210 software defined radio was connected
to the IF output of this receiver. The N210 is able to sample an analog signal
with 100 MSps with a resolution of 14 Bit. With this measuring system, the high
bandwidth of the test receiver can be combined with the advantages of a digital
signal processing system. To further increase the signal strength, a PA 303 30 dB
preamplifier from Langer was inserted between the antenna and the test receiver.

An alternative reception system (presented and only used in Sect. 5) uses
a standard DVB-T stick from Gixa Technology as an alternative to the ESN,
the USRP and the preamplifier from above, which drastically reduces the price
as well as the size of the measuring equipment, even compared to a setup for
measuring power consumption. Furthermore, since no alteration of the hardware
of the DUT is required and most of the signal processing is happening in software,
it is possible to mount an attack even with little knowledge about hardware
designs or measurement engineering. Internally, the DVB-T stick consists of two
chips which roughly do the same job as the ESN radio receiver and the USRP
software defined radio. A R820T chip by Rafael Microelectronic is used to tune
in and downconvert a radio signal, which is then converted to a digital I/Q signal
by a RTL2832U chip by Realtek. There exist numerous DVB-T sticks with this
hardware combination, and a list of compatible sticks can be found at the project
website [15].

Both systems can be seen in Fig. 3, which also shows the far smaller size of
the DVB-T stick compared to the ESN-USRP combination.
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Fig. 3. ESN test receiver with USRP N210 and preamplifier (left), compared to the
DVB-T stick (plugged into Laptop, right)

2.3 Software Components

To process the digital signals, the open source software GNU Radio was used.
This makes it possible to test whether relevant signals are emanated, be it
directly or in a modulated way. Further processing was done using GNU Octave,
an open source tool for numerical computations [12].

2.4 Device Under Test (DUT)

Though in Sect. 4.4 several other devices will be examined, the primary research
was conducted on an Android-based smartphone. The only alteration of the
hardware was to remove a shielding plate above the main circuit to make it
easier to find and measure emanations (see Fig. 4). However, in Sect. 4.3 the
attack will also be tested with the shielding plate. Software-wise, the system was
rooted to be able to influence the CPU clock frequency. The app which computes
the cryptographic algorithms was written in Java, with the cryptographic parts
written in C using the Android Native Development Kit.

Positioning of Near-Field Probes. To get good results with the near-field
probes, the probe has to be near the source of the emanations. Therefore the first
step is to find a position where emanations take place. Such a position can be
found by connecting the probe to a oscilloscope, then produce a processor load
and change the position of the probe until a signal is received. By doing this,
a position was found directly above a capacitor next to the main CPU where a
signal is emitted by the smartphone (see Fig. 4).

2.5 Software on DUT

To evaluate the possibility of a side channel attack, a square and multiply algo-
rithm was implemented on the device. This algorithm, which is one of the stan-
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Fig. 4. DUT, with shielding plate (red frame) and position where the near-field probe
captured signals (red cross) (color figure online).

dard algorithms for implementations of RSA, can be used to calculate the result
of the equation

m = cd mod N, (1)

with m being the decrypted message, c the encrypted message, d the secret key
and N a publicly known integer. The algorithm can be described by the following
pseudo-code:

function square-and-multiply(Number c, Integer d, Modulus N)
result = 1
for each bit(d) from (number_of_bits(d) - 1) downto 0

result = square(result) mod N //square operation
if bit(d) == 1

result = (c * result) mod N //multiply operation
end if

end for
return result

end function

For the algorithm, the OpenSSL library was used [14]. This was done in such a
way that the algorithm itself was a custom C implementation, but the square
and the multiply operations were taken from the OpenSSL library.

3 Emanations of Smartphones

The first challenge when trying to implement a side channel attack is to find
appropriate signals which contain information correlated to the activity of the
processor of the device. This can be very difficult when the sensor is a far-field
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antenna, because there are many other signals caused by terrestrial radio sta-
tions, such as mobile phone networks, DVB-T and others. Therefore, it is easier
to use a near-field probe as a sensor to find the emanations of a device. During
research, 3 approaches to find the relevant frequencies where the smartphone
emanates signals were developed, one using an antenna, one using a near-field-
probe and one by making an educated guess.

The first approach was done with a wide-band antenna and consists of filter-
ing the external disturbances from the signal, so that only the signals emanated
by the DUT remain. The idea is that the signal s measured by the antenna at a
certain frequency consists of two components: The signals emanated by the DUT
sDUT and the signal emanated by other sources sothers, which can be written as

s = sDUT + sothers. (2)

In this equation, s and sothers can be measured by measuring two times in a row,
one time with and one time without the DUT enabled. That way, sDUT can be
calculated by computing

sDUT = s − sothers. (3)

While it is not possible to filter all the external signals using this system, because
sothers is not constant, the search space is reduced to a few frequencies at which
the DUT possibly emanates signals, which can then be checked manually. The
results of this approach for a frequency range from 400 MHz to 1 GHz can be
seen in Fig. 5.

Fig. 5. Results of the antenna measurements: received signal strength of the DUT
and disturbances (blue, dashed line), calculated emanations of only the DUT (red,
solid line). Signals really emanated by the DUT are marked with a green circle, false
positives are marked with a dashed black circle (Color figure online)
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Fig. 6. Results of the near-field measurements: Emanations on several frequencies,
especially 900 MHz, the CPU clock frequency.

The second approach is done by measuring with a small near-field probe
directly above the main processor. The near-field probe is not affected by the
disturbing radio signals, and thus the measured signals are directly emanated
by the smartphone. Since the emanations found by the near-field probe are only
magnetic fields, it is necessary to check in a second step whether the emanations
can also be measured with the far-field antenna. During this experiment, the
clock frequency of the smartphone was set to a fixed frequency of 900 MHz. As
it can be seen in Fig. 6, at this frequency signals were emanated by the device.

The third approach is done by making an educated guess to find the relevant
frequencies. This can be done without any sensors by studying the manual of
the device to find out which clock frequencies exist. Since the emanations are
caused by coupling of high frequency signal generators with other parts of the
circuit [4], there is a high probability that there are signals emanated on the
frequencies used by the active high-frequency elements of a smartphone, e.g.
clock generators.

Using these 3 approaches, several signals emanated by the smartphone
were found. These signals could be categorized into signals emanated by the
main processor and, far stronger, signals emanated by the display. The signals
emanated by the display are only measurable when the touchscreen is turned
on, while the signals emanated by the main processor can be always measured
when the processor is doing work. However, to be able to capture the processor
signals, the smartphone has to be configured so that the CPU clock is kept at
a distinct rate, because otherwise the frequency is changed depending on the
workload. This is also the reason why the far-field antenna did not receive a
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signal at 900 MHz, because during this experiment the device was not running
at a fixed clock frequency.

4 Side Channel Attack Using Far-Field-Antennas

4.1 Correlation to Computations

To successfully mount a side channel attack, it is crucial to find out which of
the signals contain information about the main processor. To do this, during
the measurements, a periodical workload is executed. This way, if there is a
correlation of the processor load with the signals, the emanations should also
contain a periodical component. Doing this, the two categories of signals were
analyzed, which led to two different results.

It is not possible to extract information of the main processor from the sig-
nals emanated by the display. However, these signals contain information about
changes in the display content and the state of touchscreen. In a first experiment,
it was possible to measure the blinking of a cursor and the signal when a finger
touches the display from a distance as far as 3 m. However, since the focus of
this paper are side channel attacks on cryptographic algorithms, these signals
were not further considered.

The emanations of the main processor however are correlated with the data
and instructions processed there. Every time the processor is working, the ampli-
tude of the signals is higher than in an idle mode, where the amplitude goes down
to nearly zero (e.g. during the call of the standard C-function “sleep()”). To check
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Fig. 7. A square (0–0.4 ms) and a multiply (0.4–0.8 ms) operation, not distinguishable.
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if this behavior can be used for a side channel attack, the signal was evaluated
during the execution of the Square-and-Multiply algorithm from Sect. 2.

4.2 Square-and-Multiply Algorithm

Using OpenSSL, a Square-and-Multiply algorithm was implemented. If it is pos-
sible to distinguish square and multiply operations, the secret exponent d can
be extracted during calculation of Eq. 1.

By isolating the single operations from each other with a sleep()-function,
it can be checked if they cause different signals and can be distinguished that
way. As it can be seen in Fig. 7, this is not the case. The operations can not be
distinguished on first sight, and further investigations showed that this is not
even possible by using statistical tools like the cross-correlation of the signal.
This is probably due to the low sampling rate and the low signal-to-noise ratio.

When the sleep()-functions are removed, the single signals of the operations
melt into a big block with a high amplitude, and thus the operations can neither
be seen nor distinguished in the final signal. However, this can be improved by a
common technique from the field of signal processing, which is to record the same
signal several times in a row and then compute the average of these recorded
signals [13, page 367]. This way, it is possible to extract the key, because the
signal of a 1-bit (square and multiply) can be distinguished from the calculation
of a 0-bit (square only). This can also be seen in Fig. 8.
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Fig. 8. Average of 1063 traces of a Square-and-Multiply algorithm (execution marked
gray, key: 1010 0101 0000 0000 1111 1010 1111, computed backwards).
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4.3 Evaluation of Attack

After proving that an attack using a far-field antenna is possible, a few parame-
ters of the attack shall be evaluated here.

Number of Traces. Since for a successful attack it is necessary to average
several traces (with a single trace being the recorded curve of a single execution
of the algorithm), it is convenient to find the minimal number of traces for a
successful attack. The challenge is however that the result of the attack is not
computed by an algorithm, but by a human which interprets the results, which
is highly subjective. To find an objective measure for the minimum number of
traces, a property of the averaging was used. Since the average of many traces
converges to a unique solution where the keybits can be extracted, an objective
measure is to compare the average of i traces with the converged solution, and
then see how much alike the curves are. A tool for such an analysis is the corre-
lation coefficient, which can be used to compare two digital waveforms x and y
with each other. It is defined as

corr(x, y) =
cov(x, y)

std(x)std(y)
, (4)

where x and y are the waveforms to compare, std(·) is the standard deviation
and cov(x, y) is the sample covariance of the waveforms x and y defined as

cov(x, y) =
1

n − 1

n∑

j=1

(xj − µx)(yj − µy), (5)

with µ as the mean value of a waveform, xj and yj as the j–th element of the
waveforms x and y and n as the total number of elements of the waveforms. Using
these definitions, the following formula was used to calculate the correlation
between the average of i = 1 . . . q traces ti with the converged solution, which is
the average of q traces:

y(i) = corr(mean(t1, t2, . . . , ti),mean(t1, t2, . . . , tq)). (6)

mean(·) computes the average curve c of multiple traces t. Each point cj of the
curve c is defined by

cj =
1
i

i∑

p=1

tp,j (7)

with tp,j being the j-th element of the p-th trace tp.
As it can be seen in Fig. 9, the correlation is already higher than 0.999 when

more than 170 traces are averaged. This means that with 170 traces it should
still be possible to extract the key, which was also confirmed by experimental
results.
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high-end setup at distance of 80 cm and q = 500 for the other experiments.)

Maximum Distance. So far, the device was placed directly in front of the
antenna. Increasing the distance decreases the quality of the signal in several
ways. Obviously, the amplitude of the signal is reduced, which worsens the signal-
to-noise ratio. Subsequently, the synchronization of the traces gets more difficult,
which means that more traces are needed and even with more traces, it is harder
to identify the different operations in the signal. However, it is still possible to
extract the key from a distance of 80 cm using 1894 traces, but it is very hard to
identify the different operations, even when comparing the curve with the result
of the attack from a distance of 2 cm (see Fig. 10). As it can be seen in Fig. 9,
when applying the correlation experiment from above to the data acquired at
a distance of 80 cm, the average of 1530 traces is needed to get a correlation of
0.999 with the average curve of the 1894 traces shown in Fig. 10.

Shielding Plate. In the factory state the smartphone is equipped with a shield-
ing plate which resides directly above the main circuits of the device. Since this
does decrease the emanations of the device, it was removed so far. When putting
it back into the device, the results are comparable to increasing the distance.
The amplitude drops, resulting in a lower signal-to-noise ratio and thus requiring
more traces than before. However, it was still possible to extract the secret of
a Square-and-Multiply algorithm by averaging multiple curves. The maximum
distance with the shielding plate is however drastically reduced, so that the
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Fig. 10. Average of 1894 traces recorded at a distance of 80 cm.

antenna has to be directly next to the device during the attack. When applying
the correlation experiment from above to 500 traces collected with the shielding
plate installed and the antenna at a distance of 2 cm, it takes the average of 276
traces instead of 170 to reach a correlation of 0.999.

4.4 Other Devices

At first, the research was only conducted with a single smartphone. Since many
more devices are based on the same processor architecture, it could well be that
all these devices are vulnerable to the attack. Therefore, it was tested with dif-
ferent devices, not only in the area of smartphones, but also on single board
computers. The results were that on all tested devices (3 smartphones and 2 sin-
gle board computers) emanations were measurable at the clock frequency, and
the attack could be performed successfully. While it was necessary to remove a
shielding plate on two of the smartphones, this was not the case for one smart-
phone. Because the attack can also be mounted on single-board computers like
the Raspberry Pi or the BeagleBone Black, it is unlikely that the phone-specific
circuits (e.g. the antennas) are the reason for the emanations. Altogether, the
results suggest that the emanations are not caused by an individual flaw in the
circuit- or processor-design and could possibly affect many more devices.

5 A Low-Cost Setup for EM Analysis

Recently, a cheap alternative to radio receivers was introduced by making it
possible to use DVB-T sticks as Software Defined Radios [15]. The sticks that
can be used for this purpose offer a frequency range between 24 and 1850 MHz,
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a sampling rate of up to 2.5 MSps and a resolution of 8 Bit. While this is well
below the parameters of the USRP, a working system could reduce the parts
needed to mount the attack to only an own-built bi-quad antenna and a DVB-
T stick, with total costs well below 30 Euros. Because of this, the attack was
implemented with this setup as well.

5.1 Reproduction of the Far-Field Attack

The primary goal is to find out whether the DVB-T stick can compete with
the performance of the system from above. The results are very promising: The
attack works just like the attack with the system consisting of USRP and test
receiver, however there are a few drawbacks.

Quality of the Signal. The quality of the signal is drastically reduced.
Although both signals are normalized (which means that the amplitude is
between 0 and 1), the signal is one magnitude smaller (0.4 vs. 0.016) than with
the high-end setup. However, the amplitude of the noise is also much smaller
when measuring with the DVB-T stick compared to the setup from above (see
Fig. 11). To compare both measurements, the amplitude of a signal has to be
compared with the amplitude of the noise, which can be done by computing the
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Fig. 11. Average of 1228 traces of a Square-and-Multiply algorithm recorded with
a DVB-T stick (execution marked gray, key: 1010 0101 0000 0000 1111 1010 1111,
computed backwards).
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signal-to-noise ratio [16]. It can be estimated as

SNRdB = 20 log10

(
Asignal

Anoise

)
, (8)

where Anoise and Asignal are the root mean square amplitudes of the signal and
the noise, respectively. This gives 11.82 dB for the DVB-T stick and 13.94 dB for
the high-end system. This suggests that the low-end setup is not performing as
bad as the small amplitude of the signal would suggest. The best comparison of
the two systems however is the number of traces needed for a successful attack.
Using the correlation technique from Sect. 4.3, the DVB-T stick can be compared
to the system from above, which can be seen in Fig. 9. As it can be seen, to get
the same correlation as above (0.999), twice as many curves are needed (346 vs.
170).

Maximum Distance. Another drawback is that the maximum distance is
reduced due to the bad signal. Instead of 80 cm maximum distance with the
other system, the low-cost system is not able to receive a signal when the distance
is larger than ∼10 cm. Altogether, for the far-field attack the system does not
perform as well as the original system, but the reduction of costs makes it a very
good alternative, especially when the number of traces and the distance is not
of vital importance.

6 Summary

In this paper, the already existing results on side-channel attacks on smart-
phones and embedded devices using electromagnetic emanations were further
researched. This includes all parts of the experiment, starting with the search
for emanated signals, continuing with the description and evaluation of the pos-
sible attacks and concluding with the development of a very low-cost test setup.
It was shown that using a far-field antenna, it is possible to extract the secret key
of a Square-and-Multiply algorithm by averaging several traces. While a lower
distance is advantageous, the attack can also be conducted from a distance much
larger than it is possible with the state of the art near-field probes. Finally, a very
low-cost setup was implemented, which makes it possible to mount the attack
with costs lower than 30 Euros, using a DVB-T stick and a self-built antenna.
This enables even attackers with a very small budget to attack smartphones and
embedded devices. The results of this paper show that hardware and software
countermeasures have to be implemented in smartphones and embedded devices,
or secure elements should be used for these cryptographic computations, espe-
cially since devices like smartphones and single-board computers tend to be used
for more and more applications where security is vital, e.g. payment applications
(smartphones) or industrial applications (embedded single-board computers).
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