Beliefs about the nature of numbers

Lance J. Rips

Abstract Nearly all psychologists think that cardinality is the basis of number
knowledge. When they test infants’ sensitivity to number, they look for evidence
that the infants grasp the cardinality of groups of physical objects. And when they
test older children’s understanding of the meaning of number words, they look for
evidence that the children can, for example, “Give [the experimenter] three pencils”
or can “Point to the picture of four balloons.” But when people think about the
positive integers, do they single them out by means of the numbers’ cardinality,
by means of the ordinal relations that hold among them, or in some other way?
This chapter reviews recent research in cognitive psychology that compares people’s
judgments about the integers’ cardinal and ordinal properties. It also presents new
experimental evidence suggesting that, at least for adults, the integers’ cardinality is
less central than their number-theoretic and arithmetic properties.

1 The Structural Perspective and the Cardinal Perspective
on Numbers

Numbers don’t lend themselves to psychologists’ usual way of explaining how we
know about things. The usual explanation is perception. We gain knowledge of many
physical objects—such as squirrels and bedroom slippers—by seeing them, and
we gain knowledge of many other things by reasoning from perceptual evidence.
But numbers and other mathematical objects leave no perceptible traces. Although
we might consider mathematical objects as abstractions from things that we can
perceive, this explanation faces difficult problems. How could such a psychological
process be sufficiently powerful to give us knowledge of all the natural numbers
(not to mention the numbers from other systems)? We can’t possibly abstract them
one-by-one. Not all cognitive scientists have given up the abstraction story (see, e.g.,
[25]), but it’s safe to say that it is no longer the dominant view.
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Most psychologists who study the development of number knowledge no longer
think that we grasp numbers like ninety-five by generalizing from encounters with
groups of ninety-five squirrels, ninety-five slippers, and other groups of that size.
But these groupings still play a crucial role in current theories. According to these
theories, children’s ability to count objects is the pivotal step in their acquisition of
true number concepts. Learning to count groups of objects—for example, saying
“one, two, three, four, five: five squirrels,” while pointing to the squirrels one
by one—is supposed to transform children’s primitive sense of quantities into
adult-like concepts of the small positive integers [3]. Moreover, developmental
psychologists’ standard method for assessing children’s knowledge of the meaning
of number words like “five” is to ask the children to “Give me five balloons [or
other small objects]” from a pile of many, or to ask the children to “Point to the card
with five balloons” in the presence of one card with a picture of five balloons and a
second card with a picture of four or six [46].

This emphasis on counting (and on picking out the right number of objects)
is due to psychologists’ belief that the fundamental meanings of number words
are cardinalities, in line with earlier theories by Frege [11] and Russell [41]. The
meaning of “five,” for example, is the set of all sets of five objects (or some similar
construction). What children learn when they learn how to count objects is a rule
for computing the cardinality of collections for the number words they know. This
rule—Gelman and Gallistel’s “Cardinal Principle” [13]—is that the meaning of the
final word in the count sequence is the cardinality of the collection. So the meaning
of “five” is the set size you get when “five” is the final term in a correct application
of the counting procedure. Asking a child to give you five balloons from a larger
pile is a test of whether the child can use this counting procedure to arrive at the
right total.

However, we should consider other possible paths to knowledge of number.
Many contemporary philosophers argue that the meaning of a number is given by
the position of the number in an appropriate number system [28, 30, 43]. Stewart
Shapiro claims, for example, that “there is no more to being the natural number 2
than being the successor of the successor of 0, the predecessor of 3, the first prime,
and soon...” [43, pp. 5-6], and Michael Resnik puts the point this way:

The underlying philosophical idea here is that in mathematics the primary subject-matter is
not the individual mathematical objects but rather the structures in which they are arranged.
The objects of mathematics, that is, the entities which our mathematical constants and
quantifiers denote, are themselves atoms, structureless points, or positions in structures.
And as such they have no identity or distinguishing features outside a structure. [30, p. 201]

This structural perspective suggests that people’s understanding of particular
numbers depends on their knowledge of the relations that govern these numbers.
In the case of the natural numbers, the key relations would include the facts that
every number has a unique immediate successor, that every number except the first
has a unique immediate predecessor, and so on. From this point of view, children
wouldn’t be able to grasp five merely by connecting the word “five” to the set of
all five-membered sets, since this connection wouldn’t succeed in establishing the
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critical relations that five bears to the other naturals (e.g., being the successor of
four, the successor of the successor of three, and so on).

The distinction between the cardinal perspective and the structural perspective
doesn’t mean that no connection exists between them. Frege’s Theorem establishes
that the Dedekind-Peano axioms that define the structure of the natural numbers
(no number precedes zero, every number has a unique immediate successor, etc.) are
derivable in second-order logic from definitions of zero, the ancestral relation, and
natural number itself, together with a central fact about cardinality called Hume’s
Principle. This is the idea that the number of things of one kind is the same as the
number of things of another kind if and only if there is a one-one relation between
these things. For example, the number of squirrels in your backyard is equal to the
number of bedroom slippers in your closet if and only if there is a one-one relation
between the squirrels and the slippers. (See [17, 47] for expositions of the proof
of Frege’s Theorem.) You could take this result to mean that cardinality (in the
form of Hume’s Principle) provides the basis for the structure of the naturals (in the
form of the Dedekind-Peano axioms). However, Frege’s Theorem by itself does not
settle the issue of whether the cardinal perspective or the structural perspective is
conceptually prior in people’s understanding of the naturals. A version of Hume’s
Principle is provable from the Dedekind-Peano axioms and the same definitions
[16]. So the formal results seem to give us no reason to favor the cardinal perspective
over the structural perspective as the conceptually fundamental one (see [23] for a
discussion of this issue).

The structural perspective has recently been defended by @ystein Linnebo [21] as
a thesis about “our actual arithmetic practice.” Linnebo points out that the cardinal
perspective seems to predict incorrectly that zero should be easy for children to
grasp. Even very young children understand expressions like ‘“allgone cookies”
or “no more cookies”; so they understand the cardinality associated with zero
cookies [14]. But they take until the end of preschool to understand zero as a
number, alongside other integers [45]. Why the age gap if zero is a cardinality
[38]? Similarly, older grade-school children understand that the number of natural
numbers is infinite [15], but they probably don’t gain the concept of the number X,
for this cardinality until much later (if they ever do).

Linnebo has a second argument in favor of the structural perspective, one that’s
closer to the theme of the present chapter. He maintains [21, p. 228] that reference to
a number in terms of its cardinality—for example, to five as the number of squirrels
in the yard—doesn’t seem “particularly direct or explicit”:

Rather, the only perfectly direct and explicit way of specifying a number seems to be by

means of some standard numeral in a system of numerals with which we are familiar. Since

the numerals are classified in accordance with their ordinal properties, this suggests that the
ordinal conception of the natural numbers is more basic than the cardinal one.

As Linnebo notes, the appeal to directness in thinking about numbers relies on
intuition, but he conjectures that results from cognitive experiments might back the
claim for the immediacy of the ordinal conception (which we have been calling the
“structural perspective”).
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This chapter asks whether any psychological evidence favors the structural
perspective or the cardinal perspective.! We can begin by looking at theories and
data on how children learn the meaning of the first few positive integers to see
whether the evidence supports developmentalists’ emphasis on cardinality. I then
turn to recent experiments that have compared adults’ judgments of cardinality
to their judgments of order for further insight on whether our understanding of
numbers depends more tightly on one or the other of these two types of information.
Finally, the chapter describes some new studies that directly probe the properties that
people take as central to number knowledge.

2 The Origins of Number Knowledge

As an example of the role that the cardinal perspective plays in theories of number
knowledge, let’s consider Susan Carey’s influential and detailed proposal about how
children learn the meanings of their first few number words [3]. Figure 1 provides a
summary of the steps in this process, which Carey calls Quinian bootstrapping. In
trying to understand the children’s progress through this learning regime, let’s start
by figuring out what the process is supposed to achieve.

At two or three years old, kids are able to recite the numerals in order from “one”
to some number like “ten” or “twenty,” but they don’t yet know how to produce
numerals for arbitrary integers in the way you do. They have just a short, finite list,
for example, “one, two, three, four, five, six, seven, eight, nine, ten.” At this age,
they don’t understand the cardinal meanings of the words on this list; so if you ask
them to give you two balloons from a pile, they can’t do it. Then, over an extended
period of time—as long as a year or so—they first work out the meaning for the
word “one,” then for the word “two,” then “three,” and sometimes “four,” again in
the sense of being able to give you one, two, three, or four objects in response to
a command. At that point, something clicks, and suddenly they’re able to give you
five things, six things, and so on, up to ten things (or to whatever the last numeral
is on their count list). The Quinian bootstrapping theory is supposed to explain this
last step, when things finally click: It extends kids’ ability to enumerate objects in
response to verbal requests from three or four to ten. Post-bootstrap, kids still don’t
know many of the important properties of the positive integers, but at least they can
count out ten things, more or less correctly. In other words, what they’ve learned is
how to count out objects to determine the right cardinality.

I'This issue might be put by asking whether people think of the first few naturals as cardinal or
ordinal numbers. However, “cardinal number” and “ordinal number” have special meanings in set
theory, and these meanings don’t provide the intended contrast. In their usual development (e.g.,
[8]), the ordinals and cardinals do not differ in the finite range, with which we will be concerned in
this chapter. (Both ordinal and cardinal numbers include transfinite numbers—for which they do
differ—and so extend beyond the natural numbers.)
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Step 1 (pre-linguistic representations):

Representation a:
Representations of individual objects: object;, object,, objects, ...

Representation b:
Representations of sets: {object;}, {objects, objecty,...}

Step 2 (initial language learning):

Representation c:
Count List: <one,” “two,” “three,” ... “ten”™>

Representation d:
Singular/plural: “a” (singular) “some” (plural)

{objectq} {objecty, objecty,....}

Step 3 (one-knower stage):
Representation e:

one” “two” “three” e “ten”
Y 1

“a” “some”
{objectq} {object;, objecty,....}

Step 4 (two-knower stage):

Representation f:

“one” “two” “three” e “ten”
4 "
{objects}  {objects,object} {object, object objects,....}

Steps 5 and 6 (three and four-knower stages): similar to the representation in Step 4

Step 7 (pre-bootstrap stage):

Representation i:

‘one” = “two” =D “three” = “four” . “ten”
4 '
g

4

{objects} {objects,object;} {objects,object,, objects} {objects, object,, objects, objecty,....}

Step 8 (post bootstrap, Cardinal-Principle-knower stage):
Representation j:

one” “two” “three” “four” cen “‘ten”

i 1 i 1 1

Cardinality(n + 1) = Cardinality(n) + 1

Fig. 1 Steps in the acquisition of the meaning of number words for the first few positive integers,
according to Carey’s [3] Quinian bootstrapping theory (figure adapted from [32]).
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What are the steps that children are supposed to go through in graduating from
their pre-bootstrap state of knowledge of number to their post-bootstrap knowledge?
Here’s a quick tour:

Step 1: At the beginning of this process, children have two relevant innate
mental representations. Representations of type (a) in Figure 1 are representations of
individual objects—for example, representations of each of three balloons. Repre-
sentations of type (b) are representations of sets. I'll use object; to denote the mental
representation of a single individual i, {object;, object,} for the representation of
a set containing exactly two individuals, and {object;, object,, ...} to indicate
the representation of a set containing more than one individual, but whose total
size is unknown. Children at this stage also have representations for approximate
cardinality, but they play no role in Carey’s bootstrapping story. We’ll discuss this
approximate number system in Section 3 of this chapter.

Step 2: Language learning at around age two puts two more representations in
play. The representation of type (c) in Figure 1 is the memorized list of number
words, in order from “one” to some upper limit, which we’ll fix for concreteness at
“ten.” We’ll see that this list of numerals doesn’t become important until quite late
in the process, but it’s in place early. The second new representation of type (d) is a
mapping between the indefinite determiner “a,” as in “a balloon” (or other singular
marker in natural language), and the symbol for a singleton {object;}.> Similarly,
there’s a mapping between the word “some” (and other plural markers in language)
and the symbol for a set of unknown size, {object;, object,, ...}. This is the way
the children learn the singular/plural distinction in number-marking languages like
English, French, or Russian—the difference between “book” and “books.”

Steps 3—6: In the next few stages, children learn the meanings of the words “one”
through “three” or “four” by connecting them with mental representations of sets
containing the appropriate number of things. First, the children think that the word
“one” means what “a” means (i.e., {object;}) and that the rest of the number words
mean what “some” means (i.e., {object;, object,, ...}). At this stage, they can give
you one balloon if you ask them to, but they’re unable to give you two, three, four, or
a larger number of balloons. They think all these latter number words mean the same
thing, namely, some. But over a period of about a year, they learn to differentiate
this second representation. “Two” comes to be connected with {object;, object;}.
However, “three,” “four,” and so on, are still associated with an arbitrary set of more
than two elements. Then they learn “three” and occasionally “four” in the same way.

Step 7: Finally, kids are able to notice that a relation exists between the sequence
of numerals in the count list and the sequence they can form from their set-based

2You might wonder about the use of sets in this construction: Do young children have a notion
of set that’s comparable to mathematicians’ sets? Attributing to children at this age a concept of
set in the full-blooded sense would be fatal to Carey’s claim that Quinian bootstrapping produces
new primitive concepts (e.g., the concept FIVE) that can’t in principle be expressed in terms of the
child’s pre-bootstrap vocabulary. We know how to express FIVE in terms of sets (see, e.g., [8]). So
the notion of set implicit in representations like {object;, object,} is presumably more restrictive
than ordinary sets.
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representations. They understand this connection because their parents and teachers
have leaned on them to count small groups of objects. When children count to
“two” while pointing to two squirrels in a picture book, their representation of one
thing, {object,}, is active, followed by their representation of two things, {object;,
object,}. So kids begin to see a relation between the order of the numerals in their
count list and the cardinality of the sets that these numerals denote.

Step 8: At long last, then, the children can figure out that advancing by one
numeral in the count list is coordinated with adding one object to a set. In other
words, what they have learned is how counting, by ticking off the objects with the
count list, manages to represent a total. They now have a rule that directly gives
them the appropriate number of objects for any of the numerals on their count list,
and they no longer need to keep track of the set representations for each numeral.
They’ve learned that:

cardinality (numeral(n)) = cardinality (numeral(n — 1)) + 1, (1)

2

where numeral(n) is the nth numeral in the sequence < “one,” “two,” . .., “ten” > and
cardinality(m) is the cardinality associated with numeral m.

Recent research puts some kinks in the bootstrap of Figure 1. Many children who
seem to have passed through Steps 1-8 by the usual criterion of being able to give
the experimenter up to six or eight objects, nevertheless can’t say whether a closed
box containing ten objects has more items than a box containing six (“The orange
box has ten fish in it. The purple box has six fish in it. Which box has more fish?”’)
[20]. Similarly, children in the same position are often unable to say whether a single
object added to a box of five results in a box with six objects or with seven objects
[6]. The children who fail these tasks know how to recite the count sequence to at
least “ten,” and they know, for example, that the numeral following “five” is “six”
rather than “seven.” In terms of (1), they know that numeral(n — 1) immediately
precedes numeral(n) for the numerals on their count list. So whatever the children
have learned about the positive integers at this point doesn’t seem equivalent to Rule
(1). You might therefore wonder whether a child’s ability to give the experimenter
six or eight objects in response to a request is enough to show that the child really
knows the cardinal meanings of the number words “one” through “ten.” Assuming
that the child complies with the request to give eight by counting out the objects
(“one, two, ... , eight: eight balloons”), does the child realize that this procedure
yields the total number of items? (See [12, 16] for worries about children’s initial
counting.)

A second pertinent finding from recent research is that children appear to
understand the gist of Hume’s Principle (the number of F’s equals the number of
G’s iff there’s a one-one relation between the F’s and the G’s) only after they are
able to “Give me six” [18, 42]. Before this point, for example, children are able
to affirm that a lion puppet with five cupcakes has just as many as a frog puppet
with five cupcakes. But then if explicitly told that lion has “five cupcakes,” they are
often unable to say whether frog has five or six. (The experimenters discouraged the
children from counting; so the children had to base their answers on the just-as-many
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relation.) These results confirm an earlier observation by Gelman and Gallistel [13]:
If children have to determine the number of objects in each of two groups of the
same cardinality, they sometimes ignore an obvious one-one relation between the
groups of objects and instead count both groups separately. This finding would be
unexpected if Hume’s Principle provided the basis of cardinality for children, in
the way it does in the context of Frege’s Theorem (see Section 1). But if children’s
grasp of cardinality at the point when they’re able to “Give me six” comes from
counting, the results in the preceding paragraph imply that it’s only in an anemic
sense (at least initially) that has no implications about the relative cardinality of the
numerals on the child’s count list.

But let’s not be too snarky about counting. Let’s suppose that counting is
one route children could take to learn (eventually) how number words connect
to cardinalities. The issue here is: Why assume that children’s understanding of
the positive integers derives from cardinality (no matter whether they comprehend
cardinality through counting, one-one relations, or some other way)? Today, you
might dial Gerry on your cell, check the price of a six-pack of Gumball Head at the
7-Eleven, tune your FM to the public radio frequency, check the street address of
Pizzeria Due, adjust the toaster to setting 4, note the speed limit on East 55th Street,
calculate some averages for a presentation, check the temperature before going out,
remind yourself of the date of your trip to Omaha, look online for a shirt with 32”
sleeves, note the page of Fahrenheit 451 that you’ve managed to reach. None of
these encounters with numbers involves cardinalities. So why privilege cardinality?
Of course, situations exist where cardinality is crucial. Conducting an inventory, a
survey, or an election may be examples. But it is not clear that these contexts provide
a reason for thinking that cardinality is the central feature of integer knowledge.?

From a structural perspective, what’s striking about Steps 1-8 is that they don’t
teach children much about the positive integers that they didn’t already know. At
Step 2, children already know the count-list sequence of the number words < “one,”
“two,” ..., “ten”>. They learn in Steps 3—6 how to assign the first few words in
this sequence to a representation of a set of appropriate size: {object;}, {object;,
objecty}, {object, object,, object;}. Then they finally learn in Steps 7-8 the rule
in (1) that pairs the rest of the words in the sequence with a set size. But that’s
it. They’ve learned to correlate one 10-item sequence (of the first few number

3Many quantitative contexts, including some just mentioned, involve measurement of continuous
dimensions (e.g., temperature, time, and length) rather than counting. Current research in develop-
mental psychology suggests that infants are about equally sensitive to the number of objects in a
collection (for n>3) and to the continuous extent (e.g., area) of a single object when it is presented
alone (see [9] for an overview). This is presumably because the same kind of psychophysical
mechanism handles both types of information (see Section 3.1). However, infants’ accuracy for
the number of objects in a collection (again, for n>3) is better than that for the continuous extent
of the objects in the same collection [5]. Of course, children’s knowledge of continuous extent,
like their knowledge of number, has to undergo further changes before it can support adult uses
of measurement (see, e.g., [24]). Some intricate issues exist about children’s understanding of
continuous quantity that are the topic of current research [39], but because this chapter focuses on
knowledge of natural numbers, this brief summary will have to do.
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words) with a second, structurally identical 10-item sequence (successive set sizes
or cardinalities). Although Rule (1) is perfectly general in applying to any natural
number 7, the domain of n is bounded at “one” through “ten,” since those are the
only numerals that the children know at this point. As a result, the structure of the
rest of the positive integers is undetermined [31, 36]. For example, the children don’t
know on the basis of Steps 1-8 that the integers don’t stop at 12 or 73 or that they
don’t branch at 13 into two independent sequences or that they don’t proceed to 100
and then circle back to 20. They can’t rule out any of these possibilities because,
according to this theory, they don’t know the structure of the integers beyond 10.

Carey is clear that Rule (1) is not the only principle that children have to master
before they can understand the positive integers [3]. Just after Step 8, they clearly
don’t yet know the cardinal meanings of “seventy-eight,” “seventy-nine,” and so on,
since these terms are not yet part of their vocabulary. And they still have additional
work to do before they understand general facts about the positive integers, such
as the fact that every positive integer has a unique successor. But should we even
credit them with understanding the meaning of the terms in their count list, “one,”
“two,” ..., “ten,” on the basis of the knowledge they gain in Steps 1-87? From
the structural perspective, the answer might well be “no” (see [38] for arguments
along these lines). From this perspective, children at Step 2 know at least one finite
structure of 10 elements. Although Carey treats this count list as a “placeholder
structure” and as “numerically meaningless,” it is the same structure that they arrive
at through Quinian bootstrapping. The only difference is that it is correlated with
mental representations of cardinalities. But if you are inclined to say that children’s
initial < “one,” “two,” ... , “ten” >is numerically meaningless, shouldn’t you say
that the same sequence in association with the isomorphic <{object;}, {object;,
objecty}, . ..., {object;, object,, ..., object;p}>is also meaningless? Likewise, for
Rule (1), when restricted to the numerals on the children’s count list. Of course,
this doesn’t mean that children have learned nothing of importance in proceeding
through these steps. They’ve learned how to calculate the correct number of items in
response to the numerals they know. But do they have a better grip on the numbers
five or six or ... ten than they had at the start?

As you might expect, Quinian bootstrapping isn’t the only proposal on the
table about how children learn the cardinal meanings of the small positive integers
(see [29] for an alternative and [35] for a critique). However, I won’t pursue
comparisons to these alternative proposals, since my purpose is to contrast the
structural perspective with the cardinal perspective, and the latter perspective is
shared by nearly all developmental theories of number learning.*

“4The same is true in education theory, as Sinclair points out in her chapter in this volume. See that
chapter for an alternative that is more in line with the structural perspective.
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3 Judgments of Order versus Numerosity

Perhaps we can get a better purchase on the cardinal and structural perspectives
by looking at the way people make direct judgments about cardinal and structural
relations. For example, if people find it easier or more natural to determine the
cardinality of sets of five than to determine the relation between five and six (e.g.,
5<6), then the cardinal perspective may provide a better fit than the structural
perspective to people’s apprehension of numbers. But although several studies
exist that are relevant to this comparison, some inherent difficulties muddy the
implications these studies have for the issue at hand.

3.1 Distance Effects

To appreciate the difficulties in untangling these perspectives, consider a well-
known and well-replicated finding from the earliest days of cognitive psychology
[1, 2, 27]. On each trial in this type of experiment, adult participants see two single-
digit numerals (e.g., “3” and “8”), one on each side of a screen, and their task is to
press a button on the side of the larger number as quickly as possible. (The larger
number is randomly positioned at the right or left across trials; so participants can’t
anticipate the correct position.) One finding from this experiment is that the greater
the absolute difference between the numbers, the faster participants’ responses. For
example, participants are reliably faster to respond that 8 is larger than 3 than that 5
is larger than 3. This may seem surprising, given adults’ familiarity with the small
positive integers.

The standard explanation for this distance effect is that people automatically map
each of the numerals to a mental representation that varies continuously with the
size of the number. They then compare the two representations to determine which
is larger. In comparing “3” and “5,” for example, they mentally represent 3 as an
internal quantity of a particular amount, represent 5 as an internal quantity of a larger
amount on the same dimension, and then compare the two quantities to determine
their relative size. Imagine, for example, that 3 is represented as some degree of
neural activation in a particular brain region, and 5 as a larger degree of activation in
an adjacent region. Then people find the correct answer to the problem by comparing
these degrees of activation. On this account, the distance effect is due to the fact that
people find it easier to compare quantities that are farther apart on the underlying
dimension. Just as it’s easier to determine the heavier of a 3 kg and an 8 kg weight
than the heavier of a 3 kg and a 5 kg weight by hefting them, it’s easier to determine
the larger of 3 and 8 than the larger of 3 and 5. The mental system responsible for
this type of comparison goes by a number of aliases (e.g., “mental number line,”
“analog magnitude system,” and “number sense”), but these days most researchers
call it the “approximate number system.” So will .
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Much evidence suggests that the approximate number system is present in human
infants and in a variety of non-human animals (see [7] for a review). Experiments
along these lines present two groups of dots, tones, or other non-symbolic items to
determine the creatures’ sensitivity to differences in the cardinality of these groups.
Distance effects appear with these non-symbolic items that echo those found with
adults and numerals: The larger the difference in the cardinality between the two
groups of objects, the easier they are to discriminate. So you could reasonably
suppose that the approximate number system is an innate device specialized for
detecting cardinalities (e.g., the number of edible objects in a region), that this
device persists in human adults, and that the symbolic distance effect for numerals,
described a moment ago, is the result of the same system. What’s important in
the present context is that what appears to be a primitive system for dealing with
cardinality—the approximate number system—may underlie adults’ judgments
of ordinal relations (e.g., 3<8). If so, the cardinal perspective may be more
fundamental than the structural one in human cognition.

However, these results do not necessarily support the cardinal perspective. Nearly
all quantitative physical dimensions—acoustic pressure, luminosity, mass, spatial
area, and others—produce distance effects of similar sorts. The perceptual system
translates a physical value along these dimensions (e.g., mass) into a perceived value
(e.g., felt weight) that can be compared to others of the same type, and comparisons
are easier, the greater the absolute value of the difference. The same is true of
symbolic stimuli [26]. If participants are asked to decide, for example, which of two
animal names (e.g., “horse” or “dog”) denotes the larger-sized animal, times are
faster the bigger the difference in the animals’ physical size. But this effect provides
no reason to think that we encode animal sizes as cardinalities. So it is not at all
clear that distance effects for numerals depend specifically on representing them in
terms of cardinality. Instead, the effects may be due to very general psychophysical
properties of the perceptual and cognitive systems.

3.2  Judgments of Order

To make some headway on the cardinal and structural perspectives, we need a more
direct comparison of people’s abilities to judge cardinal and structural properties.
Is it easier for people to assess the size of a set associated with a positive integer
than to assess the integer’s relation to others? Linnebo’s [21] second argument,
mentioned in Section 1, seems to predict a negative answer to this question. Several
recent studies have attempted a comparison of this sort, but the implications for
our purposes are difficult to interpret because of some inherent features of the
procedures.

Here’s an example: Lyons and Beilock [22] compared a “cardinal task,” similar
to the standard “Which is larger?” method, described in the preceding subsection, to
a novel “ordinal task.” Table 1 summarizes the main conditions in the study. In the
ordinal task, participants decided as quickly as possible whether triples of single-
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Table 1 Summary of Main Conditions from Lyons and Beilock’s Comparison of Ordinal and
Cardinal Judgments (Adapted from [22, Figure 1])

Task Type
Ordinal Task (Are the items in either Cardinal Task (Which item is larger?)
Stimulus ascending or descending order?)
Items
Numerals
Close 2 3 4 2 3
Far 2 4 6 2 4
Dots
Close o O o O o
o o ® o ¥ (] o ¢
Far ] o ©° ® o (] o ©°
o o° °° ° .

Entries Provide an Example in which Participants Should Respond “True” in the Ordinal Task and
Push the Right-hand Button in the Cardinal Task

digit numerals were correctly ordered (in either ascending or descending sequence)
or incorrectly ordered. For instance, participants were to answer “yes” to <2, 3,
4>or <4, 3,2>but “no” to <3, 4, 2>. The elements of the triples could be separated
by an absolute difference of one (the “close” triples in Table 1, e.g., <2, 3, 4>) or
two (the “far” triples, e.g., <2, 4, 6>). Lyons and Beilock also included a task in
which participants made analogous judgments for triples of dots. For example, they
decided whether a triple consisting of two dots followed by three dots followed by
four dots was correctly ordered. For the cardinal task, participants decided which
of two numerals (e.g., 2 or 3) was larger or which of two groups of dots was larger
(e.g., a group of two or a group of three dots). As in the ordinal task, the items within
a pair could differ by one or by two.

Lyons and Beilock found the usual distance effect in the cardinal task, both for
numerals and dots. That is, participants were quicker to respond to the far pairs (e.g.,
2 vs. 4) than to the close pairs (e.g., 2 vs. 3). For the ordinal task, however, the results
were different for numerals than for the dots. Although the dots showed a distance
effect, numerals showed the reverse: The close triples were faster than the far triples.
(For related findings, see [10, 44].) The investigators conclude from these findings
that the link between mental representations of numerals and cardinalities is less
direct than what one might gather from the typical distance effects. Judgments of
order for numerals rely on a process distinct from the one governing judgments of
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cardinality (presumably, the approximate number system). “At the broadest level,
the meaning of 6 may thus be determined by both its relation to other symbolic
numbers and the computational context in which it rests. This is in keeping with the
view that the meaning of symbolic numbers is fundamentally tied to their relations
with other symbolic numbers...” [22, p. 17059].

The emphasis on “relations with other symbolic numbers” goes along with what
we have been calling the structural perspective. However, the relations in question
raise an issue about the type of structure responsible for the data. Lyons and Beilock
plausibly suggest that the reversal they observe for ordinal judgments of numerals—
faster times for close triples in Table 1—is the result of familiarity with the list
of count words. Because college-student participants have rehearsed the count list
(“one, two, three, . . .””) on many thousands of occasions during their lives, they find
it easier to recognize numerals as correctly ordered when they appear in adjacent
positions on the list (e.g., <2, 3, 4>) than when they are not in adjacent positions
(e.g., <2, 4, 6>). fMRI imaging evidence from the same experiment suggests that
“one interpretation of these results is thus that ordinality in symbolic numbers
is processed via controlled retrieval of sequential visuomotor associations...”
[22, p. 17056]. In the case of ordinal judgments for dots, however, participants can’t
directly access the count list, but have to compare successively the cardinality of
the three groups (e.g., two dots is less than three dots is less than four). These
comparisons are similar to those performed in the cardinal task and give rise to
similar distance effects.

This interpretation of the ordinal judgments for numerals returns us to the
concerns raised at the end of Section 2. According to Lyons and Beilock [22], the
structure responsible for the ordinal task with numerals is the rote connections that
we form in reciting the count list (“sequential visuomotor associations”). This is
the same “placeholder structure” that Carey [3] finds “numerically meaningless.”
We can be more charitable than Carey in granting this structure some mathematical
significance (and, of course, adults can recite more of the count list than children
can). But clearly, this structure isn’t the same as the structure of the positive integers.
We can’t individually store the connections between each successive pair of integers
since there are infinitely many of them. So the structure responsible for the ordinal
judgments of numerals in such tasks must comprise just a short finite segment of
the integers if Lyons and Beilock are right in their interpretation. Do people have a
deeper structural understanding of the integers?

4 Two Studies of Number Knowledge

The experiments described in the preceding section are timed tasks that call on
people’s immediate impression of number, and they sometimes reveal unobvious
aspects of those impressions. But if what controls the responses in those experiments
is automated cognition, such as rote recitation of the count words, the results may
mask deeper features of people’s thinking. We might be able to find out more by
quizzing people’s number knowledge directly.
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4.1 What Types of Properties Do People Connect to Numbers?

As one way to find out whether people understand numbers in terms of cardinal
or structural features, I asked 20 undergraduates from an introductory psychology
class to list properties for each of seven numbers. The numbers were: “zero,” “minus
eight hundred forty-nine,” “square root of 2,” “three,” “seventy-one hundred ninety-
three,” “twenty-nine billion and ninety-one,” and “eighty-three septendecillion and
seventy-six.” These were spelled out, as in the preceding list. I picked the last four
of these items to coincide with those from an earlier experiment [33]; the rest were
chosen to contrast with the positive integers. Results from the three biggest numbers
did not differ greatly in this experiment, and of these, I’ll report only those for 7193
(with a few exceptions, noted later).

Participants saw these numbers one-at-a-time on a computer screen, in a new
random order for each participant. The participants were told that the experiment
concerned their knowledge of number properties. They were asked to think of ten
properties for each number and to type them into spaces provided on the screen.
The instructions cautioned them that they should “try not to just free associate—for
example, if a number happens to remind you of your father, do NOT write down
‘father.”” After the participants had finished listing properties for all the numbers, a
new set of instructions asked them to rate the importance of each of these properties.
A participant saw a series of screens, each containing one of the original numbers
and a property that the participant had listed earlier for that number. For example,
if the participant had listed “is an odd number” for three in the first part of the
experiment, then he or she saw in the second part a request to rate the importance of
“is an odd number” for three. A 0-9 rating scale appeared on the same screen, with
“0” labeled “not at all important” and “9” labeled “extremely important.”

We can get some idea of the nature of the properties that the participants produced
by classifying each property token into one of the following categories. Examples of
actual properties from the participants’ lists appear in parentheses after the category
name:

99 ¢

Cardinality (e.g., “is nothing” for zero)

Magnitude (overall size, e.g., “is a big number,” “small,” “very large”)

Number line (e.g., “three integers away from zero on the number line,
of the number line,” “is between 1 and 2 on the number line”)

Number system membership (e.g., “integer,” “is a rational number,
number”)

Arithmetic comparison (e.g., “smaller than 10,” “is bigger than one million” “between
2 and 47)

Arithmetic operations (e.g., “multiplied by itself will give 2,” “any number added to
zero is the same number,” “zero divi[d]ed by 1 is zero”)

Number-theoretic properties (in a loose sense in which, e.g., “is an odd number,” “is
negative,” “is not a prime,” “has an imaginary square root,” “is a factor of 21” are number-
theoretic)

Numeral properties (properties of the written shape or spelling of the number, e.g.,
“contains one digit,” “has a comma in it,” *“7 in the thousands place,” “spelled with four
letters”)

2 ¢
2

exact middle

2

is not a rational
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LIS}

Non-numeric properties (e.g., “is significant,” “is important to mathematics,”
“common”)

Other (e.g., “no idea,” “I would like to have this much candy,” “I don’t like square
roots’)

Figure 2 (solid lines and circles) shows the frequency of tokens in these ten
categories for each number. The first thing to notice is the very small number
of tokens for cardinality. Zero produced a few such mentions—variations on
“nothing”—but no one listed “describes 7193 objects” (or anything of the kind) for
7193. In fact, none of the property categories that might be linked to the approximate
number system—the cardinality, magnitude, and number line categories—received
more than a few mentions, as you can see from the first three points of each of the
Figure 2 curves. Of course, no one would expect participants to mention cardinality
for —849 or /2, but it’s notable that 0, 3, and 7193 also received small frequencies.

By contrast, mention of number systems (e.g., “is an integer,” “is not rational”)
was relatively frequent, especially for /2, the sole non-integer and non-rational in
this group. Similarly, number-theoretic properties (e.g., “is prime,” “is divisible by
3”) were popular responses for the integers.

Although participants did not often produce properties having to do with arith-
metic comparison or operations, zero did yield a fairly large number of operations
properties, no doubt because of its special role in addition and multiplication. For
example, one participant mentioned, “the product of zero with any other number is
zero itself,” and another wrote, “anything plus zero is itself.” Properties of numerals
(either for number words or symbols) were not especially common, except for 7193
(“four digit number,” “no repeated digits”) and, to a lesser extent, —849 (“has one
8,” “looks like this ‘—849°”).

You might argue that the very low frequency for cardinality is due to the fact
that each natural number has just one cardinality, whereas it has many properties of
other types (e.g., many number-theoretic properties). So perhaps the frequency of
mention just reflects the actual number of available tokens per type. But although
a natural number has just one cardinality, it nevertheless denotes the size of an
infinite number of sets. Participants could have said that three is the number of
bears in the fairy tale, the number of stooges in the film comedies, the number
of instrumentalists or vocalists in a trio, the number of vertices or angles or sides
in a triangle, the number of people that’s a crowd, the number of deities in the
trinity, the number of events in a triathlon, the number of rings in a circus, the
number of races in the triple crown, the number of children in a set of triplets,
the number of outs in a turn at bat, the number of isotopes of carbon, the number
of novels in a trilogy, the number of wheels on a tricycle, the number of leaders
in a triumvirate, the number of panels in a triptych. But no one mentioned any of
these or any other three-membered groups in response to three. Moreover, for the
numbers 3, 7193, 29,000,000,091, and (8.3 x 10°°) + 76, none of the participants
mentioned cardinality even once. Of course, we asked participants to list number
“properties,” and perhaps this way of phrasing the question militated against their
writing down items related to cardinality. For example, the number of things in a
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Fig. 2 Frequency of mention of properties of different types (solid lines and symbols) and mean
rated importance of the same properties (dashed lines and open symbols) from Study 1. Points on
the importance curves are missing if participants listed no properties of that type.
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triple or of vertices in a triangle might have seemed too extrinsic to qualify as a
property of three. But the question at issue in this study is, in fact, what participants
believe to be intrinsic to their number concepts. What kind of information about a
number is central to people’s beliefs about the number’s nature? If participants find
“being an integer” and “being divisible by 3” to be number properties but not “being
the number of items in a triple,” then this suggests that cardinality may not be what
organizes their conception of numbers.

Mean importance ratings for the same properties also appear in Figure 2 (dashed
lines and open circles). The means for the cardinality and number-line properties are
based on only a small number of data points, as the frequency curves show. Omitting
these latter categories, a statistical analysis indicates that, across all the numbers,
participants rated the number-theory, arithmetic-operations, and number-system
properties as more important than the non-numeric properties. They also rated
“other” properties lowest in importance, as you would hope. No further reliable
differences in importance appeared among the property categories (adjusting for the
number of comparisons). However, arithmetic operations are especially important
for zero, probably for the reasons mentioned earlier, and number-theory properties
(e.g., “are prime”) are important for three. (7193 is also prime, but participants
probably didn’t recognize it as such.) These peaks contribute to a statistically
reliable difference in the shape of the importance curves in the figure. Keep in mind,
though, that the properties contributing to these importance ratings are the ones that
the same participants produced in the first part of the experiment. It might be useful
to look at an independent measure of the importance of number properties. The
study in the next section provides a measure of this sort.

4.2 The Centrality of Number Properties

In a second study of number properties, a new group of participants decided whether
a given property of an integer “was responsible for” a second property of the same
integer. The properties included:

Cardinality (phrased as “being able to represent a certain number of objects”)

Number system membership (“being an integer”)

Arithmetic (“being equal to the immediately preceding integer plus one”)

Position in the integer sequence (“being between the immediately preceding and the
immediately following integers”), and

Numeric symbol (“being represented by a particular written symbol”).

On one trial, for example, participants were asked to consider whether “an
integer’s ability to represent a certain number of objects is responsible for its
being equal to the immediately preceding integer plus one.” The instructions told
participants, “By ‘responsible’ we mean that the first property is the basis or reason
for the second property.” The participants answered each of the responsibility
questions by clicking a “yes” or a “no” button on the screen.
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In a preliminary version of this experiment, I asked participants about the
properties of specific integers from Study 1 (0, 3, 7193, and 29,000,000,091).
For example, participants had to decide whether three’s property of representing
three objects was responsible for its being equal to 2 4 1. The results from this
pilot study, however, suggested that participants were interpreting these questions
in a way that depended on the specificity of the properties. Asked whether being an
integer was responsible for three’s being able to represent three objects, for example,
many participants answered “no,” apparently because merely being an integer was
consistent with being able to represent any number of objects. Some participants
explicitly mentioned (in their written comments after the experiment) a sufficiency
criterion of this sort: “If the second part had to be true because of the first part,
then I selected that the first property was responsible for the second.” To avoid
this problem, the study reported here rephrased the properties to be about integers
in general. For example, participants were asked “whether being an integer was
responsible for the integer’s ability to represent a certain number of objects.”

Participants saw all possible pairs of the five properties listed above (in both
orders). For example, the participants decided both whether “an integer’s ability
to represent a certain number of objects is responsible for its being equal to the
immediately preceding integer plus one” and whether “an integer’s being equal to
the immediately preceding integer plus one is responsible for its ability to represent
a certain number of objects.” Thus, there were 20 key questions about integer
properties. In addition, the experiment included five catch trials with questions that
were intended to be obviously true or false (e.g., “Is an integer’s ability to represent
a certain number of items responsible for its color?””). The presentation order of the
full set of 25 questions was random. Fifty participants were recruited from Amazon
Mechanical Turk for this study, but three were excluded for making errors on three
or more of the catch trials.

We can get some idea of the centrality of a numeric property by looking at
participants’ willingness to say that the property was responsible for the others. For
example, if cardinality is a critical property, then participants should be willing to
say that “the ability to represent a certain number of objects” is responsible for other
properties. Of course, a participant’s overall likelihood of endorsing a property in
this way will depend on the other properties on our list and on the particular phrasing
of these properties. Still, these scores provide a hint of the relative importance of the
property types.

Figure 3 illustrates the results in a way that may help bring out the comparison
of the properties’ importance. The circles at the pentagon’s vertices represent the
properties listed earlier (cardinality, arithmetic, and so on). The arrows between
the circles correspond to the participants’ judgments of whether the property p;
at the arrow’s tail is responsible for the property p, at the arrow’s head. The
numbers on these arrows are the proportion of participants who agreed that p; was
responsible for p,. For example, the arrow from arithmetic to cardinality is labeled
.62 and indicates that 62 % of the participants thought that the arithmetic property
(“being equal to the immediately preceding integer plus one’) was responsible for
cardinality (“being able to represent a certain number of objects”). One measure
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Position

Fig. 3 Judgments of “responsibility”” for number properties. Each arrow in the diagram represents
participants’ decisions as to whether the property at the base of the arrow is responsible for the
property at the head of the arrow. Numbers on the arrows are the proportion of participants who
said “yes.” Numbers in the circles and their areas represent the means of the outgoing arrows.

of a property’s centrality is its average responsibility for the other properties—
the average of the proportions on the outgoing arrows from that property. These
averages appear within the circles, and the areas of the circles are approximately
proportional to these averages. The bigger the circle, the more central the property.

The mean responsibility score for the system property (“being an integer”)
is the largest of these items. This may be due in part to the fact that two
of the other properties—the arithmetic and position properties—mentioned the
word “integer.” For example, participants were asked whether “being an integer”
was responsible for “being between the immediately preceding and immediately
following integers.” However, most participants (74 %) also thought that being an
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integer was responsible for cardinality (“being able to represent a certain number
of objects”), whose phrasing did not include the word “integer.” This suggests that
participants saw membership in the number system itself as an important factor.

The arithmetic and position properties also had relatively large responsibility
scores in these data. The arithmetic property was just the 41 relation (i.e., “being
equal to the immediately preceding integer plus one”), and the importance that
participants attached to it may suggest that they view a successor function as central
to the integers’ identity. The same may be true of the positional property, which was
specified in terms of being between the preceding and the following integer.

The numeric symbol property (e.g., “being represented by a particular writ-
ten symbol”) received lowest responsibility scores. Many participants probably
answered ‘“no” to questions about the symbols’ responsibility because of the
arbitrary nature of the symbol. In the pilot study mentioned earlier, one participant
wrote in his or her debriefing comments, “I did not think that the symbol for any
number could be responsible for anything, since the designated symbols for numbers
are arbitrary.” According to another, “Does a number’s numerical symbolization
really have to do with anything? After all, it could simply be an arbitrary symbol.”
Section 5 of this chapter discusses the implication of this result for the structural
perspective.

Responsibility scores for cardinality (‘“being able to represent a certain number
of objects”) were about midway between those for the system property and symbol
property. Cardinality does somewhat better here than we might have predicted from
its very infrequent mention in the preceding study, where the participants had to
produce their own properties for the numbers (see Figure 2, panels 2, 4, and 5).
The results from Study 1 could be put down to the obviousness of the connection
between an integer and its cardinality. Maybe it literally goes without saying that
“three” denotes three entities. But the same is probably true of several of the other
properties on our list. Another more likely possibility is that because the cardinality
property fixes its referent in a nonarbitrary way, some participants in the present
study may regard cardinality as sufficient for the other properties. For example, if a
number has cardinality 3, then it is 3, and hence, is the successor of 2, is between
2 and 4, is an integer, and is symbolized by “3.” Other participants, however, may
regard cardinality as too “incidental” to an integer to allow it to be responsible for its
purely mathematical properties, and this same feeling may explain why cardinality
went unmentioned in Study 1. The final section tries to sketch what “incidental”
could amount to in the mathematical domain.

5 Conclusions

What implications do the two studies of Section 4 have for the cardinal and structural
perspectives? On the one hand, Study 1 suggests that cardinality isn’t something that
often occurs to people when they are asked to consider the properties of an integer.
They don’t immediately take a cardinality perspective under these circumstances.
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Instead, the properties of the integer that come readily to mind are ones that might
be called “number internal,” such as being odd or positive or prime. In the case of
special numbers, such as 0, these number-internal properties also include arithmetic
or algebraic features, such as being an additive identity. On the other hand, Study 2
shows that some people acknowledge the importance of cardinality in relation to an
integer’s other properties. Once we know that an integer has a particular cardinality,
say 7193, we can predict all its other properties, for example, that it is the successor
of 7192 and the predecessor of 7194. Cardinality can, in this way, single out an
integer uniquely, yet people may not typically use it in thinking about the integer as
such.

Perhaps something of the same is true of numbers in general. In applied math,
numbers denote specific times, spatial coordinates, velocities, temperatures, money,
1Q, and what have you. But we don’t think of a number as intimately connected with
these instances (e.g., a particular position, time, or value). A shift in coordinates
will assign a different number to the same spatial point. A change in currency
will associate a different number with the same value for a good. Numbers provide
models for time, space, utility, and other dimensions, as measurement theory makes
clear (see, e.g., [19, 40]), but only up to certain well-defined transformations. The
numbers themselves have an identity that’s independent of their role in the model. In
the same way, you could view the use of integers to denote cardinalities as another
application of a number-based model to the size of sets.

Proponents of the cardinality perspective still have some cards to play in
defending the idea that cardinality is conceptually fundamental. For example, they
could take the view that cardinality provides children’s first entry point to the natural
numbers, even if children outgrow this perspective as they gain further knowledge
of number properties in school. Or they could claim that cardinality is central to
adults’ thinking about the naturals, even though adults don’t often mention it when
explicitly asked about number properties. But although defenses of this kind may
turn out to be right, not much evidence exists to back them. We noticed in Section 2
that it’s hard to see how cardinality can by itself advance children’s knowledge of
the naturals. Mere apprehension of numerosity through the approximate number
system can’t provide the right properties for the naturals (e.g., the perceived
difference in numerosity between 14 items and 15 items is smaller than the perceived
difference between 4 and 5 in this system). Perhaps the more sophisticated use of
cardinality in children’s initial counting creates the link to the naturals, but we found
in Section 2 that it’s difficult to make this case without begging the question against
the structural perspective (see [31, 37] for more on this theme). Similarly, the results
we reviewed in Section 3 show that, although numerosity may influence adults’
judgments about the integers in tasks like numeral comparison, there’s a catch: The
mental process most likely responsible for such effects is again the approximate
number system, which delivers distorted information about cardinality. Maybe true
cardinality underlies adult intuitions about the naturals, but what reasons support
such an assumption?
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The structural perspective may be better able to cope with the results. But we
should enter a couple of qualifications about the support that these studies lend to the
structural view. First, we’ve seen that participants didn’t often mention properties
connected to numerals (except for the larger numbers) in Study 1, and they didn’t
judge them as especially important in producing a number’s other properties in
Study 2. This seems reasonable in view of the arbitrary nature of the symbols. But
if “the only perfectly direct and explicit way of specifying a number seems to be by
means of some standard numeral in a system of numerals” [21], then you might have
expected numerals to play a more important role in the results. Notice, though, that
in these experiments no variations occurred in the manner in which the numbers
were specified. In Study 1, a numeral was given to participants explicitly (as an
English phrase), and they responded based on this numeral. In Study 2, no numerals
appeared. So the results are still compatible with the possibility that numerals within
a standard system provide an easier way to denote numbers than other possibilities,
such as the set of sets containing that number of elements.

Second, in Study 1, the frequency of positional properties was fairly low. We
classified these properties as arithmetic comparisons in that study (see Figure 2),
and they included items such as “is greater than -1 (in the case of 0), “is smaller
than four” (in the case of 3), and “is less than 10000” (in the case of 7193). Properties
of this sort comprised only 7.3 % of tokens across the five numbers in Figure 2 and
produced a mean importance rating of 4.5, which is the midpoint of the 0-9 scale.
Why did participants fail to produce these positional properties and fail to rate them
as important? The reason may be similar to the one that makes cardinality properties
unpopular. People may feel that relations like being between 7192 and 7194 in the
integer sequence are external to the number 7193 itself.

What come to mind more readily for the numbers in Study 1 are properties like
being even or positive—properties we classified as “number-theoretic” in the loose
sense of the first study. These properties were either the most often mentioned (for
—849 and 3) or the second most often mentioned (for 0, /2, and 7193), as Figure 2
indicates. We can unpack properties like these in relational terms—being positive is
being greater than 0, and being even is being divisible by 2—but participants may
see them (at least at first thought) as something intrinsic to the numbers themselves.
My guess is that much the same is true for most other individual concepts (e.g.,
UNCLE FRED, WALDEN COLLEGE): The properties of these concepts that are
easiest to access are ones that we represent as monadic.

It may be an important fact about individual concepts that we mentally organize
them around central properties of this sort and take other, more peripheral properties
to be the products of the central ones. Uncle Fred may have traits like being genteel
or pig-headed that we see as non-relational and intrinsic, but that are responsible for
many other aspects of his personality and behavior. In planning our interactions with
him, or in predicting what he will do at the party or believe about big government or
want for his birthday, we consult and extrapolate from these central properties. The
suggestion here is that this type of thinking may carry over to individuals in abstract
domains, such as numbers. We don’t personify numbers in the way Lewis Carroll
did (““Look out now, Five! Don’t go splashing paint over me like that!” ‘I couldn’t
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help it,” said Five, in a sulky tone; ‘Seven jogged my elbow.’” [4, chap. 8]). But we
might think about five as centrally positive, odd, and prime because these properties
are handy in making inferences about this number.

This isn’t quite the structural perspective that we get in the philosophy of
mathematics, but it has its own structural aspects. Structuralists in philosophy see
numbers as atoms with no internal structure, as the quotations from Resnik [30] and
Shapiro [43] in Section 1 make clear. Their content is exhausted by the position
they have in a relevant number system, as given by an appropriate set of axioms.
In one way, this seems right for psychological concepts of numbers, as well. Our
mental representations of a natural number, for example, had better conform to the
usual Dedekind-Peano axioms, since otherwise it’s difficult to see in what sense they
could represent that number [38]. In another way, however, mental representations
about a natural number include a richer domain of facts that we use in dealing
with typical mathematical tasks, including calculation and proof (see [34] for the
distinction between “representations of” and “representations about” objects and
categories). What the studies reported here suggest is that information of the latter
sort, at least among college students, may organize itself around, not cardinality, but
instead properties like primality that may be more helpful in mathematical contexts.

Acknowledgement Thanks to Ernest Davis, Jacob Dink, and Nicolas Leonard for comments on
an earlier version of this chapter and to John Glines, Jane Ko, and Gabrielle McCarthy for their
help with the experiments described in Section 4.
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