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Abstract. Different motivation are related with the analysis of Spatial Big Data 
(SBD). Google Earth, Google Maps, Navigation, location-based service allow 
to obtain a great amount of geo-referenced data. Often spatial datasets exceed 
the capacity of current computing systems to manage, process, or analyze the 
data with reasonable effort. Considering SBD history methodology as Data-
intensive Computing and Data Mining techniques have been useful. In this con-
text the problem regards the analysis of of high frequency spatial data. In this 
paper we present an approach to clustering of high dimensional data which al-
lows a flexible approach to the statistical modeling of phenomena characterized 
by unobserved heterogeneity. We consider the MDBSCAN and compare it with 
the classical k-means approach. The applications concern a synthetic data set 
and a data set of satellite images. 
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1 Introduction 

The rapid developments in the availability and access to spatially referenced informa-
tion in a variety of areas, has induced the need for better analysis techniques to under-
stand different phenomena. In particular spatial clustering algorithms, which groups 
similar spatial objects into classes, can be used for the identification of areas sharing 
common characteristics. 

Clustering is an unsupervised classification of patterns - observations, data items, or 
feature vectors - into groups or clusters [6]. Cluster analysis can be defined as the organ-
ization of a collection of patterns - usually represented as a vector of measurements, or a 
point in a multidimensional space - into clusters based on similarity. 

The clustering problem has been considered in many contexts and by researchers in 
different disciplines. It is useful in several exploratory pattern-analysis, grouping, 
decision-making and machine-learning situations, including data mining (see e.g. [5]), 
spatial data mining (see e.g. [1], [2], [8]), document retrieval, image segmentation, 
and pattern classification. 

Clustering techniques have been recognized as primary Data Mining methods for 
knowledge discovery in spatial databases, i.e. databases managing 2D or 3D points, 
polygons etc. or points in some d-dimensional feature space (see e.g. [8], [13, [14]]). 
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The aim of this paper is to compare a density based algorithm (MDBSCAN) for the 
discovery of clusters of units in large spatial data sets with the classical k-means method. 
This algorithm is a modification of the DBSCAN algorithm (Ester et. al.(1996)). The 
modifications of this algorithm with respect to the original regard the consideration of 
spatial and non-spatial variables and the use of a Lagrange-Chebychev metrics instead  
of the usual Euclidean one. The applications concern a synthetic data set and a data set of 
satellite images. 

2 Spatial Big Data 

Spatial data mining can be used for browsing spatial databases, understanding spatial 
data, discovering spatial relationships, optimizing spatial queries. 

Spatial data, as other kinds of data, are becoming bigger and bigger, although since 
the introduction of GIS and desktop GIS in particular, GIS users and experts have 
become facing with the issue of managing big amount of data, even though often data 
were much more difficult to retrieve than today. In geographical terms, the nature of 
data is such that an increase of dimension of the dataset is always very possible, both 
in terms of the number of the records to be considered, as well as in terms of the at-
tribute of the geographical data. Both the vector and raster data formats used in GIS 
analysis tend to be multidimensional, i.e., containing a quantity of elements to be 
considered in any form of grouping and aggregation. In any case at least two fields  
(if not three) are needed to store the spatial information while all the attribute data 
contribute to increasing the dimension of the dataset. Satellite imagery in particular 
represents another case, in which redundant information is also considered, as very 
close pixels present very little differences although weighting in the processing, stor-
age and visualization time of the data. So compression algorithms on one side  
and proficient clustering tools are needed in order to extract the more precise and 
complete set of geographic information ([15], [16], [17]).  

3 The Methodology  

3.1 K-means Algorithm 

The K-means algorithm is very well known (see e.g. [7]). The algorithm allocates the 
data points (objects) into clusters, so as to minimize the sum of the squared distances 
between the data points and the center of the clusters.  

The centers of the clusters are initialized by randomly selecting from the data or by 
fixing particular data points. Then the data set is clustered in the process of assigning 
each point to the nearest center .When the data set has been identified, the average 
position of the data points within each cluster is calculated and the cluster center then 
moved to the average position. This process is repeated until a condition of stopping 
is reached, in other words the algorithm has these steps: 

 



690 G. Schoier and G. Borruso 

Step 1  
Place K points into the space represented by the objects that are being clustered. 

These points represent initial group centroids. 
Step 2  
Assign each object to the group that has the closest centroid. 
Step 3  
When all objects have been assigned, recalculate the positions of the K centroids. 
Step 4  
Repeat Steps 2 and 3 until the centroids no longer move or another stopping rule is 

achieved. This produces a separation of the objects into groups from which the metric 
to be minimized can be calculated. 

 

The K-means algorithm requires three user-specified parameters: number of clus-
ters K, cluster initialization, and distance metric.The most critical choice is K. 

K-means is typically used with the Euclidean metric for computing the distance  
between points and cluster centers. As a result, K-means finds spherical or ball-shaped 
clusters in data. K-means with Mahalanobis distance metric has been used to  
detect hyperellipsoidal clusters (see [9]), but this comes at the expense of higher  
computational cost 

3.2 DBSCAN and MDBSCAN Algorithms 

In this section we will consider clustering methods based on the notion of densi-
ty.These regard clusters as dense regions of units which are separated by regions of 
low density (representing noise); moreover they may be used to discover clusters of 
arbitrary shape (see e.g. [3], [4], [10], [11, [12]).  

Among these the DBSCAN algorithm (Ester (1996)) is a locality-based algorithm 
relying on a density based notion of clustering. Density based methods can be used to 
filter out noise (outliers) and discover clusters of arbitrary shape. This algorithm judg-
es the density around the neighborhood on an unit to be sufficiently dense if the num-
ber of points within a distance EpsCoord of an unit is greater than MinPts , in this 
case the unit is a core point otherwise is a border point. This algorithm has been gen-
eralized in different papers (e.g. Sander (1998)). 

The key idea is that for each point of a cluster the neighbourhood of a given radius 
has to contain at least a minimum number of points, i.e. the density in the neighbor-
hood has to exceed some threshold. The shape of a neighborhood is determined by the 
choice of a distance function for two points p and q, denoted by dist(p,q) The 
Epscoord neighbourhood of a point q is defined by 

 

{ }εε ≤∈= ),()( qpdistDqqN , 
 

where D is a data set of points. 
 

A naive approach could require for each point in a cluster that there are at least a 
minimum number (MinPts) of points in an Eps-neighborhood of that point. However, 
this approach fails because there are two kinds of points in a cluster, points inside of 
the cluster (core points) and points on the border of the cluster (border points).  
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In general, an Eps-neighborhood of a border point contains significantly less points 
than an Eps-neighborhood of a core point. Therefore, one would have to set the 
minimum number of points to a relatively low value in order to include all points 
belonging to the same cluster. This value, however, will not be characteristic for the 
respective cluster particularly in the presence of noise. Therefore, one has to require 
that for every point p in a cluster C there is a point q in C so that p is inside of the 
Eps-neighborhood of q and Nε(q) contains at least MinPts points.  

This definition is elaborated in the following: a point p is density reachable from a 
point q if there is a chain of points p1,p2…….,pn-1,pn where p1=p and pn=q such that pi 
is direct density reachable from pi+1. 

Moreover a point p is directly density reachable from a point q if p belongs to the 
neighborhood of q and q is a core point. 

 
The clustering formed from DBSCAN follows the rules below: 
 

1. A point can only belong to a cluster if and only if it lies within the Epscoord- 
neighborhood of some core point in the cluster. 

2. A core point o within the Epscoord- neighborhood of another core point p 
must belong to the same cluster as p. 

3. A border point r within the Epscoord- neighborhood of some core point 
must belong to the same cluster to at least one of the core points.  

4. A border point which does not lie within the Epscoord- neighborhood of any 
core point is considered to be noise. 

 

There are some problems regarding both the considerations of spatial and non-
spatial variables and the use of different distances. 

 
Our generalization the Modified Density-Based Spatial Clustering of Applications 

with Noise MDBSCAN ( []) considers an approach density based that takes into ac-
count at the same time spatial and non spatial variables. It has a similar structure of 
the DBSCAN but introduces a notion of proximity not only for spatial characteristics 
but also for non spatial characteristics. 

The key idea is  that the cardinality of the neighborhood of an unit is given not on-
ly by counting the number of units that have distance from it less than a radius 
EpsCoord (the limiting distance value for the spatial variables) but by the points that 
have distance less than EpsCoord and that are "sufficiently" similar as regards non 
spatial attributes. In order to have a sufficient homogeneity for the non-spatial attrib-
utes another radius Eps, that represent the threshold for the distances calculated on the 
bases of the non-spatial variables is evaluated. In so doing we want to find clusters of 
elements which are spatially close to each other and homogeneous as regards other 
observed variables. The elements of such clusters may be interpreted as elements 
which are similar as regards some variables and belong to the same spatial area. 

The distance function determines the shape of the neighbourhood. MinPts is  
the minimum number of points that must be contained in the neighbourhood of that 
point in the cluster. In the following we present the main steps of our algorithm the 
Modified DBSCAN (MDBSCAN) 
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The Lagrange-Tchebychev distance generates a sphere around the point of square 
shape (MDBSCAN (lag)) 
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We have verified the validity of the MDBSCAN based on the Lagrange distance 
and that based on Euclidean on the base of the CPU times, as one can see from Fig. 2 
the time (in seconds) with the increase of the number of points remain similar 

 

 

Fig. 2. MDBSCAN(lag) and MDBSCAN(euc) 

4 The Application Results and Discussion  

4.1 MDBSCAN versus K-means Clustering 

In order to test the MDBSCAN(lag) and the K-means algorithm we consider some 
applications to a synthetic dataset and to a satellite images data set. 

The analysis on bit-map images are a real example of raster spatial analysis, the 
image is formed by a regular grid of pixel and to every cell a colour has 24 bit (16 
million of colours are possible).We have considered images that have 300 pixel by 
side ( for a total of 90000 pixel) in a space of RGB colours to 24 bpp (bit by pixel, 
about 16 millions of colours) this colour format is known as true-colour. 

Every pixel is a statistical unit, a point in the space of five dimensions: two  
relatively of the spatial attributes, the other to the non-spatial attributes. In order to 
apply the algorithm a standardization of the variables has been performed. The im-
plemented MDBSCAN(lag)  algorithm involved choosing different thresholds for the 
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coordinates and for the other indices. As regards the spatial variables the algorithm 
SorteKdist gives the first point in the first valley. As regards the non-spatial variables 
the algorithm SorteKdist2 has been implemented. 

After the standardization of the variables the R language and a visualization lan-
guage have been used for the analysis.  

In the data set presented in Fig. 1 we consider a simple synthetic data set with two 
spherical clusters without noise. 

 

 
Fig. 1. (a) A synthetic data set  

As one can see both algorithms find the clusters. 

 

(a)                                                             (b) 

Fig. 2. (a) K-means and (b)clustering MDBSCAN results 

The difficulty for K-means algorithm is handling clusters of arbitrary shape and 
noise. This is not the case of the MDBSCAN. 

Next applications of MDBSCAN regards data set of satellite images  
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Fig. 3. (a) A satellite images data set  
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5 Conclusions 

In this paper two way of clustering methods applied to identify homogeneous areas 
are compared: K-means, and MDBSCAN. 

MDBSCAN is an algorithm which is a modification of the original DBSCAN  
algorithm. Our algorithm takes into consideration both spatial and non spatial  
variables relevant for the phenomena that has to be analyzed. To improve computa-
tional aspects we proposed to use a Lagrange-Chebychev metrics instead of the  
Euclidean one.  

The applications regards both synthetic and real datasets. The spatial clustering 
analysis allowed to obtained good bit-map images and good representation of satel-
lite images. 

The main advantage of K-means algorithm is its simplicity and speed which  
allows it to run on large datasets. One problem of the application of the K-means is 
the necessity of knowing a prori the number of clusters. Other problem regard the 
identification of noise (outliers) and the discovering of clusters of arbitrary shape 

MDBSCAN is robust enough to identify clusters in noisy data, requires just a few 
parameters and is mostly insensitive to the ordering of the points in the database. This 
algorithm is efficient even for very large spatial databases, discovers clusters of arbi-
trary shape and does not need to know the number of clusters in the data a priori, as 
opposed to K-means. 
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