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Abstract Usually the safety margin against failure for precracked components is
calculated with fracture mechanics approaches. Due to several severe limitations of
these approaches, it was searched for alternative calculation models. Starting with
McClintock and Berg in the sixties, so-called damage models have been developed
for describing ductile fracture on the basis of micromechanical processes. The
development of such kind of models is in progress now for nearly 50 years, but
until today no model is generally accepted and incorporated into the international
standards. In an extended introduction, the micromechanical phases of ductile
rupture of metal and alloys are presented. Against this background, a summary of
the evolution and the different kinds of micromechanical-based model approaches is
given. The theoretical background, the advantages/ disadvantages and the limita-
tions of the models are discussed critically. Finally non-local formulations of
damage models are presented. Combinations of ductile damage models and models
for cleavage to describe fracture in the brittle-ductile transition region are discussed.

1 Introduction

To guarantee safe operation of technical components and systems, the safety
margins against failure must be quantified. One possible approach to predict these
safety margins is the use of numerical simulation methods with advanced material
models. For the prediction of crack initiation, crack growth and fracture of ductile
metals so-called micromechanical-based damage models based on the early work of
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McClintock [169] and Berg [33] have been established. In this context
micromechanical-based means that the models try to simulate the processes on the
microscopic level with continuum mechanical approaches.

For the development and application of damage models it is fundamental to
understand the micromechanical processes in the material leading to fracture. In
ductile fracture, these micromechanical processes can be divided into three phases:
void formation, void growth and void coalescence [74, 207, 261, 276]. A detailed
summary of this failure development is given in Sect. 2.

The classical micromechanical-based damage models known from literature try
to describe the three fracture phases with continuum mechanical approaches.
Generally for each phase, a separate model is needed: void initiation [6, 34, 72, 115],
void growth [115, 154, 169, 211, 224, 277] and void coalescence [26, 61, 272].

The classic micromechanical-based damage models are derived for high stress
multiaxialities and a pronounced void growth. Such models are described in Sect. 3.
Mechanisms observed in pure shear mode are not or insufficiently described by
these models. Micromechanical-based models to describe the failure at such low
stress multiaxialities are not in the focus of interest here. Models which describe
both high and low stress multiaxialities are usually empirical in nature.

Nearly all models discussed so far are of local nature. This means that the
material behaviour depends only on the local state variables. Neighboring points
have no influence on the local material behaviour. If material softening occurs, this
can lead to so-called bifurcation problems. This means that a homogeneous strain or
damage field will get unstable against a strongly localized one [209]. In finite
element calculations, this means that strains and damage locate in one element layer
[244]. The so-called pathological mesh dependence of results is observed.

In practice, this problem can be overcome by keeping the mesh size constant.
Often the mesh size is directly coupled to the microstructure [45, 62, 86, 182, 216,
240, 241, 262]. To eliminate the pathological mesh dependence different concepts
have been published, for example [21, 55, 92, 205]. Together, all these concepts
and the derived models introduce a material-specific characteristic length.
A summary of the most common approaches is given in Sect. 4.

Following the concept of the Local Approach [201], fracture toughness values
can be predicted by numerical calculations only. Different possibilities for the
description of competing brittle and ductile damage in the entire toughness region
are discussed in Sect. 5.

2 Failure by Void Initiation, Growth
and Coalescence [244]

Materials and components can be deformed up to a characteristic extent. Fracture
limits the deformation and often leads to a catastrophic failure of vehicles, machines
and plants with consequences for safe operation. Therefore it is essential to
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investigate the causes and the mechanism of fracture to find adequate simulation
approaches for being able to predict the failure behaviour.

There is no uniform classification of fractures in literature. Classifications which
are based on load type or macroscopic phenomena can be helpful, however, they
are not suitable to be used in a damage mechanical calculation model [244] which
describes the local material behaviour.

The microscopic description of the failure behaviour by means of microme-
chanical processes only requires the local state and the local kinematic laws.
Therefore, this description is more suitable to be used in a damage model. With
such damage models the macroscopic definition of fracture which is necessary for
practical application can be calculated by means of the finite-element-method.
Damage models belong to the group of the so-called advanced material models.

To understand the local failure process, it is indispensable to know the micro-
mechanical processes which occur on the micro level. They determine the micro-
scopical and macroscopical processes in the material as well as the future
appearance of the fracture (cleavage fracture or dimple/shear fracture). Hereinafter
it is referred only to the dimple fracture.

The dimple fracture [240] is characterized by locally very high plastic defor-
mations on the fracture surface. The dissipated energy is much higher than in
cleavage fracture. This reflects the rough dimpled fracture surface [83, 113] which
is characteristic for all technical metals and metal alloys, see Figs. 1 and 2.

It depends on the surface energy, on the stress state as well as the elastic energy
released during the crack growth whether dimple fracture is stable or not.

Investigations done in the 1940s and 1950s [74, 207, 276] have already shown
that for almost all metal alloys, the micro-mechancial processes which lead to
dimple fracture can be divided into 3 phases, see Fig. 3:

I. void initiation,
II. void growth,
III. void coalescence.

Fig. 1 Dimple fracture, copper, REM image Fig. 2 Dimple fracture, Al-Cu-alloy, REM
image
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Not only ferritic [113, 240] and austenitic [17, 242] steels show this behaviour
but also for example aluminium [60, 241], nickel [11], magnesium [68], cobalt
[119] and titanium [166] alloys. This kind of failure behaviour affects many tech-
nically pure metals [113, 207] too.

In the following sections, the three phases of failure are described in detail.

2.1 Formation of Voids

The first phase of dimple fracture, i.e. the formation of voids, can occur [240] at:

• particles of a secondary phase [113, 119, 146, 207],
• grain boundaries [120, 166],
• perlite cracks [118, 202, 218] and
• dislocation cell boundaries [108, 290].

phase I:void initiation phase II:void growth phase III:void coalescence

Fig. 3 Phases of dimple fracture [240, 261]
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In the majority of technical metals, inclusions and precipitations are relevant for
the primary formation of voids. A distinction is often made between primary and
secondary voids [267]. Primary voids occur at the beginning of the deformation
process at relatively small plastic strains. Generally, they show a significant void
growth [65] and are relevant for initiating the failure process [268]. Secondary
voids often initiate very late within the load history [44]. Compared to primary
voids, they are small and play an important role [60, 228] during the coalescence of
the voids.

The procedures during the formation of voids at particles are determined by a
variety of possible factors, see for example as well [93, 94, 251, 274]:

• atomic structure, micro- und macroscopic defect and homogeneity of the
particles

• size and form of the particles
• arrangement of the particles, clustering
• distance of the particles to each other
• different populations of particles
• position of the particles in the microstructure (i.e. on grain boundaries)
• the orientation of the slip or cleavage planes in the matrix and in the particles
• plastic deformation at and in the particle
• cohesive strength between particle and matrix
• deformation behaviour (elastic/ plastic) of particles and matrix
• stresses and stress multiaxiality in particle and matrix
• grain size of the matrix
• hardening behaviour of the matrix
• free surface energy
• manufacturing process and damage of particles and/ or matrix which may be

caused

In principle voids can be initiated by the following two mechanisms:

• debonding between matrix (see Figs. 4 and 5) and particle and
• particle fracture (see Figs. 6 and 7).

It depends on various factors whether voids are initiated by particle fracture or
by debonding. An essential factor is the particle shape.

In loading direction, elongated particles often fail by particle fracture [14, 93,
111, 119, 146, 149, 213]. It seems as it is not so important whether the particles
behave ductile, like i. e. certain manganese sulphides [119, 123] or more brittle, like
i. e. carbides [93, 146, 149]. The extent to which the fragments of an inclusion
remain attached to the matrix [29, 146] or whether they debond with increasing
plastic deformation from the matrix [27, 122] mainly depends on the cohesive
strength between the matrix and particle as well as the multiaxiality of the stress
state [29].

At more spherical particles debonding is often observed between particle and
matrix [14, 111, 119, 240]. But also at elongated or sheet-like particles, which are
arranged perpendicular to the major principal stress, voids can be caused by
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decohesion beween particle and matrix [77, 123]. Whether the debonding is only
partially [93] or completely depends among other things on the applied stress
condition. At high multiaxiality a complete debonding is observed frequently, while
low stress multiaxiality (σm/σvM < 2/3) only leads to partial separation [29].

However, the link between particle shape and failure mechanism described
before is not mandatory. Initiation by particle cracking can be found as well at
perfectly spherical particles [122, 125] and debonding at elongated ones.

Fig. 6 Void initiation by particle
fracture

Fig. 7 Cracked iron carbide, steel, TEM foil

Fig. 4 Void initiation by debonding
between matrix and particle

Fig. 5 Manganese sulfid with total debonding
between matrix and particle, 20 MnMoNi5-5, REM
image
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Experimental studies and simulations on the microstructure level show that not
only the cohesive strength between particle and matrix, toughness and shape of the
particles have an influence on the initiation mechanism (fracture or debonding).
Soppa et al. [250, 251] show that both the arrangement and the volume fraction of
the particles as well as the hardening behaviour of the matrix influence the
mechanism leading to void initiation.

2.1.1 Which Deformations Lead to Voids?

The presence of plastic deformations [213] is considered as a prerequisite for void
initiation. During plastic deformation, dislocations accumulate at particles which
can be deformed worse than the matrix [120, 171, 261] and slip bands are blocked
[113]. These processes lead to stress peaks at and in the particles. Void initiation
will take place if these stress peaks are higher than the cohesive strength between
particle and matrix or the tensile strength of the particle. If the yield strength of the
particle is lower than the one of the surrounding matrix, slip bands in the inclusion
are blocked at the interface between particles and matrix, thus leading to a stress
peak [75, 291].

Void formation by particle fracture or debonding from the matrix can either be
observed soon after exceeding the yield strength [147, 190] or only after large
plastic deformation [149, 274]. At which deformation void initiation at particles
will be observed depends primarily on

• cohesive strength between particle and matrix,
• deformation behaviour of the particles
• deformation behaviour of the matrix and
• the degree of stress multiaxiality.

Many materials already contain voids initiated during the production process [8,
27, 63, 70, 236, 291].

A very early void initiation is often observed at particles that can deform
plastically. As examples, manganese sulfides in steels, [8, 27, 63, 70, 236, 291], or
spherical graphite cast iron [258] have to be mentioned. Numerous authors observe
void initiation at zero or very low plastic deformations in steels containing man-
ganese sulphides [8, 30, 77, 146, 213, 293]. Likewise sometimes, a very early void
initiation can be observed at brittle particles [27, 93, 113, 250].

In other particles with a high cohesive strength between particle and matrix, very
large deformations are needed to initiate voids. For iron carbides in steel, strains of
over 50 % were measured until the void initiation started [7, 93, 149]. Even at very
small manganese sulfides (ϕ < 0.22 μm)1 in a high-strength steel, voids are initiated
at strains of about 50 %.

1Manganese sulfides at which voids initiate at low plastic deformations can have a size larger than
several μm.
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The onset of void formation is also affected by the yield strength of the matrix
material. For example, Huber et al. [125] observed at a near eutectic Al-Si casting
alloy that for a low-strength version voids initiation occurs by particle fracture at
much higher strains than for a high-strength version of the alloy.

In addition the multiaxial stress state affects the amount of plastic deformation
which is necessary for void initiation.

2.1.2 At Which Particles Void Initiation Takes Place?

At which particles in a given alloy void initiation is observed is mainly determined
by the chemical composition, the origin and the size distribution of the particles.
The strength of the interface between particles and matrix depends not only on the
material characteristics of the particle, but also on the chemical composition and the
micro-structure of the matrix. In [93] for example, it is observed in a steel with
globular cementite that void formation by debonding primarily occurs at particles
on grain boundaries.

Depending on the material void initiation can often be observed simultaneously
at very different precipitations and inclusions. For steels, these are often
impurity-related inclusions, such as manganese sulfides and oxides as well as
precipitations in combination with carbon and nitrogen. For example in the inclu-
sions of a 22MnMoNi3 7 steel aluminum, calcium, magnesium, titanium and zir-
conium [44, 212, 215, 267,] are often detected, see Fig. 8.

Most metallographic studies show that void initiation takes place first at
above-average-sized particles [60, 65, 75, 93, 113, 114, 228, 268, 289].
“Above-average” does not necessarily reflect the absolute size, but the size in
relation to the present distribution. After voids occurred at the above-average-sized
particles, voids at smaller particles initiate as well with increasing deformation.
With decreasing particle size, larger plastic strains are required for the void initi-
ation [75]. From these observations it can be deduced directly that there is a more or
less large initiation interval depending on the size distribution of the particles. This
statement contradicts with experimental studies on a copper-chromium alloy in
which no size-dependent initiation time point was found [7].

Fig. 8 Void initiation at different particles, material 22NiMoCr3-7, REM image, [215]
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It is also observed that particles below a certain size neither have voids [27, 28,
119, 217] nor existing voids grow any more [27]. It is also reported of niobium
carbides (> 1μm) in a steel (X52) that no damage occurs because of the strong
binding with the matrix [27].

2.2 Void Growth

Amore or less pronounced void growth follows void initiation, see Figs. 9, 10 and 11.
The void volume can grow by a multiple compared to the initial volume [14]. For
example, Benzerga et al. [27] observed in the low alloy steel X52 a void growth up to
a factor of 50.

2.2.1 Dependence of Void Growth on Stress Multiaxiality

Whether and how strongly voids grow largely depends on the multiaxiality of the
stress state. With the help of tomographic studies, this can be directly observed
[165]. Many authors state that the void growth increases with increasing plastic
deformation and increasing stress multiaxiality [27, 46, 75, 165, 168, 282].

Under uniaxial loading a void, initiated at a particle, deforms in the direction of
the external force. A growth perpendicular to the main direction of loading is hardly
observed [75]. Thus the volume growth is low. This behaviour can be demonstrated
very well with Finite Element calculations. In Fig. 12, one-eighth of a spherical
void is shown. While under uniaxial loading the void is only streched in the loading
direction, see Fig. 13, an increased volume void growth can be observed [75] under
multiaxial loading, see Fig. 14.

Fig. 9 Void size at a strain of
0.59, material 20MnMoNi5-5,
REM image [78]

Fig. 10 Void size at a strain of
0.69, material 20MnMoNi5-5,
REM image [78]

Fig. 11 Void size at a strain of
1.19, material 20MnMoNi5-5,
REM image [78]
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It is also assumed that voids loaded with negative stress multiaxiality, i. e. within
the pressure range, can become smaller again. Experimental studies showing such a
decrease in void volume, however, cannot be found in the relevant literature.

2.2.2 Dependence of Void Growth on Particle Form and Size

The void growth is highly dependent on the absolute size of the void [75]. Large
voids grow much faster than small ones. For flat particles with a loading perpen-
dicular to the major particle axes, bigger voids can be formed [27, 213] by planar
delamination of inclusions and matrix.

2.2.3 Void Locking

At low stress multiaxiality, elongated voids can be formed as described above. In
pure shear (e.g. torsion) even a decrease of the void diameter, perpendicular to the
main loading direction, i.e. a closure, is predicted by cell model calculations. The
particles leading to void initiation can hinder such a void closure. Due to their finite
dimensions, they block the transverse contraction of a void [29]. Benzerga [29]
indicates that this type of ‘void locking’ especially occurs in a multiaxiality range of
rm=rvM � 2=3:

Fig. 12 Initial void shape, FE
model, quarter model

Fig. 13 Elongated void
caused by uniaxial loading,
FE model, quarter model

Fig. 14 Spherical void caused
by multiaxial loading, FE
model, quarter model
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Even at higher stress multiaxialities where a strong growth in void volume can
be observed, the remaining particles can influence the growth behaviour. For
example the void volume growth can be hindered by particle fragments with a good
adhesion between particle and matrix [149], see Figs. 15 and 16.

2.2.4 Dependence of Void Growth on the Yield Strength
and the Hardening of the Matrix Material

The void growth is of course also affected by the yield behaviour of the matrix
material. Van Stone et al. [282] show in their literature review that the void growth
is more pronounced in high strength materials with low hardening than in com-
parable low strength materials with high hardening.

2.3 Coalescence of Voids

Void growth is limited. Depending on the material and the stress multiaxiality, the
materials bridges between the voids are teared apart. This merging of voids is called
void coalescence.

By breaking of the materials bridges between the voids, a dimpled structure is
being formed on the fracture surface. Within the individual dimples the complete or
broken particles which led to void initiation can often still be found, see Figs. 17
and 18.

Dimpled fracture surfaces can be observed in almost all technical metals and
alloys, see Figs. 19, 20, 21, 22, 23 and 24. Size and shape of dimples vary strongly
depending on the materials and load conditions.

In most cases coalescence of voids is initiated by a strain localization between
the large primary voids. Two fundamentally different mechanisms of void coales-
cence can be observed in experiments and are predicted in simulations:

Fig. 15 Void growth at the fracture sites of a
niobium carbide, material X10CrNiNb18-10

Fig. 16 Void growth at the fracture sites of a
niobium carbide, material X10CrNiNb18-10
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Fig. 17 Dimple with inclusion, material
20MnMoNi5-5, [MPA-archive]

Fig. 18 Fracture surface with voids con-
taining fractured niobium carbids, material
X10CrNiNb18-10

Fig. 19 Fracture surface copper Fig. 20 Fracture surface NiCr70Nb

Fig. 21 Fracture surface aluminium Fig. 22 Fracture surface austenite

364 M. Seidenfuss and T. Linse



• Formation of shear bands between neighbouring primary voids [36, 148, 190],
see Fig. 25.

• Plastic collapse of the material bridge between two neighboring primary voids
[27, 76, 119, 213, 274], see Fig. 26.

Often secondary voids initiated at much smaller particles are involved in the void
coalescence process [117, 171, 228]. The model for this is that due to the strain
localisation very large local plastic strains occur, which lead to the initiation of the
small secondary voids [75, 274]. For example these secondary voids can be seen on
shear bands between the larger voids [28, 75, 76, 148, 268], see Fig. 27. Small
secondary voids can play a role, too, when the materials bridges fail by plastic
collapse, see Fig. 28. In this failure mode secondary voids have the effect that the
large voids do not fully grow together and the residual ligament is not stretched to a
tip, but being connected via the secondary voids [119, 274]. Usually not only one of
the described mechanisms leads to void coalescence, but several mechanisms are
observed simultaneously.

Fig. 23 Fracture surface 20MnMoNi5 5 Fig. 24 Fracture surface Ti–Al alloy

Fig. 25 Shear band between two primary
voids

Fig. 26 Plastic collapse of the material bridge
between two primary voids

Micromechanical-Based Models … 365



2.3.1 Influence of the Stress Multiaxiality on Void Coalescence

Numerous studies show that void growth and void coalescence depend on the
multiaxial stress state [119]. Since the coalescence process occurs in a quite small
time interval (sometimes unstable) and material volume, it is difficult to examine it
experimentally. However, the coalescence process can often be concluded from the
shape of the dimples on the fracture surface. For high multiaxial stress states, as
they are observed for example inside a necked round tensile bar, spherical or
ellipsoide voids develop. On fracture surface, almost equiaxed dimples are found,
see Fig. 29. At loads which are almost uniaxial, with fracture parallel to the greatest
shear stress, the dimples are strongly defomed in the direction of shear, see Fig. 30.
Finally pure shear stress leads to extremely distorted, squashed and elongated
dimples [283], see Fig. 31. Baechem [24] even describes 14 possible honeycomb
shapes.

Metallographic examinations show that the stress multiaxiality has a direct
influence on the mechanism of void coalescence and the formation of secondary
voids. Bandstra et al. [16] examine the ductile failure behaviour of a HY-100 steel
with elongated manganese sulphides perpendicular to the loading direction. At
higher multiaxiality rm=rvM [ 1 the authors mainly find void coalescence per-
pendicular to the main direction of loading with the formation of small secondary
voids, whereas they observed a shear failure with secondary voids between the
large primary voids at lower multiaxiality. These results are confirmed by Bron &
Besson [58] for an aluminium alloy AL2024. The influence of stress multiaxiality
on the formation of secondary voids/ dimples is described by Besson et al. and
Tanguy et al. [44, 267]. The authors show for steel X100 that the number of small
secondary dimples on the fracture surface increases with decreasing stress
multiaxiality.

Fig. 27 Shear band with secondary voids
between two primary voids

Fig. 28 Plastic collapse of the material bridge
through secondary voids between two primary
voids
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2.3.2 Effect of Void Formation on the Void Coalescence

In general, if the void distance (perpendicular to the loading direction) is small, a
failure by plastic collapse of the material bridges occurs [25]. If the voids are
oriented rather under 45° with larger distances in between, the probability of shear
band formation increases [25]. In elongated voids it seems as if orientation and
rotation of the voids during deforming affect the coalescence mechanism [28].
Systematic studies on the influence of the void arrangement on the failure mech-
anism are hardly feasible because due to the manufacturing process the voids have a
random position. Samples with artificially laser-drilled voids in the form of holes
[284–287] offer a possibility to study the impacts more systematically. To analyze
the void arrangement, Weck investigates two different types of tensile specimens a)
two holes arranged perpendicular (90°) to the loading direction and b) two holes
shifted under 45°. For the 90° arrangement Weck shows that coalescence takes
place by a failure of the material bridge perpendicular to the loading direction,
seeFig. 32. The specimen with the 45° shifted holes fails by shear band formation,
see Fig. 33. On both fracture surfaces ‘secondary’ dimples were found.

Fig. 29 equiaxed dimples,
material copper [MPA
archive]

Fig. 31 dimples from pure shear,
material HDT1200M [MPA
archive]

Fig. 30 dimples from tension-
shear, material austenite [MPA
archive]

Fig. 32 Void coalescence of two voids
arranged under 90° to loading direction, mate-
rial Al 5052 [285]

Fig. 33 Void coalescence of two voids
arranged under 45° to loading direction, mate-
rial Al 5052 [285]
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2.3.3 Influence of the Materials on the Coalescence

The microstructure of the materials as well as size and composition of the particles
affect the coalescence mechanism. Cox and Low [75] examine the failure behaviour
of four different high-strength steels:

1. A commercial steel type AISI 4340 with large manganese sulphides
(∅ ≈ 7.5 μm) and much smaller iron carbides. The volume fraction of man-
ganese sulfides is 0.14 %.

2. A high purity version of the steel type AISI 4340 with slightly smaller man-
ganese sulfides (∅ ≈ 4.2 μm) and also smaller iron carbides. The volume
fraction of manganese sulfides here is only 0.06 %.

3. A commercial maraging steel (18Ni, 200 grade) with titanium carbonitrides
(∅ ≈ 8.6 μm) and much smaller particles of an intermetallic phase. The volume
fraction of titanium carbonitrides is 0.21 %.

4. A high purity version of maraging steel 18Ni, 200 grade with smaller titanium
carbonitrides (∅ ≈ 3.0 μm) and much smaller particles of an intermetallic phase.
The volume fraction of titanium carbonitrides is 0.09 %.

All four steels have a comparable yield strength of about 1400 MPa. While the
void coalescence in the maraging steel mainly takes place by direct merging of the
voids, in the AISI 4340 versions shear bands with secondary voids are observed. In
the AISI 4340 steels, the small iron carbides are involved in void coalescence, while
the small intermetallic phases have no direct influence on the convergence of the
maraging steel.

3 Continuum Mechanical Models for Failure by Void
Initiation, Growth and Coalescence [244]

To predict the macroscopic deformation and failure behaviour (crack initiation,
crack growth and instability) of components and assembly groups, macroscopic
continuum mechanical approaches are needed. Calculations on the level of
microstructure or even on the atomic level which simulate single voids and/ or
details from microstructure [13, 203, 206, 214, 225, 245, 251, 252], see Figs. 34
and 35, are not applicable to real components because of the huge computation time
and time consuming modelling.

Based on the derivation of the macroscopic materials models it can be distin-
guished between empirical and micromechanical-based models:

• Empirical models approximate the experimentally observed macroscopic
behaviour. These approaches are also called phenomenological or heuristic
models. Due to the number of introduced material-dependent variables a more
or less complex material behaviour can be approximated. Drawback of these
models is that the used material parameters have no direct reference to
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material-physical parameters. The transferability of the empirical parameters to
other load cases and materials is not given a priori. For example the following
models are referred to:

• Cockcroft and Latham [73]
• Oyane [185]
• Gao et al. [106],
• Chaouadi et al. [71]
• Bai and Wierzbicki [15].

Fig. 35 Strain distribution in
a dual phase Al-Al2O3 alloy;
plane simulation [251]

Fig. 34 Blocked dislocation
by a copper precipitation
(∅ = 1 nm) in cbc iron,
atomistic simulation [172]
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A discussion of this kind of models is found in [233].
• Another approach to describe the mechanical behaviour of materials is the use of

so-called micromechanical-based models. These models try to describe the
discontinuous micromechanical processes on a macroscopic level with
mechanical and/ or thermo-mechanical approaches. For this purpose, the dis-
continuous stress and strain field is homogenized and described with continuum
mechanical approaches. The advantage of this class of models is that a trans-
ferability of the material law and the used parameters to other loading situations
is more likely. [86, 181, 182, 204]. Severe disadvantages are the simplifications
needed for the derivation, for example ideal plastic material behaviour, axially
symmetric voids and so on. As a result the transferability is limited.

In the following the focus of interest will be on the micromechanical-based
material models. In case of dimple failure these models have to describe the
microscopic processes

1. void initiation
2. void growth
3. void coalescence which leads to the formation of a micro crack

by means of continuum mechanical approaches. In general, each phase is
described by a separate model. However, there are models which describe two or all
three phases simultaneously. In this chapter, the classic models from the late 1960s,
1970s and 1980s are presented. Later published damage models are based almost
exclusively on these classic formulations. Recent systematic reviews of Chaboche
et al. [69] and Besson [46] confirm this.

3.1 Models Describing Void Initiation

The void initiation models described below simulate the formation of a void by
decohesion (detachment) of a particle from the surrounding matrix.
Micromechanical models that explicitly describe the fracture of a particle are not
very common. An exception is for example the model of Huber et al. [125]. As
being described later the decohesion models can often similarly be used to describe
particle fracture. In principle, the decohesion models can be divided into three
groups [6, 240], such as:

• stress criteria
• strain criteria
• energy criteria

If assuming void initiation by decohesion the normalized void volume f0 is
usually set equal to the normalized particle volume incf:
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f0 ¼ incf ¼
incV
V0

ð1Þ

In the following, the normalized void volume f0 and the normalized particle
volume incf will be called void and particle volume.

In void formation by particle fracture the formed void volume f0 is much smaller
than the corresponding particle volume incf.

f0 � incf ¼
incV
V0

ð2Þ

3.1.1 Void Initiation Model of Tanaka et al.

Tanaka et al. [269] derived an energy based void initiation criterion. They assumed
an elastic particle with radius R (in cm) in a plastic matrix. They derived a critical
strain ec above which a void will initiate. Due to simplification they assumed that
plastic strain in loading direction is higher than 1 % and that the macroscopically
applied stress ~r is less than E/1000. If the elastic modulus of the particle is smaller
than that of the matrix ec can be calculated as:

ec � b

ffiffiffiffi
1
R

r
ð3Þ

The advantage of the Tanaka et al. approach is that a solution can also be found
for particles with a higher elastic modulus than the matrix:

ec � b

ffiffiffiffiffiffi
1
aR

r
mit a ¼

incE
matE

ð4Þ

R describes the radius of an inclusion and α the ratio between the elastic
modulus of the inclusion and the matrix. β is a material dependent constant which
can be calculated as follows:

b ¼
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48� 10�9 ð7� 5matmÞð1þ incmÞ þ að1þ matmÞð8� 10matmÞf g

ð7� 5matmÞ2 2ð1� 2incmÞ þ að1þ matmÞf g

s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð7� 5matmÞð1� incmÞ þ 5að1� matm2Þ

q ð5Þ
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3.1.2 Void Initiation Model of Argon, Im and Safoglu

Argon, Im and Safoglu [6, 8] derived a stress-based criterion to predict void ini-
tiation by particle-matrix decohesion. For the initiation of voids by decohesion,
sufficient energy for the creation of new surfaces must be available and the critical
stress debrc necessary for the debonding must be reached. The derived debonding
stress debr can be calculated with the following equation:

debr � k~rvM þ ~rm � debrc ð6Þ

In this equation ~rvM describes the macroscopic equivalent stress and ~rm the
macroscopic hydrostatic stress. The constant k characterises the particle shape. For
spherical particles k became 1.

3.1.3 Void Initiation Model of Gurson

The derivation of Gurson’s void initiation model [115] is mainly based on the
experimental work of Gurland [114] and the theoretical work of Argon et al. [6].
Gurland [114] observed in an uniaxially deformed steel with 1.05 % carbon content
and coagulated cementite that the number of initiated voids depends approximately
linear on the plastic equivalent strain. From this observation Gurson derives his
strain based void initiation criterion in which the void initiation rate _f

nuc
is pro-

portional to the plastic equivalent strain rate _ep
v
. In addition, Gurson slightly

modified the stress based void initiation criterion by Argon et al. [6]. Finally he
defined a criterion that takes into account both strain and stress induced void
formation:

_f
nuc ¼ M1 _e

pv þM2

_~r
m

ð1� fÞ ð7Þ

M1 and M2 are material dependent functions which should describe the inter-
action of particles. This model suggested by Gurson is of pure empirical nature.

3.1.4 Void Initiation Model of Goods and Brown

Goods and Brown derived a strain based micromechanical model to describe the
void initiation [111]. By superposition of tension and a hydrostatic stress field as
well as further simplification, the following equation for the local plastic limit strain
ep

c
was found in dependence on the particle radius R:

ep
c �KR debrc � 3~rm � ~rI

3

� �2

ð8Þ
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Factor K can be calculated from the void volume incf und Burgers vector bi. Due
to their dislocation based approach the authors assumed that the criterion is valid for
particles up to a diameter of 2 μm.

3.1.5 Void Initiation Model Acc. to Chu and Needleman

The model suggested by Chu and Needleman [72] is based on the theories of
Gurson [115] and Argon et al. [6]. They defined an empirical strain based and a
stress based initiation model.

For the definition of their strain based initiation criteria Chu & Needleman
started with Eq. 9 published by Gurson [115]. While Gurson assumed a propor-
tional relationship between void initiation rate _f

nuc
and plastic equivalent strain rate

_ep
v
, Chu and Needleman proposed a dependency in the form of a normal distri-

bution. For the void initiation volume rate they obtained their often cited rela-
tionship [3, 12, 39, 66, 72]:

_f
nuc ¼ C _ep

v ð9Þ

C ¼ w

se
ffiffiffiffiffiffi
2p

p e�
1
2

ep
v�eN
se

� �2
ð10Þ

eN is the expected value of the equivalent strain at void initiation and se the
standard deviation of the function. w is determined in a manner that the resulting
void initiation volume associates with the consistent materials specific value. The
reason why they assume a Gaussian distribution is not discussed by the authors. At
high stress multiaxiality the void initiation predicted with Eq. 10 approaches zero.

For the derivation of their stress based criterion Chu and Needleman used the
Argon et al. [6] criterion. Based on the work of Gurson [115] the authors derived
the following equation with the assumption of a normally distributed void initiation
volume rate _f

nuc
:

_f
nuc ¼ Kð _~rv þ _~r

mÞ with K ¼ j

srRe
ffiffiffiffiffiffi
2p

p e�
1
2

~rvþ~rh�rN
sr Re

� �2
ð11Þ

sσ represents the standard deviation and Re the the yield stress. rN is the expected
value of the normal distribution. j is again determined in a way that the resulting
void initiation volume is consistent with the experimental value.

It is possible to describe the decohesion process with cell models calculations. In
a later work Needleman [178] showed that it was not possible to describe this
micromechanical process (simulated with cell model calculations) correctly with
both criteria proposed by Chu and Needleman [72]. To take better account of the
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stress multiaxiality he introduced another material dependent constant c to consider
the influence of stress multiaxiality [178]:

rN ¼ ~rvM þ c ~rm ð12Þ

3.1.6 Void Initiation Model of Beremin

In the derivation of their void initiation criterion, the research group Beremin
assumed an elastic particle in an elastic-plastically deformable infinite matrix [34].
They used a self-consistent approach [121, 138], in which the matrix material has
the properties of the entire material. In their definition the entire material is the
matrix material with particles.

debr ¼ ~rI þ v ~rvM � Re
� �� debrc ð13Þ

If the debonding stress debr reaches the critical value debrc, a void initiates. The
stress ~rI refers to the macroscopic largest principal stress, ~rvM to the macroscopic
equivalent stress and the parameter v to the shape of the particle.

3.1.7 Void Initiation Model of Huber et al.

In contrast to the authors discussed so far, Huber et al. [125] defined a model for
predicting particle fracture. Their void initiation criterion combines the
micromechanical-based void initiation criterion of Beremin [34] with the simple
empirical strain criterion of Gurson [115]. They assumed that the maximum prin-
cipal stress triggers particle fracture and that there is a dependence of the fracture
stress on the particle size. They justified this size dependence with an increasing
number of defects in larger particles due to the larger volume. Their model is
defined as follows:

• Void initiation starts if the criterion of the Beremin model (Eq. 13) is fulfilled for
the largest particles:

disbrc � disbr ¼ ~rI þ v ~rvM � Re
� � ð14Þ

For initiation the corresponding value of equivalent plastic strain is denoted by
startep

v
.

• For ep
v
[ startep

v
a phase of continuous void formation follows. To describe this

phase they modified the void initiation criterion of Gurson [115]:

_f
nuc ¼ CðepvÞ_epv ð15Þ
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The constant C from the Gurson equation is defined by Huber et al. as a
polynomial function of the equivalent plastic strain:

CðepvÞ ¼ a1ðepvÞ6 þ a2ðepvÞ4 þ a3ðepvÞ2 þ a4 ð16Þ

• Void initiation is finished if the material dependent equivalent plastic strain
endep

v
is reached.

The factors ai are defined in such a way that CðstartepvÞ ¼ CðendepvÞ ¼ 0 is valid.
Simultaneously the derivatives at these points should be zero. These requirements
does not have a micromechanical background, but are justified by numerical
advantages.

Void Initiation Model of Morgeneyer et al.

Starting point for the derivation of the void initiation model by Morgeneyer et al.
[173] are experimental investigations on the failure behaviour of thin metal sheets.
Several studies [44, 57, 58] showed that for shear fracture the number of secondary
voids increases sharply. Morgeneyer et al. postulated that the formation of the
secondary voids depends on the multiaxiality of the strain state. They assumed that
the tendency for shear fracture can be described with the Lode angle l_e [162]:

l_e ¼
_eII

_eI � _eIII
; ð17Þ

where _eI, _eII and _eIII describe the principal strain rates.
The authors assumed that the initiation rate of secondary voids is particularly

high for a Lode angle close to 0 (pure shear). As Gurson and Chu & Needleman
they accepted, that void initiation further depends on the equivalent plastic strain
rate. Starting from the initiation equation proposed by Gurson, the authors proposed
the following empirical formula to describe the initiation of secondary voids:

_f
nuc ¼ A0e

� l_e
l0
_e

� �2

_ep
v

for ep
v
[ startep

v
; ð18Þ

where A0 is a material dependent constant. l0_e describes the shape of the normal
distribution of the void initiation. Void initiation is predicted only for equivalent
plastic strains ep

v
[ startep

v
.

3.1.8 Void Initiation Caused by Particle Fracture

Especially in materials with pronounced elongated and branched particles void
formation is often caused by particle fracture. The previously presented void

Micromechanical-Based Models … 375



initiation models, with the exception of the Huber criterion, are all based on the
assumption that the voids are formed by a separation of matrix and second phase
particles. If non plastically deformable particles are assumed, then the results that
have been achieved for failure by matrix detachment can be transmitted very easily
to the failure mechanism of particle fracture.

Relevant for the fracture of a brittle particle is the major principal stress per-
pendicular to the respective cross section. If the particles are linear-elastic it can be
assumed approximately that stresses and strains are constant in the particle, for
example [88]. In this case, the first principal stress in the particle incrI is equal to the
debonding stress debr, see for example [8, 195].

3.2 Models Describing Void Growth

Due to their derivation micromechanical-based models for describing void growth
can be divided into two groups [200, 240]:

1. The growth of a cylindrical, spherical or ellipsoidal void in a finite or infinite
matrix is explicitly described with continuum mechanics based formulations.

2. The behaviour of porous materials is described with thermodynamic and con-
tinuum mechanics laws. Within these approaches no single voids are examined
and due to this the derivation of the model is not so clear but nevertheless the
basic laws of mechanics and thermodynamics are fulfilled.

Another classification of void growth models, as it is used in this study, is
whether the void growth has an influence on the macroscopic deformation
behaviour or not:

1. uncoupled models: The void growth is determined by a constitutive relation as
a function of stress, strain and internal state variables. However, there is no
coupling between void volume growth with the macroscopic material behaviour.
The mechanical behaviour of the material is still described with the von Mises
yield criterion. The void growth does not affect the hardening and deformation
behaviour of the material. The material softening caused by void initiation and
growth cannot be described with this class of models. Consequently, strain
localisation which is important for the failure process cannot be simulated.

2. coupled models: Here, the calculated void volume has a direct influence on the
yield behaviour of the material. A high degree of damage leads to a reduced load
bearing capacity of the material. Damage becomes an internal state variable in
the constitutive equations and thus influences directly the strength and yield
behaviour of the material. Strain localisation can be described with this class of
models.

In the following some of the well-established uncoupled and coupled void
growth models are presented:
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3.2.1 Uncoupled Models

McClintock Model

McClintock’s void growth model [169] is the first known void growth model. For
the derivation of his model McClintock made the following assumptions:

• a cylindrical void with circular cross section in an infinite matrix
• the matrix material is rigid and perfectly plastic
• the material behaviour is described with the von Mises yield criteria
• the material is fully plastic in the unit cell
• ‘generalized plane strain’ conditions are assumed
• The infinite unit cell is loaded with an axisymmetric radial stress rr and with an

uniaxial strain ez in axial direction.

McClintock derived the following void growth law:

_R
R
¼

ffiffiffi
3

p

2
_~ez sinh

ffiffiffi
3

p ~rr
Re

� �
�

_~ez
2

ð19Þ

Following Gross and Seelig [112], Eq. 19 can be transformed into an evolution
law which describes void volume growth:

_f
f
¼

ffiffiffi
3

p
_~e
v
sinh

ffiffiffi
3

p
ð~r

m

Re
� 1
3
Þ

� �
ð20Þ

Rice and Tracey Model

The basis for the development of the void growth model acc. to Rice and Tracey
[211] is a spherically shaped void in an infinite matrix. Similar to McClintock, the
matrix material is assumed to be rigid and perfectly plastic.

Using these approximations, they obtained their well-known void growth model:

_R
R
¼ a_~e

v
e
3 ~rm
2Re with a ¼ 0:283 ð21Þ

To be able to compare the different void growth models, the radial growth _R is
converted into void volume growth _f :

_f
f
¼ a� _~e

v
e
3 ~rm
2Re with a� ¼ 0:849 ð22Þ

The original Rice and Tracey model is not able to describe a strain hardening
material behaviour. Perfect plastic material behaviour is assumed in the derivation
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of their model. In practice, the yield strength Re is often replaced by the current
yield stress σ0 or by the equivalent stress σv respectively to take material hardening
into account. However, the micromechanical background does not cover this
assumption. Only for visco-plastic material behaviour a solution of the problem is
known [64].

Several other authors which applied the model to experimental data achieved
different results for the factor α: The research group Beremin [35] found α = 0.5,
Shi [246] α = 0.6 − 0.7, Pardoen et al. [190] α = 0.4 and α = 0.34, Maire et al. [165]
confirmed the original factor of Rice and Tracey α = 0.283, Marini et al. [168]
recognized a dependence of α on the volume fraction f0 and Bandstra et al. [16]
recognized a dependence of α on stress multiaxiality.

In the following, the extension by Huang [124] of the Rice and Tracey will be
discussed.

Huang also solved the mechanical problem of a spherical void in an infinite
matrix. However, compared to Rice and Tracey, he assumed much more complex
shape functions for describing the stress field in the matrix. Due to the complexity
he solved the problem only numerically. For stress multiaxiality σm/σvM ≥ 1 he
received a value of α = 0.427. This value is close to the experimentally determined
Beremin value.

For smaller multiaxiality 1
3 � ~rm

Re
\1 Huang suggested the following equation:

_R
R
¼ 0:427 _~e

v ~rm

Re

� �1
4

e
3 ~rm
2Re ð23Þ

3.2.2 Coupled Models

Lemaitre Type Models

The basis of Lemaitre’s models [153–159] are the works of Kachanov [134] and
Rabotnov [208]. When calculating the macroscopic stresses ~rij these authors took
into account the decrease of the loaded cross section caused by voids, see Fig. 36.
This results in an increase of the averaged stresses acting in the matrix, the so called
effective stress:

matrij ¼ ~rij
1� D

ð24Þ

For the derivation of his model Lemaitre made the following assumptions and
simplifications:

• The increase in volume caused by void growth is neglected.
• In the elastic range there is a linear relationship between stresses and strains for

the matrix material.
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• Damage D is coupled with the elastic strains.
• The elastic and plastic strains do not depend directly on each other.
• The damage D and the plastic strains do not depend directly on each other.

For the derivation of his damage law Lemaitre followed thermo-mechanical
approaches. For the description of the material state he selected the internal variable
r to describe the plastic equivalent strain and D to describe the material damage.
The associated state variable R is related to the internal variable r. R describes the
material hardening in dependence of r. The state variable associated with D is called
Y which is defined in such a way that the product Y _D is equal to the dissipated
energy caused by fracture.

To describe the yield limit Lemaitre used the von Mises yield criterion.
Derogating from the original model he replaced the equivalent stress in the total
material by the equivalent stress in the matrix, where the function R(r) described the
hardening of the matrix material:

u ¼ ~rvM

1� D
� Re � RðrÞ ¼ 0 ð25Þ

To deduce the damage evolution via the normality rule Lemaitre selected a
non-associated flow rule. With this, the damage evolution is calculated as:

_D ¼ �Y
A
_~e
pv
Hð~epv � cep

vÞ; ð26Þ

where A is a material dependent scalar. By means of the Heaviside step function H
the damage evolution starts when reaching the critical strain cep

v
. The associated

state variable Y can be calculated with:

dV

K

dS

dSD

n
n

F
dF

Fig. 36 Volume element with voids, acc. to [159]
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Y ¼ � ~rvM
� �2

2Eð1� DÞ2
2
3
ð1þ mÞ þ 3ð1� 2mÞ ~rm

~rvM

� �2
" #

ð27Þ

In addition, Lemaitre often indicated the following extended evolution equation
for damage [153, 156, 157]:

_D ¼ �Y
A

� �s0
_~e
pv
Hð~epv � cep

vÞ; ð28Þ

where s0 is an additional material dependent parameter.
In the following two modifications of the Lemaitre approach will be discussed.
Bonora [50] modified the evolution equation proposed by Lemaitre in the fol-

lowing way:

_D ¼ a
Dc � D0ð Þ1a
ln ende

starte

� � f
~rm

~rvM

� �
Dc � Dð Þa�1

a

_~e
pv

~epv
with

f
~rm

~rvM

� �
¼ 2

3
ð1þ mÞ þ 3ð1� 2mÞ ~rm

~rvM

� �2
ð29Þ

The damage evolution starts with the value D0 and grows up to the critical value
Dc at which failure is predicted. starte denotes the strain at the beginning of damage
and ende the fracture strain (both under the assumption of uniaxial loading).

In contrast to most of the other models Bonora et al. [48, 50, 51] describe
explicitly how to determine the material dependent parameters.

Chaboche et al. [69] modified the Lemaitre approach to take into account the
volume growth induced by void growth. Lemaitre neglected this volume change in
his model. In the new formulation acc. to Chaboche et al. hydrostatic stresses can
induce plastic hydrostatic strains which induce a change in volume.

Gurson Model

The aim of Gurson was to derive a yield criterion and a flow rule for a ductile
material containing voids [115, 116]. His model takes into account the influence of
the hydrostatic stress on void growth and on the plastic deformation behaviour. The
new defined yield criterion represents an upper limit for yielding.

For the derivation of his yield criterion Gurson made the following assumptions
for simplicity:

• Gurson defined a unit cell which contains a single void and derived a yield
criterion for a spherical void in a spherical matrix.

• The assumed material behaviour of the matrix is rigid/perfectly plastic and is
described by the von Mises yield criterion.
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With a brilliant derivation Gurson obtained the following upper bound
approximation for the yield function:

u ¼ ~rvM

Re

� �2

þ2f cosh
3~rm

2Re

� �
� 1� f2 ¼ 0; ð30Þ

where Re is the yield strength of the matrix material and not that of the whole unit
cell.

With a similar derivation strategy Gurson [115] succeeded to transform
approximately the Rice and Tracey model [211], see Eq. 21, into a yield function,
that means, into a coupled model:

u ¼ ~rvM þ 2 a f Ree
3~rm
2Re � Re ¼ 0 mit a ¼ 0:283 ð31Þ

The number of published modifications and extensions of the Gurson model is
quite high. This depends among other things on the fact, that the original,
unmodified Gurson model cannot describe correctly void growth in strain hardening
materials [199, 270, 277, 279].

Good, but not exhaustive overviews can be found for example in [29, 32, 46,
232, 235]. Some of the major extensions of the Gurson model will be discussed in
the following:

Modification of the Gurson yield function for strain hardening materials

To take strain hardening into account Gurson [115] suggested to replace the
yield strength Re of the perfectly plastic matrix material by the averaged current
yield stress σ0 in the unit cell. To calculate this averaged yield stress σ0, which is
dependent on the material hardening, he suggested the following relationship:

r0 _e
pv ¼ ~rij _~e

p
ij

1� f
ð32Þ

With this assumption, the Gurson model loses much of his micromechanical
background. Pardoen and Besson [32] indicated that this simplification is only
approximately permitted if the hardening exponent is less than 0.2.

A much broader suggestion to describe the material hardening is made by
Leblond, Perrin and Devaux [152] with her LPD model. They developed an ana-
lytical model for the behaviour of a spherical void in a spherical hardening matrix
material.

Modification of the Gurson model of Tvergaard

Starting point for the development of the so-called Gurson Tvergaard model (GT
model) [277] was the experimental work of Weinrich and French on shear band
mechanisms [96, 97, 288]. Tvergaard attempted to simulate the shear band for-
mation mechanisms with plane cell model calculations. For his cell model
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simulations with finite elements he assumed regularly arranged voids in a hardening
elastic-plastic matrix. Due to the assumption of plane strain condition, he simulated
the voids as infinitely long cylinders with circular cross sections. To simulate the
behaviour of this cell model with a continuum mechanical macroscopic model,
Tvergaard used the Gurson model which was actually derived for spherical voids.
His results showed that the Gurson model overestimates the results from the cell
model calculations. To get a better match with his cell model calculations,
Tvergaard introduces three empirical constants q1, q2 and q3:

u ¼ ~rvM

r0

� �2

þ 2fq1 cosh q2
3~rm

2r0

� �
� 1� q3f

2 ¼ 0 ð33Þ

Due to the introduction of the ‘adjusting parameters’ [277] the micromechanical
background of the original Gurson model becomes questionable.

For the best parameter combination to describe the behaviour of cylindrical
voids in copper and brass he found the following values:

q1 ¼ 1; 5; q2 ¼ 1; 0 and q3 ¼ q21 ð34Þ

In the same paper [277] Tvergaard mentions that the q-parameters are dependent
on the hardening exponent of the material. Numerous studies show that the
q-parameters can be influenced by:

• stress multiaxiality
• material hardening
• void shape
• void arrangement
• void volume
• kinematic hardening
• plastic strains

A more detailed discussion of the factors can be found in [244].

Additional modifications of the Gurson model

In literature, numerous modifications of the original Gurson or GT model can be
found. Some examples are mentioned in the following:

• Pan et al. [186] extended the Gurson Tvergaard (GT) model for the description
of viscous material behaviour.

• Gologanu et al. [110, 264] derived a void growth model for ellipsoidal voids in
an ellipsoidal unit cell.

• Feucht et al. [91] and Ockewitz and Sun [183] tried to improve the model for
low stress multiaxiality by coupling the GT model with the Johnson-Cook
model [132, 133].

• An alternative suggestion to improve the failure prediction in the shear range is
given by Nahshon et al. [177]. Nahshon et al. took the yield function of the GT
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model without modifications. To improve the results in the shear range, they
expanded the evolution law for the calculation of the void volume growth with
an additional term:

_f ¼ ð1� fÞ_~epii þ kxfxð~rklÞ
~sij _~e

p
ij

rvM ð35Þ

In Eq. 36 the function xð~rklÞ depends on the third invariant of the stress
deviator.

The kinematic and mixed isotropic kinematic approaches referred to in literature
rely almost exclusively on the work of Gurson, Tvergaard, and Gologanu. An
overview of these models can be found in Besson and Guillemer-Neel [42].

Rousselier Model

Based on the thermo-mechanical approaches by Lemaitre and Chaboche [154] and
own early works [223], Rousselier derived a model for simulating ductile damage.
His model [220, 224] describes the elastic-plastic deformation and failure behaviour
of a porous material, i.e. a material with voids. Rousselier defined a continuum
mechanical yield condition with an associated flow rule:

u ¼ ~rvM

q
þ D rkf exp

~rm

qrk

� �
� r0 ~ep

v� � ð36Þ

Here r0 describes the hardening behaviour of the overall material. D and σk are
two integration constants resulting from the derivation. The original Rousselier
yield criterion was derived for isothermal behaviour and small strains. In [220]
Rousselier discusses these two points. He indicates that mainly the yield curve and
the material-dependent constant rk depend on the temperature. The second inte-
gration constant D is assumed to be material independent D = 2. In the form
presented here, it is assumed that q � 1� f:

u ¼ ~rvM

1� f
þ rkðTÞf D e

~rm

ð1�fÞrkðTÞ � r0ð~epv ; TÞ ð37Þ

The assumption rk ¼ rkðTÞ is not in contrast to the derivation of the original
model. Whether D is temperature dependent or not is still an open point in
literature.

Sainte Catherine et al. [229] and Poussard et al. [204] extended the Rousselier
model for strain-rate dependent material behaviour. They selected a strain
rate-dependent flow curve and extended the Rousselier model by defining rk as a
function of strain rate:
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u ¼ ~rvM

1� f
þ rkð_eÞf D e

~rm

ð1�fÞrkð_eÞ � r0ð~epv ; _eÞ ð38Þ

These authors do not violate any assumptions made in the derivation. The
theoretical nature of Rousselier the yield function is not affected by their
modification.

In contrast to the extensions shown before Tanguy and Besson [265, 266]
modified the yield condition more extensively. For the definition of their
visco-plastic material law the authors introduced the effective equivalent stress reff .
In their formulation reff describes the behaviour of the matrix material and not of
the overall material.

Lorentz et al. [163] showed that the constitutive equations of the Rousselier
model are not convex with regard to all variables and therefore the solutions
obtained do not have to be unique. To ensure a robust solution they proposed,
among other things, to calculate the void growth not only from the plastic hydro-
static strains, but also to take into account the elastic parts. In addition they defined
the yield condition and the constitutive equations with Cauchy stresses. Future
applications will demonstrate whether and in which cases the new yield criterion
provides comparable or better results compared to experiments.

Rousselier et al. [221, 222] formulated a polycrystalline damage model. Such a
polycrystalline model allows the simulation of the orientation of crystal lattice and
the resulting slip systems. This should improve the description of anisotropic and
cyclic material behaviour. Rousselier et al. indicated that the needed computing
time is not significantly higher than for other advanced material models and thus
macroscopic structures can be simulated.

3.2.3 Discussion of the Void Growth Models

The micromechanical-based void growth models can be compared on the basis of
the predicted void growth [2]. Only the empirical Lemaitre model, which uses a
damage parameter, cannot be compared directly to the other models. For the
comparison of the models the parameters and equations given in the original
publications, see Table 1, are used.

As postulated in the derivations perfectly plastic behaviour of the matrix material
is assumed. For the comparison of the models, it is postulated that failure occurs
when a critical void volume fc is reached. If the plastic equivalent failure strain is
plotted as a function of the stress multiaxiality [10, 237] so called limit strain curves
result. With the assumption of a critical void volume fraction of fc ¼ 0:05 the limit
strain curves calculated with the models are shown in Fig. 37.

It can be seen that all the predicted curves are in a relatively narrow scatter band.
This is not surprising, since all models are based on very similar basics.
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At high multiaxialities the models of Rousselier, Gurson and Rice and Tracey (in
the formulation of Gurson) produce comparable results. Lower fracture strains are
only predicted by the original Rice and Tracey and McClintock model.

For low multiaxialities the Rousselier and the Rice and Tracey model (both
formulations) give similar results. In comparison to this, the Gurson and
McClintock model predicts much higher fracture strains.

3.3 Models to Describe Void Coalescence

The mechanism of void coalescence depends on the one hand on the microstructure
of the materials, on the other hand on the external loads, see Sect. 2.3. However,
which mechanism occurs and how to model it numerically has been investigated so
far least of the three failure stages (initiation, growth, coalescence) [36, 187, 190].

Table 1 Comparison of void growth models

Model name Equation
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Fig. 37 Limit strain curves determined with different void growth laws, fc = 0.05
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Most authors assumed [137, 294] for their derivation that void coalescence can
microscopically be described by plastic collapse of the material bridges between the
single voids. Only the model proposed by Brown and Embury [61] describes the
formation of shear bands. None of the models can predict which one of the two
mechanisms is activated. Several approaches to model void coalescence are dis-
cussed in the following.

3.3.1 Coalescence When Reaching a Critical Void Volume, a Critical
Void Growth or a Critical Damage Condition

The simplest and most often used approach is to assume the occurrence of void
coalescence when a critical void volume fc [240, 281, 292] or a critical void growth
R=R0ð Þc [35, 36, 167, 246, 247] is reached.

f� fc ð39Þ

Based on experiments, Lemaitre also suggested that a critical damage [155]
describes the final fracture. All these approaches are based on fractographic
observations finding a void growth nearly independent of the multiaxiality of the
stress state, e.g. [246].

The law defined by Tvergaard and Needleman [281], enabling the calculation of
an accelerated void growth during coalescence, can be assigned to this model
category as well. Since the original Gurson model predicts a, compared to exper-
iments, too small void growth when considering the state of advanced void growth,
Tvergaard and Needleman replaced the void volume fraction f by an empirical
function f�ðfÞ:

u ¼ ~rvM

r0

� �2

þ 2f�q1 cosh
3~rm

2r0

� �
� 1� ðq1f�Þ2 ¼ 0 ð40Þ

For f�ðfÞ, the following growth function is assumed:

f� ¼ f for f� fc
fc þ jðf � fcÞ for f[ fc

�

with the acceleration coefficient j ¼ f�u � fc
ff � fc

ð41Þ

fc is the void volume at which void coalescence is starting. ff is the void volume
at final fracture of the material. f�u can be calculated with the relation f�u ¼ 1=q1.
This approach simulates a continuous failing of the material. The empirical
assumption of continuous formation has the advantage of resulting in less con-
vergence problems in a finite element computation than a discontinuous formula-
tion of the damage evolution.
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In their studies, many authors find a more or less large dependence of the critical
void volumes on the multiaxiality of the stress state [9, 35, 36, 136, 247, 257, 275],
on the Lode angle [105, 235] and on the void shape [9]. This is contrary to
experimental works of Shi et al. [247] finding a rather minor dependence on mu-
liaxiality. These contradictions can possibly be solved by the volume portion of the
voids. With cell model calculations, Kim et al. [136] showed that the influence of
stress multiaxiality on the critical void volume is only minor when considering
small initial void volumes (f0 < 0.001). This observation is also described by
Scheyvaerts and Pardoen [234].

When using any model of this category it has to be taken care that metallo-
graphic meaningful values are used for the critical void volumes and void growth
rates.

3.3.2 Coalescence Triggered by Formation of Shear Bands Between
Voids

Brown and Embury [61] assume that the voids coalesce due to the formation of
shear bands between the single voids. As criterion for the critical strain ~ec between
void initiation and void coalescence, they found the following relation:

~ec ¼ ln

ffiffiffiffiffi
p
6f

r
�

ffiffiffi
2
3

r !
ð42Þ

This theory is supported by several experimental and numerical studies [149,
213, 245].

3.3.3 Plastic Limit Load-Model by Thomason for the Calculation
of Void Coalescence

The best-known models describing the plastic collapse of material bridges between
voids are the coalescence criteria by Thomason [271, 272, 275]. Thomason derived
stress-based criteria for the description of void coalescence for different loading
conditions and void geometries. In his derivations, he assumed cubic primitive
arranged unit cells having one void at the center each, see Fig. 38. The material
deformation behaviour of the matrix between the voids is assumed to be rigid/
perfectly-plastic.

For the derivation of a three-dimensional coalescence criterion [272, 273] he
assumed periodically arranged cuboidal voids with quadratic cross sections. The
principal load direction is perpendicular to the quadratic base. The distance of the
voids perpendicular to the principal load direction is 2d, the void height is 2a and
the side length of the quadratic voids is 2b, see Fig. 39. For the localisation zone
between the single voids, Thomason assumed simple displacement rate fields.
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Doing so, he obtained an upper limit for the load [47]. Thomason approximated his
complex solutions for the upper limit of the ultimate load with the empirically
found relation:

Fig. 38 Cubic primitive arrangement of unit cells

Fig. 39 Sizes and distances of cuboidal voids with cubic primitive arrangement [272]
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~rcI ¼ matRe 1� n2
� �

0:1
n�1 � 1

j

� �2

þ1:2 n�
1
2

 !
with n ¼ b

d
and j ¼ a

b
ð43Þ

Here matRe is the yield strength of the matrix material. In order to be able to apply
Eq. 43 to ellipsoidal voids as well, Thomason assumed that he can set the semi-axes
of the ellipsoid (Ra und Rb) equal to the length of the sides of the cuboidal voids (a,
b) [272, 273], see Fig. 40. He claimed this approximation to be valid as long as the
void volume is smaller than 0.2. Analogous to Eq. 43 he obtained an upper limit for
the ultimate stress acting macroscopically at the unit cell:

~rcI ¼ matRe 1� n2
� �

0:1
n�1 � 1

j

� �2

þ1:2n�
1
2

 !
with n ¼ Rb

d
and j ¼ Ra

Rb
ð44Þ

The Thomason-criterion is also used to compute a critical void volume fc that
depends on the state of strain or stress. In this case, fc is not a material constant any
more but a variable [293].

In order to incorporate material hardening, Pardoen et al. [187] enhanced the
coalescence criterion derived by Thomason, Eq. 44. For the matrix surrounding the
void, they assumed the following material law:

matr0 ¼ 1þ Eep

Re

� �n

Re for matr0 [Re ð45Þ

Equation 44 is replaced by the empirical formulation:

rc
I ¼ matr0 1� n2

� �
aðnÞ n�1 � 1

j

� �2

þbðnÞn�1
2

 !
with n ¼ Rb

d
and j ¼ Ra

Rb
ð46Þ

Fig. 40 Sizes and distances
of ellipsoidal voids [272]
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The values of α and β depend on the hardening exponent n. In the range of
0� n� 0:3 the authors found aðnÞ ¼ 0:1þ 0:217nþ 4:83n2 and bðnÞ ¼ 1:24:

3.3.4 Yield Criterion to Describe Material Behaviour in the Case
of Plastic Collapse

To describe the material behaviour during void coalescence for arbitrary stress
states, Benzerga [26] introduced an empirical yield condition based on the works by
Pardoen and Hutchinson [187]:

u ¼ ~rvM þ 3
2
~rmj j � 3

2
~rcI ¼ 0 ð47Þ

Seen in the principal stress space, his yield surface has the form of a double cone
with the symmetry axis being on the hydrostatic stress axis, see Fig. 41.

The fact that the stress state around a void changes drastically during coales-
cence, as known from cell model calculations, is accounted for by the transition to
the new yield surface. This approach models void coalescence as a continuous
process.

3.3.5 Simulation of Void Coalescence Using Void Growth Models

Void growth models like the Rousselier- or the Gurson model also implicitly
predict void coalescence. When the void volume fraction is about to reach 1 in the
Rousselier- and Gurson model, respectively q�1

1 in the GT model, the calculated
stresses go to zero. Values of about one for the void volume however are unreal-
istically high seen from a metallographic point of view. Likewise the predicted
stress decreasing for high void volumes is too slow. The stresses in the Rousselier

Fig. 41 Benzerga yield
surface in the principal stress
space

390 M. Seidenfuss and T. Linse



model approach zero only asymptotically. Due to these deficiencies, these void
growth laws are in practice almost exclusively used in combination with an addi-
tional coalescence criterion.

3.3.6 Discussion of the Models Describing Void Coalescence

The models describing coalescence processes differ in their mechanisms. It is
therefore difficult to compare them directly. Pardoen et al. [190] studied the growth
and coalescence processes of voids in technical pure copper with different material
hardening for different stress multiaxialities. They compared the following coa-
lescence criteria:

• critical void growth
• shearing of material bridges (Brown & Embury criterion)
• plastic collapse of material bridges (Thomason-criterion)

They concluded that none of the models can reproduce the whole spectrum of
investigated multiaxial stress states independently.

3.4 Common Combinations of Damage Models
and a Comparison

To describe the whole process of dimple fracture, model combinations describing
all three phases (void initiation, void growth and void coalescence) are needed. In
principle it is possible to combine any models depending on the used material
behaviour. However, in practice certain model combinations have become estab-
lished and are successfully applied by a variety of users in research and industry.

3.4.1 Gurson, Tvergaard and Needleman (GTN) Model Combinations

The certainly most common combination of models describing void initiation, void
growth and coalescence is the so-called Gurson-Tveergaard-Needleman model
combination (GTN model) [39, 56, 90, 164, 176, 182, 238, 258, 259, 262, 263].
Although it is a combination of three independent damage mechanics models, the
GTN combination is very often just called GTN model. Following models are
combined in the GTN model combination:

• Void initiation by Chu and Needleman [72]
• Model of void growth by Gurson und Tvergaard [277]
• Void coalescence criterion by Tvergaard and Needleman [281]

Besides the initial void volume f0, the characteristic length lc (see Sect. 3.5) and
the flow curve of the whole material, up to 10 additional material-depending
parameters are needed for the GTN model:
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se; eN; w; j; rN; sr; q1; q2; fc and j ð48Þ

The large number of parameters that are in addition usually hard to determine
presents a disadvantage [49, 51, 275] of the GTN model. From literature research it
is known that different parameter sets can yield the same global response [1].
Especially the empirical parameters, having no actual physical meaning, cannot be
identified independently. This problem will be discussed in Sect. 3.6.

3.4.2 Rousselier Seidenfuss (RS) Model Combination

Since the Rousselier model is not able to model the steep stress decrease occurring
in void coalescence with sufficient accuracy, Seidenfuss proposed [146, 241] to
combine the Rousselier model with a critical void volume for modelling void
coalescence. This so-called RS model combination is often used in literature to
describe the failure behaviour of different materials [67, 79, 81, 142–145, 191, 205].

• Modelling of void initiation. The above mentioned model combination assumes
that an initial void volume f0 exists, respectively, that the volume is created right
after the yield stress is exceeded. These assumptions have been confirmed by a
variety of authors, [8, 23, 59, 87, 89, 113, 125, 146, 190, 213, 243, 266, 274, 293].

• Void growth model of Rousselier [224]
• Void coalescence when reaching a critical void volume [240]

Besides the initial void volume f0, the characteristic length lc and the flow curve
of the material mix, only 3 more model dependent material parameters are needed
when using the RS model combination.

Many practical applications show that the GTN and RS model combinations
yield similar results [20, 31, 175, 191, 241].

3.4.3 Gologanu, Leblond and Devaux (GLD) Model
with Thomason-Criterion

The GLD model for the simulation of material behaviour with void growth of
nonspherical voids has been combined very often with the Thomason coalescence
criterion in form of a yield function [26, 188, 189]. Additionally, different model
combinations in connection with the GLD model have been used, e.g. [105].

• Modelling of void initiation. In a first approximation, it is also assumed that the
whole initial void volume f0 exists from the beginning on.

• Model of void growth by Gologanu et al. [110, 264]:
• Model of void coalescence by Thomason [272] and Benzerga [26]
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3.5 Mesh Dependency of Results and Definition
of a Characteristic Length

Caused by increasing material damage resulting from the initiation and growth of
voids, the material sooner or later starts to soften. If the material softens in a certain
limited volume, strain localisation resulting in a shear band can occur. Therefor
material models being able to capture material softening must be capable of pre-
dicting the finite dimension of strain and damage localization.

All so far presented material models are local models. Local means here that e.g.
the stresses at a material point A are only dependent on the local state variables at
that point. Neighbouring material points do not influence the stresses at point A.
However, such a behaviour would only be valid for a perfectly isotropic and
homogeneous material. Macroscopically seen, real metals and metal alloys fulfill
these requirements only in a coarse approximation since they have a discrete
microstructure resulting in inhomogeneity on microscopic scale. Material constit-
uents have a finite size and influence each other. A void growing at point A can
influence the growth of a neighbouring void at point B. This reciprocal influence is
not considered with local material models.

Real mechanical problems can usually not be solved analytically, numerical
approximations like e.g. the method of finite elements are used. If material softening
is simulated with a local material model in combination with finite elements, the
ellipticity of the initial-boundary value problem is lost and a bifurcation problem
results. This means that a homogeneous strain respectively damage field will get
unstable against a strongly localized one [209]. Since the method of finite elements
approximates the displacement field volume by volume, the strains respectively
damages cannot localize in an infinitely thin band due to the mathematical defi-
nition. The width of the localization zone is coupled with the size of the elements.
This effect leads to the very often in literature discussed pathologic mesh depen-
dency of results. The localization problem can only be solved by introducing an
additional parameter, the characteristic length lc.

Using finite element computations, the localisation problem is solved in practice
very often by introducing a constant material-specific element size in areas where
material softening can occur [18, 19, 39, 46, 90, 182, 224, 240]. Very often authors
assume that the width of localization zones is directly related with the distance of
the primary, failure causing voids [18, 62, 100, 107, 128, 150, 188, 199, 224, 240,
262, 292].

Numerous practical applications [45, 62, 86, 182, 216, 240, 241, 262] show that
the problem can be solved satisfactorily (seen engineering-wise) this way. For steel
materials, element sizes in the range of a few tenth of a millimeter result [20, 62,
100, 107, 135, 146, 199, 224, 240, 266].

A more general approach to solve the localisation problem and to avoid the mesh
dependency of results is provided by the so-called nonlocal damage models as
discussed in detail in Sect. 4.
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3.6 Determination of the Material Dependent Parameters

When using damage models for simulating specimen and component behaviour it is
not only necessary to select appropriate models but also crucial to determine the
needed parameters reliably and uniquely. Although the majority of the presented
models is in use for over 20 years now, no verified standardised procedures for the
determination of the used parameters are available.

Determination procedures described in literature and/ or used in practice:

• Metallographical and fractographic determination of the parameters out of the
microstructure of the material,

• direct or iterative determination out of macroscopically measured values from
simple specimen or

• adaption to results of cell model computations are described shortly in the
following sections.

3.6.1 Determination of the Parameters Out of the Microstructure
of the Material

Since the models have been derived from micromechanical theories, some of the
needed material dependent parameters have a direct relation to the microstructure.
Examples are the initial void volume fraction f0, the characteristic length lc as well
as the critical void volume fraction fc. The determination can be done with met-
allographical cuts and/or with tomographic methods. The advantage of this method
is that parameters can be determined isolated and conclusively without other
parameters interfering. Drawbacks are an often occurring strong scattering of
measured material constituents values as well as a relatively large fuzziness in the
determination of the parameters [240].

3.6.2 Direct or Iterative Determination Out of Macroscopically
Measured Values from Simple Specimens

Various parameters resulting from the derivations of the models or having been
introduced as adjusting parameters do not have a direct relation to the micro-
structure and can therefore not be determined with metallographic methods. These
parameters can partly be determined directly out of the load-deflection behaviour of
a specimen or indirectly through a numerical adaption to experimental results.

The indirect determination is also called numerical calibration. Hereto, the
deformation behaviour of a selected specimen is being simulated with finite ele-
ments. The parameter to be determined is varied in the simulation until a satisfying
accordance between simulation and experiment is found.
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The geometry of the specimen has to be chosen in a way that allows a preferably
independent identification of the single parameters. The variation of a parameter
should have a preferably large influence on the calculated macroscopic specimen
behaviour. The numerical calibration has been tested in an European round robin
test with only little success [31]. Values determined by the different participators
turned out to have significant differences.

Springmann and Kuna [253, 255] present a method allowing an automatized
determination of damage-mechanical parameters. Their approach is based on a
nonlinear optimisation algorithm. With their method they tried to determine the
material-dependent parameters out of the load-deformation behaviour of a simple
specimen (notched flat tensile specimen, notched round tensile specimen, C(T)-
specimen). However, it turned out that basically only one parameter can be
determined with certainty. The other parameters have to be known. If more than one
parameter is optimised with only one experiment, the parameters cannot be
determined conclusively.

An advanced approach for a numerical parameter identification is presented by
Springmann in [254]. Within this approach not only the macroscopic specimen
length change is measured but additionally the displacement field on the surface
with an optical measurement method [5]. Using a nonlinear optimisation algorithm
several parameters can be adapted simultaneously. The authors claims that a
maximum of 4 parameters can be identified with the adaption to the displacement
field at the same time. The method could certainly be improved by using not only
the result of one experiment but several specimen with different multiaxial stress
states simultaneously.

3.6.3 Adaption to Results of Cell Model Computations

Often, damage-mechanical parameters are identified by adapting them to results of
cell model calculations [136, 137, 141]. The results of cell model computations are
strongly influenced by the chosen boundary conditions [141, 244]. The quantitative
identification of parameters for real materials is therefore not or only with strong
restrictions possible, additionally, the validity has to be scrutinized very critically.

3.7 Concluding Remarks Considering Damage-Mechanical
Models

The different damage models have often been compared among each other with
respect to their ability to predict the failure behaviour in comparison to experiments.
Especially the GTN model and the Rousselier model—in its original as well as in
the RS formulation—have been investigated quite often. However, it is in the nature
of such comparisons that different authors come to different conclusions:
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• For fracture mechanics, some authors conclude that the models yield similar
results [175, 241], while others see an advantage in the Rousseliermodel, e.g. [20].

• Pineau [200] calculates the behaviour of notched round tensile specimen with
the models of Rice & Tracey, Rousselier and GTN. Compared to experiments,
all three models deliver similar results, however, the Rousselier model has a
slight advantage.

• An European ring round robin test also showed that the RS model delivers better
results than the GTN model when compared to experiments [31] although less
material-dependent parameters are needed.

• When considering cyclic loading in both tension and compression, theGTNmodel
surely will deliver better predictions since the Rousselier model cannot describe a
decrease of void volume when loading in compression occurs. Research done by
e.g. Steglich et al. [256] shows that the LPD model which is based on the Gurson
model can basically describe the processes occurring in cyclic plasticization.

• However, when considering loading with low multiaxiality, the original
Rousselier model seems to have an advantage compared to the GTN model as
Besson et al. [41, 43] shoed using the example of fractures with shear lips. Due
to the basic assumptions in the derivation of the discussed models none of the
models will give satisfactory results for very low multiaxialities like pure shear.

• Perrin and Leblond [194] on the other hand see advantages in the GTN model.
In a theoretical study connected with a self-consistent unit cell they find dis-
advantages in the mathematical formulation of the Rousselier model.
A restriction of this study is the used ‘Rousselier’ yield condition in a modified
form. It is not stated how or from where it was derived.

A disadvantage of the micromechanical-based damage models based on the
employed approach is the disability to correctly model a sharp crack tip occurring in
a structure. The damage-mechanical approaches model the growth of the crack by a
decrease of stress in the damaged elements. Since an element has a finite volume,
the crack thus always has the width of this volume. In practice this circumstance is
explained with a damage area growing in the vicinity of the crack tip. Since the
damaged elements are usually not deleted from the structure stiffness matrix, such
elements can lead to numerical problems. Suggestions on how to transform the
volume damage to a crack path can for example be found in [80, 170, 249].

4 Nonlocal Damage Models

In experiments that are carried out until specimen’s failure, i.e. the complete loss of
integrity of the material, technical steels typically show the formation of a process
zone: while large parts of the specimen are deformed purely elastically, micro-
mechanical processes such as plasticity or damage take place locally limited. The
size of the process zone is determined by the micromechanical structure of the
material and thus represents a material property.
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4.1 Localization

The increase of strain or stress caused by the nucleation of microcracks or voids in
the vicinity of microstructural defects or inclusions can lead to the localization of
strain [226] in the process zone. This results in an increased evolution of damage
[278, 279] and therefore to a further narrowing of the micromechanical active
region. With increasing damage the load bearing capacity of the material reduces;
with increasing strain a local decrease of stress is observed as local softening [109].
The force-displacement-curves of tensile tests with porous materials with hardening
matrix materials show a maximum, which is followed by a region with a negative
slope. This is caused by geometrical and material softening.

As shown in Sect. 3, in the framework of continuum mechanics, material soft-
ening can be reproduced by the consideration of damage in a plasticity model. With
increasing damage lower stresses lead to plastic flow, the yield surface and thus the
elastic region decrease.

The static equilibrium of a simple softening plastic continuum is unstable [180]
and leads to strain localization. Mathematically, this means the loss of ellipticity [55]
of the underlying system of differential equations, which is now of hyperbolic type.

The strain localization at the loss of ellipticity theoretically takes place in an
infinite small zone. If a discretization of the continuum under investigation is carried
out prior to the solution of the boundary value problem, the size of the localization
zone is determined by the discretization size [55, 197]. When using the finite element
method this effect is called mesh sensitivity: for meshes of smaller element sizes, the
size of the localization zone reduces. As a result, the energy dissipated by damage
converges to zero for infinitesimally small elements. This contradicts the experi-
mental observation that both the size of the localization zone as well as the energy
dissipated by the failure of the material are material properties [109].

4.2 Regularization Methods, Non-local Formulations

As shown in the previous section, the modeling of ductile damage within the
framework of continuum mechanics of simple materials in combination with the
numerical solution of the corresponding system of partial differential equations
results in two fundamental properties of the considered problem: First, the material
softening leads to instability of the material behavior. Second, material instability
and strain localization are directly connected due to the strong interactions between
increase of strain and evolution of damage for simple continua. For the numerical
treatment of the boundary value problem this results in a size of the localization
zone that depends on the discretization.

One possibility for setting a fixed size of the localization zone when using the FEM
is to define a characteristic element size [38, 39, 184, 239]. In this method strain
localization and material softening will take place within a certain element, element
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row or element layer, depending on the dimension of the problem. The element edge
length becomes a model parameter. Thus, the accuracy of the solution cannot be
judged by conventional convergence criteria. Furthermore, considerable numerical
disadvantages arise in the treatment of problems with different length scales.

With the help of regularization approaches material softening and strain locali-
zation can occur independently. The use of so-called non-local formulations thus
differs fundamentally from the pragmatic method above: the loss of ellipticity and
the influence of discretization are eliminated [53, 196, 198, 259, 260].

The reduction of the mesh dependence which occurs when continuum damage
models are used numerically was the subject of numerous physically motivated and
phenomenological approaches. Reviewing articles can be found in [21, 85, 130, 193].

The fundamental approach of non-local formulations to reduce localization
effects caused by discretization is to consider a finite region of surrounding material
in the underlying equations

f ðxÞ ) f ðx; �xÞ; ð49Þ

where x and �x are local and non-local variables, respectively. This can be done
efficiently by averaging a variable within an area characterized by a certain length
parameter.

Depending on how averaging is done non-local formulations can be divided into
non-local integral types [22, 196], explicit [54] and implicit gradient methods [84,
192]. Other classification may distinguish whether internal variables of a consti-
tutive model or stresses and strains are averaged. Finally non-local formulations
may be divided into weakly non-local and strongly non-local formulations
[21, 130].

4.2.1 Nonlocal Integral Types

When using non-local integral type approaches a local variable x is replaced by its
non-local average �x which is calculated by integrating the weighted local variable

�xðxÞ ¼ 1
B

Z
B

GðnÞxðxþ nÞdB: ð50Þ

The influence of the surrounding material characterized by the distance vector n
on the considered material point is given by the definition of the weight function
GðnÞ. Here, typically GAUSSIAN or similar bell-shaped functions are used, which
must at least satisfy the condition

1
B

Z
B

GðnÞdB ¼ 1: ð51Þ
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Integral type approaches are strongly non-local methods, as the integration is
carried out over the entire body under consideration. They are numerically robust
methods and can in principle be applied to every type of constitutive models. In the
treatment of complex geometries, the weight functions GðnÞ must meet high
standards, which requires the use of numerically robust algorithms in three
dimensions.

4.2.2 Explicit Gradient Formulations

A formulation of Eq. 50 using gradients can be derived using Taylor series at the
material point under consideration

xðxþ nÞ ¼ xðxÞ þ rxðxÞ 	 nþ 1
2!
rðrxðxÞÞ

: n
 nþ 1
3!
rð3ÞxðxÞ 	 	 	 n
 n
 nþ 	 	 	 ð52Þ

Assuming isotropy and substituting back in Eq. 50, Eq. 52 gives

�xðxÞ ¼ xðxÞ þ cr2xðxÞ þ dr4xðxÞ þ 	 	 	 ð53Þ

and after neglecting gradients of higher order an explicit gradient formulation of
Eq. 50 can be written in reduced form as

�xðxÞ ¼ xðxÞ þ cr2xðxÞ: ð54Þ

Explicit gradient methods are weakly non-local methods, since only the infini-
tesimal neighborhood of a material point is taken into account. Compared with
nonlocal integral type approaches explicit gradient formulations possess significant
numerical disadvantages [131, 193]. The constant

ffiffiffi
c

p
is introduced as an length

parameter that controls the influence of the surrounding material.

4.2.3 Implicit Gradient Formulations

Differentiating Eq. 53 twice and reordering gives

r2xðxÞ ¼ r2 �xðxÞ � cr4xðxÞ � dr6xðxÞ � 	 	 	 ; ð55Þ

and after substituting Eq. 55 back into Eq. 53

�xðxÞ � cr2 �xðxÞ ¼ xðxÞ þ ðd � c2Þr4xðxÞ þ 	 	 	 ð56Þ

Thus, after neglecting higher gradients as done in Eq. 54 one finds an implicit
gradient method to carry out the non-local averaging as
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�xðxÞ � cr2 �xðxÞ ¼ xðxÞ: ð57Þ

As well as non-local integral type approaches, implicit gradient formulations are
strongly non-local formulations and are much easier to implement numerically
compared to explicit methods. However, the partial differential equation of the
HELMHOLTZ type Eq. 57 represents an additional field equation which necessi-
tates the formulation of additional, possibly non-physical boundary conditions.
A critical discussion of possible boundary conditions can be found in [193].

4.2.4 Non-local Formulations of Ductile Damage Models

The development of non-local formulations of ductile damage models has been the
subject of numerous publications. Non-Local modifications of the GTN-model
(Sect. 3.4.1) can be found in [82, 129, 151, 160, 210, 280]. Samal and coworkers
[231] developed an implicit gradient formulation of the ROUSSELIER model
(Sect. 3.4.2, [224]. From the above-mentioned modifications, the implicit gradient
formulations used in [209, 230] spatially average the rate of the (modified) void
volume fraction in a non-local sense

_d � cr2 _d ¼ _f : ð58Þ

The non-local modification of the GTN-model by Linse et al. [126, 160] is based
on the micro-dilatational approach [95] and replaces the dilatational part of the
plastic strain ep by its non-local spatial average

�ep � cr2�ep ¼ ep; ð59Þ

where the rate of the non-local plastic strain enters the evolution equation for the
growth of existing voids.

5 Combination of Damage Models in the Brittle-Ductile
Transition Region

In the brittle and brittle-ductile transition region of ferritic steels cleavage fracture
initiates at microcracks, while microvoids nucleate as a result of plastic deformation
in the upper shelf. A consistent and independent description of these microme-
chanical processes is needed if the entire toughness region of ferritic steels is to be
analyzed.
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5.1 Beremin Model—Uncoupled Probabilistic Model
for Cleavage Fracture

For ferritic steels, the brittle and transition region is characterized by a large scatter
of fracture toughness values that results from the statistical distribution of micro-
cracks. Using the WEIBULL theory, the BEREMIN-model was developed to
describe cleavage of ferritic steels [37, 174]. Here, three fundamental assumptions
are made:

• microcracks are created during plastic deformation; the probability density
function for the size of the microcracks follows a constant power law

• the critical stress of each microcrack is determined by the GRIFFITH criterion
• weakest-link: the propagation of one single crack leads to the failure of the

whole structure.

Under these assumptions, the probability of failure for a specific load level L is
derived by

Pf ðLÞ ¼ 1� exp � rW ðLÞ
ru

� �m� �
: ð60Þ

The WEIBULL-stress rW is calculated as

rW ðLÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
V0

Z
Vpl

ðrIðLÞÞmdVm

vuut ; ð61Þ

where rI is the maximum principal stress and Vpl the plastic volume of the struc-
ture. The reference volume V0 must be large enough to represent the microstructure
of the material as well as small enough to fulfill the requirements of the Griffith
criterion. If the reference volume is chosen constant, the BEREMIN model uses two
model parameters: the WEIBULL reference stress ru and the WEIBULL-modulus
m.

Bordet et al. [52] showed that most of the problems that arise in engineering
applications of the model are a result of a oversimplified description of local
cleavage in the BEREMIN-model. Most modifications of the BEREMIN-model
[37, 100–104, 139] change the calculation of the WEIBULL-stress. Bernauer et al.
[40] proposed a modification that takes into account that the nucleation of voids is
promoted by the presence of carbide particles. Consequently, the number of
cleavage initiation points is reduced with the increase of the nucleated void volume
fraction.

Note that in the sense of the classification of damage models given in Sect. 3.2
the BEREMIN-model and its modifications must be termed uncoupled, since
cleavage is not modeled for each individual microcrack but rather by quantifying
the cleavage fracture probability of many microcracks.
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In principle, the BEREMIN-model for the calculation of the probability of
cleavage fracture can be used together with a ductile damage model to account for
ductile crack growth preceding cleavage in the transition region [4, 227]. In con-
junction with the Griffith criterion the stress fields must be resolved very accurate
which requires the use non-local ductile damage models in the presence of high
stress gradients. However, following the weakest-link assumption, the model can-
not predict cleavage crack arrest and thus most likely underestimates the fracture
toughness values in the case of such effects as pop-in or crack arrest, see e.g. [127,
161]. In [161] fracture toughness values were predicted by numerical simulation of
fracture mechanics tests using a combination of a non-local GTN-model together
with the BEREMIN model. The calculated values agree well with experimental
results in the brittle region and in the ductile region. However, in the brittle-ductile
transition region, the predicted fracture toughness values are much smaller than the
experimental values.

5.2 Coupled Models for Cleavage Softening

Among simplified strip yield models, e.g. [98], softening of metals by cleavage is
mostly modeled in a coupled way by means of cohesive zone elements, see e.g.
[140]. Here, softening initiates when the maximum principal stress exceeds the
cohesive strength and the work of cohesive separation can be correlated to the
fracture toughness.

The combination of cleavage softening with ductile damage models was realized
numerically using computational cell simulations, see e.g. [99, 179, 248]. Here,
discrete volumes of material (cells) are removed on a the basis of a stress criterion
for cleavage, ductile damage is modelled in a continuous way. The results strongly
depend on the discretization, since not only the accuracy of the computed stress and
strain fields depend on the chosen mesh size, but the properties of the micro-
structure are directly correlated to the chosen cell size.

In [127] a consistent continuum formulation covering both cleavage softening
and ductile damage is formulated using a non-local modification of the GTN model
[126, 160] together with a cohesive zone model [219] for cleavage. The developed
formulation captures many effects known from experiments such as the constraints
sensitivity, cleavage initiation, cleavage crack propagation and crack arrest
(pop-ins), a size independent lower-bound toughness and the possibility of stable
cleavage crack propagation. The simulations were performed with homogeneous
material properties and a high sensitivity with respect to small deviations of the
material parameters was obtained in the transition region. However, in contrast to
the application of probabilistic models, statistical predictions on the failure of
structures cannot be obtained with this type of model.
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6 Conclusions

Within this article the micromechanical processes leading to dimple fracture are
discussed in detail. It is shown that for this kind of fracture mode the processes
leading to material failure are similar for very different metals and metal alloys.
Especially the processes leading to void initiation and void coalescence are com-
plex and depend to a great extent on the microstructure of the selected materials. To
describe the three phases of dimple fracture at high stress multiaxialities a large
number of different mathematical approaches are available. The special focus of this
paper is on so-called micromechanical-based models.

For the micromechanical derivation of the void initiation models, many sim-
plifications must be made concerning the microstructure, the material behaviour and
the initiation mechanisms. Hence, to select an adequate model for the considered
material metallographic examinations are essential. It is also recommended to
calibrate the material specific parameters on the basis of metallographic observa-
tions when using such micromechanical-based models. To take all the parameters
only from literature or to use only numerical calibration procedures is not recom-
mended at all.

Since the basics for the derivation of the void growth models are similar, the
received results are comparable when taking into account the assumptions made in
the derivations of the models. However, when these assumptions are not valid for a
given material, e.g. when observing strain hardening, this can lead to different
results of the models. In conclusion it can be said that none of the discussed void
growth models is able to describe exactly the micromechanical processes in a strain
hardening material in a wide range of stress multiaxiality. The Gurson model in the
GT, LDP and GLD formulation has probably the largest potential in describing void
growth.

The particular void coalescence models describe different kinds of merging
mechanisms. Therefore a direct comparison is difficult. Pardoen et al. [190] com-
pared different coalescence criteria. They came to the conclusion that none of the
models is able to describe independently the whole area of the examined mul-
tiaxiality range. To simulate the different micromechanical processes during void
coalescence, probably several models must be coupled.

In summary it can be said that the all models should be selected with respect to
material and microstructure. If possible, the material-dependent parameters needed
for the models should be determined metallographically or the numerically adjusted
parameters should be verified with metallographic values. It is surely not reco-
mended to regard the parameter determination as pure adaptation procedure to
experimental values. Thus, there is a risk that the micromechanical background of
the models is lost and the models are reduced to pure ‘fitting models’ [275].

The greater the number of material-dependent parameters is, the more difficult a
unique determination is. Especially for the GTN-model, the large number of
parameters partly difficult to access is often felt as a disadvantage [49, 51].In
particular, the empirical parameters which have no physical background, cannot be
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determined independently. The following quote summarises the problem in deter-
mining the material-dependent constants:

The limited success that has been achieved with the dilational-plastic models of ductile
fracture is mainly the result of the large number of adjustable parameters that have been
incorporated in the models. These models can now act in an analogous manner to a
polynomial curvefitting technique, and the parameters (q1, q2, fc, fF, fu) can be suitably
adjusted to give a reasonable fit to any particular set of experimental results [275].

While basically applicable for the prediction of cleavage failure probabilities,
uncoupled BEREMIN-type models most likely overestimate cleavage fracture in
the presence of ductile damage. For the case of using coupled cleavage softening
models, it remains open to perform (numerically expensive) Monte-Carlo-
simulations for statistical failure predictions. In both cases, non-local formula-
tions of ductile damage models are advantageous.
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