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Preface

In September 2015, an international symposium enti-
tled “Recent Trends in Fracture and Damage
Mechanics” was held at the Institute of Mechanics and
Fluid Dynamics at TU Bergakademie Freiberg. The
symposium was organized in honor of the scientific
contributions of Meinhard Kuna to the field of fracture
and damage mechanics. In parallel, celebrating his 65th
birthday, Professor Kuna also officially retired at this
event. All those who knew him were confident that this
would in no way deter him from further research. Many
of his alumni, former colleagues, scientific compan-
ions, cooperating partners as well as personal friends

agreed without hesitation to contribute to the symposium. The present volume,
which includes the proceedings of the symposium, provides for the interested reader
an overview of the development of some fields of fracture and damage mechanics in
the last decades. We are pleased to dignify thus the lifetime achievement of
Meinhard Kuna in an appropriate manner.

First of all, we would like to thank Meinhard Kuna for being our scientific
mentor for the last years. Through his own experiences at the IFE Halle, he also
tried to provide excellent working conditions during our doctorate time in Freiberg.
Personally, we became acquainted with an initially somewhat distant scientist,
whose soft core, expressed as a kind-hearted, equitable, and fatherly supervisor,
appeared after some time. We think that retiring—or better said, the release of
responsibility in a gradual manner—will not be an easy step in the life of Meinhard
Kuna. Therefore, we wish him and his family all the best for this challenging task
and their future.

Furthermore, we would like to thank all authors contributing to this volume and
the anonymous reviewers for their comments helping to improve the manuscripts.

v



The support of Nathalie Jacobs and Cynthia Feenstra of Springer Publishing during
the publication process is also gratefully acknowledged. Last but not least, we
highly appreciate the help of Karina Hartmann during the preparation of the
symposium.

Freiberg Geralf Hütter
June 2015 Lutz Zybell
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Part I
Historical Perspective



Meinhard Kuna: Physics and Engineering
at the Crack Tip—A Retrospective

Geralf Hütter and Lutz Zybell

1 A Brief Scientific Biography

Meinhard Kuna was born in January 1950 in Eckartsberga in the former GDR. He
studied physics at TU Magdeburg from 1968 to 1972 with a focus on theoretical
physics. Afterwards he was a scientific research assistant at the Institute of Solid
State Physics and Electron Microscopy (IFE) of the Academy of Sciences of the
GDR in Halle/Saale. He worked on elastic-plastic crack tip analyses and received
his doctorate (Dr. rer. nat.) in theoretical physics from the University
Halle-Wittenberg in 1978. During the following years he became leader of the
research group “Numerical Methods in Fracture Mechanics” at the IFE in Halle. In
1990 he habilitated in theoretical physics at the Martin Luther University
Halle-Wittenberg with his thesis about hybrid crack tip finite elements. From 1991
to 1994, Meinhard Kuna was the head of the department “Microstructure of
Materials and Systems” of the Fraunhofer Institute of Mechanics of Materials
(IWM) in Halle. During this time he also worked at the IWM headquarters in
Freiburg. In 1995, he was a visiting professor for Mechanics at the Otto von
Guericke University Magdeburg in the Faculty of Mechanical Engineering. From
1996 to 1997, he worked again in southern Germany and was head of the
department “Numerical Simulation” at the Materials Testing Institute (MPA) of the
University of Stuttgart.

In 1997 Meinhard Kuna was appointed as a full professor for Solid Mechanics at
TU Bergakademie Freiberg. Since then he has served two periods as director of the
Institute of Mechanics and Fluid Dynamics. During his years in Freiberg he taught
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basic courses in mechanics to thousands of students and inspired numerous students
to do their majors or to start a PhD in mechanics (Fig. 1). In 2011, he was honored
with the Julius Weisbach Price for his outstanding merits in teaching at TU
Bergakademie Freiberg. Over a number of years he also served in several important
functions in the university. From 2005 to 2012, he was the liaison officer of the
German Research Foundation (DFG) for TU Bergakademie Freiberg. Between
2006 and 2009, he acted as the Vice Dean of the Faculty of Mechanical, Process
and Energy Engineering and since 2009 he has been an elected member of the
university council. In 2011, he founded an international masters course on
Computational Material Science at TU Bergakademie Freiberg and since then he
has served as the Dean of Study of this course (Fig. 2). Altogether, in his time as a
professor in Freiberg he supervised around 30 PhD students, mentored three
habilitations and hosted eight Humboldt research fellows, where eight out of all
scholars later became professor. All through his time in Freiberg, Meinhard Kuna
has closely identified himself with the university. He became involved in several
large-scale research projects and worked successfully together for many years with
other colleagues from Freiberg. Especially with Gerhard Pusch, Peter Hübner and
Horst Biermann from the Institute of Materials Engineering of TU Bergakademie
Freiberg he maintained very close collaboration, resulting in several research pro-
jects in the field of fracture mechanics. Moreover, Meinhard Kuna has cherished
longtime fruitful cooperations with many scientists all over the world.

Meinhard Kuna is an internationally recognized expert in fracture and damage
mechanics. Furthermore, his research interests comprise inelastic material model-
ing, as well as the development of numerical methods (particularly FEM and BEM)
towards fracture applications, the modeling of smart materials with a focus on
piezoelectric material behavior and the development of miniaturized test methods,

Fig. 1 Meinhard Kuna teaching mechanics of materials at TU Bergakademie Freiberg in 2012
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in particular the Small Punch Test (SPT). Since 1976 Meinhard Kuna has authored
around 350 scientific publications, 200 of which are peer reviewed articles. His
most cited articles are his study of ductile failure in nodular cast iron [40] by 3D cell
models from 1996 and his review article on the development of FEM techniques for
fracture mechanics analysis in piezoelectric materials [34] from 2010. In 2008
Meinhard Kuna published his textbook “Numerische Beanspruchungsanalyse von
Rissen: Finite Elemente in der Bruchmechanik” [33], which was later also pub-
lished in English [35]. This monograph is nowadays established as the standard
book for the numerical treatment of cracks by FEM and was awarded in 2014 with
the TEXTY Textbook Excellence Award by the International Text and Academic
Authors Association (TAA).

Throughout his life of research and teaching, Meinhard Kuna has been very
engaged in scientific societies. He is an active member of the German Association
for Materials Research and Testing (DVM) and the Society of Applied Mathematics
and Mechanics (GAMM), contributing regularly to their annual meetings. Within
the DVM he was chairman of the working group on fracture mechanics from 2003
to 2007 and organized the annual meetings of this group numerous times. Between
2003 and 2009 he was the representative of the German National Fracture Group in
the European Structural Integrity Society (ESIS) and within the International
Conference on Fracture (ICF). Under the auspices of ESIS and DVM he initiated
the 18th European Conference on Fracture (ECF 18) at Dresden. Moreover, in 2001
he organized the 11th International Workshop on Computational Mechanics of
Materials (IWCMM11) [71] at TU Bergakademie Freiberg together with Siegfried
Schmauder from MPA Stuttgart. In 2009, Andreas Ricoeur and Meinhard Kuna
hosted the IUTAM Symposium on Multiscale Modelling of Fatigue, Damage and

Fig. 2 Meinhard Kuna discussing with international master students of the Computational
Materials Science course at TU Bergakademie Freiberg in 2014
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Fracture in Smart Materials [39], again at the TU Bergakademie Freiberg. In honor
of his achievements for the fracture mechanics community, the DVM awarded him
the August Wöhler Medal in 2015, see Fig. 3. Due to his expertise, Meinhard Kuna
is much sought after as a reviewer for scientific organizations and for numerous
international journals. Since 2012 he has been a member of the Board of Reviewers
of the German Research Foundation (DFG) for the field of Applied Mechanics,
being responsible for the evaluation of research proposals. Also within the
Alexander von Humboldt Foundation he is part of the selection committee.
Moreover, he is a member of the editorial board of the International Journal of
Fracture, Archive of Applied Mechanics, and Engineering Fracture Mechanics,
those journals being most closely related to his fields of research.

Meinhard Kuna has been an important member of the international fracture
mechanics community for the last 35 years. His main scientific achievements are in
the development of numerical methods for treating problems of damage and frac-
ture. He made outstanding contributions particularly in the field of the development
of specialized FEM and BEM techniques for crack tip analyses and in the study of
fracture mechanics of piezoelectric materials. An important characteristic in his
scientific work was that he did not stick to purely academic problems. Rather, his
ambition—to start research projects motivated by practical problems, to explore
new fields thoroughly, and finally to lead solutions back to practice—has been
characteristic of his whole academic career and resulted in many industrial research
projects. His main scientific projects and some personal anecdotes are outlined in
the following section.

Fig. 3 Presentation of the August Wöhler Medal of the DVM to Meinhard Kuna by Peter Hübner
(left) and Gerhard Pusch (right) in 2015
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2 The Making of an Engineering Physicist in Fracture
and Damage Mechanics

2.1 Studies at TU Magdeburg and Working at IFE Halle
Until 1990

As already mentioned, Meinhard Kuna was born in January 1950 in Eckartsberga,
which is located near Naumburg in Thuringia in the former GDR. His father was a
school headmaster and his mother a teacher and he was the eldest of three brothers
and one sister. After 1953 Meinhard Kuna spent his childhood in Wernigerode,
where he also finished primary and secondary school. The two last years of his high
school time he attended a special advanced education class for maths and natural
sciences at the TU Magdeburg. These special classes were introduced in the GDR
in the 1950s at several universities in order to promote outstanding pupils.

After finishing school with highest honors, Meinhard Kuna began his study of
physics with a focus on theoretical physics at the same university. At that time he
was—next to his studies—a very enthusiastic musician. He played guitar in a beat
band and served as the pianist in the student cabaret “Prolästerat für
Studienungelegenheiten”. During that period he also got to know his later wife
Christine, who did a teacher-training study course for math and physics at TU
Magdeburg.

In his diploma thesis [23], Meinhard Kuna worked on atomistic modeling of
crack tip deformations in α-iron, see Fig. 4. Due to the high degree of difficulty of
that topic, the thesis was issued as a cooperation of two students. So Meinhard
Kuna, in the early 1970s, tried together with his longtime college friend Uwe
Riemann to implement what is nowadays known as molecular dynamics. The thesis
was supervised by Heribert Stroppe and Rainer Clos. For the young ambitious
physicist Meinhard Kuna this time felt like a first scientific disillusion. Rather than

Fig. 4 Meinhard Kuna as a student of Theoretical Physics around 1970 (left) and sketch of atom
positions at the crack tip in α-iron from his Diploma Thesis [23] (right)
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continuing his study of Einstein’s already famous theories, he had to orient himself
towards engineering fracture mechanics and handling IT problems.

Due to critical political discussions with lecturers for Marxism-Leninism and
undesirable activities during their study years, Uwe Riemann and Meinhard Kuna
were early identified as “non-true to the line” by representatives of the socialistic
system. This meant that a later career at any university was absolutely barred. By
chance, Meinhard Kuna applied for a so-called “Aspirantur” (a type of PhD posi-
tion in the former GDR) at the Institute of Solid State Physics and Electron
Microscopy (IFE) of the Academy of Sciences of the GDR in Halle/Saale. This
institute was founded and headed by Heinz Bethge, who was an outstanding sci-
entist in the field of surface physics. Due to his international standing, the IFE had
excellent equipment and offered best working conditions—even for young talented
researchers being regarded as politically non-conforming.

During this time at the IFE Halle, Meinhard Kuna worked on elastic-plastic
crack tip analyses. The initial plan, to apply to that problem what is nowadays
known as dislocation dynamics, did not work due to limited computing resources in
the middle of the 1970s. For this reason, he decided together with his supervisor
Volker Schmidt to solve the problem within the framework of continuum plasticity
theory by using the finite element method (FEM). This decision meant for
Meinhard Kuna the final anticlimax from theoretical physics towards engineering
mechanics. By initial assistance and further collaboration with the pioneering
research group for FEM within GDR, Jürgen Dankert and Siegfried Koczik at TU
Magdeburg, Meinhard Kuna developed an elastic-plastic FEM program for 2D
crack analyses, enabling evaluation of the J-integral values along different contours
[24]. At that time, the post-processing was still performed by-hand and thus very
time-consuming, see Fig. 5.

During his doctorate time at IFE Halle, Meinhard Kuna learned working as an
independent scientist. The excellent working conditions at IFE—including an
open-minded, considerate and friendly atmosphere, many seminars including sci-
entific discussions, regular visits of international guests and a strong support of
young scientist by the superiors—led to his first outstanding scientific results in the
field of elastic-plastic crack tip analyses [24]. On account of his success Meinhard

Fig. 5 FEM simulation of elastic-plastic crack tip behavior [24]: Meshing of a CT specimen with
689 TRID3 finite elements (left) and graphical representation of the plastic zone made by-hand
(right)
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Kuna was honored in 1977 with the Young Researchers Prize of the Academy of
Sciences of the GDR. At that time, also the later very fruitful cooperation [43, 44,
76] with Zdenek Bilek and Zdenek Knesl from the Institute of Physics of Materials
(IPM) in Brno started. The colleagues from IPM were specialized in experimental
fracture mechanics, which complemented perfectly the simulation work of
Meinhard Kuna and his supervisor Volker Schmidt. In 1978, Meinhard Kuna’s first
working period at IFE Halle was finished by defending his dissertation [25], see
Fig. 6. Since then, Meinhard Kuna was simply called “Mr. CT” at the institute.

In the late 1970s, Meinhard Kuna became known as a formidable newcomer in
the international fracture mechanics community. He regularly participated in con-
ferences in Eastern Europe and he was also allowed to go to the “West” upon
special application. Visiting the 1st International Conference on Numerical
Methods in Fracture Mechanics in Swansea/Wales, which was organized by
Luxmoore and Owen, was an important experience for his later career, since there
he met several leading scientists in fracture mechanics such as Rice, Turner,
Kobayashi, and Knott.

To perform expensive FEM computations, the best russian super computer
BESM6 was only available at the Computing Center of the Academy of Sciences of
the GDR in Berlin-Adlershof, see Fig. 7. The configuration of BESM6 was based
on transistor technology, magnetic drums and digital tape resulting in a clock rate of
10 MHz and 32 kilowords central memory. Meinhard Kuna traveled once a week
by train from Halle to Berlin, carrying a bag full of punch cards containing input
files. Including self-made post-processing, this allowed 20 jobs per day.

Fig. 6 Defending his Dissertation in 1978: Presentation of the doctoral cap by Heinz Bethge
(head of IFE Halle) (left) and Meinhard Kuna as “Mr. CT” (right)
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Due to his scientific success in the field of theoretical fracture mechanics and its
industrial application towards the technical safety of chemical and nuclear facilities,
Meinhard Kuna was assigned to establish the working group “Numerical Methods
in Fracture Mechanics” at the IFE Halle in 1978. There was a large demand in the
GDR for assessing industrial cases of damage by fracture mechanics analyses and
besides the group of Holger Theilig from the School of Engineering in Zittau there
was no one able to do this. Also Horst Blumenauer and Gerhard Pusch from TU
Magdeburg, who comprised the leading group in experimental fracture mechanics
in the GDR at that time [6], had a strong interest in numerical analyses of their
experiments. So Meinhard Kuna started his group with Wolfgang Uhlmann,
Günther Maschke, and Ulrich-Michael Eisentraut whereas Matthias Petersilge,
Michael Busch, and Thomas Hantschel joined somewhat later.

One of the first impressive failure cases investigated by the new Kuna group was
the explosion of a high pressure facility for ethylene production within the indus-
trial complex “Leunawerke Walter Ulbrichtt” south of Halle, see Fig. 8. After only
four months of operation a pipe elbow failed and the whole factory building was
destroyed. The fractographic investigation, which was performed by Martin Möser
at the IFE Halle [60], revealed that hydrogen-assisted cracking led to the growth of
a fatigue crack, finally leading to failure by brittle fracture. The fracture mechanics
assessment of this damage event was performed by using hybrid crack tip elements.

Fig. 7 FEM computations in the 1970s: russian super computer BESM6 at the Computing Center
of the Academy of Sciences of the GDR in Berlin-Adlershof (left) and Hollerith punch card
containing a part of an input file (right)

Fig. 8 Explosion of a high pressure facility for ethylene production within the industrial complex
“Leunawerke Walter Ulbricht” in 1980
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The results, see Fig. 9, showed that the internal pressure and the geometry of the
pipe elbow had an enormous influence on the crack tip loading conditions.

The Kuna group worked on several fields of numerical fracture mechanics.
Together with Lothar Wiltinger and Johannes Altenbach from TU Magdeburg a
FEM software for linear-elastic fracture mechanics was developed. After the first
version CRACK2D [45] for plane crack problems, this software was later extended
towards 3D crack analyses [9, 27, 28]. This program was used for thermo-elastic
crack analyses, which were important for failure analyses caused by thermo shock
of the reactor pressure vessel WWER440 for the nuclear power plant in Greifswald.
Regarding the safety of nuclear pressure vessels of type WWER there was a strong
collaboration between all countries in the COMECON. In those years, Meinhard
Kuna and his group also developed so-called hybrid crack tip finite elements [26,
29, 37, 42]. Based on hybrid variational principles of elasticity, these elements
allowed the use of different shape functions for displacements and stresses, so that
the stress singularity at the crack tip can be directly incorporated in one element, yet
ensuring comparability of boundary displacements with standard isoparametric
elements.

Due to limited computing resources, especially for 3D applications of the FEM,
Günther Maschke and Meinhard Kuna decided in the mid 1980s to start using the
boundary element method (BEM) for fracture mechanics applications. In addition
to plane and spatial crack configurations, the BEM was also extended towards
elastic-plastic material behavior [8, 14, 55, 56]. The developed BEM code was also
used in collaboration with Hans-Achim Bahr and Herbert Balke from the Central
Institute of Solid Mechanics and Materials Science ZFW Dresden for investigating
crack patterns generated by thermal shock [4, 46].

At the end of the 1980s a frequent and intensive collaboration started between
the Kuna group and research institutes in the western part of Germany. First con-
tacts between Meinhard Kuna and scientists from the FRG had already happened at
international conferences and afterwards these scientists were invited for a stay at
the IFE Halle. For example, Hans-Georg Blauel and Erwin Sommer from the
Fraunhofer Institute for Mechanics of Materials (IWM) in Freiburg visited the IFE

Fig. 9 Application of hybrid crack tip finite elements for the fracture mechanics assessment of the
damage event at “Leunawerke Walter Ulbricht” in 1980
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Halle in the late 1980s. In this period there were also first contacts with Dietmar
Klingbeil and Wolfgang Brocks from the Federal Institute for Materials Research
and Testing (BAM) in Berlin. During a fracture mechanics conference in Freiburg
in the 1980s, Meinhard Kuna met also Dietmar Gross from TU Darmstadt for the
first time, which was the beginning of an initially distant but later close
friendship. Although trips to western Germany were strongly regulated and policed,
in 1988 Meinhard Kuna was allowed to visit together with Volker Schmidt the
IWM in Freiburg for four weeks. During this stay he investigated the behavior of a
nuclear pressure vessel under a loss of coolant accident (LOCA) scenario, see
Fig. 10. Together with Horst Kordisch and Andrea Ockewitz the J-integral for a
surface crack during a pressurized thermal shock was analyzed with the FEM code
ADINA [48].

Other important intra-German contacts had been established with Karl-Heinz
Schwalbe from the GKSS in Geesthacht and Hans-Georg Hahn and Hans Albert
Richard from the TU Kaiserslautern. The latter led to a very fruitful scientific
cooperation on mixed-mode fracture [68]. Meinhard Kuna calculated the stress
intensity factors for the so-called AFM specimen, see Fig. 11, which was developed
by Hans Albert Richard to investigate all three fracture modes. The results of this
study showed that modes II and III can not be decoupled. Finally, a couple of
months before the fall of the Berlin Wall, Meinhard Kuna visited Satya N. Atluri at
the Georgia Institute of Technology in the US for some weeks. They worked
together on superposition techniques for obtaining weight functions by the BEM
[47].

Summarizing Meinhard Kuna’s scientific period from its beginning to the end of
the GDR, it can be stated that due to happy circumstances, exceptional working
conditions and strong promotion by Heinz Bethge and Volker Schmidt at the IFE

Fig. 10 Thermoelastic-plastic analysis of a nuclear pressure vessel: Sketch of the WWER 440
(left) and finite element mesh of 1/6 of the vessel (right) (from [48])
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Halle, and on account of his high personal engagement, Meinhard Kuna had
become an internationally recognized expert in numerical fracture mechanics and a
respected scientific leader of his working group at IFE Halle.

2.2 The Time After the Reunification of Germany

The severe changes encompassing the Reunification of Germany in 1990 also had a
strong effect on the career of Meinhard Kuna. According to the Unification Treaty,
the Academy of Sciences of the GDR was disbanded and its institutes had to be
integrated into the scientific landscape of the Federal Republic of Germany. After a
first evaluation, the IFE in Halle was intended to join the Max Planck Society. Since
this largest German research organization is dedicated to basic research, Meinhard
Kuna and some colleagues looked for more seminal perspectives for the applied
research groups of the IFE. Due to their contacts with the Fraunhofer IWM in
Freiburg and on account of their very similar research areas, a common proposal, to
found the branch department “Microstructure of Materials and Systems” in Halle
within the Fraunhofer Society, was elaborated and finally approved by the German
Science Council.

The department in Halle, headed by Meinhard Kuna, included 20 scientists who
continued to work successfully in three groups: numerical fracture mechanics led
by Meinhard Kuna, the field of electron microscopy analysis of materials under the
auspices of Jürgen Hopfe and investigation of the mechanics of microelectronic
materials and devices, which was managed by Dieter Katzer and Matthias Petzold.
The latter research topic was the basis for Meinhard Kuna’s continuing interest in
fracture and damage of silicon and solders as well as on miniaturized testing.

During this time of severe political changes, researchers from the former
socialistic GDR had to adapt to the capitalistic mechanisms of research, the

Fig. 11 German-German scientific cooperation with Hans Albert Richard using hybrid crack tip
finite elements: sketch of the AFM specimen for mixed-mode fracture experiments (left) and finite
element mesh of the crack tip region (right) (from [68])
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necessity of formulating research proposals and acquiring third-party funding from
industry and public partners. In parallel, doors to new areas were opened. In 1991,
Meinhard Kuna habilitated with a thesis on hybrid crack tip elements [30], which
was not allowed to him in the GDR for political reasons.

Due to several conflicts between the Fraunhofer IWM headquarters in Freiburg
and the department in Halle, Meinhard Kuna was transferred in 1994 to the
headquarter in Freiburg. There, he came closely into touch with damage mechanics.
Together with Dong-Zhi Sun he investigated the damage behavior of nodular cast
iron by cell model simulations of representative volume elements [40], see Fig. 12.
Both, damage mechanics and the material called nodular cast iron, remained rele-
vant topics of research during Meinhard Kuna’s further career. The time at IWM
Freiburg was also the starting point for a long-term friendship with Wolfgang
Brocks, Reinhold Kienzler, and Igor Varfolomeev, who also worked there at that
time.

In 1995, upon invitation of Horst Blumenauer, Meinhard Kuna became a visiting
professor for damage mechanics at the Otto von Guericke University in
Magdeburg. There at TU Magdeburg, an Innovative Research Center for “Adaptive
Mechanical Structures” was initiated, where Meinhard Kuna got involved. This
marks the beginning of his work on numerical methods and criteria of fracture for
smart materials [31, 32].

After his visiting stay in Magdeburg, in 1996 Meinhard Kuna changed to the
Materials Testing Institute (MPA) of the University of Stuttgart, where he became
head of the department “Numerical Simulation”. There, in addition to industrial
research projects in the field of nuclear safety, he continued working on ductile
damage models (in particular the Rousselier model) in collaboration with Michael
Seidenfuß and Ludwig Stumpfrock. Within a cooperative EU-project with Ivo
Dlouhý from the Czech Academy of Sciences, Meinhard Kuna started simulating
the small punch test (SPT), bringing together his interests on miniaturized testing

Fig. 12 Deformed cubic primitive unit cells for nodular cast iron under loading with different
stress triaxialities (from [40])
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and damage models—a combination that inspired several future research projects.
Furthermore, together with Fritz Aldinger from the MPI Stuttgart and Bernd
Kröplin from the University of Stuttgart, Meinhard Kuna continued investigating
the fracture of smart materials at that time.

2.3 Professorship at TU Bergakademie Freiberg

In 1997, Meinhard Kuna was appointed as a full professor for “Applied Mechanics
and Solid Mechanics” at TU Bergakademie Freiberg. Within the almost 20 fol-
lowing years in Freiberg he continued working in manifold fields, which had
attracted his interest during his former stations. They were numerical fracture
mechanics and safety assessment of structures, damage mechanics and microme-
chanics of materials, smart materials, miniaturized testing of materials as well as the
development of corresponding numerical methods. From the many projects,
amounting to about one million Euro per year, which he initiated in this period,
only a short abstract can be given here.

In the field of numerical fracture mechanics, Meinhard Kuna’s scientific origin,
he worked on formulations of energy balance integrals [11] and numerical methods
allowing efficient computations of these quantities [12, 78]. Based on former
cooperations of his coworker Matthias Scherzer with Reiner Kreißig and Arnd
Meyer from the TU Chemnitz, Meinhard Kuna was also involved in the develop-
ment of adaptive FEM methods within the collaborative research center on “Parallel
Numerical Simulation for Physics and Mechanics” (SFB 393) [59].

However, Meinhard Kuna did not stick to purely academic research but was
always looking for potential practical applications of his theories and methods. That
is why the programs J-POST [20] for the computation of energy balance integrals
and PROCRACK [65] for FEM-simulations of fatigue crack growth in complex 3D
structures were developed at his chair. Both programs met a kind reception in
industry and found many applications in the safety assessment of structures, as
shown for instance in Fig. 13.

Via collaborations with industry, authorizing agencies and the Institute of
Materials Engineering of the TU Bergakademie Freiberg (Gerhard Pusch, Peter
Hübner, Horst Biermann), Meinhard Kuna came again in touch with nodular cast
iron. Safety assessment studies were carried out for industrial components made
from this material like railway wheels [50], gas pipelines [49], and transportation
casks for spent nuclear fuel rods [35]. In addition to industrial applications of
fracture mechanics, combined experimental and numerical investigations including
macroscopic and micromechanical models for damage, fracture and crack propa-
gation in nodular cast iron were developed for fatigue [61, 64, 79], dynamic [10]
and ductile failure [80] and for the ductile-brittle transition regime [17].

Meinhard Kuna’s research on damage mechanics and micromechanics of
materials was of course not restricted to nodular cast iron. Strongly increasing
computing capacities allowed more detailed micromechanics models. In parallel,
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non-linear FEM codes called for improved material models of damage in order to
overcome the limitations of classical elastic-plastic fracture mechanics for all rel-
evant damage mechanisms of engineering materials. For ductile failure, nonlocal
extensions of the Gurson model were formulated and implemented in FEM soft-
ware [18, 53]. Furthermore, simulations with a discretely resolved microstructure in
the process zone at the crack tip allowed a deeper insight into the micromechanical
processes [15]. Also improved models were developed to describe the ductile-brittle
transition of engineering metals [16, 52]. The mechanisms of fatigue were
addressed at the microscale [64] and a cyclic cohesive zone model was developed
[69] to simulate initiation and propagation of fatigue cracks under arbitrary load
sequences. Returning to microelectronic components, the creep damage of lead-free
solders was investigated, too [41].

Applying sophisticated damage models, it turned out that the determination of
the often large number of parameters of these models is a challenging task itself.
Appropriate strategies of parameter identification like neural networks [1, 52] and
measurement of local deformation fields [74] were developed in collaboration with
Martin Abendroth, Marcel Springmann, and Thomas Linse. In particular, the small
punch test (SPT) was employed for this purpose since this miniaturized test requires
only a small amount of testing material. In the meantime, due to activities together
with Martin Abendroth and Stefan Rasche the SPT was also extended towards
ceramics and high temperature applications [2, 67].

However, the work of Meinhard Kuna was not limited to classical metallic
materials. Rather, if required in collaborations with industry or institutes, he did not
hesitate to deal with new materials or new methods. So the collaborative research
centers on “TRIP-Matrix-Composites” (SFB 799 coordinated by Horst Biermann)
and on “Multi-Functional Filters for Metal Melt Filtration” (SFB 920 coordinated
by Christos Aneziris) and the Centre of Excellence ADDE (coordinated by David
Rafaja), initiated at the TU Bergakademie Freiberg, required the development of
respective material models. In particular, models for phase transformations in zir-
conia ceramics, TRIP steel, and silicon had to be developed, implemented and
verified [7, 57, 63]. The filters investigated within the SFBs 799 and 920 are
open-cell ceramic foams. This required modeling of the failure of individual rods

initial crack

crack front after 50 crack
growth increments

Fig. 13 FE simulation of fatigue crack growth in a steering knuckle (from [65])
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and the implications to integrity of the complete filter structure under complex
thermomechanical loading conditions of a melt filtration [73, 75]. Collaboration
with the growing solar industry in Freiberg required simulations of technological
processes like wire sawing and polishing [54, 62].

Furthermore, Meinhard Kuna continued to work on fracture of smart materials in
Freiberg together with his co-workers Andreas Riceour, Matthias Scherzer and
Marco Enderlein. Energy balance integrals and configurational forces were
employed and numerical techniques for their effective computation were developed
and implemented [3, 12, 51, 66, 72]. In addition, analytical solutions for interface
crack problems in piezoelectric materials were investigated [70]. Since Meinhard
Kuna was always looking for beneficial links between his various research activ-
ities, under his guidance also numerical methods and modeling techniques like
BEM [13, 77], X-FEM [5], adaptive FEM [19] or cyclic cohesive zone models [21,
22] found their application to fracture of piezoelectric materials, see Fig. 14.
Simultaneously, Meinhard Kuna looked for novel applications of piezoelectric
sensors for in situ monitoring of crack propagation and damage [36, 58]. Due to his
expertise in numerical modeling of fracture in smart materials, numerous foreign
researchers joined the research group in Freiberg for visiting stays, thus contrib-
uting significantly to its success, among them Fulin Shang, Eric Béchet, Qun Li,
and Sergii Kozinov.

Despite his manifold research activities, Meinhard Kuna was always very
engaged in teaching. Together with his coworkers Eckehard Kullig, Uwe Mühlich,
Monika Müller, Andreas Ricoeur, and Matthias Scherzer he offered in his chair a
wide range of lectures in the field of mechanics, going far beyond what was
demanded by study regulations. Meinhard Kuna wanted to provide profound basics

Fig. 14 FE simulation of damage accumulation at the electrode tip of a piezoelectric stack
actuator under cyclic electric loading (from [21]): model (top) and resulting cohesive damage at
electrode tip after 100 cycles (bottom)
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in applied mechanics and fracture mechanics to students for their future careers both
in industry and academia. His demanding but likable style of teaching enjoyed great
popularity by the students. Due to his engagement, in 2011 he received the
Weisbach award of the TU Bergakademie Freiberg for excellent teaching.
Regarding the staff for his many research projects, he did not rely on external
graduates. Rather, he always aimed to recruit the best of his own students for PhD
theses at his chair. Observing the trends and requirements in science and industry,
in 2011 Meinhard Kuna initiated the international master course on Computational
Materials Science as a bridge between solid state physics, materials science and
engineering mechanics, thus coming back to his own scientific roots. Moreover,
Meinhard Kuna was not only fully committed to students, but he identified himself
closely with the TU Bergakademie Freiberg. For this reason he accepted respon-
sibility for the university in different official positions as mentioned before.
Meinhard Kuna also campaigned for the historical research at TU Bergakademie
Freiberg. Together with Norman Pohl he published a volume about the work of the
polymath Julius Weisbach, appreciating his merits for the development of engi-
neering sciences at the TU Bergakademie Freiberg, on occasion of Weisbach’s
200th birthday in 2006 [38].

Upon his retirement in September 2015, Meinhard Kuna handed over his chair to
his successor. Within the almost 20 years at the TU Bergakademie Freiberg he had
built up a highly productive research group, with more than 20 young scientist
belonging to it in peak times. The loyal atmosphere within the group was also
supported by the biannual retreats, see Fig. 15, which were introduced by Meinhard
Kuna in 2009. Recapitulating his activity at TU Bergakademie Freiberg and in
national and international scientific organizations since 1997, Meinhard Kuna

Fig. 15 The Kuna research group at a retreat in 2014
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promoted fracture mechanics in engineering as well as material sciences remarkably
—especially by bringing together researchers from different scientific fields. Also in
the near future, he will surely remain an active member of the fracture mechanics
community.
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Experimental and Numerical Fracture
Mechanics—An Individually Dyed History

Wolfgang Brocks and Karl-Heinz Schwalbe

Abstract Almost half a century ago, fracture mechanics started in Germany with
the foundation of the DVM Working Group Fracture Mechanics in 1969. The
present authors have been partly involved in the further development of fracture and
damage mechanics, one with particular interest in elastic-plastic fracture and
modelling, the other in thin-walled structures, fatigue and assessment. They take the
colloquium in honour of the 65th birthday of Professor Meinhard Kuna as occasion
to highlight some significant achievements on the background of personal experi-
ence. In particular, they intend to show that both fracture and damage mechanics
started with paradigm changes which were partly looked at with distrust in the
beginning but turned out to be seminal.

1 Introduction

Today, in the early 21st century, both fracture and damage mechanics appear as
established and acknowledged domains of science in the continuity of continuum
mechanics. This has not at all been the case at their respective implementation. As
the American physicist and philosopher of science Kuhn [46] described in his
fundamental book on “The Structure of Scientific Revolutions”, which first
appeared in 1962, science does not progress via an accumulation of new knowl-
edge, but undergoes periodic “paradigm shifts”, in which scientific exploration
within a particular field is abruptly transformed. This is most obvious for the great
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scientific revolutions like the change of a geocentric to a heliocentric system or
from Newtonian to relativistic mechanics.

At a much smaller scale, fracture and damage mechanics required paradigm
shifts as well and had to fight against deadlocked concepts of what “mechanics”
was regarded to be. It additionally interfered with an obsolete (though still existing)
understanding of physics as a science not only dealing with real objects but pre-
senting “genuine reality”, which antagonises with the idea that science can do
nothing but develop “models” of reality.

Classical fracture mechanics is a direct application of classical continuum
mechanics. But whereas the traditional science of strength of materials did not
know anything about “defects”, fracture mechanics came up with this unfamiliar
term in order to explain and predict failure of structures which had been designed
properly according to the state of engineering science as established in the 19th and
beginning of 20th century. This first and foremost challenged engineers and
companies to admit that their products were not “defect-free”, a demand which
particularly people from the nuclear industry refused to comply to, even after
applying (more or less of necessity) fracture mechanics concepts.

Moreover, fracture mechanics introduced a so far unknown length parameter
into structural assessment, namely the size of a presumed or existing defect, the
crack length. How was it to be defined, particularly since it affected the load bearing
capacity and lifetime of a structure significantly? Furthermore, new physical
quantities and material parameters of seemingly obscure dimensions emerged with
the new theory, which was used as argument to discredit its reputation.

First-hand examples from the personal experience and history of the authors will
be highlighted not only as witty contributions to an anniversary but as “writing on
the wall” dedicated to the present generation of scientists that similar unreason-
ableness can and will recur in presence and future.

By looking at the number of publications, it may be interesting to note that
during the first two or three decades the majority of papers and hence of research
work was done in the US. During the following decades a shift occurred towards
Europe and Asia, where now substantially more publications than in the US have
their origin.

2 Linear Elastic Fracture Mechanics (LEFM)

2.1 Fundamentals

2.1.1 Historic Development

Whereas the theoretical background of linear elastic fracture mechanics, that is the
mathematical description of stress and strain fields at stress concentrators [37] and
an assessment of the energy balance in cracked bodies [28], dates back a century
ago, its significance for structural integrity was spotted not until some spectacular
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accidents had occurred and Irwin published his seminal paper [40] in the mid 20th
century. Remarkably, Irwin did not only depict the relationship between the stress
intensity and the energy approach but also introduced a two-parameter description
of the stress field, long before similar concepts were discussed intensively within
the fracture-mechanics community: “The influence of the test configuration, loads
and crack length upon the stresses near an end of the crack may be expressed in
terms of two parameters. One of these is an adjustable uniform stress parallel to the
direction of a crack extension. … The other parameter, called the stress intensity
factor, is proportional to the square root of the force tending to cause crack
extension”. Actually, the first parameter is Rice’s T-stress [64], and the crack
driving force is Griffith’s strain-energy release rate [28].

It took another ten years to launch fracture mechanics in Germany with the
foundation of the DVM Working Group Fracture Mechanics in 1969, eight years
after a DVM meeting, where “studies on failure mechanics and fracture research
had been reported to an international audience in the presence of Dr. George Irwin”
[52]. By no means, fracture mechanics had been finally established, then.
Acknowledged scientists and engineers fought the new concepts as non-scientific.
The “father” of notch mechanics, Heinz Neuber, attacked fracture mechanics in the
3rd edition of his seminal book [58] as follows: “The present new edition provides
evidence for the various deficiencies of fracture mechanics. This is primarily about
the violation of the stress distribution in the vicinity of the notch or crack
tip. Furthermore the lateral dimensions of the crack and the radius of surface
curvature are disregarded. Moreover, all effects related to deviations from linear
elasticity are ignored.”1 Likewise in the 1980s, the retired president of the Federal
Institute of Materials Testing (BAM) in Berlin regarded fracture mechanics as
pseudo-science, since it introduced a surface energy (Griffith’s energy release rate)
and a material parameter with the weird dimension of MPa√m.

These arguments may sound quite amusing today but culminated in fierce dis-
putes not that long ago. They were not very honest, of course, as field singularities
are common in physical theories from Newtonian to relativistic mechanics.
Singularities arise as limit cases of mathematical equations, but nobody expects a
quantity actually to become infinite, and their existence does not devaluate the
significance of a theory provided the latter describes the surrounding neighbour-
hood correctly. The crack tip itself, r → 0, is a mathematical artefact where con-
tinuum mechanics is not applicable anyway. Likewise, boundary layer theories are
known from fluid mechanics, for instance, in which the thickness of the boundary
layer is negligibly small but nevertheless embodies a finite energy.

Removing the “unphysical” stress singularity remained an issue, however, and
resulted in Irwin’s small-scale yielding approach [41], Dugdale’s strip yield model
[21], Fig. 1a, and Barenblatt’s cohesive zone [4], Fig. 1b, ancestor of modern
cohesive models (see Sect. 6.2).

1Translation from the preface of the German edition [57] by the present authors who made an effort
to meet Neuber’s particular terminology as authentically as possible.
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2.1.2 Non-singular Terms

A series expansion of the stress state near a crack tip has been presented by
Williams [100] in 1957 showing that beside the terms with a 1/√r singularity there is
a constant term of the normal stresses parallel to the crack face,

rxx ¼ A�1ffiffi
r
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1� sin
h
2
sin
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2
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which does not vanish for r → 0. It depends on the biaxiality of the external
loading. For instance, in a cracked infinite panel under biaxial loading by tensile
stresses, σxx = λσ∞, σyy = σ∞, this term is

A0 ¼ r1ð1� kÞ: ð2Þ

It becomes a maximum for λ = 0 and vanishes for λ = 1. Since the singularity of
stresses appeared so dominant, the constant term had been neglected and forgotten
for a long time until the “geometry dependence” of fracture parameters alerted the
community.

Larsson and Carlsson [49] investigated the influence of non-singular stress terms
and specimen geometry on small scale yielding at crack-tips in elastic-plastic
materials. They found that the size and shape of the plastic zone, which is important
for the definition of valid KIc values, was significantly affected by the biaxiality of
loading and the specimen geometry.

On this background, Rice [64] introduced the T-stress,

rijðr; hÞ ¼ KIffiffiffiffiffiffiffiffi
2pr

p fijðhÞ þ T d1id1j; ð3Þ

Fig. 1 Models avoiding the stress singularity at the crack tip: a Dugdale [21], b Barenblatt [4]
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which characterises the “inherent stress biaxiality in fracture specimens” [50] in
small scale yielding and became the starting point for all considerations on a
“second parameter” in fracture mechanics affecting the fracture behaviour [6, 20].

2.2 Crack Extension by Fatigue

In the 1960s the fast growing aerospace industries faced challenges towards
reducing structural mass and increasing reliability, thus calling for sound methods
and codes for quantifying the reliability of their products. The major item to be dealt
with was—and still is—structural fatigue. It was in that decade when pioneers such
as Paul C. Paris, Richard Hertzberg, Art J. McEvily, Jaap Schijve and many others
laid the ground for quantifying life expectancy of structural components containing
already some fatigue damage in the form of cracks.

A major break-through was achieved by Paris and Erdogan [62] who correlated
the rate of crack extension, da/dN with the cyclic stress intensity factor, ΔK. It
turned out that there is a power law relationship between these two parameters:

da=dN ¼ CDKm; ð4Þ

where the exponent, m, for many metallic materials is typically between 2 and 4.
However, when experiments were conducted at very low and very high values of
ΔK, researchers found that an S-shaped curve resulted, where Eq. (4) is valid only
in the intermediate section of the curve, Fig. 2a. It is worth noting that the frac-
tographical appearance of a fatigue fracture surface changes with the rate of crack
propagation, thus demonstrating that different mechanisms are at work, Fig. 2b.

Fig. 2 Fatigue crack extension diagrams: a Schematic b Fractographic features of the aluminium
alloy AlZnMgCu0.5 F46 in correlation with the crack propagation curve, after Schwalbe [73]
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Furthermore, the unique correlation with ΔK was soon questioned when it was
found that crack propagation was also dependent on the R-ratio of the applied stress.
A large number of equations have been developed to describe the S-shape and the
stress ratio effect. With the following twomodifications the S-shape can be modelled:

da
dN

¼ C DK � DKthð Þm
ð1� RÞ Kc � DKð Þ : ð5Þ

However, this dilemma was soon solved by Elber [22] who found that the R-ratio
effect was due to partial crack closure during unloading the specimen. If this effect is
quantitatively included in the horizontal axis—by using only that cyclic stress
intensity factor, ΔKeff, describing the load range during which the crack is open, and
thus effective for stresses and strains at the crack tip—then the stress ratio effect
disappears in the graph. This effect is demonstrated for an aluminium alloy in Fig. 3.

With a simple analytical model, the crack extension rate can be estimated,
Schwalbe [72]. It is based on the assumption that under each load cycle a crack
extends by that amount which corresponds to the distance from the crack tip where
the true fracture strain is reached

da=dN ¼ ð1� 2mÞ2
4pr2Yð1þ nÞ

2rY
Eef

� �1þn

DK2 ð6Þ

Fig. 3 Fatigue crack propagation in AlZnMgCu0.5 for two stress ratios, Schwalbe [73]: a plotted
versus ΔK, b plotted versus ΔKeff
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where σY is yield strength, n strain hardening exponent, E modulus of elasticity, ν
Poisson’s number and εf the true fracture strain. Several comparisons with exper-
iments on various metallic materials yielded very good results. An example is
shown in Fig. 4a where Hübner [35] compares his experiments on a high strength
steel tested at two R-ratios.

Interestingly, as opposed to popular opinion, the material’s strength has no
substantial effect on the propagation rate. Figure 4b shows a compilation of data
obtained on 17 steels with a wide range of yield strengths. The only outlier is a very
brittle steel (broken line) with low fracture toughness.

It may be worth noting that there was substantial resistance in the service load
fatigue community against using fracture mechanics. The reason was that there
were two communities—fracture mechanics and fatigue—with little contact with
each other. Fracture mechanics was still looked at with reservation as something
esoterical.

However, the activities in the application of fracture mechanics methods to the
behaviour of cracks under cyclic loading—primarily in the US—gave rise to the
quantitative predictability of the fatigue life of structural components by simply
integrating the crack extension equation. Prerequisite is either the existence of a
crack found by inspection or of an assumed crack. Due to the pioneering devel-
opments at NASA, such predictions have even become possible for variable
amplitude loading, Newman [59]. This has been the break-through for general
application of fracture mechanics to fatigue problems: It is now an unquestioned
standard tool for qualifying structures with crack-like flaws, being used world-wide.

Fig. 4 Fatigue crack propagation diagrams: a Experimentally determined crack propagation rates
of a high strength steel at two R-ratios with Eq. (6), Hübner [35]; b Variety of structural steels,
with yield strengths between 250 and 1660 MPa, Schwalbe [73]
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3 Elastic-Plastic Fracture Mechanics (EPFM)

LEFM based structural assessment finally was accepted and required for the life
assessment of “high-risk” structures, particularly in the aerospace industry and in
nuclear engineering.2 It became increasingly obsolete, however, with the increasing
ductility of structural steels, for example in the nuclear industry which became a
major driving force in the development of EPFM. “Valid” data for “plane-strain
fracture toughness” [1] at room temperature require specimen dimensions at the
meter scale, which are often beyond structural dimensions and raise the question of
the significance of the data. Structural engineers were encountered by a new
demand: plasticity.

The advantage of LEFM is that due to the linearity of the constitutive equations
and backed by the assumption of small strains, closed form solutions for stress and
strain fields at a crack tip could be obtained. This is generally impossible in
incremental plasticity, as the constitutive equations are not only non-linear but the
current stress-strain state depends on the loading history. People tend to keep to the
well known, and Griffith’s concept of an (elastic) strain-energy release rate had
become familiar by now. Its mathematical equivalent was a “path-independent
integral”, the J-integral, which independently Cherepanov [17] and Rice [63]
introduced. Its significance as an intensity parameter of the crack-tip fields was
demonstrated by Hutchinson [36] and Rice and Rosengren [67], hence named HRR
singularity, and formulas for its experimental determination as energy release rate
were provided by Rice et al. [66].

Thus, a perfect analogy to LEFM had been finally established, and those dis-
liking integrals could recall its physical property as a plastic energy release rate.
Aside from this, it was and still is accepted in some sectors of industry to convert J-
values to K-values by KJ ¼

ffiffiffiffiffiffiffi
JE0p

as in elasticity even under large scale plastic
conditions. Specimen size conditions for measuring valid JIc data [2] are much less
restrictive than for KIc [1].

One basic limitation of this theory should be kept in mind, namely the under-
lying assumption of “deformation theory of plasticity”, which is a theory of
hyper-elasticity, rather, requiring the existence of a strain-energy density as
potential of stresses,

rij ¼ @w
@eij

with w ¼
Z t

0

rij _eijdt: ð7Þ

This assumption forbids not only global unloading of a structure but also any
local re-arrangement of stresses due to yielding. Numerous numerical analyses
based on incremental plasticity and large strains, e.g. [12, 54], have shown that

2Where it has later been replaced by the J-integral, see below, or by KJ-values calculated from
J according to LEFM.
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under plane-strain conditions and in sufficiently thick 3D structures the stress states
are approximately J-dominated as long as the crack does not extend, and criteria for
J-dominance [55, 86] were established.

3.1 Crack Extension: JR-Curves

Since the J-concept worked satisfactorily for predicting crack initiation, at least in
thick-walled components, its limitation that any crack growth causes local stress
redistributions which violate Eq. (7) sank into oblivion. Regardless of this, the
fracture mechanics community started extending the concept to growing cracks and
developed the concept of resistance curves [2] in terms of J(Δa).

What followed was, adopting Kuhn’s conception [46], a period of “normal
science”, when scientists attempt to enlarge the central paradigm by
“puzzle-solving”, which is extremely productive. Journals and conferences were
flooded with R-curves. Anomalies were found: R-curves depending on specimen
size and shape [26], though by definition, a material parameter must be geometry
independent. These findings further increased the number of measured R-curves. It
was not even clear whether all of them were measured and evaluated correctly,
which opened up the chance of intensive discussions whether or not the measured
effects were “real”. Evaluation formulas for J were actually still controversial
beyond the turn of the millennium [8].

During a period of normal science, the failure of a result to conform to the
paradigm is not seen as refuting the paradigm, but as the mistake of the researcher.
When the present author published a numerical study [15] on the path dependence
of J for large crack extension in 1989, showing that J became zero at the crack tip,
r → 0, thus questioning the significance of J as a parameter governing crack
growth, he was blamed for false FE analyses. However, Rice et al. [65] had shown
in 1980 already, that the singularity of the strain energy density at a moving crack is
ln(r−1) in incremental plasticity, whereas in order that J remains finite for r → 0 it
has to be an r−1 singularity as in elasticity and “deformation theory” of plasticity.
The same authors also proposed a “far-field” value, Jf, which is different from the
deformation theory value of J.

Likewise, geometry dependent R-curves were attributed to faulty testing. The
necessity of introducing a “second parameter” characterising the “constraint” of a
structure was fiercely fought by the US apologists of a “one parameter character-
isation” [86] until finally one of them came up with his own “two-parameter
approach” [60, 61]

rijðr; hÞ ¼ rHRRij ðh; nÞ þ Qr0dij for hj j\ p
2
; ð8Þ

mimicking Eq. (3) and unobtrusively ignoring other people’s prior suggestions of
triaxiality parameters based on the hydrostatic stress [11, 13]. Q is no constant
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second term of an analytical series expansion like Rice’s T-stress, however, but a
phenomenological approximation of several higher order terms [85].

Two ASTM conferences on “Constraint Effects” were held in the United States
in 1993 and 1995, and in Germany, a Priority Programme (Schwerpunktprogramm)
on “Ductile Fracture Mechanics” (Fließbruchmechanik) was funded by the German
Research Foundation (DFG) from 1989–1996 with a budget of 12.8 million DM.
The existence of “constraint effects” had been accepted, finally, and the “conven-
tional” along with the “anomalous” results, i.e. the geometry dependent R-curves,
were subsumed into one framework. It remained a phenomenological patchwork
after all, as a global quantity, J, was combined with a local field parameter, the
crack-tip triaxiality, which was not even uniquely defined, and any evident and
physical background was lacking.

From today’s point of view, the fracture-mechanics community missed two
essential points:

• The cumulative quantity J, which increases with crack length, ceases to be an
energy-release rate, as soon as the crack starts extending, and an incremental
quantity would be required instead, as Turner [94] pointed out. What has been
understood to be an extension of Griffith’s theory was not, in the end.

• Although physically meaningful models of the failure processes occurring at the
crack tip were available [68, 93], the purely phenomenological J concept did not
consider them. Respective local models came up as the “local approach” [69],
“micromechanical models” [92] and “damage mechanics” [10, 56] but were
eyed with distrust by the J-community, in the beginning.

3.2 Energy Dissipation Rate

In the middle of the discussions on the geometry dependence of JR curves, Turner
[94] introduced the energy dissipation rate as an alternative measure of tearing
resistance,

R ¼ @Udis

B@a
¼ @Wext

B@a
� @Uel

B@a
; ð9Þ

where Wext is the external work and Uel the (recoverable) elastic strain energy. This
definition is a straight transfer of Griffith’s elastic energy release rate [28] to plastic
processes which is consistent with the incremental theory of plasticity. The dissi-
pation rate has the same dimension as J and characterises the increment of irre-
versible work per incremental crack extension, da. It falls with increasing crack
length in gross plasticity and consists of two contributions, namely work of remote
plastic deformation and local work of separation,
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R ¼ @Upl

B@a
þ @Usep

B@a
¼ Rpl þ Cc: ð10Þ

A simple energy balance put the dilemma of R-curves straight: What people
measure as “fracture resistance” results to a great deal from remote plasticity and
not from local material separation [95], and the problem of geometry dependence is
hence inherent and unsolvable. Turner’s approach was enlightening but showed no
way out. There was no possibility based on continuum mechanics to split the two
contributions in Eq. (10), and attempts to establish “an alternative view of R-curve
testing” [90] based on the dissipation rate did not become accepted. Only under-
standing of the energy dissipation mechanisms in the process zone at the crack tip is
precisely what is necessary to identify “fracture toughness” as a material property.

A numerical analysis of crack extension in a C(T) and an M(T) specimen with the
model of Gurson et al. [29, 56] brought additional quantitative evidence [89]. There is
a minor geometry effect on the local work of separation, Γc, Fig. 5a, but a major effect
on the global plastic work, Rpl, Fig. 5b. Note that Rpl is normalized by Γc.

Regardless of Turner’s arguments, JR-curve testing continued, and damage
mechanics developed in parallel, suspiciously eyeballed by the mainstream fracture
community.

3.3 The CTOD Concept

Historically the first elastic-plastic fracture mechanics concept was developed in the
1960s at the Welding Institute, Cambridge, U.K. Wells [99] started with the idea
that the spot where fracture initiates—the crack tip—should be looked at, and that
the deformation there at the moment of fracture should be taken as a property
characteristic of the material tested. In the experimental method developed at The

Fig. 5 Energy dissipation rates in M(T) and C(T) specimens calculated from FE analyses with the
GTN model [89]: a local work of separation, b (normalized) remote plastic work
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Welding Institute (TWI) the crack tip opening displacement (CTOD), δ, is deter-
mined indirectly from measurements of the displacement, v, at the specimen’s front
face, Fig. 6a,

d ¼ K2 1� mð Þ
2rYE

þ 0:4 W � að Þ
0:4W þ 0:6aþ z

vpl; ð11Þ

where vpl is the plastic part of v.
The CTOD test method became the British Standard BS 5762 in 1979 and was

later also integrated in ISO 12135 [38] and ESIS [23] methods.
Another method for determining the crack tip opening displacement was

developed in the authors’ group, the δ5 method. It is particularly suited for deter-
mining the crack extension properties of a material and is measured at the speci-
men’s side face, Fig. 6b, Schwalbe [75] and Schwalbe et al. [82]. This experimental
technique found also its way into standards: ISO 22889 [39] and ASTM E 2472 [3].

A further application of the δ5 technique has been demonstrated by Hellmann
and Schwalbe [33], where it was shown that both definitions of the CTOD yield
practically identical results. The main difference between both method consists in
the applicability to test piece geometry: Whereas the BS 5762 technique can only be
used with C(T) and SE(B) specimens, the δ5 technique can be applied to any
geometry with a surface breaking crack, including structural components.

It turned out that the δ5 method is particularly suited for testing and analysing
thin sections, and it is for these cases that criteria for the validity of CTOD crack
extension resistance curves have been established, Heerens and Schödel [32]. Such
a curve is independent of the specimen’s width, W, if

• Δa ≤ 0.25(W − a0) for a C(T) specimen,
• Δa ≤ W − a0 − 4B for an M(T) specimen, W − a0 > 4B,

(a) (b)

5 + 5 mm
a

ao

Fig. 6 Crack tip opening displacement (CTOD) a Determination according to BS 5762 [16];
b δ5 according to Schwalbe [74]
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where B is the thickness of the specimen, ISO 22889 [39]. An example is shown in
Fig. 7. It is clearly seen that at an amount of 25 % of the original net section width,
W − a0, the R-curves become width dependent, hence, are no longer valid. In
contrast to this finding, an M(T) specimen exhibits a much longer curve. The δ5
R-curve method is particularly suited for thin-walled materials used in light-weight
structures.

At very high loads, leading to full plasticity of the remaining net section, the
cyclic CTOD, Δδ5, can successfully be used to correlate the fatigue crack propa-
gation rate, da/dN, Hellman and Schwalbe [34].

The two elastic-plastic fracture mechanics concepts are not independent of each
other, they are compatible. Otherwise, at least one of these concepts would be
wrong. A very simple correlation is

• J � drY for plane stress,
• J � 2drY for plane strain,

A more rigorous correlation is given in Sect. 5 on assessment procedures.
Interestingly, a further fracture parameter, the crack tip opening angle, CTOA,

whose theoretical background can be found in the analysis of the near-tip field at a
growing crack by Rice et al. [65], is practically identical with the stabilised slope of
the δ5 R-curve, Heerens and Schödel [32]. Its direct measurement on a specimen
surface causes difficulties insofar as the tip of the crack is often not detectable due to
the amount of plastic deformation causing a blackish area which obscures the crack

Fig. 7 δ5 R-curves obtained on M(T) and C(T) test pieces with different width dimensions,
Heerens and Schödel [32]
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tip. A solution was found by Schödel in his PhD Thesis [71], defining a few pairs of
reference points along the crack contour which allow easy determination of the
CTOA, Fig. 8. The CTOA test method is included in the test standard ISO 22889 [39].

4 Test Procedures

4.1 Some Test Techniques

The new concept of fracture mechanics, of course, required adequate test techniques
to take account of the effect of a crack on material properties. The explosion of a
Polaris rocket in the US due to brittle fracture gave rise to the foundation of the first
committee dealing with fracture mechanics, the ASTM Committee E 24. Now it is
Committee E 8. This committee created in the 1960s the first test standard, E 399
[1], which has become a world-wide used method. This method deals with materials
and test conditions for linear elastic behaviour and plane strain conditions. The
resulting material parameter was dubbed KIc. This test method has been in use with
only minor modifications until now. Key researchers involved in this area were
John Srawley, Bill Brown, Gil Kaufman and John Shannon.

In the beginning, all kinds of fracture mechanics tests were very unpopular in
industry because of their high cost. Much time and money go into the pre-cracking
procedure, making fracture mechanics testing expensive.

Fracture mechanics tests owe a remarkable attribute: the values determined are
dependent on the size and geometry of the test piece; however, in the regime of
linear elastic behaviour, beyond a certain size plain strain conditions prevail and the
value of the fracture property remains fairly constant. And beyond that size, the
values are regarded as “valid”. As a consequence, the “validity”, in other words,
size independence, of such values can only be checked after the test has been done.
This is unique to the world of fracture mechanics and can make the determination of
useful parameters quite cumbersome.

The minimum size requirement for achieving a size independent value is given by

Fig. 8 Determination of the crack tip opening angle using four pairs of reference points, Schödel
[71]
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B; W � að Þ� 2:5
KIc

rY

� �2

; ð12Þ

whereW designates the width of the specimen, B the thickness and a the crack length.
Usually, materials with relatively moderate strength levels have high toughness and
therefore require enormous specimen sizes and hence very big and expensive test
equipment. This is e.g. the area of pressure vessels where materials with high
toughness are preferred. Consequently, German institutions, e.g. the Bundesanstalt
für Materialprüfung, University of Stuttgart and also the University of Aachen
installed test equipment for performing tests on large-scale specimens [48].

This dilemma was solved when the emerging nuclear industry in the U.S. was in
need of information about the fracture properties of their high toughness materials.
This led to the developments of elastic-plastic methods as described in Sect. 3.

The test alone is only a part of the problem when fracture mechanics is to be
applied to an actual structural component. It had to be demonstrated that the
component would fail under the same conditions as were present in the test.
Therefore, in the earlier years of fracture mechanics, huge components such as
thick-walled pressure vessels were tested, requiring appropriate budgets.

The development of elastic-plastic fracture mechanics and the utmost exploita-
tion of the structural mass and the increasing necessity to define safety margins
brought along the need to know quantitatively the material resistance beyond the
initiation of crack extension. To his end, appropriate experimental techniques for
the determination of the most important quantity—the increasing crack size during
the test—had to be developed.

After having played around unsuccessfully with standard ultrasonic equipment,
the very first usable technique was developed by the Westinghouse research group
in Monroeville near Pittsburgh, PA. It was dubbed the “unloading compliance
method” since it consists of periodic unloading during the loading path of the
specimen. The unloading traces are elastic, and their slope is a measure of the actual
crack size. Garth Clarke from the Westinghouse group worked on the computeri-
sation of this method [18]. It is the first method that was ever standardised.

However, the first technical realisation of this method had a problem: In the
initial part of the loading the crack seemed to decrease its length because the
unloading slopes got steeper than the initial loading slope of the specimen. It turned
out that the friction between the loading bolts and the loading holes of the C(T)
specimen prevented proper unloading. The solution was the introduction of
flat-bottomed holes in the loading clevises. Still the same artefact of “negative crack
growth” can be found in rather recent publications.

The second technique—the electrical potential drop method—exploits the effect
of crack size on the electrical resistance of specimens made of metallic materials.
AC and DC methods were developed. Its standardised form which makes use of
direct current was developed in the authors’ research group, Schwalbe and
Hellmann [79]. It is based on the disturbance of a DC electrical field by the
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presence of a crack. Johnson [42] developed a closed form relationship between the
crack size, a, and the potential drop measured across two well defined points.
Solving that equation for the crack length yields [79].

a ¼ 2W
p

cos�1 cosh py
2W

� �
cosh u

u0

	 

cosh�1 cosh py

2Wð Þ
cos

pa0
2Wð Þ

n oh i
0
@

1
A; ð13Þ

Here
2y signifies the distance between the potential pick-up points,
φ0 is the potential related to the starting crack length, a0,
φ is the current potential drop related to the increasing crack length.

Although this equation was derived for an M(T) specimen geometry it was
demonstrated that it is applicable to C(T) and SE(B) geometries as well, whereas
compliance based techniques have to be calibrated for each specimen geometry. On
the other hand, it can be used for metallic materials only.

Initially, arguments were raised against this method such that it should depend on
the material and on the test temperature due to the variation of resistivity. However, it
is the normalisation of the current potential by the starting value: φ/φ0 ruling out these
arguments. This technique is being used in a number of test methods.

4.2 Harmonisation of Test Procedures

Whereas in the beginning of standardisation of fracture mechanics tests, a method
for each fracture parameter, K, J, CTOD and for plane strain and plane stress was
developed, over the time a harmonisation was attempted. The idea was that a single
method should be sufficient for all fracture parameters and that the specimen
response should tell whether the evaluation is to be done according to either linear
elastic or elastic-plastic procedures. Furthermore, the test interpretation either in
terms of J or CTOD should be given in the test method to be developed.

A first attempt was undertaken by the European Group on Fracture (EGF) by
creating its first test method, EGF P1-87D, Schwalbe et al. [81]. This procedure
describes the determination of crack extension resistance curves in terms of J and δ
where δ had to be determined according to BS 5762 [16]. It allows also the
determination of J and δ at initiation of stable crack extension. Later, this procedure
was superseded by ESIS P2-92 [23], which includes the stress intensity factor as a
fracture parameter and an additional method for determining initiation of stable
crack extension using measurement of the critical stretch zone width as outlined by
Heerens et el. [31]. A further initiative by ISO led to the standard ISO 12135 [38]
very similar to ESIS P2-92 [23].

The handbook EFAM GTP02 [78] developed at GKSS Research Centre is
probably the most comprehensive procedure. It is based on ESIS P2-92 and
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includes additional features such as M(T) specimens, the δ5 technique, determi-
nation of K-based fracture parameters, crack tip opening angle, rate of dissipated
energy, testing of weldments, statistical treatment of scatter and special validity
criteria for tests on specimen with low constraint. In addition to material parameters
related to stable crack extension, the determination of parameters for unstable
fracture is also described.

5 Assessment Procedures

A number of engineering assessment methods have been developed in different
institutions from various countries. Due to the number of procedures and the
complexity of the subject, only a very coarse overview can be given here.

Methods for assessing the integrity of structures with crack-like defects have to
be standardised in order to make assessments independent of individual methods
and persons using them.

Industry specific methods such as for pipelines, pressure vessels and aircrafts
have been developed, however, basically they all have to satisfy the inequality

Crack Driving Force\Material Resistance:

The difference lies in the details used for expressing either side of this inequality.
The left hand side poses most of the problems, e.g. using finite element analysis or
one of several analytical expressions, whereas on the right hand side it has to be
decided which material properties have to be used and how this has to be done.

The most important information from such an assessment are maximum load a
component is able to carry, critical crack size and residual life time. From this
information inspection intervals can be quantified in order to enable the operator to
find a crack before it becomes critical.

As long as the structural behaviour can be characterised by the framework of
LEFM, the problem of the left hand side, as given by K = σ(πa)0.5Y(a/W), is
relatively easy to solve. The stress, σ, acting in the structural cross section con-
taining the crack can be determined by linear-elastic stress analysis. The dimen-
sionless function, Y(a/W), depending on geometrical and loading conditions, can be
found in handbooks for numerous cases. Otherwise, modern computational meth-
ods such as finite element analyses make it possible to generate solutions for
unusual problems.

When it comes, however, to elastic-plastic conditions in the cross section under
consideration, then J or δ have to be determined using elastic-plastic analyses. In
order to facilitate the task of determining the elastic-plastic crack driving force
parameter, several “engineering” assessment schemes have been developed, the first
one again at TWI, Harrison et al. [30]. They called it the Design Curve. In this
method, the CTOD is expressed in normalised form such that for two degrees of
yielding the normalised critical CTOD, �dc, is given by
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These equations are supposed to be used for short cracks where the CTOD is
proportional to the local strain. The advantage is that no solution for the stress
intensity factor is needed. Similar equations were derived for J as a driving force
parameter. Design curve approaches do not attempt to provide more or less accurate
failure conditions; they rather give the user conditions which are supposed to be
“safe”. The example shown in Fig. 9 demonstrates that all experimental values are
below the Design Curve and can hence be regarded as safe.

A further method, the “Failure Assessment Diagram” (FAD) was developed in
the U.K. by the then nationalised Central Electricity Generating Board (CEGB).

In its early version, a simple curve was proposed which—similarly to the COD
Design Curve—divides an area of safety and one of unsafe conditions; that is to
say, this curve is not a curve for predicting failure. Its vertical axis is given by the
applied stress intensity factor, K, normalised by the critical value, Kc: Kr = K/Kc.
The horizontal axis is again a normalised quantity, a quantity representing the
applied load related to a plastic limit load: Sr = F/FL.

The FAD line was formulated as

Fig. 9 Experimental data
compared with the Design
Curve, data from [30]
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Kr ¼ Sr
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� �
1n sec

pSr
2

� �� ��1=2
; ð15Þ

see Fig. 10. The square bracket is almost identical to the expression for the crack tip
opening displacement based on the Dugdale model [21] shown in Fig. 1a. This
expression—although frequently related to Dugdale—in fact was derived by
Goodier and Field [27].

Several additional formulations followed to adjust the FAD to the development
in fracture mechanics, see e.g. [103].

In the US, the following developments can be observed: In the 1970s/1980s,
driven by the needs of the developing nuclear industry and by the contemporary
development of the J-integral theory, an attempt was initiated to develop a hand-
book for J as a driving force parameter, similar to the stress intensity factor
handbooks. This way the EPRI3Handbook emerged [47, 87].

It is based on partitioning the J integral into an elastic and a plastic component:

J ¼ Jel þ Jpl; ð16Þ

with

Jel ¼ K2
eff

E
; ð17Þ

Jp1 = 0 for contained yielding conditions (F ≤ FY), where FY is the applied force at
the attainment of net section yielding,
and

Fig. 10 Failure Assessment
Diagram, as cited by [102]

3EPRI is the acronym for Electric Power Research Institute which is financed by American power
generating companies.
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Jpl ¼ ag1 a=W ; nð Þ F
FY

� �ð1þnÞ=n
ð18Þ

for fully plastic conditions (F ≥ FY), where α is the coefficient and n the strain
hardening exponent, respectively in the Ramberg-Osgood strain hardening law, and
g1(a/W, n) is a function providing the effects of the geometry of the component and
of strain hardening. Functions g1(a/W, n) have been determined for a number of
configurations from finite element analyses.

Whereas the stress intensity factor is only a function of geometry variables,
elastic-plastic parameters such as J are also dependent on the deformation prop-
erties of the material considered. Although the originators of the handbook sim-
plified the procedure by the above mentioned method, the enormous efforts needed
for a suitable handbook led then to a stop, simply because of the parameter
explosion following from the interaction of geometrical parameters with the
deformation properties of the material. Nevertheless, the handbook has set a
landmark, and its way to develop J-expressions has influenced other authors.

It should be kept in mind that the EPRI Handbook provides only the left hand
side of the assessment equation, whereas the COD Design Curve and FAD methods
deal with both sides of the equation.

The Engineering Failure Assessment Method (EFAM) [76] is the only com-
prehensive assessment scheme which includes both the experimental determination
of the relevant material properties including corrosive environments, strength
mismatched welded joints and high temperature behaviour, and driving force
estimating schemes, including creep conditions and mismatched welded joints. All
elements are written in procedural form. The formal document for this assessment
scheme can be found under [74].

The Engineering Treatment Model (ETM) [83] is one out of six elements of the
EFAM. It describes the determination of driving force parameters in analytical
form. The detailed procedure is given in [77].

Below the yield load, when F < FY, the crack driving force expression for
CTOD is

d5 ¼ b1
E
K þ 1

mErY

F
FY

K2
eff : ð19Þ

For fully plastic conditions (F ≥ FY), the ETM driving force formulations is
obtained by transferring the stress—strain curve of the material under consideration
to the yielding net section. For this purpose, the stress strain curve is represented by
a power law for stresses beyond the yield strength, σY

r
rY

¼ e
eY

� �N

; ð20Þ

where 0 < N < 1.
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The resulting ETM equation reads

d5
d5Y

¼ F
FY

� �1
N

¼ J
JY

� � 1
1þN

: ð21Þ

This expression shows a clear correlation between δ5 and J. It can be easily used
for sensitivity analyses, because the analytical expression shows clearly how the
various parameters affect the result. The relationship in Eq. (21) has been verified in
numerous experimental and numerical investigations.

For very short cracks, i.e. for a ≪ W,

d5
d5Y

¼ ea
eY

: ð22Þ

δ5 is directly proportional to the applied strain, εa
An application of the ETM to mixed mode cracks was reported by Dalle Donne

and Döker [19], Fig. 11. For their tests on cruciform specimens with mixed-mode
loading a modified δ5 technique was developed, namely a vector defined by the
Mode I and Mode II components. More validations see e.g. in [84].

The ETM was extended for analysing yield-strength mismatched welded joints
[80, 102]. To this end, a welded joint is characterised by the base metal, BM, and a
strip of weld metal, WM, between two pieces of base metal. Thus, a bi-materiel
model emerged where both components are given piece-wise power law

Fig. 11 Experimental data obtained for a crack under mixed-mode loading in comparison with the
ETM prediction [19]
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deformation behaviour. The model is for the δ5 route only. The δ5 driving force is
given by the strain applied to the base metal. The procedure is quite complex,
nevertheless, all conditions can be described with analytical expressions. For the
details, the document EFAM ETM-MM 96 [80] should be consulted which
includes also yield load solutions for some standard cases.

In the framework of a European Brite-Euram project, the “Structural Integrity
Assessment Procedure for European Industry (SINTAP)” was developed.
Seventeen institutions from nine European countries contributed to this project
[103] SINTAP offers the FAD routine as well as the crack driving force
(CDF) routines which deliver identical results; it is a matter of personal preference
which method is going to be used. And also, the user has the option to use the J-
integral or the crack tip opening displacement.

The principle of the FAD routine is shown in Fig. 10, however, the ordinate is
based on J or δ instead of K. Several levels of analysis are offered [103]:

• The Basic Option requires only two basic material properties, namely the yield
strength and the Charpy energy.

• The Standard Option needs the fracture toughness and yield and tensile
strength. It distinguishes between materials with and without Lüders plateau.
Elements of the ETM and of the British R6 procedure are included.

• The Mismatch Option deals with strength mismatched welded joints are treated,
again based on R6 and the ETM.

• The Stress-Strain Defined Option requires the complete stress-strain curve and
the fracture toughness of the material. Strength mismatched situations can also
be analysed.

• The J-Integral Analysis includes also the use of the CTOD and is based on FE
analyses of J and δ.

• Finally, the Constraint Option deals specifically with low-constraint cases with
special reference to the δ5 technique.

A second European project, the Fitness-for Service Network (FITNET) com-
prised about 50 organisations. It includes several modules: a fracture module based
on the above mentioned SINTAP options and modules for fatigue crack extension,
fatigue life, corrosion and creep [103].

6 Models of the Process Zone

The idea of a “process zone” at the crack tip, where material degradation and
separation occur, is quite old and does not come into conflict with classical fracture
mechanics. The concept is that a continuum field exists around this zone which may
be K- or J-dominated. Dugdale [21] assumed that the stresses cannot exceed the
yield strength, σ0, at the crack tip, see Fig. 1a. Barenblatt [4] considered a zone of
material degradation, where the stresses σ(x) become zero at the crack tip, see
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Fig. 1b. This stress distribution could not be measured, however, and it needed
models of damage to calculate it.

With the concept of a “process zone” ahead of the crack tip, uncoupling of
remote plastic work, Rpl, and local separation energy, Γc, in Eq. (10) can be realised
in numerical models, if according to Barenblatt’s idea [4] specific elements are
introduced, where material degradation and separation occur [88, 89], Fig. 12. The
simulations require a constitutive description of the material behaviour in the
process zone, which can mirror the local loss of stress carrying capacity. In general,
two alternatives are used: Micromechanically based damage models or phenome-
nological cohesive models.

6.1 Damage Models

The development of damage mechanics began in 1958 when Kachanov [43] pub-
lished the first paper introducing a damage variable for creep failure of metals,
which is nearly the same year as the birth of fracture mechanics identified with
Irwin’s paper [40]. The concept of “continuum damage mechanics” (CDM) was
picked up again in the eighties [44], particularly in France [51], extended to fatigue

Fig. 12 FE-models of M(T) and C(T) with cohesive zone and damage zone (GTN model [29,
56]), respectively, in the ligament
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and ductile fracture [69] and generalised within the framework of thermodynamics
of irreversible processes.

The attractiveness of CDM is its unified framework. Constitutive equations of a
damaged material are derived from the same formalism as for a non-damaged
material except that the stresses, σij, are replaced by the effective stresses”, ~rij,
which is called the principle of strain equivalence. In the simplest case of isotropic
damage, effective stresses result from

~rij ¼ rij
1� D

; 0�D\1; ð23Þ

where D is a scalar damage variable. In analogy to the plastic strain rates as derived
from a yield potential (normality rule), the evolution of damage is derived from a
generalised dissipation potential, Φ,

_D ¼ k
@U
@Y

; ð24Þ

which is a convex function of the conjugate stress variables σij, R, ξij, Y. R �ep
� �

is the
uniaxial flow stress of isotropic hardening, ξij are the back stresses of kinematic
hardening, and Y is an equivalent “damage stress” as dual state variable to D, also
called energy density release rate [51]. The latter is capable of being misunderstood
and confused with Griffith’s elastic energy release rate, however.

This is a nice theoretical framework consistent with thermodynamics but does not
answer the question wherefrom to get the dissipation potential. The latter requires a
physically based description of the micromechanical damage processes in a material.
The apparent theoretical consistency of CDM attempts mechanics people, in par-
ticular, to permanently develop new damage models, sometimes without any precise
perception of “damage” and apparently without ever having seen a “real” material.

Alternatively, damage models based on the micro-mechanisms of ductile rupture
[93, 96], namely the nucleation, growth and coalescence of voids (Fig. 13), were
developed. The mechanism of void growth in a plastic material had been analysed
in the late 60s, already [53, 68], and the essential influence of the hydrostatic stress
was well known. Remarkably however, this physical understanding [13] had little
effect on the discussions on “constraint effects” within the fracture mechanics
community, which by the majority and particularly in the USA preferred
“non-singular stresses” like T or Q as triaxiality parameters [6, 20, 60, 61] and
bashed damage models as poor mechanics.

This is all the more incomprehensible since a fundamental model of ductile
damage based on a yield potential for dilatant plasticity by Gurson [29] originates
from the USA and was applied to simulations of ductile rupture [56, 57] around the
same time as Rousselier’s “local approach” [69] in France. The model of Gurson,
Tvergaard and Needleman (GTN model) has been favoured in Europe predomi-
nantly [10, 92] and particularly promoted by the Fraunhofer Institute in Freiburg. It
needed a second conversion of the apologist of a one-parameter J-approach [86],
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then a two-parameter J-Q-approach [60, 61] to popularise the GTN model in the
USA, which necessarily had to come along with a special new name “computa-
tional cell” [101] or “cell model” [24, 25].

Numerical models can employ the constitutive equations of continuum damage
either for the complete structure, thus allowing for arbitrary directions of crack
growth and not even needing an initial crack [56, 98] or just in one row of elements
along the ligament considered as “process zone” as in Fig. 12 [88, 89], thus
resembling a cohesive zone model. Significant void growth is commonly restricted
to one row of elements.

A serious problem of damage models as established in the constitutive framework
of “simple materials” is their feature of localisation, which gave reason to severe
objections against the significance of the respective numerical results from the
viewpoint of numerical mathematics. Actually, the results of FE simulations are mesh
dependent, and the bearing load of a structure decreases with decreasing element
height in the ligament. At the least, it is argued, that the postulation of convergence
with reducing mesh size is violated, but some people deny simulations with softening
materials any significance at all. Again, it is a question of the basic perception of
models one has, and whether models and numerical methods are confused with
“reality”. Continuum mechanics in general is an approximate description of real
matter, since the assumption (Δx, Δy, Δz) → 0 conflicts with the micro-structure of
materials. This has no impact on the solution for hardening materials but becomes an
issue for softening. The constitutive equations are relations between stresses and
strains in solid elements, representing the micro-structure of the material in an
average sense. In order to obtain physically meaningful results for the dissipation
rate, Γc, in the process zone, a length parameter, h0, has to be introduced, which
depends on the average spacing of void nucleating particles and the hardening
behaviour of the metallic matrix. The respective relation is established by an energy
equivalence for a representative volume element (RVE) or “cell” (see Fig. 13b). The
work of separation, ΔUsep, per incremental crack extension, Δa, is

Fig. 13 Ductile crack extension by void nucleation, growth and coalescence: a experimental
observation for an Al alloy, b schematic of a process zone with “cells”
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with f and �usep being the average void volume fraction and the average strain energy
density, respectively, in an RVE of volume V0 = h0BΔa [7]. If “local” constitutive
equations are applied, which do not contain an intrinsic length scale, the height of
the finite elements, h0, in the ligament has to be considered as a characteristic
material parameter [5, 91]—which is devil’s notion for some FE experts. If a
“finite” element is considered as a mathematical entity for solving boundary value
problems in continuum mechanics, the perception of an element size as material
parameter sounds weird, indeed. But if it is regarded as a representation of an RVE
it appears more natural. In order to point out this difference, Shih introduced the
term “computational cell” [24, 25, 101] instead of finite element. There are other
concepts for mending the “pathological” mesh dependence like non-local approa-
ches or gradient theories which please the theoretical requirements better than
introducing the finite element size as material parameter. These approaches need
special subroutines exceeding the capabilities of commercial FE codes, however,
and they encounter new problems.

An additional problem with the application of damage models is their commonly
large number of parameters, which are supposed to represent micromechanical
properties but nevertheless difficult to identify [5] and to verify their uniqueness. An
initial euphoria that all parameters of the GTN model can be determined from
tensile test data turned out to be unrealistic since stress triaxiality plays an important
role and is too low in a tensile specimen. Altogether, the application of damage
models is still mostly a preserve of experts.

6.2 Cohesive Models

Cohesive models (CM) describe various kinds of decohesion processes, see Fig. 14,
by a relation between (normal) surface tractions, σn, and respective material sepa-
ration, δn, i.e. the traction-separation law (TSL) or cohesive law. For this, particular
surface elements are introduced at the boundaries of solid elements along a
pre-defined crack path as shown in Fig. 12. The constitutive relation of the interface
elements represents the effective mechanical behaviour due to the physical pro-
cesses, for instance micro-void nucleation, growth and coalescence in a ductile
material. Commonly, the cohesive law is defined by two parameters, a cohesive
strength (CS), σc, and a critical separation, δc, Fig. 15, or, alternatively, a separation
energy (SE), Γc, which simply represents the area under the traction-separation law.
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Cc ¼
Zdc
0

rnðdnÞddn: ð26Þ

The cohesive model can be regarded as a renascence of Griffith’s concept of a
surface energy. The significant differences, however, are that

• though Γc is supposed to be a “surface” energy, the respective physical sepa-
ration process occurs in a volume of finite, though commonly small thickness, in
reality, Eq. (25), and

• the CS, σc, is an additional independent, phenomenological parameter, repre-
senting the maximum tensile stress which can be sustained by the material
microstructure.

Cohesive laws can also be established for mixed mode separation processes,
which will require an additional assumption on the interaction of tensile and shear
modes [70]. The TSL requires significantly fewer material parameters than damage
models, and numerical simulations based on cohesive models are less susceptible to
convergence problems. A vital advantage compared to the continuum models of
damage is that they do not show pathological mesh dependence and do not require
the introduction of an additional length parameter via the FE mesh, since they are
established as a relation between stresses, σ, and displacements, δ, instead of
stresses and strains, ε. A major drawback is their restriction to pre-defined crack
paths along the boundaries of solid elements.

The TSL is purely phenomenological and cannot be measured directly, in
general. Various relations have been proposed in the literature, see Fig. 15 and
overview in [9]. Since it represents micro-mechanical processes of material

Δa
crack Ligament

Separation δ of the 
cohesive elements

Phenomenological representation 
of various failure mechanisms 

by cohesive interfaces
Overview

Fig. 14 Cohesive model as phenomenological representation of various decohesion processes in
materials
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degradation and damage, respective micro-mechanical models may help to identify
it. Processes of void growth have been investigated by numerical simulations of
RVEs or “unit cells” containing a void [14, 45], which are assumed to represent a
typical periodic microstructure of ductile materials. The TSL for ductile rupture by
Scheider [70], which is, among others, depicted in Fig. 15, has been supported by
micromechanical analyses [7, 88].

Numerical studies have also demonstrated that material separation based on void
growth and coalescence depends on the stress triaxiality. This observed local
“constraint” effect is quite evident: higher triaxiality causes an increase of the
“fracture stress”, i.e. a higher CS, and a decrease of ductility, i.e. a lower SE as in
Fig. 5a, see [7, 88]. The particular micromechanical process of void growth and
coalescence governing ductile rupture thus exhibits a local constraint effect, which
adds to global constraint effects on the overall plastification of the structure. As the
(local) SE is very small compared to the (global) plastic work per crack extension,
however, Fig. 5b, the effect of triaxiality on the cohesive parameters is commonly
negligible and CS and SE can be regarded as material constants from an engi-
neering point of view [89]. The geometry dependence of JR curves can be accu-
rately predicted by FE simulations employing cohesive elements, Fig. 16.

linear bilinear trilinear [97]

cubic exponential piecewise polynomial [70]
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Fig. 15 Various traction-separation laws in the literature (overview from [9])

50 W. Brocks and K.-H. Schwalbe



7 Conclusions

The history of fracture mechanics is an example of a more esoterical science looked
at with scepticism in some parts of the world. Special resistance was observed in the
service load fatigue community which relied on tests only. However, the new
paradigm finally transformed into a versatile tool box for the development, design
and operation of modern engineering structures. Pressure on high exploitation of
structural mass and on economical operation without compromising safety led to
wide acceptance of fracture mechanics. The concept of fracture mechanics has
become an indispensable ingredient in numerous industrial codes. After several
decades of development, it is now well established, demonstrated by standardisa-
tion of test methods and establishment of assessment procedures, sometimes in
industry-specific form.

An interesting aspect in the development of fracture mechanics is the local
distribution of the most important activities. In the beginning, the major driving
forces were observed in the US. LEFM was driven in that country by failures in the
aerospace area, where safety is of utmost importance. A very important aspect in the
development of LEFM is again its application to the aerospace area: Fatigue crack
propagation analysed with fracture mechanics made it possible to quantify the
residual life time of a cracked component. A similar technological pressure emerged
from the upcoming nuclear industry, driving the J-integral methods in terms of test
procedures and assessment schemes. Westinghouse and some university groups for
theoretical basics were key players.

The activities in the UK were historically earlier, here devoted primarily to
welded joints, in particular for the developing offshore industry. The Welding

Fig. 16 JR curves of C(T) and M(T) specimens, tests and FE simulations with cohesive model:
a steel DIN StE460, side-grooved specimens, plane strain [89], b Al 5083, 3 mm thick panels,
plain stress [8]
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Institute and CEGB were the most prominent driving forces. CEGB was unique
insofar as here the research institutes were immediately responsible for safe oper-
ation of their power plants. This way, experience in operation had a short way into
the research groups, and vice versa. Whereas in the US the focus was on the J-
integral, the UK worked on the CTOD. Both worlds were ultimately united as
alternatives of equal rights in test standards and in assessment methods.

In Germany, major contributions have been provided by research centres such as
Bundesanstalt für Materialprüfung (BAM) in Berlin, Fraunhofer-Institut für
Werkstoffmechanik in Freiburg and GKSS Research Centre in Geesthacht, and
University institutes in Karlsruhe, Magdeburg and Freiberg.

It should be noted that the present mature position of classical fracture
mechanics would not have been possible without the contribution of numerical
methods which have been gradually developed to high standards to meet the
demands of understanding the experimentally observed phenomena of fracture and
to transfer fracture mechanics material parameters to structural behavior. However,
the heydays of classical fracture mechanics are now over, the major problems and
their solutions are laid down in standards and codes, and the amount of research has
substantially decreased. Only a few activities are still visible, such as application to
new materials or material combinations. Even teaching fracture mechanics is about
to vanish. Mechanical modelling in terms of damage models and cohesive zone
models emerges as a more demanding tool, capable of dealing with problems
inaccessible by classical fracture mechanics.

In conclusion, the history of fracture mechanics is an example of technology
driven progress in science which finally found its way into wide-spread practical
application. It also shows that being open to new ideas and working on them with
enthusiasm does not only provide scientific merits, more importantly, it pays in
terms of technological leadership, in contrast to more conventional traits.
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Part II
Applications



Fracture Mechanics Assessment of Welded
Components at Static Loading

Peter Hübner and Uwe Zerbst

Abstract Special aspects of welded components such as geometrical imperfec-
tions, inhomogeneity, strength mismatch and welding residual stresses have to be
taken into account in a fracture mechanics analysis since they affect the crack
driving force in the component as well as the fracture resistance of the material. The
treatment of components subjected to static loading is based on methods such as the
European SINTAP procedure, which has been validated in a number of case
studies. In the present paper the influence of strength mismatch and residual stresses
on the fracture resistance and the assessment of a component are discussed.

1 Introduction

The thermal cycle in welding differs from a common heat treatment in that its local
pattern is significantly inhomogeneous and in the very short time scale of the
welding process. The result of these specific characteristics consists of a number of
effects with respect to the crack driving force in the components as well as to the
fracture resistance of the material (Fig. 1). Essential effects are

• Modifications of the microstructure which cause strength mismatch and inho-
mogeneous fracture toughness across the heat affected zone and the weld metal,

• Generation of welding residual stresses due to prevented shrinking and phase
transformations in the weld, and

• Deviations from the design geometry of the weldment, so-called misalignment.
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The inhomogeneity of the microstructure and the residual stress field cause a
significant scatter in the fracture toughness. Furthermore, the combination of zones
of locally reduced toughness and welding residual stresses might prompt unex-
pected crack initiation with the final consequence of component failure. Attributed
to the specific technological conditions of the welding process, cracks or crack-like
defects such as hot or solidification cracks, cold cracks or lack of fusion can occur.
Besides this, surface notches and volumetric defects, porosity or slag inclusions can
be the initiation points of crack extension at cyclic loading. Fracture mechanics
assessment is significantly complicated by such complex conditions. In the present
paper the effect of strength mismatch and welding residual stresses on the structural
integrity of weldments shall be discussed in more detail. With respect to further
influence quantities such as misalignment, crack initiation at notches and statistical
aspects of the fracture toughness the reader is also referred to the review paper [1].

2 Inhomogeneity of the Microstructure and Strength
Mismatch

Depending on the material type, the effects of the temperature-time cycle during
welding are different. E.g., in dispersion hardened and cold worked or
strain-hardened aluminum alloys significant softening in the weldment and heat
affected zone are observed. The conditions in steels are more complex since the
transition behavior depends on the cooling rate such that the resulting micro-
structure can be martensitic or of mixed nature but in any case deviating from that
of the base metal. That’s why increased as well as decreased strength values may be
possible.

Fig. 1 Thermic cycle during welding and effects on the weldment
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With respect to structural steels, the t8/5 concept is proven to be a suitable
measure of the technological conditions of the welding process. The welding
technology is characterized by the energy input per unit weld length, a potential
preheat temperature T0 and the cooling conditions (2D, 3D) [2, 3]. The t8/5 time is
the time over which the weld cools down from 800 to 500 °C (Fig. 2). Weldment
specific time-temperature-transformation (TTT) diagrams can be used for specify-
ing the volume of structural phases which, for their part, determine the hardness and
strength in the heat affected zone. Single-pass welds can be described very well by
this concept. Note that TTT diagrams, which allow for routine assessments, exist
for various structural steels dependent on their chemical composition [4, 5].

The situation is more complex for multi-pass weldments, since the exact dis-
tribution of the phase volumes at each position of the heat affected zone depends on
the complete thermal history. It can only be determined by simulation (Fig. 3) [6].
Based on microstructure-strength correlations a hardness distribution along the
weld can be obtained which is in line with strength differences across it, at least as
long as residual stress effects do not play a major role [7]. It has to be emphasized
that particularly coarse grain areas of high hardness tend to embrittlement.
Therefore, it is important to identify such zones.

The difference in the strength properties between weld and base metal caused by
variations in the microstructure is designated as strength mismatch. Its effect on
potential cracks consists in strain localization in the lower strength zone of the

Fig. 2 t8/5 concept for predicting the phase volumes in steel hardening. TTT Time Temperature
Transformation diagram, F ferrite, P perlite, B bainite, M martensite
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weldment (Fig. 4) which is detrimental when the crack is located near such an area.
Usually strengthmismatch is characterized by the so-called strengthmismatch ratioM

M ¼ rYW
rYB

; ð1Þ

which is simplify based on the yield strengths of the weld metal σYW and the base
metal σYB. Overmatching (OM) characterizes the case of a weld metal strength
higher than those of the base metal. The weld is mechanically shielded, i.e. it will
still be in an elastic state when the base metal already plastically deforms. In
contrast, Undermatching (UM) exists when the yield strength of the weld metal is
lower than that of the base metal. In this case, strain localization takes place in the
weld. Note that the maximum local strain in mismatch components exceeds that of
all base or weld metal components (Fig. 4). Dependent on the location of the crack
with respect to this zone, a significant increase in the crack driving force can be the
consequence. Thus, with respect to the danger of component failure, the location of
the crack with respect to the strain concentration zone is essential. The risk is
especially high for weld metal cracks in undermatched and heat affected zone or
fusion line cracks in overmatched weldments where the location of the highest
crack driving force is frequently identical to those of lowest toughness, an effect
which additionally intensifies the detrimental influence of the strength mismatch
effect.

Fig. 3 Formation of the heat affected zone in multi-pass welds. Most dangerous are coarse grain
zones, since they can be locations of embrittlement [8]
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Vice versa, there might be cases where a heat affected zone crack in an over-
match joint can be harmless despite its poor fracture resistance because the crack
tends to deviate to the region of lower strength but higher toughness (Fig. 4, right).
Occasionally it is even observed that cracks initiate away from the main crack
(Fig. 5). This can be explained by the mismatch-caused formation of a locally
constraint stress state. In the Fig. 5 an example of a tension plate with a middle
crack is shown in which a secondary stress peak larger than that at the crack tip

Fig. 4 Definition of strength mismatch. The plastic strain concentration causes deviating of the
crack to the lower strength region; photo [9]

Fig. 5 Secondary crack at a secondary stress peak at the weld line away from the main crack tip
(Figure: M. Koçak). Right side Secondary maximum of stress triaxiality [10]
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exists due to this effect. The strength mismatch effect is particularly distinct in laser
and electron beam welds due to the deep welding effect.

Particularly in overmatching steel welds, crack deviation is often observed, what
makes the determination of toughness sometimes a tricky business. In contrast,
strength undermatching is typical for aluminum alloys due to local softening during
the thermal cycle.

3 Welding Residual Stresses

The thermal cycle during welding causes thermal expansion during heating and
shrinking during cooling. Since the heating is locally restricted, free shrinkage is
hindered. It is simply restrained by the surrounding colder material. As a conse-
quence, type I residual stresses develop. In addition, phase transformations in
conjunction with volume changes overlay the effect of thermal deformation.
Temperature dependent values of the elastic modulus and yield strength as well as
the global clamping and restraint conditions of the component during welding make
things even more complicated. The pattern of the residual stresses in longitudinal
and transverse direction can be understood by imagining a hot beam which is fitted
into the weld, linked up with the base metal and subsequently cooled down. This
makes immediately clear that the welding technique is of essential influence for the
formation of the residual stress state. A large molten bath and fewer weld passes
cause higher residual stresses than multi-pass welds or stringer bead technique. The
magnitude of the residual stresses is reduced by preheating and so-called back-step
welding. This illustrates why residual stress fields can be different even when
parameters such as energy input per unit length and welding speed are identical.
This is particularly the case in manual welding.

A characteristic feature of welding residual stresses is that the corresponding
forces and moments are in internal equilibrium, i.e., they integrate to zero across the
volume. That means the tension and compression stresses exist at the same time but
at different locations across the weldment, see (Fig. 6). With respect to fracture
mechanics the location of the crack tip with respect to the local stress is of great
importance.

The stresses at surface change in thickness direction, see (Fig. 7). Note that
transverse residual stresses are most dangerous in butt welds loaded in transverse
direction since they can act as crack openers in cases of incomplete welding, at root
defects and at undercuts.

The magnitude of the residual stresses also depends on the clamping conditions
during welding. The resulting restraint stresses superimpose the residual stress
profiles and cause disequilibrium of forces and moments in the section potentially
containing the crack, see Fig. 8.
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Fig. 6 Schematic welding residual stress distributions in a butt joint; a longitudinal, σx;
b transverse, σy (according to [11], p. 308, modified). Note that the stress profile is different for
external restraint during welding

Fig. 7 Idealised schematic
through-thickness profile of
transverse welding residual
stresses in a butt joint

Fig. 8 Effect of membrane
restraint on transverse residual
stresses; multi-pass welded
joint of austenitic steel plates,
according to [12]
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Welding residual stresses can be reduced by stress relief annealing, provided that
the clamping conditions allow for plastic deformation and the yield strength at the
annealing temperature is sufficiently reduced (Fig. 9). Note that the residual stresses
cannot be reduced below that level. In the case of steels it has to be checked that no
phase transformations occur, which could level off the effect of the heat treatment.

An essential problem is how to quantify the residual stress profiles. Although
there exists a number of experimental techniques such as the hole drilling method,
X-ray and neutron refraction most of them yield only limited information usually at
the surface. In addition, particularly with respect to stress gradients across the wall,
they sometimes show quite divergent results compared to each other. Finite element
results will generate satisfying results only when beside the temperature-time record
phase transformations are modeled. This requires appropriate simulation strategies
by which in a first step the portions of the respective phases and the corresponding
transformation-caused strains have to be determined from the temperature-time
characteristics. Only then the resulting stresses can be determined taking into
account the temperature dependent modulus of elasticity as well as the temperature
dependent yield strength. The results of a round robin exercise in Fig. 10, con-
cerning experimental as well as numerical data, illustrate that the scatter in such an
analysis can be considerably.

Although the residual stress distribution frequently is qualitatively known, its
magnitude, however, is uncertain. In such cases the generation of upper bound
curves might be an option. These curves can be used as conservative input infor-
mation to fracture mechanics analyses, see Fig. 11. The maximum value at the
surface is usually assumed as identical to the yield strength. Upper bound residual
stress profiles exist for plate and pipe butt and seam welds and for repair welds.
They are summarized in various compendia of fracture mechanics assessment
procedures, including those of SINTAP [14]. A problem is that these solutions

Fig. 9 Through-wall variations of residual stresses at a circumferential butt weld in a pipe in the
as-welded state and after thermal stress relief by post weld heat treatment (PWHT); according to
Josephson (1983), cit. in [12]
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violate the equilibrium conditions in that they are shifted to the tension range of
stresses. It is also known that the residual stresses become rapidly smaller in
transverse direction compared to the center of the weld. Frequently they will be
very small at the weld toe transition between the weld and the heat affected
zone/base metal [1]. The consequence is a danger of high conservatism when the
upper bound curves are used in fracture mechanics analyses, e.g., for fatigue crack
propagation. A way out could be sensitivity analyses for judging the effect of the
residual stresses in a specific fracture mechanics analysis.

Fig. 10 Results of a Round Robin for the determination of welding residual stresses (according to
Bouchard [13])

Fig. 11 Through thickness
residual stress profile for
tubular T-butt welds,
experimental data and upper
bound curve, according to
[15]. r�Y is the smaller of the
yield strengths of the weld
metal and base metal
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4 Strength Mismatch and Residual Stresses
in Determining the Fracture Toughness

A number of test recommendations exist for the fracture toughness testing of
weldments [16–18]. These deal with specific aspects of weldments compared to
non-welded specimens. Features which are addressed are

• The notch position (with respect to the weld, the heat affected zone and the
fusion line),

• The direction of crack extension (longitudinal or transverse with respect to the
axial direction),

• Questions of pre-cracking for instance with respect to the residual stresses which
frequently do not allow for straight crack fronts,

• Post-test verification that the crack tip has really been positioned in the
microstructure of interest, and

• The number of specimens needed for statistical safety.

Both, strength mismatch and welding residual stresses can not only have a
significant effect on the fracture toughness and but can also cause serious experi-
mental problems. One example was already mentioned: cracks deviating from its
original planes due to mismatch. Another effect is irregular crack fronts.

In addition, the crack tip parameters might be affected and have sometimes to be
corrected. E.g., the determination of strength mismatched weld specimens requires
a specific shape function for the J integral solution, depending from weld geometry,
see Fig. 12. For a more detailed discussion see [1].

For the case of SE(B) specimens without or with limited strength mismatch the
following J integral solution according to [18] is commonly used:

Fig. 12 Definition of the weld width height 2H of a V weld. [18]
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J0 ¼ K2

E
þ gCMOD

pl

B � W � að Þ � A with gCMOD
pl ¼ 3:724� 2:244 � a

W
þ 0:408 � a

W

� �2

ð2Þ

A is the plastic area of the force-displacement plot. For weld cracks, the deviation
from the exact mismatch solution is less than 10 % for mismatch ratios between
M = 0.9 and 1.25 and a/W = 0.1–0.5. With respect to heat affected zone cracks the
same is true for M < 0.9 and a/W = 0.1–0.7. Outside of these ranges a strength
mismatch corrected ηpl has to be determined such as shown in Fig. 13.

For middle crack tension specimens M(T) without or with limited strengths
mismatch J is obtained by [18]:

J0 ¼ K2

E
þ gpl
B � W � að Þ � A ð3Þ

with ηpl = 1. Equation (3) is valid for a/W = 0.125–0.5.
Within a range of M = 0.9–1.1 the deviation from the mismatch corrected

solution is less than 10 % for weld cracks and plane strain as well as plain stress
conditions and this is also correct for heat affected zone cracks and M = 0.9–2.
Outside of this range ηpl has to be determined according to Fig. 14.

The effect of a strength mismatch correction on the η factor in Eq. (2) is shown in
Fig. 16. The example refers to a dissimilar electron beam weld of aluminum alloys
Al 2017 and Al 7075 [19]. The fracture resistance has been obtained for the weld
metal. The test specimen was an SE(B) specimen with a weld width 2H = 2.4 mm, a
specimen width W = 20 mm and a specimen thickness B = 10 mm. The initial crack

Fig. 13 Strength mismatch corrected function ηpl for J integral determination using SE(B)
specimens with weld or heat affected zone cracks (plane strain) [18]
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depth was a0 = 10 mm and the mismatch ratio M = 0.54. According to Fig. 15 the
corrected ηpl factor for the weld crack was determined as ηpl = 3.2.

Using this corrected ηpl factor, a significant strength mismatch effect on the crack
resistance curve is obtained as it is shown in Fig. 16. The analysis has been carried
out based on the test guideline EFAM GTP 02 [18]. The all base metal resistance
against stable crack initiation, J0.2, would be underestimated by 27 % and also the R
curves show a difference of this order. What is, however, uncertain is whether the
physical crack initiation resistance, Ji, would behave the same way since no stretch
zone measurement was carried out in the present case. Note that Fig. 16 is just an

Fig. 14 Strength mismatch corrected function ηpl for J integral determination using M(T)
specimens with weld or heat affected zone cracks (plane stress and plane strain); Upper figure M
(T)-specimens crack in weld metal; Lower figure M(T)-specimen crack in HAZ [18]
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example. As can be concluded from Fig. 15, strength mismatch is of benefit for the
R curve only in the case of undermatching whilst overmatching would cause a
detrimental effect. Unfortunately the latter is the more representative case in
practical application.

Figure 17 illustrates the effect of strength mismatch on the statistical distribution
of the critical crack tip opening CTOD of a bi-metal joint. When the crack is located
in the higher strength material the crack resistance is shifted to lower values. In the
case of undermatching this is quite opposite [20].

Fig. 15 Mismatch correction for the ηpl factor of the J integral solution (Eq. 3), according to [18]

Fig. 16 Effect of strength mismatch correction on the crack resistance curve and the
“engineering” resistance against stable crack initiation, J0.2, dissimilar joint of Al 2017 and Al
7075, strength undermatching
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5 Fracture Mechanics Assessment of Components

5.1 General

The assessment of a welded component for fracture may be based on the SINTAP
procedure [14], which in turn forms the basis for the DVS Merkblatt (leaflet) [21].
Further developments are found in FITNET [22] the updated R6 procedure [23] and
the British standard BS 7910 [24] (see also [25–29]). The key element of these
procedures is a “plasticity correction” of the formally determined stress intensity
factor which is based on a ligament yielding factor Lr identical to the ratio of the
applied load and the yield or limit load. The latter roughly refers to the load at
which the general yielding state of the ligament ahead of the crack is reached. The
analysis can be carried out in so-called FAD and CDF formats.

In the FAD format (Fig. 18, FAD stands for Failure Assessment Diagram) the
applied K factor is referred to the fracture resistance which, in general terms, is
designated by Kmat. A failure line, the so called FAD, hereafter designated by f(Lr),
separates the region of safe operation from that of potential non-safety. The analysis
is then based on the relative position of a design point with respect to the failure
line. The component is regarded as safe as long as this point lies inside the area
circumscribed by f(Lr). Note that the FAD line is dependent on the stress-strain
curve of the material but regarded as independent of the component geometry and
the loading type. In contrast, the design point characterizes the component under
consideration including the fracture resistance and the parameters of the
stress-strain curve of the material, the crack size and its geometry and the loading
type, i.e., bending, tension etc. This is illustrated in Fig. 18a, b for shifting
the design point towards the failure line by increasing load and crack size.

Fig. 17 Effect of strength mismatch in the vicinity of the notch tip on the distribution of fracture
toughness in terms of the critical CTOD, a crack in the higher strength material; b crack in the
lower strength material; according to [20]
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Figure 18c illustrates an assessment for unstable failure. Whereas (a) and (b) are
based on a single toughness value, Kmat, (c) uses an R curve such as shown in
(Fig. 16). Since in that case not only K and Lr are crack size dependent but also
Jmax, the design path differs from those in (a) and (b) and failure is defined for the
assessment curve which tangentially touches the FAD line.

Following the CDF format (CDF stands for Crack Driving Force) the results are
numerically identical with those of the FAD approach. What is different is the
assessment philosophy which consists of two separate steps:

(a) The crack driving force is determined in terms of the J integral or CTOD (δ)
by

J ¼ Je � f Lrð Þ½ ��2 or d ¼ de � f Lrð Þ½ ��2 ð4Þ

with

Je ¼ K2

E0 or de ¼ K2

rY � E0 ð5Þ

(b) The obtained value is then compared with the fracture resistance Jmat or δmat.

The ligament yielding parameter Lr

Fig. 18 FAD format of fracture assessment using the SINTAP or similar procedures. a for
increasing load, b for increasing crack size, c for ductile instability
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Lr ¼ F=FY ð6Þ

is given in compendia such as [14, 21–24] or [30–32]. Figure 19a illustrates the
CDF format determination of the critical load for stable and Fig. 19b for unstable
crack initiation. In the latter case, instability is given at the load for which the CDF
curve is tangential to the J- or δ-Δa curve of the material.

5.2 Consideration of Strength Mismatch

Beyond a mismatch ratio M > 1.1 or below M < 0.9 both, a mismatch modified
yield or limit load and a mismatch modified FAD line have to be used. For
weldments with neither the base nor the weld metal showing a Lüders’ plateau [14]
the latter is given by

f Lrð Þ ¼ 1þ 1
2
� L2r

� ��1=2

� 0:3þ 0:7 � exp �lM � L6r
� �� 	 ð7Þ

for 0� Lr\1
and

f Lrð Þ ¼ f Lr ¼ 1ð Þ � L
NM� 1

2�NM

� �
r ð8Þ

Fig. 19 Determination of the critical condition of a component by the CDF approach a Toughness
given by a single value (e.g., resistance against stable crack initiation); b Toughness given by an
R-curve (assessment for crack instability)
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for 1� Lr\Lr max
For Lr > Lr max, i.e. plastic collapse, f(Lr) is set to zero.
The mismatch corrected coefficients μM and NM with the latter being a

mismatch-equivalent strain hardening coefficient are determined by

lM ¼ M � 1ð Þ �
FYM
FYB

� 1
� �

lW
þ

M � FYM
FYB

� �
lB

2
4

3
5
�1

; lM � 0:6 ð9Þ

with

lB ¼ 0:001 � EB

Rp0:2;B
; EB and Rp0:2;B in MPa; lB � 0:6 ð10Þ

and

lW ¼ 0:001 � EW

Rp0:2;W
; EW and Rp0:2;W inMPa; lW � 0:6 ð11Þ

NM ¼ M � 1ð Þ �
FYM
FYB

� 1
� �

NW
þ

M�FYMð Þ
FYB

NW

2
4

3
5
�1

ð12Þ

NB ¼ 0:3 � 1� Rp0:2

Rm

� �
B

ð13Þ

NW ¼ 0:3 � 1� Rp0:2

Rm

� �
W

ð14Þ

Lr max ¼ 0:5 � 1þ 0:3
0:3� NM


 �
ð15Þ

In the equations above, the index B describes the base metal and the index W the
weld metal. FYB is the yield or limit load of the all-base metal component with
crack and FYW those of its all-weld metal counterpart. FYM characterizes the welded
component with strength mismatch. With respect to the latter, the compendia
mentioned comprise solutions for plates subjected to tension and bending and
hollow cylinders with axial and circumferential cracks with the cracks being located
in the weld metal and the heat affected zone. All solutions require the knowledge of
the yield strengths of the base and weld metal. An example is given in Fig. 20,
further ones can be found in [33].
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5.3 Considering Welding Residual Stresses

In a fracture mechanics assessment it is essential to distinguish between primary
and secondary stresses. Primary stresses are defined as stresses due to applied
loading, i.e., forces, moments, pressure, dead weight, etc. They can cause plastic
collapse because of which both, the K factor and the yield or limit load or Lr
respectively have to be determined for the primary stresses. In contrast, secondary
stresses are the result of locally suppressed shrinking or expansion in the compo-
nent. Since they are in internal equilibrium across the section of interest they do not
contribute to plastic collapse with the consequence that they are considered only in
K factor determination but not for the yield load or Lr.

Fig. 20 Strength mismatch corrected yield load of a centre cracked welded plate with a crack in
the weld metal (over- and under-matching). Solution for plain stress conditions from [33]
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Usually, welding residual stresses are considered as secondary stresses.
However, care is advised since residual stresses (respectively the forces and
moments behind them) which are self-equilibrating across the component volume
may not self-equilibrate across the section containing the crack. This is definitely
the case for reaction stresses which, e.g., are generated when a beam is welded into
a larger structure. What counts is the cross section containing the crack. In such
cases even welding residual stresses have to be classified as primary stresses.

For mode I crack opening and small scale yielding conditions the overall stress
intensity factor can be determined by simple superposition of its primary and
secondary components. These are marked by the upper indices “p” and “s”.

KI ¼ Kp
I þ Ks

I ð16Þ

However, in general, when the boundary conditions of the linear elastic fracture
mechanics are no valid any longer, interaction effects between the primary and
secondary stresses have to be taken into account. As a consequence the real crack
driving force will be larger than the sum of Kp

I and Ks
I in Eq. (16). This happens in

the contained yielding range, i.e. at Lr values roughly in the range between 0 and 1.
Above that value, and actually starting even below this, relaxation effects become
active and the overall crack driving force becomes smaller than the sum of Kp

I and
Ks
I . This interaction characteristics is described by a factor V, which is used as a

correction function to Ks
I

KI ¼ Kp
I þ V � Ks

I ð17Þ

The parameter V, see Fig. 21, depends on the magnitude of the primary and
secondary stresses, on the crack depth and on the ligament yielding Lr.

It is determined by the equation:

V ¼ Ks
p

Ks
I
� n ð18Þ

Fig. 21 V correction term as
a function of the ligament
yielding parameter Lr

(schematic)

Fracture Mechanics Assessment … 79



with Ks
I being the stress intensity factor due to the secondary stresses and K

s
p being a

plastic zone-corrected value of Ks
I according to

Ks
p að Þ ¼ aeff

a

h i1=2
�Ks

I að Þ ð19Þ

Ks
p may be based on an effective crack depth, aeff, which is given as the original

crack depth plus the radius of the plastic zone ahead of it:

aeff ¼ aþ 1
2pb

� Ks
I að Þ
rY

� �2
ð20Þ

(β = 1 in plane stress; β = 3 in plane strain).

The function ξ is provided in Tables in the compendia mentioned where it is
determined as a function of the parameters Lr and Ks

p= Kp
I =Lrð Þ.

For Ks
p= Kp

I =Lrð Þ� 4 a simplified procedure may be used for V, which does not
need the determination of Ks

p. This is given by

V ¼
1þ 0:2Lr þ 0:02 � ½Ks

I =K
p
I =Lr� for Lr\L�r

3:1� 2Lr for L�r\Lr\1:05
1 for Lr [ 1:05

8<
: ð21Þ

L�r is determined by the intersection of the two first equations in Eq. (21).

5.4 Validation of the SINTAP Strength Mismatch Option

The various mismatch options of SINTAP have been successfully validated [34,
35]. An example is given in Fig. 23, which is based on the mismatch-corrected
yield load according to Fig. 22. As can be seen, the failure load of a friction stir
weld of Al 6013 T6 was conservatively predicted, i.e., the analysis underestimated
the experimental value by 16 %. Note that this is a rather poor result. Particularly
the results for strength overmatched components are usually much less
conservative.
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6 Application to a Component with Strength Mismatch

The example is an electron beam weld of an Al 7075 alloy. The analysis is per-
formed for an M(T) specimen with a crack in the weld metal
(MM = mismatch) (Table 1). It does not only include a mismatch correction for the
crack driving force but considers the effect also at the material crack resistance side.
The target information of the analysis is the critical load, i.e., in the present case the
critical tension force for stable crack initiation.

Fig. 22 Strength
mismatch-corrected yield or
limit load for a tension loaded
plate with a central crack in
the weld metal, plane strain,
from [33]

Fig. 23 Comparison of
SINTAP prediction and
experiment. Tension loaded
plate of Al 6013 T6, friction
stir weldment, Mismatch ratio
M = 0.58 [36]

Fracture Mechanics Assessment … 81



The yield load is determined according to Fig. 20:

FYB ¼ 2rYB � B � W � að Þ ¼ 202800N

FYW ¼ M � FYB ¼ 110400N

FYM ¼ M � 2ffiffiffi
3

p � 2� ffiffiffi
3

p
ffiffiffi
3

p

 �

� 1:43
w

� �
¼ 126746N

The mismatch corrected factors, μM und NM, needed for specifying the FAD line
are determined by:

lM ¼ M � 1ð Þ �
FYM
FYB

� 1
� �

lW
þ

M � FYM
FYB

� �
lB

2
4

3
5
�1

¼ 0:221

with

lB ¼ 0:138

lW ¼ 0:254

and

NM ¼ M � 1ð Þ �
FYM
FYB

� 1
� �

NW
þ

M�FYMð Þ
FYB

NB

2
4

3
5
�1

¼ 0:05433

with

NB ¼ 0:0378

NW ¼ 0:06

Table 1 Input data for failure assessment

Dimensions Material data

B = 5 mm
2 W = 160 mm
2a = 80 mm
2H = 2.4 mm
w ¼ 1

H � W � að Þ ¼ 33:3

Rp0.2W = 276 MPa
RmW = 345 MPa
Rp0.2B = 507 MPa
RmB = 580 MPa
M = 0.54
Kmat,k = 51.0 MPa√m from J0.2 (MM corrected)
Kmat,u = 43.6 MPa√m from J0.2 (not corrected)
KIc = 23.9 MPa√m base metal
E = 70,000 MPa
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The plastic collapse limit is determined as:

Lr max ¼ 0:5 � 1þ 0:3
0:3� Nm


 �
¼ 1:11

The FAD failure line is given by:

f Lrð Þ ¼ 1þ 1
2 � L2r

� 	�1=2� 0:3þ 0:7 � exp �0:221 � L6r
� �� 	

0� Lr\1

f Lrð Þ ¼ f Lr ¼ 1ð Þ � L
NM� 1

2�NM

� �
r ¼ 0:703 � L�9:15

r 1� Lr\Lrmax
f Lrð Þ ¼ 0 Lr\Lr max

For specifying the assessment point (Kr, Lr), stress intensity factors and yield
loads are needed for the geometry, crack size and loading of the component. Using
the K factor solution of the M(T) plate

K ¼ F

B � ffiffiffiffiffi
W

p � 1
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p � a
W

� cos
p � a
2 �W

� �h i�1
r

Kr is obtained as

Kr ¼ Kr

Kmat

and

Lr ¼ F
FYM

Figure 24 illustrates the determination of the applied load at which the failure
line FAD is met. The analysis follows the same route when instead all base metal or
all weld metal conditions are assumed, i.e. without mismatch correction. All results
are compared in Fig. 25.

As can be seen, the highest crack initiation load of 86 kN is obtained for the
mismatch option using the mismatch corrected J0.2 crack resistance. In comparison,
the all weld metal analyses yields a crack initiation load of 73 kN which is about
15 % smaller than those based on the full mismatch analysis. The deviation
becomes even more pronounced for the all base metal analysis. Caused by the lower
crack resistance of the base metal the failure load drops to 52 % of the mismatch
value. Note that this is also due to the fact that the base metal failure occurs as
cleavage fracture such that a KIC value has to be used as the input information.

The example illustrates that only a failure analysis taking into account the
strength mismatch effect provides an adequate assessment and allows for the
exploitation of the real loading capacity of the component. This benefit justifies the
increased effort of this kind of analysis.
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7 Summary

With respect to fracture mechanics assessment, weldments are characterised by a
number of specific features which affect the fracture toughness as well as the crack
driving force in the component. These comprise geometrical imperfections (mis-
alignment), non-homogeneous microstructures, welding residual stresses and
strength mismatch. The present paper highlights two of these items: strength mis-
match and residual stresses. It is demonstrated how they have to be taken into
account in fracture mechanics assessment under static loading. An example is
provided for the influence of strength mismatch on fracture toughness. As shown,
non-consideration would have significantly affected the result. The same statement
is true with respect to component behavior. This shows why strength mismatch has

Fig. 24 FAD analysis of an M(T) specimen of Al 707, electron beam weld, analysis with
mismatch correction. BM Base Metal, WM Weld Metal, MM mismatch

Fig. 25 Failure loads of the Al 7076 M(T) specimen of the electron beam weld analyzed in
Fig. 24. Comparison with the results of all base metal (BM) and all weld metal (WM) analyses.
MM stands for strength mismatch
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to be considered at both sides of fracture assessment. Laser and electron beam welds
are much stronger affected by strength mismatch as conventional welds.
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Application of Fracture Mechanics
for the Life Prediction of Critical Rotating
Parts for Aero Engines

M. Springmann, M. Schurig, D. Hünert, W. Rothkegel
and H. Schlums

Abstract The application of fracture mechanics based methods forms an integral
part in the prediction of safe life and damage tolerant behaviour of critical parts in
aero engines. For compressor and turbine discs, this comprises the calculation of
cyclic life to burst, integrity under extreme loading conditions and damage tolerant
behaviour for different kinds of anomalies encountered in manufacturing and/or
in-service application. Taking the example of the introduction of the new
nickel-based disc alloy ATI 718Plus®, the typical methods, the extent of material
and component testing, and some limitations of current methods are presented. This
project is a joint effort between Rolls-Royce Deutschland and several universities
and research institutions.

Keywords ATI 718Plus � Material testing � Fracture mechanics � Damage
tolerance

1 Introduction

The requirements for jet engines are increasing every year. In the development
process of a jet engine compressor and turbine architecture the relatively massive
discs play an important role in considering mass reduction and improved safety
concepts. Precise knowledge of the crack initiation resistance and crack propagation
behaviour in highly loaded discs is a precondition for achieving an optimal design
in terms of life time prediction and ultimate load failure.
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For the introduction of a new material in the context of the certification process
of engine discs a comprehensive laboratory specimen test programme is required
that allows adequate characterisation of the disc material under various loading and
environmental conditions such as high temperature, large local deformation and
cyclic events. The specimen test data are used to quantify material models for creep,
plasticity, crack growth and crack initiation behaviour as well as correlations for
lifetime predictions. A component test programme is required in order to validate
the material behaviour on the component level under more realistic complex
loading conditions. This allows the representation and consideration of bulk
residual stresses, of high material volume accounting for scatter in material prop-
erties, as well as of machining and surface treatment effects such as shot-peening
and their influences on crack initiation. For certain disc areas such as air holes or
disc fir trees, so-called subcomponent tests are utilized reflecting the geometric
features and associated typical loading conditions.

The complex loading of aero engine discs is the result of different flight phases
(generally for civil application: taxi, take-off, climb, cruise, decent and approach),
involving varying disc speeds and corresponding temperature profiles. Every
material point of an engine disc is subjected to a specific combination of stress and
temperature over the flight cycle. An example is shown in Fig. 1 [1].

Engine discs are designed for finite fatigue life. Hence, the number of released
flight cycles is limited and could possibly determine the shop visit intervals of an
aero engine. Therefore, the precise knowledge of the finite low cycle fatigue
(LCF) life is a huge cost and safety issue. To fulfil the safety requirements every
disc loading and perturbation with a certain probability must be assessed and

Fig. 1 Typical stress and temperature time histories [1]
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included in the calculation of the safe cyclic life. Any damage or material anomaly
potentially reduces the LCF initiation life. Damage tolerance is an engineering
approach to account for those damages and anomalies using fracture mechanics
methods.

2 Material A718Plus

ATI 718Plus® (A718Plus) is a new nickel-based superalloy for potential future
implementation for compressor and turbine aero engine discs developed and sup-
plied as billet material by ATI Allvac. A718Plus is currently being evaluated at
Rolls-Royce Deutschland (RRD) as a low-cost alternative to Waspaloy or Udimet
720Li or to replace IN718 at higher operating temperatures.

Historically, IN718 has been limited by its maximum operating temperature.
A718Plus combines the desirable processability and weldability of IN718 with the
higher temperature capability and thermal stability of Waspaloy or Udimet 720Li
but at lower costs.

The alloy is strengthened by precipitations of Gamma-Prime and
Delta/Eta-phase, which ensure the high thermal stability of the alloy. The high
chromium and cobalt content guarantees a superior oxidation resistance. The exact
composition of A718Plus is shown in Table 1 and the effects of the microstructure
on the material properties can be consulted in [2].

A new forging route and heat treatment procedure was developed by
Rolls-Royce Deutschland and Otto Fuchs (forging house) to optimise the
mechanical properties of the alloy in terms of integrity, LCF and damage tolerance
requirements. A main focus of the multi-stage forging and heat treatment process
was set on the adjustment of the microstructure to improve the resistance of the
alloy against dwell crack propagation, see [3].

The mechanical properties, especially the crack propagation resistance, are
highly dependent on the amount and orientation of the Delta-phase within the
forging as well as the size of the Gamma-Prime precipitates. Both precipitates were
adjusted during forging and heat treatment in such a way, that they oppose the main
stress during operation. The orientation and size of the Delta-phase can be influ-
enced by adapting the multistep forging procedure and by applying additional heat
treatments prior to and during forging. The size of the Gamma-Prime precipitates is
controlled by the heat treatment. The microstructure of A718Plus after forging and
heat treatment is shown in Fig. 2. Here, Delta-phase precipitates are visible as white
particles concentrated at the grain boundaries.

Table 1 Detailed composition of A718Plus (in weight %)

Ni Cr Fe Co Nb Mo W Al Ti C P B

Bal. 18 10 9 5.45 2.8 1 1.45 0.7 0.025 0.014 0.006
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A comprehensive material development programme is running to assess and
qualify A718Plus. This material is being developed for engine use as part of the
German-funded LuFoIV Aerospace Research Programme.

3 Material Testing

An extensive material specimen test programme has been set up in order to qualify
the new nickel-based disc alloy A718Plus. An overview about this test programme
is given in [4].

To understand the crack propagation resistance of A718Plus, Corner Crack
(CC) as well as Compact Tension (CT) specimens are used for testing, see Fig. 3.
A wide range of test conditions (e.g. temperature, different environments, R-ratio
and different dwell times at maximum load condition) was investigated, also to
understand when time- and temperature-dependent effects become important.

In order to underpin the growing importance on damage tolerance of disc
materials, the crack propagation tests are accompanied by crack initiation LCF tests,

Fig. 2 Microstructure of
A718Plus after forging and
heat treatment, by courtesy of
RRD

Fig. 3 Left CC specimen, right CT specimen
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where the influence of surface damages like dents or scratches on the crack initi-
ation behaviour are studied. Specimens with different notch geometries (notch
factors) were damaged by scratching the surface in a highly stressed area using a
defined procedure; an example is shown in Fig. 4. The scratches were measured
precisely by replica technique to obtain the geometry of the induced damage. Thus,
the artificial damages could be compared to real disc damages and a strict process
quality control could be applied to the scratch insertion. In principle the number of
cycles for crack initiation plus the number of cycles for stable crack growth rep-
resent the lifetime of the considered damaged specimen or component, respectively.

Apart from the specimen test programme as described above, further testing is
performed in order to qualify full-scale disc forgings. For this purpose disc forgings
are cut up not only to characterise the microstructure of the material (e.g. grain size
and grain size distribution or content of Delta-phase and its orientation and dis-
tribution) but also to investigate how homogeneous material properties are dis-
tributed in different areas of the forging. For this purpose specimens are machined
from different areas of the forging and also in different orientation and tested at a
subset of conditions as described before. These tests consist again of standard
tensile tests, LCF tests, creep tests and crack propagation tests for defined test
conditions.

The aim of the different specimen test programmes is not only to gain a general
insight into the material behaviour but also to do sufficient testing to enable the
evaluation of material scatter and to derive “minimum” material properties.

Fig. 4 High Kt notched specimen, scratched surface in the notch area, section of replica, by
courtesy of RRD
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4 Validation

For the certification of engine discs as critical parts, the understanding of the
material behaviour derived from specimen testing needs to be transferred to the
component level. The certification requirements comprise among others the proof
of rotor integrity in an overspeed event, the declaration of a safe cyclic life and
appropriate damage tolerance assessments to address the potential failure from
material, manufacturing and service-induced anomalies within the approved life of
the critical part.

The results of the specimen test programme are the basis for the characterisation
of the fundamental material behaviour of the new alloy A718Plus under relevant
loading conditions. However, on engine component level additional influences, like
multi-axial stress fields, bulk residual stresses, stress redistribution processes due to
plastic deformation, volume effects and surface conditions from manufacturing,
determine substantially the potential failure of discs.

For some typical disc features the conventional spin tests are not suitable to
achieve local loading conditions that are comparable to engine conditions. On this
account subcomponent tests were set up to validate features such as disc rim air
holes and disc fir trees, respectively.

The disc rim air holes are subjected to high tensile and high compressive loads
due to the varying disc speed in a flight cycle in combination with the transient
temperature gradient. In a conventional spin test the transient and stabilised engine
temperature gradient could not be achieved. For that reason a subcomponent air
holes test was developed. A test disc with a reduced number of air holes with
manufacturing process parameters equivalent to those used to produce the engine
discs was manufactured. The subcomponents are cut out of the disc including one
air hole each, see Fig. 5. Using a conventional test machine, tensile and com-
pressive loads were applied to the subcomponent in order to achieve the required
local air hole loading.

The test definition was supported by numerical studies using material data
generated by simple specimen tests. Assuming an engineering crack (with a defined
crack length) occurred at the position of highest air hole stress, a crack propagation
analysis was accomplished to obtain the number of cycles from crack initiation until
total failure of the subcomponent specimen. Thus, the appropriate number of cycles
for crack initiation can be determined based on the measured total number of cycles
to subcomponent specimen failure and the calculated number of stable crack
growth. Here, the crack initiation positions of the failed subcomponent test speci-
men and the analysis assumption must be aligned and were validated by the test
outcome. However, the experimental validation also included the time to crack
initiation that relies on the loading history. For turbine discs, this includes cyclic
out-of-phase thermo-mechanical loading that could not be applied to a subcom-
ponent test specimen. Therefore, the subcomponent tests were augmented by
thermo-mechanical fatigue testing that proved conservatism of the isothermal test
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setup [5]. A typical fracture surface and FEM predicted initiation site is shown in
Fig. 5.

Within bladed engine discs the fir tree is often one of the areas with the highest
loading. Under engine conditions, a glazing layer often forms at high temperature
between disc and blade contact faces for components made from nickel-based
alloys. Spin tests are usually run under vacuum conditions where the glazing layer
cannot be formed. This would lead to significantly higher friction between the
mating parts and hence to unrepresentative fir tree loading. For that reason a fir tree
bi-axial test was set up (see Fig. 6). The tensile load reproduces the blade cen-
trifugal load and the compressive load represents the neighbouring blades. The load
path of the compressive load was optimised to achieve the same work of friction as
in the engine over a flight cycle.

By cyclic testing, crack initiation and propagation were optically monitored, see
Fig. 6 (right). In some tests, the test conditions were changed after crack initiation
and some cycles of crack propagation in order to study the influence of different
parameters on further crack propagation in a subcomponent. Figure 7 shows the
fracture surface of a lab-opened bi-axial fir tree test specimen run with short and
subsequently long dwell times. It was shown that the appearance of the fracture
surface and the propagation rate is influenced, while other possible mechanisms
(e.g. out-of-plane crack growth due to complex creep fatigue interaction) could be

Fig. 5 Subcomponent air hole test specimen, FEM model, fracture surface, by courtesy of RRD
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excluded. In Fig. 7 superimposed red ellipsoidals show results of simulation that
predicted the crack shape and size.

Besides subcomponent LCF tests, crack initiation and propagation tests with a
scratched surface were performed, see Fig. 8. The aim was to validate the results
from simple specimen tests on the component level. A main focus was on the
orientation of the proceeding crack. Again, the simulation resulted in a prediction of
the crack propagation phase after initiation of a crack from artificial surface damage
(a scratch) at the same location as shown in Fig. 6 (right). At this stage a generalised
statement is not yet possible, because only a few experiments have been analysed
and further investigations are ongoing.

Fig. 6 Left Fir tree bi-axial subcomponent test setup, right cracked subcomponent test specimen,
by courtesy of RRD

Fig. 7 Crack propagation test
results of bi-axial fir tree test
specimen and superimposed
crack shape prediction, by
courtesy of RRD
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5 Modelling

The material testing results are the basis for the selection of appropriate material
models and for the identification of the material parameters.

The results and the processing of various A718Plus crack propagation
experimental data indicated that the application of the widely used Paris law is
reasonable:

da
dN

¼ C � DKn ð1Þ

Here, da=dN is the crack growth rate and C as well as n are material parameters
depending on temperature, R-ratio and dwell time.

The parameter identification was done initially for every valid experiment.
Subsequently, the adjusted curves were compared for the same test conditions. In
this context, dependencies in terms of location and orientation of the specimen
within the forging could be investigated.

To achieve a certain internal material quality level required for critical parts a
defined number of experiments at given test conditions must be available. From the
available data a “typical” and “minimum” �3r (i.e. describing the fastest propa-
gation rate) curve were derived for every test condition.

The previous investigations revealed material parameters for explicit test con-
ditions, see Fig. 9. For the application regarding engine conditions the crack
propagation parameters must be continuously available over the relevant temper-
ature and R-ratio range.

The temperature dependence of the Paris law parameters C and n is considered
from approximately 20 °C until 700 °C. In this temperature range the crack growth
rate da=dNð Þ over temperature is outlined for a defined DKmin and DKmax,

Fig. 8 Crack propagation test
results of scratched bi-axial fir
tree test specimen and
superimposed crack shape
prediction, by courtesy of
RRD
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representing the used minimum and maximum cyclic stress intensities for a test
condition. The measured data points are approximated by a polynomial of the kind:

log
da

dNmax=min

� �
Tð Þ ¼ A0 þ A1T þ A2T

2 þ � � � þ ApT
p ð2Þ

In Figs. 10 and 11 it can be noticed that A718Plus has a special behaviour around
400 °C. The crack growth rate at 400 °C is on average lower compared to the rate at
20 °C. In tensile tests the so-called Portevin-Le Chatelier Effect can be observed at
around 400 °C test temperature [2]. Microstructural investigations are ongoing to
find the root cause of these effects.

The temperature-dependent material parameter n(T) of the Paris law can be
calculated as follows:

n Tð Þ ¼
log da

dNmax
ðTÞ

� �
� log da

dNmin
ðTÞ

� �
logDKmax � logDKmin

ð3Þ

The parameter C(T) is then derived from the Paris law:

C Tð Þ ¼ da
dN

Tð Þ � DK�n Tð Þ ð4Þ

Fig. 9 Experimental crack propagation results and a “typical” Paris law based approximation for a
defined test condition
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During an aero engine flight cycle, complex stress scenarios occur within an
engine disc and result in different R-ratios at different locations on the disc. The
crack propagation test programme covers selected R-ratios. Intermediate points are

Fig. 10 Adjusted crack propagation curves for a fixed R-ratio but pending on temperature in (°C)

Fig. 11 Selected results for temperature dependent crack growth rates
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calculated by using the cyclic stress intensity DKR¼0 at R = 0 and the so-called
Walker exponent m:

DKR ¼ DKR¼0

1� Rð Þm�1 ð5Þ

The Walker exponent is a specific material constant and determined by various
experiments with different R-ratios, see Fig. 12. If the condition is fulfilled that in a
log-log diagram the crack propagation curves are parallel for different R-ratios, then
the Walker exponent m can be calculated by results of experiments with two
different R-ratios (a and b) as follows:

m ¼ 1þ log DKRbð Þ � log DKRað Þ
log 1� Rað Þ � log 1� Rbð Þ ð6Þ

Experimental results for A718Plus showed that a specific Walker exponent does not
cover the whole range of conditions. Therefore, the adjustment of m was accom-
plished on a sequence of intervals.

Engine discs are subjected to severe stresses and high temperatures over a rel-
atively long period of time. Experimental investigations with Corner Crack speci-
mens have shown that the crack growth rate is strongly dependent on the dwell time
at maximum load (see Fig. 13), when the test temperature exceeds a
material-specific threshold value. That means that, besides the time-independent

Fig. 12 Adjusted crack propagation curves at a specific temperature for different R-ratios
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crack growth behaviour, the time-dependent crack growth behaviour needs to be
taken into consideration. The total crack growth rate is composed by
cycle-dependent (da=dN) and time-dependent (da=dt) portions:

da
dN

� �
total

¼ C � DKn þ
X
cycle

D0 � Kn ð7Þ

with

D0 ¼ A � exp � B
T

� �
ð8Þ

as a function of temperature T and using the temperature-independent material
parameters A and B [6]. K denotes the instantaneous stress intensity factor.

Using the latest experimental evidence (more that 300 specimens at different
temperatures, R-ratios and dwell times) the parameter fit for fC Tð Þ; n Tð Þ;
m Tð Þ; A; Bg was updated. Experimental results of crack propagation rates are
compared to the model predictions in Fig. 14. Fitting is generally performed on
averaged results as shown above, the quality is judged by using several points from
each test, replicating different stress intensities. While the scatter is higher in the
tests with long dwell time, the qualitative shape of the curve is better predicted in
these tests. The main reason is that near-threshold effects are not accounted for in
the model.

Fig. 13 Crack propagation at elevated temperature for different dwell times at maximum load
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6 Summary and Outlook

The introduction of a new material for critical parts in aero engines requires a
comprehensive test programme and analyses to maintain the disc integrity
requirements and to provide the basis for the determination of safe cyclic life. In
this contribution the fracture mechanical material test programme and crack prop-
agation modelling of the new nickel-based alloy A718Plus was briefly presented.

Besides the introduction of the material for future applications, the specimen and
component test programme will be completed to provide data for the full designated
application range. The test results will also be used to develop material models
which describe the crack initiation behaviour and damage mechanisms of the alloy.
Special focus is put on damage tolerance assessments with regard to various surface
impacts. The consideration of the damage initiation test results based on testing of
specimens with artificially introduced scratches at the peak stress position for a
general damage tolerance approach is still ongoing.

Acknowledgments The work was conducted as a part of the German-funded research pro-
gramme RoKoTec (LuFoIV) and supported by the Bundesministerium für Wirtschaft und Energie
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cessing of the test data and performance of numerical studies.

Fig. 14 Comparison of predicted and experimental crack propagation rates for different dwell
times
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Consideration of Fatigue Crack Growth
Aspects in the Design and Assessment
of Railway Axles

Igor Varfolomeev and Michael Luke

Abstract Current design rules for railway wheelsets do not directly address issues
related to fatigue crack propagation. Nevertheless, the latter topic is a part of the
revised safety concept for passenger trains recently adopted in German railway
applications. Numerous research activities, including international cooperative
projects, have been conducted in the past decade aiming at quantifying fatigue
crack growth rates in railway axles and estimating their inspection intervals based
on the fracture mechanics methodology. This paper summarizes some experience
and findings obtained by the authors within several studies dealing with the
assessment of fatigue crack propagation in railway steels. Particular aspects high-
lighted in the paper include material characterization, effects of the specimen
geometry and crack tip constraint on fatigue crack growth rates, stress analyses of
axles and wheelsets, the derivation of stress intensity factor solutions applicable to
specific conditions achieved in railway axles, considerations of the variability and
scatter of geometrical parameters and material data in fatigue crack growth
calculations.

1 Introduction

Railway axles are traditionally designed to meet criteria of “infinite” life, i.e. to
achieve a sufficient number of load cycles which exceeds the conventional
endurance range of about 107 cycles by at least two orders of magnitude. Relevant
design rules developed during the course of several decades are currently incor-
porated in a number of industrial standards, e.g. [1, 2]. Besides the requirement of
safe design, regular non-destructive examinations (NDE) of wheelsets are included
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in maintenance procedures of railway operators in order to prevent that possible
fatigue, corrosion or ballast impact damage of axle parts may lead to crack initiation
and growth with a potential hazard of train derailment, see e.g. [3, 4]. In this
context, the fracture mechanics methodology may help to combine information
obtained by NDE with quantitative estimates of fatigue crack propagation, starting
from a reasonably postulated initial crack size, and thus establish a basis for
specifying inspection intervals. The way from safe design towards safe operation of
railway axles as well as developments of the assessment methodology and tools are
reflected in numerous publications, e.g. [5–13]. Moreover, several international
cooperative projects [14–16] have been devoted to particular aspects of the design
and fatigue assessment of railway wheelsets. Despite extensive research conducted
in the past, needs for further improving the analysis methods, extending material
knowledge and better understanding of various effects, such as those due to residual
stresses, short crack behaviour, crack tip constraint, uncertainties in the definition of
input data for crack growth analyses, are some principal targets of on-going
research activities [17].

This paper summarizes some experience gained by the authors within several
studies dealing with the assessment of fatigue crack propagation in railway axles.
Particular aspects addressed in the paper are material characterization, axle stress
analysis, accurate determination of stress intensity factors for loading conditions
achieved in railway axles, effects of the specimen geometry on fatigue crack growth
rates, incorporation of the variability and scatter of geometrical parameters and
material data in the fatigue life assessment procedure.

2 Review of Fatigue Crack Growth Data for Railway Axle
Materials

2.1 Material Characterisation

Among the materials employed in railway axle manufacture, two mild steel grades
EA1N (material designation C35) and EA4T (25CrMo4) are particularly referred to
in the European standards EN 13103 [1] and EN 13104 [2]. Further high-strength
steel grades, 34CrNiMo6+QT and 30NiCrMoV12, are common for high-speed
train design and applications. In [5], fatigue endurance limits were experimentally
determined for the EA1N, EA4T and 34CrNiMo6+QT steel grades on both
small-scale laboratory specimens and full-scale axles. Besides characterising fatigue
strength for the axle body, a number of tests were carried out in [5] focusing on
crack initiation in wheel seats. Additional fatigue strength data for the above three
steel grades are available in [9, 14–16].

Fatigue crack growth (FCG) data for railway axle materials can be found e.g. in
[7–10, 15, 18–23]. Beretta et al. [8, 18–20, 23] performed a series of FCG tests
using different specimen geometries. In most of their studies, the single-edge bend
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specimen, SE(B), was employed at negative stress ratios, R < 0, whereas a modified
compact tension specimen, C(T), and a middle-cracked tension specimen, M(T),
were used at both positive and negative stress ratios. Additionally, a single-edge
cracked tension, SE(T), specimen design was adopted in [19]. When comparing test
results for standard specimens and full-scale axles, a good agreement was found
between FCG rates for cracks in axles, on the one hand, and SE(B) and SE(T)
specimens, on the other hand [18–20]. A particular observation made by Beretta
and Carboni [20] for the EA1N material was a large scatter of the experimental
results at R = −1, especially in the near-threshold regime. Furthermore, those
authors concluded a considerable effect of the fatigue pre-cracking procedure
(standard approach [24] vs. compression pre-cracking) and testing method (constant
load vs. load shedding) on the resulting FCG rates.

The high-strength steel grade 30NiCrMoV12 was investigated by Beretta et al.
[7, 18], while similar specimen types as for the EA1N material, including full-scale
axle tests, were used. In particular, FCG data are provided in [18] for the
near-threshold regime at −2 ≤ R ≤ 0 and for the Paris regime at positive stress ratios
of R ¼ 0:05; 0:3.

Steel grades EA4T and 34CrNiMo6+QT were extensively studied in [9, 10]
using both M(T) and axle-like specimens. In those investigations, basic FCG data
were derived on M(T) specimens at two stress ratios of R = −1 and R = 0.1, as
shown in Fig. 1. The curves plotted in the diagram represent a smooth fit of the
experimental data for EA4T using the Mettu-Forman equation following its
description in [25]. The above equation is particularly employed in Sect. 5 for crack
propagation analyses. According to Fig. 1, at equal stress intensity factor ranges,
DK, the material 34CrNiMo6+QT exhibits somewhat higher FCG rates and, at least
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Fig. 1 FCG rates for EA4T and 34CrNiMo6+QT according to [9, 10]

Consideration of Fatigue Crack Growth Aspects … 105



at R = 0.1, lower threshold values, DKth, as compared to EA4T. The latter aspect is
of special interest for the fracture mechanics assessment of railway axles, since the
major stage of crack propagation is expected to occur in the near-threshold regime.

The threshold values and parameters C and m of the Paris-Erdogan equation

da
dN

¼ CDKm ð1Þ

estimated in [9, 10] for both materials are listed in Table 1. Note that in view of data
scatter, which is especially considerable for the material EA4T, the reported DKth

values represent respective lower bound estimates, whereas the parameters C and
m provide an average fit of the experimental data.

Further experimental investigations of fatigue crack growth in steel grades EA4T
and 34CrNiMo6 are available in [19, 21], respectively. Note that all FCG data
mentioned above refer to constant amplitude loading (CAL) tests, whereas railway
axles are generally subjected to variable amplitude loading (VAL) representative of
in-service load spectra, which examples are provided in [9, 14, 16, 20, 26]. To
quantify the effect of VAL on fatigue crack propagation, a limited amount of test
data on both standard specimens and full-scale axles are available [9, 10, 14, 20,
26], most of which obtained under block loading conditions. Exceptions are
full-scale axle tests reported in [26], where a complex test load sequence was
applied according to respective service load measurements.

2.2 Effect of Specimen Geometry

When applying the fracture mechanics methodology to the assessment of railway
axles, one of the key issues is the transferability of material data derived in tests on
standard specimens to a component containing a surface crack. For the latter, the
initial size is typically assumed just below the detection limit of a specific NDE
technique, whereas the final crack size considered in the assessment can be selected
to reasonably bound FCG rates at the final stage of crack propagation. For instance,
a final crack depth of about 10 mm [26] can be regarded as a rational limit, above
which the remaining fatigue life of an axle until fracture is usually a small fraction
of the total lifetime. Taking into account that the axle outer diameter is normally

Table 1 Threshold value, DKth, and parameters of the Paris-Erdogan equation for EA4T and
34CrNiMo6+QT according to [9, 10]

Steel grade R = −1 R = 0.1

ΔKth C m ΔKth C m

EA4T 13.0 2.74 × 10−10 3.2 7.5 2.65 × 10−9 3.2

34CrNiMo6+QT 13.0 4.32 × 10−9 2.5 6.5 2.42 × 10−8 2.5

Units: MPa√m for DK, mm/cycle for da/dN
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within 150–200 mm, crack sizes relevant for the axle assessment are essentially
smaller than those in standard fracture mechanics specimens. As a consequence, the
local stress-strain field achieved along the crack front in an axle may significantly
differ from that in a standard specimen.

The above effect is often considered in connection with the crack tip constraint
(e.g. expressed in terms of the T-stress) and can influence FCG rates in different
fracture mechanics specimens [22, 27–29]. As a part of the experimental program in
[9], a large number of axle-like specimens made of both EA4T and 34CrNiMo6
+QT were tested under in-plane bending, including both CAL and VAL block
programmes. The respective specimens were manufactured as full-scale or 1:3
scaled solid axles containing initial fatigue pre-cracks generated from electrically
discharge machined (EDM) notches of semi-elliptical shape with depths of about
2–5 mm. The test evaluation revealed considerably lower FCG rates for cracks in
the axle-like specimens as compared to the standard M(T) geometry. It is worth
mentioning that stress levels applied in the respective axle tests [9], both at CAL
and VAL, produced DK and da=dN values within the Paris regime, so that the
analytical FCG curve, Eq. (1) along with the parameters according to Table 1, could
directly be used to estimate fatigue crack propagation in the axle specimens. As a
result, the calculated remaining fatigue lives were approximately 3–5 times smaller
than those experimentally observed, see [9, 10]. Though this finding may be pos-
itively appraised, concluding that the use of the material data and the analytical
approach adopted in [9, 10] provides conservative estimates of fatigue lives for
cracked axles, the need to better understand the geometry (or constraint) effects in
fatigue crack propagation analyses becomes obvious.

The influence of the specimen geometry on FCG rates is demonstrated in Fig. 2
using experimental data from [22] derived for the material EA4T. In that study, two
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Fig. 2 FCG rates for the steel grade EA4T using different specimen geometries, R = 0.1 [22]
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standard specimen types, M(T) and C(T), as well as two round bars with a diameter
of 50 mm were tested at R = 0.1. The round bar specimens contained semi-elliptical
fatigue pre-cracks which extension was monitored by means of beach marks. To
minimize crack closure effects, tests on the round bar specimens were performed at
a constant maximum load. Note that due to a narrow spacing between the initial
beach marks and their fuzzy contours, the evaluation of the beginning stage of crack
propagation in the round bar specimens was rather ambiguous. For this reason, few
initial points for both respective specimens exhibit a considerable scatter and
deviate from the anticipated trend line. On the whole, the results in Fig. 2 reveal
similar FCG rates for the C(T) and round bar specimens, whereas the M(T) spec-
imen produces faster crack growth, especially in the near-threshold regime. When
comparing the M(T) and C(T) geometries, similar observations were made by
Vecchio et al. [27] and Hutar et al. [28], whereas Tong [29] concluded the opposite
trend.

3 Stress Analysis for Railway Axles

The axle body, geometric transitions and wheel seats are often considered as most
critical locations with respect to crack initiation and potential propagation, see e.g.
[6, 9, 12, 13, 16, 30]. As a prerequisite for a fracture mechanics based assessment,
detailed stress calculations for the respective axle zones are required which are
usually performed using the finite-element method. A particular emphasis is on an
accurate description of stress gradients in geometric transitions. Besides bending
stresses resulting from loads acting on the axle [1, 2], residual stresses due to press
fittings need to be considered [30], which may significantly affect crack propagation
near wheel, gear or brake seats.

3.1 Example of Stress Calculations

In this section, examples of stress calculations are presented which refer to an axle
geometry considered within the project [9]. The respective axle design is repre-
sentative of a solid leading trailer axle of a commuter train with speeds up to
160 km/h. Figure 3 shows the finite-element model of the axle and wheel assembly,
as well as an indication of two cross-sections in the transition zone from the wheel
seat to the shaft selected for fracture mechanics analyses. Characteristic dimensions
in the assessment part of the axle are as follows: the shaft diameter d = 160 mm, the
wheel seat diameter D = 185 mm, the transition radii in the fillet R1 = 15 mm and
R2 = 75 mm. The assessment cross-section #1 is located at a distance of 10.3 mm
from the wheel seat edge and corresponds to the transition from the fillet radius R1–

R2. The assessment cross-section #2 is located within the fillet radius R2, at an axial
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distance of 22 mm from the wheel seat edge. The axle diameter at the cross-sections
#1 and #2 is approximately 165.2 and 160.8 mm, respectively.

The service load spectrum used in the calculations is given in Fig. 4 as a
histogram of the axial stress amplitudes normalised by the value corresponding to
the straight-track regime (vehicle’s weight as the only axle load). The data were
derived in [9] from strain gauge measurements at the axle free surface, at a char-
acteristic position referred to a cylindrical part with a nominal diameter of 160 mm.
The load spectrum is based on data records performed over a mileage of about
5300 km, including representative track sections, and subsequently extrapolated to
cover an overall design service time corresponding to 3 × 109 cycles. Details of the
load spectrum measurement procedure and further results can be found in [9].

Axle stress calculations were performed in two steps. First, press fitting was
modelled assuming the maximum allowable interference of DD ¼ 0:386 mm
between the wheel seat and wheel bore diameters. Although not indicated in Fig. 3,
press fitting of the gear was also modelled. In the second step, the bending moment
corresponding to a nominal stress of 100 MPa in the axle shaft (d = 160 mm) was

assessment locations: #1 #2

Fig. 3 Finite-element model of the reference axle [9] with indication of assessment locations
between the wheel and gear seats
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additionally applied. Besides the interference, DD, the coefficient of friction
(COF) is a further parameter influencing the stress magnitude and distribution due
to both press fitting and bending [31]. In the example considered here, this was
assumed to be COF = 0.12 which is characteristic of a value at the beginning of the
service life for a new wheelset assembly.

The resulting axial stress distribution due to superimposed press fitting and
bending is shown in Fig. 5a for an axle part including both seats as well as the
adjacent transitions. Figure 5b is a detailed stress plot in the assessment
cross-section #2 demonstrating a complex two-dimensional (2D) stress distribution
with gradients in both the radial and the circumferential direction. This feature is
explained, on the one hand, by the superposition of the bending stresses with the
axisymmetric stress field due to press fitting. On the other hand, as shown in
Fig. 5c, pure bending load results in 2D stress pattern in cross-sections close to
geometric transitions where the classical beam bending theory does not apply. This
important feature requires appropriate solutions for stress intensity factors which are
able of taking into account 2D stress gradients in a prospective crack plane.

3.2 Effect of Press Fit Conditions

As mentioned above, both the interference of press fitted parts and the associated
friction coefficient influence the stress magnitude and distribution. To quantify the
respective effects, analyses were performed assuming the above parameters to vary
within reasonable ranges.

According to the wheelset design specification [9], the minimum and the max-
imum values of the allowance for interference are equal to DDmin ¼ 0:2 mm and
DDmax ¼ 0:386 mm, respectively. To cover the whole range of the interference

(a) (b) (c)

assessment location #2

gear seat

wheel seat

Fig. 5 Axial stress in the axle at superimposed press fitting and bending at a nominal bending
stress of 100 MPa (a). Details (b) and (c): stress distributions in the assessment section #2 at
superimposed press fitting and bending and at pure bending load, respectively. Results for DD ¼
0:386 mm, COF = 0.12
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achieved for axles in operation, the following discrete values are considered below:
DD ¼ 0.2, 0.246, 0.294, 0.34 and 0.386 mm. The lower bound of the coefficient of
friction is estimated to be COF = 0.12, being representative of a new (as manu-
factured) wheelset assembly. Further values of COF ¼ 0:2; 0:4 and 0.6 are addi-
tionally considered to take into account presumable changes of the contact
interaction conditions during the service life. Altogether, twenty parameter com-
binations of DD and COF are analysed.

The calculated axial residual stress due to press fitting is shown in Fig. 6 as a
function of the radial distance in two assessment cross-sections, for different pairs
DD; COFð Þ considered. The curves in the diagrams are arranged according to DD
and COF values: the smaller the allowance for interference and the friction coef-
ficient, the lower residual stresses are achieved at the axle surface. Note also that the
assessment section #2 is subjected to higher press fit stresses with a more pro-
nounced in-depth penetration, as compared to the section #1.

The latter conclusion is confirmed in Fig. 7a which is a plot of the axial stress
component due to press fitting along the axle surface. The abscissa in the latter
diagram represents the axial distance measured from the wheel seat edge.
Accordingly, the stress at the surface continuously increases with increasing both
the interference and the friction coefficient. At the same time, the location of the
stress maximum is not uniquely defined, shifting towards the wheel seat edge with
increasing DD and COF. At superimposed press fit and bending loading, two rather
distinct stress maxima can be identified at the axle surface (see Fig. 7b where the
nominal bending stress in the shaft equals to 100 MPa) corresponding to the
assessment cross-sections #1 and #2, as previously defined in Sect. 3.1.

Inter alia, these results demonstrate that both fatigue crack initiation and sub-
sequent crack growth in railway axles should generally be regarded as probabilistic
phenomena by taking into account the scatter, variability and uncertainties of all
relevant input parameters, including material data, axle geometry and loading.

(a) (b)
σ

ΔD = 0.2 mm, COF = 0.12

ΔD = 0.386 mm, COF = 0.6

σ ΔD = 0.2 mm, COF = 0.12

ΔD = 0.386 mm, COF = 0.6

Fig. 6 Axial stress due to press fitting at assessment cross-sections #1 (a) and #2 (b)
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4 Stress Intensity Factors for Surface Cracks in Axles

A number of analytical models and associated stress intensity factor (Mode I)
solutions have been developed in the past for analyses of surface crack growth in
cylindrical bars. Some of the models developed for this purpose consider the crack
front described by a circular segment [32–35], whereas a more universal approxi-
mation is achieved assuming a semi-elliptical crack shape [36–41], see Fig. 8. In the
latter crack model, a denotes the crack depth or the minor ellipse half-axis, the
parameter 2c represents the major axis of an ellipse describing the crack front, and
r is the cylinder radius. The physical crack length, 2s, is measured along the
cylinder circumference between the intersection points of the ellipse with a circle of
the radius r.

The corresponding part-elliptical crack model is usually parameterised by two
independent dimensionless geometrical parameters, a/c and a/r, whereas the

(a) (b)
σ ΔD = 0.2 mm, COF = 0.12

ΔD = 0.386 mm, COF = 0.6

σ

ΔD = 0.2 mm, COF = 0.12

ΔD = 0.386 mm, COF = 0.6

Fig. 7 Axial stress along the axle surface due to press fitting (a) and at superimposed press fit and
bending loading with the nominal bending stress magnitude of 100 MPa (b)
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Fig. 8 Fracture surface of a
round bar specimen with
beach marks (left) and the
model of a semi-elliptical
surface crack (right)
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evolution of the crack shape, a/c, can be estimated by independently calculating
crack growth increments in the depth and length directions, respectively. In such a
case, the stress intensity factor, K, should be available at least for two characteristic
locations on the crack front (Fig. 8) representative for the crack growth in the radial
(crack centre or deepest point A) and circumferential (surface point C) directions [36,
39–41]. Some simplified solutions provide the stress intensity factor for the deepest
point only, while assuming the crack shape evolution, a/c versus a/r, to follow a
predefined curve according to particular experimental observations [32, 38].

Most of the K solutions mentioned above have been derived for cylindrical rods
subjected to tension and bending loads, so that their application to railway axles is
generally limited to crack locations in cylindrical parts not affected by stress con-
centrators or press fits. An exception is likely the solution after Shiratori et al. [36]
referred to in [37], although the relevant data reproduced in the handbook [37] are
given only for a combined tension and bending loading (linear stress distribution in
the prospective crack plane).

Several authors point out that, except for the crack centre point A, rotary bending
produces a higher stress intensity factor range as compared to the case of plane
bending [36, 37, 39, 40]. Accordingly, stress intensity factors for both plane and
rotary bending are provided in those papers. However, the effect of rotary bending
is rather negligible for small cracks and becomes pronounced only for relatively
large cracks sizes which are usually not tolerable in railway axles under service
conditions. For this reason, distinguishing between the plane and rotary bending is
regarded to be of minor practical importance in the assessment of lifetime and
inspection intervals for railway axles [9, 30]. Nonetheless, appropriate K solutions
for cracks subjected to rotary bending may help to better understand crack
behaviour in test axles where substantial amount of crack growth is achieved.

A further summary of stress intensity factor solutions applicable to railway axles
can be found in [42]. A special emphasis in that paper is on accurate stress intensity
factor calculations taking into account loading conditions accomplished in critical
axle parts, such as geometric transitions and zones affected by press fits.
A particular analysis method included in [42], Chap. 5, was originally derived by
the present authors within the research project [9]. The respective solution is based
on the polynomial influence functions technique and applies to a general case of
continuous stress distribution in the prospective crack plane (see e.g. Figure 5)
which can be approximated by a two-dimensional 4th order polynomial
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n¼0

D 1ð Þ
mn

x
r

� �m y
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ð2Þ

with geometric notations according to Fig. 8. The two polynomial functions in the
brackets of Eq. (2), associated with the coefficients D 1ð Þ

mn and D
2ð Þ
mn , represent the even

and the odd terms of the stress field about the symmetry plane y = 0, respectively.
Both cases need to be considered at rotary bending, whereas the odd term can be
omitted in case of plane bending. The stress approximation by a two-dimensional
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polynomial of the coordinates x and y is essential to assure that the stress gradients
in both radial and circumferential directions are taken into consideration (see
Fig. 5b, c).

Two sets of stress intensity factors, K 1ð Þ
mn and K 2ð Þ

mn , were numerically calculated in
[9] for 50 basic load cases of type

r 1ð Þ
mn ¼ x

a

� �m y
c

��� ���n; r 2ð Þ
mn ¼ sgn yð Þ x

a

� �m y
c

��� ���n; m; n ¼ 0; . . .; 4 ð3Þ

where the superscripts (1) and (2) refer to the even and odd stress distributions,
respectively. Subsequently, the polynomial influence functions were derived as
dimensionless coefficients

f 1ð Þ
mn ¼ K 1ð Þ

mnffiffiffiffiffiffi
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mn ¼ K 2ð Þ

mnffiffiffiffiffiffi
pa

p ð4Þ

The latter are tabulated in [9, 42] for the surface and the deepest point of the crack
front and various crack geometries covering parameter ranges of 0.2 ≤ a/c ≤ 1,
0.05 ≤ a/r ≤ 1. Note that the corresponding results compilation (Table 12 in [9] or
Table 20 in [42] ) contain a typing error: instead of a/c = 0.8, the correct value of
a/c = 0.75 should be used whenever indicated.

Given the coefficients D 1ð Þ
mn and D 2ð Þ

mn in Eq. (2) determined via a stress field
approximation, e.g. using the least-square fit procedure, the calculation of the stress
intensity factor for a particular crack geometry reduces to
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In the latter equation, ϕ denotes the angular location along the crack front, as
indicated in Fig. 8.

5 Fatigue Crack Growth Calculations

In this section, crack growth calculations are performed for the reference axle
geometry containing a fatigue crack initiated at the location #1 or #2, as specified in
Sect. 3 (see Fig. 3). The initial crack is assumed to be of the size a × 2c = 2 × 5 mm2

(crack aspect ratio a/c = 0.8), which is considered as an appropriate postulate within
the wheelset specification requirements currently adopted by the German railway
operator Deutsche Bahn [26]. The final crack size in FCG calculations is limited to
a = 10 mm as discussed in Sect. 2.2.
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Among factors affecting the estimated residual fatigue life of the axle with a
crack, the following issues are specifically addressed:

• consideration of residual stresses due to press fitting;
• evaluation of stress amplitudes and stress ratios relevant for crack propagation;
• probabilistic aspects of the FCG analysis.

As already mentioned, both the interference of press fitted parts and the asso-
ciated coefficient of friction may significantly affect the stress state at prospective
crack location and thus the crack propagation behaviour [9, 30, 31]. To demonstrate
the effect of press fitting on the residual lifetime, the reference axle example is
considered assuming a crack located in the cross-section #2, the maximum inter-
ference of DD ¼ 0:386 mm, and a friction coefficient of COF = 0.12. Furthermore,
the load spectrum shape according to Fig. 4 is used, whereas the vehicle weight
(equivalently, the basic load level used in the normalisation) is selected to achieve a
remaining lifetime corresponding to a mileage of about 300,000 km. The so defined
number of load cycles is denoted by Nref and used as a normalisation factor for the
computed lifetime throughout the analyses presented below.

Figure 9 compares the residual lifetime estimates obtained with and without
considering residual stresses due to press fitting. The results demonstrate that
ignoring the effect of press fitting leads to a considerable overestimation of the
fatigue life, which is not acceptable for safety reasons.

A tensile residual stress due to press fitting (Fig. 6) acts as a mean stress shifting
the stress intensity ratio, RK ¼ Kmin=Kmax, from RK = −1 corresponding to a pure
rotary bending load towards higher values. The latter depend on the particular stress
amplitude of the load spectrum, the residual stress magnitude and the current crack
size. Thereby, a field of the threshold values, DKth, and FCG curves, DK � da=dN,
both being functions of RK, should be considered in the crack propagation analysis.
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Fig. 9 Effect of stresses due to press fitting on the estimated residual lifetime: crack location at
cross-section #2, DD ¼ 0:386 mm, COF = 0.12
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As a result, the shape of the load spectrum and its magnitude, as defined through the
vehicle weight, being interacted with the residual stress distribution produce a
complex dependency of the amount of crack propagation upon the relevant load
parameters.

For the axle example and load conditions considered above (see the solid line in
Fig. 9), Fig. 10a shows the contribution of different steps of the load spectrum to the
total crack extension from the initial depth of 2 mm until the final depth of 10 mm.
Accordingly, the load steps with normalised amplitudes both exceeding the value of
about 2.5 and those below about 1.3 have a negligible effect on the remaining
lifetime. This is due to the fact that those high stress amplitudes occur very rarely,
as compared to the total number of cycles in the spectrum, whereas the very low
stress amplitudes with a considerable amount of cycles produce stress intensity
factor ranges below the respective threshold. The RK values relevant for the FCG
analysis can be estimated from Fig. 10b. This shows that the major part of crack
growth occurs within the range of −0.5 ≤ RK ≤ −0.2 which may be regarded as a
suggestion for a rational material testing programme.

As a matter of fact, most FCG analyses for railway axles contain various
uncertainties. These can be handled by e.g. adopting upper bound DK � da=dN
curves for a particular material, including conservatively estimated DKth values,
assuming the most unfavourable combination of the press fit parameters (maximum
allowable interference and a very high COF value), and eventually using conser-
vative assumptions regarding the load spectrum shape and associated stress mag-
nitudes. Although such an approach is principally acceptable, it may considerably
underestimate the axle fatigue life, on the one hand, and provides no insight into the
large scatter of axle test results, on the other hand.

In the following example, only a part of the parameter spectrum relevant for the
scatter and uncertainties in fracture mechanics calculations for railway axles is

(a) (b)

0

0.3

0.6

0.9

1.2

1.5

4 6 8 10 12 14 16 18 20 22

C
ra

ck
 e

xt
en

si
on

[m
m

]

Stress amplitude index

2.09

2.18
2.27

2.0

1.91

2.36

2.45

2.552.64

1.82

1.73

1.64 1.55

1.45 1.36

1.27

0

0.5

1

1.5

2

2.5

3

3.5

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1

C
ra

ck
 e

xt
en

si
on

 [m
m

]

Stress intensity ratio, RK

Fig. 10 Contribution of different stress amplitudes of the load spectrum (a) and respective stress
intensity ratios (b) to fatigue crack propagation. Example data: crack location at cross-section #2,
DD ¼ 0:386 mm, COF = 0.12. Numbers in the diagram area in (a) represent the normalised values
of stress amplitudes according to Fig. 4

116 I. Varfolomeev and M. Luke



addressed. This concerns an inherent variability of the interference for the
axle-wheel pair as well as changes of the friction coefficient during the service time.
The respective parameter variations were already defined and considered in the axle
stress calculations, Sect. 3.2. To derive a statistical representation of the fracture
mechanics based results, the interference is considered as a distributed quantity
following a normal distribution. The distribution mean is set to lDD ¼ 0:294 mm
which is the arithmetic mean of the maximum and minimum interference values
according to the wheelset design specification. The standard deviation is defined as
rDD ¼ 0:046 mm, which corresponds to the assumption that the specified lower and
upper DD values of 0.2 mm and 0.386 mm, respectively, cover the range of
lDD � 2rDD, i.e. the allowance for interference is complied with the wheelset
design specification in 95.4 % cases.

FCG analyses are then carried out using a Monte-Carlo approach to generate the
interference value, whereas respective residual stress distributions are estimated by
interpolating the calculation results for discrete DD values previously derived in
Sect. 3.2 (see Fig. 6). Each individual simulation is performed at a constant friction
coefficient (COF ¼ 0:12; 0:2; 0:4 or 0.6) and for the crack location in the
cross-section #1 or #2. Hence, the lifetime estimates obtained in this way are
believed to be representative for the whole fillet zone of the axle.

The results of this exercise are statistical distributions of the remaining axle
lifetime plotted in Fig. 11 as a dimensionless quantity normalized by the reference
lifetime Nref (solid line in Fig. 9). Different curves are grouped according to the
assessment location within the axle fillet. All data series in Fig. 11 are approximated
by a three-parameter Weibull distribution, whereas the normal distribution function
also provides a good data fit for the majority of cases.
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A considerable variation in the calculated fatigue lives is predicted as a result of
varying manufacturing tolerances, while assuming the other influencing factors
constant. The results scatter is quantified by the ratio of the fatigue lives estimated
at 97.7 and 2.3 % probability levels, the latter being in accordance with the assumed
distribution parameters for DD. Apparently, a pronounced effect (scatter factor of
1.6–2.2) is achieved by varying the interference alone. Additionally including
potential changes of the friction coefficient into consideration produces an increase
of the scatter factor up to 3–4. When comparing curves for both assessment
cross-sections at equal values of the friction coefficient, a lower scatter can be
deduced for the location #1.

At the same time, due to the variation of the friction coefficient, the median
values of fatigue lives reveal a larger scatter at the location #1 (factor of about 1.7).
For comparison, the results for the location #2 differ by only 10 %. This implies that
a possible increase of the friction coefficient during the service life (e.g. due to a
loss of lubricant, wear, heating-up) would not lead to a considerable increase of
crack propagation rates at the location #2. On the whole, the results for the
assessment cross-section #2 can be regarded as conservative lower bounds for
the whole fillet zone of the axle considered in this study. However, the criticality of
the location #1 with respect to crack propagation rates increases with increasing the
friction coefficient. This is confirmed by a decreasing distance between respective
distribution curves in Fig. 11.

The scatter factors estimated above are representative for particular press fitting
conditions, an assessment cross-section and an initial flaw size and shape.
Considering that the crack initiation sites may be arbitrarily distributed within the
fillet zone and the initial crack shape cannot distinctly be defined, an even larger
variation in residual lifetime is achieved for axles with postulated defects under
service conditions.

6 Notes on Crack Growth Behaviour in Press Fits

Depending on the axle design, material and bending stress magnitude, crack ini-
tiation may occur in press fitted parts, rather than in the axle body. Numerous
examples of cracks initiated in wheel seats both in test rigs and under operation
conditions can be found in [5, 13, 14, 16]. In those studies, long cracks over almost
the whole seat circumference are often observed, whereas most of them exhibit a
limited propagation in the depth direction. The respective cracks likely nucleate at
multiple sites, usually located near the seat edge, and subsequently coalesce
forming a long surface crack. Different from the observations in [5, 14, 16], mul-
tiple crack patterns of small surface defects distributed over a larger surface area are
reported for the axle design of the Shinkansen train [13].

Note that most studies of crack behaviour in press fits confine to large scale tests,
whereas no models for a reliable assessment of crack propagation, comparable to
those established for FCG analyses in the axle body, are available yet. This is
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mainly due to a complex phenomenon of the crack growth in areas affected by the
contact interaction, where the conventional solutions of the linear-elastic fracture
mechanics are generally not applicable. Additionally, a mixed deformation mode
for cracks in press fits and plastic deformations due to press fitting are further
aspects which need to be considered in the assessment.

In the analysis presented in this section, two types of surface cracks are con-
sidered in the wheel seat of the reference axle geometry:

• semi-elliptical crack of the size a × 2c = 4 × 16 mm2;
• completely circumferential crack with the depth a = 4 mm.

Both cracks are assumed to be located at a distance of 4 mm from the seat edge
in a plane normal to the axle surface. The principal expectation is to explore
differences achieved in the crack driving force for the two crack geometries which
may help to explain some of the experimental findings mentioned above.

In the finite-element calculations, the contact interaction is modelled for both the
wheel-axle pair and the opposite crack faces. After press fitting, a reverse in-plane
bending load with the net stress amplitudes of 200 MPa (referred to the axle shaft
with d = 160 mm) is applied, which value is close to the stress level achieved in
axle fatigue tests with the emphasis on crack initiation in press fits [5]. The resulting
stress intensity factor ranges, DK, versus the net stress amplitude are compared in
Fig. 12a for the two crack geometries considered.

Note a substantially higher crack driving force calculated for the semi-elliptical
crack as compared to a completely circumferential crack of equal depth. This result,
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Fig. 12 Stress intensity factor ranges for two crack geometries in the wheel seat (a). Details
(b) and (c): axial stress patterns on deformed models of the axle-wheel assembly with the crack
location in the wheel seat: b semi-elliptical crack, a × 2c = 4 × 16 mm2; c completely
circumferential crack, a = 4 mm. Load case: press fitting and bending
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which may be regarded as implausible at first glance, can be explained by exam-
ining deformed shapes of the two models shown in Fig. 12b, c, respectively.
Accordingly, local deformations around the relatively small semi-elliptical crack
lead to the loss of contact in the crack vicinity (Fig. 12b) and thus promote its
opening at both press fit and bending loads. In contrast, in presence of a completely
circumferential crack, the wheel bore and the seat remain fully in contact at both
press fitting and superimposed bending (Fig. 12c). This effect counteracts crack
opening due to bending and reduces the effective crack driving force. The latter
feature can also be observed by comparing the axial stress distributions in Fig. 12b,
c (note the same scale used in both plots), in particularly at the respective crack tips.

Figure 13 shows contact stress patterns (radial stress component) in the wheel
seat for the two crack models, at both press fitting and superimposed press fitting

Fig. 13 Distribution of the contact stress in the wheel seat containing a crack: a semi-elliptical
crack, a × 2c = 4 × 16 mm2; b completely circumferential crack, a = 4 mm. Left press fitting, right
press fitting and bending
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and bending with a nominal bending stress of 200 MPa. These results demonstrate
that a small semi-elliptical crack alters the contact interaction within a stripe area
along the whole seat length, whereas no noticeable stress redistribution occurs due
to the presence of a completely circumferential flaw.

The above features along with a comparison of the crack driving force param-
eters in Fig. 12a suggest that, being initiated at the surface, a small semi-elliptical
crack may propagate in both depth and length directions, at least within the stripe
area with the loss of contact. Since multiple cracks can nucleate in a press fit zone,
the coalescence of several cracks located approximately at an equal distance to the
wheel seat edge can be expected leading to a formation of a completely circum-
ferential crack. As a consequence, the crack driving force for the resulting crack
geometry is likely to decrease, so that a retardation of crack growth or even crack
arrest may occur. Though the latter conclusion can be influenced by different
factors, e.g. material properties, bending stress amplitude and press fit parameters, it
seems to reflect available experimental findings of crack patterns in press fits of
wheelsets [5, 13, 14, 16].

7 Conclusions

This paper gives a brief overview of different aspects relevant for the fracture
mechanics based assessment of railway axles. The respective topics have frequently
been addressed in the past, whereas numerous studies performed in the last two
decades have especially contributed to better understanding the crack growth
phenomenon in railway axles. Although the assessment methodology can be overall
regarded as well established, its practical application is a subject of ongoing
research activities aiming at providing generally acceptable tools for both vehicle
manufacturers and operators.

One of the principal problems in the fracture mechanics based assessment of
railway axles arises from the fact that the respective components have to be
available for operation during a very long time. For instance, to meet economic
demands regarding inspection intervals, the axle with a crack should be proven to
endure a number of load cycles of the order of 108. This prerequisite requires highly
accurate models and solutions describing crack propagation in axles, on the one
hand. Some of such solutions with examples demonstrating their application are
provided in the paper. On the other hand, an accurate crack growth analysis is
strongly dependent on the availability of comprehensive material data and in-depth
understanding of material behaviour at the crack tip. In this context, crack growth
behaviour in the threshold regime under load conditions representative of those at
railway axle operation is of special concern.

Summarising the current status in the field, following topics can be regarded as
such that may potentially contribute to establishing a generally acceptable assess-
ment approach:
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• Comprehensive material characterisation for steel grades utilised in railway axle
manufacturing. The respective investigations should focus on the determination
of FCG curves at relevant stress ratios, an accurate determination of the
threshold parameter DKth, effects due to VAL, behaviour of small cracks, and an
appropriate description of the scatter of material data.

• Transferability of material data from standard test geometries to cracks in
full-scale axles.

• Estimation of residual stresses due to manufacturing (heat treatment, surface
finishing) and their incorporation in the assessment concept.

• Use of NDE data in combination with a fracture mechanics based approach.
• Development of a fully probabilistic approach incorporating uncertainties,

variability and scatter of all relevant input data.

Note that most of the issues mentioned above are subjects of the ongoing
research project EBFW3 [17].
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Part III
Fracture Testing



Assessment of Material Properties
by Means of the Small Punch Test

Martin Abendroth and Stefan Soltysiak

Abstract In recent years the small punch test (SPT) method has become an
attractive alternative compared to traditional material testing procedures, especially
in cases where only small amounts of material are available. We provide a literature
review with focus on the history and application of the method. The main difficulty
using the SPT is the fact that relevant material parameters cannot be as simply
obtained by SPTs as by standard test methods, because of its non-uniform stress and
deformation state. However, this can be achieved by comparing the experimental
SPT results with those obtained by finite element computations of SPTs using
advanced material models. Then the task is to determine the parameters of the
material models using special optimization techniques. This paper presents SPT
techniques for a broad temperature range. Work done on both ductile and brittle
materials is presented. The analysis will focus on different advanced methods for
determining parameters of state of the art material models for elastic-plastic, ductile
damage and brittle failure behaviour. Results are provided for a weld line of a
pressure gas pipe and brittle ceramic refractory materials.

Keywords Small punch test � Finite element method � Damage mechanics

1 Introduction

The small punch test (SPT) has been used now for more than thirty years to
determine mechanical properties from miniaturized samples. The use of small
samples becomes necessary if a sufficient amount of material for the production of
standard sized samples is not available.
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The SPT is used in different sizes and different types. The smallest specimens are
standard TEM sized specimen [44, 59]. Other authors use specimens cut from
remnants of Charpy specimens, which are square shaped [6, 7, 53]. There has been
a lot of effort to standardize the SPT and its usage [16], but this is still a running
process. At least, there is a common understanding about the important features of
the test.

A disk or square shaped specimen with a diameter or length D and a thickness
t is placed on a circular die with a receiving hole of diameter d. This receiving die
can have a rounded or straight chamfer edge of size r. The specimen can be
clamped between the receiving die and a down-holder. There are also cases where
the specimen is not clamped, usually for testing very brittle materials to avoid initial
deformations during clamping. The specimen is loaded centrical using a punch with
a spherical tip of radius R. The loading can be a constant displacement rate
(CDR) of the punch, a constant force (CF) applied to the punch or an initial constant
displacement (CD) of the punch followed by a holding (relaxation) time. The
experimental results of the test are usually the punch displacement and/or the
specimen deflection u and the punch force F. In case of time dependent material
behaviour these values are stored together with the time t after starting the test.
Figure 1 shows the typical test set-up and a resulting load deflection curve
(LDC) for a CDR-SPT of a ductile metallic material.

Additional results from the SPT can be very useful like time and punch dis-
placement at specimen failure. Furthermore, strain field measurements can be
performed using optical devices [1, 78].

The typical results for the different types of the SPT are shown in Fig. 2 con-
sidering an elastic, visco-plastic material with a strain induced damage evolution.

The CDR-SPT can be performed at different punch velocities or specimen
deflection rates. The result (see Fig. 1 right) is a load deflection curve (LDC), which
starts with a short linear section (I) related to the elastic response of the specimen,
followed by a typical knee (II) whose height is related to the initial yield strength of
the tested material. The next part of the curve (III) corresponds to the ductile and
strain rate related hardening. The decreasing slope (IV) just ahead of the force
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Fig. 1 Scheme of a SPT loading device and a typical resulting load deflection curve for a ductile
metallic material
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maximum indicates a localization of deformation and the onset of material damage.
The increasing damage leads finally to a decreasing load bearing capacity (V) of the
material due to the failure of the specimen. There is a remaining force at the end of
the test (VI), which is due to the frictional force between the penetrating punch and
the specimen. If the punch speed is increased the curve is shifted to higher forces
due to the strain rate sensitivity and the onset of damage happens at smaller
deflections [3].

The CF-SPT is used to determine the material creep behaviour at different loads
(stresses). As in uniaxial tensile creep tests we distinguish three parts of the curve,
which are related to primary, secondary and tertiary creep, see Fig. 2 middle. The
primary part of the curve is also influenced by some initial plastic deformation at
rather high strain rates. The tertiary part is of course also influenced by a locali-
zation of deformation and increasing creep damage. For increasing test forces a
higher mean specimen deflection will be observed together with decreasing failure
times [26]. In contrast to tensile creep tests there is an initial plastic deformation
within the specimen, which might have an influence on the subsequent creep
behaviour.

The CD-SPT is not as common as the two other types of the test. But never-
theless it is a rather fast test to determine visco-plastic material behaviour. The test
starts with a predefined deflection, which is applied in a short time, followed by a
longer time period where the deflection is kept constant. The main result is the
decreasing part of the curve, which depends mainly on the visco-plastic (creep)
material properties, see Fig. 2 right. The advantage of this test type is that very
small creep rates can be reached in a rather short time and that creep rates for a wide
stress range can be determined.

2 Literature Review

This section presents the interested reader an overview of the history of the SPT as
well as certain applications.

A miniaturized disk bend test (MDBT) was developed 1981 by Manahan et al.
[59] for the analysis of irradiated materials used in nuclear power plants. The main
reason for this development were the high costs associated with investigations

Fig. 2 Typical results for the different types of the SPT (CDR, CF, CD) for a visco-plastic
metallic material with a strain induced damage evolution
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arising on samples with standard size. In this early stage of development sample
dimensions of d ¼ 3 and t ¼ 0:25 mm were used, which is similar to sample sizes
used for transmission electron microscopy (TEM) [57]. The samples were so
designed that no mechanical buckling occurs. This experiment was patented in the
US [58]. Therein it is stated that the receiving die should have a fillet at the inner
bore and the sample has to be clamped with a blank holder and loaded with a punch
having a spherical tip. For the determination of material properties (e.g. Rp0:2) the
finite element method (FEM) was used.

Starting in 1983 Baik et al. [6, 7] used samples having a rectangular
cross-section with the dimensions 10� 10� 0:5 mm3 to investigate the ductile to
brittle transition temperature (DBTT) of neutron irradiated steels. This test was then
called small punch test, because the specimen is not only bent but also heavily
stretched and partially sheared until macroscopic failure occurs. The load was
applied by a steel ball having a diameter of 2:4 mm at a displacement rate of
0:02 mm s�1. The measured DBTT from the SPT could be correlated with the one
obtained from tests on Charpy V-notch specimens. It was found that the correla-
tions depend on the strain rate and the stress state within the sample. In [6] the small
punch work or energy ESP was introduced as the integral value of the punch force
over the specimen deflection for the determination of the transition temperature.

Li et al. [49] conducted experiments to determine the contact radius between
punch and specimen. This value is used for analytical calculations of the tensile
stresses at the specimen side opposite to the punch. Also analytical equations based
on linear elastic plate theories are provided to determine the initial yield stress.
Furthermore, the influence of surface defects on the failure or yield stress was
investigated.

Zhang and Ardell [87] investigated the fracture toughness of ceramic materials
(ZnS). Therefore, using a Vickers indenter cracks were produced on the tension side
of the specimen. Two different failure patterns were observed. On one hand the
expected sudden brittle fracture of the specimen was observed, but on the other
hand also load drops were detected followed by an increasing load with increased
deflection. Such a behaviour was explained with the initiation of small cracks or
flaws which arrest in regions with lower stresses.

Norris and Parker [68] studied the influence of geometrical parameters of the SPT.
Systematically, the sample thickness t, the punch radius R and the diameter of the
receiving hole d have been varied. The sample diameter D was hold constant for all
tests. Three different metallic materials (Al, Cu, 2.25Cr-1Mo-Steel) were investi-
gated and correlations between the results of SPTs and standardized tensile tests
examined. These correlations for yield and ultimate tensile strength have the form

rY ¼ a
Fy

t2
and rUTS ¼ b

Fm

t
;

where α and β depend on the geometrical parameters of the SPT set-up. For the
definition of Fy and Fm see Fig. 1 (right). Garcia et al. [36] studied several cor-
relations and criteria for the determination of rY and evaluated their reliability.
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Fleury and Ha [31] presented an analytical approach for the modelling of SPT
LDCs. The experiments were performed on rectangular samples
(10� 10� 0:5 mm3). The load was applied using a tungsten carbide ball with a
diameter of 2.4 mm at a displacement rate of 0.25 mm min−1. The aim of the work
was to evaluate the life time of austenitic components in steam power plants.
Correlations between SPT results and material data from uniaxial tensile tests could
be established. The approach for the analytical description of the SPT LDCs con-
siders elastic-plastic plate bending and plastic membrane stretching theories.
A further work of this research group [32] deals with the experimental determination
of the DBTT for the same class of materials. It has been shown that a DBTT can be
found using the SPT and that it correlates linearly with the fracture appearance
transition temperature (FATT) obtained from conventional Charpy specimens.

A considerable number of papers is dealing with the identification of properties
of ductile materials. Abendroth and Kuna [1–3] used neural networks, which are
trained with results from finite element simulations to determine the parameters of
the Gurson-Tvergaard-Needleman damage model (GTN-model) from small punch
tests. Three different steels were examined and validated with data for the same
materials obtained from tensile tests. Furthermore, the identified model parameters
were applied to simulations of fracture toughness specimens (CT, SENB) and J-Δa
curves could be predicted.

Finarelli et al. [30] examined the effect of neutron irradiation in austenitic and
martensitic steels using analytical solutions for the determination of yield stress,
equivalent fracture strain and fracture energy.

A lot of research work is related to materials used in nuclear or steam power
plants. One example is P91 material which is a 9 % Chromium steel for creep
resistant high temperature applications. Milička and Dobeš [64] found linear cor-
relations between the SPT maximum force and the tensile strength. The specimen
used there were obtained from remnants of surveillance specimens, which allowed
the determination of additional material data without the need of additional irra-
diation specimens.

With the aid of the SPT the ductility properties of chromium, molybdenum and
tungsten were studied [61]. The ductility of these body-centred cubic generally
brittle materials can be significantly enhanced through targeted pre-deformation by
the associated introduction of dislocations.

Of equally great interest such as the determination of plastic material properties
is the determination of properties of brittle materials. Primarily the effects of neu-
tron or ion irradiation on the properties of different metallic materials were studied.
Ardell [5] presented investigations for a variety of irradiated inter-metallic mate-
rials, which are used in high-temperature applications.

Linse et al. [51, 52, 54] used the SPT to investigate the neutron embrittlement
which shifts the DBTT towards higher temperatures. Furthermore, the tests were
performed within a temperature range from −185 to +70 °C to cover the brittle,
transition and ductile region. The ductile behaviour was modelled using a non-local
extension of the GTN-model to overcome the mesh dependence, which often occurs
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in damage mechanical simulations. For covering the transition and brittle failure
behaviour the Beremin model [8] was used. The parameter identification for the
models was done using neural networks and non-linear optimization algorithms.

In addition to the previously described studies the SPT is often used to determine
fracture mechanical parameters. Misawa et al. [66] determined the equivalent
fracture strain for austenitic steels at low temperatures from SPT experiments and
found a relationship to the fracture toughness JIc ¼ k�eqf , where k is a material and
geometry dependent parameter.

Saito et al. [73] made an investigation of the temperature dependence of the
failure stress for different brittle ceramic materials (SiC, PSZ, Al2O3, Si3N4). To
determine the onset of cracking an acoustic emission detection method was used.

Matsushita et al. [62] investigated various ferritic steels and could not confirm
the linear relationship between FATT and DBTT for those materials. Due to the
large scatter in the results of the DBTT they propose a multi linear regression to
relate FATT and DBTT.

An approach often used is the correlation of the applied work in SPT with
standardized fracture mechanics parameters (JIc, KIc). Foulds and Viswanathan [33–
35] investigated this method and found that the difference between the KIc values
from SPT and standard tests can be up to ±25 %.

Misawa et al. [65] used this method in combination with a statistical analysis
based on the Weibull distribution. Kim et al. [46] also used the small punch work
ESP to determine the change of the transition temperature of a boiler tube of a power
plant after use under operating conditions which caused material changes.

Bulloch [14, 15] used the small punch energy to determine both the transition
temperature and the fracture toughness JIc for low alloy steels in an indirect way.
First the biaxial stress state within the SP specimen is related to the SP energy and
than the fracture toughness is related to the fracture strain according to the small
scale yielding condition (see Rice and Johnson [72]).

Mao et al. [60] studied both brittle and ductile ceramics and metals used in power
plant applications. They also used the biaxial strain at failure for the determination of
JIc for the metallic materials, and the failure stress for the determination of KIc for the
ceramic materials. For the test series empirical equations were derived, which permit
the determination of the fracture toughness directly from SPT results.

Chi et al. [18] used the method explained above for determining the effect of
neutron irradiation on the fracture toughness of nuclear reactor materials. They
found that the fracture toughness is significantly reduced by neutron irradiation and
that the fracture toughness JIc determined from the SPT was 20–30 % underesti-
mated. These results were obtained by comparison of JIc values from the small
punch tests with those from Charpy-V samples.

Bulloch [13] also conducted detailed fractographic investigations by scanning
electron microscopy (SEM) to determine the portions of brittle and ductile fracture
surface patterns within the transition and brittle region. Even at very low temper-
atures (−100 °C) and for macroscopic brittle failure behaviour ductile fracture
patterns were found on the crack surfaces.
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Bulloch [14] published an overview about the existing literature regarding
CrMo-steels and found that the linear relationship between the small punch tran-
sition temperature TSP and FATT proposed by Baik et al. [6] only holds for a small
portion of these materials. He proposed instead a non-linear relationship as
FATT ¼ C=T2

SP, where C is a scaling factor. In addition, based on this data the
relation between TSP and grain size, which was proposed by Matsushita et al. [62]
could be supported.

Shekhter et al. [75, 76] have also investigated a CrMo steel using SPT,
Charpy-V notch test and three point bending test (3 PB). They found that the KIc

values determined by SPT and Charpy-V were higher than those determined from
the 3 PB test. Regarding the correlation of fracture toughness values determined by
SPTs and those by conventional tests a lot of additional publications can be found
[12, 17, 21, 36, 37, 47, 56, 74, 77, 83–85].

In all previously cited publications fracture mechanical parameters were deter-
mined from samples without macroscopic cracks. But there are efforts to prepare
samples with defined cracks for small punch testing to improve the fracture
mechanical behaviour. Ju and Kwon [43] placed a through-crack in SP samples
having a rectangular cross-section and measured the true crack geometry for each
single specimen. The onset of cracking was detected by acoustic emission. To
determine fracture mechanical properties they used analytical solutions of elastic
plate bending theory and linear elastic fracture mechanics.

Another method to produce well defined cracks in SP samples is the use of a
Vickers indenter [87]. The geometry of the cracks were made visible by means of
fluorescent liquid penetrating the cracks. The determined fracture toughness of
Al2O3 measured by Rasche [69] with the SPT lay about 20 % below the reference
value. Turba et al. [79] presented SP specimens with a circular notch with a
diameter of 2.5 mm around the center of the specimen. These cracks were produced
by electrical discharge machining into P91 material. This particular crack geometry
was chosen in order to produce a plain stress state around the crack
tip. A disadvantage of this crack configuration is the fact that the crack is not under
pure mode I loading, but rather under a mixed-mode.

Cuesta and Alegre [19, 20] used for their investigations samples with a rect-
angular cross section and a thickness t ¼ 1mm. The depth of the straight crack was
varied in several steps. For the evaluation of the experiments and the determination
of the crack initiation point a finite element model was used. It has been demon-
strated that KIc values can be determined within the range of those from Charpy
tests results if the crack has a sufficient depth.

Another interesting test, which was derived from the SPT is the ball on three ball
(B3B) test. Here, the specimen is supported by three balls instead by a circular die,
which leads to a well defined support, which is especially necessary for very brittle
materials. Rasche [69] and Rasche et al. [70] performed a study on 96 % pure
alumina (Al2O3) to determine the parameters for a Weibull model describing the
brittle failure probability. It became obvious that a size effect needs to be considered
accounting for the stressed volume of different specimens.
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Another application of the SPT is the investigation of time dependent material
behaviour. Therefore a constant load (force) is applied, whereas this type of test is
called constant force SPT (CF-SPT). To investigate the repeatability and accuracy
of CF-SPTs a round robin within an European project was performed [82]. It could
be shown, that the repeatability of CF-SPT experiments is as well secured as the
repeatability of conventional creep tests. It could be also shown that for both a low
as well as for a high-alloy steel a modified Arrhenius function for describing the
temperature dependence for the time to failure can be used.

Yang and Wang [86] used a combined approach, where experiments as well as
the finite element method were used to investigate the dependence between the
creep strain in the center of the sample and the punch displacement. It was found
that the creep strain at the sample center is independent of the applied load, the
temperature and the elastic-plastic behaviour of the material.

Milička and Dobeš [63, 64] conducted studies about the creep strength of P91
steel using conventional tensile creep tests as well as CF-SPTs. They found a linear
relation between the force used for CF-SPTs and the stresses within tensile creep
specimen for tests with a similar time to failure. This relationship was examined
later in more detail and confirmed by means of finite element analyses [25]. The
same research group has shown that a Monkman-Grant relationship can be used to
correlate the time to failure in the CF-SPT with the minimum creep rate [22]. In
addition, the linear correlation between the CF-SPT punch force and stress in the
tensile creep test, leading to the same failure time for particle reinforced aluminium
alloys could be confirmed [23].

Li and Šturm studied the creep rupture strength of P91 welds [50]. Due to the
small sample volume, which is required for the SPT specimens, a detailed study of
the material property variations in the individual zones (primary material, heat
affected zone and weld metal) of the weld was possible. A similar study on a P91
weld was done by Blagoeva and Hurst [11]. However, the focus here was on the
exact application and thus confirmation of the 2006 established code of practice for
small punch creep testing [16].

Kato et al. [45] used again much smaller samples d = 3 × 0.35 mm to get a better
resolution of the material properties of the individual zones of the weld. Dobeš and
Milička [24] have shown that different approaches for the prediction of residual
lifetimes of conventional experimental data (Larson-Miller, Fisher-spine) can be
also applied to small punch tests.

Dymáček and Milička [26, 27] investigated the influence of friction using FEM.
They came to the conclusion that a direct determination of the friction is not
possible. However, by post mortem examinations on samples and comparative
simulations conclusions can be drawn on the friction.

Evans and Evans [29] presented a viscoplastic constitutive law for the
description of the material behaviour of a Cr-Mo steel. The material parameters
were determined by means of SPTs and then validated with results from uniaxial
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tensile tests. Later, Evans and Wang [28] presented a validation of the model based
on literature data. Based on this investigation SPT creep data could be converted
into uniaxial tensile test creep data.

Holmstrom et al. [41] presented an analytical approach for the determination of
uniaxial creep curves based on SPT results and the Wilshire model for creep
damage. This study was related to a P91 weld.

Besterci et al. [9, 10] have shown that by means of CF-SPT anisotropic material
properties can be also examined. A particle reinforced aluminium showed for a load
transverse to the pressing direction the lowest creep strength.

A comprehensive investigation of CF-SPTs was performed by Hyde et al. [42].
Analytical relations between CF-SPTs and conventional creep tests have been
derived. Furthermore, possibilities for the evaluation of SPTs by FEM were
investigated. Conversion factors between the uniaxial creep strain or stress and the
biaxial creep strains or stress could be confirmed from SPT tests. The material law
used within the FEM analysis contained a Norton creep law and a continuum
damage model according to Kachanov [40].

Alegre et al. [4] used a modified form of the Monkman-Grant relationship for the
prediction of the time to failure of small punch tests. The modification is based on
the introduction of a minimum relative punch velocity. This reformulation also
allows the prediction of time to failure from interrupted experiments if the sec-
ondary creep stage has been reached.

After reviewing all the literature it can be concluded that the suitability of the SPT
to determine mechanical material properties has been demonstrated for a broad range
of materials. This is possible for statistical properties of brittle materials as well as for
complex damage mechanical behaviour as described by the GTN model. Different
materials such as martensitic steels (P91), ferritic Steels (C-0.5Mo), semiconductors
(ZnS), ceramics (Al2O3) and plastics like ultra-high-molecular-weight polyethylene
(UHMWPE) [48] were investigated. Much work has been done regarding the
characterization of steels used in nuclear or steam power plants. Of particular
importance is the SPT to investigate material changes due to the conditions of use.
Comparative studies often provided results for correlations between SPT and con-
ventional tests. The determination of fracture mechanical parameters on notched and
unnotched specimens as well as the determination of creep data from creep and
relaxation tests were done. The SPT is often accompanied by additional examina-
tions (e.g. grain boundary etching, SEM, TEM, computer tomography) to verify or
to get better interpretations of the results and to get correlations to material
parameters from conventional standard experiments.

An important tool to determine material properties using the SPT is the FEM,
because it allows the detailed analysis of the non-homogeneous strain and stress
fields, which depend in general on the material properties. All empirical correlations
inherit some material dependence and must be used therefore with great care.

Assessment of Material Properties by Means of the Small Punch … 135



3 Material Modelling

Ductile metallic materials show an elastic-plastic behaviour, where the elastic
strains can be considered small in comparison to inelastic strains. Prior to yield, the
material response is assumed to be linear elastic. The strain tensor is split into an
elastic, a plastic and a creep part.

eij ¼ eelij þ eplij þ ecrij ð1Þ

Due to the axisymmetric geometry and loading of the SPT only isotropic material
behaviour can be identified. Furthermore, within the SPT a monotonic loading is
applied. Thus, no kinematic hardening, only isotropic hardening can be identified
from experimental results.

The stresses in terms of the elastic strains are expressed by the multi axial
Hooke’s law, which for the isotropic case reads as

rij ¼ E
1þ m

eelij þ
m

1� 2m
eelkkdij

� �
; ð2Þ

where E denotes the Young’s modulus, ν Poisson’s ratio and δij the Kronecker
delta.

The plastic strain rate is derived from a flow potential Upl.

_eplij ¼ k
@Upl

@rij
; ð3Þ

with the plastic multiplier λ. The flow rule is given by

Upl ¼ rq � ry eplq

� �
¼ 0; ð4Þ

where rq denotes the equivalent (von Mises) stress and ryðeplq Þ an isotropic hard-
ening function e.g. the Voce law

ry eplq

� �
¼

r0 if eplq � elu

r0 þ r1 eplq � elu
� �

þ r2 1� exp �n eplq � elu
� �h in o

if eplq [ elu

(

ð5Þ

or the well known Ramberg-Osgood law

ry eplq

� �
¼

r0 if eplq � elu

r0
eplq �elu
e0

� �1
n

if eplq [ elu

8<
: ð6Þ
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Within the two equations above σ0 denotes the initial yield stress, σ1 a linear and σ2
a non-linear hardening parameter, n a hardening exponent and εlu a Luders strain.
For a rate dependent plasticity (creep) model we define the creep strain rate as a
combination of

_ecrij ¼ _ecrp
1
3
dij þ _ecrq nij ð7Þ

where _ecrp is the pressure dependent volumetric strain rate and _ecrq the equivalent
deviatoric creep strain rate. nij defines the direction of the creep strain derived from
the equivalent stress potential.

nij ¼ @Ucr

@rij
ð8Þ

The volumetric and deviatoric strain rates have evolution laws like:

_ecrp ¼ hrp rp; rq; e
cr
p ; e

cr
q ; T ; . . .

� �
ð9Þ

and

_ecrq ¼ hrq rp; rq; e
cr
q ; e

cr
q ; T ; . . .

� �
: ð10Þ

depending on the equivalent stress rq, the hydrostatic pressure rp ¼ � 1
3 rijdij, the

volumetric and deviatoric creep strain and the temperature T. A simple example is
the Norton creep law where _ecrp ¼ 0 and _ecrq ¼ _e0

rq
A

� �n with the material parameters
A and n. A more advanced creep model is an additive combination of i Norton laws

_ecrq ¼ _e0
X
i

rq � Bi

Ai

� �ni

; ð11Þ

which allows the modelling of multiple creep mechanisms like different diffusion
and dislocation mechanisms. The McCauley brackets have the meaning
xh i ¼ xþ xj jð Þ=2. This ensures that a creep mechanism is only active above a
respective threshold stress Bi.

In order to simulate plasticity and ductile damage the continuum damage model
of Gurson [38, 39] can be used with the extensions of Tvergaard [80] and
Tvergaard and Needleman [81]. This model assumes an elastic plastic continuum
with a distribution of spherical voids with a void volume fraction f. The central part
of the model is the yield potential
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UGTN
pl ¼ Rq

ry eplq
� �

2
4

3
5þ 2q1f � cosh

3
2
q2

Rp

ry eplq
� �

2
4

3
5� 1þ q1f

�ð Þ2
h i

¼ 0 ð12Þ

where Rq ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3
2 SijSij

q
denotes the macroscopic von Mises and Rp ¼ 1

3Rii the

macroscopic hydrostatic stress, expressed by the macroscopic deviatoric stresses
Sij ¼ Rij � Rpdij. The dimensionless parameters q1 and q2 are used to weight the
influence of the stress triaxiality. The material damage f � depends on the void
volume fraction f.

f � ¼
f if f � fc

fc þ f �f �fc
ff�fc

f � fcð Þ if fc\f\ff
f �f if f � ff

8<
: ð13Þ

with f �f ¼ 1
q1
. Up to a critical void volume fraction fc the damage is identical with the

value of the void volume fraction. Beyond fc where voids coalescence or micro
crack initiation is assumed damage evolution is accelerated until a void volume
fraction ff is reached where the material fails. The evolution of the equivalent plastic
strain of the matrix material is obtained from the plastic macroscopic strain rate _Epl

ij

_eplq ¼ _eplq

			
0
þ
Z t

0

Rij _E
pl
ij

1� fð Þrq dt: ð14Þ

The evolution of the void volume fraction is composed of two terms

_f ¼ _fgr þ _fnucl ð15Þ

where _fgr describes the growth of voids based on the law of conservation of mass

_fgr ¼ 1� fð Þ _Epl
kk ð16Þ

and a void nucleation part, which follows a strain controlled relationship.

_fnucl ¼ fn
sn

ffiffiffiffiffiffi
2p

p exp � 1
2

eplq � en
sn

 !" #
_eplq ð17Þ

The normal distribution of the nucleation strain has a mean value εn and a standard
deviation of sn. fn denotes the volume fraction of void nuclei. For detailed infor-
mation about the implementation into the FE-Code ABAQUS see [67, 88, 89].

The above described GTN-model belongs to the class of local damage models. It
is well known that the results of these models are mesh dependent. A damage zone
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usually localizes within an one element thick band or plane. To avoid this one can
use non-local damage models, see [51, 55, 71]. The non-local approach of Linse
[55] considers the spatial vicinity for the void growth so Eq. (16) is replaced by a
non-local expression

_f nlgr ¼ 1� fð Þ _�Epl
kk; ð18Þ

where �Epl
kk is the non-local volumetric plastic strain. Thus, Eq. (15) becomes

_f ¼ _f nlgr þ _fnucl: ð19Þ

The non-local averaging of the volumetric strain is done by implicit solving the
Helmholtz-type differential equation

�Epl
kk � c�Epl

kk;ii ¼ Epl
kk: ð20Þ

The corresponding natural boundary condition for the averaged macroscopic
volumetric strain is

�Epl
kk;ini ¼ 0; ð21Þ

making sure that the total averaged volumetric plastic strain remains the same as the
non-averaged. Such models usually introduce a characteristic length

ffiffiffi
c

p
as an

additional parameter which can be related to the spacing of voids or the width of
localized damage bands. When using such models element sizes smaller than the
characteristic length are required, which leads to larger models than those using a
local damage model and solving additional field equations is necessary, which
requires the use of non-standard solvers and/or elements within the finite element
codes [55].

The Beremin research group [8] derived a local criterion for cleavage fracture,
which is based on the assumption that cleavage fracture initiates on micro cracks,
which have evolved due to inelastic deformations. The critical stress σc leading to
crack propagation can be related to the crack length lc and the surface energy γ

rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ec
p 1� m2ð Þlc

s
: ð22Þ

If the crack size distribution follows a power law hðlÞ� lð�m=2Þ the probability for
brittle failure of a specimen or a component can be defined as:

PfðLÞ ¼ 1� exp � rwðLÞ
ru


 �m� 
; ð23Þ
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where rwðLÞ is the Weibull stress for a specific external loading L defined by

rw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
V0

Z
Vpl

rmI dVm

vuut ð24Þ

or in a more FEM convenient form

rw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
V0

Xnpl
i

rmI Vi
m

vuut : ð25Þ

Within the above equations σu denotes the Weibull reference stress, m the Weibull
exponent, σI the first principal stress for a material point i within an inelastic
Volume Vpl. There exist several variations for the definition of the Weibull stress.
The principal of independent action (PIA) takes all principal stresses into account,
which allows also failure under large hydrostatic pressure.

rw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
V0

Xnpl
i

rIj jmþ rIIj jmþ rIIIj jmð ÞVi
m

vuut : ð26Þ

4 Parameter Identification

As shown in the previous section the material model contains a set of parameters pi,
which have to be determined from experimental results. Especially for the creep
parameters multiple CF-SPT experiments at different load levels are necessary. The
general way to find material parameter sets is to fit the model to experimental
results, which can be a single test or a set of different tests (CDR, CF and CD).
Parameter identification is an optimization process, where the difference between
experiments and simulations needs to be minimized by changing the model
parameters. The value to be minimized is an error, which measures the quality or
exactness of the simulations for each test. Each pair of experiment and corre-
sponding simulation gets its own error value, which is multiplied by a certain
weight wi. Those weights represent the importance of an experiment or the confi-
dence the user has for this single experiment.

For a single CDR-SPT the error e is defined as the integral of the normalized
difference of the punch force between simulation and corresponding experiment in
a predefined deformation interval interval u0. . .u1½ 	.
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eCDR ¼ 1
u1 � u0

Zu1
u0

FsimðuÞ � FexpðuÞ
�Fexp

� 2
du ð27Þ

The error for a CF-SPT is the integral of the normalized difference of the punch
displacement or specimen deflection between simulation and corresponding
experiment in a predefined time interval t0. . .t1½ 	 plus an error which expresses the
normalized difference between the times of failure for simulation and experiment.
The second error term in (28) is included here, because it is much more sensitive to
changes of the creep parameters than the deflection error term.

eCF ¼ 1
t1 � t0

Zt1
t0

usimðtÞ � uexpðtÞ
�uexp

� 2
dt þ tfsim � tfexp

tfexp


 �2

ð28Þ

The error for a CD-SPT is defined as integral of the normalized difference of the
punch force for the simulations and the corresponding experiment in a predefined
time interval t0. . .t1½ 	.

eCD ¼ 1
t1 � t0

Zt1
t0

FsimðtÞ � FexpðtÞ
�Fexp

� 2
dt ð29Þ

As normalizing values the observed mean values of the punch force �Fexp or the punch
displacement �uexp are used. For a multi specimen approach the errors of different test
are weighted, summed up and divided by the sum of weights for all experiments.

e ¼

PnCDR
i¼1

wCDR
i eCDRi þPnCF

j¼1
wCF
j eCFj þPnCD

k¼1
wCD
k eCDk

PnCDR
i¼1

wCDR
i þPnCF

j¼1
wCF
j þPnCD

k¼1
wCD
k

ð30Þ

The minimization of this error is done within an optimization loop as shown in
Fig. 3. One may notice that the finite element computations are not a direct part of
the optimization loop. Instead finite element computations are done in advance
using parameters which are varied in reasonable bounds. These computed results
are used to train neural networks, which represent the approximations F0

simðu; piÞ,
u0simðt; piÞ and F0

simðt; piÞ of the finite element simulations. The quality of the neural
network approximations can be measured by comparing predictions of the networks
with simulation results that have not been part of the training. Each test type (CDR,
CF or CD) requires separate neural networks. For creep tests two networks are used,
one predicting the failure time and a second predicting the deflection over time.
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All the networks used here have the structure of feed forward neural networks,
see Fig. 4. They consist of at least three layers of neurons. All the layers are fully
forward connected, which means that each neuron of one layer is connected with
each neuron of the subsequent layer. The number of neurons for the first (input)
layer is similar to the number of arguments of the function which the network

SPT simulations
F(u, pi), u(t, pi), F(t, pi)

SPT experiments
F(u, pi), u(t, pi), F(t, pi)

NN approximations
F ′(u, pi), u′(t, pi), F ′(t, pi)

minimize
error e

identified parameters
pi

p′
i

Fig. 3 Optimization loop for the identification of the damage material parameters. p0i denotes an
updated set of parameters returned by the minimization algorithm

Fig. 4 Scheme of a feed forward neural network
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should approximate. If we consider a classical fully connected feed forward net-
work, having l layers of neurons, the following recursive scheme for computing the
output olj can be set up:

a1i ¼ pi þ b1i for i ¼ 1. . .n1 ð31Þ

okj ¼
1

1þ exp �akj
� � for j ¼ 1. . .nk and k ¼ 2. . .l ð32Þ

akj ¼
Xnk�1

i¼1

wk�1
ij ok�1

i þ bkj for k ¼ 1. . .l ð33Þ

where nk ¼ n1; . . .; nl½ 	 denotes the number of neurons in network layer k. Each
neuron gets an input value akj , which is the weighted and summarized output of the

layer below. The first layer neurons gets a vector of input values pi. The weights wk
ij

and biases bkj are free parameters of the network which have to be determined
during a training process. Finally a trained network can be seen as a smooth
mapping for an input vector pi to an output vector oj. Furthermore, the recursive
network function is derivable at will.

The neural networks are trained with results of finite element simulations of the
SPT. Each training sample is a pair of an input vector containing the punch dis-
placement and a set of n material parameters (u, p1…pn) and an output, which is in
our case the resulting punch force F. A single simulation delivers a load deflection
curve which is discretized into 100 samples, where only u and F are variable. To
cover a given parameter space, more simulations are done with varying parameters.
It can be advantageous if the parameter variations are done randomly from an equal
distribution. The total number of samples necessary depends on the complexity of
the function to be approximated as well as of the wanted accuracy. For the iden-
tification of four hardening parameters we used 1000 simulations and for the
identification of five damage parameters 5000 simulations. The number of neces-
sary neurons in the middle layers also depends on the complexity of the problem.
For the hardening parameters 25 neurons and for the damage parameters 50 neurons
were used. For the training of the neural networks the samples are split up into two
sets. One set containing 90 % of all samples is used for the training. The other 10 %
are only used for evaluating the accuracy and not for training. During the training
the accuracy for training and evaluation sets are monitored. The training is stopped
either if the evaluation error has just passed a minimum or if training and evaluation
error reach a predefined low value (0.1 %). The approximation accuracy reached
was about 0.25 % of Fmax regarding the hardening and 1 % for the damage
parameter variations.
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5 Applications

This section presents two applications of the SPT. One is the assessment of damage
mechanical properties of a weld line of a pressure gas pipeline, with its different
material zones, as there are base material (base), weld material (weld) and heat
affected zone (haz) material. The second application is the assessment of brittle
damage behaviour of a novel carbon bonded alumina, which is used as a refractory
material or for metal melt filtration applications.

5.1 Damage Mechanical Assessment of a Gas Pipe Weld
Line

The gas pipe under consideration is a high pressure pipe (200 bar). Segments of a
pipeline are welded together when the pipeline is installed. During the installing
process the pipeline can undergo rather large bending deformations which might
lead to some inelastic deformations and therewith some damage especially in the
vicinity of the weld lines. Due to legal issues the manufacturer wants to keep the
chemical composition confidential, no further material details are presented here.

Figure 5 shows a cross section of a weld line. The wall thickness is 14 mm, the
inner pipe radius is 148 mm. The weld line is made in several runs. The different

Fig. 5 Weld line width indicated specimen
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layers and different material zones can be clearly distinguished. The locations of
different SPT specimens are indicated, where the name is a combination of material
zone (base, weld haz), orientation within the pipe (13, 23) and location (b—bottom,
m—middle, t—top) within the pipe wall.

Figures 6, 7, 8 show microscopies of tested SPT specimens of each material. The
left picture shows the macroscopic crack after testing. One can distinguish a pri-
mary circumferential crack and some secondary cracks evolving later perpendicular
to the primary crack. The middle pictures show details of the secondary cracks. The
right pictures are high resolution images of the primary crack surfaces, indicating
that the failure process is purely ductile, because of the typical dimple patterns.

The results of the experimental SPTs together with the corresponding simula-
tions, which were done using the identified material parameters for each individual
test are shown in the Figs. 9, 10, 11. The parameter identification was done in two

300 µm Mag = 45x 100 µm Mag = 200x 10 µm Mag = 4000x

Fig. 6 Details of a tested base-13-m material CDR-SPT specimen after testing

1 mm Mag = 40x 100 µm Mag = 200x 10 µm Mag = 4000x

Fig. 7 Details of a tested weld-23-m material CDR-SPT specimen after testing

300 µm Mag = 49x 100 µm Mag = 200x 10 µm Mag = 4000x

Fig. 8 Details of a tested haz-23-t material CDR-SPT specimen after testing
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subsequent steps. First the hardening parameters (see Eq. 5) were identified using a
network trained with 1000 simulated LDCs. Only the first three curve parts (see
Fig. 1 right) were used for the identification. For the identification of the damage

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0  0.5  1  1.5  2  2.5

pu
nc

h 
fo

rc
e 

F 
[N

]

punch displacement u [mm]

exp sp-base-12-m-1
sim sp-base-12-m-1
exp sp-base-12-m-2
sim sp-base-12-m-2
exp sp-base-12-m-3
sim sp-base-12-m-3

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0  0.5  1  1.5  2  2.5

pu
nc

h 
fo

rc
e 

F 
[N

]

punch displacement u [mm]

exp sp-base-13-m-1
sim sp-base-13-m-1
exp sp-base-13-m-2
sim sp-base-13-m-2
exp sp-base-13-m-3
sim sp-base-13-m-3

Fig. 9 Comparison of SPT LDCs obtained from experiments and corresponding simulations using
the identified material parameters for the base material
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Fig. 10 Comparison of SPT LDCs obtained from experiments and corresponding simulations
using the identified material parameters for the weld material
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Fig. 11 Comparison of SPT LDCs obtained from experiments and corresponding simulations
using the identified material parameters for the HAZ material
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parameters a larger data base of 5000 simulations was used to train a network
having 50 neurons within the middle layer. Here, the whole LDCs were used for the
identification process. One may note that not all material parameters of the model
were identified. The SPT is not very sensitive regarding the elastic properties and
the Luders strain of a ductile metal. The identified hardening parameters (mean
values) for each material are given in Table 1.

The identified damage parameters (mean values) are given in Table 2. Here, only
the parameters fc, fn, εn and q2 have been identified, while f0, ff, sn and q1 are fixed.
This is necessary because different parameter sets may lead to similar results.
Especially different combinations of fc, fn and ff or combinations of q1 and q2 are not
unique. The choice of f0 can be related to initial impurities of the material and the
void volume fraction at failure ff can be obtained from analysis of the fracture
surfaces and q1 = 1.5 is a common value for ductile materials [3].

To evaluate the identified material parameters additional tensile specimen were
cut from the base material as well as from the weld line (see Fig. 12). There are
seven specimens according to DIN 50125-B5x25 and also notched specimens
having notch radii of 0.25 and 3 mm. Some parameters of the material model (n and
εlu) were directly obtained from the standard tensile tests, because the SPT isn’t

Table 1 Identified hardening parameters (averaged values) for the different materials

σ0 (MPa) σ1 (MPa) σ2 (MPa) n (–) εlu (–)

Base 524.9 325.5 100.0 30.0 0.002

Weld 544.6 414.7 100.0 30.0 0.018

HAZ 553.6 380.9 89.9 30.0 0.010

Table 2 Identified damage parameters (averaged values) for the different materials

f0 (–) fc (–) ff (–) fn (–) εn (–) sn (–) q1 (–) q2 (–)

Base 2 × 10−5 0.16 0.20 0.03693 0.50 0.1 1.5 1.00

Weld 2 × 10−5 0.16 0.20 0.04586 0.55 0.1 1.5 1.05

HAZ 2 × 10−5 0.17 0.20 0.03898 0.725 0.1 1.5 1.15

Fig. 12 Overview of all the tested tensile specimen. The orange zone in the left part of the figure
indicates the location of the weld line
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very sensitive to these parameters. The notched specimens were used to evaluate the
damage parameters for different states of stress triaxiality.

In Fig. 13 the experiments for the base material tensile tests are compared with
the corresponding simulations using the parameters which have been identified
from SPTs. The base material shows a strength anisotropy. The material is about
20 % stronger in 1-direction (pipe axis) than in 2-direction (radial) and 3-direction
(circumferential), which is caused by the pipe production process. The SPT is a
biaxial test, where the specimen failure is controlled by the weaker direction. That’s
why the simulated tensile test curves fit better the experiments for the specimens
taken in 3-direction. The failure point is slightly underestimated for the standard
tensile and r ¼ 3mm tensile tests, whereas the failure points for the r ¼ 0:25mm
tensile tests are in good agreement. This indicates the importance of the stress
triaxiality for the failure process.

The weld material does not show an anisotropy (see Fig. 14). Here, the tensile
test simulations, which were also done using parameters identified from SPTs, show
a very good agreement with the corresponding experiments. The weld and the HAZ
material have almost identical mechanical properties independent of the specimens
orientation.
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Fig. 13 Comparing tensile tests and simulations using identified material parameters from the
SPT for the base material. a standard specimen b notched with r = 3 mm c notched with
r = 0.25 mm
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5.2 Characterization of Carbon Bonded Alumina

Carbon bonded alumina is a relatively new refractory material which is used in
liquid metal casting processes as a filter to reduce impurities within the cast
component. The ceramic open cell filters have to withstand a high thermal shock,
which is why their mechanical integrity has to be evaluated. Testing of ceramic
foams is rather complicated. The main difficulty is distributing an external load
equally to the foam. Therefore, FEM simulations of the foam structure are done,
using a material model for brittle failure. The material parameters can be deter-
mined using the SPT. Figure 15 left shows a filter of a carbon bonded alumina. It is
an open cell foam with 10 pores per inch (ppi). Topologically it is a spatial network
of struts, where theoretically always four struts met at a common node. The pro-
duction of such filters is based on the Schwartzwalder process, where an open cell
PU foam is coated with a slurry containing the ceramic material as powder. After
drying the green body the filters are fired. During this process the PU pyrolyses and
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Fig. 14 Comparing tensile tests and simulations using identified material parameters from the
SPT for the weld material

Fig. 15 C–Al2O3 Filter and HT-SPT specimen after testing
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leaves a fine cavity structure within the strut network. The coating is mostly not
perfect so there remain some closed facets around the pores.

On the right side of Fig. 15 one sees a SPT specimen after testing. It’s broken
into three almost equal pieces, which is a typical SPT failure pattern for brittle
materials. There is an interesting fact, that the number of pieces depends on the ratio
between specimen thickness and specimen radius. Thicker specimen usually break
into more pieces than thinner ones, because of the larger specific elastic strain
energy stored just before failure occurs. More energy can produce larger or more
crack surfaces. It also shows a rather inhomogeneous micro structure of the
material. Fine grained alumina particles are embedded into a matrix of amorphous
graphite. The larger black particles are Carbores particles, which is tar coal having a
higher strength than the pressed graphite and therefore influences the strength of the
material.

The SPT was used here to compare different compositions (AC10, AC15,
AC20), productions routes and thermal treatments of the ceramic material. The
foam struts have a thickness which is comparable to that of the SP specimens,
which excludes possible size effects of the material. Furthermore the SPT is a very
efficient technique, especially at high temperatures where the heating-up period is
much longer than the test period. For the results presented here more than
500 specimen have been tested.

The specimens are produced by a combined casting and cutting process. Small
blocks are cast, pressed either isostatic (Pi) or uniaxial (Pu) than dried and fired by
given regimes. An additional thermal treatment (T) may be used to adjust important
material properties. The blocks are turned into cylindrical rods from which the SP
specimens are cut using a diamond blade saw. Additional grinding at both specimen
sides ensures the correct thickness and parallelism.

Figure 16 shows two typical LDCs from two CDR-SPTs, one performed at room
temperature (RT) and the other at high temperature (HT) of 800 °C for the cast

Fig. 16 SPT LDCs for the
C–Al2O3 at RT (23 °C) and
HT (800 °C)
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carbon bonded alumina (AC20C). The two points indicate the initiation of cracking.
The specimen are further deformed still bearing increasing loads but the general
slope of the curve decreases, indicating that the already initiated cracks are growing
until total failure. One may note that at high temperatures the material is much
stronger than at low temperatures, which is a special feature of carbon bonded
alumina.

Figure 17 shows the failure probability for different material states depending on
the Weibull stress. On the left different manufacturing processes are compared (C—
cast, Pi—isostatic pressing, Pu—uniaxial pressing). Additional pressing, especially
uniaxial pressing of the cast material, increases the strength significantly. The
additional thermal treatment instead does not improve the mechanical strength.

In Fig. 18 the influence of the material composition is analysed. The material is
cast but contains an increasing amount of carbores (AC10C—10 %, AC15C—
15 %, AC20C—20 %), which improves the strength significantly. Higher tem-
peratures change the failure behaviour of the material. The scatter increases, indi-
cated by a smaller Weibull exponent m, but the Weibull strength σu is slightly
increased. Table 3 summarizes all identified Weibull parameters, where N denotes
the number of tested specimens of each material state.

Fig. 17 Failure probability for different manufacturing routes a pressing b thermal treatment

Fig. 18 Failure probability for different a material compositions b testing temperatures
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6 Conclusions and Discussion

The SPT has been presented as a suitable experimental technique to determine
material properties of various materials from a small amount of material. The
literature shows a wide field of applications. The crucial point of the SPT is still the
problematic evaluation of the test results. The widely used empirical correlations to
standard methods are material dependent. Therefore, a parameter identification
procedure was developed which includes finite element simulations of the SPT
considering a constitutive material model. The modelling approach presented here
is able to describe ductile metals including damage behaviour but also brittle
material like ceramics. It could be shown, that it is possible to fit the material law
using experimental results from SPTs. For the identification of damage parameters
it is important that experiments are done using specimens, which are exposed to
different multi-axial stress states. This can be achieved by testing additional notched
specimens. As an example the mechanical properties of a gas pressure pipe weld
line were identified.

Brittle materials can be evaluated as well using statistical failure models
(Weibull). Here, it was shown that it is possible to distinguish different material
compositions, production routes and thermal treatments. In general the investigated
carbon bonded alumina (C–Al2O3) can be well described using the Weibull model.
For very low failure probabilities there is a deviation from the Weibull theory. This
might be caused by the complex material composition allowing different failure
mechanisms, which can’t be described using a simple Weibull model.
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Abstract The results of extensive measurements of fracture mechanics parameters
of cast iron materials under static, dynamic and cyclic loading at the Institute of
Materials Engineering (IWT) at the TU Bergakademie Freiberg are shown.
A special attention for this group of materials must be given to the microstructural
influence on the crack resistance behavior and thus the component reliability. In
collaboration with the Institute of Mechanics and Fluid Dynamics (IMFD) of the
TU Bergakademie it was shown for castings, such as components of wind turbines
made of ductile cast iron, railway wheels made of ADI or transport casks for spent
nuclear fuel assemblies that the fracture mechanical strength analysis including
possible casting defects extends the conventional strength analysis.

1 Introduction

Fracture mechanics concepts for assessing the strength requirements of cast
materials and cast components (Fig. 1) are employed by considering casting defects
or other possible casting irregularities particularly when cast materials are used due
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to their specific advantages for components loaded to their ultimate strength and are
potentially exposed to fracture.

The facture mechanics strength assessment, taking into account cast iron
materials, is the subject matter of regulating procedures [1–5]. An essential
requirement for computing the critical stresses or defect sizes is the availability of
the materials fracture mechanics parameters [6].

This contribution includes the results of extensive investigations carried out at
the Institute of Materials Engineering (IWT) of the Technische Universität
Bergakademie Freiberg (Germany) on cast iron materials for highly loaded cast
components. It includes the fracture mechanics parameters determined using dif-
ferent cast iron materials subject to static, dynamic and cyclic loading as a function
of the microstructure, temperature and type of loading. The fracture mechanics
strength assessment of particular cast components was performed in cooperation
with the Institute of Mechanics and Fluid Dynamics (IMFD) of the TU
Bergakademie Freiberg and is documented in the contribution’s references.

2 Static Loading

The static fracture toughness values were experimentally determined according to
ESIS P2-92 [7]. The KIc values are determined according to the concept of
linear-elastic fracture mechanics (plane strain conditions) or the parameters of the

Fig. 1 Principle of fracture mechanics concepts and typical casting defects
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CTOD (crack-tip opening displacement) and J-integral concepts of elastic-plastic
material behaviour (plane stress conditions). It is possible to convert J values into
K values via the elastic constants E and ν using

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
EJ

1� m2

r
ð1Þ

To experimentally determine valid KIc values for ductile cast iron materials, the
requirements for plane strain conditions lead to huge specimens. A conservative
value can be determined on small specimens using the fracture mechanics param-
eter CTOD or J-integral concepts. The damage processes which run in ductile cast
iron with ferritic matrix on the crack tip until the crack initiation are depicted in
Fig. 2. For GJS-400, the critical stretch zone width (SZWC) is in the range of about
20 μm [8]. The stable crack growth after crack inition was documented with in situ
investigations in the scanning electron microscope [9] (Fig. 3).

Fracture mechanics parameters are experimentally determined by using 20 % side
grooved SENB (single-edge notch bending) specimens (10 mm × 20 mm × 120 mm)
and measuring static crack resistance curves (δR or JR curves) according to the single
specimen method (compliance method).

The physical crack initiation parameters Ji=BL and di=BL are determined at the
intersection of the blunting line and the JR or δR curve, respectively. The engi-
neering crack initiation values J0.2 and δ0.2 result for a value of stable crack

Fig. 2 Damage processes (schematic) on the crack tip of ductile cast iron with ferritic matrix
under static loading
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extension of Da ¼ 0:2mm. The profile of the J-Δa or δ-Δa curve is fitted via an
extended power function

J ¼ A Daþ Bð Þc ð2Þ

d ¼ A0 Daþ B0ð Þc0 ð3Þ

and the blunting line (BL) is computed according to

J ¼ 3:75RmDa ð4Þ

d ¼ 1:87 Rm=Rp0:2
� �

Da ð5Þ

The fracture mechanics parameters of the J-integral and CTOD concepts are
compiled in Table 1.

The FKM guideline [1] refers to the potential for estimating fracture mechanics
parameters via correlations with specific values from mechanical and technological
testing or microstructural parameters. The available results show that it is possible

(a) (b)

(c)

Fig. 3 In situ SEM pictures of crack extension in GJS-400, initial fatigue crack tip is marked with
an arrow: a begin of crack opening, b additional crack opening causes debonding of graphite and
matrix, c stable crack growth [9]
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to estimate the physical crack initiation values of ferritic cast iron materials via
microstructural and tensile test parameters [8, 9, 15, 16].

Thus, within the scope of extensive fracture mechanics measurements on ferritic
GJS-400-15 and varying the graphite particle size dG, spacing λ, shape factor f and
number of particles NA as well as the corresponding mechanical properties
(Table 2), it has been identified that it is possible to approximately ascertain the
Ji=BL values via the microstructural and tensile test parameters.

Most of the structural models for ductile fracture are based on the model of pore
growth according to Ritchie (Fig. 4a). This description is virtually predestined as
the material model for ductile cast irons having a ferritic matrix and spherical
graphite (Fig. 4b). Here, it is assumed that a critical plastic equivalent strain specific
to the material φc must be reached over a critical length lc ahead of the crack in
order to produce crack growth (Fig. 4c).

It follows from this that the critical J-integral value Ji=BL is

Ji=BL ¼ cRp0:2uclc ð6Þ

where c is a dimensionless constant. lc correlates well with the average graphite
particle spacing λ and φc is set equal to the percentage elongation after fracture A. If
one plots the experimentally determined Ji=BL values against the product Rp0:2Ak
(Fig. 5), then the following empirically derived correlation is valid for ferritic cast
iron having spherical graphite

Ji=BL ¼ 4:6
Rp0:2

MPa
A

k
mm

� �
kJm�2 þ 11:3 kJm�2 ð7Þ

Figure 6 and Table 3 depict the influence of the shape of the graphite particles on
the crack resistance behaviour of ferritic cast iron materials.

Table 1 Mechanical and fracture mechanics parameters [8–14]

Material EN-… Rp0.2

(MPa)
Rm

(MPa)
A (%) Ji=BL

kJ
m2

� � J0:2

ðkJ m�2Þ
KðJi=BLÞ
ðMPa

ffiffiffiffi
m

p Þ
di=BL
ðlmÞ

d0:2
ðlm)

GJS-400-15 264 413 26 21 51 60 37 92

GJS-800-10 637 893 13 11 35 45 31 27

GJS-1000-5 800 1062 8 8 20 37 6 15

GJV-300 240 295 5 8 19 33 21 45

GJMB-350-10 213 332 15 22 39 63 47 78

GJMB-450-6 312 453 10 28 42 72 40 57

GJMB-650-2 450 703 6 11 28 45 9 27

GJMW-360-12 166 348 21 10 27 43 24 61

GJMW-400-5 238 515 5 9 24 41 24 50

GJMW-450-7 304 536 5 8 29 38 15 52

GJMW-550-4 485 714 6 12 25 47 18 28
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The different crack resistance behaviour was analysed with in situ scanning
electron microscopic investigations [13, 14]. For GJS-400-18 (graphite volume
fraction VG = 12 %) damage is induced by graphite particles debonding from the

F

F

(a) (b)

(c)

Fig. 4 Pore growth model according to Ritchie [17]. a Strain controlled crack formation. b
Scanning electron microscopy image of GJS-400-15 fracture surface. c Strain distribution φ(x)
according to Ritchie [17]

Fig. 5 Ji=BL mean values of at least tree specimens of ferritic cast iron materials having spheritic
graphite as a function of the product of fracture strain A, 0.2 % proof strength and mean graphite
particle spacing λ [8, 9, 15, 16]
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ferritic matrix. This mechanism primarily determines the crack resistance behav-
iour. It decreases with smaller particle spacing λ according to Eq. 7. The vermicular
shape of the graphite in GJV-300 (VG = 13 % is expressed by the shape factor
f (f = 1 for circular particles). The larger internal notch effect leads to much earlier
fracture of the graphite particles. As a result the crack resistance curve’s profile is
significantly on a lower level. Despite the particle fractures, the superior crack
resistance behaviour of the GJMB-350-10 (VG = 10 %) is based on the matrix
higher ductility due to the reduced graphite volume fraction and a lower Si content.

The project MEGAWind [18] funded by the German Bundesministerium für
Umwelt investigated the development and usage of cast technologies for ductile
cast iron with higher strength as well as the proof of strength under cyclic loading
and the safety assessment based on the fracture mechanics analysis for the example
of a wind turbine hub. With respect to offshore components a representative cast
sample plate with a weight of 1.2 t was used with wall thicknesses of 60, 130 and
200 mm. Based on preliminary investigations the chemical composition as well as
the optimized molten metal treatment and cast technology were fixed. Samples of
the materials GJS-W1 to GJS-W7 (Table 4) were taken only from the 130 mm thick
region (for details on sampling see [18]). To take welding into account which is
often used on huge casting parts additional samples were taken from a multi-pass
welded joint (GJS-SG). As a reference material EN-GJS-18LT was used. The static
fracture toughness was determined at room temperature (RT), −20 and −40 °C
using 20 % side grooved C(T)-specimens with a thickness of 25 mm according to
ISO 12135 (Table 4). Depending on microstructure and temperature the linear
elastic or elastic-plastic fracture mechanics concepts were used for determination of
characteristic values. In the case of elastic-plastic material behavior static J-Δa
crack resistance curves where measured with the single specimen technique.
Table 4 shows that the ferritic reference material GJS-400-18LT has a constant high
level of crack resistance at all tested temperatures. As can be taken from the
designation of the fracture resistance as a KðJi=BLÞ value the crack extended in a
ductile, stable way. This is also the case for the welded material with the lowest Si
content of all tested materials. It shows a loss in fracture resistance with lowering

(a) (b)

Fig. 6 Static crack resistance curves of ferritic cast iron materials (Table 3). a J-integral concept. b
CTOD concept [6]
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temperature. The other variants with a Si-content of more than 2.7 % show a
significant loss in crack resistance and mostly brittle crack extension with reducing
testing temperature from room temperature (RT) to −20 and −40 °C. Figure 7
shows this trend for Material GJS W7. The load-COD-curves exhibit brittle pop-in
behavior at −20 and −40 °C. Except variant GJS-W4 at −20 °C only cleavage
fracture was observed as pop-in effect at local microstructural heterogeneities or
instable crack extension.

The dependence of the measured fracture toughness from the Si content together
with literature data from [19–21] is shown in Fig. 8. The correlation also contains
measurements on continuous casting qualities GJS-400-18C with diameter 150 mm
(Si = 2.63 %, Rp0.2 = 300 MPa, Rm = 424 MPa, A = 25.9 %) and GJS-500-14C
(Si = 3.56 %, Rp0.2 = 391 MPa, Rm = 504 MPa, A = 19.7 %) with KðJi=BLÞ ¼
46:5MPa

ffiffiffiffi
m

p
[21]. Resulting from Fig. 8 a slope of � 29MPa

ffiffiffiffi
m

p
per 1 % addi-

tional Si content can be found at room temperature. This has to be taken into account
in addition to the temperature effect for Si solid solution hardened cast iron qualities.

The design and construction of a turbine’s pipework made of ductile cast iron
pipes can be mentioned as an example of including the fracture mechanics
assessment into the design process. During the construction of a 16 MW water
power plant in the Austrian state of Vorarlberg, particularly high safety require-
ments and difficult installation conditions in the Alpine site lead to the decision not
to construct the turbine’s pipework using welded steel pipes. In the range of
nominal sizes up to DN 1600 for operating pressures over 30 bar ductile,

(a)

(b)

Fig. 7 Ductile behaviour at room temperature (RT) and brittle behaviour at −20 and −40 °C,
a plot of load versus crack opening displacement, b SEM pictures of the fracture surface
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centrifugally casted pipes made of optimised EN-GJS-400-15 material were
employed. The fracture mechanics assessment was conducted based on the “leak
before fracture” criterion, where the fracture mechanics parameters were deter-
mined at the IWT [8, 22]. A comparison of the experimentally determined values of
Ji ¼ 20 kJ=m2 resulted in good agreement with the analytical values computed
according to Eq. 7 with Ji ¼ 21 kJ=m2. Finally centrifugally cast pipes were
employed as a result of the conducted fracture mechanics safety assessment, sup-
ported by burst tests carried out at the Technical Test and Research Laboratory of
TU Vienna using pipe segments containing cracks.

3 Dynamic Loading

In a comprehensive assessment of the components safety, the load carrying capacity
of materials in components can be characterised using fracture mechanics material
properties, particularly for accident scenarios in which rapidly changing stress and
strain conditions occur as a consequence of impact type loading. To experimentally
determine the dynamic fracture toughness parameters, only preliminary approaches
are available regarding the system of rules and standards which are based on the
standards for static loading cases. The results of comprehensive investigations on
different ferritic cast iron materials for determining and defining dynamic fracture
toughness parameters show that attention should here be paid to the specific crack
resistance behaviour of this material group [23–26]. The dynamic crack resistance
curves of the J-integral concept (Jd-Δa curves) were experimentally determined at
room temperature (RT) and at −40 °C by using an instrumented impact testing
machine according to the “low-blow” technique with 20 % side grooved V-notched

Fig. 8 Static fracture toughness values KIC or KðJi=BLÞ depending on Si content for ferritic cast
iron at room temperature
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ISO specimens (10 mm × 10 mm × 55 mm) possessing fatigue cracks. In doing this,
six to eight specimens were loaded within the range 2:8� 104 MPaffiffiffiffi
m

p
s�1 � _K � 5:7� 104MPa

ffiffiffiffi
m

p
s�1, the Jd values were calculated via the

dynamic force-displacement diagram and the Δa values were determined from the
specimens’ fracture surfaces. The tests were performed and evaluated based on
ESIS P2-92. Here however, one must ensure that no stable, ductile crack extension
occurs. As a result of the scanning electron microscopy examinations of the fracture
surfaces (Fig. 9), crack growth is generated for the entire range of the Jd-Δa curves
as a result of a stable, cleavage crack extension.

Here, it can be assumed that a globally unstable crack extension is inhibited by
means of energy dissipative crack tip blunting (crack tip radius < diameter of the
graphite particles) and crack arrest (Fig. 10).

Since no stretch zone occurs for this material specific crack extension, it is not
possible to define a physical crack initiation value, analogously to static loading.
The practical procedure for recording and evaluating dynamic crack resistance
curves of ferritic cast iron materials was published in a BDG guideline [27] and can
be depicted as shown in Fig. 11.

1. Determine the data points Jd and Δa according to ESIS P2-92
2. Determine the dynamic crack initiation value Jdi=Da¼0 for Da ¼ 0mm. The Jd-Δa

values are linearly extrapolated from the range 0.1 mm ≤ Δa ≤ 0.5 mm to
Da ¼ 0mm. Damax � 0:5mm follows from the requirement according to
Damax � 0:1 W � a0ð Þ, where W is the specimen width and a0 the initial crack
length.

Fig. 9 Cleavage crack extension on the fracture surface at −40 °C [24]
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3. Determine an engineering, dynamic crack initiation value Jd0:2 according to
ESIS P2-92 for Da ¼ 0:2mm.

4. Convert the Jd values to KId (J) values via the elastic constants E and ν according
to Eq. 1

The testing procedure was specifically applied to assess the crack resistance
behaviour of ferritic cast materials as a function of temperature, loading rate and
microstructure for applications such as transport vessels for spent nuclear fuel rods.
Ferritic cast iron (pearlite fraction ≤ 5 %) possessing spherical graphite (Fig. 12)
was investigated by varying the size of the graphite particles and/or ferritic grains
dF (Table 5), which are subsequently designated here as GJS (38) and GJS (62).

Fig. 10 Crack arrest at a graphite barrier [24]

Fig. 11 Jd-Δa curve at −40 °C and the definition of the dynamic crack initiation value [24]
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The material was permanent mould (GJS (38)) and sand (GJS (62)) cast to spe-
cifically adjust the different microstructures [25].

The mechanical properties determined from tensile tests in microstructural and
temperature dependence are given in Table 6. These values are also necessary for
carrying out and evaluating the fracture mechanics tests.

The dynamic 0.2 % proof strength Rdp0.2 was determined at _e ¼ 1 s�1 based on
the Arrhenius equation as a result of the tensile tests and by loading in a rotating
impact machine. The result shows good agreement with the values determined in
[28] for ferritic cast iron. The strain rate corresponds to the _K values used for
recording the dynamic crack resistance curves. The influence of the loading rate on
the material’s resistance to crack initiation is evident from Table 7.

A significant increase in the crack initiation resistance for dynamic loading of
GJS (38) compared to GJS (62) can be attributed to the smaller ferritic grain size dF
(Table 5) which corresponds to the smaller graphite particle sizes dG (Fig. 13).

Figures 14 and 15 depict the temperature dependence of the dynamic toughness
values within the temperature range from RT to −40 °C, measured on a ferritic cast
iron possessing spherical graphite (Rp0.2 = 246 MPa, Rm = 370 MPa, A = 13 %)
[24]. Different from the static loading condition (Table 3), the temperature has a
high influence on the dynamic toughness behaviour and is not negligible.

The fracture safety analysis of the crack initiation concept for static and dynamic
loading excludes the extension of postulated and actually existing cracks. The
objective of the crack-arrest concept is to increase the safety of components having

Fig. 12 Microstructure. a GJS (38). b GJS (62) [25]

Table 5 Microstructural parameters of GJS (38) and GJS (62): graphite volume fraction VG,
average number of graphite particles per Area NA, average graphite particle diameter dG, average
ferrite grain size dF, nodularity f, average nearest neighbor distance λ [25]

Material VG (%) NA (mm−2) dG (μm) dF (μm) f λ (μm)

GJS (38) 12 136 38 45 0.73 56

GJS (62) 15 48 62 63 0.71 86
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stringent requirements for fracture safety with respect to the material and /or
loading. Unstable crack extension, resulting from overloading and/or material
embrittlement, are arrested prior to the occurrence of catastrophic failure. The
concept was developed to supply the crack initiation concept and is applied, for
example, in pressure vessel technology, in pipeline and ship building as well as in
offshore technology. In this way, crack-arrest represents a special case of unstable
crack extension and is characterised with respect to the material by the crack arrest
toughness KIa. Investigations to determine KIa values were carried out on

Table 6 Mechanical properties from tensile testing of GJS (38) and GJS (62) [25]

Material T (°
C)

Rp0.2

(MPa)
Rm

(MPa)
A (%) Z (%) E (GPa) ν Rdp0.2

(MPa)

GJS
(38)

RT 251 397 24 24 174 0.29 317

−40 286 436 25 22 – – 373

GJS
(62)

RT 245 367 12 13 172 0.28 321

−40 273 393 10 11 – – 380

Table 7 Influence of loading rate at −40 °C [25]

Material Static Dynamic

Ji (kJ m
−2) J0.2 (kJ m

−2) KIc Jið Þ
ðMPa

ffiffiffiffi
m

p Þ
Jdi=Da¼0

ðkJm�2Þ
Jd0:2

ðkJm�2Þ
KIdðJdi=Da¼0Þ
ðMPa

ffiffiffiffi
m

p Þ
GJS (62) 28 59 73 17 31 56

Fig. 13 Influence of the ferrite grain size and graphite nodule size on dynamic JdR curve
at −40 °C [25]
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experimental cast iron batches (Table 8) possessing spherical graphite and different
fractions of pearlite content (PC). These materials were subsequently designated as
GJS (PC 4 %) and GJS (PC 29 %) [29, 30].

KIa was ascertained on 50 mm thick CCA (compact crack-arrest) specimens
according to ASTM E 1221 [31]. As a crack starter, a notch was spark-eroded in a
brittle weld seam across the entire specimen thickness. Details of the testing and its

Fig. 14 Influence of temperature on the dynamic Jd-Δa curve for EN-GJS-400 measured on
SENB 10 mm × 10 mm × 55 mm specimens [24]

Fig. 15 Dynamic fracture toughness as a function of the temperature for EN-GJS-400 measured
on SENB 10 mm × 10 mm × 55 mm specimens [24]
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evaluation are extensively described in [29]. The crack-arrest tests carried out in the
temperature range from −40 to −80 °C showing that at −40 to −60 °C no valid KIa

values can be determined. The “minimum crack jump length” required in the
standard was not reached. The high crack initiation toughness which still exists can
be suggested as a cause. This is valid for both ferritic as well as for ferritic-pearlitic
cast irons. Only at −80 °C the requirements were met for plane strain conditions,
and valid KIa values within the range 44MPa

ffiffiffiffi
m

p �KIa � 61MPa
ffiffiffiffi
m

p
were deter-

mined. The crack only extended in cleavage in the fracture surface region of crack
arrest. The crack arrest can be attributed to the effect of graphite particles. Energy is
dissipated when the crack runs into a graphite spherical and the crack tip radius is
increased locally like pictured in Fig. 10. The KIa values determined at −80 °C are
plotted together with the reference curve depending on the temperature in Fig. 16.
An influence of the elevated fraction of pearlite can only be identified as a tendency.

According to [32], it is only possible to determine valid KIa values for ferritic
cast iron in the temperature range from −40 to 20 °C with the aid of a duplex-arrest
specimen, in which a hardened steel (AISI 4340), acting as a crack starter, is joined

Table 8 Mechanical properties at room temperature for ductile cast iron with 4 and 29 % fractions
of pearlite content PC [29, 30]

Material Rp0.2

(MPa)
Rm

(MPa)
A (%) Z (%) E (GPa) ν HBW

(2.5/187.5)

GJS (PC 4 %) 246 362 12 13 172 0.28 138

GJS (PC 29 %) 284 424 11 12 174 0.28 163

Fig. 16 KIa values for ferritic cast iron as a function of temperature; comparison with the values
from the literature [32, 33]
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to the GJS-400 test piece using a heat-treated electron-beam welded joint. Using
this set-up, the crack starts in the hardened steel instead of in the brittle overlay
weld, and runs at a high velocity into the cast iron. In this way, the KIa values are
also determined in the higher temperature region above −80 °C as shown in Fig. 16.

4 Cyclic Loading Conditions

Within the scope of comprehensive structural durability analyses, fracture
mechanics crack growth concepts are employed both for the microstructure
dependent assessment of crack extension behaviour as well as for computing the
components fatigue life. The crack resistance behaviour during cyclic loading is
characterised by the experimentally determined cyclic crack growth curve (da/dN-
ΔK curve) (Fig. 17).

The crack growth rate da/dN (da—crack extension, N—number of load cycles)
as a function of the cyclic stress intensity factor ΔK can be measured with the aid of
crack gauges, by measuring the specimen’s elastic compliance (compliance
method) or from the period of resonant oscillations. Details of the testing and its
evaluation are included in ASTM E 647 [34]. Determining the threshold value ΔKth

(region I) and the material specific parameters C and m of the Paris-Erdogan
equation (region II)

da
dN

¼ C DK½ �m ð8Þ

forms the basis for computing the residual life of castings containing defects.
Fracture occurs in region III at ΔKfc. By introducing ΔK into a comprehensive
structural durability analysis of cyclically loaded cast components, attention should
be paid particularly in regions I and III to the influence of the mean stress, R ¼
rmin=rmax where rmin and rmax are the minimum and maximum stresses.

Fig. 17 Schematic cyclic crack growth curve with parameters C and m for the Paris-law, threshold
value ΔKth, critical fatigue stress intensity factor ΔKfc and influencing factors
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4.1 Constant Amplitude Loading

The fracture mechanics parameters are compiled in Table 9 as a function of the
mean stress (R values) including the ΔKfc values which characterise the final
fracture. The parameters of the da/dN-ΔK curve are the average values each
obtained from three SENB specimens having dimensions 10 × 20 × 100 mm3. The
evaluation of the field of scatter from five GJS-400 specimens resulted in a standard
deviation of �0:4MPa

ffiffiffiffi
m

p
for a mean value of 7:5MPa

ffiffiffiffi
m

p
for ΔKth. A standard

deviation of this magnitude is confirmed by the totality of the tests. The relative
error lies in the range of ±10 %, in agreement with measurements on steel [35–37].
By comparing the assessment of the cast iron materials listed in Table 9, a
dependency of the ΔKth or ΔKfc values on the mean stress (R value) can be
established, which can be quantified using

DKth;R ¼ 1� Rð ÞcDKth;R ¼ 0 ð9Þ

where γ = 1.3 for GJV-300.
Cast iron materials possessing lamellar or vermicular graphite exhibit a micro-

structurally related, elevated crack growth rate [2]. If one assesses the material
behaviour in region II of the da/dN-ΔK curve by using the correlation between the
parameters C and m of the Paris-Erdogan equation, which was determined in [38]
for brittle and ductile steels, then the crack growth rate of the investigated cast iron
materials subjected to cyclic loading clearly falls into the category of brittle steels
according to

C ¼ 2:89� 10�5

15:5m
: ð10Þ

A current example for integrating fracture mechanics concepts into a compre-
hensive fatigue life assessment are the components for power generation in wind
energy generators. With regard to the end of the projected life time of these structural
components, or in cases of their damage, and the occurrence of fatigue cracks,
questions concerning the residual structural life will become increasingly important
for the operators and the licensing authorities. In the regulating mechanism which
will then be required, reference will also be made to integrating fracture mechanics
strength assessments into a comprehensive structural durability analysis [5].

The cast iron material GJS-400-18LT, which was optimised for low temperature
applications, is employed in wind plant nacelle, machine bases, stratostern, blade
adaptor as well as the rotor shaft. The reduction of mass of the components is
necessary for the elevated power and size of construction. It requires designs for
employing high-strength materials such as, for example, the Si solid solution
hardened GJS materials [18] according to DIN EN 1563 [39]. Table 10 shows the
parameters of the cyclic crack growth curves for such ductile iron materials GJS-W1
to GJS-W7 including the parameters of a welding (GJS-SG) in addition to the static
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Table 9 Fracture mechanics parameters of the cyclic crack growth behaviour of cast iron
materials according to [12, 13, 35, 37]

Material R DKth ðMPa
ffiffiffiffi
m

p Þ m C DKfc ðMPa
ffiffiffiffi
m

p Þ
GJS-400-15 0.1 7.5 4.5 2.2 × 10−10 40

0.3 6.2 4.6 3.8 × 10−10 31

0.5 4.5 4.2 1.9 × 10−9 22

GJS-600-3 0.1 6.9 4.1 1.2 × 10−9 34

0.3 6.6 3.9 1.3 × 10−9 27

0.5 4.6 3.7 1.9 × 10−9 19

GJS-800-10 0.1 5.4 2.9 0.9 × 10−8 51

0.3 4.8 3.0 1.1 × 10−8 40

0.5 4.3 3.2 1.0 × 10−8 29

GJS-1000-5 0.1 5.5 2.9 2.3 × 10−8 45

0.3 4.0 2.7 3.3 × 10−8 33

0.5 3.4 2.8 3.9 × 10−8 24

GJV-300 0.1 7.0 6.7 1.1 × 10−11 25

0.3 4.6 7.2 2.0 × 10−12 24

0.5 3.3 5.5 1.9 × 10−10 16

GJMB-350-10 0.1 7.6 3.4 1.2 × 10−8 26

0.3 6.4 3.5 9.8 × 10−9 22

0.5 6.0 4.0 4.0 × 10−9 15

GJMB-450-6 0.1 6.6 3.4 6.8 × 10−9 27

0.3 4.9 3.2 1.5 × 10−8 25

0.5 5.3 3.6 5.7 × 10−9 24

GJMB-650-2 0.1 4.4 3.1 6.7 × 10−9 35

0.3 4.1 3.0 1.3 × 10−8 33

0.5 4.4 3.1 1.3 × 10−8 27

GJMW-360-12 0.1 5.5 3.5 7.0 × 10−9 38

0.3 4.6 2.9 3.0 × 10−8 29

0.5 3.5 2.4 1.0 × 10−7 21

GJMW-400-15 0.1 7.5 3.6 5.0 × 10−9 36

0.3 6.0 4.3 1.5 × 10−9 28

0.5 4.4 3.1 4.0 × 10−8 20

GJMW-450-7 0.1 5.4 3.2 8.0 × 10−9 39

0.3 5.1 3.1 3.0 × 10−8 30

0.5 4.6 3.7 8.0 × 10−9 22

GJMW-550-4 0.1 4.1 2.2 1.5 × 10−7 45

0.3 3.7 2.6 7.0 × 10−8 35

0.5 3.2 2.6 7.0 × 10−8 25
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toughness values given in Table 4. The tests were performed at R values which are
characteristic for wind energy components. The influence of the R ratio is based on
crack closure effects. From the possible mechanisms—plastic, oxide, fluid and
roughness induced crack closure—the latter is supposed to be the most dominant one
because of the specific microstructure. The threshold value ΔKth is decreasing with
increasing mean stress level. For region II of the cyclic crack growth curve the effect
of mean stress can be found in the parameter C of the Paris-Erdogan-equation
(Eq. 8). For symmetric tension-compression loading (R = −1) the C-value is con-
siderable lower than for cyclic tensile loading with R = 0.05.

The mechanical properties and fracture mechanics parameters for GJS-400-18LT
are listed in Tables 11 and 12. Here, WKN refers to samples directly from the
rotor’s hub, and WK1 and WK2 refer to specimens from the sprue which were
quenched by a chilled permanent mould casting equipment and which led to a
variation in the graphite particle sizes dG from 23 to 60 m. The resulting scanning
electron microscopy analyses of the fracture surface showed that rupture at RT and
−40 °C is initiated by ductile, stable crack extension. It was confirmed that the Ji
values increase with larger graphite particle size dG or with corresponding graphite

Table 10 Threshold values
ΔKth and parameters m
and C for the
Paris-Erdogan-equation for
ferritic ductile cast iron with
different Si content (ref.
Table 4) [18]

Material R DKthðMPa
ffiffiffiffi
m

p Þ m C

GJS-W1 0.05 9.5 5.2 6.0 × 10−11

−1 17.6 6.2 2.2 × 10−14

GJS-W2 0.05 9.5 5.3 5.0 × 10−11

−1 18.1 7.6 1.6 × 10−16

GJS-W3 0.05 9.6 5.5 7.3 × 10−12

−1 18.2 5.9 5.3 × 10−14

GJS-W4 0.05 9.9 5.0 4.2 × 10−11

−1 18.8 6.3 1.4 × 10−14

GJS-SG 0.05 8.1 4.8 1.2 × 10−10

−1 15.9 4.7 1.1 × 10−11

GJS-W5 0.05 9.5 5.4 9.8 × 10−11

−1 17.4 5.6 2.6 × 10−12

GJS-W7 0.05 9.8 4.8 8.3 × 10−11

−1 18.0 4.5 9.0 × 10−12

Table 11 Mechanical and fracture mechanics parameters, and the microstructural parameters of
EN-GJS-400-18LT [41]

Material
qualitya

Rp0.2

(MPa)
Rm

(MPa)
A (%) Z (%) E (GPa) dG ðlmÞ k ðlmÞ f Ji ðkJm�2Þ

RT −40 °C

WK1 265 396 23.0 21.0 173 23 31 0.83 19 19

WK2 256 382 18.5 23.0 170 37 53 0.74 27 26

WKN 245 403 22.5 16.2 171 60 90 0.76 38 37
aInternal designation
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particle spacing λ. That is, the crack initiation resistance increases. For cyclic
loading, the dependency of the threshold value ΔKth on the mean stress can be
described according to Eq. 9, where γ = 0.82 agrees with the value determined for
GJS-400-15 in [40]. By assessing the microstructural dependency of the ΔKth value,
it can be assumed that, when the running crack encounters a spherical graphite
particle, where the crack tip opening d\dG, crack tip blunting occurs. Generally,
this relationship can be qualified by

DKth �
ffiffi
r

p
ffiffiffi
q

p ð11Þ

where, r ¼ dG=2 and ρ is the radius of the notch, i.e. ρ ≈ δ/2. The dependency of
ΔKth values on the graphite particle size dG (Fig. 18) can be described for the range
of 10–70 by the empirical equation

Table 12 Fracture mechanics parameters of the cyclic crack growth behaviour of
EN-GJS-400-18LT as a function of the R value [41]

Material R DKth ðMPa
ffiffiffiffi
m

p Þ C m DKfc ðMPa
ffiffiffiffi
m

p Þ
WK1 0.1 7.0 8.2 × 10–10 4.2 30.4

WK2 7.7 1.8 × 10–10 4.6 32.8

WKN 8.5 7.8 × 10–11 4.6 37.5

WK1 0.3 6.0 6.1 × 10–10 4.4 23.7

WK2 6.5 3.0 × 10–10 4.4 –

WKN 7.3 1.9 × 10–10 4.5 –

WK1 0.5 4.5 7.3 × 10–10 4.3 17.8

WK2 4.9 3.3 × 10–10 4.5 –

WKN 5.3 4.8 × 10–10 4.2 –

Fig. 18 Dependency of ΔKth value on the graphite particle size dG (R = 0.1): Points are
measurements for EN-GJS-400-15, squares for EN-GJS-400-18-LT
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DKth ¼ 0:0454dG=lmþ 5:9ð ÞMPa
ffiffiffiffi
m

p
: ð12Þ

The application of austempered ductile iron (ADI) materials was investigated
within the scope of developing and testing alternative railway wheel materials
which possess longer service lives. As generally known, these materials are char-
acterised by a combination of high wear resistance and high fatigue strength with, at
the same time, a high ductility which is atypical for cast irons in this strength class.
Since a railway vehicle wheel is subjected to high static and cyclic loading, the
service life assessment involving fracture mechanics concepts is extremely
important. Requirements for employing ADI as a wheel material are to verify
sufficient safety against fatigue and brittle fracture, and to specify suitable moni-
toring concepts.

A fracture mechanics assessment of an ADI wheel to rupture and fatigue crack
growth was carried out using a linear-elastic fracture mechanics analysis for
hypothetical crack-like defects (Fig. 19). The stress intensity factors KI for these
postulated cracks were ascertained using the stress distribution previously com-
puted using FEM at the cracks location, where solutions known in the literature
were assumed for comparable crack configurations. Analogously, the band width of
the stress intensity factor ΔK was computed. Moreover, the fatigue crack growth
rate and the number of load cycles up to fracture were calculated. The loading
stresses of the solid wheel’s postulated crack configuration were numerically ana-
lysed at the IMFD, the mechanical and fracture mechanics parameters of the ADI
material GJS-800-8 were determined at the IWT of the TU Bergakademie Freiberg,
Germany [42] (Table 13).

(a)

(b)

(c)

(d)

Fig. 19 Postulated crack configuration
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In conjunction with recurring service monitoring measures and safety concepts,
a permissible crack size can be derived from the computed crack length which is
consistent with fracture mechanics. The critical crack size computed here can be
diagnosed as safe and reliable by using non-destructive testing methods [42].

Besides the essential data about crack configuration and loading, reliable
information about the crack growth behaviour is necessary for computing the

Table 13 Mechanical and
fracture mechanics parameters
of ADI GJS-800-8

Properties Parameters

Young’s modulus E 170 GPa

Poisson’s ratio ν 0.3

0.2 % proof strength Rp0.2 637 MPa

Tensile strength Rm 893 MPa

Yield-to-tensile ratio Rp0:2=Rm 0.71

Fracture toughness Ji or KIcðJiÞ 11 kJ/m2 or 45.3 MPa
ffiffiffiffi
m

p

Fatigue crack growth for R = 0.1

Threshold value ΔKth 5.4 MPa
ffiffiffiffi
m

p

C 0.94 × 10–8

m 2.9

Fatigue crack growth for R = 0.5

Threshold value ΔKth 4.3 MPa
ffiffiffiffi
m

p

C 1.0 × 10–8

m 3.2

Fig. 20 Fracture mechanics safety assessment of components containing cracks subjected to
cyclic loading
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residual service life (Fig. 20) as an integral part of the fracture mechanics concepts.
It is important that, for fatigue problems, substantially more stringent requirements
must be imposed on the initial data’s precision than those in cases of static loading
because the fatigue life depends exponentially on the cyclic stress intensity factor.

During the design phase, conservative reference curves are frequently employed
for such fracture mechanics safety analyses. These curves were derived as envelope
curves via numerous measured results from material batches. Here, it is not always
evident how large the safety margin proves to be for individual type of material.

It is possible to perform a statistical evaluation by deriving the quantile crack
growth curves based on the NASGRO computer code, which is available as
“ESACRACK 4.0” [43, 44]. The principles of this statistical evaluation and its
application to cast iron materials are elucidated in [45, 46]. The crack growth model
of the program “ESACRACK” is based on an extended Paris-Erdogan equation
which describes all three regions of the cyclic crack growth curve (Fig. 21) as a
function of the stress ratio R according to

da
dN

¼ C2
1� f1
1� R

� �
DK

	 
n 1� DKth
DK

� �p
1� Kmax

Kmat

� �q : ð13Þ

The fitting constants p and q match the transition into region I (ΔKth threshold
value of the cyclic stress intensity factor) and into region III where, here, the critical
stress intensity factor Kmat and the maximum stress intensity are to be determined
during cyclic loading Kmax ¼ DK=ð1� RÞ. Region II is characterised by the
material specific parameters C2 and n, which are interdependent; (C2 and n refer to a
modification of Eq. 8). The dependency of the cyclic crack growth curve on the
stress ratio R is described by the crack opening function f1 which is defined by the
ratio Kop=Kmax (Kop is the crack opening stress intensity factor).

f1 ¼ Kop

Kmax
¼

maxðR;A0 þ A1Rþ A2R2 þ A3R3Þ R	 0
A0 þ A1R �2�R\0
A0 � 2A1 R\� 2

8<
: ð14Þ

Fig. 21 Cyclic crack growth
curve and definition of the
statistical variables
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The constants A0 to A3 depend on the ratio of the maximum tensile stress Smax to
the engineering flow stress σ0 and the constraint factor α.

A0 ¼ 0:852� 0:34aþ 0:05a2
� �

cos
pSmax

2r0

� �	 
1
a

A1 ¼ 0:415� 0:071að ÞSmax=r0
A2 ¼ 1� A0 � A1 � A3

A3 ¼ 2A0 þ A1 � 1

ð15Þ

α can take values between 1 (plane stress conditions) and 3 (plane strain conditions)
and is a function of the components thickness. For ductile materials where the
hypotheses according to VON MISES is valid, the quotient Smax=r0 assumes the value
of 0.3. For steels, the values α = 2.5 and Smax=r0 ¼ 0:3 lead to a good fit of
experimental data. In a few cases in which no plastically induced crack closure
occurs, the crack opening function f1 can be circumvented by the so-called bypass
operation because, in such cases, f1 is set equal to R (f1 = R) and thus the quotient in
Eq. 13 becomes (1 − f1)/(1 − R) = 1. The values α = 5.845 and Smax=r0 ¼ 1 have to
be specified for the bypass operation (Fig. 22).

The crack opening function f1 only describes the plastically induced crack
closure. Other mechanisms, such as crack closure due to corrosion products or
crack closure induced by roughness, can lead to a deviation in R depending on the
da/dN-ΔK curve. This can be determined by crack growth measurements at dif-
ferent R values. The constants: α and Smax=r0, are then used as fitting parameters.

Fitting the crack growth curves of the investigated cast iron materials (Table 14),
the following values are held constant:

Smax=r0 ¼ 0:3; a ¼ 2:5; a ¼ 10; a
0 ¼ 0:0381; Cth ¼ 0:25; Rcl ¼ 0:7; Rp ¼ �1:

Using the example of the spherical graphite cast iron materials, it can be seen
that the da/dN-ΔK curves, which were experimentally recorded for different R

Fig. 22 Crack opening
function f1 as a function of R
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Table 14 Parameters and constants of the crack growth model “ESACRACK” for cast iron
materials [6]

Material EN-… DK0 ðMPa
ffiffiffiffi
m

p Þ DKc ðMPa
ffiffiffiffi
m

p Þ C2 n p q Cth+

GJS-400-18-LT 7.8 32 3.8 × 10–9 3.8 0.20 0.10 2.6

GJS-600-3 7.8 36 6.0 × 10–9 3.5 0.30 0.25 1.9

GJS-800-8 6.5 58 3.5 × 10–8 2.7 0.25 0.25 1.0

GJS-1000-5 5.0 46 5.0 × 10–8 2.7 0.25 0.25 1.0

GJV-300 7.8 32 2.0 × 10–10 5.5 0.25 0.25 4.0

GJMB-350-10 8.8 30 4.5 × 10–8 3.0 0.25 0.25 1.0

GJMB-450-6 8.4 35 3.0 × 10–8 3.0 0.25 0.25 2.0

GJMB-650-2 5.7 45 4.0 × 10–8 2.7 0.25 0.25 1.0

GJMW-360-12 6.5 40 3.0 × 10–8 3.3 0.40 0.50 1.3

GJMW-400-5 8.4 40 3.0 × 10–8 3.3 0.30 0.40 1.8

GJMW-450-7 6.5 42 2.4 × 10–8 3.3 0.50 0.30 0.1

GJMW-550-4 5.3 38 8.5 × 10–8 2.7 0.20 0.30 0.5

Comments: The parameters are valid for the system of units: mm/cycle; MPa
ffiffiffiffi
m

p
. In order to

obtain the “ESACRACK” system of units mm/cycle; Nmm–3/2, one should carry out the following
transformations
DK0 ðN mm�3=2Þ ¼ 31:6 � DK0 ðMPa

ffiffiffiffi
m

p Þ
Kc ðNmm�3=2Þ ¼ 31:6 � Kc ðMPa

ffiffiffiffi
m

p Þ
C2 ðmm=cycle; MPa

ffiffiffiffi
m

p Þ ¼ C2ffiffiffiffiffiffiffiffiffi
1000n

p

(a) (b)

(c) (d)

Fig. 23 Analytical description of the cyclic crack growth curves according to the
ESACRACK-model for die materials. a EN-GJS-400-18-LT, b EN-GJS-600-3, c
EN-GJS-800-8, d EN-GJS-1000-5 [6]
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values, are described by the “ESACRACK”-model with sufficient accuracy
(Fig. 23).

“ESACRACK” also permits the threshold-value region to be described for both
positive and negative R values as a function of the crack depth according to

DKth ¼ DK0
a

aþ a
0

� �1
2 1� f1

1� A0ð Þ 1� Rð Þ
	 
� 1þCthRð Þ

ð16Þ

where, ΔK0 is the threshold value for R = 0, a is the current crack depth, a
0 is a
microstructure constant and Cth is a fitting parameter which can be different for
positive or negative R values (Cth+ or Cth−). The first part of Eq. 16 describes the
influence of crack length on the threshold value and, in doing so, takes into account
the lowering of the threshold value for crack depths smaller than a
0. The second
part of Eq. 16 describes the portion of crack closure with respect to the threshold
value using the crack opening function f1, the constants A0, and Cth.

For the cast iron materials listed in Table 14, a statistical evaluation was carried
out which was separately performed for the three regions of the cyclic crack growth
curve. From this evaluation, the resulting 5 and 95 % quantile crack-growth curves
are depicted in Fig. 24 [46].

The influence which the corresponding quantiles exert on the predicted fatigue
life is to be demonstrated for a component in the following computational example.
A cyclic tensile load acts on an EN-GJS-400-18LT bar containing a semi-elliptical
surface defect (Fig. 25). The following parameters are assumed:

(a)

(c) (d)

(b)

Fig. 24 Measured data points and quantile crack growth curves for 5 % (red) and 95 % (green)
probability: a EN-GJS-400-18-LT, b EN-GJS-600-3, c EN-GJS-800-8, d EN-GJS-1000-5 [46]
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Initial crack length: a0 ¼ 2:5 mm,
Cyclic stress range: Δσ = 150 MPa,
Diameter: D = 25 mm,
Stress ratio: R = 0.

The computations were performed using the program “AFGROW” [47] and the
crack growth curves were computed for the 5, 50 and 95 % quantiles. “AFGROW”
incorporates the “ESACRACK/NASGROW” model. Table 15 lists the employed
material data. The parameters ΔK0, C2 and KC are defined as statistically distributed
variables and varied by the factors TDK0, Tc and TKmat [46].

As a result of the computation, the crack length curves are depicted in Fig. 26 as
a function of the number of cycles based on different quantile crack-growth curves.

Fig. 25 Crack geometry for
the computational example

Table 15 Parameters for the crack growth model “ESACRACK” for quantile crack-growth
curves (ΔK in MPa

ffiffiffiffi
m

p
, da/dN in m/cycle) [46]

Material
EN-GJS-400-18LT

Tc C2 TDK0 DK0

ðMPa
ffiffiffiffi
m

p Þ
TKmat KC

ðMPa
ffiffiffiffi
m

p Þ
n p q Cth

+

50 % quantile 3.8 × 10–12 7.8 32 3.8 0.20 0.10 2.6

5 % quantile 1.97 × 10–12 8.5 37 3.8 0.20 0.10 2.6

95 % quantile 7.03 × 10–12 6.8 24 3.8 0.20 0.10 2.6

Fig. 26 Crack length versus
cycles based on assuming
different quantile
crack-growth curves
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If one compares the results of the 50 % and the 95 % quantile crack-grow curves, it
can be seen that the fatigue life at the 95 % probability level is half that given by the
mean value curve. That shows that the frequency of inspection interval has to
double at least.

4.2 Variable Amplitude Loading

The following results were determined during experimental investigations on
damage mechanisms during crack propagation in ferritic cast iron materials sub-
jected to constant and variable load amplitudes. The tests were performed within the
scope of a joint research project between IMFD and IWT of the TU Bergakademie
Freiberg [48–53].

The material was a GJS-400-18LT which was casted especially for the inves-
tigations in this project. Different graphite particle diameters dG of 13 and 41 μm,
subsequently designated by G10 and G50, were set by specifically influencing the
cooling rate (Table 16).

The materials were characterised by measurement of da/dN-ΔK curves at con-
stant load amplitudes for different R values, and described by means of the
NASGRO-equation (Fig. 27; Table 17). The fracture mechanics parameters of the
da/dN-ΔK curve, each determined from three specimens per R value, are compiled
in Table 18. Both the well known dependency of the ΔKth and ΔKfc values on the
mean stress as well as the tendency to higher ΔKth and ΔKfc for larger diameters of
the graphite particles can be seen in Fig. 28 and Table 18.

The investigations of crack growth behaviour subject to variable loading
amplitude were carried out on standard, 10 mm × 20 mm × 100 mm SENB
specimens having a 3 mm starter crack. The tests were performed in a
three-point-bending apparatus using load control. The load was applied using a
computer controlled servo-hydraulic testing machine by MTS. Here, the crack
length was recorded using crack gauges, which were applied to both specimen sides
above the notch root, in combination with the crack-length measuring system
FRACTOMAT made by RUMUL. In order to better quantify the sequence effects
and the effectiveness of the loading reversals on the fatigue crack growth, the
investigations were carried out using the following loading modes:

Table 16 Mechanical properties and graphite morphology parameters

Material T (°C) Rm

(MPa)
Rp0.2

(MPa)
A (%) E (GPa) dG

(μm)
λ
(μm)

f Na

(mm–2)

G10 RT 388 247 23.5 176 13 21 0.75 902

−40 420 276 26.0

G50 RT 374 242 23.0 179 41 58 0.58 124

−40 405 267 21.0
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• Introducing of individual overloads at a base load level (R = 0.5) with variations
in the overload ratios ROL ¼ 1:25�2:25ð Þ, which is defined by

ROL ¼ Foverload=Fmax;baseload: ð17Þ

• Block load sequences low-high-low possessing different block load ratios
RBlock ¼ 1:25�2:0ð Þ, in which the block load ratio is defined by

(a) (b)

Fig. 27 Cyclic crack growth curves of G10 and G50 for different R values

Table 17 Parameters of the NASGRO equation

Material DK0

ðMPa
ffiffiffiffi
m

p Þ
Kmat

ðMPa
ffiffiffiffi
m

p Þ
C2 n p q Cth+

G10 11.5 33.2 3.1 × 10–9 3.8 0.4 0.4 3.5

G50 11.7 33.7 3.0 × 10–9 3.8 0.5 0.5 3.0

Table 18 Fracture mechanics parameters (Paris parameters C and m, threshold value ΔKth and
critical fatigue stress intensity factor ΔKfc) of the cyclic crack growth curves for EN-GJS-400-LT

Material R value DKth

ðMPa
ffiffiffiffi
m

p Þ
m C DKfc

ðMPa
ffiffiffiffi
m

p Þ
G10 0.1 10.1 6.0 5.1 × 10–12 31

0.3 8.1 5.0 1.5 × 10–10 22

0.5 5.1 5.0 2.8 × 10–10 17

G50 0.1 10.2 6.1 3.3 × 10–12 28

0.3 8.5 5.0 5.0 × 10–10 25

0.5 5.5 4.6 3.1 × 10–10 17
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Rblock ¼ Fblock=Fmax;baseload: ð18Þ

The block load sequences were randomised using 5000 cycles within a base
load (R = 0.5) of 15,000 cycles.

Using a 1.5 overload as an example, Figs. 29 and 30 depict the resulting
influence on the fatigue crack growth for the test materials G10 and G50. The crack
growth rate da/dN was computed by means of the secant method. Both figures
clearly show accelerations in the crack growth due to the tensile overload.

For G10, da/dN increases from 10–5 up to 10–3 mm/cycle. Following this, da/
dN again approximates the previous level of 10–5 mm/cycle, which the crack
requires approx. 440 cycles after the overload. For G50 (Fig. 30), da/dN only
increases to 5 × 10–4 mm/cycle and requires approx. 150 cycles in order to stabilise
to its previous level. For both test materials, all the investigated overload ratios
(ROL ¼ 1:25�2:25) lead to initial crack acceleration phases. The block-program
tests were performed for Fmin ¼ constant and 5000 block load cycles. Figure 31
shows the influence of two different block load ratios on the fatigue crack growth of
G10 and depicts the corresponding da/dN-N curve.

Fig. 29 Influence of an
overload (ROL ¼ 1:50) on the
crack growth rate for G10

Fig. 28 Comparison of the
cyclic crack growth curves of
GJS-400-18LT specified as
G10 and G50 for R = 0.3
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On changing from a low (low) to a high load level (high), a significant crack
acceleration occurs. Within the block load, da/dN increases over a short time to
8 × 10–5 mm/cycle for Rblock ¼ 1:25, and to 1 × 10–3 mm/cycle for RBlock ¼ 1:5.
This short time increase can be explained by the crack being opened due to the
introduced block load. Subsequent to this, da/dN stabilises to an approx. constant
level during approx. 600–800 load reversals within the block load until a high-low
transition. For Rblock ¼ 1:25, da/dN stabilises over a short time to approx. 2 × 10–
5 mm/cycle and, for RBlock ¼ 1:5, to approx. 1 × 10–4 mm/cycle. The higher crack
growth rate corresponds to an increase in ΔK as a consequence of the higher load
level. In contrast to the well known occurrence of crack growth retardation in
aluminium and steel during the high-low transition, here a short term but rather
small crack acceleration phase occurs until da/dN again stabilises to the previous
base load level.

Besides this, Fig. 31 shows that da/dN is increased with increasing RBlock. No
crack growth retardation was measured in this case during the limited number of

Fig. 30 Influence of an
overload (ROL ¼ 1:50) on the
crack growth rate for G50

Fig. 31 Influence of two block loads on the crack growth rate for G10
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cycles. One reason for this acceleration effect is the predamage ahead of the crack
tip in the cast iron material. In [54], it was already possible to observe the damaging
process by means of scanning electron microscopy investigations. According to
this, the crack acceleration effects can be clearly attributed to the spherical graphite
debonding from the matrix following the overload.

Moreover, in view of the increased use of ductile cast iron in wind energy
generators, the standardised load spectrum WISPERX [55] was employed in the
investigations of fatigue crack growth. Using a final multiplying factor, the maxi-
mum and the minimum forces were specified within the load spectrum for
WISPERX as 6 and 0.3 kN, respectively. On carrying out a global analysis based
on a static description, the following effective values were specified for WISPERX:
Fmin;RMS ¼ 3:089 kN, Fmax;RMS ¼ 4:808 kN and DFRMS ¼ 1:719 kN. Figure 32a
depicts the a-N curves for both material types loaded using WISPERX and the tests
simulated from these loading sequences using the effective values (RMS test using
DFRMS ¼ 1:719 kN, i.e. constant load amplitude).

As a result of these investigations, the influence of the spherical graphite size is
shown. According to this, G50 exhibits a slightly longer fatigue life than G10 for the
same loading. Moreover, it can be seen that WISPERX leads to a significantly
shorter fatigue life than that measured during the comparable RMS test. This, in turn,
is based on the occurring crack acceleration effect during the WISPERX loading
sequence, which is composed of statistically distributed overloads, underloads and
block loads. In addition to this, Fig. 32b shows that from DK ¼ 10MPa

ffiffiffiffi
m

p
, G10

exhibits a higher crack growth rate than G50 in the RMS tests.

5 Summary

Cast iron materials show relatively low energy values in the conventional charpy
impact testing compared to construction steels. Fracture mechanics based design
gives the possibility to quantify the toughness needed in the construction detail. For

(a) (b)

Fig. 32 a Comparison of the a-N curves for G10 and G50 from WISPERX and RMS tests; b
Cyclic crack growth curves from the RMS tests
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the characteristic material properties it is important to consider the microstructure.
Special attention should be given on graphite shape and size, Si content and testing
temperature. The highest static fracture toughness was obtained for nodular cast
iron with ferritic matrix and large graphite diameter. Also the threshold value for
fatigue crack growth of such material is high. Under dynamic impact loading a
smaller graphite diameter results in higher crack initiation values. Increasing the Si
content leads to cleavage fracture at low temperatures and at high loading rates.
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On the Development of Experimental
Methods for the Determination of Fracture
Mechanical Parameters of Ceramics

Robert Danzer, Tanja Lube and Stefan Rasche

Abstract Because of their high yield strength and hardness as well as their brittle
fracture characteristics the behavior of cracks in ceramics can be described within
the framework of linear elastic fracture mechanics. For fracture toughness (KIc)
measurements the test techniques which were developed for metallic materials are
unfavorable, as an economical preparation is impossible in the case of ceramic
materials. Therefore simple geometries e.g. bend bars became a preferred specimen
shape for KIc measurements. A major difficulty arises when sharp and well-defined
pre-cracks for crack propagation studies have to be created. Several methods to
overcome this problem are introduced. Additionally, methods to investigate small
amounts of material are discussed.

1 Introduction

With the increasing significance and appreciation of fracture mechanics for the
reliability analysis of metal structures in the sixties and seventies of the last century
also some interest in a fracture mechanical characterization of ceramics emerged.
Ceramics are very brittle materials. Their yield stress is—in general—about one
order of magnitude or more higher than their tensile fracture strength [1–3].
Therefore the plastic zone at the crack tip is always very small. Its diameter is in the
order of just several micrometers or even less [3]. Therefore linear elastic fracture
mechanics are well suited to describe the behavior of ceramic materials [3, 4]. Then
the appropriate parameter to describe the propagation of cracks in ceramics is the
fracture toughness, KIc.
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This paper starts with a short summary of the theoretical background, i.e. linear
elastic fracture mechanics and toughening mechanisms of ceramics. Then the
development of experimental methods for the determination of the fracture
toughness of ceramics is shortly presented and the state of the art of fracture
toughness measurement techniques for ceramics is described.

2 Theoretical Background

Early works on fracture mechanics of ceramics were made by Griffith [5]. For an
ideal elastic solid a balance is made between the energy losses and the energy gains
for a propagating crack. The losses are determined by the changes in the elastic
energy and the work done by the crack propagation. The gains correspond to the
energy necessary to create the new fracture surfaces, δA. Griffith mentioned that this
energy is 2c � dA, where γ is the surface energy of the solid. The factor two arises
since a crack always creates two new surfaces.

Griffith’s model works well for glasses, where indeed a large part of the energy
necessary to create new fracture surfaces is surface energy. But for other materials
(metals, polymers, ceramics) other energy dissipating processes contribute to the
energy necessary to create the new fracture surfaces. This energy may become
much (up to several orders of magnitude) higher than the surface energy [3].

More than 30 years later this fact has been accounted by Irwin, who proposed the
concept of linear elastic fracture mechanics [6]. In his theory all involved energy
changes are strictly proportional to δA and—to give “energy rates”—they can be
divided by the crack surface area. The strain energy release rate, G, describes all
energy losses (elastic energies and work) and the critical strain energy release rate,
Gc, is equal to the energy necessary to create the new fracture surface (both divided
by δA) [4, 7]. Often it is assumed that the critical strain energy release rate is a
constant but in reality it may depend on the previously cracked area and the crack
geometry. Then the material has a rising crack resistance curve (R-curve).

For a material without R-curve, unstable fracture occurs if the energy losses
exceed the gain in fracture energy [8]:

G�Gc ð1Þ

In ceramics this fracture is brittle. It can be shown, that for plane stress condi-
tions and for mode-I loading it holds [3, 7]:

G ¼ K2=E ð2Þ

and
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Gc ¼ K2
Ic=E ð3Þ

with

K ¼ rY
ffiffiffiffiffiffi
pa

p
: ð4Þ

For plane-strain conditions and mode I loading, which are most relevant when
testing ceramics, E has to be replaced by E0 ¼ E= 1� m2ð Þ [8].

The symbol E refers to the Young’s modulus, ν is Poisson’s ratio and σ is the
stress component normal to the prospective crack plane in the un-cracked body. K is
the stress intensity factor, KIc is the fracture toughness and Y is a geometric factor,
which takes the geometry of the crack, specimen and stress field into account. For
typical loading situations such factors and their dependence on the geometric details
of crack and specimen can be found in the literature [9, 10]. With this notation the
well-known Griffith/Irwin criterion for brittle fracture can be defined [3, 7, 11]:

K�KIc: ð5Þ

Inserting Eq. (4) in Eq. (5) gives an equation for the tensile strength, rf , of
ceramic materials:

rf ¼ KIc

Y
ffiffiffiffiffiffiffi
pac

p : ð6Þ

The symbol ac designates the length of the (critical) crack.

2.1 Strength of Ceramics

Using Eq. (6), many typical features of the fracture behavior of ceramics can be
explained.

The strength of ceramic specimens is directly proportional to the fracture
toughness, which describes the resistance of the material against brittle failure. As
already shown by Griffith [5] and Irwin [6], the strength of ceramic specimens also
depends on the inverse square root of the size of the fracture origin (critical crack):
rf / a�1=2

c . In smooth strength specimens many (small) cracks exist. Than the
crack having the largest stress intensity factor will become fracture origin (i.e. it is
the critical crack; in the case of a homogeneous uniaxial stress field and for cracks
oriented perpendicular to the stress direction this is will be the largest crack in the
specimen.) Since in individual specimens the value of ac is different the strength of
specimens scatters [12–14]. The strength distribution of brittle materials can be
adequately described by a Weibull distribution. (This statement is exactly true if the
size distribution of the flaws is homogeneous and follows a power law. Then the
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material is a Weibull material [15]). Since the probability of finding a large flaw in a
large specimen is higher than the probability of finding a large flaw in a small
specimen the strength of ceramic specimens is size dependent and the mean
strength of large specimens is smaller than the mean strength of small specimens
[16, 17].

The distribution of flaw sizes depends to a large extent on the processing history
of the specimens [17]. Therefore the strength is not a material parameter. The
strength is influenced by very specific details of the processing of the material (e.g.
a small amount of coarse grains or pores may cause a low strength) and of the
specimens (machining flaws [18]). Therefore the authors believe that the most
significant fracture mechanical material properties of ceramic materials are the
fracture toughness (the critical mode I stress intensity factor) and the critical energy
release rate, which is related to the fracture toughness via Eq. (3).

2.2 Toughness of Ceramics

Let us come back to the fact that the critical strain energy release rate, Gc in
ceramics is much higher than twice the surface energy, 2γ. This is caused by so
called toughening mechanisms which can be divided into two classes: process zone
and bridging mechanisms [19, 20].

It is known from Irwin’s work, that in an ideal elastic body, there is a stress
singularity at the crack tip, i.e. the components of the stress tensor go to infinity as
the distance, r, of the analyzed volume element approaches zero: r / r�1=2 [6, 8].
In reality ideal elastic bodies do not exist and there is some yielding if the stresses
are high enough. In metals or polymers a well-known reason for yielding is plastic
deformation. This deformation only happens in a zone ahead of the crack tip, where
the stresses are high enough (plastic zone). If a crack propagates the plastic zone
moves with the crack tip. In the wake of the crack plastically deformed crack
borders remain. The energy to deform the borders is in general much higher (up to
several orders of magnitude higher) than the surface energy. This causes the high
fracture toughness of many metallic materials [2]. In the case of ceramics some
plastic deformation also occurs but the yield stress is very high. Therefore, the
plastic zone is confined to a region very close to the crack tip and the contribution
of the plastic deformation to the fracture energy is small [3]. But there exist other
mechanisms causing nonlinear deformations in ceramics. Examples are phase
transformations, domain switching or micro crack formation. Similar to plastic
deformations they only occur at sufficiently high stresses. Therefore, they are
restricted to a region ahead of the crack tip, which is called process zone. The
energy to deform the wake of a propagating crack can be much larger (e.g. several
thousand times larger in the case of zirconia ceramics) than the surface energy.
Therefore the process zone mechanisms can cause significant contributions to the
fracture energy of ceramic materials [19, 20].
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The second group of mechanisms are crack bridging mechanisms caused by
processes behind the crack tip. Crack bridges transmit forces across the crack faces,
like nails, that fix together two boards and that have to be pulled out dissipating
friction energy when the borders of the boards are pulled apart. Crack bridges may
dissipate a huge amount of energy by friction or by the deformation of the bridges.
Bridging is often accompanied by a crack path strongly influenced by the micro-
structure, e.g. if the crack follows a grain boundary phase (causing “elastic” bridges
[21]), if it is deflected by particles [22, 23], or if it plastically deforms a second
ductile phase (as in the case of cemented carbides [24]). The associated energy may
also be much higher than the surface energy and bridging can therefore cause a
significant increase in toughness.

It is obvious that some crack advance is necessary until process zones or crack
bridges fully develop. Therefore the fracture energy rises at the beginning of crack
propagation (R-curve behavior). To give an example the maximum of the critical
stain energy rate is typically reached after a crack advance of 2–3 diameters of the
process zone [19, 20]. In the case of crack bridging the R-curve can be very steep
and reaches the saturation after a just a few µm of crack advance, as for example in
in-situ reinforced silicon nitrides [25].

2.3 Principle of Fracture Toughness Measurements

Measurements of the fracture toughness or of the critical energy release rate can be
done by experiments, where a specimen containing a crack with well-defined shape
and size is mode-I loaded with a well-defined stress field until it becomes critically.
At this moment the stress intensity factor equals the fracture toughness [see Eq. (5)].
Using Eq. (4) it holds:

rcY
ffiffiffiffiffiffiffi
pac

p ¼ KIc: ð7Þ

The parameter rc describes the stress field and its amplitude and ac is the size of
the crack. The geometric factor Y is, in general, crack length dependent. It has to be
determined for each specimen and loading geometry separately [8, 11]. For a given
experimental setup (specimen type), this equation can be translated into an equation
for the fracture toughness in dependence of the fracture force, specimen size and
crack length. Examples can be found in standards for fracture toughness testing. If
Young’s modulus, E, is known, the critical strain energy release rate, Gc, can be
determined using Eq. (3).

Note that the stress field can have contributions caused from the externally
applied load and from residual stresses which may come into existence during
material processing and specimen preparation. Therefore—to make a proper anal-
ysis—residual stresses in the specimens have to be avoided or have to be consid-
ered in the data evaluation.
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3 Development of Fracture Mechanics Measurements

Very soon after the first publications on the linear elastic fracture mechanics,
important applications for metal structures could be found. The leak before break-
criterion (under such conditions cracks growing in the wall of a pressure vessel only
cause some leakage instead of an blow up of the vessel) was still used for the design
of pressure vessels of nuclear power plants in the seventies of the last century [2].

3.1 Testing of Metals: ASTM E399

Thus it is not surprising that the measurement procedure for the fracture toughness
of metals has been standardized very soon. The ASTM E399 “Standard Test
Method for Plane-Strain Fracture Toughness of Metallic Materials” was first
published in 1970. It has been revised and approved several times (the last version
is from 2012, [26]). Other standards on fracture toughness testing of metals are
more or less based on this ASTM E399.

ASTM E399 describes “the determination of the plane-strain fracture toughness
of metallic materials by tests using a variety of fatigue-cracked specimens …”. It
“involves testing of notched specimens that have been pre-cracked in fatigue by
loading either in tension or three-point loading” [26]. Proposed are several spec-
imen geometries which can easily be machined out of plates (e.g. rectangular beams
or compact specimen), roads (e.g., disk-shaped compact specimen) or tubes (e.g.
arc-shaped bend specimens). A very serious aspect is the introduction of the “starter
crack”. It has been recognized that “… it is impractical to obtain a reproducibly
sharp, narrow machined notch that will simulate a natural crack …” [26]. It is
proposed to machine a narrow notch (straight through or a Chevron notch), which is
then sharpened by subsequent fatigue loading to form a short straight through
fatigue crack. The crack is subsequently loaded in mode I until it starts to extend
(i.e. it becomes critical; this can be recognized by a non-linearity in the
force-displacement curve) and the critical force is recorded. The crack length can be
measured before testing at the sides of the specimen or after testing at the fracture
surface. From the critical force and geometric data describing crack length and
specimen size, the fracture toughness can be determined [26].

As mentioned earlier the linear elastic fracture mechanics only applies in the case
of small scale yielding and the standards demand to validate this condition.
Roughly speaking this happens, if the size of the plastic zone is very small com-
pared to crack length and the specimen dimensions. This condition may result in the
requirement for a minimum specimen size for fracture toughness testing.
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3.2 Early Techniques Used for Ceramics

At the beginning of scientific interest in fracture mechanics of brittle materials,
especially of single crystals [27], many experiments were made on double canti-
lever beam specimens, which are tested in tension and which are relatively easy to
machine [28]. Little later it was observed that crack growth is also possible at stress
intensity factors lower than the fracture toughness (sub-critical crack growth,
SCCG) [29, 30]. It was realized that the SCCG-rate depends on the stress intensity
factor. Therefore specimen types and loading conditions were developed, for which
the stress intensity factor is independent of the crack length, so that the experiment
can easily be controlled by the applied force. This is the case for the tapered double
cantilever beam, the constant moment specimen and the double torsion specimens
[28]. These specimens are, on one hand, relatively large and their machining is
expensive, and on the other hand some of them require complicated gripping
systems for load applications. Therefore they are only used in rare cases, e.g. for
some SCCG measurements.

4 Fracture Toughness Testing of Ceramics

Large efforts were made in the seventies and eighties of the last century to develop
robust and easy to use fracture toughness testing procedures for ceramics that
deliver reproducible results. There are some special aspects which have to be
considered:

(a) Ceramics are very hard and not easy to machine. Complex shapes can hardly
be manufactured or it causes huge costs. Possible (but still expensive) are cuts
(abrasive cutting, disc cutting), the preparation of prismatic bars (grinding,
polishing, etc.) and cylinders (cylindrical grinding). Specimens with shapes
needing other machining procedures (e.g. boring, drilling) are not feasible with
a standard laboratory or machine shop equipment.

(b) Ceramics are very susceptible to fatigue and pre-cracks are difficult to make by
fatigue. Therefore other ideas to make “sharp” and well defined cracks have to
be developed.

(c) The process zone in ceramics is very small (several 10 µm or smaller) and the
conditions for small scale yielding are in general fulfilled. Larger process
zones may occur in some transformation toughened zirconias [31].

(d) Very often only small amounts of material are accessible for testing. Typical
sintered specimens of new materials have dimensions of several (ten) milli-
meters and many ceramic components are even smaller. There is a great need
for testing methods for small specimens.
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4.1 Tests on Bend Bars

Considering the specific aspects for the fabrication of ceramic specimens (points
(a) and (d), above), bend bars soon became the favorite specimen geometry. Such
specimens are the easiest to make (e.g. by surface grinding), and are most efficient
in the use of material. The same geometry as used for standard strength measure-
ments can be used. For load application three-point bending as well as four-point
bending is used. Standard dimensions are 3 mm × 4 mm × 45 mm, but small
specimens having cross sections of about 1 mm × 1 mm and a length of a little more
than 10 mm can be tested using conventional equipment.

4.1.1 Pre-cracked Bend Bars

For ceramics it is difficult to introduce suitable pre-cracks by fatigue (point (b),
above). Alternative methods were thus developed. A sharp and well defined
pre-crack can be generated by letting an existing crack grow stably, until it has the
expected size and geometry, and then stop it.

A problem with these methods is that the elastic energy released with crack
extension can become very high, especially if the crack is loaded in pure tension
and if the testing equipment is not very stiff. Then the elastic energy released in the
testing machine may be much larger than the elastic energy released in the speci-
men. On the other hand the critical energy release rate Gc of cracks in ceramics is in
general very small. To stop a crack in a typical tensile test, the loading has to be
released immediately after the beginning of the crack propagation. Otherwise the
specimen would fail catastrophically. But due to the inertia of the system such
quick reactions are not possible with normal testing equipment. This explains the
efforts to develop extremely stiff testing machines and jigs.

One way to overcome this difficulty in pre-crack generation is the “bridging
method”. A bend bar with a small notch or line of hardness indentations at mid-span
is supported on a stiff anvil. The pre-crack is generated by localized loading of the
notch, see Fig. 1a. The formation of the pre-crack usually occurs by unstable crack
growth (pop-in) and has to be detected by acoustic emission [32–35]. Although this
idea is simple the practical realization is tricky and requires sophisticated equipment
[36]. In the ESIS round robin it turned out that only very few laboratories managed
to produce valid cracks using this method. The conclusion was that the bridging
method is not suitable for routine laboratory testing [37].

For the evaluation of KIc from the fracture force according to Eq. (7) the
pre-crack length has to be measured on the fracture surface. This requires a certain
amount of experience and may not be straightforward. The above described single
edge pre-cracked beam (SEPB) method is standardized in ISO 15732 [38] and
ASTM C1421 [39].

Alternatively, the bend bar can be notched to leave a chevron shaped area un-cut,
cp. Figure 1b. When the tip of the chevron is loaded, a crack starts to grow. Due to
the shape of the ligament, there is first a quadratic increase of the cracked area with
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crack extension. This causes a decrease of the stress intensity factor and favors
stable crack growth, which precedes subsequent instable fracture. Stable crack
growth, which is mandatory for a valid test, has to be monitored on the
load-displacement curve to allow for the determination of the maximum force.
Together with the dimensions of the test-piece and the chevron, KIc can be deter-
mined [40]. Theoretical considerations [41] and experimental work showed that it is
not easy to obtain stable crack growth [37]. In the standards EN 14425-3 [42, 43]
and ASTM C1421 [39] hints for notch machining and required stiffness of the test
equipment are given as to ensure valid tests.

4.1.2 Notched Bars

As an alternative to introducing sharp pre-cracks into specimens it has been tried to
replace the sharp crack by a (thin) notch. Machining of the notch can be accom-
plished by thin grinding wheels. Best practice examples for such thin notches had a
width of about 50 µm [40] but in many experiments a notch width of about 200 µm
was typically. Since the stresses at the sharp crack tip ðr ! 0Þ go to infinity in the
ideal linear-elastic case (remember, there is a 1=

ffiffi
r

p
singularity), they are always

higher than at the tip of a blunt notch, were the stresses approximately follow the
law: r / 1þ 2

ffiffiffiffiffiffiffi
l=q

p
, with l being the length and ρ being the half width of the notch

[44]. Therefore, if notches are used instead of “sharp” cracks, the fracture toughness
is always overestimated.

Systematic studies on the notch-root radius effect were made about 25 years ago
[40, 45]. Experiments on bending specimens having a thin notch (single edge
notched beam specimens) performed on several different classes of structural
ceramics have shown that with decreasing notch width the “apparent” fracture
toughness also decreases. For all investigated materials there seems to exist a lower
boundary for the fracture toughness [46, 47].

Based on these observations a model was formulated that in the front of the
notch a small crack is formed due to weak spots in the microstructure. If the depth

Fig. 1 Bend specimens with pre-cracks: a Schematic of a device for pre-cracking using the
“bridging method”. b Chevron notched bend bar
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of this crack is taken as a fitting parameter, the values of the “apparent” fracture
toughness could be explained, if the crack depth is in the order of the mean grain
size of the investigated materials [47, 48].

Based on an idea of Nishida [46] efforts were undertaken to find a procedure for
making very narrow notches [49]. The basic idea is that a notch can be sharpened at
its tip by a honing procedure with a razor blade that is covered with diamond paste.
With this procedure the notch root radius can be reduced to a few micrometers [47,
50]. With such V-notches fracture toughness can be determined correctly (more
precisely: is only slightly overestimated).

In a European round robin organized by ESIS TC 6, it could be shown that this
testing procedure gives consistent results if performed by different laboratories [51].
Based on these results the single edge V-notched beam (SEVNB) test was stan-
dardized: EN 14425-5 [52] and ISO 23146 [53]. For ceramics having a grain size of
several micrometers or larger, it is an easy to perform and relatively cheap pro-
cedure to determine the mode I fracture toughness.

4.1.3 Indentation Cracks in Bending

In the case of hardness testing of ceramics, e.g. by Vickers or Knoop indentation
tests, an unwanted artefact is the occurrence of cracks, which emanate from the
corners of the indent. These surface cracks have nearly semi-elliptical shape and a
size of a few hundred micrometers. Since the indent causes non-elastic deformation
of the material residual stresses are present in the vicinity of the crack. The cracks
are several times deeper than the “plastic” deformation zone under the indent, so
that this zone can be machined off by surface grinding and the residual stresses can
be removed [54, 55]. With the same procedure sub-surface “lateral” cracks [56] that
interfere with the semi-elliptical surface crack also have to be removed [57], see
Fig. 2a.

Indentation cracks with ground-off plastic zone are ideal pre-cracks for fracture
toughness testing. The surface-crack-in-flexure (SCF) method [58] uses this tech-
nique for generation of a pre-crack on the tensile stresses surface of a standard bend
bar. Fracture toughness testing can be made by measuring the critical force for
crack extension and determination of the crack size and shape on the fracture
surface. The geometric factor of semi-elliptic surface cracks has been published by
Newman and Raju in the seventies of the last century [59]. But the making of the
indent also produces some plastic deformation under the indent, which causes
residual stress. Recently a more precise solution for sections of semi elliptic surface
cracks has been published by some of the authors [60]. The method is standardized
in ASTM C1421 [39] and ISO 18756 [61].

An older method (indentation strength method, IS) [62] refrains from grinding
off the deformed zone of the indentation placed on the bend bar prior to fracture.
The effect of the residual stresses is incorporated into the theoretical analysis via an
empirically calibrated factor which relates the indentation load (as a measure for the
crack size) and the fracture force with the fracture toughness. However, since the
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residual stress field is force and material dependent and crack shapes show a
variability too, results can be dependent on indentation force [63].

4.2 Indentation Cracks—Direct Measurements

Hardness indentations can be made into very small pieces of material needing
nearly no machining (apart from providing a polished section). The problems
mentioned at the beginning of this chapter in aspects (a) and (d) would be solved.
This observation has encouraged researchers to use these cracks for fracture
toughness testing. Large efforts were made to relate the length of these cracks,
which can be determined at the specimen’s surface, to a value for the fracture
toughness (indentation fracture method, IF) [64–66].

The driving force for the formation of indentation cracks is the multi-axial
residual stress field caused by the deformation of the material by the hardness
imprint. But these stresses not only depend on the yield strength (hardness) and
Young’s modulus of the material, they also depend on the shape of the deformed
zone which depends on the microstructure and differs from material to material.
Additional complications arise from a variability of the crack shape from
“Palmqvist cracks” [67] to half-penny cracks and the occurrence of additional
sub-surface “lateral” cracks. These facts make it impossible to set up an exact
theoretical basis for the dependence of crack length on indentation force. In general
an experimentally calibrated factor appears which is either only valid for a certain
material or is far from precise.

Even though testing is very simple and data evaluation (measuring the length of
a crack at the polished surface) can also be done easily, there is now some common
opinion in the community that such measurements do not give the material property
“fracture toughness” [68, 69]. IF tests are still popular if only small amounts of
material are available. Based on extensive experimental work [70, 71] IF was
recently incorporated into a standard ASTM F2094 for the material specification of

Fig. 2 Indentation cracks: a Knoop indentation crack on a fracture surface made visible using
fluorescent dye. The thickness of the surface layer that has to be removed is indicated by a dashed
line. b Vickers hardness indentation with cracks emanating from the corners
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ball bearing silicon nitrides [72]. There, the quantity determined with this method
(only valid for silicon nitrides) is called “indentation fracture resistance—IFR” in
order to be distinguished clearly form the plane-strain fracture toughness KIc.

4.3 Comparison of Methods

As pointed out by Morrell [69] methods for determination of fracture toughness that
are acceptable with respect to fracture mechanical criteria (well defined crack
geometries and stress field, exact calibration) and practical aspects (simple speci-
men and pre-crack fabrication, reliable and reproducible tests) are the SEPB, CNB,
SEVNB and SCF method. They deliver equivalent results for materials having a flat
R-curve. Since these methods use pre-cracks with a different length, crack opening
and “crack-growth history”, they may give different values if a R-curve material is
tested [11].

Methods using indentation cracks with the residual stresses still present (IF, IS)
are still used widely in academy and industry. Such values are highly unreliable. If
at all, they should only be used as a relative measure within a given class of
materials.

5 Recent Developments

For the quality control of ceramic components, fracture toughness testing tech-
niques are required which can be applied directly to components, to (very small)
specimens cut out of components or to typical specimens used in material devel-
opment (small discs). Since the microstructure of ceramics sensitively depends on
processing conditions, property gradients and inhomogeneity in components occur.
Therefore it would be beneficial if the fracture toughness of the critical areas could
be tested.

Examples are ceramic rolling elements for bearings. In the last decade the sales
figures for ceramic and hybrid bearings significantly increased. Bearings with
ceramic balls are used for example in offshore wind mills. They permit long service
intervals combined with a high resistance to wear. The insolation of the electrically
conducting parts of the mill is realized via the ceramic bearing elements. The
highest loaded (critical) area of such components is the surface. Due to the sintering
process bearing balls may have property gradients perpendicular to the surface.
Therefore tests are required which load the surface near regions of the balls. The
notched ball test (NBT) measures the tensile surface strength of the balls. A deep
notch (deeper than the ball radius) is cut into the equatorial plane of the ball, which
is than squeezed together at its poles. This causes an almost uniaxial stress field in
the surface region of the ball opposite of the root of the notch [73, 74]. For the
determination of the fracture toughness of the surface-near regions of the balls, this
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stress field is used to load a pre-crack, which is made by a Knoop indent, analogous
to the SCF-method. Of course the plastic deformation zone under the indent has to
be ground off. The theoretical details (e.g. the determination of the geometric
function) and experimental details are published in [75, 76]. With this technique
fracture toughness testing can be made on balls as small as a few millimeters in
diameter with an accuracy of a few per cent. This corresponds to the typical scatter
of fracture toughness data.

A second example is a fracture toughness test for small discs and plates. About
ten years ago a new test to determine the biaxial tensile strength of thin discs and
plates was developed. The specimen is positioned on three large balls and then
loaded with a forth ball in the middle of the plane of the specimen opposite to the
supporting balls. This causes a biaxial stress field in the center of the supported
specimen surface, which is used for strength testing of the specimen. The ball on
three balls (B3B) test is very precise (much more accurate than other biaxial tests or
the bending test) [77–79]. This is beneficial for testing small specimens. So, very
small specimens can be tested (plates with an area of about 1 mm2 and a thickness
of about 100 µm, the specimen volume can be as small as a fraction of a cubic
millimeter) [80, 81].

The fracture toughness of thin discs and plates can be determined, if a modified
SCF-method is applied: pre-cracks are introduced e.g. using Knoop indents, into the
mid region of the supported plane of the specimen and these cracks are loaded in
the B3B test until the crack becomes critical. Of course the layer containing the
plastic deformed zone has to be removed, e.g. by grinding, before loading the
pre-crack [82, 83].

In summary, recent trends are related to the development of fracture toughness
testing procedures for specimens with special shapes and for very small dimensions.

6 Summary

The measurement of fracture toughness in ceramics confronts not only the exper-
imenter with specific challenges, often concerning practical aspects. The designer
using fracture mechanics parameters also has to be aware of specific features of the
various methods in order to interpret reported fracture toughness values in a
meaningful way.

• In ceramics, the crack-tip yielding zone is always small and linear elastic
fracture mechanics applies. There is generally no need to choose a “correct”
specimen size in order to perform valid measurements.

• Since the properties of ceramic components are defined by the processing his-
tory it is favourable to machine specimens out of components. If this is not
possible, test methods have to be adapted to be applied to the components
directly.
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• Machining of specimens is difficult, expensive and limited to simple geometries.
Pre-crack introduction is a major challenge, as is the post-mortem measurement
of the pre-crack length on the fractured specimen.

• Several methods (SCF, CNB, SEPB) require a considerable amount of experi-
ence in order to be performed in a valid way. This may lead to inconsistent
results between different laboratories, even if the same material is investigated.

• The standardized methods employ pre-cracks that have undergone different
amounts of crack-growth. For materials exhibiting a rising crack resistance
curve different methods may give different results. In some cases (CNB) it is not
even possible to determine the exact amount of crack growth before instable
fracture and thus a location of the measurement result on the R-curve is
impossible. For a correct interpretation of a given fracture toughness value, the
test method has to be known.

• Standardization is still in progress, including a part on test method selection,
EN 14425-1 [84]. Even the standardized methods do not work on all materials,
so that users have to be aware of limitations.
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Transition from Flat to Slant Fracture
in Ductile Materials

William F. Hickey and Krishnaswamy Ravi-Chandar

Abstract We investigate ductile fracture in an aluminum alloy which exhibits an
interesting switch in mode from flat fracture to slant fracture. While this transition is
typically considered to be triggered by a change in crack tip constraint with
specimen thickness, we explore this transition in rolled sheet material simply by
controlling the strain hardening behavior of the material. Specifically, experiments
are performed on two different heat-treatments of the same alloy, resulting in two
materials that differ only in their strain-hardening behavior. Based on an exami-
nation of the microscopic and macroscopic strain evolution, we conclude that the
transition arises because of strain localization that precedes fracture.

1 Introduction

Ductile fracture is a topic of enormous interest in many technological applications.
The impetus for this arises from the use of materials well into their plastic response
regime in the automobile, aircraft, power-generation and other industries. The theory
of fracture is fairly well-established in industrial practice in the case of problems that
fall in the category of small-scale yielding, where the zone of plastic deformation is
limited to a small fraction of the overall structural dimensions; this is the theory of
Linear Elastic Fracture Mechanics (LEFM), with the square-root singular crack tip
state characterized by a single parameter, the stress intensity factor. The critical value
of the stress intensity factor—the fracture toughness—has been established as a
characteristic material parameter and is easily determined through experiments.
Therefore, design and life-assessment decisions based on fracture criticality of
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structures are performed appropriately in many engineering applications. The success
of LEFM is related to two critical aspects: the first is the ability to determine the stress
intensity factor for specific problems. Catalogs of the stress intensity factor have been
published [1, 2], but given the advances in computational mechanics, the solution of
specific boundary value problems and the extraction of the stress intensity factors has
become a routine task. Second, and more importantly, the determination of the
fracture toughness through scale model experiments has been well-established as a
standard procedure by the ASTM, ESIS and other groups; with these procedures, one
can determine the fracture toughness as a material parameter.

In contrast, the situation is quite different when the zone of plastic deformation
increases to a significant fraction of the structural dimensions. After nearly four
decades of intense research into the field, while there is much progress that has been
made (see for example the review of Zerbst et al. [3]), there is still significant debate
related to the possibility of characterizing failure. Numerical analysis of the stress
and deformation fields in elastic-plastic problems prior to the onset of crack growth
does not appear to pose significant challenges, but the primary hurdle appears to be
the inability to characterize the fracture energy as a material parameter that can be
used in applications where the structures are subjected to different loading condi-
tions. We surmise that this is due primarily to the inability, in fracture experiments,
to separate the intrinsic work of fracture from the work done in the inelastic
deformation of the region in the vicinity of the crack tip. Different methods, such as
a simple strain-to-failure criterion [4–6], phenomenological damage mechanics, and
mechanistic damage models, such as the Gurson-Tvergaard-Needleman model,
have been used in modeling ductile failure; while these models have been calibrated
to be useful in specific applications, general predictive ability has not been clearly
established as demonstrated in the recent blind-predictions challenges from the
Sandia National Laboratories (see [7]). This problem is brought to significant light
when considering fracture in thin sheets where the fracture occurs on a plane
slanted at about ±45° with respect to the initial crack plane. Figure 1 shows the
geometry of the slant facture. An initial crack was generated in a single
edge-notched tension (SENT) specimen by fatigue precracking; subsequently, this
specimen was loaded under monotonically increasing displacement to grow a stable
crack. The resulting fracture is slanted at an angle of ±45° with respect to the flat
planar crack generated by fatigue. In specimens with greater uncracked ligament,
the orientation of the slant surface switches periodically between the two equivalent
planes oriented at ±45° with respect to the plane defined by the fatigue precrack.
A rather spectacular example of this flip-flop in the fracture plane orientation was
demonstrated in the large plate tests reported by Simonsen and Törnqvist [8]. While
some effort has been devoted towards examining the generation of slant fractures, it
has been very difficult to generate this slant fracture in numerical simulations
indicating that our models of ductile failure still face significant hurdles. Pardoen
et al. [9] examined the fracture behavior of thin sheets of sixteen different materials
with intermediate to high hardening capacity and showed that these exhibit flat
fracture in contrast to conventional wisdom which indicates that thin sheets should
exhibit slant fracture. More recently, El-Naaman and Nielsen [10] examined
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fracture in a soft high purity 1050A-H14 aluminum, and a structural steel using
edge cracked specimens in combined in-plane bending and tension and
double-edge-notched tension (DENT) specimens; they showed that the softer
material exhibited cup-cone type fracture while the material with higher hardening
exhibited slant fracture, with flip-flops. Fractography indicated that failure was by
ductile void growth and coalescence in the case of the steel, while it was probably
through an alternating shear mechanism indicated by Orowan [11] and
Ghahremaninezhad and Ravi-Chandar [12]. Rivalin et al. [13] presented an alter-
native point of view, based on quasi-static and dynamic tests on the same material,
which suggested a possible role for material rate dependence, with slant fractures
appearing at higher crack growth rates. In view of the different and sometimes
contradictory hypotheses on the appearance of slant fractures, it appears that
additional examination of the problem is needed. The primary goal of this manu-
script is to present a set of experimental results that demonstrate that the devel-
opment of a slant fracture is due to plastic strain localization that precedes fracture.

The strategy used in this work is to consider the role of strain hardening on the
development of different types of fracture modes. To explore this, SENT specimens
were machined from a rolled sheet stock of Al 6061-T6. The details of the grain
size distribution and the uniaxial stress-strain curve for this material are described
by Ghahremaninezhad and Ravi-Chandar [14]. One set of these specimens were
tested in the as-received T6 condition, while another set of the specimens was
annealed to the O condition through the standard heat-treatment procedure.

Slant Fracture Surface

FatigueFracture Surface

Fig. 1 Illustration of fracture in Al 6061-T6 indicating the initial fatigue fracture surface (flat) and
the subsequent slant fracture under monotonic loading. A transition region can be seen near the
initiation point, connecting the flat fatigue precrack and the slant growth under monotonic loading.
The color map indicates height from the fatigue fracture plane. The height map was obtained using
a Keyance microscope
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The specimens were heated to a temperature of 400 °C, held for 2–3 h, then cooled
in the furnace at a rate of 28 °C per hour until 260 °C, and finally air cooled to room
temperature. Microscopic examination of the resulting material indicated very little
change in the grain morphology. However, a tension test revealed that the Al
6061-O has a lower yield strength and considerably greater ductility than the Al
6061-T6; these are quantified later in this article.

Based on LEFM considerations, the required thickness for small scale yielding
to be valid is estimated to be 0.0125 m for Al 6061-T6. Since fracture toughness
data are not readily available for Al 6061-O, one can make a conservative estimate
of the size requirement by assuming that the fracture toughness of the annealed
material remains the same as that of the T6 conditions; this would indicate that the
required specimen thickness is 0.8 m; it is well known that the small-scale yielding
condition is particularly difficult to satisfy in low strength materials. Based on these
estimates, one would expect that in a thin sheet of 0.00244 m, neither the Al
6061-T6 nor the Al 6061-O will be able to satisfy the thickness requirements and
therefore be dominated by the slant fracture. Nevertheless, the state of stress at the
midplane of the specimen should be plane strain in both cases and the velocity
fields must be consistent with this constraint in either case. In this paper, we explore
the development of plastic deformation and fracture in these two materials in order
to determine the underlying reasons for the onset of slant fracture.

2 Experimental Procedure

Uniaxial tension tests were performed on typical dog-bone specimens of Al
6061-T6 and Al 6061-O, cut from rolled sheets. Tests were performed with the
specimen aligned with the rolling direction; the mild anisotropic response of the T6
material was characterized by Ghahremaninezhad and Ravi-Chandar [14], but this
is neglected in the present work, noting that this must be included in future work in
order to predict the correct plastic response. The experimental stress-strain curves
were fit with a Ramberg-Osgood power-law model:

e ¼ r
E

1þ a
r
rY

� �N�1
" #

ð1Þ

where E is Young’s modulus, σY is the yield stress, α is a fitting constant, and N is
the hardening exponent. The experimental data in terms of the true stress vs true
strain are shown in Fig. 2, and the parameters of the power-law fits for the two
different heat-treatments are given in Table 1. Note that in the uniaxial tensile test
the deformation localizes into a diffuse neck at the Considère strain, and therefore
the data presented here are shown as dotted lines beyond this point; the power-law
model is usually extrapolated beyond this point as a measure of the underlying
stress-strain response as indicated in the figure, and this extrapolation plays a major
role in dictating localization of deformation in stress-states near the crack tip.
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Single-edge-notched-tension (SENT) specimens of Al 6061-T6 and Al 6061-O
were prepared by electric discharge machining of the initial notch. The dimensions
of the SENT specimens are shown in Fig. 3; the specimens were machined out of
thin sheet stock, with a thickness of 2.44 mm. While the constraint in SENT
specimen is different from that in the DENT or compact tension (CT) specimens
commonly used, we have performed experiments in a related study with CT
specimens and observed slant fracture; therefore, we do not anticipate the specimen
geometry playing a critical role in the investigation of transition to slant fracture.
A natural crack was generated in these specimens by fatigue cycling at load
amplitudes well below 10 % of the load at which crack initiation occurs; post-test
examination of the fracture surface indicated that the fatigue crack exhibited a flat
surface (shown later in Fig. 9). These specimens were clamped at the top and
bottom with hydraulic grips and pulled at a constant displacement rate of 0.254 mm
per minute in an Instron Model 4482 testing machine until complete fracture of the
specimen. Scanning electron micrographs of the fracture surface (shown later in
Fig. 9) revealed a dimpled surface indicating that the failure mechanism was pre-
dominantly void growth and coalescence. The local displacement field near the
crack tip region was monitored as a function of the load with digital image cor-
relation (DIC). The surface of the fracture specimen was decorated with a stochastic
pattern with black and white paint for the DIC measurement. A digital video camera

Fig. 2 True stress versus true strain in Al 6061-T6 and Al 6061-O. The dashed lines indicate the
post-necking response and is not the true material behavior. The red lines indicate the
Ramberg-Osgood fit and is extrapolated as indicated to higher strain levels

Table 1 Ramberg-Osgood
parameters

Material E (GPa) σY (MPa) N α

Al 6061-T6 70 297 17.0 0.454

Al 6061-O 70 45 4.28 1.13
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was used to take a series of images from the beginning of the experiment until
complete failure. After completion of the test, the images were analyzed with the
ARAMIS™ digital image correlation software to determine the displacement fields
corresponding to each image. The strain fields are then calculated using suitable
smoothing procedures in order to filter the noise arising from numerical differen-
tiation of the displacement data; the effective gage length over which the strain
computation was achieved was 39 μm.

3 Experimental Results

The variation of load is plotted as a function of the crack mouth opening dis-
placement (CMOD, measured at the specimen edge) in Fig. 4 for the Al 6061-T6
and Al 6061-O specimens; the CMOD was determined using DIC measurements.
The state at the onset of crack initiation is identified in the plots by a circular
marker. Stable crack growth under displacement controlled testing is evident from
this response. Repeated tests in both materials indicated a remarkably consistent
response not only in the load-CMOD, but also in the onset of crack initiation. Also,
note that while the load is significantly greater in the Al 6061-T6, the deformation is
larger in the Al 6061-O. This is illustrated further by the major strain ε22 contours

1

shown in Fig. 5 at four different loading stages for both the T6 and O conditions.

38
2h

=
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6.
4

38

W = 25.4

a

Fig. 3 Geometry of the
single-edge-notched specimen
used in the fracture tests. The
specimens were all machined
from 2.44 mm thick rolled
sheets

1DIC breaks down very close to the crack tip, partly due to degradation of the paint and partly from
image distortion that occurs due to large curvatures near the crack tip; nevertheless, it is possible to
measure strains as close as 160 μm near the crack tip.
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The development of the strain field in the vicinity of the crack tip clearly reveals
significant differences in the development of plastic strains, and is discussed further
below. Noting that the microstructural morphology, the precracked state, and the
specimen geometry are nearly identical in the two sets of tests in the two materials,
these differences are driven primarily by the differences in the yield behavior of the
two different heat treatments and their influence on the localization response.

In order to obtain fracture parameters, the DIC based displacement and strain
measurements are interpreted in terms of the elastic-plastic stress field in the

(a)

(b)

Fig. 4 The variation of the load with crack mouth opening displacement (CMOD) in the SENT
specimens of a Al 6061-T6 (top) and b Al 6061-O (bottom). The state at the onset of crack growth,
as identified from magnified optical images, is indicted by the dots in the respective plots.
Repeated tests indicate nearly identical response of the specimens
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vicinity of the crack tip, and then used to extract the J-integral as a function of the
loading and crack extension; DIC has been used in this task, but mostly with
application to the elastic deformation (see for example [15–18]). The details of
these calculations are given in the Appendix. Three different contours as indicated
in Fig. 6 were used to determine the value of the J-integral for both materials. The
J-integral for each contour shown above was calculated at each stage of the test.
The variation of load versus the J-integral is shown in Fig. 7 for both materials. The
top row shows the variation of J for one specimen each of the T6 and O condition,
with the J value calculated along three different contours. The bottom row shows
the variation of J with the load for different specimens for each material; clearly
very repeatable fracture response is observed. These results provide an estimate of
the fracture toughness of the two different heat-treatments of the same material; the
critical values of JDIC,i along the three contours are shown in Table 2. The typical

5 mm5 mm

0.088 mm

0.220 mm

0.475 mm

0.800 mm

0.291 mm

0.930 mm

1.288 mm

1.602 mm

Fig. 5 The spatial variation of the major strain in the SENT specimen of Al 6061-T6 (left column)
and Al 6061-O (right column) at different CMOD levels are shown
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Fig. 6 Contours of the equivalent plastic stress (in unit of MPa) for the Al 6061-T6 (left) and Al
6061-O (right) are shown at the stage corresponding to crack initiation; three different contours,
well away from the crack tip were selected for the calculation of the J-integral

(a) (b)

(c) (d)

Fig. 7 Variation of the load versus the J-integral for different contours a Al 6061-T6, b Al
6060-O and for different specimens c Al 6061-T6 and d Al 6061-O

Table 2 Initial crack length, critical load and J-integral (along three different contours)

Test number a
(mm)

Pc

(N)
JDIC;1
(kJ/m2)

JDIC;2
(kJ/m2)

JDIC;3
(kJ/m2)

Al6061-T6-06 8.57 11,765 74.18 77.70 79.69

Al6061-T6-07 8.61 11,561 76.42 81.53 75.69

Al6061-O-04 8.96 4046 114.1 114.7 115.9

Al6061-O-06 8.67 4014 109.3 108.1 107.3
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blunting corrections applied in standard methods were not imposed since our pri-
mary focus was on the trends in fracture toughness. We note that these values of the
fracture energy are significantly greater than the corresponding plane-strain value
for the Al 6061-T6: *10 kJ/m2 [19].

The development of initial flat fatigue crack and the local measurements of the
strain field during monotonic loading clearly indicate that the mode of cracking—
flat versus slant—is influenced by the stress state that develops in front of the crack
tip, which in turn is influenced by the strain-hardening behavior and plastic
response of the material. We resolve the issue through the following observations:

• The strain fields measured with DIC easily allow for visualization and quanti-
tative characterization of the development of the plastic zone in the two different
materials. Large differences in the development of the plastic zones for Al
6061-T6 and Al 6061-O are seen in Fig. 5. In the Al 6061-O (right column of
Fig. 5), the plastic zone shape resembles that calculated using the plane-strain
K-field and imposing a von Mises yield criterion. Very large strains—as large as
0.1—are generated at distances of about 5 mm from the crack tip; this results in
a significant thinning of the plate as shown in the right image of Fig. 8. The high
strain-hardening of the material implies that deformation instabilities in the form
of localization do not occur until strain levels are extremely large. A high triaxial
stress state is developed along θ = 0,2 triggering ductile failure processes along
this plane and resulting in a flat fracture surface.

• In contrast to this behavior, the plastic zone shape in Al 6061-T6 bears no
resemblance to estimates based on either the plane strain or the plane stress
K-field! (See Fig. 5 left column). In fact, along θ = 0, the strains are extremely
small and remain in the elastic state, quite contrary to the expectations of plane
stress. The aging heat-treatment of T6 increases the yield strength significantly
in comparison to the annealed material, but the strain-hardening is decreased
significantly; therefore, localization of deformation could be expected at much
lower strain levels, and this is only exacerbated in the vicinity of the crack
tip. Therefore, with increasing global load, the deformation in Al 6061-T6
localizes along planes that are oriented at θ = ±45° with respect to the normal to
the crack surface (or the sheet surface); the cross-sectional micrograph shown in
Fig. 8 clearly indicates a slant fracture and localized shear deformation at
/ = ±45°.3 The visible traces of the large deformations within this band on the
free surfaces can be identified in the strain fields obtained from DIC, as well as
in the grain-based assessment discussed in Sect. 4. Once such localization
occurs, deformation outside this plane ceases, and ductile failure processes
could occur only within this plane. This localization forces a slant fracture
surface, as well as very little thinning deformation of the sheet outside this plane
(compare the left and right images of Fig. 8).

2Here theta refers to crack tip polar coordinates, and θ = 0 is the line of symmetry.
3The angle ϕ is defined relative to the crack front along the thickness direction.
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• The initial fatigue precrack surface—which was created with a stress intensity
level of 22 MPa m½ in the T6 and 17 MPa m½ in the O (equivalent J = 0.092Jc
for T6 and J = 0.045Jc for O)—is flat. At this low loading condition, the plastic
zone size can be estimated to be *870 μm for the T6 and *20 μm for the O.
Since plasticity is confined to a small fraction of the overall specimen thickness
2.44 mm, localization of deformation as discussed above cannot appear in the Al
6061-T6, and therefore the fatigue crack grows as a flat fracture in both
materials.

Combining these observations, one can generate a mechanistic understanding of
flat and slant fracture in sheet metals. At low loading levels, such as those during
fatigue crack growth, plane strain conditions exist near the crack tip. Under this
condition, the ductile failure processes (irreversible slip etc.) are triggered along the
plane θ = 0, and results in a flat fracture surface. During crack growth under
monotonic loading, the deformation is critically dependent on the strain-hardening,
since stability of deformation depends on this parameter. For materials with high
strain-hardening, localization instabilities do not appear until very large strain
levels, and therefore the diffuse plastic field dictated by the crack tip stress con-
centration is generated; the resulting high triaxiality along θ = 0 triggers ductile
failure processes such as void growth, resulting in a macroscopically flat but
microscopically dimpled fracture surface. On the other hand, for materials with a
low strain-hardening, plastic instabilities arise at extremely low strain levels and
localize deformation along two equivalent slant planes. Further straining and
damage in the form of void growth occur only within these zones. Quantitative
prediction/simulation of the response requires a complete characterization of the
strain hardening response to very large strain levels and is deferred to future work.

(a) (b)

Fig. 8 Thickness section of the fractured specimens indicating slant fracture in Al 6061-T6
(a) and flat fracture Al 6061-O (b). Notice the significant thickness reduction in the right figure
indicative of the large strains encountered in the Al 6061-O
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4 Microscopic Observations

Both optical microscopy and scanning electron microscopy were utilized to further
characterize the fracture process of Al 6061-T6 and Al 6061-O. The examination of
different planes and surfaces of the post-mortem fracture specimens provides further
insight into the failure mechanisms. Initial examination of the fracture surface
indicates the type of fracture exhibited by the materials.

In ductile materials, failure is classically thought to occur from void growth and
coalescence. Fig. 9a, b show low magnification micrographs of the fracture surfaces
of Al 6061-T6 and Al 6061-O specimens, respectively. Two distinct regions are
present on both fracture surfaces. The surface of the fatigue crack region is smooth
with no dimples, and the monotonically fractured surface consists of many dimples
as shown in the high-magnification images of both materials shown in Fig. 9c, d.
Clearly, many small dimples are present on the fracture surfaces of both the Al
6061-T6 and Al 6061-O. In the Al 6061-O, the dimples appear to be of two distinct
sizes. The Al 6061-T6 fracture surface dimples also appear in two sizes, but the
smaller dimples in the Al 6061-T6 are smaller than in the Al 6061-O, and corre-
spondingly the larger dimples in the Al 6061-T6 are larger than in the Al 6061-O.
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Slant Fracture Surface

Flat Fracture Surface

(a) (b)

(c) (d)

Fig. 9 Scanning electron micrographs of fracture surfaces of slant fracture Al 6061-T6 and flat
fracture Al 6061-O. Top row contains lower magnification surface views of the fracture including
the fatigue precracked region a 6061-T6, b 6061-O. Bottom row is a magnified view of the fracture
created under monotonic loading c 6061-T6 and d 6061-O
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These dimples are typically taken to be evidence of ductile failure by void nucle-
ation, growth and coalescence with the void nucleation occurring preferentially at
the sites of the second phase particles; examination of the fractographs at high
resolution indicates the presence of such void nucleating particles in many of the
larger dimple of the fracture surface.

4.1 Fracture Surface Observations: Cross-Sectional Planes

In order to examine the details of the progression of the void nucleation, growth and
coalescence, loading of the specimens was halted before complete failure. The
cracks usually tunnel deeper in the central portion of the thickness than towards the
plate free surfaces. One specimen each of Al 6061-T6 and Al 6061-O was inter-
rupted in this manner and then prepared for observation; the specimens were cut to
reveal the plane perpendicular to the crack propagation direction so as to intersect
the tunneling crack. These specimens were mounted in epoxy and polished for
microscopic examination. Scanning electron micrographs of the tunneling cracks
are shown in Fig. 10 for the Al 6061-T6 (top) and Al 6061-O (bottom), respec-
tively. The following important observations can be made from these images.

• The SEM images indicate a number of white particles distributed over the
image; these have been identified through EDAX to be iron-rich particles; they
are typically elongated particles, with the small dimension being around a
couple of μm, and the longer dimension *5–10 μm. The total volume fraction
of such particles is in the range of 1 %. It should be noted that the distribution of
these particles is statistically the same in the T6 and O conditions since the latter
was obtained from the same sheet of the T6 material through heat-treatment.
Mg2Si particles were not observed at magnifications that could observe
micrometer ranged objects.

• For Al 6061-T6, the overall orientation of the fracture plane is at ±45° with
respect to the loading direction; the crack opening is seen to be extremely small;
it is not easy to identify the position of this slice relative to the crack front, but
the overall crack opening is in the range of 1 μm. For the Al 6061-O, the overall
orientation of the crack is perpendicular to the loading direction, but it appears
to be made of alternating segments oriented at ±45°. The opening between the
top and bottom surfaces is as large as 30 μm, but in the absence of precise
location of this slice relative to the crack tip, comparison to the T6 is difficult;
this requires additional exploration, perhaps through nondestructive methods
such as X-ray tomography.

• Some of the second phase particles have broken into fragments in the Al
6061-T6 (see high magnification inset image in Fig. 10); there is also some
debonding or growth of the void associated with the particle. However, the Al
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100 µm

100 µm

(a)

(b)

(c)

(d)

Fig. 10 Scanning electron micrographs of thickness sections of the fracture specimens of a Al
6061-T6 and b Al 6061-O. Notice the crack in the Al 6061-T6 grows at 45° while the overall crack
orientation for the Al 6061-O is flat. The inset figures show a higher magnification of the c Al
6061-T6 specimen, indicating fracture of second phase particles and d Al 6061-O specimen
indicating absence of particle fracture
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6061-O shows almost no breakage of the second phase particles and no voids;
since the yield strength of this material is so much lower, the material probably
flows around the particles rather than develop stress in them that are high
enough to break the particles.

• In both materials, fracture appears through the nucleation of damage at the
second phase particles and then subsequently by the connections established
between the nuclei; there appears to be very little damage outside of a small
neighborhood of the fracture plane. Compared to the number of dimples that are
seen in the fracture plane, damage in the form of nucleation (by debonding or
fragmentation of second phase particles) and growth of cavities by plastic flow
around the cavities appears to be negligible. From careful examination of the
images in Figs. 10, the region in which there is any damage at all in the T6
material can be estimated to be around *5 μm, and in the O material there
exists no discernable damage outside of the fracture plane. These observations
on the localized nature of damage are similar to that reported by
Ghahremaninezhad and Ravi-Chandar [14] in uniaxial and flat-notched tension
specimens of the same material. Recently, Morgeneyer et al. [20] have exam-
ined the development of damage using x-ray laminography in a different alu-
minum alloy; their examination revealed that damage appears only near the very
end of the failure process, and then only in a localized band oriented at ±45°.

4.2 Quantitative Microscopy and Grain Based Strain
Measurements

The DIC images shown in Fig. 5 indicate that the strains near the vicinity of the crack
are indeed quite large. However, the DIC method decorrelates in the vicinity of the
crack tip for two important reasons: first, the strains are quite large and an extreme
distortion of the images arises; second, the large out-of-plane displacements near the
crack cause image degradation also leading to decorrelation. On the other hand, the
etched thickness section images shown in Fig. 11 permit evaluation of
thickness-averaged strains that are in the range of 0.16 for the T6 and 0.84 for the O.

The local values of strain are estimated using the following procedure: first, the
distribution of grain size in the initial microstructure was estimated from the images
of the unstrained microstructure; this distribution was reported for this particular
batch of material by Ghahremaninezhad and Ravi-Chandar [9]; it has an average
grain size in the thickness direction of 15.1 μm and the standard deviation of
6.6 μm. Next, the deformed grain images were examined quantitatively: an example
of a thickness section of a fracture specimen is shown in Fig. 11; a magnification
view of the crack tip region is shown on the right side of this figure. This specimen
corresponds to a slant fracture in Al 6061-T6. The location of each grain boundary
was identified visually along the green horizontal lines marked in Fig. 11,
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corresponding to different depths below the fracture plane and captured into a data
file using a MATLAB code. The variation of the grain width t across a few lines
y = const was obtained and divided by the mean grain width T̂ to obtain an estimate
of the strain in the thickness direction et ¼ ln t=T̂

� �
. Then the equivalent plastic

strain can be estimated assuming plastic incompressibility: eeq ¼ 2ffiffi
3

p ln T̂=t
� �

.

Estimates for the thickness strains are shown in Fig. 12; the red-dashed lines
indicate the average strain. The average grain level strain measurements appear to
be similar to the macroscopic strains measured, but the local maxima are signifi-
cantly greater. Very large grain rotations (macroscale shear) and grain elongations
can be observed very close to the fracture plane (see magnified view in Fig. 11);

1000 µm

Fig. 11 Optical micrograph of thickness section of a fracture specimen of Al 6061-T6 (left); the
specimen was etched in Weck’s agent to reveal grain boundaries (see [8] for details of the etching).
The right image shows a higher magnification view of the central portion where the shear
localization is visible just below the fracture planes. The grain level deformation was measured
along the green lines to identify the local strains
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grain measurements were made just below the fracture surfaces in both the T6 and
O materials. For the T6 material, the grain level thickness failure strain close to the
fracture plane was 0.67; this is a significant increase from the macroscopic thick-
ness failure strain of 0.51 measured in the quasi-static tension tests. The annealed
material exhibited a grain level strain of 1.06, and a macroscopic thickness average
strain of 0.75 in the quasi-static tension tests at final fracture.

The large difference in the macroscopic and grain level failure strains for these
materials has noteworthy implications in the modeling of failure and fracture. If
estimates based on the large-scale measurements of strains are used as failure strains
in simulations, the failure will be made to occur prematurely, thus greatly distorting
the evolution of the stress and strain fields.

5 Conclusions

Ductile fracture in aluminum alloys has been examined experimentally, with
specific interest in the transition from flat fracture to slant fracture. Specimens of the
Al 6061 alloy that were nearly identical in all microstructural and geometric aspects
but subjected to the T6 and O heat-treatment conditions were examined. The T6

Fig. 12 Variation of the grain-level strains along each of the green lines shown on the fracture
specimen in Fig. 11. The red dashed lines indicate the strain averaged along each line
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alloy results in high yield strength and low stain hardening; this limits the extent of
plastic zone but promotes localization and results in slant fracture. On the other
hand, the O condition provides very low yield strength and a high strain-hardening;
this allows development of an extensive plastic zone, significant thinning defor-
mation, but inhibits strain localization and results in flat fracture. Quantitative
modeling has not been considered but is the subject of a future study.
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Appendix: Determination of the Stress from Strain
Measurements

The conversion of the strain measurements to stress requires a material model; the
J2 deformation theory of plasticity is taken to be the appropriate model. The

effective stress is defined as re ¼
ffiffiffiffiffiffiffi
3J2

p ¼ 3sijsij=2
� �1=2

where sij are the compo-
nents of the stress deviator, and the plastic equivalent strain is defined as

�e ¼ 2eijeij=3
� �1=2

. The variation of the effective stress with the plastic equivalent
strain is obtained from a uniaxial test and is indicated by r �eð Þ. The von Mises yield
criterion is then expressed as

U J2;�eð Þ ¼ 3J2 � r2 �eð Þ ¼ 0 ð2Þ

The total strain is decomposed additively into the plastic and elastic components;
the plastic strain develops in the direction of the normal to the yield surface and can
then be expressed as:

epij ¼ dksij ð3Þ

The stress-strain relationship is written as:

eij ¼ 1þ v
E

rij � v
E
rkkdij þ 3

2
1
Es

� 1
E

� �
sij ð4Þ

where Es is the secant modulus. The first two terms make up the linear elastic
component of strain, and the third term is the plastic component. For conditions of
plane stress imposing r33 ¼ 0, Eq. (4) can be inverted and written explicitly as
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r11 ¼ Es

1� m2s
e11 þ mse22½ �

r22 ¼ Es

1� m2s
e22 þ mse11½ �

r12 ¼ Es

1þ ms
e12

e33 ¼ � ms
1� ms

e11 þ e22½ �

ð5Þ

where

ms ¼ 1
2
þ Es

E
m� 1

2

� �
ð6Þ

In order to determine the stress components, it is necessary to determine Es and
ms with increasing strain. In the experiments, we determine the displacement vector
uðxÞ at every point in the field of view using digital image correlation. Using the
strain-displacement relations, we can determine the strain field eðxÞ. Next, we need
to determine the stress field for a nonlinear material; this is accomplished by first
estimating the effective stress. First, we calculate e : e from Eq. (4) and simplify to
get

2
3

1þ m
E

þ 3
2

E � Es

EsE

� �� �2
r2e ¼ eijeij � 1

3
e2kk

� �
ð7Þ

Since Es in the left hand side is a function of re, the above represents a nonlinear
equation that can be solved for the effective stress re xð Þ from the measured strain
field. This allows for conversion of the experimental measurements into contours of
the Mises stress field. In particular, this can be used in a crack problem to determine
the plastic zone boundary. Then Es and ms can be determined for the given material
properties. Subsequently, the stress field rðxÞ can be determined through Eq. (5).
We illustrate this procedure here for the Ramberg-Osgood material model in
Eq. (1). The secant modulus is a function of the stress level; this is found easily
from Eq. (1):

Es reð Þ ¼ E 1þ a
re
rY

� �n�1
" #�1

ð8Þ

One can work out a similar expression for other models of uniaxial constitutive
response. Substituting for strains in the principal orientation, and utilizing the
Ramberg-Osgood material model, Eq. (7) can be expanded to the following
equation for the effective stress:
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2
3 1þ mþ 3

2 a
re
ry

	 
n�1
� �2

r2e
E2 � e21 þ e22

� �

� e1 þ e2ð Þ2
a re

ry

	 
n�1

þ 2m

� �2

�4
3 1� 2mð Þ2

a re
ry

	 
n�1

þ 2 1�mð Þ
� �2 ¼ 0

ð9Þ

Equation (9) can be solved numerically for the equivalent stress at each point in
the field with the measured values of the strains at each time step. This value of re
can be used in Eqs. (8) and (6) to calculate Es and ms, respectively, and then used in
Eq. (5) to determine all components of stress.

Once the strain field and the stress field on the surface are determined, the
J-integral can be evaluated numerically

J ¼
Z
C

Wdy� Ta
@ua
@x1

ds

� �
¼

X
WDy�

X
Ta

@ua
@x1

Ds ð10Þ

W is the strain energy, Tα are the components of the traction vector, uα are the
displacement components and ds is the length increment along the contour Γ.
In addition to evaluating the J-integral, multiple contours around the crack tip can
be defined, and the path independence of the J-integral can be examined.
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Part IV
Smart Materials



Interaction of Cracks and Domain
Structures in Thin Ferroelectric Films

D. Schrade, R. Müller and D. Gross

Abstract The fracture behavior of ferroelectric materials is a complex problem that
has been addressed in numerous experimental and theoretical studies. Several
factors have been identified to play an important role, such as the applied electric
field, the medium inside the crack, the electrical conditions on the crack faces, and
polarization switching at or near the crack tip. In this investigation, a phase field
model for ferroelectric domain evolution is used to calculate crack tip driving forces
for mode-I cracks in barium titanate thin films. The driving forces are obtained by
employing the theory of configurational forces, which is equivalent to considering
the J-integral. Simulations are done for permeable, impermeable, semi-permeable,
and energetically consistent crack face conditions with both air and water as crack
medium. The finite element calculations are performed for films with thicknesses
varying from 5 to 30 nm. The results show that the impermeable, semi-permeable
and energetically consistent conditions lead to similar crack tip driving forces if air
is used as crack medium. In the absence of mechanical loading, strong electric fields
result in a closing crack tip driving force, while the use of water as crack medium
leads to opposite driving forces. It can be confirmed that polarization switching at
the crack tip has a significant effect on the driving force.
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1 Introduction

Ferroelectric materials are widely used in industry e.g. for sensor- and actuator
applications, transducers, and other micro-scale electromechanical components.
These materials are however brittle, which makes a thorough understanding of the
fracture behavior very desirable. In recent years, many experiments have been
performed to study electromechanical fracture, see e.g. the review article [4].
Drawing conclusive results from the experimental research is not easy on account
of a number of factors, such as the difference between single crystal or polycrystal
materials, the geometry of the specimens and the type of cracks investigated, the
applied loading (mechanical, electrical or combined), the medium in which the
specimens are placed (air, oil), grain size, and the texture or electrical poling state.
For example, the stress-induced switching of domains at the crack tip was inves-
tigated in [6, 18] for polycrystalline and single crystal barium titanate (BaTiO3,
BTO), respectively. In [21, 40], the influence of an applied electric field on the
mode-I fracture toughness is investigated for lead zirconate titanate (PZT), and the
dependency of the fracture behavior on the domain texture in PZT is addressed in
[15]. The experimental findings suggest that a number of factors are crucial for an
understanding of the underlying phenomena: the strength and direction of the
applied electric field (relative to the macroscopic poling direction), the electrical
conditions at the crack faces, domain switching at the crack tip, and the medium in
the crack gap, see the discussion in [4].

Besides the experimental efforts, there is a number of theoretical studies and
numerical simulations. For PZT, an analytical approach based on the Stroh for-
malism is presented in [40], and in [9] we can find an analytical treatment of a
penny-shaped crack in an infinite piezoelectric body. Phenomenological models
have been utilized to calculate fracture toughnesses and to determine switching
zones at the crack tip for different electromechanical loadings, see e.g. [3, 12, 37].
Micromechanical models in conjunction with configurational forces have been used
to simulate domain structures at the crack e.g. in [13, 24]. There are also a number
of phase field studies which focus on the domain evolution at the crack tip in single
crystals for different loading scenarios and crack face conditions. For lead titanate
this has been done for permeable cracks in [38], for impermeable cracks in [31], and
for both permeable and impermeable cracks in [23]. For BTO single crystals, the
energy release rate at the crack tip is computed in [14] with the J-integral for the
energetically consistent crack face condition. Crack propagation has been studied in
[1] by a combined phase field model for crack growth and ferroelectric domain
evolution.

This paper aims to study the influence of different crack face conditions on the
domain evolution and the crack tip driving force in single crystal BTO.
A previously published phase field model for ferroelectric domain evolution (see
Sect. 2) is used to implement the permeable, impermeable, semi-permeable, and
energetically consistent crack face conditions within a finite element framework.
Driving forces are computed for electrical, mechanical, and combined loading.
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Since the phase field model has an inner length scale, the thickness of the thin
ferroelectric films is varied from 5 to 30 nm in order to investigate possible size
effects. The publication [39] addresses essentially the same questions as the present
paper. However, in that paper a domain wall width of about 130 nm was chosen.
Here we use a more realistic value of 1.5 nm for the 180° domain wall width, which
gives very different results regarding the domain structure and the crack tip driving
forces.

2 Phase Field Model

There is a long history of phase field simulations for ferroelectrics. A literature
review on the different model formulations and numerical implementation strategies
can be found e.g. in [27]. The phase field model used for the present simulations has
been published in [30]; therefore we limit ourselves to stating the relevant equations
and referring to relevant past publications for further theoretical background.

Given a ferroelectric body B, we define the linearized strain tensor ε and the
electric field E by

e ¼ symðruÞ; E ¼ �ru; ð1Þ

where u is the displacement field and u the electric potential. Furthermore, the
stress r and the electric displacement D satisfy mechanical equilibrium and Gauss’s
law:

div r ¼ 0; divD ¼ 0; ð2Þ

where volume forces and volume charge densities are not taken into account. In the
present model, the spontaneous polarization field P(x, t) is used as the
(time-dependent) order parameter. A detailed discussion on the choice of the order
parameter in phase field models for ferroelectrics can be found in [27].
A thermodynamical analysis based on Gurtin’s notion of microforces (cf. [7, 28,
32]) yields the constitutive equations

r ¼ @H
@e

; D ¼ � @H
@E

; R ¼ @H
@rP

: ð3Þ

Therein, H ¼ ~Hðe;E;P;rPÞ is the electric enthalpy which is obtained by a
Legendre transform of the Helmholtz free energy density, i.e. W ¼ H þ E � D (see
e.g. [32]). The stress-like quantity R is referred to as the microstress tensor.
Furthermore, the thermodynamical framework presented in [7, 28] allows for a
derivation of the Ginzburg-Landau type evolution equation
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b _P ¼ divR� @H
@P

; ð4Þ

where β is a (scalar) inverse mobility constant. The boundary conditions for the
mechanical and the electrical problems are given by

u� u� ¼ 0 on @Bu; rn� t� ¼ 0 on @Br;

u� u� ¼ 0 on @Bu; D � nþ q�s ¼ 0 on @BD:
ð5Þ

Therein the quantities with an asterisk are prescribed displacements, electric
potentials, surface tractions, and surface charge densities. The outer unit normal to
the boundary @B is denoted by n. Additionally, we postulate that

Rn ¼ 0 on @B; ð6Þ

as is commonly (and often tacitly) done in phase field models for ferroelectrics. The
evolution equation (4) requires some initial conditions, which are introduced by

PðxÞjt¼0 ¼ P�ðxÞ: ð7Þ

With reference to [28], the electric enthalpy H ¼ Ĥðe;E;P;rPÞ is given by

H ¼ 1
2

e� e0
� � � C e� e0

� �� �� e e� e0
� �þ 1

2
�Eþ P

� �
� E

þ js
c
‘
wðPÞ þ 1

2
jg

c‘

P2
0
krPk2:

ð8Þ

The first line of this equation resembles a piezoelectric material law extended by
the term –P·E and the spontaneous strain e0ðPÞ. The material tensors C, e, and �
depend on the direction of polarization, i.e. on the order parameter P. These
dependencies have given rise to an invariant formulation of the electric enthalpy for
transverse isotropy; this has been published in [28]. The resulting representations
for these tensors are thus given by

CðPÞ ¼ k1� 1þ 2l1lþ xa1Nþ 2 a2 þ xa4ð Þm�m

þ a3ð1�mþm� 1Þ; ð9Þ

eðPÞ ¼ �xb1p� 1� b2p�m� xb3ê; ð10Þ

�ðPÞ ¼ �2ðc1 þ xc3Þ1� 2c2m: ð11Þ

Therein p ¼ P=P0 is the preferred direction, and m ¼ p� p is the structural
tensor (the constant P0 is the value of the spontaneous polarization of the unloaded
crystal). Furthermore, x ¼ trm; 1lijkl ¼ 1

2 ðdikdjl þ dildjkÞ;Nijkl ¼ pidjkpl þ pkdilpj,
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and êkij ¼ 1
2 ðdikpj þ djkpiÞ. The material parameters ai, bi, and ci are the elastic,

piezoelectric, and dielectric constants, respectively. They are related to the “classic”
constants by (see [28])

k ¼ c12; l ¼ 1
2
ðc11 � c12Þ; a1 ¼ 2c44 þ c12 � c11;

a2 ¼ 1
2
c11 � 2c44 � c13; a3 ¼ c13 � c12; a4 ¼ 1

2
c33;

c1 ¼ � 1
2
��33; c2 ¼

1
2
ð��11 � ��33Þ; c3 ¼ � 1

2
ð��11 � ��33Þ;

b1 ¼ ��e31; b2 ¼ ��e33 þ 2�e15 þ �e31; b3 ¼ �2�e15:

ð12Þ

The spontaneous strain e0 is given by

e0ðPÞ ¼ ea1xþ ðec � eaÞm; ð13Þ

where

ea ¼ atet � acub
acub

; ec ¼ ctet � atet
acub

; ð14Þ

and atet and ctet are the lattice constants for tetragonal BTO, and acub is the unit cell
parameter of the cubic phase.

The second line in (8) contains the non-convex polynomial ψ(P) and the order
parameter gradient energy density. The polynomial ψ is chosen to be of sixth
degree; it has the independent constants ψi, i = 1, …, 4:

w ¼ js
c
‘

1þ w1

P2
0

P2
1 þ P2

2 þ P2
3

� �þ w2

P4
0

P4
1 þ P4

2 þ P4
3

� ��

þ w3

P4
0

P2
1P

2
2 þ P2

1P
2
3 þ P2

2P
2
3

� �þ w4

P6
0

P6
1 þ P6

2 þ P6
3

� ��
:

ð15Þ

This energy landscape ensures phase separation and exhibits four minima in the
2D case (see Fig. 1). For details on the construction of wðPÞ the reader is referred to
[28]. In conjunction with the calibration constants js and jg, the model parameter γ
is the energy density of a 180° interface, and ‘ is the width of this interface. The
constants js and jg are determined by considering a single 180° domain wall in a
1D setting while neglecting the terms in the first line in the electric enthalpy (8). As
shown in [27], if

j�1
s ¼ 1

2
j�1
g ¼

Z 1

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w1q2 þ w2q4 þ w4q6

p
dq; ð16Þ
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then the minimized total energy of the 1D system coincides with the parameter γ,
and the width of the interface is equal to ‘. Finally, by inserting the electric enthalpy
(8) into (3), we obtain the constitutive equations

r ¼ Cðe� e0Þ � eTE;

D ¼ eðe� e0Þ þ �Eþ P;

R ¼ jg
c‘
P2
0
rP;

ð17Þ

and the evolution equation (4) becomes

b _P ¼ jg
c‘
P2
0
DP� @H

@P
; ð18Þ

where Δ denotes the Laplacian.
The primary aim of this investigation is to compare the crack tip driving forces

resulting from different crack face conditions. The driving force at the crack tip is
the negative value of the crack tip configurational force, which in turn is equivalent
to the J-integral, see e.g. [16] and the formulation given in [14]. The configurational
force can be obtained by taking the total derivative of the electric enthalpy:

H;k ¼ @H
@eij

eij;k þ @H
@Ej

Ej;k þ @H
@Pj

Pj;k þ @H
@Pi;j

Pi;jk þ @H
@xk

				
expl:

: ð19Þ

Using Eqs. (1)–(6), one obtains in index notation

Fig. 1 Each minimum of the non-convex function ψ(P) corresponds to one variant of the
spontaneous polarization. This allows for the formation of domain patterns as shown on the left
hand side of the figure
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@H
@eij

eij;k ¼ rijui;k
� �

;j

@H
@Ej

Ej;k ¼ Dju;k

� �
;j

@H
@Pj

Pj;k þ @H
@Pi;j

Pi;jk ¼ RijPi;k
� �

;j�b _PiPi;k:

ð20Þ

With the definitions of the generalized configurational stress

N ¼ H1� ðruÞTr�ru� D� ðrPÞTR ð21Þ

and the configurational force vector

n ¼ �@H
@x

				
expl:

þb rPð ÞT _P ð22Þ

one arrives at the configurational force balance

divNþ n ¼ 0: ð23Þ

For the crack illustrated in Fig. 2 the scalar crack tip driving force s is given by

s ¼ �n1: ð24Þ

The nodal crack tip driving force can be evaluated in a post-processing com-
putation; further details are given in [39].

3 Crack Face Conditions

Several types of crack face conditions have been published in the literature; they
vary in their treatment of the electrical and/or traction conditions across the crack.
Here we consider four different crack face conditions: permeable, impermeable,
semi-permeable, and energetically consistent. Since these types of conditions are

Fig. 2 Definition of the normal vectors and the crack opening displacement
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discussed in detail e.g. in [11], we restrict ourselves to stating the different con-
ditions without much further discussion.

In [22], a crack in a piezoelectric material is modeled as traction free and
electrically permeable, i.e.

Dþ
n ¼ D�

n ; uþ ¼ u�; t� ¼ 0; ð25Þ

where D�
n ¼ D� � n� and t� ¼ r�n�. The superscripts ‘+’ and ‘−’ indicate

quantities which are evaluated at the crack faces, see Fig. 2. The permeable con-
dition seems reasonable if the crack opening displacement is very small or van-
ishing. If that is not the case, the impermeable condition proposed in [5] may be
applied, i.e.

D�
n ¼ 0; t� ¼ 0: ð26Þ

As a consequence, the electric field vanishes completely inside the crack. These
two crack face conditions represent two extreme cases; a third possibility intro-
duced in [8] is the semi-permeable condition, in which the crack is treated as a
capacitor, i.e.

D�
n ¼ �jc

Du
Dun

; t� ¼ 0; ð27Þ

where Du ¼ uþ � u� and jc is the permittivity of the crack gap. As could be
shown in [17], the crack tip energy release rate does not coincide with the total
energy release rate given the semi-permeable condition. This inconsistency has
been resolved in [11] by introducing an energetically consistent condition:

D�
n ¼ �jc

Du
Dun

; t� ¼ 1
2
jc

Du
Dun


 �2

n�: ð28Þ

The use of these crack face conditions result in identical crack tip and total
energy release rates.

4 Numerical Simulations

The presented phase field model is implemented in the finite element code FEAP
[35]. The 2D implementation is based on quadrilateral four-noded elements with
bilinear ansatz functions. The nodal degrees of freedom are the displacement field,
the electric potential, and the order parameter. The occurring element integrals are
computed by Gaussian integration, and the evolution equation is numerically
integrated by using the first order backwards Euler method. For details on the
implementation the reader is referred to [26]. The semi-permeable and energetically
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consistent crack face conditions have been implemented by using special crack face
elements, see [39] for the resulting element residuals. The numerical treatment of
configurational forces in a FEM framework is discussed e.g. in [19, 20], cf. also
[39].

The material parameters in (12) and (14), as well as P0, β, γ, ‘, and wi in (15) are
chosen to reflect the behavior of BTO. The values for these constants coincide with
those used in [30]; for completeness they are stated in Table 1. Notably, the 180°
domain wall width is chosen as 1.5 nm, and the 180° domain wall specific energy is
12 mJ/m2. The 2D simulations are performed for plane strain conditions, see the
extended explanation given in [27].

4.1 Problem Setup

We consider a cracked ferroelectric subjected to electrical and/or mechanical
loading, see the sketch in Fig. 3. The electrical loading induces an electric field in
the vertical direction. Additionally a mechanical stress r0 may be applied. All
simulations were done for charge-free lateral sides and statically determinate sup-
port. The semi-permeable and energetically consistent crack face conditions require

Table 1 Material parameters used in the simulations

c11 c33 c12 c13 c44 �e31 �e33 �e15 ��11 ��33 acub
23.05 15.75 10.8 10.4 12.67 1.327 4.96 0 0.209 0.209 4.01

atet ctet P0½ Cm2� b½kAVm� c½mJ
m2 � ‘½nm� w1½�� w2½�� w3½�� w4½��

3.992 4.032 0.26 0.3467 12 1.5 –1.147 –0.7067 5.36 0.8533

The mechanical stiffnesses cij are stated in 1010N/m2, the piezoelectric constants �eij in C/m2, and
the dielectric constants ��ij in 10−10C/(Vm). The lattice parameters acub=tet and ctet are given in Å

Fig. 3 Mechanical and electrical loading used in the simulations. The potential difference u0
induces the nominal electric field E0 ¼ �u0=a. The initial crack opening at the left lateral side is
set to a=30
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a specification of the permittivity jc inside the crack. Here we consider two dif-
ferent media: air (jc ¼ 8:854� 10�12 C/(Vm)) and water (jc ¼ 7:10�
10�10 C/(Vm)).

The initial distribution of the order parameter is calculated by running a simu-
lation for each crack face condition with random initial polarization and
u0 ¼ r0 ¼ 0. The resulting polarization fields are shown in Fig. 4. The permeable
condition results in a homogeneous poling state in the vertical direction (due to the
charge-free lateral sides). The remaining crack face conditions lead to the domain
structure depicted in Fig. 4b. These two microstructures are used as initial condi-
tions for the subsequent calculations of the crack tip driving forces.

4.2 Crack Tip Driving Forces

The electrical and mechanical loadings shown in Fig. 3 are applied to ferroelectric
films ranging from a = 5 to a = 30 nm in size. The first set of simulations is done for
purely electric loading (r0 ¼ 0) with electric fields of E0 ¼ �1MV/m and
E0 ¼ �5MV/m. That is to say, we apply the potential difference u0 ¼ �E0a,
where E0 is the nominal applied electric field (cf. Fig. 3). In another set of simu-
lations, a purely mechanical loading of 30 MPa with u0 ¼ 0 is applied. Finally,
simulations with combined electrical/mechanical loading are performed for electric
fields between −5 and +5MV/m. Note that the loading may lead to a reorganization
of the domain structure. On the other hand, if the loading is sufficiently weak, the
domain structure will remain essentially unchanged. For both cases, the crack tip
driving force is computed at the equilibrated state of the system.

The permeable crack face condition results in a vanishing driving force if a
purely electrical loading is applied. Since the crack is permeable, the electric field in
the material is essentially homogeneous (a small inhomogeneity is due to the small
crack opening in the initial configuration). Furthermore, the stress, the strain, the

(a)

(b)

Fig. 4 Initial domain configurations are calculated starting from a randomly distributed
polarization. The equilibrated states are homogeneous for the permeable crack (a) and
inhomogeneous for all other crack face conditions (b). These initial states are used for the
subsequent computation of the crack tip driving forces
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electric displacement, the microforce tensor, and the order parameter are also
homogeneous. As a result, the divergence of the configurational stress in (21)
vanishes, and thus the configurational force at the crack tip also vanishes. On the
other hand, the mechanical loading results in a positive driving force (see Fig. 5).
Since the domain structure remains unchanged under the mechanical loading, the
driving forces depend linearly on the crack length a, cf. the analytical work pub-
lished in [34].

As can be seen in Figs. 6, 7 and 8, the results for the impermeable,
semi-permeable, and energetically consistent crack face conditions are qualitatively
very similar if air is considered as crack medium. The low permittivity of air leads to
almost identical electrical conditions compared to the impermeable case. The initial

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 5  10  15  20  25  30

30 MPa

Fig. 5 For purely mechanical loading with r0 ¼ 30MPa, the permeable crack results in a driving
force which depends linearly on the crack length a. For purely electrical loading the driving forces
vanish
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Fig. 6 Crack tip driving forces for the impermeable crack. The equilibrated domain configurations
for E0 ¼ �5MV=m are shown on the right. The remaining final configurations coincide with the
initial configurations shown in Fig. 4
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domain pattern remains unchanged for all applied loadings, except for the electric
loading with −5MV/m. In that case, the change in the domain structure sets in for
a = 15 nm and leads to a change of sign in the driving force. Noticeably, the strong
electric fields lead to negative values for s for a	 15nm, which means that the
system is energetically in favor of closing the crack. The reduction of the crack tip
driving force by strong electric fields is a well-established result, see e.g. [1, 4, 9].

While the use of air as crack medium for the semi-permeable and the energet-
ically consistent condition leads to similar results compared to the impermeable
case, the situation changes significantly when water is used as crack medium. As
can be seen in Figs. 9 and 10, all driving forces are now close to zero or positive;
this was not the case in the previous simulations. The application of the strong
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30 MPa

Fig. 7 The resulting driving forces for the semi-permeable crack are similar to those for the
impermeable crack, although the final domain configurations for E0 ¼ �5MV=m differ if
a
 10nm
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Fig. 8 The driving forces for the energetically consistent condition are similar to those shown in
Figs. 6 and 7. The final domain configurations are the same as for the semi-permeable crack
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electric fields leads to a complete poling in the direction of the electric field. In this
case the driving force vanishes as was the case for the permeable condition. The
energetically consistent condition with water as medium on the other hand results in
high driving forces for the strong electric fields, even though the applied fields lead
to full poling as was the case for the semi-permeable condition.

The possible domain switching processes introduce a nonlinearity so that the
driving forces from the purely electrical and the purely mechanical loading may not
be superimposed. Therefore we performed simulations with combined electrical and
mechanical loading for thin films of 60 nm × 30 nm in size with water as crack
medium. The resulting driving forces and some of the equilibrated domain struc-
tures are shown in Fig. 11. The application of strong electric fields leads to a
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Fig. 9 For a semi-permeable gap filled with water the driving force is positive only for the
mechanical loading and for E0 ¼ �1MV=m. The loading with strong electric fields causes domain
switching until a homogeneous poling state is reached; the driving forces vanish in this case
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Fig. 10 Contrary to the results in Fig. 9, the driving force is maximal for strong electric fields if
the energetically consistent condition is used
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complete poling, whereby the driving force is drastically reduced. For applied
electric fields between −4 and +3MV/m there is some switching of polarization near
the crack tip, which leads to quite different results for the driving force: For both the
semi-permeable and the energetically consistent condition the driving force is
maximal for a negative electric field. Positive electric fields result in a reduction of
the driving force compared to the case of purely mechanical loading (E0 ¼ 0).

5 Discussion

The presented simulations are based on certain assumptions. First, it was necessary
to specify some boundary conditions and an initial domain configuration. Here we
considered only non-periodic boundary conditions and calculated initial polariza-
tions starting from a randomly polarized state. For different boundary conditions
these initial polarizations may well be very different from the ones used here.
Another relevant parameter is the permittivity inside the crack. The calculated crack
tip driving forces and the microstructure evolution are quite different depending on
whether the permittivity of air or that of water has been used. For other permit-
tivities the results may again be quite different from the results obtained here. The
simulations are also limited to single crystal BTO, whereby only one orientation of
the crystal axes has been considered.

 0
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 0.02
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 0.03

 0.035

 0.04
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 0.05

-5 -4 -3 -2 -1  0  1  2  3  4  5

semi-permeable, water
energetically consistent, water

Fig. 11 Crack tip driving forces under combined mechanical and electrical loading. The final
domain configurations plotted below the graphs are identical for both crack face conditions used in
the simulations. Between −4 and +3MV/m the upward-poled domain grows continuously at the
expense of the other domains
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The results are also limited with respect to the applied loading conditions.
Typically, relatively weak loading will leave the initial overall domain pattern
intact; for stronger electric loading the domain structure may reorganize completely.
The possible changes in the domain structures also give rise to the question of the
crack tip driving force during the evolution of the system. This has not been
considered here, although the theory outlined here and in [39] account for the
time-dependent switching process in the configurational force.

Despite these limitations, it is possible to gain insight regarding the relevant
parameters for the outcome of the crack tip driving force. First, the results for the
impermeable crack and a crack filled with air are quite similar due to the almost
identical electrical conditions at the crack faces. This changes when water with its
two orders of magnitude higher permittivity is used as crack medium. In this case,
the driving force may vanish for strong electric fields if the semi-permeable con-
dition is used. On the other hand, the driving force has positive values if the
energetically consistent condition is used. If air is used as medium, the driving force
has negative values for strong electric fields. Thus the permittivity of the crack
medium as well as the crack face condition play a crucial role for the prediction of
the fracture behavior based on the configurational force at the crack tip.

Another important factor is the switching of polarization near the crack tip due to
the applied loading, i.e. mainly the applied electric field. Even weak electric fields
lead to a switching of polarization near the crack tip, which has a considerable effect
on the resulting driving forces, cf. especially the results for the combined loading
shown in Fig. 11. This result is in principal agreement with experimental and
theoretical results published in the literature, see e.g. the review article [4].

The phase field model has an inner length scale which is given by the width of
the transition region between two 180° domains. This inner length scale is known to
be responsible for a variety of size effects, see e.g. the computational and experi-
mental results published in [2, 10, 25, 29, 33, 36]. The present results show that at
least for 15nm
 a
 30nm the driving force is approximately linear in the crack
length a, but there is no noticeable size effect due to the change of the ratio of
domain wall energy and bulk energy. For smaller crack lengths the domain evo-
lution was found to be different at least for some loading scenarios. In these cases
the driving force does not follow the linear relationship because of a different
domain switching process, not because of a size effect in the usual sense.

Acknowledgments Financial support by the German Research Foundation (DFG) in the
framework of the research group FOR 1509 “Ferroische Funktionsmaterialien—Mehrskalige
Modellierung und experimentelle Charakterisierung” is gratefully acknowledged.

References

1. Abdollahi A, Arias I (2012) Phase-field modeling of crack propagation in piezoelectric and
ferroelectric materials with different electromechanical crack conditions. J Mech Phys Solids
60(12):2100–2126

Interaction of Cracks and Domain Structures … 253



2. Arlt G, Sasko P (1980) Domain configuration and equilibrium size of domains in BaTiO3

ceramics. J Appl Phys 51(9):4956–4960
3. Beom HG, Atluri SN (2003) Effect of electric fields on fracture behavior of ferroelectric

ceramics. J Mech Phys Solids 51(6):1107–1125
4. Chen YH, Hasebe N (2005) Current understanding on fracture behaviors of

ferroelectric/piezoelectric materials. J Intell Mater Syst Struct 16:673–687
5. Deeg WF (1980) The analysis of dislocation, cracks, and inclusion problems in piezoelectric

solids. Ph.D. thesis, Stanford University, Stanford
6. Fang D, Jiang Y, Li S, Sun CT (2007) Interactions between domain switching and crack

propagation in poled BaTiO3 single crystal under mechanical loading. Acta Mater 55
(17):5758–5767

7. Gurtin ME (1996) Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a
microforce balance. Physica D 92(3–4):178–192

8. Hao TH, Shen ZY (1994) A new electric boundary condition of electric fracture mechanics
and its applications. Eng Fract Mech 47:793–802

9. Jiang LZ, Sun CT (2001) Analysis of indentation cracking in piezoceramics. Int J Solids Struct
38(10–13):1903–1918

10. Keip MA, Schrade D, Thai HNM, Schröder J, Svendsen B, Müller R, Gross D (2015)
Coordinate-invariant phase field modeling of ferroelectrics, part II: application to composites
and polycrystals. GAMM-Mitteilungen 38(1):115–131

11. Landis CM (2003) On the fracture toughness of ferroelastic materials. J Mech Phys Solids 51
(8):1347–1369

12. Landis CM (2004) Energetically consistent boundary conditions for electromechanical
fracture. Int J Solids Struct 41:6291–6315

13. Li Q, Kuna M (2012) Evaluation of electromechanical fracture behavior by configurational
forces in cracked ferroelectric polycrystals. Comput Mater Sci 57:94–101

14. Li W, Landis CM (2011) Nucleation and growth of domains near crack tips in single crystal
ferroelectrics. Eng Fract Mech 78(7):1505–1513

15. Li Y, Sun Y, Li F (2013) Domain texture dependent fracture behavior in mechanically
poled/depoled ferroelectric ceramics. Ceram Int 39(8):8605–8614

16. Maugin GA (1993) Material inhomogeneities in elasticity. Chapman & Hall, London
17. McMeeking RM (2004) The energy release rate for a griffith crack in a piezoelectric material.

Eng Fract Mech 71:1149–1163
18. Meschke F, Kolleck A, Schneider GA (1997) R-curve behavior of BaTiO3 due to

stress-induced ferroelastic domain switching. J Eur Ceram Soc 17:1143–1149
19. Mueller R, Maugin G (2002) On material forces and finite element discretizations. Comp

Mech 29(1):52–60
20. Mueller R, Kolling S, Gross D (2002) On configurational forces in the context of the finite

element method. Int J Numer Meth Eng 53(7):1557–1574
21. Park S, Sun CT (1995) Fracture criteria for piezoelectric ceramics. J Eur Ceramics Soc 78

(6):1475–1480
22. Parton VZ (1976) Fracture mechanics of piezoelectric materials. Acta Astronaut 3:671–683
23. Qiao H, Wang J, Chen W (2012) Phase field simulation of domain switching in ferroelctric

single crystal with electrically permeable and impermeable cracks. Acta Mech Sol Sinica 25
(1):1–8

24. Ricoeur A, Kuna M (2003) Influence of electric fields on the fracture of ferroelectric ceramics.
J Eur Ceram Soc 23(8):1313–1328

25. Schmitt LA, Schönau KA, Theissmann R, Fuess H, Kungl H, Hoffmann M (2007)
Composition dependence of the domain configuration and size in Pb(Zr1−xTix)O3 ceramics.
J Appl Phys 101(7):074107

26. Schrade D, Mueller R, Xu BX, Gross D (2007) Domain evolution in ferroelectric materials: a
continuum phase field model and finite element implementation. Comput Meth Appl Mech
Eng 196(41–44):4365–4374

254 D. Schrade et al.



27. Schrade D, Müller R, Gross D (2013) On the physical interpretation of material parameters in
phase field models for ferroelectrics. Arch Appl Mech 83:1393–1413

28. Schrade D, Müller R, Gross D, Keip MA, Thai H, Schröder J (2014) An invariant formulation
for phase field models in ferroelectrics. Int J Solids Struct 51:2144–2156

29. Schrade D, Keip MA, Thai HNM, Schröder J, Svendsen B, Müller R, Gross D (2015a)
Coordinate-invariant phase field modeling of ferroelectrics, part I: model formulation and
single-crystal simulations. GAMM-Mitteilungen 38(1):102–114

30. Schrade D, Müller R, Gross D, Steinmann P (2015) Phase field simulations of the poling
behavior of BaTiO3 nano-scale thin films with SrRuO3 and Au electrodes. Eur J Mech
A/Solids 49:455–466

31. Song YC, Soh AK, Ni Y (2007) Phase field simulation of crack tip domain switching in
ferroelectrics. J Phys D Appl Phys 40(4):1175–1182

32. Su Y, Landis CM (2007) Continuum thermodynamics of ferroelectric domain evolution:
theory, finite element implementation, and application to domain wall pinning. J Mech Phys
Solids 55(2):280–305

33. Su Y, Chen H, Li JJ, Soh AK, Weng GJ (2011) Effects of surface tension on the
size-dependent ferroelectric characteristics of free-standing BaTiO3 nano-thin films. J Appl
Phys 110(084108):1–6

34. Suo Z, Kuo CM, Barnett DM, Willis JR (1992) Fracture mechanics for piezoelectric ceramics.
J Mech Phys Solids 40(4):739–765

35. Taylor RL (2013) FEAP—a finite element analysis program. http://www.ce.berkeley.edu/
projects/feap/

36. Tenne DA, Turner P, Schmidt JD, Biegalski M, Li YL, Chen LQ, Soukiassian A,
Trolier-McKinstry S, Schlom DG, Xi XX, Fong DD, Fuoss PH, Eastman JA, Stephenson GB,
Thompson C, Streiffer SK (2009) Ferroelectricity in ultrathin BaTiO3 films: probing the size
effect by ultraviolet Raman spectroscopy. Phys Rev Lett 103(177601):1–4

37. Wang J, Landis CM (2004) On the fracture toughness of ferroelectric ceramics with electric
field applied parallel to the crack front. Acta Mater 52(12):3435–3446

38. Wang J, Zhang TY (2007) Phase field simulations of polarization switching-induced
toughening in ferroelectric ceramics. Acta Mater 55(7):2465–2477

39. Xu BX, Schrade D, Gross D, Mueller R (2010) Phase field simulation of domain structures in
cracked ferroelectrics. Int J Fract 165:163–173

40. Zhang TY, Gao CF (2004) Fracture behaviors of piezoelectric materials. Theor Appl Fract
Mech 41(1–3):339–379

Interaction of Cracks and Domain Structures … 255

http://www.ce.berkeley.edu/projects/feap/
http://www.ce.berkeley.edu/projects/feap/


Modeling Approaches to Predict Damage
Evolution and Life Time of Brittle
Ferroelectrics

Andreas Ricoeur, Stephan Lange and Roman Gellmann

Abstract Reliability and life time of smart materials are crucial features for the
development and design of actuator and sensor devices. Being widely used and
exhibiting brittle failure characteristics, ceramic ferroelectrics are of particular
interest in this field. Due to manifold interactions of the complex nonlinear con-
stitutive behavior on the one hand and the damage evolution in terms of microcrack
growth on the other, modeling and simulation are inevitable to investigate influence
parameters on strength, reliability and life time. Two approaches are presented, both
based on the same constitutive law and damage model. The one is going along with
a discretisation scheme exploiting the finite element method (FEM). The so-called
condensed approach, on the other hand, considers just one characteristic point in the
material, nonetheless accounting for polycrystalline grain interactions. The focus of
the simulations is two-fold. Life-time predictions in terms of high cycle fatigue
under electromechanical loading conditions are presented based on the condensed
approach. Second, the formation of macroscopic cracks at electrode tips in a stack
actuator is investigated applying the FEM.

1 Introduction

Ferroelectric materials such as barium titanate (BT) or lead zirconate titanate
(PZT) are used as bulk material in actuators or sensors and are constituents of micro
electromechanical systems (MEMS) and composite devices. Nonlinear modeling of
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the constitutive behavior is crucial for ferroelectrics, if the poling process or
depolarization under reverse fields are in the focus of interest. Residual stresses are
initiated in a polycrystalline ferroelectric material by the incompatibility of strain in
adjacent grains induced by domain wall motion. The residual fields are superim-
posed with the external loading, influencing switching and domain wall motion.
Moreover, residual stresses give rise to microstructural damage and crack forma-
tion, thus being crucial for the development of damage models for ferroelectrics.

Summarizing the state of the art in nonlinear constitutive modeling would fill a
whole chapter, so only a few shall be mentioned, e.g. Cocks and McMeeking [2],
Kamlah [19], Fan et al. [6], Kamlah and Tsakmakis [20], Hwang et al. [16],
Michelitsch and Kreher [27], Huo and Jiang [15], Chen et al. [1], Lu et al. [25] and
Huber et al. [14]. Most of the approaches are implemented within the framework of
the finite element (FE) method, enabling the solution of complex boundary value
problems. On the other hand, the implementation of a discretization scheme is
going along with a high effort and the solution of problems requires high compu-
tational costs. Calculating different hysteresis loops and investigating just the
constitutive behavior of the material, however, does not require the application of a
discretisation method. The same applies for principle investigations of damage
processes. Nevertheless, it is not appropriate just considering a single grain model,
since grain-grain interaction is crucial for most macroscopically observed features
of a polycrystalline ferroelectric material and mechanical degradation. Comparisons
of results based on a FE implementation, where grain interaction is incorporated
intrinsically, and those based on the condensed approach, where kinematic con-
straints are introduced in terms of an effective medium theory [22], show a good
agreement in many issues.

The condensed approach, however, presently meets its limits, considering
problems with macroscopic field gradients, e.g. at notches or electrode edges.
Current investigations deal with the exploitation of the new method with regard to
this kind of problems by mapping e.g. the electric field gradient at an electrode edge
to the material points. Anyhow, the application of a classical discretisation scheme
is appropriate in that case and inevitable to verify a mapping technique of the
condensed approach. On the other hand, the FEM could be combined with the
condensed approach incorporating the latter on the element level, where each
integration point represents a polycrystalline microstructure.

Concerning model-based investigations of damage in ferroelectric ceramics,
some phenomenological approaches are known from literature, e.g. Wang and Han
[37], Yang et al. [41] or Zheng et al. [42]. Microphysically motivated models and
life-time predictions, on the other hand, are not state of the art.
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2 Ferroelectric Constitutive Behavior: A Microphysical
Approach

2.1 Thermodynamical Fundamentals

The local formulation of the energy balance reads:

_uþ q _ui€ui ¼ rij _erevij þ _eirrij

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

_eij

þEi _Drev
i þ _Pirr

i

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

_Di

�qi;i þ qr; ð1Þ

where u and ρ are the internal energy and mass densities, respectively, ui is the
displacement field, rij the stress tensor and Ei the electric field. The variables r and
qi characterize the heat source within the domain and the surface heat flux across
the boundary. In Eq. (1), rates of strain eij and electric displacement Di are
decomposed into reversible and irreversible parts as usual. Analytical notation is
applied implying summation over double indices and . . .ð Þ;i¼ @=@xi denoting the

partial differentiation with respect to xi. The terms _eirrij and _Pirr
i describe the irre-

versible strain and polarization rates as results of domain wall motion. Equation (1)
neglects dissipative effects associated with linear fields (see Kessler and Balke [21])
as well as changes in elastic, piezoelectric and dielectric properties. These contri-
butions are assumed to be small compared to those included in the equation.
Furthermore, Eq. (1) implies the balance equations of momentum and charge in
their simplified forms rij;j ¼ 0 and Di;i ¼ 0.

Thermodynamic consistency requires the satisfaction of the second law of
thermodynamics (e.g. parton and Kudryavtsev [30])

h _sþ qi;i � qi
h

@h
@xi

� qr� 0 ð2Þ

where s is the specific entropy and θ denotes the absolute thermodynamic tem-
perature. Inserting Eq. (1) into Eq. (2) and considering the static limit, i.e.
_ui; €ui ¼ 0, the generalized Clausius-Duhem inequality is obtained:

� _u� h _sð Þ þ rij _e
rev
ij þ rij _e

irr
ij þ Ei _D

rev
i þ Ei _P

irr
i � qi

h
@h
@xi

� 0: ð3Þ

Parton and Kudryavtsev [30] discussed the inequality (3) for _eirrij ¼ 0 and _Pirr
i ¼ 0

and showed that it holds for any values of _erevij ; _Drev
i and _s leaving the statement

qi h;i=h� 0. Thus, considering irreversible domain processes, the inequality (3)
reads
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Equation (4) has to be satisfied by any thermodynamically consistent domain
evolution law.

The internal energy u is a thermodynamical potential depending on the inde-
pendent variables eij; Di and s and found its way into Eq. (1) from the classical
formulation of the first law of thermodynamics. The electric field Ei as independent
variable being more easily accessible, it is useful to replace the electric displace-
ment Di in that function. The corresponding thermodynamical potential Ψ is
obtained from a Legendre transformation [35] which is applied to Eq. (1):

W ¼ u� EiDi ) _Wð_eij; _Ei; _sÞ ¼ rij _eij � Di _Ei þ h_s: ð5Þ

Irreversibilities are included in the total strain rate and electric displacement as
well as in the dissipative part of the entropy, whereas the heat flux is covered by the
exchange entropy. The latter, however, will be dropped in the following.
Equation (5) reveals the relations between independent and associated variables as

@W
@eij

����
E;s

¼ rij;
@W
@Ei

����
e;s
¼ �Di;

@W
@s

����
E;e
¼ h: ð6Þ

The nonlinear ferroelectric constitutive behavior is finally governed by the
potential function which is commonly denoted as the electric enthalpy density:

W ekl;Elð Þ ¼ 1
2
Cijklekleij � elijEleij � 1

2
jilElEi � Cijkle

irr
kl eij þ eikle

irr
kl Ei � Pirr

i Ei: ð7Þ

Elastic, piezoelectric and dielectric tensors Cijkl; eikl and jil are assumed to be
constant within an incremental range of the independent variables strain and electric
field. For larger changes of state, these material parameters, themselves depending on
the independent variables, have to be understood as local tangents at hysteresis loops.
The nonlinear constitutive equations are finally obtained from Eqs. (6) and (7):

rij ¼ Cijkl ekl � eirrkl
� �� enij En; ð8Þ

Di ¼ eikl ekl � eirrkl
� �þ jin En þ Pirr

i : ð9Þ

2.2 Evolution of Internal Variables of Domain Wall Motion

In Fig. 1 the domain structure of a single ferroelectric grain with tetragonal unit
cells is depicted, exhibiting 90° and 180° domain walls. It is represented by just one
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local material point involving all possible polarization directions. Each one is
weighted by a volume fraction or internal variable mðnÞ where n ¼ 1; . . .; 4 [14]. On
the macroscopic scale, the switching process leads to a gradual change of the
irreversible quantities:

deirrkl ¼
X4
n¼1

espðnÞkl dmðnÞ; dPirr
i ¼

X4
n¼1

DPspðnÞ
i dmðnÞ: ð10Þ

The change of polarization DPspðnÞ
i ¼ PspðmÞ

i � PspðnÞ
i is defined as the vector dif-

ference of spontaneous polarizations while switching from a species (n) to a species

(m). The spontaneous strain espðnÞkl of a species (n) switching to another orientation
describes a change of state per definition, thus being unnecessary to add a Δ. The
effective material constants of a grain are likewise determined as weighted averages

Cijkl ¼
X4
n¼1

CðnÞ
ijkl m

ðnÞ; eijk ¼
X4
n¼1

eðnÞijk m
ðnÞ; jij ¼

X4
n¼1

jðnÞij mðnÞ; ð11Þ

where CðnÞ
ijkl ; e

ðnÞ
ijk and jðnÞij are the material properties of the polarization directions

n. Keeping stresses rij and the electric field Ei constant in a grain, strain and electric
displacement are also determined by weighted averages.

The evolution equations for each volume fraction mðnÞ are given by [22]

dmðnÞ ¼ �dm0H
wdissðnÞ

wcrit
ðbÞ

� 1

 !
; wdissðnÞ ¼ max wdissðnÞ

ðbÞ
n o

; ð12Þ

with a model parameter dm0 and the Heaviside function H. Accounting only for
spontaneous terms of the dissipative work associated with the switching of a
domain species n, i.e.

wdissðnÞ
ðbÞ ¼ rij e

spðnÞ
ijðbÞ þ EiDP

spðnÞ
iðbÞ ; ð13Þ

Fig. 1 Plane domain pattern of a grain and motivation of the internal variables mðnÞ [22]
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the evolution equation satisfies the Clausius-Duhem inequality Eq. (4) for h;i ¼ 0
and bearing in mind Eq. (10). The subscript ðbÞ distinguishes between ± 90° and
180° switching variants. Equation (12) is based on a local switching criterion
originally introduced by Hwang et al. [16], requiring threshold values wcrit

ðbÞ for the
different switching variants (see e.g. [5]) depending on the macroscopic properties
Ec (coercive field) and P0 (remanent polarization).

Finally, it should be noted that both switching strain and polarization and thus
the evolution of internal variables are limited, due to the fact that domain species
cannot vanish totally, thus imposing the constraint mðnÞ [ 0. Furthermore, the
presence of free charges reduces the spontaneous polarization.

3 A Condensed Approach for Polycrystalline
Ferroelectrics

3.1 Theoretical Background

In Sect. 2 the constitutive behavior of a single grain has been considered. Within the
framework of a FE implementation [10], the outlined equations are applied to each
integration point, implying polycrystalline interactions for the discretisized struc-
ture. The condensed approach, on the other hand, considers just one representative
volume element (RVE), nevertheless accounting for polycrystalline interactions.
The computational and implementation efforts going along with this new approach
are low compared to FE based modeling. Nevertheless, the essential features are
basically included yielding smooth hysteresis loops of the bulk material under
combined electromechanical loading and residual stresses in each grain. Moreover
it has been proven that the condensed approach is mechanically and electrostatically
consistent. Although the model has a profound thermodynamical basis, full ther-
modynamical consistency lacks a comprehensive formulation of the dissipative
work, including minor effects like the influence of changes in material properties
due to domain wall motion. The condensed approach has recently been presented
elaborately by Lange and Ricoeur [22] and will therefore just be outlined shortly at
this point.

Several grains with different material orientations are now considered in an
RVE. In Fig. 2, three grains with different orientations ai are exemplarily high-
lighted. Following Fig. 1, the four domain species in each grain are indicated by
crossed arrows. Now, all grains are condensed to one material point exhibiting all
possible domain orientations of an RVE. Switching, however, can only occur
within the four species of each arrowed cross.

262 A. Ricoeur et al.



Assuming homogeneous fields in a grain m ¼ 1; . . .;M and all grains having
equal size, averaging stress and electric displacement in an RVE results in

hriji ¼ 1
M

XM
m¼1

rðmÞij ; hDii ¼ 1
M

XM
m¼1

DðmÞ
i ; ð14Þ

where volume averages are specified by angled brackets. The averages of the

material coefficients are determined in the same way with CðmÞ
ijkl ; e

ðmÞ
ikl and jðmÞij as

material properties of a grain m calculated by Eq. (11). The constitutive Eqs. (8) and
(9) are valid for both the macroscopic behavior and on the level of a grain m. The
balance equations of mechanical and electrostatic equilibrium are required for
averaged fields, i.e. hriji;j ¼ 0 and hDii;i ¼ 0. Assuming a generalized Voigt
approximation, strain and electric field are homogeneous in an RVE and thus equal
in each grain:

hEli ¼ 1
M

XM
m¼1

EðmÞ
l ¼ EðmÞ

l ¼ El ; hekli ¼ 1
M

XM
m¼1

eðmÞkl ¼ eðmÞkl ¼ ekl; ð15Þ

where bars on El and ekl indicate the variables which are spatially kept constant.
They should be distinguished from averages of non-constant quantities denoted by
angled brackets. The average stress hriji is thus obtained from Eqs. (14) and (15),
inserting the constitutive equations for the grain:

Fig. 2 Polycrystalline RVE with three grains highlighted and illustration of the idea of the
condensed approach [22]
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hriji ¼ 1
M

XM
m¼1

CðmÞ
ijkl eðmÞkl � eirrðmÞkl

� �
� eðmÞnij E

ðmÞ
n

n o

¼ 1
M

XM
m¼1

CðmÞ
ijkl e

ðmÞ
kl � 1

M

XM
m¼1

CðmÞ
ijkl e

irrðmÞ
kl � 1

M

XM
m¼1

eðmÞnij E
ðmÞ
n

¼ hCijkliekl � hCijkl e
irr
kl i � henijiEn:

ð16Þ

The electric displacement hDii of a representative volume element is likewise
derived as:

hDii ¼ 1
M

XM
m¼1

eðmÞikl e
ðmÞ
kl � 1

M

XM
m¼1

eðmÞikl e
irrðmÞ
kl þ 1

M

XM
m¼1

jðmÞin EðmÞ
n þ 1

M

XM
m¼1

PirrðmÞ
i

¼ heikliekl � heikleirrkl i þ hjiniEn þ hPirr
i i:

ð17Þ

Applying a mechanical Neumann type boundary condition, e.g. to prescribe
pre-stresses, the balance equation for the average stress in an RVE hriji;j ¼ 0 has to
be taken into account to determine the unknown total strain ekl. Due to the aver-
aging procedure, both balance equations are intrinsically satisfied claiming the
uniformity of all stress and electric displacement coordinates in an RVE. In case of
external mechanical loads, equilibrium of a plane problem thus requires the identity

hr11i
hr22i
hr12i

0
@

1
A ¼

rext11
rext22
rext12

0
@

1
A ð18Þ

with external loads rextij . With Eq. (18), the strain ekl ¼ eðmÞkl is calculated from
Eq. (16) as follows:

ekl ¼ hCijkli�1ðrextij þ helijiEl þ hCijnoe
irr
noiÞ: ð19Þ

The residual stress in each grain is then determined inserting Eq. (19) into the
constitutive equation for a grain m:

rðmÞij ¼ CðmÞ
ijkl fhCpqkli�1ðrextpq þ herpqiEr þ hCpqno e

irr
noiÞ � eirrðmÞkl g � eðmÞlij El: ð20Þ

Similarly, the local electric displacements DðmÞ
i are calculated and the average

electric displacement results from Eqs. (17) and (19):

hDii ¼ heiklihCpqkli�1ðrextpq þ herpqiEr þ hCpqno e
irr
noiÞ þ hjiliEl � heikleirrkl i þ hPirr

i i:
ð21Þ
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Of course, other boundary conditions prescribing strain or electric displacement
can easily be handled, see Lange and Ricoeur [22]. Also, a different kind of
homogenization approach assuming electric displacements constant instead of
electric fields has been investigated. Finally, it should be mentioned that since the
irreversible quantities eirrkl and Pirr

i as well as effective material constants
hCijkli; heikli and hjiji depend on the internal variables mðnÞ and thus on local
mechanical and electric fields, an iteration is required for the numerical procedure.

3.2 Results for the Condensed Model: Constitutive Behavior

In all simulations,M ¼ 25 grains are considered in an RVE. A larger number of grains
came out to provide similar results [22]. The loading axis is the x2-axis, with E2 as the
electrical and rext22 as the mechanical load. The polarization can be arbitrary in the x1-

x2-plane. The residual stresses rðmÞij and the electric displacement hDii result from
Eqs. (20) and (21), while the strain is calculated from Eq. (19). In the plots, the
electric load E2 is related to the coercive field EC, which amounts to 200 V/mm for
barium titanate, the data of which have been chosen for all calculations [17]. Further,
eD ¼ 1� 10�2 has been chosen for the switching strain and P0 ¼ 0:26 Cm�2 for the
spontaneous polarization [17], resulting in a remanent strain εr = 0.0002 and rema-
nent polarization Pr = 0.08 C/m-2 which are found in experiments [7, 13, 24, 26].

In Fig. 3 residual stresses rðmÞ22 and rðmÞ12 are investigated showing results of five
arbitrarily selected grains. The initial state of the material is unpoled and external
mechanical tractions are zero while the electric field E2 is increased monotonously.
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Fig. 3 Polarization process: stresses rðmÞ22 and rðmÞ12 in grains m and their averages hr22i and hr12i
versus electric field E2 normalized with respect to the coercive field EC
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Obviously there are grains with tensile and others with compressive stress. The
averages hr22i and hr12i, however, are zero for all E2 satisfying the condition of
mechanical equilibrium. Looking at the values, tensile residual stresses above
20 MPa are observed at E2 ¼ 5Ec and shear stresses attain maxima of as much as
38 MPa. The calculations give evidence that stress values are within a reasonable
range being relevant for damage and mechanical degradation.

In the next example combined electromechanical loading is considered.
A compressive pre-stress is raised linearly and kept constant with a value r̂22 during
the cyclic piecewise linear electric loading. While different values r̂22 ¼
0:0;�5:0;�25:0 and �50:0 MPa are assumed, the electric amplitude is always
Ê2 ¼ 10EC. Figure 4a, b shows the results in terms of classical dielectric and
butterfly hysteresis loops. Considering the butterfly loop, its area first increases with
increasing compressive load but finally decreases when further raising the
mechanical stress. This is due to the mobility of domains which is fostered by a
moderate clamping but is suppressed to a large extent in the case of large com-
pression. This result is confirmed by experimental investigations, e.g. those of Zhou
and Kamlah [43]. Comparison with numerical results from an implementation of
the constitutive model outlined in Sect. 2 into a FE code also shows good agree-
ment concerning e.g. hysteresis loops and the prediction of residual stresses.

4 Modeling of Damage Evolution in Ferroelectrics

A continuum damage approach for brittle ferroelectrics is presented in this section.
The defect phase consists of cracks, randomly and dilutely distributed in the
material, i.e. neglecting crack interactions. The constitutive damage model is
implemented within the context of both the condensed approach and the FEM.
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Fig. 4 Hysteresis loops for electric displacement (a) and strain (b) under cyclic electric loading
for different compressive preloads
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4.1 Homogenisation and Effective Material Properties
in Piezoelectrics

To calculate effective material properties, a linear material behavior of the cracked
piezoelectric solid is considered in each load increment. Two out of four possible
formulations of the constitutive behavior are (e.g. [8, 22]):

eij
Ei

� 	
¼ S�ijkl d�lij

�d�ikl b�il

� 	
rkl
Dl

� 	
;

rij
Di

� 	
¼ C�

ijkl �e�lij
e�ikl j�il

� 	
ekl
El

� 	
: ð22Þ

Here, Sijkl; drij and bir describe the elastic compliance, piezoelectric constants
and dielectric impermeability, respectively and * denotes effective properties.
Cijkl; eikl and jil are the previously introduced stiffness, piezoelectric and dielectric
constants. In a compressed notation Eq. (22) can be written as:

Zp ¼ F�
pqPq; Pp ¼ C�

pqZq: ð23Þ

The variables in Eq. (23) describe generalized values for strain Zp, stress Pq,
stiffness Cpq and compliance Fpq, where indices p, q run from 1 to 9. Following e.g.
Gross and Seelig [12], Wang and Jiang [38] and Gellmann et al. [11], Zp can be
decomposed into a matrix part ZM

p and a part ZC
p representing the defect phase:

Zp ¼ ZM
p þ ZC

p : ð24Þ

Based on this assumption Eq. (23) can be formulated for the matrix part:

ZM
p ¼ FM

pqP
M
q ; PM

p ¼ CM
pqZ

M
q : ð25Þ

From Eq. (24) it is obvious that ZM
p ¼ Zp � ZC

p . Inserting ZM
p into Eq. (25) leads

to relationships between the matrix and the cracked phase:

Zp ¼ FM
pqPq þ ZC

p ; PM
p ¼ CM

pq Zq � ZC
q

� �
: ð26Þ

Two different cases will be discussed in the following: a generalized Reuss
assumption, i.e. Pp ¼ P1

p , where generalized stresses are constant and therefore

ZC
p ¼ FC

pqP
1
q ð27Þ

and a generalized Voigt approximation, i.e. Zp ¼ Z1
p , where generalized strains are

constant leading to
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ZC
p ¼ Dpq Z

1
q : ð28Þ

FC
pq and Dpq in Eqs. (27) and (28) are the influence tensors andP1

q and Z1
q describe

the loading conditions of the RVE. The determination of FC
pq and Dpq for a specific

defect phase consisting of microcracks will be discussed in Sect. 4.2. The effective
material constants of the Reuss condition result from inserting Eqs. (23) and (27)
into Eq. (26):

F�
pq ¼ FM

pq þ FC
pq;

C�
pq ¼ FM

pq þ FC
pq

� ��1
:

ð29Þ

For the Voigt case, the effective constants follow from applying Eqs. (23) and
(28) to Eq. (26):

C�
pq ¼ CM

pr drq � Drq
� �

;

F�
pq ¼ CM

pr drq � Drq
� �n o�1

:
ð30Þ

Deriving the relations (29) and (30), it has to be borne in mind that F�1
pq ¼ Cpq.

Further, Pp ¼ PM
p is assumed. Mechanically, this implies a stress-free defect phase

which holds in the case of voids or cracks. From the electrostatic point of view,
electric displacements must vanish inside the defects, restricting the applicability of
Eqs. (29) and (30) to the limiting case of impermeable defects with charge-free
boundaries.

4.2 Modeling of the Defect Phase

For the calculation of the effective material constants at a material point m, the
microstructural RVE with an edge length of

ffiffiffi
A

p
shown in Fig. 5 is considered.

There are several cracks with different orientations under an electromechanical

loading rðmÞI and DðmÞ
2 . Due to the dilute or noninteracting assumption [18], the

model of the defect phase can be reduced to one single crack in an unbounded
medium, where the edge length of the crack RVE is just a parameter to introduce
the crack density. The coordinate system of the crack is defined by xc1 and xc2.

Further, only cracks perpendicular to the principle stress rðmÞI are considered,
because these are the most critical ones. Thus, the local crack coordinate system and
the orientation of the defect RVE coincide with the principal axes of the stress field.

Electric loads parallel to the crack faces DðmÞ
1 are not considered, since they are

dispensable from the fracture mechanics point of view, at least concerning classical
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theories. Advanced models of piezoelectric fracture mechanics, however, reveal
effects going along with electric fields parallel to the crack faces [32]. Even col-
linear stress loads �r11 may have an impact on the mode I SIF [9]. The principal

stresses rðmÞI;II of a material point m are calculated as follows:

rðmÞI;II ¼
1
2

rðmÞ11 þ rðmÞ22

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4

rðmÞ11 þ rðmÞ22

� �2
þ rðmÞ12

� �2r
; ð31Þ

with rðmÞI [ rðmÞII . The crack density

f ¼ 4a2

A
ð32Þ

is introduced as a relationship of the squares of the crack length 2a and the edge
length

ffiffiffi
A

p
.

Boundary conditions on the crack surfaces and coordinate systems are illustrated
in Fig. 6. Here, an impermeable crack is considered, following the Neumann type
boundary condition investigated e.g. by [34, 36]. Therefore, the crack faces are free
of charges, i.e.

Dþ
2 ðxc1Þ ¼ D�

2 ðxc1Þ ¼ 0 ð33Þ

on the positive Cþ and negative C� crack surfaces.
Besides the global coordinate system x1; x2ð Þ, other coordinate systems are

relevant for the development of the damage model. The one related to the material
point m, following the idea of the condensed approach depicted in Fig. 2, is denoted
by xm1 ; x

m
2

� �
, b1 and b2 describe the orientation of the polarisation direction with

respect to xc1 and xm1 . a
c and am denote the orientations of the local coordinate

σ
(m)
I , D

(m)
2

2a

√ A

xc
1

xc
2

Fig. 5 Model of the defect
phase in an RVE m under
electromechanical loading
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systems of the crack xc1; x
c
2

� �
and the material RVE related to xm1 ; x

m
2

� �
. The angle

between these two systems is defined as Da ¼ ac � am. The different angles, shown
in Fig. 6, are relevant for the calculation of the Irwin matrix (see e.g. [31]) and the
effective material constants.

The jump of generalized displacements DuM at the crack faces in a ferroelectric
ceramic under an electromechanical loading is discussed e.g. by [9, 28, 31]. With
the boundary conditions introduced in Eq. (33) DuM is given by

DuM ¼

Du1
Du2
Du3
Du

0
BBB@

1
CCCA ¼ 2

Y11 Y12 Y13 Y14
Y21 Y22 Y23 Y24
Y31 Y32 Y33 Y34
Y41 Y42 Y43 Y44

0
BBB@

1
CCCA

r112
r122
r132
D1

2

0
BBB@

1
CCCA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � xc1

� �2q

¼ 2YMNRN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � xc1

� �2q
;

ð34Þ

where YMN is the Irwin matrix depending on material constants and the orientation
of the crack with respect to the poling direction. Bearing in mind that the crack
surfaces are perpendicular to the direction of the first principal stress rI (s. Fig. 5)
and only a 2D case is investigated DuM yields:

Dui ¼
Du1
Du2
Du

0
@

1
A ¼ 2

Y11 Y12 Y14
Y21 Y22 Y24
Y41 Y42 Y44

0
@

1
A 0

rI
D1

2

0
@

1
A ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � xc1
� �2q

; ð35Þ
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Fig. 6 Coordinate systems and parameters of an arbitrarily orientated impermeable crack
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where the electric potential is denoted as φ. To calculate the effective material
properties, the strain of the cracked phase is given by (see e.g. [12]):

heijiC ¼ 1
2A

Za
�a

Duinj þ Dujni
� �

dxc1; ð36Þ

where ni is the unit normal on the positive crack face. For the determination of the
average electric field of the cracked phase hEiiC, it is convenient to reformulate the
contribution of the matrix phase under consideration of the divergence theorem:

hEiiM ¼ � 1
VM

Z
VM

u;i dV ¼ � 1
VM

Z
@V

unidAþ 1
VM

Z
@VC

unidA; ð37Þ

where VM is the matrix domain and @VC the boundary of the defect. Considering

hEii ¼ � 1
V

Z
@V

unidA ð38Þ

and introducing the volume fraction of the matrix cM ¼ VM=V , the averaged
electric field of the macrolevel is obtained as:

hEii ¼ cMhEiiM � 1
V

Z
@VC

uni dA: ð39Þ

For cracks, cM is commonly set to one due to the fact that the defect volume is
small in comparison to the matrix volume. Thus, the crack density f and cM are not
related. The integral term in Eq. (39) represents the defect phase, finally relating its
average electric field to the jump of the electric potential Du by integrating along
one crack face:

hEiiC ¼ � 1
V

Za
�a

DunidA: ð40Þ

With Eqs. (36) and (40) the generalized strain of the cracked phase is defined,
the jumps of displacements Dui and electric potential Du resulting from Eq. (35).
The influence tensor FC

pq under Reuss conditions according to Eq. (29) is hence
determined as
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FC
pq ¼

1
4
pf

0 0 0 0 0
0 Y22 0 0 Y24
0 Y12 0 0 Y14
0 0 0 0 0
0 �Y42 0 0 �Y44

0
BBBB@

1
CCCCA: ð41Þ

Assuming a generalized Voigt approximation according to Eq. (28), the influ-
ence tensor Dpq results from Eq. (27) by replacing P1

q by Z1
q via the constitutive

Eq. (22):

Dkm ¼ 1
4
pf

0

Y22CM
21 þ Y24eM21

Y12CM
21 þ Y14eM21
0

�Y42CM
21 � Y44eM21

0

Y22CM
22 þ Y24eM22

Y12CM
22 þ Y14eM22
0

�Y42CM
22 � Y44eM22

0

Y22CM
23 þ Y24eM23

Y12CM
23 þ Y14eM23
0

�Y42CM
23 � Y44eM23

0
BBBBBB@

0

Y24jM21 � Y22eM12
Y14jM21 � Y12eM12

0

Y42eM12 � Y44jM21

0

Y24jM22 � Y22eM22
Y14jM22 � Y12eM22

0

Y42eM22 � Y44jM22

1
CCCCCCA
:

ð42Þ

Finally, it should be mentioned that the local polarisation directions b1=2, see
Fig. 6, depend on the microstructural evolution due to domain switching, see
Sect. 2.2, thus being subject to a permanent change during the loading process.
Therefore, the effective material properties and the Irwin matrix have to be recal-
culated after each switching increment dm.

4.3 Damage Evolution and Accumulation Model for High
Cycle Fatigue and Life Time Prediction

Our investigations of damage in ferroelectrics are twofold. Based on FE simulations
of complex boundary value problems with nonlinear ferroelectric constitutive
behavior, the initiation of macroscopic cracks, e.g. at the tips of electrodes during
the poling process, is investigated. This class of problems requires the consideration
of maximum a few load cycles. On the microlevel, critical microcrack growth is
considered with a condition KI ¼ rI

ffiffiffiffiffiffi
pa

p ¼ KIC for local damage evolution. The
fracture toughness KIC is assumed constant, thus the effect of electric loads is taken
into account only on the left hand side of the fracture criterion, influencing residual
stresses due to domain wall motion. More sophisticated models should incorporate
the dependence of KIC on the electric field [8]. In the FE simulation each Gaussian
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point represents a crack RVE as introduced in Sect. 4.2 leading to a local calcu-
lation of effective properties according to Sect. 4.1. Locally, the material is con-
sidered as ruptured, as soon as the crack density parameter reaches a critical
value fcrit.

The condensed approach outlined in Sect. 3 is exploited in regard to high cycle
fatigue. The damage evolution is thus based on subcritical crack growth governed
by the classical Paris law [29]. Most investigations about fatigue damage of fer-
roelectrics under electromechanical loading deal with low cycle fatigue from an
experimental or modeling point of view (e.g. [39, 40, 44]). For high cycle fatigue a
cycle by cycle simulation is unrealistic due to the high effort and computational
costs. The idea presented in the following is based on an accumulation of many
physical cycles NP and their mapping onto much less numerical ones N.

The calculation scheme is captured in Fig. 7 and includes eight steps. In the first
step, one load cycle N is simulated applying the approach outlined in Sect. 3. Next,
the material RVE with the maximum peak-to-peak stress intensity factor (SIF) DK̂I

is sought. The SIF at a material point m is calculated as

DKðmÞ
I ¼ DrðmÞI

ffiffiffiffiffiffiffi
pa0

p ð43Þ

with DrðmÞI ¼ rmaxðmÞ
I � rminðmÞ

I . rI results from Eq. (31) and DKI will be simply
denoted as SIF in the following. In the third step it is checked if DK̂I is larger than
or equal to the threshold value KIth. If this criterion is not satisfied, the next load
cycle is simulated. Otherwise, the crack propagation increment DâN is determined
as follows:

DâN ¼ c âN�1: ð44Þ

Notice, that the initial crack length is a0. Again, the superscript hat refers to the
material point with the maximum stress intensity factor. γ is a numerical parameter

N

E2

NP
yes

no

yes

no

Iteration over
other mat. points

ΔâN = aN−1 γ

7

1/8

2 4
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ijkl , e∗

ikl
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ij

Δa
(m)
N

ΔK
(m)
I > KIth

5

ΔK̂I > KIthΔK̂I

3

6

Fig. 7 Calculation scheme for high cycle fatigue damage prediction based on the condensed
model
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describing the ratio of the increment Da and the crack length. Therefore, the new
crack length âN is obtained as:

âN ¼ 1þ cð Þ âN�1: ð45Þ

While the aforementioned load cycles N have a pure numerical background, the
number of physical cycles NP associated with the crack growth increment DâN is
the relevant quantity. Thus, in the next step, NP is determined from the classical
Paris law [29]

da
dN

¼ C DKIð Þg: ð46Þ

C and η are material-dependent parameters. Separation of the independent variables
under consideration of Eq. (43) leads to

ZNP

0

dN ¼
ẐaN

âN�1

da
C DrI

ffiffiffiffiffiffi
pa

pð Þg : ð47Þ

Integration of both sides of Eq. (47) and assuming that the peak-to-peak value
DrI is constant during one numerical cycle N yields

NP ¼ 2
C 2� gð Þ DrI

ffiffiffi
p

pð Þg âN�1 1þ cð Þð Þ2�g
2 �â

2�g
2
N�1

h i
: ð48Þ

In step six of Fig. 7 the crack propagation DaðmÞ in each of the other material

points m is determined from Eq. (46) as a function of NP; Dr
ðmÞ
I and aðmÞN�1:

DaðmÞ ¼ C DrðmÞI

ffiffiffiffiffiffiffiffiffiffiffiffiffi
paðmÞN�1

q� 	g

NP: ð49Þ

A simplifying assumption of Eq. (49) is that the crack length is constant for the
integration. After having calculated all DaðmÞ, the effective material constants are
determined according to Sect. 4.2. Now, the next numerical load cycle is simulated
based on the updated crack lengths.

The scheme is repeated assembling the physical cycles to obtain their total
number, finally representing the life time of the structure under electromechanical
loading. The simulation is stopped, as soon as a rupture criterion is satisfied. Here,
the average damage variable or crack density parameter hf i, respectively, reaches a
critical value, e.g. 0.5. Following the weakest link interpretation, the simulation can
also be controlled by the material point m̂, which in the first load cycle has been
identified as the one with the highest stress level. Then, just the crack density f̂ ðmÞ is
inserted into the rupture criterion. The progress of damage in the other material
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points, however, still has an impact on the predicted life time by influencing the
evolution of effective elastic, piezoelectric and dielectric constants. These material
properties are in turn decisive for the domain induced residual stresses which are
significantly controlling the damage process. Some other slight modifications of the
simulation process are thinkable, maintaining the basic idea behind it. Those which
have been implemented have all been leading to very similar life time predictions.

5 Results of Damage and Lifetime Predictions
in Electromechanically Loaded Ferroelectrics

All calculations are based on the material data of bariumtitanate taken from [17].
The constants for the Paris law have been taken from [33], where experiments on
fatigue crack growth in PZT under pure mechanical loading are presented. The
values of C and η have been adopted here, since we are not aware of any other
experimental data in this field. First, results of the life time prediction from the
condensed model are presented. Then the damage evolution in a stack actuator
during the poling process is investigated by FE simulation. Therefore, the consti-
tutive model presented in Sect. 2 has been implemented as user element into the
commercial FE code ABAQUS [10].

5.1 Life Time Prediction at High Cycle Fatigue

First, the influence of a bipolar and an unipolar electrical loading is investigated for
an initial damage f0 ¼ 0:005. Mechanically, the system is neither clamped nor
submitted to a traction load. The loading scheme is shown in Fig. 8 in terms of the
normalized electric field versus the first numerical load cycles. In Fig. 9 the crack
density f normalized with respect to the initial damage f0 and the critical crack
density fc is plotted versus the accumulated number of physical cycles.

It is obvious, that the damage evolution exhibits an asymptotic behavior, pro-
viding the life time Ncrit

P . Although the relative damage at the end of the simulation
is still below 10 %, taking fc ¼ 1:0 as a basis, the critical number of load cycles is
obtained with sufficient accuracy from the dashed vertical tangent. The ratio f =fc is
depicted in Fig. 9 as an example. Obviously, the majority of load cycles is accu-
mulated during an early stage of damage, whereas longer cracks lead to failure
within a comparatively small number of cycles. The simulation further reveals that
the bipolar cycling is going along with a much lower life time of Ncrit

P � 2� 105

compared to the unipolar loading allowing for 7 × 109 cycles. The following
calculations are all based on unipolar electric loading.

In Fig. 10a, b the influences of the initial crack density f0 and the parameters of
the Paris law C and η, see Eq. (46), on the critical number of load cycles are
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demonstrated. The solid lines in the graphs (a) and (b) represent the result for the
unipolar loading from Fig. 9 which is taken as a reference here and in the following
figures. In the logarithmic representation, there is a linear dependence of the life
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Fig. 8 Comparison of bipolar and unipolar electric loading: loading schemes
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Fig. 9 Comparison of bipolar and unipolar electric loading: crack density f related to the initial
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time on the initial damage. The essential finding of Fig. 10b is that the Paris
constants have a crucial influence on the prediction of critical numbers of load
cycles. Particularly η is a very sensitive parameter. As long as these two material
constants are not known with a sufficient accuracy, the results of the predictions
have to be considered as qualitative.

In Fig. 11 a combined cyclic electric and constant mechanical loading is
investigated with respect to the influence of a compressive stress on both life time
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and actuating strain. The initial crack density f0 and the Paris constants C, η are
those of the solid lines in Fig. 10 declared as reference parameters. The unipolar
electric cycles have an amplitude of 10EC ¼ 2 kV/mm. Intuitively, one would
maybe suppose that a compressive load basically reduces the strain and scarcely
influences the life span. Experiments, however, show that a mechanical compres-
sion in the direction of electric field and thus poling fosters the efficiency of an
actuator within a certain range of stress level [3, 4, 43]. Current experimental
investigations also reveal that the number of bearable load cycles may be essentially
reduced due to a compressive mechanical preloading [23]. In Fig. 11 both effects
are visible. The solid line represents the critical number of electric load cycles Ncrit

P ,
the dashed one illustrates the actuation strain De22. The latter changes during the
service of an actuator, depending on the progressive degradation of the material.
The plot shows a snapshot after 20 % of the predicted life time. The dotted line
evolves from a simulation neglecting the damage process at all.

The major findings of Fig. 11 are summarized as follows. Without mechanical
loading, the actuation strain is considerably reduced as the damage proceeds.
Increasing the stress, the influence of damage on De22 is quickly reduced and almost
vanishes for compressive loads exceeding 15 MPa. The actuating strain exhibits a
maximum for r22 ¼ �20 MPa, not depending on the degree of damage. For large
compressive loads, the strain is much smaller than for the case of zero mechanical
loading, at least in an early operating stage with little damage. At approximately the
same stress range where De22 is large, the critical number of load cycles is small.
Maximum values Ncrit

P � 1010 at r22 ¼ 0 are reduced to Ncrit
P � 105 at

r22 ¼ �25 MPa. Even though the compressive stress reduces the crack tip loading,
the enhancement of domain mobility finally leads to larger stress intensity factors.
Increasing the stress level, the life time recovers, finally reaching the value for the
stress-free specimen at r22 ¼ �50 MPa. According to the simulations, a pre-stress
of −10 MPa has to be considered as convenient, providing a good compromise
between actuatoric efficiency and operating life time.

In Fig. 12 different initial crack densities f0 have been taken as a basis for
simulations of unipolar electric cycling, again superimposing a constant compres-
sive stress. The left graph illustrates the effect of stress and initial damage state on
the actuation strain De22, the right one shows the influence on the critical number of
load cycles NP. The solid lines denoted as reference (Ref.) correspond to the
parameters chosen for the other solid lines in the previous figures. The calculations
reveal that the maximum strain De22 is scarcely affected by the initial crack density
within the investigated range of f0 2 ½0:005; 0:02	. The life time, on the other hand,
considerably depends on the quality of the material in terms of initial damage,
leading to bearable load cycles of just 1000 for an initial crack density of 2 % in
connection with a compressive preload of 25 MPa.
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5.2 Damage of a Stack Actuator Due to Poling

Figure 13 shows the geometry of a model of a piezoelectric stack actuator with five
electrodes being exposed to electric potentials u ¼ 0 and u ¼ V0, respectively.
A poling process is simulated with the FEM by linearly increasing V0 to a maxi-
mum value of 5 kV, leading to a nominal electric field (sufficiently far from the
electrode tips) of 5 EC. The plot in the left column shows the maximum principal
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Fig. 13 Detail of a piezoelectric stack actuator with electrodes under pure electrical loading in
terms of electric potentials u ¼ 0;V0. The plots show the maximum principal stress neglecting
microcrack growth (left) and the damage zone at an electrode tip after poling (right)
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stress which is largest at the electrode tips and mainly stems from domain wall
motion. In this simulation, damage has been neglected and the result corresponds to
the electric load maximum. Close to the electrode tips, tensile stresses are as large
as 100 MPa. At the rims of the colored zones 35 MPa are still found. The high
stress level, however, will not prevail in a real piezoelectric structure but will give
way to crack initiation and growth, conversely reducing the residual stresses to a
much lower level.

The two plots on the right hand side of Fig. 13 result from a FE simulation
taking the damage model into account. In the postprocessing, the material around
just one electrode tip is considered, whereupon the lower picture shows a smaller
section more detailed. The dark (red) areas close to the electrode tips represent
domains, where the local microcrack density, related to Gaussian points of the FE
model, is f ¼ 1, thus indicating local rupture. The large bright (green) zone exhibits
values f 2 ½0:2; 0:9	, the outer area of the damaged zone, which is a bit darker (pale
blue), represents an interval f 2 ½0:05; 0:2	. From Fig. 13 it has to be concluded that
the poling process is essential for the life time of a stack actuator under operating
conditions, giving rise to cracking and thus defining the initial state of further
damage evolution.

6 Conclusions

A previously presented condensed approach has been used to efficiently model the
constitutive behavior of polycrystalline tetragonal ferroelectrics. It represents an
alterative to a finite element simulation, which is also presented in this paper, on the
level of a single grain exploiting the same microphysical constitutive model.
Concerning damage predictions in ferroelectrics, it is essential that residual stresses
are accurately obtained from a modeling approach, since they provide the major
contribution to the loading of microcracks or other defects. The constitutive
framework, which has been implemented into both the condensed approach and a
FE scheme, describes an evolution of the microstructure in terms of domain wall
motion and the growth of microcracks. Due to the influence of the state of damage
on the effective elastic, dielectric and piezoelectric properties, there is a mutual
interaction between both irreversible mechanisms. Results are discussed in terms of
life time predictions under high cycle electric loading conditions, requiring an
approach to efficiently handle up to 1010 load cycles. Further, a stack actuator
model serves as an application oriented benchmark for the FE calculations,
revealing a considerable material degradation at electrode tips due to the poling
procedure. The model of a microcrack, however, is still very simple. To improve
the predictions quantitatively, more sophisticated models have to be established
accounting e.g. for crack interactions or nontrivial boundary conditions at crack
faces. Also, the influence of an electric field is just taken into account on the loading
side by controlling the residual stress. This might be the major contribution,
however it has to be borne in mind that the intrinsic material resistance may also
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depend on electric fields. Finally, to get closer to applied research, the constitutive
behavior of modern ferroelectric materials, including morphotropic or lead-free
compositions, has to be a subject of advanced modeling.
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Numerical Analysis of Interface Cracks
in Layered Piezoelectric Solids

Michael Wünsche, Chuanzeng Zhang, Jan Sladek
and Vladimir Sladek

Abstract In this paper, transient dynamic crack analysis in two-dimensional,
layered, anisotropic and linear piezoelectric solids is presented. For this purpose, a
time-domain boundary element method (BEM) is developed. The layered piezo-
electric solids are modelled by the multi-domain BEM formulation. The
time-domain dynamic fundamental solutions for homogeneous linear piezoelectric
solids are applied in the present BEM. The spatial discretization of the boundary
integral equations is performed by a Galerkin-method, while a collocation method
is implemented for the temporal discretization of the arising convolution integrals.
An explicit time-stepping scheme is obtained to compute the discrete boundary data
including the generalized crack-opening-displacements (CODs). To show the
effects of the interface, the material combinations and the dynamic loading on the
intensity factors, several numerical examples are presented and discussed.

1 Introduction

Piezoelectric materials offer many possibilities in advanced engineering structures
due to their inherent coupling effects between mechanical and electrical fields and
are widely applied in smart devices and structures like transducers, actuators and
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sensors [7]. Important applications of piezoelectric materials are layered or lami-
nated composites because they can be optimized to satisfy the high-performance
requirements according to different in-service conditions. Beside cracks inside
homogeneous domains, one of the most dominant failure mechanisms in layered or
laminated piezoelectric composites is interface failure. Interface cracks or interface
debonding may be induced by the mismatch of the mechanical, electrical and
thermal properties of the material constituents during the manufacturing process
and the in-service loading conditions. Although the static and dynamic crack
problems in homogenous piezoelectric solids have been investigated by many
authors (e.g., [3, 4, 6, 10, 12]) the corresponding analysis of interface cracks in
layered piezoelectric solids is rather limited due to the problem complexity. This
paper presents such an analysis by using a hypersingular symmetric Galerkin
boundary element method (SGBEM) for crack problems in two-dimensional (2D),
layered and linear piezoelectric solids.

2 Problem Formulation

Let us consider a piecewise homogeneous, layered and linear piezoelectric solid
with an interface crack (Fig. 1).

In the absence of body forces, free electrical charges and applying the gen-
eralized notation, the cracked solid satisfies the generalized equations of motion

riJ;iðx; tÞ ¼ qd�JK€uKðx; tÞ; d�JK ¼ djk; J ¼ j;K ¼ k;
0; otherwise;

�
ð1Þ

the constitutive equations

riJðx; tÞ ¼ CiJKluK;lðx; tÞ; ð2Þ

Fig. 1 A cracked piecewise
homogeneous anisotropic and
linear piezoelectric solid
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the initial conditions

uiðx; t ¼ 0Þ ¼ _uiðx; t ¼ 0Þ ¼ 0; ð3Þ

the boundary conditions

uIðx; tÞ ¼ �uIðx; tÞ; x 2 Cu; ð4Þ

tIðx; tÞ ¼ �tIðx; tÞ; x 2 Ct; ð5Þ

and the continuity conditions on the interface except the crack-faces

uIIðx; tÞ ¼ uIII ðx; tÞ ð6Þ

tII ðx; tÞ ¼ �tIII ðx; tÞ; ð7Þ

with the capital letter subscripts J 2 f1; 2; 4g and lower case letter subscripts
j 2 f1; 2g.

In Eqs. (1)–(7), the generalized displacements, stresses, elasticity matrix and
tractions are defined by

uI ¼ ui; I ¼ i; displacements
u; I ¼ 4; electric potential;

�
ð8Þ

riJ ¼ rij; J ¼ j; stresses
Di; J ¼ 4; electric displacements;

�
ð9Þ

CiJKl ¼
cijkl; J ¼ j;K ¼ k; elasticity tensor
elij; J ¼ j;K ¼ 4; piezoelectric tensor
eikl; J ¼ 4;K ¼ k; piezoelectric tensor
�eil; J ¼ K ¼ 4; electric permittivity tensor;

8>><
>>:

ð10Þ

tIðx; tÞ ¼ rjIðx; tÞejðxÞ; ð11Þ

where ui; rij;u and Di represent the mechanical displacements, the stresses, the
electrical potential and the electrical displacements, q;Cijkl; eijk and eij are the mass
density, the elasticity tensor, the piezoelectric tensor and the dielectric permittivity
tensor, respectively.

Further, Cif is the interface between the homogenous domains
Xfðf ¼ 1; 2; . . .;NÞ, Cc� denotes the upper and the lower crack-faces, Ct and Cu

stand for the external boundaries where the tractions ti and the displacements ui are
prescribed. Three different electrical boundary conditions are considered on the
crack-faces. The impermeable electrical crack-face condition
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Diðx 2 Ccþ ; tÞ ¼ Diðx 2 Cc� ; tÞ ¼ 0 ð12Þ

describes in a physical sense that both crack-faces are free of electrical displace-
ments. This would be correct for a medium inside the crack with a electrical
permittivity jc of zero. In contrast, the permeable electrical crack-face condition

Diðx 2 Ccþ ; tÞ ¼ Diðx 2 Cc� ; tÞ; uðx 2 Ccþ ; tÞ � uðx 2 Cc� ; tÞ ¼ 0 ð13Þ

implies identical potentials on both crack-faces. Since these two crack-face
boundary conditions are physically not consistent a more realistic semi-permeable
crack-face boundary condition has been introduced by taking into account the
electrical permittivity of the medium inside the crack as

Dnðx 2 Ccþ ; tÞ ¼ Dnðx 2 Cc� ; tÞ ¼ �jc
uðx 2 Ccþ ; tÞ � uðx 2 Cc� ; tÞ
unðx 2 Ccþ ; tÞ � unðx 2 Cc� ; tÞ ; ð14Þ

where Dn and un are the normal components of the electrical displacements and the
mechanical displacements on the crack-faces, jc ¼ jr j0 is defined as the product
of the relative permittivity of the considered medium jr and the permittivity of the
vacuum j0 ¼ 8:854� 10�12 C=ðVmÞ.

The generalized crack-opening-displacements (CODs) are defined by

DuIðx; tÞ ¼ uIðx 2 Ccþ ; tÞ � uIðx 2 Cc� ; tÞ: ð15Þ

Throughout the paper, a comma after a quantity represents spatial derivatives
while a dot over the quantity denotes time differentiation. Lower case Latin indices
take the values 1 and 2 (elastic), while capital Latin indices take the values 1, 2
(elastic) and 4 (electric). Unless otherwise stated, the conventional summation rule
over repeated indices is implied.

3 Time-Domain Boundary Integral Equations
and Fundamental Solutions

In the sense of the weighted residual formulation, the time-domain displacement
Galerkin-boundary integral equations (BIEs) for a cracked solid can be written as

Z
C

wðxÞuJðx; tÞdCx ¼
Z
C

wðxÞ
Z
Cb

�
uGIJðx; y; tÞ � tIðy; tÞ � tGIJðx; y; tÞ � uIðy; tÞ

�
dCydCx

þ
Z
C

wðxÞ
Z
Ccþ

tGIJðx; y; tÞ � DuIðy; tÞdCydCx; ð16Þ
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where uGIJðx; y; tÞ and tGIJðx; y; tÞ are the dynamic displacement and traction funda-
mental solutions defined by

tGIJðx; y; tÞ ¼ CqIKreqðyÞuGKJ;rðx; y; tÞ: ð17Þ

wðxÞ is the weight or test function, Cb ¼ Cu þ Ct and an asterisk denotes the
Riemann convolution

gðx; tÞ � hðx; tÞ ¼
Z t

0

gðx; t � sÞhðx; sÞds: ð18Þ

The time-domain traction Galerkin-BIEs can be obtained by substituting
Eq. (16) into the generalized constitutive Eq. (2), taking the limit process x ! C
and considering the boundary conditions as

Z
C

wðxÞtJðx; tÞdCx ¼
Z
C

wðxÞ
Z
Cb

½vGIJðx; y; tÞ � tIðy; tÞ � wG
IJðx; y; tÞ � uIðy; tÞ�dCydCx

þ
Z
C

wðxÞ
Z
Ccþ

wG
IJðx; y; tÞ � DuIðy; tÞdCydCx; ð19Þ

where vGij ðx; y; tÞ and wG
ij ðx; y; tÞ are the traction and the higher-order traction fun-

damental solutions, which are defined by

vGIJðx; y; tÞ ¼ �CpIKsepðxÞuGKJ;sðx; y; tÞ; ð20Þ

wG
IJðx; y; tÞ ¼ �CpIKsepðxÞCqJLreqðyÞuGKL;srðx; y; tÞ: ð21Þ

The fundamental solutions possess the following spatial symmetry properties

uGIJðx; y; tÞ ¼ uGJIðx; y; tÞ; ð22Þ

tGIJðx; y; tÞ ¼ �vGIJðx; y; tÞ ¼ vGJIðy; x; tÞ; ð23Þ

wG
IJðx; y; tÞ ¼ wG

JIðy; x; tÞ: ð24Þ

Taking these symmetry properties (22)–(24) into account, a spatial symmetric
Galerkin-method is obtained if the displacement Galerkin-BIEs (16) are applied on
the external boundary Cu where the generalized displacements are known and the
interface Cif for the generalized tractions, while the traction Galerkin-BIEs (19) are
used on the external boundary Ct where the generalized tractions are prescribed and
the interface Cif for the generalized displacements.

Numerical Analysis of Interface Cracks … 287



The dynamic time-domain fundamental solutions for homogeneous, anisotropic
and linear piezoelectric solids are not available in explicit form. Here, the solutions
derived by Wang and Zhang [11] using the Radon transform technique are
implemented. Such solutions are expressed in the 2D case by a line integral over a
unit circle as

uGIJðx; y; tÞ ¼
HðtÞ
4p2

Z
jnj¼1

X3
m¼1

Pm
IJ

qcm

1
cmt þ n � ðy� xÞ dn; ð25Þ

where H(t), n, cm and Pm
IJ denote the Heaviside step function, the wave propagation

vector, the phase velocities of the elastic waves and the projector defined in [11]. By
integration by parts and applying the properties of the time convolution the
time-domain generalized displacement fundamental solutions can be divided into a
singular static and a regular dynamic part as

uGIJðx; y; tÞ � f ðtÞ ¼ uSIJðx; yÞf ðtÞ þ uDIJðx; y; tÞ � _f ðtÞ: ð26Þ

Like the displacement fundamental solutions, the traction and the higher-order
traction fundamental solutions can also be divided into their singular static and
regular dynamic parts [12].

4 Numerical Solution Algorithm

A numerical solution procedure is presented in this section to solve the time-domain
BIEs (16) and (19). The procedure uses a Galerkin-method for the spatial dis-
cretization and a collocation method for the temporal discretization. A sub-domain
technique is utilized, which divides the layered piecewise homogenous solid into
two or several sub-domains with homogeneous material properties and to each
sub-domain the time-domain BIEs (16) and (19) are applied. In the following, some
details of the numerical solution algorithm are described. For the spatial discreti-
zation, the crack-faces, the external boundary of each homogeneous sub-domain
and the interfaces of the cracked piezoelectric solid are discretized by linear ele-
ments. Linear shape functions are also used for the temporal discretization in the
present analysis. At the crack-tips inside a homogeneous sub-domain, special
crack-tip elements are applied to describe the local behaviour of the generalized
CODs near the crack-tips properly. This ensures an accurate and a direct calculation
of the intensity factors from the numerically computed CODs. On the other hand,
the asymptotic crack-tip field in the case of an interfacial crack between two dis-
similar piezoelectric materials shows different oscillating and non-oscillating sin-
gularities in the generalized stress field [1, 8, 9], which makes an implementation of
special crack-tip elements quite cumbersome. For this reason, only standard
elements are applied at the crack-tips for interface cracks. The strongly singular and

288 M. Wünsche et al.



hypersingular boundary integrals can be computed analytically by special tech-
niques [5]. By using linear temporal shape-functions, time integrations can also be
performed analytically. Only the line integrals over the unit circle arising in the
regular parts of the dynamic fundamental solutions have to be computed numeri-
cally by the standard Gaussian quadrature.

After temporal and spatial discretizations and considering the initial conditions
the following systems of linear algebraic equations can be obtained for each
sub-domain Xfðf ¼ 1; 2; . . .;NÞ

CfuKf ¼ US
f t

K
f � TS

fu
K
f þ TS

fDu
K
f

þ
XK
k¼1

�
UD;K�kþ1

f tkf � TD;K�kþ1
f ukf þ TD;K�kþ1

f Dukf

�
;

ð27Þ

DftKf ¼ VS
f t

K
f �WS

fu
K
f þWS

fDu
K
f

þ
XK
k¼1

�
VD;K�kþ1

f tkf �WD;K�kþ1
f ukf þWD;K�kþ1

f Dukf

�
:

ð28Þ

By invoking the continuity conditions (6) and (7) on the interface Cif as well as
(12), (13) or (14) on the crack-faces Ccþ and Cc�, Eqs. (27) and (28) can be
summarized to the following system of linear algebraic equations

N1xK ¼ � 1yK þ
XK�1

k¼1

ðKK�kþ1tk �HK�kþ1ukÞ: ð29Þ

Here N1 and � 1 are the system matrices, uK is the vector containing the
boundary displacements and the CODs, and tK is the traction vector on the external
boundary, the interfaces and the crack-faces. By considering the boundary condi-
tions (4) and (5), the following explicit time-stepping scheme can be obtained

xK ¼ ðN1Þ�1
�
� 1yK þ

XK�1

k¼1

ðKK�kþ1tk �HK�kþ1ukÞ
�
; ð30Þ

where yK is the vector of the prescribed boundary data, while xK represents the
vector of the unknown boundary data, which can be computed time-step by
time-step.
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5 Intensity Factors for an Interfacial Crack

The intensity factors for an interface crack between two dissimilar anisotropic and
linear piezoelectric materials can be computed from the generalized crack-opening
displacements (CODs) derived by Suo et al. [9]

Duðr; tÞ ¼ ðHþHÞ
ffiffiffiffiffiffi
r
2p

r
KðtÞrie1w

ð1þ 2ie1Þ coshðpe1Þ þ
�KðtÞr�ie1 �w

ð1� 2ie1Þ coshðpe1Þ
�

þ K4ðtÞr�e2w4

ð1� 2e2Þ cosðpe2Þ
�
; ð31Þ

where K ¼ K1 þ iK2 and K4 are the complex stress intensity factor and the elec-
trical displacement intensity factor, ei are the bimaterial constants, an overbar
denotes the complex conjugate and i is the imaginary unit. The complex Hermitian
matrix H is defined by

H ¼ YI þ YII ; YI ¼ iAIB�1
I ; YII ¼ iAIIB�1

II ; ð32Þ

where the subscripts I and II indicate the upper and the lower layers. The matrices
A and B are computed from the eigenvalue problem as shown in [12]. The two
bimaterial constants e1 and e2 as well as the eigenvectors w and w4 are determined
by the eigenvalue problem

D�1Ew ¼ �ibw; ð33Þ

where D ¼ <ðHÞ and E ¼ =ðHÞ are the real part and the imaginary part of the
complex matrix H. Equation (33) has two complex eigenvalues with the properties
a1 ¼ <ðbÞ[ 0 and a2 ¼ =ðbÞ[ 0 and leads therefore to the bimaterial constants

ej ¼ 1
2p

log
1þ aj
1� aj

� 	
; ðj ¼ 1; 2Þ: ð34Þ

For interface cracks between two dissimilar piezoelectric materials, the gen-
eralized crack-opening-displacements (CODs) in the crack-tip vicinity show the
well known r1=2�ie1 -oscillating behaviour as for interface cracks between two dis-
similar anisotropic materials [2] and additionally the non-oscillating r1=2�e2 -
behavior. This makes an implementation of special spatial crack-tip shape functions
rather difficult. For this reason, only standard elements near the tips of interface
cracks are used in this analysis. To minimize the numerical errors, an extrapolation
technique is applied to calculate the intensity factors from the numerically com-
puted generalized crack-opening-displacements (CODs).
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6 Numerical Examples

In this section, numerical test examples are presented and discussed. The following
loading parameter χ is introduced to measure the intensity of the electrical loading

v ¼ e22
e22

D0

r0
; ð35Þ

where r0 and D0 are the mechanical and electrical loading amplitudes. For con-
venience, the mode-I, the mode-II and the mode-IV dynamic intensity factors for
crack-tips inside a homogeneous layer or sub-domain are normalized by

K�
I ðtÞ ¼

KIðtÞ
K0

; K�
IIðtÞ ¼

KIIðtÞ
K0

; K�
IVðtÞ ¼

e22
e22

KIV ðtÞ
K0

: ð36Þ

The real part K1 and the imaginary part K2 of the complex dynamic stress
intensity factor and the electrical displacement intensity factor K4 for interface
cracks are normalized by

K�
1 ðtÞ ¼

K1ðtÞ
K0

; K�
2ðtÞ ¼

K2ðtÞ
K0

; K�
4 ðtÞ ¼

eI22
eI22

K4ðtÞ
K0

; ð37Þ

with K0 ¼ fr0
ffiffiffiffiffiffi
pa

p
, where f ¼ 1 if a mechanical loading is applied while f ¼ v in

the case of pure electrical loading and a is the half length of an internal crack.
For the purpose of comparison a program based on the commercial FEM pro-

gram ANSYS is developed. In the FEM calculations the element type PLANE223
with quadratic shape functions is chosen and quarter-point elements (QPE) are
implemented to describe the local behaviour of the CODs at crack-tips inside a
homogeneous layer or sub-domain. For interface cracks only the element type
PLANE223 is used. The unknown boundary values are computed numerically by
an implicit time-stepping scheme in ANSYS. As in the time-domain BEM
(TDBEM) the dynamic intensity factors are computed directly by the CODs in the
case of crack-tips inside a sub-domain, while for interface cracks a displacement
extrapolation technique is used to compute the complex dynamic intensity factors.
Generalized plain strain conditions are assumed in all numerical computations.

6.1 A Central Interface Crack in a Layered
Rectangular Plate

In the first example as shown in Fig. 2, we consider a central interface crack of
length 2a in a rectangular, layered, anisotropic and linear piezoelectric plate.
The geometry of the cracked plate is determined by h ¼ 20:0 mm, w ¼ 10:0 mm
and 2a ¼ 4:8 mm.
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The spatial discretization of the external boundary and the interface is performed
by an element-length of 1:0 mm. Each crack-face is approximated by 12 elements
and a normalized time-step of cLDt=h ¼ 0:05 is chosen, where cL is the longitudinal
wave velocity. A comparison of the used BEM and FEM meshes is presented in
Fig. 3. As piezoelectric material for the domain I Zirconate Titanate (PZT-5H) is
chosen, which has the following material parameters

C11 ¼ 126:0 GPa ; C12 ¼ 84:1 GPa ; C22 ¼ 117:0 GPa; C66 ¼ 23:0 GPa;

e21 ¼ �6:5 C=m2; e22 ¼ 23:3 C=m2; e16 ¼ 17:0 C=m2;

e11 ¼ 15:04 C=ðGVmÞ ; e22 ¼ 13:0 C=ðGVmÞ ð38Þ

and the mass density q ¼ 7500 kg=m3, while for domain II Barium Titanate
(BaTiO3) with the following material constants

C11 ¼ 150:0 GPa; C12 ¼ 146:0 GPa; C22 ¼ 44:0 GPa; C66 ¼ 66:0 GPa;

e21 ¼ �4:35 C=m2; e22 ¼ 17:5 C=m2; e16 ¼ 11:4 C=m2;

e11 ¼ 9:87 C=ðGVmÞ; e22 ¼ 11:2 C=ðGVmÞ ð39Þ

and the mass density q ¼ 5800 kg=m3 is applied.
The layered piezoelectric plate is subjected to a combined tensile impact loading

of the form rðtÞ ¼ r0HðtÞ and an electrical impact loading DðtÞ ¼ D0HðtÞ on the

Fig. 2 An interface crack in a layered rectangular piezoelectric plate

Fig. 3 Comparison of the BEM (left) and the FEM (right) meshes
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left and the right boundary, where HðtÞ denotes the Heaviside step function. The
mechanical stresses and the electrical displacements are zero on the upper and lower
boundary. The crack-faces are considered as electrically impermeable described by
Eq. (12). The computed results for the interface crack and the interior crack inside a
homogenous plate of PTZ-5H are presented and compared in Figs. 4 and 5 with
those obtained by the commercial FEM program ANSYS. For the sake of clarity
only the FEM results for v ¼ �0:5 are included.

In order to point out the influence of the orientation of the material poling
direction, the normalized dynamic intensity factors for the rotation angle hI ¼
hII ¼ 45� with respect to the axis x2 are presented in Figs. 6 and 7.

The normalized dynamic mode-I and mode-IV intensity factors for the interior
crack in a homogenous piezoelectric solid as well as the real part and the imaginary
part of the complex intensity factor and the electrical displacement intensity factor
for the interface crack obtained by the present TDBEM are in good agreement with
those of the FEM. The peak values of the normalized dynamic intensity factors
decrease with increasing electrical loading. It can be observed that, when applying
an electrical impact, the normalized dynamic mode-I intensity factor and the
complex intensity factor start from a non-zero value at t ¼ 0. This is due to the
quasi-electrostatic assumption on the electrical field, which implies that the cracked
piezoelectric plate is immediately subjected to an electrical impact and therefore the
crack opens at t ¼ 0. For the loading configuration v ¼ �0:5 a negative mode-I
intensity factor is obtained in different time ranges. To avoid the physically
meaningless crack-face intersection a non-linear crack-face contact algorithm is
required. In contrast to the electrical impact, the elastic waves induced by the
mechanical impact need some time to reach and excite the crack, as clearly
observed for the v ¼ 0 case. The global behaviour of the mode-I intensity factor
and the real part of the complex intensity factor is similar without a significant
dependence on the electrical impact loading. The mode-II intensity factors vanish,
since no shear stress components are induced for all applied loadings in the case of
a transversely isotropic material behaviour. Since the crack opening modes I and II
are coupled each other for the interface crack the imaginary part of the complex

Fig. 4 Normalized dynamic intensity factors for the interface crack
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Fig. 5 Normalized dynamic intensity factors for the interior crack

Fig. 6 Normalized dynamic intensity factors for the interface crack with hI ¼ 45� and hII ¼ 45�

Fig. 7 Normalized dynamic intensity factors for the interior crack with h ¼ 45�
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intensity factor is unequal zero. As is expected, for both crack configurations the
electrical displacement intensity factors show a strong dependence on the applied
electrical loading.

In the Figs. 8 and 9, the absolute values of the scattered displacements for
v ¼ 0:5 obtained for different time-steps are shown. It can be clearly identified that
the interface as well as the poling direction have significant influences on the
scattered displacements.

6.2 A Rectangular Plate with Two Interface Cracks

In the next example, a rectangular plate with two interface cracks of length 2a is
investigated.

As depicted in Fig. 10 the cracked plate is subjected to an impact tensile loading
rðtÞ ¼ r0HðtÞ normal to the crack-faces and an impact electrical loading DðtÞ ¼
D0HðtÞ with v ¼ �0:5 on the upper and lower boundary. On the left and right
boundary the mechanical stresses and the electrical displacements are zero. The
geometrical data are h ¼ 12:0 mm, w ¼ 20:0 mm, d ¼ 12:0 mm and 2a ¼ 4:0 mm.
As in the first example the material properties given in Eqs. (38) and (39) are
considered. For spatial discretization the external boundary is discretized by a
uniform mesh with an element-length of 1:0 mm, while the crack-faces are divided
into 14 elements. A normalized time-step cLDt=h ¼ 0:04 is used.

The normalized dynamic intensity factors of Tip A for the impermeable, per-
meable and semi-permeable crack-face boundary conditions (12)–(14) are shown in
Fig. 11 for the left interface crack in a bimaterial plate and in Fig. 12 for the left
interior crack in a homogenous plate. The relative permittivity jr ¼ 40 is used in
the computations with the semi-permeable crack-face conditions.

In comparison to the results of a single central crack, the interaction between
both cracks leads to a more complicated behaviour of the normalized dynamic
intensity factors. Since the geometry of the cracked plate and the external loading
are symmetric with respect to the vertical midline, the dynamic intensity factors of
both cracks are identical. It can be clearly seen, that the electrical permittivity of the
medium inside the crack has a significant influence on the dynamic intensity factors
for both investigated configurations.

Finally, it should be remarked that the present time-domain BEM has much less
unknowns than the FEM, which is advantageous for the pre- and post-processing of
the numerical simulation. However, the numerical implementation of the present
time-domain BEM is much more complicated than the FEM, which is available as
commercial software codes and widely applied in engineering sciences.
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Fig. 8 Scattered wave fields at the time-steps 1, 10, 20, 30, 40, 50, 60, 70 and 80 for the interior
crack with h ¼ 0� (left) and for the interface crack with hI ¼ hII ¼ 0� (right)
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Fig. 9 Scattered wave fields at the time-steps 1, 10, 20, 30, 40, 50, 60, 70 and 80 for the interior
crack with h ¼ 45� (left) and for the interface crack with hI ¼ hII ¼ 45� (right)
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Fig. 10 A rectangular plate with two interface cracks

Fig. 11 Normalized dynamic intensity factors for Tip A of the left interface crack in a bimaterial
plate

Fig. 12 Normalized dynamic intensity factors for Tip A of the left interior crack in a
homogeneous plate

298 M. Wünsche et al.



7 Conclusions

In this paper, transient dynamic crack analysis in layered and linear piezoelectric
solids is presented. A time-domain Galerkin BEM is developed and applied for this
purpose. Both temporal and spatial integrations are carried out analytically. Only
the line integrals over the unit circle in the dynamic fundamental solutions are
computed numerically. The developed BEM is generally applicable without limi-
tations on the geometry and loading configurations. The obtained numerical results
indicate a significant influence of the interface on the dynamic intensity factors.
Further, the crack-face boundary conditions play an important role in the dynamic
crack simulation of piezoelectric solids.
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Crack-Tip Fields of a Crack Impinging
upon the Yielding/Debonding Slippage
in Anisotropic Body

Qun Li, Junling Hou, Guangyan Liu and Hong Zuo

Abstract This paper presents a fundamental solution for a crack impinging nor-
mally upon the slippage in anisotropic materials under tensile loading. The slippage
could occur in the form of yielding (e.g., a well-bonded ductile layer with plastic
yielding) or debonding (e.g., a weak, sliding-free one). A superposition method is
employed to explicitly solve the problem which combines the solution of a crack in
an elastic homogeneous medium, the solution of a continuous distribution of dis-
locations which represent slippage, and an appendix solution which offsets the
stress on the crack faces induced by the dislocations. This procedure reduces the
problem to a singular integral equation which can be numerically solved by using
Chebyshev polynomials. Numerical implementations are performed to analyze the
influence of slippage on cracking and stress redistribution near the crack tip in
anisotropic bodies. It is found that yielding or debonding slippage redistributes the
stress ahead of the crack tip. The presence of yielding or debonding lowers the high
stress concentration in the tensile stresses ahead of the crack tip. It is also concluded
that debonding appears to be more effective in lowering the stress concentration
than yielding.

1 Introduction

The fracture behavior with a crack impinging normally upon the slippage in
materials under tensile loading has received more attentions by many scholars
[1–12]. The slippage can originate from the interface between two laminated same
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bodies e.g., shale gas reservoirs [1], or from the interface between fiber and matrix
in composites where the thickness of fiber is negligible compared that of matrix
[2–6], or from the interface of two dissimilar bodies [7–12].

Many investigations about the crack propagation in anisotropic body for the
engineering designs have been performed. The fracture problem in anisotropic body
can be explicitly analyzed according to the Lekhnitskii’s theory [13]. In most cases,
however, it is believed that the slippage behaviors between the constituents or
between the plies in composites have significant contributions to the materials’
toughness and resistance. It has been reported that anisotropic material will exhibit
slippage emanating from the crack tips, such as intra-ply splitting along the fiber
direction or inter-ply delamination [12, 14]. To enable good strength and toughness,
the stress redistribution caused by the presence of a crack impinging upon a slip-
page should be considered for accurate prediction. Depending on the nature of
material, the slippage could occur in the form of yielding (e.g., a well-bonded
ductile layer with plastic yielding) or debonding (e.g., a weak, sliding-free one).
The presence of yielding/debonding at a crack tip can alleviate the stress concen-
tration effect of the crack, reducing the probability of material failure. For instance,
Cook and Erdogan [15] considered the elastostatic problem of a crack running into
and terminating at the interface of two bonded half planes, especially, they
emphasized the important case of the crack perpendicular to the interface. Erdogan
and Biricikoglu [16] formulated a system of singular integral equations to analyze
the problem of two bonded elastic half planes containing a finite crack perpen-
dicular to and going through the interface. He and Hutchinson [17] considered the
role of the slippage between dissimilar elastic materials when approached by a
crack. Seyoung [18] considered the asymptotic stress field of composite with
transverse cracks by the method of the eigenfunction expansion and Leknitskii’s
complex-variable potentials for generalized plane strain deformations.

In this paper, we consider a general issue of a crack impinging upon the slippage
in one anisotropic material which is not reported in the open literatures. To do this
we pose and solve an asymptotic model problem and the role of slippage in terms of
yielding and debonding on the crack propagation is analyzed. The analysis concerns
the stress redistribution ahead of the crack tip induced by the yielding and deb-
onding slippage.

2 Problem Statements

The problem concerns a crack impinging upon a slippage and the corresponding
asymptotic problems to be studied are schematically shown in Fig. 1a. A slippage
having zero thickness lies at x = 0 where yielding or debonding happens extending
a distance d above and below the crack tip, i.e. −d ≤ y ≤ d, x = 0. The shear flow
stress τ, equivalently, the yielding strength is exerted along the yielding slippage
while the shear stress τ = 0 is applied along the debonding under condition such that
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the materials remain in contact. A crack of width 2w is impinging upon the slip-
page. A remote tension stress σyy = σ is acting normal to the crack.

To obtain the fundamental solutions of the problem and to analyze cracking and
stress redistribution ahead of the crack tip accurately, the superposition method is
proposed to handle this problem. The aimed asymptotic problem (Fig. 1a) can be
superposed by three subproblems. The first one is an analytical solution of the
elastic field associated with a crack in a single infinite anisotropic homogeneous
medium subjected to remote tension (Fig. 1b). The second one is a continuous
distribution of dislocations which represents slippage (Fig. 1c). The third one is an
appendix field which eliminates the tractions on the crack faces induced by the
dislocations (Fig. 1d). The present superposition of three fields can really achieve

Fig. 1 An asymptotic model by superposition method of a crack impinging upon a slippage in
anisotropic body. a The asymptotic model; b a crack in an elastic medium; c a continuous
distribution of dislocations which represent slippage; d the appendix field for relieving the
tractions on the crack surface induced by dislocations
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the traction-free condition on the crack faces. We assume that the yielding or
debonding slippage can be viewed as an unknown continuous distribution of sliding
dislocation singularities, so that an integral equation could be established to solve
the dislocation distribution for meeting the shear stress equilibrium along the
slippage. In the following, the fundamental solutions associated with the three
proposed subproblems are formulated in explicit forms and then numerical
implementation is performed to solve the integral equation and determine the dis-
location distribution.

3 Fundamental Solutions

3.1 Stress Fields of a Crack in an Anisotropic
Homogeneous Body

The crack problem of Fig. 1b in a two-dimensional infinite anisotropy can be solved
according to the Lekhnitskii’s theory [13]. For a homogeneous anisotropic material,
the stress fields (σxx, σyy, σxy) which readily expressed in terms of the complex
functions /1 z1ð Þ and /2 z2ð Þ as,

rxx ¼ 2 Re½l21/0
1 z1ð Þ þ l22/

0
2 z2ð Þ�

ryy ¼ 2 Re½/0
1 z1ð Þ þ /0

2 z2ð Þ�
rxy ¼ �2 Re½l1/0

1 z1ð Þ þ l2/
0
2 z2ð Þ�

ð1Þ

where the superscript comma denotes a partial derivative with respect to the
complex variable z = x + μy; Re denotes the real part of a complex variable; The
parameters μ1 and μ2 are the complex roots of the characteristic equation in
anisotropic material determined by

s11l
4 � 2s16l3 þ ð2s12 þ s66Þl2 � 2s26lþ s22 ¼ 0 ð2Þ

where s11, s22, s12, s16, s26, s66 are the elastic compliance constants of the material.
Additionally, the displacements (ux, uy) can be given by

ux ¼ 2 Re½p1/1 z1ð Þ þ p2/2 z2ð Þ�
uy ¼ 2 Re½q1/1 z1ð Þ þ q2/2 z2ð Þ� ð3Þ

Here we have used the designations

p1 ¼ s11l
2
1 þ s12 � s16l1; p2 ¼ s11l

2
2 þ s12 � s16l2

q1 ¼ s12l1 þ s22=l1 � s26; q2 ¼ s12l2 þ s22=l2 � s26
ð4Þ
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For the problem of a crack in an infinite anisotropic body bearing a uniform
tensile stress at infinity, the complex functions are well-known and solved earlier
[19, 20]

W1 z1ð Þ ¼ /0
1 z1ð Þ ¼ rl2

2ðl2�l1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z1 z1þ2wð Þ

p z1 þ w� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z1 z1 þ 2wð Þp� �

W2 z2ð Þ ¼ /0
2 z2ð Þ ¼ rl1

2ðl1�l2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 z2þ2wð Þ

p z2 þ w� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 z2 þ 2wð Þp� � ð5Þ

Substituting Eq. (5) into Eq. (1), the stress fields near the crack tip are written in
the form of polar coordinates as

r0xx ¼ r
ffiffiffi
w

pffiffiffiffi
2r

p Re l1l2
l1�l2

l2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþl2 sin h

p � l1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþl1 sin h

p
� �� �

þ Oðr0Þ

r0yy ¼ r
ffiffiffi
w

pffiffiffiffi
2r

p Re 1
l1�l2

l1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþl2 sin h

p � l2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþl1 sin h

p
� �� �

þ Oðr0Þ

r0xy ¼ r
ffiffiffi
w

pffiffiffiffi
2r

p Re l1l2
l1�l2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþl1 sin h

p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþl2 sin h

p
� �� �

þ Oðr0Þ

8>>>>>><
>>>>>>:

ð6Þ

3.2 Fundamental Solution of a Sliding Dislocation
in an Anisotropic Body

In order to consider the problem of Fig. 1c in a two-dimensional infinite anisotropic
medium, the slippage may be viewed as a continuous distribution of dislocation
singularities. Thus it is necessary to study firstly the fundamental solution induced
by the dislocation singularity in an anisotropic body.

Assume the Burger’s vector of a dislocation at the point (x0, y0) in an anisotropic
body given by

b ¼ bx þ iby ð7Þ

In the context of Lekhnitskii’s complex-potential formulation, the dislocation
singularity appears as a branch point in the complex plane. The corresponding
complex solution /D

1 ðz1Þ; /D
2 ðz2Þ for a single dislocation at the point (x0, y0) in an

infinite medium can be written as

/D
1 ðz1Þ ¼ A lnðz1 � s1Þ

/D
2 ðz2Þ ¼ B lnðz2 � s2Þ

ð8Þ

where z1 ¼ xþ l1y; z2 ¼ xþ l2y; s1 ¼ x0 þ l1y0; s2 ¼ x0 þ l2y0; The coeffi-
cients A and B will be determined by relying on the monodrome condition of
displacements and stress equilibrium of dislocation. They are explicitly formulated
as follows.
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According to the definition of Burger’s vector, it is corresponding to the jump of
displacements along the clockwise contour Γ+ enclosing the dislocation singularity.
That is,

bx ¼ ux½ �Cþ¼ p1/1ðz1Þ þ p2/2ðz2Þ þ p1/1ðz1Þ þ p2/2ðz2Þ
h i

Cþ

by ¼ uy
� �

Cþ¼ q1/1ðz1Þ þ q2/2ðz2Þ þ q1/1ðz1Þ þ q2/2ðz2Þ
h i

Cþ

ð9Þ

Substituting Eq. (8) into Eq. (9) reduces to

bx ¼ 2pi½p1ðA� �AÞ þ p2ðB� �BÞ�
by ¼ 2pi½q1ðAþ �AÞ þ q2ðBþ �BÞ� ð10Þ

In addition, considering that the medium is in an equilibrium state, the value of
the principle stress vector P = −Y + iX acting on the outside contour should be zero
where the complex potential expression of P is given by

P ¼ ð1þ il1Þ/1ðz1Þ þ ð1þ il2Þ/2ðz2Þ þ ð1þ i�l1Þ/1ðz1Þ þ ð1þ i�l2Þ/2ðz2Þ
ð11Þ

The equilibrium equation of principle stress vector can be written as

I
PdC ¼ 0 ð12Þ

Substituting Eqs. (8) and (11) into Eq. (12), one obtains

ð1þ il1Þ2piAþ ð1þ il2Þ2piB� ð1þ i�l1Þ2piA� ð1þ i�l2Þ2piB ¼ 0 ð13Þ

Thus, the coefficients A and B in Eq. (8) could be determined by the linear
equations composed by Eqs. (10) and (13). And then the complex potentials /D

1 ðz1Þ
and /D

2 ðz2Þ induced by a dislocation are explicitly derived.
For the problem we are interested in here, the Burger’s vector along the slippage

can be specialized as the case of a sliding dislocation (0, by). Herein, we will treat
the slippage as a group of sliding dislocations, and also assume that the contact is
maintained with regions of slippage. Therefore, the explicit expressions of coeffi-
cients A and B corresponding to a sliding dislocation can be obtained as

A ¼ �l2by
4piðq2l1 � q1l2Þ

; B ¼ l1by
4piðq2l1 � q1l2Þ

ð14Þ
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3.3 Appendix Fields for Removing the Stress on the Crack
Surface Induced by the Dislocations

The final fundamental solution of a crack impinging upon the slippage in aniso-
tropic body must leave the crack free of traction. It is known that the stress fields for
a crack in homogeneous anisotropy given in the Sect. 3.1 satisfy this traction-free
condition naturally. Therefore, the distributed dislocations must also leave the crack
faces free of traction. Thus, it is essential to impose an appendix field (Fig. 1d) for
eliminating the stress on the crack faces which is induced by the presence of
dislocations.

In order to keep the crack free of traction, the solutions for dislocations are no
longer given by WD

1 ðz1Þ ¼ /D0
1 ðz1Þ;WD

2 z2ð Þ ¼ /D0
2 ðz2Þ alone. An appendix field has

to be proposed to satisfy the traction-free boundary conditions for a single dislo-
cation at the point (x0, y0). The corresponding complex solution can be written in
the form [21, 22]

W1ðz1Þ ¼ WD
1 ðz1Þ þWR

1 ðz1Þ
W2ðz2Þ ¼ WD

2 ðz2Þ þWR
2 ðz2Þ

ð15Þ

where WR
1 ;W

R
2 represent the appendix solution associated with eliminating the

tractions induced by WD
1 ;W

D
2 on the crack faces, and can be determined by

enforcing the stresses on the crack due to W1;W2 to be zero. Equivalently, the
problem may be reduced to finding WR

1 ;W
R
2 with prescribed stresses on the crack

equal to the negative of those induced by WD
1 ;W

D
2 .

Considering that the traction-free boundary conditions on the crack faces
requires that

rþyy ¼ r�yy ¼ 0 �2w� x� 0 ð16Þ

rþxy ¼ r�xy ¼ 0 �2w� x� 0 ð17Þ

where the superscripts + and − refer to the upper and lower crack surface,
respectively.

Combining Eqs. (1), (8) and (15) with Eq. (16), the normal traction-free
boundary condition on the crack surface leads to

WRþ
1 ðxÞ þWRþ

2 ðxÞ þ �W
R�
1 ðxÞ þ �W

R�
2 ðxÞ ¼ �2Re

A
x� s1

þ B
x� s2

	 

ð18Þ

WR�
1 ðxÞ þWR�

2 ðxÞ þ �W
Rþ
1 ðxÞ þ �W

Rþ
2 ðxÞ ¼ �2 Re

A
x� s1

þ B
x� s2

	 

ð19Þ

And the shear traction-free boundary condition on the crack surface leads to
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l1W
Rþ
1 ðxÞ þ l2W

Rþ
2 ðxÞ þ l1 �W

R�
1 ðxÞ þ l2 �W

R�
2 ðxÞ ¼ �2 Re

Al1
x� s1

þ Bl2
x� s2

	 


ð20Þ

l1W
R�
1 ðxÞ þ l2W

R�
2 ðxÞ þ l1 �W

Rþ
1 ðxÞ þ l2 �W

Rþ
2 ðxÞ ¼ �2 Re

Al1
x� s1

þ Bl2
x� s2

	 


ð21Þ

Subtracting Eq. (18) to Eq. (19), one obtains

WR
1 ðxÞ þWR

2 ðxÞ � �W
R
1 ðxÞ � �W

R
2 ðxÞ

h iþ
� WR

1 ðxÞ þWR
2 ðxÞ � �W

R
1 ðxÞ � �W

R
2 ðxÞ

h i�
¼ 0

ð22Þ

Since Eq. (22) yields a homogenous Riemann-Hilbert problem, the solution of
formulation can be given by specifying the remote boundary condition at infinity.
One obtains

WR
1 ðz1Þ þWR

2 ðz2Þ ¼ �W
R
1 ðz1Þ þ �W

R
2 ðz2Þ ð23Þ

The same treatment can be used to deal with subtracting Eq. (20) to Eq. (21), and
finally the solution can be written in the form

l1W
R
1 ðz1Þ þ l2W

R
2 ðz2Þ ¼ �l1 �W

R
1 ðz1Þ þ �l2 �W

R
2 ðz2Þ ð24Þ

Combining Eq. (23) with Eq. (24), the relationships between WR
1 ;

�W
R
1 and

WR
2 ;

�W
R
2 can be achieved by

WR
1 ðz1Þ ¼

ð�l1 � l2ÞWR
2 ðz2Þ � ð�l1 � �l2Þ �WR

2 ðz2Þ
l1 � l1

�W
R
1 ðz1Þ ¼

ðl1 � l2ÞWR
2 ðz2Þ � ðl1 � �l2Þ �WR

2 ðz2Þ
l1 � l1

8>>><
>>>:

ð25Þ

Alternatively,

WR
2 ðz2Þ ¼

ðl2 � l1ÞWR
1 ðz1Þ � ðl2 � l1Þ �WR

1 ðz1Þ
l2 � l2

�W
R
2 ðz2Þ ¼

ðl2 � l1ÞWR
1 ðz1Þ � ðl2 � l1Þ �WR

1 ðz1Þ
l2 � l2

8>>><
>>>:

ð26Þ

Using Eq. (25), Eqs. (18) and (19) can be rearranged as
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l2 � l1ð ÞWR
1 ðxÞ � �l2 � �l1ð Þ �WR

1 ðxÞ
l2 � �l2

" #þ
þ l2 � l1ð ÞWR

1 ðxÞ � �l2 � �l1ð Þ �WR
1 ðxÞ

l2 � �l2

" #�

¼ �2 Re
A

x� s1
þ B
x� s2

	 


ð27Þ

ðl1 � l2ÞWR
2 ðxÞ � ð�l1 � �l2Þ �WR

2 ðxÞ
l1 � �l1

" #þ
þ ðl1 � l2ÞWR

2 ðxÞ � ð�l1 � �l2Þ �WR
2 ðxÞ

l1 � �l1

" #�

¼ �2 Re
A

x� s1
þ B
x� s2

	 


ð28Þ

In the same way, Eqs. (20) and (21) can be rearranged as

�l2 l2 � l1ð ÞWR
1 ðxÞ � l2 �l2 � �l1ð Þ �WR

1 ðxÞ
l2 � �l2

" #þ
þ �l2 l2 � l1ð ÞWR

1 ðxÞ � l2 �l2 � �l1ð Þ �WR
1 ðxÞ

l2 � �l2

" #�

¼ �2 Re
Al1
x� s1

þ Bl2
x� s2

	 


ð29Þ

�l1ðl1 � l2ÞWR
2 ðxÞ � l1ð�l1 � �l2Þ �WR

2 ðxÞ
l1 � �l1

" #þ
þ �l1ðl1 � l2ÞWR

2 ðxÞ � l1ð�l1 � �l2Þ �WR
2 ðxÞ

l1 � �l1

" #�

¼ �2 Re
Al1
x� s1

þ Bl2
x� s2

� �

ð30Þ

The solving procedure follows the complex potential theory in elasticity [23,
24], and two new complex potentials G(z)and HðzÞ are introduced by principle of

analytic continuation. They are presented through WR
1 ðz1Þ; �WR

1 ðz1Þ or

WR
2 ðz2Þ; �WR

2 ðz2Þ as following

Gðz1Þ ¼ l2�l1ð ÞWR
1 ðz1Þ� �l2��l1ð Þ �WR

1 ðz1Þ
l2��l2

Hðz1Þ ¼ �l2 l2�l1ð ÞWR
1 ðz1Þ�l2 �l2��l1ð Þ �WR

1 ðz1Þ
l2��l2

8<
: ð31Þ

Gðz2Þ ¼ l1�l2ð ÞWR
2 ðz2Þ� �l1��l2ð Þ �WR

2 ðz2Þ
l1��l1

Hðz2Þ ¼ �l1 l1�l2ð ÞWR
2 ðz2Þ�l1 �l1��l2ð Þ �WR

2 ðz2Þ
l1��l1

8<
: ð32Þ
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According to Eqs. (31) and (32), the Riemann-Hilbert boundary problems of
Eqs. (27)–(30) can be rearranged in the following forms

Gþðz1Þ þ G�ðz1Þ ¼ �2 Re
A

z1 � s1
þ B
z1 � s2

	 

ð33Þ

Hþðz1Þ þ H�ðz1Þ ¼ �2 Re
Al1

z1 � s1
þ Bl2
z1 � s2

	 

ð34Þ

Gþðz2Þ þ G�ðz2Þ ¼ �2 Re
A

z2 � s1
þ B
z2 � s2

	 

ð35Þ

Hþðz2Þ þ H�ðz2Þ ¼ �2 Re
Al1

z2 � s1
þ Bl2
z2 � s2

	 

ð36Þ

The representations are the non-homogeneous Riemann-Hilbert problems with
square root singularity. The analytical solutions of complex potentials can be
obtained by referring to the solving procedure in references [23, 24]. Thus, the
explicit expressions of G(z1), G(z2), H(z1), and H(z2) are given by

Gðz1Þ ¼ � AFðz1; s1Þ þ AFðz1; s1Þ þ BFðz1; s2Þ þ BFðz1; s2Þ
h i

Gðz2Þ ¼ � AFðz2; s1Þ þ AFðz2; s1Þ þ BFðz2; s2Þ þ BFðz2; s2Þ
h i

Hðz1Þ ¼ � Al1Fðz1; s1Þ þ Al1Fðz1; s1Þ
h i

� Bl2Fðz1; s2Þ þ Bl2Fðz1; s2Þ
h i

Hðz2Þ ¼ � Al1Fðz2; s1Þ þ Al1Fðz2; s1Þ
h i

� Bl2Fðz2; s2Þ þ Bl2Fðz2; s2Þ
h i

ð37Þ

where

Fðz1; s1Þ ¼ 1
2

1
z1 � s1

1� Xref ðs1Þ
Xref ðz1Þ

� �
; Fðz1; s2Þ ¼ 1

2
1

z1 � s2
1� Xref ðs2Þ

Xref ðz1Þ
� �

Fðz2; s1Þ ¼ 1
2

1
z2 � s1

1� Xref ðs1Þ
Xref ðz2Þ

� �
; Fðz2; s2Þ ¼ 1

2
1

z2 � s2
1� Xref ðs2Þ

Xref ðz2Þ
� �

Xref ðs1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1ðs1 þ 2wÞ

p
; Xref ðs2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2ðs2 þ 2wÞ

p
;

Xref ðz1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z1ðz1 þ 2wÞ

p
; Xref ðz2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2ðz2 þ 2wÞ

p
:

Finally, the complex functions WR
1 ðz1Þ and WR

2 ðz2Þ of appendix fields for elim-
inating the stress on the crack faces are formulated by
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WR
1 ðz1Þ ¼ �AFðz1; s1Þ þ Að�l1 � l2ÞFðz1;�s1Þ þ Bð�l2 � l2ÞFðz1;�s2Þ½ �

l2 � l1

WR
2 ðz2Þ ¼ �BFðz2; s2Þ þ Að�l1 � l1ÞFðz2;�s1Þ þ Bð�l2 � l1ÞFðz2;�s2Þ

l1 � l2

ð38Þ

3.4 Singular Integral Equation to Determine the Dislocation
Distribution and Its Numerical Implementation

In this study, the slippage ahead of the crack tip is assumed to be with shear flow
stress τ. With reference to Fig. 1b, let by(y0) = −dδy/dy0 denote the amplitude of the
sliding dislocations extending from −d to d along x = 0. A singular integral equation
can be formed as follows.

An integral equation governing by(y0) is derived by enforcing the condition of
σxy = ±τ along x = 0 between −d and d. This leads to the following singular integral
equation

r0xy yð Þ þ
Zd

0

H y; y0ð Þbyðy0Þdy0 ¼ s 0� y� d ð39Þ

�r0xy yð Þ þ
Z0

�d

H y; y0ð Þbyðy0Þdy0 ¼ �s � d� y� 0 ð40Þ

where r0xy yð Þ is the shear stress along x = 0 due to the remote tensile loading in the
absence of the slippage; H(y, y0) denotes the shear stress σxy(y) at the point y due to
the dislocation by(y0) at the point y0 along x = 0. The expression of H(y, y0) can be
derived by substituting Eqs. (8) and (38) into the formulas of shear stress in Eq. (1).
One obtains

Hðy; y0Þ ¼ �2 Re
Al1

z1 � s1

�
� Al1Fðz1; s1Þ þ

Al1ð�l1 � l2ÞFðz1;�s1Þ þ Bl1ð�l2 � l2ÞFðz1;�s2Þ
l2 � l1

þ Bl2
z2 � s2

� Bl2Fðz2; s2Þ þ
Al2ð�l1 � l1ÞFðz2;�s1Þ þ Bl2ð�l2 � l1ÞFðz2;�s2Þ

l1 � l2

�

ð41Þ

where z1 ¼ l1y; z2 ¼ l2y; s1 ¼ l1y0; s2 ¼ l2y0; The coefficients of A and B are
given in Eq. (14) corresponding to the dislocation distribution by.

The singular integral equation can be numerically solved by using Chebyshev
polynomials [25, 26]. After doing so, the dislocation distributions are available
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through the above numerical implementation and then full fields for the crack
impinging upon the slippage can be finally reached.

4 Numerical Results and Discussions

As an example, the material is taken to be one orthotropic material with the main
axes aligned with the coordinate axes (i.e., s16 = s26 = s36 = 0 in Eq. 2). The material
constants are taken as Ex = 172.4 GPa, Ey = 10.3 GPa, νxy = 0.32, Gxy = 5.52 GPa.
The corresponding characteristic roots are numerically calculated as μ1 = 0.7465i,
μ2 = 5.4804i according to the Lekhnitskii’s complex theory. The present solutions
are used to analyze the cracking and stress redistribution in anisotropic body
containing a crack impinging on the slippage and the geometry of the problem to be
studied is shown in Fig. 1a. A central cracked anisotropic body is subjected to
remote tension σyy = σ acting normal to the crack. The crack length is 2w while the
slippage has a length of 2d perpendicular to the crack surface.

Two distinct mechanisms of slippage including yielding and debonding are
under considerations. In first case, the slippage is taken to be a very thin ductile
layer of an elastic-perfectly plastic material with yielding strength τ. To ensure
well-behaved shear stresses at the end of the yielding zone and establish the zone
length d, the condition that the Mode II stress intensity factor equals zero i.e.,
KII = 0 should be enforced at the end of the yielded slippage. The relationship
between σ/τ and d/w can be established by the criterion of KII = 0, that is, the shear
stress at the slippage tip induced by the tensile loading in the anisotropic body in the
absence of slippage is equal to the yielding strength τ. The yielding length can be
determined by r0xyðd; p=2Þ ¼ s, that is

r
ffiffiffiffi
w

p
ffiffiffiffiffi
2d

p Re
l1l2

l1 � l2

1ffiffiffiffiffi
l1

p � 1ffiffiffiffiffi
l2

p
� �� �

¼ s ð42Þ

Actually, the criterion of KII = 0 to determine the yielding length in the present
analysis is same as the procedure in Dugdale’s mode [27] in fracture mechanics.

Figure 2 shows the distribution of normal stress σyy(x, 0) normalized by the
applied far field stress σ ahead of the crack tip where the tensile loading σ = 4.48τ is
applied at infinity. In order to allow relative slipping of the layers joined by plastic
yielding, the preferred condition of KII = 0 yields a slippage length d = 2.0w. It can
be seen from Fig. 2 that the normal stress at the crack tip induced by the crack in the
absence of yielding slippage presents an evident singularity which is determined by
the analytical solution Eq. (6) of a crack in anisotropic body. Furthermore, a
compressive normal stress is obtained from the stress field induced by yielding
slippage only. The negative values of the stresses attributed from yielding ensure
that when yielding occurs, the singularity of crack tip could be slacking down, and
the crack propagation could also be effectively prevented. A drastic reduction of the
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corresponding stress concentration factor can be found near the crack tip. For
instance, the concentration factor is 5.07 at x = 0.02w for the crack without yielding
while the contribution of the yielding behavior reduces the concentration factor to
4.42. Although the superposed stress fields from solutions of Hilbert problem have
square root singularity, the present numerical results show that the degree of sin-
gularity at the crack tips due to the yielding slippage is in the weak singular form.

Next, we turn our attention to the stress redistribution induced by debonding
slippage. In this case, the slippage is assumed to be a weak plane that debonds and
slips. In contrast, the condition τ = 0 is enforced within the deboned zones of the
slippage. Herein, no frictional resistance is exerted across the debonded slippage.
The role of debonding slippage on stress redistribution ahead of the crack tip is seen
in Fig. 3, where the distribution of normal stress σyy(x, 0) is normalized by the
applied far field stress σ and the length of debonded slippage is d = 2.0w. It can be
seen that debonding clearly has a significant effect on lowering the power of the
stress concentration near the crack tip. The values of normal stress induced by a
debonding slippage are always negative, which means that the debonding could
reduce the stress concentration ahead of the crack tip, thus hinder the crack prop-
agation in anisotropic bodies, and reinforce the strength and toughness of materials.
The feature of debonding slippage to redistribute the normal stress near the crack tip
is similar as that for yielding slippage as shown in Fig. 2. It should be mentioned
that the present results are consistent with those by the present author’s FEM
simulation (see Figs. 10–13 in the paper by Liu and Tang [2]).

Although slippage in terms of yielding and debonding results in the same
conclusion that the stress redistribution is available and the concentration at the near
crack tip will be extremely decreasing and in turn enhances the loading carrying
capacity of the material, the magnitudes of the reduced stress concentrations are
quite different for the yielding and debonding slippage. Figure 4 displays a
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Fig. 3 Stress redistribution ahead of the crack tip for debonding slippage
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comparison of stress redistribution between yielding and debonding slippage at the
same length of slippage, that is d/w = 2.0. Wherein, τ = 0 is exerted for the
debonding slippage while σ/τ = 4.48 is enforced according to the condition KII = 0
for the yielding slippage. It can be seen that the stress reduction due to debonding is
more dramatic compared with that of yielding. For instance, the concentration stress
factor is 4.42 at x/w = 0.02 for the yielding while the factor is reduced to 2.96 for
the debonding although both values are smaller than the values of 5.07 for the crack
in the absence of slippage. It can be concluded that debonding appears to be more
effective in decreasing the stress concentration than yielding. Additionally, another
intriguing conclusion can be made is that the diminish effect of yielding or deb-
onding on the normal stress is obvious within a small range near the crack tip x/
w < 0.25 and otherwise the effect is slight. The normal stress ahead of the crack tip
is drastically reduced only when approaching the crack tip, as shown in Fig. 4.

5 Conclusions

An effective approach is provided for investigating the stress distribution in the
presence of a crack impinging upon the slippage in anisotropic body. The slippage
is assumed to occur in terms of yielding or debonding. Fundamental solutions are
explicitly derived according to the superposition method. The present work obtains
an analytical solution of the appendix fields with eliminating the tractions on the
crack faces due to any dislocation by solving the Riemann-Hilbert boundary
problem. Assuming a continuous distribution of dislocations which represent
slippage, a tension crack impinging upon the slippage in anisotropic body is studied
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Fig. 4 Comparison of stress redistribution ahead of the crack tip between yielding slippage and
debonding slippage
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and the influence of slippage including yielding and debonding on defeating cracks
is concluded. It can be found that yielding or debonding will blunt the crack and
alleviate the stress concentration at the crack tip. Numerical implementation also
shows that debonding has a more significant effect on lowering the stress con-
centration factor at the crack tip than yielding. Particularly, the present fundamental
solutions can be useful for analyzing the influence of characterization parameters
(e.g., friction or residual stress, slippage length, angle of main axes orientation in
anisotropy and so on) concerning the slippage on the fracture toughening in
materials. They will be discussed in the sequent work.

Acknowledge This work was supported by the National Natural Science Foundation of China
with grant No. 11472205, No.11202156, No. 11321062, No.11242015 and No.11172228 and the
Fundamental Research Funds for the Central Universities in China.

References

1. Lam KY, Cleary MP (1984) Slippage and re-initiation of (hydraulic) fractures at frictional
interfaces. Int J Numer Anal Met 8(6):589–600

2. Liu GY, Tang KL (2015) Study on stress concentration in notched cross-ply laminates under
tensile loading. J Compos Mater. doi:10.1177/0021998315573802

3. Folsom CA, Zok FW, Lange FF, Marshall DB (1992) Mechanical behavior of a laminar
ceramic/fiber-reinforced epoxy composite. J Am Ceram Soc 75(11):2969–2975

4. Aveston J, Cooper GA, Kelly A (1971) Single and multiple fracture, the properties of fiber
composites. In: Conference proceedings on properties of fiber composites. IPC Science and
Technology Press Ltd, National Physical Laboratory, Guildford, UK, pp 15–26

5. Budiansky B, Hutchinson JW (1986) Matrix fracture in fiber-reinforced ceramics. J Mech
Phys Solids 34(2):167–189

6. Chiang YC (2001) The influence of possion contraction on matrix cracking stress in fiber
reinforced ceramics. J Mater Sci 36(13):3239–3246

7. Dalgleish BJ, Trumble KP, Evans AG (1989) The strength and fracture of alumina bonded
with aluminum alloys. Acta Metall Mater 37(7):1923–1931

8. Chartier T, Merle D, Besson JL (1995) Laminar ceramic composites. J Eur Ceram Soc 15
(2):101–107

9. Gotsis PK, Chamis CC, Minnetyan L (2002) Application of progressive fracture analysis for
predicting failure envelopes and stress–strain behaviors of composite laminates: a comparison
with experimental results. Compos Sci Technol 62(12–13):1545–1559

10. Hutchinson JW, Suo Z (1991) Mixed mode cracking in layered materials. Adv Appl Mech
29:63–191

11. Beuth JL Jr (1992) Cracking of thin bonded films in residual tension. Int J Solids Struct 29
(13):1657–1675

12. Chan KS, He MY, Hutchinson JW (1993) Cracking and stress redistribution in ceramic
layered composites. Mater Sci Eng 167(1–2):57–64

13. Lekhnitskii SG, Tsai SW, Cheron T (1968) Anisotropic Plates. Gordon and Breach Science
Publishers, Philadelphia

14. Kortschot MT, Beaumont PWR (1990) Damage mechanics of composite materials: I—
measurements of damage and strength. Compos Sci Technol 39(4):289–301

15. Cook TS, Erdogan F (1972) Stresses in bonded materials with a crack perpendicular to the
interface. Int J Eng Sci 10(8):677–697

Crack-Tip Fields of a Crack Impinging … 317

http://dx.doi.org/10.1177/0021998315573802


16. Erdogan F, Biricikoglu V (1973) Two bonded half planes with a crack going through the
interface. Int J Eng Sci 11:745–766

17. He MY, Hutchinson JW (1989) Crack deflection at an interface between dissimilar elastic
materials. Int J Solids Struct 25(9):1053–1067

18. Seyoung I (1990) Asymptotic stress field around a crack normal to the ply-interface of an
anisotropic composite laminate. Int J Solids Struct 26(1):111–127

19. Hoenig A (1982) Near tip behavior of a crack in a plane anisotropic elastic body. Eng Fract
Mech 16:393–403

20. Ting TCT (1996) Anisotropic elasticity, theory and applications. Oxford University Press,
Oxford

21. Dollar A, Steif PS (1989) A tension crack impinging upon frictional interfaces. J Appl Mech
56(2):291–298

22. Lo KK (1978) Analysis of branched cracks. J Appl Mech 45(4):797
23. Muskhelishvili NL (1958) Some basic problems of mathematical theory of elasticity.

Noordhoff International Publishing, Leyden
24. England AM (1971) Complex variable methods in elasticity. Wiley Interscience, New York
25. Erdogan F, Gupta GD (1972) On the numerical solution of singular integral equations. Q Appl

Math 28(6):525–534
26. Erdelyi A, Bateman H (1953) Higher transcendental functions, vol 2. McGraw-Hill, New

York
27. Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8:100–104

318 Q. Li et al.



On Conservation Laws and Reciprocity
in Configurational Mechanics

R. Kienzler and S. Boettcher

Abstract Material conservation laws and associated path-independent integrals
play a prominent role in the assessment of defects in structures. Especially Rice’s J-
integral is widely used in fracture mechanics. For systems governed by a
Lagrangian, the usual tool for the derivation of material conservation laws is the
application of Noether’s first theorem in combination with Bessel-Hagen’s exten-
sion. The so-called Neutral-Action (NA) method is a different approach. Its
advantage in comparison with the classical Noether’s approach lies in the fact that it
is applicable to field equations that are not necessarily the Euler-Lagrange equations
of a variational principle, i.e., for systems not governed by a Lagrangian. After a
short review of the NA method, a complete set of characteristics and the associated
conserved currents are derived and interpreted in physical terms. As an example,
path-independent integrals are evaluated around a crack tip and a defect-interaction
problem is treated in terms of reciprocity. Finally, the application of conservation
laws in defect mechanics and its potential are discussed.

1 Introduction

The usual way to derive conservation laws in field theories is via Noether’s first
theorem [15], as long as the governing equations are the Euler-Lagrange equations
of a variational problem. This method is based on Lie’s theory of continuous groups
and invariance under group action in jet spaces [14]. Roughly speaking, the action
integral A under consideration, which is the integral of the Lagrangian L over the

R. Kienzler (&) � S. Boettcher
Bremen Institute for Mechanical Engineering (bime), University of Bremen,
Am Biologischen Garten 2, 28359 Bremen, Germany
e-mail: rkienzler@uni-bremen.de

S. Boettcher
e-mail: boettcher@mechanik.uni-bremen.de

© Springer International Publishing Switzerland 2016
G. Hütter and L. Zybell, Recent Trends in Fracture
and Damage Mechanics, DOI 10.1007/978-3-319-21467-2_14

319



domain B, is subjected to an infinitesimal transformation of both the independent
variables (e.g., xi) and the dependent variables (e.g., ui = ui(xj))

xi 7! x�i ¼ xi þ eniðxj; ukÞ;
ui 7! u�i ¼ ui þ e/iðxj; ukÞ:

ð1Þ

The single constant parameter e is supposed to be small in the sense that the
ensuing terms without e (which usually cancel each other) and linear in e be
retained, while terms with e2 and with higher powers will be omitted. Working
through the analysis (cf., e.g., [10]), it turns out that the change of the action integral
DA is given by

DA ¼ A� � A ¼ e
Z
B

Pi;i þ QjEjðLÞ
� �

dV : ð2Þ

An index followed by a comma denotes partial differentiation with respect to the
indicated independent variable and summation is implied over repeated indices;
here, the range of indices (3D-elasticity) is 1, 2, 3.

In [14], the quantities Pi and Qj are called currents and characteristics, respec-
tively, and are given for the setting we will discuss below by

Pi ¼ /j
@L
@uj;i

þ nj Ldij � uk;j
@L
@uk;i

� �
;

Qi ¼ /i � njui;j;

ð3Þ

and EjðLÞ are the Euler-Lagrange equations of the underlying variational problem.
Now, one seeks for transformations, which leave the action integral invariant,

i.e., DA ¼ 0. Then, along solutions ui of the Euler-Lagrange equations EjðLÞ ¼ 0,
the current Pi is conserved, and with the divergence theorem, we arrive at a con-
servation law

Z
B

Pi;idV ¼
Z
@B

PinidA ¼ 0 ð4Þ

giving rise to path-independent integrals (unit outward-normal vector ni).
If a Lagrangian function is not available, and the system is given only by some

set of partial differential equations

Diðxj; uk; uk;‘Þ ¼ 0; ð5Þ

the Neutral-Action (NA) method [7] might be used to advantage. Firstly, we need
the notion of a “null Lagrangian”. If a Lagrange function ~L is expressible as a
divergence of a vector-valued function giðxj; uk; uk;‘Þ then it follows [18]
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~L ¼ gi;i , Ejð~LÞ � 0 , d~A ¼ 0; ð6Þ

i.e., the action integral ~A ¼ R
~LdV is insensitive (or behaves neutral with respect) to

a (classical) variation d of only the dependent variables ui, and we arrive at a
so-called trivial variational principle, which is valid independent of whether uk are
solutions of the governing differential equations or not.

Now, instead of the characteristics Qi being specified by the transformation
functions nj and /i (cf. (3b)), we determine Qi, employing the symbol �fi instead
(in order to avoid confusion), such that the product fiDi forms a null Lagrangian

fiDi ¼ Pi;i: ð7Þ

The functions fi, therefore, have to be determined from

EjðfiDiÞ ¼ 0: ð8Þ

As soon as suitable characteristics fi are found from (8), the conserved currents
Pi follow from (7), and due to (5), conservation laws in the form (4) are established.

It may be mentioned that the NA method to construct conservation laws might
be applied also to systems possessing a Lagrangian. In that case, it leads to the same
result as long as an unrestricted version of Noether’s theorem [16] is employed
together with the Bessel-Hagen extension [2].

2 Conservation Laws of Linear Elasticity

We adopt the Navier-Lamé equations for a three-dimensional body made of a
homogeneous isotropic material (Lamé constants k and l) in the absence of body
forces

Di ¼ lui;jj þ ðkþ lÞuj;ji ¼ 0 ð9Þ

(cf., e.g., [23]). We restrict the characteristics fi to depend on the independent
variables xi, the dependent variables, i.e., the displacements uk and the displacement
gradients u‘;m

fi ¼ fiðxj; uk; u‘;mÞ: ð10Þ

Application of the Neutral-Action method leads to equations to determine fk as

EkðfiDiÞ � 0 ) lfk;jj þ ðkþ lÞfj;jk: ð11Þ

It turns out that the fk are governed by the same differential equations as the
displacements ui (9) are, which is not surprising since the Navier-Lamé operator (9)
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is self-adjoint. If we consider two boundary-value problems {1} and {2} for the
same body B with the solutions

ui ¼ ui
f1g

; fi ¼ ui
f2g

; ð12Þ

then from (7), Betti-Maxwell’s reciprocity relations in physical space are recovered
as

Z
@B

rji
f1g

nj ui
f2g

dA ¼
Z
@B

rji
f2g

nj ui
f1g

dA
ð13Þ

(cf. [10]) with the Cauchy stress tensors rji
f1g

and rji
f2g

of problem {1} and {2},
respectively. A corresponding reciprocity relation in material space will be dis-
cussed in Sect. 4.

In order to reach further conclusions, the characteristics (10) are inserted into
(11) and the differentiations have to be carried out in detail. We arrive at equations
involving second- and third-order derivatives of the displacement fields. Since the
characteristics fi depend on derivatives up to the first order only, the coefficients of
higher derivatives have to vanish. The results indicate (cf. [12, 13]) that fi are linear
in the displacements and the displacement gradients

fi ¼ f 1imnðxjÞum;n þ f 2imðxjÞum þ f 3i ðxjÞ: ð14Þ

Preceding further along this line of reasoning, the functional dependence of fi
can further be restricted to

f 1ijk ¼ aðx‘Þeijk þ bkðx‘Þdij þ cmðx‘Þ ðkþ 2lÞdjkdim þ ldikdjm
� � ð15Þ

The scalar- and vector-valued quantities a and bk, cm, respectively, are functions
of the independent variable x‘ and will be further restricted by comparing equal
coefficients of terms involving different orders of derivatives of ui (dij and eijk are
the Kronecker symbol and the permutation tensor, respectively).

The conservation laws resulting from a ðx‘Þ will be dealt with elsewhere and will
not be considered further in what follows. We also discharge the quantities f 3i ðxjÞ.
They lead to physical conservation laws, which have been thoroughly discussed in
[12]. Considering, for the moment, only the bk-term, Eq. (14) reads as follows

fi ¼ bkðx‘Þui;k þ f 2ikuk: ð16Þ

322 R. Kienzler and S. Boettcher



Comparing (16) with (3b) ðfi ¼ �QiÞ we can identify

nkðx‘; umÞ ¼ bkðx‘Þ;
/iðx‘; umÞ ¼ �f 2ikðx‘Þuk;

ð17Þ

i.e., bk describe material transformations (see (1)). From the one-dimensional theory
of elasticity, i.e., tension and compression of bars, we know (cf. [10]) that these
functions involve constant linear and quadratic terms in x‘. Guided by this
knowledge, we investigate the functional dependence of bk ¼ bkðx‘Þ further, and it
can be shown (cf. [12]) that the characteristic (14) has the following appearance

f 1ijk ¼ dijbk

¼ dij bð0Þk þ enmkxmb
ð1Þ
n þ xkbþ ð2xkxm � dkmxnxnÞbð2Þm

� 	

f 2ij ¼ eijkb
ð1Þ
k þ n� 2

2
dijbþ ðn� 2Þdijxmbð2Þm :

ð18Þ

The integer n designates the dimensionality of the problem, whether we treat a
three-dimensional (n = 3), a two-dimensional (plane strain, n = 2) or a
one-dimensional (tension and compression of a bar, n = 1) body.

The terms bð0Þk ; bð1Þn ; bð2Þm and b are vector-valued and scalar-valued constants,
respectively.

Before we precede to the corresponding conservation laws, let us interpret the

material translations in geometrical terms. Obviously, bð0Þk describe material
translations (see Fig. 1a)

xk 7! x�k ¼ xk þ ebð0Þk ;

uk 7! u�k ¼ uk:
ð19Þ

For reasons of clarity we sketch the transformations in the (x1, x2)-plane only

ðbð0Þ3 ¼ 0Þ.
Obviously again, bð1Þn describe material rotations

xk 7! x�k ¼ xk þ e enmkxmb
ð1Þ
n ;

uk 7! u�k ¼ uk þ e enmkumb
ð1Þ
n

ð20Þ

whilst the displacement field is co-rotated. In the (x1, x2)-plane, b
ð1Þ
n has only one

possible component bð1Þ3 ¼ x, see Fig. 1b.
The constant b describes scaling (see Fig. 1c)
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xk 7! x�k ¼ xk þ ebxk;

uk 7! u�k ¼ uk þ e
n� 2
2

buk:
ð21Þ

Due to this transformation the body under consideration is expanded (or shrunk)
self-similarly and translated. The corresponding displacement transformation
depends on the dimension of the problem. For plane strain (n = 2), uk is not
changed.

The transformation described by bð2Þm is rather strange. If we introduce the length

of the vector~x ¼ xi~ei by ~xj j ¼ ðxnxnÞ1=2 and introduce unit vectors by nk ¼ xk=~xj j,
the transformation reads as

xk 7! x�k ¼ xk þ e~xj j2ð2nknm � dkmÞbð2Þm ;

uk 7! u�k ¼ uk þ eðn� 2Þukxmbð2Þm :
ð22Þ

The matrix Wkm ¼ 2nknm � dkm is proper orthogonal

W�1 ¼ WT ; detW ¼ þ1; ð23Þ

2x

1x

x
x

2x

1x

(0)

(a)

(c) (d)

2x

1x

(2)

(b)
2x

1x



Fig. 1 Material transformations: a translation, b rotation, c scaling, d inversion
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and rotates the vector ~bð2Þ ¼ bð2Þm ~em around the position vector~x by an angle of p
(cf. [19, 20, 22]). In addition, the vector is scaled by ~xj j2. This transformation is

called “inversion” (cf. [17]). Figure 1d shows a qualitative sketch for bð2Þ1 ¼ 1 and

bð2Þ2 ¼ 3 in the (x1, x2) plane.

The four transformations bð0Þj , bð1Þn , b and bð2Þm lead to the four conservation and
balance laws [12], respectively

Translation bð0Þj 6¼ 0 : bij;i ¼ Wdij � rikuk;j
� �

;i¼ 0;

Rotation bð1Þn 6¼ 0 : enkj xkbij þ ukrij
� �

;i¼ 0;

Scaling b 6¼ 0 : xjbij þ 2�n
2 ujrij

� �
;i¼ 0;

Inversion
bð2Þm 6¼ 0 : ð2xmxk � x‘x‘dmkÞbik½

þ 2xkum þ ð2� nÞxmuk � 2x‘u‘dmkð Þrik
þnl umui þ 1

2

�
u‘u‘dmi

��
;i¼ nkþ ð4þ nÞlð Þu‘;‘um:

ð24Þ

The term bij is the well-known Eshelby tensor involving the strain-energy
density W. On integration over the volume V of a body B and application of the
divergence theorem, Eq. (24a) gives rise to Rice’s J-integral [21], which describes
the energy-release rate due to the translation of a material inhomogeneity within the
body. In a similar way, (24b, c) resemble the L- and M-integrals introduced in [3],
but discussed much earlier in [5]. The integrals L and M indicate the energy-release
rates due to a rotation and self-similar expansion of the inhomogeneity,
respectively.

Inversion does not give rise to a conservation law but rather a (more or less)
trivial balance law. The right-hand side of (24d) vanishes either under the
unphysical condition (n = 3): 3kþ 7l ¼ 0, i.e., Poisson’s ratio v = 7/8 or for the
special case of an isochoric deformation, i.e., uk;k ¼ 0. In the one-dimensional case
we have

n ¼ 1

xk ! x1 ¼ x;

ui ! u1 ¼ u;

ui;j ! u1;1 ¼ u0;

l ! E
2
; k ! 0

ð25Þ

(Young’s modulus E), and the right-hand side of (24d) becomes

nkþ ð4þ nÞlð Þu‘;‘um ! 5
2
Eu0u ¼ 5

4
Eðu2Þ0 ð26Þ
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which is a “one-dimensional divergence” and as such can be combined with the
divergence on the left-hand side, leading to a conservation law which coincides
with that given in [10].

We turn back now to Eq. (15) and realize that, first of all, the transformations
involving cmðx‘Þ follow from Noether’s theorem only, if we admit an unrestricted
or extended form of the transformation (1) as [18]

xi 7! x�i ¼ xi þ eaijnjðxk; u‘Þ;
u�i 7! u�i ¼ ui þ ebij/jðxk; u‘Þ

ð27Þ

(aij, bij = const.). Secondly, the transformation coefficients cm are scaled with the
material constants k and l of the elastic body under consideration. Finally, the
transformations ck leading to conservation or balance laws have a similar form as
the transformations bk have, cf. (18), and so have the governing conservation laws
(cf. [12])

Translation cð0Þi 6¼ 0 : cji;j ¼ 0;

Rotation
cð1Þi 6¼ 0 : eik‘ ðkþ lÞxkcj‘ þ lðkþ 3lÞukrj‘

�
þ2l3uk um;mdj‘ � um;‘djm

� ��
;j¼ 0;

Scaling
c 6¼ 0 : xicji þ lui rij þ lðuk;kdij � uj;iÞ

� ��
þl2 ujui;i � uiuj;i

� ��
;j¼ 1

2 nkþ ðnþ 4Þlð Þðkþ 2lÞui;iuj;j
ð28Þ

Inversion cð2Þ‘ ¼ 0 : xkx‘ � 1
2
xnxndk‘

� �
cmk




þ lðxku‘ � x‘uk � xnundk‘Þrmk
þ 2l2ðxmuk;ku‘ þ x‘uk;muk � xnuk;kundm‘Þ þ 2lðkþ lÞx‘uk;kum
þ 2l2ðkþ 2lÞ

kþ l
umu‘ þ 2l3

kþ l
xkðuk;mu‘ � u‘;mukÞ

�
;m

¼ ðnkþ ðnþ 4ÞlÞðkþ 2lÞuk;k 1
2
x‘um;m þ l

kþ l
u‘


 �
:

with f 1ijk and f 2ij given in this case as

f 1ijk ¼ cm ðkþ 2lÞdjkdim þ ldikdjm
� �

cm ¼ c0m þ eknmxnc
1
k þ xmcþ xmx‘ � 1

2
xnxndm‘

� �
c2‘

f 2ij ¼
lðkþ 3lÞ
ðkþ lÞ eijkc

1
k þ l

n� 2
2

dijcþ l
n� 2
2

dijxmc
2
m

ð29Þ
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(Note that some minor flaws have been corrected and some terms have been
specified in comparison to [13]).

The tensor cij is given in displacement gradients as

cij ¼ 1
2
ðkþ 2lÞðkþ lÞuk;ku‘;‘dij þ l2uj;kðuk;i � ui;kÞ

þ lðkþ 2lÞuk;kuj;i
ð30Þ

and coincides with Qij in Olver’s paper [17]. It will be applied to a crack in the next
paragraph. Rotation leads again to a conservation law (28b), whilst scaling (28c)
and inversion (28d) yield rather balance laws, the right-hand side being proportional
to the same factor 3kþ 7l discussed above.

3 Application in Fracture Mechanics

For later use, we modify the tensor cij (30) by a linear combination with bij (24a)
and a trivial conservation law tij, i.e., a conservation law which is satisfied inde-
pendently of whether or not the displacement field ui satisfies the Navier-Lamé
equations (9)

tij ¼ ei‘nejkmuk;‘um;n;

tij;i � 0:
ð31Þ

The resulting tensor is called dij and is defined as

dij ¼ kþ l
2ðkþ 2lÞ bij þ 1

l
cij þ ltij

� �
: ð32Þ

This tensor has been derived in a different way in [8]. Replacing the Lamé
constants k and l by Young’s modulus E and Poisson’s ratio v via

k ¼ Em
ð1þ mÞð1� 2mÞ ; l ¼ E

2ð1þ mÞ ð33Þ

and writing bij and dij in terms of displacement gradients

On Conservation Laws and Reciprocity in Configurational Mechanics 327



bij ¼ E
4ð1þ mÞð1� 2mÞ dij 2mu‘;‘um;m þ ð1� 2mÞu‘;mðu‘;m þ um;‘Þ

� ��
�2 2mu‘;‘ui;j þ ð1� 2mÞu‘;jðu‘;i þ ui;‘Þ

�� 
;

dij ¼ E
4ð1þ mÞð1� 2mÞ

1
2
dij

2ð1� mÞ
1� 2m



u‘;‘um;m þ 1� 2m

2ð1� mÞ u‘;mðu‘;m � um;‘Þ
��

� u‘;‘ðui;j � uj;iÞ þ 1� 2m
2ð1� mÞ ðui;‘ � u‘;iÞðuj;‘ � u‘;jÞ


 ��
;

ð34Þ

it turns out that bij and dij have quite a similar appearance.
The Eshelby tensor bij serves as integrand of Rice’s J-integral as

Ji ¼
Z
@B

bjinjdA : ð35Þ

Accordingly, we introduce an N-integral in which dij serves as integrand

Ni ¼
Z
@B

djinjdA : ð36Þ

In plane fracture mechanics, the J-integral is used to calculate stress-intensity
factors KI and KII (cf., e.g., [4]). On evaluating both integrals along a path C within
the near-crack-tip field around a crack tip under mixed-mode-loading conditions in
plane elasticity (see Fig. 2) it turns out that the following relations hold

J1 ¼ K2
I þK2

II
E� ; N1 ¼ K2

I �K2
II

E� ;

J2 ¼ � 2KIKII
E� ; N2 ¼ � 2KIKII

E� ;
ð37Þ

ds

1x

2x



Fig. 2 Integration path C in
the vicinity of a crack tip
under mixed-mode-loading
conditions in plane elasticity

328 R. Kienzler and S. Boettcher



with

E� ¼ E for plane stress,
E

1�m2 for plane strain:

�
ð38Þ

As discussed in [13], linear combinations of J1 and N1 provide favorable tools to
calculate KI and KII separately

KI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�

2
ðJ1 þ N1Þ

r
;

KII ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�

2
ðJ1 � N1Þ

r
:

Also, advantages in the numerical implementation and the obtained accuracy are
reported.

4 Material Reciprocity Relations

Reciprocity relations play an important role in various branches of applied
mechanics. Let us return to the physical Betti-Maxwell-reciprocity relation, i.e.,
reciprocity in Newtonian mechanics, of the second paragraph (see (13)) and let us
consider a specific situation depicted in Fig. 3a.

Let~u12 be the change of the displacement of point ➀ due to the application of a
point force ~F2 at point ➁ and~u21 the change of the displacement of point ➁ due to
the application of a force ~F1 at point ➀. Betti-Maxwell’s reciprocity relation states
(cf. e.g., [1])

21u

F2

2
12u

F1

1
B12

1

1

B21

2

2

(a) (b)

Fig. 3 a Two forces ~F1 and ~F2 acting on an elastic body, b two defects displaced within the
elastic body by ~k1 and ~k2
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~F1 �~u12 ¼ ~F2 �~u21: ð39Þ

Eshelbian mechanics deals with motions (material translations, or more general,
configurational changes) of defects or inhomogeneities within the material. Physical
forces have their counterpart as material forces (configurational forces), which are
defined as negative gradients of the total energy with respect to the position of a
defect. In a recent paper [6], material reciprocity relations, i.e., reciprocity relations
in Eshelbian mechanics have been established. It turns out that in material space,
the material displacement of a defect plays the role of physical force application. In
physical space, work is done by the applied physical force (cause) in a physical
displacement (effect), whereas in material space work is done by the material force
(effect) in the applied material displacement (cause).

Let ~B12 be the change of the material force acting at defect ➀ due to the material

translation~k2 of defect ➁ and~B21 the change of the material force acting at defect ➁

due to the material translation~k1 of defect ➀ (cf. Fig. 3b), the material reciprocity
theorem states

~k1 �~B12 ¼~k2 �~B21: ð40Þ

Equations (39) and (40) imply linear dependencies of relevant quantities. They
are based on the result that the energy stored in an elastic body after the application
of two physical forces (in Newtonian mechanics) or two material displacements
(Eshelbian mechanics) is independent of their sequel of application, and equals the
external work exerted on the body.

As an example of application let us consider a defect configuration in plane
elastostatics consisting of an edge dislocation at the origin of a Cartesian coordinate
system (x1, x2) with component b of the Burgers vector in x2-direction, and a
circular hole of radius r0 positioned at ðn1; n2Þ; i.e., at distance
d d[ r0; d ¼ d=r0 [ 1ð Þ from the origin under the angle u measured form the x1-
axis, as depicted in Fig. 4a.

The change of the energy due to a material translation k1 in x1-direction, k2 in x2-
direction, a material rotation x with respect to the x3-axis and a self-similar
expansion of the hole ðr0 ! ar0Þ are calculated by means of J1-, J2-, L- and M-
integrals, respectively, using (24a–c) as integrands. The configurational changes are
sketched in Fig. 4b. Choosing for L as point of reference the origin of the coordinate
system and for M the center of the hole, the integrals can readily be evaluated as (cf.
[10, 11])
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J1 ¼ �E�b2 cosu
4pr0d

3

1

d2 � 1
þ 1þ 2 sin2 u

� �
;

J2 ¼ �E�b2 sinu
4pr0d

3

1

d2 � 1
þ 2 sin2 u

� �
;

L ¼ �E�b2 sinu cosu

4pd2
;

M ¼ þE�b2

4pd2
1

d2 � 1
þ 1þ sin2 u

� �

ð41Þ

with E� given in (38). As in physical space, free body diagrams can be sketched in
material space as shown in Fig. 4c. The change of the integrals due to changes of
the material transformations Dk1;Dk2;Dx;Da can also be evaluated in closed form
[9] and the following material reciprocity relations can be established

0r

b
1x

2x

2ξ

1ξ

d
ϕ

L

1x

2x

2ξ

1ξ

1
HJ

2
HJ

M

1
DJ

2
DJ

0r

1x

2x

2ξ

1ξ

d
ϕ 1λ

2λ

ω
0r

0rα

(a) (b)

(c) (d)

0σ

0σ

JJ+Δ

0rα

Fig. 4 a Circular hole and edge dislocation, b configurational changes, c free-body diagram,
d crack in damaged configuration

On Conservation Laws and Reciprocity in Configurational Mechanics 331



k2Dk1ðJ2Þ ¼ k1Dk2ðJ1Þ;
�xDk1ðLÞ ¼ k1ðDxðJ1Þ þ xJ2Þ;
�xDk2ðLÞ ¼ k2ðDxðJ2Þ þ xJ1Þ;
k1DaðJ1Þ ¼ ða� 1ÞDk1ðMÞ;
k2DaðJ2Þ ¼ ða� 1ÞDk2ðMÞ;
�xDaðLÞ ¼ ða� 1ÞDxðMÞ:

ð42Þ

As an example of the usefulness of the reciprocity relations given above let us
consider a crack surrounded by damaged material characterized by various holes of
different radii (n-holes) as depicted in Fig. 4d.

Assume that we would be interested in the change of the J1-integral at the crack
tip (defect 1) due to self-similar growth ai of each void i (defect i) individually. We
would thus have to calculate DaiðJ1Þ. For this purpose, we would have to evaluate
the original configuration first and, additionally, construct for each void a new
finite-element (FE) mesh with an extended radius ri 7! airi, perform the FE cal-
culations and calculate the change in J1 each time (n + 1 calculations). Instead, by
using the reciprocity relation (42d), we translate the crack tip by an amount k1 and
calculate the change in M of void i, Dk1ðMiÞ, due to this translation, and we have

DaiðJ1Þ ¼ ai � 1
k1

Dk1ðMiÞ: ð43Þ

Note that the change of J1 due to the growth of any void is obtainable from only
one remesh (overall, 2 calculations). In this way, it is straight forward to construct
influence surfaces for the J-integral to assess the risk of voids in the neighborhood
of a crack. Of course, the voids may have different forms, they could also be cracks.

5 Conclusion

In continuum defect mechanics, instead of localized defects, we have to deal with
defect densities giving rise to material body forces. The conservation laws thus
change to balance laws and new failure criteria have to be established, presumably
based on components of the Eshelby tensor or equivalent material stresses. As it has
been shown, the material balance and conservation laws are by far not completely
investigated and the reciprocity relations may be successfully applied to continu-
ously damaged materials. The generalization to continuously distributed defects,
i.e., material forces per unit of volume, and material translations fields ki ¼ kiðxjÞ
would result in reciprocity relations involving surface-and volume-integral
expressions with probably useful and far reaching applications. Along this line of
reasoning, a material boundary-element method could be established.
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Part VI
Local Approach to Fracture



A Model for Predicting Fracture
Toughness and Scatter in Thermally
Embrittled Steels

A. Pineau and A. Andrieu

Abstract Temper embrittlement in a thick plate of a Mn-Ni-Mo pressure vessel
steel was investigated using fracture toughness tests on Charpy and CT type
specimens. A shift of the ductile-to-brittle transition temperature (*30–40 °C) was
measured when the material was aged at 450 °C for 5000 h. Moreover an unusual
scatter in fracture toughness tests was determined on aged material, such as
KICðPR ¼ 90%Þ=KICðPR ¼ 10%Þ� 5, where PR is the probability of failure.
Scanning electron micrographs (SEM) indicated that the fracture surface was partly
intergranular along micro-segregated zones (MSZ). This observation was made
both on the initial and the aged conditions. Intergranular facets were largely covered
by phosphorus segregation. A fully predictive model involving a combination of a
local approach to fracture based on Beremin theory and accounting for MSZ dis-
tribution, and on the modelling of segregation kinetics in ternary (Fe-C-P) systems
is developed to analyze these results. This model predicts the scatter in fracture
toughness measurements and the shift in DBT. Moreover the statistical distribution
of MSZ leads to a size effect in fracture toughness measurements which is different
from the K4B law inferred from the Beremin model applied to a homogeneous
material.
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1 Introduction

Heavy components of Pressurized Water Reactors (PWR) are made of low alloy
Mn-Ni-Mo steels (A508, A533) used in the quenched and tempered conditions.
Most of the French shells used to fabricate pressurizers and steam generators in
nuclear industry were manufactured before 1993 using rolled and welded plates.
This manufacturing process generates characteristic microstructures composed of
thin strips of micro-segregated material (MSZ) surrounded by base material (BM),
i.e. having a chemical composition, close to that of the selected steel. Once these
components are welded together a Post Weld Heat Treatment (*615 °C few hours
cooling rate ≤50 °C/h) is applied both to relax residual stresses introduced during
the welding operations and to temper the fresh martensite or bainite microstructures
located in the heat affected zone of the welds (HAZ). These Mn-Ni-Mo steels are
relatively sensitive to thermal aging which produces a shift of the ductile-to-brittle
transition temperature (DBTT) after long term exposure at high temperature
(*300–550 °C). This shift is due to temper embrittlement and is linked to the local
material chemical composition and in particular to the content in residual impurities
such as phosphorus (see e.g. [1, 3, 5]). Druce and his co-workers [8, 9] have
modelled intergranular segregation of phosphorus using McLean’s approach to
equilibrium segregation [18]. These authors have also proposed a simple equation
relating the shift of the DBTT measured at an energy of 80 J to the amount of
phosphorus segregated at grain boundaries. The first expression proposed in 1986
[8] was:

DTK80 J ¼ 1300� ðCP
gb � 0:065Þ ð1Þ

where CP
gb is the P/Fe peak height ratio (PHR) measured on Auger spectra. In the

following, the same definition for CP
gb was adopted. This relation (Eq. 1) was

revised later in 1988 by Druce et al. [9] from further measurements on real HAZ
made of A533B steel.

DTK80 J ¼ 1080� ðCP
gb � 0:065Þ ð2Þ

These expressions in which 0.065 represents the initial concentration in P at
grain boundaries, are drawn in Fig. 1. Joly et al. [15] showed that the application of
these empirical relations to the AREVA aging program which included HAZ, base
metal (BM) of 18MND5 (French equivalent to A533B) and the welded metal leads
to a large over-estimate of the embrittlement compared to the shift measured
experimentally. The results are illustrated in Fig. 1 where the observed DBTT shift
corresponding to 68 J is compared to the shift at 80 J predicted from Eqs. 1 and 2.
This observation can be attributed to the fact that another chemical element such as
carbon has to be considered when calculating the kinetics of segregation.
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The aims of the present study were the following:

1. Determine experimentally the shift of the DBTT after aging a material repre-
sentative of the fabrication of pressurizers. It is well to remember that these
components work at relatively high temperature (320–340 °C), as compared to
the PWR core shell.

2. Investigate to what extent the shift in DBTT is correlated with a modification in
the fracture modes, from cleavage to intergranular.

3. Improve the modelling of the existing kinetics of impurity segregation at grain
boundaries, in particular the models introduced by Druce [8, 9, 12] and
McLean [18].

4. Model the variation of fracture toughness with temperature and aging
conditions.

5. Investigate the scatter in fracture toughness in relation with the MSZ
distribution.

The present article is organized as follows. In Sect. 2 the experimental proce-
dures are briefly introduced. Experimental data are presented in Sect. 3 which
includes results of mechanical testing, fractography and Auger spectrometry.
Section 4 is devoted to the modelling of impurity segregation kinetics and its link
with fracture toughness evolution.

Fig. 1 DBTT shift induced by thermal aging on base metals, heat affected zones and welds of
18MND5 grade steel. Comparison of experimental results with embrittlement models. The symbol
black down pointing triangle represents the DBTT shift measured on the 18MND5 base metal
used in this study and aged during 5000 h at 450 °C
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2 Material and Experimental Procedures

The composition of the investigated steel is (in weight %): C = 0.192, Mn = 1.44,
Ni = 0.083, Mo = 0.473, Cr = 0.194, Si = 0.249, S = 0.0053, P = 0.010. This
material was received as a thick plate (100 mm) produced for simulating welding
operations. This composition is very close to the plates used in the past fabrication
of pressurized vessels. The material was given the conventional heat-treatment (8 h
at 615 °C followed by air cooling at 30 °C/h). The prior austenite grain size was
between 0 and 30 µm and the bainitic packet size of 10–15 µm. The yield strength
determined at room temperature was 490 MPa. The macrostructure of the material
is shown in Fig. 2. Segregated zones aligned along the rolling direction (L) and
spaced of about 2 mm in the short-transverse (ST) direction are observed. These
inhomogeneities result from the micro-segregations of alloying elements and
impurities during solidification. Micro-segregated zones (MSZ) are deformed and
aligned by the rolling process. These zones are much harder than the matrix
(*350 HV instead of *210 HV) (Fig. 2). Micro-segregated zones are enriched in
all alloying elements (C, Mn, Mo, Si) and in P as revealed by microprobe analysis
(Fig. 2). The surface fraction covered by these MSZ is about 10 %. Quantitative
image analysis was used to determine the dimension and the shape of these seg-
regated zones [2]: mean size in a plane TL was 350 × 750 µm2.

Conventional Charpy specimens (TL orientation) were tested to determine the
DBTT curve. Standard CT specimens (thickness, B = 20 mm, orientation TL) were
also used to investigate the effect of thermal aging (450 °C, 5000 h in the present
study) on the fracture toughness. SEM and Auger spectrometry were used to
examine the fracture surfaces and to measure the amount of phosphorus and carbon

Fig. 2 Measurement of the bulk content in C, P and Mo while crossing a micro-segregated zone
(MSZ) and microhardness measurements
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segregated along the grain boundaries. An Auger apparatus (JEOL JAMP 9500F)
equipped with a cooling and in situ fracture device working at liquid nitrogen
temperature was used to break specimens before performing measurements of
intergranular segregation on fresh fracture surfaces.

Most of the observations were made with the following electron gun conditions:
20 keV/10 nA or 5 keV/1–3 nA. It was confirmed that the fractured grain
boundaries contained a coverage in phosphorus of at least 10 %. This means that
such level of segregation is necessary to be reached for triggering intergranular
fracture, as already published by Naudin [21] and confirmed by Ding et al. [7].

SEM observations of fracture surfaces were made using either a LEO micro-
scope equipped with a EDX analysis or an Hitachi apparatus equipped with an
EBSD camera. Quantitative stereography was used to measure the tilt (ϕ) and the
twist (ψ) angles between two adjacent grains (For further details, see [2, 22]).

3 Results

3.1 Mechanical Tests

The variation of the yield strength (r0:2ðTÞ) measured at a strain rate of about
0.0005 s−1 is shown in Fig. 3. These results were fitted with the Lean’s law [17].

1
r0:2ðTÞ ¼

1
rð0KÞ þ BT ð3Þ

where T (in K) is the temperature and rð0KÞ ¼ 1043MPa,
B = 3.57 × 10−6 MPa−1 K−1.

Fig. 3 Evolution of the yield
strength as a function of
temperature for the base metal
—experimental measurements
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The results obtained on Charpy specimens tested in the initial condition after
stress relieving heat-treatment (TTDS) and after aging (450–5000 h) are reported in
Fig. 4. A shift of the DBTT by about 40 °C measured at an energy of 41 J appears
in this figure when comparing the as-received and the aged material. Similarly the
fracture toughness determined on CT20 is lowered by aging (Fig. 5). The temper-
ature T0, estimated according to ASTM E1921 [4], is shifted from −124 °C in the
as-received condition to −91 °C in the aged condition. Figure 5 shows that the
ASTM E 1921 master curve [4] is unable to account for the scatter observed in the
aged condition.

Fig. 4 Charpy impact tests
results obtained on 18MND5
grade steel in the as-received
condition and after aging at
450 °C for 5000 h

Fig. 5 Fracture toughness
results obtained on 18MND5
grade steel in the as-received
condition and after ageing at
450 °C for 5000 h. For both
conditions ASTM E1921
master curve [4] is plotted
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3.2 Fractography

The fracture surfaces of the material tested in the as-received condition are mainly
covered by cleavage facets (Fig. 6). However inclusions identified as MnS particles
aligned along the rolling direction are surrounded by intergranular fracture. Figure 6
was taken on a as-received condition specimen tested at −80 °C ðKJC ¼ 204MPaffiffiffiffi
m

p Þ. Inclusions are located within the MSZ evidenced in Fig. 2. This observation is
similar to previous results obtained on another PWR material (see Fig. 1 in [1]).

Examples of the fracture surfaces of the aged material are given in Fig. 7.
Figure 7a, b were taken on an aged specimen tested at −80 °C ðKJC ¼ 159MPa

ffiffiffiffi
m

p Þ.
In the embrittled condition the fracture surfaces remain mixed: partly cleavage in the
‘matrix’ and partly intergranular along the initial segregated zones. It is noted that
the cavities initiated from MnS inclusions are much smaller in the aged condition
compared to the as-received condition. This suggests that the grain boundaries in the
MSZ are much more brittle in the embrittled condition, as expected, due to P
enrichment in the segregated zones. It should be emphasized that in this specific case
the shift of the DBTT cannot be attributed to a transition in fracture modes between
cleavage and intergranular since the ratio of intergranular/cleavage fracture is very
similar in the as-received and in the aged material. Moreover these observations
suggest that the shift in DBTT might be related to the segregation of impurities in
MSZ during the aging treatment at 450 °C.

3.3 Auger Spectroscopy

Figure 8 shows an example of an Auger spectrum obtained on a specimen. This
spectrum clearly shows the presence of phosphorus and carbon. The peak height
ratio of these elements compared to that of Fe703 was used to calculate the amount

Fig. 6 Characteristic fracture
surface observed on a
compact tensile specimens,
made of 18MND5 grade steel,
tested at low temperature and
in the as received condition.
Arrows indicate intergranular,
cleavage and MnS particles
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of impurities segregated on the grain boundaries. Guttmann et al. [11] and Erhart
and Grabke [10], showed that C can modify the kinetics of the segregation of P on
grain boundaries because these elements segregate on the same sites. Moreover,
following the classification established by Hondros and Seah [13], carbon and
phosphorus have an antagonistic effect: phosphorus decreases the cohesion of grain
boundaries while carbon reinforces them. See also Rice and Wang [25] for the
embrittlement of grain boundaries by solute segregation.

Fig. 7 a Characteristic
fracture surfaces observed on
a compact tensile specimens,
made of 18MND5 grade steel,
tested at low temperature and
after aging 5000 h at 450 °C.
b Enlargement of a, arrows
indicate intergranular,
cleavage and MnS particles
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4 Modelling

This part begins with the prediction of phosphorus (and carbon) intergranular
segregation before dealing with a model for the prediction of the fracture toughness
in inhomogeneous tempered embrittled materials. These predictions are compared
to experimental results. Then the influence of grain boundary segregation on
fracture toughness is discussed.

4.1 Intergranular Segregation

The Mc Lean theory [18] was developed to predict the equilibrium segregation of
impurities along grain boundaries. According to this theory the concentration of
phosphorus segregated on grain boundaries, CP

gb depends on: the concentration of
phosphorus in the bulk, C1, the time, t, and the temperature of ageing. The kinetics
of enrichment of grain boundaries in phosphorus is expressed as:

CP
gbðtÞ ¼ CP

gbðt ! 1Þ � C1ða2 � a1Þ exp 4Dt

a22d
2

 !
erfc

2
ffiffiffiffiffi
Dt

p

a2d

� �
ð4Þ

with CP
gbðt ! 1Þ given by the Langmuir[16]–McLean [18] equilibrium model:

CP
gbðt ! 1Þ ¼

C1 exp
DG0

P
RT

� �
1þ C1 exp

DG0
P

RT

� � ð5Þ

(a) (b)

Fig. 8 a Points analysed by probe tracking to determine grain boundary segregation. b Example
of derivative spectrum used to calculate the P/Fe and C/Fe peak height ratios
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The free energy of segregation, DG0, and the diffusion coefficients, D, were
determined from measurements of P segregated at grain boundaries by Druce et al.
[8]. In Eqs. 4 and 5 R is the gas constant, δ the ‘thickness’ of the grain boundaries
arbitrarily chosen as equal to 3 × 10−8 cm by McLean [18], α1 is the ratio between
the initial concentration in P at grain boundaries (i.e. prior to aging and resulting
from the stress relieving heat-treatment) divided by the P bulk content in the MSZ
and α2 is the ratio between the concentration of P at grain boundaries at any time
during the aging treatment divided by the concentration of P in the bulk of the
MSZ. After having performed many aging heat treatments on a simulated HAZ in
A533 steel, Druce et al. [8] have proposed to relate the concentration in Phosphorus
with the shift in DBTT using Eqs. 1 and 2. This theory does not take into account
the interaction between P and C. Guttmann and al. [11] and more recently Nakata
et al. [20], among others, have highlighted the competition between these two
elements. To describe the kinetics of segregation in the ternary {Fe, C, P} system
the theory developed by Guttmann et al. [11], was used in the present study.
Preliminary results were presented elsewhere [3]. In this theory, the {Fe, C, P}
system is no longer considered as ideal and the free energy of segregation of P and
C is described by the two following coupled equations:

DGC ¼ DG0
C � 2aCCC

gb
C þ aCPC

gb
P

DGP ¼ DG0
P � 2aPPC

gb
P þ aCPC

gb
C

ð6Þ

where the coefficients αij account for the modification of the free energy created by
the interaction between the element i and the element j at grain boundaries. This
interaction can be either attractive (leading therefore to an increase of the segre-
gation kinetics) or repulsive (leading to a deceleration of the segregation kinetics).
These interaction coefficients were determined using the study of Erhart and Grabke
[10] while the calibration of the free energy was made using Nakata et al. [20]
work. Militzer and Wieting [19] demonstrated that, in the case of ternary systems
with site competitions, the kinetics of segregation can be written as:

Cgb
i ðtÞ ¼ Cgb;0

i þ 2
CB;0
iffiffiffi
p

p
d=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ t

0

Diðt0Þdt0
vuuut � 1ffiffiffi

p
p

d=2

Z t

0

qiðt0ÞDiðt0ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiRt
t0
Diðt00Þdt00

s dt0

DiðtÞ ¼ D0
i exp �Qi=RTðtÞð Þ

qiðtÞ ¼ CB
i exp �DGiðtÞ=RTðtÞð Þ

1þ P
j¼C;P

CB
j exp �DGjðtÞ=RTðtÞ

� �
ð7Þ

All terms in Eqs. 6 and 7 have been determined and identified from the literature
and are presented in Table 1. These equations can also be used under
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non-isothermal conditions and thus are able to account for P and C segregation
taking place during the cooling (30 °C/h) subsequent to post weld heat treatment.

This model for ternary systems was applied and validated using Nakata et al.
[20] results. Segregations kinetics with or without taking into account P and C
competition are presented in Fig. 9a. It can be observed that the kinetics obtained by
neglecting P and C competition leads to a large overestimate of the amount of P
segregated at grain boundaries.

Application of Eqs. 6 and 7 to our results (limited to as received and aged
conditions) is presented in Fig. 9b. A good agreement between calculated and
experimental segregation kinetics is observed. Calculations showed that in the
material representative of the MSZ (P * 150 ppm), segregation taking place during
cooling, from 615 °C to room temperature, leads to CP

gb � 13 % before aging [2]. It
was shown by Naudin et al. [21] that this concentration is sufficient to trigger
intergranular fracture, as indicated earlier. This is consistent with observations
highlighting intergranular fracture surfaces within the MSZ in the as-received
condition.

4.2 Effect of Grain Boundary Segregation on Fracture
Toughness

The prediction of the shift in DBTT measured on Charpy impact specimens requires
time-consuming numerical calculations (see e.g. Tanguy et al. [26]). This explains
why in the present study this shift was measured and modelled using the results of
fracture toughness tests on CT specimens shown in Fig. 5. Numerical modelling of
these specimens tested in static conditions is much easier than that of Charpy
specimens. It has been noted that the fracture mode of our material, when tested in
the DBTT regime, was bimodal: transgranular cleavage in the base metal and
intergranular in the MSZ. A recent model accounting for the contribution of each
material to the overall fracture toughness of a given specimen has been proposed

Table 1 Thermodynamic parameters identified from literature and used to describe 18MND5
grade steel

Guttmann model

DGseg
C ¼ 9030þ 65:12T � 2aCC � Cgb

C =c0 þ aCP � Cgb
P =c0ðin JÞ

DGseg
P ¼ 65273� 23:69T � 2aPP � Cgb

P =c0 þ aCP � Cgb
C =c0 ðin JÞ

aPP ¼ 139 ðin Jmol�1Þ
aCC ¼ 4000 ðin Jmol�1Þ
aCP ¼ �4500 ðin Jmol�1Þ
Diffusion coefficients, ðin cm2 s�1Þ
DP(T) = 0.25 exp (−200,000/(RT)) [27]

DC(T) = 0.003 exp (−76,000/(RT)) [14]
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recently [1, 3].1 This model is based on the weakest link theory and the introduction
of the ‘Weibull stress’ which is calculated both in the matrix and in the segregated
zones. Values of the shape parameter, m, and of the characteristic stress σu depend
on the material: in the base metal the characteristic stress represents the cleavage
fracture stress while in the MSZ it represents the intergranular fracture stress.

(a)

(b)

Fig. 9 Application of the
Guttmann-Militzer
segregation model to:
a results obtained by [20] on a
A533B steel containing
110 ppm of phosphorus and
aged at 450 °C, b results
obtained by [2] on a 18MND5
grade steel containing 90 ppm
of phosphorus and aged at
450 °C

1It should be noted that our model is somewhat different from the bimodal master curve approach
[28] in which inhomogeneity between specimens is introduced but not within an individual
specimen.
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The cleavage stress in the matrix depends on the aging conditions since it has
been shown that even in this mode of failure some intergranular fracture takes place
at the crossing of grain boundaries by transgranular cleavage microcracks [2, 22–
24]. The matrix cleavage stress decreases therefore with aging time. It can be
assumed that the intergranular fracture stress in the MSZ decreases linearly with the
grain boundary P content, CP

gb, as shown by [7, 21]. The values of CP
gb can be

calculated using the model developed in the previous section.
In the present situation another source of scatter is related to the statistical

distribution of the segregated zones within a given specimen. Andrieu et al. [1] have
shown that the predicted probability of failure can thus be written as:

Pr ¼
XB=e
i¼0

PiPrðiÞ ð8Þ

where B is the thickness of the CT specimen, e, a distance (for example 50 μm), Pi,
the probability that i × e mm of MSZ intercepts the crack front and Pr(i) the
probability to fracture, given by:

PrðiÞ ¼ 1� exp �ðB� ieÞK4ðrBM0 ÞmBM�4CmBM

V0ðrBMu ÞmBM

 !

� exp � ieðEMSZrMSZ
0 =EBMrBM0 Þ2K4ðrMSZ

0 ÞmMSZ�4CmMSZ

V0ðrMSZ
u ÞmMSZ

 ! ð9Þ

In this expression m the Weibull exponent, V0 an elementary volume, σu the
characteristic stress and Cm a numerical parameter which depends on the value of
the shape parameter, m and of the work hardening exponent, n. The values of
Cm(n) have been tabulated elsewhere (Andrieu et al. [1]).

The initial Weibull parameters have been calibrated, using the least mean square
likelyhood, in order to describe the results obtained in the as-received conditions:
mBM ¼ 30;mMSZ ¼ 28; rBMu ¼ 3364Mpa; rMSZ

u ¼ 3200MPa. Figure 10a shows
that these values lead to a good representation of the measurements in the initial
condition. The scatter measured by the ratio KJCðPR ¼ 95%Þ=KJCðPR ¼ 5%Þ is
close to 3.5 which is a little larger than the value predicted from Beremin theory [6]
when there is a unique mode of failure in an homogeneous material. The above
model is also able to represent the shift of the DBTT and the increase in the scatter
in test results, as observed in Fig. 10b for the aged condition. The scatter measured
by KJCðPR ¼ 95%Þ=KJCðPR ¼ 5%Þ is close to 5, as observed experimentally. This
constitutes the second salient feature of the present study.

As noted in Fig. 1, Eqs. 1 and 2 applied to our material largely overestimate the
DBTT shift due to thermal aging at 450 °C. Our experimental results (DT � 30 �C,
CP
gb ¼ 0:23) lead to a proportionality factor (the slope of the lines plotted in Fig. 1)
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much smaller, of the order of 175 instead of 1080. This clearly indicates that very
much work remains to be done before a fully predictive formulation of the temper
embrittlement is accepted.

5 Conclusions

1. It has been demonstrated that in a Mn-Ni-Mo steel used in the fabrication of
heavy components in nuclear power industry and containing micro-segregated
zones (MSZ) enriched in impurities (P, C), the slow cooling rate applied after
stress relieving heat-treatment produces a mixed mode of failure (cleavage in the
matrix and intergranular in the MSZ at low temperature).

2. Impurity segregation at grain boundaries produces a shift of the ductile-to-brittle
transition temperature (DBTT) of the order of 30–40 °C when the material is
tested at temperatures such as KJC * 100 MPa

ffiffiffiffi
m

p
.

3. The amount of P and C segregated at grain boundaries corresponding to the
slow cooling rate after post weld heat treatment and subsequent aging at 450 °C
for 5000 h has been calculated using a modified McLean-Militzer model
accounting for C-P interactions. This amount has been compared with experi-
mental data obtained from Auger spectrometry measurements. A good agree-
ment between experimental and calculated results is observed.

4. The shift of the DBTT observed after aging at 450 °C is satisfactorily predicted
using a statistical Beremin type model in which the statistical distribution of
MSZ within a specimen is introduced.
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(a) (b)

Fig. 10 Application of the Beremin bimodal model to fracture toughness results obtained a in the
as-received condition b in the aged condition: 450 °C for 5000 h
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Micromechanical-Based Models
for Describing Damage of Ferritic Steels

Michael Seidenfuss and Thomas Linse

Abstract Usually the safety margin against failure for precracked components is
calculated with fracture mechanics approaches. Due to several severe limitations of
these approaches, it was searched for alternative calculation models. Starting with
McClintock and Berg in the sixties, so-called damage models have been developed
for describing ductile fracture on the basis of micromechanical processes. The
development of such kind of models is in progress now for nearly 50 years, but
until today no model is generally accepted and incorporated into the international
standards. In an extended introduction, the micromechanical phases of ductile
rupture of metal and alloys are presented. Against this background, a summary of
the evolution and the different kinds of micromechanical-based model approaches is
given. The theoretical background, the advantages/ disadvantages and the limita-
tions of the models are discussed critically. Finally non-local formulations of
damage models are presented. Combinations of ductile damage models and models
for cleavage to describe fracture in the brittle-ductile transition region are discussed.

1 Introduction

To guarantee safe operation of technical components and systems, the safety
margins against failure must be quantified. One possible approach to predict these
safety margins is the use of numerical simulation methods with advanced material
models. For the prediction of crack initiation, crack growth and fracture of ductile
metals so-called micromechanical-based damage models based on the early work of
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McClintock [169] and Berg [33] have been established. In this context
micromechanical-based means that the models try to simulate the processes on the
microscopic level with continuum mechanical approaches.

For the development and application of damage models it is fundamental to
understand the micromechanical processes in the material leading to fracture. In
ductile fracture, these micromechanical processes can be divided into three phases:
void formation, void growth and void coalescence [74, 207, 261, 276]. A detailed
summary of this failure development is given in Sect. 2.

The classical micromechanical-based damage models known from literature try
to describe the three fracture phases with continuum mechanical approaches.
Generally for each phase, a separate model is needed: void initiation [6, 34, 72, 115],
void growth [115, 154, 169, 211, 224, 277] and void coalescence [26, 61, 272].

The classic micromechanical-based damage models are derived for high stress
multiaxialities and a pronounced void growth. Such models are described in Sect. 3.
Mechanisms observed in pure shear mode are not or insufficiently described by
these models. Micromechanical-based models to describe the failure at such low
stress multiaxialities are not in the focus of interest here. Models which describe
both high and low stress multiaxialities are usually empirical in nature.

Nearly all models discussed so far are of local nature. This means that the
material behaviour depends only on the local state variables. Neighboring points
have no influence on the local material behaviour. If material softening occurs, this
can lead to so-called bifurcation problems. This means that a homogeneous strain or
damage field will get unstable against a strongly localized one [209]. In finite
element calculations, this means that strains and damage locate in one element layer
[244]. The so-called pathological mesh dependence of results is observed.

In practice, this problem can be overcome by keeping the mesh size constant.
Often the mesh size is directly coupled to the microstructure [45, 62, 86, 182, 216,
240, 241, 262]. To eliminate the pathological mesh dependence different concepts
have been published, for example [21, 55, 92, 205]. Together, all these concepts
and the derived models introduce a material-specific characteristic length.
A summary of the most common approaches is given in Sect. 4.

Following the concept of the Local Approach [201], fracture toughness values
can be predicted by numerical calculations only. Different possibilities for the
description of competing brittle and ductile damage in the entire toughness region
are discussed in Sect. 5.

2 Failure by Void Initiation, Growth
and Coalescence [244]

Materials and components can be deformed up to a characteristic extent. Fracture
limits the deformation and often leads to a catastrophic failure of vehicles, machines
and plants with consequences for safe operation. Therefore it is essential to
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investigate the causes and the mechanism of fracture to find adequate simulation
approaches for being able to predict the failure behaviour.

There is no uniform classification of fractures in literature. Classifications which
are based on load type or macroscopic phenomena can be helpful, however, they
are not suitable to be used in a damage mechanical calculation model [244] which
describes the local material behaviour.

The microscopic description of the failure behaviour by means of microme-
chanical processes only requires the local state and the local kinematic laws.
Therefore, this description is more suitable to be used in a damage model. With
such damage models the macroscopic definition of fracture which is necessary for
practical application can be calculated by means of the finite-element-method.
Damage models belong to the group of the so-called advanced material models.

To understand the local failure process, it is indispensable to know the micro-
mechanical processes which occur on the micro level. They determine the micro-
scopical and macroscopical processes in the material as well as the future
appearance of the fracture (cleavage fracture or dimple/shear fracture). Hereinafter
it is referred only to the dimple fracture.

The dimple fracture [240] is characterized by locally very high plastic defor-
mations on the fracture surface. The dissipated energy is much higher than in
cleavage fracture. This reflects the rough dimpled fracture surface [83, 113] which
is characteristic for all technical metals and metal alloys, see Figs. 1 and 2.

It depends on the surface energy, on the stress state as well as the elastic energy
released during the crack growth whether dimple fracture is stable or not.

Investigations done in the 1940s and 1950s [74, 207, 276] have already shown
that for almost all metal alloys, the micro-mechancial processes which lead to
dimple fracture can be divided into 3 phases, see Fig. 3:

I. void initiation,
II. void growth,
III. void coalescence.

Fig. 1 Dimple fracture, copper, REM image Fig. 2 Dimple fracture, Al-Cu-alloy, REM
image
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Not only ferritic [113, 240] and austenitic [17, 242] steels show this behaviour
but also for example aluminium [60, 241], nickel [11], magnesium [68], cobalt
[119] and titanium [166] alloys. This kind of failure behaviour affects many tech-
nically pure metals [113, 207] too.

In the following sections, the three phases of failure are described in detail.

2.1 Formation of Voids

The first phase of dimple fracture, i.e. the formation of voids, can occur [240] at:

• particles of a secondary phase [113, 119, 146, 207],
• grain boundaries [120, 166],
• perlite cracks [118, 202, 218] and
• dislocation cell boundaries [108, 290].

phase I:void initiation phase II:void growth phase III:void coalescence

Fig. 3 Phases of dimple fracture [240, 261]
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In the majority of technical metals, inclusions and precipitations are relevant for
the primary formation of voids. A distinction is often made between primary and
secondary voids [267]. Primary voids occur at the beginning of the deformation
process at relatively small plastic strains. Generally, they show a significant void
growth [65] and are relevant for initiating the failure process [268]. Secondary
voids often initiate very late within the load history [44]. Compared to primary
voids, they are small and play an important role [60, 228] during the coalescence of
the voids.

The procedures during the formation of voids at particles are determined by a
variety of possible factors, see for example as well [93, 94, 251, 274]:

• atomic structure, micro- und macroscopic defect and homogeneity of the
particles

• size and form of the particles
• arrangement of the particles, clustering
• distance of the particles to each other
• different populations of particles
• position of the particles in the microstructure (i.e. on grain boundaries)
• the orientation of the slip or cleavage planes in the matrix and in the particles
• plastic deformation at and in the particle
• cohesive strength between particle and matrix
• deformation behaviour (elastic/ plastic) of particles and matrix
• stresses and stress multiaxiality in particle and matrix
• grain size of the matrix
• hardening behaviour of the matrix
• free surface energy
• manufacturing process and damage of particles and/ or matrix which may be

caused

In principle voids can be initiated by the following two mechanisms:

• debonding between matrix (see Figs. 4 and 5) and particle and
• particle fracture (see Figs. 6 and 7).

It depends on various factors whether voids are initiated by particle fracture or
by debonding. An essential factor is the particle shape.

In loading direction, elongated particles often fail by particle fracture [14, 93,
111, 119, 146, 149, 213]. It seems as it is not so important whether the particles
behave ductile, like i. e. certain manganese sulphides [119, 123] or more brittle, like
i. e. carbides [93, 146, 149]. The extent to which the fragments of an inclusion
remain attached to the matrix [29, 146] or whether they debond with increasing
plastic deformation from the matrix [27, 122] mainly depends on the cohesive
strength between the matrix and particle as well as the multiaxiality of the stress
state [29].

At more spherical particles debonding is often observed between particle and
matrix [14, 111, 119, 240]. But also at elongated or sheet-like particles, which are
arranged perpendicular to the major principal stress, voids can be caused by
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decohesion beween particle and matrix [77, 123]. Whether the debonding is only
partially [93] or completely depends among other things on the applied stress
condition. At high multiaxiality a complete debonding is observed frequently, while
low stress multiaxiality (σm/σvM < 2/3) only leads to partial separation [29].

However, the link between particle shape and failure mechanism described
before is not mandatory. Initiation by particle cracking can be found as well at
perfectly spherical particles [122, 125] and debonding at elongated ones.

Fig. 6 Void initiation by particle
fracture

Fig. 7 Cracked iron carbide, steel, TEM foil

Fig. 4 Void initiation by debonding
between matrix and particle

Fig. 5 Manganese sulfid with total debonding
between matrix and particle, 20 MnMoNi5-5, REM
image
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Experimental studies and simulations on the microstructure level show that not
only the cohesive strength between particle and matrix, toughness and shape of the
particles have an influence on the initiation mechanism (fracture or debonding).
Soppa et al. [250, 251] show that both the arrangement and the volume fraction of
the particles as well as the hardening behaviour of the matrix influence the
mechanism leading to void initiation.

2.1.1 Which Deformations Lead to Voids?

The presence of plastic deformations [213] is considered as a prerequisite for void
initiation. During plastic deformation, dislocations accumulate at particles which
can be deformed worse than the matrix [120, 171, 261] and slip bands are blocked
[113]. These processes lead to stress peaks at and in the particles. Void initiation
will take place if these stress peaks are higher than the cohesive strength between
particle and matrix or the tensile strength of the particle. If the yield strength of the
particle is lower than the one of the surrounding matrix, slip bands in the inclusion
are blocked at the interface between particles and matrix, thus leading to a stress
peak [75, 291].

Void formation by particle fracture or debonding from the matrix can either be
observed soon after exceeding the yield strength [147, 190] or only after large
plastic deformation [149, 274]. At which deformation void initiation at particles
will be observed depends primarily on

• cohesive strength between particle and matrix,
• deformation behaviour of the particles
• deformation behaviour of the matrix and
• the degree of stress multiaxiality.

Many materials already contain voids initiated during the production process [8,
27, 63, 70, 236, 291].

A very early void initiation is often observed at particles that can deform
plastically. As examples, manganese sulfides in steels, [8, 27, 63, 70, 236, 291], or
spherical graphite cast iron [258] have to be mentioned. Numerous authors observe
void initiation at zero or very low plastic deformations in steels containing man-
ganese sulphides [8, 30, 77, 146, 213, 293]. Likewise sometimes, a very early void
initiation can be observed at brittle particles [27, 93, 113, 250].

In other particles with a high cohesive strength between particle and matrix, very
large deformations are needed to initiate voids. For iron carbides in steel, strains of
over 50 % were measured until the void initiation started [7, 93, 149]. Even at very
small manganese sulfides (ϕ < 0.22 μm)1 in a high-strength steel, voids are initiated
at strains of about 50 %.

1Manganese sulfides at which voids initiate at low plastic deformations can have a size larger than
several μm.
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The onset of void formation is also affected by the yield strength of the matrix
material. For example, Huber et al. [125] observed at a near eutectic Al-Si casting
alloy that for a low-strength version voids initiation occurs by particle fracture at
much higher strains than for a high-strength version of the alloy.

In addition the multiaxial stress state affects the amount of plastic deformation
which is necessary for void initiation.

2.1.2 At Which Particles Void Initiation Takes Place?

At which particles in a given alloy void initiation is observed is mainly determined
by the chemical composition, the origin and the size distribution of the particles.
The strength of the interface between particles and matrix depends not only on the
material characteristics of the particle, but also on the chemical composition and the
micro-structure of the matrix. In [93] for example, it is observed in a steel with
globular cementite that void formation by debonding primarily occurs at particles
on grain boundaries.

Depending on the material void initiation can often be observed simultaneously
at very different precipitations and inclusions. For steels, these are often
impurity-related inclusions, such as manganese sulfides and oxides as well as
precipitations in combination with carbon and nitrogen. For example in the inclu-
sions of a 22MnMoNi3 7 steel aluminum, calcium, magnesium, titanium and zir-
conium [44, 212, 215, 267,] are often detected, see Fig. 8.

Most metallographic studies show that void initiation takes place first at
above-average-sized particles [60, 65, 75, 93, 113, 114, 228, 268, 289].
“Above-average” does not necessarily reflect the absolute size, but the size in
relation to the present distribution. After voids occurred at the above-average-sized
particles, voids at smaller particles initiate as well with increasing deformation.
With decreasing particle size, larger plastic strains are required for the void initi-
ation [75]. From these observations it can be deduced directly that there is a more or
less large initiation interval depending on the size distribution of the particles. This
statement contradicts with experimental studies on a copper-chromium alloy in
which no size-dependent initiation time point was found [7].

Fig. 8 Void initiation at different particles, material 22NiMoCr3-7, REM image, [215]
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It is also observed that particles below a certain size neither have voids [27, 28,
119, 217] nor existing voids grow any more [27]. It is also reported of niobium
carbides (> 1μm) in a steel (X52) that no damage occurs because of the strong
binding with the matrix [27].

2.2 Void Growth

Amore or less pronounced void growth follows void initiation, see Figs. 9, 10 and 11.
The void volume can grow by a multiple compared to the initial volume [14]. For
example, Benzerga et al. [27] observed in the low alloy steel X52 a void growth up to
a factor of 50.

2.2.1 Dependence of Void Growth on Stress Multiaxiality

Whether and how strongly voids grow largely depends on the multiaxiality of the
stress state. With the help of tomographic studies, this can be directly observed
[165]. Many authors state that the void growth increases with increasing plastic
deformation and increasing stress multiaxiality [27, 46, 75, 165, 168, 282].

Under uniaxial loading a void, initiated at a particle, deforms in the direction of
the external force. A growth perpendicular to the main direction of loading is hardly
observed [75]. Thus the volume growth is low. This behaviour can be demonstrated
very well with Finite Element calculations. In Fig. 12, one-eighth of a spherical
void is shown. While under uniaxial loading the void is only streched in the loading
direction, see Fig. 13, an increased volume void growth can be observed [75] under
multiaxial loading, see Fig. 14.

Fig. 9 Void size at a strain of
0.59, material 20MnMoNi5-5,
REM image [78]

Fig. 10 Void size at a strain of
0.69, material 20MnMoNi5-5,
REM image [78]

Fig. 11 Void size at a strain of
1.19, material 20MnMoNi5-5,
REM image [78]
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It is also assumed that voids loaded with negative stress multiaxiality, i. e. within
the pressure range, can become smaller again. Experimental studies showing such a
decrease in void volume, however, cannot be found in the relevant literature.

2.2.2 Dependence of Void Growth on Particle Form and Size

The void growth is highly dependent on the absolute size of the void [75]. Large
voids grow much faster than small ones. For flat particles with a loading perpen-
dicular to the major particle axes, bigger voids can be formed [27, 213] by planar
delamination of inclusions and matrix.

2.2.3 Void Locking

At low stress multiaxiality, elongated voids can be formed as described above. In
pure shear (e.g. torsion) even a decrease of the void diameter, perpendicular to the
main loading direction, i.e. a closure, is predicted by cell model calculations. The
particles leading to void initiation can hinder such a void closure. Due to their finite
dimensions, they block the transverse contraction of a void [29]. Benzerga [29]
indicates that this type of ‘void locking’ especially occurs in a multiaxiality range of
rm=rvM � 2=3:

Fig. 12 Initial void shape, FE
model, quarter model

Fig. 13 Elongated void
caused by uniaxial loading,
FE model, quarter model

Fig. 14 Spherical void caused
by multiaxial loading, FE
model, quarter model
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Even at higher stress multiaxialities where a strong growth in void volume can
be observed, the remaining particles can influence the growth behaviour. For
example the void volume growth can be hindered by particle fragments with a good
adhesion between particle and matrix [149], see Figs. 15 and 16.

2.2.4 Dependence of Void Growth on the Yield Strength
and the Hardening of the Matrix Material

The void growth is of course also affected by the yield behaviour of the matrix
material. Van Stone et al. [282] show in their literature review that the void growth
is more pronounced in high strength materials with low hardening than in com-
parable low strength materials with high hardening.

2.3 Coalescence of Voids

Void growth is limited. Depending on the material and the stress multiaxiality, the
materials bridges between the voids are teared apart. This merging of voids is called
void coalescence.

By breaking of the materials bridges between the voids, a dimpled structure is
being formed on the fracture surface. Within the individual dimples the complete or
broken particles which led to void initiation can often still be found, see Figs. 17
and 18.

Dimpled fracture surfaces can be observed in almost all technical metals and
alloys, see Figs. 19, 20, 21, 22, 23 and 24. Size and shape of dimples vary strongly
depending on the materials and load conditions.

In most cases coalescence of voids is initiated by a strain localization between
the large primary voids. Two fundamentally different mechanisms of void coales-
cence can be observed in experiments and are predicted in simulations:

Fig. 15 Void growth at the fracture sites of a
niobium carbide, material X10CrNiNb18-10

Fig. 16 Void growth at the fracture sites of a
niobium carbide, material X10CrNiNb18-10
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Fig. 17 Dimple with inclusion, material
20MnMoNi5-5, [MPA-archive]

Fig. 18 Fracture surface with voids con-
taining fractured niobium carbids, material
X10CrNiNb18-10

Fig. 19 Fracture surface copper Fig. 20 Fracture surface NiCr70Nb

Fig. 21 Fracture surface aluminium Fig. 22 Fracture surface austenite
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• Formation of shear bands between neighbouring primary voids [36, 148, 190],
see Fig. 25.

• Plastic collapse of the material bridge between two neighboring primary voids
[27, 76, 119, 213, 274], see Fig. 26.

Often secondary voids initiated at much smaller particles are involved in the void
coalescence process [117, 171, 228]. The model for this is that due to the strain
localisation very large local plastic strains occur, which lead to the initiation of the
small secondary voids [75, 274]. For example these secondary voids can be seen on
shear bands between the larger voids [28, 75, 76, 148, 268], see Fig. 27. Small
secondary voids can play a role, too, when the materials bridges fail by plastic
collapse, see Fig. 28. In this failure mode secondary voids have the effect that the
large voids do not fully grow together and the residual ligament is not stretched to a
tip, but being connected via the secondary voids [119, 274]. Usually not only one of
the described mechanisms leads to void coalescence, but several mechanisms are
observed simultaneously.

Fig. 23 Fracture surface 20MnMoNi5 5 Fig. 24 Fracture surface Ti–Al alloy

Fig. 25 Shear band between two primary
voids

Fig. 26 Plastic collapse of the material bridge
between two primary voids
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2.3.1 Influence of the Stress Multiaxiality on Void Coalescence

Numerous studies show that void growth and void coalescence depend on the
multiaxial stress state [119]. Since the coalescence process occurs in a quite small
time interval (sometimes unstable) and material volume, it is difficult to examine it
experimentally. However, the coalescence process can often be concluded from the
shape of the dimples on the fracture surface. For high multiaxial stress states, as
they are observed for example inside a necked round tensile bar, spherical or
ellipsoide voids develop. On fracture surface, almost equiaxed dimples are found,
see Fig. 29. At loads which are almost uniaxial, with fracture parallel to the greatest
shear stress, the dimples are strongly defomed in the direction of shear, see Fig. 30.
Finally pure shear stress leads to extremely distorted, squashed and elongated
dimples [283], see Fig. 31. Baechem [24] even describes 14 possible honeycomb
shapes.

Metallographic examinations show that the stress multiaxiality has a direct
influence on the mechanism of void coalescence and the formation of secondary
voids. Bandstra et al. [16] examine the ductile failure behaviour of a HY-100 steel
with elongated manganese sulphides perpendicular to the loading direction. At
higher multiaxiality rm=rvM [ 1 the authors mainly find void coalescence per-
pendicular to the main direction of loading with the formation of small secondary
voids, whereas they observed a shear failure with secondary voids between the
large primary voids at lower multiaxiality. These results are confirmed by Bron &
Besson [58] for an aluminium alloy AL2024. The influence of stress multiaxiality
on the formation of secondary voids/ dimples is described by Besson et al. and
Tanguy et al. [44, 267]. The authors show for steel X100 that the number of small
secondary dimples on the fracture surface increases with decreasing stress
multiaxiality.

Fig. 27 Shear band with secondary voids
between two primary voids

Fig. 28 Plastic collapse of the material bridge
through secondary voids between two primary
voids
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2.3.2 Effect of Void Formation on the Void Coalescence

In general, if the void distance (perpendicular to the loading direction) is small, a
failure by plastic collapse of the material bridges occurs [25]. If the voids are
oriented rather under 45° with larger distances in between, the probability of shear
band formation increases [25]. In elongated voids it seems as if orientation and
rotation of the voids during deforming affect the coalescence mechanism [28].
Systematic studies on the influence of the void arrangement on the failure mech-
anism are hardly feasible because due to the manufacturing process the voids have a
random position. Samples with artificially laser-drilled voids in the form of holes
[284–287] offer a possibility to study the impacts more systematically. To analyze
the void arrangement, Weck investigates two different types of tensile specimens a)
two holes arranged perpendicular (90°) to the loading direction and b) two holes
shifted under 45°. For the 90° arrangement Weck shows that coalescence takes
place by a failure of the material bridge perpendicular to the loading direction,
seeFig. 32. The specimen with the 45° shifted holes fails by shear band formation,
see Fig. 33. On both fracture surfaces ‘secondary’ dimples were found.

Fig. 29 equiaxed dimples,
material copper [MPA
archive]

Fig. 31 dimples from pure shear,
material HDT1200M [MPA
archive]

Fig. 30 dimples from tension-
shear, material austenite [MPA
archive]

Fig. 32 Void coalescence of two voids
arranged under 90° to loading direction, mate-
rial Al 5052 [285]

Fig. 33 Void coalescence of two voids
arranged under 45° to loading direction, mate-
rial Al 5052 [285]
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2.3.3 Influence of the Materials on the Coalescence

The microstructure of the materials as well as size and composition of the particles
affect the coalescence mechanism. Cox and Low [75] examine the failure behaviour
of four different high-strength steels:

1. A commercial steel type AISI 4340 with large manganese sulphides
(∅ ≈ 7.5 μm) and much smaller iron carbides. The volume fraction of man-
ganese sulfides is 0.14 %.

2. A high purity version of the steel type AISI 4340 with slightly smaller man-
ganese sulfides (∅ ≈ 4.2 μm) and also smaller iron carbides. The volume
fraction of manganese sulfides here is only 0.06 %.

3. A commercial maraging steel (18Ni, 200 grade) with titanium carbonitrides
(∅ ≈ 8.6 μm) and much smaller particles of an intermetallic phase. The volume
fraction of titanium carbonitrides is 0.21 %.

4. A high purity version of maraging steel 18Ni, 200 grade with smaller titanium
carbonitrides (∅ ≈ 3.0 μm) and much smaller particles of an intermetallic phase.
The volume fraction of titanium carbonitrides is 0.09 %.

All four steels have a comparable yield strength of about 1400 MPa. While the
void coalescence in the maraging steel mainly takes place by direct merging of the
voids, in the AISI 4340 versions shear bands with secondary voids are observed. In
the AISI 4340 steels, the small iron carbides are involved in void coalescence, while
the small intermetallic phases have no direct influence on the convergence of the
maraging steel.

3 Continuum Mechanical Models for Failure by Void
Initiation, Growth and Coalescence [244]

To predict the macroscopic deformation and failure behaviour (crack initiation,
crack growth and instability) of components and assembly groups, macroscopic
continuum mechanical approaches are needed. Calculations on the level of
microstructure or even on the atomic level which simulate single voids and/ or
details from microstructure [13, 203, 206, 214, 225, 245, 251, 252], see Figs. 34
and 35, are not applicable to real components because of the huge computation time
and time consuming modelling.

Based on the derivation of the macroscopic materials models it can be distin-
guished between empirical and micromechanical-based models:

• Empirical models approximate the experimentally observed macroscopic
behaviour. These approaches are also called phenomenological or heuristic
models. Due to the number of introduced material-dependent variables a more
or less complex material behaviour can be approximated. Drawback of these
models is that the used material parameters have no direct reference to
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material-physical parameters. The transferability of the empirical parameters to
other load cases and materials is not given a priori. For example the following
models are referred to:

• Cockcroft and Latham [73]
• Oyane [185]
• Gao et al. [106],
• Chaouadi et al. [71]
• Bai and Wierzbicki [15].

Fig. 35 Strain distribution in
a dual phase Al-Al2O3 alloy;
plane simulation [251]

Fig. 34 Blocked dislocation
by a copper precipitation
(∅ = 1 nm) in cbc iron,
atomistic simulation [172]
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A discussion of this kind of models is found in [233].
• Another approach to describe the mechanical behaviour of materials is the use of

so-called micromechanical-based models. These models try to describe the
discontinuous micromechanical processes on a macroscopic level with
mechanical and/ or thermo-mechanical approaches. For this purpose, the dis-
continuous stress and strain field is homogenized and described with continuum
mechanical approaches. The advantage of this class of models is that a trans-
ferability of the material law and the used parameters to other loading situations
is more likely. [86, 181, 182, 204]. Severe disadvantages are the simplifications
needed for the derivation, for example ideal plastic material behaviour, axially
symmetric voids and so on. As a result the transferability is limited.

In the following the focus of interest will be on the micromechanical-based
material models. In case of dimple failure these models have to describe the
microscopic processes

1. void initiation
2. void growth
3. void coalescence which leads to the formation of a micro crack

by means of continuum mechanical approaches. In general, each phase is
described by a separate model. However, there are models which describe two or all
three phases simultaneously. In this chapter, the classic models from the late 1960s,
1970s and 1980s are presented. Later published damage models are based almost
exclusively on these classic formulations. Recent systematic reviews of Chaboche
et al. [69] and Besson [46] confirm this.

3.1 Models Describing Void Initiation

The void initiation models described below simulate the formation of a void by
decohesion (detachment) of a particle from the surrounding matrix.
Micromechanical models that explicitly describe the fracture of a particle are not
very common. An exception is for example the model of Huber et al. [125]. As
being described later the decohesion models can often similarly be used to describe
particle fracture. In principle, the decohesion models can be divided into three
groups [6, 240], such as:

• stress criteria
• strain criteria
• energy criteria

If assuming void initiation by decohesion the normalized void volume f0 is
usually set equal to the normalized particle volume incf:
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f0 ¼ incf ¼
incV
V0

ð1Þ

In the following, the normalized void volume f0 and the normalized particle
volume incf will be called void and particle volume.

In void formation by particle fracture the formed void volume f0 is much smaller
than the corresponding particle volume incf.

f0 � incf ¼
incV
V0

ð2Þ

3.1.1 Void Initiation Model of Tanaka et al.

Tanaka et al. [269] derived an energy based void initiation criterion. They assumed
an elastic particle with radius R (in cm) in a plastic matrix. They derived a critical
strain ec above which a void will initiate. Due to simplification they assumed that
plastic strain in loading direction is higher than 1 % and that the macroscopically
applied stress ~r is less than E/1000. If the elastic modulus of the particle is smaller
than that of the matrix ec can be calculated as:

ec � b

ffiffiffiffi
1
R

r
ð3Þ

The advantage of the Tanaka et al. approach is that a solution can also be found
for particles with a higher elastic modulus than the matrix:

ec � b

ffiffiffiffiffiffi
1
aR

r
mit a ¼

incE
matE

ð4Þ

R describes the radius of an inclusion and α the ratio between the elastic
modulus of the inclusion and the matrix. β is a material dependent constant which
can be calculated as follows:

b ¼
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48� 10�9 ð7� 5matmÞð1þ incmÞ þ að1þ matmÞð8� 10matmÞf g

ð7� 5matmÞ2 2ð1� 2incmÞ þ að1þ matmÞf g

s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð7� 5matmÞð1� incmÞ þ 5að1� matm2Þ

q ð5Þ

Micromechanical-Based Models … 371



3.1.2 Void Initiation Model of Argon, Im and Safoglu

Argon, Im and Safoglu [6, 8] derived a stress-based criterion to predict void ini-
tiation by particle-matrix decohesion. For the initiation of voids by decohesion,
sufficient energy for the creation of new surfaces must be available and the critical
stress debrc necessary for the debonding must be reached. The derived debonding
stress debr can be calculated with the following equation:

debr � k~rvM þ ~rm � debrc ð6Þ

In this equation ~rvM describes the macroscopic equivalent stress and ~rm the
macroscopic hydrostatic stress. The constant k characterises the particle shape. For
spherical particles k became 1.

3.1.3 Void Initiation Model of Gurson

The derivation of Gurson’s void initiation model [115] is mainly based on the
experimental work of Gurland [114] and the theoretical work of Argon et al. [6].
Gurland [114] observed in an uniaxially deformed steel with 1.05 % carbon content
and coagulated cementite that the number of initiated voids depends approximately
linear on the plastic equivalent strain. From this observation Gurson derives his
strain based void initiation criterion in which the void initiation rate _f

nuc
is pro-

portional to the plastic equivalent strain rate _ep
v
. In addition, Gurson slightly

modified the stress based void initiation criterion by Argon et al. [6]. Finally he
defined a criterion that takes into account both strain and stress induced void
formation:

_f
nuc ¼ M1 _e

pv þM2

_~r
m

ð1� fÞ ð7Þ

M1 and M2 are material dependent functions which should describe the inter-
action of particles. This model suggested by Gurson is of pure empirical nature.

3.1.4 Void Initiation Model of Goods and Brown

Goods and Brown derived a strain based micromechanical model to describe the
void initiation [111]. By superposition of tension and a hydrostatic stress field as
well as further simplification, the following equation for the local plastic limit strain
ep

c
was found in dependence on the particle radius R:

ep
c �KR debrc � 3~rm � ~rI

3

� �2

ð8Þ
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Factor K can be calculated from the void volume incf und Burgers vector bi. Due
to their dislocation based approach the authors assumed that the criterion is valid for
particles up to a diameter of 2 μm.

3.1.5 Void Initiation Model Acc. to Chu and Needleman

The model suggested by Chu and Needleman [72] is based on the theories of
Gurson [115] and Argon et al. [6]. They defined an empirical strain based and a
stress based initiation model.

For the definition of their strain based initiation criteria Chu & Needleman
started with Eq. 9 published by Gurson [115]. While Gurson assumed a propor-
tional relationship between void initiation rate _f

nuc
and plastic equivalent strain rate

_ep
v
, Chu and Needleman proposed a dependency in the form of a normal distri-

bution. For the void initiation volume rate they obtained their often cited rela-
tionship [3, 12, 39, 66, 72]:

_f
nuc ¼ C _ep

v ð9Þ

C ¼ w

se
ffiffiffiffiffiffi
2p

p e�
1
2

ep
v�eN
se

� �2
ð10Þ

eN is the expected value of the equivalent strain at void initiation and se the
standard deviation of the function. w is determined in a manner that the resulting
void initiation volume associates with the consistent materials specific value. The
reason why they assume a Gaussian distribution is not discussed by the authors. At
high stress multiaxiality the void initiation predicted with Eq. 10 approaches zero.

For the derivation of their stress based criterion Chu and Needleman used the
Argon et al. [6] criterion. Based on the work of Gurson [115] the authors derived
the following equation with the assumption of a normally distributed void initiation
volume rate _f

nuc
:

_f
nuc ¼ Kð _~rv þ _~r

mÞ with K ¼ j

srRe
ffiffiffiffiffiffi
2p

p e�
1
2

~rvþ~rh�rN
sr Re

� �2
ð11Þ

sσ represents the standard deviation and Re the the yield stress. rN is the expected
value of the normal distribution. j is again determined in a way that the resulting
void initiation volume is consistent with the experimental value.

It is possible to describe the decohesion process with cell models calculations. In
a later work Needleman [178] showed that it was not possible to describe this
micromechanical process (simulated with cell model calculations) correctly with
both criteria proposed by Chu and Needleman [72]. To take better account of the
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stress multiaxiality he introduced another material dependent constant c to consider
the influence of stress multiaxiality [178]:

rN ¼ ~rvM þ c ~rm ð12Þ

3.1.6 Void Initiation Model of Beremin

In the derivation of their void initiation criterion, the research group Beremin
assumed an elastic particle in an elastic-plastically deformable infinite matrix [34].
They used a self-consistent approach [121, 138], in which the matrix material has
the properties of the entire material. In their definition the entire material is the
matrix material with particles.

debr ¼ ~rI þ v ~rvM � Re
� �� debrc ð13Þ

If the debonding stress debr reaches the critical value debrc, a void initiates. The
stress ~rI refers to the macroscopic largest principal stress, ~rvM to the macroscopic
equivalent stress and the parameter v to the shape of the particle.

3.1.7 Void Initiation Model of Huber et al.

In contrast to the authors discussed so far, Huber et al. [125] defined a model for
predicting particle fracture. Their void initiation criterion combines the
micromechanical-based void initiation criterion of Beremin [34] with the simple
empirical strain criterion of Gurson [115]. They assumed that the maximum prin-
cipal stress triggers particle fracture and that there is a dependence of the fracture
stress on the particle size. They justified this size dependence with an increasing
number of defects in larger particles due to the larger volume. Their model is
defined as follows:

• Void initiation starts if the criterion of the Beremin model (Eq. 13) is fulfilled for
the largest particles:

disbrc � disbr ¼ ~rI þ v ~rvM � Re
� � ð14Þ

For initiation the corresponding value of equivalent plastic strain is denoted by
startep

v
.

• For ep
v
[ startep

v
a phase of continuous void formation follows. To describe this

phase they modified the void initiation criterion of Gurson [115]:

_f
nuc ¼ CðepvÞ_epv ð15Þ
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The constant C from the Gurson equation is defined by Huber et al. as a
polynomial function of the equivalent plastic strain:

CðepvÞ ¼ a1ðepvÞ6 þ a2ðepvÞ4 þ a3ðepvÞ2 þ a4 ð16Þ

• Void initiation is finished if the material dependent equivalent plastic strain
endep

v
is reached.

The factors ai are defined in such a way that CðstartepvÞ ¼ CðendepvÞ ¼ 0 is valid.
Simultaneously the derivatives at these points should be zero. These requirements
does not have a micromechanical background, but are justified by numerical
advantages.

Void Initiation Model of Morgeneyer et al.

Starting point for the derivation of the void initiation model by Morgeneyer et al.
[173] are experimental investigations on the failure behaviour of thin metal sheets.
Several studies [44, 57, 58] showed that for shear fracture the number of secondary
voids increases sharply. Morgeneyer et al. postulated that the formation of the
secondary voids depends on the multiaxiality of the strain state. They assumed that
the tendency for shear fracture can be described with the Lode angle l_e [162]:

l_e ¼
_eII

_eI � _eIII
; ð17Þ

where _eI, _eII and _eIII describe the principal strain rates.
The authors assumed that the initiation rate of secondary voids is particularly

high for a Lode angle close to 0 (pure shear). As Gurson and Chu & Needleman
they accepted, that void initiation further depends on the equivalent plastic strain
rate. Starting from the initiation equation proposed by Gurson, the authors proposed
the following empirical formula to describe the initiation of secondary voids:

_f
nuc ¼ A0e

� l_e
l0
_e

� �2

_ep
v

for ep
v
[ startep

v
; ð18Þ

where A0 is a material dependent constant. l0_e describes the shape of the normal
distribution of the void initiation. Void initiation is predicted only for equivalent
plastic strains ep

v
[ startep

v
.

3.1.8 Void Initiation Caused by Particle Fracture

Especially in materials with pronounced elongated and branched particles void
formation is often caused by particle fracture. The previously presented void
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initiation models, with the exception of the Huber criterion, are all based on the
assumption that the voids are formed by a separation of matrix and second phase
particles. If non plastically deformable particles are assumed, then the results that
have been achieved for failure by matrix detachment can be transmitted very easily
to the failure mechanism of particle fracture.

Relevant for the fracture of a brittle particle is the major principal stress per-
pendicular to the respective cross section. If the particles are linear-elastic it can be
assumed approximately that stresses and strains are constant in the particle, for
example [88]. In this case, the first principal stress in the particle incrI is equal to the
debonding stress debr, see for example [8, 195].

3.2 Models Describing Void Growth

Due to their derivation micromechanical-based models for describing void growth
can be divided into two groups [200, 240]:

1. The growth of a cylindrical, spherical or ellipsoidal void in a finite or infinite
matrix is explicitly described with continuum mechanics based formulations.

2. The behaviour of porous materials is described with thermodynamic and con-
tinuum mechanics laws. Within these approaches no single voids are examined
and due to this the derivation of the model is not so clear but nevertheless the
basic laws of mechanics and thermodynamics are fulfilled.

Another classification of void growth models, as it is used in this study, is
whether the void growth has an influence on the macroscopic deformation
behaviour or not:

1. uncoupled models: The void growth is determined by a constitutive relation as
a function of stress, strain and internal state variables. However, there is no
coupling between void volume growth with the macroscopic material behaviour.
The mechanical behaviour of the material is still described with the von Mises
yield criterion. The void growth does not affect the hardening and deformation
behaviour of the material. The material softening caused by void initiation and
growth cannot be described with this class of models. Consequently, strain
localisation which is important for the failure process cannot be simulated.

2. coupled models: Here, the calculated void volume has a direct influence on the
yield behaviour of the material. A high degree of damage leads to a reduced load
bearing capacity of the material. Damage becomes an internal state variable in
the constitutive equations and thus influences directly the strength and yield
behaviour of the material. Strain localisation can be described with this class of
models.

In the following some of the well-established uncoupled and coupled void
growth models are presented:
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3.2.1 Uncoupled Models

McClintock Model

McClintock’s void growth model [169] is the first known void growth model. For
the derivation of his model McClintock made the following assumptions:

• a cylindrical void with circular cross section in an infinite matrix
• the matrix material is rigid and perfectly plastic
• the material behaviour is described with the von Mises yield criteria
• the material is fully plastic in the unit cell
• ‘generalized plane strain’ conditions are assumed
• The infinite unit cell is loaded with an axisymmetric radial stress rr and with an

uniaxial strain ez in axial direction.

McClintock derived the following void growth law:

_R
R
¼

ffiffiffi
3

p

2
_~ez sinh

ffiffiffi
3

p ~rr
Re

� �
�

_~ez
2

ð19Þ

Following Gross and Seelig [112], Eq. 19 can be transformed into an evolution
law which describes void volume growth:

_f
f
¼

ffiffiffi
3

p
_~e
v
sinh

ffiffiffi
3

p
ð~r

m

Re
� 1
3
Þ

� �
ð20Þ

Rice and Tracey Model

The basis for the development of the void growth model acc. to Rice and Tracey
[211] is a spherically shaped void in an infinite matrix. Similar to McClintock, the
matrix material is assumed to be rigid and perfectly plastic.

Using these approximations, they obtained their well-known void growth model:

_R
R
¼ a_~e

v
e
3 ~rm
2Re with a ¼ 0:283 ð21Þ

To be able to compare the different void growth models, the radial growth _R is
converted into void volume growth _f :

_f
f
¼ a� _~e

v
e
3 ~rm
2Re with a� ¼ 0:849 ð22Þ

The original Rice and Tracey model is not able to describe a strain hardening
material behaviour. Perfect plastic material behaviour is assumed in the derivation
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of their model. In practice, the yield strength Re is often replaced by the current
yield stress σ0 or by the equivalent stress σv respectively to take material hardening
into account. However, the micromechanical background does not cover this
assumption. Only for visco-plastic material behaviour a solution of the problem is
known [64].

Several other authors which applied the model to experimental data achieved
different results for the factor α: The research group Beremin [35] found α = 0.5,
Shi [246] α = 0.6 − 0.7, Pardoen et al. [190] α = 0.4 and α = 0.34, Maire et al. [165]
confirmed the original factor of Rice and Tracey α = 0.283, Marini et al. [168]
recognized a dependence of α on the volume fraction f0 and Bandstra et al. [16]
recognized a dependence of α on stress multiaxiality.

In the following, the extension by Huang [124] of the Rice and Tracey will be
discussed.

Huang also solved the mechanical problem of a spherical void in an infinite
matrix. However, compared to Rice and Tracey, he assumed much more complex
shape functions for describing the stress field in the matrix. Due to the complexity
he solved the problem only numerically. For stress multiaxiality σm/σvM ≥ 1 he
received a value of α = 0.427. This value is close to the experimentally determined
Beremin value.

For smaller multiaxiality 1
3 � ~rm

Re
\1 Huang suggested the following equation:

_R
R
¼ 0:427 _~e

v ~rm

Re

� �1
4

e
3 ~rm
2Re ð23Þ

3.2.2 Coupled Models

Lemaitre Type Models

The basis of Lemaitre’s models [153–159] are the works of Kachanov [134] and
Rabotnov [208]. When calculating the macroscopic stresses ~rij these authors took
into account the decrease of the loaded cross section caused by voids, see Fig. 36.
This results in an increase of the averaged stresses acting in the matrix, the so called
effective stress:

matrij ¼ ~rij
1� D

ð24Þ

For the derivation of his model Lemaitre made the following assumptions and
simplifications:

• The increase in volume caused by void growth is neglected.
• In the elastic range there is a linear relationship between stresses and strains for

the matrix material.
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• Damage D is coupled with the elastic strains.
• The elastic and plastic strains do not depend directly on each other.
• The damage D and the plastic strains do not depend directly on each other.

For the derivation of his damage law Lemaitre followed thermo-mechanical
approaches. For the description of the material state he selected the internal variable
r to describe the plastic equivalent strain and D to describe the material damage.
The associated state variable R is related to the internal variable r. R describes the
material hardening in dependence of r. The state variable associated with D is called
Y which is defined in such a way that the product Y _D is equal to the dissipated
energy caused by fracture.

To describe the yield limit Lemaitre used the von Mises yield criterion.
Derogating from the original model he replaced the equivalent stress in the total
material by the equivalent stress in the matrix, where the function R(r) described the
hardening of the matrix material:

u ¼ ~rvM

1� D
� Re � RðrÞ ¼ 0 ð25Þ

To deduce the damage evolution via the normality rule Lemaitre selected a
non-associated flow rule. With this, the damage evolution is calculated as:

_D ¼ �Y
A
_~e
pv
Hð~epv � cep

vÞ; ð26Þ

where A is a material dependent scalar. By means of the Heaviside step function H
the damage evolution starts when reaching the critical strain cep

v
. The associated

state variable Y can be calculated with:

dV

K

dS

dSD

n
n

F
dF

Fig. 36 Volume element with voids, acc. to [159]
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Y ¼ � ~rvM
� �2

2Eð1� DÞ2
2
3
ð1þ mÞ þ 3ð1� 2mÞ ~rm

~rvM

� �2
" #

ð27Þ

In addition, Lemaitre often indicated the following extended evolution equation
for damage [153, 156, 157]:

_D ¼ �Y
A

� �s0
_~e
pv
Hð~epv � cep

vÞ; ð28Þ

where s0 is an additional material dependent parameter.
In the following two modifications of the Lemaitre approach will be discussed.
Bonora [50] modified the evolution equation proposed by Lemaitre in the fol-

lowing way:

_D ¼ a
Dc � D0ð Þ1a
ln ende

starte

� � f
~rm

~rvM

� �
Dc � Dð Þa�1

a

_~e
pv

~epv
with

f
~rm

~rvM

� �
¼ 2

3
ð1þ mÞ þ 3ð1� 2mÞ ~rm

~rvM

� �2
ð29Þ

The damage evolution starts with the value D0 and grows up to the critical value
Dc at which failure is predicted. starte denotes the strain at the beginning of damage
and ende the fracture strain (both under the assumption of uniaxial loading).

In contrast to most of the other models Bonora et al. [48, 50, 51] describe
explicitly how to determine the material dependent parameters.

Chaboche et al. [69] modified the Lemaitre approach to take into account the
volume growth induced by void growth. Lemaitre neglected this volume change in
his model. In the new formulation acc. to Chaboche et al. hydrostatic stresses can
induce plastic hydrostatic strains which induce a change in volume.

Gurson Model

The aim of Gurson was to derive a yield criterion and a flow rule for a ductile
material containing voids [115, 116]. His model takes into account the influence of
the hydrostatic stress on void growth and on the plastic deformation behaviour. The
new defined yield criterion represents an upper limit for yielding.

For the derivation of his yield criterion Gurson made the following assumptions
for simplicity:

• Gurson defined a unit cell which contains a single void and derived a yield
criterion for a spherical void in a spherical matrix.

• The assumed material behaviour of the matrix is rigid/perfectly plastic and is
described by the von Mises yield criterion.
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With a brilliant derivation Gurson obtained the following upper bound
approximation for the yield function:

u ¼ ~rvM

Re

� �2

þ2f cosh
3~rm

2Re

� �
� 1� f2 ¼ 0; ð30Þ

where Re is the yield strength of the matrix material and not that of the whole unit
cell.

With a similar derivation strategy Gurson [115] succeeded to transform
approximately the Rice and Tracey model [211], see Eq. 21, into a yield function,
that means, into a coupled model:

u ¼ ~rvM þ 2 a f Ree
3~rm
2Re � Re ¼ 0 mit a ¼ 0:283 ð31Þ

The number of published modifications and extensions of the Gurson model is
quite high. This depends among other things on the fact, that the original,
unmodified Gurson model cannot describe correctly void growth in strain hardening
materials [199, 270, 277, 279].

Good, but not exhaustive overviews can be found for example in [29, 32, 46,
232, 235]. Some of the major extensions of the Gurson model will be discussed in
the following:

Modification of the Gurson yield function for strain hardening materials

To take strain hardening into account Gurson [115] suggested to replace the
yield strength Re of the perfectly plastic matrix material by the averaged current
yield stress σ0 in the unit cell. To calculate this averaged yield stress σ0, which is
dependent on the material hardening, he suggested the following relationship:

r0 _e
pv ¼ ~rij _~e

p
ij

1� f
ð32Þ

With this assumption, the Gurson model loses much of his micromechanical
background. Pardoen and Besson [32] indicated that this simplification is only
approximately permitted if the hardening exponent is less than 0.2.

A much broader suggestion to describe the material hardening is made by
Leblond, Perrin and Devaux [152] with her LPD model. They developed an ana-
lytical model for the behaviour of a spherical void in a spherical hardening matrix
material.

Modification of the Gurson model of Tvergaard

Starting point for the development of the so-called Gurson Tvergaard model (GT
model) [277] was the experimental work of Weinrich and French on shear band
mechanisms [96, 97, 288]. Tvergaard attempted to simulate the shear band for-
mation mechanisms with plane cell model calculations. For his cell model
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simulations with finite elements he assumed regularly arranged voids in a hardening
elastic-plastic matrix. Due to the assumption of plane strain condition, he simulated
the voids as infinitely long cylinders with circular cross sections. To simulate the
behaviour of this cell model with a continuum mechanical macroscopic model,
Tvergaard used the Gurson model which was actually derived for spherical voids.
His results showed that the Gurson model overestimates the results from the cell
model calculations. To get a better match with his cell model calculations,
Tvergaard introduces three empirical constants q1, q2 and q3:

u ¼ ~rvM

r0

� �2

þ 2fq1 cosh q2
3~rm

2r0

� �
� 1� q3f

2 ¼ 0 ð33Þ

Due to the introduction of the ‘adjusting parameters’ [277] the micromechanical
background of the original Gurson model becomes questionable.

For the best parameter combination to describe the behaviour of cylindrical
voids in copper and brass he found the following values:

q1 ¼ 1; 5; q2 ¼ 1; 0 and q3 ¼ q21 ð34Þ

In the same paper [277] Tvergaard mentions that the q-parameters are dependent
on the hardening exponent of the material. Numerous studies show that the
q-parameters can be influenced by:

• stress multiaxiality
• material hardening
• void shape
• void arrangement
• void volume
• kinematic hardening
• plastic strains

A more detailed discussion of the factors can be found in [244].

Additional modifications of the Gurson model

In literature, numerous modifications of the original Gurson or GT model can be
found. Some examples are mentioned in the following:

• Pan et al. [186] extended the Gurson Tvergaard (GT) model for the description
of viscous material behaviour.

• Gologanu et al. [110, 264] derived a void growth model for ellipsoidal voids in
an ellipsoidal unit cell.

• Feucht et al. [91] and Ockewitz and Sun [183] tried to improve the model for
low stress multiaxiality by coupling the GT model with the Johnson-Cook
model [132, 133].

• An alternative suggestion to improve the failure prediction in the shear range is
given by Nahshon et al. [177]. Nahshon et al. took the yield function of the GT
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model without modifications. To improve the results in the shear range, they
expanded the evolution law for the calculation of the void volume growth with
an additional term:

_f ¼ ð1� fÞ_~epii þ kxfxð~rklÞ
~sij _~e

p
ij

rvM ð35Þ

In Eq. 36 the function xð~rklÞ depends on the third invariant of the stress
deviator.

The kinematic and mixed isotropic kinematic approaches referred to in literature
rely almost exclusively on the work of Gurson, Tvergaard, and Gologanu. An
overview of these models can be found in Besson and Guillemer-Neel [42].

Rousselier Model

Based on the thermo-mechanical approaches by Lemaitre and Chaboche [154] and
own early works [223], Rousselier derived a model for simulating ductile damage.
His model [220, 224] describes the elastic-plastic deformation and failure behaviour
of a porous material, i.e. a material with voids. Rousselier defined a continuum
mechanical yield condition with an associated flow rule:

u ¼ ~rvM

q
þ D rkf exp

~rm

qrk

� �
� r0 ~ep

v� � ð36Þ

Here r0 describes the hardening behaviour of the overall material. D and σk are
two integration constants resulting from the derivation. The original Rousselier
yield criterion was derived for isothermal behaviour and small strains. In [220]
Rousselier discusses these two points. He indicates that mainly the yield curve and
the material-dependent constant rk depend on the temperature. The second inte-
gration constant D is assumed to be material independent D = 2. In the form
presented here, it is assumed that q � 1� f:

u ¼ ~rvM

1� f
þ rkðTÞf D e

~rm

ð1�fÞrkðTÞ � r0ð~epv ; TÞ ð37Þ

The assumption rk ¼ rkðTÞ is not in contrast to the derivation of the original
model. Whether D is temperature dependent or not is still an open point in
literature.

Sainte Catherine et al. [229] and Poussard et al. [204] extended the Rousselier
model for strain-rate dependent material behaviour. They selected a strain
rate-dependent flow curve and extended the Rousselier model by defining rk as a
function of strain rate:
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u ¼ ~rvM

1� f
þ rkð_eÞf D e

~rm

ð1�fÞrkð_eÞ � r0ð~epv ; _eÞ ð38Þ

These authors do not violate any assumptions made in the derivation. The
theoretical nature of Rousselier the yield function is not affected by their
modification.

In contrast to the extensions shown before Tanguy and Besson [265, 266]
modified the yield condition more extensively. For the definition of their
visco-plastic material law the authors introduced the effective equivalent stress reff .
In their formulation reff describes the behaviour of the matrix material and not of
the overall material.

Lorentz et al. [163] showed that the constitutive equations of the Rousselier
model are not convex with regard to all variables and therefore the solutions
obtained do not have to be unique. To ensure a robust solution they proposed,
among other things, to calculate the void growth not only from the plastic hydro-
static strains, but also to take into account the elastic parts. In addition they defined
the yield condition and the constitutive equations with Cauchy stresses. Future
applications will demonstrate whether and in which cases the new yield criterion
provides comparable or better results compared to experiments.

Rousselier et al. [221, 222] formulated a polycrystalline damage model. Such a
polycrystalline model allows the simulation of the orientation of crystal lattice and
the resulting slip systems. This should improve the description of anisotropic and
cyclic material behaviour. Rousselier et al. indicated that the needed computing
time is not significantly higher than for other advanced material models and thus
macroscopic structures can be simulated.

3.2.3 Discussion of the Void Growth Models

The micromechanical-based void growth models can be compared on the basis of
the predicted void growth [2]. Only the empirical Lemaitre model, which uses a
damage parameter, cannot be compared directly to the other models. For the
comparison of the models the parameters and equations given in the original
publications, see Table 1, are used.

As postulated in the derivations perfectly plastic behaviour of the matrix material
is assumed. For the comparison of the models, it is postulated that failure occurs
when a critical void volume fc is reached. If the plastic equivalent failure strain is
plotted as a function of the stress multiaxiality [10, 237] so called limit strain curves
result. With the assumption of a critical void volume fraction of fc ¼ 0:05 the limit
strain curves calculated with the models are shown in Fig. 37.

It can be seen that all the predicted curves are in a relatively narrow scatter band.
This is not surprising, since all models are based on very similar basics.
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At high multiaxialities the models of Rousselier, Gurson and Rice and Tracey (in
the formulation of Gurson) produce comparable results. Lower fracture strains are
only predicted by the original Rice and Tracey and McClintock model.

For low multiaxialities the Rousselier and the Rice and Tracey model (both
formulations) give similar results. In comparison to this, the Gurson and
McClintock model predicts much higher fracture strains.

3.3 Models to Describe Void Coalescence

The mechanism of void coalescence depends on the one hand on the microstructure
of the materials, on the other hand on the external loads, see Sect. 2.3. However,
which mechanism occurs and how to model it numerically has been investigated so
far least of the three failure stages (initiation, growth, coalescence) [36, 187, 190].

Table 1 Comparison of void growth models

Model name Equation
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ffiffiffi
3

p
_~e
v
sinh
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Fig. 37 Limit strain curves determined with different void growth laws, fc = 0.05
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Most authors assumed [137, 294] for their derivation that void coalescence can
microscopically be described by plastic collapse of the material bridges between the
single voids. Only the model proposed by Brown and Embury [61] describes the
formation of shear bands. None of the models can predict which one of the two
mechanisms is activated. Several approaches to model void coalescence are dis-
cussed in the following.

3.3.1 Coalescence When Reaching a Critical Void Volume, a Critical
Void Growth or a Critical Damage Condition

The simplest and most often used approach is to assume the occurrence of void
coalescence when a critical void volume fc [240, 281, 292] or a critical void growth
R=R0ð Þc [35, 36, 167, 246, 247] is reached.

f� fc ð39Þ

Based on experiments, Lemaitre also suggested that a critical damage [155]
describes the final fracture. All these approaches are based on fractographic
observations finding a void growth nearly independent of the multiaxiality of the
stress state, e.g. [246].

The law defined by Tvergaard and Needleman [281], enabling the calculation of
an accelerated void growth during coalescence, can be assigned to this model
category as well. Since the original Gurson model predicts a, compared to exper-
iments, too small void growth when considering the state of advanced void growth,
Tvergaard and Needleman replaced the void volume fraction f by an empirical
function f�ðfÞ:

u ¼ ~rvM

r0

� �2

þ 2f�q1 cosh
3~rm

2r0

� �
� 1� ðq1f�Þ2 ¼ 0 ð40Þ

For f�ðfÞ, the following growth function is assumed:

f� ¼ f for f� fc
fc þ jðf � fcÞ for f[ fc

�

with the acceleration coefficient j ¼ f�u � fc
ff � fc

ð41Þ

fc is the void volume at which void coalescence is starting. ff is the void volume
at final fracture of the material. f�u can be calculated with the relation f�u ¼ 1=q1.
This approach simulates a continuous failing of the material. The empirical
assumption of continuous formation has the advantage of resulting in less con-
vergence problems in a finite element computation than a discontinuous formula-
tion of the damage evolution.
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In their studies, many authors find a more or less large dependence of the critical
void volumes on the multiaxiality of the stress state [9, 35, 36, 136, 247, 257, 275],
on the Lode angle [105, 235] and on the void shape [9]. This is contrary to
experimental works of Shi et al. [247] finding a rather minor dependence on mu-
liaxiality. These contradictions can possibly be solved by the volume portion of the
voids. With cell model calculations, Kim et al. [136] showed that the influence of
stress multiaxiality on the critical void volume is only minor when considering
small initial void volumes (f0 < 0.001). This observation is also described by
Scheyvaerts and Pardoen [234].

When using any model of this category it has to be taken care that metallo-
graphic meaningful values are used for the critical void volumes and void growth
rates.

3.3.2 Coalescence Triggered by Formation of Shear Bands Between
Voids

Brown and Embury [61] assume that the voids coalesce due to the formation of
shear bands between the single voids. As criterion for the critical strain ~ec between
void initiation and void coalescence, they found the following relation:

~ec ¼ ln

ffiffiffiffiffi
p
6f

r
�

ffiffiffi
2
3

r !
ð42Þ

This theory is supported by several experimental and numerical studies [149,
213, 245].

3.3.3 Plastic Limit Load-Model by Thomason for the Calculation
of Void Coalescence

The best-known models describing the plastic collapse of material bridges between
voids are the coalescence criteria by Thomason [271, 272, 275]. Thomason derived
stress-based criteria for the description of void coalescence for different loading
conditions and void geometries. In his derivations, he assumed cubic primitive
arranged unit cells having one void at the center each, see Fig. 38. The material
deformation behaviour of the matrix between the voids is assumed to be rigid/
perfectly-plastic.

For the derivation of a three-dimensional coalescence criterion [272, 273] he
assumed periodically arranged cuboidal voids with quadratic cross sections. The
principal load direction is perpendicular to the quadratic base. The distance of the
voids perpendicular to the principal load direction is 2d, the void height is 2a and
the side length of the quadratic voids is 2b, see Fig. 39. For the localisation zone
between the single voids, Thomason assumed simple displacement rate fields.
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Doing so, he obtained an upper limit for the load [47]. Thomason approximated his
complex solutions for the upper limit of the ultimate load with the empirically
found relation:

Fig. 38 Cubic primitive arrangement of unit cells

Fig. 39 Sizes and distances of cuboidal voids with cubic primitive arrangement [272]
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~rcI ¼ matRe 1� n2
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n�1 � 1

j
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þ1:2 n�
1
2

 !
with n ¼ b

d
and j ¼ a

b
ð43Þ

Here matRe is the yield strength of the matrix material. In order to be able to apply
Eq. 43 to ellipsoidal voids as well, Thomason assumed that he can set the semi-axes
of the ellipsoid (Ra und Rb) equal to the length of the sides of the cuboidal voids (a,
b) [272, 273], see Fig. 40. He claimed this approximation to be valid as long as the
void volume is smaller than 0.2. Analogous to Eq. 43 he obtained an upper limit for
the ultimate stress acting macroscopically at the unit cell:

~rcI ¼ matRe 1� n2
� �

0:1
n�1 � 1

j

� �2

þ1:2n�
1
2

 !
with n ¼ Rb

d
and j ¼ Ra

Rb
ð44Þ

The Thomason-criterion is also used to compute a critical void volume fc that
depends on the state of strain or stress. In this case, fc is not a material constant any
more but a variable [293].

In order to incorporate material hardening, Pardoen et al. [187] enhanced the
coalescence criterion derived by Thomason, Eq. 44. For the matrix surrounding the
void, they assumed the following material law:

matr0 ¼ 1þ Eep

Re

� �n

Re for matr0 [Re ð45Þ

Equation 44 is replaced by the empirical formulation:

rc
I ¼ matr0 1� n2

� �
aðnÞ n�1 � 1

j

� �2

þbðnÞn�1
2

 !
with n ¼ Rb

d
and j ¼ Ra

Rb
ð46Þ

Fig. 40 Sizes and distances
of ellipsoidal voids [272]
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The values of α and β depend on the hardening exponent n. In the range of
0� n� 0:3 the authors found aðnÞ ¼ 0:1þ 0:217nþ 4:83n2 and bðnÞ ¼ 1:24:

3.3.4 Yield Criterion to Describe Material Behaviour in the Case
of Plastic Collapse

To describe the material behaviour during void coalescence for arbitrary stress
states, Benzerga [26] introduced an empirical yield condition based on the works by
Pardoen and Hutchinson [187]:

u ¼ ~rvM þ 3
2
~rmj j � 3

2
~rcI ¼ 0 ð47Þ

Seen in the principal stress space, his yield surface has the form of a double cone
with the symmetry axis being on the hydrostatic stress axis, see Fig. 41.

The fact that the stress state around a void changes drastically during coales-
cence, as known from cell model calculations, is accounted for by the transition to
the new yield surface. This approach models void coalescence as a continuous
process.

3.3.5 Simulation of Void Coalescence Using Void Growth Models

Void growth models like the Rousselier- or the Gurson model also implicitly
predict void coalescence. When the void volume fraction is about to reach 1 in the
Rousselier- and Gurson model, respectively q�1

1 in the GT model, the calculated
stresses go to zero. Values of about one for the void volume however are unreal-
istically high seen from a metallographic point of view. Likewise the predicted
stress decreasing for high void volumes is too slow. The stresses in the Rousselier

Fig. 41 Benzerga yield
surface in the principal stress
space
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model approach zero only asymptotically. Due to these deficiencies, these void
growth laws are in practice almost exclusively used in combination with an addi-
tional coalescence criterion.

3.3.6 Discussion of the Models Describing Void Coalescence

The models describing coalescence processes differ in their mechanisms. It is
therefore difficult to compare them directly. Pardoen et al. [190] studied the growth
and coalescence processes of voids in technical pure copper with different material
hardening for different stress multiaxialities. They compared the following coa-
lescence criteria:

• critical void growth
• shearing of material bridges (Brown & Embury criterion)
• plastic collapse of material bridges (Thomason-criterion)

They concluded that none of the models can reproduce the whole spectrum of
investigated multiaxial stress states independently.

3.4 Common Combinations of Damage Models
and a Comparison

To describe the whole process of dimple fracture, model combinations describing
all three phases (void initiation, void growth and void coalescence) are needed. In
principle it is possible to combine any models depending on the used material
behaviour. However, in practice certain model combinations have become estab-
lished and are successfully applied by a variety of users in research and industry.

3.4.1 Gurson, Tvergaard and Needleman (GTN) Model Combinations

The certainly most common combination of models describing void initiation, void
growth and coalescence is the so-called Gurson-Tveergaard-Needleman model
combination (GTN model) [39, 56, 90, 164, 176, 182, 238, 258, 259, 262, 263].
Although it is a combination of three independent damage mechanics models, the
GTN combination is very often just called GTN model. Following models are
combined in the GTN model combination:

• Void initiation by Chu and Needleman [72]
• Model of void growth by Gurson und Tvergaard [277]
• Void coalescence criterion by Tvergaard and Needleman [281]

Besides the initial void volume f0, the characteristic length lc (see Sect. 3.5) and
the flow curve of the whole material, up to 10 additional material-depending
parameters are needed for the GTN model:
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se; eN; w; j; rN; sr; q1; q2; fc and j ð48Þ

The large number of parameters that are in addition usually hard to determine
presents a disadvantage [49, 51, 275] of the GTN model. From literature research it
is known that different parameter sets can yield the same global response [1].
Especially the empirical parameters, having no actual physical meaning, cannot be
identified independently. This problem will be discussed in Sect. 3.6.

3.4.2 Rousselier Seidenfuss (RS) Model Combination

Since the Rousselier model is not able to model the steep stress decrease occurring
in void coalescence with sufficient accuracy, Seidenfuss proposed [146, 241] to
combine the Rousselier model with a critical void volume for modelling void
coalescence. This so-called RS model combination is often used in literature to
describe the failure behaviour of different materials [67, 79, 81, 142–145, 191, 205].

• Modelling of void initiation. The above mentioned model combination assumes
that an initial void volume f0 exists, respectively, that the volume is created right
after the yield stress is exceeded. These assumptions have been confirmed by a
variety of authors, [8, 23, 59, 87, 89, 113, 125, 146, 190, 213, 243, 266, 274, 293].

• Void growth model of Rousselier [224]
• Void coalescence when reaching a critical void volume [240]

Besides the initial void volume f0, the characteristic length lc and the flow curve
of the material mix, only 3 more model dependent material parameters are needed
when using the RS model combination.

Many practical applications show that the GTN and RS model combinations
yield similar results [20, 31, 175, 191, 241].

3.4.3 Gologanu, Leblond and Devaux (GLD) Model
with Thomason-Criterion

The GLD model for the simulation of material behaviour with void growth of
nonspherical voids has been combined very often with the Thomason coalescence
criterion in form of a yield function [26, 188, 189]. Additionally, different model
combinations in connection with the GLD model have been used, e.g. [105].

• Modelling of void initiation. In a first approximation, it is also assumed that the
whole initial void volume f0 exists from the beginning on.

• Model of void growth by Gologanu et al. [110, 264]:
• Model of void coalescence by Thomason [272] and Benzerga [26]
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3.5 Mesh Dependency of Results and Definition
of a Characteristic Length

Caused by increasing material damage resulting from the initiation and growth of
voids, the material sooner or later starts to soften. If the material softens in a certain
limited volume, strain localisation resulting in a shear band can occur. Therefor
material models being able to capture material softening must be capable of pre-
dicting the finite dimension of strain and damage localization.

All so far presented material models are local models. Local means here that e.g.
the stresses at a material point A are only dependent on the local state variables at
that point. Neighbouring material points do not influence the stresses at point A.
However, such a behaviour would only be valid for a perfectly isotropic and
homogeneous material. Macroscopically seen, real metals and metal alloys fulfill
these requirements only in a coarse approximation since they have a discrete
microstructure resulting in inhomogeneity on microscopic scale. Material constit-
uents have a finite size and influence each other. A void growing at point A can
influence the growth of a neighbouring void at point B. This reciprocal influence is
not considered with local material models.

Real mechanical problems can usually not be solved analytically, numerical
approximations like e.g. the method of finite elements are used. If material softening
is simulated with a local material model in combination with finite elements, the
ellipticity of the initial-boundary value problem is lost and a bifurcation problem
results. This means that a homogeneous strain respectively damage field will get
unstable against a strongly localized one [209]. Since the method of finite elements
approximates the displacement field volume by volume, the strains respectively
damages cannot localize in an infinitely thin band due to the mathematical defi-
nition. The width of the localization zone is coupled with the size of the elements.
This effect leads to the very often in literature discussed pathologic mesh depen-
dency of results. The localization problem can only be solved by introducing an
additional parameter, the characteristic length lc.

Using finite element computations, the localisation problem is solved in practice
very often by introducing a constant material-specific element size in areas where
material softening can occur [18, 19, 39, 46, 90, 182, 224, 240]. Very often authors
assume that the width of localization zones is directly related with the distance of
the primary, failure causing voids [18, 62, 100, 107, 128, 150, 188, 199, 224, 240,
262, 292].

Numerous practical applications [45, 62, 86, 182, 216, 240, 241, 262] show that
the problem can be solved satisfactorily (seen engineering-wise) this way. For steel
materials, element sizes in the range of a few tenth of a millimeter result [20, 62,
100, 107, 135, 146, 199, 224, 240, 266].

A more general approach to solve the localisation problem and to avoid the mesh
dependency of results is provided by the so-called nonlocal damage models as
discussed in detail in Sect. 4.
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3.6 Determination of the Material Dependent Parameters

When using damage models for simulating specimen and component behaviour it is
not only necessary to select appropriate models but also crucial to determine the
needed parameters reliably and uniquely. Although the majority of the presented
models is in use for over 20 years now, no verified standardised procedures for the
determination of the used parameters are available.

Determination procedures described in literature and/ or used in practice:

• Metallographical and fractographic determination of the parameters out of the
microstructure of the material,

• direct or iterative determination out of macroscopically measured values from
simple specimen or

• adaption to results of cell model computations are described shortly in the
following sections.

3.6.1 Determination of the Parameters Out of the Microstructure
of the Material

Since the models have been derived from micromechanical theories, some of the
needed material dependent parameters have a direct relation to the microstructure.
Examples are the initial void volume fraction f0, the characteristic length lc as well
as the critical void volume fraction fc. The determination can be done with met-
allographical cuts and/or with tomographic methods. The advantage of this method
is that parameters can be determined isolated and conclusively without other
parameters interfering. Drawbacks are an often occurring strong scattering of
measured material constituents values as well as a relatively large fuzziness in the
determination of the parameters [240].

3.6.2 Direct or Iterative Determination Out of Macroscopically
Measured Values from Simple Specimens

Various parameters resulting from the derivations of the models or having been
introduced as adjusting parameters do not have a direct relation to the micro-
structure and can therefore not be determined with metallographic methods. These
parameters can partly be determined directly out of the load-deflection behaviour of
a specimen or indirectly through a numerical adaption to experimental results.

The indirect determination is also called numerical calibration. Hereto, the
deformation behaviour of a selected specimen is being simulated with finite ele-
ments. The parameter to be determined is varied in the simulation until a satisfying
accordance between simulation and experiment is found.
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The geometry of the specimen has to be chosen in a way that allows a preferably
independent identification of the single parameters. The variation of a parameter
should have a preferably large influence on the calculated macroscopic specimen
behaviour. The numerical calibration has been tested in an European round robin
test with only little success [31]. Values determined by the different participators
turned out to have significant differences.

Springmann and Kuna [253, 255] present a method allowing an automatized
determination of damage-mechanical parameters. Their approach is based on a
nonlinear optimisation algorithm. With their method they tried to determine the
material-dependent parameters out of the load-deformation behaviour of a simple
specimen (notched flat tensile specimen, notched round tensile specimen, C(T)-
specimen). However, it turned out that basically only one parameter can be
determined with certainty. The other parameters have to be known. If more than one
parameter is optimised with only one experiment, the parameters cannot be
determined conclusively.

An advanced approach for a numerical parameter identification is presented by
Springmann in [254]. Within this approach not only the macroscopic specimen
length change is measured but additionally the displacement field on the surface
with an optical measurement method [5]. Using a nonlinear optimisation algorithm
several parameters can be adapted simultaneously. The authors claims that a
maximum of 4 parameters can be identified with the adaption to the displacement
field at the same time. The method could certainly be improved by using not only
the result of one experiment but several specimen with different multiaxial stress
states simultaneously.

3.6.3 Adaption to Results of Cell Model Computations

Often, damage-mechanical parameters are identified by adapting them to results of
cell model calculations [136, 137, 141]. The results of cell model computations are
strongly influenced by the chosen boundary conditions [141, 244]. The quantitative
identification of parameters for real materials is therefore not or only with strong
restrictions possible, additionally, the validity has to be scrutinized very critically.

3.7 Concluding Remarks Considering Damage-Mechanical
Models

The different damage models have often been compared among each other with
respect to their ability to predict the failure behaviour in comparison to experiments.
Especially the GTN model and the Rousselier model—in its original as well as in
the RS formulation—have been investigated quite often. However, it is in the nature
of such comparisons that different authors come to different conclusions:
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• For fracture mechanics, some authors conclude that the models yield similar
results [175, 241], while others see an advantage in the Rousseliermodel, e.g. [20].

• Pineau [200] calculates the behaviour of notched round tensile specimen with
the models of Rice & Tracey, Rousselier and GTN. Compared to experiments,
all three models deliver similar results, however, the Rousselier model has a
slight advantage.

• An European ring round robin test also showed that the RS model delivers better
results than the GTN model when compared to experiments [31] although less
material-dependent parameters are needed.

• When considering cyclic loading in both tension and compression, theGTNmodel
surely will deliver better predictions since the Rousselier model cannot describe a
decrease of void volume when loading in compression occurs. Research done by
e.g. Steglich et al. [256] shows that the LPD model which is based on the Gurson
model can basically describe the processes occurring in cyclic plasticization.

• However, when considering loading with low multiaxiality, the original
Rousselier model seems to have an advantage compared to the GTN model as
Besson et al. [41, 43] shoed using the example of fractures with shear lips. Due
to the basic assumptions in the derivation of the discussed models none of the
models will give satisfactory results for very low multiaxialities like pure shear.

• Perrin and Leblond [194] on the other hand see advantages in the GTN model.
In a theoretical study connected with a self-consistent unit cell they find dis-
advantages in the mathematical formulation of the Rousselier model.
A restriction of this study is the used ‘Rousselier’ yield condition in a modified
form. It is not stated how or from where it was derived.

A disadvantage of the micromechanical-based damage models based on the
employed approach is the disability to correctly model a sharp crack tip occurring in
a structure. The damage-mechanical approaches model the growth of the crack by a
decrease of stress in the damaged elements. Since an element has a finite volume,
the crack thus always has the width of this volume. In practice this circumstance is
explained with a damage area growing in the vicinity of the crack tip. Since the
damaged elements are usually not deleted from the structure stiffness matrix, such
elements can lead to numerical problems. Suggestions on how to transform the
volume damage to a crack path can for example be found in [80, 170, 249].

4 Nonlocal Damage Models

In experiments that are carried out until specimen’s failure, i.e. the complete loss of
integrity of the material, technical steels typically show the formation of a process
zone: while large parts of the specimen are deformed purely elastically, micro-
mechanical processes such as plasticity or damage take place locally limited. The
size of the process zone is determined by the micromechanical structure of the
material and thus represents a material property.
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4.1 Localization

The increase of strain or stress caused by the nucleation of microcracks or voids in
the vicinity of microstructural defects or inclusions can lead to the localization of
strain [226] in the process zone. This results in an increased evolution of damage
[278, 279] and therefore to a further narrowing of the micromechanical active
region. With increasing damage the load bearing capacity of the material reduces;
with increasing strain a local decrease of stress is observed as local softening [109].
The force-displacement-curves of tensile tests with porous materials with hardening
matrix materials show a maximum, which is followed by a region with a negative
slope. This is caused by geometrical and material softening.

As shown in Sect. 3, in the framework of continuum mechanics, material soft-
ening can be reproduced by the consideration of damage in a plasticity model. With
increasing damage lower stresses lead to plastic flow, the yield surface and thus the
elastic region decrease.

The static equilibrium of a simple softening plastic continuum is unstable [180]
and leads to strain localization. Mathematically, this means the loss of ellipticity [55]
of the underlying system of differential equations, which is now of hyperbolic type.

The strain localization at the loss of ellipticity theoretically takes place in an
infinite small zone. If a discretization of the continuum under investigation is carried
out prior to the solution of the boundary value problem, the size of the localization
zone is determined by the discretization size [55, 197]. When using the finite element
method this effect is called mesh sensitivity: for meshes of smaller element sizes, the
size of the localization zone reduces. As a result, the energy dissipated by damage
converges to zero for infinitesimally small elements. This contradicts the experi-
mental observation that both the size of the localization zone as well as the energy
dissipated by the failure of the material are material properties [109].

4.2 Regularization Methods, Non-local Formulations

As shown in the previous section, the modeling of ductile damage within the
framework of continuum mechanics of simple materials in combination with the
numerical solution of the corresponding system of partial differential equations
results in two fundamental properties of the considered problem: First, the material
softening leads to instability of the material behavior. Second, material instability
and strain localization are directly connected due to the strong interactions between
increase of strain and evolution of damage for simple continua. For the numerical
treatment of the boundary value problem this results in a size of the localization
zone that depends on the discretization.

One possibility for setting a fixed size of the localization zone when using the FEM
is to define a characteristic element size [38, 39, 184, 239]. In this method strain
localization and material softening will take place within a certain element, element
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row or element layer, depending on the dimension of the problem. The element edge
length becomes a model parameter. Thus, the accuracy of the solution cannot be
judged by conventional convergence criteria. Furthermore, considerable numerical
disadvantages arise in the treatment of problems with different length scales.

With the help of regularization approaches material softening and strain locali-
zation can occur independently. The use of so-called non-local formulations thus
differs fundamentally from the pragmatic method above: the loss of ellipticity and
the influence of discretization are eliminated [53, 196, 198, 259, 260].

The reduction of the mesh dependence which occurs when continuum damage
models are used numerically was the subject of numerous physically motivated and
phenomenological approaches. Reviewing articles can be found in [21, 85, 130, 193].

The fundamental approach of non-local formulations to reduce localization
effects caused by discretization is to consider a finite region of surrounding material
in the underlying equations

f ðxÞ ) f ðx; �xÞ; ð49Þ

where x and �x are local and non-local variables, respectively. This can be done
efficiently by averaging a variable within an area characterized by a certain length
parameter.

Depending on how averaging is done non-local formulations can be divided into
non-local integral types [22, 196], explicit [54] and implicit gradient methods [84,
192]. Other classification may distinguish whether internal variables of a consti-
tutive model or stresses and strains are averaged. Finally non-local formulations
may be divided into weakly non-local and strongly non-local formulations
[21, 130].

4.2.1 Nonlocal Integral Types

When using non-local integral type approaches a local variable x is replaced by its
non-local average �x which is calculated by integrating the weighted local variable

�xðxÞ ¼ 1
B

Z
B

GðnÞxðxþ nÞdB: ð50Þ

The influence of the surrounding material characterized by the distance vector n
on the considered material point is given by the definition of the weight function
GðnÞ. Here, typically GAUSSIAN or similar bell-shaped functions are used, which
must at least satisfy the condition

1
B

Z
B

GðnÞdB ¼ 1: ð51Þ
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Integral type approaches are strongly non-local methods, as the integration is
carried out over the entire body under consideration. They are numerically robust
methods and can in principle be applied to every type of constitutive models. In the
treatment of complex geometries, the weight functions GðnÞ must meet high
standards, which requires the use of numerically robust algorithms in three
dimensions.

4.2.2 Explicit Gradient Formulations

A formulation of Eq. 50 using gradients can be derived using Taylor series at the
material point under consideration

xðxþ nÞ ¼ xðxÞ þ rxðxÞ 	 nþ 1
2!
rðrxðxÞÞ

: n
 nþ 1
3!
rð3ÞxðxÞ 	 	 	 n
 n
 nþ 	 	 	 ð52Þ

Assuming isotropy and substituting back in Eq. 50, Eq. 52 gives

�xðxÞ ¼ xðxÞ þ cr2xðxÞ þ dr4xðxÞ þ 	 	 	 ð53Þ

and after neglecting gradients of higher order an explicit gradient formulation of
Eq. 50 can be written in reduced form as

�xðxÞ ¼ xðxÞ þ cr2xðxÞ: ð54Þ

Explicit gradient methods are weakly non-local methods, since only the infini-
tesimal neighborhood of a material point is taken into account. Compared with
nonlocal integral type approaches explicit gradient formulations possess significant
numerical disadvantages [131, 193]. The constant

ffiffiffi
c

p
is introduced as an length

parameter that controls the influence of the surrounding material.

4.2.3 Implicit Gradient Formulations

Differentiating Eq. 53 twice and reordering gives

r2xðxÞ ¼ r2 �xðxÞ � cr4xðxÞ � dr6xðxÞ � 	 	 	 ; ð55Þ

and after substituting Eq. 55 back into Eq. 53

�xðxÞ � cr2 �xðxÞ ¼ xðxÞ þ ðd � c2Þr4xðxÞ þ 	 	 	 ð56Þ

Thus, after neglecting higher gradients as done in Eq. 54 one finds an implicit
gradient method to carry out the non-local averaging as
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�xðxÞ � cr2 �xðxÞ ¼ xðxÞ: ð57Þ

As well as non-local integral type approaches, implicit gradient formulations are
strongly non-local formulations and are much easier to implement numerically
compared to explicit methods. However, the partial differential equation of the
HELMHOLTZ type Eq. 57 represents an additional field equation which necessi-
tates the formulation of additional, possibly non-physical boundary conditions.
A critical discussion of possible boundary conditions can be found in [193].

4.2.4 Non-local Formulations of Ductile Damage Models

The development of non-local formulations of ductile damage models has been the
subject of numerous publications. Non-Local modifications of the GTN-model
(Sect. 3.4.1) can be found in [82, 129, 151, 160, 210, 280]. Samal and coworkers
[231] developed an implicit gradient formulation of the ROUSSELIER model
(Sect. 3.4.2, [224]. From the above-mentioned modifications, the implicit gradient
formulations used in [209, 230] spatially average the rate of the (modified) void
volume fraction in a non-local sense

_d � cr2 _d ¼ _f : ð58Þ

The non-local modification of the GTN-model by Linse et al. [126, 160] is based
on the micro-dilatational approach [95] and replaces the dilatational part of the
plastic strain ep by its non-local spatial average

�ep � cr2�ep ¼ ep; ð59Þ

where the rate of the non-local plastic strain enters the evolution equation for the
growth of existing voids.

5 Combination of Damage Models in the Brittle-Ductile
Transition Region

In the brittle and brittle-ductile transition region of ferritic steels cleavage fracture
initiates at microcracks, while microvoids nucleate as a result of plastic deformation
in the upper shelf. A consistent and independent description of these microme-
chanical processes is needed if the entire toughness region of ferritic steels is to be
analyzed.
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5.1 Beremin Model—Uncoupled Probabilistic Model
for Cleavage Fracture

For ferritic steels, the brittle and transition region is characterized by a large scatter
of fracture toughness values that results from the statistical distribution of micro-
cracks. Using the WEIBULL theory, the BEREMIN-model was developed to
describe cleavage of ferritic steels [37, 174]. Here, three fundamental assumptions
are made:

• microcracks are created during plastic deformation; the probability density
function for the size of the microcracks follows a constant power law

• the critical stress of each microcrack is determined by the GRIFFITH criterion
• weakest-link: the propagation of one single crack leads to the failure of the

whole structure.

Under these assumptions, the probability of failure for a specific load level L is
derived by

Pf ðLÞ ¼ 1� exp � rW ðLÞ
ru

� �m� �
: ð60Þ

The WEIBULL-stress rW is calculated as

rW ðLÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
V0

Z
Vpl

ðrIðLÞÞmdVm

vuut ; ð61Þ

where rI is the maximum principal stress and Vpl the plastic volume of the struc-
ture. The reference volume V0 must be large enough to represent the microstructure
of the material as well as small enough to fulfill the requirements of the Griffith
criterion. If the reference volume is chosen constant, the BEREMIN model uses two
model parameters: the WEIBULL reference stress ru and the WEIBULL-modulus
m.

Bordet et al. [52] showed that most of the problems that arise in engineering
applications of the model are a result of a oversimplified description of local
cleavage in the BEREMIN-model. Most modifications of the BEREMIN-model
[37, 100–104, 139] change the calculation of the WEIBULL-stress. Bernauer et al.
[40] proposed a modification that takes into account that the nucleation of voids is
promoted by the presence of carbide particles. Consequently, the number of
cleavage initiation points is reduced with the increase of the nucleated void volume
fraction.

Note that in the sense of the classification of damage models given in Sect. 3.2
the BEREMIN-model and its modifications must be termed uncoupled, since
cleavage is not modeled for each individual microcrack but rather by quantifying
the cleavage fracture probability of many microcracks.
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In principle, the BEREMIN-model for the calculation of the probability of
cleavage fracture can be used together with a ductile damage model to account for
ductile crack growth preceding cleavage in the transition region [4, 227]. In con-
junction with the Griffith criterion the stress fields must be resolved very accurate
which requires the use non-local ductile damage models in the presence of high
stress gradients. However, following the weakest-link assumption, the model can-
not predict cleavage crack arrest and thus most likely underestimates the fracture
toughness values in the case of such effects as pop-in or crack arrest, see e.g. [127,
161]. In [161] fracture toughness values were predicted by numerical simulation of
fracture mechanics tests using a combination of a non-local GTN-model together
with the BEREMIN model. The calculated values agree well with experimental
results in the brittle region and in the ductile region. However, in the brittle-ductile
transition region, the predicted fracture toughness values are much smaller than the
experimental values.

5.2 Coupled Models for Cleavage Softening

Among simplified strip yield models, e.g. [98], softening of metals by cleavage is
mostly modeled in a coupled way by means of cohesive zone elements, see e.g.
[140]. Here, softening initiates when the maximum principal stress exceeds the
cohesive strength and the work of cohesive separation can be correlated to the
fracture toughness.

The combination of cleavage softening with ductile damage models was realized
numerically using computational cell simulations, see e.g. [99, 179, 248]. Here,
discrete volumes of material (cells) are removed on a the basis of a stress criterion
for cleavage, ductile damage is modelled in a continuous way. The results strongly
depend on the discretization, since not only the accuracy of the computed stress and
strain fields depend on the chosen mesh size, but the properties of the micro-
structure are directly correlated to the chosen cell size.

In [127] a consistent continuum formulation covering both cleavage softening
and ductile damage is formulated using a non-local modification of the GTN model
[126, 160] together with a cohesive zone model [219] for cleavage. The developed
formulation captures many effects known from experiments such as the constraints
sensitivity, cleavage initiation, cleavage crack propagation and crack arrest
(pop-ins), a size independent lower-bound toughness and the possibility of stable
cleavage crack propagation. The simulations were performed with homogeneous
material properties and a high sensitivity with respect to small deviations of the
material parameters was obtained in the transition region. However, in contrast to
the application of probabilistic models, statistical predictions on the failure of
structures cannot be obtained with this type of model.
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6 Conclusions

Within this article the micromechanical processes leading to dimple fracture are
discussed in detail. It is shown that for this kind of fracture mode the processes
leading to material failure are similar for very different metals and metal alloys.
Especially the processes leading to void initiation and void coalescence are com-
plex and depend to a great extent on the microstructure of the selected materials. To
describe the three phases of dimple fracture at high stress multiaxialities a large
number of different mathematical approaches are available. The special focus of this
paper is on so-called micromechanical-based models.

For the micromechanical derivation of the void initiation models, many sim-
plifications must be made concerning the microstructure, the material behaviour and
the initiation mechanisms. Hence, to select an adequate model for the considered
material metallographic examinations are essential. It is also recommended to
calibrate the material specific parameters on the basis of metallographic observa-
tions when using such micromechanical-based models. To take all the parameters
only from literature or to use only numerical calibration procedures is not recom-
mended at all.

Since the basics for the derivation of the void growth models are similar, the
received results are comparable when taking into account the assumptions made in
the derivations of the models. However, when these assumptions are not valid for a
given material, e.g. when observing strain hardening, this can lead to different
results of the models. In conclusion it can be said that none of the discussed void
growth models is able to describe exactly the micromechanical processes in a strain
hardening material in a wide range of stress multiaxiality. The Gurson model in the
GT, LDP and GLD formulation has probably the largest potential in describing void
growth.

The particular void coalescence models describe different kinds of merging
mechanisms. Therefore a direct comparison is difficult. Pardoen et al. [190] com-
pared different coalescence criteria. They came to the conclusion that none of the
models is able to describe independently the whole area of the examined mul-
tiaxiality range. To simulate the different micromechanical processes during void
coalescence, probably several models must be coupled.

In summary it can be said that the all models should be selected with respect to
material and microstructure. If possible, the material-dependent parameters needed
for the models should be determined metallographically or the numerically adjusted
parameters should be verified with metallographic values. It is surely not reco-
mended to regard the parameter determination as pure adaptation procedure to
experimental values. Thus, there is a risk that the micromechanical background of
the models is lost and the models are reduced to pure ‘fitting models’ [275].

The greater the number of material-dependent parameters is, the more difficult a
unique determination is. Especially for the GTN-model, the large number of
parameters partly difficult to access is often felt as a disadvantage [49, 51].In
particular, the empirical parameters which have no physical background, cannot be
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determined independently. The following quote summarises the problem in deter-
mining the material-dependent constants:

The limited success that has been achieved with the dilational-plastic models of ductile
fracture is mainly the result of the large number of adjustable parameters that have been
incorporated in the models. These models can now act in an analogous manner to a
polynomial curvefitting technique, and the parameters (q1, q2, fc, fF, fu) can be suitably
adjusted to give a reasonable fit to any particular set of experimental results [275].

While basically applicable for the prediction of cleavage failure probabilities,
uncoupled BEREMIN-type models most likely overestimate cleavage fracture in
the presence of ductile damage. For the case of using coupled cleavage softening
models, it remains open to perform (numerically expensive) Monte-Carlo-
simulations for statistical failure predictions. In both cases, non-local formula-
tions of ductile damage models are advantageous.
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Recent Trends in the Development
of Gurson’s Model

Jacek Jackiewicz

Abstract The original Gurson model for porous materials has undergone numer-
ous modifications in order to improve its adequacy with experimental or numerical
results. In this chapter various modifications of Gurson’s model and models created
on the basis of the idea of Gurson’s model are presented. This chapter includes the
following issues: (i) development of Gurson’s model, (ii) development of models
for nucleation, growth and coalescence of voids and (iii) modification of Gurson’s
model for failure prediction under shear deformation.

1 Introduction

The year 2015 marks the 40th anniversary of the publication of a PhD thesis of
Gurson, in which yield criteria and flow rules for porous materials were proposed,
centering around the effect of void nucleation and growth, as observed during
ductile fracture. Along the past 40 years, the original formulation of Gurson’s
model, established in a micro-mechanical context, has been continuously developed
by many scientists. This model has been subjected to many studies, various
improvements, as well as criticisms. However, the research interests in Gurson’s
model do not decline. Based on Web Search Engines, which index the full text of
scholarly literature across an array of publishing formats and disciplines the fun-
damental ideas of Gurson’s model have appeared in over 400 publications each year
in the last five years. The present chapter summarizes the recent trends in the
development of Gurson’s model. Emphasis on description of particular results is put
in order to direct the reader’s attention to valuable new applications and promising
or interesting ways of solving problems in ductile fracture of polycrystalline metals.
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Among others, the following main topics are explored with respect to Gurson’s
model: Sect. 2 reviews the development of Gurson’s model; Sect. 3 presents the
general development of models for nucleation, growth and coalescence of voids;
the modification of Gurson’s model for failure prediction under shear deformation
is discussed in Sect. 4; and finally, some concluding remarks are given in Sect. 5.

2 Development of Gurson’s Model

Since experiments show that the ductile fracture of metals involves nucleation,
growth and coalescence of voids, the study of the constitutive behavior of the
porous material has become the basis of the ductile damage and the ductile fracture
analysis. McClintock [1] considered the deformation of a cylindrical cavity in an
infinite, perfectly plastic matrix material subjected to axial and transverse stresses.
The same problem but for the growth of an initially spherical void in an infinite
matrix was analyzed by Rice and Tracey [2]. Needleman [3] performed finite
element analysis of large flow in two-dimensional models of porous materials.

The standard methodology in homogenization theories pioneered in the works of
Mandel [4] and Hill [5] is to connect macroscopic quantities through volume
averaging of their microscopic counterparts by means of generic cell models, which
are applied to accommodate for the micro-macro coupling. However, Gurson [6]
was the first who developed a damage-based plastic yield criterion and flow rules for
a porous ductile material based on the micro-macro approach of limit analysis about
the hollow sphere model with a von Mises solid matrix and subjected to conditions
of homogeneous boundary strain rate. More precisely, based on a rigid-perfectly
plastic analysis of spherically symmetric deformation around a spherical cavity,
Gurson [6] established a macroscopic yield condition for porous metals in the form:

Req

r0

� �2

þ2ft cosh
3Rh

2r0

� �
� 1� f 2t ¼ 0; ð1Þ

where fυ is the porosity (void volume fraction), σ0 = const. represents the tensile
yield stress of the ideal plastic matrix material, Σh denotes the macroscopic
hydrostatic stress and Σeq is the macroscopic von Mises equivalent stress. The
plastic matrix is assumed to fulfill the following von Mises microscopic yield
criterion:

f ðrÞ ¼ reff � r0 ¼ 0 ð2Þ

with
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where σ denotes the microscopic stress tensor, σdev its deviatoric part and σeff the
microscopic von Mises effective stress. Generalizations to include hardening matrix
material were also made.

For a porous representative volume element Ω containing voids that occupy
volume ω, a basic microstructural variable consists of the void volume fraction
fυ ≝ ω/Ω. Due to the plastic incompressibility of the material surrounding the void
(i.e., the matrix material) and the neglect of its elastic deformations, the change in
material volume may only originate from the variation in the volume of the voids.
Hence, _x ¼ _X so that the change in porosity during plastic deformation is given by
the evolution equation:

_ft ¼ d
dt

x
X

� �
¼ 1� x

X

� � _X
X
: ð4Þ

The above equation may be restated as

_ft ¼ 1� ftð ÞtrDp; ð5Þ

where Dp is the tensor of plastic macrostrain rate. Other evolution equations, which
take into account nucleation and growth of voids, have been considered.

Note that the strain additive decomposition is used: D = De + Dp, where D is the
tensor of total strain rate, whereas De is the tensor of elastic strain rate, which
components are significantly smaller than components of Dp for finite strains. In
addition the rate of the Eulerian finite strain tensor _E ¼ FT � D � F ffi D because, in
the case of application of an updated Lagrangian finite element method, it is
assumed that F = I + δF, where F is the deformation gradient tensor and I is the unit
tensor.

Based on the approximation of Koplik and Needleman [7] for the elastic dila-
tation, the porosity change due to the elastic deformation of material can be stated
as

ft ¼ 1� 1� ft0ð ÞV0

V
1þ 3 1� 2mð Þ

E
Rh

� �
; ð6Þ

where V0 and V are the initial and current volumes of the cell, respectively; fυ0 is
the initial porosity, ν is Poisson’s ratio and E is Young’s modulus of the matrix
material.

If the matrix is rigid plastic with isotropic strain hardening, the flow effective
stress of the matrix material σe relates to the effective plastic strain epe as
re ¼ re epe

	 

, the macroscopic yield surface obtained from Gurson’s model is

identical to Eq. (1) with σe substituting σ0.
According to the equivalence between the rate of macroscopic plastic work Rij _E

p
ij

and the rate of plastic work dissipated in the matrix material inside the same
representative volume element 1� ftð Þre _epe , what can be mathematically written as
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Rij _E
p
ij ¼ 1� ftð Þre _epe ; ð7Þ

the rate of the effective yield stress of the matrix takes the form:

_re ¼
hRij _E

p
ij

1� ftð Þre ; ð8Þ

where h ¼ dre=depe .
Gurson’s analysis consists in the use of the kinematic approach of limit analysis

in order to obtain an upper bound to the macroscopic criterion of the spherically
porous material, at least in the sense of the celebrated composite sphere assemblage
of Hashin and Shtrikman [8–10]. In conformity with upper bound theories, the
velocity field of the unit cell model needs to meet both the incompressibility
conditions and the kinematical boundary conditions at the inner and outer radius of
the hollow sphere. Since the Gurson model is based on upper bound plasticity
theory, this model will overestimate the material strength and underestimate the
porosity in the material by restricting void growth. The overestimation of the
material strength might result from the assumption of the fully plastic flow fields.

The original Gurson criterion (1) for porous materials has undergone numerous
modifications in order to improve its adequacy with experimental or numerical
results. To improve agreement between predictions of Gurson’s yield criterion and
experimental data, Tvergaard [11] introduced three additional calibration parame-
ters q1, q2 and q3 in the structure of this criterion. He suggested the values q1 ≈ 1.5,
q2 ≈ 1 and q3 � q21 based on considerations of bifurcation in shear of a square array
of cylindrical holes. Tvergaard’s criterion takes the form:

Req

re

� �2

þ2q1ft cosh q2
3Rh

2re

� �
� 1þ q3f

2
t

	 
 ¼ 0: ð9Þ

Further, Tvergaard [12] gave the meaning of q1. Assuming that the ultimate
value of void volume fraction, denoted by fυU, is the porosity at which the mac-
roscopic stress carrying capacity vanishes, Eq. (9) reduces to:

2q1ftU � 1þ q3f
2
tU

	 
 ¼ 0: ð10Þ

Note for the case where q3 � q21, the ultimate void volume fraction is calculated
as fυU = 1/q1.

It is worth to stress that voids coalesce before they grow to the point, at which
they touch. Brown and Embury [13] revealed that coalescence occurs between two
voids when the length of the voids is approximately equivalent to the spacing.
Therefore, a critical void volume fraction, fυC, is used in addition to the ultimate void
volume fraction, fυU. Quite often it is assumed that fυC is approximately 0.15. For
most engineering alloys, however, following the localization of plastic deformation,
coalescence occurs at a relatively low void volume fraction (fυ < 0.1). Once the voids
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begin to coalesce, there is an enhancement in the change of void volume fraction
during an increment of deformation. Several methods were introduced to include the
void coalescence in Gurson’s model. The most widely used one is the method
proposed by Tvergaard and Needleman [14]. They proposed a two-part yield con-
dition, the first part producing the original yield loci for void volume fractions less
than fυC and the second part including the enhancement occurring for void volume
fractions greater than fυC. As a result of substituting in Eq. (9) a function f �t ðftÞ in
place of the variable fυ, the two-part yield condition takes the form:

UGTN R; re; f
�
t

	 
 ¼def Req

re

� �2

þ2q1f
�
t cosh q2

3Rh

2re

� �
� 1� q1f

�
t

	 
2¼ 0: ð11Þ

According to the above condition, the yield loci depends on the function f �t ðftÞ
specified by:

f �t ftð Þ ¼
ft; for ft � ftC
ftC þ ftU�ftC

ftF�ftC ft � ftCð Þ; for ft [ ftC

(
ð12Þ

where fυF is the void volume fraction at fracture (when material load-carrying
capacity vanishes). Based on the results of a numerical model analysis by
Andersson [15] for initially spherical voids in a rigid-perfectly plastic matrix
subjected to a highly triaxial stress state, Tvergaard and Needleman recommended
fυF = 0.25.

The modified Gurson model, which consists of Eqs. (11) and (12), is often
referred in literature as the Gurson-Tvergaard-Needleman (GTN) model. In con-
ditions prevail to promote ductile fracture, the material porosity is usually very
small until just prior to fracture, when the stress carrying capacity of the material
having ductile properties is reducing rapidly.

Koplik and Needleman [7] stated that the parameters qi (i = 1, 2, 3) are arbitrary
constants required to ensure the relevant dependence of the equivalent plastic strain
Ep
eq on the porosity growth Δfυ for various values of the imposed macroscopic stress

triaxiality ratio, T ≝ Σh/Σeq. Based on extensive comparisons with FE cell model
results, Koplik and Needleman [7] showed that using values of q1 ≈ 1.25 and q2 ≈ 1
in the range 1 ≤ T ≤ 3, the GTN model (11) captures well, after the onset of
localization, the very little growth of the macroscopic equivalent plastic strain Ep

eq,
the rapid breaking down of the macroscopic Mises stress Σeq, as well as the rapid
increase of the void volume fraction fυ, which marks the development of coales-
cence. It was also shown that the failure strain is significantly reduced for increasing
stress triaxiality. However, for T = 1/3 and other low triaxialities the GTN model
overestimates the rate of void growth and, moreover, works slightly worse for high
stress triaxiality cases. They also noted that q1 should increase with decreasing
strain hardening.

The good performance of the GTN model can be rationalized by considering the
rate of increase of porosity _ft. For rate-independent plasticity, Eq. (5) becomes
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_ft ¼ 1� ftð Þ _K @UGTN

@Rh

@Rh

@R11
þ @Rh

@R22
þ @Rh

@R33

� �
¼ 1� ftð Þ _K @UGTN

@Rh
; ð13Þ

where the property of macroscopic normality is used and _K is the rate of the plastic
multiplier. By elimination of the plastic multiplier _K ¼ Dp

eq= @UGTN=@Req
	 


,
Eq. (13) can be written as:

_ft
1� ft

¼ @UGTN

@Rh

�
@UGTN

@Req

� �
Dp

eq: ð14Þ

Combining Eqs. (11) and (14) one gets:

_f �t
1� f �t

¼ 3
2
q1q2f

�
t
re
Req

sinh q2
3Req

2re
T

� �
Dp

eq; ð15Þ

which shows the exponential effect of stress triaxiality on void growth, a well
known trend found by Rice and Tracey [2].

In addition, Koplik and Needleman [7], and Zhang [16] suggested on the basis of
FE cell model studies that fυC and fυF vary slowly with stress triaxiality and with
matrix strain hardening, but depend strongly on the initial porosity fυ0.

Perrin and Leblond [17] derived an estimate for q1 assuming q2 = 1 based on an
analytical solution of a hollow sphere with a porous matrix loaded hydrostatically.
Using a self-consistent scheme they obtained q1 = 4/e = 1.47, which is close to the
value of 1.5 proposed by Tvergaard [12].

FE cell model studies indicated that the values assigned to q1 and also q2,
significantly vary with geometry and loading conditions [7, 18]. Such variations
revealed that the introduction of the qi (i = 1, 2, 3) factors may not be simply
associated with a physical interaction effect, but are likely to reflect some inaccu-
racies in Gurson’s model.

As stated in [19] and [20] the qi factors may depend on different features, such as
the elastic and inelastic material parameters, as well as the void volume fraction fυ.
Trying to adjust the qi factors to the computed data it was found in [21] that there is
not a set of constant-value qi factors that are able to predict all of the calculated
asymptotic stress responses of FE cell models. In addition, it was found that for
q2 = 1 the GTN model cannot reproduce all actual shapes of macroscopic yield
surfaces established by FE cell models with a sufficient accuracy. In particular, the
shape transition of macroscopic yield surfaces from the convex surfaces with
regular continuous bending field for fυ ≈ 0.1 % to smooth convex surfaces for high
porosities (fυ ≥ 10 %) is rather not possible.

Mear and Hutchinson [22] were the first to introduce linear kinematic hardening
into the Gurson yield function. They incorporated the effects of anisotropic
(kinematic) hardening by replacing in Eq. (1): Σeq of Σ

dev with Σeq of (Σ – α) dev; Σh
of Σ with Σh of Σ – α, where α is the back stress defining the center of the yield
surface in the stress space; and σ0 with συ ≝ ɓ σ0 + (1 − ɓ) σe, where σ0 is the initial
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yield stress of the matrix, σe the current yield stress, ɓ = 0 represents isotropic
hardening and ɓ = 1 kinematic hardening.

To take account for the development of description of shear bands for the
yielding process, Richmond and Smelser [23] have also proposed a modified form
of Gurson’s yield criterion. They introduced the concept of an effective void vol-
ume fraction in the framework of Gurson’s yield criterion. Their modification of
Gurson’s yield criterion for porous materials with isotropic matrices can be stated as

Req

re

� �2

þ2fmt cosh
3m
2

Rh

re

� �
� 1� f 2mt ¼ 0: ð16Þ

The main reason for this modification was that a cubic array of spherical voids
may yield in shear at lower stress than predicted by Gurson’s model, which gives an
effective volume fraction proportional to fmt (with m = 2/3 for a non-hardening
material and m = 1 for a linearly hardening material). They also suggested that
m = (2 + n)/3 for a material obeying the stress-strain power law re ¼ K epe

	 
n
, where

K and n are the strength coefficient and strain-hardening exponent, respectively.
Afterwards, Sun and Wang [24] were the first who constructed the statically

admissible stress field around the spherical void and determined the lower bound
yield function for porosity as follows:

Req

re

� �2

þ
ft b1 sinh

3Rh
2re

� �
þ b2 cosh

3Rh
2re

� �h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b4f 2t sinh2 3Rh

2re

� �r � b3 ¼ 0 ð17Þ

where the coefficients βj (j = 1, 2,…, 4) for fυ ≤ 0.3 can be established via numerical
analysis as

b1 ¼ 0; b2 ¼ 2� 1
2
ln ft; b3 ¼ 1þ ft 1þ ln ftð Þ; ð18aÞ

b4 ¼
b2
b3

� �2

coth2
3R0

h

2re

� �
� 1

f 2t sinh2 3R0
h

2re

� � with R0
h ¼def�0:65re ln ft: ð18bÞ

Assuming an incompressible isotropic hardening matrix material Leblond et al.
[25] derived another yield function (extended Leblond-Perrin-Devaux model, acr-
onymed as the LPD model) based on the analysis of a spherical void in a spherical
volume element:

Req

re1

� �2

þ2q1f
�
t cosh q2

3Rh

2re2

� �
� 1� q1f

�
t

	 
2¼ 0; ð19Þ
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where the quantities re1 and re2 result from a re-calculation of the homogenisation
problem for hardening material. Usually, the re1 and re2 in Eq. (19) are identified
with a single parameter, the yield stress r0 in the case of an ideal plastic matrix
material, or with an weighted effective flow stress re epe

� 
r

	 

related to some

weighted effective plastic strain epe
� 

r through the hardening law of the matrix
material. Moreover, the re1 and re2 were introduced to overcome some drawbacks
of Gurson’s model: (i) the Gurson model cannot simultaneously determine with the
same precision yield stresses under pure shear and pure hydrostatic tension for
hardenable matrices, (ii) for a hollow sphere in hydrostatic tension made of a rigid
hardening material, predictions determined by Gurson’s model are incompatible
with the analytical solution, and (iii) the Gurson model cannot reproduce the
dependency of the porosity growth rate on the hardening function of the matrix.

To avoid the discrepancies mentioned above, Leblond et al. [25] performed a
homogenization of the boundary value problem of a spherical void in a hardening
matrix and derived the following expressions:

re1 ¼
1

b3 � a3

Zb3
a3

re epe
� 

r

	 

dr3; ð20aÞ

re2 ¼
1

ln b3=a3ð Þ
Zb3
a3

re epe
� 

r

	 
 dr3
r3

ð20bÞ

with

epe
� 

r¼
2
3

sinh�1 uð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p

u

" #u¼2
3E

p
kk= Ep

eqR
3ð Þ

u¼2
3E

p
kk= Ep

eqr3ð Þ
; ð21aÞ

b3 ¼ exp Ep
kk

	 

; ð21bÞ

b3 � a3 ¼ 1� ft0 ) a3 ¼ exp Ep
kk

	 
þ ft0 � 1; ð21cÞ

R3 ¼ r3 � b3 þ 1; ð21dÞ

where the hollow sphere (i.e. the representative volume element—RVE) has a
current, internal radius a (i.e. the radius of the pore) and a current, external radius b,
whereas R (A ≤ R ≤ B) and r (a ≤ r ≤ b) correspond to the initial and current radial
distances of the RVE point from a fixed origin, respectively. The initial radii of the
hollow sphere are A and B (where B is assumed to be equal 1.0 for reasons of
computational simplicity).

Comparing two different expressions (20a) and (20b) for re1 and re2 respec-
tively, it is clear that re1 and re2 cannot be identical due to a different weighting
factor for the region in the vicinity of the pore, where the stresses, as well as strains
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are naturally greater even in the case of the overall plastic deformation of the matrix
material.

In the GTN model the parameter q2 is usually used to correct the void-growth
overestimation, which is generated by the implementation of the original Gurson
model. For the case of complete softening of the material that has completely lost
cohesion and cannot carry any stresses, Hommel [26] introduced the scaling factor
lnðq1f �t Þ=ln ftð Þ to reset the argument of the cosh function of the LPD model, when
the value of q1f

�
t tends to 1. Thus, the LPD model takes the form [27]:

Req

re1

� �2

þ2q1f
�
t cosh

ln q1f
�
t

	 

ln ftð Þ q2

3Rh

2re2

� �
� 1� q1f

�
t

	 
2¼ 0: ð22Þ

For the purpose of the description of plastic anisotropy resulting from the
non-spherical void evolution, the effects of void aspect ratio should be accounted.
Since the void aspect ratio S significantly affects void coalescence, even when the
voids are initially spherical in the porous material, an evolution law for S should
also be derived.

Constitutive models incorporating void shape changes were proposed, among
others, byGologanu et al. [28, 29], andPonteCastañeda andZaidman [30].Employing
amicromechanical analysis tobothprolate andoblate spheroidal voids,Gologanuet al.
[31] extended the Gurson model, which is known in the literature as the
Gologanu-Leblond-Devaux (GLD)model. TheGLDmodel is based on the analysis of
the growth of a spheroidal void in afinite, perfectly plastic solidwith an outer confocal
surface subjected to homogeneous straining. Formathematical convenience, theGLD
model is expressed in termsof the inner andouter eccentricities, e1 and e2, respectively,
which are uniquely related to fυ and S by the following equations:

e1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� exp �2jSjð Þ

p
; ð23Þ

1� e21
1� e22

� �n�

¼ ft
e1
e2

� �3

with n� ¼def 1; for prolate shape: ‘p’ ðS� 0Þ
1=2; for oblate shape: ‘o’ ðS\0Þ :

�
ð24Þ

Pardoen and Hutchinson [32] developed the GLD model and the evolution
equation of void aspect ratio S for the axisymmetric problems of strain-hardening in
the material matrix, what can be mathematically written as

C� Rz � Rr þ gRh

re

� �2

þ2q gþ 1ð Þ gþ ftð Þ cosh j
Rh

re

� �
þ

� gþ 1ð Þ2�q2 gþ ftð Þ2¼ 0;

ð25Þ

_S ¼ 1þ hShThtð Þ _Ep
z � _Ep

r

	 
þ hSt _Ep
kk; ð26Þ
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and

Rh ¼ 2a2Rr þ 1� 2a2ð ÞRz: ð27Þ

The phenomenological energy balance, expressed by Eq. (7), for plastic work
originally proposed by Gurson [6] is retained by Pardoen and Hutchinson [32].
However, this energy balance equation is not used in the model of Gologanu et al.
[31], developed on the basis of perfect plasticity of the material matrix.

The parameter g in Eq. (25), which is defined as

‘p’: g ¼def 0 and ‘o’: g ¼def e32=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e22

q
ð28Þ

can be interpreted as a correction (shape) factor for porosity of the real material with
spheroidal voids referring to the fictitious material with ideal spherical voids. Note
the Gurson model, given by Eq. (1), is recovered from Eq. (25) when S = 0. The
following parameters and internal functions used in Eqs. (25)–(27) emerge from the
micromechanical analysis carried out by Pardoen and Hutchinson [32] and are
expressed in terms of the e1 and e2:

‘p’: a2 ¼ 1þ e22
3þ e42

; ‘o’: a2 ¼
1� e22
	 


1� 2e22
	 


3� 6e22 þ 4e42
; ð29Þ

‘p’: j�1 ¼ 1ffiffiffi
3

p þ 1
ln ftð Þ

ffiffiffi
3

p
� 2

� �
ln

e1
e2

� �
þ 1ffiffiffi

3
p ln

3þ e22 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ e42

p
3þ e21 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ e41

p
 !

þ ln

ffiffiffi
3

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ e41

p
ffiffiffi
3

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ e42

p
 !#"

;

ð30aÞ

‘o’ : j�1 ¼ 2
3
þ

2
3 gt � g1ð Þ þ 2

5 g5=2t � g5=21

� �
4
3 � g5=2t � g5=21

� �
ln gt=g1ð Þ ; ð30bÞ

with ‘o’: gt ¼def g
gþ ft

and g1 ¼def g
gþ 1

; ð30cÞ

g ¼ jq 1� ftð Þ gþ 1ð Þ gþ ftð Þsh
gþ 1ð Þ2þq2 gþ ftð Þ2þ2q gþ 1ð Þ gþ ftð Þ j a1 � a2ð Þsh� ch½ 	 ; ð31aÞ

with sh ¼def sinh 2j a1 � a2ð Þð Þ and ch ¼def cosh 2j a1 � a2ð Þð Þ; ð31bÞ

‘p’: a1 ¼
e1 � 1� e21

	 

tanh�1 e1ð Þ

2e31
; ð32aÞ

‘o’: a1 ¼
�e1 1� e21

	 
þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e21

p
sin�1 e1ð Þ

2e31
; ð32bÞ
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C� ¼ � jq gþ 1ð Þ gþ ftð Þsh
g 1� ft þ 2g a1 � a2ð Þ½ 	 ; ð33Þ

hS ¼ 9a1 � aG1
21� 3a1

; ð34aÞ

with ‘p’: aG1 ¼def 1
3� e21

and ‘o’: aG1 ¼def 1� e21
3� 2e21

ð34bÞ

ht ¼ 1�
ffiffiffiffi
ft

p� �2
; ð35Þ

hSt ¼ 1� 3a1
ft

þ 3a2 � 1: ð36Þ

In addition, for the factor q that reflects the GLD model limitations to account for
interactions between cavities, Pardoen and Hutchinson [32] obtained by calibrating
numerical results in the domain fυ < 5 × 10−2 and S > −2 (and thus not for
penny-shaped cracks) the following expression:

q ¼ b� 1
p

����
���� tan�1 4ð2:5� TÞð Þ þ b

2
þ 1
2

ð37aÞ

with b ¼def 1þ 0:655� 1:75n� 0:533
ffiffiffiffi
ft

4
p� � 1

2
þ tan�1 2 1:2� Sð Þð Þ

p
þ

�
�0:0288 exp �1:08 0:2þ Sð Þð ÞÞ

ð37bÞ

Equations (37a) and (37b) represents a good fit of values of q in order to adjust
the void growth rates predicted by the GLD model to the void growth rates pre-
dicted by FE cell model computations in the early stages of straining. As indicated
in Eqs. (37a) and (37b), the necessity of decreasing the value of q for increasing n
had already been recognized by several authors (e.g., Koplik and Needleman [7],
Søvik and Thaulow [33]). The effect of the stress triaxiality ratio T on the factor q,
that is included in Eq. (37a), was also examined.

Pardoen and Hutchinson [32] adjusted the parameter hT appearing in Eq. (26) to
give the best predictions for the void shape rates _S (valid only for T < 4) at the two
following strain-hardening levels:

n ¼ 0:1: hT ¼ 1� 0:555T2 � 0:045T4 þ 0:002T6; ð38aÞ

n ¼ 0:3: hT ¼ 1� 0:54T2 þ 0:034T4 � 0:00124T6: ð38bÞ
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The form of the function, defined by Eq. (38a), in which the dependent variable
is hT for n = 0.1 is close to the one proposed by Gologanu et al. [31] for perfect
plasticity.

Note, based upon Eq. (37a), elongated prolate voids (S ≥ 0) give rise to a value
of q ≈ 1 for all values of n, which is consistent with the Gurson model for cylin-
drical voids. One of the possible extensions of the GLD model to arbitrary multi-
axial stress states can be found in [31].

Besides the classical Gurson model [6], the Gurson Hashin–Shtrikman upper
bound [34] and the Garajeu–Suquet upper bound [35], it is worth paying attention
to a micromechanics-based modification of Gurson’s criterion proposed by
Monchiet et al. [36] for porous media subjected to arbitrary loadings, which also
has the advantage to preserve the upper bound character. The modification of
Gurson’s criterion developed by Monchiet et al. [37] was derived in the framework
of limit analysis. The obtained formulation is the result of the consideration of
Eshelby-like exterior point trial velocity fields for the determination of the mac-
roscopic dissipation. Such an approach was implemented for perfectly plastic rigid
von Mises matrix containing spherical voids. Based on the minimization procedure,
for which the use of the Eshelby-like trial velocity fields was required, Monchiet
et al. [37] derived the following two-field estimate of the macroscopic yield
function:

Req

r0

� �2

þ 2ft cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9
4
R2
h

r2
0
þ 2
3q ftð Þ

R2
eq

r2
0

s0
@

1
A� 1� f 2t ¼ 0; ð39Þ

where q ftð Þ ¼def 1� 4ft 1� f 2=3t

� �2
= 1� ftð Þ. Note ρ(fυ) ≈ 1 for small values of the

porosity fυ.
Preserving the accuracy of the classical Gurson model for high stress triaxiali-

ties, the above criterion contains the equivalent stress Σeq in the argument of the
hyperbolic cosine function that makes the significant difference in comparison with
the criterion (1). However, the most important feature of the modification of
Gurson’s criterion is that for low stress triaxialities the derived yield surface is close
to the Hashin-Shtrikman bound established by Ponte-Castañeda [38] in the
framework of the non-linear homogenization applied to a RVE of isotropic porous
media.

More recently, Leblond et al. [39] criticized the prediction of Gurson’s model for
predictions of the porosity increase rate _ft. They noted that Gurson [6] considered
only the approximation of the overall plastic dissipation, based on the first-order
Taylor expansion of one term appearing in the integral defining it, which led to his
well-known homogenized criterion. The most important result of their research is
that the correction of the predicted porosity increase rate _ft brought by the second-
and third-order approximations to the first-order one, represented by _ft Gursonð Þ, are
quite significant as indicated in Fig. 1. For a fixed porosity fυ = 10−2, Fig. 1 shows
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that the porosity increase rate, predicted by the second- and third-order approxi-
mations and normalized by results of Gurson’s model, _ft=_ft Gursonð Þ, as a function of

the angle θ ≝ arctan (T), as well as normalized numerical values of _ft=_ft Gursonð Þ,
obtained by FE cell model computations, versus the angle θ.

Since all values of _ft=_ft Gursonð Þ achieved by FE cell model calculations, except
those corresponding to the second- and third-order approximations, are sensitive to
the value of Lode’s angle, three kinds of loadings, corresponding to the following
Lode angles θL: (i) 0° (axisymmetric load with major axial stress), (ii) 30° (pure
shear with superposed hydrostatic tension) and (iii) 60° (axisymmetric load with
major lateral stress), were considered by Leblond et al. [39]. The Lode angle is
defined in the work [39] as

hL ¼def 1
3
arccos

27
2
Rdev
1 Rdev

2 Rdev
3

.
R3
eq

� �
: ð40Þ

Madou and Leblond [40] made further progress in extending the famous Gurson
model to deal with general (non-spheroidal) ellipsoidal cavities, through approxi-
mate homogenization of some representative elementary porous cells. They per-
formed a limit-analysis of such a cell, which was represented by an ellipsoidal
volume made of some rigid-ideal-plastic von Mises material and containing a
confocal ellipsoidal void, loaded arbitrarily under conditions of homogeneous

Fig. 1 Comparison of values of _ft=_ft Gursonð Þ as a function of the angle θ (fυ = 10−2)
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boundary strain rate. Their analysis provided an estimate of the overall plastic
dissipation based on a family of trial incompressible velocity fields discovered by
Leblond and Gologanu [41], satisfying conditions of homogeneous strain rate on all
ellipsoids confocal with the void and the outer boundary. The asymptotic behavior
of the integrand in the expression of the global plastic dissipation was studied both
far from and close to the void. The results obtained by Madou and Leblond [40]
suggest approximations, leading to explicit approximate expressions of the overall
dissipation and yield function. The important parameters of these expressions are
estimated in [42].

The approximate analytic criterion proposed by Madou and Leblond [40, 42] for
plastic porous materials containing arbitrary ellipsoidal voids was validated in [43]
by comparing its predictions with the results of some numerical limit-analyses of
elementary cells containing such voids. Moreover, Madou and Leblond [44] pro-
posed an evolution equations for the length and orientation of the axes of the voids
to complete their analytic criterion.

Pastor and Kondo [45] adapted and extended 3D static and kinematic FEM
codes developed by Trillat and Pastor [46] for spherical cavities to the case of a von
Mises matrix containing spheroidal (and confocal) cavities, subjected to axisym-
metric loadings. The main objective of the research done by Pastor and Kondo [45]
was to assess existing analytical criteria, by providing the numerical lower and
upper bound limit analyses for various loading cases. The numerical developments
required by such study were described in detail. Pastor and Kondo [45] conducted
validation tests for a hollow sphere model with three values of porosity and models
of spheroid confocal cavities. The test, which concerned the hollow sphere model,
confirmed that the exact yield criterion of the homogenized material depends on the
third invariant of the macroscopic stress tensor such, as was found in [47]. The
subsequent tests, which concerned the models of spheroid confocal cavities, show
that the Gologanu [48] criterion should be preferred to that of Gologanu and
Leblond [28] and Gologanu et al. [29] for uniform strain rate on the boundary.
Moreover, the Monchiet et al. [36] criterion appeared as a good estimate for uni-
form strain rate loading at the boundary, despite the fact that it is based on a
kinematic approach under conditions, which can be interpreted as uniform stress
boundary conditions.

Based on micromechanical considerations and non-linear homogenization,
Stewart and Cazacu [49] obtained the macroscopic yield criterion incorporating
anisotropy for a porous material. The form of this criterion is similar, in a certain
sense, to the classical Gurson criterion. However, it was assumed that the matrix
material is incompressible, anisotropic and displays tension–compression asym-
metry. It should be emphasized that recently formulated yield criteria are quite often
examined with respect to Gurson’s model [50].

Benallal et al. [51] included the Lode angle in Gurson’s approach, which
allowed for analyzing the role of the third stress invariant in yielding of porous
materials. They carried out a profound assessment of these effects, whereby for
small porosities encountered on ductile fracture of metals, observed changes and
effective roles of the Lode angle are rather small although from the qualitative point
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of view, non-symmetry of the yield locus and changes on its curvature are
observed.

The elastic constants degrade with the evolution of the porosity in the material
and contribute to additional material softening. From a practical perspective, the
porosity in most metals is too small to be a significant factor, but should be
accounted for in the model for completeness. Weng [52] derived the Mori-Tanaka
[53] estimates of the effective shear and bulk moduli of a two-phase composite.
Therefore, the degraded shear G and bulk K moduli of a voided material can be
expressed as the following functions of their initial values and the porosity:

G ¼ G0 1� ftð Þ
1þ 6 K0þ2G0ð Þ

9K0þ8G0
ft
; K ¼ 4K0G0 1� ftð Þ

4G0 þ 3K0ft
; ð41Þ

where G0 and K0 are the initial (undamaged) values of shear and compressibility
modulus, respectively.

3 Development of Models for Nucleation, Growth
and Coalescence of Voids

A number of methods used in the theoretical description of the mechanism of the
nucleation of voids may be distinguished. Among these methods, there are two
main approaches—the first ones, based on the theory of dislocations, are used to
describe particles with small diameters (order of 1 μm or less than 1 μm), which
interact with dislocations strongly—the second ones, specified by the theory of
continuous media for particles with diameters greater than 1 μm, to characterize the
interaction of these particles with the matrix material.

In metals containing large inclusions in the form of clusters of manganese sulfide
or aluminum oxide, the nucleation of voids occurs as a result of fracture of
inclusions, which can be easily cracked in the initial stage of plastic deformation. In
this respect, it is assumed that nucleation of voids occurs almost imperceptibly at
the beginning of plastic deformation and is characterized by an initial microporosity
of the material, fυ0.

Continuous models of nucleation of voids should be applied in the case of
materials, in which voids nucleate from carbides or intermetallic phases. This
nucleation may be dependent on the stress/strain state.

Various models of the nucleation of voids are sometimes even contradictory to
each other, and could give contradictory estimates. Inconsistency results between
nucleation models are probably due to the fact that each of these models has been
developed for different types of alloy structures.

However, there are many common conclusions with respect to nucleation of
microvoids in materials that have been drawn independently. Most researchers
agree that larger second-phase particles lead to earlier nucleation than rather smaller
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ones [54–57]. Larger particles of the second phase contain more surface defects in
connections to the matrix material. Another common conclusion is that the equi-
axed inclusions are susceptible to decohesion from the metal matrix, while the
inclusions with different lengths of axis are prone to multiple cracking [56–60].

Scanning electron microscopy (SEM) coupled with energy dispersive spec-
trometry (EDS) can analyze the chemical composition of samples of material
(qualitative, semiquantitative and quantitative analysis). It is also possible to per-
form distribution maps of particular chemical elements that may comprise the
analyzed structure and the creation of three-dimensional, tomographic images of the
samples. Figure 2 shows the microstructure of a sample of aluminum-alloy AA
5182, which was illuminated with the monochromatic beam of high photon flux for
the acquisition of greyscale image with a voxel resolution of 0.7 μm at the
European Synchrotron Radiation Facility in Grenoble [61].

The total rate of increase in porosity is determined by summing the nucleation
and growth rate of new and existing voids, respectively

_ft ¼ _ftðnucleationÞ þ _ftðgrowthÞ ð42Þ

The void nucleation rate component may differ depending on the nucleation
criterion adapted. Chen et al. [62], in their study of AA5182 aluminum alloy, used a

Fig. 2 3D tomographic image of the AA5182 sheet with dimensions 70 μm × 70 μm × 70 μm
(a - particle/void cluster, b - fractured Fe-rich particles with voids, c - fractured Mg2Si particles
with voids) [61]
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criterion suggested by Gurson [63], which assumes that voids nucleate at second
phase particles and there is a normal distribution of nucleation strain for the total
population of particles

_ftðnucleationÞ ¼ A_eeff ð43aÞ

A ¼ tN
sN

ffiffiffiffiffiffi
2p

p exp � 1
2

epeff � eN
sN

� �2
" #

ð43bÞ

where υN is the volume fraction of all second-phase particles with potential for
microvoid nucleation, epeff is the effective plastic strain, εN and sN are the mean
strain for void nucleation and its standard deviation, respectively.

The GTN model can describe the effect of material weakening due to the growth
of existing microvoids in a ductile material, and thus may provide for their growth
rate during the plastic deformation by Eq. (5).

Coalescence of voids in the ductile material is the final stage of damage
development, and occurs after void nucleation at particles of the second material
phase and after their growth. During this process, there is a phenomenon of
localization of plastic deformation in the connecting layer between adjacent voids.
Faleskog et al. [19] distinguished two coalescence mechanisms that occur through
localizations of plastic deformation due to tension and shear.

A variety of models of microvoid coalescence was developed, and experimental
observations of this phenomenon were also conducted. To describe the evolution of
voids in ductile materials, the application of criteria of plastic flow for porous
ductile materials is more effective than the use of strict models of porous micro-
structures, which are usually constructed by means of finite-element computational
cells. Although the application of the initial yield and plastic flow criteria is more
effective than the use of the finite-element microstructure models, their application
requires, in addition, the incorporation of mathematical models for ductile micro-
void coalescence.

Some of the most important models of microvoid coalescence are as follows:
(a) model of Rosenfield and Hahn [64], (b) McClintock’s model [1], (c) model of
Hancock and McKenzie [65], (d) model of Budiansky, Hutchinson and Slutsky [66]
and (e) Thomason’s model [67–70] in particular.

Rosenfield and Hahn [64] introduced the term of the maximum sustainable size
of void diameter D:

ð44Þ

where σ determines the level of stress in the ductile material and is a material
constant. McClintock [1] proposed a criterion according to which coalescence
occurs, when the average size of voids reaches the average distance between voids.
Hancock and McKenzie [65] obtained the formula defining the void volume frac-
tion fυL required to occurrence the strain localization as a function of the triaxial
stress state:
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ftL ¼ 0:56 exp
3Rh

2reff

� �� ��1

: ð45Þ

According to Eq. (45) a lower volume fraction of voids in the ductile material
will be necessary to trigger the coalescence process, while the stress triaxiality
coefficient, Σh⁄σeff, increases.

Budiansky et al. [66] studied the growth of voids in solids with viscoplastic
properties and established estimates for strains, which are required for the
appearance of coalescence:

eCR
c

¼ _x
_ex

� ��1

F
when

_x
_ex

� �
F
� 3; ð46aÞ

eCR
c

¼ 1þ 2
3

_x
_ex

� �
F

� ��1

when
_x
_ex

� �
F
[ 3; ð46bÞ

where

ð46cÞ

εCR is a critical strain, _e strain rate, ω the volume of voids, describes the
relative size of the representative void, which is related to the distance between two
adjacent voids, , and indices ‘0’ and ‘CR’ mean initial and critical values,
respectively.

The plastic limit load criterion established by Thomason [67–70] can be used to
determine the onset of the phenomenon of coalescence as follows:

ð47Þ

where αT = 0.1 and βT = 1.2 are constants introduced by Thomason, is the void
space ratio and Σ1 is the current maximum principal stress. The Thomason model
developed by Pardoen and Hutchinson [32] concerns the localization of plastic
strains in the arrangement of relatively narrow zones of concentrated deformations
and simultaneously causes changes in forms of yield criteria and flow rules for
porous (dilatant) ductile materials.

Zhang and Niemi [71] implemented Thomason’s plastic limit load criterion to
the Gurson model and found that the plastic limit load model is not only physically
based but also reasonably accurate in comparison with cell model results obtained
by Koplik and Needleman [7]. Quite recently, Benzerga and Leblond [72] derived
an effective yield function for a porous ductile solid near a state of failure by
microvoid coalescence. For this purpose, they used homogenization theory com-
bined with limit analysis, wherein a problem, which was considered, is similar to
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that carried out by Thomason [69] for a square-prismatic cell containing a
square-prismatic void. A cylindrical cell was taken to contain a coaxial cylindrical
void of finite height. Plastic flow in the intervoid matrix was described by J2 theory,
while regions above and below the void remained rigid. Velocity boundary con-
ditions were employed, which are compatible with an overall uniaxial straining of
the cell, and consistent with post-localization kinematics that is omnipresent during
the coalescence of neighboring microvoids in rate-independent solids. However
such assumed boundary conditions are not of the uniform strain rate kind, as it is in
the case for Gurson-like models. Their yield criterion, in closed form, for a porous
material near a state of failure by void coalescence can be expressed as follows:

UBL R; re; v;Wð Þ ¼def R33j j
re

þ

� 1ffiffiffi
3

p 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3v4

p
þ ln

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3v4

p
3v2

 !
þ v3 � 3vþ 2

3vW

" #
¼ 0;

ð48Þ

where W ¼def hV=RV is the void aspect ratio and v ¼def RV=LC is the ligament
parameter, wherein 2hV is the height of cylindrical void, RV the void radius and LC
the cell radius. In Eq. (48) the absolute value of Σ33 permits to express the
limit-loads in both tension and compression. The need for criteria of such type (48)
in conjunction with the GTN model (11)–(12) is strongly motivated by cell model
calculations [7].

Morin et al. [73] used numerical limit-analysis results to assess the coalescence
criterion developed by Benzerga and Leblond [72], as well as two latter coalescence
criteria, which are based on two different sets of kinematically admissible velocity
fields consistent with nonuniform strain-rate conditions on the cell boundary. The
first of two new upper-bound estimates is based on a generalized discontinuous
velocity field, for which the shape of the rigid–plastic interface is free. The second
one is based on a continuous velocity field. Both fields are consistent with the
presence of rigid zones between the regions where the strain rate localizes. Both the
new models give some improvement, compared to the model of Benzerga and
Leblond [72].

4 Modification of Gurson’s Model for Failure Prediction
Under Shear Deformation

The original formulation of Gurson’s model does not include shear effects, which
excludes the possibility of predicting shear localization and fracture under condi-
tions of low triaxiality. Under shear dominated loading conditions, the distortion of
voids and inter-void linking promotes an effective increase of the material internal
degradation and contributes to the material softening. In order to improve the
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predictive ability of all Gurson-type models, under both zero and low levels of
stress triaxiality, certain researchers [74–80] suggested the introduction of effects of
shear deformation, which can be based on geometrical or phenomenological
assumptions. Simple formulations for the mechanism of shear deformation are
included in the resulting evolution laws, which take into account the influence of
the third invariant of the deviatoric stress tensor, the plastic strain tensor and its rate.

Equation (5) reveals that shear deformation does not trigger void growth and
consequently, the GTN model does not predict failure under shear deformation.
Nahshon and Hutchinson [76] claimed that fυ should not be directly tied to the
plastic volume change but rather it should be regarded as a damage parameter DF,
and introduced as an additional term in the evolution equation of fυ to account for
shear damage.

In order to incorporate the shear induced damage Xue [77] proposed a modifi-
cation to the original GTN model, which is based upon the solution of McClintock
[81] for the coalescence of holes in a shear band. Xue [77] developed his shear
damage law with regard to the change of the void ligament of a unit cell model
under simple shear deformation. This damage evolution law can be written as
follows:

_DF ¼ q1 _ftðnucleationÞ þ _ftðgrowthÞ
	 
þ q4f

q5
t gL h�L

	 

epeff _e

p
eff ; ð49Þ

where q4 is the material parameter used to scale the shear damage growth rate, q5
represents the additional parameter in Xue’s model, gL h�L

	 
 ¼def 1� 6 h�L
�� ��=p is the

Lode angle-dependent function, and recall that h�L denotes the Lode angle alter-

natively defined as h�L ¼def arctan 2 R2 � R3ð Þ= R1 � R3ð Þ � 1ð Þ= ffiffiffi
3

p	 

. It should also

be paid attention to a new shear mechanism, which was proposed in [82] to improve
the GTN model. The need for this type of modification aroused in order to reduce
the substantial differences in results of the Gurson model and FE cell model
computations at low levels of stress triaxiality, which are clearly shown in Fig. 1.

5 Conclusions

In this chapter the most important modifications and improvements of all kinds of
Gurson’s model have been presented with reference to their chronological devel-
opment. In conclusion, it is worth paying attention to the genesis of these changes
and whether the considerable effort in improving this model is already sufficient.
Probably one of the reasons for failure in the application of Gurson-type models is
an inappropriate selection of the application scope without awareness of limitations
of these models. In this respect, it is worth to refer to Fig. 3 paying close attention to
the area around the abscissa axis and including the possibility to fulfill Eq. (7),
which expresses the equivalence between the rate of macroscopic plastic work
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Rij _E
p
ij and the rate of plastic work dissipated in the matrix material inside the same

volume (RVE) 1� ftð Þre _epe . The basic assumption about the Gurson model should
also be recalled. Namely, this model is based on a rigid-perfectly plastic analysis of
spherically symmetric deformation around a spherical cavity. However, it is known
from literature [83] that in a thick-walled spherical shell under hydrostatic tension
there may be some form of plasticity called contained plasticity or constrained
plasticity, when the elastic strains and the plastic strains are more or less of the same
magnitude at the inner surface. In other words, the plastic region has high strains,
and the surrounding elastic region has low strains. By virtue of the elastic region
being outside the plastic region, as it is known on the boundary between the regions
the circumferential strains must have the same value, i.e., there must be strain
continuity on the elastic-plastic boundary. This means that the corresponding cases
of elastic-plastic deformation patterns of the hollow sphere of the Gurson-type
models cannot be considered, although this phenomenon could take place in some
cases of loading.

Moreover, Williams and Schapery [84] studied fracture initiation due to a
hydrostatic tensile stress field by considering an idealized solid containing a small
spherical cavity. They found that for small void sizes, the stress, particularly at the
void surface, becomes inordinately high, leading perhaps to unrealistic values of the

Fig. 3 Yield functions showing the reduction in macroscopic equivalent stress with increasing
hydrostatic stress and porosity
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fracture stress. In addition the weighting factor 1/r3 in Eq. (20b) must be noted. The
situation is thus somewhat analogous to that occurring in the vicinity of the crack
point in sheet materials where the elastic stresses become unbounded. Also in this
case, the Gurson model cannot be applied directly. As indicated in [32], for stress
triaxiality ratio T larger than 5, unstable void growth has been found and the
distinction between void growth and void coalescence process becomes harder and
harder to discern and the notion of critical porosity is no longer meaningful (see
Fig. 1).

An attempt to identify borderline cases, when the Guson model cannot be
applied, was taken in [85, 86] through rearrangement of the form of the GTN
model. For this purpose also Jackiewicz [86] proposed a coalescence criterion based
on the assumption that the close-to-zero value of a function of the continuity state
triggers the coalescence of micro-voids in materials.

It should be highlighted that the identification of material model parameters of the
Gurson-type models causes considerable difficulties [87], due to the large number of
them. The material parameters of the Gurson-type models can be grouped into three
following classes: (i) constitutive parameters (related to the Gurson yield surface),
(ii) initial parameters (associated with the origin of the porosity) and (iii) critical
parameters (related to the interaction between neighboring voids). The
gradient-based methods (e.g., the methods of steepest descent) often used to deter-
mine the material model parameters consist in computing the steepest-descent
direction associated with the gradient, and then the optimal stepsize along this
direction. The local search technique of gradient-based methods can easily be
trapped in local minima. Hence, there is no guarantee that a steepest descent algo-
rithm finds an optimal solution and, therefore, the gradient-based methods are
usually sensitive to initial guesses. This is consistent with results obtained by
Springmann and Kuna [88, 89] and means that a different set of material parameters
could reproduce numerically nearly the same stress–strain curves close to the
experimental data. Multi-objective evolutionary algorithms [90] can be used instead
to overcome such difficulties. To handle problems of multi-objective optimization,
the Pareto optimal solutions can be used, while it is very important to be aware of the
non- uniqueness in the constitutive parameters of Gurson-type models [91, 92].
A structural design is Pareto optimal, if there is no any other design that satisfies all
of the objectives better. To this end a calibration procedure of material parameters
proposed in [93] can also be used. However, this procedure is not, as efficient as, the
gradient-based algorithm. In summary, the Gurson model seems to be a good ana-
lytic expression for description of porous materials with spherical cavities.
Moreover, the latest extensions of this model allow to consider not only the void
volume fraction as the parameter representing voids but also void size effects by
means of the Taylor dislocation model [94] and the Fleck and Hutchinson strain
gradient plasticity model [95], and even the description of the growth of submicron
voids on the basis of interface stresses effects [96]. Nevertheless, research effort
should be directed towards the creation of more efficient numerical cell models than
to build more complex analytical models, such as the model of Pardoen and
Hutchinson [32], which is described in this chapter.
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