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Abstract Altered metabolism was first identified in cancer cells by Otto Warburg,

who identified a higher reliance on anaerobic glycolysis rather than cellular respi-

ration even in the presence of sufficient oxygen levels, a phenomenon called the

Warburg Effect. Deregulated metabolism is now considered a driving hallmark of

cancer and an attractive therapeutic target. While a great deal of work is being done

to find genetic therapeutic targets that can be used for personalized medicine,

current targeted approaches are typically ineffective because tumors are heteroge-

neous and contain multiple genetic subpopulations. This often precludes a partic-

ular targeted molecule from being found on all cells. In contrast to many genetic

alterations, dysregulation of metabolism resulting in the need for high amounts of

glucose is found in virtually all cancer cells. Targeting metabolism by reducing

blood glucose may be a way to inhibit tumor growth since this, to a large extent,

should circumvent the inherent problems associated with tumor heterogeneity.

Methods that also provide an energy source for normal tissues such as ketones

should reduce side effects associated with an overall reduction in blood glucose.

The high-fat, low carbohydrate, and protein ketogenic diet (KD) results in reduced

blood glucose and increased blood ketones, as does caloric restriction and fasting.

In preclinical mouse models of malignant brain tumors, animals fed a KD had

increased survival, particularly when used in combination with radiation or che-

motherapy. Metabolic modulation through the use of a KD, caloric restriction, or

fasting has been found to change the expression of a number of genes and pathways

thought to inhibit tumor growth. Metabolic therapy has also recently been explored

in other cancer types. In this chapter, we will examine the mechanisms underlying

the KD which suggests its potential as an adjuvant therapy for cancer treatment.
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1 Introduction

Every year, ~14,000 new cases of malignant glioma are diagnosed in the United

States. Brain tumors are also the second leading cause of cancer deaths among

children and young adults. Glioblastoma (GBM) or grade IV astrocytoma is the

most aggressive grade of this disease. The standard of care is surgery followed by

radiation and chemotherapy. Like many cancers, brain tumor cells tend to infiltrate

adjoining tissue; however, unlike other cancers, complete surgical resection is

hampered by the eloquent nature of the brain. While radiation and chemotherapy

with alkylating agents such as temozolomide are somewhat effective, again the

location can reduce the efficacy of these therapies. Radiation is typically targeted to

the tumor to reduce toxicity to normal brain tissue, and the blood–brain barrier

limits the number of chemotherapies that are effective. Thus, once a tumor recurs

following chemotherapy with temozolomide, there are few additional chemother-

apeutic agents with demonstrated efficacy for the treatment of brain tumors. Cells

that survive initial therapies typically regrow, and these tumors often recur rapidly.

Recurrent tumor is typically resistant to additional chemotherapy and the use of

additional radiation can be hazardous due to toxicity to normal brain (Weller

et al. 2012). For these reasons, median survival of patients diagnosed with a

GBM is 12–18 months and there is less than a 10 % 5-year survival rate (Anton

et al. 2012; Bloch et al. 2012). This underscores the need for new therapies for the

treatment of malignant brain tumors.

The human genome project has spawned a virtual explosion of tools for the study

of the molecular underpinnings of human disease. In-depth molecular analysis of

malignant gliomas has been done by The Cancer Genome Atlas consortium (The

Cancer Genome Atlas Research Group 2008) and other groups (Brennan

et al. 2009; Brennan 2011; Lee et al. 2008; Verhaak et al. 2010). This data has

shown that not all GBMs have the same molecular basis. This has fueled the idea

that therapies can be tailored to the molecular traits of an individual person’s
disease, so-called “personalized medicine.” The ultimate goal of these studies is

the identification of therapeutic targets and a better understanding of how to

determine the best patients for these specific targeted agents (Masui et al. 2012).

While studies such as these may ultimately prove useful, to date they have met with

limited success. This is likely due to the heterogeneity seen in most solid tumors. In

fact, biopsies taken from different regions of the same tumor can sometimes suggest

that the tumor has components of more than one GBM subtype (Gill et al. 2014;

Patel et al. 2014). Advances in survival and quality of life rely on new therapeutic

strategies, especially those that can enhance the efficacy of current treatment

options without damaging the normal brain.
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2 Tumor Metabolism

Alterations in the metabolism of cancer cells, what we now call the “Warburg

effect” or aerobic glycolysis, were first described by Otto Warburg in 1927 (War-

burg et al. 1927). Cancer cells use glycolysis to provide energy and biomolecules

regardless of the availability of oxygen. This results in the production of fewer ATP

molecules per molecule of glucose, and thus tumor cells require large amounts of

glucose. This shift toward increased glycolytic flux in the cytosol and away from

the tricarboxylic acid cycle and oxidative phosphorylation in the mitochondria

occurs very early in tumorigenesis. This allows for rapid cell proliferation even

under conditions of hypoxia and in the presence of dysfunctional mitochondria.

Since Warburg’s discovery, metabolism has been of interest in the cancer field, but

it often seemed overshadowed by discoveries of oncogenes, tumor suppressor

genes, growth factor pathways, molecular subtypes of cancers, etc. There is a

resurgence of interest in metabolism as a central theme in cancer, and we continue

to find that metabolic pathways intersect and often regulate key components of

tumor initiation, progression, and therapy response (Nijsten and van Dam 2009;

Wolf et al. 2010). In fact, altered metabolism has been referred to as a hallmark of

cancer (Cantor and Sabatini 2012; Ward and Thompson 2012).

The term “metabolic remodeling” has been used to describe some of the

metabolic changes that can occur in cancer cells, and a wide variety of oncogenes

have been found to be involved in metabolism (Obre and Rossignol 2015). For

example, the tumor suppressor protein p53 which plays a pivotal role in the cellular

responses to hypoxia, DNA damage, and oncogene activation has recently been

found to regulate glycolysis and assist in maintaining mitochondrial integrity

(Puzio-Kuter 2011). MYC has been found to activate glutaminolysis and lipid

synthesis from citrate (Obre and Rossignol 2015). The overactivation of the

stress-responsive PI3K/AKT signaling pathway, typical in many cancers, has also

been closely linked to metabolism and under low glucose conditions results in rapid

tumor cell death (Marie and Shinjo 2011; Robey and Hay 2009; Yang et al. 2009).

Furthermore, Hypoxia-inducible factor 1 (HIF-1) may, at least in part, provide the

molecular basis for the Warburg effect. HIF-1 can “reprogram” cellular metabolism

in response to oxygen availability. In doing so, it contributes to the cancer cell

phenotype in a number of ways. HIF-1 expression is activated by hypoxia, which

subsequently activates the transcription of genes involved in angiogenesis (VEGF

and other cytokines) in an attempt to improve tissue perfusion. This often results in

the formation of abnormal blood vessels that contribute to metastasis in some

cancers, and can increase inflammation and edema in brain tumors. Loss of function

of phosphatase and tensin homologue (PTEN) or mutation of p53 also increases

HIF-1, as does the accumulation of reactive oxygen species (ROS). We now know

that cancer cell metabolism is far more complex than originally thought and a

number of cancer-associated mutations affect metabolism, and there are numerous

reviews on the subject (Cantor and Sabatini 2012; Gatenby and Gillies 2004;

Semenza 2013; Vander Heiden et al. 2009; Ward and Thompson 2012). The fact
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that metabolic dysregulation is seen in virtually all tumor cells has led to sugges-

tions that a promising therapeutic strategy may be to exploit this feature. One

potential way to achieve this goal is through the use of the therapeutic ketogenic

diet (KD) or physiologically similar methods, such as caloric restriction or inter-

mittent fasting.

3 The Ketogenic Diet

The ketogenic diet (KD) is more correctly referred to as “metabolic therapy” rather

than a “diet.” This high-fat low protein/carbohydrate diet is used to treat refractory

epilepsy (Cross 2013; Kim and Rho 2008) in children, and more recently in some

adults. The diet is not without side effects; however, these are typically readily

managed when the patient has appropriate supervision by a registered dietitian

skilled in its use. The KD has been shown to have neuroprotective effects and there

are now studies to determine its efficacy for a number of neurological disorders,

including Alzheimer’s disease, traumatic brain injury, and amyotrophic lateral

sclerosis (Maalouf et al. 2009; Stafstrom and Rho 2012). The KD increases blood

ketones and decreases blood glucose by simulating the physiological response to

fasting, thus leading to high rates of fatty acid oxidation and an increase in the

production of acetyl coenzyme A (acetyl-CoA). When the amount of acetyl-CoA

exceeds the capacity of the tricarboxylic acid cycle to utilize it, there is an increase

in the production of the ketone bodies β-hydroxybutyrate (βHB) and acetoacetate

(ACA), which can be used as an energy source in the brain (Cahill and Veech 2003;

Morris 2005; Vanitallie and Nufert 2003; Veech et al. 2001). The metabolic

alterations found in cancer cells are generally thought to reduce their ability to be

“flexible” regarding their primary energy source, and thus they require glucose and

are unable to use ketones like normal cells (Fredericks and Ramsey 1978; Maurer

et al. 2011; Seyfried et al. 2011; Seyfried 2012; Seyfried and Mukherjee 2005;

Tisdale and Brennan 1983; Zhou et al. 2007). Normal cells readily use ketones as an

alternate energy source and are thus unaffected by the ketogenic diet. In contrast,

the reduction in glucose inhibits the growth of tumor cells. Thus, when used as a

therapy, the KD can take advantage of the Warburg effect. In addition, work in the

epilepsy field and more recent work in cancer research have shown that the effects

of the ketogenic diet extend far beyond the simple growth inhibitory effects of

reduced glucose. We used a cell line derived from a recurrent human glioblastoma

to demonstrate the in vitro effect of adding ketones to media containing glucose

(Scheck et al. 2012). The AO2V4 cell line was derived from a recurrent human

glioblastoma and grown in Waymouth’s MAB 87/3 media supplemented with 20 %

fetal calf serum. When 10 mM βHB plus ACA was added to complete media, cell

growth was significantly inhibited. There was additional growth inhibition when

1,3-bis(2-chloroethyl)-1 nitrosourea (BCNU, carmustine), one of the chemothera-

peutic agents given to this patient prior to tumor recurrence, compared to either

ketones or BCNU alone. More recent work has shown that the ketones themselves
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exert antitumor effects separate from the effects of reduced blood glucose (Magee

et al. 1979; Scheck et al. 2012; Skinner et al. 2009). This chapter addresses the

utility of increasing blood ketones and reducing blood glucose for the treatment of

brain tumors.

4 Gene Expression

Studies done in our laboratory using a GL261/C57BL/6 mouse model of malignant

glioma demonstrated that the KD exerts a global effect on the aberrant genetic

landscape found in tumors (Scheck et al. 2012). We compared gene expression in

tumor tissue and tissue from the contralateral non-tumor containing side of the brain

using cDNA array technology. This work showed that overall gene expression in

tumor from animals fed the KD was shifted more toward the gene expression found

in non-tumor containing tissue from animals fed either the KD or standard diet

(Stafford et al. 2010) (Fig. 1). Furthermore, the changes in gene expression were

different in tumor tissue compared to that seen in the contralateral non-tumor

containing side of the brain (Stafford et al. 2010), a finding similar to that of Maurer

(Maurer et al. 2011) who demonstrated differential effects of 3-hydroxybutyrate

(in vitro) and a non-calorie-restricted ketogenic diet (in vivo) on normal glia versus

glioma cells and tumors. Differences in the response of normal cells versus tumor

cells are likely to be due to the alterations in metabolism that are a hallmark of

cancer. However, the global nature of these differences has been somewhat sur-

prising, and while the underlying mechanism(s) of these pluripotent effects has not

been elucidated, it may be based at least in part on epigenetic changes. Epigenetic

changes are heritable alterations in gene activity that are not due to DNA sequence

changes (Baylin and Jones 2011). These changes include chromatin remodeling,

histone modifications, DNA methylation, and alterations in microRNA pathways,

all of which have now been linked to gene expression changes and metabolism in

many cancers, including brain tumors (Venneti and Thompson 2013; Yun

et al. 2012). In fact, the epigenetic changes found in some cancers are now being

looked at as potential therapeutic targets. New therapies such as histone deacetylase

(HDAC) inhibitors are actively being tested for their ability to reverse the abnormal

gene expression patterns inherent to the cancer epigenome and for their ability to

enhance other antitumor therapies (Azad et al. 2013; Qureshi and Mehler 2013).

Support for the idea that the effects of the ketogenic diet may be due, at least in part,

to changes in the genome comes from a recent study demonstrating that

β-hydroxybutyrate (βHB), the major ketone elevated in the blood as a result of

the ketogenic diet, can also inhibit HDAC, thus altering the epigenetic landscape in

much the same way as the HDAC inhibitors currently being tested (Shimazu

et al. 2013). While direct effects of the KD on epigenetic changes in brain tumors

have not yet been shown, it has been shown to reverse the major epigenetic

modifications seen in the brains of epileptic rats (Kobow et al. 2013), thus
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suggesting that this may indeed be one mechanism through which ketogenic diet

exerts its antitumor effect.

5 Growth Factor Signaling

A number of growth factor signaling pathways are critical to the formation and

progression of malignant brain tumors. Insulin-like growth factor 1 (IGF-I) is one

such growth factor that supports the growth of the number of cancers including

brain tumors (Arcaro 2013; Haisa 2013; Hummel et al. 2013; Negi et al. 2013;

Singh et al. 2014; Weroha and Haluska 2012). We have shown that IGF1 expression

is markedly reduced in tumors from mice fed a KD compared to those fed a

standard diet (Fig. 2). Similar results have been found by others using caloric

restriction in a variety of mouse models of malignant brain tumors (Marsh

et al. 2008; Seyfried et al. 2003; Shelton et al. 2010). cDNA array analysis also

showed a reduction in the expression of RAS p21 protein activator 1 and mitogen-
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Fig. 1 The KD alters overall gene expression to more closely resemble that seen in normal brain.
Total cellular RNA was isolated from the tumor and the non-tumor containing contralateral side of

the brain. Gene expression was analyzed using Affymetrix GeneChip® Mouse Genome 430 2.0

arrays (Affymetrix, Santa Clara, CA). A two-way ANOVA for interaction showed that the data

from the tumor sample obtained from mice fed a SD are clearly separate from the data obtained

from the other three conditions. This analysis implies that the KD is driving the overall gene

expression in the tumor to be more normal, that is, to be more like gene expression seen in the

non-tumor containing tissue. Reprinted from (Stafford et al. 2010)
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activated protein kinase 8 (c-Jun N-terminal kinase, JNK) in tumors from animals

fed a KD (Scheck et al. 2012). These proteins participate in the platelet-derived

growth factor and epidermal growth factor receptor tyrosine kinase signaling

pathways, suggesting that the KD may act as a “pan-growth factor inhibitor.”

Growth factor pathways also intersect with metabolism through the PI3K/Akt

pathway which can be activated by a number of receptor tyrosine kinase growth

factor pathways or activated Ras (Cantor and Sabatini 2012). The PI3K/Akt

pathway is also closely linked to glucose metabolism and has been called the

“Warburg kinase” (Robey and Hay 2009). Recent studies have shown that the

action of Akt is fairly complex and may have different effects on tumor cell survival

and growth depending on the genetic background of the cell (such as EGFR

amplification, etc.), glucose and oxygen availability, therapy, and other environ-

mental stimuli (Chautard et al. 2010; Elstrom et al. 2004; Eyler et al. 2008; Fan and

Weiss 2010; Gallia et al. 2009; Li et al. 2009; Los et al. 2009; Marsh et al. 2008;

Rao et al. 2005; Robey and Hay 2009; Vadlakonda et al. 2013). A complete

discussion of the role of Akt, HIF-1, and other genes in tumor growth and metab-

olism is outside the scope of this chapter, but readers are referred to the cited review

papers.

6 Reactive Oxygen Species

While the mechanisms underlying the anticancer effects of the KD are not

completely understood, the literature regarding the KD in epilepsy has provided

some insight. A number of these studies have involved the putative role of changes

in the level of reactive oxygen species (ROS) and seizure control. ROS are involved

in a variety of cellular processes including autophagic/apoptotic responses to

genotoxic stress, pathways involved in the regulation of inflammation, response

Fig. 2 Immunohistochemical analysis of Insulin Growth Factor 1 (IGF1). There is an increase in

the expression of IGF1 in tumor tissue relative to non-tumor in animals fed a standard diet. In

animals fed a ketogenic diet, the IGF1 expression in tumor tissue is reduced to the level of the

adjacent non-tumor tissue. Reprinted from (Scheck et al. 2012)
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to hypoxia, and nutrient deprivation—to name a few. Rho and colleagues have

shown that ROS production in the brain is reduced in animals fed a ketogenic diet

(Kim and Rho 2008; Maalouf et al. 2007). Cancer cells often have increased levels

of ROS resulting from a variety of intrinsic and external sources including mito-

chondrial alterations (Liang and Grootveld 2011), aberrant expression of compo-

nents of cellular antioxidant systems, chronic inflammation, tobacco, viruses, and

environmental pollutants to name just a few (Gupta et al. 2012; Weinberg and

Chandel 2009; Fruehauf and Meyskens 2007). They regulate vascular endothelial

growth factor (VEGF) and HIF-1 (Weinberg and Chandel 2009) and thus have been

implicated in angiogenesis and tumor growth. We have demonstrated a reduction in

ROS in tumors from mice fed a KD and changes in the expression of genes involved

in oxidative stress pathways (Stafford et al. 2010). Amigo and Kowaltowski (2014)

described a similar effect using CR. While the specific downstream effects of this

have not yet been fully elucidated, alterations in tumor ROS levels are sure to have

profound effects on tumor growth.

7 Anti-angiogenic Effects

One major hallmark of brain tumors is the rapid stimulation of blood vessels that

supply the nutrients needed to sustain rapid cellular growth. This vessel growth is

favored by the uncontrolled production of angiogenic stimulators and the absence

of inhibitors. Vascular endothelial growth factor (VEGF) is considered a driving

factor in angiogenesis and has thus become a prime target for anti-angiogenic

therapy (El-Kenawi and El-Remessy 2013). To this end, the FDA approved

bevacizumab, a monoclonal antibody targeting VEGF, for use in GBMs. While

this drug may help to reduce edema, especially following radiation, it often results

in adverse effects and it affords little if any improvement in overall survival (Field

et al. 2014; Patel et al. 2012).

Studies as far back as 1914 have suggested that restricted food intake can target

tumor blood supply and reduce tumor growth (Rous 1914). More recently, it has

been suggested that caloric restriction (CR), which also reduces blood glucose and

raises blood ketones, reduces growth and angiogenic biomarker expression in

prostate cancer and breast cancer (De Lorenzo et al. 2011; Mukherjee et al. 1999;

Phoenix et al. 2010; Thompson et al. 2004). Seyfried and colleagues recently

showed that CR promoted vessel maturation by preventing vascular VEGF signal-

ing in the CT-2A mouse astrocytoma model (Urits et al. 2012), and they have

demonstrated reduced angiogenesis in a number of other mouse glioma models

using caloric restriction (Mukherjee et al. 2002, 2004; Seyfried et al. 2011; Shelton

et al. 2010; Zhou et al. 2007). Further, CR was shown to normalize a number of

factors involved in tumor vessel instability and weakness (including VEGF) as well

as reducing peritumoral edema in a mouse model using human U87 glioma cells

(Jiang andWang 2013). In the GL261 mouse glioma model, we found that when fed

ad libitum the KD decreased tumor vasculature, reduced peritumoral edema, and
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altered the expression of genes involved in angiogenesis (Woolf et al. 2015),

despite the fact that the expression of VEGF was unchanged (Scheck et al. 2012).

Taken together, these results suggest that another effect of metabolic therapy may

be to target angiogenesis activity, thus mimicking the beneficial effects of

bevacizumab.

8 Anti-inflammatory Effects

The blood vessels formed by rapid angiogenesis in gliomas are often leaky, leading

to peritumoral inflammation and edema. Inflammation can also be increased by

treatment such as radiation therapy. Inflammation and edema can promote tumor

growth, and reduce patient quality of life due to increased pressure-related symp-

toms and side effects of the high-dose steroids often used for treatment. We have

shown that increasing blood ketones affects a number of tumor-related gene

networks and alters the expression of genes involved in the cellular response to

oxidative stress in tumor tissue, notably cyclooxygenase 2 (COX-2), an important

mediator of inflammation (Stafford et al. 2010). A separate study using the KD in

combination with radiation therapy in the same mouse model demonstrated reduced

expression of both COX-2 and Nf-κB while reducing the production of ROS

(Woolf et al. 2013). Similar results have demonstrated reduced expression of

pro-inflammatory markers, cyclooxygenase-2 (COX-2), nuclear factor kappa B

(NF-κB), and macrophage inflammatory protein (MIP-2) using caloric restriction

in mouse models of astrocytoma (Mulrooney et al. 2011) and colon cancer (Harvey

et al. 2013).

9 KD as an Adjuvant Therapy

Although evidence suggests that the KD provides antitumor benefits on its own,

perhaps the most effective use of the KD is in combination with standard cancer

therapies such as radiation and chemotherapy. The KD greatly enhanced survival in

a mouse model of malignant glioma when combined with TMZ when compared to

either treatment alone (Scheck et al. 2011). In addition, a separate study showed

that 9 out of 11 animals maintained on the KD and treated with radiation had

complete and sustained remission of their implanted tumors, even after being

switched back to a standard rodent diet (Fig. 3) (Abdelwahab et al. 2012). Allen

et al. reported similar results when the KD is combined with radiation and chemo-

therapy in a lung cancer xenograft model (Allen et al. 2013). That is, they found

decreased tumor growth rate and increased survival. CR and short-term fasting have

also been found to be synergistic with radiation and other anticancer therapeutics in

both preclinical and clinical studies (Champ et al. 2013, 2014; Klement and Champ
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Fig. 3 Radiation in combination with the ketogenic diet causes tumor regression. On days 3 and

5 postimplantation animals received 4 Gy of radiation. The tumor completely regressed in 9 of the

11 animals fed a ketogenic diet. Animals were switched back to standard diet on day 101 and

maintained for an additional 200 days and no tumor regrowth was detected. (a) Kaplan–Meier

survival plot; (b) bioluminescence in representative animals treated with radiation and fed a

standard diet vs. radiation plus the ketogenic diet; (c) bioluminescent signal plotted as in vivo

photon count versus days postimplantation. Reprinted from (Abdelwahab et al. 2012)
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2014; Lee et al. 2010, 2012; Poff et al. 2013; Raffaghello et al. 2008, 2010; Safdie

et al. 2012; Saleh et al. 2013; Seyfried et al. 2012).

The effectiveness of radiation therapy is due to a number of factors including

relative damage done to tumor cells versus normal tissue and the ability of normal

cells and tumor cells to repair the damage (Klement and Champ 2014). Radiation

works, in part, by creating ROS through the radiolysis of water. The ROS damage

the DNA and other macromolecules, causing sublethal damage that can become

lethal if not repaired. The potentiation of radiation therapy by the KD or caloric

restriction seems paradoxical in light of our data demonstrating a reduction in ROS

in tumors from animals maintained on a KD (Stafford et al. 2010). However,

radiation effects do not only occur through ROS, and radiation can directly damage

DNA and other cellular macromolecules. Furthermore, in addition to reactive

oxygen species, radiation causes the production of reactive nitrogen species

(RNS), a potential source of macromolecular damage following radiation (Saenko

et al. 2013). Whether the KD and/or caloric restriction reduces the formation of

RNS is as yet unknown. In fact, the main effect of the KD or CR may not be in

altering the amount of radiation-induced damage, but may in fact be in modulating

the ability of tumor and normal cells to repair radiation-induced damage (Klement

and Champ 2014; Santivasi and Xia 2014). Studies have shown that caloric

restriction can enhance DNA repair in normal cells (Heydari et al. 2007); however,

this may not be the case in tumor cells, and the differential response of tumor cells

and normal cells to genotoxic stress may be mediated by reduced IGF1 and glucose

in the tumor cells. In fact, a number of studies have shown that reduction of

activation of the PI3K/Akt pathway, activation of the adenosine monophosphate-

activated protein kinase (AMPK) signaling pathway, and reduction of receptor

tyrosine kinase growth factor pathways can all reduce radioresistance in tumor

cells (Choi et al. 2014; Danhier et al. 2013; Gil Del Alcazar et al. 2014; Li

et al. 2014; Medova et al. 2013; Munshi and Ramesh 2013; Sanli et al. 2014;

Wang et al. 2013; Zhang et al. 2014). These reports provide additional support for

the use of the KD or caloric restriction as an adjuvant therapy for the treatment of

gliomas.

10 Neuroprotection

There is a resurgence of interest in the use of the KD for the treatment of medically

refractory epilepsy and increasing interest in the use of this therapy for the treat-

ment of malignant brain tumors. While the majority of the research in this field

focuses on slowing tumor growth and enhancing the efficacy of current therapeutic

modalities, the KD may have additional benefits for cancer patients. Evidence

suggests that the ketogenic diet may also protect normal brain tissue from the

genotoxic stress that is a typical “side effect” of radiation and chemotherapy. We

have demonstrated that gene expression changes in the tumor tissue from animals

fed the KD were not the same as those in the non-tumor containing contralateral
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side of the brain (Scheck et al. 2012; Stafford et al. 2010). This allows for the

hypothesis that while the neuroprotective activity of the KD does not protect the

tumor from the therapeutic benefits of radiation and chemotherapy, it may reduce

the deleterious side effects of cranial radiation on normal brain. A recent publica-

tion showed that fasting, which elevates blood ketones, not only sensitizes many

types of cancer cells to standard therapies but may promote the protection of normal

tissue from the toxicity associated with radiation and chemotherapy (Lee

et al. 2012). Additional studies are needed to support this hypothesis; however,

the potential benefit of protecting the normal brain from decreased cognitive

function due to radiation toxicity would be of great importance, particularly for

the treatment of pediatric brain tumors.

11 KD in Other Cancers

Although much of the research regarding the anticancer benefits of the KD has

focused on brain tumors, this type of metabolic therapy has also recently been

explored in other cancer types. For example, Gluschnaider et al. used the MMTV-

PyMT oncomouse model to demonstrate that a KD suppressed breast tumor growth

(Gluschnaider et al. 2014). Likewise, Allen et al. showed that the KD enhanced

radiation and chemotherapy responses in a mouse lung xenograft model by increas-

ing oxidative stress in both NCI-H292 and A549 lung xenograft models (Allen

et al. 2013). The use of a no carbohydrate ketogenic diet (NCKD) in prostate cancer

models has also been examined. A recent study demonstrated that an NCKD

significantly slowed tumor growth and prolonged survival in a prostate cancer

xenograft model (Freedland et al. 2008). Studies in prostate cancer xenograft

models demonstrated that the NCKD significantly reduces tumor volume (Kim

et al. 2012) and alters pathways linked to apoptosis, inflammation, and insulin

resistance (Mavropoulos et al. 2009). A KD supplemented with omega-3 fatty acids

and medium chain triglycerides was shown to delay tumor growth in a mouse

xenograft model of gastric cancer. The use of the KD in models of cancer-

associated cachexia has also been studied. Shukla et al. showed that a KD reduced

glycolytic flux and glutamine uptake in a number of pancreatic cell lines. They

identified decreased pancreatic cancer cell growth as well as a dose-dependent

induction of apoptosis in the presence of ketone bodies in vitro. Likewise, in the

presence of ketones, pancreatic cancer cells had a reduced expression and activity

of the oncogene c-Myc and reduced cachexic markers. They also showed a reduc-

tion of tumor growth and cachexia in an animal model of pancreatic cancer (Shukla

et al. 2014).

Although the mechanisms behind the KD have not been completely identified

and extend beyond the reduction in blood glucose and increase in blood ketones,

recent studies in cancer research suggest that the KD may provide therapeutic

benefits in a variety of cancer types. This demonstrates that more research is
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warranted to better understand the mechanisms behind the KD as well as the

different physiological responses which occur based upon cancer type and location.

12 KD in Humans

Studies of glucose utilization in cancer go back prior to the 1980s, including studies

of metabolism and cancer cachexia (Fearon et al. 1988; Tisdale et al. 1987). These

and other studies suggested that the ketogenic diet consisting of a high percentage

of medium chain triglycerides (MCT) along with various supplements resulted in

weight gain and improved nitrogen balance in both animals and humans. In 1995,

Nebeling and colleagues published a case report in which they used a similar

ketogenic diet based on MCT oil to treat 2 female pediatric patients with advanced

stage malignant brain tumors (Nebeling et al. 1995; Nebeling and Lerner 1995).

They demonstrated that dietary-induced ketosis decreased the availability of glu-

cose to the tumor without causing a decrease in patient weight for overall nutritional

status. Furthermore, both children had long-term tumor management (Nebeling

et al. 1995). The 2nd case report was published in 2010 by Zuccoli and coworkers

(2010). This patient was a 65-year-old female with multicentric glioblastoma. She

was put on a 4:1 (ratio of fats:carbohydrate plus protein) calorie restricted

(600 kcal/day) ketogenic diet during radiation and chemotherapy. During this

time her body weight dropped by 20 %, she had reduced blood glucose, increased

urinary ketones, and, most importantly, no observable brain tumor by either

fluorodeoxyglucose Positron Emission Tomography (FDG-PET) or magnetic reso-

nance imaging (MRI). The tumor recurred 10 weeks after the patient resumed her

normal eating habits and she succumbed to her disease less than 2 years after

diagnosis. While this patient did not experience long-term tumor control after

cessation of the diet, this report demonstrated that the diet could be tolerated,

even when used in a calorie-restricted setting. Results of a phase 1 clinical trial

were reported in 2011 by a German group. Tolerability of a restricted calorie

ketogenic diet was tested in 16 patients with a variety of advanced (end-stage)

cancers. There were no severe side effects and 5 of the 16 patients were able to

complete the 3-month treatment. These 5 patients had stable disease while on the

diet. Two of the 11 remaining patients died early following the beginning of the

trial, one was unable to tolerate the diet and dropped out immediately, 2 patients

dropped out for personal reasons, one was unable to continue the diet for more than

a month, and 3 had disease progression within less than 2 months of starting the diet

and one dropped out to resume chemotherapy. While this trail demonstrated

tolerability and favorable side-effect profile, the antitumor efficacy could not be

assessed due to the variety and severity of disease in the patients. More recently, a

number of prospective clinical trials have been initiated. A study in Germany is

evaluating the efficacy of a calorie-restricted ketogenic diet and transient fasting

during re-irradiation for patients with recurrent GBM (ClinicalTrials.gov

NCT01754350). Michigan State University is directing a similar trial evaluating a
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calorie-restricted KD for recurrent GBM (ClinicalTrials.gov NCT01535911). A

third clinical trial is evaluating the KD as adjunctive treatment in refractory/end-

stage GBM (ClinicalTrials.gov NCT01865162). The goals for all of these studies

are to obtain data on the safety, efficacy, and tolerability of the KD as an adjunctive

therapy for patients with GBM. The only study using the KD as an up-front,

concurrent therapy has recently been approved and is now open for enrollment at

St. Joseph’s Hospital and Medical Center and Barrow Neurological Institute in

Phoenix, Arizona (ClinicalTrials.gov NCT02046187). This trial for patients with

primary GBM will evaluate the classic 4:1 ketogenic diet therapy during radiation

treatment and concurrent temozolomide followed by the modified Atkins Diet (1:1

fat:carbohydrate plus protein) during temozolomide treatment.

The case reports described above along with numerous anecdotal reports suggest

that the KD may be a promising anticancer therapy; however, more work is needed

to determine how to best utilize this and other metabolic therapies for the treatment

of tumors. Most of the information regarding the best way to use the ketogenic diet

comes from the epilepsy literature. Further research is needed to determine opti-

mum blood ketone and glucose levels for anticancer effects. In addition, a variety of

ketogenic diets are used for seizure control and it is not clear if one or more of the

different formulations will provide the best results for cancer patients. Finally,

while the KD has a long record of safety in the epilepsy community, side effects

that occur when used in combination with cancer therapies may differ in type or

severity. This data will come from carefully controlled clinical trials that include

input from registered dietitians well-versed in the use of the KD. Patient enrollment

into clinical trials requires “buy-in” from the medical community. Physicians must

be educated on the therapeutic value of metabolic alteration as an adjuvant therapy,

even if it results in a small amount of healthy weight loss, since the current dogma is

to avoid weight loss in patients undergoing chemotherapy for fear of increased

fatigue and further decline in overall patient health. As with any decision regarding

therapy, the patient’s overall condition, including nutritional status, must be taken

into account.

Concern about patients’ quality of life is sometimes given as a reason not to

employ KD. Compliance can be made more difficult by the use of steroids (pre-

scribed for peritumoral edema) that often increase hunger and raise blood glucose

levels. To address this, our clinical trial includes an analysis of both patient and

caregiver quality of life. Quality of life measurements are being added to more

clinical trials, as the importance of this has become recognized at the national level

(Boele et al. 2013; Dirven et al. 2014; van den Bent et al. 2011). While some

clinicians are concerned that compliance will reduce quality of life, the patients that

do remain on the KD often comment that this allows them to participate in their own

therapy. Despite these caveats, the existing preclinical data suggesting antitumor

efficacy and a synergistic effect with standard therapies provide a strong impetus to

conduct controlled clinical trials, particularly those that will shed light on the

interactions between the KD and other therapies.

102 K.S. Brooks et al.



13 Conclusion

Improvements in the survival and quality of life for patients with malignant brain

tumors require the implementation of new therapeutic modalities, especially those

that increase the efficacy of current therapies without increasing toxic side effects.

While the rapid accumulation of data defining the molecular and genetic aberrations

present in these tumors has suggested a host of targets for the development of new

therapies, targeted therapies tried to date have met with limited success. This is at

least in part due to the molecular heterogeneity of these tumors that prevents any

one target from being present on all cells. In contrast, metabolic dysregulation is

present in virtually all tumor cells and there is increased interest in using metabolic

therapies such as the ketogenic diet for the treatment of various cancers, especially

brain tumors. Preclinical data have demonstrated that the antitumor effects of the

KD and caloric restriction are multifaceted, and alterations in energy metabolism

can inhibit cancer cell growth and increase the tumor’s response to therapy. This

provides a strong impetus to continue work designed to elucidate the mechanisms

through which the KD exerts its anticancer effects, as well as suggesting the need

for the design of controlled clinical trials that will shed light on the most effective

way to implement metabolic therapies in combination with standard therapies for

the treatment of malignant disease. This is a novel therapeutic paradigm, and we

have only begun to scratch the surface of its potential.
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