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Abstract. Memory safety breaches have been main tools in many of
the latest security vulnerabilities. Therefore memory safety is critical and
attractive property for any piece of code. Separation logic can be realized
as a mathematical tool to reason about memory safety of programs. An
important technique for modern parallel programming is multithreading.
For a multi-threaded model of programming (Core-Par-C ), this paper
introduces an accurate semantics which is employed to mathematically
prove the undecidability of memory-safety of Core-Par-C programs. The
paper also proposes a design for a hardware to act as an efficient memory
checker against memory errors.
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1 Introduction

Memory safety breaches were used extensively in many of the latest security
vulnerabilities [10,19,31]. This reflects how critical and attractive the property
of memory safety is for any piece of code. Therefor not only does the absence of
memory safety result in software defect which in turn results in abnormal termi-
nation of program executions, but also this absence can be employed maliciously
towards security vulnerabilities. Memory safety takes several forms including
memory leaks, dangling pointers, and buffer overflows [35].

In presence of shared mutable data structure and to reason about impera-
tive programs, separation logic [26] was designed as enrichment of Hoare logic.
Therefore separation logic may be defined as a mathematical tool to reason about
memory safety of imperative programs. The enrichment included extending the
assertion language with a ”separating conjunction” to express that several sub-
assertions hold for different regions of the memory. Also a ”separating implica-
tion” was added to the assertion language of Hoare logic. Defining assertions
inductively and the new assertions resulted in flexible and precise depiction of
memories with regulated sharing [16].
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An important technique for modern programming is multithreading [34]. The
use of multiply threads is useful in many direction including (a) building inter-
active servers that are capable of connecting with multiple clients in parallel,
(b)utilizing parallelism of multiprocessors that share memory, and (c) build-
ing complex user interfaces. Hence studying multithreaded programs and their
memory safety are crucial and attract growing interest.

For a multi-threaded model of programming (Core-Par-C ), this paper
presents a formal semantics that is used to mathematically prove the unde-
cidability of memory-safety of Core-Par-C programs. The paper also illustrates
special cases when the memory-safety problem become decidable.

Shared mutable data structures are used by many areas like artificial intelli-
gence and systems programming. These structures are typically mutable because
there are many points for updating and referencing the fields of the data struc-
tures. Techniques for reasoning about this approach have been researched for
many decades. Either extremely complex or not applicable (even to code of
moderate length) techniques are mostly currently used to carry out this rea-
soning process. Very little research were done to achieve such reasoning process
using hardware. However such hardware seems like the convenient solution for
the complexity and scalability issues.

This paper also presents a design for a hardware to act as a memory checker
against memory errors. The hardware is a digital sequential circuit. Basic opera-
tions used in designing the hardware are those used in presenting the separation
logic. Also memory states modeled in the hardware design are those considered in
separation logic. Therefore this hardware may be realized as a main step towards
designing a digital sequential circuit to carry the verifications of separation logic.

More preciously, the second contribution of this paper can be realized as
a first attempt to achieve the separation logic as a reasoning tool for shared
mutable data structures using digital sequential circuites. Four type of commands
are basics for the separation logic: allocation, disposal, mutation, and looking up.
Therefore our proposed technique establish codes to these operations (Figure 5).
There are four states of memory (an empty heap, a singleton heap, a separation
heap, and an error) in separation logic to reason about the memory. The error
memory is a memory being treated illegally (may be under attack) and the
singleton memory has a single allocated cell. The state where many septated
cells are allocated in the memory is denoted by the terminology separation heap.
The four types of commands and that of memory states are the basics of the
design of the proposed digital sequential circuite.

Contributions

This paper has the following contributions:

1. A formal proof that memory safety of multithreaded programs is undecid-
able.

2. A design for a hardware to act as a memory checker against memory errors.
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Paper Outline

The rest of the paper is organized as follows. Section 2 presents the first con-
tribution of this paper; proving the the undecidability of memory safety of mul-
tithreaded programs. Section 3 presents the second contribution of this paper;
a hardware to carry memory checks. Related and future work are discussed in
Section 4. The paper is concluded in Section 5.

2 Memory Checker Using Dynamic Semantics

For a multi-threaded proposed model of programming (Core-Par-C ), this section
presents a formal semantics which is later used to discuss the decidability of
memory-safety of Core-Par-C. The section also proposes solutions to over come
memory-safety difficulties discussed in the section as well. To do so, the memory-
safety in Core-Par-C is defined formally to express that the safety of a program
amounts to being safe through any potential execution of Core-Par-C. This
also amounts to being safe under any potential effects that the semantics of
the parallel command (par) and the memory allocation statement (malloc) may
have. Generally and practically, the concept of memory safety, is undecidable
due to the undecidability nature of termination.

For terminating Core-Par-C programs, this section proves undecidability of
memory-safety. The consequences of this is a believe that any semantics of Core-
Par-C is not able of statically or dynamically detecting memory-safety problems
even for terminating programs.

n ∈ Integers, v ∈ Variables , and ⊗ ∈ {−,+,×}
a ∈ A-expressions ::= v | n | a1 ⊗ a2

o ∈ B-expressions ::= 1 | 0 | ¬o | a1 ≤ a2 | a1 = a2 | o1 ∧ o2 | o1 ∨ o2

c ∈ commands ::= ∗v := a | v := a | malloc(n) | v1 := ∗v2 | free(n) | c1; c2 |
if o then ct else cf | while o do ct | par{{c1}, . . . , {cn}} |
par-if{(o1, c1), . . . , (on, cn)} | par-for{c}.

Fig. 1. Core-Par-C : A Programming Model for Multithreaded Programming
with Pointers

Figure 1 presents the syntax of our model for multithreaded programming
with pointers; Core-Par-C. Variables is a finite set of program variables. There
are three main commands to express the multi-threaded nature of programming.
These commands are par{{c1}, . . . , {cn}} for parallel execution of commands,
par-if{(o1, c1), . . . , (on, cn)} for conditionally parallel execution of commands,
and par-for{c} for executing a randomly-chosen number of copies of c in parallel.
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The following definition (Definition 1) presents the states of our proposed
semantics.

Definition 1. 1. E ∈ Env = Var → Integers.
2. M ∈ Mem = Integers+ ⇀ Integers.
3. P ∈ Ptr = Integers+ → Integers+.
4. A state is either an abort or a triple (E,M,P ).

Boolean and arithmetic expressions semantics are built as usual. However we
dot no allow pointers to get involved in Boolean and arithmetic operations. This
is given in Figure 2. Semantics of statements of Core-Par-C is given in Figure 3.

�n � E = n �v � E = E(v) �1 � E = true �0 � E = false

�a1 ⊗ a2 � E = �a1 � E ⊗ �a2 � E

�¬o � E = if � o � E then false else true

�a1 = a2 � E = if (�a1 � E = �a2 � E) then true else false

�a1 ≤ a2 � E = if (�a1 � E ≤ �a2 � E) then true else false

�o1 ∧ o2 � (E,M,P ) = if (�o1 � (E,M,P )) then � o2 � (E,M,P ) else false

�o1 ∨ o2 � E = if (�o1 � E) then true else � o2 � E

Fig. 2. Semantics of Boolean and Arithmetic Expressions of Core-Par-C

Definition 2 introduces the formal definition of memory safety of Core-Par-C
programs.

Definition 2. A program in Core-Par-C is terminating if it has an execution
path in our proposed semantics (Figures 2 and 3) that does not lead to an abort.
A program in Core-Par-C is memory-safe if for all its possible execution pathes
it is terminating.

Definition 3 presents two programs that paly a vital rule in proving the
undecidability of the memory safety of Core-Par-C programs.

Definition 3. We let unsafe and safe be the Core-Par-C programs defined as
follows:

– unsafe ≡ par{x := malloc(1), y := ∗x}, and
– safe ≡ x := malloc(1); par{z := ∗x, y := ∗x}.

Theorem 11 uses Definitions 2 and 3 to introduce and formally prove the
undecidability of memory safety of terminating and non-terminating Core-Par-
C programs.
1 This theorem can be realized as a generalization of the work in [28].
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v := a : (E, M, P ) � (E[v �→ �a � E], M, P )

E(v) ∈ dom(M)

∗v := a : (E, M, P ) � (E, M [E(v) �→ �a � E], P )

E(v) /∈ dom(M)

∗v := a : (E, M, P ) � abort

E(v2) ∈ dom(M)

v1 := ∗v2 : (E, M, P ) � (E[v1 �→ M(E(v2))], M, P )

M
′
= M ⊗ M

′′
dom(M

′′
) = {p, . . . , p + n − 1}

malloc(n) : (E, M, P ) � (E, M
′
, P [p �→ n])

E(v2) /∈ dom(M)

v1 := ∗v2 : (E, M, P ) � abort

M = M
′ ⊕ M

′′
dom(M

′′
) = {p, . . . , p + n − 1} P = P

′ ∪ {(p, n)}

free(n) : (E, M, P ) � (E, M
′
, P

′
)

c1 : (E, M, P ) � abort

c1; c2 : (E, M, P ) � abort

c1 : (E, M, P ) � (E
′′

, M
′′

, P
′′
) c2 : (E

′′
, M

′′
, P

′′
) � state

c1; c2 : (E, M, P ) � state

�o � E = true ct : (E, M, P ) � state

if o then ct else cf : (E, M, P ) � state

�b � E = false cf : (E, M, P ) � state

if o then ct else cf : (E, M, P ) � state

�c � E = false

while o do ct : (E, M, P ) � (E, M, P )

�o � E = true ct : (E, M, P ) � abort

while o do ct : (E, M, P ) � abort

�o � E = true ct : (E, M, P ) � (E
′′

, M
′′

, P
′′
) while o do ct : (E

′′
, M

′′
, P

′′
) � state

while o do ct : (E, M, P ) � state

(∃ ξ : n → n). cξ(1); cξ(2); . . . ; cξ(n) : (E, M, P ) � state

par{{c1}, . . . , {cn}} : (E, M, P ) � state

par{{if o1 then c1 else skip}, . . . , {if on then cn else skip}} : (E, M, P ) � state

par-if{(o1, c1), . . . , (on, cn)} : (E, M, P ) � state

∃k. par{
k−times
︷ ︸︸ ︷

{c}, . . . , {c}} : (E, M, P ) � state

par-for{c} : (E, M, P ) � state

p
′
= min{p | {p, . . . , p + n − 1} ∩ dom(M) = ∅} M ′ = M ⊗ M ′′

dom(M ′′) = {p′, . . . , p′ + n − 1}
malloc(n) : (E, M, P ) � (E, M

′
, P [p

′ �→ n])

Fig. 3. Semantics of Statements of Core-Par-C
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Theorem 1. The property of memory safety of terminating and non-
terminating programs of the language Core-Par-C is undecidable.

Proof. We suppose that memory-safety is decidable towards a contradiction.
Suppose that ψ(n) is a decidable attribute of natural numbers (n ∈ N). The
attribute ψ(n) can be encrypted by a terminating memory-safe program (P ≡
x := n;S) of Core-Par-C which is Turing complete. A variable r cab be use in
P such that ψ(n) is true (does not hold) if and only if the execution of P ends
in a state whose environment assigns 1 (0) to r. Now we consider the program

P ′ ≡ x := 0; par-for{x := x + 1}; if (r = 1) then safe else unsafe.

Clearly P ′ is terminating. Moreover, P ′ is memory safe if and only if r contains
1 whenever the program terminates. This amounts to the correctness of the
attribute ψ for all natural numbers. This is a contradiction because by [15] there
exists an attribute ψ such that the attribute ∀n(ψ(n)) is proper co-recursively-
enumerable.

The details of the proof of Theorem 1 makes it clear that there are several
sources of memory un-safety in the Core-Par-C programs. These sources are the
semantics of the command malloc and that of the parallel commands:par, par-for,
and par-for. A careful study of the problem reveals that there are restricted ver-
sions of these commands semantics that improves the memory-safety character-
istics of the Core-Par-C programs. Figure 4 introduces these restricted semantics
rules.

Definition 4 introduces the formal definition of conservatively memory-safety
of Core-Par-C programs.

Definition 4. A program in Core-Par-C is conservatively terminating if it has
an execution path in the memory-safe restricted semantics (Figures 2 and 4) that

c1; c2; . . . ; cn : (E,M,P ) � state

par{{c1}, . . . , {cn}} : (E,M,P ) � state

if o1 then c1 else skip; . . . ; if on then cn else skip : (E,M,P ) � state

par-if{(o1, c1), . . . , (on, cn)} : (E,M,P ) � state

par{
µ−times
︷ ︸︸ ︷

{c}, . . . , {c}} : (E,M,P ) � state

par-for{c} : (E,M,P ) � state

p′ = max(dom(M))
M ′ = M ⊗ M ′′

dom(M ′′) = {p′, . . . , p′ + n − 1}
malloc(n) : (E,M,P ) � (E,M ′, P [p′ �→ n])

Fig. 4. Memory-Safe Restricted Semantics of Some Statements of Core-Par-C
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Operation Binary code
Allocation 00
Disposal 01
Mutation 10

Looking up 11

Fig. 5. Codes of The Main Four Operations of Separation Logic

does not lead to an abort. A program in Core-Par-C is conservatively memory-
safe if for all its possible execution pathes, in the memory-safe restricted seman-
tics, it is conservatively terminating.

Theorem 2 uses Definitions 4 to introduce formally the decidability of con-
servatively memory-safety of conservatively terminating Core-Par-C programs.

Theorem 2. The property of conservatively memory safety of conservatively
terminating programs of the language Core-Par-C is decidable.

The proof of Theorem 2 is by contradiction and is similar to that of Theorem 1.

3 Memory Checkers Using Digital Sequential Circuits

Many areas such as artificial intelligence and systems programming use shared
mutable data structures. Such structures are typically mutable in the sense that
there are many points for referencing and updating the fields of the data struc-
ture. For four decades techniques for reasoning about this approach have been
researched. Most of the existing software methods that carrying this reasoning
process are either extremely complex or not applicable even to code of mod-
erate length. Very little research were done to achieve such reasoning process
using hardware. However such hardware seems like the convenient solution for
the complexity and salability issues.

More preciously, this section can be realized as a first attempt to achieve
the separation logic as a reasoning tool for shared mutable data structures using
digital sequential circuites. The separation logic is built on main four type of
commands: allocation, disposal, mutation, and looking up. Therefore our tech-
nique starts by code these operations as in Figure 5. In separation logic the
memory is reasoned about using four states of memory: empty heap, singleton
heap, separation heap, error. The singleton memory has a single allocated cell
and the error memory is a memory being treated illegally (may be under attack).
The separation heap denotes the states where many septated cells are allocated
in the memory.

Figure 7 presents a state diagram explaining effects of four main commands
on the different memory states. Different memory states are represented by the
nodes of the diagram. The the first two digits of the arc labels (denoted later
by x and y) represent the command that transfers the memory from the source
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State Symbol Binary code
Empty heap S0 00

Singleton heap S1 01
Separation heap S2 10

Error S3 11

Fig. 6. Main Four States of Memory and Their Codes

Fig. 7. State Diagram for Effects of Commands on Memory States

state to the target one. The third digit denoted by (MA) is a memory abstraction
where 0 means that number of memory cells ≤ 2 and 1 means that number of
memory cells > 2.

Figure 8 introduces the truth table of the state diagram of Figure 7.
From the truth table of Figure 8, we can conclude that new states of the

memory can be represented as a function of the old states and the inputs which
are the command to be executed and the memory abstraction. More precisely,
the first column representing the new state can be described by the following
equations:

A(t + 1) = DA(A,B, x, y, z) =
∑

(2, 3, 4, 5, 6, 7, 8, 9, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31) =
∏

(0, 1, 10, 11, 12, 13, 14, 15, 18).

This can be represented using the Karnaugh map of Figure 9 which produces
the following equation:

A(t + 1) = DA(A,B, x, y, z) = AB + Az + Ay′ + y′Bx′.

The second column representing the new state can be described by the fol-
lowing equations:
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Present state Input Next state
command code MA

A B x y z A B

0 0 0 0 0 0 1
0 0 0 0 1 0 1
0 0 0 1 0 1 1
0 0 0 1 1 1 1
0 0 1 0 0 1 1
0 0 1 0 1 1 1
0 0 1 1 0 1 1
0 0 1 1 1 1 1
0 1 0 1 0 0 0
0 1 0 1 1 0 0
0 1 1 0 0 0 1
0 1 1 0 1 0 1
0 1 1 1 0 0 1
0 1 1 1 1 0 1
0 1 0 0 0 1 0
0 1 0 0 1 1 0
1 0 0 1 0 0 1
1 0 0 0 0 1 0
1 0 0 0 1 1 0
1 0 0 1 1 1 0
1 0 1 0 0 1 0
1 0 1 0 1 1 0
1 0 1 1 0 1 0
1 0 1 1 1 1 0
1 1 x x x 1 1

Fig. 8. The Truth Table of The Sequential Circuit Representing the State Diagram

B(t + 1) = DA(A,B, x, y, z) =
∑

(0, 1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 18, 24, 25, 26, 27, 28, 29, 30, 31) =
∏

(8, 9, 10, 11, 16, 17, 19, 20, 21, 22, 23).

This can be represented using the Karnaugh map of Figure 10 which produces
the following equation:

B(t + 1) = DA(A,B, x, y, z) = A′B′ + A′x + AB + yz′B′x′.

Now a corresponding digital sequential circuit that respects the truth table
of Figure 8 and the equations A(t+1) and B(t+1) can be built as in Figure 11.
This circuit was build in Logisim using two JK flip-flops. The circuit was tested
for all cases and its correctness was approved.

All in all, what we have presented in this section is a design for a hardware
that is capable of acting as a memory checker against some memory errors. The
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Fig. 9. The First Memory Checker State Diagram

Fig. 10. The Second Memory Checker State diagram

hardware has the form of a digital sequential circuit. Basic operations behind
the design of our proposed hardware are that used in presenting the separation
logic. Also main memory states modeled in our design are that considered in
separation logic. Therefore this hardware is the main step towards designing a
digital sequential circuit to carry the verifications of separation logic.

4 Related and Future Work

This sections reviews work most related to our work. The section also discusses
directions for future work.

Much research discuss the fact that a main source of unreliability in programs
is violations related to memory access [10,19,31]. Research enumerates problems
due to such violations. To avoid such problems many programming languages
(such as C++) dynamically detect memory errors via software checks augmented
to the programming language. Common disadvantages of the software checks
include the reliability on inconvenient metadata, focussing on specific errors,
execution overheads, and the reliability on manually changing the code [1,6,30].

Robustness is not paid enough attention compared to quick allocation with
minimum fragmentation in most runtime systems. Heap corruption and double
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Fig. 11. The Memory Checker circuit

frees due to buffer overflows are caused by most coding applications of malloc;
this is true even for the famous GNU C’s library. Certain methods are used
by some classic garbage collectors and memory controllers [3,27] to support
the software robustness. Much more time is needed for reasonably achieving
garbage collection than that required by malloc/free [13,36]. Techniques such as
DieHard [5] avoids overwrites and invalid and double frees via separating heap
from metadata. However DieHard [5] probabilistically (rather than absolutely)
avoids dangling references. One more advantage of DieHard [5] over similar tech-
niques is that it discovers unauthorized reads and protects heap content from
buffer problems [1,20].

In [29] a static analysis and transformation, MemSafe, for guaranteeing
protecting the memory safety of C is presented. MemSafe can be realized as
a technique for casting temporal errors in the form of spatial errors. Merging
characteristics of pointer- and object-based procedures, MemSafe provides a
convenient representation for metadata. MemSafe provides a simple and opti-
mal data-flow representation removing unnecessary software checks. However
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MemSafe does not treat multi-core programs; it is built for single-core pro-
grams [7,32].

Several unsound methods [9,25,27] for preventing memory crashes in pro-
grams have been proposed. The idea of automatic pool allocation is to separate
regions of memory into pools sharing the same type. This guarantees that dan-
gling references are always replaced only by items of the same type [9]. Unpre-
dictable safely-typed programs result from this method. It is possible to avoid
artificial values and illegitimate modifications for manipulation of unprotected
regions [27]. Most of these methods significantly increase the performance over-
head which may result in faulty program executions. Some methods [25] repair
distinguishable errors via using logging and checkpointing together with a file
system. This is done via rolling back the software and employees an allocator to
avoid defers frees, double frees, pads object requests, and zero-fills buffers [25].
Therefore rolling back techniques [25] are not convenient for softwares with unroll
back-based modifications. The fact that rolling back techniques [25] cannot dis-
close inherent problems resulting in crashes and faulty program executions makes
them unsound [11,17].

For C-like programs, a class of memory and type safety approaches [2,18,
22,33,35] ends program execution when discovering an error. Such approaches,
like Cyclone and CCured, are called fail-stop. In Cyclone, programmers have
an explicit and secure control over memory via a revised accurate type system
attached to C [14]. Cyclone is classified as region-based memory management
technique [12]. In CCured, the code is protected with dynamic test to guarantee
memory safety. This technique also employees static analysis to get rid of tests
at programs points that are guaranteed to be error-free [22]. To prevent dan-
gling references and double frees, CCured uses a garbage collector. Concerning
the underlaying program form, DieHard works with binaries and Cyclone, and
CCured work with augmented versions of the source code. These augmentations
are typically manually made.

The work in [28] focuses on C as the most popular programming tool to
implement imperative systems. The low-level memory access provided by C via
high-level abstractions and types makes it a perfect object of treating memory
problems. The work in [28] relied on the facts that C enables casting, pointer
arithmetic, and memory allocation and deallocation. This is very important to
consider as such activities are not easy to use which leads to program bugs and
security vulnerabilities such as dangling references and stacks overflows. Typi-
cally, memory safety of a program means that memory access errors never occur
at runtime. In [28] memory safety is treated as the restrictive strict definition
applicable for dynamic verifications. In [28], it is shown that generally checking
memory safety is undecidable for C programs, as well for terminating closed
programs. However, using a restricted concept of memory safety, [28] shows that
dynamic verifications of C programs is decidable.

Many techniques were designed to detect both temporal and spatial memory
errors. Protecting safety of heap-allocated objects and working on binaries, [35] is
one of such techniques. Although focussing on store operations, the approach pro-
posed in [35] improves the detection cost via the use of static analysis. Although
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being incompatible as a result of using fat-pointers, the technique presented
in [2], Safe C, protects complete memory safety. Other techniques, such as [24],
approaches the memory safety via establishing, in separate processes, separate
performing checks and meta-data. The main disadvantage of such techniques is
the need for additional CPU power.

In [21], type systems were used to reduce meta-data recording and elimi-
nate the need to check pointer safety. This technique of [21] relies heavily on
the use of fat-pointers which resulted in the need for code modifications and in
compatibility problems. On the other hand the similar technique of [33] is more
efficient and sound although suffering from issues concerting dealing with down
casts. The issue with the yet similar technique of [23] is a serious runtime over-
head. However the technique of [23,29] is conveniently compatible with ANSI
C. Utilizing a characteristic hardware, [8] presents a robust procedure to detect
memory bugs.

Developing similar techniques to dynamically study the memory safety of
other programming techniques like context-oriented programs and quantum pro-
grams is an interesting direction for future work. Another direction for future
work is to develop a denotational semantics for dynamically checking the mem-
ory safety of programs. An important direction for future work is to develop the
logic design of Section 3 to carry the memory verifications of separation logic.

5 Summary

This paper presented an accurate semantics which is employed to mathemat-
ically prove the undecidability of memory-safety of a multi-threaded model of
programming (Core-Par-C ).

The paper also proposed a design for a hardware that is capable of acting
as a memory checker against some memory errors. The hardware is of the form
of digital sequential circuit. Basic operations used in presenting the separation
logic are that behind the design of our proposed hardware. Also main memory
states considered in separation logic are that modeled in our design. Hence this
hardware is a main step in the way to design a digital sequential circuit to achieve
the separation-logic verifications.
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