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Abstract. In this paper, we address the elementary shortest path prob-
lem with 2-dimensional loading constraints. The aim is to find the path
with the smallest cost on a graph where the nodes represent clients whose
items may have different heights and widths. Beyond its practical rele-
vance, this problem appears as a subproblem in vehicle routing prob-
lems with loading constraints where feasible routes have to be generated
dynamically. To the best of our knowledge, there are no results reported
in the literature related to this problem. Here, we explore a variable
neighborhood search approach for this problem. The method relies on
constructive heuristics to generate feasible paths, while improved incum-
bents are sought in different neighborhoods of a given solution through
a variable neighborhood search procedure. The resulting variants of the
algorithm were tested extensively on benchmark instances from the lit-
erature. The results are reported and discussed at the end of the paper.

Keywords: Shortest path problem · Loading constraints · Variable
neighborhood search · Computational study

1 Introduction

The last years have seen an increased interest for rich routing problems that
consider practical constraints arising in real settings. A good example is the
vehicle routing problem with loading constraints for which many different con-
tributions have been described recently [2,5,10]. The problem merges two well-
known problems in the field of combinatorial optimization, namely the classical
vehicle routing problem and the packing problem that results from the need of
building feasible routes when the items involved are 2- or 3-dimensional objects.
Clearly, the resulting problem is NP-hard since it combines two problems that
are already NP-hard. A comprehensive survey related to this family of problems
can be found in [4].

The elementary shortest path problem with loading constraints arises in par-
ticular in the context of vehicle routing problems where the items have at least
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two dimensions, and the capacity of the vehicles is a strong constraint. The prob-
lem occurs typically when feasible routes have to be generated dynamically as
happens for example in column generation based approaches. Given this strong
connection between the two problems, we will briefly review in the sequel the
main aspects and contributions related to vehicle routing problems with loading
constraints.

Some versions of the capacitated vehicle routing problem with loading con-
straints (L-CVRP) consider that the loading and unloading of the items must be
done without moving the other items that are in the vehicle. Therefore, the posi-
tion of the items inside the vehicles depends directly on the sequence by which
the clients are visited. This constraint is known as a sequential or LIFO (Last-In,
First-Out) constraint, and the corresponding routing problems are referred to as
sequential L-CVRP. The problems that do not enforce this constraint are called
unrestricted L-CVRP. Moreover, if the items can be rotated inside the vehicles,
the resulting problem is denominated by rotated L-CVRP.

Due to the inherent complexity of the L-CVRP, the vast majority of the
approaches described in the literature are based on heuristic approaches. The
only exact method reported so far is due to Iori et al. [5], who described a branch-
and-cut method to solve the problem with 2-dimensional items (2L-CVRP).
Gendreau et al. [2] proposed the first heuristic method for the 2L-CVRP for both
the unrestricted and sequential case. Their approach is based on tabu search,
and it allowed the visit of infeasible solutions by penalizing them in the objective
function. In [10], the authors describe a guided tabu search approach for the 2L-
CVRP, which is enhanced with diversification procedures that penalize long arcs
in the solution. The feasibility of the routes is checked by means of five different
heuristics.

Some attempts in solving the 2L-CVRP exactly through column generation
are reported in [7], while this approach is seen by Iori and Martello in [4] as
worthwhile of investigation in order to determine effectively exact solutions for
this problem. The Dantzig-Wolfe decomposition principle on which column gen-
eration approaches are based has been extensively applied to vehicle routing
problems. The standard reformulation that results from this decomposition is
a set partitioning problem which is solved typically by dynamic column gener-
ation. The related pricing subproblem is an elementary shortest path problem
with additional resource constraints. This problem has received much atten-
tion in the literature [1,8,9]. Applying the Dantzig-Wolfe decomposition to the
L-CVRP yields also a set partitioning problem which can be solved through col-
umn generation. The pricing subproblem remains an elementary shortest path
problem, but now the resource constraints become 2- or 3-dimensional pack-
ing constraints which are much more difficult to handle than other standard
constraints as the capacity constraints, for example.

To the best of our knowledge, the elementary shortest path problem with
loading constraints has never been addressed in the literature. In this paper, we
describe and analyse a solution approach based on variable neighborhood search
for the problem with 2-dimensional items and sequential constraints. To generate
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feasible routes, we use different constructive methods that handle the packing
part of the problem through alternative strategies based on bottom-left and
level packing placement rules. Local search is supported on several neighbor-
hoods defined from both the routing and packing definition of the solutions.
The combination of the different strategies described in this paper leads to dif-
ferent variants of the variable neighborhood search algorithm. The performance
of these variants is evaluated and compared through extensive computational
experiments on benchmark instances from the literature for the 2L-CVRP.

The paper is organized as follows. In Section 2, we define formally the elemen-
tary shortest path problem with loading constraints addressed in this paper, and
we introduce the corresponding notation. In Section 3, we describe the construc-
tive heuristics used to generate feasible solutions for the problem. The neighbor-
hood structures and the details of our variable neighborhood search algorithm
are described in Section 4. In Section 5, we report on the computational exper-
iments performed to evaluate and compare the performance of our approach.
Some final conclusions are drawn in Section 6.

2 The Elementary Shortest Path Problem with Loading
Constraints

The elementary shortest path problem with 2-dimensional loading constraints
(2L-ESPP) is defined on a graph G = (V,E) with the set of nodes V repre-
senting the n clients of the problem plus the depot 0 from which the vehicle
leaves initially and to which it should come back at the end of the visits, and
E representing the set of edges of the graph. The travelling cost associated to
the edges (i, j) ∈ E will be denoted by cij . The loading area of the vehicle has
a total width denoted by W and a maximum height of H units. Each client
i ∈ V \ {0} has bi 2-dimensional items of width and height respectively equal
to wi and hi. These dimensions are general, i.e. no particular constraints apply
to the width and height of the items. The visit of a client implies that all his
items are loaded on the vehicle. Hence, we assume that the load associated to
any client i ∈ V \ {0} fits in the vehicle. The 2L-ESPP consists in finding the
minimum cost route for the vehicle that starts and ends at the depot 0 and that
visits at most once the clients in V . Note that here we assume that there are
negative costs for some edges of the graph, which happens typically when the
problem is defined as a pricing subproblem of a column generation model for the
2L-CVRP.

In this paper, we address the case where the items of the clients have a
fixed rotation, and where the sequential or LIFO constraint applies. The latter
implies that, during the loading and unloading of the items of a given client, the
items of all the other clients that are already in the vehicle cannot be moved.
Furthermore, lateral movements of the items inside the vehicle are forbidden.
Hence, the loading and unloading operations can only be done in a direction
that is parallel to the left and right sides of the vehicle. Figure 2 illustrates the
case of a feasible and an infeasible loading pattern for the instance of Example 1
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according to this sequential constraint. In the example represented in this figure,
the sequence of visits is (0, 2, 1, 0). However, in the pattern (b) of Figure 2, one
of the items of client 2 cannot be unloaded without moving first the items of
client 1.

A solution for the 2L-ESPP is defined as a sequence of clients that starts
and ends at the depot 0, together with a placement position for each item of the
clients that are visited. Alternatively, the latter can be replaced by defining the
sequence by which the items of each client should be loaded on the vehicle, and
by defining the placement rule that is used. Let S denote the sequence of clients
visited in a solution of the 2L-ESPP. We have

S = (s1, s2, . . . , s|S|),

with s1 = s|S| = 0, while s2, . . . , s|S|−1 represent the clients visited by the
corresponding route. The cost of the solution associated to S will be denoted by
z(S), i.e. z(S) =

∑|S|−1
i=1 csisi+1 . Moreover, let P define the order by which the

items of the clients of S are placed in the vehicles, such that

P = (p2, . . . , p|S|−1),

with pi = (p1i , p
2
i , . . . , p

bsi
i ), i = 2, . . . , |S| − 1, and pji representing the index of

the jth item of client si to be placed in the vehicle.
The following example illustrates through a small instance the details related

to the definition of the 2L-ESPP and its solutions.

Example 1. Consider the instance of the 2L-ESPP represented in Figure 1.
The set of nodes V is composed by n = 4 clients and the depot 0, i.e.
V = {0, 1, 2, 3, 4}. The costs cij , (i, j) ∈ E, are shown beside the edges of the
graph. The items of each client are identified through the tuple (i, k), with i
representing the client and k the index of the item (k = 1, . . . , bi). A feasible
solution for this instance is the following:

S = (0, 2, 1, 0) and P = ((1, 3, 2), (1, 2)).

assuming that a standard bottom-left rule is used to place the items. The corre-
sponding loading pattern is illustrated in Figure 2-(a). The cost of this solution is
z(S) = −5. It is easy to see that all the items of the clients can be unloaded from
the vehicle without lateral movements or moving the items of the other clients.
Figure 2-(b) shows an alternative loading pattern that violates this sequential
constraint.
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3 Building Feasible Solutions with Constructive
Heuristics

To build an initial solution for the problem, we adopted a constructive approach
in which the clients are added one by one to the route. The next client to be
evaluated is inserted in the current route only if all his items can be loaded on
the vehicle according to the constraints that apply to the loading patterns. The
clients are evaluated following a nearest neighbor approach. Starting from the
depot, two different strategies were considered to select the first client:

(FN) the first client to be evaluated is the one that is nearest to the depot 0
(i.e. argmin{c0i : i = 1, . . . , n});

(FR) the first client to be evaluated is selected randomly.

The acronyms (FN) and (FR) used above will be used later to distinguish
between the variants that we obtain by using one of these two strategies. After
selecting the first client, the remaining ones are evaluated by non-decreasing
order of the cost of the edge that connects them to the last client in the current
route. The client that is evaluated is inserted in the route if all his items can be
loaded on the vehicle. If no more clients can be inserted, the route is closed by
connecting the last client to the depot.

The hardest part when building a solution for the 2L-ESPP is to find (if it
exists) a feasible arrangement of the items on the vehicle such that there are
no overlaps, all the items are put inside the boundaries of the vehicle without
rotation, and the sequential constraint is satisfied. To address this issue, we
considered three different strategies:

(BL) a standard bottom-left placement rule;
(RBL) a revised bottom-left procedure;

(LP ) a level packing approach.

The strategy (BL) consists in placing the next item in the bottom and leftmost
free position of the vehicle that ensures that all the loading constraints that
apply are satisfied. Each time an item is placed on the vehicle, at most four
orthogonal free spaces are generated identifying the different areas of the vehicle
where the next items can be placed. In turn, after placing an item in a free space,
this free space (and all the others that are intersected by the item) is removed,
and replaced by an updated set of free spaces. Placing an item according to the
strategy (BL) is equivalent to finding the free space whose width and height
are equal to or larger than the size of the item, and whose bottom and leftmost
position is the smallest among all the free spaces provided that it leads to a
feasible placement. After finding this free space, the item is placed in its bottom
and leftmost position. Figure 3 illustrates the concept of free space. Free space 1
and 2 (black dotted lines) are the free spaces respectively at the left and right of
the item generated after its placement on the vehicle. Free spaces 3 and 4 (grey
dashed lines) are the free spaces respectively above and below the item. The
revised bottom-left procedure (RBL) consists in selecting the free space where
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the item produces the best fit, and then in placing the item in the bottom and
leftmost position of this free space. The free space with the best fit is the one
whose area is the nearest to the area of the item. The idea is to place the items
in the areas of the vehicle where the packing generates the least possible waste,
thus favouring the filling of holes. Again, only the free spaces whose bottom and
leftmost position yields a feasible placement are considered for selection.

The last strategy (LP ) that we explored consists in placing the items of the
selected client in horizontal levels, and then in placing the levels on the vehicle
one above another. The first item to be placed in a level determines the maximum
height of the items that can be placed after it in that level. To select the level
where the next item will be placed, we considered the following two strategies:

(LP.FF ) the next item is placed in the first open level where it fits;
(LP.BF ) the next item is placed in the open level where it best fits.

The level that was placed in the upmost position of the vehicle for the previous
client is considered as an open level when placing the items of the next client.
After placing all the items on the levels, the levels are placed on the vehicle so
that the one with the largest remaining space is placed in the upmost position.
One of the advantages of level packing approaches is that they ensure that the
patterns satisfy the sequential constraint, thus avoiding the necessity of checking
the placement positions before placing the items. The loading patterns resulting
from this level packing approach are similar to the cutting patterns that arise in
2-dimensional guillotine cutting stock problems.

After choosing a client to insert in the route, his items are selected one by
one, and placed in the vehicle according to the strategies described above. The
next item to be placed is selected according to two different orderings based on
the following criteria:
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(OH) height of the items;
(OA) area of the items.

In both cases, the items are ordered in non-increasing order of their height and
area, respectively.

4 Variable Neighborhood Search Algorithm

The strategies described in the previous section yield different variants of a
constructive method for building feasible solutions for the 2L-ESPP. In order to
improve the solutions generated by these algorithms, we developed a local search
approach embedded into a variable neighborhood search (VNS) algorithm. The
VNS metaheuristic was described first by Mladenovic and Hansen in [6], and
since then, it has been applied with success to solve different combinatorial
optimization problems [3]. The aim of VNS is to explore systematically different
neighborhoods of the solutions to diversify the search and escape from local
optima. Here, VNS is used to drive the search into 7 alternative neighborhoods
of the solutions generated through the constructive algorithms arising from the
combination of the different strategies described above. In the following section,
we define the neighborhood structures that we used to support the local search
procedures. The details of our VNS algorithm are given in Section 4.2.

4.1 Neighborhood Structures

The representation of the solutions of the 2L-ESPP defined in Section 2 relies on
two main elements: the sequence by which the clients are visited in a given route,
and the characterization of the loading pattern used to arrange the corresponding
items in the vehicle so that all the loading constraints that apply (no overlaps,
fixed orientation and the sequential constraint) are satisfied. To explore the
search spaces defined through these two aspects of the solutions, we defined 7
neighborhood structures that can be divided into routing neighborhoods and
packing neighborhoods. The definition of the neighborhood structures relies on
the constructive algorithms defined above, and covers a broad range of possible
movements. Let CH denote the constructive heuristic used to build the initial
solution for the instance, and which is obtained by combining the strategies
described in Section 3. In our implementation, we assumed that the constructive
heuristic CH used to generate the initial solution is also the one that is used
to define the neighbors of a given solution. When generating the neighbors,
the difference is that part of the sequences of clients (and the corresponding
sequence by which the items are placed in the vehicle) is fixed. The neighborhood
structures are defined in the sequel.

Routing neighborhoods

NS1 Swapping two clients in the route
Given a solution whose sequence of visited clients is S (as defined in
Section 2), the neighbors of this solution consist in all the feasible solutions
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obtained by swapping two clients in this route, by applying CH with the
resulting sequence of clients (keeping the sequence of items for each client),
and by adding more clients from the last one forward in the route using
CH. Let Sc denote the sequence of clients in the route associated to the
current solution, such that:

Sc = (s1, s2, s3, . . . , s|Sc|−1, s|Sc|),

One of the neighbors of this solution obtained by swapping s2 and s|Sc|−1

is the following:

S′
c = (s1, s|Sc|−1, s3, . . . , s2, s|Sc|),

provided that the items of the clients in S′
c can be put in the vehicle using

CH, and no more clients can be added at the end of S′
c. Moreover, if Pc

defines the sequences by which the items of the clients of Sc are placed in
the vehicle (again as defined in Section 2), i.e.

Pc = (p2, p3, . . . , p|Sc|−1),

then the corresponding sequences of items associated to S′
c will be

P ′
c = (p|Sc|−1, p3, . . . , p2).

NS2 Shifting a client in the route
The neighbors of a solution whose sequence of clients is S are obtained by
choosing a client and placing it in a different position of the sequence, by
applying CH with the resulting sequence of clients (keeping the sequence
of items for each client), and by adding more clients from the last one
forward in the route using CH. The following solution is a neighbor of the
solution Sc defined above obtained by selecting the client s2 and by placing
it in the third position of the sequence, i.e.

S′
c = (s1, s3, s2 . . . , s|Sc|−1, s|Sc|).

Again, in this case, we are assuming that no more clients can be added at
the end of the route by applying CH.

NS3 Removing a client from the route
The neighbors of a solution are obtained by removing a client from the
route, by applying CH with the resulting sequence of clients in the same
conditions as in the previous neighborhood structures, and by inserting
clients at the end of the sequence (before the depot and if they fit in the
vehicle) using again CH.

NS4 Removing a client and all its successors from the route
The neighbors of a solution are obtained by removing all the clients from
a given position of the sequence up to the end, by adding a selected client
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at the end of the sequence and by placing his items using CH. The vehicle
is filled by applying strictly the heuristic CH starting from the last client
that was inserted.

NS5 Exchanging a client by another in the route
The neighbors of a solution are obtained by exchanging a client by another
that is not in the sequence, by placing the items of the clients in the result-
ing sequence using CH, and by adding other clients at the end of the
sequence (before the depot) using again CH. Note that the sequence by
which the items of the clients are placed in the vehicle remains unchanged
for all the clients that were already in the route.

Packing neighborhoods

NS6 Swapping two items
The neighbors of a solution are obtained by selecting a client in the route
and by swapping two items in the sequence that defines the order by which
his items are placed in the vehicle. Then, the heuristic CH is used to build
the solution that corresponds to these sequences of clients and items (if
possible), and to add other clients at the end of the sequence (before the
depot) if they fit in the vehicle. Let Sc be the sequence of visited clients
in the current solution, and let P c denote the corresponding sequences by
which the items are placed in the vehicle. As an example, let Sc and P c

be defined respectively as follows:

Sc = (s1, s2, s3, s4, s5),

with s1 = s5 = 0, and

Pc = ((p12, p
2
2), (p

1
3, p

2
3, p

3
3), (p

1
4)).

A possible neighbor S′
c of this solution is defined as follows:

S′
c = Sc and P ′

c = ((p12, p
2
2), (p

2
3, p

1
3, p

3
3), (p

1
4)).

It is obtained by swapping the first and second item of s3 in Pc, provided
that all the items can be placed according to P ′

c in the vehicle by applying
CH, and that no more clients can be added at the end of the sequence.

NS7 Shifting an item
The neighbors of a solution are obtained by selecting a client in the route
and by placing one of his items in a different position in the sequence
that defines the order by which the items of this client were inserted in
the vehicle. As in the previous neighborhood structure, the heuristic CH
is used to build the solution associated to these sequences of clients and
items. The same heuristic is used to add other clients at the end of the
sequence and before the depot, if possible.
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4.2 Variable Neighborhood Search

To explore the search spaces defined through the neighborhood structures
described in the previous section, we developed a variable neighborhood search
algorithm that applies local search on these 7 neighborhoods. The initial solu-
tion is generated by applying one of the constructive heuristics that result
from the combination of the different strategies described in Section 3, namely
{(FN), (FR)}, {(BL), (RBL), (LP )}, {(LP.FF ), (LP.BF )} (if (LP ) has been
selected), and {(OH), (OA)}. Then, the 7 neighborhoods are explored in cycle
until a maximum computing time limit is reached. A solution is generated in a
shaking phase from the current incumbent solution in the neighborhood that is
being explored, and a local search procedure is applied right after in the same
neighborhood to determine an improved solution. In our implementation, we
resorted to a first improvement local search procedure that stops when it finds
a solution that is better than the solution generated in the shaking phase, or
if no better solution exists in this neighborhood. Note that all the solutions
that are explored are necessarily feasible solutions for the problem. Our vari-
able neighborhood search algorithm is described in Algorithm 1. The construc-
tive heuristic is denoted by findInitialSolution(), while the shaking and
local search procedures are represented respectively by shaking((S, P ), NSk)
and firstImprovement((S′, P ′), NSk), with (S, P ) denoting the current incum-
bent solution, (S′, P ′) the solution generated in the shaking phase, and NSk the
neighborhood that is being explored.

5 Computational Experiments

To evaluate and compare the performance of the different variants of our variable
neighborhood search algorithm, we conducted an extensive set of computational
experiments on 180 benchmark instances of the 2L-CVRP used by Iori et al. in
[5] and by Gendreau et al. in [2]. Note that, in the former, the largest instances
were not used due to their complexity. The number n of clients of these instances
ranges from 15 up to 255, while the total number of items varies between 15
and 786. A complete description of the instances can be found in [2]. For our
experiments, we multiplied all the costs (distances) associated to the edges by
−1. The algorithms were coded in C++, and the tests were run on a PC with
an i7 CPU with 2.9 GHz and 8 GB of RAM.

We tested the 16 variants of our algorithm resulting from the com-
bination of the strategies described in Section 3, namely {(FN), (FR)},
{(BL), (RBL), (LP )}, {(LP.FF ), (LP.BF )} (if (LP ) has been selected), and
{(OH), (OA)}. The instances were divided in 22 groups according to the num-
ber of clients. The average results for each group are reported in Tables 1-3. In
Table 1, we report on the results obtained with the standard bottom-left place-
ment rule (BL) for all the possible combinations of strategies involving (FN),
(FR), (OH) and (OA). Table 2 provides the results achieved with the revised
bottom-left placement rule (RBL), while Table 3 gives the results when the
level packing procedure (LP ) is used with (LP.FF ). Although we tested the
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Algorithm 1. Variable Neighborhood Search Algorithm
Input:

I: instance of the 2L-ESPP;
CH: constructive heuristic defined from the combination of the different
strategies {(FN), (FR)}, {(BL), (RBL), (LP )}, {(LP.FF ), (LP.BF )}
(if (LP ) has been selected), and {(OH), (OA)};
Set of neighborhood structures NS = {NS1, NS2, . . . , NS7};
Limit tmax on the total computing time;

Output:
Feasible solution (S, P ) of value z(S);

(S, P ):=findInitialSolution();
repeat

k := 1;
while k ≤ 7 do

(S′, P ′) := shaking((S, P ), NSk);
(S′′, P ′′) := firstImprovement((S′, P ′), NSk);
if z(S′′) ≤ z(S) then

(S, P ) := (S′′, P ′′);
k := 1;

end
else

k:=k+1;
end

end
until cpuTime() ≤ tmax;
return (S, P ) ;

level packing procedure (LP ) with the best-fit rule (LP.BF ), we do not report
the results here due to the lack of space. This latter strategy led to results that
are very near from those obtained with the approach based on (LP.FF ) for
these instances. All the tests were run with a maximum computing time limit of
3 seconds. The purpose was to test and compare the ability of each strategy in
finding efficiently good incumbents for the problem. The meaning of the columns
in these tables is the following:

n: number of clients;
M : average number of items;

inst: number of instances in the corresponding group;
ord: criterion used to order the items of a client ((OH) or (OA));
zCH : average value of the initial solution generated using the constructive

heuristic resulting from the combination of the strategies described in
Section 3;

%CH
fill : average percentage of space used in the vehicle by the initial solution

generated using the constructive heuristic;
zV NS : average value of the best solution obtained with the variable neighbor-

hood search algorithm described in Algorithm 1;
%V NS

fill : average percentage of space used in the vehicle by the best solution
obtained with the variable neighborhood search algorithm;
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imp: percentage of improvement achieved with the variable neighborhood
search algorithm, i.e. imp = (zV NS − zCH)/zCH .

Additionally, in Tables 1-3, the average results for all the instances are reported
in the line avg.

Table 1. Computational results with (BL)

(FN) (FR)

n M inst ord zCH %CH
fill zV NS %V NS

fill imp zCH %CH
fill zV NS %V NS

fill imp

15 31,1 10 (OH) -335,30 61,26 -349,30 65,07 4,18 -318,90 61,21 -341,30 63,87 7,02
20 39,5 10 -423,80 60,82 -483,00 67,33 13,97 -435,30 63,02 -475,70 66,56 9,28
21 39,4 10 -561,90 63,93 -621,70 69,91 10,64 -542,70 65,63 -594,00 66,81 9,45
22 39,4 10 -940,80 62,23 -1076,70 68,42 14,45 -966,50 64,32 -1049,40 68,26 8,58
25 56,0 5 -532,20 60,12 -561,80 66,56 5,56 -452,00 61,12 -550,60 67,96 21,81
29 57,8 10 -984,70 63,54 -1137,00 69,39 15,47 -969,90 62,10 -1149,50 65,53 18,52
30 63,8 5 -512,40 62,72 -561,00 69,22 9,48 -497,60 65,70 -556,20 69,92 11,78
32 62,5 15 -1718,87 61,84 -1831,33 69,02 6,54 -1619,07 60,55 -1858,00 69,52 14,76
35 74,4 5 -576,20 60,74 -648,80 68,46 12,60 -554,40 62,68 -639,80 63,40 15,40
40 79,2 5 -611,60 57,78 -754,20 71,58 23,32 -643,60 63,26 -766,80 69,46 19,14
44 86,2 5 -1250,40 58,76 -1432,00 70,46 14,52 -1262,80 63,70 -1431,00 70,26 13,32
50 105,2 5 -770,80 62,14 -853,60 70,30 10,74 -717,20 63,42 -826,20 71,18 15,20
71 146,0 5 -542,00 61,40 -607,00 70,20 11,99 -548,60 68,76 -602,20 72,96 9,77
75 150,3 20 -1068,45 64,47 -1215,80 70,75 13,79 -1038,85 63,16 -1201,70 70,69 15,68

100 204,3 15 -1399,80 65,99 -1561,00 72,73 11,52 -1376,00 65,90 -1554,40 72,47 12,97
120 245,6 5 -2552,20 70,72 -2659,00 73,26 4,18 -2483,40 68,16 -2711,20 73,06 9,17
134 271,4 5 -2545,80 70,42 -2805,00 73,52 10,18 -2545,80 69,58 -2748,20 76,90 7,95
150 294,4 5 -1880,40 70,14 -2026,40 74,20 7,76 -1838,20 65,48 -2025,80 71,90 10,21
199 399,6 15 -2308,40 67,25 -2490,47 74,90 7,89 -2225,07 68,77 -2442,20 72,68 9,76
240 484,8 5 -1133,00 64,64 -1247,80 74,98 10,13 -1138,20 73,66 -1228,40 76,54 7,92
252 504,4 5 -1439,60 65,14 -1521,00 77,68 5,65 -1416,60 62,96 -1516,80 77,80 7,07
255 509,0 5 -1022,00 67,26 -1124,80 77,54 10,06 -1030,80 71,20 -1092,00 77,42 5,94

avg. -1141,39 63,79 -1253,12 71,16 10,67 -1119,16 65,20 -1243,70 70,69 11,85
15 31,1 10 (OA) -331,40 60,03 -351,40 62,74 6,04 -288,30 57,59 -348,00 65,21 20,71
20 39,5 10 -412,10 60,50 -477,10 66,77 15,77 -398,90 63,40 -468,90 66,70 17,55
21 39,4 10 -546,50 61,69 -612,10 67,42 12,00 -554,40 62,60 -619,30 69,18 11,71
22 39,4 10 -958,20 64,97 -1042,20 68,73 8,77 -914,90 60,91 -1052,10 67,20 15,00
25 56,0 5 -539,80 64,60 -576,20 67,60 6,74 -498,20 63,44 -581,40 70,00 16,70
29 57,8 10 -947,70 62,79 -1146,50 69,05 20,98 -980,80 62,76 -1145,10 67,06 16,75
30 63,8 5 -519,00 64,88 -541,60 66,46 4,35 -505,40 62,72 -542,20 67,98 7,28
32 62,5 15 -1718,93 60,99 -1852,87 67,44 7,79 -1617,80 61,50 -1891,47 69,35 16,92
35 74,4 5 -614,40 61,28 -651,00 66,64 5,96 -622,00 65,72 -666,80 69,14 7,20
40 79,2 5 -669,40 64,90 -727,60 70,74 8,69 -690,20 63,78 -740,20 69,06 7,24
44 86,2 5 -1250,40 58,76 -1468,00 68,66 17,40 -1226,40 64,44 -1411,40 67,84 15,08
50 105,2 5 -777,60 66,76 -826,60 66,28 6,30 -763,60 67,10 -865,40 70,86 13,33
71 146,0 5 -542,80 59,98 -587,60 72,30 8,25 -550,40 61,26 -614,60 71,64 11,66
75 150,3 20 -1098,30 67,02 -1211,10 73,04 10,27 -1032,45 63,61 -1207,85 70,57 16,99

100 204,3 15 -1411,00 67,97 -1575,00 72,86 11,62 -1414,87 70,09 -1573,73 72,59 11,23
120 245,6 5 -2548,60 71,56 -2706,60 73,10 6,20 -2389,20 69,76 -2680,60 72,44 12,20
134 271,4 5 -2562,40 71,24 -2724,00 71,46 6,31 -2365,40 71,04 -2710,40 72,84 14,59
150 294,4 5 -1884,80 70,00 -2003,80 74,18 6,31 -1788,00 66,22 -1965,20 75,50 9,91
199 399,6 15 -2286,27 69,96 -2448,40 76,00 7,09 -2252,60 70,74 -2477,67 74,36 9,99
240 484,8 5 -1157,00 71,94 -1227,00 77,50 6,05 -1153,20 73,22 -1249,60 76,54 8,36
252 504,4 5 -1427,60 60,56 -1529,60 76,60 7,14 -1443,40 73,22 -1551,00 77,56 7,45
255 509,0 5 -1044,40 75,38 -1093,60 78,94 4,71 -1018,20 73,76 -1084,20 76,78 6,48

avg. -1147,66 65,35 -1244,54 70,66 8,85 -1112,21 65,86 -1247,60 70,93 12,47

The constructive heuristic runs typically during a very few milliseconds, and
hence most of the computing time is spent in the local search phase of the algo-
rithm. Despite the small value used in our experiments for the maximum com-
puting time, the results show that the variable neighborhood search algorithm
can improve significantly the value of the solution. Depending on the quality of
the initial solution the percentage of improvement goes up to nearly 43%. This
percentage tends to be larger when the level packing procedure is used to build
the loading patterns.
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Table 2. Computational results with (RBL)

(FN) (FR)

n M inst ord zCH %CH
fill zV NS %V NS

fill imp zCH %CH
fill zV NS %V NS

fill imp

15 31,1 10 (OH) -269,80 48,18 -339,30 61,98 25,76 -278,90 52,02 -339,60 61,92 21,76
20 39,5 10 -385,90 50,06 -460,50 61,63 19,33 -392,00 53,38 -452,70 60,74 15,48
21 39,4 10 -538,00 57,77 -595,70 64,20 10,72 -519,50 53,51 -607,70 67,10 16,98
22 39,4 10 -934,50 57,98 -1049,00 66,27 12,25 -890,50 60,76 -1034,90 63,75 16,22
25 56,0 5 -519,60 56,20 -571,80 67,92 10,05 -386,00 42,70 -552,20 68,46 43,06
29 57,8 10 -880,70 53,33 -1115,20 65,33 26,63 -893,10 56,23 -1087,90 66,37 21,81
30 63,8 5 -472,20 57,54 -552,80 71,52 17,07 -467,80 50,16 -553,00 64,96 18,21
32 62,5 15 -1564,73 54,04 -1828,80 65,40 16,88 -1561,93 55,82 -1881,33 67,51 20,45
35 74,4 5 -570,40 51,24 -648,20 65,74 13,64 -518,20 58,04 -653,40 65,90 26,09
40 79,2 5 -603,20 49,22 -703,00 68,38 16,55 -642,20 53,62 -712,80 67,58 10,99
44 86,2 5 -1243,00 53,34 -1409,40 67,56 13,39 -1119,20 50,90 -1378,20 67,04 23,14
50 105,2 5 -752,80 59,20 -790,80 66,22 5,05 -688,00 56,20 -797,20 67,94 15,87
71 146,0 5 -516,20 49,46 -609,20 68,18 18,02 -545,40 60,78 -622,20 73,04 14,08
75 150,3 20 -1026,05 59,16 -1175,25 67,61 14,54 -986,55 57,35 -1161,60 68,79 17,74

100 204,3 15 -1359,07 56,15 -1553,07 70,36 14,27 -1306,93 57,04 -1540,87 71,47 17,90
120 245,6 5 -2390,20 64,56 -2683,60 71,18 12,28 -2354,00 65,14 -2736,60 69,92 16,25
134 271,4 5 -2449,20 64,56 -2809,20 72,54 14,70 -2310,40 55,76 -2745,00 73,86 18,81
150 294,4 5 -1791,60 60,40 -1965,20 72,54 9,69 -1771,00 57,00 -1955,60 72,36 10,42
199 399,6 15 -2240,87 62,76 -2425,13 72,35 8,22 -2181,33 59,96 -2434,13 73,62 11,59
240 484,8 5 -1124,40 56,52 -1196,40 71,02 6,40 -1135,80 66,26 -1232,00 76,32 8,47
252 504,4 5 -1400,60 56,58 -1497,40 74,96 6,91 -1380,60 64,90 -1507,20 73,92 9,17
255 509,0 5 -1012,20 58,48 -1069,00 76,54 5,61 -974,20 55,86 -1098,40 74,52 12,75

avg. -1092,96 56,21 -1229,45 68,61 13,54 -1059,25 56,52 -1231,12 68,96 17,60
15 31,1 10 (OA) -277,20 47,84 -335,20 64,64 20,92 -302,30 56,79 -341,90 64,97 13,10
20 39,5 10 -419,90 57,21 -460,60 66,86 9,69 -405,90 62,27 -452,80 63,39 11,55
21 39,4 10 -530,50 56,60 -601,90 65,96 13,46 -478,90 55,61 -603,90 65,52 26,10
22 39,4 10 -920,00 57,42 -1026,50 64,77 11,58 -805,80 50,90 -1003,20 64,28 24,50
25 56,0 5 -542,40 59,90 -553,20 65,62 1,99 -520,00 60,04 -588,00 67,96 13,08
29 57,8 10 -949,80 61,93 -1136,20 68,34 19,63 -883,30 56,59 -1134,20 66,34 28,40
30 63,8 5 -501,40 61,24 -555,40 68,74 10,77 -428,20 52,26 -546,40 65,58 27,60
32 62,5 15 -1623,93 55,68 -1873,07 67,30 15,34 -1545,73 57,83 -1821,27 67,06 17,83
35 74,4 5 -582,60 55,40 -625,00 69,32 7,28 -518,40 52,38 -646,80 67,54 24,77
40 79,2 5 -576,20 46,54 -712,80 68,70 23,71 -646,40 57,82 -715,20 67,90 10,64
44 86,2 5 -1272,20 58,42 -1452,60 65,58 14,18 -1149,80 51,56 -1451,80 69,58 26,27
50 105,2 5 -727,80 53,86 -806,80 69,18 10,85 -723,80 60,16 -797,80 66,12 10,22
71 146,0 5 -544,80 57,90 -601,40 72,34 10,39 -536,00 60,50 -604,40 70,12 12,76
75 150,3 20 -1038,00 59,69 -1206,15 69,42 16,20 -1042,10 61,34 -1185,75 69,85 13,78

100 204,3 15 -1380,80 60,09 -1561,20 71,57 13,06 -1366,20 61,53 -1470,87 69,83 7,66
120 245,6 5 -2351,40 59,96 -2648,40 72,50 12,63 -2339,00 54,56 -2750,60 72,30 17,60
134 271,4 5 -2582,00 67,64 -2723,40 72,74 5,48 -2280,00 66,50 -2669,20 73,94 17,07
150 294,4 5 -1867,20 64,46 -1990,40 71,82 6,60 -1785,60 68,32 -1951,40 74,38 9,29
199 399,6 15 -2244,80 62,98 -2419,67 74,59 7,79 -2196,80 61,68 -2468,33 74,16 12,36
240 484,8 5 -1161,40 70,04 -1233,80 74,10 6,23 -1102,80 58,10 -1232,40 79,26 11,75
252 504,4 5 -1403,60 58,66 -1500,20 72,10 6,88 -1411,00 62,82 -1531,00 72,40 8,50
255 509,0 5 -1033,20 64,10 -1082,00 76,36 4,72 -994,60 64,56 -1078,20 70,84 8,41

avg. -1115,05 58,98 -1232,09 69,66 11,34 -1066,48 58,82 -1229,34 69,24 16,06

The best average results are obtained using the strategies (BL), (FN) and
(OH). The strategy (FN) that consists in inserting first the client that is nearest
to the depot generates usually the best initial solutions when compared to (FR).
In some cases, choosing randomly the first client to insert in the route yields
better initial solutions, but even in these cases, the local search procedure tends
to reach better solutions at the end of the computing time with the strategy
(FN) than it does with the strategy (FR). Note that the results remain nearly
the same for different runs of the strategy (FR). Ordering the items by height
(OH) or by area (OA) has a more significant impact when the level packing
procedure is used to place the items in the vehicle. When the bottom-left based
strategies (BL) and (RBL) are used, these two orderings yield results that are
not significantly different for these instances.

The variants of the algorithm based on the bottom-left placement procedures
find solutionswith anhigh percentage of used space in the vehicles. This percentage
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Table 3. Computational results with (LP ) and (LP.FF )

(FN) (FR)

n M inst ord zCH %CH
fill zV NS %V NS

fill imp zCH %CH
fill zV NS %V NS

fill imp

15 31,1 10 (OH) -246,40 39,03 -293,80 51,74 19,24 -256,10 39,35 -293,30 51,00 14,53
20 39,5 10 -332,40 38,31 -394,40 54,39 18,65 -331,50 42,05 -399,70 50,76 20,57
21 39,4 10 -487,50 48,08 -526,70 51,37 8,04 -445,30 42,42 -539,90 54,67 21,24
22 39,4 10 -772,70 42,13 -901,80 50,89 16,71 -773,70 42,51 -897,70 52,67 16,03
25 56,0 5 -437,80 45,26 -475,00 51,22 8,50 -400,60 47,74 -477,20 49,16 19,12
29 57,8 10 -840,70 45,14 -1018,40 52,99 21,14 -816,40 40,43 -973,30 50,08 19,22
30 63,8 5 -431,40 46,90 -501,00 56,42 16,13 -419,00 46,62 -464,40 54,48 10,84
32 62,5 15 -1462,47 46,86 -1554,40 51,45 6,29 -1452,93 46,20 -1631,53 51,47 12,29
35 74,4 5 -532,40 43,68 -587,00 55,40 10,26 -468,20 37,52 -563,60 53,64 20,38
40 79,2 5 -556,60 39,88 -619,40 50,78 11,28 -541,60 46,42 -645,40 54,32 19,17
44 86,2 5 -1113,80 40,56 -1217,60 52,68 9,32 -1018,60 46,16 -1311,20 56,12 28,73
50 105,2 5 -666,60 41,30 -740,40 52,68 11,07 -667,40 41,84 -759,80 54,34 13,84
71 146,0 5 -519,20 49,80 -563,40 58,78 8,51 -477,40 43,30 -555,80 53,96 16,42
75 150,3 20 -984,20 46,16 -1095,85 54,78 11,34 -927,70 43,20 -1087,70 57,22 17,25

100 204,3 15 -1313,40 49,90 -1410,00 58,85 7,35 -1260,87 48,48 -1384,33 55,43 9,79
120 245,6 5 -2302,40 50,54 -2635,80 62,06 14,48 -2223,00 48,96 -2558,60 59,52 15,10
134 271,4 5 -2258,20 55,56 -2510,40 61,70 11,17 -2194,60 52,60 -2392,20 62,02 9,00
150 294,4 5 -1724,00 49,64 -1935,40 62,02 12,26 -1743,60 51,02 -1806,20 64,92 3,59
199 399,6 15 -2180,60 48,18 -2374,33 62,55 8,88 -2179,53 53,97 -2371,60 66,35 8,81
240 484,8 5 -1116,20 55,44 -1192,80 68,30 6,86 -1074,80 48,44 -1188,00 62,98 10,53
252 504,4 5 -1365,80 46,74 -1468,60 70,78 7,53 -1335,60 51,02 -1464,40 63,90 9,64
255 509,0 5 -986,20 50,70 -1039,80 65,70 5,44 -981,40 54,02 -1038,20 63,24 5,79

avg. -1028,68 46,35 -1138,92 57,16 11,38 -999,54 46,10 -1127,46 56,47 14,63
15 31,1 10 (OA) -250,22 36,92 -295,78 50,67 18,21 -252,11 36,67 -287,78 46,26 14,15
20 39,5 10 -346,50 37,75 -395,10 50,59 14,03 -339,20 42,76 -412,80 51,44 21,70
21 39,4 10 -486,60 46,81 -538,10 51,53 10,58 -450,80 45,31 -549,70 51,89 21,94
22 39,4 10 -756,20 40,47 -895,30 51,72 18,39 -769,20 43,04 -879,10 48,35 14,29
25 56,0 5 -493,75 41,73 -525,75 51,18 6,48 -423,20 44,20 -476,40 54,86 12,57
29 57,8 10 -965,00 40,43 -1054,75 45,96 9,30 -815,00 45,36 -1026,20 50,45 25,91
30 63,8 5 -430,00 45,14 -490,80 55,38 14,14 -410,40 40,04 -483,20 55,86 17,74
32 62,5 15 -1427,80 42,59 -1581,13 51,43 10,74 -1412,64 43,27 -1683,79 50,77 19,19
35 74,4 5 -532,40 43,68 -591,00 51,36 11,01 -492,20 41,90 -563,00 51,52 14,38
40 79,2 5 -638,75 37,30 -692,25 43,70 8,38 -556,80 42,84 -642,40 55,06 15,37
44 86,2 5 -1121,80 41,66 -1253,60 57,18 11,75 -1067,20 38,30 -1312,00 58,38 22,94
50 105,2 5 -658,80 40,36 -754,20 54,00 14,48 -653,40 47,52 -748,40 55,02 14,54
71 146,0 5 -502,20 46,98 -554,40 54,72 10,39 -497,00 41,76 -555,00 49,10 11,67
75 150,3 20 -1032,58 46,18 -1119,79 53,54 8,45 -924,65 40,84 -1090,60 57,05 17,95

100 204,3 15 -1291,27 48,62 -1463,00 60,69 13,30 -1282,93 47,11 -1422,40 58,85 10,87
120 245,6 5 -2288,00 47,74 -2524,40 61,88 10,33 -2236,20 45,16 -2555,00 61,74 14,26
134 271,4 5 -2309,40 49,20 -2579,20 58,62 11,68 -2555,75 43,00 -2847,50 56,80 11,42
150 294,4 5 -1708,80 49,54 -1871,40 59,36 9,52 -1673,00 44,42 -1898,20 62,82 13,46
199 399,6 15 -2178,00 47,87 -2355,53 61,90 8,15 -2149,33 49,75 -2353,27 62,86 9,49
240 484,8 5 -1378,25 59,38 -1423,75 64,83 3,30 -1086,40 45,42 -1194,40 62,14 9,94
252 504,4 5 -1373,40 48,76 -1442,80 61,60 5,05 -1359,40 51,14 -1477,80 63,08 8,71
255 509,0 5 -974,00 43,44 -1031,00 57,68 5,85 -1194,75 53,03 -1262,75 66,70 5,69

avg. -1051,99 44,66 -1156,05 54,98 10,61 -1027,34 44,22 -1169,17 55,95 14,92

is typically higher for the largest instances. It goes up to 78.94%when the strategies
(BL), (FN) and (OA) are used on the instances with 255 clients and an average
of 509 items per instance. The percentage of used space tends to decrease with the
level packingprocedures.This trendwas expectable given that the loadingpatterns
generated through the level packing procedure are more constrained (guillotinable
patterns) thanthosegeneratedwiththeapproachesrelyingonthebottom-left rules.
In general, the results obtained with level packing procedures are outperformed by
the bottom-left based approaches.

6 Conclusions

In this paper, we explored the first solution algorithm for the 2L-ESPP. The app-
roach is based on constructive heuristics to generate initial feasible solutions for
the problem, and on variable neighborhood search to look for improved incum-
bents. We described different alternative neighborhood structures based on the
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routing and packing characteristics of the solution. We provided also the first
results concerning the resolution of this problem for a large set of benchmark
instances of the 2L-CVRP. The results illustrate the effectiveness of the variable
neighborhood search procedure in improving the solutions of the constructive
heuristics. These results allowed the comparison between the different strategies
described in this paper. Besides the practical relevance of the problem, these
results may contribute for the resolution of the 2L-CVRP through column gen-
eration algorithms since the 2L-ESPP is the pricing subproblem that results
from the corresponding Dantzig-Wolfe decomposition of this problem.
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