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Abstract. We present the simulation of the effect of cell migration
speed on wound healing using a three-dimensional computational model
for multicellular tissue growth. The computational model uses a dis-
crete approach based on cellular automata to simulate wound-healing
times and tissue growth rates of multiple populations of proliferating
and migrating cells. Each population of cells has its own division, motion,
collision, and aggregation characteristics resulting in a number of useful
system parameters that allow us to investigate their emergent effects. Our
sequential performance results point to the need of porting the model to
modern high performance machines to harness the computational power
available in multicore and GPU-based computers. Discrete systems of
this kind can be a valuable approach for studying many complex sys-
tems, including biological ones.
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1 Introduction

Cell motility is important for the proliferation of mammalian cells. In addition, it
is paramount in many physiological processes such as angiogenesis, wound heal-
ing, inflammation, and tumor cell metastasis [1]. Increased motility of cells signif-
icantly enhances their proliferation rates, and thus directly affects the population
dynamics of tissue growth. The structure of natural tissues is supported by an
extracellular matrix (ECM) that has the form of a three-dimensional network of
cross-linked protein strands (see Figure 1, for an example). The ECM plays many
important roles in tissue development. Biochemical and biophysical signals from
the ECM modulate fundamental cellular activities, including adhesion, migration,
proliferation, differentiation, and programmed cell death [3]. Scaffold properties,
cell activities like adhesion or migration, and external stimuli that modulate cellu-
lar functions are among the many factors that affect the growth rate of tissues [4].
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As a result, the development of bio-artificial tissue substitutes involves extensive
and time-consuming experimentation. The development of computational models
with predictive abilities could enhance progress in this area. In this context, the
simulation of the effect of cell migration under different conditions is necessary to
evaluate their charactersitics, screen many alternatives, and choose only the most
promising ones for laboratory experimentation.

Fig. 1. A scanning electron micrograph displaying the three-dimensional structure of
an extracellular matrix

This research describes a three-dimensional cellular automata (CA) model
to simulate the growth of three-dimensional tissues consisting of more than one
cell type in a wound-healing environment. The corresponding discrete model is
an extension of a previously developed base model that accounted for only a
single type of cells [5]. The model incorporates all the elementary features of cell
division and locomotion including the complicated dynamic phenomena occur-
ring when cells collide and aggregate. Each computational element is represented
by a site within a cubic lattice. While the assumption of cubic living cells does
not reflect the true morphology of migrating or confluent mammalian cells, it
allows us to use data structures that minimize memory and computational time
requirements. Here, each computational site interacts with its neighbors that
are to its north, east, west, south, and immediately above it or below it. This is
known as the von Neumann neighborhood in three dimensions [6]. Our objective
is to evaluate the effects of cell migration speed on the tissue growth rate and
wound-healing time in the context of a mixed wound-seeding topology employing
two types of cell populations. In particular, we explore the following question:

– What are the effects of cell migration speed on the wound-healing time and
tissue growth rate?

In the next section, we define the concept of cellular automata. This is followed
by a concise review of related work and a short description of the development of
the model. We then present the corresponding sequential algorithm and include
its flowcharts. Before concluding, we give an overview of the important parameters
and inputs of the model and discuss our performance and simulation results.
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Fig. 2. The von Neumann neighborhood in three dimensions used in our CA model

2 Cellular Automata Concepts

Cellular automata were originally introduced by John von Neumann and Stanis-
law Ulam as a possible idealization of biological systems with a particular pur-
pose of modeling biological self-reproduction [7]. This approach has been used
since then to study a wide variety of physical, chemical, biological, and other
complex natural systems [7].

We consider d-dimensional cellular automata consisting of an array D of
lattice cells covering a finite domain. Any cell c is uniquely identified by d integer
coordinates (i1, i2, . . . , id), where 1 ≤ i1 ≤ N1, 1 ≤ i2 ≤ N2, . . ., and 1 ≤ id ≤
Nd. Let Ω be the set of all computational sites in the cellular space and N be
the total number of such sites such that N = N1 × N2 × . . . × Nd. A cellular
automaton satisfies the following properties:

1. Each cell c interacts only with its neighbor cells defined by a neighborhood
relation that associates with the cell c a finite list of neighbor cells c+ν1, c+
ν2, . . . , c + νk. In general, the neighborhood vector (or neighborhood index),
V = [ν1, ν2, . . . , νk], may vary from one cell to another.

2. Each cell can exist in one of a finite number of states. This finite list of states
will be listed by Q. In the simplest case of two-state automata, Q = {0, 1}.

3. Each function X : Ω −→ Q defining an assignment of states to all cells in
the cellular space Ω is called a configuration. Then, xc is called the state of
the cell c under configuration X.

4. For any cell c in the cellular space, there exists a local transition function
(or rule) fc, from Qk to Q, specifying the state of the cell at time level
t + 1 as a function of the states of its neighbors at time level t. That is,
xt+1

c = qt+1(c) = fc(xt
c+ν1

, xt
c+ν2

, . . . , xt
c+νk

).
5. The simultaneous application of the local transition functions fc to all the

cells in a cellular space defines a global transition function F which acts on
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the entire array transforming any configuration Xt to a new configuration
Xt+1 according to Xt+1 = F (Xt).

These properties imply that each cellular automaton is a discrete dynamical
system. Starting from an initial configuration X0, the cellular array follows a tra-
jectory of configurations defined by the global transition function F . All possible
configurations of the cellular automaton define a set Φ, whose cardinality can be
quite large. For instance, using N1 = N2 = N3 = 5 and Q = {0, 1}, the number
of configurations in Φ would be equal to 25×5×5 ≈ 4.254 × 1037 configurations.

We can now define parallel discrete iterations for a cellular automaton as
follows:

{
X0 is given in Φ
Xt+1 = F (Xt), (1)

for t = 0, 1, 2, . . . or equivalently:
{

X0 = (x0
1, x

0
2, . . . .x

0
N ) is given in Φ

Xt+1
f = fi(xt

1, x
t
2, . . . , x

t
N ), (2)

for t = 0, 1, 2, . . . and i = 1, 2, 3, . . . , N . The preceding two equations, or rules,
imply that the parallel discrete iterations update the states of all cells at the same
time. It should be noted here that the transition functions of cellular automata
need not be algebraic in form and may be rule-based. A potentially impor-
tant feature of cellular automata is the capability for self-reproduction through
which the evolution of a configuration yields several separated, yet identical
copies of the configuration. Moreover, cellular automata rules may map several
initial configurations into the same final configuration, thus leading to micro-
scopically irreversible time evolution in which trajectories of different states may
merge [8].

3 Related Work

Various modeling approaches have been used to simulate the population dynam-
ics of proliferating cells. These models can be classified as: deterministic, stochas-
tic, or based on cellular automata and agents. We briefly review a few of the
recent cellular automata and agent-based lattice-free models to simulate tissue
growth. Chang and his team developed a 3-D cellular automata based model to
describe the growth of microbial cell units [9]. This model considered the effects
of bacterial cell division and cell death. Other CA-based models have also been
used to solve more specific biological modeling problems. For instance, Kansal
et al. developed a model to simulate brain tumor growth dynamics [10]. Their
model utilizes a few automaton cells to represent thousands of real cells, thus
reducing the computational time requirements of the model while limiting its
ability to track individual cells in the cellular space. Another CA model was
used by Cickovski et al. as a framework to simulate morphogenesis [11]. This
model used a hybrid approach to simulate the growth of an avian limb. The
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cellular automaton governed cell interactions while reaction-diffusion equation
solvers were used to determine the concentration levels of surrounding chemicals.

Some of the agent-based models apply the dynamics of cell proliferation and
death to describe tissue pattern formation and growth [12]. Other related models
are suitable for describing the locomotion of a fixed number of cells where cells
move relatively slowly with respect to other processes like the diffusion of soluble
substances [13]. Additional models employ feedback mechanisms between cells
and the substrate to model cells entering and leaving the tissue and to establish
homeostasis in such systems [14]. Some of the agent-based models use regular
triangulation to generate the neighborhood topology for the cells, thus allowing
for a continuous representation of cell sizes and locations in contrast to grid-based
models [15]. Others utilize multiscale approaches to model collective phenomena
in multicellular assemblies, including inflammation and wound healing [16].

4 The Computational Model

The growth of tissues is a complex biological process. In this model, the migration
and proliferation of mammalian cells are considered to be mainly characterized
by the following four subprocesses: cell division, cell motion, cell collision, and
cell aggregation. For a detailed account of the modeling steps of each of these
subprocesses, we refer the reader to related reference [5].

4.1 States of the Cellular Automaton

The model is a discrete system operating in a cellular space containing
N = Nx×Ny × Nz computational sites. Cells in the cellular space interact with
their neighbors at equally spaced time intervals t1, t2, . . . , tr, tr+1, . . . where
tr+1 = tr + Δt for all r. An occupied computational site must describe the cur-
rent state of a given cell using a set of values. These values must describe the
asynchronous proliferation and persistent random walks of multiple cell types.
In building an adequate state definition, sufficient information must be provided
about the history so that given the current state, the past is statistically irrele-
vant for predicting all future behavior pertinent to the application at hand [17].
Based on these specifications, the state xi of an automaton containing a living
cell must specify the following set of parameters:

1. The cell type.
2. The direction of cell motion.
3. The cell speed.
4. The time remaining until the next direction change.
5. The time remaining until the next cell division.

The average speed of migrating cells is controlled by varying the value of
the time interval, . This is due to the fact that migrating cells cover a fixed
distance in each step. Another means of regulating the speed of locomotion is the
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ability to adjust the transition probability for the stationary state. Therefore,
a migrating cell of type j in automaton i must only specify the direction of
locomotion and the times which remain until the next direction change and
the next cell division in its state xi. The state of an arbitrary automaton i,
thus, takes values from the following set of eight-digit integer numbers Ψ =
{klmnpqrs/k, l,m, n, p, q, r, and s ∈ IN}, where k is the cell type. The direction
of motion is identified by the direction index l. When l is equal to 0, the cell is
in the collision stationary state. When the value of l is in the range of 1 to 6, it
represents one of six directions the cell is currently moving in. When the value of
l is 7, it enters an aggregation stationary state where it “sticks” to another cell
of the same type potentially forming cellular aggregates. The digits mn denote
the persistence counter. This counter represents the time remaining until the
next change in the direction of cell movement. The cell phase counter is given
by the remaining four digits pqrs and holds the time remaining before the cell
divides.

5 Sequential Algorithm

5.1 Initial Conditions

The initial parameters for the simulation are first read from the input data
file. Then, the computational sites to be occupied by the cells at the start of
this simulation run are selected based on the seeding mode of the initial cell
distribution. For each occupied site, we assign a cell state based on the population
characteristics of that cell type. The direction index is randomly selected, the
persistence counter is assigned a properly chosen value, and the cell phase counter
is set based on experimentally determined cell division data.

5.2 Iterative Operations

At each time step tr+1 = tr + Δt, for r = 0, 1, 2, . . .

1. Randomly select a computational site.
2. If this site is occupied by a cell c and the phase counter is zero then it is

time for this cell to divide and the division routine is called.
3. If this site is occupied by a cell c and the persistence counter is zero, then it

is time for this cell to change directions and the direction change routine is
called.

4. If this site is occupied by a cell c and both the phase and persistence counters
are not zero, attempt to move this cell to a neighboring site in the direction
indicated by the direction index of its current state.
(a) If this neighboring site is free, then mark it for cell c and decrement the

phase and persistence counters by one.
(b) If this neighboring site is occupied by a cell from a different type, then

cell c remains in the current site and both cells enter the stationary state
due to collision. Their persistence counters are set accordingly while their
respective phase counters are decremented by one.
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(c) If this neighboring site is occupied by a cell from the same type, then
cell c remains in the current site and both cells enter the aggregation
stationary state. The persistence counters for both cells are set to the
appropriate waiting time and their phase counters are decremented by
one.

5. Select another site (randomly) and repeat Steps 2-4 until all sites have been
processed.

6. Update the states of all sites so that the new locations of all cells are com-
puted.

7. If confluence has not been reached, proceed to the next time step.

The flowcharts of the main module of the sequential algorithm and those of
the division and direction change routines are displayed in figures 3 through 6,
respectively.

Fig. 3. Flowchart of the main module of the sequential algorithm (part 1 of 2)

6 Simulation Parameters for Wound Healing

6.1 Cell Seeding Distribution

In this study, we consider a wound-seeding topology where a wound in the shape of
an empty cylinder is centered in the cellular grid with all surrounding sites occu-
pied by two types of cells. This topology simulates the cell migration and prolif-
eration phase of wound healing. This model does not attempt to describe all the
steps of the complicated wound-healing process [18]. We associate one type of cell
distributions with this seeding topology, known as the mixed distribution. All cell
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Fig. 4. Continuation of the flowchart of the main module (part 2 of 2)

Fig. 5. Flowchart showing the cell division routine

types are seeded together in all areas surrounding the denuded area of the wound
environment using a uniformly random placement of cells. During the simulation,
cells of both types can migrate freely in the wound area. Figure 7 illustrates an
example of this seeding distribution.

6.2 Cell Population Dynamics

Starting with a total number of seed cells equal to N0, the CA rules transform
the cellular array to simulate the dynamic process of tissue growth inside the
wound environment. At some time t after the start of the simulation, Nc(t) sites
of the cellular automaton are occupied by cells. We define a measure to indicate
the volume coverage at time t inside the wound area as the cell volume fraction
k(t), as follows:
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Fig. 6. Flowchart depicting the direction change routine

k(t) =
Nc(t) − N0

N − N0
=

n∑
i=1

(Nci(t) − Nci(0))

N −
n∑

i=1

Nci(0)
,

with N0 = Nc(0) =
n∑

i=1

Nci(0) and where N(= Nx × Ny × Nz) is the size of the

cellular space, Nci(t) is the number of occupied computational sites by cell type
i at time t, Nci(0) is the number of seed cells of type i surrounding the wound,
and n is the number of cell types (n ≥ 1). For the wound seeding, the cell volume
fraction indicates the fraction of cells occupying the wound area at a given time.
Thus, the time to reach full volume coverage can be an approximation to the
wound-healing time, an important parameter in wound healing research.

The overall tissue growth rate represents the increase in volume coverage,
within the wound area, with respect to time. To this end, the tissue growth rate
measure is given by the following formula:

dk(t)
dt

=

n∑
i=1

(Nci(t) − Nci(t − Δt))

Δt × (N − N0)
=

n∑
i=1

(Nci(t) − Nci(t − Δt))

Δt × (N −
n∑

i=1

Nci(0))
.

Here, k(t) is the cell volume fraction at time t as given above and Δt is the time
step in hours or days, depending on the resolution of the time scale utilized in
the model. The simulation continues until all sites are occupied by cells, that
is until k(t) equals one. The movement of cells will slow down due to breaks in
the persistent random walks, cell collisions, and cell aggregations. Thus, only a
fraction of the total cells, Nc(t), will move in the time interval [t, t + Δt] and
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Fig. 7. An example of a mixed wound-seeding topology, comprised of two types of cell
populations, is depicted. A wound of cylindrical shape, with a diameter of 10 and a
height of 20, inside a 20 × 20 × 20 cellular grid is exhibited.

the effective speed of migration, Se(t), in a wound-seeding environment can be
computed by using the following equation:

Se(t) =
Nm(t)
Nc,w(t)

× S , (3)

where Nm(t) refers to the number of moving cells in the time interval [t, t+Δt],
Nc,w(t) is the number of occupied sites inside the wound area at time t, and S
is the individual cell “swimming” speed. We also define the cell heterogeneity
measure H as the ratio of the initially seeded number of cells from population 1
to that from population 2. This is given by:

H =
initial number of (faster) cells from population 1
initial number of (slower) cells from population 2

.

That is, when H = 9 there are 9 cells from population 1 for every cell from
population 2.

6.3 Additional Simulation Inputs

The simulation results of the proliferation of multiple cell types are obtained for
a 200×200×200 cellular array where two cell populations are used with a wound
diameter of 100 and a height of 200. A confluence parameter of 100%, an average
waiting time of 2 hours for the six directions of motion and 1 hour for the two
stationary states are utilized. The cell speed of population 1 is assigned values of
1, 2, 5, 10, and 50μm per hour while the speed of migration of cells in population 2
is kept constant at 1μm per hour. In addition, a cell heterogeneity ratio of H = 1
is maintained throughout the simulations so that an equal number of cells from
both populations is used to populate the tissue surrounding the wound. Each
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cell is modeled as a cubic computational element whose sides are assumed to be
equal to 10μm in length. As given in Table 1, we also employ different division
time distributions for these two cell populations.

Table 1. Division time distributions for the two cell populations

Cell Populations
Division Times Cell Population 1 Cell Population 2

12 - 18 hrs 64% 4%

18 - 24 hrs 32% 32%

24 - 30 hrs 4% 64%

6.4 Sequential Performance Results

We implemented the model sequentially on a single node of a high-performance
cluster, made available to us by the InfoNetMedia Centre at Simon Fraser Uni-
versity, Canada. Each node uses an Intel P4 3.0-GHz processor with 1 GB of
RAM and runs the Gentoo Linux operating system with a GCC compiler ver-
sion 3.4.4. We compiled the sequential program using the following command:
g++ -O2 -march=pentium4 pro-gram.cpp. The -O2 option provides the high-
est optimization level in the g++ complier without introducing errors into the
application while the -march=pentium4 option instructs the compiler to generate
Intel Pentium 4 processor-efficient code.

Due to a limited per-node memory capacity, the largest cellular array size
for the sequential runs was 330 × 330 × 330. The following performance results
(see Table 2) were obtained for a wound-seeding distribution with a ratio H = 1
and cell migration speeds of 10μm/hr and 1μm/hr for cell population 1 and cell
population 2, respectively. We note that running the model with a large array size
is a computationally demanding task that requires small time steps to accurately
describe the dynamics of multiple cell populations. In addition to the size of the
cellular array, several input parameters affect the execution time needed to run
a simulation, including the size of the cylindrical wound, cell migration speed,
and cell division time. A simulation using a 200×200×200 cellular array with a
wound diameter of 100 takes 4, 059 seconds (or 1.13 hours) to run serially. Such
grid represents a cubical tissue object whose side is only equal to 2 mm and
containing a wound with 1 mm in diameter. These performance results point to
the need to use parallel computing systems in order to simulate wound healing
in the context of multicellular tissues of larger sizes.

7 Simulation Results and Discussion

We discuss our results that simulate the effect of varying the migration speed of
cell population 1 on the wound-healing time and tissue growth rate, and then
present results that display the temporal evolution of the average speed of all
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Table 2. Sequential execution times of the model using different cellular array sizes
and wound diameters. The height of the wound is set equal to one dimension of the
cellular grid.

Cellular Array Wound Diameter Sequential Execution Time (secs)

150 × 150 × 150 75 1, 593

200 × 200 × 200 100 4, 059

250 × 250 × 250 125 8, 536

300 × 300 × 300 150 15, 908

330 × 330 × 330 165 21, 867

cells inside the wound area. Figure 8(a) shows the temporal evolutions of volume
coverage as the cell speed of population 1 is varied from 1μm/hr to 50μm/hr
while cells of population 2 move at a fixed speed of 1μm/hr. A constant cell
heterogeneity ratio of H = 1 is also maintained in a mixed wound-seeding dis-
tribution throughout these simulations. Broadly speaking, we note that volume
coverage inside the wound increases with time until it reaches confluence for all
values of cell-population-1 speeds. We also observe that as the motility of the
cell increases, the proliferation rate increases and hence confluence is attained
faster; thus, healing the wound much more quickly (from nearly 24 days to about
5 days). Higher motility of cells decreases the impact of contact inhibition on
the proliferation rate as it reduces the formation of cell colonies. Cells moving
at increased speeds are the first to enter the denuded wound area seeking to
populate its empty sites. This delays the formation of cell colonies and leads to
faster proliferation by mitigating the impact of contact inhibition. Furthermore,
part (b) of the same figure illustrates the impact of varying the cell speed of
population 1 on the overall tissue growth rate. The figure clearly depicts that
increasing the cell migration speed leads to higher rates of tissue growth (from
a low of about 0.07 to a high of nearly 0.52). Increasing cell migration speeds
even to very large values continues to impact positively both the tissue growth
rate and the time to reach confluence in the case of this wound-seeding topology.
In all simulations, the tissue growth rate increases initially, reaches a maximum
and then decreases as a result of contact inhibition brought about by cell-colony
formation and merging events that eventually lead to the closure of the wound
area and its healing.

Figure 9 depicts the temporal evolution of the effective migration speed, Se, of
all cells in the denuded area of the wound for different cell-population-1 speeds.
At the beginning of the simulations, cells move into the wound at their peak
speeds. Then, the overall cell speeds drop rapidly as the wound area becomes
congested with new daughter cells; and collisions as well as aggregations become
more frequent. The average speed decreases with time and shows a drastic decline
as confluence is attained due to the formation of local cell clusters and their
subsequent mergings.
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(a) (b)

Fig. 8. The temporal evolution of the (a) cell volume fraction and (b) overall tissue
growth rate as the cell speed of population 1 is varied from 1 to 50µm/hr. Cells in
population 2 move at a fixed speed of 1µm/hr

(a) (b)

Fig. 9. Effect of cell motility on the overall migration speed, Se, of all cells inside the
wound area for cell-population-1 speeds ranging from (a) 1 to 5µm/hr and (b) 10 to
50µm/hr

8 Conclusion and Future Work

We described herein a three-dimensional computational model for the growth
of multicellular tissues based on the concept of cellular automata to simulate
wound healing. The model incorporates many aspects of cell behavior involv-
ing cell migration, division, collision, and aggregation while including multi-
ple cell types. We presented simulation results from the serial implementation
of the model using a mixed wound-seeding distribution showing the effect of
varying cell migration speed of one cell population on the tissue growth rate
and wound-healing time. Our simulation results indicate that increasing cell
migration speeds leads to a sharp decrease in wound-healing time and that this
improvement continues unabated even for larger cell speeds reaching 50μm/hr.
Further, our performance results point to the need for using parallel systems such
as shared-memory and heterogeneous architectures, including multicore CPU
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and GPU machines to run the model with much larger cellular grids in order to
simulate tissue growth for more realsitic wound sizes [19]. As part of our future
work, we will also consider the use of agent-based modeling for multicellular
tissue growth and wound healing [20] [21].
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