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Abstract. The point location problem is to determine the position
of n distinct points on a line, up to translation and reflection by the
fewest possible pairwise (adversarial) distance queries. In this paper we
report on an experimental study of a number of deterministic point place-
ment algorithms and an incremental randomized algorithm, with the goal
of obtaining a greater insight into the behavior of these algorithms, par-
ticularly of the randomized one
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1 Introduction

The Point Placement Problem: Let P = {p1, p2, ..., pn} be a set of n distinct
points on a line L. The point location problem is to determine the locations of the
points uniquely (up to translation and reflection) by making the fewest possible
pairwise distance queries of an adversary. The queries can be made in one or
more rounds and are modeled as a graph whose nodes represent the points and
there is an edge connecting two points if the distance between the corresponding
points is being queried. The distances between the pairs of points returned by
the adversary are exact.

A special version of this problem is when a query graph is presented with
assigned edge lengths and all possible placements of its vertices are to be deter-
mined. In [1], this problem was solved for weakly triangulated graphs.

A classical version of this problem is the construction of the coordinates of
a set of n points, given exact distances between all pairs of points (see [2], [3]).
Algorithms exist that not only determine the coordinates but also the minimum
dimension in which the points can be embedded (see [4]).

Motivation: The motivation for studying this problem stems from the fact
that it arises in diverse areas of research, to wit computational biology, learning
theory, computational geometry, etc.

A. Mukhopadhyay—Research supported by an NSERC Discovery Grant.

c© Springer International Publishing Switzerland 2015
O. Gervasi et al. (Eds.): ICCSA 2015, Part II, LNCS 9156, pp. 185–196, 2015.
DOI: 10.1007/978-3-319-21407-8 14



186 A. Mukhopadhyay et al.

In learning theory [5] this problem is one of learning a set of points on a
line non-adaptively, when learning has to proceed based on a fixed set of given
distances, or adaptively when learning proceeds in rounds, with the edges queried
in one round depending on those queried in the previous rounds.

The version of this problem studied in Computational Geometry is known as
the turnpike problem. The description is as follows. On an expressway stretching
from town A to town B there are several gas exits; the distances between all
pairs of exits are known. The problem is to determine the geometric locations
of these exits. This problem was first studied by Skiena et al. [6] who proposed
a practical heuristic for the reconstruction. A polynomial time algorithm was
given by Daurat et al. [7].

In computational biology, it appears in the guise of the restriction site map-
ping problem. Biologists discovered that certain restriction enzymes cleave a
DNA sequence at specific sites known as restriction sites. For example, it was
discovered by Smith and Wilcox [8] that the restriction enzyme Hind II cleaves
DNA sequences at the restriction sites GTGCAC or GTTAAC. In lab experi-
ments, by means of fluorescent in situ hybridization (FISH experiments) biol-
ogists are able to measure the lengths of such cleaved DNA strings. Given the
distances (measured by the number of intervening nucleotides) between all pairs
of restriction sites, the task is to determine the exact locations of the restric-
tion sites. The point location problem also has close ties with the probe location
problem in computational biology (see [9])

The turnpike problem and the restriction mapping problem are identical,
except for the unit of distance involved; in both of these we seek to fit a set
of points to a given set of inter-point distances. As is well-known, the solution
may not be unique and the running time is polynomial in the number of points.
While the point placement problem, prima facie, bears a resemblance to these
two problems it is different in its formulation - we are allowed to make pairwise
distance queries among a distinct set of labeled points. It turns out that it is
possible to determine a unique placement of the points up to translation and
reflection in time that is linear in the number of points.

Overview of Contents: In the next section we briefly review some of the
well-known deterministic algorithms and the only known incremental random-
ized algorithm. In the following section we report on the experimental results
obtained by careful implementations of several deterministic algorithms and the
incremental randomized algorithm. This is followed by a detailed discussion of
the results and we conclude in the next section.

2 Overview of Some Current Point Placement Algorithms

Several algorithms are extant that work in one or more rounds. The current state
of the art is summarized in Table 1.
Comment: The 9n/8 lower bound on 2-round algorithms was proved in [10],
improving the lower bound of 30n/29 by Damaschke [5] and the subsequent
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Table 1. The current state of the art

Algorithm Rounds Query Complexity Time Complexity
Upper Bound Lower Bound

3-cycle 1 2n − 3 4n/3 O(n)

4-cycle 2 3n/2 9n/8 O(n)

5-cycle 2 4n/3 + O(
√
n) 9n/8 O(n)

5:5 jewel 2 10n/7 + O(1) 9n/8 O(n)

6:6 jewel 2 4n/3 + O(1) 9n/8 O(n)

3-path 2 9n/7 9n/8 O(n)

randomized 2 n + O(n/ logn) ? O(n2/ log n)

improvement to 17n/16 by [11] and the further improvement to 12n/11 by [12].
As for the lower bound on 1-round algorithms, the following result was proved
in [5].

Theorem 1. [5] The density of any line rigid graph is 4/3 with the exception
of the jewel, K2,3,K3 and K−

4 (shown in Fig 1).

Jewel graph K2,3 graph K−
4 graph K3 graph

Fig. 1. Graphs quoted in Theorem1.

The density, multiplied by n, gives the lower bound of 4n/3.

The simplest of all, the 3-cycle 1-round algorithm, has the query graph shown
in Fig. 2:

The query complexity of this algorithm is 2n − 3 self-evident as this is the
number of edges in the graph. The 4-cycle 2-round algorithm is typical of the
other 2-round algorithms listed in Table 1 and thus merits a brief description.

If G = (V,E) is a query graph, an assignment l of lengths to the edges of G
is said to be valid if there is a placement of the nodes V on a line such that the
distances between adjacent nodes are consistent with l. We express this by the
notation (G, l). By definition (G, l) is said to be line rigid if there is a unique
placement up to translation and reflection, while G is said to be line rigid if
(G, l) is line rigid for every valid l. A 3-cycle (or triangle) graph is line rigid,
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p1 p2

p3

p4

pn

Fig. 2. Query graph using triangles.

which is why the 3-cycle algorithm needs only one round to fix the placement
of all the points. A 4-cycle (or quadrilateral) is not line rigid, as there exists
an assignment of lengths that makes it a parallelogram whose vertices have two
different placements as in Fig. 3.

p1 p1p4 p4p2 p2p3 p3

(a)
p1

p2 p3

p4
(b) (c)

Fig. 3. Two different placements of a parallelogram abcd

4-cycle Algorithm

For this algorithm, the query graph presented to the adversary in the first round
has the structure shown in Fig. 4.

p1 p2

k edges k + 2 edges
pi pj

Fig. 4. Query graph for first round in a 2-round algorithm using quadrilaterals.

Making use of the following simple but useful observation,

Observation 1. At most two points can be at the same distance from a given
point p on a line L,
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in the second round we query edges connecting pairs of leaves, one from the
group of size k and the other from the group of size k+2, making quadrilaterals
that are not parallelograms (the rigidity condition |p1pi| �= |p2pj | ensures that
the quadrilateral p1pipjp2 is not a parallelogram).

5-cycle Algorithm

In the 5-cycle algorithm [11], the query graph submitted to the adversary in the
first round is shown in Fig. 5.

r

qi

pi

si

tik

Fig. 5. Query graph for the 5-cycle algorithm

Each five cycle is completed by selecting edges to ensure that the following
rigidity conditions are satisfied. For more details on this algorithm see [11].

1. |piqi| �= |rsj |
2. |piqi| �= |sjtjk|
3. |piqi| �= ||rsj | ± |sjtjk||
4. |sjtjk| �= |qir|
5. |sjtjk| �= ||piqi| ± |qir||
3-path Algorithm

In the 3-path algorithm [13], the query graph submitted to the adversary in the
first round is shown in Fig. 6.

In the second round, the algorithm select edges suitably to satisfy the fol-
lowing rigidity conditions.

1. |p1p2| /∈ {|r1s|, |r2s|, ||r1s| ± |r2s||},
2. |p2p3| /∈ {|r2s|, |r3s|, ||r2s| ± |r3s||},
3. |p3p1| /∈ {|r3s|, |r1s|, ||r3s| ± |r1s||},
4. |p1q1| /∈ {|r1s|, |r2s|, ||r1s| ± |r2s||, ||p1p2| ± |r1s||, ||p1p2| ± |r2s||, ||p1p3| ±

|r1s||, ||p1p3| ± |r3s||, ||p1p2| ± |r1s| ± |r2s||, ||p1p3| ± |r1s| ± |r3s||},
5. |p2q2| /∈ {|r1s|, |r2s|, |p1q1|, ||r1s| ± |r2s||, ||p1p2| ± |r1s||, ||p1p2| ± |r2s||,

||p2p3|± |r2s||, ||p2p3|± |r3s||, ||p1q1|± |r1s||, ||p1q1|± |r2s||, ||p1p2|± |r1s|±
|r2s||, ||p2p3| ± |r2s| ± |r3s||, ||p1q1| ± |r1s| ± |r2s||, ||p1q1| ± |p1p2| ± |r1s||,
||p1q1| ± |p1p2| ± |r2s||, ||p1q1| ± |p1p2| ± |r1s| ± |r2s||},
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Line rigid subgraph of 36 points of S

...

...

... ...

sl

qil

ril rjl rkl

pi

12b+ 7 3-links

b+ 124 leaves

pj pk

qjl qkl
b+ 124 leaves b+ 124 leaves

... ...

Fig. 6. Query graph for the 3-path algorithm

6. |p3q3| /∈ {|r1s|, |r2s|, |r3s|, |p1q1|, |p2q2|, ||r2s|±|r3s||, ||r3s|±|r1s||, ||p1p3|±
|r3s||, ||p2p3| ± |r3s||, ||p1q1| ± |r1s||, ||p1q1| ± |r3s||, ||p2q2| ± |r2s||, ||p2q2| ±
|r3s||, ||p1p3| ± |r1s| ± |r3s||, ||p2p3| ± |r2s| ± |r3s||, ||p1q1| ± |r1s| ± |r3s||,
||p2q2|± |r2s|± |r3s||, ||p1q1|± |p1p3|± |r3s||, ||p2q2|± |p2p3|± |r3s||, ||p1q1|±
|p1p3| ± |r1s| ± |r2s||, ||p2q2| ± |p2p3| ± |r2s| ± |r3s||}.

on each 3-path component shown in Fig. 7. For more details on this algorithm
see [13].

p1p1 p2 p3

q1 q2 q3

r1 r2 r3

s

Fig. 7. A 3-path component

Randomized Algorithm

Damaschke [14] proposed an incremental randomized algorithm (for an intro-
duction to randomized algorithms see [15]) that expands a set L of points whose
positions have been fixed. The set L is initialized by picking an arbitrary point
p0 from S and setting it as the origin of the line on which the points lie. Relative
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to p0 a random path P = p0p1p2... is incrementally constructed by choosing a
point pi at random from the set S−L, and measuring the distance d(pi, pi+1) for
each i = 0, 1, 2, ... Simultaneously, the algorithm maintains all possible signed
sums ±d(p0p1) ± d(p1p2) ± · · · ± d(pi, pi+1) · · · , until for some pk+1 the signed
sums are no longer all distinct.

If a signed sum that repeats is the actual distance of pk+1 from p0, then
the placement of pk relative to pk+1 becomes ambiguous. We stop at this point,
query the distance d(p0, pk) and use the signed sum equal to this distance to fix
the placements on L of all the points on the path from p1 to pk (in Damaschke’s
description the position of pk is fixed relative to two points in L and the signed
sum corresponding to this position is chosen to fix the placements of the other
points on the path constructed thus far).

Resetting pk as the new p0 and pk+1 as the new p1, the algorithm repeats
until L = S.

Damaschke proved the following result.

Theorem 1. [14] The above randomized algorithm for the point location prob-
lem has, for any instance, performance ratio 1 + O(1/ log n) with high proba-
bility.

The term performance ratio is the number of distance queries divided by the
number of points.

It is straightforward to turn this into a 2-round algorithm. Fix the placement
of 2 points p0 and p1 and choose a random path P = p1p2 . . . pn on all the
remaining points to be placed and submit this query graph to the adversary. As
before, we compute signed sums, stopping when two signed sums are equal when
we have reached the point pk+1 on P . We resolve the ambiguity in the placement
of pk+1 by adding edges from pk+1 to p0 and p1, whose lengths we will query in
the second round. Continue as in the incremental algorithm from pk+1 on.

3 Experimental Results

We implemented all the four deterministic algorithms and the 2-round version
of the incremental randomized algorithm, discussed in the previous section. The
control parameters used for comparing their performances are: query complex-
ity and time complexity. The results of the experiments for the deterministic
algorithms are shown in the graphs below. In our experiments, we simulated an
adversary by creating a linear layout and checking the placements of the points
by the algorithms against this. This also solved the problem of ensuring a valid
assignment of lengths to the queried edges. We will have more to say about this
in the next section.

Predictably enough, the above chart shows that the behavior of the algo-
rithms with respect to query complexity is consistent with the upper bounds for
these algorithms shown in Table 1. Each of these algorithms were run on points
sets of different sizes, up to 50000 points.
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Fig. 8. Query Complexity Graph

Fig. 9. Time Complexity Graph

Clearly, 3-cycle is consistently the fastest; but despite its complex structure
the 3-path algorithm does well as compared to the 4-cycle and the 5-cycle algo-
rithms. We have not included the performance of the randomized algorithm in
the above graphs as it is incredibly slow and we ran it for point sets of size up
to 16,000. Table 2 below shows its performance details.

4 Discussion

The behavior of the deterministic algorithms with respect to time complexity is
opposite to their behavior with respect to query complexity. The growth-rate of
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Table 2. Performance of 2-round randomized algorithm

Number of points Number of Distance Queries Running time (hrs:mins:secs)

2000 2382 0:10:41

4000 4712 0:57:32

6000 7048 2:25:38

8000 9348 5:27:53

10000 11668 8:38:34

12000 13999 13:25:24

14000 16282 18:34:58

16000 18625 23:19:40

the running time versus the size of the input point-set is also near-linear. Both
results are as expected.

As reported, in none of the deterministic algorithms it was explicitly stated
how to obtain an actual layout from the rigid graph constructed on the input
point set. In our implementations we devised a signed-sum technique to generate
a layout.

The assumption that an assignment of lengths is valid is a strong one and,
as mentioned earlier, we circumvented this problem by creating a layout and
reporting queried lengths based on this. The correctness of the placements of
the points by an algorithm is verified by checking that it generates a layout
identical to the one used to report queried lengths.

An algorithmic approach to the solution of this problem is based on con-
structing the Cayley-Menger matrix out of the squared distances of a query
graph.

For a query graph with n vertices, the pre-distance matrix D = [Dij ] is
a symmetric matrix such that Dij = d2ij , where dij is the distance between
the vertices (points) i and j of the query graph. The Cayley-Menger matrix,
C = [Cij ] is a symmetric (n + 1) × (n + 1) matrix such C0i = Ci0 = 1 for
0 < i ≤ n, C00 = 0 and Cij = Dij for 1 ≤ i, j ≤ n [16], [2].

The vertices of the query graph has a valid linear placement provided the
rank of the matrix B is at most 3 (this is a special case of the result that there
exists a d-dimensional embedding of the query graph if the rank of B is at most
d + 2; our claim follows by setting d = 1) [2].

It’s interesting to check this out for the query graph in Fig. 10 on 3 points.
The Cayley-Menger matrix B for the above query graph is:

B =

⎡
⎢⎢⎣

0 1 1 1
1 0 1 x2

1 1 0 4
1 x2 4 0

⎤
⎥⎥⎦ ,

where x = d13, the unknown distance between the points p1 and p3.
By the above result, the 4 × 4 minor, det(B) = 0. This leads to the equation
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p1

p2

p3

1 2

Fig. 10. A query graph on 3 vertices

x4 − 10x2 + 9 = 0

which has two solutions x = 3 and x = 1, corresponding to the two possible
placements (embeddings) of the points p1, p2 and p3. Assuming p2 is placed to
the right of p1, in one of these placements p3 is to the right of both p1 and p2;
in the other, to the left of them both.

4.1 Deterministic versus Randomized

Table 2 lends credence to the claim by Damaschke [14] that the number of
distance queries of the incremental randomized algorithm is bounded above by
O(n(1+1/ log n)) in the worst case. Unfortunately, it is too slow to be run with
very large inputs.

We suspect that the number of times signed sums become equal is intimately
connected with the distribution of the points that we generate by pretending
to be the adversary. To test this we generated the layout by picking a point at
random in a fixed size interval, and picking the next random point in the same
fixed-size interval whose left end point is the last point selected. In our exper-
iments we varied this fixed interval from 5 units to 500000 units and reported
the number of times we got equal signed sums for points sets of sizes varying
from 20 to 1000. Interestingly enough, as can be seen from Table 3 below that
the numbers decrease as the interval-size increases.

Table 3. Performance of incremental randomized algorithm for nearly uniform distri-
butions

Range

# of points 1-5 1-10 1-20 1-50 1-100 1 − 103 1 − 104 1 − 5 ∗ 104 1 − 105 1 − 5 ∗ 105

20 7 7 6 5 4 3 3 2 2 1

50 16 13 11 10 9 7 6 6 5 4

100 25 23 20 19 15 11 9 8 8 7

200 45 39 35 33 29 22 18 17 16

400 78 70 61 56 49 41 39 34

1000 167 149 140 123 111 94 82 76
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The incremental randomized algorithm is often held up as an example of
simplicity in comparison to deterministic algorithms, like the 3-path one, for
example. The above experiments paint a completely different picture. From a
practical point of view, it is completely ineffective as it is essentially a brute-
force algorithm. The 3-path algorithm, on the other hand, scores high on both
parameters - low query complexity and low time complexity.

5 Conclusions

All algorithms have been implemented in C on a computer with the following
configuration: Intel(R) Xeon(R) CPU, X7460 @ 2.66GHz OS: Ubuntu 12.04.5,
Architecture: i686.

Further work can be done on several fronts. Particularly worthwhile is to con-
duct further experiments into the behavior of the randomized algorithm, specif-
ically the influence of floating point arithmetic on keeping signed sums unequal.
On the theoretical side, it might be interesting to come up with a completely
different randomized algorithm - one that does not depend on maintaining an
exponential number of signed sums.
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