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Abstract. In medical studies, the receiver operating characteristic
(ROC) curve is a tool of extensive use to analyze the discrimination
capability of a diagnostic variable. In certain situations, the presence of
related covariate, continuous or categorical, to the diagnostic variable
can increase the discriminating power of the ROC curve [3].

The Clinical Risk Index for Babies (CRIB) scale, appeared in 1993
to predict the mortality of babies with very low birthweight (VLBW)
and/or less than 32 weeks of gestation [2]. Braga and Oliveira [1] con-
cluded that this index performs well in computing the risk of death for
VLBW infants (< 1500 g).

In previous works, the authors studied the effect of the baby’s sex [17]
and the mother’s age [18] on CRIB scale, using results of an intensive
care unit of a Portuguese hospital.

In the present work, we propose to analyze the discriminative power
of CRIB scale, using ROC regression analysis with GLM (Generalized
Linear Models), in the classification of babies with and without the pres-
ence of covariates (newborn gender and mothers age).

This study is carried out using a random sample obtained from data
collected during the period from 2010 − 2012. The data source was the
“Portuguese VLBW infants network” that encompasses all newborns
with less than 1500 g or 32 weeks of gestational age born in Portugal.
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1 Introduction

1.1 CRIB Index

Assessment of newborn risk in neonatal intensive care units tends to rely on the
risk of mortality adjusted for birthweight and gestational age. This is especially
true when we refer to VLBW infants or newborns with a gestational age less than
32 weeks. In the 90s, neonatal scoring systems were developed taking into account
other factors to predict newborn mortality. The use of scoring scales also allows
us to standardize the patients severity, making hospital benchmarking easier.

Among the many existing scales to assess and classify the clinical status of
very premature babies, the CRIB and SNAPPE II (Score for Neonatal Acute
Physiology Perinatal Extension) are the most commonly used scales in Portugal.

The CRIB scale uses six variables (birth weight, gestational age, congenital
malformations and three physiological measures), collected in the first 12 hours of
life, to evaluate the clinical severity of newborns, which makes it less susceptible
to the effect of treatments [2]. The result of this scale is based on a weighted
sum of these six variables and their possible final value is between 0 and 23. The
higher the results in the scale, the higher the probability of death.

1.2 ROC Curve

The ROC curve is a graph representation of true positive rates on the vertical axis
and false positive rates on the horizontal axis for different values of a classification
threshold. It can be interpreted as a curve that summarizes the information of
the cumulative distribution functions of the scores of the two classes considered.

We take as a starting point the existence of two populations, a positive/
abnormal population which we denote by P and a negative/normal population
denoted by N , together with a classification rule for allocating the individuals
by each of these populations. We assume this classification rule to be in some
continuous function t(x) of the random vector X of variables measured on each
individual, conventionally arranged so that large values of the function are more
indicative of population P and small ones more indicative of population N . Thus
if x is the observed value of X for a particular individual and t(x) is the function
score for this individual, then he is allocated to population P or population N in
case t(x) exceeds or does not exceed some threshold c, respectively. Supposing
that c is the value of the threshold in a particular classification rule, so as that an
individual is allocated to population P if its classification score t exceeds c and
to population N in case it doesn’t exceed. In order to assess the efficacy of this
classifier we need to calculate the probability of making an incorrect allocation.
More specifically, we can define four probabilities and their associated rates for
the classifier:

– the probability that an individual from P is correctly classified, i.e., the true
positive fraction, TPF = Prob(t > c|P );

– the probability that an individual from N is misclassified, i.e., the false pos-
itive fraction FPF = Prob(t > c|N);
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– the probability that an individual from N is correctly classified, i.e., the true
negative fraction TNF = Prob(t ≤ c|N); and

– the probability that an individual from P is misclassified, i.e., the false neg-
ative fraction FNF = Prob(t ≤ c|P ).

Given probability densities Prob(t|P ), Prob(t|N), and the value c, numerical
values lying between 0 and 1 can be obtained readily for these four rates and
this gives a full description of the performance of the classifier.

Clearly, for a good performance, we require high true and low false fractions.
However, this only appens for a particular choice of threshold c, and the best
choice of this threshold is not generally known in advance but must be deter-
mined as part of the classifier construction. Varying c and evaluating the four
probabilities mentioned above, will give full information on which this decision
will be based and hence to assess the performance of the classifier. The ROC
curve provides a much more easily accessible summary. It is the curve obtained on
varying c, but when using just the true and false positive fractions and plotting
(FPF, TPF ) as points against orthogonal axes. Here FPF is the value on the
horizontal axis (abscissa) and TPF is the value on the vertical axis (ordinate).

The purpose of the ROC curve is to provide an assessment of the classifier
over the whole range of potential threshold values rather than at just a single
one. Clearly, the value of a classifier can be judged by the extent to which the
two distributions of its scores Prob(t|P ) and Prob(t|N) differ. The more they
differ, the lesser will there be any overlap between them and so the less likely will
the incorrect allocations be made. Hence, the more successful will the classifier
be in the making of correct decisions. Conversely, the more the two distributions
are alike, the more overlap there is between them and so the more likely for
incorrect allocations to be made.

In practice, the ROC curve is a continuous curve which is between (0, 0) and
(1, 1), situated at the upper triangle that defines the chart. The closer it is to
the upper left corner of the graph, the closer we are to a situation of complete
separation between the populations and therefore, the better the performance
of the classifier.

When the score t is a continuous variable, it will possess density and distri-
bution functions in each of the two populations. Let us denote its density and
distribution functions in population N by fN , FN respectively, and in population
P by fP , FP respectively. Thus,

Prob(t|N) = fN (t) Prob(t|P ) = fP (t)
xN (c) = 1 − FN (c) xP (c) = 1 − FP (c)

Eliminating c from this last pair of equations, using standard mathematics,
yields the form of the ROC curve

ROC(x) = 1 − FP [F−1
N (1 − x)] for x ∈ (0, 1) (1)
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and the expression (1) will be the most convenient equation of the ROC curve
to use with continuous scores.

We have seen above that the ROC is a convenient summary of the full set
of information that would be needed for a comprehensive description of the
performance of a classifier over all its possible threshold values. However, even
such a summary may be too complicated in some circumstances, for instance,
if a plot is difficult to produce or if very many different classifiers need to be
compared, the interest therefore relies on obtaining deriving simpler summaries.
Particular attention has been focused on single scalar values that might capture
the essential features of a ROC curve, like the Area Under the ROC Curve
(AUC). This is the most widely used summary index studied by Green and
Swets [20], Bamber [21], Hanley and McNeil [12], [22] among others.

Simple geometry establishes the upper and lower bounds of AUC: for the
case of perfect separation of P and N distributions, AUC is the area under the
upper borders of the ROC (i.e., the area of a square of side 1). So the upper
bound is 1.0, while for the case of random allocation AUC is the area under the
chance diagonal (i.e., the area of a triangle whose base and height are both equal
to 1) so the lower bound is 0.5. For all other cases, the formal definition is

AUC =
∫ 1

0

ROC(x)dx (2)

One immediate interpretation of AUC follows from this definition, elementary
calculus and probability theory, plus the fact that the total area of the ROC
domain is 1.0: AUC is the average of true positive fractions, taken uniformly over
all possible false positive fractions in the range (0, 1). Another interpretation is
as a linear transformation of the average misclassification rate, weighed by the
mixture distribution of the true P and N classes [19]. We can assume from the
above definition that, if A and B are two classifiers for witch the ROC curve for
A is not inferior the ROC curve for B, then AUC for A must be greater than or
equal to AUC for B. Unfortunately, the reverse implication is not true because
of the possibility that the two curves can cross each other.

1.3 Estimating ROC Curve

For continuous scores t, as we have seen, the ROC curve can be expressed by
equation (3).

The estimation problem is thus reduced to the estimation of this curve from
the given data. To obtain the empirical estimator, we simply apply the relevant
definitions above to the observed data. Thus, if nP and nN are the numbers of
individuals in the samples from populations P and N respectively, and if nA(c)
denotes the number of individuals in the sample from population A (where A is
either N or P ) whose classification scores are greater than c, then the empirical
estimators of the true positive fraction TPF = p(t > c|P ) and false positive
fraction FPF = p(t > c|N) at the classifier threshold c are given by
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̂TPF =
nP (c)
nP

̂FPF =
nN (c)
nN

Thus, plotting the set of values (1 − ̂FPF ) against c yields the empirical
distribution function F̂N (c) and doing the same for values (1 − ̂TPF ) yields the
empirical distribution function F̂P (c). The empirical ROC curve is then simply
given by plotting the points (̂FPF , ̂TPF ) obtained on varying c with equation
given by (3).

̂ROC(x) = 1 − F̂P [F̂−1
N (1 − x)] for x ∈ (0, 1) (3)

The expression (3) is called the empirical ROC curve.

2 ROC Curve and Covariates

Once a classifier t has been constructed from the vector X of principal variables
and is in use for allocating individuals to one or the other of the populations N
and P , confounding occurs in evaluating classification accuracy when there is a
covariate which is associated with both the classifier and the binary outcome.
For maximum benefit, such additional variable should be incorporated into any
analysis involving the classifier. Let us denote a set of z covariates by the vector
Z, recognizing that in many practical applications we may have just one covariate
Z. In such cases, it is necessary to adjust the ROC curve and summaries derived
therefrom before drawing any inferences. In particular, it will often be relevant
to compute the ROC curve and allied summaries at particular values of the
covariates Z, in order to relate these covariate-specific curves and summaries
to sample members that have covariate values. Ignoring covariate values leads
to the calculation of a single pooled ROC curve (the pooling being over all the
possible covariate values).This traditional pooled ROC curve, which combines
all case and control observations, regardless of the covariate value, is biased.
Pepe [16] provides several important results linking the covariate-specific and
the pooled ROC curves.

The ROC curve, in presence of covariates, can be considered for each value z
of the covariate. Changes that occur in the curve, due to these values, might mean
that the covariate has an effect on the discrimination power of the diagnostic
test. The conditional ROC curve is defined as

ROCz(x) = FPZ [F−1
NZ(x)] for x ∈ (0, 1) (4)

where FPZ and FNZ are the conditional survival functions associated with sub-
jects of populations P and N , respectively, and are estimated by
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F̂PZ(c) =
1
nP

nP∑
i=1

I(XPi ≥ c) (5)

F̂NZ(c) =
1
nN

nN∑
i=1

I(XNi ≥ c) (6)

So, the covariate-adjusted ROC curve, is a measure of covariate-adjusted
classification accuracy.

Adjusting ROC curves derived from continuous classification scores has been
considered by several authors like Smith and Thompson [5], Pepe [6], [7], [8],
Faraggi [9], Janes and Pepe [10], [11], Pepe and Cai [23] and Janes et al. [24].
Adjustment of summary values derived from the ROC curve has further been
studied by Faraggi [9] and Dodd and Pepe [25], [26].

To obtain de covariate-adjusted ROC curve, two distinct approaches can be
followed. The induced adjustment, proposed by Tolsteson and Begg [4], Zheng
and Heagerty [13], Faraggi [9], in which the covariates have an effect on the
diagnostic test is modeled in the two populations (P and N) separately and the
ROC curve is then derived from the modified distributions; and direct adjust-
ment, proposed by Pepe [8], Alonzo and Pepe [15], Cai [14], in which the effect of
the covariates is modeled on the ROC curve itself. The authors, in [18], provide
details about these two methodologies.

There are covariates that affect the classifier distribution among negatives.
For example, center effects in multicenter studies may affect classifier observa-
tions. Other covariates may affect the inherent discriminatory accuracy of this
(i.e., the ROC curve). As an example, disease severity can often affect the classi-
fier accuracy, thus less severe positives can be more difficult to distinguish from
negatives.

A separate ROC curve should be estimated for each covariate group that
affects the discriminatory accuracy of the classifier. Covariate adjustment is often
a necessary first step in estimating covariate-specific ROC curves in order to
adjust the effects of the covariate on classifier observations among negatives.

In this work, we will use the STATA software to obtain the covariate-adjusted
ROC curve.

3 ROC Regression with STATA Software

STATA software uses the ROC regression as methodology to model the classifier
ROC curve as a function of covariates [8], [15]. Implementation proceeds in two
steps:

1st: Modeling the distribution of the classifier among negatives, as a function of
covariates, and calculating the case Percentile Values or specificity;

2nd: Modeling their cumulative distribution function (i.e., the ROC curve) as a
function of covariates.
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The result is an estimate of the ROC curve for the classifier as a function of
covariates, or a covariate-specific ROC curve.

In STATA, the rocreg command is used to perform receiver operating char-
acteristic (ROC) analyses with rating and discrete classification data under the
presence of covariates.

This function can fit three models: a nonparametric model, a parametric
probit model that uses the bootstrap for inference, and a parametric probit
model fit using maximum likelihood.

The syntax to perform this analysis is given by:

rocreg refvar classvar[classvars] [if] [in] [, npoptions]

The two variables refvar and classvar must be numeric. The reference vari-
able indicates the true state of the observation − such as diseased (abnormal,
P ) and nondiseased (normal, N) − and must be coded as 1 and 0, respectively.
The refvar coded as 0 can also be called the control population, while the refvar
coded as 1 comprises the case population. The rating or outcome of the diag-
nostic test or test modality is recorded in classvar, which must be ordinal, with
higher values indicating higher risk.

The covariate-adjusted ROC curve [24] at a given false-positive rate x is
equivalent to the expected value of the covariate-specific ROC at x over all
covariate combinations. When the covariates in question do not affect the case
distribution of the classifier, the covariate-specific ROC will have the same value
at each covariate combination. So here the covariate-adjusted ROC is equivalent
to the covariate-specific ROC, regardless of covariate values.

4 Applications and Results

In this work, we intend to analyze and evaluate the discriminatory power of
CRIB scale in the classification of risk of death for VLBW infants in Portugal.
Available data refers to the period between 2010 and 2012, and we decided to
select a random sample (approximately 50%) of original data collected by the
RNMBP − Registo Nacional de Muito Baixo Peso (Portuguese VLBW infants
network) for this period. We analyzed the performance of this scale without the
inclusion of covariates and then considered their inclusion. We first perform ROC
analysis for the classifier while adjusting for babies gender, then for maternal
age and finally combining the information from both. This is done by specifying
these variables in the ctrlcov() option. We adjust the covariates using a linear
regression rule, by specifying ctrlmodel(linear). This means that when a user
of the diagnostic test chooses a threshold conditional on covariates, he assumes
that the diagnostic test classifier has some linear dependence and equal variance,
since their levels vary. Our cluster adjustment is made by specifying the cluster()
option.

STATA software computes the percentile, or specificity, values empirically,
and thus so do false-positive rates, (1−specificity). Also, the ROC curve values
are empirically defined by the true-positive rates.
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4.1 CRIB Index Without Covariates

In this section we verify the performance of CRIB scale in the classification of
babies as “deceased” and “alive”. To achieve its purpose, the study focused on
the results presented in Table 1, which characterizes the grade given to newborns.

Table 1. Mortality rate

Cases number Percent

Deceased 166 10.45%
Alive 1423 89.55%

Total 1589 100.00%

From the results collected, 10.45% of the babies were classified as “deceased”.
The distribution of CRIB by result can be illustrated by the graph in Figure 1.
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Fig. 1. CRIB classification by result

For these results, the empirical ROC curve was estimated, as is shown in
Figure 2. Respective AUC, variability and confidence intervals were also obtained
(Table 2).

From the estimated AUC value for the global empirical ROC curve (Figure 2)
it is possible to observe that, without considering the effect of any the covariates,
the CRIB index discriminates well between babies “alive” and “dead” in 87.9%
of the cases.
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Fig. 2. Empirical ROC curve for CRIB index (output STATA)

Table 2. AUC’s and Standard Errors results

AUC SE 95% LBCI 95% UBCI

CRIB 0.879 0.015 0.849 0.909

4.2 CRIB Index with Covariates

To verify if maternal age and the babie’s sex contribute to the discrimination
power of CRIB index, we propose to combine the CRIB information with addi-
tional information provided by these covariates. We use Nonparametric ROC
estimation provided by STATA software to answer the research question:

“Does the discriminatory power of CRIB index increase with the inclusion
of these covariates?”

We start by analyzing the contribution that each of the covariates provides
in discriminatory power of the CRIB index, assuming that there is a linear
relationship between the CRIB index and the covariate in question.

The conditioned ROC curve for the babie’s sex is shown in Figure 3 and
the associated results are in table 3. The AUC, SE and confidence intervals
associated with ROC curve are shown in table 4.

When we include the sex of babies in the analysis, the AUC for conditioned
ROC curve discriminate in 86.19% of the babies; less than the discriminates
power without gender and higher standard error. Our covariate adjustment
model shows that the newborn’s sex has a negative effect on CRIB index.
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Fig. 3. Specific sex ROC curve (output STATA)

Table 3. Linear Regression results - CRIB conditioned by newborn sex

CRIB Coefficient SE t-value P > |t| 95% LBCI 95% UBCI

Sex -0.0643 0.1306 -0.49 0.622 -0.3206 0.1919
Const 1.8934 0.2044 9.26 0.000 1.4923 2.2945

Table 4. AUC, SE and CI - CRIB conditioned by newborn sex

AUC Bias SE 95% LBCI 95% UBCI

0.8619 0.0022 0.1801 0.8266 0.8972
0.8287 0.8977
0.8234 0.8934

Let us now analyze the mother’s age impact on CRIB index, assuming that
there is a linear relationship between the CRIB index and this covariate. The spe-
cific CRIB ROC curve is shown in figure 4. The results for this linear regression
are shown in table 5 and the correspondent AUC in table 6. When we include the
mother’s age in the analysis, the AUC for conditioned ROC curve discriminates
in 87.98% of the babies, close to the AUC for CRIB without covariates. Despite
the negative coefficient associated with this covariate in the regression model,
it was no statistical significance (p − value = 0.239 > 0.05). It seems that the
covariate has no impact in the discrimination power of the CRIB, in the towards
of closeness of this AUC and the AUC of the CRIB ROC curve.



Adjusting Covariates in CRIB Score Index Using ROC Regression Analysis 167

0

.2

.4

.6

.8

1

Tr
ue

−p
os

iti
ve

 ra
te

0 .2 .4 .6 .8 1
False−positive rate for Crib

marginal
covariate adjusted by age

Fig. 4. Specific maternal age ROC curve (output STATA)

Table 5. Linear Regression results - CRIB conditioned by mother’s age

CRIB Coefficient SE t− value P > |t| 95% LBCI 95% UBCI

Maternal age -0.0100 0.0085 -1.18 0.239 -0.0269 0.0067
Const 2.1034 0.2689 7.82 0.000 1.5759 2.6309

Table 6. AUC, SE and CI - CRIB conditioned by mother’s age

AUC Bias SE 95% LBCI 95% UBCI

0.8798 -0.0002 0.0152 0.8500 0.9097
0.8487 0.9074
0.8476 0.9062

Let us now combine the CRIB information with the information provided
by these two covariates. We assume, once again, that there is a linear regression
between the CRIB index and the two covariates. In figure 5, we show the specific
CRIB ROC curve conditioned by the two covariates. Table 7 shows the results of
the linear regression performed using STATA when we introduced the additional
information of the two covariates. Table 8 shows the correspondent AUC, SE and
confidence intervals.

Analyzing the results presented in Table 7, we can see that the coefficients
for the two covariates are not different from zero (p− value > 0.05). So, we can
say that there is no statistical influence of these covariates in the performance
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Fig. 5. Specific sex and maternal age ROC curve after ROC regression (output STATA)

Table 7. Linear Regression results - CRIB conditioned by sex and mother’s age

CRIB Coefficient SE t− value P > |t| 95% LBCI 95% UBCI

Maternal age -0.0101 0.0085 -1.18 0.236 -0.0269 0.0066
Sex -0.0656 0.1306 -0.5000 0.6150 -0.3218 0.1905

Const 2.2018 0.3293 6.69 0.000 1.5558 2.8479

Table 8. AUC, SE and CI - CRIB conditioned by sex and mother’s age

AUC Bias SE 95% LBCI 95% UBCI

0.8785 -0.0000471 0.0162 0.8468 0.9103
0.8409 0.9084
0.8385 0.9058

of the CRIB index. These could be confirmed by the values of AUC’s for the
adjusted and not adjusted ROC curve. Figure 6 illustrates this result.

5 Conclusions

From the estimated values of AUC for the global ROC curve it is possible to
observe that, without considering the effect of covariates, the CRIB scale dis-
criminates between “alive” and ”dead” newborns in 87.9% of cases. This value,
when considering the newborn sex as covariate, is 86.19% and with maternal age
as covariate, it is 87.9%. We can also see that, standard-error (SE) associated
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Fig. 6. All Specific ROC curves(output STATA)

to ROC curve, when considering the sex of babies as covariate, is greater when
compared to the SE for the CRIB ROC curve and the SE for specific maternal
age CRIB ROC curve.

From the results obtained, when we consider that there is a linear relation-
ship between CRIB and the newborns gender, it is apparent that this covariate
affects the discriminatory power of CRIB scale when used to classify babies. Our
covariate adjustment model shows that the newborn sex has a negative effect on
CRIB index, causing a decrease in the performance of CRIB scale. The standard
error, in turn, is greater than the standard error of the ROC curve obtained with-
out the covariate. Consequently, it also increases the dispersion of the pairs of
values (1−specificity, sensitivity). However, when analyzing the overall quality
of the regression model, we do not reject the hypothesis that the contribution of
the baby’s sex for the CRIB scale is zero (t = −0.49, p − value = 0.622).

When we analyze the mother’s age impact on CRIB index and assume that
there is a linear relationship between the CRIB scale and this covariate, the
results for this linear regression, despite the negative coefficient associated with
it in the regression model, it seems that this covariate has no impact in the
discrimination power of the CRIB scale, in the towards vicinity of its AUC and
the AUC of the CRIB ROC curve. The same occurs for the SE, which remains
unchanged. In fact, when analyzing the overall quality of the regression model,
we do not reject the hypothesis that the contribution of the mother’s age for the
CRIB scale is zero (t = −1.18, p − value = 0.239).
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Finally, after analyzing the results, considering the two covariates, from the
AUC associated with specific ROC curve, we can conclude that CRIB index
discriminate in 87.85%. This discriminatory power is higher than that found
when considering only sex as a covariate but it is lower when we consider only
the mother’s age as a covariate. Looking at dispersion present in AUC of condi-
tioned ROC curve for these two covariates, we found that it is higher than the
ROC curve of CRIB and than the specified ROC curve for maternal age. How-
ever, it is inferior to the dispersion present in the CRIB ROC curve conditioned
by newborn sex. When Analyzing the overall quality of the regression model,
we do not reject the hypothesis that the contribuition of the newborn’s sex and
the mother’s age to the CRIB scale is zero (tsex = −0.50, p − value = 0.615
and tage = −1.18, p− value = 0.236). So, we may conclude that the discrimina-
tory power of CRIB scale is not affected when we consider that baby’s sex and
mother’s age may influence the classification of babies in “dead” and “alive”.

To answer the research question, we can say that the performance of CRIB
to predict the risk of death of newborns with very low birth-weight and/or
gestational age < 32 weeks is not affected by the sex of the babies nor the age
of their mothers.
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