
Linear Integer Arithmetic Revisited

Martin Bromberger(B), Thomas Sturm, and Christoph Weidenbach

Max Planck Institute for Informatics, Saarbrücken, Germany
{mbromber,sturm,weidenb}@mpi-inf.mpg.de

Abstract. We consider feasibility of linear integer programs in the con-
text of verification systems such as SMT solvers or theorem provers.
Although satisfiability of linear integer programs is decidable, many
state-of-the-art solvers neglect termination in favor of efficiency. It is
challenging to design a solver that is both terminating and practically
efficient. Recent work by Jovanović and de Moura constitutes an impor-
tant step into this direction. Their algorithm CUTSAT is sound, but
does not terminate, in general. In this paper we extend their CUTSAT
algorithm by refined inference rules, a new type of conflicting core, and
a dedicated rule application strategy. This leads to our algorithm CUT-
SAT++, which guarantees termination.

Keywords: Linear arithmetic · SMT · SAT · DPLL · Linear
programming · Integer arithmetic

1 Introduction

Historically, feasibility of linear integer problems is a classical problem, which
has been addressed and thoroughly investigated by at least two independent
research lines: (i) integer and mixed real integer linear programming for opti-
mization [9], (ii) first-order quantifier elimination and decision procedures for
Presburger Arithmetic and corresponding complexity results [3,6,10–13]. We are
interested in feasibility of linear integer problems, which we simply call problems,
in the context of the combination of theories, as they occur, e.g., in the context
of SMT solving or theorem proving. From this perspective, both these research
lines address problems that are too general for our purposes: with the former,
the optimization aspects go considerably beyond pure feasibility. The latter con-
siders arbitrary Boolean combinations of constraints and quantifier alternation
or even parametric problems.

Consequently, the SMT community has developed several interesting
approaches on their own [1,4,7]. These solvers typically neglect termination and
completeness in favor of efficiency. More precisely, these approaches are based on
a branch-and-bound strategy, where the rational relaxation of an integer prob-
lem is used to cut off and branch on integer solutions. Together with the known
a priori integer bounds [11] for a problem this yields a terminating and complete
algorithm. However, these bounds are so large that for many practical problems
the resulting branch-and-bound search space cannot be explored in reasonable
c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 623–637, 2015.
DOI: 10.1007/978-3-319-21401-6 42

624 M. Bromberger et al.

time. Hence, the a priori bounds are not integrated in the implementations of
the approaches.

On these grounds, the recent work by Jovanović and de Moura [8], although
itself not terminating, constitutes an important step towards an algorithm that
is both efficient and terminating. The termination argument does no longer rely
on bounds that are a priori exponentially large in the occurring parameters.
Instead, it relies on structural properties of the problem, which are explored by
their CUTSAT algorithm. The price for this result is an algorithm that is by
far more complicated than the above-mentioned branch-and-bound approach. In
particular, it has to consider divisibility constraints in addition to inequalities.

Our interest in an algorithm for integer constraints originates from a pos-
sible combination with superposition, e.g., see [5]. In the superposition context
integer constraints are part of the first-order clauses. Variables in constraints
are typically unguarded so that an efficient decision procedure for this case is a
prerequisite for an efficient combined procedure.

Our contribution is an extension and refinement of the CUTSAT algorithm,
which we call CUTSAT++. In contrast to CUTSAT, our CUTSAT++ gen-
erally terminates. The basic idea of both algorithms is to reduce a problem
containing unguarded integer variables to a problem containing only guarded
variables. These unguarded variables are not eliminated. Instead, one explores
the unguarded variables by adding constraints on smaller variables to the prob-
lem, with respect to a strict total ordering where all unguarded variables are
larger than all guarded variables. After adding sufficiently many constraints,
feasibility of the problem depends only on guarded variables. Then a CDCL
style algorithm tests for feasibility by employing exhaustive propagation. The
most sophisticated part is to “turn” an unguarded variable into a guarded vari-
able. Quantifier elimination techniques, such as Cooper elimination [3], do so
by removing the unguarded variable. In case of Cooper elimination, the price
to pay is an exponentially growing Boolean structure and exponentially grow-
ing coefficients. Since integer linear programming is NP-complete, all algorithms
known today cannot prevent such a kind of behavior, in general. Since Cooper
elimination does not care about the concrete structure of a given problem, the
exponential behavior is almost guaranteed. The idea of both CUTSAT and CUT-
SAT++ is, therefore, to simulate a lazy variation of Cooper elimination. This
leaves space for model assumptions and simplification rules in order for the algo-
rithm to adapt to the specific structure of a problem and, hence, to systematically
avoid certain cases of the worst-case exponential behavior observed with Cooper
elimination.

The paper is organized as follows. After fixing some notation in Sect. 2, we
present three examples for problems where CUTSAT diverges. The divergence of
CUTSAT can be fixed by respective refinements on the original CUTSAT rules.
However, in a fourth example the combination of the refinements results in a
frozen state. Our conclusion is that CUTSAT lacks, in addition to the refine-
ments, a third type of conflicting core, which we call diophantine conflicting core.
Theorem 5, in Sect. 3, actually implies that any procedure that is based on what

Linear Integer Arithmetic Revisited 625

we call weak Cooper elimination needs to consider this type of conflicting core
for completeness. In Sects. 4–5 we refine the inference rules for the elimination
of unguarded variables on the basis of weak Cooper elimination (Sect. 3) and
show their soundness, completeness, and termination. Finally, we give conclu-
sions and point at possible directions for future research. For detailed proofs of
our Theorems and Lemmas see [2].

2 Motivation

We use variables x, y, z, k, possibly with indices. Furthermore, we use integer
constants a, b, c, d, e, l, v, u, linear polynomials p, q, r, s, and constraints I, J ,
possibly with indices. As input problems, we consider finite sets of constraints C
corresponding to and sometimes used as conjunction over their elements. Each
constraint I is either an inequality anxn + . . . + a1x1 + c ≤ 0 or a divisibility
constraint d | anxn + . . . + a1x1 + c. We denote coeff(I, xi) = ai ∈ Z. vars(C)
denotes the set of variables occurring in C. We sometimes write C(x) in order
to emphasise that x ∈ vars(C). A problem C is satisfiable if ∃X.C holds, where
X = vars(C). For true we denote � and for false we denote ⊥. Since d | cx+s ≡
d | −cx + −s, we may assume that c > 0 for all d | cx + s ∈ C. A variable x is
guarded in a problem C if C contains constraints of the form x − ux ≤ 0 and
−x + lx ≤ 0. Otherwise, x is unguarded in C. Note that guarded variables are
bounded as defined in [8] but not vice versa. A constraint is guarded if it contains
only guarded variables. Otherwise, it is unguarded.

Our algorithm CUTSAT++ aims at deciding whether or not a given problem
C is satisfiable. It either ends in the state unsat or in a state 〈υ, sat〉, where υ is
a satisfiable assignment for C. In order to reach one of those two final states, the
algorithm produces lower bounds x ≥ b and upper bounds x ≤ b for the variables
in C. The produced bounds are stored in a sequence M = [[γ1, . . . , γn]], which
describes a partial model. The empty sequence is denoted by [[]]. We use [[M,γ]]
and [[M1,M2]] to denote the concatenation of a bound γ at the end of M and
M2 at the end of M1, respectively.

By lower(x,M) = b and upper(x,M) = b we denote the value b of the
greatest lower bound x ≥ b and least upper bound x ≤ b for a variable x in M ,
respectively. If there is no lower (upper) bound for x in M , then lower(x,M) =
−∞ (upper(x,M) = ∞). The definitions of upper and lower are extended to
polynomials as done in [8]. The partial model M is complete if all variables x
are fixed in the sense that upper(x,M) = lower(x,M). In this case we define
υ[M] as the assignment that assigns to every variable x the value lower(x,M).

A state in CUTSAT++ is of the form S = 〈M,C〉 or S = 〈M,C〉 � I,
or one of the two final states 〈υ, sat〉, unsat. The initial-state for a problem C
is 〈[[]], C〉. For a state S = 〈M,C〉(� I), an inequality p ≤ 0 is a conflict if
lower(p,M) > 0. For a state S = 〈M,C〉(� I), a divisibility constraint d | ax+ p
is a conflict if all variables in p are fixed and d � ab + lower(p,M) for all b such
that lower(x,M) ≤ b ≤ upper(x,M). In a state S = 〈M,C〉 � I, the constraint
I is always a conflict. A state is frozen if it is not a final state and no rule is
applicable.

626 M. Bromberger et al.

Via applications of the rule Decide, CUTSAT++ adds decided bounds x ≤ b
or x ≥ b to the sequence M in state S [8]. A decided bound generally assigns
a variable x to the lower or upper bound of x in M . Via applications of the
propagation rules, CUTSAT++ adds propagated bounds x ≥I b or x ≤I b to the
sequence M , where I is a generated constraint, called justification. To this end,
the function bound(J, x,M) computes the strictest bound b and the function
tight(J, x,M) computes the corresponding justification I for constraint J under
the partial model M .

We are now going to discuss three examples where CUTSAT diverges. The
first one shows that CUTSAT can apply Conflict and Conflict-Div infinitely
often to constraints containing unguarded variables.

Example 1. Let

C := {−x ≤ 0
︸ ︷︷ ︸

Ix

,−y ≤ 0
︸ ︷︷ ︸

Iy

,−z ≤ 0
︸ ︷︷ ︸

Iz1

, z ≤ 0
︸ ︷︷ ︸

Iz2

, z + 1 ≤ 0
︸ ︷︷ ︸

Iz3

, 1 − x + y ≤ 0
︸ ︷︷ ︸

J1

, x − y ≤ 0
︸ ︷︷ ︸

J2

}

be a problem. Let Si = 〈Mi, C〉 for i ∈ N be a series of states with:

M0 := [[x ≥Ix 0, y ≥Iy 0, z ≥Iz1 0, z ≤Iz2 0]],
Mi+1 := [[Mi, x ≥J1 i + 1, y ≥J2 i + 1]].

Let the variable order be given by z ≺ y ≺ x. CUTSAT with a two-layered strat-
egy, after propagating all constraints Ix, Iy, Iz1, Iz2 , applies the rules Decide,
Conflict, and Backjump to propagate arbitrarily large lower bounds for the
unguarded variables x and y and, therefore, diverges. Notice that the conflicting
core {Iz1, Iz3} is guarded, which admits the application of Conflict.

A straightforward fix to Example 1 is to limit the application of the Con-
flict and Conflict-Div rules to guarded constraints. Our second example shows
that CUTSAT can still diverge by infinitely many applications of the Solve-Div
rule [8].

Example 2. Let di be the sequence with d0 := 2 and dk+1 := dk
2 for k ∈ N, let

C0 = {4 | 2x + 2y, 2 | x + z} be a problem, and let S0 = 〈[[]], C0〉 be the initial
CUTSAT state. Let the variable order be given by x ≺ y ≺ z. Then CUTSAT
has divergent runs S0 ⇒CS S1 ⇒CS S2 ⇒CS For instance, let CUTSAT
apply the Solve-Div rule whenever applicable. By an inductive argument, Solve-
Div is applicable in every state Sn = 〈[[]], Cn〉, and the constraint set Cn has the
following form:

Cn =
{{2dn | dnx + dny, dn | dn

2 y − dn

2 z} if n is odd,

{2dn | dnx + dny, dn | dn

2 x + dn

2 z} if n is even.

Therefore, CUTSAT applies Solve-Div infinitely often and diverges.

A straightforward fix to Example 2 is to limit the application of Solve-Div
to maximal variables in the variable order ≺. Our third example shows that

Linear Integer Arithmetic Revisited 627

CUTSAT can apply Conflict and Conflict-Div [8] infinitely often. The Exam-
ple 3 differs from Example 1 in that the conflicting core contains also unguarded
variables.

Example 3. Let

C := {−x ≤ 0
︸ ︷︷ ︸

Ix

,−y ≤ 0
︸ ︷︷ ︸

Iy

,−z ≤ 0
︸ ︷︷ ︸

Iz1

, z ≤ 0
︸ ︷︷ ︸

Iz2

, 1 − x + y + z ≤ 0
︸ ︷︷ ︸

J1

, x − y − z ≤ 0
︸ ︷︷ ︸

J2

}}

be a problem. Let Si = 〈Mi, C〉 for i ∈ N be a series of states with:

M0 := [[x ≥Ix 0, y ≥Iy 0, z ≥Iz1 0, z ≤Iz2 0]],
Mi+1 := [[Mi, x ≥J1 i + 1, y ≥J2 i + 1]].

Let the variable order be given by z ≺ x ≺ y. CUTSAT with a two-layered strat-
egy, after propagating all constraints Ix, Iy, Iz1, Iz2, possibly applies the rules
Decide, Conflict, and Backjump to propagate arbitrarily large lower bounds for
the unguarded variables x and y and, thus, diverges. Notice that the conflicting
core {J1, J2} is bounded in [8] after we fix x and y with Decide to their current
respective lower bounds. This in turn admits the application of Conflict.

Applying the fix suggested for Examples 1–3 results in a frozen state. Here,
a straightforward fix is to change the definition of conflicting cores to cover only
those cores where the conflicting variable is the maximal variable.1

The fixes that we suggested for the above examples are restrictions to CUT-
SAT which have the consequence that Conflict(-Div) cannot be applied to
unguarded constraints, Solve-Div is only applicable for the elimination of the
maximal variable, and the conflicting variable x is the maximal variable in the
associated conflicting core C ′. However, our next and final example shows that
these restrictions lead to frozen states.

Example 4. Let CUTSAT include restrictions to maximal variables in the defin-
ition of conflicting cores and in the Solve-Div rule as described above. Let there
be additional restrictions in CUTSAT to the rules Conflict and Conflict-Div
such that these rules are only applicable to conflicts that contain no unguarded
variable. Let

C := {−x ≤ 0
︸ ︷︷ ︸

Ix1

, x − 1 ≤ 0
︸ ︷︷ ︸

Ix2

,−y ≤ 0
︸ ︷︷ ︸

Iy

, 6 | 4y + x
︸ ︷︷ ︸

J

}

be a problem. Let M := [[x ≥Ix1 0, x ≤Ix2 1, y ≥Iy 0, x ≥ 1, y ≤ 0]] be a bound
sequence. Let the variable order be given by x ≺ y. CUTSAT has a run starting
in state S′

0 = 〈[[]], C〉 that ends in the frozen state S = 〈M,C〉. Let CUTSAT
propagate Ix1, Ix2, Iy and fix x to 1 and y to 0 with two Decisions. Through
these Decisions, the constraint J is a conflict. Since y is unguarded, CUTSAT
cannot apply the rule Conflict-Div. Furthermore, [8] has defined conflicting cores

1 The restrictions to maximal variables in the definition of conflicting cores and to the
Solve-Div rule were both confirmed as missing but necessary in a private communi-
cation with Jovanović.

628 M. Bromberger et al.

as either interval or divisibility conflicting cores. The state S contains neither
an interval or a divisibility conflicting core. Therefore, CUTSAT cannot apply
the rule Resolve-Cooper. The remaining rules are also not applicable because
all variables are fixed and there is only one divisibility constraint. Without the
before introduced restriction to the rule Conflict(-Div), CUTSAT diverges on
the example. For more details see [2].

3 Weak Cooper Elimination

In order to fix the frozen state of Example 4 in the previous section, we are
going to introduce in Sect. 4 a new conflicting core, which we call diophantine
conflicting core. For understanding diophantine conflicting cores, as well as fur-
ther modifications to be made, it is helpful to understand the connection between
CUTSAT and a variant of Cooper’s quantifier elimination procedure [3].

The original Cooper elimination takes a variable x, a problem C(x), and
produces a disjunction of problems equivalent to ∃x.C(x):

∃x.C(x) ≡
∨

0≤k<m

C−∞(k) ∨
∨

−ax+p≤0∈C(x)

∨

0≤k<a·m

[

a | p + k ∧ C

(

p + k

a

)]

,

where a > 0 and m = lcm{d ∈ Z : (d | ax + p) ∈ C(x)}. If there exists no
constraint of the form −ax+p ≤ 0 ∈ C(x), then C−∞(x) = {(d | ax+p) ∈ C(x)}.
Otherwise, C−∞(x) = ⊥. One application of Cooper elimination results in a
disjunction of quadratically many problems out of a single problem. Iteration
causes an exponential increase in the coefficients due to the multiplication with
a because division is not part of the language.

Our notion of weak Cooper elimination is a variant of Cooper elimination,
which is very helpful to understand problems around CUTSAT. The idea is,
instead of building a disjunction over all potential solutions for x, to add addi-
tional guarded variables and constraints without x that guarantee the existence
of a solution for x. We assume here that C(x) contains only one divisibility con-
straint for x. If not, exhaustive application of div-solve to divisibility constraints
for x removes all constraints except one: div-solve(x, d1 | a1x+p1, d2 | a2x+p2) =
(d1d2 | dx + c1d2p1 + c2d1p2, d | −a1p2 + a2p1), where d = gcd(a1d2, a2d1), and
c1 and c2 are integers such that c1a1d2 + c2a2d1 = d [3,8]. Now weak Cooper
elimination takes a variable x, a problem C(x), and produces a new problem by
replacing ∃x.C(x) with:

∃K.

(

{I ∈ C(x) : coeff(x, I) = 0} ∪ {gcd(c, d) | s} ∪
⋃

k∈K

Rk

)

where d | cx + s ∈ C(x), k ∈ K is a newly introduced variable for every
pair of constraints −ax + p ≤ 0 ∈ C(x) and bx − q ≤ 0 ∈ C(x), and

Rk = {−k ≤ 0, k − m ≤ 0, bp − aq + bk ≤ 0, a | k + p, ad | cp + as + ck}
is a resolvent for the same inequalities, where m := lcm

(

a, ad
gcd(ad,c)

)

− 1. Note

Linear Integer Arithmetic Revisited 629

the existential quantifier ∃K, where all variables k ∈ K are guarded by their
respective Rk.

Let ν be a satisfiable assignment for the formula after one weak Cooper
elimination step on C(x). Then we compute a strictest lower bound x ≥ lx and a
strictest upper bound x ≤ ux from C(x) for the variable x under the assignment
ν. We now argue that there is a value for x such that x ≥ lx, x ≤ ux, and
d | cx + s are all satisfied. Whenever lx �= −∞ and ux �= ∞, the bounds x ≥ lx,
x ≤ ux are given by respective constraints of the form −ax + p ≤ 0 ∈ C(x)
and bx − q ≤ 0 ∈ C(x) such that lx = � ν(p)

a � and ux = � ν(q)
b �. In this case,

the extension of ν with ν(x) = ν(k+p)
a satisfies C(x) because the constraint

a | k + p ∈ Rk guarantees that ν(x) ∈ Z, the constraint bp − aq + bk ≤ 0 ∈ Rk

guarantees that lx ≤ ν(x) ≤ ux, and the constraint ad | cp + as + ck ∈ Rk

guarantees that ν satisfies d | cx + s ∈ C(x). Whenever lx = −∞ (ux = ∞) we
extend ν by an arbitrary small (large) value for x that satisfies d | cx+s ∈ C(x).
There exist arbitrarily small (large) solutions for x and d | cx + ν(s) because
gcd(c, d) | s is satisfied by ν.

The advantage of weak Cooper elimination, compared to Cooper elimination,
is that the output is still a conjunctive problem in contrast to a disjunction of
problems. CUTSAT++ performs weak Cooper elimination not in one step but
subsequently adds to the states the constraints from the Rk as well as the divis-
ibility constraint gcd(c, d) | s with respect to a strict ordering on the unguarded
variables.

The following Theorem, for which we have just outlined the proof, states the
correctness of weak Cooper elimination.

Theorem 5.

∃x.C(x) ≡ ∃K.

(

{I ∈ C(x) : coeff(x, I) = 0} ∪ {gcd(c, d) | s} ∪
⋃

k∈K

Rk

)

The extra divisibility constraint gcd(c, d) | s in weak Cooper elimination is
necessary whenever the problem C(x) has no constraint of the form −ax + p ≤
0 ∈ C(x) or bx − q ≤ 0 ∈ C(x). For example, let C(x) = {y − 1 ≤ 0,−y + 1 ≤
0, 6 | 2x+y} be a problem and x be the unguarded variable we want to eliminate.
As there are no inequalities containing x, weak Cooper elimination without the
extra divisibility constraint returns C ′ = {y − 1 ≤ 0,−y + 1 ≤ 0}. While C ′ has
a satisfiable assignment ν(y) = 1, C(x) has not since 2x+1 is never divisible by
2 or 6.

For any Rk introduced by weak Cooper elimination we can also show the
following Lemma:

Lemma 6. Let k be a new variable. Let a, b, c > 0. Then,

(∃x.{−ax + p ≤ 0, bx − q ≤ 0, d | cx + s})
≡ (∃k.{−k ≤ 0, k − m ≤ 0, bp − aq + bk ≤ 0, a | k + p, ad | cp + as + ck}).

That means satisfiability of the respective Rk guarantees a solution for the
triple of constraints it is derived from. An analogous Lemma holds for the divis-
ibility constraint gcd(c, d) | s introduced by weak Cooper elimination:

630 M. Bromberger et al.

Lemma 7.
(∃x.d | cx + s) ≡ gcd(c, d) | s.

That means satisfiability of gcd(c, d) | s guarantees a solution for the divisi-
bility constraint d | cx+s. The rule Resolve-Cooper (Fig. 1) in our CUTSAT++
exploits these properties by generating the Rk and constraint gcd(c, d) | s in the
form of strong resolvents in a lazy way. Furthermore, it is not necessary for the
divisibility constraints to be a priori reduced to one, as done for weak Cooper
elimination. Instead, the rules Solve-Div-Left and Solve-Div-Right (Fig. 1) per-
form lazy reduction.

4 Strong Conflict Resolution Revisited

Weak Cooper elimination is capable of exploring all unguarded variables to even-
tually create a problem where feasibility only depends on guarded variables. It
is simulated in a lazy manner through an additional set of CUTSAT++ rules
(Fig. 1). Instead of eliminating all unguarded variables before the application of
CUTSAT++, the rules perform the same intermediate steps as weak Cooper
elimination, viz., the combination of divisibility constraints via div-solve and
the construction of resolvents, to resolve and block conflicts in unguarded con-
straints. As a result, CUTSAT++ can avoid some of the intermediate steps of
weak Cooper elimination. Furthermore, CUTSAT++ is not required to apply
the intermediate steps of weak Cooper elimination one variable at a time. The
lazy approach of CUTSAT++ does not eliminate unguarded variables. In the
worst case CUTSAT++ has to perform all of weak Cooper elimination’s inter-
mediate steps. Then the strictly-two-layered strategy (Definition 13) guarantees
that CUTSAT++ recognizes that all unguarded conflicts have been produced.

The eventual result is the complete algorithm CUTSAT++, which is a com-
bination of the rules Resolve-Cooper, Solve-Div-Left, Solve-Div-Right (Fig. 1),
a strictly-two-layered strategy (Definition 13), and the CUTSAT rules: Prop-
agate, Propagate-Div, Decide, Conflict, Conflict-Div, Sat, Unsat-Div, Forget,
Slack-Intro2, Resolve, Skip-Decision, Backjump, Unsat, and Learn [2,8].

The lazy approach has the advantage that CUTSAT++ might find a satis-
fiable assignment or detect unsatisfiability without encountering and resolving
a large number of unguarded conflicts. This means the number of divisibility
constraint combinations and introduced resolvents might be much smaller in the
lazy approach of CUTSAT++ than during the elimination with weak Cooper
elimination.

In order to simulate weak Cooper elimination, CUTSAT++ uses a total order
≺ over all variables such that y ≺ x for all guarded variables y and unguarded
variables x. While termination requires that the order is fixed from the begin-
ning for all unguarded variables, the ordering among the guarded variables can
be dynamically changed. In relation to weak Cooper elimination, the order ≺
2 As recommended in [8], CUTSAT++ uses the same slack variable for all Slack-Intro

applications.

Linear Integer Arithmetic Revisited 631

describes the elimination order for the unguarded variables, viz., xi ≺ xj if xj

is eliminated before xi. A variable x is called maximal in a constraint I if x is
contained in I and all other variables in I are smaller, i.e., y ≺ x. The maximal
variable in I is also called its top variable (x = top(I)).

Definition 8. Let S = 〈M,C〉 be a state, C ′ ⊆ C, x the top variable in C ′, and
let all other variables in C ′ be fixed. The pair (x,C ′) is a conflicting core if it is
of one of the following three forms

(1) C ′ = {−ax + p ≤ 0, bx − q ≤ 0} and the lower bound from −ax + p ≤ 0
contradicts the upper bound from bx − q ≤ 0, i.e., bound(−ax + p ≤ 0, x,M) >
bound(bx−q ≤ 0, x,M); in this case (x,C ′) is called an interval conflicting core
and its strong resolvent is ({−k ≤ 0, k−a+1 ≤ 0}, {bp−aq+bk ≤ 0, a | k+p}).
(2) C ′ = {−ax + p ≤ 0, bx − q ≤ 0, d | cx + s} and bl = bound(−ax + p ≤
0, x,M), bu = bound(bx − q ≤ 0, x,M), bl ≤ bu, and for all bd ∈ [bl, bu] we have
d � cbd + lower(s,M); in this case (x,C ′) is called a divisibility conflicting core
and its strong resolvent is ({−k ≤ 0, k −m ≤ 0}, {bp− aq + bk ≤ 0, a | k + p, ad |
cp + as + ck}).
(3) C ′ = {d | cx + s} and for all bd ∈ Z we have d � cbd + lower(s,M); in this
case (x,C ′) is called a diophantine conflicting core and its strong resolvent is
(∅, {gcd(c, d) | s}).
In the first two cases k is a fresh variable and m = lcm

(

a, ad
gcd(ad,c)

)

− 1.

We refer to the respective strong resolvents for a conflicting core (x,C ′) by
the function cooper(x,C ′), which returns a pair (Rk, Rc) as defined above. Note
that the newly introduced variable k is guarded by the constraints in Rk. If there
is a conflicting core (x,C ′) in some state S, then x is called a conflicting variable.
A potential conflicting core is a pair (x,C ′) if there exists a state S where (x,C ′)
is a conflicting core.

Next, we define a generalization of strong resolvents. Since the strong resol-
vents generated out of conflicting cores will be further processed by CUTSAT++,
we must guarantee that any set of constraints implying the feasibility of the con-
flicting core constraints prevents a second application of Resolve-Cooper to the
same conflicting core. All strong resolvents of Definition 8 are also strong resol-
vents in the sense of the below definition (see also end of Sect. 3).

Definition 9. A set of constraints R is a strong resolvent for the pair (x,C ′)
if it holds that R → ∃x.C ′ and ∀J ∈ R. top(J) ≺ x.

The rule Resolve-Cooper (Fig. 1) requires that the conflicting variable x of
the conflicting core (x,C ′) is the top variable in the constraints of C ′. This sim-
ulates a setting where all variables y with x ≺ y are already eliminated. We
restrict Resolve-Cooper to unguarded constraints because weak Cooper elimina-
tion modifies only unguarded constraints.

Lemma 10. Let S = 〈M,C〉 be a CUTSAT++ state. Let C ′ ⊆ C and x be an
unguarded variable. Let R ⊆ C be a strong resolvent for (x,C ′). Then Resolve-
Cooper is not applicable to (x,C ′).

632 M. Bromberger et al.

For the resolvent R to block Resolve-Cooper from being applied to the
conflicting core (x,C ′), CUTSAT++ has to detect all conflicts in R. Detect-
ing all conflicts in R is only possible if CUTSAT++ fixes all variables y with
y ≺ x and if Resolve-Cooper is only applicable if there exists no conflict I with
top(I) ≺ x. Therefore, the remaining restrictions of Resolve-Cooper justify the
above Lemma.

If we add strong resolvents again and again, then CUTSAT++ will reach
a state after which every encounter of a conflicting core guarantees a conflict
in a guarded constraint. From this point forward, CUTSAT++ will not apply
Resolve-Cooper. The remaining guarded conflicts are resolved with the rules
Conflict and Conflict-Div [8].

The rules Solve-Div-Left and Solve-Div-Right (Fig. 1) combine divisibility
constraints as it is done a priori to weak Cooper elimination. In these rules, we
restrict the application of div-solve(x, I1, I2) to constraints where x is the top
variable and where all variables y in I1 and I2 with y �= x are fixed. The ordering
restriction simulates the order of elimination, i.e., we apply div-solve(x, I1, I2) in
a (simulated) setting where all variables y with x ≺ y appear to be eliminated in
I1 and I2. Otherwise, divergence would be possible (see Example 2). Requiring
smaller variables to be fixed prevents the accidental generation of a conflict for
an unguarded variable xi by div-solve(x, I1, I2).

Thanks to an eager top-level propagating strategy, as defined below, any
unguarded conflict in CUTSAT++ is either resolved with Solve-Div-Right
(Fig. 1) or CUTSAT++ constructs a conflicting core that is resolved with
Resolve-Cooper. Both cases may require multiple applications of the Solve-Div-
Left rule (Fig. 1). We define the following further restrictions on the CUTSAT++
rules, which will eventually generate the above described behavior.

Definition 11. Let �� ∈ {≤,≥}. We call a strategy for CUTSAT++ eager top-
level propagating if we restrict propagations and decisions for every state 〈M,C〉
in the following way:

1. Let x be an unguarded variable. Then we only allow to propagate bounds
x �� bound(I, x,M) if x is the top variable in I. Furthermore, if I is a
divisibility constraint d | ax + p, then we only propagate d | ax + p if:
(a) either lower(x,M) �= −∞ and upper(x,M) �= ∞ or
(b) gcd(a, d) | lower(p,M) holds and d | ax + p is the only divisibility con-

straint in C with x as top variable.
2. Let x be an unguarded variable. Then we only allow decisions γ = x �� b if:

(a) for every constraint I ∈ C with x = top(I) all occurring variables y �= x
are fixed

(b) there exists no I ∈ C where x = top(I) and I is a conflict in [[M,γ]]
(c) either lower(x,M) �= −∞ and upper(x,M) �= ∞ or there exists at most

one divisibility constraint in C with x as top variable.

An eager top-level propagating strategy has two advantages. First, the strat-
egy dictates an order of influence over the variables, i.e., a bound for unguarded
variable x is influenced only by previously propagated bounds for variables y with

Linear Integer Arithmetic Revisited 633

Fig. 1. Our strong conflict resolution rules

y ≺ x. Furthermore, the strategy makes only decisions for unguarded variable x
when all constraints with x = top(I) are fixed and satisfied by the decision. This
means, any conflict I ∈ C with x = top(I) is impossible as long as the decision
for x remains on the bound sequence. For the same purpose, i.e., avoiding con-
flicts I where x = top(I) is fixed by a decision, CUTSAT++ backjumps in the
rules Resolve-Cooper and Solve-Div-Right to a state where this is not the case.

Definition 12. A strategy is reasonable if Propagate applied to constraints of
the form ±x − b ≤ 0 has the highest priority over all rules and the Forget Rule
is applied only finitely often [8].

Definition 13. A strategy is strictly-two-layered if:
(1) it is reasonable, (2) it is eager top-level propagating, (3) the Forget, Conflict,
Conflict-Div rules only apply to guarded constraints, (4) Forget cannot be applied
to a divisibility constraint or a constraint contained in a strong resolvent, and
(5) only guarded constraints are used to propagate guarded variables.

The above strictly-two-layered strategy is the final restriction to CUT-
SAT++. With the condition 13-(3) it partitions conflict resolution into two lay-
ers: While every unguarded conflict is handled with the rules Resolve-Cooper,

634 M. Bromberger et al.

Fig. 2. The Forget, Slack-Intro, Sat, Unsat, and Unsat-Div rules

Solve-Div-Left, and Solve-Div-Right (Fig. 1), every guarded conflict is handled
with the rules Conflict(-Div) [2]. The conditions 13-(1) and 13-(5) make the
guarded variables independent from the unguarded variables. The conditions 13-
(2) and 13-(4) give a guarantee that the rules Resolve-Cooper, Solve-Div-Left,
and Solve-Div-Right are applied at most finitely often. We assume for the remain-
der of the paper that all runs of CUTSAT++ follow a strictly-two-layered
strategy.

5 Termination and Completeness

The CUTSAT++ rules are Propagate, Propagate-Div, Decide, Conflict, Conflict-
Div, Sat, Unsat-Div, Forget, Slack-Intro, Resolve, Skip-Decision, Backjump,
Unsat, and Learn [2,8], as well as Resolve-Cooper, Solve-Div-Left, and Solve-
Div-Right (Fig. 1). For the termination proof of CUTSAT++, we consider a
(possibly infinite) sequence of rule applications 〈[[]], C0〉 = S0 ⇒CS S1 ⇒CS . . . on
a problem C0, following the strictly-two-layered strategy.

First, this sequence reaches a state Ss (s ∈ N
+
0) after a finite derivation of rule

applications S0 ⇒CS . . . ⇒CS Ss such that there is no further application of the
rules Slack-Intro and Forget (Fig. 2) after state Ss: Such a state Ss exists for two
reasons: Firstly, the strictly-two-layered strategy employed by CUTSAT++ is

Linear Integer Arithmetic Revisited 635

also reasonable. The reasonable strategy explicitly forbids infinite applications
of the rule Forget. Secondly, the Slack-Intro rule is applicable only to stuck
variables and only once to each stuck variable. Only the initial set of variables
can be stuck because all variables x introduced during the considered derivation
are introduced with at least one constraint x − b ≤ 0 that allows at least one
propagation for the variable. Therefore, the rules Slack-Intro and Forget are
applicable at most finitely often.

Next, the sequence reaches a state Sw (w ≥ s) after a finite derivation of
rule applications Ss ⇒CS . . . ⇒CS Sw such that there is no further applica-
tion of the rules Resolve-Cooper, Solve-Div-Left, and Solve-Div-Right after state
Sw: The rules Resolve-Cooper, Solve-Div-Left, Solve-Div-Right, and Slack-Intro
are applicable only to unguarded constraints. Through the strictly-two-layered
strategy, they are also the only rules producing unguarded constraints. There-
fore, they form a closed loop with respect to unguarded constraints, which
we use in our termination proof. We have shown in the previous paragraph
that Ss ⇒CS . . . ⇒CS Sw contains no application of the rule Slack-Intro. By
Lemma 10, an application of Resolve-Cooper to the conflicting core (x,C ′) pre-
vents any further applications of Resolve-Cooper to the same core. By Defini-
tion 8, the constraints learned through an application of Resolve-Cooper contain
only variables y such that y ≺ x. Therefore, an application of Resolve-Cooper
blocks a conflicting core (x,C ′) and introduces potential conflicting cores only
for smaller variables than x. This strict decrease in the conflicting variables
guarantees that we encounter only finitely many conflicting cores in unguarded
variables. Therefore, Resolve-Cooper is applicable at most finitely often. An anal-
ogous argument applies to the rules Solve-Div-Left and Solve-Div-Right. Thus
the rules Resolve-Cooper, Solve-Div-Left, and Solve-Div-Right are applicable at
most finitely often.

Next, the sequence reaches a state Sb (b ≥ w) after a finite derivation of rule
applications Sw ⇒CS . . . ⇒CS Sb such that for every guarded variable x the
bounds remain invariant, i.e., lower(x,Mb) = lower(x,Mj) and upper(x,Mb) =
upper(x,Mj) for every state Sj = 〈Mj , Cj〉(� Ij) after Sb = 〈Mb, Cb〉(� Ib)
(j ≥ b): The strictly-two-layered strategy guarantees that only bounds of guarded
variables influence the propagation of further bounds for guarded variables. Any
rule application involving unguarded variables does not influence the bounds for
guarded variables. A proof for the termination of the solely guarded case was
already provided in [8]. We now know that the sequence after Sb contains no
further propagations, decisions, or conflict resolutions for the guarded variables.

Next, the sequence reaches a state Su (u ≥ b) after a finite derivation of rule
applications Sb ⇒CS . . . ⇒CS Su such that also for every unguarded variable x the
bounds remain invariant, i.e., lower(x,Mb) = lower(x,Mj) and upper(x,Mb) =
upper(x,Mj) for every state Sj = 〈Mj , Cj〉(� Ij) after Su = 〈Mu, Cb〉(� Iu)
(j ≥ u). After Sb, CUTSAT++ propagates and decides only unguarded vari-
ables or ends with an application of Sat or Unsat(-Div). CUTSAT++ employs
the strictly-two-layered strategy, which is also an eager top-level propagating
strategy. Through the top variable restriction for propagating constraints, the

636 M. Bromberger et al.

eager top-level propagating strategy induces a strict order of propagation over
the unguarded variables. Therefore, any bound for an unguarded variable x is
influenced only by bounds for variables y ≺ x. This strict variable order guar-
antees that unguarded variables are propagated and decided only finitely often.

After state Su, only the rules Sat, Unsat, and Unsat-Div are applicable, which
lead all to a final state. Hence, the sequence S0 ⇒CS S1 ⇒CS . . . is finite. We
conclude that CUTSAT++ always terminates:

Theorem 14. If CUTSAT++ starts from an initial state 〈[[]], C0〉, then there is
no infinite derivation sequence.

All CUTSAT++ rules are sound, i.e., if 〈Mi, Ci〉(� Ii) ⇒CS 〈Mj , Cj〉(� Ij),
then any satisfiable assignment υ for Cj is a satisfiable assignment also for Ci.
The rule Resolve-Cooper is sound because of the Lemmas 6 and 7. The soundness
of Solve-Div-Left and Solve-Div-Right follows from the fact that div-solve is an
equivalence preserving transformation. The soundness proofs for all other rules
are either trivial or given in [8].

Furthermore, CUTSAT++ never reaches a frozen state. Let x be the smallest
unfixed variable with respect to ≺. Whenever x is guarded we can propagate
a constraint ±x − b ≤ 0 ∈ C and then fix x by introducing a decision. If
we cannot propagate any bound for x, then x is unguarded and stuck and,
therefore, Slack-Intro is applicable. If we cannot fix x by introducing a decision,
then x is unguarded and there is a conflict. Guarded conflicts are resolved via
the Conflict(-Div) rules. Unguarded conflicts are resolved via the strong conflict
resolution rules. Unless a final state is reached, CUTSAT has always a rule
applicable.

Summarizing, CUTSAT++ is terminating, sound, and never reaches a frozen
state. In combination with the fact that Sat is applicable only if a satisfiable solu-
tion υ[M] is found and that Unsat and Unsat-Div detect trivially unsatisfiable
constraints, these facts imply completeness:

Theorem 15. If CUTSAT++ starts from an initial state 〈[[]], C0〉, then it either
terminates in the unsat state and C0 is unsatisfiable, or it terminates with
〈υ, sat〉 where υ is a satisfiable assignment for C0.

6 Conclusion and Future Work

The starting point of our work was an implementation of CUTSAT [8] as a theory
solver for hierarchic superposition [5]. In that course, we observed divergence for
some of our problems. The analysis of those divergences led to the development
of the CUTSAT++ algorithm presented in this paper, which is a substantial
extension of CUTSAT by means of the weak Cooper elimination described in
Sect. 3.

As a next step, we plan to develop a prototypical implementation of CUT-
SAT++, to test its efficiency on benchmark problems. Depending on the out-
come, we consider integrating CUTSAT++ as a theory solver for hierarchic
superposition modulo linear integer arithmetic [5].

Linear Integer Arithmetic Revisited 637

Finally, we point at some possible improvements of CUTSAT++. We see
great potential in the development of constraint reduction techniques from
(weak) Cooper elimination [3]. For practical applicability such reduction tech-
niques might be crucial. The choice of the variable order ≺ has considerable
impact on the efficiency of CUTSAT++. It might be possible to derive suitable
orders via the analysis of the problem structure. We might benefit from results
and experiences of research in quantifier elimination with variable elimination
orders.

Acknowledgments. This research was supported in part by the German Transre-
gional Collaborative Research Center SFB/TR 14 AVACS and by the ANR/DFG
project STU 483/2-1 SMArT.

References

1. Barrett, C.W., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Splitting on demand in
SAT modulo theories. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS
(LNAI), vol. 4246, pp. 512–526. Springer, Heidelberg (2006)

2. Bromberger, M., Sturm, T., Weidenbach, C.: Linear integer arithmetic revisited.
ArXiv e-prints, abs/1503.02948 (2015)

3. Cooper, D.C.: Theorem proving in arithmetic without multiplication. In:
Meltzer, B., Michie, D. (eds.) 1971 Proceedings of the Seventh Annual Machine
Intelligence Workshop, Edinburgh. Machine Intelligence, vol. 7, pp. 91–99. Edin-
burgh University Press (1972)

4. Dillig, I., Dillig, T., Aiken, A.: Cuts from proofs: a complete and practical technique
for solving linear inequalities over integers. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 233–247. Springer, Heidelberg (2009)

5. Fietzke, A., Weidenbach, C.: Superposition as a decision procedure for timed
automata. Math. Comput. Sci. 6(4), 409–425 (2012)

6. Fischer, M.J., Rabin, M.: Super-exponential complexity of Presburger arithmetic.
SIAM-AMS Proc. 7, 27–41 (1974)

7. Griggio, A.: A practical approach to satisability modulo linear integer arithmetic.
JSAT 8(1/2), 1–27 (2012)

8. Jovanović, D., de Moura, L.: Cutting to the chase. J. Autom. Reasoning 51(1),
79–108 (2013)

9. Jünger, M., Liebling, T.M., Naddef, D., Nemhauser, G.L., Pulleyblank, W.R.,
Reinelt, G., Rinaldi, G., Wolsey, L.A. (eds.): 50 Years of Integer Programming
1958–2008. Springer, Heidelberg (2010)

10. Lasaruk, A., Sturm, T.: Weak quantifier elimination for the full linear theory of the
integers. A uniform generalization of Presburger arithmetic. Appl. Algebra Eng.
Commun. Comput. 18(6), 545–574 (2007)

11. Papadimitriou, C.H.: On the complexity of integer programming. J. ACM 28(4),
765–768 (1981)

12. Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik
ganzer Zahlen. welchem die Addition als einzige Operation hervortritt. In: Comptes
Rendus du premier congres de Mathematiciens des Pays Slaves, pp. 92–101.
Warsaw, Poland (1929)

13. Weispfenning, V.: The complexity of almost linear diophantine problems. J. Symb.
Comput. 10(5), 395–403 (1990)

	Linear Integer Arithmetic Revisited
	1 Introduction
	2 Motivation
	3 Weak Cooper Elimination
	4 Strong Conflict Resolution Revisited
	5 Termination and Completeness
	6 Conclusion and Future Work
	References

