
A Uniform Substitution Calculus
for Differential Dynamic Logic

André Platzer(B)

Computer Science Department, Carnegie Mellon University, Pittsburgh, USA
aplatzer@cs.cmu.edu

Abstract. This paper introduces a new proof calculus for differential
dynamic logic (dL) that is entirely based on uniform substitution, a proof
rule that substitutes a formula for a predicate symbol everywhere. Uni-
form substitutions make it possible to rely on axioms rather than axiom
schemata, substantially simplifying implementations. Instead of subtle
schema variables and soundness-critical side conditions on the occurrence
patterns of variables, the resulting calculus adopts only a finite number
of ordinary dL formulas as axioms. The static semantics of differential
dynamic logic is captured exclusively in uniform substitutions and bound
variable renamings as opposed to being spread in delicate ways across
the prover implementation. In addition to sound uniform substitutions,
this paper introduces differential forms for differential dynamic logic that
make it possible to internalize differential invariants, differential substi-
tutions, and derivations as first-class axioms in dL.

1 Introduction

Differential dynamic logic (dL) [4,6] is a logic for proving correctness properties
of hybrid systems. It has a sound and complete proof calculus relative to differen-
tial equations [4,6] and a sound and complete proof calculus relative to discrete
systems [6]. Both sequent calculi [4] and Hilbert-type axiomatizations [6] have
been presented for dL but only the former has been implemented. The imple-
mentation of dL’s sequent calculus in KeYmaera makes it straightforward for
users to prove properties of hybrid systems, because it provides rules performing
natural decompositions for each operator. The downside is that the implemen-
tation of the rule schemata and their side conditions on occurrence constraints
and relations of reading and writing of variables as well as rule applications in
context is nontrivial and inflexible in KeYmaera.

The goal of this paper is to identify how to make it straightforward to imple-
ment the axioms and proof rules of differential dynamic logic by writing down
a finite list of axioms (concrete formulas, not axiom schemata that represent an
infinite list of axioms subject to sophisticated soundness-critical schema variable
matching implementations). They require multiple axioms to be combined with

All proofs are in a companion report [9]. This material is based upon work supported
by the National Science Foundation by NSF CAREER Award CNS-1054246.

c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 467–481, 2015.
DOI: 10.1007/978-3-319-21401-6 32

468 A. Platzer

one another to obtain the effect that a user would want for proving a hybrid sys-
tem conjecture. This paper argues that this is still a net win for hybrid systems,
because a substantially simpler prover core is easier to implement correctly, and
the need to combine multiple axioms to obtain user-level proof steps can be
achieved equally well by appropriate tactics, which are not soundness-critical.

To achieve this goal, this paper follows observations for differential game logic
[8] that highlight the significance and elegance of uniform substitutions, a clas-
sical proof rule for first-order logic [2, §35,40]. Uniform substitutions uniformly
instantiate predicate and function symbols with formulas and terms, respectively,
as functions of their arguments. In the presence of the nontrivial binding struc-
ture that nondeterminism and differential equations of hybrid programs induce
for the dynamic modalities of differential dynamic logic, flexible but sound uni-
form substitutions become more complex for dL, but can still be read off ele-
gantly from its static semantics. In fact, dL’s static semantics is solely captured1

in the implementation of uniform substitution (and bound variable renaming),
thereby leading to a completely modular proof calculus.

This paper introduces a static and dynamic semantics for differential-form dL,
proves coincidence lemmas and uniform substitution lemmas, culminating in a
soundness proof for uniform substitutions (Sect. 3). It exploits the new differen-
tial forms that this paper adds to dL for internalizing differential invariants [5],
differential cuts [5,7], differential ghosts [7], differential substitutions, total differ-
entials and Lie-derivations [5,7] as first-class citizens in dL, culminating in entirely
modular axioms for differential equations and a superbly modular soundness proof
(Sect. 4). This approach is to be contrasted with earlier approaches for differen-
tial invariants that were based on complex built-in rules [5,7]. The relationship to
related work from previous presentations of differential dynamic logic [4,6] con-
tinues to apply except that dL now internalizes differential equation reasoning
axiomatically via differential forms.

2 Differential-Form Differential Dynamic Logic

2.1 Syntax

Formulas and hybrid programs (HPs) of dL are defined by simultaneous induction
based on the following definition of terms. Similar simultaneous inductions are
used throughout the proofs for dL. The set of all variables is V. For any V ⊆ V is
V ′ def= {x′ : x ∈ V } the set of differential symbols x′ for the variables in V . Function
symbols are written f, g, h, predicate symbols p, q, r, and variables x, y, z ∈ V with
differential symbols x′, y′, z′ ∈ V ′. Program constants are a, b, c.

Definition 1 (Terms). Terms are defined by this grammar (with θ, η, θ1, . . . , θk

as terms, x ∈ V as variable, x′ ∈ V ′ differential symbol, and f function symbol):

θ, η ::= x | x′ | f(θ1, . . . , θk) | θ + η | θ · η | (θ)′

1 This approach is dual to other successful ways of solving the intricacies and subtleties
of substitutions [1,3] by imposing occurrence side conditions on axiom schemata and
proof rules, which is what uniform substitutions can get rid of.

A Uniform Substitution Calculus for Differential Dynamic Logic 469

Number literals such as 0,1 are allowed as function symbols without arguments
that are always interpreted as the numbers they denote. Beyond differential
symbols x′, differential-form dL allows differentials (θ)′ of terms θ as terms for
the purpose of axiomatically internalizing reasoning about differential equations.

Definition 2 (Hybrid program). Hybrid programs (HPs) are defined by the
following grammar (with α, β as HPs, program constant a, variable x, term θ
possibly containing x, and formula ψ of first-order logic of real arithmetic):

α, β ::= a | x := θ | x′ := θ | ?ψ | x′ = θ &ψ | α ∪ β | α;β | α∗

Assignments x := θ of θ to variable x, tests ?ψ of the formula ψ in the cur-
rent state, differential equations x′ = θ &ψ restricted to the evolution domain
constraint ψ, nondeterministic choices α ∪ β, sequential compositions α;β, and
nondeterministic repetition α∗ are as usual in dL [4,6]. The effect of the differ-
ential assignment x′ := θ to differential symbol x′ is similar to the effect of the
assignment x := θ to variable x, except that it changes the value of the differ-
ential symbol x′ around instead of the value of x. It is not to be confused with
the differential equation x′ = θ, which will follow said differential equation con-
tinuously for an arbitrary amount of time. The differential assignment x′ := θ,
instead, only assigns the value of θ to the differential symbol x′ discretely once
at an instant of time. Program constants a are uninterpreted, i.e. their behav-
ior depends on the interpretation in the same way that the values of function
symbols f and predicate symbols p depends on their interpretation.

Definition 3 (dL formula). The formulas of (differential-form) differential
dynamic logic (dL) are defined by the grammar (with dL formulas φ, ψ, terms
θ, η, θ1, . . . , θk, predicate symbol p, quantifier symbol C, variable x, HP α):

φ, ψ ::= θ ≥ η | p(θ1, . . . , θk) | C(φ) | ¬φ | φ ∧ ψ | ∀xφ | ∃xφ | [α]φ | 〈α〉φ
Operators >,≤, <,∨,→,↔ are definable, e.g., φ → ψ as ¬(φ ∧ ¬ψ). Likewise
[α]φ is equivalent to ¬〈α〉¬φ and ∀xφ equivalent to ¬∃x¬φ. The modal formula
[α]φ expresses that φ holds after all runs of α, while the dual 〈α〉φ expresses that
there is a run of α after which φ holds. Quantifier symbols C (with formula φ as
argument), i.e. higher-order predicate symbols that bind all variables of φ, are
unnecessary but internalize contextual congruence reasoning efficiently.

2.2 Dynamic Semantics

A state is a mapping from variables V and differential symbols V ′ to R. The set
of states is denoted S. Let νr

x denote the state that agrees with state ν except
for the value of variable x, which is changed to r ∈ R, and accordingly for νr

x′ .
The interpretation of a function symbol f with arity n (i.e. with n arguments)
is a smooth function I(f) : Rn → R of n arguments.

Definition 4 (Semantics of terms). For each interpretation I, the semantics
of a term θ in a state ν ∈ S is its value in R. It is defined inductively as follows

470 A. Platzer

1. [[x]]Iν = ν(x) for variable x ∈ V
2. [[x′]]Iν = ν(x′) for differential symbol x′ ∈ V ′

3. [[f(θ1, . . . , θk)]]Iν = I(f)
(
[[θ1]]Iν, . . . , [[θk]]Iν

)
for function symbol f

4. [[θ + η]]Iν = [[θ]]Iν + [[η]]Iν
5. [[θ · η]]Iν = [[θ]]Iν · [[η]]Iν

6. [[(θ)′]]Iν =
∑

x

ν(x′)
∂[[θ]]I

∂x
(ν) =

∑

x

ν(x′)
∂[[θ]]IνX

x

∂X

Time-derivatives are undefined in an isolated state ν. The clou is that differ-
entials can still be given a local semantics: [[(θ)′]]Iν is the sum of all (analytic)
spatial partial derivatives of the value of θ by all variables x (or rather their
values X) multiplied by the corresponding tangent described by the value ν(x′)
of differential symbol x′. That sum over all variables x ∈ V has finite support,
because θ only mentions finitely many variables x and the partial derivative by
variables x that do not occur in θ is 0. The spatial derivatives exist since [[θ]]Iν
is a composition of smooth functions, so smooth. Thus, the semantics of [[(θ)′]]Iν
is the differential2 of (the value of) θ, hence a differential one-form giving a real
value for each tangent vector (i.e. vector field) described by the values ν(x′).
The values ν(x′) of the differential symbols x′ describe an arbitrary tangent
vector or vector field. Along the flow of (the vector field of a) differential equa-
tion, though, the value of the differential (θ)′ coincides with the analytic time-
derivative of θ (Lemma 8). The interpretation of predicate symbol p with arity
n is an n-ary relation I(p) ⊆ R

n. The interpretation of quantifier symbol C is a
functional I(C) mapping subsets M ⊆ S to subsets I(C)(M) ⊆ S.

Definition 5 (dL semantics). The semantics of a dL formula φ, for each
interpretation I with a corresponding set of states S, is the subset [[φ]]I ⊆ S
of states in which φ is true. It is defined inductively as follows

1. [[θ ≥ η]]I = {ν ∈ S : [[θ]]Iν ≥ [[η]]Iν}
2. [[p(θ1, . . . , θk)]]I = {ν ∈ S : ([[θ1]]Iν, . . . , [[θk]]Iν) ∈ I(p)}
3. [[C(φ)]]I = I(C)

(
[[φ]]I

)
for quantifier symbol C

4. [[¬φ]]I = ([[φ]]I)� = S \ [[φ]]I

5. [[φ ∧ ψ]]I = [[φ]]I ∩ [[ψ]]I

6. [[∃xφ]]I = {ν ∈ S : νr
x ∈ [[φ]]I for some r ∈ R}

7. [[〈α〉φ]]I = [[α]]I ◦ [[φ]]I = {ν : ω ∈ [[φ]]I for some ω such that (ν, ω) ∈ [[α]]I}
8. [[[α]φ]]I = [[¬〈α〉¬φ]]I = {ν : ω ∈ [[φ]]I for all ω such that (ν, ω) ∈ [[α]]I}

A dL formula φ is valid in I, written I |= φ, iff [[φ]]I = S, i.e. ν ∈ [[φ]]I for
all ν. Formula φ is valid, written |= φ, iff I |= φ for all interpretations I.

The interpretation of a program constant a is a state-transition relation I(a) ⊆
S × S, where (ν, ω) ∈ I(a) iff a can run from initial state ν to final state ω.

2 A slight abuse of notation rewrites the differential as [[(θ)′]]I = d[[θ]]I =
∑n

i=1
∂[[θ]]I

∂xi dxi

when x1, . . . , xn are the variables in θ and their differentials dxi form the basis of the
cotangent space, which, when evaluated at a point ν whose values ν(x′) determine
the tangent vector alias vector field, coincides with Definition 4.

A Uniform Substitution Calculus for Differential Dynamic Logic 471

Definition 6 (Transition semantics of HPs). For each interpretation I,
each HP α is interpreted semantically as a binary transition relation [[α]]I ⊆ S×S
on states, defined inductively by

1. [[a]]I = I(a) for program constants a
2. [[x := θ]]I = {(ν, νr

x) : r = [[θ]]Iν} = {(ν, ω) : ω = ν except [[x]]Iω = [[θ]]Iν}
3. [[x′ := θ]]I = {(ν, νr

x′) : r = [[θ]]Iν} = {(ν, ω) : ω = ν except [[x′]]Iω =
[[θ]]Iν}

4. [[?ψ]]I = {(ν, ν) : ν ∈ [[ψ]]I}
5. [[x′ = θ &ψ]]I = {(ν, ω) : I, ϕ, |= x′ = θ ∧ ψ, i.e. ϕ(ζ) ∈ [[x′ = θ ∧ ψ]]I for

all 0 ≤ ζ ≤ r, for some function ϕ : [0, r] → S of some duration r for which
all ϕ(ζ)(x′) = dϕ(t)(x)

dt (ζ) exist and ν = ϕ(0) on {x′}� and ω = ϕ(r)}; i.e.,
ϕ solves the differential equation and satisfies ψ at all times. In case r = 0,
the only condition is that ν = ω on {x′}� and ω(x′) = [[θ]]Iω and ω ∈ [[ψ]]I .

6. [[α ∪ β]]I = [[α]]I ∪ [[β]]I
7. [[α;β]]I = [[α]]I ◦ [[β]]I = {(ν, ω) : (ν, μ) ∈ [[α]]I , (μ, ω) ∈ [[β]]I}
8. [[α∗]]I = ([[α]]I)∗ =

⋃

n∈N

[[αn]]I with αn+1 ≡ αn;α and α0 ≡ ?true

where ρ∗ denotes the reflexive transitive closure of relation ρ.

The initial values ν(x′) of differential symbols x′ do not influence the behavior
of (ν, ω) ∈ [[x′ = θ &ψ]]I , because they may not be compatible with the time-
derivatives for the differential equation, e.g. in x′ := 1;x′ = 2, with a x′ mismatch.

Functions and predicates are interpreted by I and are only influenced indi-
rectly by ν through the values of their arguments. So p(e) → [x :=x + 1]p(e) is
valid if x is not in e since the change in x does not change whether p(e) is true
(Lemma 2). By contrast p(x) → [x :=x + 1]p(x) is invalid, since it is false when
I(p) = {d : d ≤ 5} and ν(x) = 4.5. If the semantics of p were to depend on the
state ν, then there would be no discernible relationship between the truth-values
of p in different states, so not even p → [x :=x + 1]p would be valid.

2.3 Static Semantics

The static semantics of dL and HPs defines some aspects of their behavior that
can be read off directly from their syntactic structure without running their
programs or evaluating their dynamical effects. The most important aspects
of the static semantics concern free or bound occurrences of variables. Bound
variables x are those that are bound by ∀x or ∃x , but also those that are bound
by modalities such as [x := 5y] or 〈x′ = 1〉 or [x := 1 ∪ x′ = 1] or [x := 1 ∪ ?true].

The notions of free and bound variables are defined by simultaneous induction
in the subsequent definitions: free variables for terms (FV(θ)), formulas (FV(φ)),
and HPs (FV(α)), as well as bound variables for formulas (BV(φ)) and for HPs
(BV(α)). For HPs, there will be a need to distinguish must-bound variables
(MBV(α)) that are bound/written to on all executions of α from (may-)bound
variables (BV(α)) which are bound on some (not necessarily all) execution paths
of α, such as in [x := 1 ∪ (x := 0; y := x + 1)], which has bound variables {x, y}
but must-bound variables only {x}, because y is not written to in the first choice.

472 A. Platzer

Definition 7 (Bound variable). The set BV(φ) ⊆ V ∪ V ′ of bound variables
of dL formula φ is defined inductively as

BV(θ ≥ η) = BV(p(θ1, . . . , θk)) = ∅
BV(C(φ)) = V ∪ V ′

BV(¬φ) = BV(φ)
BV(φ ∧ ψ) = BV(φ) ∪ BV(ψ)

BV(∀xφ) = BV(∃xφ) = {x} ∪ BV(φ)
BV([α]φ) = BV(〈α〉φ) = BV(α) ∪ BV(φ)

Definition 8 (Free variable). The set FV(θ) ⊆ V ∪ V ′ of free variables of
term θ, i.e. those that occur in θ, is defined inductively as

FV(x) = {x}
FV(x′) = {x′}

FV(f(θ1, . . . , θk)) = FV(θ1) ∪ · · · ∪ FV(θk)
FV(θ + η) = FV(θ · η) = FV(θ) ∪ FV(η)

FV((θ)′) = FV(θ) ∪ FV(θ)′

The set FV(φ) of free variables of dL formula φ, i.e. all those that occur in φ
outside the scope of quantifiers or modalities binding it, is defined inductively as

FV(θ ≥ η) = FV(θ) ∪ FV(η)
FV(p(θ1, . . . , θk)) = FV(θ1) ∪ · · · ∪ FV(θk)

FV(C(φ)) = V ∪ V ′

FV(¬φ) = FV(φ)
FV(φ ∧ ψ) = FV(φ) ∪ FV(ψ)

FV(∀xφ) = FV(∃xφ) = FV(φ) \ {x}
FV([α]φ) = FV(〈α〉φ) = FV(α) ∪ (FV(φ) \ MBV(α))

Soundness requires that FV([α]φ) is not defined as FV(α) ∪ (FV(φ) \ BV(α)),
otherwise [x := 1 ∪ y := 2]x ≥ 1 would have no free variables, but its truth-value
depends on the initial value of x, demanding FV([x := 1 ∪ y := 2]x ≥ 1) = {x}.

The static semantics defines which variables are free so may be read (FV(α)),
which are bound (BV(α)) so may be written to somewhere in α, and which are
must-bound (MBV(α)) so must be written to on all execution paths of α.

Definition 9 (Bound variable). The set BV(α) ⊆ V ∪ V ′ of bound variables
of HP α, i.e. all those that may potentially be written to, is defined inductively:

BV(a) = V ∪ V ′ for program constant a

BV(x := θ) = {x}
BV(x′ := θ) = {x′}

A Uniform Substitution Calculus for Differential Dynamic Logic 473

BV(?ψ) = ∅
BV(x′ = θ &ψ) = {x, x′}

BV(α ∪ β) = BV(α;β) = BV(α) ∪ BV(β)
BV(α∗) = BV(α)

Definition 10 (Must-bound variable). The set MBV(α) ⊆ BV(α) ⊆ V ∪ V ′

of must-bound variables of HP α, i.e. all those that must be written to on all
paths of α, is defined inductively as

MBV(a) = ∅ for program constant a

MBV(α) = BV(α) for other atomic HPs α

MBV(α ∪ β) = MBV(α) ∩ MBV(β)
MBV(α;β) = MBV(α) ∪ MBV(β)
MBV(α∗) = ∅

Definition 11 (Free variable). The set FV(α) ⊆ V ∪ V ′ of free variables of
HP α, i.e. all those that may potentially be read, is defined inductively as

FV(a) = V ∪ V ′ for program constant a

FV(x := θ) = FV(x′ := θ) = FV(θ)
FV(?ψ) = FV(ψ)

FV(x′ = θ &ψ) = {x} ∪ FV(θ) ∪ FV(ψ)
FV(α ∪ β) = FV(α) ∪ FV(β)
FV(α;β) = FV(α) ∪ (FV(β) \ MBV(α))
FV(α∗) = FV(α)

Unlike x, the left-hand side x′ of differential equations is not added to the
free variables of FV(x′ = θ &ψ), because its behavior does not depend on the
initial value of differential symbols x′, only the initial value of x. Free and bound
variables are the set of all variables V and differential symbols V ′ for program
constants a, because their effect depends on the interpretation I, so may read and
write all FV(a) = BV(a) = V ∪V ′ but not on all paths MBV(a) = ∅. Subsequent
results about free and bound variables are, thus, vacuously true when program
constants occur. Corresponding observations hold for quantifier symbols.

The static semantics defines which variables are readable or writable. There
may not be any run of α in which a variable is read or written to. If x �∈ FV(α),
though, then α cannot read the value of x. If x �∈ BV(α), it cannot write to x.

The signature, i.e. set of function, predicate, quantifier symbols, and program
constants in φ is denoted by Σ(φ) (accordingly for terms and programs). It is
defined like FV(φ) except that all occurrences are free. Variables in V ∪ V ′ are
interpreted by state ν. The symbols in Σ(φ) are interpreted by interpretation I.

2.4 Correctness of Static Semantics

The following result reflects that HPs have bounded effect: for a variable x to
be modified during a run of α, x needs the be a bound variable in HP α, i.e.

474 A. Platzer

x ∈ BV(α), so that α can write to x. The converse is not true, because α may
bind a variable x, e.g. by having an assignment to x, that never actually changes
the value of x, such as x := x or because the assignment can never be executed.

Lemma 1 (Bound effect lemma). If (ν, ω) ∈ [[α]]I , then ν = ω on BV (α)�.

Similarly, only BV(φ) change their value during the evaluation of formulas.
The value of a term only depends on the values of its free variables. When

evaluating a term θ in two states ν, ν̃ that differ widely but agree on the free
variables FV(θ) of θ, the values of θ in both states coincide. Accordingly for
different interpretations I, J that agree on the symbols Σ(θ) that occur in θ.
Recall that all proofs and additional examples are in a companion report [9].

Lemma 2 (Coincidence lemma). If ν = ν̃ on FV(θ) and I = J on Σ(θ),
then [[θ]]Iν = [[θ]]J ν̃.

By a more subtle argument, the values of dL formulas also only depend on
the values of their free variables. When evaluating dL formula φ in two states ν,
ν̃ that differ but agree on the free variables FV(φ) of φ, the (truth) values of φ
in both states coincide. Lemmas 3 and 4 are proved by simultaneous induction.

Lemma 3 (Coincidence lemma). If ν = ν̃ on FV(φ) and I = J on Σ(φ),
then ν ∈ [[φ]]I iff ν̃ ∈ [[φ]]J .

In a sense, the runs of an HP α also only depend on the values of its free
variables, because its behavior cannot depend on the values of variables that it
never reads. That is, if ν = ν̃ on FV(α) and (ν, ω) ∈ [[α]]I , then there is an ω̃
such that (ν̃, ω̃) ∈ [[α]]J and ω and ω̃ agree in some sense. There is a subtlety,
though. The resulting states ω and ω̃ will only continue to agree on FV(α) and
the variables that are bound on the particular path that α took for the transition
(ν, ω) ∈ [[α]]I . On variables z that are neither free (so the initial states ν and
ν̃ have not been assumed to coincide) nor bound on the particular path that α
took, ω and ω̃ may continue to disagree, because z has not been written to. Yet,
ω and ω̃ agree on the variables that are bound on all paths of α, rather than
somewhere in α. That is on the must-bound variables of α. If initial states agree
on (at least) all free variables FV(α) that HP α may read, then the final states
agree on those as well as on all variables that α must write, i.e. on MBV(α).

Lemma 4 (Coincidence lemma). If ν = ν̃ on V ⊇ FV(α) and I = J on
Σ(α) and (ν, ω) ∈ [[α]]I , then there is an ω̃ such that (ν̃, ω̃) ∈ [[α]]J and ω = ω̃
on V ∪ MBV(α).

3 Uniform Substitutions

The uniform substitution rule US1 from first-order logic [2, §35,40] substitutes
all occurrences of predicate p(·) by a formula ψ(·), i.e. it replaces all occurrences
of p(θ), for any (vectorial) term θ, by the corresponding ψ(θ) simultaneously:

(US1)
φ

φ
ψ(·)
p(·)

(US)
φ

σ(φ)

A Uniform Substitution Calculus for Differential Dynamic Logic 475

Rule US1 [8] requires all relevant substitutions of ψ(θ) for p(θ) to be admissible
and requires that no p(θ) occurs in the scope of a quantifier or modality binding
a variable of ψ(θ) other than the occurrences in θ; see [2, §35,40].

This section considers a constructive definition of this proof rule that is more
general: US. The dL calculus uses uniform substitutions that affect terms, for-
mulas, and programs. A uniform substitution σ is a mapping from expressions
of the form f(·) to terms σf(·), from p(·) to formulas σp(·), from C() to for-
mulas σC(), and from program constants a to HPs σa. Vectorial extensions are
accordingly for uniform substitutions of other arities k ≥ 0. Here · is a reserved
function symbol of arity zero and a reserved quantifier symbol of arity zero.
Figure 1 defines the result σ(φ) of applying to a dL formula φ the uniform substi-
tution σ that uniformly replaces all occurrences of function f by a (instantiated)
term and all occurrences of predicate p or quantifier C by a (instantiated) for-
mula as well as of program constant a by a program. The notation σf(·) denotes
the replacement for f(·) according to σ, i.e. the value σf(·) of function σ at
f(·). By contrast, σ(φ) denotes the result of applying σ to φ according to Fig. 1
(likewise for σ(θ) and σ(α)). The notation f ∈ σ signifies that σ replaces f , i.e.
σf(·) �= f(·). Finally, σ is a total function when augmented with σg(·) = g(·) for
all g �∈ σ. Accordingly for predicate symbols, quantifiers, and program constants.

Definition 12 (Admissible uniform substitution). The uniform substitu-
tion σ is U -admissible for φ (or θ or α, respectively) with respect to the set
U ⊆ V ∪V ′ iff FV(σ|Σ(φ))∩U = ∅, where σ|Σ(φ) is the restriction of σ that only
replaces symbols that occur in φ and FV(σ) =

⋃
f∈σ FV(σf(·))∪⋃

p∈σ FV(σp(·))
are the free variables that σ introduces. The uniform substitution σ is admissible
for φ (or θ or α, respectively) iff all admissibility conditions during its applica-
tion according to Fig. 1 hold, which check that the bound variables U of each
operator are not free in the substitution on its arguments, i.e. σ is U -admissible.
Otherwise the substitution clashes so its result σ(φ) (σ(θ) or σ(α)) is not defined.

US is only applicable if σ is admissible for φ. In all subsequent results, all
applications of uniform substitutions are required to be defined (no clash).

3.1 Correctness of Uniform Substitutions

Let IR
p denote the interpretation that agrees with interpretation I except for the

interpretation of predicate symbol p, which is changed to R ⊆ R. Accordingly
for predicate symbols of other arities, for function symbols f , and quantifiers C.

Corollary 1 (Substitution adjoints). The adjoint interpretation σ∗
νI to sub-

stitution σ for I, ν is the interpretation that agrees with I except that for each
function symbol f ∈ σ, predicate symbol p ∈ σ, quantifier C ∈ σ, and program
constant a ∈ σ:

476 A. Platzer

Fig. 1. Recursive application of uniform substitution σ

σ∗
νI(f) : R → R; d �→ [[σf(·)]]I

d·ν
σ∗

νI(p) = {d ∈ R : ν ∈ [[σp(·)]]I
d·}

σ∗
νI(C) : ℘(R) → ℘(R); R �→ [[σC()]]I

R

σ∗
νI(a) = [[σa]]I

If ν = ω on FV(σ), then σ∗
νI = σ∗

ωI. If σ is U -admissible for φ (or θ or α,
respectively) and ν = ω on U�, then

[[θ]]σ
∗
νI = [[θ]]σ

∗
ωI i.e. [[θ]]σ

∗
νIμ = [[θ]]σ

∗
ωIμ for all μ

[[φ]]σ
∗
νI = [[φ]]σ

∗
ωI

[[α]]σ
∗
νI = [[α]]σ

∗
ωI

Substituting equals for equals is sound by the compositional semantics of dL.
The more general uniform substitutions are still sound, because interpretations

A Uniform Substitution Calculus for Differential Dynamic Logic 477

of uniform substitutes correspond to interpretations of their adjoints. The seman-
tic modification of adjoint interpretations has the same effect as the syntactic
uniform substitution, proved by simultaneous induction.

Lemma 5 (Uniform substitution lemma). The uniform substitution σ and
its adjoint interpretation σ∗

νI, ν to σ for I, ν have the same term semantics:

[[σ(θ)]]Iν = [[θ]]σ
∗
νIν

Lemma 6 (Uniform substitution lemma). The uniform substitution σ and
its adjoint interpretation σ∗

νI, ν to σ for I, ν have the same formula semantics:

ν ∈ [[σ(φ)]]I iff ν ∈ [[φ]]σ
∗
νI

Lemma 7 (Uniform substitution lemma). The uniform substitution σ and
its adjoint interpretation σ∗

νI, ν to σ for I, ν have the same program semantics:

(ν, ω) ∈ [[σ(α)]]I iff (ν, ω) ∈ [[α]]σ
∗
νI

3.2 Soundness

The uniform substitution lemmas are the key insights for the soundness of US.
US is only applicable if the uniform substitution is defined (does not clash).

Theorem 1 (Soundness of uniform substitution). US is sound and so is
its special case US1. That is, if their premise is valid, then so is their conclusion.

4 Differential Dynamic Logic Axioms

Proof rules and axioms for a Hilbert-type axiomatization of dL from prior work
[6] are shown in Fig. 2, except that, thanks to rule US, axioms and rules now
comprise the finite list of dL formulas in Fig. 2 as opposed to an infinite collection
of axioms from a finite list of axiom schemata along with schema variables, side
conditions, and implicit instantiation rules. Soundness of the axioms in Fig. 2
follows from the soundness of corresponding axiom schemata [6], but would be
easier to prove standalone, because it is a finite list of formulas without the need
to prove soundness for all their instantiations. The rules in Fig. 2 are axiomatic
rules, i.e. pairs of concrete formulas instantiated by US. Further, x̄ is the vector
of all relevant variables, which is finite-dimensional, or, in practice, considered as
a built-in vectorial term. Proofs in the uniform substitution dL calculus use US
(and bound renaming such as ∀x p(x) ↔ ∀y p(y)) to instantiate the axioms from
Fig. 2 to the required form. CT,CQ,CE are congruence rules, which are included
for efficiency to use axioms in any context even if not needed for completeness.

Real Quantifiers. Besides (decidable) real arithmetic (whose use is denoted R),
complete axioms for first-order logic can be adopted to express universal instan-
tiation ∀i, distributivity ∀ →, and vacuous quantification V∀.

(∀i) (∀x p(x)) → p(f)
(∀→) ∀x (p(x) → q(x)) → (∀x p(x) → ∀x q(x))
(V∀) p → ∀x p

478 A. Platzer

Fig. 2. Differential dynamic logic axioms and proof rules

The Significance of Clashes. US clashes for substitutions that introduce a free
variable into a bound context. Even an occurrence of p(x) in a context where x
is bound does not allow mentioning x in the replacement except in the · places:

US can directly handle even nontrivial binding structures, though, e.g. from [:=]
with the substitution σ = {f �→ x2, p(·) �→ [(z := · + z)∗; z := · + yz]y ≥ ·}:

us
[x := f]p(x) ↔ p(f)

[x := x2][(z := x+z)∗; z := x+yz]y≥x ↔ [(z := x2+z)∗; z := x2+yz]y≥x2

5 Differential Equations and Differential Axioms

Section 4 leverages the first-order features of dL and US to obtain a finite list
of axioms without side-conditions. They lack axioms for differential equations,
though. Classical calculi for dL have axioms for replacing differential equations
with a quantifier for time t ≥ 0 and an assignment for their solutions x̄(t) [4,6].
Besides being limited to simple differential equations, such axioms have the
inherent side-condition “if x̄(t) is a solution of the differential equation x′ = θ
with symbolic initial value x”. Such a side-condition is more difficult than occur-
rence and read/write conditions, but equally soundness-critical. This section
leverages US and the new differential forms in dL to obtain a logically inter-
nalized version of differential invariants and related proof rules for differential
equations [5,7] as axioms (without schema variables and free of side-conditions).
These axioms can prove properties of more general “unsolvable” differential equa-
tions. They can also prove all properties of differential equations that can be
proved with solutions [7] while guaranteeing correctness of the solution as part
of the proof.

A Uniform Substitution Calculus for Differential Dynamic Logic 479

5.1 Differentials: Invariants, Cuts, Effects, and Ghosts

Figure 3 shows axioms for proving properties of differential equations (DW–DS)
as well as axioms for differential substitutions ([′:=]), and differential axioms
for differentials (+′, ·′, ◦′). Axioms identifying (x)′ = x′ for variables x ∈ V and
(f)′ = 0 for functions f and number literals of arity 0 are used implicitly. Some
axioms use reverse implications (φ ← ψ) ≡ (ψ → φ) for emphasis.

Fig. 3. Differential equation axioms and differential axioms

Differential weakening axiom DW internalizes that differential equations can
never leave their evolution domain q(x). DW implies3 [x′ = f(x) & q(x)]p(x) ↔
[x′ = f(x) & q(x)](q(x) → p(x)) also called DW, whose (right) assumption is best
proved by G. The differential cut axiom DC is a cut for differential equations. It
internalizes that differential equations staying in r(x) stay in p(x) iff p(x) always
holds after the differential equation that is restricted to the smaller evolution
domain & q(x) ∧ r(x). DC is a differential variant of modal modus ponens K.

Differential effect axiom DE internalizes that the effect on differential symbols
along a differential equation is a differential assignment assigning the right-hand
side f(x) to the left-hand side x′. Axiom DI internalizes differential invariants, i.e.
that a differential equation stays in p(x) if it starts in p(x) and if its differential
(p(x))′ always holds after the differential equation x′ = f(x) & q(x). The differen-
tial equation also vacuously stays in p(x) if it starts outside q(x), since it is stuck
then. The (right) assumption of DI is best proved by DE to select the appropriate
vector field x′ = f(x) for the differential (p(x))′ and a subsequent DW,G to make
the evolution domain constraint q(x) available as an assumption. For simplicity,
this paper focuses on atomic postconditions for which (θ ≥ η)′ ≡ (θ > η)′ ≡
(θ)′ ≥ (η)′ and (θ = η)′ ≡ (θ �= η)′ ≡ (θ)′ = (η)′, etc. Axiom DG internal-
izes differential ghosts, i.e. that additional differential equations can be added if
3 [x′ = f(x) & q(x)](q(x) → p(x)) → [x′ = f(x) & q(x)]p(x) derives by K from DW.

The converse [x′ = f(x) & q(x)]p(x) → [x′ = f(x) & q(x)](q(x) → p(x)) derives by K
since G derives [x′ = f(x) & q(x)]

(
p(x) → (q(x) → p(x))

)
.

480 A. Platzer

their solution exists long enough. Axiom DS solves differential equations with the
help of DG,DC. Vectorial generalizations to systems of differential equations are
possible for the axioms in Fig. 3.

The following proof proves a property of a differential equation using differ-
ential invariants without having to solve that differential equation. One use of
US is shown explicitly, other uses of US are similar for DI,DE,[′ :=] instances.

Previous calculi [5,7] collapse this proof into a single proof step with complicated
built-in operator implementations that silently perform the same reasoning in an
opaque way. The approach presented here combines separate axioms to achieve
the same effect in a modular way, because they have individual responsibilities
internalizing separate logical reasoning principles in differential-form dL.

5.2 Differential Substitution Lemmas

The key insight for the soundness of DI is that the analytic time-derivative of
the value of a term η along a differential equation x′ = θ &ψ agrees with the
values of its differential (η)′ along the vector field of that differential equation.

Lemma 8 (Differential lemma). If I, ϕ |= x′ = θ ∧ ψ holds for some flow
ϕ : [0, r] → S of any duration r > 0, then for all 0 ≤ ζ ≤ r:

[[(η)′]]Iϕ(ζ) =
d[[η]]Iϕ(t)

dt
(ζ)

The key insight for the soundness of differential effects DE is that differential
assignments mimicking the differential equation are vacuous along that differ-
ential equation. The differential substitution resulting from a subsequent use of
[′:=] is crucial to relay the values of the time-derivatives of the state variables
x along a differential equation by way of their corresponding differential symbol
x′. In combination, this makes it possible to soundly substitute the right-hand
side of a differential equation for its left-hand side in a proof.

Lemma 9 (Differential assignment). If I, ϕ |= x′ = θ ∧ ψ holds for some
flow ϕ : [0, r] → S of any duration r ≥ 0, then

I, ϕ |= φ ↔ [x′ := θ]φ

The final insights for differential invariant reasoning for differential equations
are syntactic ways of computing differentials, which can be internalized as axioms
(+′, ·′, ◦′), since differentials are syntactically represented in differential-form dL.

A Uniform Substitution Calculus for Differential Dynamic Logic 481

Lemma 10 (Derivations). The following equations of differentials are valid:

(f)′ = 0 for arity 0 functions/numbers f (1)
(x)′ = x′ for variables x ∈ V (2)

(θ + η)′ = (θ)′ + (η)′ (3)
(θ · η)′ = (θ)′ · η + θ · (η)′ (4)

[y := θ] [y′ := 1]
(
(f(θ))′ = (f(y))′ · (θ)′) for y, y′ �∈ θ (5)

5.3 Soundness

Theorem 2 (Soundness). The dL axioms and proof rules in Figs. 2 and 3 are
sound, i.e. the axioms are valid formulas and the conclusion of a rule is valid if
its premises are. All US instances of the proof rules (with FV(σ) = ∅) are sound.

6 Conclusions

With differential forms for local reasoning about differential equations, uniform
substitutions lead to a simple and modular proof calculus for differential dynamic
logic that is entirely based on axioms and axiomatic rules, instead of soundness-
critical schema variables with side-conditions in axiom schemata. The US calcu-
lus is straightforward to implement and enables flexible reasoning with axioms by
contextual equivalence. Efficiency can be regained by tactics that combine mul-
tiple axioms and rebalance the proof to obtain short proof search branches. Con-
textual equivalence rewriting for implications is possible when adding monotone
quantifiers C whose substitution instances limit to positive polarity.

Acknowledgment. I thank the anonymous reviewers for their helpful feedback.

References

1. Church, A.: A formulation of the simple theory of types. J. Symb. Log. 5(2), 56–68
(1940)

2. Church, A.: Introduction to Mathematical Logic, vol. I. Princeton University Press,
Princeton (1956)

3. Henkin, L.: Banishing the rule of substitution for functional variables. J. Symb. Log.
18(3), 201–208 (1953)

4. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reas. 41(2),
143–189 (2008)

5. Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs.
J. Log. Comput. 20(1), 309–352 (2010)

6. Platzer, A.: The complete proof theory of hybrid systems. In: LICS, pp. 541–550.
IEEE (2012)

7. Platzer, A.: The structure of differential invariants and differential cut elimination.
Log. Meth. Comput. Sci. 8(4), 1–38 (2012)

8. Platzer, A.: Differential game logic. CoRR abs/1408.1980 (2014)
9. Platzer, A.: A uniform substitution calculus for differential dynamic logic. CoRR

abs/1503.01981 (2015)

	A Uniform Substitution Calculus for Differential Dynamic Logic
	1 Introduction
	2 Differential-Form Differential Dynamic Logic
	2.1 Syntax
	2.2 Dynamic Semantics
	2.3 Static Semantics
	2.4 Correctness of Static Semantics

	3 Uniform Substitutions
	3.1 Correctness of Uniform Substitutions
	3.2 Soundness

	4 Differential Dynamic Logic Axioms
	5 Differential Equations and Differential Axioms
	5.1 Differentials: Invariants, Cuts, Effects, and Ghosts
	5.2 Differential Substitution Lemmas
	5.3 Soundness

	6 Conclusions
	References

