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Abstract. Modern first-order resolution and superposition theorem
provers use saturation algorithms to search for a refutation in clauses
derivable from the input clauses. On hard problems, this search space
often grows rapidly and performance degrades especially fast when long
and heavy clauses are generated. One approach that has proved success-
ful in taming the search space is splitting where clauses are split into
components with disjoint variables and the components are asserted in
turn. This reduces the length and weight of clauses in the search space
at the cost of keeping track of splitting decisions.

This paper considers the new AVATAR (Advanced Vampire Architec-
ture for Theories And Resolution) approach to splitting which places a
SAT (or SMT) solver at the centre of the theorem prover and uses it to
direct the exploration of the search space. Using such an approach also
allows the propositional part of the search space to be dealt with outside
of the first-order prover.

AVATAR has proved very successful, especially for problems coming
from applications such as program verification and program analysis as
these commonly contain clauses suitable for splitting. However, AVATAR
is still a new idea and there is much left to understand. This paper
presents an in-depth exploration of this new architecture, introducing
new, highly experimental, options that allow us to vary the operation
and interaction of the various components. It then extensively evaluates
these new options, using the TPTP library, to gain an insight into which
of these options are essential and how AVATAR can be optimally applied.

1 Introduction

AVATAR [9] is a new architecture for first-order resolution and superposition
theorem provers that places a SAT (or SMT) solver at the centre of the the-
orem prover to direct exploration of the search space. Certain options control
this exploration and this paper describes these options in detail and extensively
evaluates how they impact proof-search with the aim of highlighting those para-
meters that lead to (a) more problems being solved, and (b) problems being
solved more efficiently.

Modern first-order resolution and superposition provers use saturation algo-
rithms, i.e., they attempt to construct a saturated set of all clauses derivable
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from an initial set. A common issue is a rapidly growing search space containing
multi-literal and heavy clauses. A multi-literal clause is one with many literals
and a heavy clause is one with many symbol occurrences. Processing such clauses
is expensive and typically leads to less of the search space being explored in a
given time.

One solution is to throw away such clauses that will probably not be used
within the time-limit [6]; however, this destroys completeness as we can no longer
saturate the set. Another approach is splitting. The idea behind splitting is to
take a search space S ∪ {C1 ∨ C2} and split it into S ∪ {C1} and S ∪ {C2},
for variable-disjoint C1 and C2. The benefit is that in each search space the
potentially long and heavy clause C1 ∨ C2 is replaced by one of the shorter and
lighter clauses C1 or C2. Each search space can be saturated separately. If a
refutation is found in both then the original search space is unsatisfiable, but if
one is saturated without a refutation then the original search space is satisfiable.

To perform splitting it is necessary to make splitting decisions, i.e. assert one
component of a clause, and potentially backtrack these decisions. Different split-
ting approaches have been considered in the past. In splitting with backtracking
(as seen in SPASS [10]) this is done via a (conceptual) splitting tree where a
splitting decision is made and we explore one half of the search space and then
backtrack (undo the decision) before exploring the second half. In splitting with-
out backtracking [4], when splitting a clause C1 ∨ . . . ∨ Cn each component Ci

is named by a fresh propositional variable pi and the whole clause is split into
clauses (C1 ∨¬p1), . . . , (Cn−1 ∨¬pn−1) and (Cn ∨p1 ∨ . . .∨pn−1). This approach
is admittedly easier to implement than splitting with backtracking, but the pres-
ence of propositional variables sometimes prevents the prover from performing
reductions, which may lead to weaker performance [3].

The AVATAR architecture uses a SAT solver to make splitting decisions. As
explained later, the SAT solver is passed information about new clauses and pro-
duces a model representing valid branches of the (conceptual) splitting tree. The
first-order prover can then assert these components and attempts to find a con-
tradiction, which is then passed back to the SAT solver to prune the search space.

AVATAR proved highly successful in previous work evaluating it against
alternative splitting mechanisms [3]. Introducing the architecture helped to solve
421 problems previously unsolvable by Vampire [5] or any other prover. How-
ever, its full power, and the best way to use it, is not yet fully understood.
Certain architectural choices were based on (informed) intuition and not eval-
uated experimentally; the aim of this paper is to understand these choices and
use this understanding to improve AVATAR.

The paper begins with a description of AVATAR’s implementation in Vam-
pire (Sects. 2 to 4). It then introduces and explains new variations to the
AVATAR architecture (Sect. 5) that will allow us to better understand the inter-
action between different parts of the architecture. These variations themselves
represent a contribution to the understanding of how AVATAR can be organised.

We finish by presenting an extensive evaluation of these architectural varia-
tions (Sect. 6). It is clear that some variations are more useful than others and
we discuss the likely cause of these results. This evaluation also considers how
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our improved understanding of the AVATAR architecture can be used to con-
struct complementary strategies to solve as many problems as possible with as
few strategies. We finish having learned much about this new, highly experimen-
tal architecture, but also with a number of further questions that will shape the
continued improvement of this approach.

2 AVATAR by Example

Whilst the theory of AVATAR was established in [9], and is reviewed later in
this paper, the authors feel that the key ideas behind the approach are best
demonstrated via an example.

The general architecture of AVATAR consists of a first-order (FO) prover and
a SAT solver. The FO prover stores a set of first-order clauses, performs first-
order reasoning using a saturation algorithm and passes some clauses to the SAT
solver. The SAT solver keeps a set of propositional clauses and produces a model
(or an unsat answer) on request from the FO prover.

For our example we consider the following input clauses:

q(b) p(x) ∨ r(x, z) ¬q(x) ∨ ¬s(x) ¬p(x) ∨ ¬q(y) s(z) ∨ ¬r(x, z) ∨ ¬q(w)

We check which of these clauses can be split into components, i.e. sub-clauses
with pairwise disjoint sets of variables. The first three clauses cannot be split
and are added directly to the FO prover. The last two clauses can be split
into components. Each component is given a unique propositional name. To
do this naming in a consistent way we use a component index, as seen below.
This, for example, ensures that ¬q(y) and ¬q(w) are associated with the same
propositional symbol. This results in two propositional split clauses representing
the first-order clauses.

The theory of splitting tells us we can assert one component and then the
other after we find a refutation with the first. We are going to use the SAT
solver to make splitting decisions so we pass the representations of the splittable
clauses to the SAT solver, but do not yet add any of their respective components
to the FO prover.

The state of the FO prover and the SAT solver are shown below, where we
write C ← A to indicate that clause C depends on a (possibly empty) set of
assertions (splitting decisions) A:

The FO prover now requests a model. The SAT solver can assign all variables
to true, but let us assume the model is minimized into a partial model in which
only 2 is true and the values of the remaining variables are undefined. Notice
that both split clauses in the SAT solver are satisfied by any total extension of
this partial model.
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Based on the model we assert ¬q(y), the component corresponding to 2.
When adding ¬q(y) the FO prover performs a reduction and ¬q(x) ∨ ¬s(x) is
subsumed. However, this subsumption is conditional on the assertion 2.

The FO prover then performs resolution between q(b) and ¬q(y) ← {2} to
get the clause ⊥ ← {2}. A corresponding contradiction clause 2 → ⊥ = ¬2 is
then added to the SAT solver and a new model is computed. This time the ¬2
condition forces the SAT solver to construct a model containing 0, 4 and ¬2.
As the assertion under which ¬q(x) ∨ ¬s(x) was reduced no longer holds, the
deletion of this clause is now undone.

The FO prover then performs resolution between s(z) ∨ ¬r(x, z) ← {4} and
p(x) ∨ r(x, z) to produce s(z) ∨ p(x) ← {4}, which is then immediately (con-
ditionally) replaced by s(z) ← {0, 4} after performing subsumption resolution
with ¬p(x) ← {0}. This new clause replaces s(z) ∨ ¬r(x, z) ← {4} conditioned
on the assertion 0. Finally, the FO prover performs a resolution step between
s(z) ← {0, 4} and ¬q(x) ∨ ¬s(x) to get ¬q(x) ← {0, 4}.

As ¬q(x) is a known component (up to variable renaming), we can add
0 ∧ 4 → 2 to the SAT solver as the clause ¬0 ∨ ¬4 ∨ 2. Now the SAT solver
can no longer produce a model and so the input problem is shown unsatisfiable
and the prover terminates.
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3 Proof Attempts in Vampire

In this section we give the relevant background on how proof attempts are carried
out in the automated theorem prover Vampire [5]. The next section will show
how AVATAR-style splitting fits into this process.

Saturation Algorithms. Superposition provers use saturation algorithms with
redundancy elimination. These work with a search space consisting of a set of
clauses and use a collection of generating, simplifying and deleting inferences to
explore this space. The theoretical basis of saturation algorithms is the notion
of redundancy given, e.g., in [1]. Both simplifying and deletion inferences in sat-
uration algorithms are designed in such a way that they only remove redundant
clauses.

All saturation algorithms implemented in Vampire belong to the family of
given clause algorithms, which achieve completeness via a fair clause selection
process that prevents the indefinite skipping of old clauses. These algorithms
typically divide clauses into three sets, unprocessed, passive and active, and follow
a simple saturation loop:

1. Add non-redundant unprocessed clauses to passive. Redundancy is checked
by attempting to forward simplify the new clause using processed clauses.

2. Remove processed clauses made redundant by new clauses i.e. backward sim-
plify existing clauses using the new clauses.

3. Select a given clause from passive, move it to active and perform all gener-
ating inferences between the given clause and all other active clauses, adding
generated clauses to unprocessed.

Vampire implements three saturation algorithms:

1. Otter uses both passive and active clauses for simplifications.
2. Limited Resource Strategy (LRS) [6] extends Otter with a heuristic that

discards clauses that are unlikely to be used with the current resources i.e.
time and memory. This strategy is incomplete but also generally the most
effective at proving unsatisfiability.

3. Discount uses only active clauses for simplifications.

Inferences. The inferences applied by the saturation algorithm are of three
different kinds:

– Generating inferences derive new clauses that can be immediately simplified
and/or deleted by other kinds of inferences. For example, binary resolution
and superposition.

– Simplifying inferences replace one clause by another simpler clause. For exam-
ple, demodulation (rewriting by ordered unit equalities) and subsumption res-
olution (a variant of binary resolution whose conclusion subsumes one of the
premises).

– Deleting inferences delete clauses, typically when they become redundant. For
example, subsumption and tautology deletion.
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CASC Mode. Finally, there is a special competition mode that Vampire can
be run in (using --mode casc) that attempts a sequence of strategies, chosen
based on structural characteristics of the given problem. This is motivated by
two observations, firstly that whilst some strategies perform very well on average
there is no silver bullet that can solve all problems, and secondly that most
solvable problems have a strategy that can solve that problem quickly.

4 Introducing Splitting

As we have previously explained, the search space explored by saturation algo-
rithms can quickly become very large and populated with heavy and long clauses.
The technique of splitting, where each component of a clause is asserted in turn,
can be used to reduce the search space and improve the prover’s performance.
This section shows how AVATAR implements this splitting process – a full tech-
nical description is given in [9].

Fig. 1. The conceptual splitting tree

Splitting the Search Space. The general splitting idea can be illustrated by
a conceptual splitting tree that is explored during the proof attempt. Every
generated clause which can be split is represented by a node and each branch
represents a sequence of splitting decisions. When a branch has been found
inconsistent backtracking occurs and the search moves on to explore a different
branch. It can be informative to consider the splitting performed by AVATAR
in terms of this splitting tree.

Figure 1 illustrates this splitting tree using clauses C1 ∨ . . . ∨ Cn and D1 ∨
. . .∨Dn. This tree grows dynamically as further clauses are added to the search
space. If every branch contains a contradiction then the problem is unsatisfiable.

Attempting to explore this tree explicitly can be expensive for a number of
reasons. Firstly, if clauses share components (i.e. Ci is a variant of Dj) this shar-
ing is not captured by the splitting tree. Secondly, the exploration of the splitting
tree is rigid and is difficult to alter based on newly learned information about the
components involved. And lastly, information discovered on one branch cannot
be easily transferred to a different branch. As we see below, AVATAR implicitly



Playing with AVATAR 405

explores this splitting tree by translating the information about splitting com-
ponents into constraints for a SAT solver and uses the produced model to make
component assertions.

The Architecture. Figure 2 illustrates the AVATAR architecture. There are
three main parts: the first-order (FO) prover, the SAT solver and the Splitting
Interface. The FO prover deals with clauses with assertions of the form D ← A
where D is a first-order clause and A is a finite set of propositional variables
representing asserted components.

The Splitting Interface manages a mapping between first-order components
C and the propositional variable [C] naming that component. The variant index
ensures that two components C1 and C2 are mapped to the same propositional
variable if they are equal up to variable renaming, order of literals, and symmetry
of equality. This mapping also ensures that the negation of a ground component
is translated to the negation of the corresponding propositional variable, i.e.
[¬C] = ¬[C] for every ground component C.1

For each component, the Splitting Interface also maintains a record which
stores:

1. children of the component, i.e., clauses that are derived from the component,
2. clauses that were reduced by a clause depending on this component.

See below for an explanation of these sets of clauses.
Lastly, to avoid asserting previously asserted components, the Splitting Inter-

face keeps track of the current model previously obtained from the SAT solver.
The following sections will explain the communication between the three parts.

Dealing with Assertions in the FO Prover. As we said above, the FO
prover is updated to deal with clauses with assertions. This affects the way that
inferences are carried out in the prover. Firstly, to ensure that assertions are
properly propagated, any generating inference of the form

D1 · · · Dk

D

is replaced by the inference

(D1 ← A1) · · · (Dk ← Ak)
(D ← A1 ∪ . . . ∪ Ak)

and (D ← A1∪. . .∪Ak) is added to the children of each component in A1∪. . .∪Ak

in the component records kept by the Splitting Interface.
Simplifying inferences of the form

1 This useful optimization is not derictly available for non-ground components. Negat-
ing a non-ground component would require skolemization and is not considered in
this paper.
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Fig. 2. The AVATAR architecture

previously meant that D is a logical consequence of D1, . . . , Dm and D makes
Dm redundant. This is replaced by

where A = A1 ∪ . . . ∪ Am, distinguishing the following two cases.

1. If A = Am then (Dm ← Am) can be deleted as all the other clauses are based
on the same or a weaker set of assertions. It should also be deleted from the
children of components in Am.

2. Otherwise, (Dm ← Am) can only be conditionally deleted as there exists a
branch of the splitting tree where the deleted clause is valid but at least one
of the side conditions (Di ← Ai) is not. To conditionally delete a clause we
remove it from the FO prover and add it to the reduced set for each component
in A \ Am.

Exploring the Splitting Tree in AVATAR. When a new splittable clause is
selected for processing, the FO prover passes this clause to the Splitting Interface
instead of attempting to add it to passive. The Splitting Interface then uses
the variant index to translate it into a propositional split clause and pass this
to the SAT solver.

Once unprocessed is empty, the FO prover sends the allProcessed message
to the Splitting Interface, which sends the Solve message to the SAT solver. The
SAT solver then either replies with Unsatisfiable, indicating that all splitting
branches have been explored, or it returns a new model M .

We allow for partial models which we represent by consistent sets of propo-
sitional literals of the form [C] or ¬[C]. We require that at least one literal of
each propositional clause registered by the SAT solver must be satisfied by the
model, but some literals may stay undefined.
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Given a new model M and old model M , the Splitting Interface does the
following:

1. For each [C] ∈ (M \M), remove component C and all of its children from the
FO prover using remove(D ← A). Add any clause D ← A in the component’s
reduce set such that A ⊆ M , using reinsert(D ← A).

2. For each [C] ∈ (M \M), add component C to the FO prover using assert(C ←
[C]) and add each of the component’s children D ← A such that A ⊆ M ,
using reinsert(D ← A).

Removing the children of removed components is necessary as they rely on
assertions that are no longer true. Reinserting a clause that has been reduced
with the help of a removed component retracts the now no longer supported
deletion of the clause. Reinserting the children of a component means that
clauses generated from this component on previous branches are brought into
this branch. In both cases, we only reinsert those clauses that have all their
assertions true in the new model M .

Split clauses introduce new branches into the conceptual splitting tree,
although note that due to the use of the variant index some of these branches
may be shared. To prune the splitting tree we need contradiction clauses. When
the FO prover produces a contradiction with assertions, this contradiction is
passed to the Splitting Interface, which performs the translation into a proposi-
tional contradiction clause and sends this to the SAT solver. This contradiction
forces the model to change. Notice that a contradiction clause can cut off many
branches of the splitting tree.

5 Varying the Architecture

We now consider some of the choices made in the architecture of AVATAR, how
we may change these, and what effects these changes may have.

Adding Components. When providing information about new clauses to the
SAT solver (in the form of component clauses) we need to decide what to do with
nonsplittable clauses, i.e., those that cannot be split into multiple components.
We consider two values for this option (named nonsplittable components):

1. none: do not add any non-splittable component,
2. known: add such a clause if it has previously been introduced as a component.

The example in Sect. 2 uses this second option value when it adds the com-
ponent clause ¬0 ∨ ¬4 ∨ 2 as the clause ¬q(x) is nonsplittable. With the option
set to none, the FO prover would have performed an additional resolution step
to produce the contradiction clause ¬0 ∨ ¬4. By using the known component,
we constrained the split tree explored by the SAT solver and thus avoided per-
forming the additional inference.

Constructing a Model. Previously, we referred to the SAT solver as just a
SAT solver, but different SAT solvers take a different amount of time to con-
struct a model and potentially also construct different models. With the option
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sat solver, we can vary which SAT solver we use. In this paper we consider our
own SAT solver and Minisat (version 2.2) [2] using the default options. As a SAT
solver, Minisat is better than Vampire’s native solver. Our aim was to understand
whether a better SAT solver results in a better overall performance of AVATAR.

Partial Models and Minimization. While models produced by a standard
SAT solver are total, AVATAR may work with partial models in which some
literals are undefined, provided each such model makes true at least one literal
in every clause. Total models may result in adding unnecessary assertions to the
FO prover, for instance, when they set to true multiple literals from a single
split clause. This corresponds to the exploration of multiple splitting branches
at once, an effort which is often wasted as each of the branches usually needs to
be considered separately later on as well.

We can attempt to minimize the total model produced by the SAT solver
by dropping literals that are not needed for satisfying any clause and thus to
restrict the exploration to a single branch. We use a simple greedy procedure for
the minimization, whose result is a partial model, a sub-model of the original
one. Minimization is controlled by the option minimize model. Again, we can
vary how we choose to do this.

1. off: We use the total model.
2. all: We minimize with respect to all clauses.
3. sco: We minimize with respect to split clauses only.

Note that the sco option value is sound, because we always start minimizing
from a total model which satisfies all the clauses.

Asserting Complements. Another factor to consider is the possibility of treat-
ing ground components specially as we are able to assert these negatively to the
FO prover. That is, when the SAT solver sets the value of a ground component
C to false in the model we can assert ¬C ← [¬C] to the FO prover, even if
this is not needed to satisfy any split clause. This is controlled by the option
add complementary. We are prevented from asserting both C and ¬C at the
same time as the mapping from components to propositional variables ensures
that [¬C] = ¬[C] for ground components.

When to do Splitting. Previously we described the splitting process occurring
at clause introduction, i.e., when we attempt to move it into passive. Alterna-
tively we can consider splitting a clause at activation. This is controlled by the
option split at activation. This delays the expense of splitting but also delays
the benefits of additional information being passed to the SAT solver. For exam-
ple, a subset of passive clauses may already be propositionally unsatisfiable, but
we will not discover this until all clauses in this subset become activated.

To Delete or to Deactivate. In the previous presentation, clauses that are
deactivated due to switching the splitting branch are reasserted when they
become valid again. Remembering these clauses may cost us a lot of mem-
ory. Moreover, some of these clauses may never need to be reasserted, if they
depend on a partial branch which will not be visited anymore. With the option
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delete deactivated, we delete these clauses instead and later only reassert the
respective component clause C ← [C], which is sufficient for completeness. The
downside is that we may need to recompute some of these delete clauses if a
particular partial branch is revisited.

Currently even deactivated clauses are removed from the term indexing struc-
tures used for efficient inferences. Providing an option to preserve deactivated
clauses in these structures remains further work, and may prove beneficial as
deleting and inserting clauses into indexing structures can become very costly.

Clearing the Assertions. SAT solvers typically perform DPLL splitting and
may, at some point, derive that a propositional literal must be true in any pos-
sible model. These are called zero-implied literals as their truth value is decided
at the zeroth level. This information can be used to remove the correspond-
ing assertions from clauses in the FO prover as these are redundant. This can
reduce the number of conditional clause deletions as any deletions conditional
only on zero-implied components can be considered unconditional. This option
is controlled by handle zero implied.

Summary. Table 1 describes the Vampire options we consider in this work, i.e.,
those we will vary in experiments later. All other options will be fixed at their
default value. Note that some options are experimental and may not be included
in future releases of Vampire.

Table 1. The Vampire options of interest.

Option Short name Considered values (default)

saturation algorithm sa lrs, discount

sat solver sas vampire, minisat

nonsplittable components ssnc known, none

minimize model smm sco, off, all

add complementary ssac ground, none

split at activation sac off, on

delete deactivated sdd on, off

handle zero implied shzi off, on

6 Experiments

In this section we experimentally evaluate the impact of the different variations
of the AVATAR architecture on the performance of theorem prover Vampire.

Designing Experiments. The aim of these experiments is to evaluate how
effective the different architectural variations are. To do that we need to under-
stand what we mean by effective. The existence of the CASC portfolio mode
is a testament to the fact that there is no best strategy. In fact, the value of a
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strategy is difficult to understand. Some strategies perform very well on average
but cannot solve problems solvable by other strategies. The motivation behind
CASC mode is that a collection of strategies, each of which may be bad on
average, can easily outperform a collection of strategies, each of which is good
on average. However, within a collection of strategies we need those that can
solve many problems as time limits do not usually allow for running too many
strategies. Therefore, the aim of these experiments is to identify those options
that allow us to solve previously unsolved problems as well as those options that
help us solve the most problems.

Experimental Setup. For our benchmarks we use TPTP [7] problems contain-
ing non-unit clauses with a rating of 0.5 or higher. The TPTP rating [8] is the
percentage of (eligible) provers that cannot solve a problem, thus, for example,
a rating of 0.5 means that half of (eligible) provers can solve the problem and
a rating of 1 means that the problem cannot be solved by any of these provers.
However, the rating evaluation does not use every mode of each prover, so it
is possible that a prover used to generate ratings can solve a problem of rating
1 using a different mode. We only include problems in our experiment that we
know are solvable by some prover, e.g., Vampire. This led to the selection of
3823 problems.2

For the experiments, we took all combinations of options discussed in Sect. 5.
This cartesian product (cube) gives us 384 strategies and represents almost 1.5
million experiments in total. We ran experiments with a time limit of 10 seconds3,
meaning that our results reasonably reflect the utility of the strategy when placed
within a cocktail of other strategies. We used the default values for all options
not explicitly stated.

Experiments were run on the StarExec4 cluster, using 160 nodes. The nodes
used contain a Intel Xeon 2.4 GHz processor. Experiments used Vampire’s
default memory limit of 3 GB; this memory limit was only reached in rare cases
(<0.05 %).

Time Spent in the SAT Solver. The experiments show that time spent in
the SAT solver does not generally dominate. On average, 9.6 % of the time was
spent in the SAT solver. In 8.8 % of the experiments, calls to the SAT solver
took more than 50 % of the time and in 0.5 % of the experiments calls to the
SAT solver took more than 90 % of the time5.

Best and Worst Strategies. In total, 1444 problems (38 % of all problems)
were solved by at least one of the considered strategies, of these 328 were of rating
0.8 or higher. Table 2 shows the performance of the worst and best strategy with
respect to the number of solved problems and the values of options that define
them. We can see that the best strategy only solves 1103 problems which amounts

2 A list of the selected problems, the executable of our prover as well as the results of
the experiment are available from http://vprover.org.

3 Note that previous experiments [3] used longer time limits.
4 https://www.starexec.org.
5 Only runs which took at least one second to complete are considered here.

http://vprover.org
https://www.starexec.org
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Table 2. Best and worst strategies with respect to the number of problems solved,
option values that define them, the number of problems solved by the 10 % worst and
best strategies in union, respectively, and the respective proportional representation of
the option values in these strategies.

worst worst 10 % best best 10 %

problems solved 796 1149 1103 1223

saturation algorithm lrs 61 % discount 100 %

sat solver vampire 100 % minisat 63 %

nonsplittable components none 79 % known 47 %

minimize model off 63 % all 42 %

add complementary ground 53 % ground 100 %

split at activation off 100 % on 100 %

delete deactivated off 55 % on 53 %

handle zero implied on 50 % off 50 %

to about 76 % of all the problems solved. The table also shows the performance
of two meta-strategies, one consisting of the union of the 10 % worst and the
other of the 10 % best strategies, and, in the lower part, the percentage of the
10 % worst and best strategies which use the same value for a particular option
as the ultimate worst and best strategy, respectively.6

Perhaps the most surprising observation is that lrs does not appear at all
amongst the 10 % of the best strategies. We suspect that LRS, which was not
adapted to AVATAR, misinterprets the remaining amount of resources available
for proving, because it does not take into account the part of the split tree that
still needs to explored. Attempting to confirm this hypothesis is one possible
direction for future work.

Another interesting fact is that both the worst and the best strategy employ
the value ground for the add complementary option. This option value is def-
initely useful (all the best strategies use it), but may have some shortcomings,
because it is also used by the majority of the worst strategies.

When interpreting the results for minimize model, one should keep in mind
that this option has three possible values and so the result of 42 % for all with
the best strategies is significant. On the other hand, Table 2 indicates that the
effect of delete deactivated and, especially, of handle zero implied is close
to random.

Importance of Particular Options. To better determine the importance of
individual options, we put the number of problems solved with a particular
value of an option into Table 3. On a per option basis, the table also shows (in
parenthesis) the number of problems solved only by a strategy using a particular
6 A different statistic, not shown in the table, is the performance of strategies at the

10 % mark from each end of the sorted order (quantiles), which were 865 and 1072,
respectively.
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Table 3. Number of problems (uniquely) solved with a particular option value.

value of the option and not by any strategy using any of the other values. This
means the value is necessary for solving these problems.

An option is important if it has at least two values each necessary for solving
many problems. This perspective implies that saturation algorithm is the
most important option in our experiment and split at activation the most
important one for AVATAR per se. When focusing on individual values, we
can see that minisat helps to solve more problems than vampire, that the
value ground should be preferred over none for add complementary, and that it
perhaps does not pay off to keep the value sco for minimize model.

Conditional Projections. Having collected the data for all the possible com-
binations of option values one can also ask questions such as what would Table 3
look like if we focused only on strategies where a particular option is fixed to a
certain value. This allows us to distinguish generally good values of options from
those that are only good under certain conditions.

For example, we observed that while with discount we could solve 39 more
problems when split at activation was turned on, this did not happen for
lrs, where we could solve 1208 problems with split at activation off, but
only 1202 problems with the option on. This is most like related to the fact that
LRS uses clauses in passive for simplifications and therefore benefits from these
clauses being already split.

Also, both the lrs and the vampire perspective significantly favour the value
known over none for nonsplittable components, while in Table 3 these two
values seem to behave similarly. In the former conditional projection, none solves
only 1242 while known 1266, in the latter, none solves 1333 and known 1347. This
phenomenon seems to be quite difficult to explain and should be further explored.
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Table 4. Sequence of strategies to greedily cover all solved problems. For space reasons,
short names are used for options (see Table 1).

1 2 3 4 5

Contribution 1103 114 45 31 21

Solves 1103 943 905 948 1081

Nominal order 1 155 283 141 23

sa discount lrs discount lrs discount

sas minisat minisat vampire minisat vampire

ssnc known known known known none

smm all sco sco off sco

ssac ground none ground ground ground

sac on off off on on

sdd on off on off on

shzi off on off on on

Greedy Problem Coverage. Next we consider how the strategies could be
greedily ordered to cover all problems solved, i.e., we attempt to produce a
(greedy) CASC portfolio mode. We require 61 strategies in total to cover all prob-
lems, with the last 32 strategies only contributing one additional problem each.

Table 4 gives the first five strategies in this greedily produced portfolio
sequence along with the number of problems each strategy contributes to the
portfolio, how many problems that strategy normally solves, and the nominal
order in all strategies (with respect to number of problems solved).

We first note that we require both strategies that are good on average and
also those that solve problems uniquely. In the sequence of strategies, 72 % come
from the bottom half of strategies in terms of number of problems solved. It is
also interesting to note that some option values, such as sco for minimize model,
that were previously seen to contribute little, are needed here.

Further Lessons Learned. One of the interesting lessons learned with these
experiments is that the choice of a SAT solver significantly influences the per-
formance of a strategy. This suggests that the queries passed to the SAT solver
are by no means easy (as we originally assumed) and that on many problems
the solver takes over a considerable part of the required reasoning.

Moreover, efficiently dealing with the incremental nature of the presented
queries becomes a relevant factor in AVATAR. When restricting solution times
to a maximum of 1 second, vampire became the solver of choice for the best strat-
egy with respect number of solved problems. The vampire solver was designed
with the AVATAR application in mind, and therefore deals well with the incre-
mental usage required. However, as it is not as highly tuned as minisat, its
performance tails off quickly as the size of the problem increases. This may
explain the observed behaviour.
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Another aspect influenced by the choice of a SAT solver is the inherent
“quality” (from the perspective of AVATAR) of the models it produces. It is
clear that the produced model affect how the splitting tree is explored, but
not yet clear why one solver may produce ‘better’ models in general. Further
investigations will consider the SAT solver options themselves and how varying
these affects the models produced.

7 Conclusion

AVATAR is a new and highly successful architecture. While previously used sat-
uration algorithms, their variations and options have been studied for decades,
almost nothing is known about options that can improve AVATAR even fur-
ther. Likewise, almost nothing is known about the behaviour of various existing
options in presence of AVATAR. This is the first paper that both introduces
AVATAR specific options and investigates their behaviour. We believe this is
the first in many studies by us, and others, exploring this novel architecture.

The usage of a SAT solver to perform splitting operations is a novel idea,
which has the potential to change how modern first-order theorem provers
explore the clause search space. The architectural variations explored in this
paper help us better understand the optimal configuration for this new form of
splitting.

We found that the importance of the individual options for solving addi-
tional problems varies, and while the important ones should be kept and fur-
ther explored, removing the ones that seem to have negligible influence on the
performance of AVATAR could simplify the implementation and improve its
maintainability.

We also discovered that the efficiency of the SAT solver is very important
for the overall performance of AVATAR. This is not only in terms of proving
time, but also their ability to handle incrementality. We observed cases where
performance suffered as a result of insufficient support for incremental usage; this
suggests that improving SAT solvers in this respect can improve AVATAR. We
have also identified new questions to be answered, for example how the model
produced by the SAT solver interacts with the exploration of the splitting tree.

An additional discovery is that the limited resource strategy, thought to be
the best strategy within Vampire for showing unsatisfiability, does not interact
well with the way in which AVATAR explores the clause space. This suggests
that further investigation is required to establish how best to adapt the LRS
approach to AVATAR.

Whilst the results from the current architecture are impressive, there is more
that can be squeezed from this idea. One major area of interest is replacing the
SAT solver with an SMT solver, allowing it reason on the theory level.
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