
CTL Model Checking in Deduction Modulo

Kailiang Ji(B)

INRIA and Paris Diderot, 23 Avenue d’Italie, CS 81321,
75214 Paris Cedex 13, France

kailiang.ji@inria.fr

Abstract. In this paper we give an overview of proof-search method for
CTL model checking based on Deduction Modulo. Deduction Modulo is
a reformulation of Predicate Logic where some axioms—possibly all—are
replaced by rewrite rules. The focus of this paper is to give an encod-
ing of temporal properties expressed in CTL, by translating the logical
equivalence between temporal operators into rewrite rules. This way, the
proof-search algorithms designed for Deduction Modulo, such as Reso-
lution Modulo or Tableaux Modulo, can be used in verifying temporal
properties of finite transition systems. An experimental evaluation using
Resolution Modulo is presented.

Keywords: Model checking · Deduction modulo · Resolution modulo

1 Introduction

In this paper, we express Computation Tree Logic (CTL) [4] for a given
finite transition system in Deduction Modulo [6,7]. This way, the proof-search
algorithms designed for Deduction Modulo, such as Resolution Modulo [2] or
Tableaux Modulo [5], can be used to build proofs in CTL. Deduction Mod-
ulo is a reformulation of Predicate Logic where some axioms—possibly all—are
replaced by rewrite rules. For example, the axiom P ⇔ (Q ∨ R) can be replaced
by the rewrite rule P ↪→ (Q ∨ R), meaning that during the proof, P can be
replaced by Q ∨ R at any time.

The idea of translating CTL to another framework, for instance (quantified)
boolean formulae [1,14,16], higher-order logic [12], etc., is not new. But using
rewrite rules permits to avoid the explosion of the size of formulae during trans-
lation, because rewrite rules can be used on demand to unfold defined symbols.
So, one of the advantages of this method is that it can express complicated ver-
ification problems succinctly. Gilles Dowek and Ying Jiang had given a way to
build an axiomatic theory for a given finite model [9]. In this theory, the formulae
are provable if and only if they are valid in the model. In [8], they gave a slight
extension of CTL, named SCTL, where the predicates may have arbitrary ari-
ties. And they defined a special sequent calculus to write proofs in SCTL. This

K. Ji — This work is supported by the ANR-NSFC project LOCALI (NSFC
61161130530 and ANR 11 IS02 002 01).

c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 295–310, 2015.
DOI: 10.1007/978-3-319-21401-6 20

296 K. Ji

sequent calculus is special because it is tailored to each specific finite model M .
In this way, a formula is provable in this sequent calculus if and only if it is valid
in the model M . In our method, we characterize a finite model in the same way
as [9], but instead of building a deduction system, the CTL formulae are taken as
terms, and the logical equivalence between different CTL formulae are expressed
by rewrite rules. This way, the existing automated theorem modulo provers,
for instance iProver Modulo [3], can be used to do model checking directly. The
experimental evaluation shows that the resolution based proof-search algorithms
is feasible, and sometimes performs better than the existing solving techniques.

The rest of this paper is organized as follows. In Sect. 2 a new variant of
Deduction Modulo for one-sided sequents is presented. In Sect. 3, the usual
semantics of CTL is presented. Sections 4 and 5 present the new results of this
paper: in Sect. 4, an alternative semantics for CTL on finite structures is given;
in Sect. 5, the rewrite rules for each CTL operator are given and the soundness
and completeness of this presentation of CTL is proved, using the semantics
presented in the previous section. Finally in Sect. 6, experimental evaluation for
the feasibility of rewrite rules using resolution modulo is presented.

2 Deduction Modulo

One-Sided Sequents. In this work, instead of using usual sequents of the
form A1, . . . , An � B1, . . . , Bp, we use one-sided sequents [13], where all the
propositions are put on the right hand side of the sequent sign � and the sequent
above is transformed into � ¬A1, . . . ,¬An, B1, . . . , Bp. Moreover, implication
is defined from disjunction and negation (A ⇒ B is just an abbreviation for
¬A ∨ B), and negation is pushed inside the propositions using De Morgan’s
laws. For each atomic proposition P we also have a dual atomic proposition P⊥

corresponding to its negation, and the operator ⊥ extends to all the propositions.
So that the axiom rule can be formulated as

axiom, if P and Q are dual atomic propositions� P,Q

Deduction Modulo. A rewrite system is a set R of term and proposition
rewrite rules. In this paper, only proposition rewrite rules are considered. A
proposition rewrite rule is a pair of propositions l ↪→ r, in which l is an atomic
proposition and r an arbitrary proposition. For instance, P ↪→ Q ∨ R. Such
a system defines a congruence ↪→ and the relation

∗
↪→ is defined, as usual, as

the reflexive-transitive closure of ↪→. Deduction Modulo [7] is an extension of
first-order logic where axioms are replaced by rewrite rules and in a proof, a
proposition can be reduced at any time. This possibility is taken into account
in the formulation of Sequent Calculus Modulo in Fig. 1. For example, with the
axiom (Q ⇒ R) ⇒ P we can prove the sequent R � P . This axiom is replaced
by the rules P ↪→ Q⊥ and P ↪→ R and the sequent R � P is expressed as the
one-sided sequent � R⊥, P . This sequent has the proof

axiom� R⊥, P

as P
∗

↪→ R.

CTL Model Checking in Deduction Modulo 297

Fig. 1. One-sided Sequent Calculus Modulo

Note that as our system is negation free, all occurrences of atomic proposi-
tions are positive. Thus, the rule P ↪→ A does not correspond to an equivalence
P ⇔ A but to an implication A ⇒ P . In other words, our one-sided presentation
of Deduction Modulo is closer to Polarized Deduction Modulo [6] with positive
rules only, than to the usual Deduction Modulo. The sequent �R Δ has a cut-free
proof is represented as �cf

R Δ has a proof.

3 Computation Tree Logic

Properties of a transition system can be specified by temporal logic propositions.
Computation tree logic is a propositional branching-time temporal logic intro-
duced by Emerson and Clarke [4] for finite state systems. Let AP be a set of
atomic propositions and p ranges over AP . The set of CTL propositions Φ over
AP is defined as follows:

Φ ::= p | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | AXΦ | EXΦ | AFΦ | EFΦ | AGΦ | EGΦ
| A[ΦUΦ] | E[ΦUΦ] | A[ΦRΦ] | E[ΦRΦ]

The semantics of CTL can be given using Kripke structure, which is used in
model checking to represent the behavior of a system.

Definition 1 (Kripke Structure). Let AP be a set of atomic propositions.
A Kripke structure M over AP is a three tuple M = (S, next, L) where

– S is a finite (non-empty) set of states.
– next : S → P+(S) is a function that gives each state a (non-empty) set of

successors.
– L : S → P(AP) is a function that labels each state with a subset of AP .

An infinite path is an infinite sequence of states π = π0π1 · · · s.t. ∀i ≥ 0,
πi+1 ∈ next(πi). Note that the sequence πiπi+1 · · · πj is denoted as πj

i and the
path π with π0 = s is denoted as π(s).

298 K. Ji

Definition 2 (Semantics of CTL). Let p be an atomic proposition. Let ϕ,
ϕ1, ϕ2 be CTL propositions. The relation M, s |= ϕ is defined as follows.

M, s |= p ⇔ p ∈ L(s)
M, s |= ¬ϕ1 ⇔ M, s |�= ϕ1

M, s |= ϕ1 ∧ ϕ2 ⇔ M, s |= ϕ1 and M, s |= ϕ2

M, s |= ϕ1 ∨ ϕ2 ⇔ M, s |= ϕ1 or M, s |= ϕ2

M, s |= AXϕ1 ⇔ ∀s′ ∈ next(s), M, s′ |= ϕ1

M, s |= EXϕ1 ⇔ ∃s′ ∈ next(s), M, s′ |= ϕ1

M, s |= AGϕ1 ⇔ ∀π(s), ∀i ≥ 0, M, πi |= ϕ1

M, s |= EGϕ1 ⇔ ∃π(s) s.t. ∀i ≥ 0, M, πi |= ϕ1

M, s |= AFϕ1 ⇔ ∀π(s), ∃i ≥ 0 s.t. M, πi |= ϕ1

M, s |= EFϕ1 ⇔ ∃π(s), ∃i ≥ 0 s.t. M, πi |= ϕ1

M, s |= A[ϕ1Uϕ2] ⇔ ∀π(s), ∃j ≥ 0 s.t. M, πj |= ϕ2 and ∀0 ≤ i < j, M, πi |= ϕ1

M, s |= E[ϕ1Uϕ2] ⇔ ∃π(s), ∃j ≥ 0 s.t. M, πj |= ϕ2 and ∀0 ≤ i < j, M, πi |= ϕ1

M, s |= A[ϕ1Rϕ2] ⇔ ∀π(s), ∀j ≥ 0, either M, πj |= ϕ2 or ∃0 ≤ i < j s.t. M, πi |= ϕ1

M, s |= E[ϕ1Rϕ2] ⇔ ∃π(s), ∀j ≥ 0, either M, πj |= ϕ2 or ∃0 ≤ i < j s.t. M, πi |= ϕ1

4 Alternative Semantics of CTL

In this part we present an alternative semantics of CTL using finite paths only.

Paths with the Last State Repeated (lr-Paths). A finite path is a lr-path
if and only if the last state on the path occurs twice. For instance s0, s1, s0 is a
lr-path. Note that we use ρ = ρ0ρ1 . . . ρj to denote a lr-path. A lr-path ρ with
ρ0 = s is denoted as ρ(s), with ρi = ρj is denoted as ρ(i, j). The length of a
path l is expressed by len(l) and the concatenation of two paths l1, l2 is l1ˆl2.

Lemma 1. Let M be a Kripke structure.

1. If π is an infinite path of M , then ∃i ≥ 0 such that πi
0 is a lr-path.

2. If ρ(i, j) is a lr-path of M , then ρi
0 (̂ρj

i+1)
ω is an infinite path.

Proof. For Case 1, as M is finite, there exists at least one repeating state in
π. If πi is the first state which occurs twice, then πi

0 is a lr-path. Case 2 is
trivial. �
Lemma 2. Let M be a Kripke structure.

1. For the path l = s0, s1, . . . , sk, there exists a finite path l′ = s′
0, s

′
1, . . . , s

′
i

without repeating states s.t. s′
0 = s0, s′

i = sk, and ∀0 < j < i, s′
j is on l.

2. If there is a path from s to s′, then there exists a lr-path ρ(s) s.t. s′ is on ρ.

Proof. For the first case, l′ can be built by deleting the cycles from l. The second
case is straightforward by the first case and Lemma 1. �
Definition 3 (Alternative Semantics of CTL). Let p be an atomic propo-
sition and ϕ,ϕ1, ϕ2 be CTL propositions. The relation M, s |=a ϕ is defined as
follows.

CTL Model Checking in Deduction Modulo 299

M, s |=a p ⇔ p ∈ L(s)

M, s |=a ¬ϕ1 ⇔ M, s |�=a ϕ1

M, s |=a ϕ1 ∧ ϕ2 ⇔ M, s |=a ϕ1 and M, s |=a ϕ2

M, s |=a ϕ1 ∨ ϕ2 ⇔ M, s |=a ϕ1 or M, s |=a ϕ2

M, s |=a AXϕ1 ⇔ ∀s′ ∈ next(s), M, s′ |=a ϕ1

M, s |=a EXϕ1 ⇔ ∃s′ ∈ next(s), M, s′ |=a ϕ1

M, s |=a AFϕ1 ⇔ ∀ρ(s), ∃i < len(ρ) − 1 s.t. M, ρi |=a ϕ1

M, s |=a EFϕ1 ⇔ ∃ρ(s), ∃i < len(ρ) − 1 s.t. M, ρi |=a ϕ1

M, s |=a AGϕ1 ⇔ ∀ρ(s), ∀i < len(ρ) − 1, M, ρi |=a ϕ1

M, s |=a EGϕ1 ⇔ ∃ρ(s), ∀i < len(ρ) − 1, M, ρi |=a ϕ1

M, s |=a A[ϕ1Uϕ2] ⇔ ∀ρ(s), ∃i < len(ρ) − 1 s.t. M, ρi |=a ϕ2 and ∀j < i, M, ρj |=a ϕ1

M, s |=a E[ϕ1Uϕ2] ⇔ ∃ρ(s), ∃i < len(ρ) − 1 s.t. M, ρi |=a ϕ2 and ∀j < i, M, ρj |=a ϕ1

M, s |=a A[ϕ1Rϕ2] ⇔ ∀ρ(s), ∀i < len(ρ) − 1, M, ρi |=a ϕ2 or ∃j < i s.t. M, ρj |=a ϕ1

M, s |=a E[ϕ1Rϕ2] ⇔ ∃ρ(s), ∀i < len(ρ) − 1, M, ρi |=a ϕ2 or ∃j < i s.t. M, ρj |=a ϕ1

We now prove the equivalence of the two semantics, that is, M, s |= ϕ iff
M, s |=a ϕ. To simplify the proofs, we use a normal form of the CTL propositions,
in which all the negations appear only in front of the atomic propositions.

Negation Normal Form. A CTL proposition is in negation normal form
(NNF), if the negation ¬ is applied only to atomic propositions. Every CTL
proposition can be transformed into an equivalent proposition of NNF using the
following equivalences.

¬¬ϕ ≡ ϕ
¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ ¬AFϕ ≡ EG¬ϕ ¬A[ϕUψ] ≡ E[¬ϕR¬ψ]
¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ ¬EFϕ ≡ AG¬ϕ ¬E[ϕUψ] ≡ A[¬ϕR¬ψ]
¬AXϕ ≡ EX¬ϕ ¬AGϕ ≡ EF¬ϕ ¬A[ϕRψ] ≡ E[¬ϕU¬ψ]
¬EXϕ ≡ AX¬ϕ ¬EGϕ ≡ AF¬ϕ ¬E[ϕRψ] ≡ A[¬ϕU¬ψ]

Lemma 3. Let ϕ be a CTL proposition of NNF. If M, s |= ϕ, then M, s |=a ϕ.

Proof. By induction on the structure of ϕ. For brevity, we just prove the two
cases where ϕ is AFϕ1 and AGϕ1. The full proof is in [10].

– Let ϕ = AFϕ1. We prove the contraposition. If there is a lr-path ρ(s)(j, k)
s.t. ∀0 ≤ i < k, M,ρi |�= ϕ1, then by Lemma 1, there exists an infinite path
ρj
0 (̂ρk

j+1)
ω, which is a counterexample of M, s |= AFϕ1. Thus for each lr-path

ρ(s), ∃0 ≤ i < len(ρ) − 1 s.t. M,ρi |= ϕ1 holds. Then by induction hypothesis
(IH), for each lr-path ρ(s), ∃0 ≤ i < len(ρ) − 1 s.t. M,ρi |=a ϕ1 holds, and
thus M, s |=a AFϕ1 holds.

– Let ϕ = AGϕ1. We prove the contraposition. If there is a lr-path ρ(s)(j, k)
and ∃0 ≤ i < k s.t. M,ρi |�= ϕ1, then by Lemma 1, there exists an infinite
path ρj

0 (̂ρk
j+1)

ω, which is a counterexample of M, s |= AGϕ1. Thus for each
lr-path ρ(s)(j, k) and ∀0 ≤ i < k, M,ρi |= ϕ1 holds. Then by IH, for each
lr-path ρ(s)(j, k) and ∀0 ≤ i < k, M,ρi |=a ϕ1 holds, and thus M, s |=a AGϕ1

holds. �

300 K. Ji

Lemma 4. Let ϕ be a CTL proposition of NNF. If M, s |=a ϕ, then M, s |= ϕ.

Proof. By induction on the structure of ϕ. For brevity, we just prove the two
cases where ϕ is AFϕ1 and AGϕ1. The full proof is in [10].

– Let ϕ = AFϕ1. If there is an infinite path π(s) s.t. ∀j ≥ 0, M,πj |�=a ϕ1, then
by Lemma 1, there exists k ≥ 0 s.t. πk

0 is a lr-path, which is a counterexample
of M, s |=a AFϕ1. Thus for each infinite path π(s), ∃j ≥ 0 s.t. M,πj |=a ϕ1

holds. Then by IH, for each infinite path π(s), ∃j ≥ 0 s.t. M,πj |= ϕ1 holds
and thus M, s |= AFϕ1 holds.

– Let ϕ = AGϕ1. Assume that there exists an infinite path π(s) and ∃i ≥ 0,
M,πi |�=a ϕ1. By Lemma 2, there exists a lr-path ρ(s) s.t. πi is on ρ, which
is a counterexample of M, s |=a AGϕ1. Thus for each infinite path π(s) and
∀i ≥ 0, M,πi |=a ϕ1 holds. Then by IH, for each infinite path π(s) and ∀i ≥ 0,
M,πi |= ϕ1 holds and thus M, s |= AGϕ1 holds. �

Theorem 1. Let ϕ be a CTL proposition. M, s |= ϕ iff M, s |=a ϕ.

5 Rewrite Rules for CTL

The work in this section is to express CTL propositions in Deduction Modulo
and prove that for a CTL proposition ϕ, the translation of M, s |=a ϕ is provable
if and only if M, s |=a ϕ holds. So we fix such a model M = (S, next, L). As in
[9], we consider a two sorted language L, which contains

– constants s1, . . . , sn for each state of M .
– predicate symbols ε0, ε�0 , ε�0 , ε1, ε�1 , ε�1 , in which the binary predicates ε0,

ε�0 and ε�0 apply to all the CTL propositions, while the ternary predicates
ε1, ε�1 and ε�1 only apply to the CTL propositions starting with the temporal
connectives AG, EG, AR and ER.

– binary predicate symbols mem for the membership, r for the next-notation.
– a constant nil and a binary function symbol con.

We use x, y, z to denote the variables of the state terms, X,Y,Z to denote the
class variables. A class is in fact a set of states, here we use the class theory,
rather than the (monadic) second order logic, is to emphasis that this formalism
is a theory and not a logic.

CTL Term. To express CTL in Deduction Modulo, firstly, we translate the
CTL proposition ϕ into a term |ϕ| (CTL term). The translation rules are as
follows:

|p| = p, p ∈ AP |EXϕ| = ex(|ϕ|) |A[ϕUψ]| = au(|ϕ|, |ψ|)
|¬ϕ| = not(|ϕ|) |AFϕ| = af(|ϕ|) |E[ϕUψ]| = eu(|ϕ|, |ψ|)
|ϕ ∧ ψ| = and(|ϕ|, |ψ|) |EFϕ| = ef(|ϕ|) |A[ϕRψ]| = ar(|ϕ|, |ψ|)
|ϕ ∨ ψ| = or(|ϕ|, |ψ|) |AGϕ| = ag(|ϕ|) |E[ϕRψ]| = er(|ϕ|, |ψ|)
|AXϕ| = ax(|ϕ|) |EGϕ| = eg(|ϕ|)

CTL Model Checking in Deduction Modulo 301

Note that we use Φ, Ψ to denote the variables of the CTL terms. Both finite sets
and finite paths are represented with the symbols con and nil. For the set S′ =
{si, . . . , sj}, we use [S′] to denote its term form con(si, con(. . . , con(sj , nil) . . .)).
For the path sj

i = si, . . . , sj , its term form con(sj , con(. . . , con(si, nil) . . .)) is
denoted by [sj

i].

Definition 4 (Semantics). Semantics of the propositions in L is as follows.

M |= ε0(|ϕ|, s) ⇔ M, s |=a ϕ
M |= r(s, [S′]) ⇔ S′ = next(s)
M |= mem(s, [si

0]) ⇔ s is on the path si
0

M |= ε�0(|ϕ|, [S′]) ⇔ ∀s ∈ S′, M |= ε0(|ϕ|, s)
M |= ε�0(|ϕ|, [S′]) ⇔ ∃s ∈ S′ s.t. M |= ε0(|ϕ|, s)
M |= ε1(ag(|ϕ1|), s, [si

0]) ⇔ ∀lr-path si
0 ˆsk

i+1(si+1 = s), ∀i < j < k,
M |= ε0(|ϕ1|, sj)

M |= ε1(eg(|ϕ1|), s, [si
0]) ⇔ ∃lr-path si

0 ˆsk
i+1(si+1 = s), ∀i < j < k,

M |= ε0(|ϕ1|, sj)
M |= ε1(ar(|ϕ1|, |ϕ2|), s, [si

0]) ⇔ ∀lr-path si
0 ˆsk

i+1(si+1 = s), ∀i < j < k,
Either M |= ε0(|ϕ2|, sj) or ∃i < m < j
s.t. M |= ε0(|ϕ1|, sm)

M |= ε1(er(|ϕ1|, |ϕ2|), s, [si
0]) ⇔ ∃lr-path si

0 ˆsk
i+1(si+1 = s), ∀i < j < k,

either M |= ε0(|ϕ2|, sj) or ∃i < m < j
s.t. M |= ε0(|ϕ1|, sm)

M |= ε�1(ag(|ϕ1|), [S′], [si
0]) ⇔ ∀s ∈ S′, M |= ε1(ag(|ϕ1|), s, [si

0])
M |= ε�1(eg(|ϕ1|), [S′], [si

0]) ⇔ ∃s ∈ S′ s.t. M |= ε1(eg(|ϕ1|), s, [si
0])

M |= ε�1(ar(|ϕ1|, |ϕ2|), [S′], [si
0]) ⇔ ∀s ∈ S′, M |= ε1(ar(|ϕ1|, |ϕ2|), s, [si

0])
M |= ε�1(er(|ϕ1|, |ϕ2|), [S′], [si

0]) ⇔ ∃s ∈ S′ s.t. M |= ε1(er(|ϕ1|, |ϕ2|), s, [si
0])

Note that when a proposition ε1(|ϕ|, s, [sj
i]) is valid in M , for instance M |=

ε1(eg(|ϕ|), s, [sj
i]), EGϕ may not hold on the state s.

Fig. 2. Example of L

Example 1. For the structure M in Fig. 2, M |= ε1(eg(p), s3, con(s2, con(s1, nil)))
holds because there exists a lr-path, for instance s1, s2, s3, s4, s2 such that p holds
on s3 and s4.

The Rewrite System R. The rewrite system has three components

1. rules for the Kripke structure M (denoted as RM),
2. rules for the class variables (denoted as Rc),
3. rules for the semantics encoding of the CTL operators (denoted as RCTL).

302 K. Ji

The Rules of RM The rules of RM are as follows:

– for each atomic proposition p ∈ AP and each state s ∈ S, if p ∈ L(s), then
ε0(p, s) ↪→ � is in RM , otherwise ε0(not(p), s) ↪→ � is in of RM .

– for each state s ∈ S, take r(s, [next(s)]) ↪→ � as a rewrite rule of RM .

The Rules of Rc For the class variables, as the domain of the model is finite,
there exists two axioms [9] ∀x(x = x), and ∀x∀y∀Z((x = y ∨ mem(x,Z)) ⇒
mem(x, con(y, Z))). The rewrite rules for these axioms are x = x ↪→ � and
mem(x, con(y, Z)) ↪→ x = y ∨ mem(x,Z). To avoid introducing the predicate
“=”, the rewrite rules are replaced by the rules (Rc)

mem(x, con(x,Z)) ↪→ � and mem(x, con(y, Z)) ↪→ mem(x,Z).

The Rules of RCTL The rewrite rules for the predicates carrying the semantic
definition of the CTL propositions, are in Fig. 3.

Fig. 3. Rewrite Rules for CTL Connectives (RCTL)

Now we are ready to prove the main theorem. Our goal is to prove that
M |= ε0(|ϕ|, s) holds if and only if ε0(|ϕ|, s) is provable in Deduction Modulo.

CTL Model Checking in Deduction Modulo 303

Lemma 5 (Soundness). For a CTL formula ϕ of NNF, if the sequent �cf
R

ε0(|ϕ|, s) has a proof, then M |= ε0(|ϕ|, s).
Proof. More generally, we prove that for any CTL proposition ϕ of NNF,

– if �cf
R ε0(|ϕ|, s) has a proof, then M |= ε0(|ϕ|, s).

– if �cf
R ε�0(|ϕ|, [S′]) has a proof, then M |= ε�0(|ϕ|, [S′]).

– if �cf
R ε�0(|ϕ|, [S′]) has a proof, then M |= ε�0(|ϕ|, [S′]).

– if �cf
R ε1(|ϕ|, s, [sj

i]) has a proof, in which ϕ is either of the form AGϕ1, EGϕ1,
A[ϕ1Rϕ2], E[ϕ1Rϕ2], then M |= ε1(|ϕ|, s, [sj

i]).
– if �cf

R ε�1(|ϕ|, [S′], [sj
i]) has a proof, in which ϕ is either of the form AGϕ1,

A[ϕ1Rϕ2], then M |= ε�1(|ϕ|, [S′], [sj
i]).

– if �cf
R ε�1(|ϕ|, [S′], [sj

i]) has a proof, in which ϕ is either of the form EGϕ1,
E[ϕ1Rϕ2], then M |= ε�1(|ϕ|, [S′], [sj

i]).

By induction on the size of the proof. Consider the different case for ϕ, we have
18 cases (2 cases for the atomic proposition and its negation, 2 cases for and and
or, 10 cases for the temporal connectives ax, ex, af, ef, ag, eg, au, eu, ar, er, 4
cases for the predicate symbols ε�0 , ε�0 , ε�1 , ε�0), but each case is easy. For
brevity, we just prove two cases. The full proof is in [10].

– Suppose the sequent �cf
R ε0(af(|ϕ|), s) has a proof. As ε0(af(|ϕ|), s) ↪→

ε0(|ϕ|, s) ∨ ∃X(r(s,X) ∧ ε�0(af(|ϕ|),X)), the last rule in the proof is ∨1 or
∨2. For ∨1, M |= ε0(|ϕ|, s) holds by IH, then M |= ε0(af(|ϕ|), s) holds by
its semantic definition. For ∨2, M |= ∃X(r(s,X) ∧ ε�0(af(|ϕ|),X)) holds by
IH, thus there exists S′ s.t. M |= r(s, [S′]) and M |= ε�0(af(|ϕ|), [S′]) holds.
Then we get S′ = next(s) and for each state s′ in S′, M |= ε0(af(|ϕ|), s′)
holds. Now assume M |�= ε0(af(|ϕ|), s), then there exists a lr-path ρ(s)(j, k)
s.t. ∀0 ≤ i < k, M |�= ε0(|ϕ|, ρi). For the path ρ(s)(j, k),

• if j �= 0, then ρk
1 is a lr-path, which is a counterexample of M |=

ε0(af(|ϕ|), ρ1).
• if j = 0, then ρk

1 ˆρ1 is a lr-path, which is a counterexample of M |=
ε0(af(|ϕ|), ρ1).

Thus M |= ε0(af(|ϕ|), s) holds by its semantic definition.
– Suppose that �cf

R ε1(ag(|ϕ|), s, [sj
i]) has a proof. As ε1(ag(|ϕ|), s, [sj

i]) ↪→
mem(s, [sj

i])∨ (ε0(|ϕ|, s)∧∃X(r(s,X)∧ ε�1(ag(|ϕ|),X, con(s, [sj
i])))), the last

rule in the proof is ∨1 or ∨2. For ∨1, M |= mem(s, [sj
i]) holds by IH, thus sj

i ˆs

is a lr-path and M |= ε1(ag(|ϕ|), s, [sj
i]) holds by its semantic definition. For

∨2, M |= ε0(|ϕ|, s) and M |= ∃X(r(s,X) ∧ ε�1(ag(|ϕ|),X, con(s, [s]ji))) holds
by IH. Thus there exists S′ s.t. M |= r(s, [S′]) ∧ ε�1(ag(|ϕ|), [S′], con(s, [sj

i]))
holds. Then by the semantic definition, S′ = next(s) and for each state s′ ∈ S′,
M |= ε1(ag(|ϕ|), s′, con(s, [sj

i])) holds. Thus M |= ε1(ag(|ϕ|), s, [sj
i]) holds by

its semantic definition.

Lemma 6 (Completeness). For a CTL formula ϕ of NNF, if M |= ε0(|ϕ|, s),
then the sequent �cf

R ε0(|ϕ|, s) has a proof.

304 K. Ji

Proof. By induction on the structure of ϕ. For brevity, here we just prove some
of the cases. The full proof is in [10].

– Suppose M |= ε0(af(|ϕ1|), s) holds. By the semantics of L, there exists a state
s′ on each lr-path starting from s s.t. M |= ε0(|ϕ1|, s′) holds. Thus there exists
a finite tree T s.t.

• T has root s;
• for each internal node s′ in T , the children of s′ are labelled by the

elements of next(s′);
• for each leaf s′, s′ is the first node in the branch starting from s s.t.

M |= ε0(|ϕ1|, s′) holds.
By IH, for each leaf s′, there exists a proof Π(ϕ1,s′) for the sequent �cf

R
ε0(|ϕ1|, s′). Then, to each subtree T ′ of T , we associate a proof |T ′| of the
sequent �cf

R ε0(af(|ϕ1|), s′) where s′ is the root of T ′, by induction, as follows,
• if T ′ contains a single node s′, then the proof |T ′| is as follows:

Π(ϕ1,s′) ∨1�cf
R ε0(af(|ϕ1|), s′)

• if T ′ = s′(T1, . . . , Tn), then the proof |T ′| is as follows:

�cf
R r(s′, [next(s′)])

|T1| . . . |Tn| ∧n

�cf
R ε�0(af(|ϕ1|), [next(s′)]) ∧

�cf
R r(s′, [next(s′)]) ∧ ε�0(af(|ϕ1|), [next(s′)])

∃�cf
R ∃X(r(s′, X) ∧ ε�0(af(|ϕ1|), X)) ∨2�cf

R ε0(af(|ϕ1|), s′)

This way, |T | is a proof of the sequent �cf
R ε0(af(|ϕ1|), s).

– Suppose M |= ε0(ag(|ϕ1|), s) holds. By the semantics of L, for each state s′

on each lr-path starting from s, M |= ε0(|ϕ1|, s′) holds. Thus there exists a
finite tree T s.t.

• T has root s;
• for each internal node s′ in T , the children of s′ are labelled by the

elements of next(s′);
• the branch starting from s to each leaf is a lr-path;
• for each internal node s′ in T , M |= ε0(|ϕ1|, s′) holds and by IH, there

exists a proof Π(ϕ1,s′) for the sequent �cf
R ε0(|ϕ1|, s′).

Then, to each subtree T ′ of T , we associate a proof |T ′| of the sequent �cf
R

ε1(ag(|ϕ1|), s′, [s′k−1
0]) where s′ is the root of T ′ and s′k

0 (s′
k = s′) is the branch

from s to s′, by induction, as follows,
• if T ′ contains a single node s′, then s′k

0 is a lr-path and the proof is as
follows: �cf

R mem(s′, [s′k−1
0]) ∨2�cf

R ε1(ag(|ϕ1|), s′, [s′k−1
0])

CTL Model Checking in Deduction Modulo 305

• if T ′ = s′(T1, . . . , Tn), the proof is as follows:

Πs′

	cf
R ε0(|ϕ1|, s′)

	cf

R r(s′, [next(s′)])

|T1| . . . |Tn| ∧n

	cf
R ε�1 (ag(|ϕ1|), [next(s′)], [s′k

0])
∧

	cf
R r(s′, [next(s′)]) ∧ ε�1 (ag(|ϕ1|), [next(s′)], [s′k

0])
∃

	cf
R ∃X(r(s′, X) ∧ ε�1 (ag(|ϕ1|), X, [s′k

0]))
∧

	cf
R ε0(|ϕ1|, s′) ∧ ∃X(r(s′, X) ∧ ε�1 (ag(|ϕ1|), X, [s′k

0])) ∨1

	cf
R ε1(ag(|ϕ1|), s′, [s′k−1

0])

This way, as ε0(ag(|ϕ1|), s) can be rewritten into ε1(ag(|ϕ1|), s, nil), |T | is a
proof for the sequent �cf

R ε0(ag(|ϕ1|), s). �
Theorem 2 (Soundness and Completeness). For a CTL proposition ϕ of
NNF, the sequent �cf

R ε0(|ϕ|, s) has a proof iff M |= ε0(|ϕ|, s) holds.

6 Applications

6.1 Polarized Resolution Modulo

In Polarized Resolution Modulo, the polarized rewrite rules are taken as one-way
clauses [6]. For example, the rewrite rule

ε1(eg(Φ), x, Y) ↪→+ mem(x, Y) ∨ (ε0(Φ, x) ∧ ∃X(r(x, X) ∧ ε�1(eg(Φ), X, con(x, Y))))

is translated into one-way clauses ε1(eg(Φ), x, Y) ∨ mem(x, Y)⊥ and ε1(eg(Φ), x, Y)

∨ε0(Φ, x)⊥∨r(x, X)⊥∨ε�1(eg(Φ), X, con(x, Y))⊥, in which the underlined literals have
the priority to do resolution.

Fig. 4. Resolution Example

Example 2. For the structure M in Fig. 4, we prove that M, s1 |=a EXEGp.
The one-way clauses of M are: ε0(not(p), s1), ε0(p, s2), ε0(p, s3), r(s1, con(s2, nil)),
r(s2, con(s3, nil)), r(s3, con(s2, nil)). The translation of M, s1 |=a EXEGp is
ε0(ex(eg(p)), s1) and the resolution steps start from

ε0(ex(eg(p)), s1)
⊥.

First apply resolution with ε0(ex(Φ), x) ∨ r(x, X)⊥ ∨ ε�0(Φ, X)⊥, with x = s1 and
Φ = eg(p), this yields

r(s1, X)⊥ ∨ ε�0(eg(p), X)⊥.

306 K. Ji

Then apply resolution with r(s1, con(s2, nil)), with X = con(s2, nil), this yields

ε�0(eg(p), con(s2, nil))
⊥.

Then apply resolution with ε�0(Φ, con(x, X)) ∨ ε0(Φ, x)⊥, with x = s2, X = nil and
Φ = eg(p), this yields

ε0(eg(p), s2)
⊥.

Then apply resolution with one-way clause ε0(eg(Φ), x)∨ ε1(eg(Φ), x, nil)⊥, with Φ = p
and x = s2, this yields

ε1(eg(p), s2, nil)
⊥.

Then apply resolution with (‡ 1), with Φ = p, x = s2 and Y = nil, this yields

ε0(p, s2)
⊥ ∨ r(s2, X)⊥ ∨ ε�1(eg(p), X, con(s2, nil))

⊥.

Then apply resolution with ε0(p, s2), this yields

r(s2, X)⊥ ∨ ε�1(eg(p), X, con(s2, nil))
⊥.

Then apply resolution with r(s2, con(s3, nil)), with X = con(s3, nil), this yields

ε�1(eg(p), con(s3, nil), con(s2, nil))
⊥.

Then apply resolution with ε�1(Φ, con(x, X), Y)∨ε1(Φ, x, Y)⊥, with Φ = eg(p), x = s3,
X = nil and Y = con(s2, nil), this yields

ε1(eg(p), s3, con(s2, nil))
⊥.

Then apply resolution with (‡), with Φ = p, x = s3, Y = con(s2, nil), this yields

ε0(p, s3)
⊥ ∨ r(s3, X)⊥ ∨ ε�1(eg(p), X, con(s3, con(s2, nil)))

⊥.

Then apply resolution with ε0(p, s3), this yields

r(s3, X)⊥ ∨ ε�1(eg(p), X, con(s3, con(s2, nil)))
⊥.

Then apply resolution with r(s3, con(s2, nil)), with X = con(s2, nil), this yields

ε�1(eg(p), con(s2, nil), con(s3, con(s2, nil)))
⊥.

Then apply resolution with ε�1(Φ, con(x, X), Y)∨ε1(Φ, x, Y)⊥, with Φ = eg(p), x = s3,
X = nil and Y = con(s2, nil), this yields

ε1(eg(p), s2, con(s3, con(s2, nil)))
⊥.

Then apply resolution with ε1(eg(Φ), x, Y) ∨ mem(x, Y)⊥, with x = s2 and Y =
con(s3, con(s2, nil)), this yields

mem(s2, con(s3, con(s2, nil)))
⊥.

Then apply resolution with mem(x, con(y, Z))∨ mem(x, Z)⊥, with x = s2, y = s3 and
Z = con(s2, nil), this yields

mem(s2, con(s2, nil))
⊥.

Then apply resolution with mem(x, con(x, Z)), with x = s2 and Z = nil, this yields
the empty clause. Thus M, s1 |=a EXEGp holds.

1 ‡ is ε1(eg(Φ), x, Y) ∨ ε0(Φ, x)⊥ ∨ r(x, X)⊥ ∨ ε�1(eg(Φ), X, con(x, Y))⊥.

CTL Model Checking in Deduction Modulo 307

6.2 Experimental Evaluation

In this Section, we give a comparison between Resolution-based and QBF-based veri-
fication, that are implemented in iProver Modulo and VERDS [15] respectively. iProver
Modulo is a prover by embedding Polarized Resolution Modulo into iProver [11]. The
comparison is by proving 24 CTL properties on two kinds of programs: Programs with
Concurrent Processes and Programs with Concurrent Sequential Processes. The pro-
grams and CTL properties refer to [16].

Table 1. Experimental Results

iProver/Verds Con. Processes Con. Seq. Processes

Prop Num True False >20m True False >20m

p01 40 - 40/40 - 23/- 5/4 12/36

p02 40 40/40 - - 40/40 - -

p03 40 2/- 37/37 1/3 - 25/15 15/25

p04 40 17/- - 23/40 - - 40/40

p05 40 25/34 6/5 9/1 24/24 8/2 8/14

p06 40 31/40 - 9/- 36/31 - 4/9

p07 40 40/40 - - 40/40 - -

p08 40 40/40 - - 40/40 - -

p09 40 32/32 8/8 - 35/29 5/1 -/10

p10 40 40/40 - - 40/40 - -

p11 40 10/10 30/30 - 27/23 8/4 5/13

p12 40 40/40 - - 40/35 - -/5

p13 40 - 40/40 - - 40/40 -

p14 40 3/3 37/37 - 3/3 37/33 -/4

p15 40 5/- 33/33 2/7 - 23/15 17/25

p16 40 19/- - 21/40 - - 40/40

p17 40 28/37 3/2 9/1 25/26 5/1 10/13

p18 40 32/40 - 8/- 37/31 - 3/9

p19 40 5/5 35/35 - 6/6 34/34 -

p20 40 15/17 21/21 4/2 12/11 18/22 10/7

p21 40 3/3 37/37 - 3/3 37/37 -

p22 40 3/3 37/37 - 3/3 37/37 -

p23 40 - 40/40 - - 40/40 -

p24 40 20/25 12/10 8/5 8/8 23/22 9/10

Sum 960 450/449 416/412 94/99 442/393 345/307 173/260

For the Con. Processes, each testing case contains 12/24 variables and 3 processes.
For the Con. Seq. Processes, each testing case contains 12/16 variables and 2 processes.

308 K. Ji

Table 2. Speed Comparisons

Con. Processes Con. Seq. Processes

Prop Num adv/T adv/F O(iP/Ver) adv/T adv/F O(iP/Ver)

p01 40 - 0/40 - - 0/3 25/1

p02 40 40/40 - - 40/40 - -

p03 40 - 1/37 2/- - 11/15 10/-

p04 40 - - 17/- - - -

p05 40 0/25 3/5 1/9 6/20 2/2 10/4

p06 40 0/31 - -/9 10/28 - 8/3

p07 40 33/40 - - 37/40 - -

p08 40 35/40 - - 38/40 - -

p09 40 19/32 0/8 - 22/29 0/1 10/-

p10 40 19/40 - - 18/40 - -

p11 40 0/10 0/30 - 9/23 3/4 8/-

p12 40 3/40 - - 7/35 - 5/-

p13 40 - 38/40 - - 40/40 -

p14 40 2/3 0/37 - 3/3 23/33 4/-

p15 40 - 0/33 5/- - 10/14 9/1

p16 40 - - 19/- - - -

p17 40 0/28 1/2 1/9 8/22 1/1 7/4

p18 40 0/32 - -/8 11/29 - 8/2

p19 40 2/5 9/35 - 6/6 12/34 -

p20 40 1/15 7/20 1/3 6/11 9/17 2/5

p21 40 2/3 18/37 - 3/3 23/37 -

p22 40 2/3 19/37 - 2/3 22/37 -

p23 40 - 17/40 - - 25/40 -

p24 40 0/20 1/10 2/5 1/7 4/21 3/2

Sum 960 158/407 114/411 48/43 227/379 185/299 109/22

All the cases are tested on Intel� Core TM i5-2400 CPU @ 3.10GHz × 4 with Linux and
the testing time of each case is limited to 20min. The experimental data is presented
in Tables 1 and 22. The comparison is based on two aspects: the number of testing
cases that can be proved, and the time used if a problem can be proved in both. As
can be seen in Table 1, among the 960 testing cases of the Con. Processes, 94 of them
are timeout in iProver Modulo, while the number in VERDS is 99. For the Con. Seq.
Processes, among the 960 testing cases, 173 of them are timeout in iProver Modulo,
while in VERDS, the number is 260. Table 2 shows that, among the 818 testing cases
of the Con. Processes, that are both proved in iProver Modulo and VERDS, iProver

2 adv/T(F): has advantage in speed when both return T(F). O(iP/Ver): only solved by
iProver/Verds.

CTL Model Checking in Deduction Modulo 309

Modulo performs better in 272 of them and among the 678 testing cases of the Con.
Seq. Processes, 412 of them run faster in iProver Modulo.

In summary, for the 1920 testing cases, 1653 (86%) of them are solved by iProver
Modulo, while 1561 (81%) are solved by VERDS. For all the 1496 testing cases that
are both proved, 684 (45.8%) testing cases run faster in iProver Modulo.

7 Conclusion and Future Work

In this paper, we defined an alternative semantics for CTL, which is bounded to lr-
paths. Based on the alternative semantics, a way to embed model checking problems
into Deduction Modulo has been presented. Thus this work has given a method to solve
model checking problems in automated theorem provers. An experimental evaluation
of this approach using resolution modulo has been presented. The comparison with
the QBF-based verification showed that automated theorem proving modulo, which
performed as well as QBF-based method, can be considered as a new way to quickly
determine whether a property is violated in transition system models.

The proof-search method does not work well on proving some temporal proposi-
tions, such as the propositions start with AG. One of the reasons is during the search
steps, it may visit the same state repeatedly. To design new rewrite rules for the encod-
ing of temporal connectives or new elimination rules to avoid this problem remains as
future work.

Acknowledgements. I am grateful to Gilles Dowek, for his careful reading and com-
ments.

References

1. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

2. Burel, G.: Embedding deduction modulo into a prover. In: Dawar, A., Veith, H.
(eds.) CSL 2010. LNCS, vol. 6247, pp. 155–169. Springer, Heidelberg (2010)

3. Burel, G.: Experimenting with deduction modulo. In: Bjørner, N., Sofronie-
Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 162–176. Springer,
Heidelberg (2011)

4. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press,
Cambridge, MA, USA (1999)

5. Delahaye, D., Doligez, D., Gilbert, F., Halmagrand, P., Hermant, O.: Zenon mod-
ulo: when Achilles outruns the tortoise using deduction modulo. In: McMillan, K.,
Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 274–290.
Springer, Heidelberg (2013)

6. Dowek, G.: Polarized resolution modulo. In: Calude, C.S., Sassone, V. (eds.) TCS
2010. IFIP AICT, vol. 323, pp. 182–196. Springer, Heidelberg (2010)

7. Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. J. Autom. reason-
ing 31, 33–72 (2003)

8. Dowek, G., Jiang, Y.: A Logical Approach to CTL (2013). http://hal.inria.fr/docs/
00/91/94/67/PDF/ctl.pdf (manuscript)

http://hal.inria.fr/docs/00/91/94/67/PDF/ctl.pdf
http://hal.inria.fr/docs/00/91/94/67/PDF/ctl.pdf

310 K. Ji

9. Dowek, G., Jiang, Y.: Axiomatizing Truth in a Finite Model (2013). https://who.
rocq.inria.fr/Gilles.Dowek/Publi/classes.pdf (manuscript)

10. Ji, K.: CTL Model Checking in Deduction Modulo. In: Felty, A.P., Middeldorp, A.
(eds.) CADE-25, 2015. LNCS, vol. 9195, pp. xx–yy (2015). https://drive.google.
com/file/d/0B0CYADxmoWB5UGJsV2UzNnVqVHM/view?usp=sharing (fullpa-
per)

11. Korovin, K.: iProver – an instantiation-based theorem prover for first-order logic
(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008)

12. Rajan, S., Shankar, N., Srivas, M.: An Integration of Model Checking with Auto-
mated Proof Checking. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 84–97.
Springer, Berlin Heidelberg (1995)

13. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Cambridge University
Press, New York (1996)

14. Zhang, W.: Bounded semantics of CTL and SAT-based verification. In: Breitman,
K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885, pp. 286–305. Springer,
Heidelberg (2009)

15. Zhang, W.: VERDS Modeling Language (2012). http://lcs.ios.ac.cn/∼zwh/verds/
index.html

16. Zhang, W.: QBF encoding of temporal properties and QBF-based verification. In:
Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp.
224–239. Springer, Heidelberg (2014)

https://who.rocq.inria.fr/Gilles.Dowek/Publi/classes.pdf
https://who.rocq.inria.fr/Gilles.Dowek/Publi/classes.pdf
https://drive.google.com/file/d/0B0CYADxmoWB5UGJsV2UzNnVqVHM/view?usp=sharing
https://drive.google.com/file/d/0B0CYADxmoWB5UGJsV2UzNnVqVHM/view?usp=sharing
http://lcs.ios.ac.cn/~zwh/verds/index.html
http://lcs.ios.ac.cn/~zwh/verds/index.html

	CTL Model Checking in Deduction Modulo
	1 Introduction
	2 Deduction Modulo
	3 Computation Tree Logic
	4 Alternative Semantics of CTL
	5 Rewrite Rules for CTL
	6 Applications
	6.1 Polarized Resolution Modulo
	6.2 Experimental Evaluation

	7 Conclusion and Future Work
	References

