
Reducing Relative Termination
to Dependency Pair Problems

José Iborra1, Naoki Nishida1, Germán Vidal2, and Akihisa Yamada3(B)

1 Graduate School of Information Science, Nagoya University, Nagoya, Japan
2 MiST, DSIC, Universitat Politècnica de València, Valencia, Spain

3 Institute of Computer Science, University of Innsbruck, Innsbruck, Austria
akihisa.yamada@uibk.ac.at

Abstract. Relative termination, a generalized notion of termination,
has been used in a number of different contexts like proving the conflu-
ence of rewrite systems or analyzing the termination of narrowing. In
this paper, we introduce a new technique to prove relative termination
by reducing it to dependency pair problems. To the best of our knowl-
edge, this is the first significant contribution to Problem #106 of the
RTA List of Open Problems. The practical significance of our method is
illustrated by means of an experimental evaluation.

1 Introduction

Proving that a program terminates is a fundamental problem that has been
extensively studied in almost all programming paradigms. For term rewrite
systems (TRSs), termination analysis has attracted considerable attention
(see, e.g., the survey of Zantema [31] and the termination portal1), and various
automated termination provers for TRSs have been developed, e.g. AProVE [9],
TTT2 [20], and NaTT [28]. Among them the dependency pair (DP) method [2,12]
and its successor the DP framework [10] became a modern standard.

Termination of a TRS is usually checked for all possible reduction sequences.
In some cases, however, one is interested in proving a generalized notion, relative
termination [7,17]. Roughly speaking, a TRS R is relatively terminating w.r.t.
another TRS B (that here we call the base), when any infinite reduction using
both systems contains only a finite number of steps given with rules from R. For
instance, consider the following base:

Bcomlist = {cons(x, cons(y, ys)) → cons(y, cons(x, ys))}

specifying a property for commutative lists (i.e., that the order of elements is
irrelevant). Termination of operations on commutative lists, described by a TRS

Germán Vidal is partially supported by the EU (FEDER) and the Spanish Min-
isterio de Economı́a y Competitividad under grant TIN2013-44742-C4-1-R and by
the Generalitat Valenciana under grant PROMETEOII2015/013. Akihisa Yamada
is supported by the Austrian Science Fund (FWF): Y757.

1 Available from URL http://www.termination-portal.org/.

c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 163–178, 2015.
DOI: 10.1007/978-3-319-21401-6 11

http://www.termination-portal.org/

164 J. Iborra et al.

R, can be analyzed as the relative termination of R w.r.t. Bcomlist. Note also that
the base Bcomlist is clearly non-terminating.

Relative termination has been used in various contexts: proving confluence
of a rewrite system [7,13]; liveness properties in the presence of fairness [18];
and termination of narrowing [15,24,27], an extension of rewriting to deal with
non-ground terms (see, e.g., [14]). Moreover, analyzing relative termination can
also be useful for other purposes, like dealing with random values or consider-
ing rewrite systems with so called extra-variables (i.e., variables that occur in
the right-hand side of a rule but not in the corresponding left-hand side). For
instance, the following base Brand specifies a random number generator:

Brand = {rand(x) → x, rand(x) → rand(s(x))}

We have rand(0) →∗
Brand

sn(0) for arbitrary n ∈ N. Now consider

Rquot = { x − 0 → x, s(x) − s(y) → x − y,
quot(0, s(y)) → 0, quot(s(x), s(y)) → s(quot(x − y, s(y)))}

from [2]. Termination of Rquot can be shown using the DP method [2]. However, it
is unknown if Rquot is relatively terminating w.r.t. Brand using previously known
techniques. Note also that it seems not so obvious, since Rquot is not relatively
terminating w.r.t. the following similar variant Bgen:

Bgen = {gen → 0, gen → s(gen)}

which is considered in the context of termination of narrowing [15,24,27]. Indeed,
we can construct the following infinite reduction sequence using Bgen:

s(gen) − s(gen) →Rquot gen − gen →∗
Bgen

s(gen) − s(gen) →Rquot · · ·

We expect that a similar technique can also be used to deal with TRSs with
extra-variables. In principle, these systems are always non-terminating, since
extra-variables can be replaced by any term. However, one can still consider an
interesting termination property: is the system terminating if the extra-variables
can only be instantiated with terms built from a restricted signature? Consider,
e.g., the following TRS from [23]:

R = {f(x, 0) → s(x), g(x) → h(x, y), h(0, x) → f(x, x), a → b}

This system is clearly non-terminating due to the extra variable in the second
rewrite rule. However, by assuming that y can only take values built from con-
structor symbols (e.g., natural numbers), one can reformulate these rewrite rules
as follows: R′ = {f(x, 0) → s(x), g(x) → h(x, gen), h(0, x) → f(x, x), a → b},
using Bgen above. Obviously, R′ ∪ Bgen is still non-terminating since Bgen is non-
terminating. Nevertheless, one can still prove relative termination of R′ w.r.t.
Bgen, which is an interesting property since one can ensure terminating deriva-
tions by using an appropriate heuristics to instantiate extra-variables.

Reducing Relative Termination to Dependency Pair Problems 165

Another interesting application of relative termination w.r.t. Brand is to gener-
ate test cases. For example, in the QuickCheck technique, lists over, e.g., natural
numbers are generated at random. Assume f and g are defined externally by a
TRS Rfg, and consider the TRS Rtest consisting of the following rules:

rands(0, y) → done(y) rands(s(x), y) → rands(x, cons(rand(0), y))
tests(0) → true tests(s(x)) → test(rands(rand(0), nil)) ∧ tests(x)
eq(x, x) → true test(done(y)) → eq(f(y), g(y))

where lists are built from nil and cons. Execution of tests(sn(0)) tests the equiv-
alence between f and g by feeding them random inputs n times. Even when f
and g are defined by f(x) → x and g(x) → x, AProVE fails to prove relative
termination of Rtest ∪ Rfg w.r.t. Brand.

In this paper, we present a new technique for proving relative termination
by reducing it to the finiteness of dependency pair problems. To the best of
our knowledge, we provide the first significant contribution to Problem #106
of the RTA List of Open Problems:2 “Can we use the dependency pair method
to prove relative termination?” We implemented the proposed method in the
termination tool NaTT 3 and showed its significance through experiments. Using
results of this paper and [29], NaTT can prove relative termination of Rquot w.r.t.
Brand, and relative termination of Rtest ∪ Rfg w.r.t. Brand for e.g., naive and tail
recursive definitions of summation as f and g.

This paper is organized as follows. In Sect. 2, we briefly review some notions
and notations of term rewriting. In Sects. 3–5, we present our main contributions
for reducing relative termination to a dependency pair problem. Moreover, some
subtle features about minimality are discussed in Sect. 6. Then, Sect. 7 describes
implementation issues and presents selected results from an experimental evalua-
tion. Finally, Sect. 8 compares our technique with some related work, and Sect. 9
concludes and points out some directions for future research. Missing proofs of
technical results can be found in the appendix.

2 Preliminaries

We assume some familiarity with basic concepts and notations of term rewriting.
We refer the reader to, e.g., [4] for further details.

A signature F is a set of function symbols. Given a set of variables V with
F ∩V = ∅, we denote the domain of terms by T (F ,V). We use f, g, . . . to denote
function symbols and x, y, . . . to denote variables. The root symbol of a term
t = f(t1, . . . , tn) is f and denoted by root(t). We assume an extra fresh constant
� called a hole. Then, C ∈ T (F ∪ {�},V) is called a context on F . We use the
notation C[] for the context containing one hole, and if t ∈ T (F ,V), then C[t]
denotes the result of placing t in the hole of C[].

2 http://www.win.tue.nl/rtaloop/.
3 Available at http://www.trs.cm.is.nagoya-u.ac.jp/NaTT/.

http://www.win.tue.nl/rtaloop/
http://www.trs.cm.is.nagoya-u.ac.jp/NaTT/

166 J. Iborra et al.

A position p in a term t is represented by a finite sequence of natural numbers,
where ε denotes the root position. We let t|p denote the subterm of t at position
p, and t[s]p the result of replacing the subterm t|p by the term s. We denote by
s � t that t is a subterm of s, and by s � t that it is a proper subterm.

Var(t) denotes the set of variables appearing in t. A substitution is a mapping
σ : V → T (F ,V), which is extended to a morphism from T (F ,V) to T (F ,V) in
a natural way. We denote the application of a substitution σ to a term t by tσ.

A rewrite rule l → r is a pair of terms such that l /∈ V and Var(l) ⊇ Var(r).
The terms l and r are called the left-hand side and the right-hand side of the
rule, respectively. A term rewriting system (TRS) is a set of rewrite rules. Given
a TRS R, we write FR for the set of function symbols appearing in R, DR for
the set of the defined symbols, i.e., the root symbols of the left-hand sides of the
rules, and CR for the set of constructors; CR = FR \ DR.

For a TRS R, we define the associated rewrite relation −→R as follows: given
terms s, t ∈ T (F ,V), s −→R t holds iff there exist a position p in s, a rewrite
rule l → r ∈ R and a substitution σ with s|p = lσ and t = s[rσ]p; the rewrite
step is often denoted by s

p−→R t to make the rewritten position explicit, and
s

>ε−→R t if the position is strictly below the root. Given a binary relation →, we
denote by →+ the transitive closure of → and by →∗ its reflexive and transitive
closure.

Now we recall the formal definition of relative termination:

Definition 1 (Relative Termination [17]). Given two TRSs R and B, we
define the relation −→R/B as →∗

B · →R · →∗
B. We say that R relatively terminates

w.r.t. B, or simply that R/B is terminating, if the relation −→R/B is terminat-
ing. We say that a term t is R/B-nonterminating if it starts an infinite −→R/B
derivation, and R/B-terminating otherwise.

In other words, R/B is terminating if every (possibly infinite) →R∪B deriva-
tion contains only finitely many →R steps. Note that sequences of →B steps are
“collapsed” and seen as a single −→R/B step. Hence, an infinite −→R/B deriva-
tion must contain an infinite number of →R steps and thus only finite →B
subderivations.

The Dependency Pair Framework. The dependency pair (DP) framework
[2,10] enables analyzing cyclic dependencies between rewrite rules, and has
become one of the most popular approaches to proving termination in term
rewriting. Indeed, it underlies virtually all modern termination tools for TRSs.

Let us briefly recall the fundamentals of the DP framework. Here, we consider
that the signature F is implicitly extended with fresh function symbols f � for each
defined function f ∈ DR. Also, given a term t = f(t) with f ∈ DR, we let t� denote
f �(t). Here, t is an abbreviation for t1, . . . , tn for an appropriate n. If l → r ∈ R
and t is a subterm of r with a defined root symbol, then the rule l� → t� is a
dependency pair of R. The set of all dependency pairs of R is denoted by DP(R).
Note that DP(R) is also a TRS.

Reducing Relative Termination to Dependency Pair Problems 167

A key ingredient in this framework is the notion of a chain, which informally
represents a sequence of calls that can occur during a reduction. In the following,
P will often denote a set of dependency pairs. A (P,R)-chain (à la [12]) is a
possibly infinite rewrite sequence s1

ε−→P t1 −→∗
R s2

ε−→P t2 −→∗
R · ε−→P · · · . The

basic result from [2] is then that a TRS R is terminating iff there is no infinite
(DP(R),R)-chain. In order to check absence of infinite chains, the DP framework
introduces the notions of a DP problem. A DP problem is just a pair (P,R),
and is called finite if there is no infinite (P,R)-chain. To prove DP problems
finite, we can use several techniques implemented in current termination tools,
e.g., AProVE, TTT2, and NaTT.

3 Relative Termination as a Dependency Pair Problem

Let us start with some basic conditions in terms of dependency pair problems.
First, it is folklore that, given two TRSs R and B, termination of R ∪ B implies
the relative termination of R w.r.t. B. Therefore, an obvious sufficient condition
for relative termination can be stated as follows:

Proposition 1. Let R and B be TRSs. R/B is terminating if the DP problem
(DP(R ∪ B),R ∪ B) is finite.

Observe that DP(R)∪DP(B) ⊆ DP(R∪B) but DP(R∪B) = DP(R)∪DP(B)
is not true when there are shared symbols.

On the other hand, using a proof technique from the standard DP framework,
we can easily prove the following necessary condition for relative termination.

Proposition 2. Let R and B be TRSs. If R/B is terminating, then the DP
problem (DP(R),R ∪ B) is finite.

Now, we aim at finding more precise characterizations of relative termination
in terms of DP problems. First we need some auxiliary definitions and results.

Definition 2 (Order Pair). We say that (�,
) is a (well-founded) order pair
on carrier A if � is a quasi-ordering on A,
 is a (well-founded) strict order
on A, and � and
 are compatible (i.e., � ◦
 ◦ � ⊆
).

The multiset extension of an order pair (�,
) on A is the order pair (�mul,

mul) on multisets over A which is defined as follows: X �mul Y if X and Y are
written X = X ′ � {x1, . . . , xn} and Y = Y ′ � {y1, . . . , yn}—where “�” denotes
union on multisets—such that

– ∀y ∈ Y ′. ∃x ∈ X ′. x
 y, and
– ∀i ∈ {1, . . . , n}. xi � yi.

We have X
mul Y if it also holds that X ′ �= ∅. It is shown that the multiset
extension of a well-founded order pair is also a well-founded order pair [26].

In the following, we will consider a particular order pair:

168 J. Iborra et al.

Definition 3. For two TRSs R and B, the pair (�R/B,
R/B) of relations on
terms is defined as follows: �R/B = (→R∪B ∪ �)∗ and
R/B = (→R/B ∪ �)+.

The relations �R/B and
R/B enjoy the following key property:

Lemma 1. For two TRSs R and B, (�R/B,
R/B) is a well-founded order pair
on R/B-terminating terms.

Proof. For an R/B-terminating term t, t →R∪B t′ implies that t′ is also R/B-
terminating. Furthermore, t � t′ implies that t′ is also R/B-terminating. Using
these facts, the required properties are straightforward from the definition.

We now introduce the multisets that we will use to prove our main results.

Definition 4. Let R be a TRS and t a term. The multiset �R(t) of maximal
R-defined subterms of t is defined as follows:

– �R(x) = ∅ if x ∈ V,
– �R(f(t1, . . . , tn)) = �R(t1) ∪ · · · ∪ �R(tn) if f /∈ DR, and
– �R(f(t1, . . . , tn)) = {f(t1, . . . , tn)} if f ∈ DR.

An essential property is that an →R reduction step corresponds to a decrease
in
mul

R/B, which is stated as follows:

Lemma 2. Let R and B be TRSs. If s →R t then �R(s)
mul
R/B �R(t).

Proof. Let s
p−→R t and q be the shortest prefix of p such that root(s|q) ∈ DR,

that is, �R(s) = �R(s[]q)∪{s|q}. Note that q always exists since root(s|p) ∈ DR.
We distinguish the following cases:

– Suppose that q < p. Since root(s|q) = root(t|q) ∈ DR, we have �R(t) =
�R(s[]q) ∪ {t|q}. Trivially s|q
R/B t|q, and thus �R(s)
mul

R/B �R(t).
– Suppose that p = q. We have �R(t) = �R(s[]p) ∪ �R(t|p). For every

t′ ∈ �R(t|p), we have s|p →R t|p � t′ and thus s|p
R/B t′. We conclude
�R(s)
R/B �R(t).

Unfortunately, a →B reduction does not generally imply a weak decrease in �mul
R/B

without further conditions. Hence, we introduce the following notion:

Definition 5 (R/B Weak-Decreasing). Let R and B be TRSs. We say that
R/B is weak-decreasing if t →B t′ implies �R(t) �mul

R/B �R(t′).

Keen readers may notice that R/B weak-decreasingness is somewhat related
to the notion of a rank non-increasing TRS from [22]. Intuitively speaking, given
two disjoint signatures, the rank of a term is given by the number of nested
functions from different sets. E.g., given signatures F1 = {f, a} and F2 = {g},
the term f(f(a)) has rank 1, while f(f(g(a))) has rank 3. A TRS R is then called
rank non-increasing if t →R t′ implies that the rank of t is equal or greater
than the rank of t′. The following example illustrates the difference between our
notion of R/B weak-decreasingness and that of rank non-increasingness:

Reducing Relative Termination to Dependency Pair Problems 169

Example 1. Consider the two TRSs R = {a → b} and B = {b → a}. Clearly,
R ∪ B is rank non-increasing (there are no nested functions, so the rank is
always 1). On the other hand, R/B is not weak-decreasing since b →B a but
�R(b) = { } ��mul

R/B {a} = �R(a). Not also that R/B is not terminating.

Now we can show the following result using Lemmas 1 and 2, and the fact
that the multiset extension preserves well-foundedness.

Lemma 3. Let R and B be TRSs such that R/B is weak-decreasing. A term s
is R/B-terminating if all elements in �R(s) are R/B-terminating.

Now we recall the notion of minimal (nonterminating) terms. We say that
an R/B-nonterminating term is minimal if all its proper subterms are R/B-
terminating. It is clear that any R/B-nonterminating term has some minimal
R/B-nonterminating subterm.

Lemma 4. Let R and B be TRSs such that R/B is weak-decreasing. If t is a
minimal R/B-nonterminating term, then root(t) ∈ DR.

Proof. We prove the claim by contradiction. Consider a minimal R/B-
nonterminating term s such that root(s) /∈ DR. Since root(s) /∈ DR, all elements
in �R(s) are proper subterms of s, which are R/B-terminating due to minimality.
Lemma 3 implies that s is R/B-terminating, hence we have a contradiction.

Using the previous results, we can state the following sufficient condition
which states that relative termination of R w.r.t. B coincides with the finiteness
of the DP problem (DP(R),R∪B), even if B is non-terminating. To facilitate the
following discussion, besides R/B weak-decreasingness we further impose that R
and B share no defined symbol, i.e., DR ∩DB = ∅. This condition will be relaxed
in the later development. The proof of the following theorem is analogous to the
standard dependency pair proof scheme.

Theorem 1. Let R and B be TRSs such that R/B is weak-decreasing and DR ∩
DB = ∅. Then, R/B is terminating iff the DP problem (DP(R),R ∪ B) is finite.

Theorem 1 is not yet applicable in practice; whether R/B is weak-decreasing
or not is obviously undecidable in general. Thus in the next section, we provide
decidable syntactic conditions to ensure R/B weak-decreasingness.

4 Syntactic Conditions for Weak-Decreasingness

In this section, we focus on finding syntactic and decidable conditions that ensure
R/B weak-decreasingness. For this purpose, this time we require B to be non-
duplicating, i.e., no variable has more occurrences in the right-hand side of a rule
than in its left-hand side, together with the following condition:

Definition 6 (Dominance). We say that a TRS R dominates a TRS B iff the
right-hand sides of all rules in B contain no symbol from DR.

170 J. Iborra et al.

Before proving that the above two conditions ensure R/B weak-
decreasingness, we state an auxiliary result. Let MVar(s) denote the multiset of
variables occurring in a term s. The following lemma can easily be proved.

Lemma 5. Let R and B be TRSs such that R dominates B. For every term t
and substitution σ, �R(tσ) �mul

R/B
⊎

x∈MVar(t) �R(xσ).

The following lemma is the key result of this section:

Lemma 6. Let R and B be TRSs such that R dominates B and B is non-
duplicating. Then R/B is weak-decreasing.

Proof. We prove that t
p−→B t′ implies �R(t) �mul

R/B �R(t′) for arbitrary terms t

and t′ and a position p. We distinguish the following two cases:

– First, assume that p has a prefix q such that t|q ∈ �R(t). Then, we have

�R(t) = �R(t[]q) ∪ {t|q} and �R(t′) = �R(t[]q) ∪ {t′|q}

Since t|q →B t′|q, we have t|q �mul
R/B t′|q and thus �R(t) �mul

R/B �R(t′).
– Assume now that tq /∈ �R(t) for any prefix q of p. Let l → r ∈ B, t|p = lσ,

and t′ = t[rσ]p. In this case, we have

�R(t) = �R(t[]p) ∪ �R(lσ) and �R(t′) = �R(t[]p) ∪ �R(rσ)

From Lemma 5, we have �R(lσ) �mul
R/B

⋃
x∈MVar(l) �R(xσ). Since R dominates

B, r cannot contain symbols from DR. Therefore,

�R(lσ) �mul
R/B

⋃
x∈MVar(l) �R(xσ) and �R(rσ) =

⋃
x∈MVar(r) �R(xσ)

Since B is non-duplicating, we have MVar(l) ⊇ MVar(r) and thus �R(lσ) ⊇
�R(rσ). Therefore, we conclude that �R(t) �mul

R/B �R(t′).

Finally, the following result is a direct consequence of Theorem1 and Lemma 6.

Corollary 1. Let R and B be TRSs such that R dominates B, B is non-
duplicating, and DR ∩ DB = ∅. Then, R/B is terminating iff the DP problem
(DP(R),R ∪ B) is finite.

The following simple example illustrates that Corollary 1 indeed advances the
state-of-the-art in proving relative termination.

Example 2. Consider the following two TRSs:

R = {g(s(x), y) → g(f(x, y), y)} B = {f(x, y) → x, f(x, y) → f(x, s(y))}

Since they satisfy the conditions of Corollary 1, we obtain the DP problem
(DP(R),R ∪ B), where DP(R) = {g�(s(x), y) → g�(f(x, y), y)}. The DP problem
can be proved finite using classic techniques, e.g. polynomial interpretation Pol
such that fPol(x, y) = x. On the other hand, all the tools we know that support
relative termination, namely AProVE (ver. 2014), TTT2 (ver. 1.15), Jambox (ver.
2006) [6], and TPA (ver. 1.1) [19], fail on this problem.

Reducing Relative Termination to Dependency Pair Problems 171

The dominance condition and the non-duplication condition are indeed nec-
essary for Corollary 1 to hold. It is clear that the former condition is necessary
from Example 1, which violates the dominance condition. For the latter condi-
tion, the following example illustrates that it is also necessary.

Example 3. Consider the following two TRSs:

R = {a → b} B = {f(x) → c(x, f(x))}

We have the following infinite −→R/B-derivation:

f(a) →B c(a, f(a)) →R c(b, f(a)) →B c(b, c(a, f(a))) →R c(b, c(b, f(a))) →B · · ·

However, there is no infinite (DP(R),R ∪ B)-chain since DP(R) = ∅. Note that
this is a counterexample against [15, Theorem 5].

5 Improving Applicability

In contrast to dominance and non-duplication, the condition DR ∩DB = ∅ is not
necessary. In order to show that this is indeed the case, let us recall the following
result from [7]:

Proposition 3. Let R, B′ and B′′ be TRSs. Then, (R ∪ B′)/B′′ is terminating
iff both R/(B′ ∪ B′′) and B′/B′′ are terminating.

Therefore, we have the following corollary in our context:

Corollary 2. Let R and B be TRSs with B = B′ ∪ B′′. If (R ∪ B′)/B′′ is termi-
nating, then R/B is terminating.

Now we state the first theorem of this section.

Theorem 2. Let R and B be TRSs such that R dominates B and B is non-
duplicating. If the DP problem (DP(R),R∪B) is finite then R/B is terminating.

Proof. Let B′ be the set of rules in B that define DR symbols, i.e., B′ = {l →
r ∈ B | root(l) ∈ DR}, and let B′′ = B \B′. Since the right-hand sides of B′ rules
cannot contain symbols from DR (= DR∪B′), we have DP(R ∪ B′) = DP(R).

Now, observe that R ∪ B′ dominates B′′, DR∪B′ ∩ DB′′ = ∅, and B′′ is non-
duplicating. Thus, Corollary 1 implies the relative termination of R ∪ B′ w.r.t.
B′′ and Corollary 2 implies the relative termination of R w.r.t. B.

Unfortunately, the remaining two, namely the dominance and non-duplication
conditions, might be too restrictive in practice. For instance, only six out of 44
examples in the relative TRS category of the TPDB satisfy both conditions.

Luckily, we can employ again Corollary 2 to relax the conditions. Consider
TRSs R and B such that we want to prove that R/B is terminating but the
conditions of Theorem 2 do not hold. Then, we might still find a partition
B = B′ � B′′ such that R ∪ B′ and B′′ satisfy the conditions.

If we succeed, then by Theorem 2 and Corollary 2, we have that R/B is
terminating (i.e., by Theorem2, (R∪B′)/B′′ is terminating and, by Corollary 2,
R/(B′ ∪ B′′) is also terminating with B′ ∪ B′′ = B).

172 J. Iborra et al.

Corollary 3. Let R and B be TRSs. If B is split into B = B′ � B′′ such that
(1) B′′ is non-duplicating, (2) R ∪ B′ dominates B′′, and (3) the DP problem
(DP(R ∪ B′),R ∪ B) is finite, then R/B is terminating.

Example 4. Consider the following TRSs R and B:

R = {a → b} B = {f(s(x)) → c(x, f(x)), c(x, c(y, z)) → c(y, c(x, z))}

The first rule of B is duplicating, and hence Theorem 2 does not apply. However,
we can split B into the following TRSs B′ and B′′:

B′ = {f(s(x)) → c(x, f(x))} B′′ = {c(x, c(y, z)) → c(y, c(x, z))}

so that Corollary 3 applies. Now, we have DP(R ∪ B′) = { f�(s(x)) → f�(x) },
whose finiteness can be proved using standard techniques.

Corollary 3 requires the rules in B that are duplicating or violate the domi-
nance condition to be relatively terminating w.r.t. other rules in B. This is not
overly restrictive, as shown by the following two examples.

Example 5. Consider again the TRS B of Example 3, which is duplicating
and nonterminating. We can construct an infinite →R/B-reduction as in
Example 3 for any nonempty TRS R; thus, any nonempty TRS is not relatively
terminating w.r.t. B.

Example 6. Consider the two TRSs R = { a → b } and B = { d → c(a, d) }. Note
that R does not dominate B. The DP problem (DP(R),R ∪ B) = (∅,R ∪ B) is
trivially finite. However, R is not relatively terminating w.r.t. B, as the following
infinite derivation exists:

d →B c(a, d) →R c(b, d) →B c(b, c(a, d)) →R c(b, c(b, d)) →B · · ·

6 Relative Termination and Minimality

A DP chain s�
1

ε−→P t�1 −→∗
R s�

2
ε−→P t�2 −→∗

R · · · is said to be minimal if
every t�i is terminating w.r.t. R. It is well-known that absence of infinite min-
imal (DP(R),R)-chains implies absence of infinite (DP(R),R)-chains and thus
termination of R. A couple of techniques, namely usable rules and the subterm
criterion have been proposed to prove absence of infinite minimal chains [12].

Unfortunately, for the DP problems produced by our relative termination
criteria, the minimality property cannot be assumed. Therefore, usable rules
and subterm criterion do not apply in general.

Example 7. Consider the TRSs R = { f(s(x)) → f(x) } and B = { inf → s(inf) }.
Theorem 2 yields the DP problem ({f�(s(x)) → f�(x)},R∪B), which satisfies the
subterm criterion in the argument of f�. Moreover, since no rule is usable from
the dependency pair f�(s(x)) → f�(x), the usable rule technique would yield the
DP problem ({f�(s(x)) → f�(x)}, ∅), which any standard technique proves finite.
However, R/B is not terminating as the following infinite reduction exists:

f(s(inf)) →R f(inf) →B f(s(inf)) →R f(inf) →B · · ·

Reducing Relative Termination to Dependency Pair Problems 173

Nonetheless, we show that both the subterm criterion and usable rules are
still applicable when B satisfies the following condition:

Definition 7 (Quasi-Termination [5]). We say that a TRS R is quasi-
terminating iff the set {t | s −→∗

R t} is finite for every term s.

Now we naturally extend the notion of minimality to relative termination.

Definition 8 (Relative DP Problem). A relative DP problem is a triple of
TRSs, written (P,R/B). A (P,R/B)-chain is a possibly infinite sequence

s1
ε−→P t1

>ε−→∗
R∪B s2

ε−→P t2
>ε−→∗

R∪B · · ·

and is called minimal if every ti is R/B-terminating. The relative DP problem
is minimally finite if it admits no infinite minimal chain.

Clearly, finiteness of (DP(R),R/B) is equivalent to that of (DP(R),R ∪ B).
Hence our previous results hold as well for the corresponding relative DP problems.

When the base B is quasi-terminating, we can apply the subterm criterion.
A simple projection π assigns each n-ary symbol f � an argument position i ∈
{1, . . . , n}. For a term t� = f �(t1, . . . , tn) and i = π(f �), we denote ti by π(t�).
For a relation � on terms, �π is defined as follows: s �π t iff π(s) � π(t).

Theorem 3 (Relative Subterm Criterion). Let B be a quasi-terminating
TRS, (P,R/B) a relative DP problem and π a simple projection such that P ⊆
�π. Then, (P,R/B) is finite if (P \ �π,R/B) is finite.

The proof of the above theorem mimics that of [12, Theorem11], but here we
need the relative termination of �/B.

The quasi-termination condition also enables the usable rules technique.

Theorem 4 (Relative Usable Rules). If B is quasi-terminating, then the
usable rule argument can be applied to the relative DP problem (P,R/B).

Proof (Sketch). The proof basically follows the standard case of [12, Theorem 29].
Note however that we require B to be quasi-terminating, in order for the inter-
pretation IG to be well-defined for all R/B-terminating terms.

It is well-known that, unfortunately, the quasi-termination condition is unde-
cidable [5]. In our implementation, we only use a trivial sufficient condition,
size-non-increasingness. We admit that this is quite restrictive, and thus leave
it for future work to find more useful syntactic condition for this purpose.

From Example 7, it is clear that the usable rule argument does not apply to
the rules in B if they are not quasi-terminating. Nonetheless, we conjecture that
the usable rule argument may be still applicable to the rules in R.

174 J. Iborra et al.

7 Experimental Evaluation

A key technique for proving finiteness of DP problems are reduction pairs [2]:
A reduction pair is a well-founded order pair (�, >) on terms such that � is
closed on contexts and substitutions, and > is closed on substitutions.

Proposition 4 ([2,10]). Let (P,R) be a DP problem and (�, >) a reduction
pair such that P ∪ R ⊆ �. The DP problem (P,R) is finite iff (P \ >,R) is.

In the experiments, we use the following reduction pairs:

– polynomial interpretations with negative constants [2,11,21],
– the lexicographic path order [16],
– the weighted path order with partial status [29], and
– (2- or 3-dimensional) matrix interpretations [6].

Geser [7] proposed a technique to reduce relative termination of TRSs to
relative termination of simpler TRSs. This technique is incorporated into the
DP framework for proving standard termination, as rule removal processors [10].
We say a reduction pair (�, >) is monotone if > is closed under contexts.

Proposition 5 (Relative Rule Removal Processor). Let R and B be
TRSs, and (�, >) a monotone reduction pair such that R ∪ B ⊆ �. Then R
is relatively terminating w.r.t. B if and only if R \ > is relatively terminating
w.r.t. B \ >.

For monotone reduction pairs, we use polynomial and matrix interpretations
with top-left elements of coefficients being at least 1 [6].

We implemented our technique into the termination prover NaTT (ver.1.2). In
the following, we show the significance of our technique through an experimental
evaluation. The experiments4 were run on a server equipped with a quad-core
Intel Xeon E5-3407v2 processor running at a clock rate of 2.40GHz and 32GB
of main memory. NaTT uses z3 4.3.2 5 as a back-end SMT solver.

The first test set consists of the 44 examples in the “TRS Relative” category
of the termination problem database (TPDB) 9.0.6 The results are presented
in the left half of Table 1. In the first two rows, we directly apply Theorem2
and Corollary 3, and then apply the aforementioned reduction pairs. We observe
that they are of limited applicability on the TPDB set of problems due to
the non-duplication and dominance conditions. Nonetheless, Corollary 3 could
prove relative termination of two problems7 which no tools participating in the
termination competition 2014 were able to prove. For comparison, we include
results for rule removal processors by matrix interpretations in the third row.

We also prepared 44 examples by extending examples of [3] with the random
number generator Brand or the commutative list specification Bcomlist. The results
4 Details are available at http://www.trs.cm.is.nagoya-u.ac.jp/papers/CADE2015.
5 Available at http://z3.codeplex.com/.
6 Available at http://termination-portal.org/wiki/TPDB.
7 For one of the two problems, the union is terminating.

http://www.trs.cm.is.nagoya-u.ac.jp/papers/CADE2015
http://z3.codeplex.com/
http://termination-portal.org/wiki/TPDB

Reducing Relative Termination to Dependency Pair Problems 175

Table 1. Experiments

TPDB relative (44) AG01+relative (44)

Method Yes Maybe T.O Time Yes Maybe T.O Time

Theorem 2 4 40 0 1.21 29 15 0 5.07

Corollary 3 6 28 0 37.03 29 15 0 5.08

Proposition 5 23 17 4 406.01 9 35 0 8.19

Proposition 5 + Corollary 3 25 11 8 505.94 35 9 0 12.70

AProVE 27 (no: 8) 9 756.66 14 0 30 1959.91

are presented in the right half of Table 1. In these examples, the power of our
method should be clear. Theorem 2 is already able to prove relative termination
of 29 examples, while AProVE succeeds only in 14 examples.

The DP framework allows combining termination proving techniques. In the
fourth row, we combine the rule removal processors and the technique presented in
this paper. This combination indeed boosts the power of NaTT; e.g., by combining
Proposition 5 and Corollary 3, NaTT can prove relative termination for a total of
60 examples (out of 88), while AProVE can only prove it for 41 examples.8 There-
fore, we can conclude that our technique improves the state-or-the-art methods
for proving relative termination.

8 Related Work

One of the most comprehensive works on relative termination is Geser’s PhD
thesis [7]. One of the main results in this work is formulated in Proposition 5 in
the previous section. A similar technique has been used, e.g., to prove confluence
in [13]. Of course dependency pairs are not considered in [7] since it was intro-
duced almost a decade later. Dependency pairs are considered in [6], but they
are mainly used to prove termination of a TRS R by proving the termination of
DP(R)/R, which is quite a different purpose from ours.

Giesl and Kapur [8] adapted the dependency pair method for proving termi-
nation of equational rewriting, a special case of relative termination where the
base is symmetric (B = B−1). For more specific associative-commutative (AC)
rewriting, a number of papers exist (e.g., [1]). The key technique behind them
is to compute an extension of R w.r.t. the considered equations. This operation
allows symbols in B (e.g., AC symbols) to be defined also in R, and hence no
counterpart of the dominance condition is required. However, such extensions
are computable only for certain equations (e.g., AC), and thus they are not
appropriate in our setting, where an arbitrary base B is considered.

The closer approach is [15], where the main aim was proving termination of
narrowing [14] by proving relative termination of a corresponding rewrite rela-
tion, similarly to [24,27]. In [15], a first attempt to reduce relative termination
8 For four examples, AProVE proved relative termination but NaTT failed. There
AProVE used semantic labeling [30], which is currently not implemented in NaTT.

176 J. Iborra et al.

to a DP problem is made by requiring R and B to form a so called hierar-
chical combination (HC) [25], i.e., DR ∩ FB = ∅. Unfortunately, we found that
[15, Theorem 5] was incorrect since requiring B to be non-duplicating is also nec-
essary. In fact, Example 3 is a counterexample to [15, Theorem 5]. The present
paper corrects and significantly extends [15]; namely, all results in Sects. 3, 5 and
6 are new, and those in Sect. 4 correct and extend the previous result of [15]. Note
also that the HC condition of [15] is a special case of our dominance condition.
Moreover, we developed an implementation that allowed us to experimentally
verify that our technique indeed pays off in practice.

9 Conclusion

In this paper, we have introduced a new approach to proving relative termination
by reducing it to DP problems. The relevance of such a result should be clear,
since it allows one to prove relative termination by reusing many existing tech-
niques and tools for proving termination within the DP framework. Indeed, such
an approach was included in the RTA List of Open Problems (Problem #106).
To the best of our knowledge, this work makes the first significant contribution
to positively answering this problem. Moreover, as shown in Sect. 7, our method
is competitive w.r.t. state-of-the-art provers for the problems in TPDB, and is
clearly superior for examples including the generation of random values or the
simulation of extra-variables, as discussed in Sect. 1.

As future work, we plan to improve the precision of our technique by extend-
ing the DP framework to be more suitable for proving relative termination. We
will also continue the research on finding less restrictive conditions on R and B
so that the technique becomes more widely applicable.

Acknowledgement. We would like to thank Nao Hirokawa and the anonymous
reviewers for their helpful comments and suggestions in early stages of this work.

References

1. Alarcón, B., Lucas, S., Meseguer, J.: A dependency pair framework for A ∨ C -
termination. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 35–51.
Springer, Heidelberg (2010)

2. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theor.
Comput. Sci. 236(1–2), 133–178 (2000)

3. Arts, T., Giesl, J.: A collection of examples for termination of term rewriting using
dependency pairs. Technical report AIB-2001-09, RWTH Aachen (2001)

4. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

5. Dershowitz, N.: Termination of rewriting. J. Symb. Comput. 3(1&2), 69–115 (1987)
6. Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving ter-

mination of term rewriting. J. Autom. Reasoning 40(2–3), 195–220 (2008)
7. Geser, A.: Relative termination. Dissertation, Fakultät für Mathematik und Infor-

matik, Universität Passau, Germany (1990)

Reducing Relative Termination to Dependency Pair Problems 177

8. Giesl, J., Kapur, D.: Dependency pairs for equational rewriting. In: Middeldorp,
A. (ed.) RTA 2001. LNCS, vol. 2051, pp. 93–107. Springer, Heidelberg (2001)

9. Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2 : automatic termination
proofs in the dependency pair framework. In: Furbach, U., Shankar, N. (eds.)
IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)

10. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving
dependency pairs. J. Autom. Reasoning 37(3), 155–203 (2006)

11. Hirokawa, N., Middeldorp, A.: Polynomial interpretations with negative coeffi-
cients. In: Buchberger, B., Campbell, J. (eds.) AISC 2004. LNCS (LNAI), vol.
3249, pp. 185–198. Springer, Heidelberg (2004)

12. Hirokawa, N., Middeldorp, A.: Dependency pairs revisited. In: van Oostrom, V.
(ed.) RTA 2004. LNCS, vol. 3091, pp. 249–268. Springer, Heidelberg (2004)

13. Hirokawa, N., Middeldorp, A.: Decreasing diagrams and relative termination. J.
Autom. Reasoning 47(4), 481–501 (2011)

14. Hullot, J.M.: Canonical forms and unification. CADE-5. LNCS, vol. 87, pp. 318–
334. Springer, Heidelberg (1980)

15. Iborra, J., Nishida, N., Vidal, G.: Goal-directed and relative dependency pairs for
proving the termination of narrowing. In: De Schreye, D. (ed.) LOPSTR 2009.
LNCS, vol. 6037, pp. 52–66. Springer, Heidelberg (2010)

16. Kamin, S., Lévy, J.J.: Two generalizations of the recursive path ordering (1980,
unpublished note)

17. Klop, J.W.: Term rewriting systems: a tutorial. Bull. Eur. Assoc. Theor. Comput.
Sci. 32, 143–183 (1987)

18. Koprowski, A., Zantema, H.: Proving liveness with fairness using rewriting. In:
Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol. 3717, pp. 232–247. Springer,
Heidelberg (2005)

19. Koprowski, A.: TPA: termination proved automatically. In: Pfenning, F. (ed.) RTA
2006. LNCS, vol. 4098, pp. 257–266. Springer, Heidelberg (2006)

20. Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean termination tool 2.
In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 295–304. Springer, Heidelberg
(2009)

21. Lankford, D.: Canonical algebraic simplification in computational logic. Technical
report ATP-25, University of Texas (1975)

22. Liu, J., Dershowitz, N., Jouannaud, J.-P.: Confluence by critical pair analysis.
In: Dowek, G. (ed.) RTA-TLCA 2014. LNCS, vol. 8560, pp. 287–302. Springer,
Heidelberg (2014)

23. Nishida, N., Sakai, M., Sakabe, T.: Narrowing-based simulation of term rewriting
systems with extra variables. ENTCS 86(3), 52–69 (2003)

24. Nishida, N., Vidal, G.: Termination of narrowing via termination of rewriting.
Appl. Algebra Eng. Commun. Comput. 21(3), 177–225 (2010)

25. Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer-Verlag, London
(2002)

26. Thiemann, R., Allais, G., Nagele, J.: On the formalization of termination tech-
niques based on multiset orderings. In: RTA 2012. LIPIcs, vol. 15, pp. 339–354.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2012)

27. Vidal, G.: Termination of narrowing in left-linear constructor systems. In: Gar-
rigue, J., Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 113–129.
Springer, Heidelberg (2008)

28. Yamada, A., Kusakari, K., Sakabe, T.: Nagoya termination tool. In: Dowek, G.
(ed.) RTA-TLCA 2014. LNCS, vol. 8560, pp. 466–475. Springer, Heidelberg (2014)

178 J. Iborra et al.

29. Yamada, A., Kusakari, K., Sakabe, T.: A unified ordering for termination proving.
Sci. Comput. Program. (2014). doi:10.1016/j.scico.2014.07.009

30. Zantema, H.: Termination of term rewriting by semantic labelling. Fundamenta
Informaticae 24(1/2), 89–105 (1995)

31. Zantema, H.: Termination. In: Bezem, M., Klop, J.W., de Vrijer, R. (eds.) Term
Rewriting Systems. Cambridge Tracts in Theoretical Computer Science, vol. 55,
pp. 181–259. Cambridge University Press, Cambridge (2003)

http://dx.doi.org/10.1016/j.scico.2014.07.009

	Reducing Relative Termination to Dependency Pair Problems
	1 Introduction
	2 Preliminaries
	3 Relative Termination as a Dependency Pair Problem
	4 Syntactic Conditions for Weak-Decreasingness
	5 Improving Applicability
	6 Relative Termination and Minimality
	7 Experimental Evaluation
	8 Related Work
	9 Conclusion
	References

